
[220 / 319] JSON
Department of Computer Sciences

University of Wisconsin-Madison

Readings:

Chapter 16 of Sweigart book

Worksheet practice with nesting

Learning Objectives

JSON:
• interpret data format

• differences with Python syntax

• deserialize data from JSON files to use in Python program (read)

• serialize data into JSON files for long term storage (write)

Read: Sweigart Ch 16

https://automatetheboringstuff.com/2e/chapter16/

“JSON and APIs” to the end

https://automatetheboringstuff.com/2e/chapter16/

Python Data Structures and File Formats

Python File

[

[“name”, “x”, “y”],

[“alice”, 100, 150],

[“bob”, -10, 80]

]

name,x,y

alice,100,150

bob,-10,80

list of lists
CSV file

We can use CSV files to store

data we would want in lists of lists

Python Data Structures and File Formats

Python File

[

[“name”, “x”, “y”],

[“alice”, 100, 150],

[“bob”, -10, 80]

]

name,x,y

alice,100,150

bob,-10,80

list of lists
CSV file

{

“alice”: {

“age”: 40,

“scores”: [10,20,19]},

“bob”: {

“age”: 45,

“scores”: [15,23,17,15]}

}

dict of dicts

?

Python Data Structures and File Formats

Python File

[

[“name”, “x”, “y”],

[“alice”, 100, 150],

[“bob”, -10, 80]

]

name,x,y

alice,100,150

bob,-10,80

list of lists
CSV file

{

“alice”: {

“age”: 40,

“scores”: [10,20,19]},

“bob”: {

“age”: 45,

“scores”: [15,23,17,15]}

}

{

“alice”: {

“age”: 40,

“scores”: [10,20,19]},

“bob”: {

“age”: 45,

“scores”: [15,23,17,15]}

}

dict of dicts JSON file

Python Data Structures and File Formats

Python File

[

[“name”, “x”, “y”],

[“alice”, 100, 150],

[“bob”, -10, 80]

]

name,x,y

alice,100,150

bob,-10,80

list of lists
CSV file

{

“alice”: {

“age”: 40,

“scores”: [10,20,19]},

“bob”: {

“age”: 45,

“scores”: [15,23,17,15]}

}

dict of dicts

{

“alice”: {

“age”: 40,

“scores”: [10,20,19]},

“bob”: {

“age”: 45,

“scores”: [15,23,17,15]}

}

JSON file

JSON files look almost

identical to Python code

for data structures!

dicts use curly braces

Python Data Structures and File Formats

Python File

[

[“name”, “x”, “y”],

[“alice”, 100, 150],

[“bob”, -10, 80]

]

name,x,y

alice,100,150

bob,-10,80

list of lists
CSV file

{

“alice”: {

“age”: 40,

“scores”: [10,20,19]},

“bob”: {

“age”: 45,

“scores”: [15,23,17,15]}

}

dict of dicts

{

“alice”: {

“age”: 40,

“scores”: [10,20,19]},

“bob”: {

“age”: 45,

“scores”: [15,23,17,15]}

}

JSON file

JSON files look almost

identical to Python code

for data structures!

keys are separated from

values with a colon

Python Data Structures and File Formats

Python File

[

[“name”, “x”, “y”],

[“alice”, 100, 150],

[“bob”, -10, 80]

]

name,x,y

alice,100,150

bob,-10,80

list of lists
CSV file

{

“alice”: {

“age”: 40,

“scores”: [10,20,19]},

“bob”: {

“age”: 45,

“scores”: [15,23,17,15]}

}

dict of dicts

{

“alice”: {

“age”: 40,

“scores”: [10,20,19]},

“bob”: {

“age”: 45,

“scores”: [15,23,17,15]}

}

JSON file

JSON files look almost

identical to Python code

for data structures!

lists use square brackets

Python Data Structures and File Formats

Python File

[

[“name”, “x”, “y”],

[“alice”, 100, 150],

[“bob”, -10, 80]

]

name,x,y

alice,100,150

bob,-10,80

list of lists
CSV file

{

“alice”: {

“age”: 40,

“scores”: [10,20,19]},

“bob”: {

“age”: 45,

“scores”: [15,23,17,15]}

}

dict of dicts

{

“alice”: {

“age”: 40,

“scores”: [10,20,19]},

“bob”: {

“age”: 45,

“scores”: [15,23,17,15]}

}

JSON file

JSON files look almost

identical to Python code

for data structures!

strings are in quotes

Python Data Structures and File Formats

Python File

[

[“name”, “x”, “y”],

[“alice”, 100, 150],

[“bob”, -10, 80]

]

name,x,y

alice,100,150

bob,-10,80

list of lists
CSV file

{

“alice”: {

“age”: 40,

“scores”: [10,20,19]},

“bob”: {

“age”: 45,

“scores”: [15,23,17,15]}

}

dict of dicts

{

“alice”: {

“age”: 40,

“scores”: [10,20,19]},

“bob”: {

“age”: 45,

“scores”: [15,23,17,15]}

}

JSON file

JSON files look almost

identical to Python code

for data structures!

integers look like integers

JSON

Stands for JavaScript Object Notation
• JavaScript is a language for web development

• JSON was developed for JavaScript programs to store/share

data

• JSON looks like Python code because JavaScript is similar to

Python

Minor JavaScript vs. Python differences:Python JSON

Booleans True, False true, false

No value None null

Quotes Single (‘) or double (“) Only double (“)

Commas Extra allowed: [1,2,] No extra: [1,2]

Keys Any type: {3: “three”} Str only: {“3”: “three”}

remember these!

