diff --git a/f22/meena_lec_notes/lec-18/cs220_survey_data.csv b/f22/meena_lec_notes/lec-18/cs220_survey_data.csv new file mode 100644 index 0000000000000000000000000000000000000000..abfd53ba7dfcd37e19c7d2b5ef5b4951d59cfa99 --- /dev/null +++ b/f22/meena_lec_notes/lec-18/cs220_survey_data.csv @@ -0,0 +1,993 @@ +Lecture,Age,Major,Zip Code,Latitude,Longitude,Pizza topping,Pet preference,Runner,Sleep habit,Procrastinator +LEC001,22,Engineering: Biomedical,53703,43.073051,-89.40123,none (just cheese),neither,No,no preference,Maybe +LEC006,,Undecided,53706,43.073051,-89.40123,none (just cheese),neither,No,no preference,Maybe +LEC004,18,Engineering: Industrial,53715,43.073051,-89.40123,none (just cheese),neither,No,no preference,Maybe +LEC005,,Undecided,53706,43.073051,-89.40123,none (just cheese),neither,No,no preference,Maybe +LEC002,,Undecided,53706,43.073051,-89.40123,none (just cheese),neither,No,no preference,Maybe +LEC004,18,Engineering: Other|Engineering: Computer,53706,43.073051,-89.40123,none (just cheese),neither,No,no preference,Maybe +LEC003,,Undecided,53706,43.073051,-89.40123,none (just cheese),neither,No,no preference,Maybe +LEC003,18,Data Science,53715,43.073051,-89.40123,pineapple,cat,Yes,no preference,Maybe +LEC006,18,Data Science,53706,35.4,119.11,none (just cheese),dog,No,night owl,Yes +LEC006,18,Mathematics/AMEP,53706,44,-93,pepperoni,dog,No,night owl,Yes +LEC002,21,Engineering: Other,53703,24.713552,46.675297,none (just cheese),cat,Yes,night owl,Maybe +LEC003,19,Data Science,53705,24.6806,46.57936,pineapple,cat,No,early bird,No +LEC004,24,Economics,53703,43,-89,pineapple,cat,Yes,early bird,Yes +LEC003,18,Data Science,53706,36.102371,-115.174553,none (just cheese),dog,No,night owl,Yes +LEC006,22,Psychology,53703,31.78,119.95,mushroom,cat,No,night owl,Yes +LEC005,20,Data Science,53705,37.8,112.5,pepperoni,cat,Yes,night owl,Yes +LEC004,24,Science: Biology/Life,53703,46.872131,-113.994019,pepperoni,dog,Yes,early bird,Yes +LEC004,17,Engineering: Mechanical,53706,46.6242,8.0414,pineapple,dog,No,night owl,Yes +LEC004,19,Engineering: Mechanical,53726,43.073051,-89.40123,none (just cheese),dog,Yes,early bird,No +LEC002,19,Engineering: Mechanical,57303,41.878113,-87.629799,pineapple,dog,No,night owl,Yes +LEC001,,Mathematics/AMEP,53706,31.230391,121.473701,basil/spinach,dog,No,no preference,Maybe +LEC002,19,Mathematics/AMEP,53558,40.712776,-74.005974,sausage,dog,Yes,night owl,Yes +LEC001,20,Economics (Mathematical Emphasis),53703,48.86,2.3522,pepperoni,dog,No,early bird,Yes +LEC001,19,Engineering: Mechanical,53703,24.7,46.7,mushroom,dog,Yes,early bird,Maybe +LEC005,18,Computer Science,53703,37.338207,-121.88633,green pepper,dog,Yes,night owl,Yes +LEC003,19,Engineering: Mechanical,53558,43.073051,-89.40123,pepperoni,dog,No,night owl,Yes +LEC005,20,Engineering: Mechanical,53715,38.9072,-77.0369,Other,cat,No,night owl,Yes +LEC003,20,Data Science,53703,43.073051,-89.40123,pepperoni,dog,No,night owl,Yes +LEC002,21,Science: Other|Political Science,53703,31.768318,35.213711,pepperoni,dog,No,no preference,Maybe +LEC003,19,Mathematics/AMEP,53715,19.075983,72.877655,basil/spinach,cat,No,night owl,Maybe +LEC001,23,Computer Science,53711,43.073929,-89.385239,sausage,dog,No,night owl,Yes +LEC006,21,Business: Other,53715,25.761681,-80.191788,pepperoni,dog,No,night owl,Yes +LEC003,19,Business: Other|Real Estate,53715,117,33,pepperoni,dog,Yes,night owl,No +LEC004,19,Computer Science,53726,47.037872,-122.900696,tater tots,dog,No,night owl,Yes +LEC004,24,Economics,53703,23.12911,113.264381,pepperoni,cat,Yes,early bird,Maybe +LEC005,19,Data Science,53703,64.49796,165.40998,sausage,dog,No,night owl,Yes +LEC003,19,Data Science,53705,25,47,mushroom,cat,No,early bird,Maybe +LEC005,20,Engineering: Other|Engineering Physics: Scientific Computing,53715,43.073051,-89.4,none (just cheese),dog,No,night owl,Yes +LEC005,20,Computer Science,53703,48.856613,2.352222,pepperoni,dog,No,night owl,Yes +LEC002,19,Business: Finance,53726,43.04156,87.91006,pepperoni,dog,No,night owl,Yes +LEC002,21,Data Science,53713,29.868336,121.543991,mushroom,dog,No,night owl,No +LEC004,19,Computer Science,53715,40.712776,-74.005974,pepperoni,dog,No,night owl,Maybe +LEC003,18,Computer Science,53706,5.93876,80.48433,Other,dog,No,night owl,Maybe +LEC005,19,Engineering: Mechanical,53704,38.7,-77,pepperoni,cat,Yes,no preference,No +LEC004,18,Engineering: Mechanical,53726,41.878113,-87.629799,pepperoni,dog,No,night owl,Maybe +LEC005,19,Engineering: Other,53703,36.169941,-115.139832,pepperoni,dog,No,night owl,Maybe +LEC005,19,Engineering: Mechanical,53703,43.078104,-89.431698,pepperoni,dog,Yes,night owl,Yes +LEC006,18,Engineering: Biomedical,53051,33.6846,117.8265,pepperoni,dog,Yes,night owl,Yes +LEC001,22,Engineering: Mechanical,53719,43.073051,-89.40123,none (just cheese),cat,Yes,night owl,Yes +LEC001,18,Computer Science,53706,26.2992,87.2625,mushroom,dog,Yes,night owl,No +LEC001,24,Business: Information Systems,53703,43.073051,-89.40123,macaroni/pasta,cat,No,night owl,No +LEC006,19,Engineering: Mechanical,53703,43.04049,-87.91732,Other,dog,No,night owl,Yes +LEC001,,Computer Science,53715,34.052235,-118.243683,green pepper,dog,No,night owl,Yes +LEC002,20,Statistics,53703,40.7128,74.006,Other,dog,No,night owl,Maybe +LEC005,23,Computer Science,53703,37.5,126.97,pepperoni,dog,No,night owl,No +LEC002,21,Statistics,53703,52.370216,4.895168,pepperoni,dog,Yes,early bird,Maybe +LEC002,18,Undecided,53706,38.56247,-121.70411,pepperoni,dog,Yes,night owl,Yes +LEC006,18,Statistics,53706,40.712776,40.712776,pepperoni,dog,No,night owl,Yes +LEC003,21,Economics,53715,43.073051,-89.40123,none (just cheese),dog,No,night owl,Yes +LEC003,19,Engineering: Mechanical,53715,45,-93,sausage,dog,No,night owl,No +LEC005,21,Business: Finance,53717,40.6461,-111.498,sausage,dog,No,night owl,Yes +LEC001,26,Engineering: Mechanical,53703,41.902782,12.496365,pepperoni,dog,No,night owl,Yes +LEC001,25,Economics,53703,40.712776,-74.005974,pepperoni,dog,No,night owl,Yes +LEC003,18,Mathematics/AMEP,53706,31.230391,121.473701,mushroom,dog,Yes,early bird,No +LEC001,19,Computer Science,53706,48.855709,2.29889,pepperoni,cat,Yes,night owl,Yes +LEC005,17,Science: Biology/Life,53706,-18.766947,46.869106,basil/spinach,dog,Yes,early bird,Maybe +LEC003,19,Business: Information Systems,53711,38.893452,-77.014709,pepperoni,dog,No,early bird,Yes +LEC001,21,Computer Science,53715,16.306652,80.436539,Other,dog,No,night owl,Yes +LEC006,19,Data Science,53703,35.689487,139.691711,sausage,neither,Yes,no preference,Maybe +LEC004,18,Engineering: Industrial,53706,17.385044,78.486671,mushroom,dog,No,early bird,Yes +LEC004,19,Computer Science,53715,37.774929,-122.419418,pepperoni,dog,No,night owl,Maybe +LEC004,19,Data Science,53703,26.2644,20.3052,pepperoni,dog,No,night owl,Yes +LEC005,18,Data Science,53706,40.712776,-74.005974,pepperoni,dog,Yes,no preference,Yes +LEC002,18,Data Science,53706,36,117,Other,dog,No,early bird,Maybe +LEC005,19,Data Science,50703,42.360081,-71.058884,sausage,cat,No,night owl,No +LEC006,19,Computer Science,53711,36.569666,112.218744,pineapple,neither,Yes,early bird,Maybe +LEC005,18,Computer Science,53706,37.54443,-121.95269,pepperoni,dog,No,night owl,Maybe +LEC003,20,Mathematics/AMEP,53715,32.0853,34.781769,mushroom,dog,No,no preference,Yes +LEC003,19,Data Science,53715,42.701847,-84.48217,tater tots,dog,No,night owl,Yes +LEC003,18,Mathematics/AMEP,53706,40.179188,44.499104,Other,dog,Yes,no preference,Yes +LEC002,,Computer Science,53711,2.81375,101.504272,sausage,dog,Yes,no preference,Maybe +LEC001,18,Engineering: Industrial,53715,30.733315,76.779419,green pepper,cat,No,no preference,Yes +LEC003,21,Data Science,53590,7.9519,98.3381,Other,dog,Yes,early bird,Yes +LEC004,19,Data Science,53715,35.69,139.69,mushroom,dog,No,no preference,Maybe +LEC002,19,Data Science,53704,26.473308,50.048218,Other,cat,Yes,night owl,Yes +LEC002,22,Economics,53703,34.052235,-118.243683,pineapple,dog,No,night owl,Yes +LEC006,18,Data Science,53706,19.075983,72.877655,mushroom,dog,Yes,night owl,Yes +LEC003,,Business: Actuarial,53705,39.6336,118.16,basil/spinach,dog,Yes,early bird,Yes +LEC003,18,Data Science,53706,52.370216,4.895168,mushroom,cat,Yes,no preference,No +LEC003,18,Engineering: Mechanical,53706,52.368944,4.891663,pepperoni,cat,No,night owl,No +LEC002,18,Science: Physics,53703,32,118,sausage,neither,No,night owl,No +LEC005,18,Data Science,53706,17.384716,78.409424,mushroom,dog,Yes,night owl,Maybe +LEC003,19,Data Science,53715,3.1569,101.7123,mushroom,cat,No,early bird,No +LEC005,18,Computer Science,53706,43.769562,11.255814,Other,neither,No,night owl,Yes +LEC006,18,Business: Actuarial,53706,48.856613,2.352222,mushroom,cat,No,no preference,Yes +LEC004,20,Business: Actuarial,53711,40.7128,74.006,pepperoni,dog,Yes,early bird,No +LEC005,20,Science: Biology/Life,53703,44.67082,-93.24432,mushroom,dog,No,no preference,Maybe +LEC004,18,Mathematics/AMEP,53706,46.786671,-92.100487,pepperoni,cat,No,early bird,Yes +LEC005,20,Economics,53703,48.856613,2.352222,pepperoni,neither,No,night owl,Maybe +LEC006,18,Business: Finance,53706,40.409264,49.867092,Other,neither,No,early bird,No +LEC004,21,Computer Science,53715,27.993828,120.699364,green pepper,dog,Yes,no preference,No +LEC002,,Computer Science,53706,43.073051,-89.40123,Other,neither,Yes,no preference,Maybe +LEC002,20,Engineering: Mechanical,53706,35.6762,139.6503,sausage,cat,Yes,night owl,Yes +LEC001,20,Economics (Mathematical Emphasis),53703,43.073929,-89.385239,macaroni/pasta,cat,No,night owl,No +LEC002,21,Business: Information Systems,53713,43.03638,-89.40292,pineapple,neither,Yes,night owl,Yes +LEC004,18,Data Science,53706,45.31625,-92.59181,pepperoni,dog,No,night owl,Yes +LEC001,21,Business: Finance,53711,43.073929,-89.385239,pepperoni,dog,No,no preference,Maybe +LEC005,19,Engineering: Mechanical,53715,35.689487,139.691711,pepperoni,dog,No,night owl,Yes +LEC003,18,Computer Science,53706,51.500153,-0.1262362,pepperoni,dog,No,night owl,Yes +LEC002,22,Science: Biology/Life,53711,43.073051,-89.40123,mushroom,cat,No,no preference,No +LEC004,18,Data Science,53706,42.360081,-71.058884,green pepper,dog,No,night owl,Yes +LEC005,19,Engineering: Mechanical,53703,32.8328,117.2713,sausage,neither,Yes,night owl,Yes +LEC003,20,Engineering: Mechanical,53715,44.834,-87.376,none (just cheese),dog,Yes,night owl,No +LEC006,21,Economics,53703,41.902782,12.496365,none (just cheese),dog,No,no preference,Yes +LEC003,25,Data Science,53703,34.693737,135.502167,pineapple,dog,No,early bird,Maybe +LEC003,17,Computer Science,53703,19.075983,72.877655,Other,neither,Yes,no preference,No +LEC002,19,Psychology,53715,30.5928,114.3052,sausage,cat,No,night owl,Yes +LEC001,19,Computer Science,53703,51.507351,-0.127758,sausage,cat,Yes,no preference,Yes +LEC006,17,Engineering: Industrial,53706,55.953251,-3.188267,Other,dog,No,night owl,Yes +LEC005,,Computer Science,53703,43.073051,-89.40123,pineapple,dog,Yes,night owl,No +LEC002,21,Engineering: Mechanical,53705,37.566536,126.977966,mushroom,cat,Yes,no preference,Maybe +LEC002,18,Undecided,53715,48.775845,9.182932,Other,dog,No,night owl,Yes +LEC004,19,Data Science,53703,43,-89,sausage,cat,No,early bird,Maybe +LEC001,21,Science: Biology/Life,53703,36,117,macaroni/pasta,dog,No,night owl,Maybe +LEC002,19,Business: Information Systems,53703,42.360081,-71.058884,pepperoni,dog,No,no preference,Yes +LEC005,19,Computer Science,53706,-8.340539,115.091949,pineapple,dog,Yes,night owl,Maybe +LEC003,20,Business: Information Systems,53726,43.073051,-89.40123,sausage,dog,Yes,night owl,No +LEC003,,Science: Other,53715,39.904202,116.407394,mushroom,cat,No,night owl,Maybe +LEC004,20,Engineering: Biomedical,53715,43.0707,12.6196,tater tots,dog,No,night owl,Maybe +LEC004,19,Engineering: Biomedical,53715,41.878113,-87.629799,mushroom,dog,Yes,night owl,Yes +LEC002,21,Business: Other|Accounting,53703,41.8781,87.6298,pepperoni,cat,No,night owl,No +LEC002,17,Undecided,53706,33.742185,-84.386124,Other,dog,No,no preference,Yes +LEC006,18,Data Science,53558,40.73061,-73.935242,pepperoni,dog,Yes,night owl,No +LEC003,25,Data Science,53705,43.073051,-89.385239,sausage,cat,No,night owl,Maybe +LEC002,18,Data Science,53706,37.34163,-122.05411,sausage,dog,No,night owl,Yes +LEC006,18,Science: Biology/Life,53706,19.21833,72.978088,green pepper,neither,No,no preference,Maybe +LEC002,,Business: Other|business analytics,53703,31.230391,121.473701,none (just cheese),cat,Yes,night owl,Maybe +LEC003,,Data Science,53706,35.719312,139.784546,none (just cheese),neither,Yes,night owl,Yes +LEC002,19,Engineering: Mechanical,53726,47.141041,9.52145,mushroom,dog,No,night owl,Yes +LEC002,,Computer Science,53715,41.8781,87.6298,pepperoni,dog,No,no preference,Maybe +LEC002,26,Science: Other|animal sciences,53705,25.204849,55.270782,pepperoni,dog,No,no preference,Maybe +LEC003,21,Mathematics,53704,61.218056,-149.900284,green pepper,cat,Yes,early bird,Maybe +LEC003,22,Engineering: Other,53703,49.28273,-123.120735,macaroni/pasta,cat,No,early bird,Maybe +LEC001,18,Engineering: Other,53706,41.902782,12.496365,pepperoni,dog,No,night owl,Yes +LEC003,20,Engineering: Mechanical,53726,39.81059,-74.71795,basil/spinach,dog,No,early bird,Yes +LEC003,21,Health Promotion and Health Equity,53711,37.2982,113.0263,pepperoni,dog,No,early bird,No +LEC003,20,Engineering: Mechanical,53703,38.722252,-9.139337,mushroom,dog,No,night owl,Yes +LEC003,19,Engineering: Mechanical,53714,43,-89.4,none (just cheese),dog,No,night owl,Yes +LEC002,19,Engineering: Industrial,53703,41.878,-87.63,pepperoni,dog,Yes,night owl,Yes +LEC003,18,Computer Science,53706,43.073051,-89.40123,mushroom,neither,No,night owl,Yes +LEC001,18,Engineering: Industrial,53706,19.655041,-101.169891,pepperoni,dog,Yes,no preference,Maybe +LEC005,20,Engineering: Mechanical,53703,26.147,-81.795,pepperoni,dog,Yes,early bird,Yes +LEC006,18,Business: Other,53706,51.507,-0.128,sausage,dog,No,no preference,No +LEC005,19,Business: Other,53706,43,-89,pepperoni,dog,Yes,no preference,Yes +LEC004,19,Engineering: Mechanical,53705,34.869709,-111.760902,pepperoni,cat,No,no preference,Maybe +LEC005,21,Business: Finance,53703,3.15443,101.715103,pepperoni,cat,No,night owl,Yes +LEC005,18,Engineering: Mechanical,53706,44.655991,-93.242752,none (just cheese),dog,Yes,night owl,Yes +LEC003,18,Art,53706,36.25,138.25,macaroni/pasta,dog,No,night owl,Yes +LEC005,19,Data Science,53715,41.94288,-87.68667,pepperoni,dog,Yes,night owl,Yes +LEC005,18,Data Science,53703,44.2795,73.9799,pepperoni,dog,Yes,night owl,No +LEC002,19,Mathematics/AMEP,53715,37.80718,23.734864,pineapple,cat,No,night owl,Yes +LEC004,18,Computer Science,53706,35.689487,139.691711,pepperoni,cat,No,night owl,Yes +LEC006,18,Engineering: Mechanical,53706,43.0826,-97.16051,pepperoni,dog,No,no preference,Yes +LEC006,18,Engineering: Other,53715,37.441883,-122.143021,mushroom,dog,Yes,night owl,Maybe +LEC006,18,Engineering: Mechanical,53706,44.883,-87.86291,pepperoni,dog,No,early bird,Yes +LEC004,19,Engineering: Mechanical,53706,40.73598,-74.37531,none (just cheese),dog,Yes,early bird,No +LEC001,20,Business: Actuarial,53703,42.28,-83.74,mushroom,dog,No,night owl,Yes +LEC003,17,Engineering: Mechanical,53706,37.98381,23.727539,pineapple,dog,Yes,night owl,No +LEC004,18,Computer Science,53706,40.27385,-74.75972,sausage,dog,Yes,night owl,Yes +LEC002,19,Economics,53703,90.1994,38.627,none (just cheese),dog,No,early bird,Yes +LEC002,21,"Mathematics, Data Science",53703,30.572815,104.066803,sausage,dog,No,night owl,Maybe +LEC002,,Computer Science,53717,36,139,mushroom,dog,Yes,early bird,Yes +LEC006,19,Science: Biology/Life,53715,45.289143,-87.021847,none (just cheese),cat,No,night owl,Maybe +LEC002,21,Mathematics/AMEP,53703,20.878332,-156.682495,pepperoni,cat,No,night owl,Yes +LEC003,22,Mathematics/AMEP,53715,44.481586,-88.005981,pepperoni,neither,No,night owl,Yes +LEC006,18,Data Science,53706,43.073051,-89.40123,pepperoni,dog,No,night owl,Yes +LEC005,18,Computer Science,53706,30.733315,76.779419,none (just cheese),dog,No,night owl,Yes +LEC005,20,Mathematics/AMEP,53703,38.837702,-238.449497,pepperoni,dog,No,night owl,Yes +LEC005,,Computer Science,53593,50.116322,-122.957359,sausage,dog,No,night owl,Yes +LEC005,18,Computer Science,53715,43.059023,-89.296875,pepperoni,cat,No,night owl,Maybe +LEC005,19,Engineering: Industrial,53703,22.2255,-159.4835,pepperoni,cat,Yes,night owl,Yes +LEC005,18,Engineering: Biomedical,53593,43.073051,-89.40123,green pepper,cat,No,night owl,Maybe +LEC005,20,Engineering: Mechanical,53715,41.283211,-70.099228,sausage,dog,No,no preference,Maybe +LEC005,18,Data Science,53715,25.26741,55.292679,basil/spinach,cat,Yes,early bird,Yes +LEC005,19,Business: Other,53726,43.038902,-87.906471,pepperoni,dog,No,night owl,Yes +LEC002,,Undecided,53703,30.5723,104.0665,sausage,dog,No,night owl,Yes +LEC006,18,Engineering: Mechanical,53706,30.2672,97.7431,pepperoni,dog,No,night owl,No +LEC006,20,Data Science,53703,36.731651,-119.785858,Other,dog,Yes,night owl,Yes +LEC005,18,Computer Science,53706,43.038902,-87.906471,pepperoni,dog,No,night owl,Yes +LEC004,,Business: Finance,53703,33.8688,151.2093,green pepper,dog,Yes,night owl,Yes +LEC005,18,Science: Other|Science: Genetics and Genomics,53715,43.073051,-89.40123,mushroom,dog,No,no preference,Yes +LEC003,19,Engineering: Mechanical,53715,44.90767,-93.183594,basil/spinach,dog,No,night owl,Maybe +LEC006,18,Business: Finance,53706,-33.448891,-70.669266,macaroni/pasta,dog,No,night owl,Yes +LEC006,17,Business: Finance,53706,43.296482,5.36978,pineapple,dog,No,night owl,Yes +LEC006,21,Mathematics/AMEP,53703,30.572815,104.066803,green pepper,dog,No,no preference,Maybe +LEC005,20,Engineering: Mechanical,53703,41.99884,-87.68828,Other,dog,No,no preference,No +LEC001,19,Business: Information Systems,53703,39.481655,-106.038353,macaroni/pasta,dog,Yes,night owl,Yes +LEC004,19,Engineering: Mechanical,53703,41.883228,-87.632401,pepperoni,dog,No,no preference,Maybe +LEC004,18,Engineering: Industrial,53706,41.878113,41.878113,pepperoni,dog,No,night owl,No +LEC004,19,Engineering: Mechanical,53703,28.228209,112.938812,none (just cheese),neither,Yes,early bird,Yes +LEC003,18,Data Science,89451,34.42083,-119.698189,green pepper,dog,No,early bird,No +LEC003,19,Computer Science,53703,41.3874,2.1686,pepperoni,cat,No,early bird,No +LEC005,20,Science: Biology/Life,53703,32.05196,118.77803,sausage,neither,No,night owl,Yes +LEC004,19,Engineering: Mechanical,53706,50.075539,14.4378,none (just cheese),neither,No,night owl,Yes +LEC003,20,Statistics (actuarial route),53715,43.134315,-88.220062,sausage,dog,No,early bird,No +LEC004,19,Computer Science,53706,17.385044,78.486671,pepperoni,neither,Yes,night owl,Yes +LEC002,18,Engineering: Mechanical,53706,53707,-88.415382,Other,dog,No,night owl,Yes +LEC004,19,Computer Science,53706,45.440845,12.315515,sausage,dog,No,night owl,Yes +LEC004,18,Computer Science,53706,55.953251,-3.188267,Other,dog,No,night owl,Maybe +LEC004,18,Engineering: Mechanical,53706,33.8902,-118.39848,sausage,dog,Yes,night owl,Yes +LEC001,20,Business: Other|Business: Accounting,53703,31.230391,121.473701,pepperoni,cat,Yes,no preference,No +LEC004,18,Data Science,53706,39.512611,116.677063,pepperoni,dog,No,night owl,Maybe +LEC003,18,Undecided,53706,41.256538,95.934502,Other,dog,No,no preference,Yes +LEC003,18,Data Science,53706,19.075983,72.877655,pepperoni,dog,No,night owl,No +LEC003,22,Economics,53703,40.753685,-73.999161,green pepper,dog,No,night owl,Maybe +LEC003,18,Data Science,53706,51.507351,-0.127758,pepperoni,cat,No,night owl,Yes +LEC003,,Engineering: Mechanical,53706,42.44817,-71.224716,pepperoni,cat,Yes,night owl,Maybe +LEC003,17,Engineering: Other|Computer Engineering,53706,42.36,-71.059,basil/spinach,neither,No,early bird,Maybe +LEC003,21,Business: Actuarial,53706,32.715736,-117.161087,green pepper,dog,Yes,night owl,No +LEC003,,Engineering: Other|Computer engineering,53706,35.689487,139.691711,Other,cat,No,night owl,Yes +LEC003,18,Mathematics/AMEP,53715,41.385063,2.173404,pepperoni,cat,Yes,no preference,Maybe +LEC003,20,Computer Science,53705,30.274084,120.155067,mushroom,cat,No,night owl,Yes +LEC005,,Computer Science,53705,51.507351,-0.127758,basil/spinach,dog,No,night owl,Yes +LEC003,18,Computer Science,53706,45.45676,15.29662,sausage,dog,Yes,early bird,Yes +LEC003,18,Engineering: Industrial,53706,18.92421,-99.221565,green pepper,dog,Yes,night owl,Yes +LEC004,18,Engineering: Other|Material Science Engineering,53703,38.941631,-119.977219,pepperoni,dog,Yes,night owl,Yes +LEC002,21,Economics,53705,25.03841,121.5637,pepperoni,cat,No,night owl,Maybe +LEC005,,Civil engineering - hydropower engineering,53705,34,113,pineapple,neither,No,night owl,Maybe +LEC005,18,Computer Science,53706,40.7,-74.005,pepperoni,cat,No,early bird,No +LEC001,19,Engineering: Mechanical,53706,35.142441,-223.154297,green pepper,neither,Yes,night owl,Yes +LEC006,18,Data Science,53706,43.05891,-88.007462,pepperoni,dog,Yes,night owl,Yes +LEC006,,Engineering: Mechanical,53706,37.566536,126.977966,pepperoni,dog,Yes,night owl,No +LEC005,18,Data Science,53706,36.393154,25.46151,none (just cheese),dog,No,night owl,No +LEC001,,Engineering: Mechanical,53715,19.8968,155.5828,pepperoni,dog,No,night owl,No +LEC002,19,Engineering: Biomedical,53706,48.494904,-113.979034,macaroni/pasta,cat,No,night owl,Yes +LEC005,18,Engineering: Mechanical,53706,41.88998,12.49426,pineapple,dog,Yes,night owl,Yes +LEC003,17,Data Science,53706,-7.257472,112.75209,pineapple,dog,Yes,early bird,Yes +LEC005,19,Economics,53703,40.592331,-111.820152,none (just cheese),dog,Yes,night owl,Maybe +LEC005,19,Data Science,53704,38.722252,-9.139337,pepperoni,dog,No,night owl,Yes +LEC003,,Computer Science,53703,64.963051,-19.020836,pineapple,dog,No,no preference,Maybe +LEC002,20,Economics,53703,43.769562,11.255814,mushroom,dog,No,night owl,Yes +LEC004,20,Business: Actuarial,53715,44.834209,-87.376266,sausage,dog,No,no preference,Yes +LEC005,21,Economics,53703,37.751824,-122.420105,green pepper,cat,No,night owl,Yes +LEC004,22,Economics,53703,56.490669,4.202646,mushroom,dog,No,no preference,Yes +LEC004,18,Engineering: Mechanical,53706,44.9058,-93.28535,pepperoni,cat,Yes,night owl,Maybe +LEC004,19,Data Science,53703,41.878113,-87.629799,sausage,dog,No,night owl,Yes +LEC001,21,Computer Science,53703,43.21518,-87.94241,pepperoni,dog,No,no preference,Maybe +LEC004,24,Science: Chemistry,53703,32.715736,-117.161087,mushroom,dog,Yes,night owl,Maybe +LEC005,19,Engineering: Mechanical,53715,39.412327,-77.425461,pepperoni,cat,Yes,early bird,Yes +LEC004,20,Statistics,53703,43.07391,-89.39356,pepperoni,dog,No,early bird,Maybe +LEC005,21,Business: Finance,53703,38.178127,-92.781052,mushroom,dog,No,night owl,Yes +LEC004,18,Engineering: Mechanical,53706,35.689487,139.691711,pepperoni,dog,No,no preference,Yes +LEC005,18,Data Science,60521,41.9,87.6,pepperoni,dog,Yes,night owl,Yes +LEC005,23,Business: Information Systems,53558,43.073051,-89.40123,pepperoni,dog,Yes,early bird,No +LEC004,18,Engineering: Mechanical,53706,43.739507,7.426706,pepperoni,dog,No,night owl,Yes +LEC005,21,Data Science,53703,25,121,pepperoni,dog,No,night owl,Yes +LEC005,20,Business: Information Systems,53703,43.073051,-89.40123,pepperoni,dog,Yes,night owl,Yes +LEC004,,Engineering: Biomedical,53715,41.385063,2.173404,pepperoni,dog,Yes,no preference,No +LEC004,18,Communication arts,53715,22.543097,114.057861,mushroom,cat,Yes,early bird,Yes +LEC001,22,Engineering: Mechanical,53703,47.497913,19.040236,pepperoni,dog,No,no preference,No +LEC005,19,Computer Science,54706,34.05,-118.24,sausage,cat,Yes,night owl,Yes +LEC005,18,Engineering: Biomedical,53706,46.818188,8.227512,pineapple,dog,Yes,no preference,Yes +LEC004,19,Engineering: Mechanical,53715,42.36,-71.058884,pepperoni,dog,Yes,no preference,Yes +LEC005,21,Data Science,53703,36.4,117,pineapple,dog,Yes,night owl,Yes +LEC005,19,Engineering: Mechanical,53704,35.6762,139.6503,sausage,dog,No,night owl,Maybe +LEC004,20,Economics,53703,44.885,-93.147,pepperoni,dog,No,early bird,Yes +LEC004,20,Health Promotion and Health Equity,53704,48.8566,2.349014,pepperoni,dog,No,night owl,Yes +LEC004,19,Engineering: Mechanical,53715,43.073051,-89.40123,sausage,dog,Yes,no preference,Yes +LEC001,20,Business andministration,53703,37.389091,-5.984459,pineapple,dog,Yes,night owl,Maybe +LEC003,23,Mathematics/AMEP,53715,24.88,102.8,pineapple,dog,Yes,early bird,Yes +LEC002,20,Engineering: Industrial,53703,44.389,12.9908,sausage,dog,No,early bird,Maybe +LEC005,20,Education,53703,41.878113,-87.629799,basil/spinach,cat,Yes,early bird,No +LEC003,19,Science: Biology/Life,53703,41.38,2.17,pepperoni,dog,Yes,no preference,Maybe +LEC006,18,Pre-business,53706,41.8781,87.6298,pepperoni,dog,Yes,night owl,Yes +LEC004,20,Business: Finance,53706,41.10475,-80.64916,basil/spinach,dog,Yes,night owl,Yes +LEC004,20,Statistics,53703,42.360081,-71.058884,pepperoni,dog,No,night owl,Yes +LEC003,18,Engineering: Mechanical,53706,24.5554,81.7842,pepperoni,dog,No,early bird,Maybe +LEC004,19,Data Science,53703,38.72,75.07,none (just cheese),dog,Yes,early bird,Yes +LEC006,20,Engineering: Mechanical,53705,30.572815,104.066803,mushroom,cat,Yes,no preference,Maybe +LEC003,20,Mathematics/AMEP,53726,43.07199,-89.42629,mushroom,dog,No,night owl,Yes +LEC004,20,Engineering: Mechanical,53705,48,7.85,pepperoni,dog,Yes,night owl,No +LEC001,20,Computer Science,53703,40.7128,74.006,pepperoni,dog,Yes,night owl,Maybe +LEC003,18,Business: Actuarial,53719,14.599512,120.984222,pineapple,cat,Yes,no preference,Maybe +LEC003,17,Computer Science,53715,37.38522,-122.114128,Other,dog,No,night owl,No +LEC003,18,Computer Science,53706,37.386051,-122.083855,sausage,dog,Yes,no preference,Maybe +LEC004,23,Business: Finance,53703,31.230391,121.473701,mushroom,neither,No,night owl,No +LEC004,21,Engineering: Industrial,53703,37.94048,-78.63664,Other,dog,Yes,night owl,Yes +LEC002,21,Mathematics/AMEP,53715,42.360081,-71.058884,mushroom,neither,Yes,early bird,Yes +LEC002,18,Engineering: Industrial,53715,40.712776,-74.005974,pineapple,dog,Yes,night owl,Yes +LEC001,22,Engineering: Mechanical,53726,36.97447,122.02899,pepperoni,dog,No,no preference,Yes +LEC005,,Mathematics/AMEP,53715,36.651199,117.120094,mushroom,neither,No,night owl,Yes +LEC005,18,Mathematics/AMEP,53706,46.482525,30.723309,basil/spinach,dog,No,early bird,Yes +LEC006,20,Engineering: Industrial,53703,42.102901,-88.368896,pepperoni,dog,No,night owl,Maybe +LEC006,18,Computer Science,53706,-31.959153,-244.161255,green pepper,dog,No,night owl,Yes +LEC002,24,Computer Science,53715,30.704852,104.003904,mushroom,neither,Yes,no preference,Maybe +LEC005,19,Engineering: Mechanical,53705,40.712776,-74.005974,pepperoni,dog,No,early bird,No +LEC004,22,Science: Biology/Life,53705,39.758161,39.758161,pepperoni,cat,No,early bird,Yes +LEC005,20,Statistics,53703,43.073051,-89.40123,sausage,dog,Yes,night owl,Yes +LEC001,19,Data Science,53703,41,87,sausage,dog,No,no preference,No +LEC004,20,Engineering: Mechanical,53726,58.2996,14.4444,sausage,cat,No,night owl,Maybe +LEC005,18,Engineering: Mechanical,53562,1.3521,103.8198,green pepper,cat,No,early bird,Maybe +LEC002,19,Engineering: Mechanical,53703,44.46534,-72.684303,green pepper,cat,Yes,night owl,Yes +LEC002,20,Engineering: Industrial,53726,43.038902,-87.906471,pepperoni,dog,No,night owl,Yes +LEC006,18,Business: Actuarial,53706,45.464203,9.189982,pepperoni,cat,Yes,night owl,Yes +LEC006,18,Computer Science,53715,30.58198,114.268066,sausage,cat,Yes,early bird,Maybe +LEC004,19,Business: Finance,53706,41.878113,-87.629799,pepperoni,dog,No,early bird,No +LEC005,18,Business: Finance,53706,40.416775,-3.70379,pepperoni,dog,Yes,early bird,No +LEC001,20,Science: Other|Environmental Science,53715,41.878113,-87.629799,green pepper,cat,No,early bird,No +LEC002,22,Computer Science,53715,42,-71,mushroom,cat,No,night owl,Maybe +LEC001,24,Economics,53703,40,-90,pineapple,dog,No,night owl,Yes +LEC006,19,Business: Information Systems,53715,40.712776,-74.005974,basil/spinach,dog,No,night owl,Yes +LEC002,19,Data Science,53703,33.4942,89.4959,sausage,dog,No,night owl,Maybe +LEC003,20,Engineering: Mechanical,53715,43.02833,-87.971467,pepperoni,neither,Yes,night owl,Maybe +LEC001,,Data Science,53706,40.416775,-3.70379,none (just cheese),dog,Yes,no preference,Yes +LEC003,19,Engineering: Mechanical,53715,43.07,-89.4,pepperoni,dog,No,no preference,Maybe +LEC006,18,Data Science,53706,46.683334,7.85,mushroom,dog,Yes,no preference,No +LEC003,19,Engineering: Biomedical,53703,31.046051,34.851612,Other,dog,No,night owl,Maybe +LEC003,18,Data Science,53705,31.23,121.47,mushroom,dog,Yes,night owl,Maybe +LEC005,19,Engineering: Mechanical,53703,42.00741,-87.69384,mushroom,dog,No,night owl,Yes +LEC001,37,Data Science,53718,43.073051,-89.40123,green pepper,dog,No,no preference,Maybe +LEC003,20,History,53703,31.62,74.8765,Other,cat,Yes,early bird,No +LEC002,20,Economics,53703,38.627003,-90.199402,mushroom,dog,Yes,night owl,Yes +LEC005,20,Engineering: Mechanical,53703,40,-74,none (just cheese),dog,Yes,early bird,No +LEC005,18,Data Science,53706,23.7275,37.9838,pepperoni,dog,Yes,early bird,Yes +LEC004,20,Mathematics/AMEP,53703,34.746613,113.625328,sausage,neither,Yes,early bird,Maybe +LEC001,21,Data Science,53703,30.572351,121.776761,pepperoni,cat,No,night owl,Maybe +LEC005,,Data Science,53715,35.72,-78.89,pepperoni,dog,No,night owl,Yes +LEC005,20,Information science,53590,44.92556,-89.51539,pepperoni,dog,No,night owl,Yes +LEC002,22,Mathematics/AMEP,53704,40.76078,-111.891045,pineapple,dog,Yes,night owl,No +LEC001,22,consumer behavior and marketplace studies,53715,43.653225,-79.383186,mushroom,cat,Yes,night owl,No +LEC004,22,Computer Science,53703,10.315699,123.885437,sausage,dog,Yes,early bird,No +LEC002,20,Conservation Biology,53703,40.16573,-105.101189,pineapple,dog,No,night owl,Yes +LEC005,20,Computer Science,53726,39.4817,106.0384,Other,neither,Yes,early bird,Yes +LEC005,19,Mathematics/AMEP,53715,48.85,2.35,sausage,cat,No,night owl,Maybe +LEC005,19,Data Science,53706,30.572815,104.066803,mushroom,neither,No,early bird,Yes +LEC004,24,Business: Information Systems,53703,37.566536,126.977966,tater tots,dog,No,early bird,No +LEC004,19,Economics,53703,52.877491,-118.08239,pepperoni,dog,No,night owl,Yes +LEC004,21,Computer Science,53703,28.538336,-81.379234,pepperoni,dog,No,night owl,Yes +LEC006,18,Data Science,53706,41.4,-81.9,sausage,dog,Yes,night owl,Maybe +LEC002,21,Science: Biology/Life,53703,43.038902,-87.906471,none (just cheese),neither,No,no preference,Yes +LEC004,21,Data Science,53703,3.86,-54.2,macaroni/pasta,dog,No,early bird,No +LEC004,19,Engineering: Mechanical,53715,39.952583,-75.165222,macaroni/pasta,dog,Yes,no preference,Yes +LEC004,20,Science: Other,53715,21.3099,157.8581,pineapple,dog,No,early bird,Yes +LEC005,21,Data Science,48823,11.451419,19.81,mushroom,neither,No,night owl,Maybe +LEC001,20,Computer Science,53715,41,-87,Other,dog,No,night owl,Yes +LEC005,21,Data Science,53705,42.3601,71.0589,pepperoni,dog,Yes,no preference,Yes +LEC005,19,Computer Science,53706,48.856613,2.352222,pepperoni,dog,Yes,night owl,Maybe +LEC001,17,Statistics,53715,43.0722,89.4008,pineapple,dog,No,early bird,Maybe +LEC001,20,Economics,53715,27.99942,120.66682,pepperoni,dog,Yes,early bird,No +LEC001,19,Mathematics/AMEP,53711,45.85038,-84.616989,pineapple,cat,No,night owl,Yes +LEC004,20,Computer Science,53711,40.842358,111.749992,pineapple,cat,No,night owl,Maybe +LEC003,18,Engineering: Mechanical,53706,39.738449,-104.984848,pepperoni,dog,No,early bird,Yes +LEC003,21,Statistics,53705,41.878113,-87.629799,macaroni/pasta,dog,No,night owl,Yes +LEC006,19,Engineering: Industrial,60540,41.878113,-87.629799,none (just cheese),dog,No,night owl,No +LEC004,19,Engineering: Mechanical,53703,40.6263,14.3758,mushroom,dog,No,early bird,No +LEC004,22,Engineering: Other|Chemical Engineering,53703,48.13913,11.58022,macaroni/pasta,dog,Yes,night owl,Yes +LEC004,21,Economics (Mathematical Emphasis),53703,52.520008,13.404954,pepperoni,dog,No,night owl,No +LEC004,25,Science: Other|Biophysics PhD,53705,30.21161,-97.80999,pineapple,dog,No,night owl,Yes +LEC003,19,Computer Science,53716,25.49443,-103.59581,pepperoni,cat,No,no preference,Yes +LEC003,19,Data Science,53706,64.963051,-19.020836,pineapple,dog,No,no preference,No +LEC006,19,Computer Science,53706,41.878113,-87.629799,pepperoni,cat,No,night owl,Maybe +LEC001,23,Economics,53703,43.07348,-89.38089,pepperoni,dog,No,night owl,Yes +LEC001,29,Business: Other|Technology Strategy/ Product Management,53705,37.386051,-122.083855,Other,cat,No,no preference,Maybe +LEC002,,Engineering: Mechanical,53706,14.34836,100.576271,pepperoni,neither,No,no preference,Maybe +LEC004,20,Undecided,53715,37.566536,126.977966,none (just cheese),neither,No,night owl,Yes +LEC006,19,Engineering: Mechanical,53703,27.993828,120.699364,sausage,neither,No,no preference,Yes +LEC002,,Computer Science,53705,25.032969,121.565414,pineapple,dog,No,night owl,Yes +LEC005,20,Mathematics/AMEP,53703,32.060253,118.796875,pineapple,cat,Yes,night owl,Maybe +LEC003,,Business: Other,53706,50.07553,14.4378,pepperoni,dog,Yes,night owl,Maybe +LEC006,21,Data Science,57303,32.715736,-117.161087,macaroni/pasta,cat,Yes,no preference,Yes +LEC006,18,Engineering: Mechanical,53706,45.5579,94.1632,sausage,dog,No,night owl,Yes +LEC001,18,Engineering: Biomedical,53715,43.073051,-89.40123,sausage,dog,No,early bird,Yes +LEC005,19,Engineering: Mechanical,53706,38.571739,-109.550797,pepperoni,cat,No,night owl,Yes +LEC003,18,Engineering: Mechanical,53706,41.902782,12.496365,pepperoni,dog,Yes,night owl,No +LEC002,21,Data Science,53711,120,30,sausage,dog,Yes,night owl,Maybe +LEC004,18,Engineering: Biomedical,53706,40.014984,-105.270546,green pepper,dog,No,night owl,Yes +LEC004,20,Engineering: Mechanical,53715,53.2779,6.1058,sausage,dog,Yes,no preference,Yes +LEC003,17,Science: Physics,53706,50.088153,14.399437,Other,cat,No,night owl,Yes +LEC002,19,Engineering: Industrial,53705,35.084385,-106.650421,pineapple,cat,No,night owl,Yes +LEC003,20,Engineering: Mechanical,53703,44.501343,-88.06221,pepperoni,dog,No,night owl,Yes +LEC003,18,Engineering: Mechanical,53703,45.659302,-92.466164,macaroni/pasta,dog,No,no preference,Maybe +LEC003,19,Data Science,53703,16.896721,42.5536,none (just cheese),neither,No,early bird,Maybe +LEC001,18,Data Science,53703,23.885942,45.079163,mushroom,neither,No,early bird,Maybe +LEC006,19,Engineering: Mechanical,53703,55.953251,-3.188267,mushroom,cat,Yes,night owl,Yes +LEC001,30,Business: Other,53705,43.07175,-89.46498,pineapple,cat,No,early bird,No +LEC006,18,Political Science,53706,39.640263,-106.374191,green pepper,dog,No,early bird,No +LEC005,23,Business: Information Systems,53705,27.99,120.69,green pepper,dog,No,night owl,No +LEC003,18,Graphic Design,53706,40.713051,-74.007233,Other,dog,Yes,early bird,Yes +LEC002,21,Economics,53715,37.369171,-122.112473,mushroom,dog,No,night owl,No +LEC005,18,Computer Science,53706,21.3099,157.8581,pepperoni,cat,No,night owl,Yes +LEC002,19,Business: Other|Marketing,53706,59.913868,10.752245,macaroni/pasta,dog,No,night owl,Maybe +LEC003,20,Cartography and GIS,53726,43.0722,89.4008,sausage,cat,No,early bird,Maybe +LEC005,21,Economics,53705,25.032969,120.960518,sausage,dog,Yes,night owl,Maybe +LEC005,19,Engineering: Industrial,53703,42.03992,87.67732,sausage,dog,Yes,night owl,Yes +LEC003,,Computer Science,53706,35.443081,139.362488,sausage,dog,Yes,night owl,Yes +LEC002,22,Sociology,53703,53.483959,-2.244644,pepperoni,dog,No,night owl,Yes +LEC002,18,Undecided,53706,43.073051,-89.40123,pineapple,dog,Yes,night owl,Yes +LEC004,19,Engineering: Biomedical,53706,-37.81,144.96,sausage,dog,Yes,night owl,Yes +LEC005,21,Mathematics/AMEP,53703,22.542883,114.062996,pepperoni,cat,No,no preference,Maybe +LEC002,20,Statistics,53715,23,113,pineapple,dog,No,night owl,Maybe +LEC001,20,Business: Other|Consumer Behavior and Marketplace Studies,53703,40.76078,-111.891045,green pepper,dog,Yes,early bird,Maybe +LEC001,21,Data Science,53705,40.712776,-74.005974,pepperoni,cat,No,night owl,Maybe +LEC002,19,Engineering: Mechanical,53703,26.345631,-81.779083,pepperoni,dog,Yes,night owl,Yes +LEC004,19,Engineering: Mechanical,53715,40.62632,14.37574,pepperoni,dog,No,no preference,Maybe +LEC003,18,Engineering: Other,53706,40.73061,-73.9808,mushroom,dog,No,night owl,No +LEC006,18,Atmospheric Sciences,53706,39.74,-104.99,sausage,dog,Yes,night owl,Maybe +LEC002,20,Data Science,53703,43.073051,-89.40123,macaroni/pasta,dog,Yes,early bird,Yes +LEC006,18,Engineering: Mechanical,53706,32.7157,117.1611,pineapple,dog,Yes,night owl,Yes +LEC004,18,Computer Science,53706,51.507351,-0.127758,green pepper,dog,No,night owl,Yes +LEC004,19,Education,53715,32.715736,-117.161087,pepperoni,dog,No,night owl,Yes +LEC004,26,Languages,53703,50.11,8.68,sausage,dog,No,no preference,Yes +LEC005,21,Economics (Mathematical Emphasis),53715,55.676098,12.568337,pepperoni,cat,No,night owl,Maybe +LEC004,53,Mathematics/AMEP,53555,47.6,-122.3,mushroom,dog,No,night owl,Yes +LEC004,17,Computer Science,53706,43.073051,-89.40123,Other,dog,No,night owl,Yes +LEC006,18,Engineering Mechanics (Aerospace Engineering),53706,43.038902,-87.906471,pepperoni,cat,No,night owl,No +LEC002,20,Engineering: Mechanical,53715,23.7157,117.1611,none (just cheese),cat,Yes,night owl,Maybe +LEC002,22,Science: Other|Psychology,53703,37.82034,-122.47872,mushroom,dog,No,early bird,No +LEC002,22,Computer Science,53705,34.052235,-118.243683,basil/spinach,dog,No,night owl,Yes +LEC004,26,Science: Biology/Life,53715,33.962425,-83.378622,pineapple,neither,Yes,no preference,Yes +LEC002,18,Economics,53715,41.878113,-87.629799,basil/spinach,cat,No,night owl,Maybe +LEC004,24,Engineering: Other|Civil and Environmental Engineering,53703,47.5,19.04,pepperoni,dog,Yes,early bird,Maybe +LEC004,19,Engineering: Biomedical,53711,40.712776,74.005974,pineapple,dog,No,early bird,No +LEC001,19,Engineering: Mechanical,53715,43,-90,sausage,dog,No,no preference,Maybe +LEC006,18,Data Science,94707,37.566536,126.977966,pineapple,dog,Yes,night owl,Yes +LEC006,20,Undecided,53719,62.2001,58.9638,Other,cat,Yes,night owl,Maybe +LEC002,18,Engineering: Mechanical,53706,44.977753,-93.265015,none (just cheese),cat,Yes,night owl,Yes +LEC001,20,Business: Information Systems,53711,34.385204,132.455292,pepperoni,dog,No,early bird,Yes +LEC005,19,Engineering: Biomedical,53703,41.8781,87.6298,macaroni/pasta,dog,No,night owl,No +LEC002,19,Engineering: Biomedical,53703,37.98381,23.727539,macaroni/pasta,dog,No,night owl,Maybe +LEC005,18,Data Science,53706,40,74,pepperoni,dog,No,no preference,Yes +LEC002,19,Engineering: Mechanical,53711,41.95881,-85.32536,Other,dog,No,no preference,No +LEC005,18,Data Science,53706,32.715736,-117.161087,sausage,dog,No,night owl,Maybe +LEC002,18,Undecided,53706,43.060791,-88.119217,Other,neither,No,early bird,Yes +LEC004,21,Science: Other,53715,27.963989,-82.799957,pineapple,dog,No,night owl,Yes +LEC006,18,Data Science,53706,1.352083,103.819839,sausage,dog,No,night owl,Yes +LEC005,19,Data Science,53703,-33.92487,18.424055,none (just cheese),dog,No,night owl,Yes +LEC001,22,International Studies,53703,48.13913,11.58022,none (just cheese),cat,No,night owl,Yes +LEC001,19,Engineering: Other,53715,38.331581,-75.086159,macaroni/pasta,dog,No,no preference,Yes +LEC002,19,Business: Information Systems,53715,44.5,-88,pepperoni,dog,No,night owl,Yes +LEC002,19,Data Science,53705,21.59143,-158.01743,Other,dog,Yes,night owl,Yes +LEC002,,Business: Finance,53593,45.813042,9.080931,Other,dog,No,early bird,Yes +LEC003,21,Business: Information Systems,53703,43.612255,-110.705429,sausage,dog,Yes,no preference,No +LEC001,21,Data Science,53703,41.00824,28.978359,pepperoni,cat,Yes,early bird,No +LEC002,18,Engineering: Biomedical,53706,17.385044,78.486671,green pepper,dog,No,night owl,Yes +LEC006,21,Political Science,53703,45.512,-122.658,sausage,dog,No,night owl,Yes +LEC003,18,Engineering: Mechanical,53706,41.902782,12.496365,pepperoni,dog,No,early bird,Maybe +LEC005,19,Engineering: Mechanical,53703,-36.848461,174.763336,none (just cheese),dog,Yes,no preference,No +LEC002,,Data Science,53713,30.316496,78.032188,mushroom,cat,Yes,night owl,Yes +LEC002,,Business: Information Systems,53703,35.689487,139.691711,sausage,dog,Yes,night owl,Maybe +LEC005,18,Data Science,53706,52.520008,13.404954,pineapple,dog,Yes,early bird,No +LEC005,19,Computer Science,53706,41.3784,2.1686,sausage,cat,No,no preference,Yes +LEC003,20,Engineering: Mechanical,53715,41.878113,-87.629799,Other,cat,No,night owl,Yes +LEC004,20,Computer Science,53703,43.073051,-89.40123,none (just cheese),cat,Yes,night owl,Yes +LEC006,23,Data Science,53703,17.05423,-96.713226,basil/spinach,dog,No,night owl,Maybe +LEC001,19,Engineering: Mechanical,53706,43.77195,-88.43383,pepperoni,dog,No,early bird,Maybe +LEC001,20,Economics,53726,42.92,-87.96,pepperoni,dog,Yes,early bird,No +LEC001,19,Engineering: Mechanical,53715,29.424122,-98.493629,mushroom,dog,Yes,early bird,Maybe +LEC004,18,Computer Science,53706,30.267153,-97.743057,pepperoni,dog,No,night owl,Yes +LEC005,,Computer Science,53715,44.9778,93.265,sausage,cat,Yes,night owl,Yes +LEC003,19,Science: Other,53715,41.9028,12.4964,pepperoni,dog,No,night owl,Yes +LEC004,19,Data Science,53715,61.2176,149.8997,pineapple,cat,Yes,night owl,Maybe +LEC001,20,Agricultural and Applied Economics,53703,-22.932924,-47.073845,pineapple,cat,Yes,early bird,Maybe +LEC003,18,Computer Science,53706,52.370216,4.895168,basil/spinach,cat,No,night owl,Maybe +LEC003,19,Engineering: Industrial,53703,5.838715,3.603516,pepperoni,dog,Yes,early bird,No +LEC005,19,Engineering: Mechanical,53715,48.502281,-113.988533,sausage,dog,No,night owl,Yes +LEC004,41,Languages,53705,29.654839,91.140549,pepperoni,cat,No,night owl,Yes +LEC002,21,Business: Other|MHR,53703,44,125,Other,neither,No,night owl,Maybe +LEC005,24,Business: Other,53703,43.073051,-89.40123,pineapple,dog,No,night owl,Yes +LEC002,18,Undecided,53706,46.786671,-92.100487,none (just cheese),cat,No,no preference,Yes +LEC004,18,Engineering: Biomedical,53705,35.689487,139.691711,basil/spinach,dog,No,night owl,Yes +LEC001,25,Medicine,53703,48.38203,-123.537827,basil/spinach,dog,Yes,early bird,No +LEC004,19,Science: Biology/Life,53705,46.009991,-91.482094,pineapple,dog,No,early bird,No +LEC005,21,Science: Other|Personal Finance,53703,28.228209,112.938812,pepperoni,cat,Yes,night owl,Yes +LEC004,18,Data Science,53706,35.689487,139.691711,pepperoni,dog,No,night owl,Maybe +LEC006,21,Mathematics/AMEP,53703,41.878113,-87.629799,pineapple,cat,Yes,night owl,Maybe +LEC005,18,Environmental science,53706,31.224361,121.46917,mushroom,dog,No,night owl,Yes +LEC005,18,Engineering: Industrial,53706,40.712776,-74.005974,pepperoni,dog,Yes,night owl,Yes +LEC001,20,Business: Other|Real Estate,53703,51.5,0.128,mushroom,dog,Yes,no preference,Maybe +LEC001,19,Computer Science,53706,40,-74,pepperoni,cat,No,night owl,Yes +LEC003,19,Engineering: Mechanical,53715,44,-94,pineapple,dog,No,early bird,No +LEC001,19,Data Science,53715,40.712776,-74.005974,pepperoni,dog,No,early bird,No +LEC005,18,Engineering: Industrial,53703,41.385063,2.173404,pepperoni,dog,Yes,no preference,Yes +LEC002,20,Engineering: Industrial,53715,22.3,91.8,sausage,cat,Yes,early bird,Maybe +LEC001,24,Engineering: Industrial,53705,13.100485,77.594009,none (just cheese),dog,Yes,no preference,Maybe +LEC004,19,Statistics,53706,36.778259,-119.417931,pineapple,cat,No,night owl,Yes +LEC005,21,Economics,53703,40.016869,-105.279617,pepperoni,cat,Yes,night owl,Yes +LEC003,19,Economics (Mathematical Emphasis),53705,31.230391,121.473701,sausage,neither,Yes,no preference,Maybe +LEC003,19,Business: Finance,53706,22.270979,113.576675,pepperoni,dog,Yes,night owl,Yes +LEC003,21,Computer Science,53705,43.073051,-89.40123,green pepper,cat,No,no preference,Maybe +LEC001,28,Science: Biology/Life,53703,7.190708,125.455338,sausage,dog,No,night owl,Yes +LEC004,18,Statistics,53703,60.472023,8.468946,none (just cheese),dog,No,early bird,No +LEC002,19,Computer Science,53715,41.73993,-88.09423,mushroom,cat,Yes,no preference,Yes +LEC002,21,Economics,53703,26.074301,119.296539,mushroom,cat,No,no preference,Maybe +LEC002,20,Engineering: Industrial,53715,2.188477,41.379179,sausage,dog,No,night owl,Yes +LEC003,21,Science: Other|Environmental Science,53703,20.8,-156.3,basil/spinach,cat,No,early bird,Maybe +LEC006,18,Engineering: Mechanical,53706,25.204849,55.270782,pepperoni,dog,No,night owl,Yes +LEC002,18,Data Science,53706,42.360081,-71.058884,sausage,dog,Yes,night owl,Yes +LEC004,23,Engineering: Mechanical,53703,38.82097,-104.78163,sausage,dog,No,night owl,No +LEC001,19,Engineering: Industrial,53715,47.606209,-122.332069,pepperoni,cat,No,night owl,No +LEC006,19,Sociology,53703,43.05977,-87.88491,basil/spinach,dog,No,night owl,Maybe +LEC005,19,Engineering: Mechanical,53711,38.8951,-77.0364,pepperoni,dog,Yes,night owl,No +LEC005,19,Engineering: Mechanical,53703,41.881832,87.6298,pepperoni,dog,No,no preference,Yes +LEC002,20,Engineering: Mechanical,53703,46.453825,7.436478,pineapple,dog,Yes,night owl,Yes +LEC002,20,Economics,53703,30.49996,117.050003,Other,dog,No,early bird,Maybe +LEC004,21,Science: Other|Psychology,53715,23.12911,113.264381,none (just cheese),cat,No,night owl,Maybe +LEC002,18,Science: Biology/Life,53706,40.7831,73.9712,basil/spinach,dog,Yes,night owl,Yes +LEC002,,Business: Information Systems,53706,18.52043,73.856743,green pepper,dog,No,night owl,Yes +LEC002,,Computer Science,53706,29.424122,-98.493629,none (just cheese),dog,No,no preference,Yes +LEC002,20,Engineering: Mechanical,53703,41.05995,-80.32312,basil/spinach,dog,Yes,night owl,Maybe +LEC006,19,Statistics,53715,3.139003,101.686852,mushroom,cat,No,no preference,Maybe +LEC005,18,Data Science,53706,52.370216,4.895168,basil/spinach,dog,No,night owl,Yes +LEC006,19,Engineering: Industrial,53706,41.878113,-87.629799,pepperoni,dog,No,no preference,Maybe +LEC006,18,Business: Information Systems,53706,25.032969,121.565414,mushroom,dog,Yes,night owl,Yes +LEC001,17,Computer Science,53726,21.027763,105.83416,pepperoni,dog,No,early bird,Yes +LEC001,20,Business: Information Systems,53711,45.046799,-87.298149,sausage,cat,No,night owl,Yes +LEC005,25,Engineering: Other,53705,32.7157,-117.1611,mushroom,dog,No,no preference,Yes +LEC004,18,Engineering: Industrial,53706,19.896767,-155.582779,pepperoni,dog,Yes,night owl,Maybe +LEC005,18,Computer Science,53706,1.28217,103.865196,sausage,dog,No,night owl,Yes +LEC003,18,Engineering: Mechanical,53706,44.977753,-93.265015,pepperoni,dog,No,night owl,Yes +LEC004,20,Engineering: Mechanical,53715,23,90,green pepper,cat,No,no preference,Yes +LEC005,20,Data Science,53703,45.259546,-84.938476,mushroom,dog,Yes,night owl,Yes +LEC002,21,Science: Other,53703,41.878113,-87.629799,pineapple,dog,Yes,early bird,No +LEC004,19,Information science,53703,40.712776,-74.005974,pineapple,cat,Yes,early bird,Maybe +LEC001,19,Engineering: Mechanical,53715,64.126518,-21.817438,pepperoni,dog,No,night owl,Yes +LEC003,,Business: Other,53706,42.360081,-71.058884,sausage,cat,Yes,night owl,No +LEC002,31,Geoscience,53703,-41.126621,-73.059303,pepperoni,cat,No,night owl,Yes +LEC003,18,Engineering: Biomedical,53706,45.17099,-87.16494,Other,dog,No,night owl,Maybe +LEC002,18,Engineering: Mechanical,53706,37.774929,-122.419418,Other,dog,Yes,no preference,Yes +LEC004,,Computer Science,53715,39.70698,-86.0862,mushroom,cat,No,night owl,Yes +LEC005,20,Science: Biology/Life,53703,44.276402,-88.26989,macaroni/pasta,cat,No,no preference,Maybe +LEC002,19,Science: Biology/Life,53703,51.492519,-0.25852,sausage,dog,Yes,no preference,Yes +LEC002,19,Data Science,53703,37.6,14.0154,none (just cheese),dog,No,night owl,Yes +LEC002,20,Engineering: Industrial,53715,46.685631,7.8562,Other,cat,No,night owl,Maybe +LEC002,22,Economics,53706,41.385063,2.173404,pineapple,cat,No,night owl,Maybe +LEC004,21,Engineering: Industrial,53703,41.878113,-87.629799,pepperoni,neither,Yes,early bird,No +LEC004,19,Engineering: Mechanical,53703,51.507351,-0.127758,none (just cheese),neither,No,no preference,Maybe +LEC006,18,Engineering: Mechanical,53706,41.077747,1.131593,sausage,dog,No,no preference,Maybe +LEC006,18,Engineering: Mechanical,53706,43.526,5.445,basil/spinach,dog,Yes,no preference,Yes +LEC003,22,Economics,53715,43.073051,-89.40123,pepperoni,dog,Yes,early bird,Yes +LEC005,18,Engineering: Industrial,53706,43.085369,-88.912086,sausage,dog,No,night owl,Maybe +LEC002,19,Statistics,53703,43.769562,11.255814,basil/spinach,dog,No,no preference,Yes +LEC001,20,Computer Science,53715,20.880947,-156.681862,sausage,dog,No,night owl,Yes +LEC003,19,Mathematics/AMEP,53703,64.963051,-19.020836,basil/spinach,dog,No,no preference,Yes +LEC005,18,Undecided,53706,43.073929,-89.385239,sausage,dog,Yes,early bird,Yes +LEC003,18,Business: Information Systems,53706,25.204849,55.270782,none (just cheese),dog,No,night owl,No +LEC003,21,Economics,53703,39.904,116.407,pepperoni,cat,No,night owl,No +LEC004,18,Engineering: Mechanical,53706,39.739235,-104.99025,pepperoni,cat,Yes,no preference,Maybe +LEC004,21,Science: Biology/Life,53726,43,89,pepperoni,dog,Yes,night owl,Yes +LEC003,19,Data Science,53715,43.073051,-89.40123,none (just cheese),dog,No,early bird,Maybe +LEC002,19,Business: Other|accounting,53703,43.38,-87.9,sausage,neither,No,night owl,Yes +LEC002,18,Science: Biology/Life,53706,40.122,25.4988,sausage,dog,No,early bird,No +LEC005,20,Engineering: Mechanical,53715,39.904202,116.407394,sausage,dog,No,night owl,Yes +LEC001,19,Engineering: Mechanical,53703,-37.813629,144.963058,sausage,dog,Yes,night owl,Yes +LEC005,21,Economics,53715,46.81,-71.21,pepperoni,cat,No,night owl,Yes +LEC004,19,Engineering: Mechanical,53715,52.370216,4.895168,mushroom,dog,Yes,night owl,Yes +LEC001,21,Mathematics/AMEP,53703,34.29006,108.932941,basil/spinach,dog,No,early bird,Yes +LEC005,21,Engineering: Mechanical,53726,43.804801,-91.226075,pepperoni,dog,Yes,night owl,Yes +LEC002,18,Data Science,53703,32.715736,-117.161087,none (just cheese),cat,Yes,night owl,Maybe +LEC004,18,Engineering: Mechanical,53706,20.92674,-156.69386,pepperoni,dog,No,night owl,Maybe +LEC003,18,Data Science,53706,47.606209,-122.332069,pepperoni,dog,No,early bird,Yes +LEC005,21,Computer Science,53703,43.07515,-89.3958,sausage,neither,Yes,night owl,Yes +LEC001,19,Engineering: Mechanical,53562,43.096851,-89.511528,sausage,dog,No,night owl,No +LEC003,19,Engineering: Mechanical,53715,20.924325,-156.690102,sausage,cat,Yes,night owl,No +LEC005,20,Data Science,53703,25.0838,77.3212,pepperoni,dog,No,night owl,Maybe +LEC003,21,Business: Actuarial,53715,43.073051,-89.40123,pineapple,cat,Yes,night owl,Yes +LEC001,,Computer Science,53715,31.469279,119.765621,pepperoni,dog,No,night owl,Maybe +LEC005,19,Engineering: Mechanical,53715,43.769562,11.255814,basil/spinach,neither,No,early bird,No +LEC001,21,Science: Chemistry,53715,38.892059,-77.019913,pepperoni,neither,No,night owl,Yes +LEC002,19,Business: Finance,53715,42.360081,-71.058884,mushroom,dog,Yes,night owl,Yes +LEC001,18,Data Science,53703,24.713552,46.675297,none (just cheese),neither,No,night owl,Yes +LEC003,19,Business: Actuarial,53715,60.391262,5.322054,pepperoni,dog,No,early bird,No +LEC003,19,Data Science,53715,23.697809,120.960518,pepperoni,cat,No,night owl,Yes +LEC003,18,Data Science,53706,40.712776,74.005974,pineapple,dog,Yes,early bird,No +LEC004,19,Engineering: Mechanical,53703,45.126887,-94.528067,sausage,dog,No,night owl,Maybe +LEC002,21,Science: Biology/Life,53715,48.208176,16.373819,Other,dog,Yes,night owl,No +LEC006,18,Engineering: Mechanical,53706,44.0628,-121.30451,pepperoni,dog,No,night owl,Yes +LEC003,21,Statistics,53703,31.230391,121.473701,pineapple,cat,Yes,night owl,Yes +LEC005,21,Economics,53703,47.62772,-122.51368,macaroni/pasta,cat,No,no preference,No +LEC003,19,Engineering: Mechanical,53715,65.68204,-18.090534,sausage,cat,No,no preference,No +LEC004,21,Economics,53715,48.856613,2.352222,basil/spinach,dog,Yes,night owl,No +LEC001,18,Engineering: Biomedical,53706,33.501324,-111.925278,pineapple,dog,Yes,early bird,No +LEC005,18,Data Science,53706,14.77046,-91.183189,mushroom,cat,No,night owl,Maybe +LEC002,18,Engineering: Industrial,53706,10.480594,-66.903603,mushroom,neither,No,night owl,Maybe +LEC004,21,Engineering: Mechanical,53715,48.856613,2.352222,mushroom,cat,Yes,night owl,Yes +LEC001,19,Science: Biology/Life,53706,20.788602,-156.003662,green pepper,dog,Yes,no preference,No +LEC006,18,Data Science,53706,36.59239,-121.86875,pepperoni,cat,No,night owl,Maybe +LEC002,,Engineering: Industrial,53705,47.6,-122.33,sausage,dog,No,early bird,No +LEC001,18,Engineering: Mechanical,53703,23.885942,45.079163,Other,cat,No,night owl,Maybe +LEC002,18,Engineering: Industrial,53532,47.606209,-122.332069,mushroom,dog,No,night owl,Maybe +LEC002,17,Engineering: Biomedical,53706,39.5755,-106.100403,pepperoni,dog,Yes,night owl,Maybe +LEC002,20,Data Science,53711,39.904202,116.407394,pepperoni,dog,No,night owl,Yes +LEC001,19,Engineering: Industrial,53705,41.878113,-87.629799,tater tots,cat,No,night owl,No +LEC004,19,Political Science,53703,55.679626,12.581921,pepperoni,dog,Yes,no preference,Maybe +LEC005,18,Computer Science,53715,28.538336,-81.379234,pepperoni,dog,No,night owl,Maybe +LEC004,29,Engineering: Mechanical,53704,50.064651,19.944981,sausage,dog,No,early bird,Maybe +LEC005,18,Engineering: Other,53706,41.385063,2.173404,mushroom,cat,No,night owl,Yes +LEC001,19,Engineering: Mechanical,53703,44.977753,-93.265015,Other,cat,Yes,early bird,No +LEC001,32,Design Studies,53705,48.856613,2.352222,mushroom,dog,No,early bird,Yes +LEC002,20,Engineering: Mechanical,53703,41.28347,-70.099449,pepperoni,dog,Yes,night owl,Yes +LEC003,19,Engineering: Industrial,53715,41.73849,-71.30418,pepperoni,dog,No,night owl,Yes +LEC001,18,Data Science,53706,43.073051,-89.40123,sausage,dog,No,early bird,Yes +LEC001,19,Computer Science,53715,31.230391,121.473701,pineapple,cat,No,night owl,Yes +LEC001,19,Data Science,53703,37.9838,23.7275,sausage,dog,Yes,no preference,Yes +LEC005,20,Engineering: Biomedical,53703,47.497913,19.040236,Other,cat,Yes,night owl,No +LEC004,18,Economics,53711,13.756331,100.501762,Other,dog,No,night owl,Maybe +LEC002,18,Data Science,53706,3.864255,73.388672,pepperoni,dog,Yes,night owl,Maybe +LEC006,18,Engineering: Mechanical,53706,32.715736,-117.161087,macaroni/pasta,dog,Yes,night owl,Yes +LEC001,19,Business: Actuarial,53715,18.32431,64.941612,pepperoni,dog,No,no preference,Yes +LEC001,22,Psychology,53711,43.055333,-89.425946,pineapple,dog,Yes,early bird,No +LEC003,18,Computer Science,53706,40.744678,-73.758072,mushroom,cat,No,night owl,Maybe +LEC006,18,Data Science,53715,38.9784,76.4922,mushroom,cat,No,early bird,Yes +LEC004,20,Science: Other,53726,55.675758,12.56902,none (just cheese),cat,Yes,night owl,Yes +LEC001,20,Science: Biology/Life,53715,40.713051,-74.007233,pineapple,cat,No,night owl,Maybe +LEC004,18,Engineering: Industrial,53706,51.507351,-0.127758,pepperoni,dog,Yes,no preference,No +LEC004,25,Computer Science,53703,38.736946,-9.142685,pepperoni,dog,No,night owl,Yes +LEC002,18,Computer Science,53706,22.543097,114.057861,pepperoni,cat,No,no preference,Yes +LEC004,25,Science: Chemistry,53703,37.566536,126.977966,Other,cat,Yes,night owl,Maybe +LEC002,19,Engineering: Mechanical,53715,26.338,-81.775,pepperoni,dog,Yes,no preference,Maybe +LEC005,19,Engineering: Mechanical,53715,33.448376,-112.074036,pepperoni,neither,Yes,early bird,No +LEC005,19,Engineering: Mechanical,53703,43.073051,-89.40123,pepperoni,cat,No,no preference,Yes +LEC001,19,Engineering: Mechanical,53705,26.647661,106.63015,mushroom,cat,No,night owl,No +LEC003,18,Undecided,53706,43.2967,87.9876,pepperoni,dog,No,night owl,No +LEC005,19,Science: Physics,53703,78.225,15.626,sausage,cat,No,early bird,No +LEC002,,Science: Other|Environmetal Science,53703,52.973558,-9.425102,none (just cheese),dog,Yes,night owl,Maybe +LEC006,19,Economics (Mathematical Emphasis),53715,37.774929,-122.419418,sausage,cat,Yes,night owl,Yes +LEC002,20,Business: Finance,53703,40.7128,74.006,pineapple,dog,No,night owl,Yes +LEC001,21,Science: Biology/Life,53703,44.794,-93.148,pepperoni,dog,No,night owl,No +LEC002,19,Engineering: Mechanical,53706,36.17,-115.14,pepperoni,cat,No,night owl,Maybe +LEC001,18,Engineering: Biomedical,53706,21.161907,-86.851524,none (just cheese),dog,No,early bird,Maybe +LEC001,18,Computer Science,53715,48.856613,2.352222,pineapple,neither,Yes,no preference,No +LEC004,19,Engineering: Mechanical,53715,48.137,11.576,green pepper,dog,No,early bird,No +LEC001,20,Engineering: Biomedical,53703,43.07393,-89.38524,sausage,dog,No,night owl,Maybe +LEC002,18,Science: Other,53706,35.6762,139.6503,Other,dog,No,no preference,Yes +LEC004,19,Computer Science,53703,41.902782,12.496365,none (just cheese),neither,Yes,night owl,No +LEC001,20,Science: Other|Atmospheric and Oceanic Sciences (AOS),53711,49.299171,19.94902,pepperoni,dog,No,night owl,Maybe +LEC002,18,Data Science,53706,41.380898,2.12282,pepperoni,dog,No,night owl,Maybe +LEC006,18,Data Science,53706,48.257919,4.03073,mushroom,cat,Yes,early bird,No +LEC005,19,Engineering: Mechanical,53715,35.0844,106.6504,pineapple,dog,Yes,early bird,Yes +LEC002,23,Economics,53703,121,5,pepperoni,neither,No,no preference,Maybe +LEC004,18,Business: Actuarial,53706,21.306944,-157.858337,pineapple,dog,Yes,night owl,Maybe +LEC005,18,Economics,53706,43,-87.9,pepperoni,dog,Yes,early bird,Maybe +LEC005,23,Business: Other|Business Analytics,53703,31.230391,121.473701,pineapple,cat,Yes,night owl,Maybe +LEC002,22,Psychology,53703,25.032969,121.565414,mushroom,dog,No,no preference,Yes +LEC005,18,Computer Science,53706,43.0722,89.4008,sausage,cat,No,night owl,Yes +LEC006,18,Data Science,53706,52.370216,4.895168,mushroom,dog,Yes,night owl,Maybe +LEC004,20,Data Science,53703,35.726212,-83.491226,pepperoni,cat,No,early bird,Yes +LEC001,18,Computer Science,53703,27,153,mushroom,cat,No,early bird,Yes +LEC005,18,Data Science,53706,56.117017,-3.879547,pineapple,dog,Yes,night owl,Yes +LEC001,20,Engineering: Biomedical,53715,45.983964,9.262161,sausage,dog,No,night owl,No +LEC005,21,Psychology,53703,43.038902,-87.906471,macaroni/pasta,dog,Yes,night owl,Yes +LEC002,18,Engineering: Mechanical,53706,41.38879,2.15084,sausage,dog,Yes,no preference,Maybe +LEC003,18,Data Science,53706,47.48,-122.28,basil/spinach,dog,No,no preference,Maybe +LEC004,21,Data Science,53703,34.746613,113.625328,green pepper,neither,Yes,no preference,No +LEC005,21,Data Science,53703,38.240946,-85.757571,pepperoni,dog,No,no preference,Yes +LEC005,19,Engineering: Mechanical,53703,43.07291,-89.39439,sausage,dog,No,night owl,Maybe +LEC005,19,Engineering: Mechanical,53715,56.373482,-3.84306,none (just cheese),dog,No,early bird,Yes +LEC005,19,Data Science,53703,41.381717,2.177925,pepperoni,dog,Yes,night owl,Yes +LEC005,19,Engineering: Mechanical,53714,43.089199,87.8876,pepperoni,dog,No,night owl,Yes +LEC005,19,Engineering: Other,53590,38.4,11.2,pepperoni,dog,Yes,early bird,No +LEC005,19,Engineering: Mechanical,53715,25.761681,-80.191788,pepperoni,dog,Yes,night owl,No +LEC005,19,Engineering: Mechanical,53703,44.5133,88.0133,mushroom,dog,Yes,night owl,Maybe +LEC002,,Computer Science,53706,41.8781,87.6298,pepperoni,dog,No,night owl,Maybe +LEC005,19,Business: Finance,53703,38.98378,-77.20871,none (just cheese),dog,Yes,night owl,Yes +LEC005,18,Business: Finance,53703,22.9068,43.1729,pepperoni,dog,No,night owl,Yes +LEC005,19,Engineering: Mechanical,53715,43.073051,-89.40123,pepperoni,dog,No,early bird,No +LEC004,23,Economics,53703,43.083321,-89.372475,mushroom,dog,Yes,early bird,No +LEC002,17,Business: Actuarial,53715,34.746613,113.625328,sausage,neither,Yes,night owl,Maybe +LEC005,18,Engineering: Biomedical,53715,46.58276,7.08058,pepperoni,dog,No,early bird,No +LEC001,20,Statistics,53715,39.904202,116.407394,mushroom,dog,Yes,early bird,No +LEC002,18,Computer Science,53706,35.96691,-75.627823,sausage,dog,No,early bird,Yes +LEC005,21,Mathematics/AMEP,53703,13.756331,100.501762,pepperoni,dog,No,night owl,Yes +LEC005,20,Engineering: Biomedical,53715,28.538336,-81.379234,sausage,cat,No,night owl,Maybe +LEC002,19,Engineering: Mechanical,53703,44.822783,-93.370743,sausage,dog,Yes,early bird,No +LEC005,19,Engineering: Mechanical,53715,42.15,-87.96,pepperoni,dog,No,night owl,Yes +LEC005,20,Journalism,53715,41.3874,2.1686,basil/spinach,dog,Yes,early bird,Maybe +LEC001,19,Engineering: Mechanical,53703,42.864552,-88.333199,pepperoni,dog,No,early bird,Maybe +LEC005,17,Data Science,53706,40.7128,74.006,macaroni/pasta,dog,No,night owl,Yes +LEC005,19,Science: Other|Politcal Science,53703,41.878113,-87.629799,pepperoni,dog,Yes,night owl,No +LEC002,20,Business: Finance,53703,40.7831,73.9712,sausage,dog,Yes,night owl,No +LEC004,20,Data Science,53703,43,87.9,none (just cheese),dog,No,night owl,Yes +LEC001,18,Data Science,53706,38.900497,-77.007507,pineapple,dog,No,night owl,Maybe +LEC005,18,Engineering: Industrial,53706,45.440845,12.315515,sausage,dog,No,night owl,Maybe +LEC002,19,Data Science,53715,25.73403,-80.24697,pepperoni,dog,Yes,night owl,Yes +LEC005,18,Political Science,53706,42.360081,-71.058884,macaroni/pasta,dog,Yes,night owl,Yes +LEC002,20,Economics,53703,41.878113,-87.629799,pepperoni,dog,Yes,no preference,Maybe +LEC004,18,Engineering: Mechanical,55088,48.135124,11.581981,pepperoni,dog,Yes,no preference,No +LEC002,23,Business: Information Systems,53703,37.566536,126.977966,sausage,dog,No,night owl,Maybe +LEC005,17,Data Science,53703,49.2827,123.1207,sausage,dog,Yes,night owl,Yes +LEC005,,Statistics,53726,40.712776,-74.005974,Other,dog,Yes,no preference,Yes +LEC001,18,Science: Biology/Life,53706,48.856613,2.352222,pepperoni,cat,Yes,early bird,No +LEC005,32,Communication Sciences and Disorder,53705,37.566536,126.977966,pineapple,dog,Yes,no preference,Yes +LEC001,18,Data Science,53706,41.878113,-87.629799,macaroni/pasta,dog,No,night owl,Yes +LEC002,17,Business: Information Systems,53706,-6.17511,106.865036,sausage,neither,No,no preference,Maybe +LEC002,25,Science: Other|Geoscience,53711,46.947975,7.447447,mushroom,cat,No,no preference,Yes +LEC002,20,Economics,53703,46.7867,92.1005,macaroni/pasta,neither,Yes,early bird,No +LEC002,21,Business: Other|Marketing,53703,20.878332,-156.682495,basil/spinach,dog,No,night owl,Yes +LEC001,19,Statistics,53703,52.370216,4.895168,sausage,dog,No,night owl,Maybe +LEC005,20,Engineering: Biomedical,53711,35.689487,139.691711,basil/spinach,dog,No,night owl,Yes +LEC005,22,Science: Other|Atmospheric and oceanic science,53703,26.1224,80.1373,pepperoni,dog,No,early bird,No +LEC001,18,Engineering: Mechanical,53726,21.306944,-157.858337,sausage,dog,No,night owl,Yes +LEC005,21,Business: Finance,53703,43.11339,-89.37726,sausage,dog,No,night owl,Yes +LEC001,,Business: Other,53703,22.396427,114.109497,Other,dog,No,early bird,Maybe +LEC004,19,Science: Biology/Life,53706,41.2,96,pepperoni,cat,No,early bird,No +LEC004,18,Engineering: Industrial,53706,49.74609,7.4609,pepperoni,cat,No,early bird,Yes +LEC004,20,Science: Other|Environmental Science,53715,43,-89,mushroom,dog,Yes,night owl,Maybe +LEC001,18,Business: Finance,53706,39.7392,104.9903,pepperoni,dog,No,early bird,No +LEC002,,Computer Science,53706,41.67566,-86.28645,pineapple,cat,No,no preference,Maybe +LEC002,18,Business: Other,53706,33.88509,-118.409714,green pepper,dog,Yes,night owl,No +LEC001,20,Engineering: Biomedical,53711,41.8781,87.6298,pepperoni,dog,No,night owl,Yes +LEC002,20,Data Science,53715,10.97285,106.477707,mushroom,dog,No,no preference,Maybe +LEC002,20,Computer Science,53703,36.16156,-75.752441,pepperoni,dog,Yes,no preference,Yes +LEC002,20,Business: Other|Marketing,53703,35.689487,139.691711,pepperoni,dog,Yes,night owl,Yes +LEC002,18,Engineering: Other|Engineering Mechanics,53706,35.689487,139.691711,mushroom,cat,No,night owl,Maybe +LEC002,21,Economics (Mathematical Emphasis),53703,46.25872,-91.745583,sausage,dog,Yes,no preference,Yes +LEC002,19,Mathematics,53703,39.904202,116.407394,tater tots,cat,No,night owl,Yes +LEC002,18,Data Science,53703,40.706067,-74.030063,pepperoni,dog,No,night owl,Yes +LEC002,19,Pre-Business,53703,39.60502,-106.51641,pepperoni,dog,Yes,early bird,No +LEC002,20,Mathematics/AMEP,53703,35.106766,-106.629181,green pepper,cat,No,night owl,Yes +LEC003,20,Science: Physics,53715,64.963051,-19.020836,mushroom,dog,No,night owl,Yes +LEC002,20,Business: Finance,53703,31.298973,120.585289,pineapple,cat,Yes,night owl,No +LEC002,18,Economics,53706,48.856613,2.352222,basil/spinach,dog,No,night owl,Maybe +LEC001,21,Data Science,53703,40.712776,-74.005974,sausage,dog,No,night owl,Yes +LEC002,19,Engineering: Industrial,53715,45.914,-89.255,sausage,dog,Yes,early bird,Yes +LEC002,19,Computer Science,53703,20,110,pineapple,cat,No,night owl,Maybe +LEC002,19,Engineering: Mechanical,53726,41.878113,-87.629799,basil/spinach,dog,No,early bird,Yes +LEC005,19,Computer Science,53715,48.8566,2.3522,sausage,dog,No,night owl,Maybe +LEC002,19,Industrial Engineering,53703,48.856613,2.352222,basil/spinach,dog,No,early bird,Yes +LEC002,18,Data Science,53706,43.073051,-89.40123,pepperoni,dog,Yes,night owl,Yes +LEC002,20,Statistics,53703,31.224361,121.46917,mushroom,dog,No,no preference,Maybe +LEC002,18,Computer Science,53706,35.689487,139.691711,green pepper,dog,No,night owl,Yes +LEC002,18,Computer Science,53706,25.03841,121.563698,pineapple,dog,No,night owl,Yes +LEC002,19,Engineering: Mechanical,53715,43.06827,-89.40263,sausage,dog,No,night owl,No +LEC002,18,Engineering: Mechanical,53703,43,89.4,pepperoni,cat,No,no preference,Maybe +LEC002,,Mechanical Engineering,53703,41.8781,87.6298,Other,dog,Yes,night owl,Yes +LEC002,26,Science: Other,57075,42.76093,-89.9589,Other,dog,Yes,early bird,No +LEC002,21,Science: Other|Environmental science,53714,47.606209,-122.332069,pepperoni,dog,Yes,early bird,Yes +LEC002,18,Data Science,53706,35.69,139.69,pineapple,cat,No,night owl,Yes +LEC002,18,Computer Science,53706,42.807091,-86.01886,none (just cheese),cat,Yes,early bird,Yes +LEC002,19,Engineering: Mechanical,53703,45.892099,8.997803,green pepper,dog,No,night owl,Yes +LEC002,20,Computer Science,53715,40.755645,-74.034119,sausage,dog,Yes,night owl,Yes +LEC001,18,Engineering: Mechanical,53066,43.073051,-89.40123,pepperoni,dog,No,night owl,Yes +LEC002,18,Data Science,53706,21.306944,-157.858337,pineapple,dog,No,night owl,No +LEC002,18,Engineering: Industrial,53706,32.0853,34.781769,pepperoni,dog,No,night owl,Maybe +LEC002,19,Engineering: Mechanical,53703,46.786671,-92.100487,sausage,dog,No,early bird,No +LEC002,19,Engineering: Mechanical,53715,42.590519,-88.435287,pepperoni,dog,No,early bird,No +LEC002,23,Data Science,53703,37,127,pineapple,dog,No,night owl,Yes +LEC002,20,Data Science,53703,43.06875,-89.39434,pepperoni,dog,Yes,no preference,Maybe +LEC002,20,Engineering: Mechanical,53703,41.499321,-81.694359,pepperoni,dog,Yes,night owl,Maybe +LEC002,21,Economics,53703,38.969021,-0.18516,sausage,dog,Yes,no preference,No +LEC002,20,Economics,53703,50.85,4.35,pepperoni,dog,No,no preference,Yes +LEC002,19,Data Science,53715,36.39619,10.61412,none (just cheese),cat,No,no preference,Yes +LEC002,20,Engineering: Mechanical,53711,43.073051,-89.40123,green pepper,dog,Yes,night owl,No +LEC002,30,Life Sciences Communication,53562,52.399448,0.25979,basil/spinach,cat,Yes,night owl,Yes +LEC002,20,Business: Finance,53703,41.878,-87.629799,pepperoni,dog,No,no preference,Yes +LEC002,18,Computer Science,53706,31.2304,121.4737,pepperoni,cat,No,night owl,Maybe +LEC005,22,Economics,53711,48.135124,11.581981,pepperoni,cat,Yes,no preference,Yes +LEC002,19,Engineering: Mechanical,53711,51.5,0.1276,pepperoni,dog,No,night owl,No +LEC001,18,Computer Science,53703,31.298973,120.585289,pineapple,neither,No,night owl,No +LEC001,19,Computer Science,53703,37,-97,macaroni/pasta,cat,No,no preference,Maybe +LEC002,19,International Studies,53703,8.25115,34.588348,none (just cheese),dog,Yes,early bird,Maybe +LEC001,19,Engineering: Mechanical,53703,43.038902,-87.906471,pineapple,cat,No,night owl,Yes +LEC001,19,Science: Other|Atmospheric and Oceanic Sciences,53703,48.856613,2.352222,pepperoni,dog,Yes,night owl,Yes +LEC004,20,Data Science,53703,41.878113,-87.629799,green pepper,dog,No,early bird,Yes +LEC004,18,Undecided,53706,39.3823,87.2971,sausage,dog,Yes,early bird,No +LEC004,21,Data Science,53703,31.230391,121.473701,mushroom,cat,No,night owl,Maybe +LEC001,18,Data Science,53706,32.776474,-79.931053,none (just cheese),dog,No,early bird,Yes +LEC006,18,Science: Physics,53706,43.073051,-89.40123,sausage,dog,No,night owl,Yes +LEC001,19,Economics,53703,35.689487,139.691711,pineapple,dog,Yes,night owl,Yes +LEC004,18,Data Science,53715,50.8,-1.085,Other,dog,No,night owl,Maybe +LEC002,21,Languages,53703,37.389091,-5.984459,mushroom,cat,No,early bird,No +LEC001,19,Rehabilitation Psychology,53706,36.204823,138.25293,pineapple,cat,No,no preference,Maybe +LEC006,18,Data Science,53705,37.5741,122.3794,pepperoni,dog,Yes,night owl,Yes +LEC004,18,Undecided,53706,26.452,-81.9481,pepperoni,dog,Yes,night owl,Yes +LEC002,19,Business: Actuarial,53703,37.774929,-122.419418,pineapple,dog,No,early bird,No +LEC005,18,Undecided,53706,55.676098,12.568337,pepperoni,dog,Yes,night owl,No +LEC001,19,Engineering: Mechanical,53703,43.073051,-89.40123,pepperoni,dog,Yes,night owl,Yes +LEC002,18,Statistics,53706,40.713051,-74.007233,none (just cheese),dog,No,night owl,Maybe +LEC003,21,Languages,53511,39.952583,-75.165222,pepperoni,dog,No,night owl,Yes +LEC002,18,Computer Science,53706,12.523579,-70.03355,pineapple,dog,No,night owl,Yes +LEC004,,Engineering: Biomedical,53715,41.878113,-87.629799,pepperoni,dog,Yes,night owl,No +LEC001,,Data Science,53701,40.37336,88.231483,pepperoni,dog,Yes,night owl,No +LEC001,19,Data Science,53703,51.5072,0.1276,pepperoni,dog,Yes,no preference,No +LEC002,18,Data Science,53706,47.987289,0.22367,none (just cheese),dog,Yes,night owl,Maybe +LEC002,19,Business: Actuarial,53715,45.17963,-87.150009,sausage,dog,Yes,no preference,No +LEC005,21,Science: Biology/Life,53703,21.23556,-86.73142,pepperoni,dog,Yes,night owl,Yes +LEC004,18,Engineering: Industrial,53706,43.073051,-89.40123,sausage,dog,No,night owl,Yes +LEC001,21,Science: Biology/Life,53715,41.878113,-87.629799,green pepper,cat,No,night owl,Yes +LEC001,20,Engineering: Biomedical,53703,48.8566,2.3522,mushroom,cat,Yes,night owl,Maybe +LEC005,19,Engineering: Mechanical,53703,49.28273,-123.120735,basil/spinach,dog,No,night owl,Yes +LEC001,19,Data Science,53706,37.23082,-107.59529,basil/spinach,dog,No,no preference,Maybe +LEC001,19,Business: Finance,53703,26.20047,127.728577,mushroom,dog,No,night owl,Maybe +LEC006,18,Statistics,53706,32.060253,118.796875,pineapple,cat,Yes,early bird,Maybe +LEC002,20,Business: Information Systems,53706,52.520008,13.404954,none (just cheese),dog,No,early bird,Yes +LEC006,18,Undecided,53706,43.038902,-87.906471,sausage,dog,No,night owl,Yes +LEC002,20,Accounting,53703,32.79649,-117.192123,mushroom,dog,No,no preference,Yes +LEC006,19,Statistics,53715,21.315603,-157.858093,pepperoni,cat,No,night owl,No +LEC004,20,Science: Biology/Life,53706,13.756331,100.501762,pineapple,neither,No,night owl,Yes +LEC004,20,Business: Other,53715,42.818878,-89.494115,pepperoni,dog,No,night owl,Yes +LEC001,19,Engineering: Mechanical,53703,44.9778,93.265,pepperoni,dog,Yes,night owl,Maybe +LEC004,18,Engineering: Industrial,53706,41.3874,2.1686,none (just cheese),dog,No,night owl,Maybe +LEC001,37,Engineering: Other|Civil- Intelligent Transportation System,53705,23.810331,90.412521,pineapple,neither,Yes,early bird,Yes +LEC001,19,Science: Physics,53703,42.696842,-89.026932,sausage,cat,No,night owl,Yes +LEC006,19,Data Science,53715,53.266479,-9.052602,macaroni/pasta,dog,No,no preference,Yes +LEC001,19,Data Science,53703,45.19356,-87.118767,pepperoni,dog,Yes,early bird,Maybe +LEC005,18,Engineering: Industrial,53715,21.306944,-157.858337,none (just cheese),dog,Yes,night owl,Maybe +LEC004,19,Computer Science,53703,40.678177,-73.94416,Other,cat,No,night owl,Maybe +LEC005,18,Science: Biology/Life,53706,44.513317,-88.013298,pepperoni,dog,Yes,night owl,No +LEC001,19,Engineering: Mechanical,53703,40.712776,-74.005974,none (just cheese),dog,Yes,early bird,Maybe +LEC002,22,Economics,53703,37.6,127,pineapple,neither,Yes,night owl,Maybe +LEC004,20,Engineering: Industrial,53703,39.359772,-111.584167,pepperoni,dog,Yes,early bird,Maybe +LEC001,19,Data Science,53706,31.298973,120.585289,mushroom,cat,No,night owl,Yes +LEC001,20,Computer Science,53715,43.073051,-89.40123,none (just cheese),dog,No,night owl,Maybe +LEC001,25,Data Science,53703,37.566536,126.977966,pineapple,dog,Yes,night owl,No +LEC005,19,Data Science,53706,36.169941,-115.139832,pepperoni,dog,Yes,night owl,Yes +LEC001,19,Engineering: Mechanical,53703,44.834209,87.376266,sausage,dog,Yes,no preference,Yes +LEC005,20,Engineering: Mechanical,53703,43.17854,-89.163391,sausage,dog,Yes,night owl,Maybe +LEC004,19,Engineering: Industrial,53703,41.93101,-87.64987,pepperoni,neither,No,early bird,No +LEC003,19,Engineering: Industrial,53703,11.89,-85,pepperoni,dog,Yes,night owl,Maybe +LEC003,19,Engineering: Mechanical,53715,33.873417,-115.900993,pepperoni,dog,No,early bird,No +LEC001,22,Economics,53703,42.360081,-71.058884,pepperoni,dog,No,no preference,Maybe +LEC001,18,Data Science,53706,34.04018,-118.48849,pepperoni,dog,Yes,night owl,Yes +LEC002,42069,Data Science,53704,43,-89,none (just cheese),neither,No,no preference,No +LEC004,20,Business: Finance,53715,38.71049,-75.07657,sausage,dog,No,early bird,No +LEC004,21,Engineering: Mechanical,53715,43.073051,-89.40123,Other,dog,Yes,early bird,No +LEC004,18,Engineering: Industrial,53706,44.261799,-88.407249,sausage,dog,Yes,night owl,No +LEC004,26,Science: Other|Animal and Dairy Science,53705,53.270668,-9.05679,pepperoni,dog,No,early bird,Yes +LEC005,20,Data Science,53715,43.355099,11.02956,sausage,dog,No,early bird,Maybe +LEC003,19,Engineering: Mechanical,53715,45.40857,-91.73542,sausage,dog,Yes,no preference,No +LEC004,22,Engineering: Mechanical,53726,55.864239,-4.251806,pepperoni,dog,Yes,night owl,Yes +LEC001,18,Engineering: Mechanical,53706,50.808712,-0.1604,pepperoni,dog,Yes,night owl,Maybe +LEC004,19,Engineering: Mechanical,53703,13.35433,103.77549,none (just cheese),dog,No,no preference,Maybe +LEC005,24,Mathematics/AMEP,53705,40.7,-74,pineapple,cat,No,early bird,Maybe +LEC001,19,Interior Architecture,53532,27.683536,-82.736092,mushroom,cat,Yes,no preference,Yes +LEC001,19,Science: Chemistry,53715,40.7,-74,sausage,dog,No,night owl,Maybe +LEC001,20,Engineering: Biomedical,53703,-33.86882,151.20929,pepperoni,dog,No,no preference,Maybe +LEC001,20,Engineering: Industrial,53715,26.614149,-81.825768,pepperoni,dog,No,night owl,No +LEC001,19,Engineering: Biomedical,53706,45.440845,12.315515,none (just cheese),dog,Yes,night owl,Yes +LEC001,19,Data Science,53726,43.0766,89.4125,none (just cheese),cat,No,night owl,No +LEC001,20,Engineering: Biomedical,53711,33.684566,-117.826508,pineapple,dog,Yes,early bird,Maybe +LEC001,21,Statistics,26617,22.396427,114.109497,pineapple,dog,Yes,night owl,Maybe +LEC001,18,Data Science,53706,-33.86882,151.20929,pepperoni,dog,Yes,night owl,No +LEC001,21,Economics,53703,1.53897,103.58007,pineapple,neither,Yes,night owl,Yes +LEC001,18,Data Science,53558,41.877541,-88.066727,mushroom,dog,No,night owl,Maybe +LEC001,17,Computer Science,53703,25.204849,55.270782,pepperoni,dog,Yes,night owl,Yes +LEC001,19,Engineering: Mechanical,53715,19.7,-155,pineapple,dog,Yes,early bird,Yes +LEC001,19,Data Science,53703,41.878113,-87.629799,none (just cheese),cat,Yes,night owl,Yes +LEC001,18,Science: Biology/Life,53715,39.904202,116.407394,basil/spinach,dog,Yes,night owl,Maybe +LEC001,20,Science: Physics,53711,43.038902,-87.906471,pepperoni,dog,No,no preference,Yes +LEC001,18,Engineering: Mechanical,53706,41.902782,12.496366,pepperoni,neither,Yes,night owl,Yes +LEC001,18,Data Science,53706,47.60323,-122.330276,Other,dog,No,night owl,Yes +LEC001,19,Economics,53706,40.7,74,none (just cheese),dog,Yes,night owl,Yes +LEC001,19,Business: Finance,53703,34.052235,-118.243683,mushroom,dog,Yes,early bird,Maybe +LEC001,20,Science: Other|Atmospheric & Oceanic Sciences,53711,40.412776,-74.005974,pepperoni,neither,No,early bird,Yes +LEC001,19,Computer Science,53706,37.774929,-122.419418,none (just cheese),cat,No,early bird,Yes +LEC001,20,Engineering: Mechanical,53703,44.78441,-93.17308,pepperoni,dog,Yes,no preference,Yes +LEC001,22,Engineering: Other,53726,39.48214,-106.048691,pineapple,cat,No,no preference,Maybe +LEC001,21,Computer Science,53703,33.68,-117.82,basil/spinach,cat,No,early bird,No +LEC001,17,Computer Science,53706,25.204849,55.270782,pepperoni,neither,Yes,no preference,Maybe +LEC001,18,Engineering: Industrial,53706,41.917519,-87.694771,basil/spinach,dog,Yes,night owl,Yes +LEC001,18,Engineering: Biomedical,53706,42.361145,-71.057083,macaroni/pasta,dog,No,night owl,Yes +LEC001,,Engineering: Biomedical,53703,43.073929,-89.385239,basil/spinach,dog,No,early bird,No +LEC001,18,Economics,53706,30.20241,120.226822,Other,neither,Yes,early bird,No +LEC001,20,Engineering: Biomedical,53703,41.198496,0.773436,pepperoni,dog,No,night owl,Yes +LEC001,19,Engineering: Mechanical,53703,39.739235,-104.99025,pepperoni,dog,Yes,no preference,Maybe +LEC001,20,Science: Chemistry,53703,32.16761,120.012444,pepperoni,neither,No,night owl,Maybe +LEC001,19,Data Science,53703,43.0722,89.4008,pineapple,dog,Yes,night owl,Yes +LEC001,18,Science: Biology/Life,53715,41.878113,-87.629799,sausage,dog,Yes,early bird,No +LEC004,,Business: Information Systems,53715,42.360081,-71.058884,Other,dog,No,no preference,Maybe +LEC001,21,Engineering: Biomedical,53703,44.513317,-88.013298,pepperoni,dog,No,night owl,No +LEC001,20,Data Science,53132,43.073051,-89.40123,Other,cat,No,night owl,Maybe +LEC001,18,Business: Actuarial,53706,48.856613,2.352222,sausage,dog,No,no preference,Maybe +LEC001,20,Political Science,53715,48.135124,11.581981,sausage,cat,Yes,night owl,Yes +LEC001,19,Engineering: Industrial,53703,41,-74,sausage,dog,Yes,no preference,No +LEC001,20,Psychology,53703,43.083321,-89.372475,Other,neither,No,night owl,Yes +LEC001,18,Computer Science and Statistics,53706,36.162663,-86.781601,mushroom,dog,Yes,early bird,Maybe +LEC001,19,Engineering: Mechanical,53703,25.88,-80.16,pepperoni,dog,No,night owl,Yes +LEC001,18,Computer Science,53703,46.947975,7.447447,sausage,cat,Yes,night owl,No +LEC001,19,Business: Information Systems,53703,41.17555,73.64731,pepperoni,dog,No,night owl,Maybe +LEC001,20,Political Science,53703,45.018269,-93.473892,sausage,dog,No,night owl,Maybe +LEC001,,Business analytics,53705,45.50169,-73.567253,pineapple,cat,No,no preference,No +LEC001,21,Science: Biology/Life,53726,32.060253,118.796875,mushroom,cat,No,night owl,No +LEC001,19,Engineering: Mechanical,53706,35.806,-78.68483,none (just cheese),dog,No,night owl,Yes +LEC005,20,Data Science,53726,31.230391,121.473701,none (just cheese),dog,Yes,no preference,Maybe +LEC005,18,Engineering: Mechanical,53706,41.878113,-87.629799,Other,cat,No,night owl,Maybe +LEC004,18,Statistics,53706,27.35741,-82.615471,none (just cheese),dog,Yes,early bird,No +LEC002,20,Business: Finance,53715,35.726212,-83.491226,pepperoni,dog,Yes,no preference,Yes +LEC002,18,Undecided,53706,43.769562,11.255814,pepperoni,dog,No,night owl,Yes +LEC004,19,Business: Actuarial,53703,43.040433,-87.897423,sausage,cat,No,night owl,No +LEC004,19,Engineering: Mechanical,5,25.034281,-77.396278,sausage,dog,Yes,no preference,Yes +LEC001,,Engineering: Mechanical,53706,34.052235,-118.243683,Other,dog,Yes,night owl,Yes +LEC003,18,Engineering: Industrial,53706,20.798363,-156.331924,none (just cheese),dog,Yes,early bird,No +LEC002,19,Engineering: Biomedical,53703,51.1784,115.5708,pineapple,dog,Yes,night owl,No +LEC005,19,Statistics,53703,43.05367,-88.44062,pepperoni,dog,Yes,night owl,No +LEC004,18,Engineering: Industrial,53706,36.110168,-97.058571,none (just cheese),dog,No,early bird,Maybe +LEC004,21,Computer Science,53703,43.07016,-89.39386,mushroom,cat,Yes,early bird,No +LEC005,19,Data Science,53726,43.073051,-89.40123,pepperoni,dog,No,early bird,Yes +LEC004,18,Data Science,53706,41.878113,-87.629799,macaroni/pasta,dog,Yes,early bird,Maybe +LEC001,20,Business: Finance,53726,43.073051,-89.40123,pepperoni,dog,No,night owl,Maybe +LEC001,18,Data Science,53706,43.038902,-87.906471,pineapple,dog,No,night owl,Maybe +LEC001,24,Engineering: Other,53718,46.77954,-90.78511,pineapple,dog,Yes,night owl,No +LEC001,18,Statistics,53706,22.57,88.36,pineapple,dog,Yes,night owl,Maybe +LEC004,20,Computer Science,53715,35.016956,-224.24911,pepperoni,dog,No,night owl,Yes +LEC001,20,Science: Biology/Life,53715,47.606209,-122.332069,none (just cheese),dog,Yes,night owl,Maybe +LEC004,18,Engineering: Industrial,53706,21.28482,-157.83245,pineapple,dog,No,night owl,Yes +LEC001,20,Engineering: Biomedical,53715,40.63,14.6,none (just cheese),dog,No,early bird,Maybe +LEC004,20,Legal Studies,53703,20.798363,-156.331924,green pepper,dog,No,early bird,No +LEC002,18,Computer Science,53706,32.060253,118.796875,sausage,dog,Yes,early bird,Maybe +LEC002,18,Journalism,53706,31,103,none (just cheese),cat,No,night owl,Yes +LEC004,,Computer Science,53706,147,32.5,pineapple,cat,No,early bird,Maybe +LEC004,18,Engineering: Biomedical,53701,43.038902,-87.906471,pepperoni,dog,No,night owl,No +LEC004,18,Engineering: Mechanical,20815,39.640259,-106.370872,sausage,dog,No,night owl,No +LEC004,19,Engineering: Mechanical,53715,41,12,pepperoni,dog,No,no preference,Maybe +LEC004,20,Journalism: Strategic Comm./Advertising,53703,43.073051,-89.40123,Other,dog,Yes,night owl,Yes +LEC004,,Engineering: Mechanical,53715,43,-87.9,pepperoni,cat,Yes,early bird,Maybe +LEC004,19,Engineering: Biomedical,53706,32.715736,117.161087,pepperoni,dog,Yes,no preference,Yes +LEC004,18,Data Science,53706,43.073051,-89.40123,pepperoni,dog,No,night owl,Yes +LEC004,18,History,53706,42.19381,-73.362877,none (just cheese),cat,Yes,night owl,Yes +LEC002,19,Engineering: Mechanical,53703,39.290386,-76.61219,mushroom,dog,No,no preference,No +LEC002,19,Engineering: Mechanical,53726,40.416775,-3.70379,macaroni/pasta,dog,No,early bird,Maybe +LEC005,19,Engineering: Mechanical,53726,46.870899,-89.313789,sausage,dog,Yes,night owl,Maybe +LEC004,19,Science: Biology/Life,53151,41.878113,-87.629799,sausage,dog,No,night owl,Yes +LEC005,18,Data Science,53711,35.1796,129.0756,pepperoni,cat,Yes,night owl,Yes +LEC004,18,Data Science,53706,37.568291,126.99778,pepperoni,dog,No,no preference,Maybe +LEC005,17,Statistics,53706,31.23,121.47,sausage,cat,No,night owl,Maybe +LEC003,19,Undecided,53715,43.041069,-87.909416,mushroom,dog,No,no preference,Maybe +LEC005,19,Economics,53703,47.606209,-122.332069,pineapple,neither,No,no preference,Maybe +LEC005,21,Science: Biology/Life,53726,40.76078,-111.891045,mushroom,dog,No,no preference,Yes +LEC003,19,Engineering: Mechanical,53706,43,-88.27,Other,dog,No,night owl,Yes +LEC003,20,Business: Other|Accounting,53726,43,-89,pepperoni,dog,Yes,early bird,Yes +LEC005,18,Engineering: Other,53706,64.147209,-21.9424,pepperoni,dog,No,night owl,Yes +LEC003,18,Data Science,53562,42.66544,21.165319,pepperoni,dog,No,night owl,Yes +LEC005,22,Data Science,53711,39.738449,-104.984848,none (just cheese),dog,No,night owl,Yes +LEC003,18,Engineering: Mechanical,53706,33.748997,-84.387985,mushroom,dog,No,night owl,Yes +LEC004,19,Engineering: Mechanical,53717,41.2224,86.413,Other,dog,Yes,early bird,Maybe +LEC003,19,Business: Actuarial,53706,39.299236,-76.609383,pineapple,dog,Yes,night owl,No +LEC001,,Engineering: Mechanical,53703,32.776665,-96.796989,sausage,dog,No,night owl,Maybe +LEC004,19,Engineering: Biomedical,53703,41.878113,-87.629799,pepperoni,dog,Yes,no preference,Yes +LEC004,26,Master of Public Affairs,53715,48.118145,-123.43074,basil/spinach,dog,Yes,early bird,Yes +LEC004,19,Engineering: Mechanical,53703,-12.12168,-45.013481,basil/spinach,dog,No,night owl,Yes +LEC004,18,Data Science,53706,31.230391,121.473701,sausage,cat,No,night owl,No +LEC005,21,Engineering: Industrial,53715,1.352083,103.819839,none (just cheese),neither,No,night owl,Yes +LEC004,19,Engineering: Mechanical,53703,40.712776,-74.005974,sausage,dog,No,early bird,No +LEC004,19,Engineering: Mechanical,53715,37.98381,23.727539,basil/spinach,dog,Yes,early bird,No +LEC005,20,Business: Actuarial,53703,45.003288,-90.329788,sausage,dog,No,early bird,Maybe +LEC005,20,Engineering: Mechanical,53703,43.073051,-89.40123,pepperoni,dog,Yes,early bird,No +LEC001,21,Economics,53703,41.902782,12.496365,basil/spinach,dog,No,no preference,No +LEC004,18,Engineering: Biomedical,53706,45.4894,93.2476,mushroom,cat,No,night owl,No +LEC005,19,Data Science,53703,43.2708,89.7221,sausage,dog,Yes,night owl,No +LEC003,,Engineering: Mechanical,53706,45.87128,-89.711632,pepperoni,neither,Yes,no preference,Yes +LEC004,19,Engineering: Mechanical,53715,42.360081,-71.058884,pepperoni,dog,Yes,night owl,Maybe +LEC004,18,Engineering: Mechanical,53706,45.056389,-92.960793,pepperoni,dog,No,night owl,Yes +LEC003,,Computer Science,53703,43.07,-89.4,pepperoni,dog,Yes,no preference,Maybe +LEC001,20,Business: Finance,53703,22.20315,-159.495651,Other,dog,Yes,no preference,No +LEC005,19,Engineering: Mechanical,53703,44.74931,-92.80088,pineapple,dog,No,early bird,No +LEC004,21,Business: Actuarial,53726,38.874341,-77.032013,pepperoni,dog,No,no preference,Yes +LEC005,19,Engineering: Mechanical,53703,18.34791,-64.71424,basil/spinach,dog,No,night owl,No +LEC004,18,Engineering: Mechanical,53703,27.5041,82.7145,sausage,dog,No,night owl,Maybe +LEC005,19,Engineering: Biomedical,53706,36.462,25.375465,basil/spinach,dog,No,night owl,No +LEC004,27,Environment & Resources,53703,37.389091,-5.984459,mushroom,dog,No,night owl,Maybe +LEC004,19,Business: Actuarial,53726,32,-117,pepperoni,neither,Yes,night owl,Yes +LEC005,20,Science: Physics,53703,46.2833,-89.73,pepperoni,dog,No,early bird,Maybe +LEC003,19,Engineering: Industrial,53703,40.712776,-74.005974,basil/spinach,dog,Yes,night owl,No +LEC003,18,Data Science,53706,40.712776,-74.005974,Other,dog,Yes,early bird,No +LEC005,,Data Science,53703,43.073051,-89.40123,pepperoni,dog,No,night owl,No +LEC004,21,Business: Actuarial,53703,39.19067,-106.819199,macaroni/pasta,cat,No,no preference,Maybe +LEC006,18,Engineering: Industrial,53706,37.743042,-122.415642,green pepper,dog,Yes,no preference,No +LEC003,20,Economics,53703,22.54,114.05,pineapple,dog,No,night owl,Yes +LEC006,18,Data Science,53706,59.93428,30.335098,pineapple,dog,Yes,night owl,Maybe +LEC004,19,Engineering: Mechanical,53715,45.10994,-87.209793,pepperoni,dog,Yes,early bird,No +LEC002,20,Science: Biology/Life,53703,51.507351,-0.127758,pepperoni,dog,Yes,no preference,Yes +LEC004,18,Environmental Studies,53703,42.360081,-71.058884,pineapple,cat,No,no preference,Maybe +LEC004,19,Engineering: Mechanical,53715,45,-87,sausage,cat,Yes,no preference,Maybe +LEC004,19,Engineering: Mechanical,53703,48.137,11.575,pepperoni,dog,Yes,night owl,Maybe +LEC004,20,Engineering: Industrial,53711,48.856613,2.352222,sausage,cat,No,no preference,No +LEC004,18,Science: Other,53706,48.410648,-114.338188,none (just cheese),dog,No,no preference,Maybe +LEC004,18,Mathematics/AMEP,53706,24.585445,73.712479,pineapple,dog,Yes,night owl,Maybe +LEC003,18,Data Science,53706,36.974117,-122.030792,pepperoni,cat,Yes,night owl,Yes +LEC004,19,Computer Science,53715,40.79254,-98.70807,pepperoni,dog,Yes,night owl,No +LEC005,19,Engineering: Mechanical,53711,30.572815,104.066803,pineapple,dog,No,night owl,Yes +LEC001,21,Science: Chemistry,53715,3.139003,101.686852,pepperoni,neither,No,no preference,Maybe +LEC006,18,Data Science,53706,40.46,-90.67,sausage,dog,No,night owl,No +LEC004,20,Science: Other|Environmental Science,53715,43.073051,-89.40123,sausage,dog,No,night owl,Yes +LEC004,20,Engineering: Biomedical,53715,30.328227,-86.136975,pepperoni,dog,Yes,no preference,Maybe +LEC004,21,Science: Biology/Life,53703,41.385063,2.173404,macaroni/pasta,dog,No,night owl,Yes +LEC003,18,Mathematics/AMEP,53706,42.99571,-90,sausage,dog,Yes,night owl,Yes +LEC004,19,Engineering: Mechanical,53703,41.385063,2.173404,sausage,dog,Yes,night owl,Yes +LEC001,,Engineering: Industrial,53706,40.7128,74.006,pepperoni,dog,No,early bird,Yes +LEC005,18,Psychology,53706,9.167414,77.876747,mushroom,cat,No,early bird,No +LEC003,19,Engineering: Industrial,53715,24.713552,46.675297,basil/spinach,neither,Yes,early bird,Maybe +LEC001,18,Undecided,53706,44.8341,87.377,basil/spinach,dog,No,no preference,Yes +LEC003,19,Engineering: Mechanical,53705,46.589146,-112.039108,none (just cheese),cat,No,night owl,Yes +LEC001,20,Economics,53703,39.631506,118.143239,pineapple,dog,No,night owl,Maybe \ No newline at end of file diff --git a/f22/meena_lec_notes/lec-18/lec18_dictionaries2.ipynb b/f22/meena_lec_notes/lec-18/lec18_dictionaries2.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..4e0ce2a91967b47c890ad5a7fffdd1ce0e8019f3 --- /dev/null +++ b/f22/meena_lec_notes/lec-18/lec18_dictionaries2.ipynb @@ -0,0 +1,12013 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Dictionaries 2 - Combining Dictionaries and Lists (nested data structures)" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import csv" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Warmup 1: Answer these questions about dictionaries" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "# Keys can be what type? : Any type that is ____immutable____________\n", + "# Values can be what type? : any type (including other dictionaries)\n", + "# Indexing? .... yes/no No\n", + "# Slicing? ..... yes/no No\n", + "# Mutable?......yes/no Yes" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "# inspired by https://automatetheboringstuff.com/2e/chapter16/\n", + "def process_csv(filename):\n", + " exampleFile = open(filename, encoding=\"utf-8\") \n", + " exampleReader = csv.reader(exampleFile) \n", + " exampleData = list(exampleReader) \n", + " exampleFile.close() \n", + " return exampleData\n", + "\n", + "survey_data = process_csv('cs220_survey_data.csv')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Warmup 2a: Split csv data into header and data" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "['Lecture',\n", + " 'Age',\n", + " 'Major',\n", + " 'Zip Code',\n", + " 'Latitude',\n", + " 'Longitude',\n", + " 'Pizza topping',\n", + " 'Pet preference',\n", + " 'Runner',\n", + " 'Sleep habit',\n", + " 'Procrastinator']" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "cs220_header = survey_data[0]\n", + "cs220_data = survey_data[1:]\n", + "cs220_header" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Warmup 2b: Display the first 3 data rows" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[['LEC001',\n", + " '22',\n", + " 'Engineering: Biomedical',\n", + " '53703',\n", + " '43.073051',\n", + " '-89.40123',\n", + " 'none (just cheese)',\n", + " 'neither',\n", + " 'No',\n", + " 'no preference',\n", + " 'Maybe'],\n", + " ['LEC006',\n", + " '',\n", + " 'Undecided',\n", + " '53706',\n", + " '43.073051',\n", + " '-89.40123',\n", + " 'none (just cheese)',\n", + " 'neither',\n", + " 'No',\n", + " 'no preference',\n", + " 'Maybe'],\n", + " ['LEC004',\n", + " '18',\n", + " 'Engineering: Industrial',\n", + " '53715',\n", + " '43.073051',\n", + " '-89.40123',\n", + " 'none (just cheese)',\n", + " 'neither',\n", + " 'No',\n", + " 'no preference',\n", + " 'Maybe']]" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "cs220_data[:3]" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "def cell(data, header, row_idx, col_name):\n", + " \"\"\"\n", + " Returns the data value (cell) corresponding to the row index and \n", + " the column name of a CSV file.\n", + " \"\"\"\n", + " col_idx = header.index(col_name) \n", + " val = data[row_idx][col_idx] \n", + " \n", + " # handle missing values, by returning None\n", + " if val == '':\n", + " return None\n", + " \n", + " # handle type conversions\n", + " if col_name in [\"Age\", 'Zip Code',]:\n", + " return int(val)\n", + " elif col_name in ['Latitude', 'Longitude']:\n", + " return float(val)\n", + " \n", + " return val" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Warmup 3: Make a dictionary of frequency of `Major`\n", + "\n", + "- Initialize empty `dict` into a variable called `major_freq`\n", + "- Iterate over the data:\n", + " - Extract required column's data\n", + " - Make sure to handle missing data\n", + " - Check if current value of the column is a key in your `dict`:\n", + " - yes, update the count\n", + " - no, insert new key-value pair" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'Engineering: Biomedical': 45,\n", + " 'Undecided': 23,\n", + " 'Engineering: Industrial': 58,\n", + " 'Engineering: Other|Engineering: Computer': 1,\n", + " 'Data Science': 164,\n", + " 'Mathematics/AMEP': 34,\n", + " 'Engineering: Other': 13,\n", + " 'Economics': 53,\n", + " 'Psychology': 7,\n", + " 'Science: Biology/Life': 37,\n", + " 'Engineering: Mechanical': 198,\n", + " 'Economics (Mathematical Emphasis)': 7,\n", + " 'Computer Science': 115,\n", + " 'Science: Other|Political Science': 1,\n", + " 'Business: Other': 11,\n", + " 'Business: Other|Real Estate': 2,\n", + " 'Engineering: Other|Engineering Physics: Scientific Computing': 1,\n", + " 'Business: Finance': 30,\n", + " 'Business: Information Systems': 24,\n", + " 'Statistics': 26,\n", + " 'Business: Actuarial': 22,\n", + " 'Science: Physics': 8,\n", + " 'Science: Other': 9,\n", + " 'Business: Other|Accounting': 2,\n", + " 'Business: Other|business analytics': 1,\n", + " 'Science: Other|animal sciences': 1,\n", + " 'Mathematics': 2,\n", + " 'Health Promotion and Health Equity': 2,\n", + " 'Art': 1,\n", + " 'Mathematics, Data Science': 1,\n", + " 'Science: Other|Science: Genetics and Genomics': 1,\n", + " 'Statistics (actuarial route)': 1,\n", + " 'Business: Other|Business: Accounting': 1,\n", + " 'Engineering: Other|Computer Engineering': 1,\n", + " 'Engineering: Other|Computer engineering': 1,\n", + " 'Engineering: Other|Material Science Engineering': 1,\n", + " 'Civil engineering - hydropower engineering': 1,\n", + " 'Science: Chemistry': 6,\n", + " 'Communication arts': 1,\n", + " 'Business andministration': 1,\n", + " 'Education': 2,\n", + " 'Pre-business': 1,\n", + " 'Science: Other|Environmental Science': 4,\n", + " 'History': 2,\n", + " 'Information science': 2,\n", + " 'consumer behavior and marketplace studies': 1,\n", + " 'Conservation Biology': 1,\n", + " 'Engineering: Other|Chemical Engineering': 1,\n", + " 'Science: Other|Biophysics PhD': 1,\n", + " 'Business: Other|Technology Strategy/ Product Management': 1,\n", + " 'Political Science': 6,\n", + " 'Graphic Design': 1,\n", + " 'Business: Other|Marketing': 3,\n", + " 'Cartography and GIS': 1,\n", + " 'Sociology': 2,\n", + " 'Business: Other|Consumer Behavior and Marketplace Studies': 1,\n", + " 'Atmospheric Sciences': 1,\n", + " 'Languages': 4,\n", + " 'Engineering Mechanics (Aerospace Engineering)': 1,\n", + " 'Science: Other|Psychology': 2,\n", + " 'Engineering: Other|Civil and Environmental Engineering': 1,\n", + " 'International Studies': 2,\n", + " 'Agricultural and Applied Economics': 1,\n", + " 'Business: Other|MHR': 1,\n", + " 'Medicine': 1,\n", + " 'Science: Other|Personal Finance': 1,\n", + " 'Environmental science': 1,\n", + " 'Geoscience': 1,\n", + " 'Business: Other|accounting': 1,\n", + " 'Design Studies': 1,\n", + " 'Science: Other|Environmetal Science': 1,\n", + " 'Science: Other|Atmospheric and Oceanic Sciences (AOS)': 1,\n", + " 'Business: Other|Business Analytics': 1,\n", + " 'Journalism': 2,\n", + " 'Science: Other|Politcal Science': 1,\n", + " 'Communication Sciences and Disorder': 1,\n", + " 'Science: Other|Geoscience': 1,\n", + " 'Science: Other|Atmospheric and oceanic science': 1,\n", + " 'Engineering: Other|Engineering Mechanics': 1,\n", + " 'Pre-Business': 1,\n", + " 'Industrial Engineering': 1,\n", + " 'Mechanical Engineering': 1,\n", + " 'Science: Other|Environmental science': 1,\n", + " 'Life Sciences Communication': 1,\n", + " 'Science: Other|Atmospheric and Oceanic Sciences': 1,\n", + " 'Rehabilitation Psychology': 1,\n", + " 'Accounting': 1,\n", + " 'Engineering: Other|Civil- Intelligent Transportation System': 1,\n", + " 'Science: Other|Animal and Dairy Science': 1,\n", + " 'Interior Architecture': 1,\n", + " 'Science: Other|Atmospheric & Oceanic Sciences': 1,\n", + " 'Computer Science and Statistics': 1,\n", + " 'Business analytics': 1,\n", + " 'Legal Studies': 1,\n", + " 'Journalism: Strategic Comm./Advertising': 1,\n", + " 'Master of Public Affairs': 1,\n", + " 'Environment & Resources': 1,\n", + " 'Environmental Studies': 1}" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# TODO: iterate over each student's data from cs220_data\n", + "# TODO: extract \"Major\" column's value \n", + "# TODO: check if current student's major already a key in major_freq\n", + "# - if yes, increase the corresponding value by 1\n", + "# - if no, insert a new key-value pair\n", + "\n", + "major_freq = {} # KEY: unique major; VALUE: count of unique major\n", + "\n", + "for row in cs220_data:\n", + " major = row[cs220_header.index(\"Major\")]\n", + " if major in major_freq:\n", + " major_freq[major] += 1\n", + " else:\n", + " major_freq[major] = 1\n", + " \n", + "major_freq" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### What is the most common `Major` among CS220 / CS319 students?" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The major \"Engineering: Mechanical\" appeared 198 times.\n" + ] + } + ], + "source": [ + "most_used_key = None \n", + "max_value = None\n", + "\n", + "for major in major_freq:\n", + " if max_value == None or major_freq[major] > max_value:\n", + " max_value = major_freq[major]\n", + " most_used_key = major\n", + "\n", + "print(\"The major \\\"{}\\\" appeared {} times.\".format(str(most_used_key), max_value))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Learning Objectives:\n", + " - Handle key errors with get and pop using default values\n", + " - Understand the idea of nesting data structures\n", + " - Use a dictionary of lists to put rows of data into \"buckets\"\n", + " - Use a list of dictionaries to represent a table of data.\n", + " - Create a dictionary of dictionaries" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Default values with `get` and `pop` methods." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "None\n" + ] + } + ], + "source": [ + "suffix = {1: \"st\", 2: 'nd', 3: \"rd\"}\n", + "suffix.get(1)\n", + "\n", + "# TODO: what happens when you try to get a key that is not there? Try it.\n", + "print(suffix.get(10)) # Returns None\n", + "\n", + "# TODO: what happens whey you try to pop a key that is not there? Try it.\n", + "# suffix.pop(10) # KeyError" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "`get` and `pop` methods accept a second argument, which will be the default value if the first argument (key) does not exist.\n", + "\n", + "Syntax:\n", + "- `some_dict.get(some_key, default_value)`\n", + "- `some_dict.pop(some_key, default_value)`" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "rd\n", + "th\n", + "th\n", + "nd\n", + "{1: 'st', 3: 'rd'}\n" + ] + } + ], + "source": [ + "# get(key, default value) \n", + "print(suffix.get(3, 'th'))\n", + "print(suffix.get(5, 'th')) #default value, but does not add the key-value pair to the dict\n", + "\n", + "# pop(key, default value)\n", + "print(suffix.pop(7, 'th')) # no key-value pair to remove\n", + "print(suffix.pop(2, 'th'))\n", + "print(suffix)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### What are nested data structures?\n", + "A data structure containing another data structure as item is called as nest data structure." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Nesting part 1: Bucketizing/Binning" + ] + }, + { + "attachments": { + "Buckets.