{

“alice”: 10,

“bob”: 12,

“cindy”: 15

}

JSON file saved somewhere

Python Program

{“alice”:10, “bob”:12,

“cindy”:15}

Analysis Code

d
ic

t

data[“cindy”] 15

Reading JSON Files

Parsing Code

What does this look like?

{

“alice”: 10,

“bob”: 12,

“cindy”: 15

}

JSON file saved somewhere

Python Program

{“alice”:10, “bob”:12,

“cindy”:15}

Analysis Code

d
ic

t

data[“cindy”] 15

Reading JSON Files

Parsing Code

What does this look like?

import json

def read_json(path):

with open(path, encoding="utf-8") as f:

return json.load(f) # dict, list, etc

what about writing new files?

CTRL C+

don't need to understand

this snippet yet

Data Structures and Files

Data Structures

[lists, dicts, etc]

Files

[CSVs, JSONs, etc]

parsing

serialization

why not just have data structures?

because our data needs to live somewhere when our programs aren't running

why not just have files?

slow, and Python doesn't understand structure until it is parsed

{

“cindy”: 15

}

JSON file saved somewhere

Python Program

{“cindy”: 15}

Code

d
ic

t

data[“cindy”] = 15

What does this look like?

Serialization Code

Writing JSON Files

{

“cindy”: 15

}

JSON file saved somewhere

Python Program

{“cindy”: 15}

Code

d
ic

t

data[“cindy”] = 15

What does this look like?

Serialization Code

Writing JSON Files

import json

data is a dict, list, etc

def write_json(path, data):

with open(path, 'w', encoding="utf-8") as f:

json.dump(data, f, indent=2)

CTRL C+

don't need to understand

this snippet yet

Example: Sum of numbers (simple JSON)

Goal: count the numbers in a list saved as a JSON file

Input:
• Location of the JSON file

Output:
• The sum

Example: output 6
[1,2,3]

fileA.json

Example: Score Tracker

Goal: record scores (save across runs) and print average

Input:
• A name and a score to record

Output:
• Running average for that person

Example:

"Enter player name and score": alice 10

Alice Avg: 10

"Enter player name and score": alice 20

Alice Avg: 15

"Enter player name and score": bob 13

Bob Avg: 13

Example – Exploring kiva.json

Goal: explore a real-world JSON file

{

"data": {

"lend": {

"loans": {

"values": [

{

"name": "Polikseni",

"description": "Polikseni is 70 years old and married. She and her husband are both retired and their main income is a

retirement pension of $106 a month for Polikseni and disability income for her husband of $289 a month.

Polikseni's husband, even though disabled, works in a very small shop as a watchmaker on short hours, just to provide

additional income for his family and to feel useful. Polikseni's husband needs constant medical treatment due to his health

problems. She requested another loan, which she will use to continue paying for the therapy her husband needs. With a part of

the loan, she is going to pay the remainder of the previous loan.",

"loanAmount": "1325.00",

"geocode": {

"city": "Korce",

"country": {

"name": "Albania",

"region": "Eastern Europe",

"fundsLentInCountry": 9051250

}

}

}, …

}

kiva.json

Challenge - Demo 4: Prime Cache

Goal: find number of primes less than N, cache previous return

vals

Input:
• An integer N

Output:
• How many primes are less than that number

Challenge - Demo 5: Upper Autocomplete

Goal: record scores (save across runs) and print average

Input:
• A complete phrase

• A partial phrase ending with a *

Output:
• The upper case version of it

• Options to autocomplete

Example:

msg: hi

HI

msg: hello

HELLO

msg: h*

1: hi

2: hello

select: 1

HI
autocomplete must work

across multiple runs

	Slide 1: [220 / 319] JSON
	Slide 2: Worksheet practice with nesting
	Slide 3: Learning Objectives
	Slide 4: Python Data Structures and File Formats
	Slide 5: Python Data Structures and File Formats
	Slide 6: Python Data Structures and File Formats
	Slide 7: Python Data Structures and File Formats
	Slide 8: Python Data Structures and File Formats
	Slide 9: Python Data Structures and File Formats
	Slide 10: Python Data Structures and File Formats
	Slide 11: Python Data Structures and File Formats
	Slide 12: JSON
	Slide 13: Reading JSON Files
	Slide 14: Reading JSON Files
	Slide 15: Data Structures and Files
	Slide 16: Writing JSON Files
	Slide 17: Writing JSON Files
	Slide 18: Example: Sum of numbers (simple JSON)
	Slide 19: Example: Score Tracker
	Slide 20: Example – Exploring kiva.json
	Slide 21: Challenge - Demo 4: Prime Cache
	Slide 22: Challenge - Demo 5: Upper Autocomplete