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABGAAAALUCAYAAABEhUTwAAAMa2lDQ1BJQ0MgUHJvZmlsZQAASImVVwdYU8kWnluSkJDQAhGQEnoTRHqREkKLICBVsBGSQEKJMSGI2NFFBXtBFCu6KqLoWgBZVMReFsXeF2VRWVkXdVEUlTcpoOu+8r3zfXPnv2fO/KfcmXvvAKDdx5VIclEdAPLE+dL4iBDm+NQ0JukZQAEOKMAZ6HB5MgkrLi4aQBns/y7vbgNE0d9wVnD9c/y/ih5fIOMBgEyEOIMv4+VB3AwAvoknkeYDQFTorabnSxR4HsT6UhggxGsVOEuF9yhwhgo3KW0S49kQXwNAg8rlSrMA0HoI9cwCXhbk0foEsauYLxIDoD0C4kCekMuHWBH7iLy8qQpcAbE9tJdADOMBPhnfcGb9jT9jiJ/LzRrCqryUohEqkklyuTP+z9L8b8nLlQ/6sIWNKpRGxivyhzW8mzM1SoGpEHeLM2JiFbWGuE/EV9UdAJQilEcmqexRE56MDesHGBC78rmhURCbQBwuzo2JVuszMkXhHIjhakELRfmcRIgNIV4skIUlqG22SafGq32hdZlSNkutv8CVKv0qfD2W5ySx1PxvhAKOmh/TKhImpkBMgdi6QJQcA7EWxC6ynIQotc3oIiE7ZtBGKo9XxG8NcbxAHBGi4scKMqXh8Wr70jzZYL7YNqGIE6PGh/KFiZGq+mBneFxl/DAX7JpAzEoa5BHIxkcP5sIXhIapcsdeCMRJCWqePkl+SLxqLk6R5Map7XFLQW6EQm8JsYesIEE9F0/Oh4tTxY9nSvLjElVx4kXZ3DFxqnjwlSAasEEoYAI5bBlgKsgGotbu+m54pxoJB1wgBVlAAHeoSjM4I0U5IobXBFAE/oBIAGRD80KUowJQAPWfh7SqqzPIVI4WKGfkgGcQ54EokAvv5cpZ4iFvyeA3qBH9wzsXNh6MNxc2xfi/1w9qv2pYUBOt1sgHPTK1By2JYcRQYiQxnOiAG+OBuD8eDa/BsLnhPrjvYB5f7QnPCG2Ep4RbhHbCvSmiYul3UY4F7ZA/XF2LjG9rgdtCTk88BA+A7JAZZ+DGwBn3gH5YeBD07Am1bHXciqowv+P+WwbfPA21HdmVjJKHkYPJ9t/P1HLU8hxiUdT62/qoYs0Yqjd7aOR7/+xvqs+HfdT3lthi7DB2HjuFXcSasHrAxE5iDdgV7LgCD62u35Sra9BbvDKeHMgj+oc/rtqnopIy1xrXLtdPqrF8QWG+YuOxp0pmSEVZwnwmC34dBEyOmOcygunm6uYGgOJbo3p9vWUovyEI49JXXfEyAAI8BgYGmr7qorUBOAL3DKXjq87eD74mCgG4sJwnlxaodLjiQoBvCW2404yAGbAC9jAfN+AF/EEwCANjQCxIBKlgMqyyEK5zKZgOZoH5oASUgZVgHdgItoIdYA/YDw6BetAEToFz4DK4Bm6BB3D1dIKXoAe8A/0IgpAQGkJHjBBzxAZxQtwQHyQQCUOikXgkFUlHshAxIkdmIQuQMmQ1shHZjlQjPyHHkFPIRaQNuYc8QbqQN8hHFEOpqD5qitqiI1EflIVGoYnoJDQLnYYWoQvR5WgFWoXuQ+vQU+hl9Bbajr5EezGAaWIMzAJzxnwwNhaLpWGZmBSbg5Vi5VgVVos1wud8A2vHurEPOBGn40zcGa7gSDwJ5+HT8Dn4Unwjvgevw8/gN/AneA/+hUAjmBCcCH4EDmE8IYswnVBCKCfsIhwlnIV7qZPwjkgkMoh2RG+4F1OJ2cSZxKXEzcQDxGZiG7GD2EsikYxITqQAUiyJS8onlZA2kPaRTpKukzpJfRqaGuYabhrhGmkaYo1ijXKNvRonNK5rPNfoJ+uQbch+5FgynzyDvIK8k9xIvkruJPdTdCl2lABKIiWbMp9SQamlnKU8pLzV1NS01PTVHKcp0pynWaF5UPOC5hPND1Q9qiOVTZ1IlVOXU3dTm6n3qG9pNJotLZiWRsunLadV007THtP6tOhaLlocLb7WXK1KrTqt61qvtMnaNtos7cnaRdrl2oe1r2p365B1bHXYOlydOTqVOsd07uj06tJ1R+nG6ubpLtXdq3tR94UeSc9WL0yPr7dQb4feab0OOka3orPpPPoC+k76WXqnPlHfTp+jn61fpr9fv1W/x0DPwMMg2aDQoNLguEE7A2PYMjiMXMYKxiHGbcbHYabDWMMEw5YMqx12fdh7w+GGwYYCw1LDA4a3DD8aMY3CjHKMVhnVGz0yxo0djccZTzfeYnzWuHu4/nD/4bzhpcMPDb9vgpo4msSbzDTZYXLFpNfUzDTCVGK6wfS0abcZwyzYLNtsrdkJsy5zunmguch8rflJ89+ZBkwWM5dZwTzD7LEwsYi0kFtst2i16Le0s0yyLLY8YPnIimLlY5VptdaqxarH2tx6rPUs6xrr+zZkGx8boc16m/M2723tbFNsF9nW276wM7Tj2BXZ1dg9tKfZB9lPs6+yv+lAdPBxyHHY7HDNEXX0dBQ6VjpedUKdvJxETpud2kYQRviOEI+oGnHHmerMci5wrnF+4sJwiXYpdql3eTXSemTayFUjz4/84urpmuu60/XBKL1RY0YVj2oc9cbN0Y3nVul2053mHu4+173B/bWHk4fAY4vHXU+651jPRZ4tnp+9vL2kXrVeXd7W3unem7zv+Oj7xPks9bngS/AN8Z3r2+T7wc/LL9/vkN+f/s7+Of57/V+MthstGL1zdEeAZQA3YHtAeyAzMD1wW2B7kEUQN6gq6GmwVTA/eFfwc5YDK5u1j/UqxDVEGnI05D3bjz2b3RyKhUaEloa2humFJYVtDHscbhmeFV4T3hPhGTEzojmSEBkVuSryDseUw+NUc3rGeI+ZPeZMFDUqIWpj1NNox2hpdONYdOyYsWvGPoyxiRHH1MeCWE7smthHcXZx0+J+HkccFzeuctyz+FHxs+LPJ9ATpiTsTXiXGJK4IvFBkn2SPKklWTt5YnJ18vuU0JTVKe3jR46fPf5yqnGqKLUhjZSWnLYrrXdC2IR1Ezonek4smXh7kt2kwkkXJxtPzp18fIr2FO6Uw+mE9JT0vemfuLHcKm5vBidjU0YPj81bz3vJD+av5XcJAgSrBc8zAzJXZ77ICshak9UlDBKWC7tFbNFG0evsyOyt2e9zYnN25wzkpuQeyNPIS887JtYT54jPTDWbWji1TeIkKZG0T/Obtm5ajzRKukuGyCbJGvL14U/9Fbm9/Af5k4LAgsqCvunJ0w8X6haKC6/McJyxZMbzovCiH2fiM3kzW2ZZzJo/68ls1uztc5A5GXNa5lrNXTi3c17EvD3zKfNz5v9S7Fq8uvivBSkLGheaLpy3sOOHiB9qSrRKpCV3Fvkv2roYXyxa3LrEfcmGJV9K+aWXylzLyss+LeUtvbRs1LKKZQPLM5e3rvBasWUlcaV45e1VQav2rNZdXbS6Y83YNXVrmWtL1/61bsq6i+Ue5VvXU9bL17dXRFc0bLDesHLDp43CjbcqQyoPbDLZtGTT+838zde3BG+p3Wq6tWzrx22ibXe3R2yvq7KtKt9B3FGw49nO5J3nf/T5sXqX8a6yXZ93i3e374nfc6bau7p6r8neFTVojbyma9/Efdf2h+5vqHWu3X6AcaDsIDgoP/j7T+k/3T4UdajlsM/h2iM2RzYdpR8trUPqZtT11Avr2xtSG9qOjTnW0ujfePRnl593N1k0VR43OL7iBOXEwhMDJ4tO9jZLmrtPZZ3qaJnS8uD0+NM3z4w703o26uyFc+HnTp9nnT95IeBC00W/i8cu+Vyqv+x1ue6K55Wjv3j+crTVq7XuqvfVhmu+1xrbRreduB50/dSN0BvnbnJuXr4Vc6vtdtLtu3cm3mm/y7/74l7uvdf3C+73P5j3kPCw9JHOo/LHJo+rfnX49UC7V/vxJ6FPrjxNePqgg9fx8jfZb586Fz6jPSt/bv68+oXbi6au8K5rv0/4vfOl5GV/d8kfun9semX/6sifwX9e6Rnf0/la+nrgzdK3Rm93/+XxV0tvXO/jd3nv+t+X9hn17fng8+H8x5SPz/unfyJ9qvjs8LnxS9SXhwN5AwMSrpSr/BXAYEMzMwF4sxsAWioAdHhuo0xQnQWVgqjOr0oE/hNWnReV4gVALewUv/HsZgAOwmYLG20eAIpf+MRggLq7DzW1yDLd3VRcVHgSIvQNDLw1BYDUCMBn6cBA/+aBgc87YbD3AGiepjqDKoQIzwzblBzXGYXzwHeiOp9+k+P3PVBE4AG+7/8FlTiO10mPo7EAAACKZVhJZk1NACoAAAAIAAQBGgAFAAAAAQAAAD4BGwAFAAAAAQAAAEYBKAADAAAAAQACAACHaQAEAAAAAQAAAE4AAAAAAAAAkAAAAAEAAACQAAAAAQADkoYABwAAABIAAAB4oAIABAAAAAEAAARgoAMABAAAAAEAAALUAAAAAEFTQ0lJAAAAU2NyZWVuc2hvdEgZ314AAAAJcEhZcwAAFiUAABYlAUlSJPAAAAHXaVRYdFhNTDpjb20uYWRvYmUueG1wAAAAAAA8eDp4bXBtZXRhIHhtbG5zOng9ImFkb2JlOm5zOm1ldGEvIiB4OnhtcHRrPSJYTVAgQ29yZSA2LjAuMCI+CiAgIDxyZGY6UkRGIHhtbG5zOnJkZj0iaHR0cDovL3d3dy53My5vcmcvMTk5OS8wMi8yMi1yZGYtc3ludGF4LW5zIyI+CiAgICAgIDxyZGY6RGVzY3JpcHRpb24gcmRmOmFib3V0PSIiCiAgICAgICAgICAgIHhtbG5zOmV4aWY9Imh0dHA6Ly9ucy5hZG9iZS5jb20vZXhpZi8xLjAvIj4KICAgICAgICAgPGV4aWY6UGl4ZWxZRGltZW5zaW9uPjcyNDwvZXhpZjpQaXhlbFlEaW1lbnNpb24+CiAgICAgICAgIDxleGlmOlBpeGVsWERpbWVuc2lvbj4xMTIwPC9leGlmOlBpeGVsWERpbWVuc2lvbj4KICAgICAgICAgPGV4aWY6VXNlckNvbW1lbnQ+U2NyZWVuc2hvdDwvZXhpZjpVc2VyQ29tbWVudD4KICAgICAgPC9yZGY6RGVzY3JpcHRpb24+CiAgIDwvcmRmOlJERj4KPC94OnhtcG1ldGE+CgWjI6oAAAAcaURPVAAAAAIAAAAAAAABagAAACgAAAFqAAABagAAi0bsD/DLAABAAElEQVR4AezdB3hTVRvA8TdpuncplA3iwAEi7o17D9wD91bEvScuFHHvvXBvxb3FvQfqp6KAbOjebZom33tumtumSaGlTZuk//M89d577jr3d2tp35zzHodPi1AQQAABBBBAAAEEEEAAAQQQQAABBCIm4CAAEzFbLowAAggggAACCCCAAAIIIIAAAghYAgRg+EZAAAEEEEAAAQQQQAABBBBAAAEEIixAACbCwFweAQQQQAABBBBAAAEEEEAAAQQQIADD9wACCCCAAAIIIIAAAggggAACCCAQYQECMBEG5vIIIIAAAggggAACCCCAAAIIIIAAARi+BxBAAAEEEEAAAQQQQAABBBBAAIEICxCAiTAwl0cAAQQQQAABBBBAAAEEEEAAAQQIwPA9gAACCCCAAAIIIIAAAggggAACCERYgABMhIG5PAIIIIAAAggggAACCCCAAAIIIEAAhu8BBBBAAAEEEEAAAQQQQAABBBBAIMICBGAiDMzlEUAAAQQQQAABBBBAAAEEEEAAAQIwfA8ggAACCCCAAAIIIIAAAggggAACERYgABNhYC6PAAIIIIAAAggggAACCCCAAAIIEIDhewABBBBAAAEEEEAAAQQQQAABBBCIsAABmAgDc3kEEEAAAQQQQAABBBBAAAEEEECAAAzfAwgggAACCCCAAAIIIIAAAggggECEBQjARBiYyyOAAAIIIIAAAggggAACCCCAAAIEYPgeQAABBBBAAAEEEEAAAQQQQAABBCIsQAAmwsBcHgEEEEAAAQQQQAABBBBAAAEEECAAw/cAAggggAACCCCAAAIIIIAAAgggEGEBAjARBubyCCCAAAIIIIAAAggggAACCCCAAAEYvgcQQAABBBBAAAEEEEAAAQQQQACBCAsQgIkwMJdHAAEEEEAAAQQQQAABBBBAAAEECMDwPYAAAggggAACCCCAAAIIIIAAAghEWIAATISBuTwCCCCAAAIIIIAAAggggAACCCBAAIbvAQQQQAABBBBAAAEEEEAAAQQQQCDCAgRgIgzM5RFAAAEEEEAAAQQQQAABBBBAAAECMHwPIIAAAggggAACCCCAAAIIIIAAAhEWIAATYWAujwACCCCAAAIIIIAAAggggAACCBCA0e+BRx99VNxud8h3w4477ihrrLGGXd/e4+wTWEEAAQQQQAABBBBAAAEEEEAAAQRUgACMIiQkJIjX6w35hrj//vvlpJNOsuvbe5x9AisIIIAAAggggAACCCCAAAIIIICAChCAUYT2BlbaexzfWQgggAACCCCAAAIIIIAAAggggEBLAQIwqtHewEp7j2sJzDoCCCCAAAIIIIAAAggggAACCCBAAEa/B9obWGnvcXxbIYAAAggggAACCCCAAAIIIIAAAi0FCMCoRnsDK+09riUw6wgggAACCCCAAAIIIIAAAggggEDMB2Cqq6tl5syZMnfuXFm+fLkUFRVZAZW8vDwZM2aMbLrppjJw4MAVvun2Blbae9wKb8ZOBBBAAAEEEEAAAQQQQAABBBDodQIxGYDx+Xzy4osvipml6LPPPgs7hXTgTTocDjnwwANlypQpQVNKB/abZXsDK+09ruW1WUcAAQQQQAABBBBAAAEEEEAAAQRiLgAza9YsOf744+W7777r0NszvWDMOeF6w7Q3sNLe4zrUMA5GAAEEEEAAAQQQQAABBBBAAIG4F4i5AMxtt90mZ5999iq9mHHjxsknn3wScm57AyvtPS7kBlQggAACCCCAAAIIIIAAAggggECvFoiLAEy/fv1k9OjR0qdPH5kzZ458//33YV+q0+mU8vJyycjICNrf3sBKe48LujgbCCCAAAIIIIAAAggggAACCCDQ6wViOgCz/vrry/XXXy+77rqrlccl8DYnTZokd911V2AzaGkS9m6zzTZBde0NrLT3uKCLs4EAAggggAACCCCAAAIIIIAAAr1eIGYDMCbIMm3aNElOTg55iW+++abstddeIfWmYsaMGSH72htYae9xYW9MJQIIIIAAAggggAACCCCAAAII9FqBmAvAfPjhh1JbWxsSRHG73WL2vfTSS/LCCy9IRUVF2JdKACYsC5UIIIAAAggggAACCCCAAAIIIBBBgZgLwLS2+OKLL+SJJ56Q559/XsrKylrvDtkmABNCQgUCCCCAAAIIIIAAAggggAACCERYIGYDMO+8846cccYZMnv27A4REYDpEBcHI4AAAggggAACCCCAAAIIIIBAFwjEXADG5/PJtddeK5MnTxav1xtCsP3228sJJ5wgEyZMCNlnKgjAhGWhEgEEEEAAAQQQQAABBBBAAAEEIigQcwGY5557Tg499NAQktTUVHn66adl/PjxUlxcLPn5+SHHmAoCMGFZqEQAAQQQQAABBBBAAAEEEEAAgQgKxFwA5vDDD5dnnnkmhOTGG2+U888/36pfUQDGJOg98MADg85v7+xG7T0u6OJsIIAAAggggAACCCCAAAIIIIBArxeIuQBMbm5u2GS7LQMwH330key4445hX+6FF14oxx9/vFRVVcnYsWOtY9obWGnvcWFvTCUCCCCAAAIIIIAAAggggAACCPRagZgLwAwaNEgWL14c8sL69esnRx99tBQWFsr06dOlsbEx5JiWFUcccYR1nKlrb2Clvce1vA/rCCCAAAIIIIAAAggggAACCCCAQMwFYA466CB58cUXO/3mCMB0mpALIIAAAggggAACCCCAAAIIIIBAOwViLgAza9Ys2WGHHaSoqKjNR3Q6nZKXl7fCYwjAtMnHDgQQQAABBBBAAAEEEEAAAQQQ6GKBmAvAmOf/5ZdfZOLEifLdd9+J2+22SdLT02WzzTaTqVOnWgGYzTff3BqSZB+gK0OHDpWDDz5Yjj32WFl33XWtXSkpKVJfX9/yMGv9kUcesY4L7GjvcYHjWSKAAAIIIIAAAggggAACCCCAAAJGICYDMIFXV1dXJ99//73U1tbKWmutZQVXHA5HYLdVb4I01dXVMnDgQGu/SeJL6biAz+MRX4NbrKWnQaShQbf1q9Gse8Tr0UCY2baO0zo9xqvHi9nWdXOsv85jLf11/v3epn3W9fR40fO8gXuYc00+H59PxOvVhVeXut5i6TP7rG3/Pv8xut50TOCc1vX29ZrO95nr6j2sezVdzz7Xqm9x70COIfP9pj2uxKFfTl3XpcNs67rDqmva13Sco+UxgXOazvcfH3wN67rWNZvvY10/cG7Tsvleet+EBHEkJYsjMVEcrkQRXTr1SxKTtE6/XC4RrXfquqlzJuk+a9u/tOrM8abO2mfO0WslNS2ta/mvbdfpPSkIIIAAAggggAACCCCAAAJtC8R0AKbtx2JPewXKXnpKKl9/zh9M0SBKcADFBE38AZP2Xo/jeqmACTBpYMYK+iRq8EeDPCbYYwV/NHhjBXVSU8WRkirOpi9Halrztu6TFvucuk+SU8QszfEO7aXmTNHjzTW0vmWgtZeK89gIIIAAAggggAACCCAQYwIEYGLshXV1c0seukNKH7u7qy/L9RCIrMAKgjPNQZumgI8GbUwQxwrwmICOOTctXZwZmeJM16/MLF1mWMGeyDaaqyOAAAIIIIAAAggggEBvFiAA05vfvj57yeP3SumDt61cwQxbSXD5h7KY4Simt4PVs0GHqTQtrV4PLtPrQXs/tDjGPtbqFWHOM0NhzFKv2XQdsy0JgaEyTde09usQGTO8JWiojxnWo0NtdOiOfziONt8MxbGG4/iH/5h1MyzHv79p+E6Y4T/W0B372v7jrN4VgWFBTUtreJG5n3UPc5wO89HzfC2GJtlDnJqGSDXvM0OnWgxvajrH2q/HWucFhlTZ+/zDqpqv0WKYlV7L1Pv3Ba5rhkf5h095G7XXkuZGChr6ZXIl6VCvoKFd1jF6nBkCpl/W8S3Os883+8zwM+uYpqV1jg4VM0szXMzcO9aLfp9ZAZkMDcbYgZlMSTCBmtbBGqtOAzfm2IwsSTDHa531fRzrDrQfAQQQQAABBBBAAAEEIiJAACYirLFzUU9JkTSWFNsBkUBQxQqQaEDEWprgCAWBFQhYASETiDEBHCtQ48/747NyA2mOIHe9eGtrROrrrKW3rlaXtbrtX3rrasSnOZ18eoy1T/f7mo7x6TE+PTZQb64RtUVz71jBGg3GWIGbFoGcQLDGDvKYwI05LjNbnDm5kpCd6w9KRu3D0TAEEEAAAQQQQAABBBDojAABmM7ocS4CCHS7gOlNZAVnmoI0QcGZpqCNtymw42sK7FgBHg3iBM7z1lSLt7pSvJWV0miWVZVWcKjbH6bVDa3gTVMwJiEnzwrKODUw48rNE7NsuW4CNlavG9ODi4IAAggggAACCCCAAAJRL0AAJupfEQ1EAIHuEDAJqL1VFdKowRgrOFNVZW2b4EwgWONfVuh2lf84Pd4+VgM5VtLq7mhs4B5m2JQGYkwwJkGDNNbSrGsQx6kBHJcJ0piATiCYY+q1lw4FAQQQQAABBBBAAAEEul+AAEz3m3NHBBCIUwFrmJQJ2NhBG3+wxgRpGiub1q1l0zF6XGNluTSWloi3oqxbcumY2aes3jNWoEaDNk09bkygxpXfz//Vp58k5Pe1jovTV8VjIYAAAggggAACCCDQ7QIEYLqdnBsigAACoQJmaJXXBGPKNBhTXiqeslJr2ahLq06XnqZ9jbrf1Pt0KFVEi+Z/cuVpIKavBmYCQRlduvoW6HZfK1iToEsT0KEggAACCCCAAAIIIIDAigUIwKzYh70IIIBA1AqYhMdWMEZ70JilFbgxvWlMgMb60vrSpkBOua6XaS8bkyy5q4sJ1DQFaMzSpQEbpwZuggI12rsmISunq+/M9RBAAAEEEEAAAQQQiBkBAjAx86poKAIIINB5ASt/TaBXjQZpPCZwo0EbT2mxNBYXiqdoubVsLFpm5brp/B1bXMEO1JgeNSZA0yJQY4Y/meBN/4HiTEtvcRKrCCCAAAIIIIAAAgjEhwABmPh4jzwFAggg0OUCJqeNHZTRwIynWL8KTYBGl0WF0mgFa5Z3eaDGmZUtroKBkjhgsBWQMUEZV/9BTXWD6EnT5W+aCyKAAAIIIIAAAgh0hwABmO5Q5h4IIIBAHAuYQE1zzxkTnPF/tQzUeIqXia+6a3LWmETCVlDGBGlMYGbAIP/SBGoKNEDTJ18cTM8dx99xPBoCCCCAAAIIIBCbAgRgYvO90WoEEEAg5gTsQE3TMKfgQI3pXbNMPMsWi7jdnXs2M9SpYIDVa8YK0DQFZhKtnjQapOnXXxwJrs7dg7MRQAABBBBAAAEEEOigAAGYDoJxOAIIIIBA5ATMbFCNJUXiWbrY/7VskTQsWWQFZgLLTs/+5HT6EwS3GNYUGOaUOHiYNdTJocdQEEAAAQQQQAABBBDoSgECMF2pybUQQAABBCIu0KjTdVvBmKUamGkdqNFtb4XO9tSZ4kqUxEFDJXHIMDEBmaQhw8U1eLi1TNApuBne1BlczkUAAQQQQAABBHqvAAGY3vvurScve+YRKX74DnGmpOrMI2niTE0XR6qua44Fa13rTb4Fp1WXbtWb/QkZmeLMzrW+ErJzJMGs63EUBBBAoKcFvLU1Tb1nTC+aReI2PWhMsEaHN5lloyYQXuWSlCxJGpQxwRl/UMYEaYZbX678vqt8WU5EAAEEEEAAAQQQiH8BAjDx/45X+IQlD98ppY/etcJj2r1T8y6YQIwVjLGW/sBMQo4GZ7J0XZcJZppZnXrW1bc/AZt2w3IgAgh0pYCvoUEarGCMPyDj70XjH+rkXjBXvDoEalWKCVabHjOJ2mMmsLSCNRqgScjNW5VLcg4CCCCAAAIIIIBAHAkQgImjl7kqj1J091Qp114wPVGc2ovGdOc3wRhXYNnPv51g1fWzgjk90TbuiQACvVfAW1Mj7oXzxLPgv6blPF3+Jw0L5om3vHSVYJzpGRqYWa1pWJMGaKzhTf5lQmb2Kl2TkxBAAAEEEEAAAQRiS4AATGy9ry5vrUl46autFW9djS5rxPzh4dN104XfzFjiram26q1jTF1ttX5pfVWFNOofIuaPkcbyMmks0z9K3PVd3j5JSrJmLEkcqPkYzCfLmpfBpV9J1nKIOHU4AAUBBBDoLgFvVWVzUEYDMg1NgRmz9FZWrFIzTA/BxKGaY2b4GpK02pqSNEK/dOnK77dK1+MkBBBAAAEEEEAAgegUIAATne8lJlvlra8TrwZiPFZgpswKzng0OOMtL7GSYnpKS6zcC57CJdZ0s6LDADpbTA8aK1mmBmdcA4dYuRkCARrTw4aCAAIIdJdAY1mJFZBxa88Zj/agMb1oGnTdBGdWZeYm8zMsacRakriaCcyspV9rSLJuM5ypu94o90EAAQQQQAABBLpWgABM13pytQ4ImD9WPIXLpFG/PIVLrXXP8qalbpt6b3VVB64YfKgzJ8/64yV5RPOnyonD15SEzKzgA9lCAAEEIizg0bwyZgiT9dWi14wZ2iQavO5I8f9sM71k/AEZ01vGBGkYytQRRY5FAAEEEEAAAQS6X4AATPebc8cOCJghUdYsJov0E+VFC/zd/RfNl4bF87V+sUhjYweu5j80Qbv1W938W3T1N3/IONPSO3wtTkAAAQQ6I2CGgTYWLRf3/LninvO3uOfO1uVsaZj3jw71rOzQpRN0Fib/zzbtLWMFnv29ZvjZ1iFGDkYAAQQQQAABBCImQAAmYrRcONICvkaPFYQx3fvdGpTxLPQHZhpMgEaDNR3NSeMqGGh9ipy81rqSvPYoSRm5npg6CgIIINATAqZHoBWQmftPc3Bm3r9WXq6OtMdVMEB/tvnzypghTVZwZtjq4kxJ7chlOBYBBBBAAAEEEECgkwIRC8AUFxfL119/HdK8hIQE2XXXXcXhcIj55O/dd9+Vb7/9VkpKSmTttdeWXXbZRUaMGBFyXsuKxYsXy19//SV//vmnzJ49W1JSUmTkyJHW+WaZk5PT8vCg9U8//VSqqkKHtZh7rrPOOkHHmo3ff/9d5s2bZ9fn5+fLZpttZm8HVubOnSt//PFHYNNepqamyg477GBvB1bKy8vlp59+kh9//FH+/fdfSUtLk2HDhsnYsWNl4403luRkkssGrFZlab63PEsWSb1+omw+STafKLvn6qfL/83RwIy73Zd06nTayRqIMQEZgjLtZuNABBCIkID1s23poqafaf7eMlaQxvrZ1oFE6PpvsGvgYP8wzdXXlqS115OUtTTo3K9/hFrOZRFAAAEEEEAAAQQiFoB5+eWX5YADDggrXFlZKSYAceSRR8rHH38cdIzL5ZKJEyfKbbfdFlRvNp577jk577zzZOHChSH7WlaYAMZdd90VNlBi9v3www8tD7fWt9hiC/nyyy9D6tdff32ZNWuWXZ+ZmSlLliyR9PTg4SoHH3ywvPDCC/ZxgRUT1GkZmPn7779lwoQJVhvML9LhSm5urhx66KFy7rnnyuqrrx7uEOpWUcCnQ5bM8CW3+UTZ6uqvQZk5/2hehrkiHk+7rkpQpl1MHIQAAt0o4PN6teef+dlmgs1NgRkzlEnzzoin/QnP7Z9vJvBsegOOHCWJGqihIIAAAggggAACCHReoEcCMAsWLJCdd97Z6sES7hE23XRT+eabb+xdJmhhgjIffPCBXbeyFdPD5vjjj5epU6dKXl6effiDDz4oJ510kr3dcsX0plljjTXsqu+++05MW1qXhx9+WI477ji72gSUCgoKpFanZ25dbr75ZjnnnHOs6tdee02OOuooqaho31Slt9xyi5x99tmtL8l2BATMcKaG+TprifaYqfvzN6n/63dx//17u3MwmKSYKaM2kJTRG0rq+hvqHy2jxaFTaFMQQACBnhSwfrbpTEz+/DKBoUwadNYZmkSDNu0p1mxM2jsmeeS6Vi8Z01smcdAwcTid7TmdYxBAAAEEEEAAAQSaBHokALPHHnvIW2+91eZLuPvuu+W0006z9pueMqNGjVppr5e2LmYCPe+995692ww/GjhwoJigSety5ZVXyuTJk+3qU045Re6//357O7DSurfM9OnTrcBKYH9gmaR/gC9atEjMsKXq6mrp27dv2CBN4PjWSwIwrUW6f9t8olz/5+8alJnVsaCMK9E/ZEkDMikakEkdtSFTx3b/6+OOCCDQhoBPh2L6E//+pT/b/pB6DTi7//6j3TPPOVLT/D1ktJdMkgZnTM6sxGEjxKHDjCkIIIAAAggggAAC4QV6JAATvin+WhO0MEN8Ar1WTC+WRx55ZEWnrHSf6fVywgkn2MeZ4M69995rbwdWzHCff/75x9qs0dl3BgwY0GZvFZMbZt1117WO3X333eWdd94JXMZeHnLIIfLss89a2y+99JIceOCB9r6WKyYgtMkmm8jy5cvl+++/l4YGf3dxAjAtlaJnfVWDMq4hwyW1KSCTMnojSRy6mpULKXqejJYggEBvFjDDYq1hTBqQqbMCMr9rYOZ/4i0vbR9LUrIkr7m2Bmb8vWVMYCZZk/46dGgxBQEEEEAAAQQQQEAk6gIw++23n5j8MaZ89NFHsuOOO7b5nkyOmb333ltMsMQMCwqX28WcnJ2dbQVWTE8UU3755RfZYIMNrPXW/zF5YEwPlyeeeEKOPvro1rvtbTM0yARICgsLrR41njD5Q8yQqUD7Tz75ZHnggQfs8wMrJuBkeuUkJiZaVaWlpda9r7/+ernwwgsZghSAiuKl9UeL5pCp+/VHqZv1o9Tql0enlF1ZcWbl+HvHbLi5pG28hZUMc2XnsB8BBBDobgHPssVSZ4Zl6pdZ1pueMiVF7WuG9gZMWn0tKyiTokOYTFAmaY2R4tRgDQUBBBBAAAEEEOhtAj0agDFBBzPz0dKlS61AhsF/9dVXZd9997XewwUXXCDTpk0L+07OOussufXWW+199fX1stNOO8nnn39u17Vcef31161gTaDOBFnCzdJ06qmnyj333CPjxo2TmTNnBg4PWZpgjhle9NBDD1n5aVofYHrTmJwyJheNKZdccomYoEq4cswxx8gVV1whq622mr3bDL2qq6uzcsvYlRFYqf3leym643pJ3XAzSdOvlDEbizMtOMFwBG4b95dsLCuR2t9+soMy9TqESbs2rfC5TR6Z1I38wZjUjbYk8eUKtdiJAAI9KeApKtShS5ovS3vKmICMyZvVqNNmt6voMKWkEWtKynpjJXn0WB2iOVZzygxt16kchAACCCCAAAIIxLJAjwVgTODllVdesQIwBtAEMq699loraBHoDdLW0B4ztbOZCSkwTCnwAkyPE5PzJVy57rrrrCBIYN/jjz8uJvDRuvTp00fMVNUm78zKipmV6Y477pAvvvgi5NApU6bIxRdfbNebnDd77rmnvd16xanJDM1MSpdddpmst956rXdHbLvk4Tul9NG7mq+v7TDTLqeYXhljN9UeGiYgk9a8n7VVEjD5FswfK4EeMnWzfhKvBmlWVFwDBkuq9oxJ03eRooEZV56/B9eKzmEfAggg0FMCJvBsAjFWbxkTlNHgjGfxwnY1x0pkrsGYFA3GmK/ktUeJMzmlXedyEAIIIIAAAgggECsCPRKASUlJsYYLBXKotIU1ZMiQsMl3zfChn376KeQ0k+g2IyMjpN5UmGmdn3nmGXufmbFo0KBBYob8tC4mOPTnn3+2rg7ZXnPNNa2hTa2nkzZTaZuZnvr37x90jhku9cYbbwTVtd4wPWbM0CrTu2fw4MhP/blo0pFS99O3rZvRvK2fVJpfhFM1CJBqAjKaw8SpyRcpnRdwm2FLP34jNd9/JbW6XFmehcTV1rSGKqVspEEZfRfO9PDf651vGVdAAAEEukagsbLC6iFjDV9q6i3jWTBPRPPNrLDov6PJa6xjzy5nZplzFQxc4SnsRAABBBBAAAEEol2gRwIwJh/Kfffdt1IbE8hobGwMOW677baTjz/+OKTeVASG/LTeaXrTtJ55yQxjuv3221sfGnbbBH1+/vnnsPtaV44fP97q3dO63gyTMj1cTO4Y70qm/zTBHTMEqnUQp/U1O7vtraoUMwzJBABqf/pG3LP/t+JfjM0vxWuPtoYspY7VIUv6iaUzJbWzzej155sgnvufv6T2h680IPOl1Ok78dXWtO2i7yFl/Y0kffNxkrbldpI0fPW2j2UPAgggEEUC3ppqqfvjV6n73QzT/Enq//hZvBqoWVlJyO/n7yFjkplrQMYk+3U05U9b2bnsRwABBBBAAAEEokGgRwIwv/32W7uG2ZgeICbPSutighN///1362prFqGCgoKQelPRugeMqfvjjz/a1Y4E7QXy77//ytZbbx22R465Vsvy5ptviplqu61ihjgdd9xxMmfOnLYOseo333xz+eqrr1Z4TFfvNJ9W1v7yndUzwx+QWUlPIE2wmDJmI8nceS9JH7eLJGRmd3WTeuX1fI0e/aPkF6n54Wup1R4ydb9p8M/Tdg4ZV/9BViAmfYtxOnxsM7ru98rvGh4agdgUsBKZ/zdHf85pQKbpq2Hevyt/GA2+JI8c1dxLRnPKuPL7rvw8jkAAAQQQQAABBHpIoEcCMJWVlW0OFWrp0FaiXHOM6Y0yZsyYlodbvWpMEt1w5fzzz5cbb7wxZNfKku2aEwI9Wq6++mq58sorQ67RssIMm5o3b56YnC4rKmbWpBdeeEGmTp1qzcoU7ljTm6ekpERycnLC7e6WusaKMqn9ORCQ+Vbc//7V9n01GJO22daSudOekrb1jgxValuqw3u8dbX6SfEP/uFK2kvGdOdvs+jsImmaMyZVgzEmIJOouWQoCCCAQCwJWEOXfv/ZCj7X/vajBqR/FZ/2nFlZMcHoZO0dY+WS0R6ayWusLY4EpsFemRv7EUAAAQQQQKB7BKI6AGOCHSboEa6Y4MyMGTPEJM01xfSq2XXXXWXx4sXhDpf333/fmiWp9c6nn35aJkyY0Lo6aPudd96xrz1s2DAJN+V04ITJkyeHDdKYnDVmhqYTTzxRTA6cQDFDrMwMSeGCQ+aYzz77zOp5Ezi+p5eN5aVWQKb2R+2Z8eO30jB3dvgmafLE9K23l4wd97SGyTh0um1K1wl4dArYmq9nSs2Xn0jNd5+LT/MftVUSdXhS2hbb6dc4SdXeSvwx0pYU9QggEK0CPh22654zW+p12FKtJjE3PWU8C/9beXP136KUdUZbQzYZNrtyLo5AAAEEEEAAgcgKRHUAxvQkGTFihObqC5+szww32mijjSyhTz7RP0RrwufMGD58uDXcJ1x+GJOXxQx1KioqCitt7v/PP//YuWVMgtyXX3457LGm14tps+kF07oEAj0DBw6U8847T0weGzPbkVtnx7n55pvFBG7CFZO3xuSvidbiKVouVR+9JVUfvGl9QhmunSZZrBmelKE9Y1I1gaxDh3RRuk7ADFeq/UV7x3yl/w989amsqOu+MzNL0rfaQdK221XSNt1KnNpbhoIAAgjEooCZdalWh2fWm54ys36Uuv/NEqmvW/GjmGGz623gz2OmwzXNOh8QrJiMvQgggAACCCDQdQJRHYAxj3nuuedaSWs788hmumszjKitcsEFF8i0adPC7jZDhMz+QFnRVNcm74vJ/xKuBAIwLfeZgI0JLrUVYDJJiJcvXy65ubktT4va9QadbrTygzekWoMx7jmhOXpMw81Uoxnb72bljEnWRIrhgmJR+4Ax0rCGJQulWgMxpneMSa4s7vqwLXfobFamV0yGBsfM0pmWHvY4KhFAAIFYELByZ/3zpwZjzNAlHbakwRnP0tA8ckHPor0zU0ZtqB8ObCZpGpBJXmeMOPTfXgoCCCCAAAIIIBAJgagPwJjhPjvttJOYxLWrUszwnuuuu26Fp86ePVtGjhwZEghJ0l/MFi5cKH379rXPN8ESc6w5p3VZUaAnXACm9fmttw888EArT0zr+ljYNl3Fqz580wrIeBYtCNvkhH79rSFK2fsfTp6SsEKdr/Tqp8FmquvqL7V3zJcfi2fZkvAX1WSWaZtubfVUSt96B0nI6rm8Q+EbSC0CCCDQcQFPUaF/tqWfvrUC0m19OGBfWWf1S9UPB1JNHq0NN9ckvzrTEr02bR5WEEAAAQQQQKBzAlEfgDGPZ4bpXHrppdZQnbZ6i7RmyMzMlLvuukuOOuqo1rvCbu+8885iere0LIcddpiYwEnrYoYMmWFELYuZLnrBggVieq2EKx0NwJjhSV988YVkZ8f+rEKmW7gZomQCMo06ZCmkaE+gdB0Sk3PY8dZY/ZD9VHSZQN2fs6T60/el6tP3xDN/bvjr6h8bKWM3tXrGpG+zM7OKhFeiFgEEYlCgsVSHLf30jRWMMT0EG+aveDZCh/YMTB2zsRWMMTPMJa+5jjj03ywKAggggAACCCCwKgIRC8CYBLn77LNPSJvMsBszC1JaWlrIvpVVmJmPHn/8cXnuuedkyZLwn+SPGjXKSqprAi8m30p7y4svvigHHXRQ0OGm1822224bVGc2zMxEgwYNkrq65rHmF198sUyZMiXk2ECFSbZrkvC+/vrrVvLgcD1ozLEmH82FF14oJ510kpgeOPFUTPCsTmdUqtRgTPUn74pXE/q2LiljNpHsw47TPCXbMzypNU4Xb1u9lD5733oX7tltTzeePGqsZOywu/ZW2kNcfZp7g3Vxc7gcAggg0O0CVg8ZDcjUWInlv5a2emwGGmbyaKVssKmVQyZNe8gkjliTf6sCOCwRQAABBBBAYKUCEQvArPTOnTjA/CFvkuaaIMzSpUslUYdPDBgwwPqKlR4jJvmvab+Ztam8vNwKFplkwbHS/k68PutUK3HsN59L2QuPS+13X4ZczjV0Nck99DjJ2G1fEsWG6HR9hcnfY4JiVTPfs/ImhL2DBk9Nt/yMnfayesc4MzLDHkYlAgggEKsCZphmjfaMqbMCMt/osM3FK3wUZ3aupGqPQdM7xgRkknTWOQoCCCCAAAIIINCWQEwGYNp6GOpjU6D+n7+k7NlHdJjSG6JzfAc9hEnam33ABMne73BJ0HVK5AWsma1mmp4x70ndL9+JaO+tkKJBz/Qtt5OMnfeWNF0ym1KIEBUIIBAHAg2aw6z2p6+bhix9rcNoC1f4VM68fH/vmM22kTT9cuk2BQEEEEAAAQQQCAgQgAlIsOxxAU/hMu0R84RUvvaseKurgtuj0yVn7bG/ZB96rCQNHha8j62ICTTqMLFqDcZUvjfDGj6mmapD7uVIT5eMbXWa8V32tvIkkLAyhIgKBBCIEwH3grlS98PXVi8Zk0PGq1Nhr6gkaRLf9C3GSdrm20ryujrDEvljVsTFPgQQQAABBOJegABM3L/i2HtAb021VMx4Qcqffzy0+7fDIenb7KQJe4+TFJ2pgtJ9AiZAZpIpV74/Q9x//xH2xs7cPpKpuWJMz5iU9caEPYZKBBBAIF4ETC4te8jSz9+Kt6K8zUdz6uxyqZtuJWkakEnfdBtJyKVXZ5tY7EAAAQQQQCBOBQjAxOmLjYfHMnliqj9+V0qfeVjcf/0e8khmzH3+pEt0Voq1Q/ZREVkB8ylw1XtvWMEYz8L/wt7MNXCwZO42XjK151Ji/0Fhj6ESAQQQiBcBk5/O/c+fUvPt51Lz1adS99tPIcNq7WfVDxOS1x6lPWO0d4wGZMw6vWNsHVYQQAABBBCIWwECMHH7auPrwcwnjOUaiDG/1AYV/SU2c++DpM+JZ/NpYhBM922Yqa1NMKbqIzPNePj8CCmavDd7rwMlbdwu5IvpvlfDnRBAoAcFzFDamu++kJqvZ+rXp23+fDRNNPnO0jbdWocrbau9ZLaWBE3uS0EAAQQQQACB+BMgABN/7zSun8g9718rYW/lO68GfbLoTM+Q3GMmSvaBR4pDE8RSul/A5/VqsspvpUqHKFnTjFdVhjTCvKd0nUUpS4MxKeuMDtlPBQIIIBCvAvWz/5Tqrz6R2m8+8/eOCZfg3Dy86R2z7vpWzxgrd8xI7R2jdRQEEEAAAQQQiH0BAjCx/w575RO458+Rotuv119kZwY9v0sT9PY5/SLJ2HqHoHo2ulfA53ZL9ecfSsWbL+s045+LaHCmdUlcbU3J2vMAydh1H3Fp7hgKAggg0FsEGisr9Gej9o7RXp3VGpDxlhS1+egmt5aZUckk8zU5ZBIys9s8lh0IIIAAAgggEN0CBGCi+/3QupUImK7dRXdcLw0akGlZUjfZ0soPkzRizZbVrPeAgEneW/H2K1L51ssSNl+My6Wf9G4nmRqMMd3vHQmuHmglt0QAAQR6RsDkjqnXxObWUCUNyNT/8UvYoLXVOp1FKXm9DaxZlUzumJS11u2ZRnNXBBBAAAEEEFglAQIwq8TGSdEkYJL1lr/8tJQ+cqd49VNFu+gvqlnjD5O84ycxnt5G6dmV2l++l8o3X5Kqj98RX21NSGOcefmSueu+krXPwZI0ZHjIfioQQACBeBdorCzX3p2fS7WVO2bmCqe6TujXXzI0t1b6drtaMwOSyDfevzt4PgQQQACBWBcgABPrb5D22wKN5aVS8vCdUvHqM0GfHjozsyT32NMl+4AJ9K6wtXp2xVtTo0l737J6xdT9+kPYxpheTFn7HS7pW+2g7y0h7DFUIoAAAvEsYPWO+es3a6iS6SFT/8evItpjJlwxQ5XSt93JCsikbri5OLR3IQUBBBBAAAEEokuAAEx0vQ9a0wUC7jmzpejOKTq+/sugqyUOHSH5Z1xsdd0O2sFGjwq4F8yzAjGVb78cdpaQhPx+krXvIZK198Hi0nUKAggg0FsFzAcNtTrNdbUOVTIBGW9FeVgK88FDmgav08ftbOWPcSYlhz2OSgQQQAABBBDoXgECMN3rzd26UaDq84+k+K4bQvKOZO42XvLPuVKcaWnd2BputTIBn84IYv6wKH/tWan58pOgXkzWudoLJn3rHa1eMak6rTWzgqxMlP0IIBDPAmb4be2P30r1p+9J1WcfiLe4MPzjpqRaCXwzdJiSyRvjTEsPfxy1CCCAAAIIIBBxAQIwESfmBj0p4GtokPIXp0vpY3eLt7rKbopr0BApuOJmSVlvjF3HSvQIeJYtkYrXn5PyGS+EnR3ENXQ1yR5/qGTuvh8zgkTPa6MlCCDQQwLWUKXffpSqT963AjKepYvCtyQxUdI23Vp7xmjeGJ0tMCErJ/xx1CKAAAIIIIBARAQIwESElYtGm0BjaYkOS7peqt57vblp2qMi97jTJffIU4TEhc0s0bTm83j0j4n3pfzVp6Xup29Dm6bd6jN32lOy9j9cUtYeHbqfGgQQQKAXCtT99bsViKn+5L2QWQJtDv03MGXspv4kvtvuLK4+fe1drCCAAAIIIIBAZAQIwETGlatGqUDVB29K4bQrgnrDpIzZWHvDTBNXwcAobTXNMgLuef9qguWnpfLtV4PeX0AnaeQoyT74KMncYQ9x6Ke8FAQQQAAB/dk59x+pmvmeVH/yrrhn/xmexOGQ5FFjxQxTMol8EwcMDn8ctQgggAACCCDQKQECMJ3i4+RYFGjQrtnLr7lA6nRK5EBxZmRK3/OukgztTUGJbgFvXa1UvT9Dyl95Rtx//xHSWKd+ipu9/wTJ1sS9CTl5IfupQAABBHqrQMPihf6cMZ++K/W//dwmQ9LI9axhSmaK66RhI9o8jh0IIIAAAggg0DEBAjAd8+LoOBEwCV9Ln7xfSh+5S0TXAyVDE/T2PecKkhQGQKJ8Wff7L1LxivaK0Smtxe0Obq0ZnrTbvpJz0NGStNoawfvYQgABBHq5gKdouVTpEE+TxLfuZx3i6fWGFUkasZZk7LqPZO68t7j69Q97DJUIIIAAAggg0D4BAjDtc+KoOBUwf8Avu/pc8SxaYD+ha+BgKbjSJOjdwK5jJboFGivKNE/Ms1Lx8lM6lfXykMamatLJnEOOsaZjDdlJBQIIINDLBcz01tWffWgFY2q++1LE0xAqosOUTM6YzF32kYztdxNnekboMdQggAACCCCAwAoFCMCskIedvUHAW1MtRbdcLZXvvNr8uCZB77ET/Ql6dZ0SGwImaW+V9oYpe+5xcf/1W0ijE4evLjkHH2N9mutMTgnZTwUCCCDQ2wXMjIE1X36iMyq9K9VfzxSprwslSUqS9K120J+l+0r65tuKw+UKPYYaBBBAAAEEEAgRIAATQkJFbxWo+vAtf4LeqkqbIGX9jaSfJuhN7D/IrmMlNgTqfv1BAzGPWp/qtu5a78zOtaaxztpvgrjymfkjNt4orUQAge4W8NbUWAl8q959XWp/+CrsMCWnTmWdseMekqnDlFI0kS8FAQQQQAABBNoWIADTtg17eqGAZ9liHZJ0fnCCXv3lcsDUeyVl9Ia9UCT2H9kknSx/8QmpePNF8VVXBz+QK9H6wyH38BMkafW1gvexhQACCCBgC3iKC8XMJFj57mthE6CbA12DhmiuGB2ipMGYpCHD7XNZQQABBBBAAAG/AAEYvhMQaCXg00SEpdNNgt47mxP0anfrgitusqbobHU4mzEiYLrVmyBM+QvTxbNkYUir07bcToecnaSBto1C9lGBAAIIINAs4J73rxWIqXpvhpgPLsKV5HVGayBmvGRq75iEXGakC2dEHQIIIIBA7xMgANP73jlP3E6But9+kiUXnSbeshL/GZqAsM/pF1nJXNt5CQ6LQgEzA1b15x9K+XOPiRmm1LqkjNlYco84SdK2GNd6F9sIIIAAAi0EfD6f1WO0UocoVX/8tnhbDOG1D9M8ammaCD1T88WkbbOjkH/LlmEFAQQQQKAXChCA6YUvnUduv4AZvrL4vBPEM3+ufVL2QUdJn0kXi8PptOtYiU2Buv/NkrInH5Dqme+L6B8SLUvS6iOtQEz6DruLg0TMLWlYRwABBEIEfG63VH+lyXtNMObLT8LOpORIS5eMbXe2kvembrQ5/46GKFKBAAIIIBDvAgRg4v0N83ydFjBTHC/VnjAte0uk6y+Q/a68iU/yOq0bHRdwL5irgZgHtUv96yF/NJhpyXMOO14y9zxAnEnJ0dFgWoEAAghEsUBjZblUf/S29TO15b+dLZucoAnQM3beW3vGjJfkNUa23MU6AggggAACcStAACZuXy0P1pUC5pO9ZddeYP1CGbhu8npjNDnvfZKQw9j2gEmsLz2Fy6Ts2Uel4vXnxFdbE/Q4ztw+1vCz7PGHiTMjM2gfGwgggAAC4QUaNOdWpeaKMT1jGubPCXuQyReTte+hVlJ0Z2pa2GOoRAABBBBAIB4ECMDEw1vkGbpFwIx1L757qpTrH+iB4ho8VAbc9JAkDR4WqGIZBwKm11P5S0/q7ElPire8NOiJnOkZkrXf4ZJ98NHiyssP2scGAggggEDbAnV//WYFYirff0O8pcUhBzrS0yVzl30la59DJHnNtUP2U4EAAggggECsCxCAifU3SPu7XaBM/ygvvv1aO2eIMzvXP031qLHd3hZuGFkBb12t9oZ5XnvFPCKNy5cG30xnxsre52DJOeJkceX3C97HFgIIIIBAmwImGXrtd1/4Z1L65F2RhoaQY5PXXb+5V0xKash+KhBAAAEEEIhFAQIwsfjWaHOPC1R99oEsm3yuSH2dvy2aG6Rg8s1WcsEebxwN6HIBn8ejXehfl7KnHpKG//4Nvj6BmGAPthBAAIEOCJgeh5VvvWIFu8MNUTK9DjN0BiWrVwy5Yjogy6EIIIAAAtEoQAAmGt8KbYoJgbo/fpUlF5wcPE21zo6Uo0NTKPEpYIahVWvwrWz6/VKvMygFFQIxQRxsIIAAAh0VqP3pWysHV1VbvWI095qVK0Znp3PSK6ajvByPAAIIIBAFAgRgouAl0ITYFWhYtMA/TfWCefZD5B5zmuSdcKa9zUp8CtR8PVNKHrlT6jUQF1QIxARxsIEAAgh0VKBRc2+ZXjHlM54Xz/y5IadbvWJ221eHgR4qSauvFbKfCgQQQAABBKJVgABMtL4Z2hUzAuYXxSU6TXX9rB/tNveZeKFOXXycvc1K/AoQiInfd8uTIYBAzwvU/PiNVLz2rFR/+r6IJ0yumFEbNPeKSU7p+QbTAgQQQAABBFYgQABmBTjsQqC9Al53vSy7dJLUfPWpfUrfC6+RrL0PtrdZiW8BKxDz6F1S//svwQ9Kj5hgD7YQQACBVRBoLCtp7hXTotdp4FLOjEzJ1F4xWaZXzIg1A9UsEUAAAQQQiCoBAjBR9TpoTCwLmCDMknOOl7qfv/M/hsOhiXlvlYwdd4/lx6LtHRRoMxCTmCjZ+x7CrEkd9ORwBBBAoLVAzQ9fa64Y0yvmgzZ6xYxt6hWzmzjpFdOaj20EEEAAgR4UIADTg/jcOv4EvDXVsmjSUeL+6zf/w7lcMuCGeyVt823j72F5ohUKrDAQs98EyT3qZEnIyVvhNdiJAAIIINC2QGOp9op5+2Upf11zxSz8L+RAZ2aWZO6jge8DjhBXv/4h+6lAAAEEEECguwUIwHS3OPeLewGTE2bRxAnSMK9pumKdonrgrY9I6piN4/7ZecBQgbYCMY60dMk59Fj9Ok6cuk5BAAEEEFg1ATNDXW0gV8zMML1iEhK0N+oekn3IMZIyctSq3YSzEEAAAQQQ6AIBAjBdgMglEGgt4ClaLotOPUw8SxZauxzp6TLwjun6i996rQ9lu5cI1HzzmZQ8fEfIrEnO7FzJPfoUyR5/uDg0XwwFAQQQQGDVBUyvmIq3XpIKM4PSwvkhF0rZYBPJ1uB3+pbbi8PpDNlPBQIIIIAAApEUIAATSV2u3asFzBTVC087TLzFhZaDU4ebDLr7KUkaNqJXu/T2h6/6/EMpuf9WaZg7O4jCVTBAco+bpEkkx4tDP62lIIAAAgisuoDpFVP9xcdS/tyjUvfTtyEXcg0eKtkHHyNZu+8nztS0kP1UIIAAAgggEAkBAjCRUOWaCDQJuOfMlkWnTxBvRblVk9C3QAbd+4wk9h+EUS8W8Hm9Uvne61L68J12L6kAR+LQEZJ30lmSsd2ugSqWCCCAAAKdEKj7+w8pf/ZRqfroLU3a6wm6kskTkzX+MMk2eWLy+wXtYwMBBBBAAIGuFiAA09WiXA+BVgJ1f/wqi888Wny1NdYe86nboHueEVdefqsj2extAr6GBil/7Tkpffwe8ZYWBz1+8tqjJe/kcyRtky2D6tlAAAEEEFg1ATM8uPzF6VLx2rPirawIvogmzc/YcU9/npi11g3exxYCCCCAAAJdJEAAposguQwCKxIwU2YuOf9EEbfbOixp9ZEy8K7pkpCZvaLT2NdLBLwanCt7/nEpf/oh8VZXBT11ykabS5+Tz5WUddcPqmcDAQQQQGDVBMzP3Iq3XpHyFx4Lnydmw80k55BjJW3L7cThcKzaTTgLAQQQQACBMAIEYMKgUIVAJASqPv9Ill16ukhjo3X55PXGyMDbHxdnSmokbsc1Y1CgsaJMSqc/IOUvPanBuvqgJ0gft7PVIyZJhyhREEAAAQQ6L2CGg1Z/8ZEOT3pM6n75LuSCriHDJVdnTsrQ3Fz8Wx3CQwUCCCCAwCoIEIBZBTROQWBVBUzej+VXn2+fbn6pK7hsqr3NCgJGwHSTL3nkTql88yU7YGfJaHLerPGHSt6xp0uCJnWmIIAAAgh0jUDdX7815Yl5O/jnrl7emZVj/ezN3t/kienbNTfkKggggAACvVKAAEyvfO08dE8KlL34pBTfdo3dhL7nXyVZ+x5qb7OCQEDAvWCelDx0m1R/qH8QtCjO9AyduvpUyT7wKKaubuHCKgIIINBZAc/ypVKmeWIqX39OvFWVwZdzJUrmTiZPzLGSvObawfvYQgABBBBAoB0CBGDagcQhCHS1wPIbLpXKN170XzYx0ZoZKUWTrlIQCCdgZvAovmuq1P34ddBul86m1efU8zRx5B5B9WwggAACCHROwFtj8sS8JOXPa56YxQtDLpa6yVaSd9xESRm9Ucg+KhBAAAEEEGhLgABMWzLUIxBBAa/m91h08iHinv0/6y6ugoEy+NFXJEG7OVMQaEvA5BEquWeaNMyfE3RIsibozZ90sf4hsGFQPRsIIIAAAp0TsPLEfP6hNTyp7tcfQi5mEqWbYaGpG2wSso8KBBBAAAEEWgsQgGktwjYC3STQsGiBLDx+P7uLc+pm28qAmx5gxoVu8o/V2/gaPVL+qk5d/ehd4i0rCXqM9O121R4x50vioCFB9WwggAACCHReoO5/s6Ts2Yel+uN3RTSBb8uSMnZTyT1moqRpQIaCAAIIIIBAWwIEYNqSoR6BbhCwZka66FT7TrnHT7I+SbMrWEGgDQEzXXXJE/fpNKqP29ObW4dqjoLsA47QPwROZZrzNuyoRgABBDoj4F74n5Q9fq+YxPqBmQ0D10sZs7Hkao+YtI23CFSxRAABBBBAwBYgAGNTsIJAzwgUP3CrlOkf0lZxOGTAzQ9J2qZb90xjuGvMCTQsXSTF990s1R+8GdR2Z1a29Wls9v4TxOFyBe1jAwEEEECg8wKmJ2vp9Puk8p1Xdfo6T9AFk0eN1RwxGojh3/MgFzYQQACB3i5AAKa3fwfw/D0u4GtslMVnH2cnWDXTXQ7RfDAmLwwFgfYK1P3xqybqvUFa5yhwDR4qfU6/SDK23rG9l+I4BBBAAIEOCJhAeKl+kFL51isaiGkIOtPk6Mo7bpKkbb5tUD0bCCCAAAK9U4AATO987zx1lAl4Sotl4bHjpbFoudWy5HVGy6B7nhGHzpBEQaAjAlWfvKs9Ym4Sz8L5Qael6qew+WddKklDRwTVs4EAAggg0DUCnmVLtEfM/VLxps5y2NAqEKMzHeYeO1HSt9q+a27GVRBAAAEEYlKAAExMvjYaHY8CdbN+lEWTjrS7MWftd7j0PffKeHxUninCAj7tCl/+8pOaqPdu8VZWNN9NhyJlH3SUlWfImZbeXM8aAggggECXCXgKl0npkxqImfFCcI4uvUPSWuv6AzHaK9Ghw44pCCCAAAK9S4AATO963zxtlAuUvfCEFN9+nd3KfldMk8xd9rG3WUGgIwKNFWVS8uDtUvHas0Ezdjjz8nW2pPMkc7fx/AHQEVCORQABBDog4CkqlLKnHpDy157TQEx90JlJa4y0kvWmb7szP4eDZNhAAAEE4luAAEx8v1+eLgYFll55llR/+La/5ckpMuTBFyRpxFox+CQ0OVoE6v/5S4puvUbqfvkuqEnJ642R/LMvlxTtGk9BAAEEEIiMgKdYAzFPPyzlrz4jUl8XdBPz73vuMadJ+na7isPpDNrHBgIIIIBA/AkQgIm/d8oTxbiAt6ZGFp54oDT896/1JK6hq8mQx14TZ1JyjD8Zze9pgSqdKano7qnSqN3jW5bMvQ6UPiefKwm5eS2rWUcAAQQQ6EIBk+/NCsS88rRIXW3QlROHr24ND03fYXd6xATJsIEAAgjElwABmPh6nzxNnAi45/1rBWF8tTXWE+UcebL+gXxOnDwdj9GTAl79njJJIsueeTgoSaQzPUNyjz9Dsg/QaasTmLa6J98R90YAgfgWaCwrkbJnH9VcXU+Jr6Y66GGTRq4nfU67QNI22jyong0EEEAAgfgQIAATH++Rp4hDgYrXn5fCGy/3P1lCggx++BVJ1jHjFAS6QqBh0QIpunOK1Hz+UdDlEldbQ/LPvEzSNt4iqJ4NBBBAAIGuFTB5uqxAzEvTxVcdHIhJ22KclauLIchda87VEEAAgZ4WIADT02+A+yPQhoDP55PFOitS3c/+vB3W1NT3P88Y8Ta8qF41gZpvPpNCTfzsmT836ALp43aRPpMuksT+g4Lq2UAAAQQQ6FqBxspy7ZX4iBWMCUrWq7MkZe6xv+SdcKa4+hZ07U25GgIIIIBAjwgQgOkRdm6KQPsE3AvmyoKj9raHivQ54xLJOfjo9p3MUQi0U8Catvr5x6XksbuDu8NrEui8406XnEOOFYdOYU1BAAEEEIicLjuf+AAAQABJREFUgJm+uuTB26Ty7VdE9EMYu+jP4pxDjpHcCSeKGS5KQQABBBCIXQECMLH77mh5LxEoefxeKdVfyExxpKbJ0CffFFfBwF7y9DxmdwqYmTqK771Jqt55Nei2ZlhSv/OvlpT1NwqqZwMBBBBAoOsF3HP+1oTp06T2m5lBF3fm5OmMSRMle/yhBMWDZNhAAAEEYkeAAEzsvCta2ksFTO+EBceOl4a5sy2B1M23lYE3PdhLNXjs7hCo++0nKbx5srhn/xl0u8w9D9DkkOdLQnZuUD0bCCCAAAJdL1Dzw9dSfM+N4v7r96CLuwYPlT6nnCcZOnU1BQEEEEAgtgQIwMTW+6K1vVSg7vefZdEph9pdkgsm3yIZO+3ZSzV47O4Q8DU2SvmL06XkodslMBuXua8zK8cKwphgjEPzE1AQQAABBCInYPLBVb0/Q0oeuE08SxcF3Sh5vTGSP/FCeicGqbCBAAIIRLcAAZjofj+0DgFboOi2a/QP4ietbdMNeejTb0uC/jFMQSCSAp7lS6Xo9mul+tP3g25jhiP1Pe8qSRqxZlA9GwgggAACXS/gc7ul/KUnpXT6feKtKA+6Qdo2O+mMSedK0tARQfVsIIAAAghEnwABmOh7J7QIgbAC3ppqmX/EHtKofxCbYmZG6HfJ9WGPpRKBrhao+epTKbzlavEsWdh8aU3Mm60JevOOnSjOlNTmetYQQAABBCIiYGZMKn3iPquHojQ0NN8jIUEy9zpI8o6fJK68/OZ61hBAAAEEokqAAExUvQ4ag8CKBao+/0iWXXSqfdCA2x+XtI02t7dZQSCSAt76Oil97B6dLvVhEc1NFCgmKXSfsy+XjK13CFSxRAABBBCIoECDDkcyw5Kq3ns96C4mWX/OYcfp1/Hi1HUKAggggEB0CRCAia73QWsQWKnA0svPlOqP37GOM4n4hjzxhjiTkld6Hgcg0FUC7nn/SuFNV0rdz98FXdJ0g+971mU6S9eAoHo2EEAAAQQiI1D39x9Wot66778KuoFTe8H0OeEMydzzQHFo7xgKAggggEB0CBCAiY73QCsQaLeAmSp4wYTdxVtVaZ2Tc8RJOhvCue0+nwMR6CqBirdfkeK7bxRvWUnzJXUoUp8TzpTsg47il/5mFdYQQACBiArUfD1Tiu+9Sdz//hV0n6Q115a+506WlFFjg+rZQAABBBDoGQECMD3jzl0R6JRAxYznpXDq5f5r6Cdbgx9+RZLXGNmpa3IyAqsi0FhRZv3SXznjhaDTk0aOkn4XT+H7MkiFDQQQQCByAj6vVyrfeVVKHrxNGguXBd0oc68DrQ9rEjSJPwUBBBBAoOcECMD0nD13RmCVBcy0lIsnHWkPAUnWT7YG3/fsKl+PExHorEDdrB+lcNqV4p7zd/OlNElvzuEnSN4xE8WRlNRczxoCCCCAQMQETL6usucek9LH7xXR9UBxZmVbQZjMvQ8Wh8MRqGaJAAIIINCNAgRguhGbWyHQlQLuBXNlwVF7S2AWhIIb7iUJalcCc60OC/gaPVL61EOaqPduEZ0yNVASdWrUfhdfKymjNwpUsUQAAQQQiLCAZ9liKbztOqn57IOgOyWvM1ryz7tKUkauF1TPBgIIIIBA5AUIwETemDsgEDGBojumSPnzj1vXT1p9pAx+7DU+1YqYNhdur4AJDhbecJnU/fJ90ClZ+0+wPn11pqUH1bOBAAIIIBA5gZqvPtVAzDXiWbSg+SbaAyZrv8Ml78SzJCEzq7meNQQQQACBiAoQgIkoLxdHILICjaUl8t/BO4qvtsa6UcHkWyRjpz0je1OujkA7BMwwucrXnpWie6eJr7raPiOhX3/pd/7VkrbFOLuOFQQQQACByAp43fVSNv0B7aX4QFAPRafmhOkz8ULJ2n18ZBvA1RFAAAEELAECMHwjIBDjAibZnjXOW5/DNXiYDH3qLZ19xhXjT0Xz40XAs3ypFN48WWq++DjokTJ23kvyz7xUSAgZxMIGAgggEFGBhkXzpfCWa6T2m5lB90kZs7HOlnSlJI1YK6ieDQQQQACBrhUgANO1nlwNgW4XMNNR/3fQDuKtrLDu3ffCayRLE+xREIgmgaoP3tQu8NcGTVntzM7VIMwlkrnLPtHUVNqCAAIIxL1A1afvSdHt10mjBsntorMqZh90lOQdd4Y409LsalYQQAABBLpOgABM11lyJQR6TKD0yQek5L6brfubIR7Dnn2fWWd67G1w47YEGstLpeiO66Xq3deCDkndfFtrWJKrYEBQPRsIIIAAApET8Orw5ZLH7pHy5x4V8XjsGyXk95P8SZdIxo6723WsIIAAAgh0jQABmK5x5CoI9KiAt65Wc8HsJN6SIqsdfc64RHIOPrpH28TNEWhLoOabz6TwxivEzNARKA5NzJt38rmSvf/hJJIOoLBEAAEEukHAPe9fHZZ0ldT9+E3Q3VI32VLyz7lCkoasFlTPBgIIIIDAqgsQgFl1O85EIKoEyl58Uop1lgNTTFK9YS98KM5UuhBH1UuiMbaAt0Y/eX3gFil/6UkRTdgbKCkbbqZTVk+RxAGDA1UsEUAAAQS6QaDq/RlSeNdU8RYXNt/NlSg5hx8vuUefKs7klOZ61hBAAAEEVkmAAMwqsXESAtEn4GtokPmH7mL3KsjVqSXz9BcmCgLRLFD320+y/IZLpUE/gQ0UhwYO8yddJFn7HBKoYokAAggg0A0C3uoqKXnodn9w3Ou17+jqP0jyz75c0rfa3q5jBQEEEECg4wIEYDpuxhkIRK1AxZsvSeH1l1jtc2ZkylDtBZOQmR217aVhCBgBEzwsefQuKdNcRtLiF/7UTbaSfhddJ+SG4fsEAQQQ6F6B+tl/WjPY1WuQvGXJ3G289DEz2GVmtaxmHQEEEECgnQIEYNoJxWEIxIKAr7FR5h+5p3jmz7Wam3PkydLn5HNioem0EQGp+98sWX7thdLwX3NvGGd6hpicRll7HoAQAggggEA3Cvh0eGilfrBTfO9N4tUk6oFikvSa4HiaJlCnIIAAAgh0TIAATMe8OBqBqBeo+uhtWXbFWf52pqTKsOc/EFdeftS3mwYiYAR8brcUP3iblD/7SFBumLQtxknfC68Vl/7iT0EAAQQQ6D6BxooyKbrtOql67/Wgm2ZqYDxfA+QmUE5BAAEEEGifAAGY9jlxFAIxI2A+sVp43H7inv0/q83ZBx4h+WddHjPtp6EIGAGTG2bZdReJZ8E8G8SpXd5NDoLMXfax61hBAAEEEOgegarPPrBmsPOWFts3TOjX398bZtOt7TpWEEAAAQTaFiAA07YNexCIWYGarz6VJeef5G+/zmAw7Ln3NI/GwJh9HhreOwW89XVSct/NUv7CE0EAadvsJH3Pv4qeXUEqbCCAAAKRF2jUoUiFt1wt1R++FXSzzH0OlvzTLxJnWnpQPRsIIIAAAsECBGCCPdhCIG4EFp56mNTP+tF6nsy9D5Z+F/qnqI6bB+RBeo1A7c/fyfIp2htm8UL7mZ1ZOdL33MmSsePudh0rCCCAAALdI1D1ybtSeNNk8ZaV2Dc0H/T0vXiKpG28hV3HCgIIIIBAsAABmGAPthCIG4Han76VxZOO9D9PUrIMf3WmJOgfrRQEYlHAW1sjxfdMk4pXng5qfvr2u2kg5kpJyMkLqmcDAQQQQCCyAo0afCm8+Sqp/vidoBtljT9M+px2gfaGSQuqZwMBBBBAQIQADN8FCMSxwILj9xf3X79bT5h36nmSO+HEOH5aHq03CNR8/5U11bpn2WL7cZ0afOmnn7qmb7W9XccKAggggED3CFR9+LYOS7oqaKYk14DB/t4wG27WPY3gLggggECMCBCAiZEXRTMRWBWBirdfkUJNZGqKq/8gGaozIjmczlW5FOcgEDUC3ppqKbrzBqmc8XxQmzL3PUTyJ10sTp39i4IAAggg0H0CHk3MWzTtSqme+X7QTc1EAHmnnMfP5SAVNhBAoDcLEIDpzW+fZ497ATOl77z9trU/lSqYcpdkbLtz3D83D9g7BGq++UyWX3+JNBYttx/YNWS4FFxxk6SsM9quYwUBBBBAoHsEqt6fIYW3XiPeinL7hq5BQ6TfJTdI6piN7TpWEEAAgd4qQACmt755nrvXCBQ/cKuUPXGf9bwpG20ug25/vNc8Ow8a/wKNFWVSaD51bZmDICFBco87XXKPOFkcuk5BAAEEEOg+AU9xof5cvkJqPv+o+aYOh2QfdJTknXyOOJNTmutZQwABBHqZAAGYXvbCedzeJ+BZtkT+O2gHEa/Xevgh09+UpNXW6H0QPHFcC1S8/aoU3Xa1+Kqr7edMHjVWCi6fJon66SsFAQQQQKB7BczP5eLbrxVvVaV9Y6uX4iXXS8roDe06VhBAAIHeJEAApje9bZ611wosvewMqdYpI00xsxP0PW+ytc5/EIgngYYlC2X5tRdK3S/f24/lSE2T/LMuk6w9D7DrWEEAAQQQ6B4Bjw4RXX7DpVL79czmG2pvmNxjJkrusRPJS9eswhoCCPQSAQIwveRF85i9WyBoSmpNULraq5+JMyOzd6Pw9HEp4NOeXqVPPiClj9wp4vHYz5g+bmfpe8E1kpCda9exggACCCDQPQIVb74kxXdMEW91lX3DlLGbSsGVt4grv69dxwoCCCAQ7wIEYOL9DfN8CDQJLDhqb3HP+dva6nPGxZJz8DHYIBC3AnU6/fryq86Thvlz7Gd09ukrBdr1PW2zbew6VhBAAAEEukfAs3ypLDO9FH/82r6hMydPh4reyM9lW4QVBBCIdwECMPH+hnk+BJoEKl5/XgpvvNzacg0eKkOfeU8c2g2YgkC8Cnjr66T4rqlS8crTQY9oTYt62gXiTEoOqmcDAQQQQCCyAlYvxcfvkdJH77Zz05k75hx5suSdcIYmTndFtgFcHQEEEOhhAQIwPfwCuD0C3SXgrauV/8yU1JUV1i0HTHtA0rYY11235z4I9JhAjeYeWDblYvGWFNltSBy+uvQz01Wvta5dxwoCCCCAQPcImKHRy646RxqLCu0bJmti3v6TdUhSwQC7jhUEEEAg3gQIwMTbG+V5EFiBQNHdU6X8mUesI1J1GMbAmx9awdHsQiB+BBrLSmT51Mul5rMPmh/KlSh9Tjpbsg87jt5gzSqsIYAAAt0i0FhaokOSLpDabz6z7+fMypZ+l06V9K22t+tYQQABBOJJgABMPL1NngWBlQg0LF4o8w/ZScTns44c8sy7kjRk+ErOYjcC8SNQMeN5KbrjevHV1tgPZYKR/S6bKq7cPnYdKwgggAACkRfw6e8jZU89KCUP3ibS2GjfMPuQY6XPqeeJw8WQJBuFFQQQiAsBAjBx8Rp5CATaL7DkolOl5vOPrBOyDzpK8s+8tP0ncyQCcSDQsGi+dn0/V+r/+NV+Gmdevj8R5CZb2XWsIIAAAgh0j0DdrB9l6ZVnS6Mm6g2U5HVGS8HVt0nigMGBKpYIIIBAzAsQgIn5V8gDINAxgZrvvpQlZx9rneRIT5fhr3wuzrS0jl2EoxGIcQFfo0c/cb1dynTK6pYle8KJOizpLBJBtkRhHQEEEOgGgcaKMlmu+boCHxKZWzozMqXvxVMkY9wu3dACboEAAghEXoAATOSNuQMCUSVguvsumLCHPT1v/rlXSvZ+h0dVG2kMAt0lYAKSy645PyhBb/K660vB5FslcSCfunbXe+A+CCCAQECg7LnHpPjeaSIeT6BKsg6YIPkTLxJHUpJdxwoCCCAQiwIEYGLxrdFmBDopUPbSU1J869XWVZLXGyOD73++k1fkdARiV8BTWizLr70wOBFkeob0veAaydhxj9h9MFqOAAIIxKhA3f9mybIrzhLPkoX2EyStuY4UXHO7JA0eZtexggACCMSaAAGYWHtjtBeBLhAw3Xzn7aO5Lpo+XRr64keS2H9QF1yZSyAQmwKmZ5iZIaz4gVvs/y/Mk2TufZCVJ8mZkhqbD0arEUAAgRgV8FZVyvIbLpXqT961n8CRli79THB8pz3tOlYQQACBWBIgABNLb4u2ItCFAkvOP0lqvvrUumKezjSQq7kvKAj0doG6P/VTV00E6Vm0wKZIHLa6FFx1qySvMdKuYwUBBBBAoHsEyl7WXrt3Xi/S0GDfMHPvgyX/rEvFmZxi17GCAAIIxIIAAZhYeEu0EYEICFS886oU6rALU0y33iGPvhqBu3BJBGJPwFtTLYXTrpCq999obrzmHehz+kWSs/+E5jrWEEAAAQS6RaB+9v9k6eVnimfhf/b9zO8uA264V1wFA+w6VhBAAIFoFyAAE+1viPYhECEBb3WVzN17CxG327rDkGfelaQhwyN0Ny6LQOwJVLz1shTeormS6mrtxqdts5P0u2SKJGRm23WsIIAAAghEXiBccNyZ20cGTLlLUkZvGPkGcAcEEECgCwQIwHQBIpdAIFYFll5yulTPfN9qfu4JZ0jeMRNj9VFoNwIREXDPn2MNSXLP/tO+fkK//tJ/8i2Ssv5Gdh0rCCCAAALdI1Dx+nMaHL9G83U1DUlKTJS+518tWXvs3z0N4C4IIIBAJwQIwHQCj1MRiHWBqg/f1j8uz7IeI3G1NWTo9Ddj/ZFoPwJdLuDTXmLF99wo5S9Ob752QoL0OfkcyT7seHE4HM31rCGAAAIIRFyg9pfvZemlk8RbVmLfK/vQY6XPaReIw+m061hBAAEEok2AAEy0vRHag0A3Cnh1aMXcvXQYUtMQiyFPzJCkEWt1Ywu4FQKxI1D1+UdSOOVi8eosYoGSttX20u+yqQxJCoCwRAABBLpJoGHpIll64ani/vcv+46pm20r/a+6RZwZmXYdKwgggEA0CRCAiaa3QVsQ6AGBpTrjS/WHb1l3zj36VMk70d8jpgeawi0RiHoBz/KlYv6fqZ/1o91Wl07hXnDN7ZKyzmi7jhUEEEAAgcgLeGtrZPk1F9jDqc0dE4eOkP433idJg4dFvgHcAQEEEOigAAGYDoJxOALxJlClOWCWaS4YU1z6y8qwZ9+Lt0fkeRDoUgFfo0eK771Jyp99tPm6rkT/LEkHHtFcxxoCCCCAQMQFfD6flDx4m5Q9cZ99L2dmlhRcfbukbbKlXccKAgggEA0CBGCi4S3QBgR6UMDkt5i79+biq662WjHo4ZclZeR6Pdgibo1AbAhUffaBFF53kXirKu0Gp++wu/S76DpxpqXbdawggAACCEReoEp78y7Tn8nirvffzOTqmnSJ5BAYjzw+d0AAgXYLEIBpNxUHIhC/AsuuvVCq3nnVekCTVDR/4gXx+7A8GQJdKNCweKEsvfxMcf/1m31V05Os/7V3SvIaI+06VhBAAAEEIi9Qpz+LTV6YxqLl9s0y9z5Y+p57pThcLruOFQQQQKCnBAjA9JQ890UgigRqvp4pS8470WqRq2CgDH3xI2Z2iaL3Q1OiW8DX0CBFd0yRileebm5oUrL0PedyydrroOY61hBAAAEEIi7gKS6UpRefJvV//GrfK2XMJtL/ujskISfPrmMFAQQQ6AkBAjA9oc49EYgyAZ/HI/P22VJndym3WjbovmclZdTYKGslzUEgugVM9/flUy8TX41/OJ9pbeZu4yX/vMniTEmN7sbTOgQQQCCOBMzwavPzuOrd1+ynMgnTB0zV5LyrM9ujjcIKAgh0uwABmG4n54YIRKfA8qmXS+WM563GZR90lOSfeWl0NpRWIRDFAu4Fc2XZpWeIe87fdisTV1vDGpKUNGyEXccKAggggEDkBUqfelBK7rtZRBP1muJITZN+V0yTjG12ivzNuQMCCCAQRoAATBgUqhDojQI1338lS846xnr0hPy+MuzlmeJwOnsjBc+MQKcEvPV1UnTzVVL51sv2daxf+i+4WjJ23tuuYwUBBBBAIPICNV9+IkuvOseebMDcMfeksyXvqFMif3PugAACCLQSIADTCoRNBHqrgK+xUeaN30a8pcUWwcA7p0vq2E17KwfPjUCnBSo0AFN40+TmGTn0ipn7Hip9z7pMHImJnb4+F0AAAQQQaJ+Ae+4/suSiU8SzaIF9QvpOe0rBJTeIIynJrmMFAQQQiLQAAZhIC3N9BGJIoPCWq6Xi5aesFmfrtI35Z10eQ62nqQhEn4D7379lyeVniGf+XLtxyeuubw1JcvXrb9exggACCCAQWYHGijJZetkZUvfjN/aNUjbcTAbccK8409LtOlYQQACBSAoQgImkLtdGIMYEWg5Dcg1dTYY9/U6MPQHNRSD6BLw1NZoM8lKp1iS9geLUmTgKrr5N0vSXfwoCCCCAQPcI+Bo9UnTrtVLx6jP2DZPWWlcG3PyQuHL72HWsIIAAApESIAATKVmui0AMCphZA+bstrE9ZGLYS5+Iq2BADD4JTUYg+gTKnn9ciu+eKqLD/aySkCB9Tj1fcg49NvoaS4sQQACBOBYoffIBf3Lepmd0DR4mA299RBIHDI7jp+bREEAgGgQIwETDW6ANCESRwOJzjpfabz+3WtT3ouska68Do6h1NAWB2Bao/eV7WXr5meItKbIfJH3H3aXfRVPEqbNzUBBAAAEEukeg4o0XpfBGHWrt9Vo3NBMQDLzlEUkawTTV3fMGuAsCvVOAAEzvfO88NQJtCpQ9/bAU33OjtT99xz2k/1W3tnksOxBAoOMCnqLlVh6C+t9+sk9OXG1N6T/lLkkaMtyuYwUBBBBAILICVZ99IMuuPFt7/rqtGzkzs2TAjfdLyugNI3tjro4AAr1WgABMr331PDgC4QXqZ/8pC4/d19pp8lQMn/GlOByO8AdTiwACqyTg82gegtuvk4pXnrbPd6ZnSN/Lp0nG1jvYdawggAACCERWoPbn72TphaeIt7rKf6OkZBlw7R2StuV2kb0xV0cAgV4pQACmV752HhqBtgV8Pp/M23tL8ZaVWAcNeuQVSdEEdRQEEOh6gYq3X5XCaVfYeZfMHXKPOU1yj5skDqez62/IFRFAAAEEQgTqZ/9PzBBsb2mxf5/m6Op78RTJ2m18yLFUIIAAAp0RIADTGT3ORSBOBZZdda5Uvf+G9XR9TtMkoYefEKdPymMh0PMCdX//IcsuOV08SxfZjUndbBspmHyzJGRm23WsIIAAAghETqBh0XxZfPax4lm80L5Jn0kXS84hx9jbrCCAAAKdFSAA01lBzkcgDgUq3npZCqdcbD1Z6iZb6swAj8bhU/JICESPQGNFmSybfK6dANu0zKWzcfSfcrckr7l29DSUliCAAAJxLOApLpQl5x4v7n/+sp8y54iTpM8p59rbrCCAAAKdESAA0xk9zkUgTgU8y5fKf/uP8z9dUpKs9s734tQx0RQEEIicgE9n4ih56HYpe+K+5pvo/3d9L7xGsnb152Vq3sEaAggggEAkBLxVlbJEc8LU6ax1gZKpM0L2Pf9qcejQJAoCCCDQGQECMJ3R41wE4lhg/oQ9pOG/f60nHKA9YNK0JwwFAQQiL2Bm5Vh+7QXiq662b5Z1wATJn3SJOFwuu44VBBBAAIHICHjd9bLsirOk5vOP7Bukb7uzDg29RRz6wRQFAQQQWFUBAjCrKsd5CMS5QNFt10r5i9Otp8zWHDD5mguGggAC3SPgXjBXll48URrm+YOg5q4pG2wi/XVmjgSdnYyCAAIIIBBZAV9joxROvUwqdVh2oKSM3VQG3HCvmFnrKAgggMCqCBCAWRU1zkGgFwhU6ac+yy461XrSpDXXkSGPvtoLnppHRCB6BLw1NbL8+oul+uN37Ea5CgZKf/3ln7wwNgkrCCCAQEQFiu6+Ucqfedi+h/mdaMDND4krL9+uYwUBBBBorwABmPZKcRwCvUzAW1Mtc3ffREQ/ATJl+Btf8cl7L/se4HGjQ6D0yQek5P5bRHSKeKukpErBpTdIxva7RUcDaQUCCCAQ5wJlTz8sxffcaD+la/BQGXjLo5I4cLBdxwoCCCDQHgECMO1R4hgE/s/efYBXUaUNHH9zU0lCCkkISQjNtS52UUDFFUUBFawIuiooIAKCCEivIh3pgiAIiihgQxARRaWswrc2FlxcC0tJSEIKIY2Um+SbmSzjuiR4b3LL3Jn/PE+Wydw557znd7IHeTNzjkUFUvs/JMX/+Ebrvfrec/itd1hUgm4j4F2Boq92SPrEIb9bFya6Z3+JfmKQ+Pn5eTc4WkcAAQQsIKDtEKm8knTmF1MB8QmSuGiNBCo71nEggAACjgqQgHFUivsQsKBAzquL5OSKhVrP1R0AGo58wYIKdBkBYwiUHjkkacprgfZjh/WAQm+8ReLHzRJbaJh+jRMEEEAAAfcIaK9nK4vzirJIr3oENEqSpMVrRH09lAMBBBBwRIAEjCNK3IOARQWKD3wnqf26a71Xf9PT9J0vLCpBtxEwhkB5fp5kTHxWTu/dpQcU2PxP2qKQgUlN9GucIIAAAgi4R6Do668k7bm+ShKmVGsgIClZkha9IQFx8e5pkFoRQMBUAiRgTDWcdAYB1wqoOwAc7nytVBQWaBUnv7lVgpKbu7YRakMAAacEKisqJHvJLGVRyJV6OVtEpMRPni+h17TRr3GCAAIIIOAegSIlCa4+kShlZVoDAY2bViVhYuPc0yC1IoCAaQRIwJhmKOkIAu4RSFO2wi3a9alWecyQ8RJ138PuaYhaEUDAKYG8jzdqW6Se+S2s2GwSM3CkRHV7zKl6uBkBBBBAwHkBdW0u9b+RxF6VhAls0kJZE+Z1dkdynpISCFhKgASMpYabziLgvEDuO29I9tzJWsGwWzpJo0nznK+EEggg4BaB4oP7JX1UfynPOqHXX7/zvRI3bJL4BQXp1zhBAAEEEHC9QMHu7ZIxdpCShLFrlauvhCYteF38oxu4vjFqRAABUwiQgDHFMNIJBNwnUPyvHyT1iXu1BgKU7Rabrt/uvsaoGQEEnBawZ2dK+ugBUvLDPr1scMsrpNELiyQghsfhdRROEEAAATcIFOzYJhnqwrzKa9vqEXTehZK4YLX4R0a7oTWqRAABXxcgAePrI0j8CLhZoFL5rc6hDlfo7zk327JX/COi3Nwq1SOAgDMClcpikJmzJ0j+lnf1Yv6xDaXR9Jck5KJL9WucIIAAAgi4XqBg+0eSMelZEWWNLvUIOv/iqiRM/UjXN0aNCCDg0wIkYHx6+AgeAc8IpPS5X0qUVx3UI+HFFRJ67Q2eaZhWEEDAKYHc9asle9F0/R8BoryGpG4fX/+2Lk7Vw80IIIAAAs4JFHyySTImDxeprNQKBl3YUpLmrxJbeH3nKuJuBBAwtQAJGFMPL51DwDUCmXMmSd57a7XKovsOkQaP9nNNxdSCAAIuFyj6+5eSMeEZqcg7pdcd3bO/RD8xSPz8/PRrnCCAAAIIuFYg76P3JHPqKD0JE3zJZZI491WxhYW7tiFqQwABnxUgAeOzQ0fgCHhOIE95rUH7DwqlydAbb5WEaYs91zgtIYCA0wJlqUe1LVLL/v2LXjasfSdpOGa62IJD9GucIIAAAgi4ViBv8wbJnD5WrzS45ZWS+OJKsYWG6tc4QQAB6wqQgLHu2NNzBBwWKD30kxx79C7tfnVdiWbv73K4LDcigIB3BCoKCyR9/BA5vXenHkDwxZcq68IsYXFeXYQTBBBAwPUCeRvfksxZE/SKQy5vJQmzl4mtHkkYHYUTBCwqQALGogNPtxFwRqBSWdn/0O1XixSf1oo13bibf8A5A8i9CHhJQP3/bvbCqXLq7TV6BP4NG0nCjJcl+PyL9GucIIAAAgi4ViBXmXez5z2vVxpy1XWSMEtJwvAUom7CCQJWFCABY8VRp88I1EIgdcDDUrzva61kvPIb9PAb2teiFooggIA3BHLffUOy57+gb5Pqp/wWtuGEOfz/2BuDQZsIIGAZgdz1qyR7wTS9v/VatZVGM5aKLShYv8YJAghYS4AEjLXGm94iUGuBLOU/IE4p/yGhHtE9B0iD3oO0c/4HAQR8Q6Do/3ZLxrjBor6apB3KgrwxA0ZIVPdevtEBokQAAQR8UCB37SuS/dIsPfJ6192oPIW4VPwCAvRrnCCAgHUESMBYZ6zpKQJ1Eij4ZLNkTBqq1VHvunaSOGd5neqjMAIIeF6g9PCvkvZcX7EfT9Ebr3/XAxI3dCL/GNBFOEEAAQRcK5Dz2lI5uWyuXmn47V0lftxM/XtOEEDAOgIkYKwz1vQUgToJlB47LMd63K7VYYtqIM03f1Wn+iiMAALeESjPzZH00QOl+B/f6AGoaxM0emGh+NeP1K9xggACCCDgOoGcFQvl5KuL9AqjHu0nMX2H6N9zggAC1hAgAWONcaaXCNRZoLKyUg53aiUVBflaXU3e/kwCGyXVuV4qQAABzwtUlpXJiRljpWDr+3rjAcnNJGHmyxKk/MmBAAIIIOB6gROzxkv+xnV6xXHPPS8RXbrp33OCAALmFyABY/4xpocIuEwgdfBjUvzNHq2++CkLJPwvVU/EuKwBKkIAAY8K/O9j8baISIl/foGEXt3ao3HQGAIIIGAFAXVnuvSRT0nRVzuqumuzaevBhLa5yQrdp48IIKAIkIDhxwABBBwWyF46R3LXLNPuj3y4j8Q+NczhstyIAALGFCj44mPJeP45kZLiqgCVhSHjhk2UiDsfMGbARIUAAgj4sEDF6SJJHfiIlP7rQFUvQupJ0uI1EnJhSx/uFaEjgICjAiRgHJXiPgQQkIId2yRjzNOaRMhVrSVpwWpUEEDABALFyj8E0kf0k/KsTL03kT0el5j+z4mfslsSBwIIIICA6wTsOVmS+uSDYk+rWhDdFh0jjZetl8CExq5rhJoQQMCQAiRgDDksBIWAMQXsGcflyH03a8HZwsKl2dav+ceZMYeKqBBwWsCemaHskPSklP58UC8bdtNt0nDCbLEFBevXOEEAAQQQqLtA6dFDktqvu1TkndIqC2zSQpKWvin+EVF1r5waEEDAsAIkYAw7NASGgDEF/n1nG6lQdlFRj+Q3tyoLdjY3ZqBEhQACTguoj8ZnTB4uRbs+1csGt7xCEqYvEX9l9zMOBBBAAAHXCai70aU+01OktFSrNOTyayRx7qviFxTkukaoCQEEDCVAAsZQw0EwCBhf4PiwPnJ6z04t0HjlN+PhHe4yftBEiAACDgtUVlRI9qIZcmr9Kr1MQOMmkjBrOTsk6SKcIIAAAq4RKPh8q2SMG6xXFta+k8RPmssTxroIJwiYS4AEjLnGk94g4HaBnBUL5eSri7R2Irs9JrGDRru9TRpAAAHPC+S+/bpkz39BRNmCXj1symPxCTOWSMilV3k+GFpEAAEETCyQu26VZC+cpvcwsnsviR04Uv+eEwQQMI8ACRjzjCU9QcAjAgW7t0vGyP5aWyHXtJGkeas80i6NIICA5wUKlFeRMiYO/W2HJOWx+PhxsyT85o6eD4YWEUAAARMLZM2bIqeUxPeZI+aZsRJ1/yNnvuVPBBAwiQAJGJMMJN1AwFMCpcf+Lcd6VP3jKyA+QZq+84WnmqYdBBDwgkDxwf2SNryvvvaTGkLMgBESpeySxIEAAggg4BoB9fXPjHGDpHDHJ1UVKjvQxb+wUMLbdXBNA9SCAAKGECABY4hhIAgEfEeg0m6XQ7dcJlJergXdfPs+sQWH+E4HiBQBBJwWKDueImnK+k9lyq4dZ46Iex+W2MFjxM/f/8wl/kQAAQQQqINARWmJHB/0qJQc+L6qFmUHuqSFr0nIn6+oQ60URQABIwmQgDHSaBALAj4icKT7bWJPOaJF23jVBxL8pwt9JHLCRACB2gqU55+S9JEDpHjf3/UqQq+/WeInvii2eqH6NU4QQAABBGovUH7qpKQ8+aD+31m2yGhJenmdBDVuWvtKKYkAAoYRIAFjmKEgEAR8R0B9HaHoqx1awPHPz2c9CN8ZOiJFoE4ClcpWqRlTR0rhpx/q9QRd2FLZIellCWgQq1/jBAEEEECg9gJlqUe1JExFbo5WiboTXeMl68Q/ukHtK6UkAggYQoAEjCGGgSAQ8C2BrAXT9C1qo/sOkQaP9vOtDhAtAgjUWqBS2RUpZ9lcyX39Zb2OgEZJkjBb2aa62Xn6NU4QQAABBGovUPzPf0jq08oivCXFWiUhl10ticrrSH7+AbWvlJIIIOB1ARIwXh8CAkDA9wTy3n9TMmdP1AKv3/FuaTh2hu91gogRQKBOAnkfrJfMORP19aBs4fUlfupiCb3qujrVS2EEEEAAgSoBbefJ0QNFlAV61SNS2RUpVtkdiQMBBHxXgASM744dkSPgNYGib/ZI2uDHtPaDW14hjZeu81osNIwAAt4TKNqzU9LHDZbK00VVQQQESsPRU6X+bV28FxQtI4AAAiYSOPnGcslZMlvvUfyEORLe4U79e04QQMC3BEjA+NZ4ES0ChhCwZ2bIkXvaabHYIqKk+Za9hoiLIBBAwPMCJT8fVLap7iPlWZl647yaqFNwggACCNRZIH3M08r21Nuq6lF2nkxetkGCzrugzvVSAQIIeF6ABIznzWkRAZ8XUNeAONThSpHi01pfmikJGH8lEcOBAALWFLBnpClJmL5SeugnHSDy/r9KzCBlm2qbTb/GCQIIIICA8wIVRYWS0vt+KTt6SCusLsqb/Mq7or76yYEAAr4lQALGt8aLaBEwjMCxXl2l9OcftXjU7RFD/nyFYWIjEAQQ8LxARWGBpI1WtqlWXlE8c4Td3FHix80Sv6CgM5f4EwEEEECgFgKlh3+VlL4PSKWSjFGP0OtvlkbTl4ifn18taqMIAgh4S4AEjLfkaRcBHxdIH/+MFH72kdaLuDHTJaLTPT7eI8JHAIG6ClSWlUnGlOekcPsWvaqQK6+VhGkv8ZtaXYQTBBBAoHYCBZ9vlQxl3a0zR3SfwdLgsf5nvuVPBBDwAQESMD4wSISIgBEFcpbPk5Orl2ihRSnbUMco21FzIIAAAuoritkL1a3qV+sYQeddKAlzXpGA2Ib6NU4QQAABBJwXyFo8U069uaKqoPL0S8Ls5RJ63Y3OV0QJBBDwigAJGK+w0ygCvi+Qt/V9yZwyQutI2F9ul0ZTFvh+p+gBAgi4TCB37SuS/dIsvb6A+ERJmLtCgpq00K9xggACCCDgnEBlebkcH9JLir+t2gDBFhEpjVe8K4EJjZ2riLsRQMArAiRgvMJOowj4vkDxD/sk9cluWkfU324nr/7A9ztFDxBAwKUCWqJ2+hgRu12rV901LWHWy6wZ5VJlKkMAAasJlJ/MkWOP3y3lyq6U6hF0/sWirsdnCwq2GgX9RcDnBEjA+NyQETACxhAozz8lhztdWxWM8hd+i+37WAjOGENDFAgYSqBo7y5JHztIKk8XVcWlbKHaaPI8CVMWkORAAAEEEKidQPE//yGp/R9SEtxlWgX1lbX4Gipr8nEggICxBUjAGHt8iA4BQwv8+842UpGbo8XY9J0vJCA+wdDxEhwCCHhHoPjH/ZI2rK8+X4i/v8QNnywRd97vnYBoFQEEEDCBQN7GtyRz1gS9J3HDJkrE3T307zlBAAHjCZCAMd6YEBECPiOQ8lQPKdn/rRZvwrxVEnpNG5+JnUARQMCzAqUpRyTt2cfFfjxFbzi6zzPKDh5P6d9zggACCCDgnMCJqaMkf8u7VYUCAiVp8RvKa56XO1cJdyOAgMcESMB4jJqGEDCfwH//pR87dIJE3qM8CsuBAAII1CBgz8lSnoTpI6U//VO/I0KZN2KHjBM/m02/xgkCCCCAgGMCFaUlktqvuz6v+sfFS+OV70lAdIxjFXAXAgh4VIAEjEe5aQwBcwmcXLNMcpbO0ToV+cCjEjtYWWyTAwEEEDiHQEVRoaSPGSin//6lflfYTbdJ/IQ54hcUpF/jBAEEEEDAMYGytBRJeeJeqcg7pRUIufJaSVSeTPZTXvfkQAABYwmQgDHWeBANAj4lULBjm2SMeVqLud517SRxznKfip9gEUDAOwKVyq5IJ14YIQWfbNYDCLm8lTSa/pL414/Qr3GCAAIIIOCYQNH/7Za0ob1FKiu1ApE9HpfYASMcK8xdCCDgMQESMB6jpiEEzCdQ+utPcuyxu7SOBTZpIU3WfmS+TtIjBBBwi0Cl8o+E7EUz5NS6V/X6g1pcIAkvrpSA2Dj9GicIIIAAAo4J5KxeIieXz9NvbjRjKTvO6RqcIGAMARIwxhgHokDAJwXKT52Uw3e01mK3hYVL84+/8cl+EDQCCHhPIPfNlZK9eIYeQEBiY0mcu0oCk5L1a5wggAACCPyxgJrYTh/VX4p2f6bdbFPWgWny2mbxj27wx4W5AwEEPCJAAsYjzDSCgHkFfv1LSxF7mdbB5tv3iS04xLydpWcIIOAWgfxtHyivJI0UKS/X6rfFxEmS8iRM0HkXuKU9KkUAAQTMKlCelyvHHr1TyrMytS6G3niLJEx7yazdpV8I+JwACRifGzICRsBYAkfuu1nsGce1oJqs+5TfWhtreIgGAZ8RKPryC0kbO0hE2dFDPWzKWjAJs5ZJSMsrte/5HwQQQAABxwS09WCefUK/OW7kFIm48wH9e04QQMB7AiRgvGdPywiYQiDlyW5S8sM+rS9JL62VkMuuNkW/6AQCCHheoPgf30ja8L5SUVhQ1bjyRF3C1EUSet2Nng+GFhFAAAEfFsia97ycenuN1gO/eqGSvOoDfknmw+NJ6OYRIAFjnrGkJwh4RSB99EAp3PmJ1nb85HkS3r6TV+KgUQQQMIdAyc8H5bjym9uKk9lVHQoIkPhxsyX8FuYWc4wwvUAAAU8IVJQUS0qve6Ts6CGtueBLr5KkRWvYmtoT+LSBwDkESMCcA4ePEEDgjwUy50ySvPfWajfGDB4jUQ88+seFuAMBBBA4h0BpyhFJe6aX2NNTq+7y85O4YRMlomv3c5TiIwQQQACB/xYo/tcBSX3yQWWtPrt2ObrvEGnwaL//voVzBBDwsAAJGA+D0xwCZhPIWf2SsuXhfK1bUX/tKzH9hpqti/QHAQS8IGDPzJDjQ3pJ2eFf9db5x4NOwQkCCCDgkMDvtqZWnihMWrZBQi64xKGy3IQAAq4XIAHjelNqRMBSAnmb35bM6WO0PtfveLc0HPvbdrKWgqCzCCDgcgF1N4+0ob2l5OB+ve7I7r0kZsAI8VOeiuFAAAEEEDi3QKWyu1zqgIel5MB32o2Bzc6TxivfE1tQ8LkL8ikCCLhFgASMW1ipFAHrCBTt2Slpw/poHa7X6npJnLvSOp2npwgg4HaBiqIiSRvdX4q//kpvq37neyVuxBTWMtBFOEEAAQRqFihLPSrHenaVytNF2k2R9z8isc+MrbkAnyCAgNsESMC4jZaKEbCGgLpgZkqvu7XOBjY/X5q8vtkaHaeXCCDgMYHKsjLJmPisFO7YprcZ1q6DxE98UfyCgvRrnCCAAAIIVC+Qt2m9ZM4Yp3+YMPdVCW3VVv+eEwQQ8IwACRjPONMKAqYVsOdkyZEu12v9s0VESfMte03bVzqGAALeE1Afo8+cNV7yldcezxwhV7WWhOlLxBYaeuYSfyKAAAII1CCQNvIpKdr9mfapf2xDSVZ+aeZfP7KGu7mMAALuECAB4w5V6kTAQgKVFRVy6OaWIso/jtSjxecHxC8w0EICdBUBBDwpkLV4ppx6c4XeZPBFl0rCnOXiHxmtX+MEAQQQQOBsAfvJbDn2yJ1SkZujfRh2SydpNGne2TdyBQEE3CZAAsZttFSMgLkF1HUZ7NkZUp6VKemj+ktFQb7W4bCbOkh5vnKuJGQSF74mfjabuSHoHQIIeFzg5JplkrN0jt5uYNPzJHHeqxIQF69f4wQBBBBA4GyBAuUJmAzlSZgzR/yE2RLe4a4z3/InAgi4WYAEjJuBqR4BswpkvTRLTq19pcbuRXbrKbGDRtX4OR8ggAACdRHI+0BZz0B5JUkqK7VqAhIaS+L81RKY2Lgu1VIWAQQQML3AiRljJX/TBq2ftvD6krx6kwTEJ5i+33QQASMIkIAxwigQAwI+KFBRfFp7jNWellJt9Opf5kHnXVDtZ1xEAAEEXCFQ8PlWyZg0TMReplWnrmmgJmGCmrZwRfXUgQACCJhSQH2K+VivLmJPPab1T11PK3H+KvHz8zNlf+kUAkYSIAFjpNEgFgR8TKBo7y5JG9r7rKiDLmwpySveOes6FxBAAAFXCxTt2alsUz1QpLREq9oW1UASld09gs+/yNVNUR8CCCBgGoHi/d9K6oCHRZS1/NQjRnlqOUp5epkDAQTcK0ACxr2+1I6A6QUyJg2Vgk9+v/V07NAJEnnPQ6bvOx1EAAFjCBR9u1fSR/STytNFWkC2+hHKwrwrJOSSy4wRIFEggAACBhTIXjZXcl9bWhVZcIg0eWOLBDZKMmCkhISAeQRIwJhnLOkJAl4R0FbUf6ijVOTnVbUfFCTNNv5N2dYwwivx0CgCCFhToPiHfcoTeU/oC4L7hYZJwsyXpd4VrawJQq8RQACBPxCotNslpfe9UvrLv7Q7Q29oLwnTl/xBKT5GAIG6CJCAqYseZRFAQBPI27xBMqeP1c7DO9wp8RN+250EIgQQQMBTAiU/H5TjQx7Xt1iVoGBJmLZYQq+7UQsh7+ONEhAbL6FXt/ZUSLSDAAIIGFqg+IfvJfXJB/UY45U5M/zGW/XvOUEAAdcKkIBxrSe1IWBJgUplF5LjAx+R4n1/l4R5qyT0mjaWdKDTCCDgfYHSw7/K8Wcek/KszKpgAgIlfvJcbbekjHGDpf5tXaTh2BneD5QIEEAAAYMInFB2lMvfuE6LRt0NKXnNFrHVCzVIdISBgLkESMCYazzpDQJeEyg9ckjSRj4lTdZuZRV9r40CDSOAgCpQpuzscXzwY2JPT60C8fcX8bNpuyWpryY12/Sl2JT1DjgQQAABBETK80/J0R7K6+S5ORpHZI8nJHbAc9AggIAbBEjAuAGVKhGwqkCZsiV1YEJjq3affiOAgIEE7CfSJVVNwhw7fFZU8ZPmSvgtnc+6zgUEEEDAqgJ5W9+XzCkjqrqvJK2TX31fglpcYFUO+o2A2wRIwLiNlooRQAABBBBAwJsCBbu3S8bI/meFENr2L9oCvWd9wAUEEEDAwgKpTyuvk3/3f5pAyGVXS+LiN3iq2cI/D3TdPQIkYNzjSq0IIIAAAggg4EUBbUFe5R8TFQX5Z0eh/Ha32cbd4h/V4OzPuIIAAghYVEBdQ+tYz67a65oqQdzIFyTizvstqkG3EXCPAAkY97hSKwIIIIAAAgh4SaCyokIyJg+Twi8+Vv4hYa82ipgh4yXqvoer/YyLCCCAgFUFspfNldzXlmrdt0VESZM3t4p/ZLRVOeg3Ai4XIAHjclIqRAABBBBAAAEjCKhPvxR9tUPUV5FO79kpFYUFeljBl1wmjZdt0L/nBAEEEEBApKKkWI799Q6xK+v6qUf9O+6ThqOmQoMAAi4SIAHjIkiqQQABBBBAAAHjClQqT8Kc/m6vFCrJmKLdn4k9I02S39omQY2bGjdoIkMAAQS8IKAmrtOG99VbTnpprahrwnAggEDdBUjA1N2QGhBAAAEEEEDAxwSKf/qn2AKDJKj5n3wscsJFAAEE3C+QPuZpKdyxTWsosPn5krzqffHzD3B/w7SAgMkFSMCYfIDpHgIIIIAAAggggAACCCDgjID9RLocfbiTVJ4u0oo1eGqYRD/cx5kquBcBBKoRIAFTDQqXEEAAAQQQQAABBBBAAAErC+S+9apkL5peRRBST5q+sUUC4hOtTELfEaizAAmYOhNSAQIIIIAAAggggAACCCBgLoHK8nJJeeIeKf3lX1rHQm9oLwnTl5irk/QGAQ8LkIDxMDjNIYAAAggggAACCCCAAAK+IFB84DtJ7dddDzV++ksSfsMt+vecIICAcwIkYJzz4m4EEEAAAQQQQAABBBBAwDICJ2aOk/wP1mv9VV9BSlZeRbIpryRxIICA8wIkYJw3owQCCCCAAAIIIIAAAgggYAmB8vxTcrRHR6nIzdH6G/34QGnw+NOW6DudRMDVAiRgXC1KfQgggAACCCCAAAIIIICAiQTyPnxHMqeN1nrkVy9Umqz/VAKiY0zUQ7qCgGcESMB4xplWEEAAAQQQQAABBBBAAAGfFKisqJCUnl2l9NBPWvwR9z0scUPG+2RfCBoBbwqQgPGmPm0jgAACCCCAAAIIIIAAAj4gUPTVDkkb3rcq0oAAafLGRxKY1MQHIidEBIwjQALGOGNBJAgggAACCCCAAAIIIICAYQVSB/5Vir//uxZf2C2dpdGkuYaNlcAQMKIACRgjjgoxIYAAAggggAACCCCAAAIGEyj+YZ+kPtlNjyppxTsScmFL/XtOEEDg3AIkYM7tw6cIIIAAAggggAACCCCAAAL/EUgf87QU7timfRdyTRtJmrcKGwQQcFCABIyDUNyGAAIIIIAAAggggAACCFhdoPToITn2yJ0i5eUaRcLclRLa6nqrs9B/BBwSIAHjEBM3IYAAAggggAACCCCAAAIIqAInZo2X/I3rNIyg8y+WxivfEz8/Pyn+6Z8S0CBOAmLjgEIAgWoESMBUg8IlBBBAAAEEEEAAAQQQQACB6gXsWZly5MFbRUqKtRsaPDVMSn/5UQo+2SxJS9+SkJZXVl+QqwhYXIAEjMV/AOg+AggggAACCCCAAAIIIOCsQPayuZL72tKziiXMXy2hV7c+6zoXEEBAhAQMPwUIIIAAAggggAACCCCAAAIOC1ScLpKcVxfLqbWvnFUmYfZyCW3d7qzrXEAAARIw/AwggAACCCCAAAIIIIAAAgg4KFD05ReSMX2MVORkVVsifuoiCW/XodrPuIiA1QV4AsbqPwH0HwEEEEAAAQQQQAABBBBwUKBCWfcle/FMyXv3jWpLxE98UcJvvaPaz7iIgNUFSMBY/SeA/iOAAAIIIIAAAggggAACTgoU7dkpGVNHnfUkTNzoaRLR+V4na+N2BKwhQALGGuNMLxFAAAEEEEAAAQQQQAABlwqU5+bIiRljpWjXdr3euGETJeLuHvr3nCCAwG8CJGB+s+AMAQQQQAABBBBAAAEEEEDASYG8Tesla8E0qVQW540ZNEqiuvV0sgZuR8AaAiRgrDHO9BIBBBBAAAEEEEAAAQQQcJtAacoROTF5mIQpC/BG/7Wv29qhYgR8WYAEjC+PHrEjgAACCCCAAAIIIIAAAgYRqCy3S1nKUQlq2sIgEREGAsYSIAFjrPEgGgQQQAABBBBAAAEEEEAAAQQQMKEACRgTDipdQgABBBBAAAEEEEAAAQQQQAABYwmQgDHWeBANAm4RsNvtcuTIETl06JCkpaVJZmbmWV9FRUVy+vRpKSkpkeLiYv3LZrNJYGDgWV8RERHSoEEDiYmJ0f5Uz9WvpKQkadasmTRt2lQSEhJELc+BAAIIWF2AedjqPwH0HwEEvC3APOztEaB9VYAEDD8HCJhIIDs7W77//nvZt2+f/Pjjj1rCRU26HD16VMrLyz3eUzVxk5ycrCVkLrnkEmnZsqX+FRkZ6fF4aBABBBBwtwDzsLuFqR8BBBA4twDz8Ll9+NS7AiRgvOtP6wjUWiA3N1d2794te/bs0RIuauIlJSWl1vV5uqCamLnsssukTZs20rZtW7n22mslLCzM02HQHgIIIFBrAebhWtNREAEEEHCJAPOwSxipxIMCJGA8iE1TCNRFQH11aOfOnbJr1y7ta//+/VJZWVmXKg1V1t/fX0vIqMmYdu3aya233qq90mSoIAkGAQQsLcA8bOnhp/MIIGAAAeZhAwwCIdRJgARMnfgojID7BCoqKmTv3r3y4Ycfal/qEy5WOtS1Y9SnYm6//Xbp2LGjtGrVStQkDQcCCCDgKQHmYeZhT/2s0Q4CCFQvwDzMPFz9T4bvXiUB47tjR+QmFFAXv92yZYu89957snXrVsnKyjJhL2vXpejoaOnSpYt069ZNezomKCiodhVRCgEEEDiHAPNwzTjMwzXb8JeAFXEAAAr6SURBVAkCCLhOgHm4Zkvm4ZptfOUTEjC+MlLEaVoBdXHc7du3y9q1a7XES15enmn76qqORUVFSdeuXbVkTIcOHbQdmlxVN/UggID1BJiHnR9z5mHnzSiBAAI1CzAP12xT0yfMwzXJGPs6CRhjjw/RmVhAXcNl2bJlsn79ejlx4oQheqruWhQSEqJ/BQcHa7snqdv2lZWV6V/qbyZKS0sNEXNsbKw88sgj8sQTT8if//xnQ8REEAgg4BsCzMOuGSfmYdc4UgsCVhRgHnbNqDMPu8bRE7WQgPGEMm0g8B8BNXGxYcMGWbp0qXz55ZcecVHXUklKSpIWLVrIeeedp20JHR8fL3FxcdpXw4YNtT8jIiKcWmOlsLBQcnJyfveVmpoqR44c+d1XZmamR/qpNtK6dWvp3bu3PPjggxIeHu6xdmkIAQR8R4B52L1jxTzsXl9qR8AMAszD7h1F5mH3+ta1dhIwdRWkPAIOCBw+fFgWLFggq1ev1hIWDhSp1S1NmzaVK664Qv+66KKLpHnz5qI+yeKtIz8/X3744Qc5cOCAqL/lOPOnOxMz9evX156IGTx4sJZw8lbfaRcBBIwjwDzMPGycn0YiQcCaAszDzMPW/Mn/fa9JwPzeg+8QcKmAunPRzJkztdeM1HdbXXmEhoZKmzZt5MYbb9S+rrzySlEX5vKVQ/1LWH0KSP366quvZN++fdrrTq6MX9016d5775Vnn31WezrGlXVTFwII+IYA83DN48Q8XLMNnyCAgOsEmIdrtmQertnGrJ+QgDHryNIvrwp8/vnnMmPGDPn4449dFoe6PssNN9wgnTp1knbt2slVV11lqsVn1Veadu/erZmpO0AdPHjQZXZqRW3btpWxY8dqfi6tmMoQQMCQAszDzg8L87DzZpRAAIGaBZiHa7ap6RPm4ZpkzHOdBIx5xpKeGEBg165dMnr0aC2R4Ipw1PVZOnfuLHfccYfcdtttoq7TYpXj2LFj2lbc6rbcakJGfV/YFYf6XuykSZM0T1fURx0IIGAsAeZh140H87DrLKkJASsJMA+7brSZh11naZSaSMAYZSSIw6cFvvvuOxkzZox89NFHde5HTEyM3HffffLQQw9prxapi+ha/VDXkdm0aZO2gLGrkjHXX3+9TJ48Wdq3b291XvqPgCkEXD0P33///dKjRw/m4f/8dDAPm+L/JnQCAbcKMA+7lVeYh93r66naScB4Spp2TCnwyy+/aE+8vP3221JZWVnrPtarV0/uueceLemiPumivm7EUb2A+pfPxo0bZcWKFbJjx446uast3H777fLiiy/KJZdcUn2DXEUAAUMLMA97fniYhz1vTosIGFmAedjzo8M87HlzV7VIAsZVktRjKQH1/cypU6fKnDlzpKSkpNZ9v/jii+XJJ5+Uxx57TKKiompdj1ULqn/hr1y5UlatWiVpaWm1ZggICNDGQX01SX0CiQMBBIwvwDxsjDFiHjbGOBAFAt4QYB72hvrZbTIPn21i5CskYIw8OsRmSIG33npLhg8fLikpKbWKT326RX20vV+/ftpiurWqhEK/E7Db7bJ582btSRb1vePaHmoSbMKECTJw4EBRkzIcCCBgTAHmYeONC/Ow8caEiBBwpwDzsDt1a1c383Dt3DxdigSMp8Vpz2cF1F151KTJzp07a9WHsLAw6dOnj7YlcnJycq3qoNAfC3z99dfak0nqa2HqX0S1OS6//HJZvny5tGrVqjbFKYMAAm4SYB52E6yLq2UedjEo1SFgIAHmYQMNxjlCYR4+B46XPyIB4+UBoHnjC6j/iJ81a5a2c05tXjeKi4uTp59+WgYMGCANGjQwfodNEqG6ary6tsvSpUtrtYOSuvjxoEGDZMqUKaImzzgQQMB7AszD3rOvS8vMw3XRoywCxhJgHjbWeDgaDfOwo1Keu48EjOesackHBfbt2yePP/64fPvtt05HHx0dLSNGjNCSL6GhoU6Xp4BrBNS1YdT1etQnWmqTQGvSpIksWbJE2w7cNRFRCwIIOCPAPOyMljHvZR425rgQFQKOCjAPOypl3PuYh40zNiRgjDMWRGIgATXL//zzz8u0adOkrKzMqcjUpyWeeeYZbZ2YyMhIp8pys/sE1DV71ETMK6+84vSYqlH17dtXe6KGp2HcN0bUjMB/CzAP/7eGOc6Zh80xjvTCOgLMw+Yba+Zh748pCRjvjwERGEzg8OHD0qNHD9mzZ49Tkfn7+2trxIwfP14aNmzoVFlu9pzAzz//LEOHDpVNmzY53egFF1wga9asYW0Yp+UogIBzAszDznn52t3Mw742YsRrRQHmYXOPOvOw98aXBIz37GnZgALr1q3TtiM+deqUU9HddNNNsnDhQrn00kudKsfN3hP49NNPtQWR9+/f71QQ6u5I6k5Jo0aNEjXpxoEAAq4VYB52raeRa2MeNvLoEJuVBZiHrTP6zMOeH2sSMJ43p0UDChQWFmoLrq5cudKp6Bo3bqwt0Nu9e3enynGzMQTKy8u1tWHUZEpubq5TQalJN/U/UOLj450qx80IIFC9APNw9S5mv8o8bPYRpn++JMA87Euj5bpYmYddZ+lITSRgHFHiHlMLHDp0SLp27SoHDhxwuJ/skOMwlU/cmJ6eri2WrG5d7cyRmJgoGzZskLZt2zpTjHsRQOB/BJiH/wfEgt8yD1tw0OmyoQSYhw01HF4JhnnYM+wkYDzjTCsGFdi2bZuoT6+cPHnS4QgvuugiUZ+UadOmjcNluNE3BNR1Yfr37y/qAmWOHoGBgTJ79mztCSpHy3AfAgj8JsA8/JsFZ6Ktz8U8zE8CAp4VYB72rLfRW+O/h907QiRg3OtL7QYWmDlzpraOR0VFhUNRqmt/DBs2TCZOnCjBwcEOleEm3xPIz8/XFulVt6125njooYdkxYoVEhIS4kwx7kXA0gLMw5Ye/ho7zzxcIw0fIOByAeZhl5OaokLmYfcNIwkY99lSs0EFSkpKpGfPnvLWW285HGGLFi3kzTfflGuvvdbhMtzo2wIbN26U3r17S1ZWlsMdad26tajl2AXLYTJutKgA87BFB97JbjMPOwnG7Qg4IcA87ASWhW9lHnb94JOAcb0pNRpYQH3VSF3vZdeuXQ5HqW5JvXTpUomIiHC4DDeaQ0B9F7ZXr16ydetWhzvUvHlz+fDDD+Xiiy92uAw3ImAlAeZhK4123fvKPFx3Q2pA4H8FmIf/V4TvzyXAPHwuHec/IwHjvBklfFTg6NGj0rFjRzl48KBDPQgLC5NFixZpT8s4VICbTCswf/58GT58uJSVlTnUx6ioKHnnnXekffv2Dt3PTQhYRYB52Coj7fp+Mg+73pQarSnAPGzNcXdFr5mHXaEoQgLGNY7UYnCB77//Xjp37ixpaWkORaoutPv+++/LhRde6ND93GR+gb/97W/SrVs3OX78uEOdVRfnXbVqlahrw3AggIAI8zA/BXUVYB6uqyDlrS7APGz1n4C69595uO6GJGDqbkgNBhdQXze64447RF1MypGjS5cu8vrrr/PKkSNYFrsnIyNDS8Ls3LnToZ6r25UvWbJE+vbt69D93ISAWQWYh806sp7vF/Ow581p0RwCzMPmGEcj9IJ5uG6jQAKmbn6UNrjAZ599JnfddZcUFRX9YaR+fn4yfvx4mTBhgqjnHAhUJ2C32+W5556TuXPnVvdxtddmzZql7aBV7YdcRMDkAszDJh9gL3SPedgL6DTp0wLMwz49fIYMnnm49sPy/wAAAP//8NH1SgAAQABJREFU7Z0JtFTVlb8PKGhEhagQBBXHOEC0VaLGAcGJOA+tcUzHtlUcaDsxxMaOi/U3RpEYHNoh0GqrUYnRNuIUwQkBFTVxaCfiPCAYRcUJJ4T613nte69eVd1bp6ruqXv2Pl+t5XpV9567797f77zfuW7uu9WtUHwZXhBQSGD69OnmgAMOMF988UXN6lZaaSVz/fXXt42vOZgBECgSmDx5shk9erT5+uuvnXiMGzfOnHnmmU5jGQQBLQTwYS1KhlkHPhymLmQVFgF8OCw9tGWDD9evaDcaMPVD44jwCdx+++3mkEMOMV9++WXNZPv27WvuuOMOs80229QcywAIlBKwFzV2nn3yySelmxPfjx071owfPz5xPzsgoIkAPqxJzXBrwYfD1YbM8ieAD+evQQwZ4MP1qUwDpj5ejBZA4M9//nPbnSxLliypme2GG25opk2bZjbYYIOaYxkAgWoEnnnmGbP33nubefPmVdtdsc3eBWPvhuEFAc0E8GHN6oZXGz4cniZklD8BfDh/DWLKAB92V5sGjDsrRgogMHv2bDNy5Ejz+eef18x22223NfZfBuwdMLwg0AyB+fPnm913393MnTvXKcx5551nxowZ4zSWQRCQRgAflqaYjnzxYR06UkU2BPDhbDgSpT4C+LAbLxowbpwYJYDAE088YUaMGGE+/vjjmtnacbb50qtXr5pjGQABFwILFy5sa/49+eSTLsPNJZdcYk4++WSnsQyCgBQC+LAUpXTmiQ/r1JWq6iOAD9fHi9HZEsCHa/OkAVObESMEEPjb3/5mhg0bZuwvfa3XHnvsYaZOnWq+9a1v1RrKfgjUReCjjz4ye+21l3n44YdrHtetWzdz7bXXmiOPPLLmWAZAQAIBfFiCSvpzxIf1a0yFyQTw4WQ27GkdAXw4nTUNmHQ+7BVAYMGCBWa77bZzegaHfVbHzTffbFZYYQUBlZGiRAKLFy82+++/v7nvvvtqpt+zZ09jH1w2fPjwmmMZAIGQCeDDIasTX274cHyaU7Ex+DCzICQC+HCyGjRgktmwRwCBzz77rO3Ol8cff7xmtvYrqW+88UbTo0ePmmMZAIFmCNh5ueeee5pZs2bVDNOnTx/z0EMPmc0226zmWAZAIEQC+HCIqpATPswciIkAPhyT2nJqxYera0UDpjoXtgogsGzZMnPwwQebW265pWa29gGp9qum7R0HvCDQCgL2q6l3220389hjj9U83aBBg8wjjzxi+vfvX3MsAyAQEgF8OCQ1yKWcAD5cToTPGgngwxpV1VMTPlypJQ2YSiZsEULgtNNOM/bbZGq9fvCDH5h77rmHB+7WAsX+zAksWrTI7LLLLuapp56qGXvrrbc29lsLeDZRTVQMCIgAPhyQGKRSlQA+XBULGxURwIcViam0FHy4q7A0YLry4JMQAv/93/9t/uVf/qVmtptvvrl54IEHzLe//e2aYxkAAR8E7IOhd9ppJ/PCCy/UDH/UUUe1PZi35kAGQCAAAvhwACKQghMBfNgJE4MEEsCHBYoWacr4cKfwNGA6WfBOCAH7vJcddtjBfPnll6kZr7/++m3fRvOd73wndRw7IeCbwGuvvdb2oOh333235qkuvPBC82//9m81xzEAAnkSwIfzpM+5GyGADzdCjWNCJoAPh6wOuVUj8Oqrrxr7lwmxXw/TgKk2O9gWLAF7C9tWW21lXn/99dQce/fubebMmWM23XTT1HHshECrCNhnwYwYMcLYB5KlvZZffvm2b1CyX6vOCwIhEsCHQ1SFnFwI4MMulBgjgQA+LEElcqxGAB82hgZMtZnBtiAJFAoFs++++5o777wzNT/7P7B33XVX2wNQUweyEwItJnDrrbeagw46yNgH5qW97F1b9l+2Bg4cmDaMfRBoOQF8uOXIOWHGBPDhjIESruUE8OGWI+eEGROI3YdpwGQ8oQjnj8DZZ59tzjjjjJonmDx5sjn++ONrjmMABPIgYP/E6Gc/+1nNU9s7YGbMmGG6d+9ecywDINAqAvhwq0hzHp8E8GGfdIntmwA+7Jsw8VtBIGYfpgHTihnGOZom8OCDD5qdd9655p0D9n9szz///KbPRwAI+CTw4x//2Fx33XU1T3HWWWc5NR1rBmIABDIggA9nAJEQwRDAh4ORgkTqIIAP1wGLocETiNWHacAEPzVJ0H5//BZbbGHsA/TSXvabZu6//35j/wSJFwRCJvD555+b7bffvubXU9u5bL+aervttgu5HHKLgAA+HIHIkZWID0cmuIJy8WEFIlJCFwKx+jANmC7TgA8hEjjmmGPMVVddlZpa//79zRNPPGHWXHPN1HHshEAoBGxDcejQoeaDDz5ITcl+m9dTTz1lVlllldRx7ISATwL4sE+6xM6LAD6cF3nO2wgBfLgRahwTOoEYfZgGTOizMvL8brnllraHlqZhWG655dq+Ncb+iRIvCEgiMH36dLPnnnsa+0C9tNc//dM/mWuuuSZtCPsg4I0APuwNLYEDIIAPByACKdQkgA/XRMQAwQRi82EaMIInq/bU33nnHTNkyBDz3nvvpZY6YcIEc9ppp6WOYScEQiVg5+55551XMz377V977bVXzXEMgECWBPDhLGkSK1QC+HCoypCXJYAPMw9iIBCTD9OAiWFGC63x0EMPNTfeeGNq9rvssou59957Tbdu3VLHsRMCoRJYsmRJ2zNe7J/Qpb3WXntt89xzz/GnSGmQ2Jc5AXw4c6QEDJAAPhygKKTUQQAf7kDBG8UEYvJhGjCKJ7Lk0v785z+bvffeO7WEPn36mKefftrY/zHlBQHJBF544QWz9dZbm8WLF6eWcdJJJ5lLL700dQw7IZAVAXw4K5LEkUAAH5agUnw54sPxaR5zxbH4MA2YmGd5oLXb/wkdPHiweeONN1IznDJlijn88MNTx7ATAlIIXHHFFea4445LTdfe6TVr1iyz4447po5jJwSaJYAPN0uQ4yUSwIclqqY3Z3xYr7ZUlkwgBh+mAZOsP3tyIvDzn//cnH/++alnt40X24DhBQFNBOwDeadNm5Za0iabbNJ251ePHj1Sx7ETAs0QwIebocexkgngw5LV05U7PqxLT6pxJ6Ddh2nAuM8FRraAgP26XfvVvEuXLk08W79+/czcuXPNaqutljiGHRCQSMDe9WUfPP3pp5+mpm8blD/72c9Sx7ATAo0SwIcbJcdxGgjgwxpUlF8DPixfQyponIB2H6YB0/jc4EgPBEaMGGEeeOCB1MjXX3+9OeKII1LHsBMCUglcfPHF5pRTTklNv3fv3uall14yffv2TR3HTgg0QgAfboQax2gigA9rUlNmLfiwTN3IOjsCmn2YBkx284RITRKYOnWqOfDAA1OjjBw5suafaKQGYCcEAiewbNmytme8zJkzJzXTY4891lx++eWpY9gJgXoJ4MP1EmO8RgL4sEZV5dSED8vRikz9EdDswzRg/M0bItdBwH712GabbWZefvnlxKO+9a1vtX0N73rrrZc4hh0Q0EDg+eefN1tssYX5+uuvE8vp3r27+ctf/mK22mqrxDHsgEA9BPDhemgxVjsBfFi7wmHWhw+HqQtZ5UNAqw/TgMlnPnHWMgIXXHCBOfXUU8u2dv04fvx4M3bs2K4b+QQBpQR++tOfmosuuii1uuHDh5sZM2akjmEnBFwJ4MOupBgXCwF8OBalw6kTHw5HCzIJg4BGH6YBE8bcijqLRYsWmfXXX998+OGHiRzsXS/2wbsrrLBC4hh2QEATAfv7sNFGG5n33nsvtax77rnH7Lbbbqlj2AmBWgTw4VqE2B8jAXw4RtXzq9nON3u9y/Vwfhpw5vAIaPRhGjDhzbPoMho3bpw566yzUuu+6aabzMEHH5w6hp0Q0EZg0qRJ5sQTT0wta9tttzWPPPJI6hh2QqAWAXy4FiH2x0oAH45V+dbXjQ+3njlnlEFAmw/TgJEx79Rm+cEHH7R1+z/++OPEGnfccUcze/bsxP3sgIBWAvbr2O0zXp5++unUEm+77Taz7777po5hJwSSCODDSWTYDgFj8GFmQSsI4MOtoMw5pBLQ5sM0YKTORCV5n3HGGebss89OrKZbt27mscceM0OHDk0cww4IaCYwbdo0s+eee6aWaB/Y++STTxr7+8ILAvUSwIfrJcb42Ajgw7Ep3vp68eHWM+eMsgho8mEaMLLmnqps33///ba7Xz755JPEug499FBzww03JO5nBwRiIGDvAnvooYdSS7355pvNQQcdlDqGnRAoJ4APlxPhMwSqE8CHq3Nha/ME8OHmGRIhDgJafJgGTBzzNcgqf/nLX5pzzjknMTf7NbvPPvus2XTTTRPHsAMCMRB44IEHzIgRI1JL3W677cycOXNSx7ATAuUE8OFyInyGQHUC+HB1LmxtngA+3DxDIsRBQIsP04CJY74GV+XixYvN2muvbew3byS9jjjiCHP99dcn7WY7BKIiYL/p6L777kut2T4ryf7rAC8IuBDAh10oMQYCnQTw4U4WvMuGAD6cDUeixENAgw/TgIlnvgZV6aWXXmpGjx6dmJO9++X55583G2+8ceIYdkAgJgL27pbtt98+teT99tvP3Hrrralj2AmBdgL4cDsJfkLAjQA+7MaJUe4E8GF3VoyEgCWgwYdpwDCXW05g2bJlbY2Vl19+OfHcRx11lLn22msT97MDAjESGD58uJk5c2Zi6fYhvLZxuckmmySOYQcELAF8mHkAgcYI4MONceOoSgL4cCUTtkDAhYB0H6YB46IyYzIlYP+F/oADDkiN+cwzz5ghQ4akjmEnBGIjcMcdd9T8uunjjz/eTJ48OTY01FsnAXy4TmAMh8A3BPBhpkJWBPDhrEgSJzYC0n2YBkxsMzaAemt1LffYYw8zffr0ADIlBQiERaBQKJjBgwebuXPnJibWq1cv8/bbb5tVVlklcQw7IIAPMwcg0BgBfLgxbhxVSQAfrmTCFgi4EJDuwzRgXFRmTGYE7P84brbZZqnx7Pe8jxw5MnUMOyEQK4Err7zSHHvssanlT5o0yYwaNSp1DDvjJYAPx6s9lWdDAB/OhmPMUfDhmNWn9iwISPZhGjBZzABiOBMYM2aMmThxYuJ4+6/79quneUEAAtUJfPnll2bQoEHmnXfeqT6guHXLLbc0TzzxROJ+dsRNAB+OW3+qb54APtw8w9gj4MOxzwDqb5aAZB+mAdOs+hzvTGDJkiVm4MCBZuHChYnHXH755TX/dT/xYHZAIBICY8eONRMmTEit9i9/+YsZOnRo6hh2xkcAH45Pcyr2QwAf9sM1hqj4cAwqU2MrCEj1YRowrZgdnKONwM0332wOPvjgRBqrrrpq27MrVlpppcQx7IAABIx55ZVXzEYbbWTs38AmvY477jjzX//1X0m72R4pAXw4UuEpO3MC+HDmSKMJiA9HIzWFeiYg1YdpwHieGITvJLDXXnuZu+66q3ND2Tv7zAr77ApeEIBAbQK77babue+++xIH9unTp+3PlHr27Jk4hh3xEcCH49Ociv0RwIf9sdUcGR/WrC61tZqARB+mAdPqWRLp+ezzKgYMGGCWLVuWSOCxxx4z3//+9xP3swMCEOgk8Mc//tEcdthhnRuqvLNfcbnffvtV2cOmGAngwzGqTs0+CeDDPunqjI0P69SVqvIjINGHacDkN1+iOvNll11mTj755MSaN998c/O///u/ifvZAQEIdCXw1VdftTU133///a47Sj4dfvjhZsqUKSVbeBszAXw4ZvWp3QcBfNgHVd0x8WHd+lJd6wlI9GEaMK2fJ1GeccSIEeaBBx5IrP2iiy4yp5xySuJ+dkAAApUE7J/tpT3npVevXubdd981PFepkl2MW/DhGFWnZt8E8GHfhHXFx4d16Uk1YRCQ5sM0YMKYN6qzqHW7Zffu3c38+fNN//79VXOgOAhkTeD+++83u+66a2rYG2+80RxyyCGpY9ipnwA+rF9jKsyHAD6cD3eJZ8WHJapGzhIISPNhGjASZpXwHGvdbrnzzjun3h0jvHzSh4A3AkuXLm37and7UZf0+tGPfmTs38fyipsAPhy3/lTvjwA+7I+ttsj4sDZFqScUAtJ8mAZMKDNHcR677LKLmTFjRmKFl156qTnppJMS97MDAhBIJjB69Ghjf4eSXvbbkBYuXGiWX375pCFsj4AAPhyByJSYGwF8ODf0ok6MD4uSi2SFEZDkwzRghE0uael+8sknZvXVVzdLliypmrr986MFCxaY73znO1X3sxECEEgnMHv2bDNs2LDUQTNnzqw5JjUAO0UTwIdFy0fyAgjgwwJEyjlFfDhnATi9egKSfJgGjPrpmG+BU6dONQceeGBiEsOHD0+9OybxQHZAAAJtBOxtl3379jWLFi1KJDJ27Fgzfvz4xP3s0E0AH9atL9XlTwAfzl+D0DPAh0NXiPykE5DkwzRgpM+2wPM/4YQTzOTJkxOznDhxojn11FMT97MDAhCoTeCwww5Lfc4LX/Nem6HmEfiwZnWpLRQC+HAoSoSZBz4cpi5kpYuAFB+mAaNr3gVXzXrrrWdef/31xLyeffZZM3jw4MT97IAABGoTuOaaa8zRRx+dOvCtt95qe2Bv6iB2qiSAD6uUlaICI4APByZIYOngw4EJQjoqCUjxYRowKqdfGEW98MILZpNNNklMZq211jLz5s1L3M8OCEDAjYD9FqQ111zTFAqFxAOuvfZac9RRRyXuZ4dOAviwTl2pKjwC+HB4moSSET4cihLkoZ2AFB+mAaN9JuZYX62v2zv22GPN5ZdfnmOGnBoCeggMHTrUPP7444kFjRo1ykyaNClxPzt0EsCHdepKVWESwIfD1CXvrPDhvBXg/DERkODDNGBimpEtrvXII480U6ZMSTzr//zP/5h//Md/TNzPDghAwJ3AmDFjjH2mUtLL/qmf/ZM/XnERwIfj0ptq8yWAD+fLP9Sz48OhKkNeGglI8GEaMBpnXiA1pf29a7du3cx7771nVltttUCyJQ0IyCZQ6xsW+J2TrW+j2ePDjZLjOAjUTwAfrp9ZDEfgwzGoTI2hEJDgwzRgQpktyvJYsGBB6gM/7bNh5s6dq6xqyoFAfgQWLlxo+vXrl5rA7bffbvbZZ5/UMezUQwAf1qMllcgggA/L0KmVWeLDraTNuSBgjAQfpgHDTPVCwP550SGHHJIY+5hjjjFXXnll4n52QAAC9RPYeOONzYsvvph44NixY8348eMT97NDFwF8WJeeVCODAD4sQ6dWZYkPt4o054FAJ4HQfZgGTKdWvMuQwKmnnmouuOCCxIi2+WKbMLwgAIHsCNjfqauuuiox4A9/+ENz1113Je5nhy4C+LAuPalGBgF8WIZOrcoSH24Vac4DgU4CofswDZhOrXiXIYHhw4ebmTNnJka0f36U9hXViQeyAwIQSCQwefJkc8IJJyTut19VbW+H5hUHAXw4Dp2pMiwC+HBYeuSdDT6ctwKcP0YCofswDZgYZ2ULal599dXNBx98UPVMffr0adtnHwrKCwIQyI7AnDlzzPbbb58a8N133zV9+/ZNHcNOHQTwYR06UoUsAviwLL18Z4sP+yZMfAhUEgjdh2nAVGrGliYJzJ8/36y11lqJUXbaaScza9asxP3sgAAEGiPw6aefmlVXXdUUCoXEAPfee6/ZddddE/ezQwcBfFiHjlQhjwA+LE8zXxnjw77IEhcC6QRC92EaMOn6sbcBAtOmTTN77rln4pEnnXSSufTSSxP3swMCEGicwAYbbGBeffXVxAATJ0409m/SeekmgA/r1pfqwiaAD4etT6uyw4dbRZrzQKCSQMg+TAOmUi+2NEngvPPOM6eddlpilN/97nepz6lIPJAdEIBATQIHHnigmTp1auI4+2AyvoEsEY+aHfiwGikpRCABfFigaB5Sxoc9QCUkBBwJhOzDNGAcRWSYO4Gf/OQn5ve//33iAQ899FDN51QkHswOCEAglcC4cePMWWedlTjGPhBwxowZifvZoYMAPqxDR6qQSQAflqlb1lnjw1kTJR4E3AmE7MM0YNx1ZKQjgR122ME8/PDDiaM/+uijtudUJA5gBwQg0DCBa665xhx99NGJx6+zzjrmjTfeSNzPDh0E8GEdOlKFTAL4sEzdss4aH86aKPEg4E4gZB+mAeOuIyMdCQwcODDxq2779etn3nnnHcdIDIMABOolYL/+3d7lkvTq3r27+eKLL0yPHj2ShrBdAQF8WIGIlCCWgP2igZ133jkxf3w4EY2qHfiwKjkpRhiBkH2YBoywyRR6ul999ZVZccUVE7+FZZtttjGPPvpo6GWQHwTEEnjzzTfNoEGDUvN/6aWXzIYbbpg6hp1yCeDDcrUjcx0E8GEdOjZTBT7cDD2OhUDzBEL2YRowzetLhBIC9n/svvvd75Zs6fr2Rz/6kfnjH//YdSOfIACBzAgsW7asrQm6ZMmSxJh333232X333RP3s0M2AXxYtn5kL58APixfw2YrwIebJcjxEGiOQMg+TAOmOW05uozAPffcY/bYY4+yrZ0f7bcjTZgwoXMD7yAAgcwJ2LtbXnnllcS49luQ7Lch8dJJAB/WqStVySKAD8vSK+ts8eGsiRIPAvUTCNWHacDUryVHpBC44oorzHHHHZc44rLLLjMnnnhi4n52QAACzRMYNmyYmT17dmIg2wRN+6r4xAPZIYIAPixCJpJUTgAfVi5wjfLw4RqA2A2BFhAI1YdpwLRA/JhOMX78ePMf//EfiSXffvvtZp999knczw4IQKB5AgcddJC55ZZbEgONGTPGnHfeeYn72SGbAD4sWz+y10EAH9ahY6NV4MONkuM4CGRHIFQfpgGTncZEKhKw/2M3ceLERBZz5swx2223XeJ+dkAAAs0TOP74483ll1+eGMh+TfVVV12VuJ8dsgngw7L1I3sdBPBhHTo2WgU+3Cg5joNAdgRC9WEaMNlpTKQigX/+5382V199dSKLF1980Wy00UaJ+9kBAQg0T+D000835557bmIgexeavRuNl04C+LBOXalKFgF8WJZeWWeLD2dNlHgQqJ9AqD5MA6Z+LTkihcC+++5r7rjjjsQR77//vllttdUS97MDAhBonoC9C83+61vSy96FZu9G46WTAD6sU1eqkkUAH5alV9bZ4sNZEyUeBOonEKoP04CpX0uOSCGw/fbbJ/6PXffu3c3XX39tunXrlhKBXRCAQLME7J8XpX3L0SabbGLmzp3b7Gk4PlAC+HCgwpBWVATw4ajkrigWH65AwgYItJxAqD5MA6blU0H3Ce3/2L3wwgtVi1x99dXNe++9V3UfGyEAgewI3HDDDebwww9PDLjeeuuZV199NXE/O2QTwIdl60f2Ogjgwzp0bLQKfLhRchwHgewIhOrDNGCy05hIRQLrrruueeONN6qyWGeddRL3VT2AjRCAQEME7Dcg2Se/J70GDBhg5s+fn7Sb7cIJ4MPCBSR9FQTwYRUyNlwEPtwwOg6EQGYEQvVhGjCZSUwgS8D+j93bb79dFYZ9+K59CC8vCEDAL4E777wz9eveuRvNL/+8o+PDeSvA+SFgDD4c9yzAh+PWn+rDIBCqD9OACWN+qMlijTXWMPZBu9VegwcPNs8++2y1Xeatt95q+1aWN9980yxdurTqGDZCAAL/R2DFFVc09vfJPuRvpZVWqsBy7733mt13371ie/uGXr16mU8//bT9Iz+VEcCHlQlKOUESwIeDlCWYpPDhYKQgEcUExPpwgRcEMiSw8sorF4q/51X/23LLLaueady4cYUePXpUPSYpFturM4ZLXFz69etXuOuuuyp+r2bOnJn6+7T88stXHMMGPQTw4bh8AN/PV298WI93ZlkJPpzv7yW+GBd/aT5ssjQbYkGgZ8+eif/jV/zq2wpAv/71rxPHY55xmSd6N6a3/Z175JFHuvxuPfzwwzV/r7ocwAdVBPDhxn6X8CC4NToH8GFVFppJMfgwftKon3BcY3NHkg/zJ0jFWc4rOwJpXzG90047mVmzZnWcbNGiRWbNNdc0X375Zcc23kAAAvUTGD58uJkxY0bHgXPmzDH2KzDTXsUrzLTd7BNMAB8WLB6piyWAD4uVzkvi+LAXrASFQCoBKT5MAyZVRnbWSyBtwRk2bJgp/mlER8jbb7/d7Lfffh2feQMBCDRGoHv37ubzzz83xe5/WwAaMI1x1HIUPqxFSeqQRAAflqSW/1zxYf+MOQMEyglI8WEaMOXK8bkpAvUsOH/4wx/MEUcc0dT5OBgCEPg/Ah9++KHp3bt32wcaMHHPCnw4bv2pPj8C+HB+7EM7Mz4cmiLkEwsBCT5MAyaW2diiOutZcOw3In3ve99rUWacBgJ6Cay77rrmtdde6yiQBkwHiijf4MNRyk7RORPAh3MWILDT48OBCUI6URAQ48OZPGmKIBD4hkDxtzvx4Z/FP0Gq4LTrrrsmjk+Lxb5kzrCJj80ll1zS5XeLh/B2wRHdhzQPwIfj84e0+cC+7OYDPhyd1aYWnPa7hQ9n93uXxpl98XGW4sN8C1KqfbKzXgJpZldtwVm4cGFhyJAhNGFSGldpTNkX3+JSrvmoUaMqfk1pwFQgiWpD+Rwp/YwP4xml84H32cwHfDgqi3UqNu13Cx/O5vcujTH74mMsyYdpwDjZKINcCaQZXrUFx8b94osvCmeeeWZhueWWoxFDI4Y54DgH+vfvX5g6dWrVX00aMFWxRLMRH47vwjNNc/b5mw/4cDS2Wnehab93XA/7+51M484+ndwl+jANmLotlQPSCKSZW9KC0x5v9OjR/M+34/98p3Fmn84FplzXO++8s/1Xp+InDZgKJFFtKJ8rpZ/x4Tj8oVRz3vvTHB+OylrrKjbt9w4f9vc7mcadfTq5S/RhHsJb/G3klR2Beh46Vn7WK664whx33HHlm/kMAQhUITBv3jyz1lprVdljDA/hrYolmo34cDRSU2jOBPDhnAUI+PT4cMDikJoqAhJ9mAaMqimYfzHNLDhXXnmlOfbYY/MvggwgIIDA/PnzzYABA6pmSgOmKpZoNuLD0UhNoTkTwIdzFiDg0+PDAYtDaqoISPRhGjCqpmD+xbDg5K8BGcRBQOKCE4cy+VeJD+evARnEQQAfjkPnRqrEhxuhxjEQqJ+ARB+mAVO/zhyRQoAFJwUOuyCQIQGJC06G5RMqhQA+nAKHXRDIkAA+nCFMZaHwYWWCUk6wBCT6MA2YYKeTzMRYcGTqRtbyCEhccORRlpkxPixTN7KWRwAflqdZqzLGh1tFmvPETkCiD9OAiX3WZlw/C07GQAkHgQQCEhechFLYnDEBfDhjoISDQAIBfDgBDJsNPswkgEBrCEj0YRowrZkb0ZyFBScaqSk0ZwISF5yckUVzenw4GqkpNGcC+HDOAgR8enw4YHFITRUBiT5MA0bVFMy/GBac/DUggzgISFxw4lAm/yrx4fw1IIM4CODDcejcSJX4cCPUOAYC9ROQ6MM0YOrXmSNSCLDgpMBhFwQyJCBxwcmwfEKlEMCHU+CwCwIZEsCHM4SpLBQ+rExQygmWgEQfpgET7HSSmRgLjkzdyFoeAYkLjjzKMjPGh2XqRtbyCODD8jRrVcb4cKtIc57YCUj0YRowsc/ajOtnwckYKOEgkEBA4oKTUAqbMyaAD2cMlHAQSCCADyeAYTMP4WUOQKBFBCT6MA2YFk2OWE7DhX8sSlNn3gQkLjh5M4vl/PhwLEpTZ94E8OG8FQj3/PhwuNqQmS4CEn2YBoyuOZh7NSw4uUtAApEQkLjgRCJN7mXiw7lLQAKREMCHIxG6gTLx4QagcQgEGiAg0YdpwDQgNIckE2DBSWbDHghkSUDigpNl/cRKJoAPJ7NhDwSyJIAPZ0lTVyx8WJeeVBMuAYk+TAMm3PkkMjMWHJGykbRAAhIXHIGYRaaMD4uUjaQFEsCHBYrWopTx4RaB5jTRE5DowzRgop+22QJgwcmWJ9EgkERA4oKTVAvbsyWAD2fLk2gQSCKADyeRYTs+zByAQGsISPRhGjCtmRvRnIUFJxqpKTRnAhIXnJyRRXN6fDgaqSk0ZwL4cM4CBHx6fDhgcUhNFQGJPkwDRtUUzL8YFpz8NSCDOAhIXHDiUCb/KvHh/DUggzgI4MNx6NxIlfhwI9Q4BgL1E5DowzRg6teZI1IIsOCkwGEXBDIkIHHBybB8QqUQwIdT4LALAhkSwIczhKksFD6sTFDKCZaARB+mARPsdJKZGAuOTN3IWh4BiQuOPMoyM8aHZepG1vII4MPyNGtVxvhwq0hzntgJSPRhGjCxz9qM62fByRgo4SCQQEDigpNQCpszJoAPZwyUcBBIIIAPJ4Bhs8GHmQQQaA0BiT5MA6Y1cyOas6QtOD/4wQ/Mww8/nMhi0qRJ5sQTT0zczw4IQKCTwOuvv24GDRrUuaHk3XPPPWeGDBlSsqXybaFQqNzIFhUE8GEVMlKEAAL4sACRckoRH84JPKeNjoBIHy5ehPOCQGYEir/19v/qqv630korFV577bWq51q6dGlhzz33rHpcUjy2V+cMlzi4XHjhhVV/l+zGq6++uubvUuLB7BBPIM0D8OE4/CFtDrAvuzmAD4u3S28FpP2e4cPZ/Q6mcWZfHJwl+jB3wBR/O3llRyCt42/P0qdPH7Pzzjubnj17dpy0uPoZ+y/2c+fO7djGGwhAoDaB4cOHm759+3YZuGjRInP//febZcuWddle/sH+3vHSSQAf1qkrVYVJAB8OU5e8s8KH81aA88dEQJoP04CJaXa2oNZaC04LUuAUEICAAwEaMA6QhA7Bh4UKR9rREcCH9UqOD+vVlsp0EcjDh2nA6JpDuVfDgpO7BCQAAScCeSw4TokxqGkC+HDTCAkAgZYQwIdbgjmXk+DDuWDnpBCom0AePkwDpm6ZOCCNAAtOGh32QSAcAnksOOFUrzsTfFi3vlSnhwA+rEfL8krw4XIifIZAmATy8GEaMGHOBbFZseCIlY7EIyOQx4ITGeLcysWHc0PPiSFQFwF8uC5cogbjw6LkItmICeThwzRgIp5wPkpnwfFBlZgQyJ5AHgtO9lUQsRoBfLgaFbZBIDwC+HB4mmSVET6cFUniQMAvgTx8mAaMX02ji86CE53kFCyUQB4LjlBU4tLGh8VJRsKREsCH9QqPD+vVlsp0EcjDh2nA6JpDuVfDgpO7BCQAAScCeSw4TokxqGkC+HDTCAkAgZYQwIdbgjmXk+DDuWDnpBCom0AePkwDpm6ZOCCNAAtOGh32QSAcAnksOOFUrzsTfFi3vlSnhwA+rEfL8krw4XIifIZAmATy8GEaMGHOBbFZseCIlY7EIyOQx4ITGeLcysWHc0PPiSFQFwF8uC5cogbjw6LkItmICeThwzRgIp5wPkpnwfFBlZgQyJ5AHgtO9lUQsRoBfLgaFbZBIDwC+HB4mmSVET6cFUniQMAvgTx8mAaMX02ji86CE53kFCyUQB4LjlBU4tLGh8VJRsKREsCH9QqPD+vVlsp0EcjDh2nA6JpDuVfDgpO7BCQAAScCeSw4TokxqGkC+HDTCAkAgZYQwIdbgjmXk+DDuWDnpBCom0AePkwDpm6ZOCCNAAtOGh32QSAcAnksOOFUrzsTfFi3vlSnhwA+rEfL8krw4XIifIZAmATy8GEaMGHOBbFZseCIlY7EIyOQx4ITGeLcysWHc0PPiSFQFwF8uC5cogbjw6LkItmICeThwzRgIp5wPkpnwfFBlZgQyJ5AHgtO9lUQsRoBfLgaFbZBIDwC+HB4mmSVET6cFUniQMAvgTx8mAaMX02ji86CE53kFCyUQB4LjlBU4tLGh8VJRsKREsCH9QqPD+vVlsp0EcjDh2nA6JpDuVfDgpO7BCQAAScCeSw4TokxqGkC+HDTCAkAgZYQwIdbgjmXk+DDuWDnpBCom0AePkwDpm6ZOCCNAAtOGh32QSAcAnksOOFUrzsTfFi3vlSnhwA+rEfL8krw4XIifIZAmATy8GEaMGHOBbFZrbzyymbx4sVi8ydxCMRAoHfv3ubDDz+ModQoa8SHo5SdooURwIeFCVZnuvhwncAYDoEcCOTlwzRgchBb8yl/+9vfmtNPP918/fXXmsukNgiIIWD/Fa70X+LsYmN/T4855hgxNZBofQTw4fp4MRoCvgngw74JhxcfHw5PEzKKm0BIPkwDJu656KX6L774ostdMPbz7373O3P22Wd7OR9BIQCB6gQmT55sjj76aNOzZ8/qA9iqlgA+rFZaChNGAB8WJliG6eLDGcIkFASaIBCaD9OAaUJMDq2PwFprrWXmz59f30GMhgAEGiKw6aabmueff76hYzlILwF8WK+2VBYeAXw4PE1CyAgfDkEFcoiFQIg+TAMmltkXQJ1bbLGFefrppwPIpP4Uhg4dak444YSqB9o/txozZoz59NNPq+5P25gWN+240n324VFnnnmmeeutt0o3V33fvXt3M2zYMPPd737XbLjhhmajjTZq+9m/f3+zaNGitgbZggUL2n4++eST5p577jHvvfde1VjlG7fZZpu22LYm+98KK6xgnnrqKfPXv/7VPPbYY2batGmmngddZR1vyJAh5qc//Wl52m2fb7rpJjN9+vSq+6RutPweffRRqemTtycC+HAlWHy4kkn7lqx82N76veOOO5r999/fbL755sb+D2jfvn3NRx991LbezJgxw0yZMsW8+OKL7adW8RMfViFj5kXgw5VI8eFKJu1bsvJhG69fv37mkEMOMVtvvbUZNGiQWWeddUyfPn3Mu+++2+bFDz74oLn66qvNm2++2X568T+D9OHi/xDxgkBLCBQvugrF32KR/5144ompjNZdd92G6qoVN/WkJTtHjBiRev7ixW/h4IMPLjz33HMlR9V+u3Tp0kKxeVI466yzCltuuWXVc/To0aNw4YUX1gx25513FlZfffWqMUrnRdbx2mMfddRRiTmee+65NfNqjyPlZ3HBSayXHfESwIcr1yB8uJJJlj689957F4rN+Jq/dEuWLCn85Cc/UeXF+HBN2aMcgA9Xeg4+XMkkSx+2/59S/IfGQvEfjWv+ztlr/+IzjAr2/FKuedPyDNGH7b9I84JASwiw4FSaaysWHHvx+8QTTzSt8a233lphxMXOeeGRRx5xjl3sqBe22267ijjtxpl1vPa49icNGGeZGKiYAD6MD7fKh1dZZZXCn/70p7p/m37xi18krhGlni7hfYgX/nULwgGZE8CH8eFW+XC7Txbvfq97HtuGzXLLLSfej0P0YRowdU9HDmiUAAtO6xecc845p1G5Ko6r1oCZM2dOxbhaG4p/0lRYddVVqxp61vHaFx77kwZMLWXYHwMBfBgftvO8FT68ySabNPwrdcopp1RdI0o9XcL7EC/8GxaFAzMjgA/jw3YytcKH232ykQaMzXHcuHHivThEH6YBY2cXr5YQGDlypNhf4lp3qoT4J0hnnHFGprqWN2CKf8vfcHz7J03ti0L7z6zjtcdt/xlbA+awww5rWB8O1EsAH27thX/MPtxMA6b4TLPC8ssvX7FOtPu5lJ/4sF4vbaYyfBgfbp8/rboebrQBU3w+ZKFXr16ivThEH+YhvMVVnFdrCMydO9cU/1Wr7SFP5Wf8+9//3vYQ2PLtoXwuNmDMZZddlpjOeuutZ15//fXE/Uk7asWdOnWqWbhwYdLhHdt/9atfdXkIb/FfV0zxz45M8dbBjjHNvrntttvaHqBo49iH+doHKg8ePLhq2BdeeMEU/57f2AffVnstXrzYrL/++m0P/bL7s45X7ZzFBoy59tprq+0yEyZMMGPHjq26L+SNlu/AgQMrUlx77bWNnRNrrrlmxT42xE0AH67UHx9+tw1K1j5cbMAYO9/KX8XnCxj7UF57vrTX9ttvb4p3RaYNCWIfPhyEDKKSwIcr5cKH/fhwO2n7BRwzZ84077//vvnP//xPYx98/uyzz7ZdQ9r/v9lpp53ah1b8LD5n0jzwwAMV20PaIM6H2ztw/IRAngS++uqrwhFHHBFsh7W4MKTi8XUHTKNxiyabmm/7zmJzp3DjjTcWit/iVNh5550LW221Vduf6vzmN78p3HvvvQX7IK72V+kdMGnd5FdffbVg//a/aMypf/8/ceLEDr2zjmfPXf6ftjtg/vVf/7VdGn5CIBMC+HB1jPhwodCIr5feAfPZZ5+1Pcy9eJFf6NmzZ6F3796Fq666qjrwb7YefvjhFT5e7ut5f8aHUyVkZwME8OHq0PDhxny43SPtl2CcdNJJHdfn7dvtz+K3IBXs/w8kvY488sigvViiD/MnSEmzje0tJ1Dsrgb7Cy6pAVP8emkn7Szv4teApjL/3ve+V7CNF/sqbcCkfeuRfXJ6u7Hbi+2k18MPP9wxLut47ecv/amtATN79uwktGyHQMME8OFKdI1c+OPDptDegHnllVcKxa/d7fD7dl+2386X9hB3e1HdPjbUn/hw5e8LW5ongA9XMsSHC23fTNTuha7X1+3ja/1M+5bUtC/PqBW3Ffsl+jANmMrfcbbkRODRRx8N9mJLUgPGfoNErdcll1xS19/XW/PdfffdO/S54447Ek/xwx/+sGOc/VfOpNc777zTMS7reNUMX1sDxv6+8IJA1gTw4UqijVz448OmsMYaaxSKt7a3/etqNU+220aPHl0J/JstBx54YMcakXR83tvx4UT52NEEAXy4Eh4+XCg0cn3t4pEHH3xwYdmyZZXQi1u++OKLwgorrBC0F0v0YRowVacbG/MgwIJTSf35558v2G8GSvvvoosu6mKMt9xyS2Wgki1TpkzpMt7FnMvHFP9+uSRi17fF5450iW+f8p70WnnlldvGZh2vPF/7mQZMkgpsh0AnAXy4k0X7O3y4UGjE16v5cPm2E044oR1zxc9NN920y1pSfmwInyVe+FeAZkNwBPDhSknw4Wx92H4zkP3H5euvv75QfGZjJfBvtowfPx4fTqTT+A4aMI2z48iMCbDgNAb0scce62KOtb7K2d4W3syFa/HBiW0d8aRs7V0vpfFfeumlpKEF+1WMWccrPXfpexowiTKwAwIdBPDhDhR1vcGHO3HV8xW7F1xwQeeBJe8+//zzQo8ePbqsJaV+Hsp7GjAlovE2MwL4cGMo8eFObrV8uPjFIZ2DE94VH9JbWHHFFfHhBD7NbKYB0ww9js2UAAtOYzjLFxz7sMSkl33IVrMXrsVv2EkK37bdPmCx9BzPPPNM4vgDDjigkHW80nOXvqcBkygDOyDQQQAf7kBR1xt8uBOX9fVS7016b58B87e//a3zwJJ3V1xxhVOMpNit2k4DpkQ03mZGAB9uDCU+3Mmtlg/XasDYu2K+/e1v48OdSDN9RwMmU5wEa4YAC05j9MoXnLfeeisxkH0YYrMXphtvvHFifLvD3tFSeo60fOxzZbKOV3ru0vc0YFJlYycE2gjgw41NBHy4k1vp88JKPbj8/X777dd5UMk7+ywC+wD48vEhfqYBUyIcbzMjgA83hhIf7uRWy4drNWBspEmTJtX1vMi8PFqiD9OA6ZyrvMuZAAtOYwKULzhPPfVUYqAsHqa10korJT6sy57Y7i81Yft3u0kv+xT3rOOVnrv0PQ2YJBXYDoFOAvhwJ4t63uHDnbSsr5d6b7X39qGOSXdH2ov+aseEuE3ihX+nUrwLlQA+3Jgy+HAnt1o+nPatR51RCoWpU6cG78cSfbibhVxc1HhBIHcCReM02267be55VEug+KAqU/w2h2q72ratt956pthNTtyftKNW3PPPP9+8/fbbSYe3bX/55ZdN0SA7xtx9992m2Pnu+Fz+5thjjzVXXnll+ea6Ps+fP98MGDCg6jHFr7Y2xQfvduyzXAYNGtTxufTNwIEDzYIFC0zW8UrP0f6+2IAx1157bfvHLj8nTJhgxo4d22Vb6B+KC44pPkQt9DTJTxgBfLhSMHzYmEZ8vZJk55bf/va35uc//3nnhm/e2fVgs802Mx999FHFvhA34MMhqiI/J3y4UkN8OFsfLv4JqCl+s5QZOnSo+X//7/+1+W4l9f/bsssuu5gZM2Yk7c59u0gfLu1y8R4CeRKwHczib3GQ/0n6Gupzzz03VcbiBW5hyJAhdXPu1atXxzGzZs1KPEfpg7/SHrD72WefFewzAKzmWcerNo+4AyZRMnZAoIMAPtyBouNN8SK1w/uqeUu1bfhw8lpun01Q7StPv/7668Lw4cPrZl2Nf6u22d8XXhDImgA+XEkUHy60fXFFu7e5Xl+3j0/7ucoqqxSeeOKJSujfbJk4cWLQvizRh/kTpMTpxo5WE2DBqSTeyIIzbNiwykBlWxYtWlSw49IMuX3f97///cLs2bMLDz30UMf4q666qixi58eDDjqoY9w666zTuaPsnb39sf0cWcdrj1v6kwZMmQB8hEAVAvhwJRR8uFBoxNdL/bf9/RZbbFH49NNPKyEXt/zyl7/sWBPax4f+U+KFf1X4bAyKAD5cKQc+3JwP2z/7TPPTM844oxL6N1v+9Kc/pR6bFrcV+yT6MA2YxOnGjlYTkLzg2L+1XGuttWr+t/LKK3cxMR931iy//PKFtG9CatfVPg/mF7/4RaFfv35dcrJmucYaaxRGjRrV1nhp/5fK0r+tPf3009vDVPycMmVKR7xTTz21Yn/7htK/K806XjXDpwHTTp6fEEgmgA9Xsmnkwh8frrwDZs011yy8+eablYCLW6ZNm9ZxR2Q1/w51m8QL/6oCsDEoAvhwpRz4cKHQyPV1u3faZ279/ve/L6y++uod1+jt++zPyy+/vBL6N1uuu+66qseUHp/ne4k+TAMmcbqxo9UEJC84rqz+8Ic/dDGxWg2YI488srDDDjvU/K/49/ld4h5xxBGuKRXsV81ZY77vvvsKjz/+eOGDDz6oemxpA6Z///6FxYsXVx1nGza/+tWvCmPGjCm8//77VcfYjTbHdsPOOl573NKfNGASpWAHBDoI4MMdKDre4MOFtj8ZqtfXS/3XPmz9r3/9awfT8jf266jtnZbl/82cObNg14fSWCG9l3jhX86ez+ERwIcrNcGHm/Ph4vMi26C+8847bf/4au9ut/9QYP8R9swzz6wEXrLlN7/5TbAebNcDiT5MA6ZkgvE2XwIxLDg33XRTFxOr1YBxVaT4ENkuce2zVe666y7Xw53GlTZgrOH9+te/djqu2qC///3vhZ49e3bJOet45RfpNGCqKcE2CHQlgA935VHPJ3y40tetDy+33HKF2267rR6UXcaG/JXUEi/8u8DlQ5AE8OHGZcGHq/twewOmlGz7He6l26q933///btcr5dfX+f9WaIP04CpNtPYlgsBFpzGsZcvONYM7UO10r6Sut6zlTdgevfunXqHS1r8Qw89tMLMs45XviDQgElThH0Q+D8C+HDjMwEfrvR168PFbxBsHGrxSBowTeHjYIEE8OHGRcOHq/twtQaMC+XPP/+87bEE5dfUIX2mAeOiJGMgkECABScBjMPmaguONUfb1Ljgggva/szIIUzqkPIGjI1v/4zoyy+/TD2ufOeFF15Y0XxpN/Ks47XHtT9pwJQrwWcIVBLAhyuZuG7Bhyuf+3LOOee44kscRwMmEQ07lBLAhxsXFh+u9GF7DdxIA2bp0qWFAw88MPGavfQaO8/3NGAa/33hSAi0/Q1fnr/AaefO6k+FWvUnSOW1DB48uHD//fc3PMvss2EOO+ywqiZs/47U5aG/H3/8cWKM0nyzjtcemwZMw/JzYEQEuPBvXOykC/92D4rNh9Merl4PZRow9dBirAYC+HDjKuLD1Rsw9v8/bEPF9WX/cfW4446ret3fvqaF8pMGjKuqjINAFQIhLzg//vGPq2Rc/6arr766i5llFXfcuHFd4iaZov0q0RtuuKHw9ttvpyZvH7A7a9aswnnnnVfYZpttasbu06dP4ZJLLml7mO/XX3/dJfYrr7xSsA8f3mijjWrGac8763g27gEHHNAlr9IP9uv32s8t5afEBaeUOe/DJIAPN64LPtz1wr+Rf3Etp2+fUbDBBhsE68/4cLlifM6CAD7cOEV8uKsPl17T2m+iO/nkk9u+dMM+jLfa66OPPipMnDixMHDgwGB9t7Qm+16iD3ez8IvJ84JA7gSKf+Jitt1229zziCWBAQMGmOLXTZviV9KZ4jdUmGLTxXz44Ydt/82bN88UO+UNoejVq5f5h3/4B7PCCiuY4jNoTPFblRqK035Q1vHa40r/WVxwTLE5Jr0M8g+MAD7cWkHw4dbyzvps+HDWRIlnCeDDrZ0Hsfqwvb4ufr23WWuttUzxWS+m+A+mZsGCBfb5sK0VoMmzSfRhGjBNis7h2RFgwcmOJZH0E5C44OhXRX6F+LB8DamgdQTw4daxjulM+HBMalNrswQk+jANmGZV5/jMCLDgZIaSQBEQkLjgRCCL+BLxYfESUkALCeDDLYQd0anw4YjEptSmCUj0YRowTctOgKwIsOBkRZI4MRCQuODEoIv0GvFh6QqSfysJ4MOtpB3PufDheLSm0uYJSPRhGjDN606EjAiw4GQEkjBREJC44EQhjPAi8WHhApJ+Swngwy3FHc3J8OFopKbQDAhI9GEaMBkIT4hsCLDgZMORKHEQkLjgxKGM7CrxYdn6kX1rCeDDreUdy9nw4ViUps4sCEj0YRowWShPjEwIsOBkgpEgkRCQuOBEIo3oMvFh0fKRfIsJ4MMtBh7J6fDhSISmzEwISPRhGjCZSE+QLAiw4GRBkRixEJC44MSijeQ68WHJ6pF7qwngw60mHsf58OE4dKbKbAhI9GEaMNloT5QMCLDgZACRENEQkLjgRCOO4ELxYcHikXrLCeDDLUcexQnx4ShkpsiMCEj0YRowGYlPmOYJsOA0z5AI8RCQuODEo47cSvFhudqReesJ4MOtZx7DGfHhGFSmxqwISPRhGjBZqU+cpgmw4DSNkAAREZC44EQkj9hS8WGx0pF4DgTw4RygR3BKfDgCkSkxMwISfZgGTGbyE6hZAiw4zRLk+JgISFxwYtJHaq34sFTlyDsPAvhwHtT1nxMf1q8xFWZHQKIP04DJTn8iNUmABadJgBweFQGJC05UAgktFh8WKhxp50IAH84Fu/qT4sPqJabADAlI9GEaMBlOAEI1R4AFpzl+HB0XAYkLTlwKyawWH5apG1nnQwAfzoe79rPiw9oVpr4sCUj0YRowWc4AYjVFgAWnKXwcHBkBiQtOZBKJLBcfFikbSedEAB/OCbzy0+LDygWmvEwJSPRhGjCZTgGCNUOABacZehwbGwGJC05sGkmsFx+WqBo550UAH86LvO7z4sO69aW6bAlI9GEaMNnOAaI1QYAFpwl4HBodAYkLTnQiCSwYHxYoGinnRgAfzg296hPjw6rlpbiMCUj0YRowGU8CwjVOgAWncXYcGR8BiQtOfCrJqxgflqcZGedHAB/Oj73mM+PDmtWltqwJSPRhGjBZzwLiNUyABadhdBwYIQGJC06EMokrGR8WJxkJ50gAH84RvuJT48OKxaW0zAlI9GEaMJlPAwI2SoAFp1FyHBcjAYkLTow6SasZH5amGPnmSQAfzpO+3nPjw3q1pbLsCUj0YRow2c8DIjZIgAWnQXAcFiUBiQtOlEIJKxofFiYY6eZKAB/OFb/ak+PDaqWlMA8EJPowDRgPE4GQjRFgwWmMG0fFSUDighOnUrKqxodl6UW2+RLAh/Plr/Xs+LBWZanLBwGJPkwDxsdMIGZDBFhwGsLGQZESkLjgRCqVqLLxYVFykWzOBPDhnAVQenp8WKmwlOWFgEQfpgHjZSoQtBECLDiNUOOYWAlIXHBi1UpS3fiwJLXINW8C+HDeCug8Pz6sU1eq8kNAog/TgPEzF4jaAAEWnAagcUi0BCQuONGKJahwfFiQWKSaOwF8OHcJVFbtv6AAAB+NSURBVCaAD6uUlaI8EZDowzRgPE0GwtZPgAWnfmYcES8BiQtOvGrJqRwflqMVmeZPAB/OXwONGeDDGlWlJl8EJPowDRhfs4G4dRNgwakbGQdETEDighOxXGJKx4fFSEWiARDAhwMQQWEK+LBCUSnJGwGJPkwDxtt0IHC9BFhw6iXG+JgJSFxwYtZLSu34sBSlyDMEAvhwCCroywEf1qcpFfkjINGHacD4mw9ErpMAC06dwBgeNQGJC07UggkpHh8WIhRpBkEAHw5CBnVJ4MPqJKUgjwQk+jANGI8TgtD1EWDBqY8Xo+MmIHHBiVsxGdXjwzJ0IsswCODDYeigLQt8WJui1OOTgEQfpgHjc0YQuy4CLDh14WJw5AQkLjiRSyaifHxYhEwkGQgBfDgQIZSlgQ8rE5RyvBKQ6MM0YLxOCYLXQ4AFpx5ajI2dgMQFJ3bNJNSPD0tQiRxDIYAPh6KErjzwYV16Uo1fAhJ9mAaM3zlB9DoIsODUAYuh0ROQuOBEL5oAAPiwAJFIMRgC+HAwUqhKBB9WJSfFeCYg0YdpwHieFIR3J8CC486KkRCQuOCgWvgE8OHwNSLDcAjgw+FooSkTfFiTmtTim4BEH6YB43tWEN+ZAAuOMyoGQsBIXHCQLXwC+HD4GpFhOATw4XC00JQJPqxJTWrxTUCiD9OA8T0riO9MgAXHGRUDIUADhjnghQA+7AUrQZUSkHjhr1QKVWXhw6rkpBjPBCT6MA0Yz5OC8O4EWHDcWTESAhIXHFQLnwA+HL5GZBgOAXw4HC00ZYIPa1KTWnwTkOjDNGB8zwriOxNgwXFGxUAIcAcMc8ALAXzYC1aCKiUg8cJfqRSqysKHVclJMZ4JSPRhGjCeJwXh3Qmw4LizYiQEJC44qBY+AXw4fI3IMBwC+HA4WmjKBB/WpCa1+CYg0YdpwPieFcR3JsCC44yKgRDgDhjmgBcC+LAXrARVSkDihb9SKVSVhQ+rkpNiPBOQ6MM0YDxPCsK7E2DBcWfFSAhIXHBQLXwC+HD4GpFhOATw4XC00JQJPqxJTWrxTUCiD9OA8T0riO9MgAXHGRUDIcAdMMwBLwTwYS9YCaqUgMQLf6VSqCoLH1YlJ8V4JiDRh2nAeJ4UhHcnwILjzoqREJC44KBa+ATw4fA1IsNwCODD4WihKRN8WJOa1OKbgEQfpgHje1YQ35kAC44zKgZCgDtgmANeCODDXrASVCkBiRf+SqVQVRY+rEpOivFMQKIP04DxPCkI706ABcedFSMhIHHBQbXwCeDD4WtEhuEQwIfD0UJTJviwJjWpxTcBiT5MA8b3rCC+MwEWHGdUDIQAd8AwB7wQwIe9YCWoUgISL/yVSqGqLHxYlZwU45mARB+mAeN5UhDenQALjjsrRkJA4oKDauETwIfD14gMwyGAD4ejhaZM8GFNalKLbwISfZgGjO9ZQXxnAiw4zqgYCAHugGEOeCGAD3vBSlClBCRe+CuVQlVZ+LAqOSnGMwGJPkwDxvOkILw7ARYcd1aMhIDEBQfVwieAD4evERmGQwAfDkcLTZngw5rUpBbfBCT6MA0Y37OC+M4EWHCcUTEQAtwBwxzwQgAf9oKVoEoJSLzwVyqFqrLwYVVyUoxnAhJ9mAaM50lBeHcCLDjurBgJAYkLDqqFTwAfDl8jMgyHAD4cjhaaMsGHNalJLb4JSPRhGjC+ZwXxnQmw4DijYiAEuAOGOeCFAD7sBStBlRKQeOGvVApVZeHDquSkGM8EJPowDRjPk4Lw7gRYcNxZMRICEhccVAufAD4cvkZkGA4BfDgcLTRlgg9rUpNafBOQ6MM0YHzPCuI7E2DBcUbFQAhwBwxzwAsBfNgLVoIqJSDxwl+pFKrKwodVyUkxnglI9GEaMJ4nBeHdCbDguLNiJAQkLjioFj4BfDh8jcgwHAL4cDhaaMoEH9akJrX4JiDRh2nA+J4VxHcmwILjjIqBEOAOGOaAFwL4sBesBFVKQOKFv1IpVJWFD6uSk2I8E5DowzRgPE8KwrsTYMFxZ8VICEhccFAtfAL4cPgakWE4BPDhcLTQlAk+rElNavFNQKIP04DxPSuI70yABccZFQMhwB0wzAEvBPBhL1gJqpSAxAt/pVKoKgsfViUnxXgmINGHacB4nhSEdyfAguPOipEQkLjgoFr4BPDh8DUiw3AI4MPhaKEpE3xYk5rU4puARB+mAeN7VhDfmQALjjMqBkKAO2CYA14I4MNesBJUKQGJF/5KpVBVFj6sSk6K8UxAog/TgPE8KQjvToAFx50VIyEgccFBtfAJ4MPha0SG4RDAh8PRQlMm+LAmNanFNwGJPkwDxvesIL4zARYcZ1QMhAB3wDAHvBDAh71gJahSAhIv/JVKoaosfFiVnBTjmYBEH6YB43lSEN6dAAuOOytGQkDigoNq4RPAh8PXiAzDIYAPh6OFpkzwYU1qUotvAhJ9mAaM71lBfGcCLDjOqBgIAe6AYQ54IYAPe8FKUKUEJF74K5VCVVn4sCo5KcYzAYk+TAPG86QgvDsBFhx3VoyEgMQFB9XCJ4APh68RGYZDAB8ORwtNmeDDmtSkFt8EJPowDRjfs4L4zgRYcJxRMRAC3AHDHPBCAB/2gpWgSglIvPBXKoWqsvBhVXJSjGcCEn2YBoznSUF4dwIsOO6sGAkBiQsOqoVPAB8OXyMyDIcAPhyOFpoywYc1qUktvglI9GEaML5nBfGdCbDgOKNiIAS4A4Y54IUAPuwFK0GVEpB44a9UClVl4cOq5KQYzwQk+jANGM+TgvDuBFhw3FkxEgISFxxUC58APhy+RmQYDgF8OBwtNGWCD2tSk1p8E5DowzRgfM8K4jsTYMFxRsVACHAHDHPACwF82AtWgiolIPHCX6kUqsrCh1XJSTGeCUj0YRownicF4d0JsOC4s2IkBCQuOKgWPgF8OHyNyDAcAvhwOFpoygQf1qQmtfgmINGHacD4nhXEdybAguOMioEQ4A4Y5oAXAviwF6wEVUpA4oW/UilUlYUPq5KTYjwTkOjDNGA8TwrCuxNgwXFnxUgISFxwUC18Avhw+BqRYTgE8OFwtNCUCT6sSU1q8U1Aog/TgPE9K4jvTIAFxxkVAyHAHTDMAS8E8GEvWAmqlIDEC3+lUqgqCx9WJSfFeCYg0YdpwHieFIR3J8CC486KkRCQuOCgWvgE8OHwNSLDcAjgw+FooSkTfFiTmtTim4BEH6YB43tWEN+ZAAuOMyoGQoA7YJgDXgjgw16wElQpAYkX/kqlUFUWPqxKTorxTECiD9OA8TwpCO9OgAXHnRUjISBxwUG18Angw+FrRIbhEMCHw9FCUyb4sCY1qcU3AYk+TAPG96wgvjMBFhxnVAyEAHfAMAe8EMCHvWAlqFICEi/8lUqhqix8WJWcFOOZgEQfpgHjeVIQ3p0AC447K0ZCQOKCg2rhE8CHw9eIDMMhgA+Ho4WmTPBhTWpSi28CEn2YBozvWUF8ZwIsOM6oGAgB7oBhDnghgA97wUpQpQQkXvgrlUJVWfiwKjkpxjMBiT5MA8bzpCC8OwEWHHdWjISAxAUH1cIngA+HrxEZhkMAHw5HC02Z4MOa1KQW3wQk+jANGN+zgvjOBFhwnFExEALcAcMc8EIAH/aClaBKCUi88Fcqhaqy8GFVclKMZwISfZgGjOdJQXh3Aiw47qwYCQGJCw6qhU8AHw5fIzIMhwA+HI4WmjLBhzWpSS2+CUj0YRowvmcF8Z0JsOA4o2IgBLgDhjnghQA+7AUrQZUSkHjhr1QKVWXhw6rkpBjPBCT6MA0Yz5OC8O4EWHDcWTESAhIXHFQLnwA+HL5GZBgOAXw4HC00ZYIPa1KTWnwTkOjDNGB8zwriOxNgwXFGxUAIcAcMc8ALAXzYC1aCKiUg8cJfqRSqysKHVclJMZ4JSPRhGjCeJwXh3Qmw4LizYiQEJC44qBY+AXw4fI3IMBwC+HA4WmjKBB/WpCa1+CYg0YdpwPieFcR3JsCC44yKgRDgDhjmgBcC+LAXrARVSkDihb9SKVSVhQ+rkpNiPBOQ6MM0YDxPCsK7E2DBcWfFSAhIXHBQLXwC+HD4GpFhOATw4XC00JQJPqxJTWrxTUCiD9OA8T0riO9MgAXHGRUDIcAdMMwBLwTwYS9YCaqUgMQLf6VSqCoLH1YlJ8V4JiDRh2nAeJ4UhHcnwILjzoqREJC44KBa+ATw4fA1IsNwCODD4WihKRN8WJOa1OKbgEQfpgHje1YQ35kAC44zKgZCgDtgmANeCODDXrASVCkBiRf+SqVQVRY+rEpOivFMQKIP04DxPCkI706ABcedFSMhIHHBQbXwCeDD4WtEhuEQwIfD0UJTJviwJjWpxTcBiT5MA8b3rCC+MwEWHGdUDIQAd8AwB7wQwIe9YCWoUgISL/yVSqGqLHxYlZwU45mARB+mAeN5UhDenQALjjsrRkJA4oKDauETwIfD14gMwyGAD4ejhaZM8GFNalKLbwISfZgGjO9ZQXxnAiw4zqgYCAHugGEOeCGAD3vBSlClBCRe+CuVQlVZ+LAqOSnGMwGJPkwDxvOkILw7ARYcd1aMhIDEBQfVwieAD4evERmGQwAfDkcLTZngw5rUpBbfBCT6MA0Y37OC+M4EWHCcUTEQAtwBwxzwQgAf9oKVoEoJSLzwVyqFqrLwYVVyUoxnAhJ9mAaM50lBeHcCLDjurBgJAYkLDqqFTwAfDl8jMgyHAD4cjhaaMsGHNalJLb4JSPRhGjC+ZwXxnQmw4DijYiAEuAOGOeCFAD7sBStBlRKQeOGvVApVZeHDquSkGM8EJPowDRjPk4Lw7gRYcNxZMRICEhccVAufAD4cvkZkGA4BfDgcLTRlgg9rUpNafBOQ6MM0YHzPCuI7E2DBcUbFQAhwBwxzwAsBfNgLVoIqJSDxwl+pFKrKwodVyUkxnglI9GEaMJ4nBeHdCbDguLNiJAQkLjioFj4BfDh8jcgwHAL4cDhaaMoEH9akJrX4JiDRh2nA+J4VxHcmwILjjIqBEOAOGOaAFwL4sBesBFVKQOKFv1IpVJWFD6uSk2I8E5DowzRgPE8KwrsTYMFxZ8VICEhccFAtfAL4cPgakWE4BPDhcLTQlAk+rElNavFNQKIP04DxPSuI70yABccZFQMhwB0wzAEvBPBhL1gJqpSAxAt/pVKoKgsfViUnxXgmINGHacB4nhSEdyfAguPOipEQkLjgoFr4BPDh8DUiw3AI4MPhaKEpE3xYk5rU4puARB+mAeN7VhDfmQALjjMqBkKAO2CYA14I4MNesBJUKQGJF/5KpVBVFj6sSk6K8UxAog/TgPE8KQjvToAFx50VIyEgccFBtfAJ4MPha0SG4RDAh8PRQlMm+LAmNanFNwGJPkwDxvesIL4zARYcZ1QMhAB3wDAHvBDAh71gJahSAhIv/JVKoaosfFiVnBTjmYBEH6YB43lSEN6dAAuOOytGQkDigoNq4RPAh8PXiAzDIYAPh6OFpkzwYU1qUotvAhJ9mAaM71lBfGcCLDjOqBgIAe6AYQ54IYAPe8FKUKUEJF74K5VCVVn4sCo5KcYzAYk+TAPG86QgvDsBFhx3VoyEgMQFB9XCJ4APh68RGYZDAB8ORwtNmeDDmtSkFt8EJPowDRjfs4L4zgRYcJxRMRAC3AHDHPBCAB/2gpWgSglIvPBXKoWqsvBhVXJSjGcCEn2YBoznSUF4dwIsOO6sGAkBiQsOqoVPAB8OXyMyDIcAPhyOFpoywYc1qUktvglI9GEaML5nBfGdCbDgOKNiIAS4A4Y54IUAPuwFK0GVEpB44a9UClVl4cOq5KQYzwQk+jANGM+TgvDuBFhw3FkxEgISFxxUC58APhy+RmQYDgF8OBwtNGWCD2tSk1p8E5DowzRgfM8K4jsTYMFxRsVACHAHDHPACwF82AtWgiolIPHCX6kUqsrCh1XJSTGeCUj0YRownicF4d0JsOC4s2IkBCQuOKgWPgF8OHyNyDAcAvhwOFpoygQf1qQmtfgmINGHacD4nhXEdybAguOMioEQ4A4Y5oAXAviwF6wEVUpA4oW/UilUlYUPq5KTYjwTkOjDNGA8TwrCuxNgwXFnxUgISFxwUC18Avhw+BqRYTgE8OFwtNCUCT6sSU1q8U1Aog/TgPE9K4jvTIAFxxkVAyHAHTDMAS8E8GEvWAmqlIDEC3+lUqgqCx9WJSfFeCYg0YdpwHieFIR3J8CC486KkRCQuOCgWvgE8OHwNSLDcAjgw+FooSkTfFiTmtTim4BEH6YB43tWEN+ZAAuOMyoGQoA7YJgDXgjgw16wElQpAYkX/kqlUFUWPqxKTorxTECiD9OA8TwpCO9OgAXHnRUjISBxwUG18Angw+FrRIbhEMCHw9FCUyb4sCY1qcU3AYk+TAPG96wgvjMBFhxnVAyEAHfAMAe8EMCHvWAlqFICEi/8lUqhqix8WJWcFOOZgEQfpgHjeVIQ3p0AC447K0ZCQOKCg2rhE8CHw9eIDMMhgA+Ho4WmTPBhTWpSi28CEn2YBozvWUF8ZwIsOM6oGAgB7oBhDnghgA97wUpQpQQkXvgrlUJVWfiwKjkpxjMBiT5MA8bzpCC8OwEWHHdWjISAxAUH1cIngA+HrxEZhkMAHw5HC02Z4MOa1KQW3wQk+jANGN+zgvjOBFhwnFExEALcAcMc8EIAH/aClaBKCUi88Fcqhaqy8GFVclKMZwISfZgGjOdJQXh3Aiw47qwYCQGJCw6qhU8AHw5fIzIMhwA+HI4WmjLBhzWpSS2+CUj0YRowvmcF8Z0JsOA4o2IgBLgDhjnghQA+7AUrQZUSkHjhr1QKVWXhw6rkpBjPBCT6MA0Yz5OC8O4EWHDcWTESAhIXHFQLnwA+HL5GZBgOAXw4HC00ZYIPa1KTWnwTkOjDNGB8zwriOxNgwXFGxUAIcAcMc8ALAXzYC1aCKiUg8cJfqRSqysKHVclJMZ4JSPRhGjCeJwXh3Qmw4LizYiQEJC44qBY+AXw4fI3IMBwC+HA4WmjKBB/WpCa1+CYg0YdpwPieFcR3JsCC44yKgRDgDhjmgBcC+LAXrARVSkDihb9SKVSVhQ+rkpNiPBOQ6MM0YDxPCsK7E2DBcWfFSAhIXHBQLXwC+HD4GpFhOATw4XC00JQJPqxJTWrxTUCiD9OA8T0riO9MgAXHGRUDIcAdMMwBLwTwYS9YCaqUgMQLf6VSqCoLH1YlJ8V4JiDRh2nAeJ4UhHcnwILjzoqREJC44KBa+ATw4fA1IsNwCODD4WihKRN8WJOa1OKbgEQfpgHje1YQ35kAC44zKgZCgDtgmANeCODDXrASVCkBiRf+SqVQVRY+rEpOivFMQKIP04DxPCkI706ABcedFSMhIHHBQbXwCeDD4WtEhuEQwIfD0UJTJviwJjWpxTcBiT5MA8b3rCC+MwEWHGdUDIQAd8AwB7wQwIe9YCWoUgISL/yVSqGqLHxYlZwU45mARB+mAeN5UhDenQALjjsrRkJA4oKDauETwIfD14gMwyGAD4ejhaZM8GFNalKLbwISfZgGjO9ZQXxnAiw4zqgYCAHugGEOeCGAD3vBSlClBCRe+CuVQlVZ+LAqOSnGMwGJPkwDxvOkILw7ARYcd1aMhIDEBQfVwieAD4evERmGQwAfDkcLTZngw5rUpBbfBCT6MA0Y37OC+M4EWHCcUTEQAtwBwxzwQgAf9oKVoEoJSLzwVyqFqrLwYVVyUoxnAhJ9mAaM50lBeHcCLDjurBgJAYkLDqqFTwAfDl8jMgyHAD4cjhaaMsGHNalJLb4JSPRhGjC+ZwXxnQmw4DijYiAEuAOGOeCFAD7sBStBlRKQeOGvVApVZeHDquSkGM8EJPowDRjPk4Lw7gRYcNxZMRICEhccVAufAD4cvkZkGA4BfDgcLTRlgg9rUpNafBOQ6MM0YHzPCuI7E2DBcUbFQAhwBwxzwAsBfNgLVoIqJSDxwl+pFKrKwodVyUkxnglI9GEaMJ4nBeHdCbDguLNiJAQkLjioFj4BfDh8jcgwHAL4cDhaaMoEH9akJrX4JiDRh2nA+J4VxHcmwILjjIqBEOAOGOaAFwL4sBesBFVKQOKFv1IpVJWFD6uSk2I8E5DowzRgPE8KwrsTePDBB81OO+3kfgAjIRAxgdmzZ5sdd9wxYgKU7oMAPuyDKjG1EsCHtSqbb134cL78ObssAhJ9mAaMrDmmNtvFixebE044wVx33XVqa6QwCGRJ4KijjjKTJk0yvXr1yjIssSImgA9HLD6lN0QAH24IGwelEMCHU+CwCwJVCEj0YRowVYRkU2sILFu2zEyYMMFMnjzZvPnmm6ZQKLTmxJwFAkoIdOvWzayzzjpm1KhR5t///d9N9+7dlVRGGa0igA+3ijTn0UoAH9aqbOvqwodbx5oz6SQgzYdpwOichyKqOuWUU8zFF18sIleShEDoBEaPHs3vU+giBZgfPhygKKQklgA+LFa6XBPHh3PFz8mVEZDgwzRglE06KeUsWLDArL322sZ2/XlBAALNE7B3v8ybN88MGDCg+WBEiIIAPhyFzBTZQgL4cAthKzkVPqxESMoIhoAEH6YBE8x0iSuRu+++24wcOTKuoqkWAp4JTJ8+3eyxxx6ez0J4LQTwYS1KUkdIBPDhkNQIPxd8OHyNyFAegdB9mAaMvDmlIuM777zT7LPPPipqoQgIhELgjjvuMHvvvXco6ZBH4ATw4cAFIj2RBPBhkbLlljQ+nBt6TqyYQOg+TANG8eQLuTQWnJDVITepBEJfcKRy1Zo3PqxVWerKkwA+nCd9eefGh+VpRsbhEwjdh2nAhD+HVGbIgqNSVorKmUDoC07OeDh9GQF8uAwIHyGQAQF8OAOIEYXAhyMSm1JbRiB0H6YB07KpwIlKCbDglNLgPQSyIRD6gpNNlUTJigA+nBVJ4kCgkwA+3MmCd7UJ4MO1GTECAvUSCN2HacDUqyjjMyHAgpMJRoJAoAuB0BecLsnyIXcC+HDuEpCAQgL4sEJRPZaED3uES+hoCYTuwzRgop2a+RbOgpMvf86uk0DoC45O6nKrwoflakfm4RLAh8PVJsTM8OEQVSEn6QRC92EaMNJnmND8WXCECkfaQRMIfcEJGl6EyeHDEYpOyd4J4MPeEas6AT6sSk6KCYRA6D5MAyaQiRJbGiw4sSlOva0gEPqC0woGnMOdAD7szoqREHAlgA+7kmKcJYAPMw8gkD2B0H2YBkz2mhPRgQALjgMkhkCgTgKhLzh1lsNwzwTwYc+ACR8lAXw4StkbLhofbhgdB0IgkUDoPkwDJlE6dvgkwILjky6xYyUQ+oITqy6h1o0Ph6oMeUkmgA9LVq/1uePDrWfOGfUTCN2HacDon4NBVsiCE6QsJCWcQOgLjnC86tLHh9VJSkEBEMCHAxBBUAr4sCCxSFUMgdB9mAaMmKmkK9G7777bjBw5UldRVAOBnAlMnz7d7LHHHjlnwemlEMCHpShFnpII4MOS1Mo/V3w4fw3IQB+B0H2YBoy+OSeiovnz55t11lnHLFu2TES+JAmB0Al0797dzJs3zwwYMCD0VMkvEAL4cCBCkIYaAviwGilbVgg+3DLUnCgSAhJ8mAZMJJMxxDJHjx5tLr300hBTIycIiCNgf58uvvhicXmTcL4E8OF8+XN2XQTwYV16tqoafLhVpDlPDAQk+DANmBhmYqA12rtfzj33XDN58uS2f7kvFAqBZkpaEAiTQLdu3czaa69tRo0aZcaOHWts158XBOohgA/XQ4uxEKgkgA9XMmFLfQTw4fp4MRoC5QSk+TANmHIF+QwBCEAAAhCAAAQgAAEIQAACEIAABDImQAMmY6CEgwAEIAABCEAAAhCAAAQgAAEIQAAC5QRowJQT4TMEIAABCEAAAhCAAAQgAAEIQAACEMiYAA2YjIESDgIQgAAEIAABCEAAAhCAAAQgAAEIlBOgAVNOhM8QgAAEIAABCEAAAhCAAAQgAAEIQCBjAjRgMgZKOAhAAAIQgAAEIAABCEAAAhCAAAQgUE6ABkw5ET5DAAIQgAAEIAABCEAAAhCAAAQgAIGMCdCAyRgo4SAAAQhAAAIQgAAEIAABCEAAAhCAQDkBGjDlRPgMAQhAAAIQgAAEIAABCEAAAhCAAAQyJkADJmOghIMABCAAAQhAAAIQgAAEIAABCEAAAuUEaMCUE+EzBCAAAQhAAAIQgAAEIAABCEAAAhDImAANmIyBEg4CEIAABCAAAQhAAAIQgAAEIAABCJQToAFTToTPEIAABCAAAQhAAAIQgAAEIAABCEAgYwI0YDIGSjgIQAACEIAABCAAAQhAAAIQgAAEIFBOgAZMORE+QwACEIAABCAAAQhAAAIQgAAEIACBjAnQgMkYKOEgAAEIQAACEIAABCAAAQhAAAIQgEA5ARow5UT4DAEIQAACEIAABCAAAQhAAAIQgAAEMiZAAyZjoISDAAQgAAEIQAACEIAABCAAAQhAAALlBGjAlBPhMwQgAAEIQAACEIAABCAAAQhAAAIQyJgADZiMgRIOAhCAAAQgAAEIQAACEIAABCAAAQiUE6ABU06EzxCAAAQgAAEIQAACEIAABCAAAQhAIGMCNGAyBko4CEAAAhCAAAQgAAEIQAACEIAABCBQToAGTDkRPkMAAhCAAAQgAAEIQAACEIAABCAAgYwJ0IDJGCjhIAABCEAAAhCAAAQgAAEIQAACEIBAOQEaMOVE+AwBCEAAAhCAAAQgAAEIQAACEIAABDImQAMmY6CEgwAEIAABCEAAAhCAAAQgAAEIQAAC5QT+P8/FL6Oce88nAAAAAElFTkSuQmCC" + } + }, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "<div>\n", + "<img src=\"attachment:Buckets.png\" width=\"600\"/>\n", + "</div>" + ] + }, + { + "attachments": { + "Binning_step1.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABGIAAALeCAYAAADh67erAAAMa2lDQ1BJQ0MgUHJvZmlsZQAASImVVwdYU8kWnluSkJDQAhGQEnoTRHqREkKLICBVsBGSQEKJMSGI2NFFBXtBFCu6KqLoWgBZVMReFsXeF2VRWVkXdVEUlTcpoOu+8r3zfXPnv2fO/KfcmXvvAKDdx5VIclEdAPLE+dL4iBDm+NQ0JukZQAEOKMAZ6HB5MgkrLi4aQBns/y7vbgNE0d9wVnD9c/y/ih5fIOMBgEyEOIMv4+VB3AwAvoknkeYDQFTorabnSxR4HsT6UhggxGsVOEuF9yhwhgo3KW0S49kQXwNAg8rlSrMA0HoI9cwCXhbk0foEsauYLxIDoD0C4kCekMuHWBH7iLy8qQpcAbE9tJdADOMBPhnfcGb9jT9jiJ/LzRrCqryUohEqkklyuTP+z9L8b8nLlQ/6sIWNKpRGxivyhzW8mzM1SoGpEHeLM2JiFbWGuE/EV9UdAJQilEcmqexRE56MDesHGBC78rmhURCbQBwuzo2JVuszMkXhHIjhakELRfmcRIgNIV4skIUlqG22SafGq32hdZlSNkutv8CVKv0qfD2W5ySx1PxvhAKOmh/TKhImpkBMgdi6QJQcA7EWxC6ynIQotc3oIiE7ZtBGKo9XxG8NcbxAHBGi4scKMqXh8Wr70jzZYL7YNqGIE6PGh/KFiZGq+mBneFxl/DAX7JpAzEoa5BHIxkcP5sIXhIapcsdeCMRJCWqePkl+SLxqLk6R5Map7XFLQW6EQm8JsYesIEE9F0/Oh4tTxY9nSvLjElVx4kXZ3DFxqnjwlSAasEEoYAI5bBlgKsgGotbu+m54pxoJB1wgBVlAAHeoSjM4I0U5IobXBFAE/oBIAGRD80KUowJQAPWfh7SqqzPIVI4WKGfkgGcQ54EokAvv5cpZ4iFvyeA3qBH9wzsXNh6MNxc2xfi/1w9qv2pYUBOt1sgHPTK1By2JYcRQYiQxnOiAG+OBuD8eDa/BsLnhPrjvYB5f7QnPCG2Ep4RbhHbCvSmiYul3UY4F7ZA/XF2LjG9rgdtCTk88BA+A7JAZZ+DGwBn3gH5YeBD07Am1bHXciqowv+P+WwbfPA21HdmVjJKHkYPJ9t/P1HLU8hxiUdT62/qoYs0Yqjd7aOR7/+xvqs+HfdT3lthi7DB2HjuFXcSasHrAxE5iDdgV7LgCD62u35Sra9BbvDKeHMgj+oc/rtqnopIy1xrXLtdPqrF8QWG+YuOxp0pmSEVZwnwmC34dBEyOmOcygunm6uYGgOJbo3p9vWUovyEI49JXXfEyAAI8BgYGmr7qorUBOAL3DKXjq87eD74mCgG4sJwnlxaodLjiQoBvCW2404yAGbAC9jAfN+AF/EEwCANjQCxIBKlgMqyyEK5zKZgOZoH5oASUgZVgHdgItoIdYA/YDw6BetAEToFz4DK4Bm6BB3D1dIKXoAe8A/0IgpAQGkJHjBBzxAZxQtwQHyQQCUOikXgkFUlHshAxIkdmIQuQMmQ1shHZjlQjPyHHkFPIRaQNuYc8QbqQN8hHFEOpqD5qitqiI1EflIVGoYnoJDQLnYYWoQvR5WgFWoXuQ+vQU+hl9Bbajr5EezGAaWIMzAJzxnwwNhaLpWGZmBSbg5Vi5VgVVos1wud8A2vHurEPOBGn40zcGa7gSDwJ5+HT8Dn4Unwjvgevw8/gN/AneA/+hUAjmBCcCH4EDmE8IYswnVBCKCfsIhwlnIV7qZPwjkgkMoh2RG+4F1OJ2cSZxKXEzcQDxGZiG7GD2EsikYxITqQAUiyJS8onlZA2kPaRTpKukzpJfRqaGuYabhrhGmkaYo1ijXKNvRonNK5rPNfoJ+uQbch+5FgynzyDvIK8k9xIvkruJPdTdCl2lABKIiWbMp9SQamlnKU8pLzV1NS01PTVHKcp0pynWaF5UPOC5hPND1Q9qiOVTZ1IlVOXU3dTm6n3qG9pNJotLZiWRsunLadV007THtP6tOhaLlocLb7WXK1KrTqt61qvtMnaNtos7cnaRdrl2oe1r2p365B1bHXYOlydOTqVOsd07uj06tJ1R+nG6ubpLtXdq3tR94UeSc9WL0yPr7dQb4feab0OOka3orPpPPoC+k76WXqnPlHfTp+jn61fpr9fv1W/x0DPwMMg2aDQoNLguEE7A2PYMjiMXMYKxiHGbcbHYabDWMMEw5YMqx12fdh7w+GGwYYCw1LDA4a3DD8aMY3CjHKMVhnVGz0yxo0djccZTzfeYnzWuHu4/nD/4bzhpcMPDb9vgpo4msSbzDTZYXLFpNfUzDTCVGK6wfS0abcZwyzYLNtsrdkJsy5zunmguch8rflJ89+ZBkwWM5dZwTzD7LEwsYi0kFtst2i16Le0s0yyLLY8YPnIimLlY5VptdaqxarH2tx6rPUs6xrr+zZkGx8boc16m/M2723tbFNsF9nW276wM7Tj2BXZ1dg9tKfZB9lPs6+yv+lAdPBxyHHY7HDNEXX0dBQ6VjpedUKdvJxETpud2kYQRviOEI+oGnHHmerMci5wrnF+4sJwiXYpdql3eTXSemTayFUjz4/84urpmuu60/XBKL1RY0YVj2oc9cbN0Y3nVul2053mHu4+173B/bWHk4fAY4vHXU+651jPRZ4tnp+9vL2kXrVeXd7W3unem7zv+Oj7xPks9bngS/AN8Z3r2+T7wc/LL9/vkN+f/s7+Of57/V+MthstGL1zdEeAZQA3YHtAeyAzMD1wW2B7kEUQN6gq6GmwVTA/eFfwc5YDK5u1j/UqxDVEGnI05D3bjz2b3RyKhUaEloa2humFJYVtDHscbhmeFV4T3hPhGTEzojmSEBkVuSryDseUw+NUc3rGeI+ZPeZMFDUqIWpj1NNox2hpdONYdOyYsWvGPoyxiRHH1MeCWE7smthHcXZx0+J+HkccFzeuctyz+FHxs+LPJ9ATpiTsTXiXGJK4IvFBkn2SPKklWTt5YnJ18vuU0JTVKe3jR46fPf5yqnGqKLUhjZSWnLYrrXdC2IR1Ezonek4smXh7kt2kwkkXJxtPzp18fIr2FO6Uw+mE9JT0vemfuLHcKm5vBidjU0YPj81bz3vJD+av5XcJAgSrBc8zAzJXZ77ICshak9UlDBKWC7tFbNFG0evsyOyt2e9zYnN25wzkpuQeyNPIS887JtYT54jPTDWbWji1TeIkKZG0T/Obtm5ajzRKukuGyCbJGvL14U/9Fbm9/Af5k4LAgsqCvunJ0w8X6haKC6/McJyxZMbzovCiH2fiM3kzW2ZZzJo/68ls1uztc5A5GXNa5lrNXTi3c17EvD3zKfNz5v9S7Fq8uvivBSkLGheaLpy3sOOHiB9qSrRKpCV3Fvkv2roYXyxa3LrEfcmGJV9K+aWXylzLyss+LeUtvbRs1LKKZQPLM5e3rvBasWUlcaV45e1VQav2rNZdXbS6Y83YNXVrmWtL1/61bsq6i+Ue5VvXU9bL17dXRFc0bLDesHLDp43CjbcqQyoPbDLZtGTT+838zde3BG+p3Wq6tWzrx22ibXe3R2yvq7KtKt9B3FGw49nO5J3nf/T5sXqX8a6yXZ93i3e374nfc6bau7p6r8neFTVojbyma9/Efdf2h+5vqHWu3X6AcaDsIDgoP/j7T+k/3T4UdajlsM/h2iM2RzYdpR8trUPqZtT11Avr2xtSG9qOjTnW0ujfePRnl593N1k0VR43OL7iBOXEwhMDJ4tO9jZLmrtPZZ3qaJnS8uD0+NM3z4w703o26uyFc+HnTp9nnT95IeBC00W/i8cu+Vyqv+x1ue6K55Wjv3j+crTVq7XuqvfVhmu+1xrbRreduB50/dSN0BvnbnJuXr4Vc6vtdtLtu3cm3mm/y7/74l7uvdf3C+73P5j3kPCw9JHOo/LHJo+rfnX49UC7V/vxJ6FPrjxNePqgg9fx8jfZb586Fz6jPSt/bv68+oXbi6au8K5rv0/4vfOl5GV/d8kfun9semX/6sifwX9e6Rnf0/la+nrgzdK3Rm93/+XxV0tvXO/jd3nv+t+X9hn17fng8+H8x5SPz/unfyJ9qvjs8LnxS9SXhwN5AwMSrpSr/BXAYEMzMwF4sxsAWioAdHhuo0xQnQWVgqjOr0oE/hNWnReV4gVALewUv/HsZgAOwmYLG20eAIpf+MRggLq7DzW1yDLd3VRcVHgSIvQNDLw1BYDUCMBn6cBA/+aBgc87YbD3AGiepjqDKoQIzwzblBzXGYXzwHeiOp9+k+P3PVBE4AG+7/8FlTiO10mPo7EAAACKZVhJZk1NACoAAAAIAAQBGgAFAAAAAQAAAD4BGwAFAAAAAQAAAEYBKAADAAAAAQACAACHaQAEAAAAAQAAAE4AAAAAAAAAkAAAAAEAAACQAAAAAQADkoYABwAAABIAAAB4oAIABAAAAAEAAARioAMABAAAAAEAAALeAAAAAEFTQ0lJAAAAU2NyZWVuc2hvdOF7ZkAAAAAJcEhZcwAAFiUAABYlAUlSJPAAAAHXaVRYdFhNTDpjb20uYWRvYmUueG1wAAAAAAA8eDp4bXBtZXRhIHhtbG5zOng9ImFkb2JlOm5zOm1ldGEvIiB4OnhtcHRrPSJYTVAgQ29yZSA2LjAuMCI+CiAgIDxyZGY6UkRGIHhtbG5zOnJkZj0iaHR0cDovL3d3dy53My5vcmcvMTk5OS8wMi8yMi1yZGYtc3ludGF4LW5zIyI+CiAgICAgIDxyZGY6RGVzY3JpcHRpb24gcmRmOmFib3V0PSIiCiAgICAgICAgICAgIHhtbG5zOmV4aWY9Imh0dHA6Ly9ucy5hZG9iZS5jb20vZXhpZi8xLjAvIj4KICAgICAgICAgPGV4aWY6UGl4ZWxZRGltZW5zaW9uPjczNDwvZXhpZjpQaXhlbFlEaW1lbnNpb24+CiAgICAgICAgIDxleGlmOlBpeGVsWERpbWVuc2lvbj4xMTIyPC9leGlmOlBpeGVsWERpbWVuc2lvbj4KICAgICAgICAgPGV4aWY6VXNlckNvbW1lbnQ+U2NyZWVuc2hvdDwvZXhpZjpVc2VyQ29tbWVudD4KICAgICAgPC9yZGY6RGVzY3JpcHRpb24+CiAgIDwvcmRmOlJERj4KPC94OnhtcG1ldGE+CptmxDwAAAAcaURPVAAAAAIAAAAAAAABbwAAACgAAAFvAAABbwAAbXUtIuMEAABAAElEQVR4AezdB7xT5f3H8d+d7L2HbFDZCDIVUFBRrAUURaXubeuirmqFtrbuat0469ai4P4jbhQBwYkiMpWN7M3d//M7kNzMc3OTJ8lJ8jl93SY54znPeZ9Ebr73GVll1iIsCCCAAAIIIIAAAggggAACCCCAAAJxF8giiIm7MSdAAAEEEEAAAQQQQAABBBBAAAEEbAGCGN4ICCCAAAIIIIAAAggggAACCCCAQIIECGISBM1pEEAAAQQQQAABBBBAAAEEEEAAAYIY3gMIIIAAAggggAACCCCAAAIIIIBAggQIYhIEzWkQQAABBBBAAAEEEEAAAQQQQAABghjeAwgggAACCCCAAAIIIIAAAggggECCBAhiEgTNaRBAAAEEEEAAAQQQQAABBBBAAAGCGN4DCCCAAAIIIIAAAggggAACCCCAQIIECGISBM1pEEAAAQQQQAABBBBAAAEEEEAAAYIY3gMIIIAAAggggAACCCCAAAIIIIBAggQIYhIEzWkQQAABBBBAAAEEEEAAAQQQQAABghjeAwgggAACCCCAAAIIIIAAAggggECCBAhiEgTNaRBAAAEEEEAAAQQQQAABBBBAAAGCGN4DCCCAAAIIIIAAAggggAACCCCAQIIECGISBM1pEEAAAQQQQAABBBBAAAEEEEAAAYIY3gMIIIAAAggggAACCCCAAAIIIIBAggQIYhIEzWkQQAABBBBAAAEEEEAAAQQQQAABghjeAwgggAACCCCAAAIIIIAAAggggECCBAhiEgTNaRBAAAEEEEAAAQQQQAABBBBAAAGCGN4DCCCAAAIIIIAAAggggAACCCCAQIIECGISBM1pEIhVYPOeMpm7plS+31Aqv2wvkw27ymRPkUhxWawlZ+7xuVki1fNEmtTMkjZ1sqR7k2zp1yJbGlS3NrAggAACCCCAAAIIpKzAhg0b5IsvvpDPPvtMrrvuOmnatGnKXgsVTz8Bgpj0u6dcUZoJfLu+VF75sUTmryuVUkKXuN/dbCuD6dMsW07rkiM9m2bH/XycAAEEEEAAAQQQQCB2gV9//dUOXWbOnGk/Llq0yFvoK6+8Iqeeeqr3NU8QSLYAQUyy7wDnRyCMwOodZXL/l8XylRXAsCRHoLcVyFzRN1da1qaFTHLuAGdFAAEEEEAAAQSCBcrKymThwoV24KItXj755BNZu3Zt8I4H1vzxj3+UBx54IOx2NiCQaAGCmESLcz4EIhCYvrTEDmEKSiLYmV3iKlAlR+wwZkQH6wkLAggggAACCCCAQMIFioqK5JtvvvFr8bJ169aI69G9e3f57rvvIt6fHRGItwBBTLyFKR+BSgo8+U2xvPgDCUwl2eK++xldc+T8XrlxPw8nQAABBBBAAAEEMl1g9+7dMnfuXG+LFx3rZe/evVGzZGdny5YtW6ROnTpRl8GBCJgUIIgxqUlZCMQoQAgTI2CcDyeMiTMwxSOAAAIIIIBARgps2rRJZs+e7W3x8tVXX0lxcbFRi7fffltGjhxptEwKQyBaAYKYaOU4DgHDAtod6a7ZZv/BMVxFirMErh2QK3RT4q2AAAIIIIAAAghEL7B69Wpvaxcd4+XHH38UHfclnsv1118vt99+ezxPQdkIRCxAEBMxFTsiED8BHZj3orcLhTFh4mdsqmQdM+axE/MZwNcUKOUggAACCCCAQNoL/Pzzz97gRQfWXblyZcKveeDAgTJr1qyEn5cTIhBKgCAmlArrEEiwwHUfFDE7UoLNYzmdzqZ05/C8WIrgWAQQQAABBBBAIC0FtEuRDoyrLV30R6eT1q5HyV7y8/Nl+/btUrVq1WRXhfMjIAQxvAkQSLLAN9b01H+2ghiW1BK455g86dk0O7UqTW0RQAABBBBAAAHDAjqI7rx587zBi7Y62bVrl+GzmClOW+MMGTLETGGUgkAMAgQxMeBxKAImBG74sEjmrS01URRlJFDg8ObZcvswWsUkkJxTIYAAAggggIALBLZt2yY6i5GnxcuXX34pOr10Kiz/+Mc/5Oabb06FqlLHNBcgiEnzG8zluVtg854yGTe1UErjOzaZuxFStHbZWSIvj8mXBtWtJywIIIAAAgjEKKBfbt944w1Zt26d1K1bVw455BDp379/hd0otDWCDnyqP5s3b7YHPK1Xr5506NBB2rRpE2OtOBwBkbVr19pjq3iCF+12FO+BdePlfswxx8iMGTPiVTzlIhCxAEFMxFTsiIB5gXeXlMg9c5gpybxsYkqc0D9XTuhojd7LggACCCCAQAwCOm5F7969ZdmyZX6l6FgWffr0kVatWomOb6GtDnbu3GkHLhs3bpTffvtNNMAJtzRs2FAGDx4sQ4cOtX+6du0qWVn8ASGcF+v3CyxdutTb2kXDF32dLkutWrVk69atkpPD72/pck9T9ToIYlL1zlHvtBC4/fMieX8F3ZJS9WYe0zZbbjiC7kmpev+oNwIIIOAWgWnTpsmYMWPiXp0GDRrYwYyOkaHhTLdu3SQ7m/HO4g7v4hOUlpbKggULvMHLp59+Khs2bHBxjWOvmo5nowEnCwLJFCCISaY+5854gUveKZQlW+iXlKpvhI71s+TRkfmpWn3qjQACCCDgEoF3331XRo4cmfDaaBcmbTHjCWZ69OhBMJPwu5DYExYUFMj8+fO9wcvnn38uO3bsSGwlkny2f//733L11VcnuRacPtMFCGIy/R3A9SdVYPQrBbKjMKlV4OQxCNS2Mphpp1WJoQQORQABBBBAQOypfZs0aSLaOiGZi45Nc+SRR3qDmZ49e9KFI5k3xMC5NWSZM2eON3jR5xrGZPIyevRomTp1aiYTcO0uECCIccFNoAqZK3Dc8wVSTIOYlH0D5Frd7N8bTxCTsjeQiiOAAAIuEhgxYoS89957LqqRSJ06deSII46wuzFpV6ZevXoRzLjqDgVXRscN0lYunoF1v/32WykpKQneMYPXNGrUyB5fKYMJuHQXCBDEuOAmUIXMFRj2XGb/RSId7vyHfyCISYf7yDUggAACyRbQL8/aGsXNS+3ateXoo4+WsWPHyqhRo6R69epurm5G1O2XX37xhi4avixatCgjrjvWi/zpp5/smcliLYfjEYhWgCAmWjmOQ8CAAEGMAcQkF0EQk+QbwOkRQACBNBK4/PLL5eGHH06JK9KBfy+99FK56qqrRJ+zxF9Ap4xeuHChzJw50w5f9HHNmjXxP3EanuGxxx6TCy+8MA2vjEtKFQGCmFS5U9QzLQUIYlL/thLEpP495AoQQAABtwgUFxfL+PHj5ZVXXnFLlSqsh7aSufbaa+Waa66hhUyFWpXbQacr//rrr/1avOjUyyyxC+jn7Lnnnou9IEpAIEoBgpgo4TgscoEdBWXyyo8lcl7PXMlhhkQ/OIIYP46UfJHOQQyf3ZR8S1JpBBBIcQEdsPf222+XSZMmiX4RT5WlZcuWcscdd8gZZ5yRKlV2XT13794tc+fO9bZ40YF19+zZ47p6pkOFWrduLdqtiwWBZAkQxCRLPoPOu31fmYyZUig9m2TLzUfmSr1q1ginLLYAQUzqvxHSOYjhs5v670+uAAEEUlfg559/lhtuuEHeeOMN0S4pqbLoODcPPfSQdOvWLVWqnLR6bt68WWbNmuVt8fLVV1+JtopiSYzAqlWrRANEFgSSIUAQkwz1DDun58ucXnbDaiITh+RJ50Y0jVEPghhVSO0lE4IYvUN8dlP7fUrtEUAgdQV0UNGnn35aXn75ZdEvjqmw5OTkyB//+Ef5+9//Ltp1iWW/gN4/HZTZM8aLjveSSiFbut3HF154gRZc6XZTU+h6MiqI0X/ECgsLg27PsGHDpEOHDt71ke7nPYAnjgK+QYzuqFP+Xn54rpx0cI7jcZmwkSAm9e9ypgQxeqf47Kb++5UrQACB1BXQL+xffPGFTJ8+3f4iP3/+fNd3W2natKnceeed9rg3WVmZ1yJaZzDyTCOtj3SFcdfn75JLLpFHHnnEXZWiNhkjkFFBjKbz2u82cJk8ebJcdNFF3tWR7uc9gCeOAoFBjGfn4W2z5er+eVI117Mm8x4JYlL/nmdSEOO5W3x2PRI8IoAAAskT0N9plyxZYk9XrF/wf/jhB5kyZYps3749eZUKc+b+/fvLAw88IH369AmzR+qvLikpkW+//dY7m5EGL5s2bUr9C0vjK+jSpYv9uUnjS+TSXCxAEGPdHIKY+L5DwwUxetZ2dbPkb0PzpHmtzPsriV4/QYwqpPaSiUGM3rFM/+ym9ruW2iOAQLoK7N27V1599VV56qmn5NNPP3VVtxdtEaMD+f7zn/8UHSg11Re1/vLLL70tXrS10q5du1L9sjKq/vqe1LCsfv36GXXdXKw7BAhirPtAEBPfN6NTEKNnrpkncuMRedK/ZeaNG5MKQUzVfJEe1r3pVC9Lqlmtl6pZ/VNW7yqT95aUyC4G8pdMDWIy/bMb3/9qUjoCCCAQu8Dy5cvtsWX++9//yurVq2Mv0FAJVapUkcsuu0yuv/56adKkiaFS41/Mtm3b7K5h2tJFx3jRrmGhhjyIf004g0kBHQz7pJNOMlkkZSEQkQBBjMVEEBPReyXqnSoKYrRgbQ8zvluOnNUjV7IzqHGM24OYTs2z5O8D86RRiJmubv6iSGYvC+7qF/UbJUUPzOQgRm9Zpn52U/TtSrURQCADBbQL04wZM+xWMvql0y3hQbVq1UTH6LjmmmtcOXPNunXrvK1dNHxZsGBByCEOMvAtlVaXPGHCBLn77rvT6pq4mNQQIIix7hNBTHzfrJEEMZ4a9GmWLTdZU1zXrpIZaYybg5gWDbPkmRH5Em5sPYKY/e/aTA9iMvWz67luHhFAAIFUEtDpkp9//nm55ZZbZMeOHa6oem5urowdO1auvPJK6devX9LqtHTpUm/woi1eli1blrS6cOLECfTt21fmzp2buBNyJgQOCKRMELN79267GeCKFSvkt99+s/vz6aC62qevR48eoh+i5s2bO97YSAfhjXQ/x5Ox0StQmSBGD2pSI0smWVNcd2qQ/mGMW4MYlb/3+Dzp1jB8dzGCmP1vcYKY/Q76/5n02S2/ap4hgAACqSfwr3/9S2666SbXVfzQQw+Vs88+2x5L5qCDDopb/bSV0Pfff+8NXrTFy/r16+N2Pgp2r4AGgdrtrEaNGu6tJDVLSwFXBzE6TZ8OOKYtVvQ/kE5NKXWwpVNOOUX0Hxbfqah971qkAUuk+/mWzfPwApUNYrSkPOv7/1X9cmVEh/Se4tqtQUwTazyYF0+0BofxWfYWi7y/skRmryu1Z7qav7JU9uzz2SFDnxLE+N/4TPns+l81rxBAAIHUEtizZ4+0b9/e1eGD/qH1hBNOkGOPPVZ69+4ttWrVihq5oKDAHtNFv0/oz6xZs1w5u1TUF8iBMQl88MEHMmzYsJjK4GAEKivg2iBG+2Gef/75Mm/evEpdk7aK0WNCtY6JNGCJdL9KVSyDd44miPFwnWAFMVf0zZW8NM1j3BrE9GqdJXcP9g9i/vhRofy0psxza3g8IEAQE/qtkC6fXQ35WRBAAIFUENA/YEa66Iw/Oj7Ls88+G+khSd1P/1t88MEH263gW7VqJS1atJBmzZqJDvyr2/RHwyWdAWflypUycOBAqVq1qrfFi85utG8ffz1K6k108cknTpwokyZNcnENqVo6Crg2iLnvvvvk6quvjsp8yJAh8sknnwQdG2nAEul+QSdgRUiBWIIYLbBT/f1dlZrUTL8vRG4NYk7qli1X9rSmszqwlFq/2x33QoHoI4u/AEGMv4fvq3T47BLE+N5RniOAgJsFKgpiSkpK5MMPP5QXXnhBpk2bJjt37nTz5cRUt+zsbAbWjUkwsw4++uij7c9GZl01V5tsgZQKYho3bizdunWTBg0aiE7Jp9PGhVr0P77bt2+XmjVr+m2ONGCJdD+/wnkRViDWIEYLrm01zrjpyDzp0zz8mCVhK+DiDW4LYqpYznWqZ9kzWI1sU94MqahE5Kx3C23JzTvKpCTEZEl1rRbDLetmSYMDMyztsnbfYE1zvWZzmYT7I10tqztutbzygG3b7jIpLNp/w9o3zZJmVvhWaJ1r4fpS106VTRDj/AFL9c8uQYzz/WUrAgi4RyBcEKOtQTR8eeWVV2TDhg3uqTA1QcAlAtWrV7fHicnLK/8jpEuqRjXSWCAlgpju3bvLbbfdJscdd5xoSOJZ/vSnP8mDDz7oeen3qKOdH3nkkX7rIg1YIt3Pr3BehBUwEcRo4fp1/dyeuXJG15ywM/mErYRLN7gtiLmwX46M65TrqHXL7CKZtbQ8ieneKkvO65IbdmDfjXvL5LWlJTL1+5KgAOe/o/PlIJ+WTk8tLJb/fVcik47Klf5Nyz/rxdbpHl1QLG8sKHFdqxyCGMe3i70xlT+7vkHM8steqPhi2QMBBBBIoEC7h8/0ns03iFm8eLG8+OKLdgCjswGxIICAs8CcOXOSOmuXc+3Ymo4Crg9iNGy566677D6ggTfgnXfekRNPPDFwtf36rbfeCtoWacAS6X4hT8zKIAFTQYyn4AEts+XGQXlSw38IE8/mlHp0WxBzkRXEnFZBEDPRCmI+t4KYbOvb9Z8G5spJ7coDEyf8FTtK5bqPi2SLz2yZz1hBTEufIOaZn4qlbe0sGdwidJkXvl8oy9e7q38UQYzTXfffloqfXYIY/3vIKwQQcJeAbxCzbt06efnll+3wJVyrcXfVntog4B6BO++8U6699lr3VIiapL2Aa4MY7cOqA4kFBi06c5Jue+2112TKlCmyY4fPtzqf20UQ44OR5Kemgxi9nBa19o8b086a3SeVl1QOYi6wQpvTKwhtAu/NKqur0sVvF0rBge5HgUHMrqIyqenTVcn3+M37ymTcq4W0iPFFifNzPrtWSzyfwXppERPnNxzFI4BApQV8gxj9Q6KOA8OCAAIVC1SrVk369Olj96DQXhRHHHFE0LAWFZfCHghEL+DaICbwknSaOR3Z/X//+5/dhy9we+BrgphAkeS9jseXOb2aKlajiWv658rwCFtkJE8g/JndFsTUsYZVal4nS049OMevVYp2Dbrqk/1jxKzYWCbNrADsiWODmyQ9+WOxvLukxA5aOjXOkhv75kmjA2PGeBT+t6RYJs/Z/4tiYBDj2Ucf9ZyFJWVS/UAwo12Tpnzrvl8waRHje9cie55Kn12CmMjuKXshgED8BKyR1mTL3p2ybtdmWas/Ozfbz1dsWycf/PJ1/E5MyQikkUDdunVlwIAB3uClb9++kp8f/LtsGl0yl+JyAdcHMdOnT5crrrhClixZUilKgphKccV153gFMZ5Kj7ZCg0v65EpuCo7j67YgxmM6tqdl2q18rBgd50Vbo3iWG4bkyjGt/LsP3fVVkUxfWD52jO5bo5rIy7/P94Ypum5fscjoVwvsQXnDBTH3fVMk//dTqTXjgcixh2bbdfmD1ZJm524twV0LQUz09yMVPrsEMdHfX45EAIHIBLYX7LaDlf1Byxbvc8/r9bu2WH+YONCUNLIi2QuBjBdo3ry5PY25tnbRn549e/q1cs14IACSLuDaIEYHHLv11lvtOd1L9dtYwHLUUUfJBRdcIGeeWT5Ime8uBDG+Gsl9Hu8gRq+uc8MsmTgkTxpaM/6k0pKqQcyb4/Klhk8XojXWbEfnTAvdbejkHjlyWffyUEfvz2UfFsrPa8skVBDz8uJieXyu+1q+hHtfEcSEk4lsvds/uwQxkd1H9kIAgdACuwr3eluyaKCyzvrRVi3rd5cHLnuKCkIfzFoEEIhYoF27djJ48GBvi5eOHTtGfCw7IpAMAdcGMTrF3rhx44JMtD+fjgI/atQo2bx5szRs2DBoH11BEBOSJSkrExHE6IXVqyry18F50qNJ6jSNScUgpoo1s9+746r4vZfeXF4i/5llNXUJsRzcPEseHubf9PNvc4tk5uLSoCCmyMpfRr5cEDS7UohiXbOKICb2W+Hmzy5BTOz3lxIQSFeBHQV7vIGKhiwartghy4HARVu07C7al66Xz3UhkDSB7Oxs6dq1qzd0GTp0qDRp0iRp9eHECEQj4Nog5owzzpCXXnop6Jp8R7R2CmJ0IN9TTjnF7/hIZ0OKdD+/wnkRViBRQYxWIMdqEHPhYbkytrN/t5mwlUvyhlQMYmrXEJk2xj+IefeXErnns9BBTEurtdIzx/sHMfd8XSTv/hgcxMzfUCrXz0it5tcEMWY+RG797BLEmLm/lIJAKgkUl5bIxj3bZMPurdaPPmrIos+tx11b7cBFn9OSJZXuKnVNZYEqVarIYYcd5tfipXbt2ql8SdQdAXFtEFOvXr2Qg/L6BjEfffSRDBs2LORtvP766+X888+XXbt2Sa9evex9Ig1YIt0v5IlZGSSQyCDGc/LBrbLluoF5Us1qveHmJRWDmFwr43rvDP8g5r1fS+TOmaGDmO6tsuTeIf5BzE1fFMmcZcFBzLPW9NXPzE+dbkn63iKIMfsJc9tnlyDG7P2lNATcKLCvuFCeWTBD3l8xX3QA3G37dlvD45a5sarUCYGMEKhVq5b079/f2+JFB9nVMIYFgXQScG0Q06JFC1m7dm2QdePGjeXss8+WjRs3ynPPPVfhNH3jx4+399OCIg1YIt0vqHKsCCmQjCBGK9Kqdpb8bWietLJmAXLrkopBjFq+emq+1KtS7rqzsExOnVpoD8AbaH3FoFz5fcDMVhfMKJQVG4LHiHl6YbE8/xVBTKBhsl7z2WX66mS99zgvAokS2Lpvp5z++q2yeMvqRJ2S8yCAQICAfr8bOHCgt8WL/hFdv4+xIJDOAq4NYsaOHSuvvvpqzPYEMc6ET34TuhWD81GV21pgneK1Rcn5cl3dGiP2WqtlzODW7hw3JlWDmAv75ci4Tv4D8Oq01I9Z01L7/g2xjTWFtU5znVWe2cjWAiu0mbJ/YN/AwXoJYiL/bPHZjdwqlj1ToUXM64s/l6/WLbYvM1uy5S+DzpAquf6t0JwMfI932s93W/2qteTqfmN9V4V9vnr7b/Lpqu9lzpqF8pvVvWOTNQ1vSVmJNKtRX1rUbiQH1WpkDbjeSga36hFRvdfs2CTP//i+fc0b92yXWlVqSPdGbeWc7sdJh/otwtbDd4OJMrS8xZtXyXM/vO8teuwhQ6R7k/be17E8KbBaafxr1otizR8ndaxr/HP/02IpzntsLHUuKi6W136eKd/+tkx+2rRSdhbulkMbtJZujaxBMlt3t+5ja+95onkSr2t2qsuV7z8oby2Z7bQL2xBAwLBA69atva1ddEajQw891PAZKA4B9wu4NohZsGCBHH300bJp06awijpQU/369R33IYgJy2dvcGsQ4Fzrym891Roz5oJeuZLjsjzGrf4VTV/duG6WPD8yP8jz87Ul8vrSEnuK6h6Ns+XczsHTij/yfbG8+t3+YI4gpvLvZc8Rbn3veOpn6jHZn91UCGKunvGQvLH0Cy/51+c+KnWr1fK+ruhJ4PEV7a/bG1arI1+e+7Djrt9vWCb3zntVPl35veN+no3Vc6vK8Da9ZGSH/jLECmXyc4P7lr6xeJbc8PHjUhBiKt/srGyZeMRZ8odux3iKDPloogxPwdOXfSmXvfcfz0u5bcgFclqXo7yvY3myzQqsDnv6EruIulVrytfnTY6lOO+x0db5x40r5NqPHpNFm1d6y/J9ov7X9j9VLu55ojYl890U8fN4XXO4Cui00X2eusQKBoNn5wx3DOsRQKByAvrvqAYtGrjorEZDhgwR7fnAgkCmC7g2iNEb891338nll18u8+bNk8LCQu+9qlGjhvTr10/uuOMOO4jRPoTaVcl3adWqlZx66qly7rnnSufOne1NVatWlYKC4CkCn3rqKXs/z/GR7ufZP5UfM+XLnN6jntZsSjcfmSv1qkX3C2I87rNb/SsKYtRiRGfrl+7ewV+UnJy+/m3/YLylB5rNEMQ4aTlvc+t7x7nW0W1N5meXICb0PXMKYkpKSuRfX7woTy+YHvrgCNZedfjJcsXhY/z2fM8KPS71CT38Nvq8uOuoi+XkQwf7rCl/aqKM8tJEog01fMsI9zxeoUQ0df52/RIZO+0fdkumcPX1rB/e5jB57Phrogpj4nXNnroFPn67YamMeW1i4GpeI4BADAJ5eXn2+JwavHjCFx37kwUBBPwFXB3EeKq6b98+mT9/vuzdu1c6deokGrL4/nKs6zWs2b17tzRv3tzezgfeo+f8mElf5lSiYTWRiUPypHMjdzSNcat/JEGMeh5nhTFX98yTvAi68b6/skTunV0sBeWZatD01XRNUtXIFre+dyKrfeX3StZn1/ffmuWXvVD5iifgiMAWLbG2iNFuJlVy/LseBl5Gw+p15eERVwaull2Fe+XCd+6WuesWBW3TFdnWX0bb1G4qjWrUlbU7N8uaXRultMy3Q+P+wwKDGJ3B5qjnJ8ie4vKpgLWsTvUPkqVb14jOcuNZqubky/un32l3e/Ks00cTZfiWp8+jCTUCywj3Ol6hRGXrvK+oUEb+7y+yYvs6b1Vzs3Pk8KYHS22ry9QPVkuZNbv8Wy/fM+xSGX3wEd79I30Sr2sOd/4l1nvnuJeuC7eZ9QggEIGA/oG8b9++3tBFB9atXr16BEeyCwKZLZASQUxm36L4Xn2mfZlTzVyrQcylfXJl1CERpAfx5Re3+p/Y1QpYepW3dlm5s0zOfd0nQfFxaVBHrF+4c+TEtjlSK9+/tVGJ1dr7M6u70jSru9IPq4K/bD16Yp50rFceij1sdVt67UC3JZ9TuPppsmZNcut7J543Kxmf3UwMYiob5HjuubaEOe/du+SzVQs8q+xHDUzO63G8jOo0SDrUbeHX5UjHHFm5c4N1zA/yzPfvya87NtjHBAYx98+bJvdZ3Zw8S8/G7eXxEyZIg+p1ZPu+XXLZ9P/I7LULPZvlkl6/k+sGjPO+1icmyvAr0HpR2VAj8Hin1/EKJSpb58e+eVtun/2St6qtajeWR4+/Wg5p0Mpep/f97i//J5Ot/TxLYyuo++iMe6R6flXPqoge43XN4U6uMyMNevYKa0rqLeF2YT0CCAQINGjQwB5Y19PipU+fPpKb6xzeBxTBSwQQsAQIYjL8bZCJX+Y8t3x4Wyts6J8nVZP4b0c6+WdbGUx1q8VRvRpZkmtlK9v2lMnOPSLF5X+o9tCn1SNBTOJvZyI/uwQxkd/f26zuSI9/+47fAV0btZHbhl4gXazBdCtcrJYxH/36jTxtBTJDrTFizu95gn2IftE/8rmrZP2e/V+Wa+fXkHdO/ZfV4qWht0j9Ij3i5RtkhzV4rC46mPDssx6UvANfDkyU4T2Zz5PKhho+h1b4NF6hRGXrfPH/3WtP6+yp8JTRE6V3s06el97H89++Sz5e+a339R1DL5SxnYd6X0fyJF7X7HTuN5d8IVe9/5DTLmxDIKMFdDwXT+iiY7x06dLFr2dCRuNw8QjEIEAQEwNeOhyaTkFANPejnTXorE5x3byWf0uOaMqK5phM94/GzG3HEMQk544k6rNLEBPZ/V2xdZ0c+/L1fmOIHN26pzVWyATRgfVjWQLHdbn8sN/LBGtQ2MDlrjmvyCNfv+ldfe/wy+T3ViscXUyU4S3Y50llQw2fQyt8Gq9QorJ1PvLZK71dj1pYM1x99of7QtZ9/rqf5dRpf/duO7/HCXLToDO9ryN5Eq9rrujcry761B7XaJvVuspti7Yoy7IGQs4WfbR+rApq+9LCEANWu63u1Cc1BQ4++GBv8KID6+oMRywIIGBegCDGvGlKlUgQIFLT6oFzw6A8GXBQbF8Wornx+Eej5q5jCGKSdz8S8dkliIns/k744GGZZs1o5Fm0Rcp74+6wuw551kX7eNWMB+XNpeXTC08dM0l6Nu0YVNy8tYvktNf/4V1/TNs+MtnqQqOLiTK8Bfs8qWyo4XNohU/jFUpUts49Hr9AdhbttevbsX5L+76GqvyOgj3S88kLvZs0iHti5LXe15E8idc1R3LufdZ04Romrd212Z5FSYMPnQlKg8QcKwDJycqxZgrU59Y660cfPa/3P1rbD+yfe+DR3sfe78C2A8fsP17L9JTvU651Dvvc1uP+2CV07Ye/+GdZvq183J7Qe7EWAWeBnJwc6dGjhzd40RYvjRo1cj6IrQggYESAIMYIY+oWQhCw/97pX5jO7JYjZ/fItX7BStz9xD9x1vE6E0FMvGQjKzfen12CmIrvQ2FxkfR++lLZfeDLuh4xecTVcky7PhUfHMEep079m8xfv9jes0G12jLvnIdDzshTWloqvZ682AoNrD6R1tKlYWt5y+rCpIuJMuyCAv6vsqFGwOGOL+MVSlS2zmNfmyRfbVhi11UDhE+ssV9a1mkcVHcd1Lfz4+d617er00w+OPNu7+tInsTrmiM5d6rtc/rrt8rctT+lWrWpb5IFdGZYz8C62t1o0KBBUrNmzSTXitMjkJkCBDGZed+9V00Q4KWwn/Rpli03WVNc166SmDQGf3//VHxFEOOOuxavzy5BTMX3d87qH+WMN/cHHrp3q9pN5JPx/674wAj38O0ac1iTDvLqyX8Le+RJU26yZvH5xd5uhzbnPmI/N1FGqJNWNtQIVUa4dfEKJSpb51s+fVqe//EDbzV7WAMlP221dKlbrZZ3nYZgus+kz57xruveuJ28fkp5CyXvBocn8bpmh1OmzKb1u7fKok2/yk+bV8pP1qMOir29YP+YSClzEVQ04QJ169YVncXIM8aLhjD5+fkJrwcnRACBYAGCmGCTjFpDEBB8u5tYg81Osqa47tQg/mEM/sH+qbaGIMY9dywen91MDGJOO/QoqZ5bxfHGDmzZRYa1Pcze538LP5EbPnncu/+Idn1DTm3t3aEyT6wBfDs+erZ37JnhbQ6Tx6zZksItZ711m3xuzcDkWRZd9F/Jt6bijrmMXKsPa4ilsqFGiCLCropXKFHZOuuX/pOm/NV7D7TCGnKNs94nLWo1lFU7N1pj8MyT5T7TW+s+o63xee6xxumpzBKva65MHZK9b1FpsSzZssYbuPy0aaUs2vyrbHXh+DXJtuL8wQLNmjWTI444whu8dO/ePeZxuoLPwhoEEDAhQBBjQjGFyyAICH3z8qzhYq7omysndIzvFNf4h/ZPpbUEMe66W6Y/u5kYxERyR8/ueqxMHHy2vet9c1+V+7+a5j1sQt9T5fI+v/e+juXJxj3bpN9/L/cWccohQ+TOoy/yvg58csV7D8jby+Z4V3965r+lal6VmMs4qE4Tb5m+TyobavgeW9HzeIUS0dT5P1++Jv+ZP7WiKvttj+Z9EK9r9quYi15s3rvDbt2yv5WL1dLFClyWbV0rxaVpPt2gi+5Bqlelffv23tBFW7107Bg8flaqXyP1RyBdBQhi0vXORnhdBAGhoUx/mQt9FhH8w8mkznqCGHfdK9OfXYKY0PfXN4i525qt6GGf2YpuG3KBnNblqNAHVnLtqu0bZMgL13iPOqPzMLl16Hne14FP/vzhozL158+8q2eMu1OqWC1iYi2jQ/0W3jJ9n0QTavge7/Q8XqFENHUuLikWnZ786QXvOVXZb9vDx10pI9r39VtX0Yt4XXNF54339hIrWNGBdT3dijzBiwaNLAhEKqADR3fr1s0bvOjAuk2bNo30cPZDAAGXCRDEuOyGJLo6BAHB4o2r75/Smq5JwTasCRYgiAk2SdaaeHx2MzGI6VC3heTn5jrexpMPPlLO7XG8vc8LP3wgf535tHf/c7sfL389Yrz3dSxPAgeAHdm+nzxw3BVhi7zo3Xvkg1++9m7/9vzHJT87128Q2WjKqF2lurdM3yfRhBq+xzs9j1coEUudZ678Th79+m350RqHxzMocq286tKlURuZs3ah93J0hqFZZ/1HGteo510XyZN4XXMk5za1z7aCXdZYLqvs1i2ebkWLra5GTDdtSjhzytGxXPr06eMNXrTLUZ06dTIHgCtFIM0FCGLS/AZXdHkEMf5C8Rrw0/8s5a/wL7dI1WcEMe64c/H67GZiEPP1uY/6DcRa0R3WL+fnvH2nd7d+zQ+Vl0bd7H0d65OeT1wkOwr3D0o6oHlneWHUTWGL9J3hR8e5+eGip+x9TZQR6qSxhBqhyvNdF69QwkidrbF71u7aIjXzq1qD29eQwO5pY6yg7u5hl/heTkTP43XNEZ28kjuVWga/bl9/oJXL/m5FGryss6a/ZkEgGoFatWr5Dazbr18/0VmOWBBAID0FCGLS875GfFUEAfupdFje07vmyLk9mb464jcPO9oCBDHJfSPE+7NLEFPx/V2zY6Mc+fxV3h21hcTssx+Q6taXdBPLiJevl8VbVttFHVz/IPm/cbeHLXbo89fIyh0b7O2+0yebKCPUSY2EGqEKttbFK5QwXect1jgnw1+6Trbt2+m9kumn3W4NeH+Q93WkT+J1zZGeP9x+u4v2Wa1cysMW7Vr0s/Wzt7gw3CGsR6BCgUaNGvkNrNurVy/JyYnv2IQVVoodEEAgYQIEMQmjdueJCGJEaliTYdw4KE8GHGSN0JvgBf8Eg8fhdAQxcUCNsMhEfHYJYiK7GadP+4fMXbfIu3NFY7l4d4zgydlv3W5P1au7Zln/m3/uw1LPmrUncFlvtdAY+OyfvKsHtugiz//+L/ZrE2V4C/Z5YjrU8Ck6ZYKYi//vXnl/xXxv1Y9q1VOePPFa7+vKPHFDELPamgVKW7bowLn2ozVr1CorbCyz/seCQCwCrVu3Fh3XxTOV9CGHHBJLcRyLAAIpLkAQk+I3MNbqZ3oQ0LauNR6MNVV1i9rxn6o61L3KdP9QJqm2jiAmOXcsUZ9dgpjI7u+7S+fIH2c84Lfzkyf8WY5q08tvXTQv7rIGA37EZzBg7fKiXV8Cl8Cxav7Ue5Rc3W+svZuJMgLPp68zPYh5dsEMmfTZM16a7KwsmTJ6ovRqGt3MLYkOYnR2ok+trnVfrP5Rftz0ix287Czc470eniAQrYD+29G5c2dv6KIBTMuWLaMtjuMQQCANBQhi0vCmVuaSMjkIGN42W67unydVncekrAxnpfdNpH/7plnS0idw+mWb1b/9N/7CV+mbFnAAQUwASAJeJvKzSxAT2Q3VWXVGvHyDLN++zntAg2p15P5jLpMBLbt611X0pKSkRF5f8oWs3blJ/nT4aHv31dt/k8EvXO09dJBV3nMn3eh9rU/Kykpl7NS/ydcbltrrNRCYOf4/0rxWA/u1iTLsggL+L5ODmFBTWl/b7zS5tPdJAUqRv0xkEPP5qgVy4ydPyBrrvcaCQKwCeXl5ol2LPC1edGDd+vXrx1osxyOAQBoLEMSk8c2N5NISGQREUp9E7JNrNX65uHeujDk0+f1wE+n/z2NypX/T8muesbJE7vi0OBHkaX0OgpjE3d5kfHYJYiK/v4s3r5JRr94i+0r8x80Yc/ARctPAM0N2J/KUXmCNtTHlp5ky+Zu3ZM2uTRI44O85b90hM1d979ldbjniLDmn+3He1w/Mmyb3znvV+3p4m8PksRMmeF/rExNl+BVovcjEIEZDt7988qS8+vNMPw7b/HhrqnErBIt2MR3EFBYXSb41fXlgnWau/F7Of+cuKbECPBYEohGoXr269O/f39viZcCAAaLrWBBAAIFIBQhiIpVK0/0SGQS4gbBBNZGJg/OkS+PEjwcT6voT6U8QE+oOxL6OICZ2w0hKSNZnNxWDGG2VUDPf+o9dBcthTTpY/y1sK1fPeEjeWPqFd++/DhovOuBuRcux7fvYM+b47jf158/kzx8+6rvKfl47v4b0bX6IdKrfQjrWbykNrTFeVlrjbizbulaWb1sr3/+2XLb4DPYaGMS8v3y+XDz9Xm+5udk5MqrTEdLVmjb5O6sVzBtWKxqdxcazPHPi9XJkq+6el/ajiTL8CrReZFoQs6twr1w6/T6ZtfoHP4pWtZvIm2Nvtd4PFb9v/A4MeGEqiNGw6HKrq9zHv34jLWs1lH8NOV/6t+xin21fUYEc9vQlso+BdgP0eekkoK1bBg0a5G3xcthhh4m2gmFBAAEEohUgiIlWLk2OS2QQkGyy7lb4csvgXOuvstH/tc70NSTSnyDG9N3bXx5BTHxcfUtN5mc3FYMYXzun55cf9nuZ0P/UoCDG6RjfbVPHTJKeIcYCeX/5PCuMmSw7i/b67l6p54FBjNX3SM6zWjB8Yo3nUdEysn0/eeC4K4J3M1FGQKmZFsQEDsqsHC1qNpSnrMF5NWCLdTEVxASOWdS7SUeZcvIku3r3ffmq3D9/WqxVTejxVXPzpU2dptKubjNpa/3sf9TXzaXnkxcmtC6ZcjIdz8UzqK4+dunSxWpY5Z7fHzPlPnCdCKSzAEFMOt/dCK4tkUFABNWJ2y6nWN2QLjosV3Lc0RDGe52J9CeI8bIbfUIQY5QzqLBkf3Z9f/FeftkLQfVzw4rAFi2R1ileQYyef+W2DXLdx5Ply3U/R1od734awpzXfYQc066Pd50+2b5vl5z99h126xm/DT4v+jU7RJ4Yea3UCDN1tokyfE6XcS1i3l4yW654/0EvwREHdZUHjvmT1Kla07suliemgpgXf/hQbp75lLcqra0WOx+P/7f9esIHj8i0xZ97t7nliY5r1MJqvVMetHgCl2bSrGZ9e8awUHVt9/CZoVazrpICBx98sB28eMZ4adOmTSVLYHcEEECgcgIEMZXzSru9n/wm/mOEFFineG1RSVLsqlldw68bmCeDW7ssgTmgQRCTlLeF0ZMmK4jhs2v0NoYtLBWCGO0KpF2CKrtc2WeMXNn3ZGu8jydk6qLKfzF97eSJ0qVRW8fTLtmyWl5Z+IlMX/6lrN+9xa/7kOfABlY3Jf2ieXSrXnLKIdbMInUaezYFPeqYHw999bq88OOHfl2ZGloDA5/V7Vi5tNfvJCenfCysoAKsFSbK8JQb2N3prqMulpMPHezZHNOjqVAisBKx1vl+azye+6zxeC477CSZYM1KlZVl7t9XU9e8s2CP/G7KzVb3tw2Sn50ntw4+V07pPMSmeG3RTLn2o8mBLAl7Xc8KrbQlS9u6/i1cWtdpYo1nE3lXl4KSIvnk1++srmLlXfYSdhEpfiL9b0TPnj39Wrw0atQoxa+K6iOAQKoJEMSk2h1Lwfpu31cmY6b4D96YiMtoZc0Q9LehedKqjnubkhLEJOKdEN9zJCuIie9V7S+dz66O8Vn+3w+3tohJxHvBxDlKS0tlw+6tdiBTZE0b3KxGPWlSo77k50b+5dNTD51dad2uzXb3p9r51a0gp4FkZ1cuEDBRhqc+8Xg0FUrEo27a4qlV3SbGizZ6zVZXtO82LJO29Zr5jWW0cc82GfjsFVJivQfjtVSxAhUNVtrVswIX7VLkfWwmdatE33pI6/yZNT6PtkyasWK+6Jg9LJUTuPfee+X888+XWrVqVe5A9kYAAQQMCxDEGAaluGCBZHyZG9wqW661WsJUr/zv98EXEMc1bg5itBtXq0ZZ0qhGlmjLolJrHMxNe8pk5ZYy2V2J3/2iLadWDZFqeeVfgrfuKrO+aIm0bpglDaxxfvKsP3qv2Fom662fovg37Ar7LiCICUsT1Qa3fXYJYqK6jRxkQMBoKGGgPokoIlHXfMvM/8rzP7wf0yVlWZ2FdHr08q5E+8ds0ZYuza1xc7SrkYlFB6Geu/YnO3zRlmVbrS56LNELPPnkk3LeeedFXwBHIoAAAoYECGIMQVJMeIFEBjHZ1u89F/TKldO6ODdND1/bxG5xYxBTtYrI+J45cmKbHKmVH/yLpAYys9eVyBPfl8jKjeWzlATKxVrOf0fny0E1/c+/1wpcNBQKXKYtK5bJX5YkJZAhiAm8G9G9dutnlyAmuvvJUbELJCqUiL2m5kpI1DXrjEmXv3e/PatSRbWvU6VGwCC5+8du0RYvOohuPJYyKZNv1i+Vt5fOlneXzpXfrFY8LNEJNGvWTDp27Cjt27eXtm3bysiRI0VnPGJBAAEEki0QcxCzefNmmTNnTtB1aP/L4447zm7WXWal+e+99558+eWXsmXLFjnkkEPk2GOPlXbt2gUd57ti7dq18vPPP8uiRYtkyZIlUrVqVdHBtPR4faxbt67v7n7PP/30U9m1K/ivBnrOQw891G9fffHjjz/KL7/84l3fsGFD6devn/e158mKFStk4cKFnpfex2rVqsnRRx/tfe15sn37dvnmm2/k66+/lmXLlkn16tWldevW0qtXL+nTp49UqWJ9603zJVFBTL2qIjcfmWfN4mE1m0iRxW1BTJsmWXKnNb13g6r+AUgoTutjLZN/KJYp3wY37zZRzjNWENMyIIgJVQ/PulVWi5kJHxXK5u2eNYl5JIiJ3dnNn12CmNjvLyVEJ5CoUCK62sXnqERes4Yd/7fsS3nL6ubzy/b19vgsza2xitrWsYIWqzuT57Fe1cR1Yflx0y92y5e3l86RNTs3xQc5TUvV36979OghvXv3th+7du0qnTt3ltq1a6fpFXNZCCCQ6gIxBzFTp06Vk08+OaTDzp07RYOIP/zhD/Lxxx/77ZObmyuXX3653HfffX7r9cUrr7wif/7zn2X16tVB23xXaJDx4IMPhgxMdNtXX33lu7v9fMCAAfLFF18Ere/evbssWLDAu177jq5bt05q1LD6R/gsp556qkyZMsVnzf6nGu74BjSLFy+WM888066DBlGhlnr16sm4ceNkwoQJdlIfap90WJeIIKaz1V1l4pA8aVi94gDBTaZuCmLqWb9rPn1CfshWME5mt80rkg8WlXp3MVVOZYMYrcD3m0rlmv8rsn69TtxCEBObtds/uwQxsd1fjo5eIJGhRPS1NHtkJl7zkq1rvOHLim3rzIKmcWn6+/lRRx0lw4cPl0GDBtmD7+p3CxYEEEAgVQTiGsSsWrVKjjnmGLtFSyiQvn37yty5c72bNLzQcOaDDz7wrqvoif6SrINu3XHHHVK/fn3v7o8//rhcdNFF3te+T7R1TYcOHbyr5s2bJ1qXwCWwH6kGS02aNJG9e4MHyLjnnnvkmmuusYt444035KyzzpIdO3YEFhny9b///W+5+uqrQ25Lh5XxDmJO6pQjlx+eK7mp0xDGe1vdFMTccWye9Gnij7hyZ5ncNrdIVm4uk5rVxO7yNaa9/y86JVYGM2Zagezas/+yTJUTKoh595cSeWlhiewrKpNuVsun63rnWU3DvZz2k5u/KJLZy8qDIf+t5l8RxERvmgqfXYKY6O8vR8YmkImhRKZc88rtG6xuR3PkLavr0c+bV8X2Rsmgo/WPpGPGjJHTTz/dDmHy8+PTNSyDSLlUBBBIokBcg5gTTjhB3n333bCX99BDD8lll11mb9eWM9qMsKJWMOEK08BnxowZ3s3aLal58+ai4UngMnHiRJk0aZJ39SWXXCKTJwdPZRjYeua5556zAxbvgQee6D8Ea9asEe3OtHv3btEp8EKFNYHHeV4TxHgkKvdYxRoG5pr+uTK8XWqMBxPq6twSxDSumyUv/c7/F5oN1sC857xZKIVF/jUf3ztHzu3sn348umB/FyVT5egZA4OYlxcXy+Nz/btBaReoJ4/1r/e3G0tlwvSASvtfgtFXBDGV50ylzy5BTOXvL0eYEciUUMJXK52vea01y9c7VviiAcyC35b7XjbPKxDQ8V30j53awp7ZjirAYjMCCKSMQFyDGCcFDS+064+nFYu2annqqaecDqlwm7aCueCCC7z7acjzyCOPeF97nuh/0JcuXWq/3LNnj+hAXuFar+jYMdrHVJfjjz9epk+fbj/3/b/TTjtNXn75ZXvVa6+9JqeccorvZu9zDYYOP/xw+e2332T+/PlSVLT/yyJBjJco4ifNrbFDdGrqdvVSqytS4AW6JYg55tBsuaGP/xRTE2cXyedLg1uW5Fu7vXZyvjUjVbn9AqtL0FVWlyBT5ahTYBDz9MJief4r/yBG97t1eK4MaFYexu0sLJNRryRuunSCGL0LkS+p9tkliIn83rKnWQGdmviUqZOk1BohvUG1WvLS6L+aPYELS0u3a9ZBdnWwXQ1gvl6/xOo2m8iOsy68wZWskg6ye9NNN9ld/el2VEk8dkcAAdcLJC2IGT16tOj4Mrp89NFHMmzYsLBYOgbN7373O9HQRLsLhRr7RQ+uU6eOHbBoyxRdvvvuO7vPqP0i4P90nBht8fLss8/K2WefHbC1/KV2GdKgZOPGjXYLm+Li4HlytSuVp/4XX3yxPPbYY+UFHHimwZO20snL2/9ld+vWrfa5b7vtNrn++uvpmhQkFn7FgJZWaDAoT2r6N4QIf4CLt7gliDm7T46cdah/KxftbrQ9eLxrW/O+4/OkW8Pybkxb9pXJ2CmFYqocPUmkQcyo7tnypx7+IdKJUwpk777E3HiCmMidU/GzSxAT+f1lTwQQENmyd4c9CLC2fJm3bpHo9NMslRNo06aN/O1vf7MDGJ38gwUBBBBIR4GEBDEaPuhMR+vXr7cDDYV8/fXX5fe//71tet1118ldd90V0veqq66Se++917utoKDAHpjr888/967zffLmm2/aoY1nnYYtoWZ1uvTSS+Xhhx+WIUOGyMyZMz27Bz1qqKPdjp544gl7/JrAHbR1jY454/ll/S9/+YtouBJqOeecc+SWW26xp8/zbNcuWfv27bPHnvGsS7dHU2PEaPuLs3vkyPhuuZZ3eii5JYj548AcGR0w9svxLxcEdUvyqP99WK4Mal7+y1Gx1XDmuBcKxFQ5ep5Ig5ijDs6Wm/v6BzHj3iqUjdsS88svQYznXRH+MZU/u57/tuvVLb/shfAXyRYEEMhYga37dsmM5fPsbkdz1iyUkrLg1qSJxjnooIPsFtj6e3OqLPo7t7aA0RbtjP+SKneNeiKAQLQCcQ9iNICZNm2aHcRoJTXQuPXWW+3wwtM6JFyXH50SWseM8XRf8lyktkDRMWFCLf/85z9FwxDP8swzz4gGIIFLgwYNRKe41nFpKlp0Fqf7779fZs2aFbTrv/71L7nxxhu963VMnJEjR3pfBz7Jzs4WnXnp5ptvli5dugRuTsvXJoKY2lbrl5usqan7NC9vhZEOWG4JYsb1ypELu/q3iHEKMyb/Lk861C2/F+t2l8n4qYViqhy9t5EGMaf2zJGLrXDOd/md1SJmDy1ifEmies5nV7whuwISxET1NuIgBNJSYHvBbnl/xXyr29Fc+Xz1D1JSGtx1NtEXrr8bjxgxwv7RbvX6h0zPRBKJrktlzlezZk27ZbjOmMp005WRY18EEEhlgbgGMVWrVrW7EXnGWAkHpal9qEF6e/bsKd98803QYTogrv5HO9Si00G/9NJL3k06aG6LFi1EuwIFLhoSLVq0KHB10Gvto6pjygROQ639VXVmqKZNm/odo92o3n77bb91gS/0r6za5Ur/kWzZsmXg5rR6HeuXuU71s2SSNTV1E2tcmHRb3BLEDOmULbf0829V8uB3xTLt++BfLHV66ldOqiI55TmMzN9QKtfPKBJT5eh9jiSI0ZZRj1mhULs65ZUpsqp8/IsFCeuJT4uY8J/KdPjs+raICX+lbEEAAQSSLxD4e6q+1rEJw3XpT3aNq1evLtpCXbvo60QXLAgggEAmCcQ1iNHxUh599NEKPTXQKCkJ/sI3dOhQ+fjjj0MeH+6XY21dEzhTk3Zv+s9//hOynMCVGv58++23gatDvh41apTd2idwozYD1RYvOrZMaalz81QNebRrVGCYE1hmKr+OJYg5vkOOXNk3V/LKe8GkMkVQ3d0SxNSwpqZ+/eQqku2Tde2xpog++91C2eIzC7tuv2lorgxt6X9DbptXJB8sKhVT5ShUJEHMSd2y5cqe/gHSBytL5LZPg8dyCsI3tIIgJjRkunx2w/1bE/qqWYsAAggkT8A3iNHW4//4xz8cu98nq6Z169YVnbFUHtx8MQAALTVJREFUW+sQwCTrLnBeBBBItkBcg5gffvghou432iJEx2EJXDSkWLx4ceBqu89rkyZNgtbrisAWMbpu4cKFEdVDBwRbtmyZHHHEESFb6GhZvss777wjOkV3uEW7Pp133nmyfPnycLvY6/v37y+zZ8923CeVN0YTxORZDRyusAKYEzr6f+FPZYdQdXdLEKN1u3Zwroxo7e+tYcwj1tTUS7eUSd1qWTL+kBzp0qC89Ykep7MUnTatUAoOTFRkqpzAIEbrMmVpicxZWypVrZ5Ix1p1Pb6Nf321Ppd+UCiL1yVmfBg9H0GMKpQv6fbZJYgpv7c8QwABdwtoEKN/jNQAJtT4iMmuvY6rePnll9sznDINdbLvBudHAIFkC8Q1iNm5c2fYLkS+Fx5uQF3dR1un9OjRw3d3u5WNNmUMtVx77bVy5513Bm2qaFBePcDTwuXvf/+7TJw4MagM3xXaneqXX34RHfPFadFZlqZMmSJ33HGHPYtTqH31F/0tW7aI/oUgHZfKBjFNauzvitSpgU/zjHSEsa7JTUFMVWscnsdPzJfmln+ki04G8aePC+WnNeXBh6lyAoOYSOrkaZkTyb6m9iGIKZfMpM9u+VXzDAEE0lFAW2TrmCuhWmzH83q1hYhnrJdjjz02oskcNIDRSTB0DMavv/46ntWrdNk66K6Onait5PV6CLcrTcgBCCCQpgKuCGI09NDwI9SiIc1bb70lOriuLtrK5rjjjpO1a9eG2l3ef/99e1alwI0vvviiPQ1e4Hrf19OnT/eW3bp1awk1VbVn/0mTJoUMa3RMG53R6cILLxQdI8ez6D/kOohwqJBI9/nss8/sljie/dPpsTJBTJ9m2dagvLlSu0rkYUAqW7kpiFHHOtbQS5OsQZG7+0xNHc53e0GZTJpTJN+vLA9hPPuaKKeyQcwD3xXJ6987dwX01M/kI0HMfs1M++yafA9RFgIIuE+gV69eEXdVj6X22j1ff9fV3231p3fv3hGHFdr9XSeU0Ikj9Pdjtyz6R0q9pjPOOMNuqR446YZb6kk9EEAAgWQKuCKI0ZYl7dq1CxoM1wOj3ZD0HyZdPvnkE9mzZ49nk99jmzZt7G5AodJ2HbdFu0Bt2rTJ7xjPCz2/DsjrOVYH0p06dapns9+j/gOjddZWMYGLJ/Bp3ry56OjvQ4cOtbtFFRYWyj333CMa4IRatCmpjm+TjkskQYzGLmd0zZFzeub6jVOSjh6+15TIIObmo3LlKJ+xXd5YXiL3zwoeS0XHgRnYPltGW+Pz9GwU3OJr/R7rL2/LSuSdRSWOMxPFWk6oIGa31T2pRp5/SLdoS6k8Z9VlzrLEhzB6LzM9iMnUz67v55jnCCCQXgK//fZbRC1Ror1q/WOfhi46w9GwYcMqPVOQ/qHw+eefl9tuuy1kF/5o6xXLcVWqVBFtfT569Gi7hXk6j30YixPHIoAAAh4BVwQxWpkJEybYg9t6KhbNo06Trd2Lwi3XXXed3HXXXSE3a9ch3e5ZnKbI1nFhdHyYUIsniPHdpsGNNhv1HUTNd7v+NUT/0a9Xr57v6rR5XlEQU8Maa/XGQXky4KDgL/1pgxDmQhIZxISpguPqfOve1LG6KtW2GnftLRLZZk1TvdeaFjq4DYxjMRJNOYFBzNMLi+Wlr0ukjjVrU93qWbLPqs/WXVZ9CpzPHe+tmRzEZPJnN97vK8pHAIHkCegf29q2bWusAjo7kIYUnvDl4IMPjqps/aPiU089ZXd3//XXX6Mqw9RB+ofLbt26ydFHH223RNc/PNaoUcNU8ZSDAAIIpL2Aa4IYTfeHDx8uOsBtNIt2+/nnP//peOiSJUtE//ELDES0/6pOn+07crvuo/vqMYGLU+ATKogJPD7w9SmnnGKPIxO4Pl1eOwUx7eruHw+mRW39u3rmLW4PYpJ5R0IFMc9/FTy7WjLrqOfO1CAm0z+7yX7fcX4EEIifgHb50d8Jdfy+aBcNKTzdjY488kjRFiPRLtoSfPLkyXL33XeH7ZofbdmRHlenTh27dXq/fv1k4MCB9g9djiLVYz8EEEAgWMA1QYxWTbvv3HTTTXYXnsCwJLjq+9foqOsPPvignHXWWeF28VuvA6Bpaxff5fTTTxcNUAIX7Uqk3Yt8F21quWrVKtFWLKGWygYxXbp0kVmzZon+A5euS7ggZnjbbLm6f549A066XntF10UQE16IICa8TaK28NlNlDTnQQABtwnowLd//etfI66WjmWov2Nq+KKD0moX9ViX7du3y0MPPST33ntv2K71sZ4j8Hhtxa1d/bt27Wr/9OzZU/SnQ4cO3u77gcfwGgEEEECg8gIxBzE6kO5JJ50UdGb9D7nOmqTNMSu76ExJzzzzjD0A2bp160Ierv9AnHnmmXYAU5l/7F599VUZO3asX5naCmfw4MF+6/SF/iWkRYsWsm+f1RfjwHLjjTfag6J5Xgc+6qC8Oljvm2++aQ8yHKpFjR6j49Vcf/31ctFFF4m2yEnnJfDLXK7V+OXSPrkyypoKOdMXgpjw7wCCmPA2idrCZzdR0pwHAQTcJqC/z5133nny7LPPhqxaXp7VpdoakFZDF/3RsQz1d18Ti45nqOGLhjAaxsR70W5Feq0auHTs2NFvsol4n5vyEUAAgUwViDmIiSectorRf4w0jFm/fr3oP3rNmjWzf1KlBYn259X66yxP+o+phkb6l4ZUqb+J++v7Za5hNZGJQ/Kkc4hBYE2cK9XKIIgJf8cIYsLbJGoLn91ESXMeBBBwq8CHH35o/2Fw+fLldveizp072+O9aHhRs6Y11aDBRbvJa/ejxx9/POzEFKZOp92KtDW5/kHw0EMPNVUs5SCAAAIIRCjg6iAmwmtgN5cLeL7MdW+cLbcMzpV61TJzPJhQt4kgJpTK/nUEMeFtErWFz26ipDkPAghkssDixYvlzjvvlOeee87uph8vCx1gVwOk888/X3R20KpVrZH4WRBAAAEEkiJAEJMU9sw66Y6CMnlxQYlceFiu5JhptZs2gAQx4W8lQUx4m0Rt4bObKGnOgwACmSgwb948O4CZOnWq6ADB8Vq0m/0555wj5557rrRv3z5ep6FcBBBAAIFKCBDEVAKLXREwLUAQE160XdMsqVu1vPXUis2lsnVn+P2TtSWdZ01KlinnRQABBNJZ4Oeff5arrrpKpk+fHrfL1FmadAxHDWB0AOGcHMblixs2BSOAAAJRCBDERIHGIQiYEiCIMSWZvHIIYpJnz5kRQACBVBOYPXu2jBgxQnbs2BGXqh9++OF2+KIzgtarVy8u56BQBBBAAIHYBQhiYjekBASiFiCIiZrONQcSxLjmVlARBBBAwNUCOoGDzkq0atUqo/XUmTg9M4nqYMIsCCCAAALuFyCIcf89ooZpLEAQk/o3lyAm9e8hV4AAAggkQuCdd96RE0880cipdMamMWPG2DMfHXXUUcamzjZSOQpBAAEEEKhQgCCmQiJ2QCB+Asc9XyDFZfErn5LjK5BrDWHz3vgq8T0JpSOAAAIIpIXA5MmT5ZJLLon6WnScl2OPPVbGjx8vo0aNkurVq0ddFgcigAACCCRXgCAmuf6cPcMFRr9SIDsKMxwhhS+/dr7ItNMIYlL4FlJ1BBBAIGECH374oQwfPrzS59NxXzR8GTdunDRu3LjSx3MAAggggID7BAhi3HdPqFEGCVzyTqEs2UKTmFS95R3rZ8mjI600hgUBBBBAAIEKBEpKSqR79+6ycOHCCvYUe5ppHfdFfzp16lTh/uyAAAIIIJBaAgQxqXW/qG2aCdz+eZG8v6I0za4qcy7nmLbZcsMReZlzwVwpAggggEBMAosWLbKnk165cmVQOfXr17dbvWjrlwEDBgRtZwUCCCCAQPoIEMSkz73kSlJQ4N0lJXLPnOIUrDlVVoEJ/XPlhI45YCCAAAIIIBCxgE5d/cQTT8inn34qu3fvlnbt2skJJ5xg/+Tn08oyYkh2RAABBFJYgCAmhW8eVU99gc17ymTc1EIppXdSyt3MbGug3pfH5EuD6tYTFgQQQAABBBBAAAEEEEAgQgGCmAih2A2BeAnc8GGRzFtL96R4+car3L7Ns+W2YXRLipcv5SKAAAIIIIAAAgggkK4CBDHpeme5rpQR+HZ9qUx4vyhl6ktF9wvcc0ye9GyaDQcCCCCAAAIIIIAAAgggUCkBgphKcbEzAvERuO6DIvlqHa1i4qNrvtTezbLlzuG0hjEvS4kIIIAAAggggAACCKS/AEFM+t9jrjAFBFbvKJOL3i6UgpIUqGyGV7GKNTbvYyfmS8vajA2T4W8FLh8BBBBAAAEEEEAAgagECGKiYuMgBMwLTF9aInfNZgYl87JmS7x2QK6M6MBMSWZVKQ0BBBBAAAEEEEAAgcwRIIjJnHvNlaaAwJPfFMuLP9Asxq236oyuOXJ+r1y3Vo96IYAAAggggAACCCCAQAoIEMSkwE2iipklQBjjzvtNCOPO+0KtEEAAAQQQQAABBBBINQGCmFS7Y9Q3IwS0m9L9XxYzZowL7raOCXNFX7ojueBWUAUEEEAAAQQQQAABBNJCgCAmLW4jF5GOAjqAr4YxzKaUvLursyNpCMPAvMm7B5wZAQQQQAABBBBAAIF0EyCISbc7yvWkncA31rTWrywssQOZ0rK0uzzXXVC2NRmSBjCndc6RXtYjCwIIIIAAAggggAACCCBgUoAgxqQmZSEQR4HNe8pk7ppS+X5DqfyyvUw27CqTPUUixYQzUavnWqFL9TyRJjWzpE2dLOneJFv6tciWBtWZmjpqVA5EAAEEEEAAAQQQQAABRwGCGEceNiKAAAIIIIAAAggggAACCCCAAALmBAhizFlSEgIIIIAAAggggAACCCCAAAIIIOAoQBDjyMNGBBBAAAEEEEAAAQQQQAABBBBAwJwAQYw5S0pCAAEEEEAAAQQQQAABBBBAAAEEHAUIYhx52IgAAggggAACCCCAAAIIIIAAAgiYEyCIMWdJSQgggAACCCCAAAIIIIAAAggggICjAEGMIw8bEUAAAQQQQAABBBBAAAEEEEAAAXMCBDHmLCkJAQQQQAABBBBAAAEEEEAAAQQQcBQgiHHkYSMCCCCAAAIIIIAAAggggAACCCBgToAgxpwlJSGAAAIIIIAAAggggAACCCCAAAKOAgQxjjxsRAABBBBAAAEEEEAAAQQQQAABBMwJEMSYs6QkBBBAAAEEEEAAAQQQQAABBBBAwFGAIMaRh40IIIAAAggggAACCCCAAAIIIICAOQGCGHOWlIQAAggggAACCCCAAAIIIIAAAgg4ChDEOPKwEQEEEEAAAQQQQAABBBBAAAEEEDAnQBBjzpKSEEAAAQQQQAABBBBAAAEEEEAAAUcBghhHHjYigAACCCCAAAIIIIAAAggggAAC5gQIYsxZUhICCCCAAAIIIIAAAggggAACCCDgKEAQ48jDRgQQQAABBBBAAAEEEEAAAQQQQMCcAEGMOUtKQgABBBBAAAEEEEAAAQQQQAABBBwFCGIcediIAAIIIIAAAggggAACCCCAAAIImBMgiDFnSUkIIIAAAggggAACCCCAAAIIIICAowBBjCMPGxFAAAEEEEAAAQQQQAABBBBAAAFzAgQx5iwpCQEEEEAAAQQQQAABBBBAAAEEEHAUIIhx5GEjAggggAACCCCAAAIIIIAAAgggYE6AIMacJSUhgAACCCCAAAIIIIAAAggggAACjgIEMY48bEQAAQQQQAABBBBAAAEEEEAAAQTMCRDEmLOkJAQQQAABBBBAAAEEEEAAAQQQQMBRgCDGkYeNCCCAAAIIIIAAAggggAACCCCAgDkBghhzlpSEAAIIIIAAAggggAACCCCAAAIIOAoQxDjysBEBBBBAAAEEEEAAAQQQQAABBBAwJ0AQY86SkhBAAAEEEEAAAQQQQAABBBBAAAFHAYIYRx42IoAAAggggAACCCCAAAIIIIAAAuYECGLMWVISAggggAACCCCAAAIIIIAAAggg4ChAEOPIw0YEEEAAAQQQQAABBBBAAAEEEEDAnABBjDlLSkIAAQQQQAABBBBAAAEEEEAAAQQcBQhiHHnYiAACCCCAAAIIIIAAAggggAACCJgTIIgxZ0lJCCCAAAIIIIAAAggggAACCCCAgKMAQYwjDxsRQAABBBBAAAEEEEAAAQQQQAABcwIEMeYsKQkBBBBAAAEEEEAAAQQQQAABBBBwFCCIceRhIwIIIIAAAggggAACCCCAAAIIIGBOgCDGnCUlIYAAAggggAACCCCAAAIIIIAAAo4CBDGOPGxEAAEEEEAAAQQQQAABBBBAAAEEzAkQxJizpCQEEEAAAQQQQAABBBBAAAEEEEDAUYAgxpGHjQgggAACCCCAAAIIIIAAAggggIA5AYIYc5aUhAACCCCAAAIIIIAAAggggAACCDgKEMQ48rARAQQQQAABBBBAAAEEEEAAAQQQMCdAEGPOkpIQQAABBBBAAAEEEEAAAQQQQAABRwGCGEceNiKAAAIIIIAAAggggAACCCCAAALmBAhizFlSEgIIIIAAAggggAACCCCAAAIIIOAoQBDjyMNGBBBAAAEEEEAAAQQQQAABBBBAwJwAQYw5S0pCAAEEEEAAAQQQQAABBBBAAAEEHAUIYhx52IgAAggggAACCCCAAAIIIIAAAgiYEyCIMWdJSQgggAACCCCAAAIIIIAAAggggICjAEGMIw8bEUAAAQQQQAABBBBAAAEEEEAAAXMCBDHmLCkJAQQQQAABBBBAAAEEEEAAAQQQcBQgiHHkYSMCCCCAAAIIIIAAAggggAACCCBgToAgxpwlJSGAAAIIIIAAAggggAACCCCAAAKOAgQxjjxsRAABBBBAAAEEEEAAAQQQQAABBMwJEMSYs6QkBBBAAAEEEEAAAQQQQAABBBBAwFGAIMaRh40IIIAAAggggAACCCCAAAIIIICAOQGCGHOWlIQAAggggAACCCCAAAIIIIAAAgg4ChDEOPKwEQEEEEAAAQQQQAABBBBAAAEEEDAnQBBjzpKSEEAAAQQQQAABBBBAAAEEEEAAAUcBghhHHjYigAACCCCAAAIIIIAAAggggAAC5gQIYsxZUhICCCCAAAIIIIAAAggggAACCCDgKEAQ48jDRgQQQAABBBBAAAEEEEAAAQQQQMCcAEGMOUtKQgABBBBAAAEEEEAAAQQQQAABBBwFCGIcediIAAIIIIAAAggggAACCCCAAAIImBMgiDFnSUkIIIAAAggggAACCCCAAAIIIICAowBBjCMPGxFAAAEEEEAAAQQQQAABBBBAAAFzAgQx5iwpCQEEEEAAAQQQQAABBBBAAAEEEHAUIIhx5GEjAggggAACCCCAAAIIIIAAAgggYE6AIMacJSUhgAACCCCAAAIIIIAAAggggAACjgIEMY48bEQAAQQQQAABBBBAAAEEEEAAAQTMCRDEmLOkJAQQQAABBBBAAAEEEEAAAQQQQMBRgCDGkYeNCCCAAAIIIIAAAggggAACCCCAgDkBghhzlpSEAAIIIIAAAggggAACCCCAAAIIOAoQxDjysBEBBBBAAAEEEEAAAQQQQAABBBAwJ0AQY86SkhBAAAEEEEAAAQQQQAABBBBAAAFHAYIYRx42IoAAAggggAACCCCAAAIIIIAAAuYECGLMWVISAggggAACCCCAAAIIIIAAAggg4ChAEOPIw0YEEEAAAQQQQAABBBBAAAEEEEDAnABBjDlLSkIAAQQQQAABBBBAAAEEEEAAAQQcBQhiHHnYiAACCCCAAAIIIIAAAggggAACCJgTIIgxZ0lJCCCAAAIIIIAAAggggAACCCCAgKMAQYwjDxsRQAABBBBAAAEEEEAAAQQQQAABcwIEMeYsKQkBBBBAAAEEEEAAAQQQQAABBBBwFCCIceRhIwIIIIAAAggggAACCCCAAAIIIGBOgCDGnCUlIYAAAggggAACCCCAAAIIIIAAAo4CBDGOPGxEAAEEEEAAAQQQQAABBBBAAAEEzAkQxJizpCQEEEAAAQQQQAABBBBAAAEEEEDAUYAgxpGHjQgggAACCCCAAAIIIIAAAggggIA5AYIYc5aUhAACCCCAAAIIIIAAAggggAACCDgKEMQ48rARAQQQQAABBBBAAAEEEEAAAQQQMCdAEGPOkpIQQAABBBBAAAEEEEAAAQQQQAABRwGCGEceNiKAAAIIIIAAAggggAACCCCAAALmBAhizFlSEgIIIIAAAggggAACCCCAAAIIIOAoQBDjyMNGBBBAAAEEEEAAAQQQQAABBBBAwJwAQYw5S0pCAAEEEEAAAQQQQAABBBBAAAEEHAUIYhx52IgAAggggAACCCCAAAIIIIAAAgiYEyCIMWdJSQgggAACCCCAAAIIIIAAAggggICjAEGMIw8bEUAAAQQQQAABBBBAAAEEEEAAAXMCBDHmLCkJAQQQQAABBBBAAAEEEEAAAQQQcBQgiHHkYSMCCCCAAAIIIIAAAggggAACCCBgToAgxpwlJSGAAAIIIIAAAggggAACCCCAAAKOAgQxjjxsRAABBBBAAAEEEEAAAQQQQAABBMwJEMSYs6QkBBBAAAEEEEAAAQQQQAABBBBAwFGAIMaRh40IIIAAAggggAACCCCAAAIIIICAOQGCGHOWlIQAAggggAACCCCAAAIIIIAAAgg4ChDEOPKwEQEEEEAAAQQQQAABBBBAAAEEEDAnQBBjzpKSEEAAAQQQQAABBBBAAAEEEEAAAUcBghhHHjYigAACCCCAAAIIIIAAAggggAAC5gQIYsxZUhICCCCAAAIIIIAAAggggAACCCDgKEAQ48jDRgQQQAABBBBAAAEEEEAAAQQQQMCcAEGMOUtKQgABBBBAAAEEEEAAAQQQQAABBBwFCGIcediIAAIIIIAAAggggAACCCCAAAIImBMgiDFnSUkIIIAAAggggAACCCCAAAIIIICAowBBjCMPGxFAAAEEEEAAAQQQQAABBBBAAAFzAgQx5iwpCQEEEEAAAQQQQAABBBBAAAEEEHAUIIhx5GEjAggggAACCCCAAAIIIIAAAgggYE6AIMacJSUhgAACCCCAAAIIIIAAAggggAACjgIEMY48bEQAAQQQQAABBBBAAAEEEEAAAQTMCRDEmLOkJAQQQAABBBBAAAEEEEAAAQQQQMBRgCDGkYeNCCCAAAIIIIAAAggggAACCCCAgDkBghhzlpSEAAIIIIAAAggggAACCCCAAAIIOAoQxDjysBEBBBBAAAEEEEAAAQQQQAABBBAwJ0AQY86SkhBAAAEEEEAAAQQQQAABBBBAAAFHAYIYRx42IoAAAggggAACCCCAAAIIIIAAAuYECGLMWVISAggggAACCCCAAAIIIIAAAggg4ChAEOPIw0YEEEAAAQQQQAABBBBAAAEEEEDAnABBjDlLSkIAAQQQQAABBBBAAAEEEEAAAQQcBQhiHHnYiAACCCCAAAIIIIAAAggggAACCJgTIIgxZ0lJCCCAAAIIIIAAAggggAACCCCAgKMAQYwjDxsRQAABBBBAAAEEEEAAAQQQQAABcwIEMeYsKQkBBBBAAAEEEEAAAQQQQAABBBBwFCCIceRhIwIIIIAAAggggAACCCCAAAIIIGBOgCDGnCUlIYAAAggggAACCCCAAAIIIIAAAo4CBDGOPGxEAAEEEEAAAQQQQAABBBBAAAEEzAkQxJizpCQEEEAAAQQQQAABBBBAAAEEEEDAUYAgxpGHjQgggAACCCCAAAIIIIAAAggggIA5AYIYc5aUhAACCCCAAAIIIIAAAggggAACCDgKEMQ48rARAQQQQAABBBBAAAEEEEAAAQQQMCdAEGPOkpIQQAABBBBAAAEEEEAAAQQQQAABRwGCGEceNiKAAAIIIIAAAggggAACCCCAAALmBAhizFlSEgIIIIAAAggggAACCCCAAAIIIOAoQBDjyMNGBBBAAAEEEEAAAQQQQAABBBBAwJwAQYw5S0pCAAEEEEAAAQQQQAABBBBAAAEEHAUIYhx52IgAAggggAACCCCAAAIIIIAAAgiYEyCIMWdJSQgggAACCCCAAAIIIIAAAggggICjAEGMIw8bEUAAAQQQQAABBBBAAAEEEEAAAXMCBDHmLCkJAQQQQAABBBBAAAEEEEAAAQQQcBQgiHHkYSMCCCCAAAIIIIAAAggggAACCCBgToAgxpwlJSGAAAIIIIAAAggggAACCCCAAAKOAgQxjjxsRAABBBBAAAEEEEAAAQQQQAABBMwJEMSYs6QkBBBAAAEEEEAAAQQQQAABBBBAwFGAIMaRh40IIIAAAggggAACCCCAAAIIIICAOQGCGHOWlIQAAggggAACCCCAAAIIIIAAAgg4ChDEOPKwEQEEEEAAAQQQQAABBBBAAAEEEDAnQBBjzpKSEEAAAQQQQAABBBBAAAEEEEAAAUcBghhHHjYigAACCCCAAAIIIIAAAggggAAC5gQIYsxZUhICCCCAAAIIIIAAAggggAACCCDgKEAQ48jDRgQQQAABBBBAAAEEEEAAAQQQQMCcAEGMOUtKQgABBBBAAAEEEEAAAQQQQAABBBwFCGIcediIAAIIIIAAAggggAACCCCAAAIImBMgiDFnSUkIIIAAAggggAACCCCAAAIIIICAowBBjCMPGxFAAAEEEEAAAQQQQAABBBBAAAFzAgQx5iwpCQEEEEAAAQQQQAABBBBAAAEEEHAUIIhx5GEjAggggAACCCCAAAIIIIAAAgggYE6AIMacJSUhgAACCCCAAAIIIIAAAggggAACjgIEMY48bEQAAQQQQAABBBBAAAEEEEAAAQTMCRDEmLOkJAQQQAABBBBAAAEEEEAAAQQQQMBRgCDGkYeNCCCAAAIIIIAAAggggAACCCCAgDkBghhzlpSEAAIIIIAAAggggAACCCCAAAIIOAoQxDjysBEBBBBAAAEEEEAAAQQQQAABBBAwJ0AQY86SkhBAAAEEEEAAAQQQQAABBBBAAAFHAYIYRx42IoAAAggggAACCCCAAAIIIIAAAuYECGLMWVISAggggAACCCCAAAIIIIAAAggg4ChAEOPIw0YEEEAAAQQQQAABBBBAAAEEEEDAnABBjDlLSkIAAQQQQAABBBBAAAEEEEAAAQQcBQhiHHnYiAACCCCAAAIIIIAAAggggAACCJgTIIgxZ0lJCCCAAAIIIIAAAggggAACCCCAgKMAQYwjDxsRQAABBBBAAAEEEEAAAQQQQAABcwIEMeYsKQkBBBBAAAEEEEAAAQQQQAABBBBwFCCIceRhIwIIIIAAAggggAACCCCAAAIIIGBOgCDGnCUlIYAAAggggAACCCCAAAIIIIAAAo4CBDGOPGxEAAEEEEAAAQQQQAABBBBAAAEEzAkQxJizpCQEEEAAAQQQQAABBBBAAAEEEEDAUYAgxpGHjQgggAACCCCAAAIIIIAAAggggIA5AYIYc5aUhAACCCCAAAIIIIAAAggggAACCDgKEMQ48rARAQQQQAABBBBAAAEEEEAAAQQQMCdAEGPOkpIQQAABBBBAAAEEEEAAAQQQQAABRwGCGEceNiKAAAIIIIAAAggggAACCCCAAALmBAhizFlSEgIIIIAAAggggAACCCCAAAIIIOAoQBDjyMNGBBBAAAEEEEAAAQQQQAABBBBAwJwAQYw5S0pCAAEEEEAAAQQQQAABBBBAAAEEHAUIYhx52IgAAggggAACCCCAAAIIIIAAAgiYEyCIMWdJSQgggAACCCCAAAIIIIAAAggggICjAEGMIw8bEUAAAQQQQAABBBBAAAEEEEAAAXMCBDHmLCkJAQQQQAABBBBAAAEEEEAAAQQQcBQgiHHkYSMCCCCAAAIIIIAAAggggAACCCBgToAgxpwlJSGAAAIIIIAAAggggAACCCCAAAKOAgQxjjxsRAABBBBAAAEEEEAAAQQQQAABBMwJEMSYs6QkBBBAAAEEEEAAAQQQQAABBBBAwFGAIMaRh40IIIAAAggggAACCCCAAAIIIICAOQGCGHOWlPT/7N15SBVbHMDxH9mq5ZpKmNkCUbYHRloZRGULFC1UBhG0QytFRAtFC0VF/VF/JC1SENEGEbZCEamUQVQXi4IitAwhK6ywMjUf5/CevF5en3OduffcO9+Bwd69d875zed338/3fs2cQQABBBBAAAEEEEAAAQQQQAABBJoUoBHTJA9vIoAAAggggAACCCCAAAIIIIAAAvYJ0Iixz5KREEAAAQQQQAABBBBAAAEEEEAAgSYFaMQ0ycObCCCAAAIIIIAAAggggAACCCCAgH0CNGLss2QkBAIuUFtbK6WlpfL69WspLy+XioqKP/Zv377J9+/fpbq6Wn78+NGwt2rVStq0afPHHhkZKbGxsRIXF6d/qj+rPSkpSbp37y4pKSnSpUsXUcezIYAAAm4XoA67/RvA+SOAQKAFqMOBzgDzN0eARkxzlPgMAoYJfPz4UZ48eSIej0devHihGy+q+fLmzRupq6vze7SqgZOcnKwbM6mpqdK/f/+GPSoqyu/xMCECCCDgtAB12GlhxkcAAQSaFqAON+3Du2YL0IgxOz9Eh4BUVlZKYWGhFBUV6caLasCUlZUFjYxq0AwcOFDS09MlIyNDhg0bJhEREUETP4EigAAC1GG+AwgggEBgBajDgfVndvsFaMTYb8qICLRIQN1SlJ+fLwUFBXovLi6W+vr6Fo1p0sFhYWG6MaOaMpmZmTJ27Fh9q5NJMRILAgi4W4A67O78c/YIIBB4Aepw4HNABM4K0Ihx1pfREfhfgV+/fsmDBw/k6tWreldXvLhpU2vLqKtksrKyZMKECZKWliaqWcOGAAII+EuAOkwd9td3jXkQQKBxAeowdbjxb0bovkojJnRzy5kZLKAWyb127ZpcunRJbty4IR8+fDA4Wv+GFhMTI1OmTJFZs2bpq2Xatm3r3wCYDQEEXCFAHfaeZuqwdxveQQAB+wSow94tqcPebULlHRoxoZJJzsN4AbWI7u3bt+XMmTO6AfPlyxfjYw50gNHR0TJ16lTdlBk3bpx+olOgY2J+BBAIXgHqsPXcUYetm3EEAgh4F6AOe7fx9g512JtMcL9OIya480f0QSCg1ng5evSonD9/Xt6/f29ExOopR+3bt2/Y27Vrp5+2pB73V1NT07Crv6n4+fOnETF37txZ5s2bJwsXLpR+/foZERNBIIBAcAhQh+3JE3XYHkdGQcCNAtRhe7JOHbbH0YRRaMSYkAViCDkB1cC4cOGC5OTkyL179/xyfmqtlaSkJOnZs6f06tVLP0o6MTFR4uPj9Z6QkKB/RkZGWlqDpaqqSj59+vTb/u7dOyktLf1tr6io8Mt5qkmGDx8uixYtktmzZ0vHjh39Ni8TIYBA8AhQh53NFXXYWV9GRyAUBKjDzmaROuysr9Oj04hxWpjxXSVQUlIihw4dklOnTunGhVMnn5KSIoMHD27Y+/TpIz169BB1ZUugtq9fv8qzZ8/k6dOnov7W45+fTjZoOnXqpK+QWb16tW48BercmRcBBMwRoA5Th835NhIJAu4UoA5Th935zbd21jRirHnxaQQaFVBPOtq3b5++/Ujd+2rnFh4eLunp6TJq1Ci9DxkyRNQCXsGyqV/G6qogtd+/f188Ho++DcrO+NVTlqZPny5r167VV8vYOTZjIYBAcAhQh73niTrs3YZ3EEDAPgHqsHdL6rB3G7e+QyPGrZnnvG0RuHPnjuzdu1du3rxpy3hqELV+y8iRI2XixImSmZkpQ4cODalFatWtToWFhdpMPTHq+fPnttmpgTIyMmTLli3az9aBGQwBBIwUoA5bTwt12LoZRyCAgHcB6rB3G2/vUIe9ybjndRox7sk1Z2qjQEFBgWzatEk3FOwYVq3fMmnSJJk8ebKMHz9e1Doubtnevn2rH+GtHuetGjPqfmI7NnXf7Pbt27WnHeMxBgIImCVAHbYvH9Rh+ywZCQE3CVCH7cs2ddg+y2AZiUZMsGSKOI0QePz4sWzevFmuX7/e4nji4uJkxowZMnfuXH3LkVps1+2bWmcmLy9PL3RsV1NmxIgRsmPHDhkzZozbeTl/BEJCwO46PHPmTMnOzqYO//3toA6HxL8mnAQCjgpQhx3lFeqws76mjE4jxpRMEIfRAq9evdJXwFy8eFHq6+t9jrVDhw4ybdo03XxRV76o25DYGhdQv4QuX74sJ06ckLt377bIXc2QlZUlBw8elNTU1MYn5FUEEDBagDrs//RQh/1vzowImCxAHfZ/dqjD/jf314w0YvwlzTxBKaDu39y9e7ccOHBAqqurfT6Hvn37ytKlS2X+/PkSHR3t8zhuPVD94s/NzZWTJ09KeXm5zwytW7fWeVC3LKkrktgQQMB8AeqwGTmiDpuRB6JAIBAC1OFAqP85J3X4T5NgfoVGTDBnj9gdFTh79qysX79eysrKfJpHXe2iLnlftmyZXnTXp0E46DeB2tpauXLlir6yRd2X7OummmHbtm2TFStWiGrOsCGAgJkC1GHz8kIdNi8nRISAkwLUYSd1fRubOuybm2lH0YgxLSPEE3AB9RQf1TzJz8/3KZaIiAhZvHixfpRycnKyT2Nw0P8LPHz4UF+ppG4XU7+QfNkGDRokx44dk7S0NF8O5xgEEHBIgDrsEKzNw1KHbQZlOAQMEqAOG5SMJkKhDjeBY/hbNGIMTxDh+U9A/c/8/v379ZN2fLkNKT4+XlauXCnLly+X2NhY/wXu8pnUKvNq7ZecnByfnrikFkletWqV7Nq1S1QTjQ0BBAInQB0OnH1LZqYOt0SPYxEwS4A6bFY+mhsNdbi5UuZ8jkaMObkgkgAKeDweWbBggTx69MhyFDExMbJhwwbdhAkPD7d8PAfYI6DWjlHr+agrXHxppHXr1k2OHDmiHyNuT0SMggACVgSow1a0zPwsddjMvBAVAs0VoA43V8rcz1GHzc3NfyOjEfNfEf7ZVQKq679z507Zs2eP1NTUWDp3dfXEmjVr9DoyUVFRlo7lw84JqDV9VEPm+PHjlnOqolqyZIm+woarY5zLESMj8G8B6vC/NULjz9Th0MgjZ+EeAepw6OWaOmx+TmnEmJ8jInRIoKSkRLKzs6WoqMjSDGFhYXoNma1bt0pCQoKlY/mw/wRevnwp69atk7y8PMuT9u7dW06fPs3aMZblOAABawLUYWtewfZp6nCwZYx43ShAHQ7trFOHzc0vjRhzc0NkDgqcO3dOP8b48+fPlmYZPXq0HD58WAYMGGDpOD4cOIFbt27phZOLi4stBaGepqSerLRx40ZRzTc2BBCwV4A6bK+nyaNRh03ODrG5WYA67J7sU4fNyzWNGPNyQkQOClRVVemFWXNzcy3N0rVrV72Q75w5cywdx4fNEKirq9Nrx6imSmVlpaWgVPNN/YdKYmKipeP4MAIINC5AHW7cJdRfpQ6HeoY5v2ASoA4HU7bsi5U6bJ+lHSP9BQAA///0BPtdAABAAElEQVTtnQm4FNWVxy/IYkSFqBAEFHGJKERHJYq4gRvu27iimRhHxYU4iaKDEz8mxgVRcRk3GDRqVDQaIy5EcENARU1cxo24KwiKoLjhEpaevh37vd6qurq66ta95/76+/heVd3tnN+5/T/vHbqr2uTyL8ULAh4QeOedd9SBBx6oXnnllcjetm3bVp122mnq/PPPV506dYo8jo52Evjoo4/UL3/5S/WnP/2pIQN79Oih7rrrLjVo0KCGxtEZAhAoJ4AOl/Pw8Qwd9jHq+GwTAXTYpmhkYws6nA33ylXbUIipRMK5RAIPPfSQOvLII9WSJUsiu9e3b1/1+9//Xm2//faRx9DRDQL333+/OuWUU9QHH3wQ2eD27durSy+9tFCYizyIjhCAQAsBdLgFBQd5Augw2wAC5gmgw+aZ27wiOpxtdCjEZMuf1Q0QuPjii9XZZ5+tVq5cGWm1du3aqZEjR6rf/va3qmPHjpHG0Mk9Al9++aU644wz1MSJExsyftiwYeqGG25Qq666akPj6AwBnwmgwz5HP9h3dDiYDS0QSJoAOpw0URnzocPZxZFCTHbsWTllAt9995069thj1R133BF5pQ033FDdfvvtatttt408ho5uE7j33nvV8ccfrxYvXhzZkYEDByo9rlu3bpHH0BECPhJAh32MeuM+o8ONM2MEBKISQIejkvK7HzpsPv4UYswzZ0UDBPRXkPT9YGbNmhV5taOOOkqNHz9erbnmmpHH0FEGAf1d2V/84hdq6tSpkR3q06ePmjJlitpss80ij6EjBHwigA77FO3mfUWHm2fIDBCoJIAOVxLhPIwAOhxGJ/k2CjHJM2XGjAnMnTtX7bXXXmrOnDmRLNE34b366qsLn56JNIBOYglceeWV6swzz1TLli2L5GOXLl3U3XffrXbddddI/ekEAV8IoMO+RDp5P9Hh5Jkyo58E0GE/456E1+hwEhTrz0Ehpj4jejhE4MUXX1T77LOP+vDDDyNZrW/IO3nyZLXppptG6k8n+QSefPJJdfjhh6sFCxZEclbfxPemm25S+t4xvCAAAaXQYXZBswTQ4WYJMt53Auiw7zugef/R4eYZ1puBQkw9QrQ7Q0B/DWnfffdV+qZTUV4HHHCAuuWWW/gqUhRYnvVZuHBhoRgzc+bMSJ7rx5xfd9116sQTT4zUn04QkEoAHZYaWfN+ocPmmbOiDALosIw42uAFOpxuFCjEpMuX2Q0ReOyxx9T++++vvv7667ortmnTRo0ePVr993//t9LHvCBQi8Dy5cvVWWedpS6//PJazTWvXXLJJYUnbtVs5CIEhBNAh4UHOAP30OEMoLOk0wTQYafDZ6Xx6HB6YaEQkx5bZjZEYNq0aeqggw5S3377bd0VV1ttNXXbbbcV+tftTAcI5AlMmDBBjRgxQulEFOWli3znnntulK70gYAYAuiwmFBa6Qg6bGVYMMoyAuiwZQERZg46nHxAKcQkz5QZDRK4//771WGHHab0o/nqvbp27aoeeOABHk1dDxTtVQT0Lzd6n0X92tuoUaPUmDFjqubhAgQkEkCHJUbVPp/QYftigkX2EECH7YmFZEvQ4WSjSyEmWZ7MZpDAX/7yl8InW6I84WbjjTcuPJp4o402MmghS0ki8PLLLxfuQTRv3rxIbulPxehPx/CCgGQC6LDk6NrnGzpsX0ywKHsC6HD2MfDJAnQ4uWhTiEmOJTMZJKBvRDZ06FD1zTff1F11u+22U/p/CvQnYnhBoBkC8+fPV3vssUfkR6Nzz5hmaDPWdgLosO0RkmkfOiwzrngVjwA6HI8bo5ojgA43x684mkJMkQQ/nSHw/PPPqyFDhqgvvviirs26ny7CdOrUqW5fOkAgCoFFixYVioAvvPBClO7q6quvVqeeemqkvnSCgCsE0GFXIiXTTnRYZlzxqjEC6HBjvOidLAF0uHmeFGKaZ8gMBgn8/e9/VzvvvLPSb/56rz333FNNnjxZ/eAHP6jXlXYINETg888/V/vss4966qmn6o7TT+bSj0k/+uij6/alAwRcIIAOuxAl+Taiw/JjjIfBBNDhYDa0mCOADjfHmkJMc/wYbZDAggUL1MCBA1WUe3Tsu+++6u6771YdO3Y0aCFL+URg6dKl6sADD1SPPvpoXbc7dOig9A3OBg8eXLcvHSBgMwF02Obo+GcbOuxfzPFYKXSYXWATAXQ4fjQoxMRnx0iDBL7++uvCJ2Gee+65uqvqR1nfeeedqn379nX70gECzRDQ+3LvvfdWM2fOrDtNly5d1JNPPqk233zzun3pAAEbCaDDNkYFm9Bh9oBPBNBhn6Ltjq/ocLxYUYiJx41RBgmsXLlSHXrooeqee+6pu6q+kap+RLX+BAIvCJggoB9pvfvuu6tnn3227nK9e/dWTz/9tOrevXvdvnSAgE0E0GGbooEtlQTQ4UoinEskgA5LjKocn9DhxmNJIaZxZowwTOCss85S+ukz9V7bb7+9evjhh7kxbz1QtCdOYMmSJWrXXXdVL774Yt25t9lmG6WfcsC9i+qiooNFBNBhi4KBKTUJoMM1sXBREAF0WFAwhbqCDjcWWAoxjfGit2ECv//979W///u/1111iy22UI8//rj64Q9/WLcvHSCQBgF9A+mddtpJvf7663WnP+aYYwo38K3bkQ4QsIAAOmxBEDAhEgF0OBImOjlIAB12MGiemowORw88hZjorOhpmIC+H8wOO+ygvvvuu9CVN9xww8LTa370ox+F9qMRAmkTePfddws3lP7444/rLnXFFVeo//iP/6jbjw4QyJIAOpwlfdaOQwAdjkONMTYTQIdtjg621SLwzjvvKP1NBX4frkWn9RqFmFYWHFlEQH+0beutt1bvvfdeqFWdO3dWs2fPVptttlloPxohYIqAvlfMkCFDlL5xWdirXbt2hScu6cex84KAjQTQYRujgk1RCKDDUSjRxwUC6LALUcLGWgTQ4VpUyq9RiCnnwZkFBHK5nNp///3VlClTQq3Rf8g++OCDhRulhnakEQKGCdx7773qkEMOUfrGemEv/Sku/T9dPXv2DOtGGwSME0CHjSNnwYQJoMMJA2U64wTQYePIWTBhAuhwOFAKMeF8aM2AwAUXXKDOOeecuitPmDBBnXjiiXX70QECWRDQXz369a9/XXdp/YmY6dOnq7Zt29btSwcImCKADpsizTppEkCH06TL3GkTQIfTJsz8Jgigw8GUKcQEs6ElAwJPPPGE2mWXXep+kkD/gXvZZZdlYCFLQiA6gZ/97Gfq1ltvrTvgvPPOi1R8rDsRHSCQAAF0OAGITGENAXTYmlBgSAME0OEGYNHVegLocO0QUYipzYWrGRDQz5/fcsstlb7RXthLP5nmscceU/qrSbwgYDOBb775Rg0aNKjuY631XtaPtB44cKDN7mCbBwTQYQ+C7JmL6LBnARfgLjosIIi4UEYAHS7D0XJCIaYFBQdZEzjuuOPUjTfeGGpG9+7d1fPPP6/WXXfd0H40QsAWArqwOGDAAPXpp5+GmqSf/vXiiy+qNdZYI7QfjRBIkwA6nCZd5s6KADqcFXnWjUMAHY5DjTG2E0CHqyNEIaaaCVcyIHDPPfcUbm4atvQqq6xSeMqM/uoSLwi4RGDatGlq7733VvrGe2Gvf/u3f1M333xzWBfaIJAaAXQ4NbRMbAEBdNiCIGBCXQLocF1EdHCYADpcHjwKMeU8OMuAwMKFC1X//v3V4sWLQ1cfO3asOuuss0L70AgBWwnovXvJJZfUNU8/LWyfffap248OEEiSADqcJE3mspUAOmxrZLBLE0CH2Qc+EECHW6NMIaaVBUcZETjiiCPUnXfeGbr6rrvuqh555BHVpk2b0H40QsBWAsuWLSvcA0Z/tS7std5666lXX32VryiFQaItcQLocOJImdBCAuiwhUHBpBYC6HALCg4EE0CHW4NLIaaVBUcZEPjLX/6i9t1339CVu3Tpol566SWl/0DlBQGXCbz++utqm222UUuXLg1145RTTlHXXHNNaB8aIZAUAXQ4KZLM4wIBdNiFKPlnIzrsX8x99hgd/mf0KcT4/C7I2Hf9x2i/fv3U+++/H2rJpEmT1FFHHRXah0YIuELg+uuvVyeccEKoufqTXzNnzlQ77rhjaD8aIdAsAXS4WYKMd5EAOuxi1OTajA7LjS2eBRNAh5WiEBO8P2hJmcAZZ5yhLrvsstBVdAFGF2J4QUASAX3j3qlTp4a61Ldv38Inwdq3bx/aj0YINEMAHW6GHmNdJoAOuxw9Wbajw7LiiTfRCfiuwxRiou8VeiZIQD+mVz/Sd8WKFYGzduvWTc2ZM0ettdZagX1ogICLBPSnwPQNqr/66qtQ83Wh8te//nVoHxohEJcAOhyXHOMkEECHJUTRfR/QYfdjiAfxCfiuwxRi4u8dRjZBYMiQIerxxx8PneG2225Tw4YNC+1DIwRcJXDVVVep0047LdT8zp07qzfffFN17do1tB+NEIhDAB2OQ40xkgigw5Ki6aYv6LCbccPq5Aj4rMMUYpLbR8wUkcDkyZPVwQcfHNp76NChdb+6EToBjRCwnMDKlSsL94CZPXt2qKXHH3+8mjhxYmgfGiHQKAF0uFFi9JdIAB2WGFV3fEKH3YkVlqZHwGcdphCT3r5i5hoE9CPLNt98c/XWW2/VaP3npR/84AeFx/f26dMnsA8NEJBA4LXXXlNbbrmlWr58eaA7bdu2VX/961/V1ltvHdiHBgg0QgAdboQWfaUTQIelR9hO/9BhO+OCVdkQ8FWHKcRks9+8XfXyyy9Xp59+eqj/Y8aMUaNGjQrtQyMEpBD41a9+pa688spQdwYPHqymT58e2odGCEQlgA5HJUU/Xwigw75E2h4/0WF7YoEldhDwUYcpxNix97ywYsmSJWrDDTdUn332WaC/+lMw+ga9HTt2DOxDAwQkEdDvh0022UQtXrw41K2HH35Y7b777qF9aIRAPQLocD1CtPtIAB32MerZ+az3m/59l9+Hs4sBK9tHwEcdphBj3z4Ua9Ho0aPVeeedF+rfXXfdpQ499NDQPjRCQBqB8ePHq5NPPjnUre222049/fTToX1ohEA9AuhwPUK0+0oAHfY18ub9RofNM2dFNwj4psMUYtzYl85b+emnnxaq/1988UWgLzvuuKOaNWtWYDsNEJBKQD/GXd8D5qWXXgp18b777lP7779/aB8aIRBEAB0OIsN1CCiFDrMLTBBAh01QZg1XCfimwxRiXN2pjtl9zjnnqAsuuCDQ6jZt2qhnn31WDRgwILAPDRCQTGDq1Klq7733DnVR39j3hRdeUPr9wgsCjRJAhxslRn/fCKDDvkXcvL/osHnmrOgWAZ90mEKMW3vTSWs/+eSTwqdhvvzyy0D7jzjiCHXHHXcEttMAAR8I6E+FPfnkk6Gu3n333eqQQw4J7UMjBCoJoMOVRDiHQG0C6HBtLlxtngA63DxDZvCDgC86TCHGj/2cqZe/+c1v1IUXXhhog3487yuvvKI222yzwD40QMAHAo8//rgaMmRIqKsDBw5Us2fPDu1DIwQqCaDDlUQ4h0BtAuhwbS5cbZ4AOtw8Q2bwg4AvOkwhxo/9nJmXS5cuVeutt57ST+oIeg0bNkzddtttQc1ch4BXBPSTkR599NFQn/W9lPT/FvCCQBQC6HAUSvSBQCsBdLiVBUfJEECHk+HILP4Q8EGHKcT4s58z8fSaa65RI0aMCFxbfxrmtddeU5tuumlgHxog4BMB/WmXQYMGhbp8wAEHqHvvvTe0D40QKBJAh4sk+AmBaATQ4Wic6BWdADocnRU9IaAJ+KDDFGLY66kRWLlyZaHA8tZbbwWuccwxx6hbbrklsJ0GCPhIYPDgwWrGjBmBruub9eoCZt++fQP70AABTQAdZh9AIB4BdDgeN0ZVE0CHq5lwBQJRCEjXYQoxUXYBfWIR0P9jf9BBB4WOffnll1X//v1D+9AIAd8IPPDAA3UfU33iiSeqCRMm+IYGfxskgA43CIzuEPieADrMVkiKADqcFEnm8Y2AdB2mEOPbjjbob70q5p577qmmTZtm0CKWgoAbBHK5nOrXr5+aM2dOoMGdOnVSH374oVpjjTUC+9AAAXSYPQCBeATQ4XjcGFVNAB2uZsIVCEQhIF2HKcRE2QX0aZiA/gNy8803Dx2nnxM/dOjQ0D40QsBXAjfccIM6/vjjQ90fP368Gj58eGgfGv0lgA77G3s8T4YAOpwMR59nQYd9jj6+J0FAsg5TiElihzBHFYGRI0eqcePGVV0vXtD/268fWc0LAhCoTeC7775TvXv3VgsXLqzdIX91q622Us8//3xgOw1+E0CH/Y4/3jdPAB1unqHvM6DDvu8A/G+WgGQdphDT7O5gfBWBZcuWqZ49e6pFixZVtRUvTJw4se7/9hf78hMCvhIYNWqUGjt2bKj7f/3rX9WAAQNC+9DoHwF02L+Y43E6BNDhdLj6MCs67EOU8dEEAak6TCHGxO7xbI27775bHXrooYFer7nmmoV7W6y22mqBfWiAAASUevvtt9Umm2yi9Hdkg14nnHCC+t///d+gZq57SgAd9jTwuJ04AXQ4caTeTIgOexNqHE2ZgFQdphCT8sbxcfp99tlHPfjgg4Gu63ta6Htb8IIABOoT2H333dWjjz4a2LFLly6Fry916NAhsA8N/hFAh/2LOR6nRwAdTo+t5JnRYcnRxTfTBCTqMIUY07tI+Hr6fhY9evRQK1euDPT02WefVT/96U8D22mAAARaCfzxj39URx55ZOuFGkf60ZgHHHBAjRYu+UgAHfYx6vicJgF0OE26MudGh2XGFa+yIyBRhynEZLefRK587bXXqlNPPTXQty222EL93//9X2A7DRCAQDmBf/zjH4Xi5ieffFLeUHJ21FFHqUmTJpVc4dBnAuiwz9HH9zQIoMNpUJU9JzosO754Z56ARB2mEGN+H4lecciQIerxxx8P9PHKK69Up512WmA7DRCAQDUB/XW+sPvAdOrUSX388ceK+y5Vs/PxCjrsY9TxOW0C6HDahGXNjw7Liife2EFAmg5TiLFjX4mwot7HMNu2bavmz5+vunfvLsJfnICAKQKPPfaY2m233UKXu/POO9Vhhx0W2odG+QTQYfkxxsNsCKDD2XB3cVV02MWoYbMLBKTpMIUYF3adIzbW+xjmLrvsEvppGUfcxEwIGCewYsWKwiPh9S93Qa/DDz9c6e/P8vKbADrsd/zxPj0C6HB6bKXNjA5Liyj+2EJAmg5TiLFlZwmwY9ddd1XTp08P9OSaa65Rp5xySmA7DRCAQDCBESNGKP0eCnrppyctWrRItWvXLqgL1z0ggA57EGRczIwAOpwZeqcWRoedChfGOkZAkg5TiHFs89lq7pdffqnWXntttWzZspom6q8lLViwQP3oRz+q2c5FCEAgnMCsWbPUzjvvHNppxowZdfuETkCj0wTQYafDh/EOEECHHQhSxiaiwxkHgOXFE5CkwxRixG9XMw5OnjxZHXzwwYGLDR48OPTTMoEDaYAABAoE9Mcxu3btqpYsWRJIZNSoUWrMmDGB7TTIJoAOy44v3mVPAB3OPga2W4AO2x4h7HOdgCQdphDj+m60xP6TTjpJTZgwIdCacePGqdNPPz2wnQYIQKA+gSOPPDL0PjA8Hr4+Q8k90GHJ0cU3Wwigw7ZEwk470GE744JVsghI0WEKMbL2ZWbe9OnTR7333nuB67/yyiuqX79+ge00QAAC9QncfPPN6thjjw3t+MEHHxRu7BvaiUaRBNBhkWHFKcsIoMOWBcQyc9BhywKCOSIJSNFhCjEit6dZp15//XXVt2/fwEV79eql5s2bF9hOAwQgEI2AfmrSuuuuq3K5XOCAW265RR1zzDGB7TTIJIAOy4wrXtlHAB22Lya2WIQO2xIJ7JBOQIoOU4iRvlMN+FfvMX3HH3+8mjhxogFLWAIC8gkMGDBAPffcc4GODh8+XI0fPz6wnQaZBNBhmXHFKzsJoMN2xiVrq9DhrCPA+j4RkKDDFGJ82rEp+Xr00UerSZMmBc7+pz/9Sf3rv/5rYDsNEIBAdAIjR45U+p5LQS/9FUD9VUBefhFAh/2KN95mSwAdzpa/raujw7ZGBrskEpCgwxRiJO5Mwz6FfR+2TZs2avHixWqttdYybBXLQUAmgXpPZOA9JzPu9bxCh+sRoh0CyRFAh5NjKWkmdFhSNPHFdgISdJhCjO27zHL7FixYEHpjUH3vmDlz5ljuBeZBwB0CixYtUt26dQs1+P7771f77bdfaB8a5RBAh+XEEk/cIIAOuxEnk1aiwyZpsxYElJKgwxRi2MlNEdBfOzrssMMC5zjuuOPUDTfcENhOAwQg0DiBTTfdVL3xxhuBA0eNGqXGjBkT2E6DLALosKx44o0bBNBhN+Jkykp02BRp1oFAKwHXdZhCTGssOYpB4PTTT1eXX3554EhdhNHFGF4QgEByBPR76sYbbwyccK+99lIPPvhgYDsNsgigw7LiiTduEECH3YiTKSvRYVOkWQcCrQRc12EKMa2x5CgGgcGDB6sZM2YEjtRfSwp7tHXgQBogAIFAAhMmTFAnnXRSYLt+xLX+mDQvPwigw37EGS/tIoAO2xWPrK1Bh7OOAOv7SMB1HaYQ4+OuTdDntddeW3366ac1Z+zSpUuhTd88lBcEIJAcgdmzZ6tBgwaFTvjxxx+rrl27hvahUQYBdFhGHPHCLQLosFvxSttadDhtwswPgWoCruswhZjqmHIlIoH58+erXr16Bfbeaaed1MyZMwPbaYAABOIR+Oqrr9Saa66pcrlc4ASPPPKI2m233QLbaZBBAB2WEUe8cI8AOuxezNKyGB1OiyzzQiCcgOs6TCEmPL60hhCYOnWq2nvvvQN7nHLKKeqaa64JbKcBAhCIT2CjjTZS77zzTuAE48aNU/o767xkE0CHZccX7+wmgA7bHR9T1qHDpkizDgSqCbiswxRiquPJlYgELrnkEnXWWWcF9r7uuutC72MROJAGCECgLoGDDz5YTZ48ObCfvoEZTywLxCOmAR0WE0occZAAOuxg0FIwGR1OASpTQiAiAZd1mEJMxCDTrZrAz3/+c/WHP/yhuuH7K08++WTd+1gEDqYBAhAIJTB69Gh13nnnBfbRNw6cPn16YDsNMgigwzLiiBduEkCH3Yxb0lajw0kTZT4IRCfgsg5TiIkeZ3pWENhhhx3UU089VXG19fTzzz8v3Mei9QpHEIBAUgRuvvlmdeyxxwZOt/7666v3338/sJ0GGQTQYRlxxAs3CaDDbsYtaavR4aSJMh8EohNwWYcpxESPMz0rCPTs2TPwEbndunVTCxcurBjBKQQgkBQB/dh4/amXoFfbtm3Vt99+q9q3bx/UhesCCKDDAoKIC84S0A8k2GWXXQLtR4cD0YhqQIdFhRNnHCPgsg5TiHFss9li7j/+8Q+16qqrBj61Zdttt1XPPPOMLeZiBwTEEZg7d67q3bt3qF9vvvmm2njjjUP70OguAXTY3dhhuQwC6LCMODbjBTrcDD3GQqB5Ai7rMIWY5uPv5Qz6D7wf//jHgb4ffvjh6o9//GNgOw0QgEBzBFauXFkohi5btixwooceekjtsccege00uE0AHXY7fljvPgF02P0YNusBOtwsQcZDoDkCLuswhZjmYu/t6Icffljtueeegf7rpymNHTs2sJ0GCECgeQL60y5vv/124ET6qUn66Um8ZBJAh2XGFa/cIoAOuxWvpK1Fh5MmynwQaJyAqzpMIabxWDMiT+D6669XJ5xwQiCLa6+9Vp188smB7TRAAALNE9h5553VrFmzAifSxdCwR8wHDqTBCQLosBNhwkjhBNBh4QGu4x46XAcQzRAwQMBVHaYQY2BzSFxizJgx6r/+678CXbv//vvVfvvtF9hOAwQg0DyBQw45RN1zzz2BE40cOVJdcsklge00uE0AHXY7flgvgwA6LCOOcb1Ah+OSYxwEkiPgqg5TiEluD3g1k/4Db9y4cYE+z549Ww0cODCwnQYIQKB5AieeeKKaOHFi4ET68dY33nhjYDsNbhNAh92OH9bLIIAOy4hjXC/Q4bjkGAeB5Ai4qsMUYpLbA17N9Itf/ELddNNNgT6/8cYbapNNNglspwECEGiewNlnn60uuuiiwIn0p9L0p9N4ySSADsuMK165RQAdditeSVuLDidNlPkg0DgBV3WYQkzjsWZEnsD++++vHnjggUAWn3zyiVprrbUC22mAAASaJ6A/lab/Ny7opT+Vpj+dxksmAXRYZlzxyi0C6LBb8UraWnQ4aaLMB4HGCbiqwxRiGo81I/IEBg0aFPgHXtu2bdXy5ctVmzZtYAUBCKRIQH/tKOypSH379lVz5sxJ0QKmzpIAOpwlfdaGwD8JoMN+7wR02O/4470dBFzVYQoxduwf56zQf+C9/vrrNe1ee+211eLFi2u2cRECEEiOwB133KGOOuqowAn79Omj3nnnncB2GtwmgA67HT+sl0EAHZYRx7heoMNxyTEOAskRcFWHKcQktwe8mmmDDTZQ77//fk2f119//cC2mgO4CAEIxCKgn5ik7xQf9OrRo4eaP39+UDPXHSeADjseQMwXQQAdFhHG2E6gw7HRMRACiRFwVYcpxCS2BfyaSP+B9+GHH9Z0Wt+kV9+slxcEIJAugSlTpoQ+Jp5Pp6XLP+vZ0eGsI8D6EFAKHfZ7F6DDfscf7+0g4KoOU4ixY/84Z8U666yj9A15a7369eunXnnllVpN6oMPPig8xWXu3LlqxYoVNftwEQIQ+CeBVVddVen3k74Z4GqrrVaF5ZFHHlF77LFH1fXihU6dOqmvvvqqeMpPYQTQYWEBxR0rCaDDVobFGqPQYWtCgSGCCYjV4RwvCMQgsPrqq+fy7/ea/7baaquaM44ePTrXvn37mmOC5uJ6bcZw8YtLt27dcg8++GDV+2rGjBmh76d27dpVjeGCHALosF86gO5nG290WI52JukJOpzt+xJd9Iu/NB1WSYoRc/lDoEOHDoF/AOYfmVsF4vzzzw/sj4j6JaLEO1689Xvu6aefLntvPfXUU3XfV2UDOBFFAB2O915Cg+AWdw+gw6IkNBFn0GH0JK6eMC7e3pGkw3w1Kf8u4NU4gbBHU++0005q5syZLZMuWbJErbvuuuq7775rucYBBCDQOIHBgwer6dOntwycPXt24VHyLRdqHOR/06xxlUsSCKDDEqKID64RQIddi1i69qLD6fJldgjUIiBFhynE1Iou1+oSCEs8O++8s8p/ZaJljvvvv18dcMABLeccQAAC8Qi0bdtWffPNNyr/vwGFCSjExOMoZRQ6LCWS+OESAXTYpWilbys6nD5jVoBAJQEpOkwhpjKynEci0Ejiuf3229WwYcMizUsnCEAgnMBnn32mOnfuXOhEISaclfRWdFh6hPHPVgLosK2RMW8XOmyeOStCQBOQoMMUYtjLsQg0knj0E5R+8pOfxFqHQRCAQCuBDTbYQL377rstFyjEtKDw8gAd9jLsOJ0xAXQ44wBYtjw6bFlAMMcLAmJ0OJE7VTGJdwTy7/LAm4Tmv5pUxWO33XYL7B82F23BnGHjH5urr7667L3FzXrLcHh3EqYB6LB/+hC2H2hLbj+gw95JbajDYe8tdDi5910YZ9r84yxFh3lqUqi80hhEIEz0aiWeRYsW5fr3708xJqSAFcaUNv+STGXMhw8fXvV2pBBThcSrC5V7pPQcHUYzSvcDx8nsB3TYK4mN5GzYewsdTuZ9F8aYNv8YS9JhCjGRZJZOlQTChK9W4tHjv/3229y5556bW2WVVSjIUJBhD0TcA927d89Nnjy58i1YOKcQUxOLNxfRYf9+AQ2LOW3p7Qd02BtZbdjRsPcdvw+n954M406bTO4SdZhCTMOSywBNIEzkghJPkdyIESNCx4fNTZtMcSWuwXGdMmVK8a1T9ZNCTBUSry6EvW/Q4eD3VBg32uBWaw+gw15Ja0PO1tovxWvoMHpS3Av8bH4vSNRhbtabf2fwapxAIzcnq5z9+uuvVyeccELlZc4hAIEaBObNm6d69epVo0UpbtZbE4s3F9Fhb0KNoxkTQIczDoDFy6PDFgcH00QRkKjDFGJEbVFzzjSTeG644QZ1/PHHmzOWlSDgMIH58+erHj161PSAQkxNLN5cRIe9CTWOZkwAHc44ABYvjw5bHBxME0VAog5TiBG1Rc05Q+Ixx5qV/CYgMfH4HdHkvEeHk2PJTBAII4AOh9Hxuw0d9jv+eG+OgEQdphBjbv+IWonEIyqcOGMxAYmJx2LcTpmGDjsVLox1mAA67HDwUjYdHU4ZMNND4HsCEnWYQgzbOxYBEk8sbAyCQMMEJCaehiEwoCYBdLgmFi5CIHEC6HDiSMVMiA6LCSWOWE5Aog5TiLF809lqHonH1shglzQCEhOPtBhl5Q86nBV51vWNADrsW8Sj+4sOR2dFTwg0Q0CiDlOIaWZHeDyWxONx8HHdKAGJiccoQMGLocOCg4trVhFAh60Kh1XGoMNWhQNjBBOQqMMUYgRv2DRdI/GkSZe5IdBKQGLiafWOo2YIoMPN0GMsBKITQIejs/KtJzrsW8TxNysCEnWYQkxWu8nxdUk8jgcQ850hIDHxOAPfckPRYcsDhHliCKDDYkKZuCPocOJImRACNQlI1GEKMTVDzcV6BEg89QjRDoFkCEhMPMmQYRZ0mD0AATME0GEznF1cBR12MWrY7CIBiTpMIcbFnWiBzSQeC4KACV4QkJh4vAicASfRYQOQWQICeQLoMNsgiAA6HESG6xBIloBEHaYQk+we8WY2Eo83ocbRjAlITDwZIxWzPDosJpQ4YjkBdNjyAGVoHjqcIXyW9oqARB2mEOPVFk7OWRJPciyZCQJhBCQmnjB/aYtOAB2OzoqeEGiGADrcDD3ZY9Fh2fHFO3sISNRhCjH27C+nLCHxOBUujHWYgMTE43A4rDIdHbYqHBgjmAA6LDi4TbqGDjcJkOEQiEhAog5TiIkYfLqVEyDxlPPgDAJpEZCYeNJi5du86LBvEcffrAigw1mRt39ddNj+GGGhDAISdZhCjIy9adwLEo9x5CzoKQGJicfTUCbuNjqcOFImhEBNAuhwTSxczBNAh9kGEDBDQKIOU4gxs3fErULiERdSHLKUgMTEYylq58xCh50LGQY7SgAddjRwBsxGhw1AZgkI5AlI1GEKMWztWARIPLGwMQgCDROQmHgahsCAmgTQ4ZpYuAiBxAmgw4kjFTMhOiwmlDhiOQGJOkwhxvJNZ6t5JB5bI4Nd0ghITDzSYpSVP+hwVuRZ1zcC6LBvEY/uLzocnRU9IdAMAYk6TCGmmR3h8VgSj8fBx3WjBCQmHqMABS+GDgsOLq5ZRQAdtiocVhmDDlsVDowRTECiDlOIEbxh03SNxJMmXeaGQCsBiYmn1TuOmiGADjdDj7EQiE4AHY7Oyree6LBvEcffrAhI1GEKMVntJsfXDUs822+/vXrqqacCPRw/frw6+eSTA9tpgAAEWgm89957qnfv3q0XSo5effVV1b9//5Ir1Ye5XK76IldEEECHRYQRJxwggA47EKSMTESHMwLPst4REKnD+V/SeUGgYQL5d7/+667mv9VWWy337rvv1pxzxYoVub333rvmuKD5uF6bM1z84HLFFVfUfC/pizfddFPd91LgYBqcJxCmAeiwH/oQtgdoS24PoMPOy2VqDoS9z9Dh5N6DYZxp84OzRB3mEzH5dy+vxgmE/Q+Anq1Lly5ql112UR06dGiZPJ8Flf4f/Dlz5rRc4wACEKhPYPDgwapr165lHZcsWaIee+wxtXLlyrLrlSf6fcdLJgF0WGZc8cpOAuiwnXHJ2ip0OOsIsL5PBKTpMIUYn3Zvgr7WSzwJLsVUEIBAEwQoxDQBz/Kh6LDlAcI8CHxPAB2WuxXQYbmxxTNZBGzUYQoxsvaYMW9IPMZQsxAEmiJgY+JpyiEGtxBAh1tQcAABqwmgw1aHpynj0OGm8DEYAsYI2KjDFGKMhV/WQiQeWfHEG7kEbEw8cmmb9QwdNsub1SAQlwA6HJec/ePQYftjhIUQ0ARs1GEKMezNWARIPLGwMQgCxgnYmHiMQxC6IDosNLC4JY4AOiwupC0OocMtKDiAgNUEbNRhCjFWbxl7jSPx2BsbLINAKQEbE0+pfRzHJ4AOx2fHSAiYJIAOm6Rtdi102CxvVoNAXAI26jCFmLjR9HwcicfzDYD7zhCwMfE4A89yQ9FhywOEeRD4ngA6LHcroMNyY4tnsgjYqMMUYmTtMWPekHiMoWYhCDRFwMbE05RDDG4hgA63oOAAAlYTQIetDk9TxqHDTeFjMASMEbBRhynEGAu/rIVIPLLiiTdyCdiYeOTSNusZOmyWN6tBIC4BdDguOfvHocP2xwgLIaAJ2KjDFGLYm7EIkHhiYWMQBIwTsDHxGIcgdEF0WGhgcUscAXRYXEhbHEKHW1BwAAGrCdiowxRirN4y9hpH4rE3NlgGgVICNiaeUvs4jk8AHY7PjpEQMEkAHTZJ2+xa6LBZ3qwGgbgEbNRhCjFxo+n5OBKP5xsA950hYGPicQae5Yaiw5YHCPMg8D0BdFjuVkCH5cYWz2QRsFGHKcTI2mPGvCHxGEPNQhBoioCNiacphxjcQgAdbkHBAQSsJoAOWx2epoxDh5vCx2AIGCNgow5TiDEWflkLkXhkxRNv5BKwMfHIpW3WM3TYLG9Wg0BcAuhwXHL2j0OH7Y8RFkJAE7BRhynEsDdjESDxxMLGIAgYJ2Bj4jEOQeiC6LDQwOKWOALosLiQtjiEDreg4AACVhOwUYcpxFi9Zew1jsRjb2ywDAKlBGxMPKX2cRyfADocnx0jIWCSADpskrbZtdBhs7xZDQJxCdiowxRi4kbT83EkHs83AO47Q8DGxOMMPMsNRYctDxDmQeB7Auiw3K2ADsuNLZ7JImCjDlOIkbXHjHlD4jGGmoUg0BQBGxNPUw4xuIUAOtyCggMIWE0AHbY6PE0Zhw43hY/BEDBGwEYdphBjLPyyFiLxyIon3sglYGPikUvbrGfosFnerAaBuATQ4bjk7B+HDtsfIyyEgCZgow5TiGFvxiKw+uqrq6VLl8YayyAIQMAMgc6dO6vPPvvMzGKsYpwAOmwcOQtCoGEC6HDDyJwagA47FS6M9ZSArTpMIcbTDdms25deeqk6++yz1fLly5udivEQgEACBPT/ypX+z5xOOvp9etxxxyUwO1PYSAAdtjEq2OQzAXTYv+ijw/7FHI/tJuCSDlOIsXsvWW3dt99+W/apGH1+3XXXqQsuuMBquzEOAtIITJgwQR177LGqQ4cO0lzDnzoE0OE6gGiGgCEC6LAh0BYugw5bGBRM8pKAazpMIcbLbZqu07169VLz589PdxFmhwAECgQ222wz9dprr0EDAmUE0OEyHJxAIFUC6HCqeJ2dHB12NnQY7iABF3WYQoyDG812k7fcckv10ksv2W5mTfsGDBigTjrppJpt+mtYI0eOVF999VXN9rCLYfOGjStt0zeZOvfcc9UHH3xQernmcdu2bdXOO++sfvzjH6uNN95YbbLJJoWf3bt3V0uWLCkUyhYsWFD4+cILL6iHH35YLV68uOZclRe33XbbwtzaJ/2vY8eO6sUXX1R/+9vf1LPPPqumTp3a0A2xkp6vf//+6le/+lWl2YXzu+66S02bNq1mm6sXNb9nnnnGVfOxOyUC6HA1WHS4mknxSlI6rD8SvuOOO6oDDzxQbbHFFkr/Idq1a1f1+eefF/LN9OnT1aRJk9Qbb7xRXFrET3RYRBgTdwIdrkaKDlczKV5JSof1fN26dVOHHXaY2mabbVTv3r3V+uuvr7p06aI+/vjjghY/8cQT6qabblJz584tLu/8Tyd1OP/HHS8IJEog/8tXLv9udvLfySefHMpigw02iOVXvXlDFy1pHDJkSOj6+V+Cc4ceemju1VdfLRlV/3DFihW5fBEld9555+W22mqrmmu0b98+d8UVV9SdbMqUKbm111675hyl+yLp+YpzH3PMMYE2XnTRRXXtKs7jys984gn0lwZ/CaDD1TkIHa5mkqQO77vvvrl8Ub7um27ZsmW5n//856K0GB2uG3YvO6DD1ZqDDlczSVKH9d8p+f9wzOX/87jue07/7p+/x1FOr+/K77xhdrqow/p/rnlBIFECJJ5qkTWRePQvwc8//3zTsbz33nurBDlfSc89/fTTkefOV9hzAwcOrJqnKKBJz1ecV/+kEBM5THQUTAAdRodN6fAaa6yR+/Of/9zwu+nMM88MzBGlmu7CsYt/ADQcMAY0TAAdRodN6XBRJ/Ofhm94n+rCzSqrrOK8HruowxRiGt6uDKhHgMRjPvFceOGF9cISub1WIWb27NmRxxc75r/qlFtzzTVrCnvS8xUTkP5JIaYYAX76TAAdRof1/jehw3379o39VjvttNNq5ohSTXfh2MU/AGIHjYGRCaDD6LDeLCZ0uKiTcQox2sbRo0c7r8Uu6jCFGL37eCVKYOjQoc6+met9csXGryadc845icavshCT/65/7Pn1V52KyaH4M+n5ivMWf/pWiDnyyCNjx4eBcgmgw2b/APBZh5spxOTveZZr165dVZ4o6rkrP9FhuVrajGfoMDpc3D+mfh+OW4jJ3z8y16lTJ6e12EUd5ma9+SzPK1kCc+bMUfn/5SrcDKpy5o8++qhws9jK67ac5wsx6tprrw00p0+fPuq9994LbA9qqDfv5MmT1aJFi4KGt1z/3e9+V3az3vz/tqj815FU/iOFLX2aPbjvvvsKN1rU8+ib/uobL/fr16/mtK+//rrKf99f6Rvk1notXbpUbbjhhoWbg+n2pOertWa+EKNuueWWWk1q7NixatSoUTXbbL6o+fbs2bPKxPXWW0/pPbHuuutWtXHBbwLocHX80eGPC1CS1uF8IUbp/Vb5yt9/QOmb9+r1wl6DBg1S+U9JhnWxog0dtiIMThmBDleHCx1OR4eLpPWDOmbMmKE++eQT9T//8z9K3yD9lVdeKfwOqf++2WmnnYpdq37m70OpHn/88arrNl0Qp8PFSh0/IWCCwD/+8Y/csGHDrK245hNEKIa0PhETd9682IbaW2zMF3lyd955Zy7/1KfcLrvsktt6660LX+G5+OKLc4888khO37Cr+Cr9RExYdfmdd97J6XsD5AU69P4A48aNa4l30vPptSv/SftEzC9/+ctiaPgJgUQIoMO1MaLDuVwcXS/9RMzXX39duOl7/pf9XIcOHXKdO3fO3XjjjbWBf3/1qKOOqtLxSl3P+hwdDg0hjTEIoMO1oaHD8XS4qJH6YRmnnHJKy+/nxev6Z/6pSTn990DQ6+ijj7ZaiyXqMF9NCtqNXE+NQL7aau0b3aVCTP6x1JFipHnnHx8ayvwnP/lJThdg9Ku0EBP2lCR9p/WiwOtfuoNeTz31VEu/pOcrrl/6U1ohZtasWUFouQ6B2ATQ4Wp0cf4AQIdVrliIefvtt3P5x/W26H1Rl/XT/MJu9q5/uS72tfUnOlz9fuFK8wTQ4WqG6HCu8CSjohZG/f262L/ez7CnqoY9ZKPevCbaJeowhZhqDeBKygSeeeYZa3/pcqkQo584Ue919dVXN/T9ey3Ce+yxR0t8HnjggcAl9tprr5Z++n89g14LFy5s6Zf0fLWEX1ohRr9feEEgaQLocDXROH8AoMMqt8466+TyH3kv/G9rLU3W10aMGFEN/PsrBx98cEuOCBqf9XV0ODB8NDRBAB2uhocO53Jxfr+OopGHHnpobuXKldXQ81e+/fbbXMeOHa3WYok6TCGm5nbkYpoESDzVdF977bWcfpJQ2L8rr7yyTCDvueee6olKrkyaNKmsfxSRruyT/35zyYzlh/n7kpTNr+8KH/RaffXVC32Tnq/SXn1OISYoClyHQCsBdLiVRfEIHc7l4uh6LR2uvHbSSScVMVf93GyzzcpySeVYG84l/gFQFQguGCeADlcjR4eT1WH9JCH9n8y33XZbLn9Px2rg318ZM2YMOhxIJ70GCjHpsWXmAAIkngAwdS4/++yzZSJZ7xHQ+uPizfwCm7/BYqFCHmSW/hRM6fxvvvlmUNecfoRj0vOVrl16TCEmMAw0QKCFADrcgqKhA3S4FVcjj+a9/PLLWweWHH3zzTe59u3bl+WSUj235ZhCTEnQOEyMADocDyU63Mqtng7nHzDS2jngKH8z39yqq66KDgfwSfMyhZg06TJ3TQIknppY6l6sTDz6popBL30zrmZ/gc0/kSdo+sJ1fSPG0jVefvnlwP4HHXRQLun5StcuPaYQExgGGiDQQgAdbkHR0AE63IpL63qp9gYd63vE/P3vf28dWHJ0/fXXR5ojaG5T1ynElASNw8QIoMPxUKLDrdzq6XC9Qoz+lMwPf/hDdLgVqdEjCjFGcbOYJkDiibcPKhPPBx98EDiRvmlis7+gbrrppoHz6wb9CZfSNcLs0fedSXq+0rVLjynEhIaNRggUCKDD8TYCOtzKrfR+YqUaXHl8wAEHtA4qOdL3KtA3iq/sb+M5hZiSwHGYGAF0OB5KdLiVWz0drleI0TONHz++oftJZqXREnWYQkzrXubIEAESTzzQlYnnxRdfDJwoiZturbbaaoE39dIL6/ZSMdbf6w166bu+Jz1f6dqlxxRigqLAdQi0EkCHW1k0coQOt9LSul6qvbWO9c0fgz4tqX/5rzXGxmsS/wBojSRHWRFAh+ORR4dbudXT4bCnJLXOkstNnjzZej2WqMNtdBDySY8XBIwRyAuo2m677Yyt18hC+RtaqfzTHwKH9OnTR+Wry4HtQQ315r3sssvUhx9+GDS8cP2tt95SeaFs6fPQQw+pfCW85bzy4Pjjj1c33HBD5eWGzufPn6969OhRc0z+kdgqf4PeljbNpXfv3i3npQc9e/ZUCxYsUEnPV7pG8ThfiFG33HJL8bTs59ixY9WoUaPKrtl+kk88Kn+zNdvNxD7HCKDD1QFDh5WKo+vVJFuvXHrppeqMM85ovfD9kc4Hm2++ufr888+r2my8gA7bGBX3bUKHq2OIDierw/mvhqr8k6jUgAED1G9/+9uC7lZT/+eVXXfdVU2fPj2oOfPrInW4tBrGMQRMENAVzfy72cp/Lj2++qKLLgoNV/4X3Vz//v0b5typU6eWMTNnzgxco/QGYWE34v36669z+h4BOuZJz1drH/GJmMCQ0QCBFgLocAuKloP8L6st2ldLW2pdQ4eDc7m+d0GtR6UuX748N3jw4IZZ1+Jv6pp+v/CCQNIE0OFqouhwrvCAi6K2Rf39utg/7Ocaa6yRe/7556uhf39l3LhxVuuyRB3mq0mB25GGtAiQeKrJxkk8O++8c/VEFVeWLFmS0/3ChLnY9tOf/jQ3a9as3JNPPtnS/8Ybb6yYsfX0kEMOaem3/vrrtzZUHOmPRRbXSHq+4rylPynEVASAUwjUIIAOV0NBh3O5OLpeqr/F4y233DL31VdfVUPOX/nNb37TkhOK/W3/KfEPgJrB4aJRAuhwNW50uDkd1l8HDdPTc845pxr691f+/Oc/h44Nm9dEm0QdphATuB1pSIuAy4lHfxezV69edf+tvvrqZWKWxidt2rVrlwt7clIxfvp+MWeeeWauW7duZTZp0VxnnXVyw4cPLxRgiv9zWfrd27PPPrs4TdXPSZMmtcx3+umnV7UXL5R+7zTp+WoJP4WYInl+QiCYADpczSbOHwDocPUnYtZdd93c3LlzqwHnr0ydOrXlE5K19NvWaxL/AKgZIC4aJYAOV+NGh3O5OL9fF7VT35PrD3/4Q27ttddu+R292KZ/Tpw4sRr691duvfXWmmNKx2d5LFGHKcQEbkca0iLgcuKJyuT2228vE7N6hZijjz46t8MOO9T9l//+ftm8w4YNi2pSTj+iTgv0o48+mnvuuedyn376ac2xpYWY7t2755YuXVqzny7c/O53v8uNHDky98knn9Tsoy9qG4vCnfR8xXlLf1KICQwFDRBoIYAOt6BoOUCHc4WvEjWq66X6q2/K/re//a2FaeWBfoy1/uRl5b8ZM2bkdH4oncumY4l/AFTGhnPzBNDhaubocHM6nL+fZAHqwoULC/8Jqz/trv/DQP9n7LnnnlsNvOTKxRdfbK0G63wgUYcpxJRsQA7NEPAh8dx1111lYlavEBOVfP5ms2Xz6nuvPPjgg1GHR+pXWojRwnf++edHGler00cffZTr0KFDmc1Jz1f5yzqFmFqR4BoEygmgw+U8GjlDh6t1XevwKquskrvvvvsaQVnW1+ZHWUv8A6AMPieZEECH42NHh2vrcLEQU0q2+In30mu1jg888MCy39crf7/O+lyiDlOIqbUTuZYqARJPfLyViUeLor75VtijrBtdrbIQ07lz59BPvITNf8QRR1SJetLzVSYGCjFhEaENAv8kgA7H3wnocLWuax3OP3EwPtT8SAoxTeFjsIME0OH4QUOHa+twrUJMFMrffPNN4XYFlb9T23ROISZKJOkDgToESDx1AIU010o8WiR1cePyyy8vfP0oZHikpspCjJ5ff73ou+++izS+2OmKK66oKsIUBT3p+Yrz6p8UYooR4CcEggmgw8Fs6rWgw9X3hbnwwgvrYavbTiGmLiI6CCOADscPKDpcrcP6d+A4hZgVK1bkDj744MDf2Ut/x87ymEJM/PcLIyHQQoDE04Ki4YOgxFMUxn79+uUee+yxhuctDtD3jjnyyCNrirH+nmmUmwN/8cUXgXMU7dQ/k56vODeFmGI0+QmBYALocDCbei3ocPkfAGE3Ya/HsrSdQkwpDY59IIAOx48yOlyuw8XfgfWtEXRhJepL/yfrCSecUPP3/uKctvykEBM1qvSDQAgBmxPPz372sxDLozfddNNNZaKW1LyjR48umzdIHPUjSO+4447chx9+GGq0vhHvzJkzc5dccklu2223rTt3ly5dcldffXXhpr/Lly8vm/vtt9/O6ZsUb7LJJnXnKdqd9Hx63oMOOqjMrtIT/di+4tqu/JSYeEpjwnE2BNDh+NzR4fI/AOL8D2wlfX0Pg4022shafUaHKyPGeRIE0OH4FNHhch0u/Z1WP7nu1FNPLTycQ9+0t9br888/z40bNy7Xs2dPa3W31Cd9LFGH2+jg5J3jBQFjBPJffVHbbbedsfV8X6hHjx4q/5hqlX+Unco/0ULliy/qs88+K/ybN2+eylfOYyHq1KmT+pd/+RfVsWNHlb9Hjco/hSnWPMVBSc9XnNf1n/nEo/JFMtfdwH7LCKDDZgOCDpvlnfRq6HDSRJlPE0CHze4DX3VY/36dfyy46tWrl8rfC0bl/+NULViwQN8n1mwAmlxNog5TiGlyUzC8cQIknsaZMcJfAhITj7/RtMdzdNieWGCJ/QTQYftj5KKF6LCLUcPmrAhI1GEKMVntJo/XJfF4HHxcb5iAxMTTMAQGJE4AHU4cKRMKJoAOCw5uhq6hwxnCZ2nnCEjUYQoxzm1D9w0m8bgfQzwwR0Bi4jFHj5WCCKDDQWS4DoFqAuhwNROuNE8AHW6eITP4Q0CiDlOI8Wf/WuMpiceaUGCIAwQkJh4HsIs3ER0WH2IcTJAAOpwgTKZqIYAOt6DgAAJ1CUjUYQoxdcNOh6QJkHiSJsp8kglITDyS4+WKb+iwK5HCThsIoMM2REGeDeiwvJjiUXoEJOowhZj09gszBxAg8QSA4TIEahCQmHhquMklwwTQYcPAWc5pAuiw0+Gz1nh02NrQYJiFBCTqMIUYCzeadJNIPNIjjH9JEpCYeJLkw1zxCKDD8bgxyk8C6LCfcU/ba3Q4bcLML4mARB2mECNphzriC4nHkUBhphUEJCYeK8B6bgQ67PkGwP2GCKDDCh7TJQAAI05JREFUDeGic0QC6HBEUHSDQJ6ARB2mEMPWNk6AxGMcOQs6TEBi4nE4HGJMR4fFhBJHDBBAhw1A9nAJdNjDoONybAISdZhCTOztwMC4BEg8cckxzkcCEhOPj3G0zWd02LaIYI/NBNBhm6Pjrm3osLuxw3LzBCTqMIUY8/vI+xVJPN5vAQA0QEBi4mnAfbqmRAAdTgks04okgA6LDGvmTqHDmYcAAxwiIFGHKcQ4tAGlmErikRJJ/DBBQGLiMcGNNcIJoMPhfGiFQCkBdLiUBsdJEUCHkyLJPD4QkKjDFGJ82LmW+UjisSwgmGM1AYmJx2rgnhiHDnsSaNxMhAA6nAhGJqkggA5XAOEUAiEEJOowhZiQgNOUDgESTzpcmVUmAYmJR2ak3PIKHXYrXlibLQF0OFv+UldHh6VGFr/SICBRhynEpLFTmDOUAIknFA+NECgjIDHxlDnISSYE0OFMsLOoowTQYUcDZ7nZ6LDlAcI8qwhI1GEKMVZtMT+MIfH4EWe8TIaAxMSTDBlmaYYAOtwMPcb6RgAd9i3iZvxFh81wZhUZBCTqMIUYGXvTKS9IPE6FC2MzJiAx8WSMlOXzBNBhtgEEohNAh6Ozomd0AuhwdFb0hIBEHaYQw742ToDEYxw5CzpMQGLicTgcYkxHh8WEEkcMEECHDUD2cAl02MOg43JsAhJ1mEJM7O3AwLgESDxxyTHORwISE4+PcbTNZ3TYtohgj80E0GGbo+Oubeiwu7HDcvMEJOowhRjz+8j7FUk83m8BADRAQGLiacB9uqZEAB1OCSzTiiSADosMa+ZOocOZhwADHCIgUYcpxDi0AaWYSuKREkn8MEFAYuIxwY01wgmgw+F8aIVAKQF0uJQGx0kRQIeTIsk8PhCQqMMUYnzYuZb5SOKxLCCYYzUBiYnHauCeGIcOexJo3EyEADqcCEYmqSCADlcA4RQCIQQk6jCFmJCA05QOARJPOlyZVSYBiYlHZqTc8godditeWJstAXQ4W/5SV0eHpUYWv9IgIFGHKcSksVOYM5QAiScUD40QKCMgMfGUOchJJgTQ4Uyws6ijBNBhRwNnudnosOUBwjyrCEjUYQoxVm0xP4wh8fgRZ7xMhoDExJMMGWZphgA63Aw9xvpGAB32LeJm/EWHzXBmFRkEJOowhRgZe9MpL0g8ToULYzMmIDHxZIyU5fME0GG2AQSiE0CHo7OiZ3QC6HB0VvSEgEQdphDDvjZOgMRjHDkLOkxAYuJxOBxiTEeHxYQSRwwQQIcNQPZwCXTYw6DjcmwCEnWYQkzs7cDAuARIPHHJMc5HAhITj49xtM1ndNi2iGCPzQTQYZuj465t6LC7scNy8wQk6jCFGPP7yPsVSTzebwEANEBAYuJpwH26pkQAHU4JLNOKJIAOiwxr5k6hw5mHAAMcIiBRhynEOLQBpZhK4pESSfwwQUBi4jHBjTXCCaDD4XxohUApAXS4lAbHSRFAh5MiyTw+EJCowxRifNi5lvlI4rEsIJhjNQGJicdq4J4Yhw57EmjcTIQAOpwIRiapIIAOVwDhFAIhBCTqMIWYkIDTlA4BEk86XJlVJgGJiUdmpNzyCh12K15Ymy0BdDhb/lJXR4elRha/0iAgUYcpxKSxU5gzlACJJxQPjRAoIyAx8ZQ5yEkmBNDhTLCzqKME0GFHA2e52eiw5QHCPKsISNRhCjFWbTE/jCHx+BFnvEyGgMTEkwwZZmmGADrcDD3G+kYAHfYt4mb8RYfNcGYVGQQk6jCFGBl70ykvSDxOhQtjMyYgMfFkjJTl8wTQYbYBBKITQIejs6JndALocHRW9ISARB2mEMO+Nk6AxGMcOQs6TEBi4nE4HGJMR4fFhBJHDBBAhw1A9nAJdNjDoONybAISdZhCTOztwMC4BEg8cckxzkcCEhOPj3G0zWd02LaIYI/NBNBhm6Pjrm3osLuxw3LzBCTqMIUY8/vI+xVJPN5vAQA0QEBi4mnAfbqmRAAdTgks04okgA6LDGvmTqHDmYcAAxwiIFGHKcQ4tAGlmErikRJJ/DBBQGLiMcGNNcIJoMPhfGiFQCkBdLiUBsdJEUCHkyLJPD4QkKjDFGJ82LmW+UjisSwgmGM1AYmJx2rgnhiHDnsSaNxMhAA6nAhGJqkggA5XAOEUAiEEJOowhZiQgNOUDgESTzpcmVUmAYmJR2ak3PIKHXYrXlibLQF0OFv+UldHh6VGFr/SICBRhynEpLFTmDOUAIknFA+NECgjIDHxlDnISSYE0OFMsLOoowTQYUcDZ7nZ6LDlAcI8qwhI1GEKMVZtMT+MIfH4EWe8TIaAxMSTDBlmaYYAOtwMPcb6RgAd9i3iZvxFh81wZhUZBCTqMIUYGXvTKS9IPE6FC2MzJiAx8WSMlOXzBNBhtgEEohNAh6Ozomd0AuhwdFb0hIBEHaYQw742ToDEYxw5CzpMQGLicTgcYkxHh8WEEkcMEECHDUD2cAl02MOg43JsAhJ1mEJM7O3AwLgESDxxyTHORwISE4+PcbTNZ3TYtohgj80E0GGbo+Oubeiwu7HDcvMEJOowhRjz+8j7FUk83m8BADRAQGLiacB9uqZEAB1OCSzTiiSADosMa+ZOocOZhwADHCIgUYcpxDi0AaWYSuKREkn8MEFAYuIxwY01wgmgw+F8aIVAKQF0uJQGx0kRQIeTIsk8PhCQqMMUYnzYuZb5SOKxLCCYYzUBiYnHauCeGIcOexJo3EyEADqcCEYmqSCADlcA4RQCIQQk6jCFmJCA05QOARJPOlyZVSYBiYlHZqTc8godditeWJstAXQ4W/5SV0eHpUYWv9IgIFGHKcSksVOYM5QAiScUD40QKCMgMfGUOchJJgTQ4Uyws6ijBNBhRwNnudnosOUBwjyrCEjUYQoxVm0xP4wh8fgRZ7xMhoDExJMMGWZphgA63Aw9xvpGAB32LeJm/EWHzXBmFRkEJOowhRgZe9MpL0g8ToULYzMmIDHxZIyU5fME0GG2AQSiE0CHo7OiZ3QC6HB0VvSEgEQdphDDvjZOgMRjHDkLOkxAYuJxOBxiTEeHxYQSRwwQQIcNQPZwCXTYw6DjcmwCEnWYQkzs7cDAuARIPHHJMc5HAhITj49xtM1ndNi2iGCPzQTQYZuj465t6LC7scNy8wQk6jCFGPP7yPsVSTzebwEANEBAYuJpwH26pkQAHU4JLNOKJIAOiwxr5k6hw5mHAAMcIiBRhynEOLQBpZhK4pESSfwwQUBi4jHBjTXCCaDD4XxohUApAXS4lAbHSRFAh5MiyTw+EJCowxRifNi5lvlI4rEsIJhjNQGJicdq4J4Yhw57EmjcTIQAOpwIRiapIIAOVwDhFAIhBCTqMIWYkIDTlA4BEk86XJlVJgGJiUdmpNzyCh12K15Ymy0BdDhb/lJXR4elRha/0iAgUYcpxKSxU5gzlACJJxQPjRAoIyAx8ZQ5yEkmBNDhTLCzqKME0GFHA2e52eiw5QHCPKsISNRhCjFWbTE/jCHx+BFnvEyGgMTEkwwZZmmGADrcDD3G+kYAHfYt4mb8RYfNcGYVGQQk6jCFGBl70ykvSDxOhQtjMyYgMfFkjJTl8wTQYbYBBKITQIejs6JndALocHRW9ISARB2mEMO+Nk6AxGMcOQs6TEBi4nE4HGJMR4fFhBJHDBBAhw1A9nAJdNjDoONybAISdZhCTOztwMC4BEg8cckxzkcCEhOPj3G0zWd02LaIYI/NBNBhm6Pjrm3osLuxw3LzBCTqMIUY8/vI+xVJPN5vAQA0QEBi4mnAfbqmRAAdTgks04okgA6LDGvmTqHDmYcAAxwiIFGHKcQ4tAGlmErikRJJ/DBBQGLiMcGNNcIJoMPhfGiFQCkBdLiUBsdJEUCHkyLJPD4QkKjDFGJ82LmW+UjisSwgmGM1AYmJx2rgnhiHDnsSaNxMhAA6nAhGJqkggA5XAOEUAiEEJOowhZiQgNOUDgESTzpcmVUmAYmJR2ak3PIKHXYrXlibLQF0OFv+UldHh6VGFr/SICBRhynEpLFTmDOUAIknFA+NECgjIDHxlDnISSYE0OFMsLOoowTQYUcDZ7nZ6LDlAcI8qwhI1GEKMVZtMT+MIfH4EWe8TIaAxMSTDBlmaYYAOtwMPcb6RgAd9i3iZvxFh81wZhUZBCTqMIUYGXvTKS9IPE6FC2MzJiAx8WSMlOXzBNBhtgEEohNAh6Ozomd0AuhwdFb0hIBEHaYQw742ToDEYxw5CzpMQGLicTgcYkxHh8WEEkcMEECHDUD2cAl02MOg43JsAhJ1mEJM7O3AwLgESDxxyTHORwISE4+PcbTNZ3TYtohgj80E0GGbo+Oubeiwu7HDcvMEJOowhRjz+8j7FUk83m8BADRAQGLiacB9uqZEAB1OCSzTiiSADosMa+ZOocOZhwADHCIgUYcpxDi0AaWYSuKREkn8MEFAYuIxwY01wgmgw+F8aIVAKQF0uJQGx0kRQIeTIsk8PhCQqMMUYnzYuZb5SOKxLCCYYzUBiYnHauCeGIcOexJo3EyEADqcCEYmqSCADlcA4RQCIQQk6jCFmJCA05QOARJPOlyZVSYBiYlHZqTc8godditeWJstAXQ4W/5SV0eHpUYWv9IgIFGHKcSksVOYM5QAiScUD40QKCMgMfGUOchJJgTQ4Uyws6ijBNBhRwNnudnosOUBwjyrCEjUYQoxVm0xP4wh8fgRZ7xMhoDExJMMGWZphgA63Aw9xvpGAB32LeJm/EWHzXBmFRkEJOowhRgZe9MpL0g8ToULYzMmIDHxZIyU5fME0GG2AQSiE0CHo7OiZ3QC6HB0VvSEgEQdphDDvjZOgMRjHDkLOkxAYuJxOBxiTEeHxYQSRwwQQIcNQPZwCXTYw6DjcmwCEnWYQkzs7cDAuARIPHHJMc5HAhITj49xtM1ndNi2iGCPzQTQYZuj465t6LC7scNy8wQk6jCFGPP7yPsVSTzebwEANEBAYuJpwH26pkQAHU4JLNOKJIAOiwxr5k6hw5mHAAMcIiBRhynEOLQBpZhK4pESSfwwQUBi4jHBjTXCCaDD4XxohUApAXS4lAbHSRFAh5MiyTw+EJCowxRifNi5lvlI4rEsIJhjNQGJicdq4J4Yhw57EmjcTIQAOpwIRiapIIAOVwDhFAIhBCTqMIWYkIDTlA4BEk86XJlVJgGJiUdmpNzyCh12K15Ymy0BdDhb/lJXR4elRha/0iAgUYcpxKSxU5gzlACJJxQPjRAoIyAx8ZQ5yEkmBNDhTLCzqKME0GFHA2e52eiw5QHCPKsISNRhCjFWbTE/jCHx+BFnvEyGgMTEkwwZZmmGADrcDD3G+kYAHfYt4mb8RYfNcGYVGQQk6jCFGBl70ykvSDxOhQtjMyYgMfFkjJTl8wTQYbYBBKITQIejs6JndALocHRW9ISARB2mEMO+Nk6AxGMcOQs6TEBi4nE4HGJMR4fFhBJHDBBAhw1A9nAJdNjDoONybAISdZhCTOztwMC4BEg8cckxzkcCEhOPj3G0zWd02LaIYI/NBNBhm6Pjrm3osLuxw3LzBCTqMIUY8/vI+xVJPN5vAQA0QEBi4mnAfbqmRAAdTgks04okgA6LDGvmTqHDmYcAAxwiIFGHKcQ4tAGlmErikRJJ/DBBQGLiMcGNNcIJoMPhfGiFQCkBdLiUBsdJEUCHkyLJPD4QkKjDFGJ82LmW+UjisSwgmGM1AYmJx2rgnhiHDnsSaNxMhAA6nAhGJqkggA5XAOEUAiEEJOowhZiQgNOUDgESTzpcmVUmAYmJR2ak3PIKHXYrXlibLQF0OFv+UldHh6VGFr/SICBRhynEpLFTmDOUAIknFA+NECgjIDHxlDnISSYE0OFMsLOoowTQYUcDZ7nZ6LDlAcI8qwhI1GEKMVZtMT+MIfH4EWe8TIaAxMSTDBlmaYYAOtwMPcb6RgAd9i3iZvxFh81wZhUZBCTqMIUYGXvTKS9IPE6FC2MzJiAx8WSMlOXzBNBhtgEEohNAh6Ozomd0AuhwdFb0hIBEHaYQw742ToDEYxw5CzpMQGLicTgcYkxHh8WEEkcMEECHDUD2cAl02MOg43JsAhJ1mEJM7O3AwLgESDxxyTHORwISE4+PcbTNZ3TYtohgj80E0GGbo+Oubeiwu7HDcvMEJOowhRjz+8j7FUk83m8BADRAQGLiacB9uqZEAB1OCSzTiiSADosMa+ZOocOZhwADHCIgUYcpxDi0AaWYSuKREkn8MEFAYuIxwY01wgmgw+F8aIVAKQF0uJQGx0kRQIeTIsk8PhCQqMMUYnzYuZb5SOKxLCCYYzUBiYnHauCeGIcOexJo3EyEADqcCEYmqSCADlcA4RQCIQQk6jCFmJCA05QOARJPOlyZVSYBiYlHZqTc8godditeWJstAXQ4W/5SV0eHpUYWv9IgIFGHKcSksVOYM5QAiScUD40QKCMgMfGUOchJJgTQ4Uyws6ijBNBhRwNnudnosOUBwjyrCEjUYQoxVm0xP4wh8fgRZ7xMhoDExJMMGWZphgA63Aw9xvpGAB32LeJm/EWHzXBmFRkEJOowhRgZe9MpL0g8ToULYzMmIDHxZIyU5fME0GG2AQSiE0CHo7OiZ3QC6HB0VvSEgEQdphDDvjZOgMRjHDkLOkxAYuJxOBxiTEeHxYQSRwwQQIcNQPZwCXTYw6DjcmwCEnWYQkzs7cDAuARIPHHJMc5HAhITj49xtM1ndNi2iGCPzQTQYZuj465t6LC7scNy8wQk6jCFGPP7yPsVSTzebwEANEBAYuJpwH26pkQAHU4JLNOKJIAOiwxr5k6hw5mHAAMcIiBRhynEOLQBpZhK4pESSfwwQUBi4jHBjTXCCaDD4XxohUApAXS4lAbHSRFAh5MiyTw+EJCowxRifNi5lvlI4rEsIJhjNQGJicdq4J4Yhw57EmjcTIQAOpwIRiapIIAOVwDhFAIhBCTqMIWYkIDTlA4BEk86XJlVJgGJiUdmpNzyCh12K15Ymy0BdDhb/lJXR4elRha/0iAgUYcpxKSxU5gzlACJJxQPjRAoIyAx8ZQ5yEkmBNDhTLCzqKME0GFHA2e52eiw5QHCPKsISNRhCjFWbTE/jCHx+BFnvEyGgMTEkwwZZmmGADrcDD3G+kYAHfYt4mb8RYfNcGYVGQQk6jCFGBl70ykvSDxOhQtjMyYgMfFkjJTl8wTQYbYBBKITQIejs6JndALocHRW9ISARB2mEMO+Nk6AxGMcOQs6TEBi4nE4HGJMR4fFhBJHDBBAhw1A9nAJdNjDoONybAISdZhCTOztwMC4BEg8cckxzkcCEhOPj3G0zWd02LaIYI/NBNBhm6Pjrm3osLuxw3LzBCTqMIUY8/vI+xVJPN5vAQA0QEBi4mnAfbqmRAAdTgks04okgA6LDGvmTqHDmYcAAxwiIFGHKcQ4tAGlmErikRJJ/DBBQGLiMcGNNcIJoMPhfGiFQCkBdLiUBsdJEUCHkyLJPD4QkKjDFGJ82LmW+UjisSwgmGM1AYmJx2rgnhiHDnsSaNxMhAA6nAhGJqkggA5XAOEUAiEEJOowhZiQgNOUDgESTzpcmVUmAYmJR2ak3PIKHXYrXlibLQF0OFv+UldHh6VGFr/SICBRhynEpLFTmDOUAIknFA+NECgjIDHxlDnISSYE0OFMsLOoowTQYUcDZ7nZ6LDlAcI8qwhI1GEKMVZtMT+MIfH4EWe8TIaAxMSTDBlmaYYAOtwMPcb6RgAd9i3iZvxFh81wZhUZBCTqMIUYGXvTKS9IPE6FC2MzJiAx8WSMlOXzBNBhtgEEohNAh6Ozomd0AuhwdFb0hIBEHaYQw742ToDEYxw5CzpMQGLicTgcYkxHh8WEEkcMEECHDUD2cAl02MOg43JsAhJ1mEJM7O3AwLgESDxxyTHORwISE4+PcbTNZ3TYtohgj80E0GGbo+Oubeiwu7HDcvMEJOowhRjz+8j7FUk83m8BADRAQGLiacB9uqZEAB1OCSzTiiSADosMa+ZOocOZhwADHCIgUYcpxDi0AaWYSuKREkn8MEFAYuIxwY01wgmgw+F8aIVAKQF0uJQGx0kRQIeTIsk8PhCQqMMUYnzYuZb5SOKxLCCYYzUBiYnHauCeGIcOexJo3EyEADqcCEYmqSCADlcA4RQCIQQk6jCFmJCA05QOARJPOlyZVSYBiYlHZqTc8godditeWJstAXQ4W/5SV0eHpUYWv9IgIFGHKcSksVOYM5QAiScUD40QKCMgMfGUOchJJgTQ4Uyws6ijBNBhRwNnudnosOUBwjyrCEjUYQoxVm0xP4wh8fgRZ7xMhoDExJMMGWZphgA63Aw9xvpGAB32LeJm/EWHzXBmFRkEJOowhRgZe9MpL0g8ToULYzMmIDHxZIyU5fME0GG2AQSiE0CHo7OiZ3QC6HB0VvSEgEQdphDDvjZOgMRjHDkLOkxAYuJxOBxiTEeHxYQSRwwQQIcNQPZwCXTYw6DjcmwCEnWYQkzs7cDAuARIPHHJMc5HAhITj49xtM1ndNi2iGCPzQTQYZuj465t6LC7scNy8wQk6jCFGPP7yPsVSTzebwEANEBAYuJpwH26pkQAHU4JLNOKJIAOiwxr5k6hw5mHAAMcIiBRhynEOLQBpZhK4pESSfwwQUBi4jHBjTXCCaDD4XxohUApAXS4lAbHSRFAh5MiyTw+EJCowxRifNi5lvlI4rEsIJhjNQGJicdq4J4Yhw57EmjcTIQAOpwIRiapIIAOVwDhFAIhBCTqMIWYkIDTlA4BEk86XJlVJgGJiUdmpNzyCh12K15Ymy0BdDhb/lJXR4elRha/0iAgUYcpxKSxU5gzlACJJxQPjRAoIyAx8ZQ5yEkmBNDhTLCzqKME0GFHA2e52eiw5QHCPKsISNRhCjFWbTE/jCHx+BFnvEyGgMTEkwwZZmmGADrcDD3G+kYAHfYt4mb8RYfNcGYVGQQk6jCFGBl70ykvSDxOhQtjMyYgMfFkjJTl8wTQYbYBBKITQIejs6JndALocHRW9ISARB2mEMO+Nk6AxGMcOQs6TEBi4nE4HGJMR4fFhBJHDBBAhw1A9nAJdNjDoONybAISdZhCTOztwMC4BEg8cckxzkcCEhOPj3G0zWd02LaIYI/NBNBhm6Pjrm3osLuxw3LzBCTqMIUY8/vI+xVJPN5vAQA0QEBi4mnAfbqmRAAdTgks04okgA6LDGvmTqHDmYcAAxwiIFGHKcQ4tAGlmErikRJJ/DBBQGLiMcGNNcIJoMPhfGiFQCkBdLiUBsdJEUCHkyLJPD4QkKjDFGJ82LmW+UjisSwgmGM1AYmJx2rgnhiHDnsSaNxMhAA6nAhGJqkggA5XAOEUAiEEJOowhZiQgNOUDgESTzpcmVUmAYmJR2ak3PIKHXYrXlibLQF0OFv+UldHh6VGFr/SICBRhynEpLFTmDOUAIknFA+NECgjIDHxlDnISSYE0OFMsLOoowTQYUcDZ7nZ6LDlAcI8qwhI1GEKMVZtMT+MIfH4EWe8TIaAxMSTDBlmaYYAOtwMPcb6RgAd9i3iZvxFh81wZhUZBCTqMIUYGXvTKS+eeOIJtdNOOzllM8ZCICsCs2bNUjvuuGNWy7OuUALosNDA4lYqBNDhVLB6Pyk67P0WAEADBCTqMIWYBjYAXZsnsHTpUnXSSSepW2+9tfnJmAECHhA45phj1Pjx41WnTp088BYXTRBAh01QZg1JBNBhSdG0wxd02I44YIU7BCTqMIUYd/afs5auXLlSjR07Vk2YMEHNnTtX5XI5Z33BcAhkQaBNmzZq/fXXV8OHD1f/+Z//qdq2bZuFGazpMAF02OHgYboVBNBhK8LgtBHosNPhw3gLCEjTYQoxFmwq6Sacdtpp6qqrrpLuJv5BwAiBESNG8H4yQlrWIuiwrHjiTbYE0OFs+bu6OjrsauSw20YCEnSYQoyNO0uQTQsWLFDrrbee0v8LwAsCEGiegP40zLx581SPHj2an4wZvCCADnsRZpw0SAAdNghbyFLosJBA4oY1BCToMIUYa7aTTEMeeughNXToUJnO4RUEMiIwbdo0teeee2a0Osu6RgAddi1i2OsCAXTYhSjZYyM6bE8ssEQOAdd1mEKMnL1opSdTpkxR++23n5W2YRQEXCXwwAMPqH333ddV87HbMAF02DBwlvOCADrsRZgTcxIdTgwlE0GghYDrOkwhpiWUHKRBgMSTBlXm9J2A64nH9/iZ9h8dNk2c9XwggA77EOXkfESHk2PJTBAoEnBdhynEFCPJz1QIkHhSwcqknhNwPfF4Hj7j7qPDxpGzoAcE0GEPgpygi+hwgjCZCgLfE3BdhynEsJVTJUDiSRUvk3tKwPXE42nYMnMbHc4MPQsLJoAOCw5uCq6hwylAZUrvCbiuwxRivN/C6QIg8aTLl9n9JOB64vEzatl5jQ5nx56V5RJAh+XGNg3P0OE0qDKn7wRc12EKMb7v4JT9J/GkDJjpvSTgeuLxMmgZOo0OZwifpcUSQIfFhjYVx9DhVLAyqecEXNdhCjGeb+C03SfxpE2Y+X0k4Hri8TFmWfqMDmdJn7WlEkCHpUY2Hb/Q4XS4MqvfBFzXYQoxfu/f1L0n8aSOmAU8JOB64vEwZJm6jA5nip/FhRJAh4UGNiW30OGUwDKt1wRc12EKMV5v3/SdJ/Gkz5gV/CPgeuLxL2LZeowOZ8uf1WUSQIdlxjUtr9DhtMgyr88EXNdhCjE+714DvpN4DEBmCe8IuJ54vAtYxg6jwxkHgOVFEkCHRYY1NafQ4dTQMrHHBFzXYQoxHm9eE66TeExQZg3fCLieeHyLV9b+osNZR4D1JRJAhyVGNT2f0OH02DKzvwRc12EKMf7uXSOeP/TQQ2ro0KFG1mIRCPhCYNq0aWrPPff0xV38bJIAOtwkQIZDoAYBdLgGFC4FEkCHA9HQAIHYBFzXYQoxsUPPwCgE5s+fr9Zff321cuXKKN3pAwEI1CHQtm1bNW/ePNWjR486PWmGwD8JoMPsBAgkSwAdTpanD7Ohwz5EGR9NEpCgwxRiTO4YT9caMWKEuuaaazz1HrchkCwB/X666qqrkp2U2cQTQIfFhxgHDRJAhw3CFrQUOiwomLiSOQEJOkwhJvNtJN8A/WmYiy66SE2YMKHwP/m5XE6+03gIgQQJtGnTRq233npq+PDhatSoUUr/LwAvCDRCAB1uhBZ9IVBNAB2uZsKVxgigw43xojcEKglI02EKMZUR5hwCEIAABCAAAQhAAAIQgAAEIAABCKREgEJMSmCZFgIQgAAEIAABCEAAAhCAAAQgAAEIVBKgEFNJhHMIQAACEIAABCAAAQhAAAIQgAAEIJASAQoxKYFlWghAAAIQgAAEIAABCEAAAhCAAAQgUEmAQkwlEc4hAAEIQAACEIAABCAAAQhAAAIQgEBKBCjEpASWaSEAAQhAAAIQgAAEIAABCEAAAhCAQCUBCjGVRDiHAAQgAAEIQAACEIAABCAAAQhAAAIpEaAQkxJYpoUABCAAAQhAAAIQgAAEIAABCEAAApUEKMRUEuEcAhCAAAQgAAEIQAACEIAABCAAAQikRIBCTEpgmRYCEIAABCAAAQhAAAIQgAAEIAABCFQSoBBTSYRzCEAAAhCAAAQgAAEIQAACEIAABCCQEgEKMSmBZVoIQAACEIAABCAAAQhAAAIQgAAEIFBJgEJMJRHOIQABCEAAAhCAAAQgAAEIQAACEIBASgQoxKQElmkhAAEIQAACEIAABCAAAQhAAAIQgEAlAQoxlUQ4hwAEIAABCEAAAhCAAAQgAAEIQAACKRGgEJMSWKaFAAQgAAEIQAACEIAABCAAAQhAAAKVBCjEVBLhHAIQgAAEIAABCEAAAhCAAAQgAAEIpESAQkxKYJkWAhCAAAQgAAEIQAACEIAABCAAAQhUEqAQU0mEcwhAAAIQgAAEIAABCEAAAhCAAAQgkBIBCjEpgWVaCEAAAhCAAAQgAAEIQAACEIAABCBQSYBCTCURziEAAQhAAAIQgAAEIAABCEAAAhCAQEoEKMSkBJZpIQABCEAAAhCAAAQgAAEIQAACEIBAJYH/BwNutGmsXwC7AAAAAElFTkSuQmCC" + } + }, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "<div>\n", + "<img src=\"attachment:Binning_step1.png\" width=\"600\"/>\n", + "</div>" + ] + }, + { + "attachments": { + "Binning_step2.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABFoAAALaCAYAAAABXjdxAAAMa2lDQ1BJQ0MgUHJvZmlsZQAASImVVwdYU8kWnluSkJDQAhGQEnoTRHqREkKLICBVsBGSQEKJMSGI2NFFBXtBFCu6KqLoWgBZVMReFsXeF2VRWVkXdVEUlTcpoOu+8r3zfXPnv2fO/KfcmXvvAKDdx5VIclEdAPLE+dL4iBDm+NQ0JukZQAEOKMAZ6HB5MgkrLi4aQBns/y7vbgNE0d9wVnD9c/y/ih5fIOMBgEyEOIMv4+VB3AwAvoknkeYDQFTorabnSxR4HsT6UhggxGsVOEuF9yhwhgo3KW0S49kQXwNAg8rlSrMA0HoI9cwCXhbk0foEsauYLxIDoD0C4kCekMuHWBH7iLy8qQpcAbE9tJdADOMBPhnfcGb9jT9jiJ/LzRrCqryUohEqkklyuTP+z9L8b8nLlQ/6sIWNKpRGxivyhzW8mzM1SoGpEHeLM2JiFbWGuE/EV9UdAJQilEcmqexRE56MDesHGBC78rmhURCbQBwuzo2JVuszMkXhHIjhakELRfmcRIgNIV4skIUlqG22SafGq32hdZlSNkutv8CVKv0qfD2W5ySx1PxvhAKOmh/TKhImpkBMgdi6QJQcA7EWxC6ynIQotc3oIiE7ZtBGKo9XxG8NcbxAHBGi4scKMqXh8Wr70jzZYL7YNqGIE6PGh/KFiZGq+mBneFxl/DAX7JpAzEoa5BHIxkcP5sIXhIapcsdeCMRJCWqePkl+SLxqLk6R5Map7XFLQW6EQm8JsYesIEE9F0/Oh4tTxY9nSvLjElVx4kXZ3DFxqnjwlSAasEEoYAI5bBlgKsgGotbu+m54pxoJB1wgBVlAAHeoSjM4I0U5IobXBFAE/oBIAGRD80KUowJQAPWfh7SqqzPIVI4WKGfkgGcQ54EokAvv5cpZ4iFvyeA3qBH9wzsXNh6MNxc2xfi/1w9qv2pYUBOt1sgHPTK1By2JYcRQYiQxnOiAG+OBuD8eDa/BsLnhPrjvYB5f7QnPCG2Ep4RbhHbCvSmiYul3UY4F7ZA/XF2LjG9rgdtCTk88BA+A7JAZZ+DGwBn3gH5YeBD07Am1bHXciqowv+P+WwbfPA21HdmVjJKHkYPJ9t/P1HLU8hxiUdT62/qoYs0Yqjd7aOR7/+xvqs+HfdT3lthi7DB2HjuFXcSasHrAxE5iDdgV7LgCD62u35Sra9BbvDKeHMgj+oc/rtqnopIy1xrXLtdPqrF8QWG+YuOxp0pmSEVZwnwmC34dBEyOmOcygunm6uYGgOJbo3p9vWUovyEI49JXXfEyAAI8BgYGmr7qorUBOAL3DKXjq87eD74mCgG4sJwnlxaodLjiQoBvCW2404yAGbAC9jAfN+AF/EEwCANjQCxIBKlgMqyyEK5zKZgOZoH5oASUgZVgHdgItoIdYA/YDw6BetAEToFz4DK4Bm6BB3D1dIKXoAe8A/0IgpAQGkJHjBBzxAZxQtwQHyQQCUOikXgkFUlHshAxIkdmIQuQMmQ1shHZjlQjPyHHkFPIRaQNuYc8QbqQN8hHFEOpqD5qitqiI1EflIVGoYnoJDQLnYYWoQvR5WgFWoXuQ+vQU+hl9Bbajr5EezGAaWIMzAJzxnwwNhaLpWGZmBSbg5Vi5VgVVos1wud8A2vHurEPOBGn40zcGa7gSDwJ5+HT8Dn4Unwjvgevw8/gN/AneA/+hUAjmBCcCH4EDmE8IYswnVBCKCfsIhwlnIV7qZPwjkgkMoh2RG+4F1OJ2cSZxKXEzcQDxGZiG7GD2EsikYxITqQAUiyJS8onlZA2kPaRTpKukzpJfRqaGuYabhrhGmkaYo1ijXKNvRonNK5rPNfoJ+uQbch+5FgynzyDvIK8k9xIvkruJPdTdCl2lABKIiWbMp9SQamlnKU8pLzV1NS01PTVHKcp0pynWaF5UPOC5hPND1Q9qiOVTZ1IlVOXU3dTm6n3qG9pNJotLZiWRsunLadV007THtP6tOhaLlocLb7WXK1KrTqt61qvtMnaNtos7cnaRdrl2oe1r2p365B1bHXYOlydOTqVOsd07uj06tJ1R+nG6ubpLtXdq3tR94UeSc9WL0yPr7dQb4feab0OOka3orPpPPoC+k76WXqnPlHfTp+jn61fpr9fv1W/x0DPwMMg2aDQoNLguEE7A2PYMjiMXMYKxiHGbcbHYabDWMMEw5YMqx12fdh7w+GGwYYCw1LDA4a3DD8aMY3CjHKMVhnVGz0yxo0djccZTzfeYnzWuHu4/nD/4bzhpcMPDb9vgpo4msSbzDTZYXLFpNfUzDTCVGK6wfS0abcZwyzYLNtsrdkJsy5zunmguch8rflJ89+ZBkwWM5dZwTzD7LEwsYi0kFtst2i16Le0s0yyLLY8YPnIimLlY5VptdaqxarH2tx6rPUs6xrr+zZkGx8boc16m/M2723tbFNsF9nW276wM7Tj2BXZ1dg9tKfZB9lPs6+yv+lAdPBxyHHY7HDNEXX0dBQ6VjpedUKdvJxETpud2kYQRviOEI+oGnHHmerMci5wrnF+4sJwiXYpdql3eTXSemTayFUjz4/84urpmuu60/XBKL1RY0YVj2oc9cbN0Y3nVul2053mHu4+173B/bWHk4fAY4vHXU+651jPRZ4tnp+9vL2kXrVeXd7W3unem7zv+Oj7xPks9bngS/AN8Z3r2+T7wc/LL9/vkN+f/s7+Of57/V+MthstGL1zdEeAZQA3YHtAeyAzMD1wW2B7kEUQN6gq6GmwVTA/eFfwc5YDK5u1j/UqxDVEGnI05D3bjz2b3RyKhUaEloa2humFJYVtDHscbhmeFV4T3hPhGTEzojmSEBkVuSryDseUw+NUc3rGeI+ZPeZMFDUqIWpj1NNox2hpdONYdOyYsWvGPoyxiRHH1MeCWE7smthHcXZx0+J+HkccFzeuctyz+FHxs+LPJ9ATpiTsTXiXGJK4IvFBkn2SPKklWTt5YnJ18vuU0JTVKe3jR46fPf5yqnGqKLUhjZSWnLYrrXdC2IR1Ezonek4smXh7kt2kwkkXJxtPzp18fIr2FO6Uw+mE9JT0vemfuLHcKm5vBidjU0YPj81bz3vJD+av5XcJAgSrBc8zAzJXZ77ICshak9UlDBKWC7tFbNFG0evsyOyt2e9zYnN25wzkpuQeyNPIS887JtYT54jPTDWbWji1TeIkKZG0T/Obtm5ajzRKukuGyCbJGvL14U/9Fbm9/Af5k4LAgsqCvunJ0w8X6haKC6/McJyxZMbzovCiH2fiM3kzW2ZZzJo/68ls1uztc5A5GXNa5lrNXTi3c17EvD3zKfNz5v9S7Fq8uvivBSkLGheaLpy3sOOHiB9qSrRKpCV3Fvkv2roYXyxa3LrEfcmGJV9K+aWXylzLyss+LeUtvbRs1LKKZQPLM5e3rvBasWUlcaV45e1VQav2rNZdXbS6Y83YNXVrmWtL1/61bsq6i+Ue5VvXU9bL17dXRFc0bLDesHLDp43CjbcqQyoPbDLZtGTT+838zde3BG+p3Wq6tWzrx22ibXe3R2yvq7KtKt9B3FGw49nO5J3nf/T5sXqX8a6yXZ93i3e374nfc6bau7p6r8neFTVojbyma9/Efdf2h+5vqHWu3X6AcaDsIDgoP/j7T+k/3T4UdajlsM/h2iM2RzYdpR8trUPqZtT11Avr2xtSG9qOjTnW0ujfePRnl593N1k0VR43OL7iBOXEwhMDJ4tO9jZLmrtPZZ3qaJnS8uD0+NM3z4w703o26uyFc+HnTp9nnT95IeBC00W/i8cu+Vyqv+x1ue6K55Wjv3j+crTVq7XuqvfVhmu+1xrbRreduB50/dSN0BvnbnJuXr4Vc6vtdtLtu3cm3mm/y7/74l7uvdf3C+73P5j3kPCw9JHOo/LHJo+rfnX49UC7V/vxJ6FPrjxNePqgg9fx8jfZb586Fz6jPSt/bv68+oXbi6au8K5rv0/4vfOl5GV/d8kfun9semX/6sifwX9e6Rnf0/la+nrgzdK3Rm93/+XxV0tvXO/jd3nv+t+X9hn17fng8+H8x5SPz/unfyJ9qvjs8LnxS9SXhwN5AwMSrpSr/BXAYEMzMwF4sxsAWioAdHhuo0xQnQWVgqjOr0oE/hNWnReV4gVALewUv/HsZgAOwmYLG20eAIpf+MRggLq7DzW1yDLd3VRcVHgSIvQNDLw1BYDUCMBn6cBA/+aBgc87YbD3AGiepjqDKoQIzwzblBzXGYXzwHeiOp9+k+P3PVBE4AG+7/8FlTiO10mPo7EAAACKZVhJZk1NACoAAAAIAAQBGgAFAAAAAQAAAD4BGwAFAAAAAQAAAEYBKAADAAAAAQACAACHaQAEAAAAAQAAAE4AAAAAAAAAkAAAAAEAAACQAAAAAQADkoYABwAAABIAAAB4oAIABAAAAAEAAARaoAMABAAAAAEAAALaAAAAAEFTQ0lJAAAAU2NyZWVuc2hvdPtsqgsAAAAJcEhZcwAAFiUAABYlAUlSJPAAAAHXaVRYdFhNTDpjb20uYWRvYmUueG1wAAAAAAA8eDp4bXBtZXRhIHhtbG5zOng9ImFkb2JlOm5zOm1ldGEvIiB4OnhtcHRrPSJYTVAgQ29yZSA2LjAuMCI+CiAgIDxyZGY6UkRGIHhtbG5zOnJkZj0iaHR0cDovL3d3dy53My5vcmcvMTk5OS8wMi8yMi1yZGYtc3ludGF4LW5zIyI+CiAgICAgIDxyZGY6RGVzY3JpcHRpb24gcmRmOmFib3V0PSIiCiAgICAgICAgICAgIHhtbG5zOmV4aWY9Imh0dHA6Ly9ucy5hZG9iZS5jb20vZXhpZi8xLjAvIj4KICAgICAgICAgPGV4aWY6UGl4ZWxZRGltZW5zaW9uPjczMDwvZXhpZjpQaXhlbFlEaW1lbnNpb24+CiAgICAgICAgIDxleGlmOlBpeGVsWERpbWVuc2lvbj4xMTE0PC9leGlmOlBpeGVsWERpbWVuc2lvbj4KICAgICAgICAgPGV4aWY6VXNlckNvbW1lbnQ+U2NyZWVuc2hvdDwvZXhpZjpVc2VyQ29tbWVudD4KICAgICAgPC9yZGY6RGVzY3JpcHRpb24+CiAgIDwvcmRmOlJERj4KPC94OnhtcG1ldGE+CiuRZA8AAAAcaURPVAAAAAIAAAAAAAABbQAAACgAAAFtAAABbQAAggxdFy6eAABAAElEQVR4AezdB3gU1d7H8X+STSCE0Is0QUBRUGoIKEiRjgooRWwUwXLVK2ABuSLCVVTgooj4YqeIKKCAgEoTpVelKSJFiigIgnRIf+cs7mZbkt3Nlpmd79xHMzvlzDmfk73Pk59nzonK0jZhQwABBBBAAAEEEEAAAQQQQAABBBDIt0AUQUu+DSkAAQQQQAABBBBAAAEEEEAAAQQQsAoQtPCLgAACCCCAAAIIIIAAAggggAACCARIgKAlQJAUgwACCCCAAAIIIIAAAggggAACCBC08DuAAAIIIIAAAggggAACCCCAAAIIBEiAoCVAkBSDAAIIIIAAAggggAACCCCAAAIIELTwO4AAAggggAACCCCAAAIIIIAAAggESICgJUCQFIMAAggggAACCCCAAAIIIIAAAggQtPA7gAACCCCAAAIIIIAAAggggAACCARIgKAlQJAUgwACCCCAAAIIIIAAAggggAACCBC08DuAAAIIIIAAAggggAACCCCAAAIIBEiAoCVAkBSDAAIIIIAAAggggAACCCCAAAIIELTwO4AAAggggAACCCCAAAIIIIAAAggESICgJUCQFIMAAggggAACCCCAAAIIIIAAAggQtPA7gAACCCCAAAIIIIAAAggggAACCARIgKAlQJAUg0C4BU5cyJINv2fK9j8z5cDpLPnzXJZcSBNJzwp3zYz7fEuUSKFYkbKFo6RK0SipXTZaGlWIlpKFtBNsCCCAAAIIIIAAAggggIAHAYIWDygcQsBIAluPZsrMnzJk85FMySRUCXrXRWsZS1K5aLmrVozUvSI66M/jAQgggAACCCCAAAIIIGAsAYIWY/UXtUXALnD4TJZM2Jgu32sBC1t4BBpogcsTyRapWIQRLuHpAZ6KAAIIIIAAAggggID+BAha9Ncn1AiBPAUW7c2whiwpGXleygVBFigQI9awpX11bYcNAQQQQAABBBBAAAEETC9A0GL6XwEAjCbwwZZ0mfEjCYve+u2e62OkXz2L3qpFfRBAAAEEEEAAAQQQQCDEAgQtIQbncQjkR4CQJT96wb+XsCX4xjwBAQQQQAABBBBAAAG9CxC06L2HqB8C/wio14XGrkvHQ+cCz9xoEV4j0nknUT0EEEAAAQQQQAABBIIoQNASRFyKRiBQAmri24cWpgpzsgRKNHjlqDlb3r0tjglyg0dMyQgggAACCCCAAAII6FqAoEXX3UPlELgsMHhZGqsLGeiXQa1GNKZ1rIFqTFURQAABBBBAAAEEEEAgUAIELYGSpBwEgiSwRVu++WktaGEzlsC4NrFS94poY1Wa2iKAAAIIIIAAAggggEC+BQha8k1IAQgEV+DZb9Jk0x+ZwX0IpQdcoGH5aHm1FaNaAg5LgQgggAACCCCAAAII6FyAoEXnHUT1zC1w4kKW9JyTKplZ5nYwYuujo0Q+vTNOShbSdtgQQAABBBBAAAEEEEDANAIELabpahpqRIGv9mTIuPWsNGTEvlN1fqqxRTperc2Oy4YAAggggAACCCCAAAKmESBoMU1X01AjCry6Ok2W7ue1ISP2napzm6ui5dmmvD5k1P6j3ggggAACCCCAAAII+CNA0OKPGvcgECKBR75MlT0neW8oRNwBf8zVJaLk7VvjAl4uBSKAAAIIIIAAAggggIB+BQha9Ns31AwBuWNmipxJBcKoAkW0jGXuXQWMWn3qjQACCCCAAAIIIIAAAn4IELT4gcYtCIRKoN30FElnQEuouAP+HIs2D+7i+whaAg5LgQgggAACCCCAAAII6FiAoEXHnUPVEGj1UQoIBhf45n6CFoN3IdVHAAEEEEAAAQQQQMAnAYIWn7i4GIHQChC0hNY7GE8jaAmGKmUigAACCCCAAAIIIKBfAYIW/fYNNUNACFqM/0tA0GL8PqQFCCCAAAIIIIAAAgj4IkDQ4osW1wZF4ExKlsz8KUMeqGuRmOigPMKwhRK0GLbr7BWP5KCF7669m9lBAAEEEEAAAQQQQMAuQNBip2AnXAKnL2XJnbNTpW7ZaBl2s0WKx2sziLJZBQhajP+LEMlBC99d4/9+0gIEEEAAAQQQQACBwAsQtATelBJ9FLD9saZuKxUv8kLzWKlZmqEtyoOgRSkYezND0KJ6iO+usX9PqT0CCCCAAAIIIIBA4AQIWhwsJ0+eLKmpqQ5HLu+2atVKqlevbj/u7XX2G9jJVcAxaFEXqiVxH2tokU41YnK9zwwnCVqM38tmCVpUT/HdNf7vKy1AAAEEEEAAAQQQyL8AQYuDYUxMjGRmZjocubz7zjvvyEMPPWQ/7u119hvYyVXANWixXdz6qmgZ1DhWClpsR8z3k6DF+H1upqDF1lt8d20S/EQAAQQQQAABBBAwowBBi0OvexugeHudQ9Hs5iKQU9CibqlaLEpGtoiV8onmnLeFoCWXXxyDnDJj0MJ31yC/nFQTAQQQQAABBBBAICgCBC0OrN4GKN5e51A0u7kI5Ba0qNsKx4oMbRorjSuab94WIwQtBeNE6mh9c03xKInXRh/Fa++PHD6XJYv3ZMi5C7l0vElOmTVoMft31yS/3jQTAQQQQAABBBBAwIMAQYsDircBirfXORTNbi4CeQUt6lY1nuW+G2KkVx2LRJtocIveg5ZrykfJf2+KldIeVooatjZN1u1zfxUvl1+FiDxl5qBFdahZv7sR+ctMoxBAAAEEEEAAAQS8EiBocWDyNkDx9jqHotnNRcCboMV2e1K5aHlOWwK6SAFzpC16DloqlIqSqe3jJCqHriBoufxba/agxazfXVu7+YkAAggggAACCCBgPoGICVrOnz8vK1eulP3798uxY8fkr7/+EhWIlChRQurUqSPJyclSvnz5XHvY2wDF2+tyfRgn7QK+BC3qprIJUTJCWwL6mpI5/IVvL9n4O3oNWpT86x1i5YZSOb/ORdBy+fePoCX7e2im7252q9lDAAEEEEAAAQQQMJuAoYOWrKws+eyzz0StCrRq1SqPSzPbOjRK+8/u3bp1k5dfftlpqWbbefXT2wDF2+scy2Y/ZwFfgxZVUqz29/3ARhZpXz2yl4DWa9BSVpuPZcZt2uQsDtvFdJGlhzJk3ZFM60pRmw9lyoVLDheYdJegxbnjzfLddW41nxBAAAEEEEAAAQTMJGDYoGXHjh3Sr18/2bRpk0/9pUa1qHs8jW7xNkDx9jqfKmbii/0JWmxcHbWg5Ylki8RGaN6i16ClXuUo+V8z56Dl8eWp8vPvWbau4ec/AgQtnn8VIv2767nVHEUAAQQQQAABBBAwg4Bhg5bx48fLoEGD/Oqj5s2by3fffed2r7cBirfXuT2AAx4F8hO0qAKvKXH5VaKyhSPvVSK9Bi2dboiWAXW15aD+2TK1fKXdxymifrI5CxC0OHs4fork765jO9lHAAEEEEAAAQQQMJdARAUtZcqUkRtuuEFKliwpv/76q2zevNljb0ZHR8vp06elcOHCTue9DVC8vc6pcD7kKJDfoEUVXEQbXPHczbGSVD7nOUNyrICOT+gtaCmgORctFGVdAerWKtnDiNIyRHp9lWqVPHEmSzI8LDZULFGkYrEoKfnPCkXntMv/1JaB/v1ElmhvAXrcEhO05aJjswO0U+ezJDXt8qXVroiSclq4lqo9a+fRTN0uJU3Q4rFr7Qcj9btrbyA7CCCAAAIIIIAAAqYTiIigpXbt2vLKK69Iu3btrPOs2Hrx3//+t0ycONH20emnmjj35ptvdjrmbYDi7XVOhfMhR4FABC2qcPXneN+6Frnn+pgcV8LJsRI6PaG3oOXBRjHS8xpLrlrD16XJmr3ZSUvtK6PkgVqWHCfOPX4xSz7fmyFztme4BTRT7oiTSg4jlT7cmS6ztmXIiJYWaXxFdtCTrj3u7R3p8sWODN2NqiFoyfXXxXoyEr+7ebeaKxBAAAEEEEAAAQQiVcDwQYsKU8aOHSsFChRw66Mvv/xSbrvtNrfj6sCCBQvcznkboHh7nccHc9BNIFBBi63gGytGy9AmsZLgPIWI7bShfuotaHlIC1ruyiNoeUELWlZrQUu09tfzv2+ySKeq2YFIbvj7z2TK4G/T5OSZ7KumakFLRYegZerP6XJVkShpVsFzmQ8uTZVfj+YwPCa72JDuEbR4zx1J313vW82VCCCAAAIIIIAAApEmYNig5ZtvvpGLFy+6hSWpqamizn3++ecye/ZsOXPG4a82h94jaHHACPNuoIMW1ZwKiZfnbamqrY5j5M3IQUt/LZS5O49QxrVvftNeJXp4Yaqk/PN6kGvQci4tSwo7vErkeP+JS1nS87NURrQ4ogR5n+9ukIEpHgEEEEAAAQQQQMCQAoYNWly116xZI9OmTZNZs2bJqVOnXE+7fSZocSMJ24Fg/LGmGlNAG/TwZGOLtPZyREXYAHJ5sN6ClqLatEbli0ZJjxoxTqNK1Ks7A7+7PEfL/uNZUk4LuN5v6z6k6IOf0uWrPRnWIOWaMlEyNDlWSv8zZ4uNYdaedHlnvTbpi7a5Bi22a9RP9czUjCwp9E/wol4dmr318n2O14V7nxEtvvdAJHx3fW81dyCAAAIIIIAAAghEioDhg5ZFixbJE088IXv27PGpTwhafOIK6sXBClpslb5DCwUeSbKIxYDz5OotaLGZdq+rmd6QPVeLmmdFjSaxbc82t0ibK51f7xn7fZos2pk9d4u6NiFe5NPOcfawRB27lC5yx2cp1klvcwpaxm9Jk69/zpRMrbi210Vb63K/NhLm7HlVgr42ghb/+8PI313/W82dCCCAAAIIIIAAAkYXMGzQkqUtU/LSSy/JiBEjtD+2nP94U53SsmVL6d+/v9x7770e+4igxSNLWA4GO2hRjapZKkpeaB4rpbQVc4y0GTVomd8zThIcXvH5XVstqM9cz6/1dK0TI4/Wzg5tVP88+k2q/PJHlscRLZ/uTpf3Nuhv5EpOv1cELTnJeHfcqN9d71rHVQgggAACCCCAAAKRKGDYoGXmzJnSs2dPtz6Jj4+XGTNmSJcuXeTEiRNSqlQpt2vUAYIWjyxhORiKoEU1rHhBkeebxUqdssYZ2mLEoKVArMhXPZ0np57/a4a8sUYbquJhq1E+Sv6vlfNrRiM3pMnK3ZluQYtaRvrWT1PcVifyUKxuDhG05L8rjPjdzX+rKQEBBBBAAAEEEEDAqAKGDVruuece+eSTT9zcx4wZI88884z1eG5Bi5oot1u3bk73e7uakLfXORXOhxwFQhW0qArEaANaHqxvke41nV9rybFyYT5hxKClSILI3Dudg5avDmTIuFWeg5aK2mijqR2cg5ZxP6TJVz+5By2b/8yUIUv+mSk3zH3j7eMJWryVyv06o313c28NZxFAAAEEEEAAAQQiWcCwQUvx4sU9TnrrGLQsX75cWrVq5bH/hgwZIv369ZNz585JvXr1rNd4G6B4e53HB3PQTSCUQYvt4c2ujJbBN8VKvDb6Qs+bEYMWi5ZhLb7HOWhZfDBDxqz0HLTUvjJKXm/uHLQ8tzZN1u9zD1qmacs7T91snNeG1O8WQUtgv2FG+e4GttWUhgACCCCAAAIIIGAkAcMGLRUqVJA//vjDzbpMmTLSu3dvOX78uHz00UeSkZH7H2X33Xef9TpVkLcBirfXuVWOAx4FwhG0qIpcWSRKRraIlSu1VXT0uhkxaFGWn/WIk+IFsl3PpmZJjzmp1gluXa2faGKRzi4rQ/Vfkir7/3Sfo2XyznSZ/n3u32nX8sP9maAl8D1ghO9u4FtNiQgggAACCCCAAAJGETBs0NK9e3f57LPP8u1M0JI74QdbPI9CyP0u386maI/4fFd4/ngupM3B+ow2sqVZZX3O22LUoOXBRjHS8xrnCW7Vss3vass2Zzn8elTRlnhWy0BHZWcy8neKFsrMvjxxruuqQwQtDnh57PLdzQOI0wgggAACCCCAAAIIBEnAsEHLjh075JZbbpG//vorR5ro6GgpUaJErtcQtOTIZz2h1z/0c6+172d7aHO29K9nkRid5S169c9reecyxaJk+q1xbp6r/8iQeXszrEs41ykTLX1rui+7PWl7uny27XLwRtDi+++y7Q69/u7Y6heon3r97gaqfZSDAAIIIIAAAgggYDwBwwYtinrbtm3y2GOPyaZNmyQ1NdWun5CQII0aNZLRo0dbg5bGjRtbXyWyX6DtXHnlldKjRw/p27ev1KxZ03qqYMGCkpKS4niZdf/DDz+0Xmc74e11tuuN/NMsf6ypPqqrrUY07GaLFI93GF4R5s7Tq39eQYtia18zWp5p4NskOD8cuzzZbeY/w14IWvz/BdTr747/Lcr5Tj1+d3OuLWcQQAABBBBAAAEEIl3A0EGLrXMuXbokmzdvlosXL8o111xjDVGiHN5FUMdVGHP+/HkpX7689byaTJctbwEz/bGmNErFi7zQPFZqltbH0Ba9+nsTtCjPdlrYMqhurMR6scjT0kMZ8vq6dEnJzkzdlnfm1SGl6t2m198d72rv+1V6++763gLuQAABBBBAAAEEEIgUgYgIWiKlM/TYDrP9sab6wKINaPlXkkW6XOtFOhDkTtOr/23XawFKvezRKofOZknfeQ4JiYNLyaIid9SIkduuipHEOOfRQhmZIqu014nmaq8T/fib4+wtlwt4+7ZYubp4duj1f9prRZ//81qRwyN0vRuuyXD1+rsTzM7S03c3mO2kbAQQQAABBBBAAAF9CxC06Lt/wl47M/6xZkNvfZUWJjSOlYLOc7raTofkZyT5R2sZSyFtxFDxhCixaNnJqQtZcvaCSHp45kEOSf+phxC0hIza/iA9fHftlWEHAQQQQAABBBBAwHQCBC2m63LfGhxJf+j71vLLV1fVJnVVS0CXT3QeieFPWf7cY3Z/f8z0dg9BS3h6JNzf3fC0mqcigAACCCCAAAII6EGAoEUPvaDjOvCHvkhh7Q2ZZ5vEyo2Vsl9hCVWX4R8q6eA9h6AleLZ5lRzO725edeM8AggggAACCCCAQOQKELREbt8GpGX8oX+ZUY1nufeGGOldxyLqFZhQbfiHSjp4zyFoCZ6tNyWH67vrTd24BgEEEEAAAQQQQCAyBQhaIrNfA9Yq/tB3pkwqFy3PaUtAFykQmrQFf2d/I34iaNFHr4X6u6uPVlMLBBBAAAEEEEAAgXAIELSEQ91Az+QPfffOKqtN5jpCWwL6mpLBD1vwd/c32hGCFv30WCi/u/ppNTVBAAEEEEAAAQQQCLUAQUuoxQ32PP7Q99xhsdp0LU8kW6Tj1cFdAhp/z/5GOkrQoq/eCtV3V1+tpjYIIIAAAggggAACoRQgaAmltgGfxR/6njstVH+s4e/Z30hHCVr01Vuh+u7qq9XUBgEEEEAAAQQQQCCUAgQtodQ24LP4Q9+908oUurzkM68OudtwxF2AoMXdJFxHQvndDVcbeS4CCCCAAAIIIIBA+AUIWsLfB7quAUGLc/eEekJN/J39jfiJoEUfvRbq764+Wk0tEEAAAQQQQAABBMIhQNASDnUDPZM/9C93lpr29u7rY6RvXZZ3NtCvry6qStAS3m4I13c3vK3m6QgggAACCCCAAALhFCBoCae+AZ5N0CKSECsytEms3FhJmwE3xBv+IQYPwuMIWoKA6mWR4fzuellFLkMAAQQQQAABBBCIQAGClgjs1EA2yex/6F9VTJuPRVvKuUKR4C/l7KnfzO7vycRoxwhawtNj4f7uhqfVPBUBBBBAAAEEEEBADwIELXroBR3Xwcx/6Le+KloGNY6VgpbwdVAo/atdESUVHQKlA6ey5OCxrPA1PkKeTNAS+o7Uw3c39K3miQgggAACCCCAAAJ6ESBo0UtP6LQeofxDXy8EFm3wysMNLHLndTFhr1Io/Ue1sUjjK7LbvORQhoxekR52A6NXgKAldD2op+9u6FrNkxBAAAEEEEAAAQT0JkDQorce0Vl9QvmHvh6aXjJe5IVmsVKrTOjnY/HU/lD6E7R46oH8HyNoyb+hNyXo7bvrTZ25BgEEEEAAAQQQQCAyBQhaIrNfA9aqUP6hH7BK+1lQbS1cGd7MIsXjwzMfi6dqh9KfoMVTD+T/GEFL/g3zKkGP39286sx5BBBAAAEEEEAAgcgVIGiJ3L4NSMtC+Yd+QCrsZyHdtNeEHqpvkRh9DGSxtyKU/gQtdvaA7hC0BJTTrTC9fnfdKsoBBBBAAAEEEEAAAdMIELSYpqv9a+gHW4I/R0eK9ojPd2X4V8F83hWvTXQ7+KZYaVZZZwnLP+0iaMlnB+vg9nAFLXx3ddD5VAEBBBBAAAEEEEDAlAIELabsdn01+vSlLLlzdmrIK3WltsLOyBaxcmVR/bwq5IpA0OIqYrzP4QpaQiHFdzcUyjwDAQQQQAABBBBAwGgCBC1G67EIrG84/lhrdmW0PKONZCkUq29QPQct6jWrK0tHSemEKFEjgzK1laD/upAlh05myfmL3rv6W05igkh8bHZI9ve5LInW6lS5VJSU1ObZidUWUNr/d5Yc1f5JC/7ArBwbTNCSI41fJ4zy3fWrcdyEAAIIIIAAAgggEBECBC0R0Y3GbkQog5Zo7e/y/vUsclet7GWM9aynx6ClYAGR++rGyG1VYiQxLjvosDmqwGXdkQx5f3uGHDqufchhy285U+6Ik0qFnZ9/UQtUVOjjus3dly7vbMwIS+BC0OLaG/59Ntp3179WchcCCCCAAAIIIIBAJAgEPWg5ceKErF+/3s0qJiZG2rVrJ1FRUZKVlSWLFy+WjRs3ysmTJ+Xaa6+Vtm3bStWqVd3uczzwxx9/yC+//CK7du2SPXv2SMGCBaVGjRrW+9XPYsWKOV7utL9ixQo5d+6c0zH1QT3zuuuuczv+008/yYEDB+zHS5UqJY0aNbJ/tu3s379fdu7cafto/xkfHy+33HKL/bNt5/Tp07Jlyxb54YcfZN++fVKoUCGpXLmy1KtXT5KSkqRAAe2v2gjfQhW0FC8oMuzmWKl7hTbswSCb3oKWKmWjZIy2/HXJgs4BhydO7Wst7/yYLrO3us+/E4hypmpBS0WXoMVTPWzHftNGvDy1PFVOnLYdCc1Pgpb8Oxvxu5v/VlMCAggggAACCCCAgFEFgh60zJkzR7p27erR5+zZs6KChvvvv1++/fZbp2ssFos89thjMn78eKfj6sPMmTPl6aeflsOHD7udczyggoqJEyd6DETUue+//97xcuv+jTfeKGvXrnU7Xrt2bdmxY4f9eGJiohw5ckQSErT3Fxy2Hj16yOzZsx2OXN5V4Y1jALN792659957rXVQQZOnrXjx4tKzZ0956qmnpFq1ap4uiYhjoQhaamqvk7zQPFZKFco7INATqp6CluKJIpM7xnkcxZKb2Sub0mTZrkz7JYEqx9egRVVg+1+Z8uTXaeL5G2evYkB3CFryx2nU727+Ws3dCCCAAAIIIIAAAkYWCGvQ8ttvv0mbNm2sI1I8ISYnJ8uGDRvsp1Q4ocKXZcuW2Y/ltaNGzPTr109Gjx4tJUqUsF/+3nvvyUMPPWT/7LijRsdUr17dfmjTpk2i6uK6ffDBB/LAAw/YD6vgqGzZsnLxovsEFePGjZMnn3zSeu0XX3whvXr1kjNnztjvzW3ntddek0GDBuV2iaHPBTto6XRNjDzW0CIW4wxksfennoKW0W1jJamsM+Khs1nyyoY0OXQiSwrHi/WVrDurOb+7k6FlLHfOTZFzFy43K1DleApavjqQIZ/szJBLaVlygzZyaXCDWCnoXB0ZtjZN1u3LDn7s2EHaIWjxH9bI313/W82dCCCAAAIIIIAAAkYXCGvQ0rFjR/nqq69yNHzrrbfk0UcftZ5XI1+uv/76PEex5FSYCnSWLFliP61eGypfvryocMR1e+GFF2TEiBH2w4888oi888479s+2HdfRLx999JE1QLGdt/2Mi4uT33//XdTrRufPn5fSpUt7DGNs17v+JGhxFfHucwFtGpYnG1ukdVVjzMfiqVV6CVrKFIuST26Pc6rin9rEt33mp0pqmtNhua9BjPSt6ZxuvL3j8itEgSpHPdE1aPl0d7q8t8H5NSX1itIHbZ3rvfV4pjy1yKXSzk0I6CeCFt85I+G763uruQMBBBBAAAEEEEAgUgTCGrTkhqjCCfVqjm0UihqV8uGHH+Z2S57n1CiW/v37269TIc6kSZPsn2076jWdvXv3Wj9euHBBypUrl+PoEzV3S82aNa3XdujQQRYtWmQrxv7zrrvukk8//dT6+fPPP5du3brZzznuqOCnYcOGcuzYMdm8ebOkpV3+Y5CgxVHJu/3y2twdaunmqsWN9aqQa+v0ErS0uS5ank1yXqLphXVpsnqv+8iQOO2yz7vGaSs6Zdvv0F7ZGai9shOocpSTa9AyeWe6TP/eOWhR173U2iI3lssO286mZkmXmaFbTpygRfWC91ukfHe9bzFXIoAAAggggAACCESagG6DljvuuEPU/C5qW758ubRq1SpHezUHzO233y4qFFGv83iae0XdXLRoUWuAokaWqG3btm1St25d677rv9Q8LWrEyrRp06R3796up+2f1Ss9Kgg5fvy4dYRMerr7OrLqVSdb/R9++GF599137ffbdlSwpEbZxMZe/mP277//tj77lVdekSFDhvDqkA3Ki583VtRCgSaxUth5IIMXd+rvEr0ELb2TYqTXdc6jVNTrQKfd55O2Io7vECs3lMp+zejkpSzpPjtVAlWOeoi3QUuX2tHy7zrOIdFts1Pk4qXQ9DdBi/fOkfTd9b7VXIkAAggggAACCCAQaQK6CFpUuKBWGjp69Kg1sFDI8+bNk86dO1u9Bw8eLGPHjvVoP3DgQHn99dft51JSUqR169ayevVq+zHHnfnz51tDGdsxFaZ4WhXpX//6l/zf//2fNG/eXFauXGm73O2nCm3Ua0Hvv/++df4Y1wvU6Bg154uaK0Zt//nPf0SFJ562Pn36yPDhw+Wqq66yn1avTF26dMk694v9YITtBGqOFiXcu06M3HeDRfOODCS9BC2P3xQjd7jMvdLh0xS314Zs6v9tZZEm5bNHkaRrA1/afZwigSpHPcfboKVljWgZluwctPRckCrHT4VmSlyCFttvRc4/I/G7m3NrOYMAAggggAACCCAQ6QJhD1pUwDJ37lxr0KKwVWDx0ksvWcMJ2+iOnF7JUUsmq5WHbK8X2TpLjSBRc7J42kaNGmUNO2znpk6dKirgcN1KliwpagloNS9MXptaBWnChAmyZs0at0tffvllGTp0qP24mpPm1ltvtX923YmOjha1ctGwYcOkVq1arqcj8nMggpYi2uiV57Slm5PKZ4+iiAQsvQQtPevFyIPXO49oyS2seOf2WKleLLsvjpzPkvvmpEqgylF9623Q0qNujDyshW+O2+3aiJYLjGhxJPFrn++uX2zchAACCCCAAAIIIBDhAmENWgoWLGh9zcc2x0lO1pUqVfI4Ca567WfLli1ut6kJZwsXLux2XB1QyyV/8skn9nNqhaAKFSqIelXHdVMh0K5du1wPu32++uqrra8kuS7TrJaoVisrXXHFFU73qNecFi5c6HTM9YMaAaNeiVKjdSpWrOh6OqI+5/ePtWtKRMkIbenmstq8LJG26SVoaX5NtAxv5DwqZOK2dJm73X1OFLV888xOBSQmO2eRzX9mypAlaRKoclQ/exO0qJFN72qhT9Wi2ZVJ06rcYUZKyJZ4ZkRLzt/KSP7u5txqziCAAAIIIIAAAghEukBYgxY1X8nbb7+dp7EKLDIy3P+ga9GihXz77bce77e9quN6Uo2OcV3pSL1+9MYbb7he6vGzCne2bt3q8ZzrwS5dulhH67geV683qREram6XzEz3yUQdr1chjnp1yTWscbzG6Pv5CVo6VI+RAckWic1+S8XoHE7110vQkqAt3TyvawGJdsiyLmhLKPf+KlVOOqxSrs4/18IiLSo6d8grm9Jk2a5MCVQ5CsmboKXTDdEyoK5zQLTsUIa8ssJ9LiUn+AB+IGjxjBnp313PreYoAggggAACCCCAgBkEwhq0/Pjjj169HqNGdKh5UFw3FULs3r3b9bB11Z6yZcu6HVcHXEe0qGM7d+70qh4xMTGyb98+adq0qccRNqosx+3LL78UtYR1Tpt6NemBBx6QX3/9NadLrMcbN24s69aty/UaI5/0J2iJ1QYoPKEFLB2vdv6D3sgOnuqul6BF1e2ZZhZpX9nZW4Utk7Slm/eezJJi8VFy37UxUqtk9ugRdZ9a5eeuuamS8s9CP4EqxzVoUXWZvTdD1v+RKQW1N4XaanXtUMW5vqo+/1qWKruPhGZ+FvU8ghalkL2Z5bub3WL2EEAAAQQQQAABBMwmENag5ezZszm+4uPYETlNWKuuUaNL6tSp43i5dZSMmszW0/bMM8/ImDFj3E7lNemtusE2QuW///2vvPDCC25lOB5QrzsdOHBA1JwruW1qlaLZs2fL6NGjrasgebpWjc45efKkFCtWzNNpwx/zNWgpm3D5VaFrSjoMrzC8gucG6CloKajNg/PebXFSXvP3dsvS8ox/f5sqP/+eHWwEqhzXoMWbOtlG1nhzbaCuIWjJljTTdze71ewhgAACCCCAAAIImE3AEEGLCjVUuOFpUyHMggULRE1eqzY1SqZdu3byxx9/eLpcli5dal2VyPXkjBkz5N5773U97PR50aJF9rIrV64snpZytt0wYsQIj2GMmlNGrYj04IMPipqjxrapV6PUikSeQiB1zapVq6wjaWzXR9JPX4KWpHLR2qS3FilSwPs/9o1spaegRTkW1aY+GqFNOlzbYenmnHxPp2TJiPVpsv1QdshiuzYQ5fgatLy5LU3mbc/9VT1b/QL5k6DlsqbZvruB/B2iLAQQQAABBBBAAAFjCRgiaFEjQ6pWrSquk83aqNVrQg0aNLB+/O677+TChQu2U04/q1SpYn1Nx9P8LWreFPWK0l9//eV0j+2Dev7evXvtyzSriWrnzJljO+30U41iUXVWo1pcN1ugU758eXn66adFzTOjVhdKTU2VcePGiQpoPG1qXhk1v0wkbt4ELSpWuef6GOlT1+I0T0gkeji2KZRBy7CWFmnpMLfKF79myIQ17nOZqHlYbqoWLXdo8+PULe0+YuvohSyZty9DvtyVkevKPvktx1PQcl57fSgh1jmE23UyUz7S6rJ+X+hDFtWXZg9azPrddfwes48AAggggAACCCBgLgFDBC2qS5566inr5LH56R61jLR6/SenbfDgwTJ27FiPp9WrPeq8bcttCWk1L4uan8XTZgtaHM+pYEaFSDkFSWoy4GPHjknx4sUdb4uY/byClgRtLtOhTWLlxkruf9RHDEIODQll0JJDFXI9HKf1TVHtVaIi2uCsi2kip7RlnC9qyya7j2HJtRjxpxzXoGXyznT55IcMKaqtelSsUJRc0urz9zmtPim5PzvYZ80ctJj5uxvs3yvKRwABBBBAAAEEENCvgGGCFvWaTuvWrUVNIOvPpl7LGTVqVK637tmzR2rUqOEWeMTFxVknvy1durT9fhWKqGvVPa5bboGOp6DF9X7Xz926dbPO4+J6PFI+5xa0VC12eT6WCkWcRylEStvzaofeg5a86h/M856Clunfu69OFsw6eFO2WYMWs393vfnd4BoEEEAAAQQQQACByBQwTNCi+NXrNc8995z1FZucRn+4dlNiYqJMnDhRevXq5XrK4+c2bdqIGq3iuN19992iAhLXTb3qo17/cdzUMsy//fabqFEonjZfgxb1WtGaNWukaNGinoqLiGM5BS2tr4qWQY1jrSvIRERD/WgEQUvOaAQtOduE6gzf3VBJ8xwEEEAAAQQQQAABIwkEPWhRE9V26tTJzUS9LqNWHSpUqJDbubwOqJWGpk6dKjNnzpQjR454vPz666+3Tm6rAhY1H4q322effSbdu3d3ulyNomnWrJnTMfVBrQRUoUIFuXRJe1fin23o0KHy8ssv2z66/VST3qrJcOfPn2+dxNfTiBh1k5ovZsiQIfLQQw+JGlETyZvrH2sWbfDKv5Is0kVbKtjsG0FLzr8BBC0524TqDN/dUEnzHAQQQAABBBBAAAEjCQQ9aAkmhhrVoiavVWHL0aNHJTY2VsqVK2f9xygjQNQkvKr+apWk06dPW0MhNWmvUeofiP51/GOtVLzIC81jpaaHSVYD8SyjlUHQknOPEbTkbBOqM3x3QyXNcyJNYPv27VK7du1IaxbtQQABBBBAAIF/BAwdtNCLkSFg+2OtdploGd7MIsXjzTkfi6feJGjxpHL5GEFLzjahOsN3N1TSPCeSBCZMmCCDBg2SV155xWmS/UhqI21BAAEEEEDA7AIELWb/DdBB+8+kZMmMHRnyYH2LxJhvYaFce4CgJWcegpacbUJ1hu9uqKR5TqQIqFeR1cT+aoJ/tak54D744AOJj9eGc7IhgAACCCCAQMQIELRETFfSkEgUIGjJuVerXhElxQpmj37afyJT/j6b8/XhOhPJqw6Fy5TnImBEgYMHD0pSUpL1lWfH+tevX1/mzZsnlSpVcjzMPgIIIIAAAggYWICgxcCdR9UjX4Cgxfh9TNBi/D6kBQjkV+DChQty0003ybZt2zwWVbZsWfn888+lSZMmHs9zEAEEEEAAAQSMJUDQYqz+orYmEyBoMX6HE7QYvw9pAQL5FVCrGapVDXPb1AqDEydOlAcffDC3yziHAAIIIIAAAgYQIGgxQCdRRfMKELQYv+8JWozfh7QAgfwIjBw5UkaMGOF1EY899piMHz9eLBaL1/dwIQIIIIAAAgjoS4CgRV/9QW0QcBJoNz1F0rOcDvHBQAIWbQqZxfcVMFCNqSoCCARSYP78+dKlSxfJyvLt/8hbtGghs2fPllKlSgWyOpSFAAIIIIAAAiESIGgJETSPQcAfgTtmpsiZVH/u5B49CBSJE5l7F0GLHvqCOiAQaoGdO3dK48aN5exZ/2bprlKlinWS3Dp16oS66jwPAQQQQAABBPIpQNCST0BuRyCYAo98mSp7Tvr2X0KDWR/K9k3g6hJR8vatWtrChgACphL4+++/JTk5Wfbu3ZuvdickJMiUKVOkW7du+SqHmxFAAAEEEEAgtAIELaH15mkI+CTw6uo0Wbo/06d7uFg/Am2uipZnm8bqp0LUBAEEgi6QkZEhHTp0kKVLlwbkWVFRUTJs2DBRc72ofTYEEEAAAQQQ0L8AQYv++4gamljgqz0ZMm59uokFjN30pxpbpOPVMcZuBLVHAAGfBAYMGCATJkzw6R5vLu7UqZNMnz5dEhMTvbmcaxBAAAEEEEAgjAIELWHE59EI5CVw4kKW9JyTKpm8PZQXle7OR2v/4fnTO+OkZCH+C7TuOocKIRAkgWnTpknv3r2DVLpIzZo1RU2wW61ataA9g4IRQAABBBBAIP8CBC35N6QEBIIq8Ow3abLpD14fCipyEApPLh8tr7TitaEg0FIkAroU2LhxozRr1kxSUlKCWr/ixYvLzJkzpU2bNkF9DoUjgAACCCCAgP8CBC3+23EnAiER2Ho0U55amhaSZ/GQwAmMaxMrda+IDlyBlIQAAroVOHLkiCQlJckff/wRkjrGxMTI2LFjZdCgQSF5Hg9BAAEEEEAAAd8ECFp88+JqBMIiMHhZmnx/hFEtYcH346ENykXLmNaMZvGDjlsQMJyAGsHSvHlz2bBhQ8jr3qtXL3n33XelQAGWkQ85Pg9EAAEEEEAgFwGCllxwOIWAXgQOn8mShxamSkqGXmpEPXISKKDNffvubXFSsQhzs+RkxHEEIkmgb9++1iWYw9UmtYz03LlzpXz58uGqAs9FAAEEEEAAARcBghYXED4ioFeBRXszZOw6ViDSa//Y6vXMjRZpX52Vhmwe/EQgkgXGjRsnTz/9dNibWK5cOWvY0qhRo7DXhQoggAACCCCAgAhBC78FCBhI4IMt6TLjR4a16LXL7rk+RvrVs+i1etQLAQQCKLBs2TJp3769ZGTo4/+T1etDb7/9tvTp0yeAraQoBBBAAAEEEPBHgKDFHzXuQSCMAoQtYcTP5dGELLngcAqBCBPYt2+fqFd2Tp48qbuWDRw4UP73v/+JmjCXDQEEEEAAAQTCI0DQEh53nopAvgTUa0QTNqYzZ0u+FANzs5qT5YlkXhcKjCalIKB/gXPnzknjxo3lp59+0m1lW7dubV0CukSJErqtIxVDAAEEEEAgkgUIWiK5d2lbRAuoCXJV2MJqROHrZrW6kApZmPg2fH3AkxEIpUBWVpbceeedMm/evFA+1q9nVatWTb744gupVauWX/dzEwIIIIAAAgj4L0DQ4r8ddyKgC4Et2rLPM3dmWAOXzCxdVCmiKxGtLSakApa7asZIPe0nGwIImEdg2LBhMmrUKMM0ODExUT766CPp3LmzYepMRRFAAAEEEIgEAYKWSOhF2oCAJnDiQpZs+D1Ttv+ZKQdOZ8mf57LkQppIOuGL378fFi1UKRQrUrZwlFQpGiW1y0ZLowrRUrIQSzf7jcqNCBhU4LPPPpMePXqIGtVipC0qKkrGjx8vTzzxhJGqTV0RQAABBBAwtABBi6G7j8ojgAACCCCAQLAFtm/fLjfddJOcP38+2I8KePlxcXHy7bffWusf8MIpEAEEEEAAAQQ8ChC0eGThIAIIIIAAAgggoI0WPHFCkpKS5MCBA4bkeP/996Vfv36GrDuVRgABBBBAwKgCBC1G7TnqjQACCCCAAAJBFUhPT5e2bdtaR4QE9UFBKlwt9fz6668HqXSKRQABBBBAAIGcBAhacpLhOAIIIIAAAgiYWuDRRx+VSZMmGdKgZcuWsmTJErFYLIasP5VGAAEEEEDAyAIELUbuPeqOAAIIIIAAAkER+OCDD6R///5BKTvYhVapUkU2b94sJUuWDPajKB8BBBBAAAEEPAgQtHhA4RACCCCAAAIImFdg7dq1okaEpKamGg4hISFBVP1r165tuLpTYQQQQAABBCJFgKAlUnqSdiCAAAIIIIBAvgUOHz5snfz2zz//zHdZoS5ALeU8e/Zs6dq1a6gfzfMQQAABBBBAwEGAoMUBg10EEEAAAQQQMK/ApUuXpGnTpvL9998bEmHkyJEyfPhwQ9adSiOAAAIIIBBJAgQtkdSbtAUBBBBAAAEE/Ba477775OOPP/b7/nDe2KVLF5kzZ46oUS1sCCCAAAIIIBBeAYKW8PrzdAQQQAABBBDQgcCrr74qQ4cO1UFNfK9CrVq1ZP369VK4cGHfb+YOBBBAAAEEEAi4AEFLwEkpEAEEEEAAAQSMJLBo0SK59dZbJTMz00jVtta1RIkSsnHjRqlWrZrh6k6FEUAAAQQQiFQBgpZI7VnahQACCCCAAAJ5CuzevVsaNWokp06dyvNavV0QExMjKiRq3bq13qpGfRBAAAEEEDC1AEGLqbufxiOAAAIIIGBegTNnzlhDll27dhkS4c0335THH3/ckHWn0ggggAACCESyAEFLJPcubUMAAQQQQAABjwLqNaFOnTrJl19+6fG83g/26dNHJk+erPdqUj8EEEAAAQRMKUDQYspup9EIIIAAAgiYW2DIkCEyZswYQyKoV51WrFghBQoUMGT9qTQCCCCAAAKRLkDQEuk9TPsQQAABBBBAwEng008/lbvvvtvpmFE+lC9fXjZv3izlypUzSpWpJwIIIIAAAqYTIGgxXZfTYAQQQAABBMwrsGXLFmnSpIlcvHjRcAhqBMvKlSslOTnZcHWnwggggAACCJhJgKDFTL1NWxFAAAEEEDCxwLFjxyQpKUl+++03QypMnTpVevXqZci6U2kEEEAAAQTMJEDQYqbepq0IIIAAAgiYVCAtLU1uueUWWb16tSEFnnnmGcPOKWNIcCqNAAIIIIBAPgQIWvKBx60IIIAAAgggYAyBhx9+WN59911jVNallm3atJGvv/5aYmJiXM7wEQEEEEAAAQT0KEDQosdeoU4IIIAAAgggEDCBt956Sx5//PGAlRfKgqpXry4bN26U4sWLh/KxPAsBBBBAAAEE8iFA0JIPPG5FAAEEEEAAAX0LqMljW7duLerVIaNtiYmJsn79eqlZs6bRqk59EUAAAQQQMLUAQYupu5/GI4AAAgggELkCBw8elIYNG8rx48cN18ioqCiZN2+edOrUyXB1p8IIIIAAAgiYXYCgxey/AbQfAQQQQACBCBS4cOGCdRnnrVu3GrJ1L7/8sgwdOtSQdafSCCCAAAIImF2AoMXsvwG0HwEEEEAAgQgU6NGjh8yePduQLevevbvMmjXLkHWn0ggggAACCCAgQtDCbwECCCCAAAIIRJTAiy++KMOHDzdkm+rUqSNr166VQoUKGbL+VBoBBBBAAAEECFr4HUAAAQQQQACBCBJYsGCBdO7cWbKysgzXqlKlSsnmzZulcuXKhqs7FUYAAQQQQACBbAFGtGRbsIcAAggggAACBhb4+eefpVGjRnL27FnDtcJisciyZcukefPmhqs7FUYAAQQQQAABZwGCFmcPPiGAAAIIIICAAQX+/vtvSU5Olr179xqw9iJvvfWWPProo4asO5VGAAEEEEAAAWcBghZnDz4hgAACCCCAgMEEMjIypGPHjrJkyRKD1fxydR955BGZNGmSIetOpRFAAAEEEEDAXYCgxd2EIwgggAACCCBgIIEnn3xSXn/9dQPVOLuqTZs2leXLl0tsbGz2QfYQQAABBBBAwNACBC2G7j4qjwACCCCAgLkFPvroI+nVq5chESpVqmSd/LZMmTKGrD+VRgABBBBAAAHPAgQtnl04igACCCCAAAI6F9i0aZM0a9ZMLl26pPOaulcvPj5eVq9eLfXr13c/yREEEEAAAQQQMLQAQYuhu4/KI4AAAgggYE6BI0eOSMOGDeX33383JMCMGTPk7rvvNmTdqTQCCCCAAAII5C5A0JK7D2cRQAABBBBAQGcCKSkp0qJFC1m/fr3OauZddf7zn//IqFGjvLuYqxBAAAEEEEDAcAIELYbrMiqMAAIIIICAuQUeeOABmTx5siER1OpICxYskOjoaEPWn0ojgAACCCCAQN4CBC15G3EFAggggAACCOhEYPz48TJo0CCd1Ma3atSoUUM2bNggRYsW9e1GrkYAAQQQQAABQwkQtBiqu6gsAggggAAC5hX45ptvpF27dpKRkWE4BBWuqJBFhS1sCCCAAAIIIBDZAgQtkd2/tA4BBBBAAIGIEPj111+tk9+ePHnScO1RrwktXLhQOnToYLi6U2EEEEAAAQQQ8F2AoMV3M+5AAAEEEEAAgRAKnDt3Tm688Ub58ccfQ/jUwD1q7Nix8vTTTweuQEpCAAEEEEAAAV0LELTounuoHAIIIIAAAuYWyMrKkq5du8rcuXMNCXHPPffIxx9/bMi6U2kEEEAAAQQQ8E+AoMU/N+5CAAEEEEAAgRAIDB8+XF588cUQPCnwj2jQoIGsWrVK4uPjA184JSKAAAIIIICAbgUIWnTbNVQMAQQQQAABcwvMmTNHunXrJmpUi9G2smXLyubNm6VixYpGqzr1RQABBBBAAIF8ChC05BOQ2xFAAAEEEEAg8AI7duywzsty/vz5wBce5BLj4uJk+fLl0qRJkyA/ieIRQAABBBBAQI8CBC167BXqhAACCCCAgIkFTpw4YV1haP/+/YZUeO+996R///6GrDuVRgABBBBAAIH8CxC05N+QEhBAAAEEEEAgQALp6enSrl0764iQABUZ0mL+/e9/y4QJE0L6TB6GAAIIIIAAAvoSIGjRV39QGwQQQAABBEwtoIKKiRMnGtKgRYsWsnTpUrFYLIasP5VGAAEEEEAAgcAIELQExpFSEEAAAQQQQCCfAh9++KH069cvn6WE5/YqVarIpk2bpFSpUuGpAE9FAAEEEEAAAd0IELTopiuoCAIIIIAAAuYVWLdunagRIampqYZDSEhIkLVr10rt2rUNV3cqjAACCCCAAAKBFyBoCbwpJSKAAAIIIICADwK///67JCUlydGjR324Sx+XRkVFyaxZs6zLUOujRtQCAQQQQAABBMItQNAS7h7g+QgggAACCJhY4NKlS3LzzTfL5s2bDanwwgsvyIgRIwxZdyqNAAIIIIAAAsERIGgJjiulIoAAAggggIAXAvfff79Mnz7diyv1d0nnzp1l7ty5oka1sCGAAAIIIIAAAjYBghabBD8RQAABBBBAIKQCY8eOlcGDB4f0mYF6WK1atUTNK5OYmBioIikHAQQQQAABBCJEgKAlQjqSZiCAAAIIIGAkgcWLF0vHjh0lMzPTSNW21rV48eLWFYaqVatmuLpTYQQQQAABBBAIvgBBS/CNeQICCCCAAAIIOAjs2bNHkpOT5dSpUw5HjbEbExMjX3/9tbRp08YYFaaWCCCAAAIIIBByAYKWkJPzQAQQQAABBMwrcObMGWnUqJHs2rXLkAjjx4+XAQMGGLLuVBoBBBBAAAEEQiNA0BIaZ56CAAIIIICA6QXUa0JqAtmFCxca0qJ3794yZcoUQ9adSiOAAAIIIIBA6AQIWkJnzZMQQAABBBAwtcDQoUPl1VdfNaSBGoWzYsUKKVCggCHrT6URQAABBBBAIHQCBC2hs+ZJCCCAAAIImFZg5syZ0rNnT0O2v1y5crJ582YpX768IetPpRFAAAEEEEAgtAIELaH15mkIIIAAAgiYTmDLli3StGlTuXDhguHarkawqJEsakQLGwIIIIAAAggg4I0AQYs3SlyDAAIIIIAAAn4JHD9+XJKSkuTQoUN+3R/um9ScLGpuFjYEEEAAAQQQQMBbAYIWb6W4DgEEEEAAAQR8EkhLS5NWrVrJqlWrfLpPLxc/+eSTMm7cOL1Uh3oggAACCCCAgEEECFoM0lFUEwEEEEAAAaMJPPLII/LOO+8YrdrW+rZu3VoWLVokMTExhqw/lUYAAQQQQACB8AkQtITPnicjgAACCCAQsQKTJk2SRx991JDtq1atmmzatEmKFy9uyPpTaQQQQAABBBAIrwBBS3j9eToCCCCAAAIRJ7By5UpRI0LUq0NG2xITE2XdunVSq1Yto1Wd+iKAAAIIIICATgQIWnTSEVQDAQQQQACBSBBQk96qyW/VJLhG26KiomTu3LnSuXNno1Wd+iKAAAIIIICAjgQIWnTUGVQFAQQQQAABIwuo5ZubNGkiW7duNWQzXnrpJXnuuecMWXcqjQACCCCAAAL6ESBo0U9fUBMEEEAAAQQMLXDXXXfJrFmzDNmGbt26WeuuRrWwIYAAAggggAAC+REgaMmPHvcigAACCCCAgFXg5ZdfNuxokNq1a8vatWslISGB3kQAAQQQQAABBPItQNCSb0IKQAABBBBAwNwCCxcutM5rkpmZaTiIUqVKWVcYqlKliuHqToURQAABBBBAQJ8CBC367BdqhQACCCCAgCEEfv75Z2ncuLGcOXPGEPV1rKTFYpGlS5dKixYtHA+zjwACCCCAAAII5EuAoCVffNyMAAIIIICAeQVOnTolycnJsmfPHkMivPXWW/Loo48asu5UGgEEEEAAAQT0K0DQot++oWYIIIAAAgjoViAjI0NuvfVWWbx4sW7rmFvF+vfvL++9915ul3AOAQQQQAABBBDwS4CgxS82bkIAAQQQQMDcAk8//bSMGzfOkAhqCerly5dLXFycIetPpRFAAAEEEEBA3wIELfruH2qHAAIIIICA7gSmT58u999/v+7q5U2FKlasKJs3b5ayZct6cznXIIAAAggggAACPgsQtPhMxg0IIIAAAgiYV2DTpk3SrFkzuXTpkuEQ4uPjZdWqVdKgQQPD1Z0KI4AAAggggIBxBAhajNNX1BQBBBBAAIGwChw9elSSkpLk999/D2s9/H34xx9/LPfcc4+/t3MfAggggAACCCDglQBBi1dMXIQAAggggIC5BVJTU63LIK9bt86QEEOGDJFXX33VkHWnMGaqlgAAQABJREFU0ggggAACCCBgLAGCFmP1F7VFAAEEEEAgLAL9+vWTDz/8MCzPzu9DO3ToIAsXLpTo6Oj8FsX9CCCAAAIIIIBAngIELXkScQECCCCAAALmFpgwYYIMGDDAkAjXXHONbNy4UYoWLWrI+lNpBBBAAAEEEDCeAEGL8fqMGiOAAAIIIBAyAbUMcrt27SQ9PT1kzwzUg1S4smHDBqlRo0agiqQcBBBAAAEEEEAgTwGCljyJuAABBBBAAAHzCaSlpcnhw4elYcOGcuLECcMBqNeEFixYIB07djRc3akwAggggAACCBhbgKDF2P1H7RFAAAEEEAi4wPnz56V9+/aye/duOXbsWMDLD0WBo0ePlsGDB4fiUTwDAQQQQAABBBBwEiBoceLgAwIIIIAAAuYWUKNXbr/9djHq6kKq9+6++26ZMWOGuTuS1iOAAAIIIIBA2AQIWsJGz4MRQAABBBDQl8COHTuka9eusmfPHn1VzIfa1K9fX1avXi3x8fE+3MWlCCCAAAIIIIBA4AQIWgJnSUkIIIAAAggYVkAt3fz444/LxYsXDduGMmXKyObNm6VSpUqGbQMVRwABBBBAAAHjCxC0GL8PaQECCCCAAAJ+Cxw5ckQGDhwos2bN8rsMPdwYGxsr3377rTRp0kQP1aEOCCCAAAIIIGBiAYIWE3c+TUcAAQQQMK+AWq75rbfekuHDh8uZM2cMD/HOO+/IQw89ZPh20AAEEEAAAQQQML4AQYvx+5AWIIAAAggg4LWAWrZ52rRp8sorr8i+ffu8vk/PFz722GMyceJEPVeRuiGAAAIIIICAiQQIWkzU2TQVAQQQQMC8AuoVoSlTpsjbb78thw4dihiI5s2by7Jly8RisURMm2gIAggggAACCBhbgKDF2P1H7RFAAAEEEMhRQC3V/OWXX8rs2bPl66+/loyMjByvNeKJypUrWye/LVWqlBGrT50RQAABBBBAIEIFCFoitGNpFgIIIICA+QQuXLgg69evl5UrV8ry5ctl7dq1EReu2Hq1UKFC1vbVqVPHdoifCCCAAAIIIICALgQIWnTRDVQCAQQQQAAB7wXURLYHDhyQX375RXbt2iXbtm2TLVu2WPfVOTNsapWk7t27m6GptBEBBBBAAAEEDCZA0GKwDqO6CCCAAAKRL3D27Fk5ePCg/Pbbb07/qGMqYDl8+LCYJVDx1NvDhg2TF1980dMpjiGAAAIIIIAAAmEXIGgJexdQAQQQQAABswqkpqZa5xhRr/vs2LFDdu7caV0JSM2twuZZoFOnTjJv3jyJioryfAFHEUAAAQQQQACBMAsQtIS5A3g8AggggIC5BDIzM2XhwoUyffp060S1al4VNu8EatasaZ2DJjEx0bsbuAoBBBBAAAEEEAiDAEFLGNB5JAIIIICA+QROnz4tH374obz55puyf/9+8wHks8XFixeXjRs3SvXq1fNZErcjgAACCCCAAALBFSBoCa4vpSOAAAIImFxg9+7d1nBlypQpcu7cOZNr+Nf8mJgY6/LUbdq08a8A7kIAAQQQQAABBEIoQNASQmwehQACCCBgHoElS5bIG2+8YQ0IsrKyzNPwILT0tddek0GDBgWhZIpEAAEEEEAAAQQCL0DQEnhTSkQAAQQQMKmAmm/lo48+kgkTJlgntjUpQ0Cb3atXL5k6dWpAy6QwBBBAAAEEEEAgmAIELcHUpWwEEEAAAVMIqGWYJ06cKO+99578/fffpmhzKBqZnJwsK1eulAIFCoTicTwDAQQQQAABBBAIiABBS0AYKQQBBBBAwIwCa9assb4eNGfOHMnIyDAjQdDaXK5cOevS1+XLlw/aMygYAQQQQAABBBAIhgBBSzBUKRMBBBBAIGIFUlNTZebMmdaA5fvvv4/YdoazYWoEy3fffSeNGzcOZzV4NgIIIIAAAggg4JcAQYtfbNyEAAIIIGA2gWPHjsnbb78tkyZNkqNHj5qt+SFt7+TJk6VPnz4hfSYPQwABBBBAAAEEAiVA0BIoScpBAAEEEIhIgUOHDslLL70k06ZNk5SUlIhso54aNXDgQHn99df1VCXqggACCCCAAAII+CRA0OITFxcjgAACCJhJQE1wO2TIEFGrCbEFX6B169ayaNEiiYmJCf7DeAICCCCAAAIIIBAkAYKWIMFSLAIIIICAcQXUyJV//etfol5hYQuNQNWqVWXTpk1SokSJ0DyQpyCAAAIIIIAAAkESIGgJEizFIoAAAggYU0CNXunUqZN88803xmyAAWttsVhk48aNUq9ePQPWniojgAACCCCAAALOAgQtzh58QgABBBAwscCZM2fk1ltvldWrV5tYITxNb9WqlXzxxReSkJAQngrwVAQQQAABBBBAIEACBC0BgqQYBBBAAAFjC6iVhDp06CBbt241dkMMWvsKFSrIypUrRb1CxIYAAggggAACCBhZgKDFyL1H3RFAAAEEAiKwd+9eadu2rezfvz8g5VGIbwIVK1aU7777TqpVq+bbjVyNAAIIIIAAAgjoUICgRYedQpUQQAABBEInsGrVKrnjjjvkxIkToXsoT7ILlC9fXlasWCHVq1e3H2MHAQQQQAABBBAwsgBBi5F7j7ojgAACCPgtkJWVJW+88YYMHjxY0tLS/C6HG/0XKFOmjDVkufbaa/0vhDsRQAABBBBAAAGdCRC06KxDqA4CCCCAQHAFVMCyaNEiGTVqlKxZsya4D9NKj46OlszMzKA/x2gPKFq0qPV1obp16xqt6tQXAQQQQAABBBDIVYCgJVceTiKAAAIIRJLAzJkzZdiwYaLmZAnmdsMNN1hXL7rtttukTp068vHHH8u4ceNkz549wXysYcouWLCgLFmyRG6++WbD1JmKIoAAAggggAAC3goQtHgrxXUIIIAAAoYVuHTpkvTs2dO6fHAwGhEfHy+33HKLNVxRy0NfeeWVbo9Ro1rat28vS5cudTtnpgNqhM+sWbOka9euZmo2bUUAAQQQQAABEwkQtJios2kqAgggYFaBQYMGyfjx4wPa/EqVKtlHraiQRYUtuW2rV6+WZs2aiXp1yczba6+9Jqo/2BBAAAEEEEAAgUgVIGiJ1J6lXQgggAACdoH69evLli1b7J/zs6Ned1GvATVs2NDrYtSIGvUK0e7du72+JxIv7Nevn7z//vuR2DTahAACCCCAAAII2AUIWuwU7CCAAAIIRKrAyJEjZcSIEflqXo0aNeSll16Sbt26+VzOs88+K6NHj/b5vki6oXHjxtYVhuLi4iKpWbQFAQQQQAABBBBwEyBocSPhAAIIIIBApAmkp6dL3759Zfr06T43TY2Gefrpp6VHjx4SExPj8/0//PCDJCcnS0ZGhs/3RsoNJUqUsI4o8jR3TaS0kXYggAACCCCAAAI2AYIWmwQ/EUAAAQQiXmDatGkyZMgQOXr0aK5trVixotx5551yzz33SKNGjXK9NreTKuBJSkqSbdu25XZZxJ+bO3eudOnSJeLbSQMRQAABBBBAAAElQNDC7wECCCCAgKkEUlNTRf3hv3z5ctm3b5+cO3dOEhISpHLlyqKWZVZzsDRo0ECioqLy7aJeNXr++efzXY6RC7j77rtlxowZRm4CdUcAAQQQQAABBHwSIGjxiYuLEUAAAQQQ8E7g559/lnr16klKSop3N0TgVUWKFLFOAFy2bNkIbB1NQgABBBBAAAEEPAsQtHh24SgCCCCAAAK5Cnz33XfSsmVLad68uah9xy0zM1OaNm0q69atczxsun01AfDgwYNN124ajAACCCCAAALmFiBoMXf/03oEEEAAAT8EpkyZYp1c13brCy+84LSq0RtvvCEDBw60nTblTzWKZf/+/RIfH2/K9tNoBBBAAAEEEDCvAEGLefueliOAAAII+CHQokUL6zLFjreq+V1U+KLOqXBBzfVy/vx5x0tMtz927Fjrak2mazgNRgABBBBAAAHTCxC0mP5XAAAEEEAAAW8E1OtBffr0kYMHD3q8XIUt6poHH3xQli1b5vEasxwsXbq0NXBSkwyzIYAAAggggAACZhMgaDFbj9NeBBBAAAGfBVSAouZjcdxmdH5OKiaWlme+eVs2HNllPVWjRg355ZdfHC8z5f6oUaPkP//5jynbTqMRQAABBBBAAAGCFn4HEEAAAQQQyEXA9VWhRuWulQHJXaVxhZrWuw6fOS7Nppt7PhZHPjWK5dChQ1KiRAnHw+wjgAACCCCAAAKmESBoMU1X01AEEEAAAV8E1CiWESNGOM3HokKWT+543q2YdYd/knvnv+x23IwHHn/8cXnzzTfN2HTajAACCCCAAAIIWAUIWvhFQAABBBBAwEXA06tCY1o+LN2ua+ZypYhaynnIt+/K57+scjtntgPR0dGyZ88eqVq1qtmaTnsRQAABBBBAAAG7AEGLnYIdBBBAAAEExDrh7dSpU+0UFRJLydhbHra/KmQ/oe1kZGTIwGVvyZf7NjgeNu1+t27dZPbs2aZtPw1HAAEEEEAAAQSUAEELvwcIIIAAAgj8I+BpPhZPrwqpy9PS0+XxJW/I0gM/4PePwKZNmyQpKQkPBBBAAAEEEEDA1AIELabufhqPAAIIIKAEPL0qNCDpTuukt56ELqWlyiOLXpeVv233dNqUx9q0aSNLliwxZdtpNAIIIIAAAggg4ChA0OKowT4CCCCAgOkEpkyZIn379nVqt1q62baqkNMJ7cP51EvS/8ux9iWdXc+b9fOqVaukadOmZm0+7UYAAQQQQAABBOwCBC12CnYQQAABBMwm4MurQsrmTMoFeWDhaPnhz71mo8q1va1bt5alS5fmeg0nEUAAAQQQQAABswgQtJilp2knAggggIBdQL0q1KdPHzl48KD9WNcaN8vYVo/YP7vunL50Tu5b8Ir8dPyA6ylTf46KipKNGzcyN4upfwtoPAIIIIAAAgg4ChC0OGqwjwACCCAQ8QKe5mPJ7VUhBXLiwmm5b/7L8svJwxHv42sDe/ToITNnzvT1Nq5HAAEEEEAAAQQiVoCgJWK7loYhgAACCLgKeHpVSI1iqViktOul9s9Hz52Ue794WfafPmI/xs5lgYIFC8quXbukcuXKkCCAAAIIIIAAAgj8I0DQwq8CAggggEDEC6hRLCNGjJAVK1bY29qo3LWS09LNtosOnzku92ghy+Gzx2yH+OkgMHz4cBk5cqTDEXYRQAABBBBAAAEECFr4HUAAAQQQiGgBf14VUiAHTh2xjmQ5cv5kRPv427hq1arJjh07JD4+3t8iuA8BBBBAAAEEEIhIAYKWiOxWGoUAAgggoATUhLdTp061Y6hRLAOSu+a4dLPtwt0nftPmZHlF/rp42nbI75/FCiZKyytry9zda/wuQ483qlWG1GpDbAgggAACCCCAAALOAgQtzh58QgABBBCIAIEDBw5YQxZfXxVSTd95fL+2utBoOXXpbL4l6pWtLhPbPiHlEkvK8BWTZfpPy/Jdph4KUAHW5MmT9VAV6oAAAggggAACCOhOgKBFd11ChRBAAAEE8iPg6VWhMS0flm7XNcuz2B+O7Ja+C8fI2bSLeV6b1wV9rm8n/2lyj1hiLNZLX1w1TSbvWJzXbbo/f+WVV8r27dulaNGiuq8rFUQAAQQQQAABBMIhQNASDnWeiQACCCAQFAE14a3j5KwVEkvJ2FsezvNVIVWZ9b/vlP5f/k8upKfkq27xlgLyasv+cvvVN9nLefv7BTJmw6f2z0bdiYqKkuXLl4tavYkNAQQQQAABBBBAwLMAQYtnF44igAACCBhMwNPSzXmtKmRr4oqDW+WRReMlJSPNdsivn1cVLSeT2g+Qa0pWst//2c8rZfC379g/G3ln8ODBMnr0aCM3gbojgAACCCCAAAJBFyBoCToxD0AAAQQQCKaAp1eFBiTdaZ301pvnLvl1kzy+5E1Jz8zw5vIcr2l7VZL8r9UjUjguexWeb/b/oAU4r0tGVmaO9xnlRJMmTURZWyyXX4UySr2pJwIIIIAAAgggEGoBgpZQi/M8BBBAAIGACUyZMkX69u3rVN6Mzs959aqQumm+thLQU9+8na8gJFp7neaZRnfJw/Vvd6qHmu/l3vkv53uUjFOhYfpQqlQp2bJli1SsWDFMNeCxCCCAAAIIIICAcQQIWozTV9QUAQQQQMBBID+vCqliZu38VoZ+94Fkaf/zdyuuLd08se3jcmPF652K2HPysPSY8185nXre6bgRP8TExMjXX38tbdq0MWL1qTMCCCCAAAIIIBByAYKWkJPzQAQQQACB/Aio11fU8sIHDx60F9O1xs0yVnttx9ttyvbF8t/V07y93ON1tctUlUntBlqXbna84MjZE9Jtzgg5cv6k42HD7r/22msyaNAgw9afiiOAAAIIIIAAAqEWIGgJtTjPQwABBBDwW8DTfCy+vCqkHjzp+/kydsNMv+ugbry75i0yomlviXWZr+T0pXPSXRvJsvfU7/kqXy83q0Br8uTJeqkO9UAAAQQQQAABBAwhQNBiiG6ikggggAACnl4VUqNYKhYp7TXOuPWz5K0fvvD6etcL46Jj5aVmfaRbzRaup+RiWorcp83JsuXPvW7nvDkQExVtnyumQIECkpKSv2WmvXlmbtfcdNNN1qWcVV3YEEAAAQQQQAABBLwXIGjx3oorEUAAAQTCIKBGsYwYMUJWrFhhf3qjcteKt0s3q5uysrLkpdUfyeQdi+1l+LpToXApebv9QKlV5iq3WzMyMuThRa/Jcm2ZaH+2mKgY67LQi7UVkD7/ZZU/RQT0nmrVqsn69etFTYLLhgACCCCAAAIIIOCbAEGLb15cjQACCCAQQoFAvCqUpS2trCa9nfXzd37XvKk22e2ENo9LsfhEj2U8o61c5G9AolYtelMru0P1xnL4zHHpqs3vcvzCKY/PCcVBFa6sXbtWrr766lA8jmcggAACCCCAAAIRJ0DQEnFdSoMQQACByBBQ84NMnTrV3hg1imVAclevl25WN6qRJk9+M0kW7F1nL8fXnUfrd5KnGnWXKO3VHk/b6HWfyDtbFno6leexKImSca0fkS7XNLVem56RLu0/fVZ+PX0kz3uDcUFCQoL1daHk5ORgFE+ZCCCAAAIIIICAKQQIWkzRzTQSAQQQMI7AgQMHrKsK5edVIdXa1PQ0eXzJBFl24Ae/Gl84Nl7+p80B07ZqUo73f7htkby05qMcz+d14tUW/aVHzZb2y17f8Jm8+f1c++dQ7sTFxcmCBQukbdu2oXwsz0IAAQQQQAABBCJOgKAl4rqUBiGAAALGFfD0qtCYlg9Lt+ua+dSoC6mX5MGvxsm6P3b6dJ/t4quLV7TOx3JV8XK2Q24/5+9eIwOX/Z/bcW8PjLy5j9x/Qxv75TuPH5DOnw3XJsTNsB8L1U50dLR8+umn0r1791A9kucggAACCCCAAAIRK0DQErFdS8MQQAABYwmoCW9Hjhxpr3SFxFIy9paHfXpVSN18JuW89F04xu/VfzpWayRjWj4kheIK2uviurP6t+3aM/7ndyjy3E33Sr+6He3FqleGOn/2vPx84pD9mLc7gwYNknLlysn8+fNlzZo11ol/vb1XXRelzRHz4YcfWkcR+XIf1yKAAAIIIIAAAgh4FiBo8ezCUQQQQACBEAp4WrrZl1WFbFX9S5tEtveC0X4FFmp55WdvvNspALGV6/hzx5/75O4vRsmFdP+WX34yubs8ntTFsUh5Y+Pn8sbmOU7HvPnQqlUrWbJkiagRKdu3b5e6dev6HLSMHz9eBgwY4M3juAYBBBBAAAEEEEDACwGCFi+QuAQBBBBAIDgCnl4VGpB0p3XSW1+fqFbsuW/+K3LozJ++3iol4ovIxLb/znP0zIFTR7RVgUbK35fO+vwMdcPjDbrIk9rEuo7bzuMHraNZfH1l6IorrpCtW7dK2bJlrcV17dpV5szxLaxp0qSJrF692rE67COAAAIIIIAAAgjkU4CgJZ+A3I4AAggg4J/AlClTpG/fvk43z+j8XJ5hh9MN/3w4c+mc3Db7eTl89pin07keq1ummvxf+4FyReESuV537Pzf0k0LWQ6fPZ7rdTmd7FenozzX5F6n02pVpM6fPy87/zrodDyvD2oEy7Jly6Rly8sT6W7btk3q1avn02gWVcb3339vHQWT1/M4jwACCCCAAAIIIOC9AEGL91ZciQACCCAQIIFAvSpkq86Lq6fL5O1f2z56/fOemq3khaa9JNZiyfWesykXpOe8F/16JUkVfH+tNjKyeR+3Z0zYNFfGb/rM7XheB6pUqSL79++3X+bPaJZHHnlEJk2aZC+DHQQQQAABBBBAAIHACBC0BMaRUhBAAAEEvBBQrwr16dNHDh7MHsHRtcbNMlZbRjk/W9NpT8gf5054XURcdKy81PwBr1YzUstE917wqmw4ssvr8h0v7H5tc3m15YPWSWcdj/+sjWLppI3C8fWVIVsZvXv3FjUqyJ/RLCVKlJA9e/aI+smGAAIIIIAAAgggEFgBgpbAelIaAggggEAOAp7mY/H3VSHXR1z3Th9JyUhzPezxc4XCpaxLN9cqc5XH844Hs7Iy5dFFE2Tx/k2Oh73e73J1ExnX+hEtZIl2usffV4acCtE+qFEtTz75pMydO9f1VK6f33nnHXnooYdyvYaTCCCAAAIIIIAAAv4JELT458ZdCCCAAAI+CHh6VUiNYqlYpLQPpeR86a0zh3r1Ws/NlW6QCW0el6IFC+dcmMOZ51d8KB//9I3DEe9321dNtk6wq+ZCcd3e1F4Zet2PV4Zs5TRv3tw6muXUqVNSv359n+ZmadSokaxbt85thI2tbH4igAACCCCAAAII5E+AoCV/ftyNAAIIIJCLgBrFMmLECFmxYoX9qkblrhV/lm62F+BhZ/qOpTJ81RQPZ7IPqRV/BiV3dRtdkn2F856/Sy6rUlpVrieTtAl2LTHuc7/sOnFIe2VomKRnZjg/0MtPKmRRrmq74447ZN68edZ9b/4VExMjmzZtsk6c6831XIMAAggggAACCCDguwBBi+9m3IEAAggg4IVAMF8Vcn28esXn4a9fl2UHfnA9JUXiEmScNnqm1VX13c7ldGDGj8tk2MrJOZ3O9bgaNfNeh6ckzhLrdl1+Xxn69ttvRY0OUtuWLVuso1msH7z81xNPPCFvvPGGl1dzGQIIIIAAAggggIA/AgQt/qhxDwIIIIBArgJqwtupU6far1GjWAZoo0kaV6hpPxbonczMTPlg29fykRaSqGWeixVMlA5VG8qAhndKmYTiXj9uyb6N8q/FEyRL+5+vm2rn5NuGSMHYOI+3+vvK0E033SSjRo2yhyyq8M6dO8v8+fM9PsfTwXLlysmuXbukSJEink5zDAEEEEAAAQQQQCBAAgQtAYKkGAQQQAABkQMHDlhXFQr2q0J5WasRLq4T0OZ1jzq/4feftRWGRktqpncT6zqWWb9sdZl2+1ApFFfQ8bB9/5cTv8nts5/z+ZWhunXrWkev2AvSdn744Qdp0KCB46E892fNmiXdu3fP8zouQAABBBBAAAEEEMifAEFL/vy4GwEEEEDgHwFPrwoNSLrTOpLFCEhqueWec1+Us2kXfa7uDaWvkumd/iOJBQp5vNffV4a6desms2fPdivz9ttvl4ULF7odz+lAx44d5csvv8zpNMcRQAABBBBAAAEEAihA0BJATIpCAAEEzCqgJrwdOXKkU/MDtXSzU6FB+nD4zHHpNmekHLvwt89PuK7klfJJ5+ekSC4rGfnzylBycrKsX7/ebXUgNZmtOuftVqhQIfnpp5+kSpUq3t7CdQgggAACCCCAAAL5ECBoyQcetyKAAAIIiHXekHC/KpSffvj74hnpqoUsB04f9bmY6sUqyKd3DJMS8TnPe+LPKkMVKlSQrVu3SqlSpdzqdOutt8pXX33ldjynA2PGjJFnnnkmp9McRwABBBBAAAEEEAiwAEFLgEEpDgEEEDCLgKdXhbrWuFnGaiv8GGW7kHpJ7pk/SrYf+9XnKlcucoXMuvN5KV2oWI73+vPKkMViEbW6UNOmTd3K3bBhgzRu3NjteE4H6tSpI5s3bxZVJhsCCCCAAAIIIIBAaAQIWkLjzFMQQACBiBKYMmWK9O3b16lNRnpVSFU8PSNd+n81Tlb+tt2pHd58qJhYWmZ2eV7KJZbM9XJ/Xhl69dVXZciQIR7Lbd++vSxevNjjOdeD0dHR1lePGjZs6HqKzwgggAACCCCAAAJBFCBoCSIuRSOAAAKRKNCiRQtxfVVIjWKpWKS0YZqblZUlTy2bJPP2rPG5zlcklLCGLJWKlsn1XjW5bufPnvdplSH1WtCCBQvc5mVRD1q7dq00adIk12c6nhwwYICMHz/e8RD7CCCAAAIIIIAAAiEQIGgJATKPQAABBCJBQL0q1KdPHzl48KC9OY3KXSuf3PG8/bNRdl5e87G8v837eU5s7SoVX1Rmae2tUqyc7ZDHn/68MlSpUiXrMs4lS3oeJdO6dWv55ptvPD7P9WDlypWtE+AmJCS4nuIzAggggAACCCCAQJAFCFqCDEzxCCCAQCQIeJqPxWivCtn64YOtX8motR/bPnr9s3jBRPm0yzC5ukTFPO+ZsGmOjN/0eZ7X2S5Qc6isXLlSbrzxRtshp5/qXPPmzZ2O5fZBTZbboUOH3C7hHAIIIIAAAggggECQBAhaggRLsQgggECkCHh6VWhActf/Z+9M4Gu6tj/+I4kQEomxhMZQU6gSbRpK1BCpoaYQxWtJKUpbLY0qJWJ8hrZ/HaMeovXQCJqGGmp4phpeDKkhqCEhHjUVqSGj/91Hc5ob5+ZO5065v93P7d1n77XX3vt70q1W9loLQb7+DrfFPReP4rXE2Xio+ceY4lWqLIRhyb+yn95hJ649chnKfZirVzZfYN68eRg7dmz+42PfwsgijC2GlIEDB2LZsmWGiFKGBEiABEiABEiABEjAAgRoaLEAVKokARIggeJAQNximTJlymPxWNRwFcrMyYK7aymrYsrLy0OH5ZFIu2NcGudybmWwrPuHaFq1rt71igC7Ii5Lyo0LemXzBbp3746EhIT8x8e+t2zZgpCQkMfalRpEOuiUlBTFtNBK8mwjARIgARIgARIgARJQnwANLeozpUYSIAEScHgCSq5Cc9oNR59GwWbvbcmvGxFzKBFrw6aiup6sPWZPVkDBvksnMCBhRoEW/dUyru749uXxaFGtvn5hjcSn++Px+cG1BskKIRFL5fDhw/Dx8dE5RrgT7du3T2d/wQ5xk0XcaGEhARIgARIgARIgARKwHQEaWmzHnjOTAAmQgF0SEAFvly5dKq/N17MS5rYfroqr0PwDqzE/aY2k+5kqdbGq12S4urjKc1myEvvrJkzd/a3BU7i7uGFx10i0rNHYoDHHr55Hz9WTkfswzyB5Nzc37N69G4GBgTrl169fj27duunsL9ghYrKI2CwsJEACJEACJEACJEACtiVAQ4tt+XN2EiABErAbAqmpqVJWocKpm9VwFcrf5IXbv+PluI+QkX1PahrcJBSTg1/L77bo94rj2zBxxyKD5nAr6YqFXcYg+MlnDJLPzsnBS9+Px/nblw2SF0Ii9bJIwayriBTUAQEBOHLkiC4Rud3T01PKMiQyF7GQAAmQAAmQAAmQAAnYlgANLbblz9lJgARIwC4IKLkKjX62N0TQW7XLz+eSMHzjp7Laz0PeQtd6ytl2ZCEVKr/dTEfoyg/0anIp4YKvQt9BSJ1n9crmC7y7+Uv8eOaX/Ee9371798bq1UVnJYqLi0O/fv306hICX3zxBUaNGmWQLIVIgARIgARIgARIgAQsS4CGFsvypXYSIAESsHsCIuBtdHS01jotnbr5n7+swDdH1klzlnUtjYS+01DHp7rWGizxMGTdXGy/oPuGSMkSJSAMP52fCjJ4+vHbFiLu5H8Mlq9Tpw4OHTqE8uXL6xwjbrP4+/vj5MmTOmXyO1q3bi1lJCqhWTsLCZAACZAACZAACZCA7QnQ0GL7d8AVkAAJkIDNCCilblbTVUjXxnJzczHwxxk4cPmUJFLfpwbW9pmKMm7uuoYY1S6yGk3Z9S32pB9HeKO2GN6sG9xcXXHnwZ8Y8ONMnLie9pg+EZNlfseR6FRXd8yUwoPC10Qj6crpws06n93d3bFnzx60aNFCp4zo2Lp1Kzp27FikjOgU+pKTk9GgQQO9shQgARIgARIgARIgARKwDgEaWqzDmbOQAAmQgF0RUHIVCmvQBnM7jLDaOq/e/QNd4ybixv3b0py9G7TGvA5vqjJ/waC7QuE3ncegY+1Hxo0H2VlYlLwBP5zejVRNzBjv0uXw4pNN8XaLXnjSu6pB85uSwUgo/vLLLzFy5Ei9c4gbRuKmkb4yffp0TJw4UZ8Y+0mABEiABEiABEiABKxIgIYWK8LmVCRAAiRgDwRiY2MRERGhtRRLuwppTVbgYa/mxsmribOQp3GVEWVm2yF4pXH7AhKmVadpbrMsObpJHjw+qD+GBRiWvUcepKMSn7IT47Yv0NGru1nEW1m5cqVugQI948ePx+zZswu0PF59+umncfDgQYjsRSwkQAIkQAIkQAIkQAL2Q4CGFvt5F1wJCZAACVicgJKrkLjFUsOrssXn1jXBl0kJ+PhAnNRdqqQb1oRFwb9ybV3iBrUfufIbIjTxWG5n3UX1chXxU79/wsvdw6CxRQn1XzsN+y/rj5tSWEf9+vWRlJQEkR3IkCIMMv3799cp6uLiIqWGDgoyPJaMTmXsIAESIAESIAESIAESUJUADS2q4qQyEiABErBPAsJVaPDgwUhL+zs2yfPVGsIa8Vj0ERGBX4eunycHqa3hWQXrwmeYbRi5rYnHcuzaeQRWayTFZ9G3jqL6hatQ5LYFuJRxvSgxxb4yZcpg3759aNq0qWK/UmNmZiaaN2+OlJQUpW7ptsu4ceMU+9hIAiRAAiRAAiRAAiRgWwI0tNiWP2cnARIgAYsTUIrHYitXIV2bFUaRbpp4LZf+fGTICKnVAgu6jNElbtV2pXgs7dq1w/bt2w1ax6JFi/D6668bJFtQ6OLFiwgPD5eMNPnt3t7emDt3LoYOHZrfxG8SIAESIAESIAESIAE7I0BDi529EC6HBEiABNQkoOQqNDowDEG+/mpOo4quX38/iz5ro5GTlyvp+7DlALzRvKsquk1VUthVqG3bthAxbkaMGIFNm/6OAaNLv7hFtGTJEl3dBrWLOCwizXPFihURHBwMDw/zXaAMmphCJEACJEACJEACJEACJhGgocUkbBxEAiRAAvZNQNxiEVlrduzYIS9UDVeh7JwcbD7/X5y4cQHnb11BuVJlEFD1KXSv1woepUrLc5la+e7oz4jaFSsNdylREv/uMRGB1Ruaqs7kceIWi8hcVDAeizCyCK6ijBkzBp9++qlU1/UvEax2//79EK5DLCRAAiRAAiRAAiRAAs5DgIYW53nX3CkJkICTEFByFZrTbjj6NAo2i8Cmswcwc+8KXLxz9TE9nm5lENYgGKMDe6O8Jl2yOWX05i+QeGavpKKKhw/Wa+K1VPQob45Ko8YquQoJNyFxOyi/nDp1Soq5kpWVld+k9V21alXs2bMHdevW1WrnAwmQAAmQAAmQAAmQQPEnQENL8X/H3CEJkIATERCuKkuXLpV37OtZCXPbDzfbVajgTRNZuUKlYcWa+O7lD80yjNzNeoCe8ZNw9tb/pBmCqvtjWfcPUbJkSYUZ1W2K3BqD1ad2yUrFLRZxM6igkSW/c9myZVLslezs7Pwm6btevXpYu3YtGjdurNXOBxIgARIgARIgARIgAecgQEOLc7xn7pIESKCYE0hNTZWyCqntKiSwbTy7HyM3faZFsK53dTzl44vTN9Nx/vZlrb7a5atpXH4m4IlyFbTajXn4TaO3Z/xk3M/JlIaNCuiBsUHhxqgwSjb9zjUII4suVyFdykRWoJiYGBw7dgxeXl4IDQ2V3kPp0ua7Uemak+0kQAIkQAIkQAIkQAL2TYCGFvt+P1wdCZAACegloOQqNPrZ3ho3njC9Yw0RCFkeKd8ucS3pgo87jMDLmpgsoojUzDvSkvHelq9wO+uurE6NeDA/nN6NMVu+lnUu7hKJF2s1k5/Vqii5CokAtuJ2EAsJkAAJkAAJkAAJkAAJGEuAhhZjiVGeBEiABOyIgHBriY6O1lqRmqmb//u/k+j3wzRZ/6y2Q9CvcXv5Ob+Scj0N/dZOw5/Z9/ObsLDzWHSoHSA/m1L56D+LsfzEVmlo+VJlsS58Jny9KpmiSnGMCHg7P2mN3Ofn5ydlFVJyFZKFWCEBEiABEiABEiABEiCBIgjQ0FIEHHaRAAmQgD0TEMYAS7gKFdzzF0k/4JMDq6QmD1d3HHp9AUq5uhUUketLft2Iabu/k5/r+dTAhn6zzIqtkpWTjbC1U3D8Wqqkt2mVOljVMwpurq7yPKZWlFI352cVMlUnx5EACZAACZAACZAACZAADS38GSABEiABByOg5CoU1qAN5mpcetQuCw+vx6y9yyW1lT28sX/wlzqnSDi9R3IhKigw58U30Mf/xYJNRtdF/JRucRNx5y/XpNeahGBK8GCj9eQPUHIVioqKkoLe5svwmwRIgARIgARIgARIgARMJUBDi6nkOI4ESIAEbEAgNjYWERERWjOr6SqkpVjzsPL4NkzYsUhqLoES2DZgHvy8nygshtzcXHSP/wgpNy5o9bV7shkWdYvUajPlYcv5gxi24RN56Gchb6FbvZbys6GV+JSdGLd9gZZ44dTNWp18IAESIAESIAESIAESIAEjCdDQYiQwipMACZCArQgouQqJWyw1vCpbbEkHNDFaXikQo6WDX3PEvPQeXFxc5DlFQNz3t36NtZobLYWLiKtyaMgClChRonCX0c9z9q5EzOFEaZxwY0roOw11NZmPDC10FTKUFOVIgARIgARIgARIgATMIUBDizn0OJYESIAErEBAuAqJDDhpaWnybGpk9ZGV6amEr4lG0pXTslRQdX8MeaYzGlXyw7lbl/D1wUTs/d8Jub+GZxWkZ1yVn3/uP8cog4g8sFAlLy8PAxNmyCmYRQyYH/pMRRk390KS2o/CVShy2wJcyrgudwwaNEgKeis3sEICJEACJEACJEACJEACKhGgoUUlkFRDAiRAApYgoBSPRQ1XoQu3f8ecfd9j1otD4enuUeTShaFiYMJMPNT8o6885e2Lue2HodeaKFl0tiZOS18z47TkK7t27xa6fj8B1+/flpp61nsBn4SMzO9+7FspHgtdhR7DxAYSIAESIAESIAESIAEVCdDQoiJMqiIBEiABNQkouQqNDgxDkK+/WdNsPpeEyK0LkJF9D51qP4uYzu/p1ffTmX14d8tXyMnL1Snr5/UElveYgCfKVUDAouG4/Vfw2sFNQjE5+DWd44ztEMaTf/w4E3kalyVRYruNQ/CTzzymRslVSMS4qVWr1mOybCABEiABEiABEiABEiABtQjQ0KIWSeohARIgAZUIiFssU6ZMsUjq5juZ99Dm23c0Rpb78mo/ajUQrzfrIj/rqggDx/wDq3Hg8imt2y0uJUoivNGLGPt8X1Qo4yUN77R8HM5o3IpEebVxCKLbDpbqav3r64M/SmmnI5/vh2EB3bTU5q9z/+WTcnvbtm0huLKQAAmQAAmQAAmQAAmQgKUJ0NBiacLUTwIkQAJGEFByFZrTbjj6NAo2QkvRohs0t1NGbf5cFhKGkpU9J6FFtfpyW1GVyxk3sOfiUWTkPMCTmngsjSvXkm6xFBzTO34yjlw9KzUNatIJUcGDCnabXRcBeH+7mY76FWtq6aKrkBYOPpAACZAACZAACZAACdiAAA0tNoDOKUmABEhAiYAIeLt06VK5y9ezkibeyXCzXYVkhQUq03Z9hyVHN8otVcv6YH34TPlGitxhYqVgAN2Ip0MxqY16rkO6lhS5NQarT+2Su8UtFnEzSLhgsZAACZAACZAACZAACZCAtQjQ0GIt0pyHBEiABHQQSE1NlbIK7dixQ5awdFahnNwc9NOkbT78+xl5zhdqNMG3L3+gScVcUm4ztdLm29G49OejLD8RTTtjUut/mKpK77j0O9c0MWdi5GxEYgBdhfRiowAJkAAJkAAJkAAJkICFCNDQYiGwVEsCJEAChhBQchUa/WxviKC3li7CBajrqom49SBDnurtFr3w3vN95GdTKg8f5qF+zCDkar5FeatFT4zRxG+xRFFyFYqKipJuslhiPuokARIgARIgARIgARIgAX0EaGjRR4j9JFCMCOTk5CAtLQ3nzp3D5cuXce3atcc+9+7dw/3795GZmYkHDx7In5IlS8LNze2xj5eXFypUqICKFStK36IuPr6+vlJ2Fz8/P1SrVg1iPIs2AeHWEh0drdWoRupmLYV6HnZd+BWD182Rg9uWQAks6RapmMVHjyq5++wflxCyYpz8vKRrJNr6NZOf1aqIwLzzk9ZoqWPqZi0cfLBDAjyH7fClcEkkQAJORYDnsFO9bpttloYWm6HnxCRgOQI3btzAkSNHkJycjJMnT0qGFWFcuXDhAnJzdafntdSKhIGmZs2akuHF398fTZo0kT/ly5e31LR2rVfEDbGmq1BRMAobLLxLe2Jd3xmo7lmxqGE6+xYnb8T0Pd9J/S4lXJA85Bt4lCqtU96UDqXUzcwqZApJjrEUAZ7DliJLvSRAAiRgGAGew4ZxopRlCNDQYhmu1EoCViNw69Yt7N69G/v27ZMMK8LAkp6ebrX5zZ1IGGCaNm2Kli1bolWrVggMDETZsmXNVWu345VchcIatMHcDiNstmbh6vNa4mzsST8mr6FZlbqI6zUZri6ucpuhlUGJ/8QuTVYiUQKqPoX4MO1bO4bqUZJTchUaNGgQYmNjlcTZRgJWIcBz2CqYOQkJkAAJ6CTAc1gnGnbYiAANLTYCz2lJwFQCwuVn586d2LVrl/Q5evQoRKrb4lJcXFwkw4swugQHB6Njx46SK1Jx2J8wBkRERGhtxdquQlqTF3i4ef8OusVNxJW7N+VWU7MFrTi+DXvTj0vpnXvVb212zJf8BcWn7MS47QvyH6Vvugpp4eCDlQjwHLYSaE5DAiRAAjoI8BzWAYbNdkOAhha7eRVcCAkoE8jLy8P+/fuxfv166SNurDhTEbFdxC2X0NBQvPTSS3juuecgjDGOVpRchcQtlhpele1mKwcvn8YrP0zXBLH9273si05vo8tTQTZfo5KrkDBc1apVy+Zr4wKKPwGew8XjHC7+P6ncIQkUXwI8h3kOO9pPNw0tjvbGuF6nICCC0P70009Yu3YtNm7ciOvXH6XJdYrN69mkj48PunfvjvDwcOm2S6lSpfSMsG23cBUaPHiwFIQ4fyWWTt2cP48p34uTN2jiqyyTh5Z1LY0f+05HbZ9qcps1K8JVKHLbAlzK+Pu/AaZutuYbcN65eA7rfveOdg7r3gl7SIAE7JkAz2Hdb4fnsG429tJDQ4u9vAmuw+kJiCC1W7duxfLlyyUDy507d5yeiT4A3t7e6NGjh2R0CQkJkTIi6RtjzX6leCxquApl5mTB3dVyBqY3N/wfNp3/r4yqQYUaWBs2DaXdLDenPFmBilI8FroKFQDEquoEeA4bj9Tez2Hjd8QRJEACtiTAc9h4+jyHjWdmjRE0tFiDMucggSIIiBgr33zzDeLi4nD16tUiJK3XJbIElS5dWv64u7tL2YpEOrzs7Gz5I37TkJWVZb2FFTFTpUqV8Oqrr2LIkCFo3LhxEZLW6VJyFRodGIYgX3+zFhB/4j/45/7vEddzEur4VDdLl67BGZn30H3VJKTduSKLWDtgr5KrkEiHLbiykIDaBHgOq0PU3s5hdXZFLSRAAtYgwHNYHco8h9XhqIYWGlrUoEgdJGAkAWGgWLVqFWJiYvDLL78YOdo0cRHrxNfXF3Xq1EHdunWl2BZVq1ZF5cqVpU+VKlWkby8vL6NioNy9exc3b97U+ly6dElylUlLS5O/r127ZtrCTRgVFBSEoUOHol+/fihXrpwJGkwfIm6xCIOAJVI3F3Trqe+juWXSZyrKuLmbvtgiRqZcT0Pv1VHIzM2WpWa1HYJ+jdvLz5aoiFssIt30/ssnZfV0FZJRsKIiAZ7DKsJUUGXLc1hhOWwiARKwQwI8hy37UngOW5avPu00tOgjxH4SUJFAamoqPvvsMyxdulQyTKioWkuVn58fmjVrJn8aNmyI2rVrQ9xMsVXJyMjA8ePHcezYMYjfWuR/W9IA4+npKd1wGT16tFWCpiq5Cs1pNxx9GgWrgv3q3T/QVZMZ6Mb925K+3g1aY16HN1XRraRE3J4Z95+Fclepkm5YEzYF/pVryW1qVpRchZYsWSLFuFFzHupybgI8h4v3OezcP93cPQk4BgGewzyHHeMn1bxV0tBiHj+OJgGDCIhMQXPmzJHcg4TvqZrFw8MDLVu2RJs2baRP8+bNIQJkOUoRf9iKWz3is3fvXiQnJ0tuSmquX2Qp6t27N8aMGQNh3bdEEQFvhQEtv/h6VsLc9sPNdhXK15f/LdImv5o4C3l/pfSeqbll8ooFb5mM2/YN4k/uyJ8eNb2qILHvDHi5e8htalQit8Zg9aldsiphLBRZhegqJCNhxUwCPId1Aywu57DuHbKHBEjAHgjwHNb9FngO62bjqD00tDjqm+O6HYKACNw5e/ZsbNq0SbX1ivgprVu3RufOnREcHIyAgAC7CwJrzmaFK9Lu3bslZiLjUkpKijnqHhvbqlUrfPTRRxK/xzpNaBB/MAojiyVchXQt56ukBMw7ECd1P7plEqW5ZVJbl7hZ7Q+ysxC2JgopNy7Ievo1aodZ7YbKz+ZU0u9cgzCy0FXIHIocWxQBnsNF0VHuc7RzWHkXbCUBErAXAjyHjX8TPIeNZ2ZvI2hosbc3wvUUCwK7du3ChAkTJIOBGhsS8VO6dOmCrl27olOnThBxVJylXLx4UUpxLdJdC8OL8OdVo4ibLdHR0RJPU/UpuQqNfrY3RNBbS5aHmtssQ9fPw/YLR6RpanhWwbrw6ZpbJmUtMm3arSt4edVH+DP7Pp57oj4+D30HVcqaf2tKyVUoKipKinFjkY1QqVMR4Dms3uu253NYvV1SEwmQgNoEeA6rR5TnsHosraWJhhZrkeY8TkHg8OHDmDhxIjZs2GD2fitWrIiwsDAMGDBAcgkSwWydvYg4L4mJiVIgYbWMLi+88AKmTp2K9u2NC/IqAt4KQ03Bokbq5oL6iqrffvAnumnitVz687okFlIrAAu6jC1qiFl9m88ewOGrZ/F+YLhRwZJ1TSoC3s5PWqPVzdTNWjj4YCIBtc/hPn36oH///jyH/3of9nQOm/gjwmEkQAIWJsBz2LKAeQ5blq9a2mloUYsk9Tg1gTNnzkg3WOLj4yFuG5haypQpg169eknGFXFzRbgJsSgTEH/IJCQkYNGiRZLbjjncxQyhoaH45JNP4O+vP/2yiBtiTVchZQLAr7+fRZ+10cjJexT3Z3xQfwwL6KZL3G7alVI3i9tBLCRgDgGew+bQM22sLc9h01bMUSRAApYkwHPYknSVdfMcVuZiD600tNjDW+AaHJaA8J+cOXMmPv74Y2RmZpq8j0aNGmH48OEYNGgQvL29TdbjrAPFH+yLFy+WgqdevnzZZAyurq7SexA3VcSNosJFyVUorEEbzO0worCo1Z6/O/ozonbFSvO5lCiJf/eYiMDqDa02vzETKbkKiZ/5WE3QWxYSMJUAz2FTyak7zlrnsLqrpjYSIAE1CPAcVoOi+Tp4DpvPUE0NNLSoSZO6nIrAypUrERkZifT0dJP2LW6riCvpI0aMkILamqSEg7QI5OTkYN26ddLNFOEXbGoRxi4RK+Stt96CML6IIowBERERWiqt6SqkNXGhh9Gbv0Dimb1Sa2UPb6wPn4FKmm97KvEpOzFu+wKtJdFVSAsHH0wgwHPYBGgWHmLJc9jCS6d6EiABEwjwHDYBmoWH8By2MGAD1dPQYiAoipFAPgGRBUcYR3bu3JnfZNR32bJl8cYbb0iphmvWrGnUWAobTiApKUm6aSTcucQfOKaUZ555BgsXLpQMaoVdhcQtlhpelU1Rq/qYe1kP0CN+Es7e+p+kO6i6P5Z1/xD2EtdHyVVIGK5q1aqlOgsqdA4CPIcd4z2reQ4/99xzjrFprpIEnIQAz2HHeNE8h233nmhosR17zuxgBMRf1ufOnSsFQDXFTahy5cp4++23MWrUKFSoUMHBdu+4yxVR2kXslZiYGFUyFj1frSFW9Jpkd0B+u5mOnvGTcT/nkQvbqIAeGBsUbtN1ClehyG0LcCnjUcBesZi2bduC8Vhs+locenKew475+sw9h4XR+J133sH06dMhflnBQgIkYDsCPIdtx96cmXkOm0PPtLE0tJjGjaOcjEBycjJef/11HDp0yOid+/j44IMPPpCMLB4eHkaP5wB1CIjYLSKejrihYoqhTKxiXFA/jAjors6CLKAl4fQevLflK1nzoi7vo12t5vKzNStK8VjoKmTNN1D85uI57Pjv1Nxz+Mknn8TXX3+NLl26OD4M7oAEHJAAz2EHfGmFlsxzuBAQCz7S0GJBuFTt+ASE1X7atGmYNWsWsrOzjdqQ+K3bu+++K7mdlC9f3qixFLYcARFTRxhc/vWvfxn9TsWq+vu3x8QX/gEPN3ejF3niWioysu7jed9GRo81dMCkHYvx7+NbJfHypcoiUROvxdouTkquQiIdtsjWxEICxhLgOWwsMfuXN/ccHjZsmHRTkbdb7P9dc4XFgwDP4eLxHgvugudwQRqWqdPQYhmu1FoMCKSmpqJ///7Yt2+fUbtxcXGRYrhMnjwZVapUMWosha1H4LfffsPYsWORmJho9KS1vavh044j0bRKHYPHxp3Yjsk7l0oGmnXhM1Hd8/GsRgYrK0IwKydbSvl87Np5SUqscVXPKLj9FdS3iKFmd4lbLPMPrMb+yydlXXQVklGwYgIBnsMmQHOgIeacw/Xr18eyZcvA2C0O9MK5VIckwHPYIV+bwYvmOWwwKqMFaWgxGhkHOAOB77//Xkrze/v2baO2K/5S+fnnn+Ppp582ahyFbUdgy5YtUmDio0ePGrUIl5IuGP1sb7zZojtEWuWiSuyvmzB197eySLMqdRHXazJcXR5lNJI7VKqk37mGbnETcSfrrqTx1cYhiG47WCXtymqUXIWWLFmCwYMtO6/yathaHAjwHC4Ob9GwPZh6DouscCJD3IcffgjxSw4WEiABdQnwHFaXpz1r4zms/tuhoUV9ptTowATu3r0rBdxbvHixUbuoUaOGFCj3lVdeMWoche2DgPgf9alTp5q0mOerN8Lnnd7WpFPW7R72x/076KoxfFy5e1OeY3CTUEwOfk1+Vruy9fwhvLHhY1nt/JBReLleK/lZzUrk1hisPvV3Om0/Pz8pHTZdhdSk7Dy6eA47z7suuNPc3FwphpYwmty6datgl966+CWH+Ath1apV9cpSgARIQD8BnsP6GRVHCZ7D6r5VGlrU5UltDkzg3Llz6NGjB44dO2bwLpgJwWBUdisojAEFUzdXKO2Jmw8yjFpv1bI++DL0HQQ8UV/nuEOXT6PfD9OR+zBXlvlCY6Dp8lSQ/Kx2Zc7elYg5/Mg1ysPVHQl9p6Guj69q04ibM8LIQlch1ZA6vSKew07/I4ArV65IwePj4+ONglG9enWsWrUKrVpZxqBs1GIoTAIOTIDnsAO/PJWWznNYHZA0tKjDkVocnMDmzZshbqP88ccfBu+kYcOGEDdfWrZsafAYCtoPAZFiuF27dloLEq5AowPDsDX1ECbtXIIrf/59A0VLUOHBVeNKNKHVQAxuGqrQ+6hpcfIGTN+zTO4v61oaP/adjto+1eQ2NSt5eXkYmDBDNoTU86mBtWHR8ChV2uxplFyFxM0gEdNS7WIAAAHASURBVPSWhQRMIcBz2BRqxXeMiJ81cuRIiICNhhY3NzfMmzdPuplq6BjKkQAJ/E2A5/DfLFiDFMeQ57DpPwk0tJjOjiOLCYE5c+ZI/t3iL6WGFOET/v7770t/oXR3Nz7zjCFzUMayBGJjYxEREaE1yfIeExHk6y+33c1+gBkao8hKTRBbY0p3jXvO7PbD4O7ipjjszQ3/h03n/yv3NahQA2vCpqKMCVmMZCVFVK7du4Wu30/A9fuP4g31rPcCPgkZWcQI/V0i4O38pDVagkzdrIWDD0YS4DlsJDAnEc/IyJCCli9cuNCoHQ8YMACLFi1C6dLmG5WNmpjCJODABHgOO/DLs+DSeQ6bDpeGFtPZcaSDE8jMzJQCda5cudLgndSpUwcrVqxAYGCgwWMoaF8ECrsKPV+tIVb0mqRzkT+fP4jx2xfiDyPciZpXfQrfdBmLimW8HtObkXkP3VdNQtqdK3JfWIM2mNthhPysdkXcPvnHjzOR9/ChpHp6cAQGNOlo0jRKqZvF7SAWEjCFAM9hU6g535iEhAQMHToU169fN3jzQUFBEOOY/c9gZBR0UgI8h530xRu5bZ7DRgLTiP8/AAAA///v0aVnAABAAElEQVTsnQn8FVP/x7/taadFmxak9bGmEq0kRGkRhafyoBBZqn89KAlRkgj10FM9KEqJipBS0YaEtFjb933f73/O1Z27zcy9d+4s33PmM8/Lc2fOOXPO97y/cz/n9v3NOSdHSDsIBwgEjMDu3bupVatWNH/+/LR73qFDBxo5ciQVKVIk7XtQkA+Br776ijp37kxr167VjWpbtQENubqbfm12sv3QHuo9+z80d92PZkWS0s8pUpJGt+hF559ZLilv5Y611GZyfzp68rieN6jRv+jWmk31a6dPRn4/jQYvfi9cbZ6cuWlym/5Uq9S5aTezaOMK6vjRs3HlO3XqRGPHjo1LwwUIpEsAOpwuKZQTBLZs2UJdunShmTNnpg2kcuXKNGPGDKpevXra96AgCASJAHQ4SN7Ovq/Q4cwY5kCgJTNgKC0/gXXr1tF1111HK1euTKszBQsWpBEjRoT/kZ7WDSjEjoAIsjRp0iTOrvGtHqd65WrEpaW6GPPTTBq0YDydOHUyVdFwfpF8BeiN6x6mK8rVTCr/wYqvqPdXb+rpeXPmoSltn6IaJSvpaU6eiJj6vZ8MpS/X/hCutnzhkjS9/bNUJF/BlM18sHIe9Z4zKq7cnDlzqHHjxnFpuACBdAlAh9MlhXKJBIYPH069evWi48ejgerEMrHXxYoVo8mTJ1PTpu4FsmPbwzkIyEIAOiyLp/jZCR1OzycItKTHCaUUIbBs2TK64YYbaPPmzWn1qFq1ajR16lSqWrVqWuVRiB8BEQyYO3eubljdMtXCb7GU1944sXN8v/lX6v75K7T14O60bs+dMxe9qL0107JK/aTy4i2ZD1ZFbTunSCmadosIfhRIKutEwr4jB+jGSU/Qhv3bw9VdXfES+s8Nj1GOHDlMq+/w4UBavHmVnt+oUaPwWyyVKlXS03ACApkQgA5nQgtljQh888031L59e9q0aZNRdlJanjx5wrrVsWPHpDwkgEAQCUCHg+h1Z/sMHU7NE4GW1IxQQhECYppQixYtaP/+/Wn1qGXLlvT2229jqlBatPgVEm+xPPXUU0lBlgmtn8zK2L1asKLbzJdp8ab03ogSjeXUAhkDG91FHWrE/0X1yPFj1HZKf1q5c51uU7NKl9GoGx7Vr50+Wb7tT63NAXT81Ilw1a806043VrkiqRkxVajX7FG0cf8OPU8EWQRXHCBglwB02C453JdIYOvWreFgy7x58xKzDK9z5sxJb7zxBt17772G+UgEgaAQgA4HxdPu9xM6bM0YgRZrPshVhMDs2bPppptuokOHDqXskfjrfr9+/ah///6Wf+lPWREK+EbAqalCiR04fPwo3a6tU7Js2x+JWWld963fke65uEVc2bV7ttBN2lsmB44f1tP7XqGVuyS+nJ7pwMm7y2dRv3ljqftlN9PDddpoz3nOuFqN1mPBVKE4RLiwQQA6bAMabrEkcOLECerduzcNGzbMslxs5pAhQ6hnz56xSTgHgcAQgA4HxtWedRQ6bI4agRZzNshRhMBnn31GN998Mx05ciRljwoUKEDvvvtuuHzKwijAkoBY8HbcuHG6bWKqUI86bTNej0WvIOZk6KKJ9NrSj/SUHJSDyhYuHvfWh55pcvJQ7TZacKNtXO5nfyyh+z4brqfl0gIfYg2Zy8tW09OcPlmlvUVTrXiFpGqNpgqJN4OwHksSKiRkQAA6nAEsFM2YwKhRo6h79+4kfvCnc4g/pgwYMCCdoigDAsoQgA4r40qWHYEOJ7sFgZZkJkhRiMC0adPolltuoaNHj6bsVcmS2uKg06dTnTp1UpZFAX4E1qxZE16wOHE9lmynCkV6Ggqdoiv/14O2HNwVTipZoBhNaTOAyhUpQXPX/qgFSl6mIyeORYpbfna7tCX1rndrXJlnvn6H/vvTp3paqQJn0gxtsdriBYrqaW6eiLdYhi+ZnLQeC6YKuUk9GHVDh4PhZ797Kf4RKcb7dKcH9+nThwYNGuS32WgfBDwhAB32BHPgG4EOxz8CCLTE88CVQgQ++eST8Jsp6exMcP7554e3jDzvvPMUIhCcrhhNFRrcpCu1q97QMQh/7t5E10zopdf3RvMe1Py8aFBu9c711GXGYNpy4O9AjF7Q5ES81SLebokcJ0+epNumDqTvt/4WSaIrytagd1r1TZraoxdw6MRoqtCYMWOw05ZDfINcDXQ4yN73vu8///xzeC229evXp9W4eKtFvN2CAwRUJgAdVtm7/PoGHY76BIGWKAucKURALPTVvHlzOnw4uu6FWffq1q1LItIv3mjBIR8BMa0l9hXwcoVL0JCmXR2ZKhRLY8X2v8I79kTS5t3xMiXuXLRF24nonx8Pot93b4wUs/xMXLNFBGlaTPw37T4SXbBZrKPyaN1bLOvJJrPXlyNp8ur5ehUVK1YM786BqUI6EpzYJAAdtgkOt2VFYOPGjdSsWTNauXJlWvVgzZa0MKGQpASgw5I6TnKzocN/OxCBFskfZJifTGDp0qXUpEkT2rdvX3JmQoooJ4IsBQsWTMjBpQwERDDAralCif3/ccvv1FrbIShyzOk4lCoWKx251D93Hd5Hnaa9QL/sWKOnWZ0MaNiZ7qzVTC/yzfqf6Z/a/SHtf5Hjvzf0osaVLo5cOvK5Yd92EkGWxK2bMVXIEbyBrwQ6HPhHwFcA27dvD/+x5YcffkjLjhEjRtADDzyQVlkUAgFZCECHZfGUmnZCh4kQaFHz2Q5sr1atWkUNGzYk8eVOdVx77bU0depUOuOMM1IVRT4zAkZThXpo03DEorduHWIr5otG36NvizywYRe6vdY1hs3tP3aIukwfTEu3RKcBGRbUEsWCui9dcx+1uuBKvcgr306hl7+drF8Xy1dIW6/lOSqjLbzrxGE0VUjssiXeDsIBAtkSgA5nSxD3O0Fg7969dMMNN9CCBQtSVid2G3z77bfp9ttvT1kWBUBABgLQYRm8pL6NQddhBFrUf8YD08NNmzZRvXr1KJ252S1atKDJkydTvnz5AsNHlY6OHTuWunTpEtcdsUNPvXI14tLcuOg49RlatOnv19EvKnUefdjuadNmDmlbQd+lBVuWbF5lWiaSkSdnbhp3Ux+tD9XDSWLh3c7avfO1t1vE0azSpTTk6vuoSL4C4ets/k8seDv8uylxVWDr5jgcuMiCAHQ4C3i41XECBw8epFatWtGXX36Zsu68efOSWMgR0yZTokIB5gSgw8wdFDDzgqzDCLQE7GFXtbuHDh0Kv8ny/fffp+yi2Op54sSJlCdPnpRlUYAXAbemCu05vJ9+1dZVyaF1t2aJSlQgb37Djr/23Uc0dMlEPW/6Lc9QjZKV9evEk8PaLkStJj2urdmyKTEr6VoEUSa1eYqqnFkunCdsavnBk3RHzWvo3ktvTCpvJ8Fo62ZMFbJDEvcYEYAOG1FBmt8ExHN5/fXX07x581KaUqxYMfrmm2+oRg33A/cpjUEBELBBADpsAxpucZ1AUHUYgRbXHy004DaBU6dOUbt27ejDDz9M2ZRYIE9s4Sz+coVDHgIiGNC5c2dau3atbnTbqg20tzy66dd2Ttbv3UYvLHqPPvljsX67mMpzXrGy1L5GI+r8j+aUO1duPS9xQdxaWpBlatunKWfOnHqZxJODx49o20I/RPuOHkzMSroWC/lOaTuAxNbR4jh+4gTlyR1tP+mGNBOMpgp16tQpvOhtmlWgGAhYEoAOW+JBps8ExJbP11xzDS1ZsiSlJWJB8EWLFlHp0slrcKW8GQVAwEcC0GEf4aPplASCqMMItKR8LFCAO4HevXuT2DUg1XHFFVfQF198gYVvU4Fili+CLGLR4tjDialCYjHYdlMG0LZDu2OrjjuvVLQ09bvyzriFaB/67FWa/scivVzfKzrSPZe00K+NTuat+0mbCvSCUVZSmgjeTGzdj/LndiYY+MHKedR7zqi4djBVKA4HLhwgAB12ACKqcJXA7t27qWnTprRs2bKU7Vx22WUkdmvBGm4pUaEAIwLQYUbOgCmGBIKmwwi0GD4GSJSFwH//+1/617/+ldLcCy+8kMQ/2M8888yUZVGADwGjqULiLZbEbZUztVisgXLthP+jP/ZsSuvW68+tQ8ObPRB+u2WrtgXzNeN70cETR8L35suVhz5qN5AuKH6OZV2N3nmE1u/bZlkmknnzBVeFF8iNXNv9NJoqJNa4qVSpkt0qcR8IJBGADichQQJTAmKh/AYNGtDq1atTWnjHHXeEF8hNWRAFQIABAegwAyfAhLQIBEmHEWhJ65FAIY4ExHosV155JR09etTSvHPPPTe868DZZ59tWQ6ZfAiIoJjYAcetrZvna2+YdIp5w6ROmar0cJ12VL5wSZqzdhm9v3IOrdgRnaYkyDSvfDm91vyh8DSh0cs+oWcXvKsDK1PwLJqsTfkpXegsPS3xZNjiSfTq91MTk02vn7zqTupy4XWm+VYZYqpQr9mjaOP+HXqxRo0ahYONegJOQMABAtBhByCiCk8J/PXXX+GF87dtSx34fvnll6lHjx6e2ofGQCBTAtDhTImhvN8E/vzzTxIzDVTXYQRa/H7S0L4tAuLVs0svvZTWrFljeX/RokVp4cKFVL3637u5WBZGJgsCIsjixlSh2M71mfMmTVz5VTipaN6C9HnHwfq6KCLxxMkT9PzC9+i/P30aLhP5v9baFswvam/UnDoV0haqfYJW7lwXyaKqZ5Wn91v3N90ZaOKKOdTnq7fC5cU6MCHtf1ZHrpy56N2W/6Y6ZatZFUvKM1qPBVOFkjAhwQEC0GEHIKIKXwiItVrEOCMWaLQ6cmtrZIkdixo2bGhVDHkg4BsB6LBv6NFwlgSCoMMItGT5kOB27wmEQiG66aabaMaMGZaNix9In376aXgBPMuCyGRDQCx4O27cON2eumWqUY86bR3furnrp8Poi7++C7djtajuTG2R3Ac/H0EntalGkaNjjavpmcZ30eb9O6n9h0/TxgPRt0bEls8jrn2IyhUpESmufw7WAjcjf5gWvi5TsDhtPbSLTmnPstVRokBR+viWZ6l0wfSmvBlNFRJvBokpWDhAwEkC0GEnaaIuPwh89NFH1KZNGy1wHtV3IzvE27DijYFy5f7eEc6oDNJAwA8C0GE/qKNNJwmorsMItDj5tKAuTwg8++yz9MQTT6Rsa9SoUXTvvfemLIcC/hMQbyaJIItbU4USe9hp2vM0f/3P4eQ2Va/S3lK5L7GIfj1pxVf0f1+9qV+Lk7dueIyaVrqU1u3dqgVbBsYtqFtEe0PmhSZ3U/Pz6uj3iHKtJj1Je4/9vfPQzVWupFqlzqVnvnlbL2N2It5oGd/qCcqZI4dZERJvsQxfMpkWb16ll8FUIR0FTlwgAB12ASqq9JyAmBr0yCOPpGxXvNEi3gy02mEuZSUoAAIOE4AOOwwU1flCQGUdRqDFl0cKjdol8PXXX5P4B2Sqv0CJH04vvfSS3WZwn4cEjKYKDW7SldpVd+9V7ce/Gk0TVswO9/JCLeAxVVvM1up45dsp9PK3k/Ui5QuXoi86vED5tJ2Bftu1gW6d+gztObJfzxcnYseiRudcSHuOHqBZfy3VF88Vee+27EtXlK9Fj856g6b++rVIsjwerXMLda99s2EZo6lCY8aMCQeuDG9AIghkSQA6nCVA3M6KwJ133knvvPNOSpsGDhyY1h95UlaEAiDgAAHosAMQUQUbAqrqMAItbB4xGJKKgNh//aKLLiKxkJ3VIXYUmD17NompQzh4ExDTWgYMGKAbWa5wCRrStKtjU4WOnjhGP2//i2pri93GHp/+voge+PxVPenz2wbT+WdZvxZ+94whNFtbKDdyPHhZa3qkbrvw5a8715MI3ny/9bdItumneINmSNNulEN7Q+WIZl+7KU8lLbybeLNYr0Vs+XzJ2efHZfX6ciRNXj1fT6tYsSKJXYUwVUhHghOHCUCHHQaK6nwncPjwYapfv37KbZ/Fbwqx5XO9evV8txkGBJsAdDjY/lex96rqMAItKj6tivbprrvuIvGXequjdOnStHTpUipTpoxVMeQxICCCAW5NFVq25Tf6YNV8mvbbQtp//JC2bsqDdMP50R/He48coEv/201fkPbei2+kPvU7WFLZom3rfO2E3nTg+OFwuTw5c9MXWoCmQrG/d7MSc6XF2yliEd3th/YY1iWmDIlAUq5cufT89fu2UyttYd09mk1WR4UipWjGrYOoYJ78tEG7RwRZMFXIihjy3CAAHXaDKur0m4D4A07t2rVp165dlqaIXQyXLVtGhQsXtiyHTBBwkwB02E26qNsvAirqMAItfj1NaDcjAh9++GF40Tqrm8Q/XsXuAGJqEQ6+BIymCvWo3Sa86G02Vu8/eojeWT6LJq+aR3/u3RxXVcHc+bVFZZ+hymdGA3A3TXqcftm+Jlwuf668NPO256lCUestwCf8Mpsenztarzv2rZZI4sFjR7QAz4LwmzS/7FhDObUdhqpoOxLdWr0xXVrmgkixuM952nbTXaYP1gM/cZkxF22qNqB21RpSx4+ejUkl6t+/P4m3g3CAgJsEoMNu0kXdfhP47LPP6PrrrycRNLc6/vnPf8Yt2m5VFnkg4DQB6LDTRFEfJwKq6TACLZyeLthiSGDr1q1Uq1Yt2rEjuruLUcEXXniBevfubZSFNCYExLSWLl26xFkzvtXjWU8V+vzP76j//LG09eDuuLojF2Ih2fZaoOO5xndHkuijX7+hR2a9rl/XK1uDxt/8uH5tdCJ+gF89viet2bslnC2m8kxuG536ZHRPumnPL5xA//lherrF9XLYullHgRMXCUCHXYSLqtkQEL8hhgwZktIesevhDTfckLIcCoCAkwSgw07SRF1cCaikwwi0cH3KYJdO4NZbb6WJEyfq10YnTZs2pVmzZoXXvTDKR5r/BNyaKjRs8Qf06vcfJnXw/GLltJ2BLqG62q49l2v/Fcp7RlKZjtoitos2rdTTn2v0L7qtZlP92ujkte8+oqFL/n4eRQBn6V3/oSL5ChgVzSjtxKmT1GZyP1p++i2bVDdjV6FUhJDvJAHosJM0URdXAsePHw+vwSKmIFsd55xzDv3yyy+YQmQFCXmOE4AOO44UFTIkoJIOI9DC8AGDSVECn3zyCbVo0SKaYHBWrFgx+umnn0j88MHBj4CYKtS5c2dau3atblxbbQrMkKu76dd2T95aNoOeWzA+7vazC55Jj9VpT22rXaUF3nLG5SVeiB2Dbnj/33QydDKclTdnHnqnVd+kxXNj79u8fydd+fZDetLI6x6ha8+trV9nc/Lnns3UUpvSdOj4UctqqlatSqtWRbdytiyMTBDIkgB0OEuAuF0qAqtXr6bLLruMDh48aGn3/fffT6+99pplGWSCgFMEoMNOkUQ9MhBQRYcRaJHhaQuojeJHTs2aNeP+gW6EYvz48dShg/VCpkb3Ic19AkbrsTgxVUhY/r62XkrfmPVSxNslD9VuS/de3ILy58mbducGaYGaN7WATeQomrcgTWrT33IXomojO9OxU8fDt7zQ+B66pUbjyO1Zf76/Yg71/eoty3rEjkXz5s2jq666yrIcMkEgWwLQ4WwJ4n4ZCbz11lt0zz33WJoOHbbEg0wHCUCHHYSJqqQhoIIOI9AizeMWPEMfe+wxeumllyw7LgIsItCCgx8Bo6lCPeq0zXo9FtHTBRuW050fPx+3eKzdgMeR48eo8/Tnacnm1TrEcoVK0Lst/63vKKRnaCdinZYa/+lCR0/+HWgZ3uwBuqlK/dgiWZ+LhXHnrvvRsp5q1aqF3+TKkyePZTlkgkA2BKDD2dDDvTITEAvjzpw507IL0GFLPMh0iAB02CGQqEY6ArLrMAIt0j1ywTBYbJ8otlo8efLvKR1GvS5VqhStXLmSzjrrLKNspPlEQLzFInbAcWvrZtGtztNeoHnrf9J72PeKjnTPJdZTzPTCBicHjh2m27WdfH7e/peeK3YqGti4C918QfxbI+9qOxs9OS+6zfh7Nz9JdbQ1YJw6Fm1cQY/OeoO2HLTeZlS0JwKRjzzyiFNNox4QiCMAHY7DgYuAERDTXcVC/AcOHLDsOXTYEg8ysyQAHc4SIG6XmoDsOoxAi9SPn7rGN2nShMQ/2K2Od999lzp27GhVBHkeEzCaKjS4SVdqV72hY5as37uNGr/7qP42S5uqV9GLV9+Xdf17jxyg26YOpNXaui2xR9OKF9N1lS+nqsXPoa+0bZhH/TCNDp34ew0V8ebLvDtfdmwRZhFkSdy6OdaWxPOiRYvSb7/9RiVLlkzMwjUIZE0AOpw1QlQgOYFXX32VHnoouiaXUXegw0ZUkOYUAeiwUyRRj6wEZNZhBFpkfeoUtnvq1KnUunVryx42b9485Su9lhUg03ECYsHbcePG6fWWK1yChjTt6shUIb1S7WTwwvdopBbsiBxT2jxFF5euErnM6nP7oT30rxkvajv/RN9ssarwWW2Xog4pdimyuj82r9eXI2ny6vl6UsOGDWnnzp3hnS30RIOTu+++m958802DHCSBgH0C0GH77HCnOgROnToVXgtr4cKFlp2CDlviQaZNAtBhm+Bwm1IEZNZhBFqUehTl74zY0qtGjRr0+++/m3bmjDPOCP/js3LlyqZlkOEdgTVr1oR3FXJzqlCkN2J9lDpjH6Cdh/eGkyoVLU2zbx8ayXbkMxQ6Re+v+IoGL55Ie47sN63z/ktbUs96t5rmp5uxYd92EkGWxZujuwhFtm5esWIFXXTRRXTixAnT6nLmzEnffvstXXrppaZlkAECmRCADmdCC2VVJwAdVt3DPPsHHebpF1jlDwFZdRiBFn+eF7RqQmDYsGH06KOPmuT+nTxo0CDq06ePZRlkekPAaKpQj9ptSCx668Yh3jipqwVaIseDl7WmR+q2i1w6+rnv6EEa8d1UmqdNF/pjzyZtC+hTlEP7X62SleixurdQwwoXZd2e0VShMWPGhANXkcoffvhhGj58eOTS8FMsPDxnzhzDPCSCQKYEoMOZEkN51QlAh1X3ML/+QYf5+QQW+UtARh1GoMXfZwatxxDYvXs3nXvuubRnz56Y1PhT8RaLWAA3X7588Rm48pyAWPB2wIABce06sXXz5v07qcQZRSlP7txxdYuLP3dvomsm9NLTs10EV69IO/n090V0daXLKG/u5F18xM5Emw7sIDEdKl/u9LeOjq0/8Xz4ksk0/LspenLFihVp7NixJIImsYf4PlSpUoV27NgRm5x0/sUXX9A111yTlI4EEMiEAHQ4E1ooGxQC0OGgeJpHP8XzJn7v4vcwD3/ACh4EZNRhBFp4PDuwQiPQr18/GjhwoCWLSZMmUbt27rzBYNkwMuMIiGCAG1OFZv31PfX8chS1vuBK6t+wU1yb4uLHLb9T6yn99XSn3p7ZdXgfNXj7Ya3dq+iZxnfp9bt10uHDgYZThczaGzlyJN13n/WCv3Xr1qVFixaZVYF0EEiLAHQ4LUwoFEAC0OEAOt2nLkOHfQKPZtkTkE2HEWhh/0gFw8Bdu3aFo/f79u0z7fBVV11F8+dHFws1LYgM1wgYTRVqW7UBDbm6W1ZtioWuXtTWRIld5PbVZt2pRZUr4updt2crNR4fnVp2z8UtqG/97Heeevabd2n0j5+E23rpmvuStnSOMyKLC6OpQv379w9vh21VrdjmXKzB8tNPP1kVo48//phuuukmyzLIBAEzAtBhMzJIBwEi6DCeAi8IQIe9oIw2ZCUgmw4j0CLrk6aY3U888QQ9++yzpr3KkSMHLVmyhGrXrm1aBhnuEhDTWrp06RLXiBNThcS6Kw999mrcGx5iLZTHr7yd7rro+rj2RECm6qjO2nopJ8PpVc4sTzNvG6Rtr5wzrlwmF6L9htrbLEdPHg/fdm7RMjTr9hczqSKtsh+snEe954yKKyvWVUmcKhRXIOZi5syZdP318TxissOnYuHcH374wbHtphPrx7XaBKDDavsXvcueAHQ4e4aowZoAdNiaD3JBQCYdRqAFz6vvBMQWtmIu6v795ju83HrrrfTee+/5bmtQDTCaKiTeYilfpGRWSMQbHg99PoJ2nN5FSFR21hlF6JVmD1D98rUM624/ZQB9t+VXPe8V7c2XGxPefNEzU5yIXYwe+eI1+vj36Nadrzd/iK47r26KOzPLznSqkFnt4q2ub775xiw7nD558mRq06aNZRlkgkAiAehwIhFcg4AxAeiwMRekZk8AOpw9Q9QQDAKy6DACLcF4Hln38vHHH6fnnnvO1Eaxfe3y5cupevXqpmWQ4Q4BMVWoc+fOtHbtWr2BumWq0YTWT+rXdk5EgGPk0mk0dMlEOqWdR47apS+gV699kM4udFYkKenz/V9mU9+5o/X084uVo886PG/rrZYB88bRuOWf63U1qXAxjb4xutiunmHzRASSes0eRRv3Rxey7dSpU3jRWztVGk3dSqynXr16tHBhNHCUmI9rEDAiAB02ooI0EEgmAB1OZoIUZwhAh53hiFrUJyCLDiPQov6zyLqHBw8epHPOOYfEThdmR8eOHendd981y0a6SwSMRMyJqUL7jhygR798g2avXRZn+d0X3UD/V+82ypUrV1x64sWBY4epybuP0c6Yt2DurNmMnmr4z4yCLYMXvhe3Jkz+XHnp8w6Ds35LJ2Kv0XosmUwVitST+Cl2Fvryyy8Tk+OuxVpGItqPAwTSIQAdTocSyoBAlAB0OMoCZ84QgA47wxG1BIeADDqMQEtwnkeWPX3ttdeoe/fupraJt1lWrFhBVatWNS2DDOcJGE0V6lGnLdUrVyOrxpZv+5PumzmcNmpbJUeOwnnO0BbT7UrXnnt5JCnl57TfFlAPbcpP7HH9uXVo2DX3G27PHFtOBGqGLZ5EY37+TE/OkzM3jdDepGl2rjNrABlNFRJr3FSqVElv0+6JeFulfv36lre3bNmSPvroI8syyASBCAHocIQEPkEgPQLQ4fQ4oVT6BKDD6bNCSRAQBGTQYQRa8Kz6RiC8sKkWQPn9999Nbbjjjjvo7bffNs1HhrMExFssTz31lCtbN3/06zfUe/Z/6PipE7rR1YtXoDeaP0wVip2tp5mdHD1xjPLlzqtn99DWdpkWs7aKyLhcm3rU9dKb6Kry/0gKuIjnbeLKr7TpSh/EvQ0j3mQZdf0j1KDChXrddk/EWyzDl0yOW9i3UaNGJLg6eSQGwhLrFotHiwBltWrVErNwDQJxBKDDcThwAQJpE4AOp40KBVMQgA6nAIRsEDAhwF2HEWgxcRyS3Scg/uJ+8803Wzb0888/U61axouiWt6IzIwJGE0VGtykK7Wr3jDjuoxu+HbTKur40bPajkGn9GzxBkqrC67Ur81Ovl7/Ez0yayS92PRealTx4nAxscVb989fpc/++jbptkLaWzJNtHI1SlSkrQd206pd62jljnW099jBuLIFc+ent1r0pLrlsl//x62pQnEGn76YPn16ym2c7733Xho1Kn6XI6O6kBZsAtDhYPsfvbdPADpsnx3ujCcAHY7ngSsQSJcAdx1GoCVdT6Kc4wRSRSGvvfZa+uyz6PQOxw1AhToBseDtuHHj9OtyhUvQkKZds54qpFd4+uTNH2bQoIXj9WQREJl2yzNUsVhpPS32JKQFZV759kN65bsPKaT9r1i+QjS9/XNUtnDxcDERbOnz1Zs0efX82NvSOr/07PPp2cZ3U9Xi56RV3qpQry9Hxtkg3mIRbwaJZ9yNQywmXLNmTVq5cqVp9QULFqTNmzdT4cKFTcsgAwSgw3gGQMAeAeiwPW64K5kAdDiZCVJAIB0C3HUYgZZ0vIgyjhMQ/0CsUcN6vQ+xT3rz5s0dbxsVRgmsWbMmvKvQ3Llz9UQndhXSKzM46frJS/TFmu/1HDF9aErbAXHTgkTm7sP76OFZr9P89T/rZcXJs43+RR1qNo1LW6K9LfP01/+jFTuiuyPFFYi5KJa/MPXVFt1tV72RtnhujpiczE837NtOIsiyePMq/WY3pgrplcecjB49mu6+++6YlOTTkSNHUteuXZMzkAICGgHoMB4DEMiOAHQ4O364GzqMZwAEsiXAWYcRaMnWu7jfFoGePXvS0KFDTe8Vf60XWzrjcI+A0VShHrXbkFj01s1j39FDdNOkx2n9vm16M+2qNaLB2rSgyPHDlt+o+2ev0OaDuyJJVDhPgdOL5hovWCvefvl6/XL6/K/vaOGGFbRFu/fQiaPh+8sUPCu8BkvTChfRledcSAXz5tfrtXtiNFVozJgx4cCV3Tozue/o0aNUsaI2NWrrVtPbLrnkElq6dKlpPjKCTQA6HGz/o/fZE4AOZ88w6DVAh4P+BKD/2RLgrMMItGTrXdyfMYHjx49TuXLlaPv27ab3vvnmmyn/Wm96MzJSEhDTWgYMGBBXzomtm+MqtLhYsX0NtZn8FB07dVwvFVkP5r8/zqRBC8Zra7mc1PPEWiuvN+9BFYqmXjRXv0k7OXz8KOXLlYfE7lVOHmLB2+HfTdGrFAEPsauQeP3Xy6NPnz70wgsvWDb57bffUu3axsEpyxuRqTQB6LDS7kXnPCQAHfYQtmJNQYcVcyi64xsBrjqMQItvj0RwG548eTK1a9fOFECRIkXCa0sUKFDAtAwy7BNInAvs9lQhM0vf/2U29Z07Ws8WAZG6ZavTPG3h29jj1upNaECDTkm7CMWW8fLcaOtmp3cVSrc/f/zxB1WpUoXEHFWz45577qH//Oc/ZtlIDygB6HBAHY9uO04AOuw40sBUCB0OjKvRUZcJcNVhBFpcdjyqTyZwww030KeffpqccTpFrCkh1pbA4SwBo6lCbas20KbjdHO2oQxqS1xENvZWse3ywIZdqK1Dux7F1m3n3GiqUP/+/cOL3tqpz6l7rrnmGvryyy9NqytWrFh4elHevNGtsU0LIyMwBKDDgXE1OuoBAeiwB5AVbAI6rKBT0SXfCHDUYQRafHscgtmwWE+ibNmydOpUdIvfRBJLliyhyy+/PDEZ11kQENNaunTpEleDE1OF9h05QIXzFbS9qKyY2tNmcj9avWtDnG2Vi5ah16/rkdaOQCdOnqDvtTVdnNiiOc6ImIsPVs6j3nPit0qeM2eO51OFYkzST99//3267bbb9GujE7F1ZMuWLY2ykBZAAtDhADodXXaVAHTYVbxKVg4dVtKt6JSPBDjqMAItPj4QQWz69ddfpwceeMC06xdeeCH9+OOPpvnIyJyA0VQh8RZL+SIlM68s5g7xhsdDn4+gO2s1owcvbx2Tk9npX7s3U8tJT9DBE0f0G3vWaU/3126lX5udbNq/U1s0dzj9vP0vmnDzE1S7TFWzorbTOU0VMurEsWPHwsHLnTt3GmWH0zp06EDjx0e31TYtiIxAEIAOB8LN6KSHBKDDHsJWpCnosCKORDfYEOCowwi0sHk8gmFIkyZNyGo9i+HDh9NDDz0UDBgu91Jw7ty5M61dG93y2Kn1WN5aNoOeXziBTmlrg+TQ/vd2yz5Uv3wt2z365PdF1P3zV/X7c+XIRe9rgZNLy1ygpyWezFv3Iz38xeu05+iBcNbZBc+kGe2fo7POKJJY1Na1CCT1mj2KNu7fod/fqVOn8KK3egKTEzHdzmodloIFC9K2bdsI6x4xcZjPZkCHfXYAmleSAHRYSbe61inosGtoUXGACXDTYQRaAvwwet31VK9Jip1hNm7cSKVLl/baNOXaE0EWMYjHHk5MFYrU9+Ki9+n1pR9HLsPBjRm3PEtnFzpLT8v05Ol5/6Oxyz/Tbyutbck8o/2zdGZC4ERs4/zykin06vcf6mXFSf1yNWnEtQ9SsTMKx6XbuTBaj4XLVCGj/syePZuuvvpqoyw9beLEiXTLLbfo1zgJJgHocDD9jl67TwA67D5jVVqADqviSfSDGwFuOoxAC7cnRGF7Ur0m2ahRI8u3XRRG42jXjKYK9ajTluqVq+FYO2KNnTs+fo4WbVqp11m79AU0odUTlCtXLj0tkxOx1kr7D5+mZdv+0G+7SntLZtxN/6etAfP39sy7Du8LT1dasPEXvYw4efCym+lhrY+RcnGZGV4YTRUSa9xUqlQpw5q8K37y5Mnwlunix5vZ0b59exLzV3EEmwB0ONj+R+/dIwAddo+tajVDh1XzKPrDhQA3HUaghcuTEQA7mjZtSuKtALPjtddeo/vvv98sG+kpCIi3WJ566imaO3euXtKpqUJ6hTEnOw7toRYTH6ft2mfkuPuiG+jfV94eucz4U6y5cuOkx2nPkf36vT1qtyERKPpu82p6UJtetPXgbj2vWL5CNOya+6hRxYv1NLsn4i2W4Usm0+LNq/QqZAr+de/encR3yOwQuw9t376dcufObVYE6QEgAB0OgJPRRd8IQId9Qy9Vw9BhqdwFYyUjwEmHEWiR7OGR1dz9+/dT8eLF6fjx44ZdENOGNm3aRGeffbZhPhKtCRhNFRrcpCu1c3lr5CWbVtHtHz1LJ7XpPJFj5HUP07XnXh65zPhTrL3SZfoQCmn/E4dYA6Z99cb0waq5ce1cVOo8eq15DypbuHjGbSTeINtUoUT7xfX8+fOpYcOGRll6mgjCpSqjF8aJcgSgw8q5FB1iRgA6zMwhDM2BDjN0CkxSigAnHUagRalHi29npk6dSq1bm+9MI6a7WL3twrdn/lsmFrwdN26cbki5wiVoSNOujk4V0is3OPnP0un0/KIJek7hPGfQNG29lgrF7AfNhi3+IGkNFr0B7aRzrebamzMdKXeu7N/O6PXlSJq8er5evXiLRbwZJJ5JmQ7xumTJkiVp9+7oGz+J9vfp04cGDRqUmIzrgBCADgfE0eimbwSgw76hl6Zh6LA0roKhkhLgpMMItEj6EMlmdrdu3WjUqFGmZg8dOpQeffRR03xkJBNYs2ZNeFchr6YKJVvwd0pI23mo26cv0RdrlupFqhevQFPaDqB8ufPqaZmciAVv7/z4eUpci6Vg7vz0fJO7qUWVKzKpzrDshn3bSQRZZJ0qZNSp2267zXIdFmyfbkQtOGnQ4eD4Gj31jwB02D/2MrQMHZbBS7BRdgJcdBiBFtmfJEnsr1y5MonAgNmxfPlyqlmzplk20hMIGE0ViqxlklDUk8t9Rw/SjROfoA37t+ntiek+zze5R7/O9EQsfNti4r/1NVkuOLM8vaFNS6p8ZplMq0oqbzRVaMyYMeHAVVJhiRLEm03iDSerY8OGDeGFc63KIE9NAtBhNf2KXvEiAB3m5Q9u1kCHuXkE9qhIgIsOI9Ci4tPFrE+rV6+matWqmVpVvnx5Wr9+vWk+MuIJiGktAwYMiEt0cuvmuIozuPhl21/UZspTdPzUCf2uTNeJOXDsMM3X1mi5/vx64TrEArgdpj5DrS6oTwMb3kVn5Mmn1233RCx4O/y7KfrtFStWJLGrkGxThfQOxJyIXYfKlClD4i0js+Ptt9+mO+64wywb6YoSgA4r6lh0ix0B6DA7l7AxCDrMxhUwRHECXHQYgRbFHzQO3Uu1jd3dd99Nb775JgdT2dsgggF+TxWygjThl9n0+NzRepH8ufLSlHYDqJo2lSjVsWrnOrp/5nBas3cLjb6hJzWpdEn4lt93baTzzyqX6va08o22bhZvB6l01K5dm77//nvTLnXt2pVGjhxpmo8MNQlAh9X0K3rFkwB0mKdf/LYKOuy3B9B+kAhw0GEEWoL0xPnU19tvv53Gjx9v2voHH3xAbdu2Nc1HBpHRVKG2VRvQkKu7scPz2KzX6cNfv9HtqlS0NH18yzNUKO8ZelriyQcr51G/eWPoyMlj4ayieQvS9PbPUbkiJRKL2ro2mirUv3//8KK3tipkfFPPnj1JrHlkdogpemKqHo5gEYAOB8vf6K2/BKDD/vLn2jp0mKtnYJeKBDjoMAItKj5ZzPpkNR81R44ctGPHDjrrrLOYWc3HHDGtpUuXLnEGcZgqFGdQzMXh40ep9Qf96NfdG/TU68+tQ69d10O/jpwcPXGM+s8fRxNXfhVJCn82OOcf9Eqz7lQ0f6G4dDsXIojTe078QsxihysVpgoZ8Ui1owG+c0bU1E+DDqvvY/SQDwHoMB9fcLIEOszJG7BFdQIcdBiBFtWfMp/7t2nTJsuFN8XaLStXrvTZSr7NG00VEm+xlC9Skq/RmmV/7t5ELSc9QYdOHNXtfPKqO6nLhdfp1+v2bKX7PnuZVmpThiJHDspBPS5vQw/Wbk0iIJDtEYSpQomMtm/fTqVKlUpMjrueNm0a3XjjjXFpuFCXAHRYXd+iZzwJQId5+sVPq6DDftJH20EkwEGHEWgJ4pPnYZ/FtKBbbrnFtMW77rqLRo+OrulhWjBgGWKqkNg9Zu3atXrP65apRhNaP6lfcz+Z/ttCeuiLEbqZuXLkooma/ZeUrkKf//mttrXyKNp//LCef2b+wtpbLA/QldrbLNkeYqpQr9mjaOP+HXpVnTp1Ci96qycofFK1alX69ddfTXvYp08fGjRokGk+MtQiAB1Wy5/ojRwEoMNy+MkrK6HDXpFGOyAQJeC3DiPQEvUFzlwg8Oijj9KwYcNMaxZBFhFswRElYLQeC+epQlHLk88GzBtH45Z/rmeUKXgWNat8Gf1v+Rd6mji57Owq9Grzh6h0oeynkBmtx6LyVKE4kKcvxHdKbFdtdlx33XX06aefmmUjXTEC0GHFHIruSEEAOiyFmzwzEjrsGWo0BAI6Ab91GIEW3RU4cYNA4tSXxDbEtCGrrZ8Ty6t+Ld5iEXu/Rw7xFkuPOm2pXrkakSSpPo+fOEHtpz5NP277w9Tuuy68nvpe0YFy5cplWibdDKOpQmI7bFXXYzHjMmrUKOrWzXyhZLEFtHiNGUcwCECHg+Fn9JIXAegwL3/4bQ102G8PoP0gEvBbhxFoCeJT52GfixcvTrt27TJssVixYuE8J9biMGxAwsTEt1kGN+lK7ao3lLAnUZM37ttBN016nPYcPRBN1M4K5TmDhjS9l5qfVycu3c6FeItl+JLJtHjzKv32Ro0akeAZxGPhwoVUv359y65v27aNSpbkvdaPZQeQmTYB6HDaqFAQBBwjAB12DKUSFUGHlXAjOiEZAb91GIEWyR4YmczduHEjlS9f3tTkBg0a0Lx580zzg5oh3sAYMGBAuPvlCpegCa2eYL/4bSpffbVmGd31yRC9WPXiFej15j2oYrHSeprdE6OpQmLajHg7KKjHgQMHqEiRIhQKhUwRzJo1i66++mrTfGSoQQA6rIYf0Qv5CECH5fOZWxZDh90ii3pBwJqA3zqMQIu1f5CbBYGZM2fS9ddfb1rD/fffT6+99pppfpAzYqcQiWDL/DuHS4/jpcWTaMT3U6ldtUY0sGFnypc7b9Z96vXlSJq8er5eT8WKFcML3gZtqpAOIObkvPPOoz///DMmJf506NChJOaM41CbAHRYbf+id7wJQId5+8cr66DDXpFGOyCQTMBPHUagJdkfSHGIwJAhQ6h3796mtb3xxhuW60iY3hiAjDVr1pAIFkR2HWpbtQGJbZ1lPkKhUzR37U/UuNLFWXdjw77t2q5FIzFVyIJk69ataerUqaYlxAJh2PHLFI8yGdBhZVyJjkhIADosodNcMBk67AJUVAkCaRLwU4cRaEnTSSiWOQGxne7//vc/0xu/+eablOtImN4cgAwRbKlcubLe0x6124QXxtUTAnpiNFWof//+JKZc4YgS6NevHw0cODCakHAmAnliNyYcahOADqvtX/SONwHoMG//eGUddNgr0mgHBJIJ+KnDCLQk+wMpDhG48soracGCBaa17d27N7yOhGkBZISnwXTp0iVMQkwhGtK0q7Q7EDnhTrHg7fDvpsRVFbStm+M6b3Ehdq+yWqemQoUK+htTFtUgS3IC0GHJHQjzpSYAHZbafY4ZDx12DCUqAoGMCfipwwi0ZOwu3JAugXLlypluIVuqVCnaunVrulUFupyK67XYcajR1s1B3VUoHX5z584NTz8zK5szZ046cuQI5cmTx6wI0hUgAB1WwInogrQExIL/Ygc8swM6bEZGrXTosFr+RG/kIuCnDiPQItezIo21x44do/z585vuelKnTh1avHixNP3x01AxhUgEW8Q/nMVRt0w1mtD6ST9N8rRto6lC4jXcsWPHemqHbI2tW7eOxOLAVsdvv/1G559/vlUR5ElMADossfNguhIEoMNKuDGrTkCHs8KHm0EgawJ+6jACLVm7DxUYERD/gLvggguMssJp7du3p/fff980HxnxBIK6XssHK+dR7zmj4mBgqlAcDtOLU6dOhYOdx48fNy3z+eefU7NmzUzzkSE3Aeiw3P6D9fITgA7L78NsewAdzpYg7geB7Aj4qcMItGTnO9xtQuCLL76ga6+91iSXwrsRvfDCC6b5yEgmIN7gCNJ6LUZThQSDSpUqJcNBiiEB8bbKH3/8YZgnEsWuQ2L3IRxqEoAOq+lX9EouAtBhufzltLXQYaeJoj4QyJyAXzqMQEvmvsIdaRB466236J577jEt+frrr9N9991nmo8MYwJiZ50BAwaEM8XiuBNaPUHli5Q0Lixpqpgq1Gv2KNq4f4feAzHHHeux6DjSPmnYsCHNnz/ftLwIdlptwW56IzKkIAAdlsJNMFJxAtBhxR2convQ4RSAkA0CHhDwS4cRaPHAuUFsYtCgQfTvf//btOvTpk2jG2+80TQfGcYEVF+vxWg9FkwVMn4W0klt06YNffjhh6ZFe/bsSUOGDDHNR4bcBKDDcvsP1qtBADqshh/t9gI6bJcc7gMB5wj4pcMItDjnQ9QUQ0D8A27o0KExKfGnCxcupHr16sUn4iotAiLY0rhxY31r3h6121CPOm3TupdzIaOpQuINHtFXHPYI3HvvvfTmm2+a3iwWWR4zZoxpPjLkJgAdltt/sF4NAtBhNfxotxfQYbvkcB8IOEfALx1GoMU5H6KmGAJiLRGrXWF+/fVXqlKlSswdOM2EgJhG06RJE/2WwU26UrvqDfVrmU7EWyzDl0ymxZtX6WZjqpCOIquTvn370vPPP29ah3irTLxdhkNNAtBhNf2KXslFADosl7+cthY67DRR1AcCmRPwS4cRaMncV7gjDQI33XQTTZ8+3bTkzp076ayzzjLNR0ZqAiqs12I0VUi8YSHetMCRPQHxVpn4a5rZId4qE2+X4VCTAHRYTb+iV3IRgA7L5S+nrYUOO00U9YFA5gT80mEEWjL3Fe5Ig0D9+vVN/wGXM2dOOnHiBOXIkSONmlDEjICYQiSCLePGjQsXqVumGk1o/aRZcXbpvb4cSZNXRxdqrVixYvgtKEwVcs5VImhltatQtWrVaOXKlc41iJpYEYAOs3IHjAkoAehwQB1/utvQ4WD7H73nQcAvHUaghYf/lbNC/ANu9erVhv0qXrw47dgR3VHGsBAS0yKQuF5L26oNaMjV3dK6169CG/ZtJxFkwVQh9z3w3nvvUYcOHUwbqly5Mv3555+m+ciQmwB0WG7/wXo1CECH1fCj3V5Ah+2Sw30g4BwBv3QYgRbnfIiaYghUqlRJX6w1Jjl8WqFCBdO8xLK4Tk1ApvVajKYK9e/fP/xmTuqeokSmBMSOQ2KldbOjbNmytHHjRrNspEtOADosuQNhvhIEoMNKuNF2J6DDttHhRhBwjIBfOoxAi2MuREWxBMQ/4DZv3hybpJ+LRXDFYrg4nCOQuF7LkKZdqV65Gs414EBNYsHb4d9NiasJWzfH4XD8YsaMGZbbqOPtMseRs6oQOszKHTAmoASgwwF1/OluQ4eD7X/0ngcBv3QYgRYe/lfOihIlSpBY8NboqFmzJi1fvtwoizZs2BDeBWXdunV08uRJwzJINCbw6aef6lwL5T2DOta82rigD6nTfl1Amw/u0ls+55xz6LbbbtOvcWKPQP78+Ul8n8RiewUKFEiqZNasWdSsWbOk9EhCwYIF6cCBA5FLfCpGADqsmEPRHZYEoMMs3cLGKOgwG1fAEIUJsNXhEA4QcIFAoUKFQtr32fC/Sy65xLDFfv36hfLkyWN4j1ldSDdmDC7B4lKqVKmQFmhL+l7NnTvX8vuUO3fupHuQoA4B6HCwdAC676+/ocPqaKeTPYEO+/u9hC4Giz83HSYnxQR1gUCEQN68eU3/gadtKRsppn8+88wzpuUhksESSfjbnr/Fd27RokX6d0qcLFiwIOX3Ku4GXChFADps77sEDQI3u88AdFgpCXWkM9Bh6IldPcF99p4dTjqMqUPaU4zDeQJWWzc3aNCA5s2bpze6e/duKlOmDB09elRPwwkIgEDmBMTW2GLdm8ixcOFCEltLWh3aL0mrbORJTAA6LLHzYLq0BKDD0rrOFcOhw65gRaUgYEmAiw4j0GLpJmTaJWA1sDRs2JC0KQ161dOmTaOWLVvq1zgBARCwRyBnzpx0+PBh0qL54QoQaLHHUZW7oMOqeBL9kIkAdFgmb7lvK3TYfcZoAQQSCXDRYQRaEj2Da0cIZDKwTJgwgTp27OhIu6gEBIJOYM+ePVS0aNEwBgRagv00QIeD7X/03j8C0GH/2HNrGTrMzSOwJygEOOgwAi1Bedo87mcmA4vYgegf//iHxxaiORBQj0ClSpXor7/+0juGQIuOIpAn0OFAuh2d9pkAdNhnBzBrHjrMzCEwJxAE2OiwIys9oRIQSCCgfYtNF+HUpg4llA6Frr76atPyVnUhz5wz2ASPzYgRI+K+W1gMNw5H4C6sNAA6HDx9sHoekOfc8wAdDpzUWnbY6rsFHXbue2fFGXnB48xFh7HrkKU8ItMuAStRMxpYtm/fHqpVqxaCLRYBKiumyAveIJLo865duyZ9XRFoSUISqITEZyT2GjoMzYh9HnDuzPMAHQ6UxKbVWavvFnTYme+dFWPkBY8xJx1GoCUtmUShTAlYCZvRwCLqP3LkSGjAgAGhXLlyIeCCgAuegTSfgdKlS4emTp1q+BVFoMUQS2ASocPB+4Fp5XPkufc8QIcDI6sZd9Tqe4ffw+59J624I09N7hx1GIGWjCUTN6RDwErEzAaWSL3du3fHP7LT/Ee2FWfkqTmQJPp1xowZka9O0icCLUlIApWQ+KzEXkOHg6EPsT7HuXs+hw4HSloz6qzV9w467N530oo78tTkzlGHsRiu9m3D4TyBTBb/Smz9rbfeonvuuScxGdcgAAIGBNavX0/ly5c3yCHCYriGWAKTCB0OjKvRUZ8JQId9dgDj5qHDjJ0D05QiwFGHEWhR6hHj05lsBpbRo0fT3XffzaczsAQEGBPYuHEjlS1b1tBCBFoMsQQmETocGFejoz4TgA777ADGzUOHGTsHpilFgKMOI9Ci1CPGpzMYWPj4ApaoTYDjwKI2cXl6Bx2Wx1ewVG4C0GG5/eem9dBhN+mibhCIEuCowwi0RP2DMwcJYGBxECaqAgELAhwHFgtzkeUhAeiwh7DRVKAJQIcD7X7LzkOHLfEgEwQcI8BRhxFoccy9qCiWAAaWWBo4BwH3CHAcWNzrLWrOhAB0OBNaKAsC9glAh+2zU/1O6LDqHkb/uBDgqMMItHB5OhSzAwOLYg5Fd9gS4DiwsIUVMMOgwwFzOLrrGwHosG/o2TcMHWbvIhioCAGOOoxAiyIPF7duYGDh5hHYoyoBjgOLqqxl6xd0WDaPwV5ZCUCHZfWc+3ZDh91njBZAQBDgqMMItODZdIUABhZXsKJSEEgiwHFgSTISCb4QgA77gh2NBpAAdDiATk+zy9DhNEGhGAhkSYCjDiPQkqVTcbsxAQwsxlyQCgJOE+A4sDjdR9RnjwB02B433AUCmRKADmdKLDjlocPB8TV66i8BjjqMQIu/z4SyrWNgUda16BgzAhwHFmaIAmsOdDiwrkfHPSYAHfYYuETNQYclchZMlZoARx1GoEXqR4qv8RhY+PoGlqlFgOPAohZheXsDHZbXd7Bcxy/2jgAAPthJREFULgLQYbn85aW10GEvaaOtIBPgqMMItAT5iXSx7xhYXISLqkEghgDHgSXGPJz6SAA67CN8NB0oAtDhQLk7o85ChzPChcIgYJsARx1GoMW2O3GjFQEMLFZ0kAcCzhHgOLA41zvUlA0B6HA29HAvCKRPADqcPquglYQOB83j6K9fBDjqMAItfj0NireLgUVxB6N7bAhwHFjYwAm4IdDhgD8A6L5nBKDDnqGWriHosHQug8GSEuCowwi0SPowcTcbAwt3D8E+VQhwHFhUYSt7P6DDsnsQ9stCADosi6e8txM67D1ztBhMAhx1GIGWYD6LrvcaA4vriNEACIQJcBxY4BoeBKDDPPwAK9QnAB1W38d2ewgdtksO94FAZgQ46jACLZn5EKXTJICBJU1QKAYCWRLgOLBk2SXc7hAB6LBDIFENCKQgAB1OASjA2dDhADsfXfeUAEcdRqDF00cgOI1hYAmOr9FTfwlwHFj8JYLWIwSgwxES+AQBdwlAh93lK3Pt0GGZvQfbZSLAUYcRaJHpCZLIVgwsEjkLpkpNgOPAIjVQhYyHDivkTHSFNQHoMGv3+GocdNhX/Gg8QAQ46jACLQF6AL3sKgYWL2mjrSAT4DiwBNkfnPoOHebkDdiiMgHosMreza5v0OHs+OFuEEiXAEcdRqAlXe+hXEYEMLBkhAuFQcA2AY4Di+3O4EZHCUCHHcWJykDAlAB02BRN4DOgw4F/BADAIwIcdRiBFo+cH7RmrAaWK664ghYsWGCKZOTIkXTfffeZ5iMDBEAgSmDNmjVUsWLFaELM2S+//EK1atWKSUk+DYVCyYlIUYIAdFgJN6ITEhCADkvgJJ9MhA77BB7NBo4ASx3WfmTjAAHHCWjfbvGvN8P/ChQoEPrrr78M2zx58mTo+uuvN7zPrD6kG3MGl2Bwefnllw2/SyJx7NixKb9LpjcjQ3oCVhoAHQ6GPlg9A8hz7hmADksvl651wOp7Bh127jtoxRl5weDMUYfxRov27cPhPAGrCL5orVixYtSoUSPKmzev3rg2ypH4C/zKlSv1NJyAAAikJtC4cWMqWbJkXMHdu3fT7Nmz6dSpU3HpiRfie4dDTQLQYTX9il7xJAAd5ukXv62CDvvtAbQfJALcdBiBliA9fR72NdXA4qEpaAoEQMCCAAItFnAkz4IOS+5AmB8YAtBhdV0NHVbXt+iZWgTc0GEEWtR6Rtj0BgMLG1fAEBCwJODGwGLZIDI9IwAd9gw1GgKBrAhAh7PCx/pm6DBr98A4ENAJuKHDCLToeHHiJAEMLE7SRF0g4B4BNwYW96xFzZkQgA5nQgtlQcA/AtBh/9i73TJ02G3CqB8EnCHghg4j0OKMb1BLAgEMLAlAcAkCTAm4MbAw7WrgzIIOB87l6LCkBKDDkjouDbOhw2lAQhEQYEDADR1GoIWBY1U0AQOLil5Fn1Qk4MbAoiInGfsEHZbRa7A5iASgw+p6HTqsrm/RM7UIuKHDCLSo9Yyw6Q0GFjaugCEgYEnAjYHFskFkekYAOuwZajQEAlkRgA5nhY/1zdBh1u6BcSCgE3BDhxFo0fHixEkCGFicpIm6QMA9Am4MLO5Zi5ozIQAdzoQWyoKAfwSgw/6xd7tl6LDbhFE/CDhDwA0dRqDFGd+glgQCGFgSgOASBJgScGNgYdrVwJkFHQ6cy9FhSQlAhyV1XBpmQ4fTgIQiIMCAgBs6jEALA8eqaAIGFhW9ij6pSMCNgUVFTjL2CToso9dgcxAJQIfV9Tp0WF3fomdqEXBDhxFoUesZYdMbDCxsXAFDQMCSgBsDi2WDyPSMAHTYM9RoCASyIgAdzgof65uhw6zdA+NAQCfghg4j0KLjxYmTBDCwOEkTdYGAewTcGFjcsxY1Z0IAOpwJLZQFAf8IQIf9Y+92y9BhtwmjfhBwhoAbOoxAizO+QS0JBDCwJADBJQgwJeDGwMK0q4EzCzocOJejw5ISgA5L6rg0zIYOpwEJRUCAAQE3dBiBFgaOVdEEDCwqehV9UpGAGwOLipxk7BN0WEavweYgEoAOq+t16LC6vkXP1CLghg4j0KLWM8KmNxhY2LgChoCAJQE3BhbLBpHpGQHosGeo0RAIZEUAOpwVPtY3Q4dZuwfGgYBOwA0dRqBFx4sTJwlgYHGSJuoCAfcIuDGwuGctas6EAHQ4E1ooCwL+EYAO+8fe7Zahw24TRv0g4AwBN3QYgRZnfINaEghgYEkAgksQYErAjYGFaVcDZxZ0OHAuR4clJQAdltRxaZgNHU4DEoqAAAMCbugwAi0MHKuiCRhYVPQq+qQiATcGFhU5ydgn6LCMXoPNQSQAHVbX69BhdX2LnqlFwA0dRqBFrWeETW8wsLBxBQwBAUsCbgwslg0i0zMC0GHPUKMhEMiKAHQ4K3ysb4YOs3YPjAMBnYAbOoxAi44XJ04SKFSoEB08eNDJKlEXCICAwwSKFi1Ke/bscbhWVMeFAHSYiydgBwiYE4AOm7NRIQc6rIIX0QfVCbilwwi0qP7k+NS/F198kfr27UsnTpzwyQI0CwIgEEtA/FUt9i9rYlAR39O77rorthjOFSIAHVbImeiKEgSgw0q4MaNOQIczwoXCIOA6AS91GIEW190Z3AaOHDkS91aLuH7jjTfo2WefDS4U9BwEfCAwatQo6ty5M+XNm9eH1tGknwSgw37SR9sgECUAHY6yCNoZdDhoHkd/uRLwWocRaOH6JChsV/ny5Wnjxo0K9xBdAwE+BKpXr04rVqzgYxAsYUEAOszCDTAiIASgwwFxdIbdhA5nCAzFQSALAn7oMAItWTgMt9ojcNFFF9FPP/1k72af76pduzZ169bN0AoxTapnz5504MABw3yrRKt6re6LzROLOA0YMIA2bNgQm2x4njNnTmrYsCFdcMEFdP7551OVKlXCn6VLl6bdu3eHA2GbNm0Kf/7www/0xRdf0I4dOwzrSkysU6dOuG7RJ/Ffvnz5aNmyZfTdd9/RkiVLaObMmZTJglNO11erVi16+OGHE80OX0+aNIk+++wzwzxZEwW/xYsXy2o+7HaJAHQ4GSx0OJlJJMUpHRavbF911VXUqlUruvDCC0n8Q7NkyZK0d+/e8HgzZ84cGj9+PP3666+RppX4hA4r4UbHOwEdTkYKHU5mEklxSodFfaVKlaJbbrmFLrvsMqpYsSJVqFCBihUrRtu2bQtr8ddff01jx46ldevWRZqX/tMXHdb+wYMDBDwloP24CmnfVin/u++++yxZVapUyVa/UtVr2WhMZpMmTSzb137khtq1axf65ZdfYu5KfXry5MmQFiQJDRw4MHTJJZcYtpEnT57Qyy+/nLKyGTNmhIoXL25YR+xz4XR9kbrvuOMOUxuff/75lHZF6pHlUxtYTPuLjOASgA4nj0HQ4WQmTupwixYtQlrQPeWX7vjx46FOnToppcXQ4ZRuD2QB6HCy5kCHk5k4qcPi3ynaHxRD2h+HU37nxG9/bY2hkGhflt+8Vnb6ocPiL8s4QMBTAhhYkkXUi4FF/MhdunRp1r7+6KOPkgRXi4SHFi1alHbdWoQ8VK9evaR6IgLpdH2ResUnAi1puwkFFSYAHYYOe6XDhQsXDk2ZMiXjb1OvXr1Mx4hYTZfh3I8f+BkDxw2eE4AOQ4e90uGITmpvs2f8nIvATK5cuaTXYz90GIGWjB833JAtAQws3g8szz33XLZu0+83CrQsXLhQz0/3RJuKFCpSpIihcDtdX2SAEZ8ItKTrIZRTmQB0GDosnm8vdLhatWq2v0oPPfSQ4RgRq+kynPvxA982dNzoGQHoMHRYPGxe6HBEJ+0EWoSN/fr1k16L/dBhBFrE04PDUwLNmzeX9sua6s0TjlOHnnjiCUf9mxho0eba265fTEWKiH/k0+n6IvVGPoMWaLntttts+wc3qksAOuztD/wg63A2gRZtzbFQ7ty5k8aJiJ7L8gkdVldLs+kZdBg6HHl+vPo9bDfQoq3fGCpYsKDUWuyHDmMxXG2UxuEtgZUrV5L2V6rwYkuJLW/ZsiW8GGtiOpdrLdBCr7/+uqk5lStXpjVr1pjmm2Wkqnfq1Km0fft2s9v19KeffjpuMVztryWkTRci7ZU/vUy2Jx9//HF4IUNRj1hUVyxsXLNmTcNqV69eTdp8exIL0BodBw8epHPPPTe8+JbId7o+oza1QAu9/fbbRln0wgsvUJ8+fQzzOCcKvuXKlUsy8ZxzziHxTJQpUyYpDwnBJgAdTvY/dHhbGIrTOqwFWkg8b4mHNv+fxOK4oj2ro379+qS95WhVhEUedJiFG6QyAjqc7C7osDs6HCEtNsKYO3cu7dy5k1555RUSC5AvX748/BtS/PumQYMGkaJJn9o6kPTVV18lpXNKYKfDkUgaPkGAA4Fjx46FOnbsyDZiqg0AlpjceqPFbr2amFraG8nUgjihiRMnhrRdk0KNGjUKXXrppeEpNoMHDw7NmjUrJBbEihyxb7RYRYf//PPPkJibrwmw5fz8oUOH6v52uj7RduJ/qr3R8uCDD0Zcg08QcIQAdNgYI3Q4FLKj67FvtBw6dCi8qLr2Yz6UN2/eUNGiRUNjxowxBn46tUOHDkk6nqjrfl9Dhy1diEwbBKDDxtCgw/Z0OKKRYjOK+++/X/99HkkXn9quQyHx7wGz4/bbb2etxRx1GFOHzJ4mpPtGQIuWsv0iyxRo0bZtTsuHgre2vaYl83/84x8hEWARR2ygxWqXIbFSeUTAxY9qs2PBggV6Oafri7Qf+6laoGX+/PlmaJEOArYJQIeT0dn5gQ8dplAk0PLHH3+EtO1sdb2P6LLYDc9qMXXx4zlSlusndDj5+4KU7AlAh5MZQodD4Z2AIlqY7u/rSPlUn1a7klptYpGqXi/yOeowAi3J32Gk+Exg8eLFbH9UyRRoETs2pDpGjBiR0fx3IbLNmjXT/TN9+nTTJq677jq9nPirpdmxdetWvZzT9RkJu2qBFvF9wQECThOADicTtfMDHzpMoRIlSoS0V9LDfy010mSR1r1792Tgp1Nat26tjxFm9/udDh02dR8ysiAAHU6GBx0Ohez8vk5HI9u1axc6depUMnQt5ciRI6F8+fKx1mKOOoxAi+HjhEQ/CWBgSaa/YsWKkNiJx+q/4cOHxwnghx9+mFxRTMr48ePjyqcjwolltPnFMTXGn2rrgsTVL1ZVNzsKFSoULut0fYn2imsEWsy8gHQQiBKADkdZRM6gw6GQHV030uHEtG7dukUwJ31Wr149bixJvJfDNccf+EkgkSAdAehwssugw87qsNiJR/wR+d133w1payomAz+dMmjQIOiwKR3zDARazNkgxycCGFjsgV+yZEmcCKbaIlm8zp3ND1RtAcNwhNvMWvEWS2z9v/32m1nRkNji0On6YtuOPUegxdQNyAABnQB0WEeR0Ql0OIork61rhw0bFr0x5uzw4cOhPHnyxI0lsXrO5RyBlhin4dQxAtBheyihw1FuqXRY28AjWtjkTFssN5Q/f37osAkfq2QEWqzoIM8XAhhY7GFPHFjEooVmh1jsKtsfqNqONmbVh9PFQoexbfz888+m5W+++eaQ0/XFth17jkCLqRuQAQI6AeiwjiKjE+hwFJfQ9VjtNTsXa7SsWrUqemPM2VtvvZVWHWZ1e5WOQEuM03DqGAHosD2U0OEot1Q6nCrQIt5yOfPMM6HDUaQZnSHQkhEuFPaCAAYWe5QTB5YNGzaYViQWJcz2B2jVqlVN6xcZ4g2V2Das7BHrvjhdX2zbsecItFi6DZkgECYAHbb3IECHo9xi1/OK1eDE85YtW0ZvijkTawWIhdgTy3O8RqAlxnE4dYwAdNgeSuhwlFsqHU4VaBE1jRw5MqP1HP3SaI46jEBL9FnEGRMCGFjsOSJxYFm2bJlpRU4salWgQAHTRbNEwyI/VmzFvFqzQ6ya7nR9sW3HniPQYuYFpINAlAB0OMoikzPocJSW0PVY7TU6F4srmr3tKH7cG93DMY3jD/yoJ3AmKwHosD3PQYej3FLpsNUuQ9FaQqGpU6ey12OOOpxDQNQGLRwgwIaAJpBUt25dNvbEGqItGEXa7gmxSXHnlStXJi06HJeWzkWqel966SXavHmzZVW///47aUKol/n8889Ji2Tr14knd999N40ePToxOaPrjRs3UtmyZQ3v0baMJm0BXD1PcKlYsaJ+HXtSrlw52rRpEzldX2wbkXMt0EJvv/125DLu84UXXqA+ffrEpXG/0AYW0hYz424m7JOMAHQ42WHQYSI7up5MMpry4osv0mOPPRZNOH0mxoMaNWrQ3r17k/I4JkCHOXpFfpugw8k+hA47q8Pa1E3SdnKi2rVr01NPPRXW3WTqf6c0bdqU5syZY5btezpLHY6NVuEcBDgQEBFJ7dvK8j+Ztnd+/vnnLd2p/ZAN1apVK2POBQsW1O+ZN2+eaRuxC3BZLXR76NChkJijL3zudH1GzxHeaDF1GTJAQCcAHdZR6Cfaj1Fd+4y0xSgNOmw+lou1A4y2Ej1x4kSocePGGbM24u9Vmvi+4AABpwlAh5OJQodD4Q0kItqW7u/rSHmrz8KFC4eWLl2aDP10ytChQ1nrMkcdxtQh08cJGX4RwMCSTN7OwNKwYcPkihJSdu/eHRLlrIQ3knf55ZeH5s+fH/rmm2/08mPGjEmoMXrZpk0bvVyFChWiGQln4rXFSBtO1xepN/YTgZYEB+ASBAwIQIeToUCHQyE7uh6rv5Hziy66KHTgwIFkyFrK448/ro8JkfLcPzn+wDeEi0SpCECHk90FHc5Oh8V0TSs9feKJJ5Khn06ZMmWK5b1W9XqRx1GHEWgxfZyQ4RcBmQcWMReyfPnyKf8rVKhQnFi58aZM7ty5Q1Y7D0X8K9Zr6dWrV6hUqVJxNglRLFGiRKhr167hAEvkL4+xc1/79u0bqSbpc/z48Xp9jz76aFJ+JCF23qfT9RkJOwItEfL4BAFzAtDhZDZ2fuBDh5PfaClTpkxo3bp1yYC1lJkzZ+pvOBrpN9c0jj/wDQEjUSoC0OFkd0GHQyE7v68j2inWxPrf//4XKl68uP4bPZInPt98881k6KdT3nnnHcN7Yu/385yjDiPQYvo4IcMvAjIPLOkymzBhQpxYpQq03H777aErr7wy5X/a/Pm4ejt27JiuSSGxhZsQ4C+//DL0/fffh3bt2mV4b2ygpXTp0qGDBw8alhOBmaeffjrUs2fP0M6dOw3LiERhY0SYna4vUm/sJwItpq5ABgjoBKDDOgr9BDocCk/1yVTXY/VXLHr+3Xff6UwTT8Q2z+LNycT/5s6dGxLjQ2xdnM45/sBPZItr+QhAh5N9Bh3OToe19RzDULdu3Rr+I6t4W138QUD8sXXAgAHJwGNSBg8ezFaDxXjAUYcRaIl5gHDKg0AQBpZJkybFiVWqQEu6ntEWc42rV6x98umnn6Z7e1rlYgMtQtieeeaZtO4zKrRly5ZQ3rx542x2ur7EH+MItBh5AmkgEE8AOhzPI5Mr6HCyrgsdzpUrV+jjjz/OBGVcWc5bPXP8gR8HDxdSEoAO23cbdNhYhyOBlliykTfWY9OMzlu1ahX3ez3x97Xf1xx1GIEWoycJab4SwMBiH3/iwCJETyxuZbXVc6atJQZaihYtavnGilX9t956a5JoO11fovAj0GLlEeSBwN8EoMP2nwTocLKuCx3WduyzD1W7E4GWrPDhZgkJQIftOw06bKzDRoGWdCgfPnw4vJxA4m9qTtcItKTjSZQJPAEMLPYfAaOBRYigCF4MGzYsPD3Ifu1/35kYaBH1i+k/R48ezajql19+OSnIEhFsp+uL1Cs+EWjJyE0oHFAC0GH7jocOJ6/L8txzz9kHevpOBFqyRogKJCMAHbbvMOhwsg6L38B2Ai0nT54MtW7d2vQ3e+xvbD/PEWix/33BnQEigIHFvrPNBpaI8NWsWTM0e/Zs2w2ItVtuu+02Q7EV8zzTWXx33759pnVE7BSfTtcXqRuBFtvux40BIgAdtu9s6HD8D3yrRc4zoYxASya0UFYFAtBh+16EDsfrcOQ3sFi6QARO0j3EH1Hvuecew9/9kTq5fCLQkq5XUS7QBDgPLHfeeacjvhk7dmycaDlVb79+/eLqNRM/sUXne++9F9q8ebNlf8RCt/PmzQsNGTIkVKdOnZR1FytWLDRixIjworonTpyIq/uPP/4IiUWAq1SpkrKeiN1O1yfqvfnmm+Psir0Q29pF2pblk+PAEssU53ISgA7b9xt0OP4Hvp2/oCbSF2sInHfeeWz1GTqc6DFcO0EAOmyfInQ4Xodjf9OKnd8eeOCB8OYXYlFco2Pv3r2hoUOHhsqVK8dWd2P7JM456nAOAVczDgcIsCGgTU2hunXrsrFHdUPKli1L2jbOpG31RtqOEKQFV2jPnj3h/9avX09a5NsWgoIFC9LFF19M+fLlI22NGNJ2MbJVT+Qmp+uL1Cv7pzawkBYEk70bsJ8ZAeiwtw6BDnvL2+nWoMNOE0V9ggB02NvnIKg6LH5fa9tmU/ny5Ulbi4W0P4zSpk2bxDqu3jogy9Y46jACLVk6Fbc7TwADi/NMUaO6BDgOLOrSDk7PoMPB8TV6mj0B6HD2DFFDMgHocDITpICAGQGOOoxAi5m3kO4bAQwsvqFHwxIS4DiwSIgRJicQgA4nAMElCFgQgA5bwEGWbQLQYdvocGMACXDUYQRaAvggcu8yBhbuHoJ9nAhwHFg48YEt9ghAh+1xw13BJAAdDqbf3e41dNhtwqhfJQIcdRiBFpWeMEX6goFFEUeiG54Q4DiweNJxNOIqAeiwq3hRuWIEoMOKOZRJd6DDTBwBM6QgwFGHEWiR4tEJlpEYWILlb/Q2OwIcB5bseoS7ORCADnPwAmyQhQB0WBZPyWUndFguf8Fafwlw1GEEWvx9JtC6AQEMLAZQkAQCJgQ4DiwmpiJZIgLQYYmcBVN9JwAd9t0FShoAHVbSreiUSwQ46jACLS45G9XaJ4CBxT473Bk8AhwHluB5Qb0eQ4fV8yl65B4B6LB7bINcM3Q4yN5H3zMlwFGHEWjJ1Iso7zoBDCyuI0YDChHgOLAohDewXYEOB9b16LgNAtBhG9BwS0oC0OGUiFAABHQCHHUYgRbdPTjhQgADCxdPwA4ZCHAcWGTgBhutCUCHrfkgFwRiCUCHY2ng3CkC0GGnSKKeIBDgqMMItAThyZOsjxhYJHMYzPWVAMeBxVcgaNwRAtBhRzCikoAQgA4HxNEedxM67DFwNCc1AY46jECL1I+UmsZjYFHTr+iVOwQ4Dizu9BS1ekkAOuwlbbQlOwHosOwe5Gk/dJinX2AVTwIcdRiBFp7PSqCtwsASaPej8xkS4DiwZNgFFGdIADrM0CkwiS0B6DBb10htGHRYavfBeI8JcNRhBFo8fgjQXGoCGFhSM0IJEIgQ4DiwRGzDp7wEoMPy+g6We08AOuw98yC0CB0OgpfRR6cIcNRhBFqc8i7qcYwABhbHUKKiABDgOLAEALvyXYQOK+9idNBBAtBhB2GiKp0AdFhHgRMQSEmAow4j0JLSbSjgNQEMLF4TR3syE+A4sMjME7b/TQA6jCcBBNInAB1OnxVKpk8AOpw+K5QEAY46jEALnkt2BDCwsHMJDGJMgOPAwhgXTEuTAHQ4TVAoBgIaAegwHgM3CECH3aCKOlUlwFGHEWhR9WmTuF8YWCR2Hkz3nADHgcVzCGjQcQLQYceRokKFCUCHFXauj12DDvsIH01LR4CjDiPQIt1jpL7BGFjU9zF66BwBjgOLc71DTX4RgA77RR7tykgAOiyj1/jbDB3m7yNYyIcARx1GoIXP8wFLThPAwIJHAQTSJ8BxYEnfepTkSgA6zNUzsIsjAegwR6/IbxN0WH4fogfeEeCowwi0eOd/tJQmAQwsaYJCMRDQCHAcWOAY+QlAh+X3IXrgHQHosHesg9QSdDhI3kZfsyXAUYcRaMnWq7jfcQIYWBxHigoVJsBxYFEYd2C6Bh0OjKvRUQcIQIcdgIgqkghAh5OQIAEETAlw1GEEWkzdhQy/CGBg8Ys82pWRAMeBRUaOsDmeAHQ4ngeuQMCKAHTYig7y7BKADtslh/uCSICjDiPQEsQnkXmfMbAwdxDMY0WA48DCChCMsUUAOmwLG24KKAHocEAd73K3ocMuA0b1ShHgqMMItCj1iKnRGQwsavgRvfCGAMeBxZueoxU3CUCH3aSLulUjAB1WzaM8+gMd5uEHWCEHAY46jECLHM9OoKzEwBIod6OzWRLgOLBk2SXczoAAdJiBE2CCNASgw9K4SipDocNSuQvG+kyAow4j0OLzQ4HmkwlgYElmghQQMCPAcWAxsxXp8hCADsvjK1jqPwHosP8+UNEC6LCKXkWf3CLAUYcRaHHL26jXNgEMLLbR4cYAEuA4sATQDcp1GTqsnEvRIRcJQIddhBvgqqHDAXY+up4xAY46jEBLxm7EDW4TwMDiNmHUrxIBjgOLSnyD2hfocFA9j37bIQAdtkMN96QiAB1ORQj5IBAlwFGHEWiJ+gdnTAhgYGHiCJghBQGOA4sU4GCkJQHosCUeZIJAHAHocBwOXDhEADrsEEhUEwgCHHUYgZZAPHpydRIDi1z+grX+EuA4sPhLBK07QQA67ARF1BEUAtDhoHja235Ch73ljdbkJsBRhxFokfuZUtJ6DCxKuhWdcokAx4HFpa6iWg8JQIc9hI2mpCcAHZbehSw7AB1m6RYYxZQARx1GoIXpwxJkszCwBNn76HumBDgOLJn2AeX5EYAO8/MJLOJLADrM1zcyWwYdltl7sN1rAhx1GIEWr58CtJeSAAaWlIhQAAR0AhwHFt04nEhLADosretguA8EoMM+QA9Ak9DhADgZXXSMAEcdRqDFMfeiIqcIYGBxiiTqCQIBjgNLELir3kfosOoeRv+cJAAddpIm6ooQgA5HSOATBFIT4KjDCLSk9htKeEwAA4vHwNGc1AQ4DixSA4XxYQLQYTwIIJA+Aehw+qxQMn0C0OH0WaEkCHDUYQRa8FyyI4CBhZ1LYBBjAhwHFsa4YFqaBKDDaYJCMRDQCECH8Ri4QQA67AZV1KkqAY46jECLqk+bxP3CwCKx82C65wQ4DiyeQ0CDjhOADjuOFBUqTAA6rLBzfewadNhH+GhaOgIcdRiBFukeI/UNxsCivo/RQ+cIcBxYnOsdavKLAHTYL/JoV0YC0GEZvcbfZugwfx/BQj4EOOowAi18ng9YcpoABhY8CiCQPgGOA0v61qMkVwLQYa6egV0cCUCHOXpFfpugw/L7ED3wjgBHHUagxTv/o6U0CWBgSRMUioGARoDjwALHyE8AOiy/D9ED7whAh71jHaSWoMNB8jb6mi0BjjqMQEu2XsX9jhPAwOI4UlSoMAGOA4vCuAPTNehwYFyNjjpAADrsAERUkUQAOpyEBAkgYEqAow4j0GLqLmT4RQADi1/k0a6MBDgOLDJyhM3xBKDD8TxwBQJWBKDDVnSQZ5cAdNguOdwXRAIcdRiBliA+icz7jIGFuYNgHisCHAcWVoBgjC0C0GFb2HBTQAlAhwPqeJe7DR12GTCqV4oARx1GoEWpR0yNzmBgUcOP6IU3BDgOLN70HK24SQA67CZd1K0aAeiwah7l0R/oMA8/wAo5CHDUYQRa5Hh2AmUlBpZAuRudzZIAx4Elyy7hdgYEoMMMnAATpCEAHZbGVVIZCh2Wyl0w1mcCHHUYgRafHwo0n0wAA0syE6SAgBkBjgOLma1Il4cAdFgeX8FS/wlAh/33gYoWQIdV9Cr65BYBjjqMQItb3ka9tglgYLGNDjcGkADHgSWAblCuy9Bh5VyKDrlIADrsItwAVw0dDrDz0fWMCXDUYQRaMnYjbnCbAAYWtwmjfpUIcBxYVOIb1L5Ah4PqefTbDgHosB1quCcVAehwKkLIB4EoAY46jEBL1D84Y0IAAwsTR8AMKQhwHFikAAcjLQlAhy3xIBME4ghAh+Nw4MIhAtBhh0CimkAQ4KjDCLQE4tGTq5MYWOTyF6z1lwDHgcVfImjdCQLQYScooo6gEIAOB8XT3vYTOuwtb7QmNwGOOoxAi9zPlJLWY2BR0q3olEsEOA4sLnUV1XpIADrsIWw0JT0B6LD0LmTZAegwS7fAKKYEOOowAi1MH5Ygm4WBJcjeR98zJcBxYMm0DyjPjwB0mJ9PYBFfAtBhvr6R2TLosMzeg+1eE+Cowwi0eP0UoL2UBDCwpESEAiCgE+A4sOjG4URaAtBhaV0Hw30gAB32AXoAmoQOB8DJ6KJjBDjqMAItjrkXFTlFAAOLUyRRTxAIcBxYgsBd9T5Ch1X3MPrnJAHosJM0UVeEAHQ4QgKfIJCaAEcdRqAltd9QwmMCGFg8Bo7mpCbAcWCRGiiMDxOADuNBAIH0CUCH02eFkukTgA6nzwolQYCjDiPQgueSHQEMLOxcAoMYE+A4sDDGBdPSJAAdThMUioGARgA6jMfADQLQYTeook5VCXDUYQRaVH3aJO4XBhaJnQfTPSfAcWDxHAIadJwAdNhxpKhQYQLQYYWd62PXoMM+wkfT0hHgqMMItEj3GKlvMAYW9X2MHjpHgOPA4lzvUJNfBKDDfpFHuzISgA7L6DX+NkOH+fsIFvIhwFGHEWjh83zAktMEMLDgUQCB9AlwHFjStx4luRKADnP1DOziSAA6zNEr8tsEHZbfh+iBdwQ46jACLd75Hy2lSQADS5qgUAwENAIcBxY4Rn4C0GH5fYgeeEcAOuwd6yC1BB0OkrfR12wJcNRhBFqy9Srud5wABhbHkaJChQlwHFgUxh2YrkGHA+NqdNQBAtBhByCiiiQC0OEkJEgAAVMCHHUYgRZTdyHDLwIYWPwij3ZlJMBxYJGRI2yOJwAdjueBKxCwIgAdtqKDPLsEoMN2yeG+IBLgqMMItATxSWTeZwwszB0E81gR4DiwsAIEY2wRgA7bwoabAkoAOhxQx7vcbeiwy4BRvVIEOOowAi1KPWJqdAYDixp+RC+8IcBxYPGm52jFTQLQYTfpom7VCECHVfMoj/5Ah3n4AVbIQYCjDiPQIsezEygrMbAEyt3obJYEOA4sWXYJtzMgAB1m4ASYIA0B6LA0rpLKUOiwVO6CsT4T4KjDCLT4/FCg+WQCGFiSmSAFBMwIcBxYzGxFujwEoMPy+AqW+k8AOuy/D1S0ADqsolfRJ7cIcNRhBFrc8jbqtU0AA4ttdLgxgAQ4DiwBdINyXYYOK+dSdMhFAtBhF+EGuGrocICdj65nTICjDiPQkrEbcYPbBDCwuE0Y9atEgOPAohLfoPYFOhxUz6PfdghAh+1Qwz2pCECHUxFCPghECXDUYQRaov7BGRMCGFiYOAJmSEGA48AiBTgYaUkAOmyJB5kgEEcAOhyHAxcOEYAOOwQS1QSCAEcdRqAlEI+eXJ3EwCKXv2CtvwQ4Diz+EkHrThCADjtBEXUEhQB0OCie9raf0GFveaM1uQlw1GEEWuR+ppS0HgOLkm5Fp1wiwHFgcamrqNZDAtBhD2GjKekJQIeldyHLDkCHWboFRjElwFGHEWhh+rAE2SwMLEH2PvqeKQGOA0umfUB5fgSgw/x8Aov4EoAO8/WNzJZBh2X2Hmz3mgBHHUagxeunAO2lJICBJSUiFAABnQDHgUU3DifSEoAOS+s6GO4DAeiwD9AD0CR0OABORhcdI8BRhxFoccy9qMgpAhhYnCKJeoJAgOPAEgTuqvcROqy6h9E/JwlAh52kiboiBKDDERL4BIHUBDjqMAItqf2GEh4TwMDiMXA0JzUBjgOL1EBhfJgAdBgPAgikTwA6nD4rlEyfAHQ4fVYoCQIcdRiBFjyX7AhgYGHnEhjEmADHgYUxLpiWJgHocJqgUAwENALQYTwGbhCADrtBFXWqSoCjDiPQourTJnG/MLBI7DyY7jkBjgOL5xDQoOMEoMOOI0WFChOADivsXB+7Bh32ET6alo4ARx1GoEW6x0h9gzGwqO9j9NA5AhwHFud6h5r8IgAd9os82pWRAHRYRq/xtxk6zN9HsJAPAY46jEALn+cDlpwmgIEFjwIIpE+A48CSvvUoyZUAdJirZ2AXRwLQYY5ekd8m6LD8PkQPvCPAUYcRaPHO/2gpTQIYWNIEhWIgoBHgOLDAMfITgA7L70P0wDsC0GHvWAepJehwkLyNvmZLgKMOI9CSrVdxv+MEMLA4jhQVKkyA48CiMO7AdA06HBhXo6MOEIAOOwARVSQRgA4nIUECCJgS4KjDCLSYugsZfhHAwOIXebQrIwGOA4uMHGFzPAHocDwPXIGAFQHosBUd5NklAB22Sw73BZEARx1GoCWITyLzPmNgYe4gmMeKAMeBhRUgGGOLAHTYFjbcFFAC0OGAOt7lbkOHXQaM6pUiwFGHEWhR6hFTozMYWNTwI3rhDQGOA4s3PUcrbhKADrtJF3WrRgA6rJpHefQHOszDD7BCDgIcdRiBFjmenUBZiYElUO5GZ7MkwHFgybJLuJ0BAegwAyfABGkIQIelcZVUhkKHpXIXjPWZAEcdRqDF54cCzScTwMCSzAQpIGBGgOPAYmYr0uUhAB2Wx1ew1H8C0GH/faCiBdBhFb2KPrlFgKMOI9DilrdRr20CGFhso8ONASTAcWAJoBuU6zJ0WDmXokMuEoAOuwg3wFVDhwPsfHQ9YwIcdRiBlozdiBvcJoCBxW3CqF8lAhwHFpX4BrUv0OGgeh79tkMAOmyHGu5JRQA6nIoQ8kEgSoCjDiPQEvUPzpgQwMDCxBEwQwoCHAcWKcDBSEsC0GFLPMgEgTgC0OE4HLhwiAB02CGQqCYQBDjqMAItgXj05OokBha5/AVr/SXAcWDxlwhad4IAdNgJiqgjKASgw0HxtLf9hA57yxutyU2Aow4j0CL3M6Wk9RhYlHQrOuUSAY4Di0tdRbUeEoAOewgbTUlPADosvQtZdgA6zNItMIopAY46jEAL04clyGZhYAmy99H3TAlwHFgy7QPK8yMAHebnE1jElwB0mK9vZLYMOiyz92C71wQ46jACLV4/BWgvJQEMLCkRoQAI6AQ4Diy6cTiRlgB0WFrXwXAfCECHfYAegCahwwFwMrroGAGOOoxAi2PuRUVOEcDA4hRJ1BMEAhwHliBwV72P0GHVPYz+OUkAOuwkTdQVIQAdjpDAJwikJsBRhxFoSe03lPCYAAYWj4GjOakJcBxYpAYK48MEoMN4EEAgfQLQ4fRZoWT6BKDD6bNCSRDgqMMItOC5ZEcAAws7l8AgxgQ4DiyMccG0NAlAh9MEhWIgoBGADuMxcIMAdNgNqqhTVQIcdRiBFlWfNon7hYFFYufBdM8JcBxYPIeABh0nAB12HCkqVJgAdFhh5/rYNeiwj/DRtHQEOOowAi3SPUbqG4yBRX0fo4fOEeA4sDjXO9TkFwHosF/k0a6MBKDDMnqNv83QYf4+goV8CHDUYQRa+DwfsOQ0AQwseBRAIH0CHAeW9K1HSa4EoMNcPQO7OBKADnP0ivw2QYfl9yF64B0BjjqMQIt3/kdLaRLAwJImKBQDAY0Ax4EFjpGfAHRYfh+iB94RgA57xzpILUGHg+Rt9DVbAhx1GIGWbL2K+x0ngIHFcaSoUGECHAcWhXEHpmvQ4cC4Gh11gAB02AGIqCKJAHQ4CQkSQMCUAEcdRqDF1F3I8IsABha/yKNdGQlwHFhk5Aib4wlAh+N54AoErAhAh63oIM8uAeiwXXK4L4gEOOowAi1BfBKZ9xkDC3MHwTxWBDgOLKwAwRhbBKDDtrDhpoASgA4H1PEudxs67DJgVK8UAY46jECLUo+YGp3BwKKGH9ELbwhwHFi86TlacZMAdNhNuqhbNQLQYdU8yqM/0GEefoAVchDgqMMItMjx7ATKSgwsgXI3OpslAY4DS5Zdwu0MCECHGTgBJkhDADosjaukMhQ6LJW7YKzPBDjqMAItPj8UaD6ZAAaWZCZIAQEzAhwHFjNbkS4PAeiwPL6Cpf4TgA777wMVLYAOq+hV9MktAhx1GIEWt7yNem0TwMBiGx1uDCABjgNLAN2gXJehw8q5FB1ykQB02EW4Aa4aOhxg56PrGRPgqMMItGTsRtzgNgEMLG4TRv0qEeA4sKjEN6h9gQ4H1fPotx0C0GE71HBPKgLQ4VSEkA8CUQIcdRiBlqh/cMaEAAYWJo6AGVIQ4DiwSAEORloSgA5b4kEmCMQR+P927RhHimQJA3CByw2Q4CTgDgYcYX0wRrhwBLAREvgcAQxw4SQguAEu84C3DOqanenq6qzMiMzvOTvdXZWV8UXtH1K+lcM7HD4UEpDDhSAtM4RAxBx20DLEq5erSIMlV7/stq1AxMHSVsTTSwjI4RKK1hhFQA6P0um6dcrhut6ellsgYg47aMn9TnW5e4Oly7YqaiOBiINlo1ItW1FADlfE9qj0AnI4fQtDFiCHQ7bFpoIKRMxhBy1BX5aRt2WwjNx9tR8qEHGwHFqD6+MJyOF4PbGjuAJyOG5vMu9MDmfunr3XFoiYww5aar8FnrdXwGDZS+QCAucCEQfL+eb8kVZADqdtnY03EJDDDdAHeKQcHqDJSiwmEDGHHbQUa6+FSgkYLKUkrTOCQMTBMoJ77zXK4d47rL6SAnK4pKa1/gjI4T8S/klgv0DEHHbQsr9vrqgsYLBUBve41AIRB0tqUJv/LSCHvQgElgvI4eVWrlwuIIeXW7mSQMQcdtDivQwnYLCEa4kNBRaIOFgCc9naQgE5vBDKZQR+Cshhr8EWAnJ4C1Vr9ioQMYcdtPT6tiWuy2BJ3Dxbry4QcbBUR/DA4gJyuDipBTsWkMMdN7dhaXK4Ib5HpxOImMMOWtK9Rv1v2GDpv8cqLCcQcbCUq85KrQTkcCt5z80oIIczdi3+nuVw/B7ZYRyBiDnsoCXO+2En/woYLF4FAssFIg6W5bt3ZVQBORy1M/YVUUAOR+xK/j3J4fw9VEE9gYg57KClXv89aaGAwbIQymUEfgpEHCwak19ADufvoQrqCcjhetYjPUkOj9RttR4rEDGHHbQc21X3FxcwWIqTWrBjgYiDpWPuYUqTw8O0WqEFBORwAURLXBCQwxdIfEHgUoGIOeyg5dJ2+aGVgMHSSt5zMwpEHCwZHe15V0AO73r4ROAqATl8lY7f1grI4bVy7htRIGIOO2gZ8U0MXrPBErxBthdKIOJgCQVkM6sE5PAqNjcNKiCHB238xmXL4Y2BLd+VQMQcdtDS1SvWRzEGSx99VEUdgYiDpU7lnrKlgBzeUtfavQnI4d46GqMeORyjD3aRQyBiDjtoyfHuDLVLg2Wodiv2SIGIg+XIktweQEAOB2iCLaQRkMNpWpVqo3I4VbtstrFAxBx20NL4pfD4iwIGy0UT3xC4TCDiYLlsr77PIyCH8/TKTtsLyOH2PehxB3K4x66qaSuBiDnsoGWrblt3tYDBsprOjQMKRBwsA7ahu5LlcHctVdCGAnJ4Q9yBl5bDAzdf6QcLRMxhBy0Ht9ENWwsYLFsLW78ngYiDpSffUWuRw6N2Xt1rBOTwGjX37BOQw/uE/E7gr0DEHHbQ8rc//goiYLAEaYRtpBCIOFhSwNnklQJy+EoePxLYEZDDOxw+FBKQw4UgLTOEQMQcdtAyxKuXq0iDJVe/7LatQMTB0lbE00sIyOESitYYRUAOj9LpunXK4brenpZbIGIOO2jJ/U51uXuDpcu2KmojgYiDZaNSLVtRQA5XxPao9AJyOH0LQxYgh0O2xaaCCkTMYQctQV+WkbdlsIzcfbUfKhBxsBxag+vjCcjheD2xo7gCcjhubzLvTA5n7p691xaImMMOWmq/BZ63V8Bg2UvkAgLnAhEHy/nm/JFWQA6nbZ2NNxCQww3QB3ikHB6gyUosJhAxhx20FGuvhUoJGCylJK0zgkDEwTKCe+81yuHeO6y+kgJyuKSmtf4IyOE/Ev5JYL9AxBx20LK/b66oLGCwVAb3uNQCEQdLalCb/y0gh70IBJYLyOHlVq5cLiCHl1u5kkDEHHbQ4r0MJ2CwhGuJDQUWiDhYAnPZ2kIBObwQymUEfgrIYa/BFgJyeAtVa/YqEDGHHbT0+rYlrstgSdw8W68uEHGwVEfwwOICcrg4qQU7FpDDHTe3YWlyuCG+R6cTiJjDDlrSvUb9b9hg6b/HKiwnEHGwlKvOSq0E5HArec/NKCCHM3Yt/p7lcPwe2WEcgYg57KAlzvthJ/8KGCxeBQLLBSIOluW7d2VUATkctTP2FVFADkfsSv49yeH8PVRBPYGIOeygpV7/PWmhgMGyEMplBH4KRBwsGpNfQA7n76EK6gnI4XrWIz1JDo/UbbUeKxAxhx20HNtV9xcXMFiKk1qwY4GIg6Vj7mFKk8PDtFqhBQTkcAFES1wQkMMXSHxB4FKBiDnsoOXSdvmhlYDB0kreczMKRBwsGR3teVdADu96+ETgKgE5fJWO39YKyOG1cu4bUSBiDjtoGfFNDF6zwRK8QbYXSiDiYAkFZDOrBOTwKjY3DSoghwdt/MZly+GNgS3flUDEHHbQ0tUr1kcxBksffVRFHYGIg6VO5Z6ypYAc3lLX2r0JyOHeOhqjHjkcow92kUMgYg47aMnx7gy1S4NlqHYr9kiBiIPlyJLcHkBADgdogi2kEZDDaVqVaqNyOFW7bLaxQMQcdtDS+KXw+IsCBstFE98QuEwg4mC5bK++zyMgh/P0yk7bC8jh9j3ocQdyuMeuqmkrgYg57KBlq25bd7WAwbKazo0DCkQcLAO2obuS5XB3LVXQhgJyeEPcgZeWwwM3X+kHC0TMYQctB7fRDVsLGCxbC1u/J4GIg6Un31FrkcOjdl7dawTk8Bo19+wTkMP7hPxO4K9AxBx20PK3P/4KImCwBGmEbaQQiDhYUsDZ5JUCcvhKHj8S2BGQwzscPhQSkMOFIC0zhEDEHHbQMsSrl6tIgyVXv+y2rUDEwdJWxNNLCMjhEorWGEVADo/S6bp1yuG63p6WWyBiDjtoyf1Odbl7g6XLtipqI4GIg2WjUi1bUUAOV8T2qPQCcjh9C0MWIIdDtsWmggpEzGEHLUFflpG39enTp+nu3bsjE6idwGKBjx8/Tnfu3Fl8vQsJLBGQw0uUXEPg/wJy2JuwhYAc3kLVmr0KRMxhBy29vm1J6/r+/fv06NGj6c2bN0krsG0CdQX++eef6dWrV9ONGzfqPtjTuhWQw922VmEbCcjhjWAHXlYOD9x8pa8SiJjDDlpWtdJNJQV+/PgxPX/+fHr9+vX0+fPn6ezsrOTy1iLQvcC1a9em27dvTw8fPpyePHkyXb9+vfuaFVhWQA6X9bTaeAJyeLyel65YDpcWtd5oAtFy2EHLaG9gwHofP348vXjxIuDObIlAPoHT01P/PuVrW/Mdy+HmLbCBjgTkcEfNrFiKHK6I7VHdC0TIYQct3b9msQv89u3bdOvWrenXKb7/ESBwvMCv/5rly5cv082bN49fzApDCMjhIdqsyIoCcrgidiePksOdNFIZYQQi5LCDljCvw5gb+fDhw3Tv3r0xi1c1gY0E3r9/P52cnGy0umV7E5DDvXVUPREE5HCELuTZgxzO0ys7zSPQOocdtOR5V7rc6bt376YHDx50WZuiCLQSePv27XT//v1Wj/fcZAJyOFnDbDeFgBxO0aYwm5TDYVphIx0JtM5hBy0dvUwZSzFYMnbNnqMLtB4s0X3sb1dADu96+ESghIAcLqE4zhpyeJxeq7SeQOscdtBSr9ee9B8CBst/oPiKwJECrQfLkdt3e2UBOVwZ3OOGEJDDQ7S5WJFyuBilhQicC7TOYQct563wRwsBg6WFumf2LtB6sPTu21t9cri3jqongoAcjtCFPHuQw3l6Zad5BFrnsIOWPO9Klzs1WLpsq6IaC7QeLI3L9/gDBeTwgWAuJ7BAQA4vQHLJuYAcPqfwB4FiAq1z2EFLsVZaaI2AwbJGzT0ErhZoPViu3p1fownI4WgdsZ8eBORwD12sV4McrmftSeMItM5hBy3jvGshKzVYQrbFppILtB4syfmG274cHq7lCq4gIIcrIHf0CDncUTOVEkagdQ47aAnzKoy5EYNlzL6reluB1oNl2+qsXlpADpcWtR6BaZLD3oJDBOTwIVquJbBMoHUOO2hZ1idXbSRgsGwEa9mhBVoPlqHxExYvhxM2zZbDC8jh8C0KtUE5HKodNtOJQOscdtDSyYuUtQyDJWvn7DuyQOvBEtnG3i4KyOGLJr4hcKyAHD5WcKz75fBY/VZtHYHWOeygpU6fPeUSAYPlEhhfEzhCoPVgOWLrbm0gIIcboHtk9wJyuPsWFy1QDhfltBiB3wKtc9hBixexqcCHDx+me/fuNd2DhxPoTeD9+/fTyclJb2WpZyMBObwRrGWHFpDDQ7f/4OLl8MFkbiCwV6B1Djto2dsiF2wp8PXr1+n27dvTjx8/tnyMtQkMI3D9+vXpy5cv082bN4epWaHHCcjh4/zcTWAuIIfnIj7vE5DD+4T8TuAwgQg57KDlsJ65egOB09PT6eXLlxusbEkC4wn8+vfpxYsX4xWu4qME5PBRfG4msCMgh3c4fFgoIIcXQrmMwAKBCDnsoGVBo1yyrcCv/5rl2bNn0+vXr3//P/FnZ2fbPtDqBDoTuHbt2nTr1q3p4cOH09OnT6dfp/j+R+AQATl8iJZrCVwUkMMXTXxzmIAcPszL1QTmAtFy2EHLvEM+EyBAgAABAgQIECBAgAABAgRWCjhoWQnnNgIECBAgQIAAAQIECBAgQIDAXMBBy1zEZwIECBAgQIAAAQIECBAgQIDASgEHLSvh3EaAAAECBAgQIECAAAECBAgQmAs4aJmL+EyAAAECBAgQIECAAAECBAgQWCngoGUlnNsIECBAgAABAgQIECBAgAABAnMBBy1zEZ8JECBAgAABAgQIECBAgAABAisFHLSshHMbAQIECBAgQIAAAQIECBAgQGAu4KBlLuIzAQIECBAgQIAAAQIECBAgQGClgIOWlXBuI0CAAAECBAgQIECAAAECBAjMBRy0zEV8JkCAAAECBAgQIECAAAECBAisFHDQshLObQQIECBAgAABAgQIECBAgACBuYCDlrmIzwQIECBAgAABAgQIECBAgACBlQIOWlbCuY0AAQIECBAgQIAAAQIECBAgMBdw0DIX8ZkAAQIECBAgQIAAAQIECBAgsFLAQctKOLcRIECAAAECBAgQIECAAAECBOYCDlrmIj4TIECAAAECBAgQIECAAAECBFYKOGhZCec2AgQIECBAgAABAgQIECBAgMBcwEHLXMRnAgQIECBAgAABAgQIECBAgMBKAQctK+HcRoAAAQIECBAgQIAAAQIECBCYCzhomYv4TIAAAQIECBAgQIAAAQIECBBYKeCgZSWc2wgQIECAAAECBAgQIECAAAECcwEHLXMRnwkQIECAAAECBAgQIECAAAECKwUctKyEcxsBAgQIECBAgAABAgQIECBAYC7wP+WT120zezBhAAAAAElFTkSuQmCC" + } + }, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "<div>\n", + "<img src=\"attachment:Binning_step2.png\" width=\"600\"/>\n", + "</div>" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Bucketizing/Binning process objective: build dict of list of lists data structure\n", + "- Initialize an empty `dict`\n", + "- Iterate over every row in your dataset\n", + " - Retrieve value of the column based on which you want to bucketize\n", + " - Check if bucketizing column is already a key in your `dict`:\n", + " - if no, insert a new key-value pair:\n", + " - key: unique value of bucktizing column\n", + " - value: initialize a new list, append current row as an item into the list, thereby creating a list of list data structure\n", + " - if yes, append current row to the list of list data structure (value of the key).\n", + "\n", + "After this process, each row ends up in a bin, based on the value of the bucketize column.\n", + "Number of bins = number of unique values in the bucketize column\n", + "\n", + "Why bucketize data?\n", + "- A way to organize our data, without losing information in the process" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "['Lecture',\n", + " 'Age',\n", + " 'Major',\n", + " 'Zip Code',\n", + " 'Latitude',\n", + " 'Longitude',\n", + " 'Pizza topping',\n", + " 'Pet preference',\n", + " 'Runner',\n", + " 'Sleep habit',\n", + " 'Procrastinator']" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Let's take another look at our 'cs220_survey_data.csv'\n", + "cs220_header" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "# Let's bucketize the data\n", + "buckets = dict() # Key: unique bucketize column value; Value: list of lists (rows having that unique column value)\n", + "\n", + "def bucketize(bucket_column):\n", + " \"\"\"\n", + " generates and returns bucketized data based on bucket_column\n", + " \"\"\"\n", + " # Key: unique bucketize column value; Value: list of lists (rows having that unique column value)\n", + " buckets = dict()\n", + " for row_idx in range(len(cs220_data)):\n", + " col_value = cell(cs220_data, cs220_header, row_idx, bucket_column)\n", + " if col_value not in buckets:\n", + " buckets[col_value] = []\n", + " buckets[col_value].append(cs220_data[row_idx])\n", + " \n", + " return buckets" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'LEC001': [['LEC001',\n", + " '22',\n", + " 'Engineering: Biomedical',\n", + " '53703',\n", + " '43.073051',\n", + " '-89.40123',\n", + " 'none (just cheese)',\n", + " 'neither',\n", + " 'No',\n", + " 'no preference',\n", + " 'Maybe'],\n", + " ['LEC001',\n", + " '',\n", + " 'Mathematics/AMEP',\n", + " '53706',\n", + " '31.230391',\n", + " '121.473701',\n", + " 'basil/spinach',\n", + " 'dog',\n", + " 'No',\n", + " 'no preference',\n", + " 'Maybe'],\n", + " ['LEC001',\n", + " '20',\n", + " 'Economics (Mathematical Emphasis)',\n", + " '53703',\n", + " '48.86',\n", + " '2.3522',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'early bird',\n", + " 'Yes'],\n", + " ['LEC001',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53703',\n", + " '24.7',\n", + " '46.7',\n", + " 'mushroom',\n", + " 'dog',\n", + " 'Yes',\n", + " 'early bird',\n", + " 'Maybe'],\n", + " ['LEC001',\n", + " '23',\n", + " 'Computer Science',\n", + " '53711',\n", + " '43.073929',\n", + " '-89.385239',\n", + " 'sausage',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC001',\n", + " '22',\n", + " 'Engineering: Mechanical',\n", + " '53719',\n", + " '43.073051',\n", + " '-89.40123',\n", + " 'none (just cheese)',\n", + " 'cat',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC001',\n", + " '18',\n", + " 'Computer Science',\n", + " '53706',\n", + " '26.2992',\n", + " '87.2625',\n", + " 'mushroom',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'No'],\n", + " ['LEC001',\n", + " '24',\n", + " 'Business: Information Systems',\n", + " '53703',\n", + " '43.073051',\n", + " '-89.40123',\n", + " 'macaroni/pasta',\n", + " 'cat',\n", + " 'No',\n", + " 'night owl',\n", + " 'No'],\n", + " ['LEC001',\n", + " '',\n", + " 'Computer Science',\n", + " '53715',\n", + " '34.052235',\n", + " '-118.243683',\n", + " 'green pepper',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC001',\n", + " '26',\n", + " 'Engineering: Mechanical',\n", + " '53703',\n", + " '41.902782',\n", + " '12.496365',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC001',\n", + " '25',\n", + " 'Economics',\n", + " '53703',\n", + " '40.712776',\n", + " '-74.005974',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC001',\n", + " '19',\n", + " 'Computer Science',\n", + " '53706',\n", + " '48.855709',\n", + " '2.29889',\n", + " 'pepperoni',\n", + " 'cat',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC001',\n", + " '21',\n", + " 'Computer Science',\n", + " '53715',\n", + " '16.306652',\n", + " '80.436539',\n", + " 'Other',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC001',\n", + " '18',\n", + " 'Engineering: Industrial',\n", + " '53715',\n", + " '30.733315',\n", + " '76.779419',\n", + " 'green pepper',\n", + " 'cat',\n", + " 'No',\n", + " 'no preference',\n", + " 'Yes'],\n", + " ['LEC001',\n", + " '20',\n", + " 'Economics (Mathematical Emphasis)',\n", + " '53703',\n", + " '43.073929',\n", + " '-89.385239',\n", + " 'macaroni/pasta',\n", + " 'cat',\n", + " 'No',\n", + " 'night owl',\n", + " 'No'],\n", + " ['LEC001',\n", + " '21',\n", + " 'Business: Finance',\n", + " '53711',\n", + " '43.073929',\n", + " '-89.385239',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'no preference',\n", + " 'Maybe'],\n", + " ['LEC001',\n", + " '19',\n", + " 'Computer Science',\n", + " '53703',\n", + " '51.507351',\n", + " '-0.127758',\n", + " 'sausage',\n", + " 'cat',\n", + " 'Yes',\n", + " 'no preference',\n", + " 'Yes'],\n", + " ['LEC001',\n", + " '21',\n", + " 'Science: Biology/Life',\n", + " '53703',\n", + " '36',\n", + " '117',\n", + " 'macaroni/pasta',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC001',\n", + " '18',\n", + " 'Engineering: Other',\n", + " '53706',\n", + " '41.902782',\n", + " '12.496365',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC001',\n", + " '18',\n", + " 'Engineering: Industrial',\n", + " '53706',\n", + " '19.655041',\n", + " '-101.169891',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'Yes',\n", + " 'no preference',\n", + " 'Maybe'],\n", + " ['LEC001',\n", + " '20',\n", + " 'Business: Actuarial',\n", + " '53703',\n", + " '42.28',\n", + " '-83.74',\n", + " 'mushroom',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC001',\n", + " '19',\n", + " 'Business: Information Systems',\n", + " '53703',\n", + " '39.481655',\n", + " '-106.038353',\n", + " 'macaroni/pasta',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC001',\n", + " '20',\n", + " 'Business: Other|Business: Accounting',\n", + " '53703',\n", + " '31.230391',\n", + " '121.473701',\n", + " 'pepperoni',\n", + " 'cat',\n", + " 'Yes',\n", + " 'no preference',\n", + " 'No'],\n", + " ['LEC001',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53706',\n", + " '35.142441',\n", + " '-223.154297',\n", + " 'green pepper',\n", + " 'neither',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC001',\n", + " '',\n", + " 'Engineering: Mechanical',\n", + " '53715',\n", + " '19.8968',\n", + " '155.5828',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'No'],\n", + " ['LEC001',\n", + " '21',\n", + " 'Computer Science',\n", + " '53703',\n", + " '43.21518',\n", + " '-87.94241',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'no preference',\n", + " 'Maybe'],\n", + " ['LEC001',\n", + " '22',\n", + " 'Engineering: Mechanical',\n", + " '53703',\n", + " '47.497913',\n", + " '19.040236',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'no preference',\n", + " 'No'],\n", + " ['LEC001',\n", + " '20',\n", + " 'Business andministration',\n", + " '53703',\n", + " '37.389091',\n", + " '-5.984459',\n", + " 'pineapple',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC001',\n", + " '20',\n", + " 'Computer Science',\n", + " '53703',\n", + " '40.7128',\n", + " '74.006',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC001',\n", + " '22',\n", + " 'Engineering: Mechanical',\n", + " '53726',\n", + " '36.97447',\n", + " '122.02899',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'no preference',\n", + " 'Yes'],\n", + " ['LEC001',\n", + " '19',\n", + " 'Data Science',\n", + " '53703',\n", + " '41',\n", + " '87',\n", + " 'sausage',\n", + " 'dog',\n", + " 'No',\n", + " 'no preference',\n", + " 'No'],\n", + " ['LEC001',\n", + " '20',\n", + " 'Science: Other|Environmental Science',\n", + " '53715',\n", + " '41.878113',\n", + " '-87.629799',\n", + " 'green pepper',\n", + " 'cat',\n", + " 'No',\n", + " 'early bird',\n", + " 'No'],\n", + " ['LEC001',\n", + " '24',\n", + " 'Economics',\n", + " '53703',\n", + " '40',\n", + " '-90',\n", + " 'pineapple',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC001',\n", + " '',\n", + " 'Data Science',\n", + " '53706',\n", + " '40.416775',\n", + " '-3.70379',\n", + " 'none (just cheese)',\n", + " 'dog',\n", + " 'Yes',\n", + " 'no preference',\n", + " 'Yes'],\n", + " ['LEC001',\n", + " '37',\n", + " 'Data Science',\n", + " '53718',\n", + " '43.073051',\n", + " '-89.40123',\n", + " 'green pepper',\n", + " 'dog',\n", + " 'No',\n", + " 'no preference',\n", + " 'Maybe'],\n", + " ['LEC001',\n", + " '21',\n", + " 'Data Science',\n", + " '53703',\n", + " '30.572351',\n", + " '121.776761',\n", + " 'pepperoni',\n", + " 'cat',\n", + " 'No',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC001',\n", + " '22',\n", + " 'consumer behavior and marketplace studies',\n", + " '53715',\n", + " '43.653225',\n", + " '-79.383186',\n", + " 'mushroom',\n", + " 'cat',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'No'],\n", + " ['LEC001',\n", + " '20',\n", + " 'Computer Science',\n", + " '53715',\n", + " '41',\n", + " '-87',\n", + " 'Other',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC001',\n", + " '17',\n", + " 'Statistics',\n", + " '53715',\n", + " '43.0722',\n", + " '89.4008',\n", + " 'pineapple',\n", + " 'dog',\n", + " 'No',\n", + " 'early bird',\n", + " 'Maybe'],\n", + " ['LEC001',\n", + " '20',\n", + " 'Economics',\n", + " '53715',\n", + " '27.99942',\n", + " '120.66682',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'Yes',\n", + " 'early bird',\n", + " 'No'],\n", + " ['LEC001',\n", + " '19',\n", + " 'Mathematics/AMEP',\n", + " '53711',\n", + " '45.85038',\n", + " '-84.616989',\n", + " 'pineapple',\n", + " 'cat',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC001',\n", + " '23',\n", + " 'Economics',\n", + " '53703',\n", + " '43.07348',\n", + " '-89.38089',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC001',\n", + " '29',\n", + " 'Business: Other|Technology Strategy/ Product Management',\n", + " '53705',\n", + " '37.386051',\n", + " '-122.083855',\n", + " 'Other',\n", + " 'cat',\n", + " 'No',\n", + " 'no preference',\n", + " 'Maybe'],\n", + " ['LEC001',\n", + " '18',\n", + " 'Engineering: Biomedical',\n", + " '53715',\n", + " '43.073051',\n", + " '-89.40123',\n", + " 'sausage',\n", + " 'dog',\n", + " 'No',\n", + " 'early bird',\n", + " 'Yes'],\n", + " ['LEC001',\n", + " '18',\n", + " 'Data Science',\n", + " '53703',\n", + " '23.885942',\n", + " '45.079163',\n", + " 'mushroom',\n", + " 'neither',\n", + " 'No',\n", + " 'early bird',\n", + " 'Maybe'],\n", + " ['LEC001',\n", + " '30',\n", + " 'Business: Other',\n", + " '53705',\n", + " '43.07175',\n", + " '-89.46498',\n", + " 'pineapple',\n", + " 'cat',\n", + " 'No',\n", + " 'early bird',\n", + " 'No'],\n", + " ['LEC001',\n", + " '20',\n", + " 'Business: Other|Consumer Behavior and Marketplace Studies',\n", + " '53703',\n", + " '40.76078',\n", + " '-111.891045',\n", + " 'green pepper',\n", + " 'dog',\n", + " 'Yes',\n", + " 'early bird',\n", + " 'Maybe'],\n", + " ['LEC001',\n", + " '21',\n", + " 'Data Science',\n", + " '53705',\n", + " '40.712776',\n", + " '-74.005974',\n", + " 'pepperoni',\n", + " 'cat',\n", + " 'No',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC001',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53715',\n", + " '43',\n", + " '-90',\n", + " 'sausage',\n", + " 'dog',\n", + " 'No',\n", + " 'no preference',\n", + " 'Maybe'],\n", + " ['LEC001',\n", + " '20',\n", + " 'Business: Information Systems',\n", + " '53711',\n", + " '34.385204',\n", + " '132.455292',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'early bird',\n", + " 'Yes'],\n", + " ['LEC001',\n", + " '22',\n", + " 'International Studies',\n", + " '53703',\n", + " '48.13913',\n", + " '11.58022',\n", + " 'none (just cheese)',\n", + " 'cat',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC001',\n", + " '19',\n", + " 'Engineering: Other',\n", + " '53715',\n", + " '38.331581',\n", + " '-75.086159',\n", + " 'macaroni/pasta',\n", + " 'dog',\n", + " 'No',\n", + " 'no preference',\n", + " 'Yes'],\n", + " ['LEC001',\n", + " '21',\n", + " 'Data Science',\n", + " '53703',\n", + " '41.00824',\n", + " '28.978359',\n", + " 'pepperoni',\n", + " 'cat',\n", + " 'Yes',\n", + " 'early bird',\n", + " 'No'],\n", + " ['LEC001',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53706',\n", + " '43.77195',\n", + " '-88.43383',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'early bird',\n", + " 'Maybe'],\n", + " ['LEC001',\n", + " '20',\n", + " 'Economics',\n", + " '53726',\n", + " '42.92',\n", + " '-87.96',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'Yes',\n", + " 'early bird',\n", + " 'No'],\n", + " ['LEC001',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53715',\n", + " '29.424122',\n", + " '-98.493629',\n", + " 'mushroom',\n", + " 'dog',\n", + " 'Yes',\n", + " 'early bird',\n", + " 'Maybe'],\n", + " ['LEC001',\n", + " '20',\n", + " 'Agricultural and Applied Economics',\n", + " '53703',\n", + " '-22.932924',\n", + " '-47.073845',\n", + " 'pineapple',\n", + " 'cat',\n", + " 'Yes',\n", + " 'early bird',\n", + " 'Maybe'],\n", + " ['LEC001',\n", + " '25',\n", + " 'Medicine',\n", + " '53703',\n", + " '48.38203',\n", + " '-123.537827',\n", + " 'basil/spinach',\n", + " 'dog',\n", + " 'Yes',\n", + " 'early bird',\n", + " 'No'],\n", + " ['LEC001',\n", + " '20',\n", + " 'Business: Other|Real Estate',\n", + " '53703',\n", + " '51.5',\n", + " '0.128',\n", + " 'mushroom',\n", + " 'dog',\n", + " 'Yes',\n", + " 'no preference',\n", + " 'Maybe'],\n", + " ['LEC001',\n", + " '19',\n", + " 'Computer Science',\n", + " '53706',\n", + " '40',\n", + " '-74',\n", + " 'pepperoni',\n", + " 'cat',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC001',\n", + " '19',\n", + " 'Data Science',\n", + " '53715',\n", + " '40.712776',\n", + " '-74.005974',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'early bird',\n", + " 'No'],\n", + " ['LEC001',\n", + " '24',\n", + " 'Engineering: Industrial',\n", + " '53705',\n", + " '13.100485',\n", + " '77.594009',\n", + " 'none (just cheese)',\n", + " 'dog',\n", + " 'Yes',\n", + " 'no preference',\n", + " 'Maybe'],\n", + " ['LEC001',\n", + " '28',\n", + " 'Science: Biology/Life',\n", + " '53703',\n", + " '7.190708',\n", + " '125.455338',\n", + " 'sausage',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC001',\n", + " '19',\n", + " 'Engineering: Industrial',\n", + " '53715',\n", + " '47.606209',\n", + " '-122.332069',\n", + " 'pepperoni',\n", + " 'cat',\n", + " 'No',\n", + " 'night owl',\n", + " 'No'],\n", + " ['LEC001',\n", + " '17',\n", + " 'Computer Science',\n", + " '53726',\n", + " '21.027763',\n", + " '105.83416',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'early bird',\n", + " 'Yes'],\n", + " ['LEC001',\n", + " '20',\n", + " 'Business: Information Systems',\n", + " '53711',\n", + " '45.046799',\n", + " '-87.298149',\n", + " 'sausage',\n", + " 'cat',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC001',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53715',\n", + " '64.126518',\n", + " '-21.817438',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC001',\n", + " '20',\n", + " 'Computer Science',\n", + " '53715',\n", + " '20.880947',\n", + " '-156.681862',\n", + " 'sausage',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC001',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53703',\n", + " '-37.813629',\n", + " '144.963058',\n", + " 'sausage',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC001',\n", + " '21',\n", + " 'Mathematics/AMEP',\n", + " '53703',\n", + " '34.29006',\n", + " '108.932941',\n", + " 'basil/spinach',\n", + " 'dog',\n", + " 'No',\n", + " 'early bird',\n", + " 'Yes'],\n", + " ['LEC001',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53562',\n", + " '43.096851',\n", + " '-89.511528',\n", + " 'sausage',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'No'],\n", + " ['LEC001',\n", + " '',\n", + " 'Computer Science',\n", + " '53715',\n", + " '31.469279',\n", + " '119.765621',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC001',\n", + " '21',\n", + " 'Science: Chemistry',\n", + " '53715',\n", + " '38.892059',\n", + " '-77.019913',\n", + " 'pepperoni',\n", + " 'neither',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC001',\n", + " '18',\n", + " 'Data Science',\n", + " '53703',\n", + " '24.713552',\n", + " '46.675297',\n", + " 'none (just cheese)',\n", + " 'neither',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC001',\n", + " '18',\n", + " 'Engineering: Biomedical',\n", + " '53706',\n", + " '33.501324',\n", + " '-111.925278',\n", + " 'pineapple',\n", + " 'dog',\n", + " 'Yes',\n", + " 'early bird',\n", + " 'No'],\n", + " ['LEC001',\n", + " '19',\n", + " 'Science: Biology/Life',\n", + " '53706',\n", + " '20.788602',\n", + " '-156.003662',\n", + " 'green pepper',\n", + " 'dog',\n", + " 'Yes',\n", + " 'no preference',\n", + " 'No'],\n", + " ['LEC001',\n", + " '18',\n", + " 'Engineering: Mechanical',\n", + " '53703',\n", + " '23.885942',\n", + " '45.079163',\n", + " 'Other',\n", + " 'cat',\n", + " 'No',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC001',\n", + " '19',\n", + " 'Engineering: Industrial',\n", + " '53705',\n", + " '41.878113',\n", + " '-87.629799',\n", + " 'tater tots',\n", + " 'cat',\n", + " 'No',\n", + " 'night owl',\n", + " 'No'],\n", + " ['LEC001',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53703',\n", + " '44.977753',\n", + " '-93.265015',\n", + " 'Other',\n", + " 'cat',\n", + " 'Yes',\n", + " 'early bird',\n", + " 'No'],\n", + " ['LEC001',\n", + " '32',\n", + " 'Design Studies',\n", + " '53705',\n", + " '48.856613',\n", + " '2.352222',\n", + " 'mushroom',\n", + " 'dog',\n", + " 'No',\n", + " 'early bird',\n", + " 'Yes'],\n", + " ['LEC001',\n", + " '18',\n", + " 'Data Science',\n", + " '53706',\n", + " '43.073051',\n", + " '-89.40123',\n", + " 'sausage',\n", + " 'dog',\n", + " 'No',\n", + " 'early bird',\n", + " 'Yes'],\n", + " ['LEC001',\n", + " '19',\n", + " 'Computer Science',\n", + " '53715',\n", + " '31.230391',\n", + " '121.473701',\n", + " 'pineapple',\n", + " 'cat',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC001',\n", + " '19',\n", + " 'Data Science',\n", + " '53703',\n", + " '37.9838',\n", + " '23.7275',\n", + " 'sausage',\n", + " 'dog',\n", + " 'Yes',\n", + " 'no preference',\n", + " 'Yes'],\n", + " ['LEC001',\n", + " '19',\n", + " 'Business: Actuarial',\n", + " '53715',\n", + " '18.32431',\n", + " '64.941612',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'no preference',\n", + " 'Yes'],\n", + " ['LEC001',\n", + " '22',\n", + " 'Psychology',\n", + " '53711',\n", + " '43.055333',\n", + " '-89.425946',\n", + " 'pineapple',\n", + " 'dog',\n", + " 'Yes',\n", + " 'early bird',\n", + " 'No'],\n", + " ['LEC001',\n", + " '20',\n", + " 'Science: Biology/Life',\n", + " '53715',\n", + " '40.713051',\n", + " '-74.007233',\n", + " 'pineapple',\n", + " 'cat',\n", + " 'No',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC001',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53705',\n", + " '26.647661',\n", + " '106.63015',\n", + " 'mushroom',\n", + " 'cat',\n", + " 'No',\n", + " 'night owl',\n", + " 'No'],\n", + " ['LEC001',\n", + " '21',\n", + " 'Science: Biology/Life',\n", + " '53703',\n", + " '44.794',\n", + " '-93.148',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'No'],\n", + " ['LEC001',\n", + " '18',\n", + " 'Engineering: Biomedical',\n", + " '53706',\n", + " '21.161907',\n", + " '-86.851524',\n", + " 'none (just cheese)',\n", + " 'dog',\n", + " 'No',\n", + " 'early bird',\n", + " 'Maybe'],\n", + " ['LEC001',\n", + " '18',\n", + " 'Computer Science',\n", + " '53715',\n", + " '48.856613',\n", + " '2.352222',\n", + " 'pineapple',\n", + " 'neither',\n", + " 'Yes',\n", + " 'no preference',\n", + " 'No'],\n", + " ['LEC001',\n", + " '20',\n", + " 'Engineering: Biomedical',\n", + " '53703',\n", + " '43.07393',\n", + " '-89.38524',\n", + " 'sausage',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC001',\n", + " '20',\n", + " 'Science: Other|Atmospheric and Oceanic Sciences (AOS)',\n", + " '53711',\n", + " '49.299171',\n", + " '19.94902',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC001',\n", + " '18',\n", + " 'Computer Science',\n", + " '53703',\n", + " '27',\n", + " '153',\n", + " 'mushroom',\n", + " 'cat',\n", + " 'No',\n", + " 'early bird',\n", + " 'Yes'],\n", + " ['LEC001',\n", + " '20',\n", + " 'Engineering: Biomedical',\n", + " '53715',\n", + " '45.983964',\n", + " '9.262161',\n", + " 'sausage',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'No'],\n", + " ['LEC001',\n", + " '20',\n", + " 'Statistics',\n", + " '53715',\n", + " '39.904202',\n", + " '116.407394',\n", + " 'mushroom',\n", + " 'dog',\n", + " 'Yes',\n", + " 'early bird',\n", + " 'No'],\n", + " ['LEC001',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53703',\n", + " '42.864552',\n", + " '-88.333199',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'early bird',\n", + " 'Maybe'],\n", + " ['LEC001',\n", + " '18',\n", + " 'Data Science',\n", + " '53706',\n", + " '38.900497',\n", + " '-77.007507',\n", + " 'pineapple',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC001',\n", + " '18',\n", + " 'Science: Biology/Life',\n", + " '53706',\n", + " '48.856613',\n", + " '2.352222',\n", + " 'pepperoni',\n", + " 'cat',\n", + " 'Yes',\n", + " 'early bird',\n", + " 'No'],\n", + " ['LEC001',\n", + " '18',\n", + " 'Data Science',\n", + " '53706',\n", + " '41.878113',\n", + " '-87.629799',\n", + " 'macaroni/pasta',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC001',\n", + " '19',\n", + " 'Statistics',\n", + " '53703',\n", + " '52.370216',\n", + " '4.895168',\n", + " 'sausage',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC001',\n", + " '18',\n", + " 'Engineering: Mechanical',\n", + " '53726',\n", + " '21.306944',\n", + " '-157.858337',\n", + " 'sausage',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC001',\n", + " '',\n", + " 'Business: Other',\n", + " '53703',\n", + " '22.396427',\n", + " '114.109497',\n", + " 'Other',\n", + " 'dog',\n", + " 'No',\n", + " 'early bird',\n", + " 'Maybe'],\n", + " ['LEC001',\n", + " '18',\n", + " 'Business: Finance',\n", + " '53706',\n", + " '39.7392',\n", + " '104.9903',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'early bird',\n", + " 'No'],\n", + " ['LEC001',\n", + " '20',\n", + " 'Engineering: Biomedical',\n", + " '53711',\n", + " '41.8781',\n", + " '87.6298',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC001',\n", + " '21',\n", + " 'Data Science',\n", + " '53703',\n", + " '40.712776',\n", + " '-74.005974',\n", + " 'sausage',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC001',\n", + " '18',\n", + " 'Engineering: Mechanical',\n", + " '53066',\n", + " '43.073051',\n", + " '-89.40123',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC001',\n", + " '18',\n", + " 'Computer Science',\n", + " '53703',\n", + " '31.298973',\n", + " '120.585289',\n", + " 'pineapple',\n", + " 'neither',\n", + " 'No',\n", + " 'night owl',\n", + " 'No'],\n", + " ['LEC001',\n", + " '19',\n", + " 'Computer Science',\n", + " '53703',\n", + " '37',\n", + " '-97',\n", + " 'macaroni/pasta',\n", + " 'cat',\n", + " 'No',\n", + " 'no preference',\n", + " 'Maybe'],\n", + " ['LEC001',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53703',\n", + " '43.038902',\n", + " '-87.906471',\n", + " 'pineapple',\n", + " 'cat',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC001',\n", + " '19',\n", + " 'Science: Other|Atmospheric and Oceanic Sciences',\n", + " '53703',\n", + " '48.856613',\n", + " '2.352222',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC001',\n", + " '18',\n", + " 'Data Science',\n", + " '53706',\n", + " '32.776474',\n", + " '-79.931053',\n", + " 'none (just cheese)',\n", + " 'dog',\n", + " 'No',\n", + " 'early bird',\n", + " 'Yes'],\n", + " ['LEC001',\n", + " '19',\n", + " 'Economics',\n", + " '53703',\n", + " '35.689487',\n", + " '139.691711',\n", + " 'pineapple',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC001',\n", + " '19',\n", + " 'Rehabilitation Psychology',\n", + " '53706',\n", + " '36.204823',\n", + " '138.25293',\n", + " 'pineapple',\n", + " 'cat',\n", + " 'No',\n", + " 'no preference',\n", + " 'Maybe'],\n", + " ['LEC001',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53703',\n", + " '43.073051',\n", + " '-89.40123',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC001',\n", + " '',\n", + " 'Data Science',\n", + " '53701',\n", + " '40.37336',\n", + " '88.231483',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'No'],\n", + " ['LEC001',\n", + " '19',\n", + " 'Data Science',\n", + " '53703',\n", + " '51.5072',\n", + " '0.1276',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'Yes',\n", + " 'no preference',\n", + " 'No'],\n", + " ['LEC001',\n", + " '21',\n", + " 'Science: Biology/Life',\n", + " '53715',\n", + " '41.878113',\n", + " '-87.629799',\n", + " 'green pepper',\n", + " 'cat',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC001',\n", + " '20',\n", + " 'Engineering: Biomedical',\n", + " '53703',\n", + " '48.8566',\n", + " '2.3522',\n", + " 'mushroom',\n", + " 'cat',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC001',\n", + " '19',\n", + " 'Data Science',\n", + " '53706',\n", + " '37.23082',\n", + " '-107.59529',\n", + " 'basil/spinach',\n", + " 'dog',\n", + " 'No',\n", + " 'no preference',\n", + " 'Maybe'],\n", + " ['LEC001',\n", + " '19',\n", + " 'Business: Finance',\n", + " '53703',\n", + " '26.20047',\n", + " '127.728577',\n", + " 'mushroom',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC001',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53703',\n", + " '44.9778',\n", + " '93.265',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC001',\n", + " '37',\n", + " 'Engineering: Other|Civil- Intelligent Transportation System',\n", + " '53705',\n", + " '23.810331',\n", + " '90.412521',\n", + " 'pineapple',\n", + " 'neither',\n", + " 'Yes',\n", + " 'early bird',\n", + " 'Yes'],\n", + " ['LEC001',\n", + " '19',\n", + " 'Science: Physics',\n", + " '53703',\n", + " '42.696842',\n", + " '-89.026932',\n", + " 'sausage',\n", + " 'cat',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC001',\n", + " '19',\n", + " 'Data Science',\n", + " '53703',\n", + " '45.19356',\n", + " '-87.118767',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'Yes',\n", + " 'early bird',\n", + " 'Maybe'],\n", + " ['LEC001',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53703',\n", + " '40.712776',\n", + " '-74.005974',\n", + " 'none (just cheese)',\n", + " 'dog',\n", + " 'Yes',\n", + " 'early bird',\n", + " 'Maybe'],\n", + " ['LEC001',\n", + " '19',\n", + " 'Data Science',\n", + " '53706',\n", + " '31.298973',\n", + " '120.585289',\n", + " 'mushroom',\n", + " 'cat',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC001',\n", + " '20',\n", + " 'Computer Science',\n", + " '53715',\n", + " '43.073051',\n", + " '-89.40123',\n", + " 'none (just cheese)',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC001',\n", + " '25',\n", + " 'Data Science',\n", + " '53703',\n", + " '37.566536',\n", + " '126.977966',\n", + " 'pineapple',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'No'],\n", + " ['LEC001',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53703',\n", + " '44.834209',\n", + " '87.376266',\n", + " 'sausage',\n", + " 'dog',\n", + " 'Yes',\n", + " 'no preference',\n", + " 'Yes'],\n", + " ['LEC001',\n", + " '22',\n", + " 'Economics',\n", + " '53703',\n", + " '42.360081',\n", + " '-71.058884',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'no preference',\n", + " 'Maybe'],\n", + " ['LEC001',\n", + " '18',\n", + " 'Data Science',\n", + " '53706',\n", + " '34.04018',\n", + " '-118.48849',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC001',\n", + " '18',\n", + " 'Engineering: Mechanical',\n", + " '53706',\n", + " '50.808712',\n", + " '-0.1604',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC001',\n", + " '19',\n", + " 'Interior Architecture',\n", + " '53532',\n", + " '27.683536',\n", + " '-82.736092',\n", + " 'mushroom',\n", + " 'cat',\n", + " 'Yes',\n", + " 'no preference',\n", + " 'Yes'],\n", + " ['LEC001',\n", + " '19',\n", + " 'Science: Chemistry',\n", + " '53715',\n", + " '40.7',\n", + " '-74',\n", + " 'sausage',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC001',\n", + " '20',\n", + " 'Engineering: Biomedical',\n", + " '53703',\n", + " '-33.86882',\n", + " '151.20929',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'no preference',\n", + " 'Maybe'],\n", + " ['LEC001',\n", + " '20',\n", + " 'Engineering: Industrial',\n", + " '53715',\n", + " '26.614149',\n", + " '-81.825768',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'No'],\n", + " ['LEC001',\n", + " '19',\n", + " 'Engineering: Biomedical',\n", + " '53706',\n", + " '45.440845',\n", + " '12.315515',\n", + " 'none (just cheese)',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC001',\n", + " '19',\n", + " 'Data Science',\n", + " '53726',\n", + " '43.0766',\n", + " '89.4125',\n", + " 'none (just cheese)',\n", + " 'cat',\n", + " 'No',\n", + " 'night owl',\n", + " 'No'],\n", + " ['LEC001',\n", + " '20',\n", + " 'Engineering: Biomedical',\n", + " '53711',\n", + " '33.684566',\n", + " '-117.826508',\n", + " 'pineapple',\n", + " 'dog',\n", + " 'Yes',\n", + " 'early bird',\n", + " 'Maybe'],\n", + " ['LEC001',\n", + " '21',\n", + " 'Statistics',\n", + " '26617',\n", + " '22.396427',\n", + " '114.109497',\n", + " 'pineapple',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC001',\n", + " '18',\n", + " 'Data Science',\n", + " '53706',\n", + " '-33.86882',\n", + " '151.20929',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'No'],\n", + " ['LEC001',\n", + " '21',\n", + " 'Economics',\n", + " '53703',\n", + " '1.53897',\n", + " '103.58007',\n", + " 'pineapple',\n", + " 'neither',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC001',\n", + " '18',\n", + " 'Data Science',\n", + " '53558',\n", + " '41.877541',\n", + " '-88.066727',\n", + " 'mushroom',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC001',\n", + " '17',\n", + " 'Computer Science',\n", + " '53703',\n", + " '25.204849',\n", + " '55.270782',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC001',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53715',\n", + " '19.7',\n", + " '-155',\n", + " 'pineapple',\n", + " 'dog',\n", + " 'Yes',\n", + " 'early bird',\n", + " 'Yes'],\n", + " ['LEC001',\n", + " '19',\n", + " 'Data Science',\n", + " '53703',\n", + " '41.878113',\n", + " '-87.629799',\n", + " 'none (just cheese)',\n", + " 'cat',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC001',\n", + " '18',\n", + " 'Science: Biology/Life',\n", + " '53715',\n", + " '39.904202',\n", + " '116.407394',\n", + " 'basil/spinach',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC001',\n", + " '20',\n", + " 'Science: Physics',\n", + " '53711',\n", + " '43.038902',\n", + " '-87.906471',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'no preference',\n", + " 'Yes'],\n", + " ['LEC001',\n", + " '18',\n", + " 'Engineering: Mechanical',\n", + " '53706',\n", + " '41.902782',\n", + " '12.496366',\n", + " 'pepperoni',\n", + " 'neither',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC001',\n", + " '18',\n", + " 'Data Science',\n", + " '53706',\n", + " '47.60323',\n", + " '-122.330276',\n", + " 'Other',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC001',\n", + " '19',\n", + " 'Economics',\n", + " '53706',\n", + " '40.7',\n", + " '74',\n", + " 'none (just cheese)',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC001',\n", + " '19',\n", + " 'Business: Finance',\n", + " '53703',\n", + " '34.052235',\n", + " '-118.243683',\n", + " 'mushroom',\n", + " 'dog',\n", + " 'Yes',\n", + " 'early bird',\n", + " 'Maybe'],\n", + " ['LEC001',\n", + " '20',\n", + " 'Science: Other|Atmospheric & Oceanic Sciences',\n", + " '53711',\n", + " '40.412776',\n", + " '-74.005974',\n", + " 'pepperoni',\n", + " 'neither',\n", + " 'No',\n", + " 'early bird',\n", + " 'Yes'],\n", + " ['LEC001',\n", + " '19',\n", + " 'Computer Science',\n", + " '53706',\n", + " '37.774929',\n", + " '-122.419418',\n", + " 'none (just cheese)',\n", + " 'cat',\n", + " 'No',\n", + " 'early bird',\n", + " 'Yes'],\n", + " ['LEC001',\n", + " '20',\n", + " 'Engineering: Mechanical',\n", + " '53703',\n", + " '44.78441',\n", + " '-93.17308',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'Yes',\n", + " 'no preference',\n", + " 'Yes'],\n", + " ['LEC001',\n", + " '22',\n", + " 'Engineering: Other',\n", + " '53726',\n", + " '39.48214',\n", + " '-106.048691',\n", + " 'pineapple',\n", + " 'cat',\n", + " 'No',\n", + " 'no preference',\n", + " 'Maybe'],\n", + " ['LEC001',\n", + " '21',\n", + " 'Computer Science',\n", + " '53703',\n", + " '33.68',\n", + " '-117.82',\n", + " 'basil/spinach',\n", + " 'cat',\n", + " 'No',\n", + " 'early bird',\n", + " 'No'],\n", + " ['LEC001',\n", + " '17',\n", + " 'Computer Science',\n", + " '53706',\n", + " '25.204849',\n", + " '55.270782',\n", + " 'pepperoni',\n", + " 'neither',\n", + " 'Yes',\n", + " 'no preference',\n", + " 'Maybe'],\n", + " ['LEC001',\n", + " '18',\n", + " 'Engineering: Industrial',\n", + " '53706',\n", + " '41.917519',\n", + " '-87.694771',\n", + " 'basil/spinach',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC001',\n", + " '18',\n", + " 'Engineering: Biomedical',\n", + " '53706',\n", + " '42.361145',\n", + " '-71.057083',\n", + " 'macaroni/pasta',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC001',\n", + " '',\n", + " 'Engineering: Biomedical',\n", + " '53703',\n", + " '43.073929',\n", + " '-89.385239',\n", + " 'basil/spinach',\n", + " 'dog',\n", + " 'No',\n", + " 'early bird',\n", + " 'No'],\n", + " ['LEC001',\n", + " '18',\n", + " 'Economics',\n", + " '53706',\n", + " '30.20241',\n", + " '120.226822',\n", + " 'Other',\n", + " 'neither',\n", + " 'Yes',\n", + " 'early bird',\n", + " 'No'],\n", + " ['LEC001',\n", + " '20',\n", + " 'Engineering: Biomedical',\n", + " '53703',\n", + " '41.198496',\n", + " '0.773436',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC001',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53703',\n", + " '39.739235',\n", + " '-104.99025',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'Yes',\n", + " 'no preference',\n", + " 'Maybe'],\n", + " ['LEC001',\n", + " '20',\n", + " 'Science: Chemistry',\n", + " '53703',\n", + " '32.16761',\n", + " '120.012444',\n", + " 'pepperoni',\n", + " 'neither',\n", + " 'No',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC001',\n", + " '19',\n", + " 'Data Science',\n", + " '53703',\n", + " '43.0722',\n", + " '89.4008',\n", + " 'pineapple',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC001',\n", + " '18',\n", + " 'Science: Biology/Life',\n", + " '53715',\n", + " '41.878113',\n", + " '-87.629799',\n", + " 'sausage',\n", + " 'dog',\n", + " 'Yes',\n", + " 'early bird',\n", + " 'No'],\n", + " ['LEC001',\n", + " '21',\n", + " 'Engineering: Biomedical',\n", + " '53703',\n", + " '44.513317',\n", + " '-88.013298',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'No'],\n", + " ['LEC001',\n", + " '20',\n", + " 'Data Science',\n", + " '53132',\n", + " '43.073051',\n", + " '-89.40123',\n", + " 'Other',\n", + " 'cat',\n", + " 'No',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC001',\n", + " '18',\n", + " 'Business: Actuarial',\n", + " '53706',\n", + " '48.856613',\n", + " '2.352222',\n", + " 'sausage',\n", + " 'dog',\n", + " 'No',\n", + " 'no preference',\n", + " 'Maybe'],\n", + " ['LEC001',\n", + " '20',\n", + " 'Political Science',\n", + " '53715',\n", + " '48.135124',\n", + " '11.581981',\n", + " 'sausage',\n", + " 'cat',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC001',\n", + " '19',\n", + " 'Engineering: Industrial',\n", + " '53703',\n", + " '41',\n", + " '-74',\n", + " 'sausage',\n", + " 'dog',\n", + " 'Yes',\n", + " 'no preference',\n", + " 'No'],\n", + " ['LEC001',\n", + " '20',\n", + " 'Psychology',\n", + " '53703',\n", + " '43.083321',\n", + " '-89.372475',\n", + " 'Other',\n", + " 'neither',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC001',\n", + " '18',\n", + " 'Computer Science and Statistics',\n", + " '53706',\n", + " '36.162663',\n", + " '-86.781601',\n", + " 'mushroom',\n", + " 'dog',\n", + " 'Yes',\n", + " 'early bird',\n", + " 'Maybe'],\n", + " ['LEC001',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53703',\n", + " '25.88',\n", + " '-80.16',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC001',\n", + " '18',\n", + " 'Computer Science',\n", + " '53703',\n", + " '46.947975',\n", + " '7.447447',\n", + " 'sausage',\n", + " 'cat',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'No'],\n", + " ['LEC001',\n", + " '19',\n", + " 'Business: Information Systems',\n", + " '53703',\n", + " '41.17555',\n", + " '73.64731',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC001',\n", + " '20',\n", + " 'Political Science',\n", + " '53703',\n", + " '45.018269',\n", + " '-93.473892',\n", + " 'sausage',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC001',\n", + " '',\n", + " 'Business analytics',\n", + " '53705',\n", + " '45.50169',\n", + " '-73.567253',\n", + " 'pineapple',\n", + " 'cat',\n", + " 'No',\n", + " 'no preference',\n", + " 'No'],\n", + " ['LEC001',\n", + " '21',\n", + " 'Science: Biology/Life',\n", + " '53726',\n", + " '32.060253',\n", + " '118.796875',\n", + " 'mushroom',\n", + " 'cat',\n", + " 'No',\n", + " 'night owl',\n", + " 'No'],\n", + " ['LEC001',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53706',\n", + " '35.806',\n", + " '-78.68483',\n", + " 'none (just cheese)',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC001',\n", + " '',\n", + " 'Engineering: Mechanical',\n", + " '53706',\n", + " '34.052235',\n", + " '-118.243683',\n", + " 'Other',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC001',\n", + " '20',\n", + " 'Business: Finance',\n", + " '53726',\n", + " '43.073051',\n", + " '-89.40123',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC001',\n", + " '18',\n", + " 'Data Science',\n", + " '53706',\n", + " '43.038902',\n", + " '-87.906471',\n", + " 'pineapple',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC001',\n", + " '24',\n", + " 'Engineering: Other',\n", + " '53718',\n", + " '46.77954',\n", + " '-90.78511',\n", + " 'pineapple',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'No'],\n", + " ['LEC001',\n", + " '18',\n", + " 'Statistics',\n", + " '53706',\n", + " '22.57',\n", + " '88.36',\n", + " 'pineapple',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC001',\n", + " '20',\n", + " 'Science: Biology/Life',\n", + " '53715',\n", + " '47.606209',\n", + " '-122.332069',\n", + " 'none (just cheese)',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC001',\n", + " '20',\n", + " 'Engineering: Biomedical',\n", + " '53715',\n", + " '40.63',\n", + " '14.6',\n", + " 'none (just cheese)',\n", + " 'dog',\n", + " 'No',\n", + " 'early bird',\n", + " 'Maybe'],\n", + " ['LEC001',\n", + " '',\n", + " 'Engineering: Mechanical',\n", + " '53703',\n", + " '32.776665',\n", + " '-96.796989',\n", + " 'sausage',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC001',\n", + " '21',\n", + " 'Economics',\n", + " '53703',\n", + " '41.902782',\n", + " '12.496365',\n", + " 'basil/spinach',\n", + " 'dog',\n", + " 'No',\n", + " 'no preference',\n", + " 'No'],\n", + " ['LEC001',\n", + " '20',\n", + " 'Business: Finance',\n", + " '53703',\n", + " '22.20315',\n", + " '-159.495651',\n", + " 'Other',\n", + " 'dog',\n", + " 'Yes',\n", + " 'no preference',\n", + " 'No'],\n", + " ['LEC001',\n", + " '21',\n", + " 'Science: Chemistry',\n", + " '53715',\n", + " '3.139003',\n", + " '101.686852',\n", + " 'pepperoni',\n", + " 'neither',\n", + " 'No',\n", + " 'no preference',\n", + " 'Maybe'],\n", + " ['LEC001',\n", + " '',\n", + " 'Engineering: Industrial',\n", + " '53706',\n", + " '40.7128',\n", + " '74.006',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'early bird',\n", + " 'Yes'],\n", + " ['LEC001',\n", + " '18',\n", + " 'Undecided',\n", + " '53706',\n", + " '44.8341',\n", + " '87.377',\n", + " 'basil/spinach',\n", + " 'dog',\n", + " 'No',\n", + " 'no preference',\n", + " 'Yes'],\n", + " ['LEC001',\n", + " '20',\n", + " 'Economics',\n", + " '53703',\n", + " '39.631506',\n", + " '118.143239',\n", + " 'pineapple',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Maybe']],\n", + " 'LEC006': [['LEC006',\n", + " '',\n", + " 'Undecided',\n", + " '53706',\n", + " '43.073051',\n", + " '-89.40123',\n", + " 'none (just cheese)',\n", + " 'neither',\n", + " 'No',\n", + " 'no preference',\n", + " 'Maybe'],\n", + " ['LEC006',\n", + " '18',\n", + " 'Data Science',\n", + " '53706',\n", + " '35.4',\n", + " '119.11',\n", + " 'none (just cheese)',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC006',\n", + " '18',\n", + " 'Mathematics/AMEP',\n", + " '53706',\n", + " '44',\n", + " '-93',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC006',\n", + " '22',\n", + " 'Psychology',\n", + " '53703',\n", + " '31.78',\n", + " '119.95',\n", + " 'mushroom',\n", + " 'cat',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC006',\n", + " '21',\n", + " 'Business: Other',\n", + " '53715',\n", + " '25.761681',\n", + " '-80.191788',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC006',\n", + " '18',\n", + " 'Engineering: Biomedical',\n", + " '53051',\n", + " '33.6846',\n", + " '117.8265',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC006',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53703',\n", + " '43.04049',\n", + " '-87.91732',\n", + " 'Other',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC006',\n", + " '18',\n", + " 'Statistics',\n", + " '53706',\n", + " '40.712776',\n", + " '40.712776',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC006',\n", + " '19',\n", + " 'Data Science',\n", + " '53703',\n", + " '35.689487',\n", + " '139.691711',\n", + " 'sausage',\n", + " 'neither',\n", + " 'Yes',\n", + " 'no preference',\n", + " 'Maybe'],\n", + " ['LEC006',\n", + " '19',\n", + " 'Computer Science',\n", + " '53711',\n", + " '36.569666',\n", + " '112.218744',\n", + " 'pineapple',\n", + " 'neither',\n", + " 'Yes',\n", + " 'early bird',\n", + " 'Maybe'],\n", + " ['LEC006',\n", + " '18',\n", + " 'Data Science',\n", + " '53706',\n", + " '19.075983',\n", + " '72.877655',\n", + " 'mushroom',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC006',\n", + " '18',\n", + " 'Business: Actuarial',\n", + " '53706',\n", + " '48.856613',\n", + " '2.352222',\n", + " 'mushroom',\n", + " 'cat',\n", + " 'No',\n", + " 'no preference',\n", + " 'Yes'],\n", + " ['LEC006',\n", + " '18',\n", + " 'Business: Finance',\n", + " '53706',\n", + " '40.409264',\n", + " '49.867092',\n", + " 'Other',\n", + " 'neither',\n", + " 'No',\n", + " 'early bird',\n", + " 'No'],\n", + " ['LEC006',\n", + " '21',\n", + " 'Economics',\n", + " '53703',\n", + " '41.902782',\n", + " '12.496365',\n", + " 'none (just cheese)',\n", + " 'dog',\n", + " 'No',\n", + " 'no preference',\n", + " 'Yes'],\n", + " ['LEC006',\n", + " '17',\n", + " 'Engineering: Industrial',\n", + " '53706',\n", + " '55.953251',\n", + " '-3.188267',\n", + " 'Other',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC006',\n", + " '18',\n", + " 'Data Science',\n", + " '53558',\n", + " '40.73061',\n", + " '-73.935242',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'No'],\n", + " ['LEC006',\n", + " '18',\n", + " 'Science: Biology/Life',\n", + " '53706',\n", + " '19.21833',\n", + " '72.978088',\n", + " 'green pepper',\n", + " 'neither',\n", + " 'No',\n", + " 'no preference',\n", + " 'Maybe'],\n", + " ['LEC006',\n", + " '18',\n", + " 'Business: Other',\n", + " '53706',\n", + " '51.507',\n", + " '-0.128',\n", + " 'sausage',\n", + " 'dog',\n", + " 'No',\n", + " 'no preference',\n", + " 'No'],\n", + " ['LEC006',\n", + " '18',\n", + " 'Engineering: Mechanical',\n", + " '53706',\n", + " '43.0826',\n", + " '-97.16051',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'no preference',\n", + " 'Yes'],\n", + " ['LEC006',\n", + " '18',\n", + " 'Engineering: Other',\n", + " '53715',\n", + " '37.441883',\n", + " '-122.143021',\n", + " 'mushroom',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC006',\n", + " '18',\n", + " 'Engineering: Mechanical',\n", + " '53706',\n", + " '44.883',\n", + " '-87.86291',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'early bird',\n", + " 'Yes'],\n", + " ['LEC006',\n", + " '19',\n", + " 'Science: Biology/Life',\n", + " '53715',\n", + " '45.289143',\n", + " '-87.021847',\n", + " 'none (just cheese)',\n", + " 'cat',\n", + " 'No',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC006',\n", + " '18',\n", + " 'Data Science',\n", + " '53706',\n", + " '43.073051',\n", + " '-89.40123',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC006',\n", + " '18',\n", + " 'Engineering: Mechanical',\n", + " '53706',\n", + " '30.2672',\n", + " '97.7431',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'No'],\n", + " ['LEC006',\n", + " '20',\n", + " 'Data Science',\n", + " '53703',\n", + " '36.731651',\n", + " '-119.785858',\n", + " 'Other',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC006',\n", + " '18',\n", + " 'Business: Finance',\n", + " '53706',\n", + " '-33.448891',\n", + " '-70.669266',\n", + " 'macaroni/pasta',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC006',\n", + " '17',\n", + " 'Business: Finance',\n", + " '53706',\n", + " '43.296482',\n", + " '5.36978',\n", + " 'pineapple',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC006',\n", + " '21',\n", + " 'Mathematics/AMEP',\n", + " '53703',\n", + " '30.572815',\n", + " '104.066803',\n", + " 'green pepper',\n", + " 'dog',\n", + " 'No',\n", + " 'no preference',\n", + " 'Maybe'],\n", + " ['LEC006',\n", + " '18',\n", + " 'Data Science',\n", + " '53706',\n", + " '43.05891',\n", + " '-88.007462',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC006',\n", + " '',\n", + " 'Engineering: Mechanical',\n", + " '53706',\n", + " '37.566536',\n", + " '126.977966',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'No'],\n", + " ['LEC006',\n", + " '18',\n", + " 'Pre-business',\n", + " '53706',\n", + " '41.8781',\n", + " '87.6298',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC006',\n", + " '20',\n", + " 'Engineering: Mechanical',\n", + " '53705',\n", + " '30.572815',\n", + " '104.066803',\n", + " 'mushroom',\n", + " 'cat',\n", + " 'Yes',\n", + " 'no preference',\n", + " 'Maybe'],\n", + " ['LEC006',\n", + " '20',\n", + " 'Engineering: Industrial',\n", + " '53703',\n", + " '42.102901',\n", + " '-88.368896',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC006',\n", + " '18',\n", + " 'Computer Science',\n", + " '53706',\n", + " '-31.959153',\n", + " '-244.161255',\n", + " 'green pepper',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC006',\n", + " '18',\n", + " 'Business: Actuarial',\n", + " '53706',\n", + " '45.464203',\n", + " '9.189982',\n", + " 'pepperoni',\n", + " 'cat',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC006',\n", + " '18',\n", + " 'Computer Science',\n", + " '53715',\n", + " '30.58198',\n", + " '114.268066',\n", + " 'sausage',\n", + " 'cat',\n", + " 'Yes',\n", + " 'early bird',\n", + " 'Maybe'],\n", + " ['LEC006',\n", + " '19',\n", + " 'Business: Information Systems',\n", + " '53715',\n", + " '40.712776',\n", + " '-74.005974',\n", + " 'basil/spinach',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC006',\n", + " '18',\n", + " 'Data Science',\n", + " '53706',\n", + " '46.683334',\n", + " '7.85',\n", + " 'mushroom',\n", + " 'dog',\n", + " 'Yes',\n", + " 'no preference',\n", + " 'No'],\n", + " ['LEC006',\n", + " '18',\n", + " 'Data Science',\n", + " '53706',\n", + " '41.4',\n", + " '-81.9',\n", + " 'sausage',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC006',\n", + " '19',\n", + " 'Engineering: Industrial',\n", + " '60540',\n", + " '41.878113',\n", + " '-87.629799',\n", + " 'none (just cheese)',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'No'],\n", + " ['LEC006',\n", + " '19',\n", + " 'Computer Science',\n", + " '53706',\n", + " '41.878113',\n", + " '-87.629799',\n", + " 'pepperoni',\n", + " 'cat',\n", + " 'No',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC006',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53703',\n", + " '27.993828',\n", + " '120.699364',\n", + " 'sausage',\n", + " 'neither',\n", + " 'No',\n", + " 'no preference',\n", + " 'Yes'],\n", + " ['LEC006',\n", + " '21',\n", + " 'Data Science',\n", + " '57303',\n", + " '32.715736',\n", + " '-117.161087',\n", + " 'macaroni/pasta',\n", + " 'cat',\n", + " 'Yes',\n", + " 'no preference',\n", + " 'Yes'],\n", + " ['LEC006',\n", + " '18',\n", + " 'Engineering: Mechanical',\n", + " '53706',\n", + " '45.5579',\n", + " '94.1632',\n", + " 'sausage',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC006',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53703',\n", + " '55.953251',\n", + " '-3.188267',\n", + " 'mushroom',\n", + " 'cat',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC006',\n", + " '18',\n", + " 'Political Science',\n", + " '53706',\n", + " '39.640263',\n", + " '-106.374191',\n", + " 'green pepper',\n", + " 'dog',\n", + " 'No',\n", + " 'early bird',\n", + " 'No'],\n", + " ['LEC006',\n", + " '18',\n", + " 'Atmospheric Sciences',\n", + " '53706',\n", + " '39.74',\n", + " '-104.99',\n", + " 'sausage',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC006',\n", + " '18',\n", + " 'Engineering: Mechanical',\n", + " '53706',\n", + " '32.7157',\n", + " '117.1611',\n", + " 'pineapple',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC006',\n", + " '18',\n", + " 'Engineering Mechanics (Aerospace Engineering)',\n", + " '53706',\n", + " '43.038902',\n", + " '-87.906471',\n", + " 'pepperoni',\n", + " 'cat',\n", + " 'No',\n", + " 'night owl',\n", + " 'No'],\n", + " ['LEC006',\n", + " '18',\n", + " 'Data Science',\n", + " '94707',\n", + " '37.566536',\n", + " '126.977966',\n", + " 'pineapple',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC006',\n", + " '20',\n", + " 'Undecided',\n", + " '53719',\n", + " '62.2001',\n", + " '58.9638',\n", + " 'Other',\n", + " 'cat',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC006',\n", + " '18',\n", + " 'Data Science',\n", + " '53706',\n", + " '1.352083',\n", + " '103.819839',\n", + " 'sausage',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC006',\n", + " '21',\n", + " 'Political Science',\n", + " '53703',\n", + " '45.512',\n", + " '-122.658',\n", + " 'sausage',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC006',\n", + " '23',\n", + " 'Data Science',\n", + " '53703',\n", + " '17.05423',\n", + " '-96.713226',\n", + " 'basil/spinach',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC006',\n", + " '21',\n", + " 'Mathematics/AMEP',\n", + " '53703',\n", + " '41.878113',\n", + " '-87.629799',\n", + " 'pineapple',\n", + " 'cat',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC006',\n", + " '18',\n", + " 'Engineering: Mechanical',\n", + " '53706',\n", + " '25.204849',\n", + " '55.270782',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC006',\n", + " '19',\n", + " 'Sociology',\n", + " '53703',\n", + " '43.05977',\n", + " '-87.88491',\n", + " 'basil/spinach',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC006',\n", + " '19',\n", + " 'Statistics',\n", + " '53715',\n", + " '3.139003',\n", + " '101.686852',\n", + " 'mushroom',\n", + " 'cat',\n", + " 'No',\n", + " 'no preference',\n", + " 'Maybe'],\n", + " ['LEC006',\n", + " '19',\n", + " 'Engineering: Industrial',\n", + " '53706',\n", + " '41.878113',\n", + " '-87.629799',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'no preference',\n", + " 'Maybe'],\n", + " ['LEC006',\n", + " '18',\n", + " 'Business: Information Systems',\n", + " '53706',\n", + " '25.032969',\n", + " '121.565414',\n", + " 'mushroom',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC006',\n", + " '18',\n", + " 'Engineering: Mechanical',\n", + " '53706',\n", + " '41.077747',\n", + " '1.131593',\n", + " 'sausage',\n", + " 'dog',\n", + " 'No',\n", + " 'no preference',\n", + " 'Maybe'],\n", + " ['LEC006',\n", + " '18',\n", + " 'Engineering: Mechanical',\n", + " '53706',\n", + " '43.526',\n", + " '5.445',\n", + " 'basil/spinach',\n", + " 'dog',\n", + " 'Yes',\n", + " 'no preference',\n", + " 'Yes'],\n", + " ['LEC006',\n", + " '18',\n", + " 'Engineering: Mechanical',\n", + " '53706',\n", + " '44.0628',\n", + " '-121.30451',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC006',\n", + " '18',\n", + " 'Data Science',\n", + " '53706',\n", + " '36.59239',\n", + " '-121.86875',\n", + " 'pepperoni',\n", + " 'cat',\n", + " 'No',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC006',\n", + " '18',\n", + " 'Engineering: Mechanical',\n", + " '53706',\n", + " '32.715736',\n", + " '-117.161087',\n", + " 'macaroni/pasta',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC006',\n", + " '18',\n", + " 'Data Science',\n", + " '53715',\n", + " '38.9784',\n", + " '76.4922',\n", + " 'mushroom',\n", + " 'cat',\n", + " 'No',\n", + " 'early bird',\n", + " 'Yes'],\n", + " ['LEC006',\n", + " '19',\n", + " 'Economics (Mathematical Emphasis)',\n", + " '53715',\n", + " '37.774929',\n", + " '-122.419418',\n", + " 'sausage',\n", + " 'cat',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC006',\n", + " '18',\n", + " 'Data Science',\n", + " '53706',\n", + " '48.257919',\n", + " '4.03073',\n", + " 'mushroom',\n", + " 'cat',\n", + " 'Yes',\n", + " 'early bird',\n", + " 'No'],\n", + " ['LEC006',\n", + " '18',\n", + " 'Data Science',\n", + " '53706',\n", + " '52.370216',\n", + " '4.895168',\n", + " 'mushroom',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC006',\n", + " '18',\n", + " 'Science: Physics',\n", + " '53706',\n", + " '43.073051',\n", + " '-89.40123',\n", + " 'sausage',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC006',\n", + " '18',\n", + " 'Data Science',\n", + " '53705',\n", + " '37.5741',\n", + " '122.3794',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC006',\n", + " '18',\n", + " 'Statistics',\n", + " '53706',\n", + " '32.060253',\n", + " '118.796875',\n", + " 'pineapple',\n", + " 'cat',\n", + " 'Yes',\n", + " 'early bird',\n", + " 'Maybe'],\n", + " ['LEC006',\n", + " '18',\n", + " 'Undecided',\n", + " '53706',\n", + " '43.038902',\n", + " '-87.906471',\n", + " 'sausage',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC006',\n", + " '19',\n", + " 'Statistics',\n", + " '53715',\n", + " '21.315603',\n", + " '-157.858093',\n", + " 'pepperoni',\n", + " 'cat',\n", + " 'No',\n", + " 'night owl',\n", + " 'No'],\n", + " ['LEC006',\n", + " '19',\n", + " 'Data Science',\n", + " '53715',\n", + " '53.266479',\n", + " '-9.052602',\n", + " 'macaroni/pasta',\n", + " 'dog',\n", + " 'No',\n", + " 'no preference',\n", + " 'Yes'],\n", + " ['LEC006',\n", + " '18',\n", + " 'Engineering: Industrial',\n", + " '53706',\n", + " '37.743042',\n", + " '-122.415642',\n", + " 'green pepper',\n", + " 'dog',\n", + " 'Yes',\n", + " 'no preference',\n", + " 'No'],\n", + " ['LEC006',\n", + " '18',\n", + " 'Data Science',\n", + " '53706',\n", + " '59.93428',\n", + " '30.335098',\n", + " 'pineapple',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC006',\n", + " '18',\n", + " 'Data Science',\n", + " '53706',\n", + " '40.46',\n", + " '-90.67',\n", + " 'sausage',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'No']],\n", + " 'LEC004': [['LEC004',\n", + " '18',\n", + " 'Engineering: Industrial',\n", + " '53715',\n", + " '43.073051',\n", + " '-89.40123',\n", + " 'none (just cheese)',\n", + " 'neither',\n", + " 'No',\n", + " 'no preference',\n", + " 'Maybe'],\n", + " ['LEC004',\n", + " '18',\n", + " 'Engineering: Other|Engineering: Computer',\n", + " '53706',\n", + " '43.073051',\n", + " '-89.40123',\n", + " 'none (just cheese)',\n", + " 'neither',\n", + " 'No',\n", + " 'no preference',\n", + " 'Maybe'],\n", + " ['LEC004',\n", + " '24',\n", + " 'Economics',\n", + " '53703',\n", + " '43',\n", + " '-89',\n", + " 'pineapple',\n", + " 'cat',\n", + " 'Yes',\n", + " 'early bird',\n", + " 'Yes'],\n", + " ['LEC004',\n", + " '24',\n", + " 'Science: Biology/Life',\n", + " '53703',\n", + " '46.872131',\n", + " '-113.994019',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'Yes',\n", + " 'early bird',\n", + " 'Yes'],\n", + " ['LEC004',\n", + " '17',\n", + " 'Engineering: Mechanical',\n", + " '53706',\n", + " '46.6242',\n", + " '8.0414',\n", + " 'pineapple',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC004',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53726',\n", + " '43.073051',\n", + " '-89.40123',\n", + " 'none (just cheese)',\n", + " 'dog',\n", + " 'Yes',\n", + " 'early bird',\n", + " 'No'],\n", + " ['LEC004',\n", + " '19',\n", + " 'Computer Science',\n", + " '53726',\n", + " '47.037872',\n", + " '-122.900696',\n", + " 'tater tots',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC004',\n", + " '24',\n", + " 'Economics',\n", + " '53703',\n", + " '23.12911',\n", + " '113.264381',\n", + " 'pepperoni',\n", + " 'cat',\n", + " 'Yes',\n", + " 'early bird',\n", + " 'Maybe'],\n", + " ['LEC004',\n", + " '19',\n", + " 'Computer Science',\n", + " '53715',\n", + " '40.712776',\n", + " '-74.005974',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC004',\n", + " '18',\n", + " 'Engineering: Mechanical',\n", + " '53726',\n", + " '41.878113',\n", + " '-87.629799',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC004',\n", + " '18',\n", + " 'Engineering: Industrial',\n", + " '53706',\n", + " '17.385044',\n", + " '78.486671',\n", + " 'mushroom',\n", + " 'dog',\n", + " 'No',\n", + " 'early bird',\n", + " 'Yes'],\n", + " ['LEC004',\n", + " '19',\n", + " 'Computer Science',\n", + " '53715',\n", + " '37.774929',\n", + " '-122.419418',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC004',\n", + " '19',\n", + " 'Data Science',\n", + " '53703',\n", + " '26.2644',\n", + " '20.3052',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC004',\n", + " '19',\n", + " 'Data Science',\n", + " '53715',\n", + " '35.69',\n", + " '139.69',\n", + " 'mushroom',\n", + " 'dog',\n", + " 'No',\n", + " 'no preference',\n", + " 'Maybe'],\n", + " ['LEC004',\n", + " '20',\n", + " 'Business: Actuarial',\n", + " '53711',\n", + " '40.7128',\n", + " '74.006',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'Yes',\n", + " 'early bird',\n", + " 'No'],\n", + " ['LEC004',\n", + " '18',\n", + " 'Mathematics/AMEP',\n", + " '53706',\n", + " '46.786671',\n", + " '-92.100487',\n", + " 'pepperoni',\n", + " 'cat',\n", + " 'No',\n", + " 'early bird',\n", + " 'Yes'],\n", + " ['LEC004',\n", + " '21',\n", + " 'Computer Science',\n", + " '53715',\n", + " '27.993828',\n", + " '120.699364',\n", + " 'green pepper',\n", + " 'dog',\n", + " 'Yes',\n", + " 'no preference',\n", + " 'No'],\n", + " ['LEC004',\n", + " '18',\n", + " 'Data Science',\n", + " '53706',\n", + " '45.31625',\n", + " '-92.59181',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC004',\n", + " '18',\n", + " 'Data Science',\n", + " '53706',\n", + " '42.360081',\n", + " '-71.058884',\n", + " 'green pepper',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC004',\n", + " '19',\n", + " 'Data Science',\n", + " '53703',\n", + " '43',\n", + " '-89',\n", + " 'sausage',\n", + " 'cat',\n", + " 'No',\n", + " 'early bird',\n", + " 'Maybe'],\n", + " ['LEC004',\n", + " '20',\n", + " 'Engineering: Biomedical',\n", + " '53715',\n", + " '43.0707',\n", + " '12.6196',\n", + " 'tater tots',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC004',\n", + " '19',\n", + " 'Engineering: Biomedical',\n", + " '53715',\n", + " '41.878113',\n", + " '-87.629799',\n", + " 'mushroom',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC004',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53705',\n", + " '34.869709',\n", + " '-111.760902',\n", + " 'pepperoni',\n", + " 'cat',\n", + " 'No',\n", + " 'no preference',\n", + " 'Maybe'],\n", + " ['LEC004',\n", + " '18',\n", + " 'Computer Science',\n", + " '53706',\n", + " '35.689487',\n", + " '139.691711',\n", + " 'pepperoni',\n", + " 'cat',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC004',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53706',\n", + " '40.73598',\n", + " '-74.37531',\n", + " 'none (just cheese)',\n", + " 'dog',\n", + " 'Yes',\n", + " 'early bird',\n", + " 'No'],\n", + " ['LEC004',\n", + " '18',\n", + " 'Computer Science',\n", + " '53706',\n", + " '40.27385',\n", + " '-74.75972',\n", + " 'sausage',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC004',\n", + " '',\n", + " 'Business: Finance',\n", + " '53703',\n", + " '33.8688',\n", + " '151.2093',\n", + " 'green pepper',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC004',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53703',\n", + " '41.883228',\n", + " '-87.632401',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'no preference',\n", + " 'Maybe'],\n", + " ['LEC004',\n", + " '18',\n", + " 'Engineering: Industrial',\n", + " '53706',\n", + " '41.878113',\n", + " '41.878113',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'No'],\n", + " ['LEC004',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53703',\n", + " '28.228209',\n", + " '112.938812',\n", + " 'none (just cheese)',\n", + " 'neither',\n", + " 'Yes',\n", + " 'early bird',\n", + " 'Yes'],\n", + " ['LEC004',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53706',\n", + " '50.075539',\n", + " '14.4378',\n", + " 'none (just cheese)',\n", + " 'neither',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC004',\n", + " '19',\n", + " 'Computer Science',\n", + " '53706',\n", + " '17.385044',\n", + " '78.486671',\n", + " 'pepperoni',\n", + " 'neither',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC004',\n", + " '19',\n", + " 'Computer Science',\n", + " '53706',\n", + " '45.440845',\n", + " '12.315515',\n", + " 'sausage',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC004',\n", + " '18',\n", + " 'Computer Science',\n", + " '53706',\n", + " '55.953251',\n", + " '-3.188267',\n", + " 'Other',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC004',\n", + " '18',\n", + " 'Engineering: Mechanical',\n", + " '53706',\n", + " '33.8902',\n", + " '-118.39848',\n", + " 'sausage',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC004',\n", + " '18',\n", + " 'Data Science',\n", + " '53706',\n", + " '39.512611',\n", + " '116.677063',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC004',\n", + " '18',\n", + " 'Engineering: Other|Material Science Engineering',\n", + " '53703',\n", + " '38.941631',\n", + " '-119.977219',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC004',\n", + " '20',\n", + " 'Business: Actuarial',\n", + " '53715',\n", + " '44.834209',\n", + " '-87.376266',\n", + " 'sausage',\n", + " 'dog',\n", + " 'No',\n", + " 'no preference',\n", + " 'Yes'],\n", + " ['LEC004',\n", + " '22',\n", + " 'Economics',\n", + " '53703',\n", + " '56.490669',\n", + " '4.202646',\n", + " 'mushroom',\n", + " 'dog',\n", + " 'No',\n", + " 'no preference',\n", + " 'Yes'],\n", + " ['LEC004',\n", + " '18',\n", + " 'Engineering: Mechanical',\n", + " '53706',\n", + " '44.9058',\n", + " '-93.28535',\n", + " 'pepperoni',\n", + " 'cat',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC004',\n", + " '19',\n", + " 'Data Science',\n", + " '53703',\n", + " '41.878113',\n", + " '-87.629799',\n", + " 'sausage',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC004',\n", + " '24',\n", + " 'Science: Chemistry',\n", + " '53703',\n", + " '32.715736',\n", + " '-117.161087',\n", + " 'mushroom',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC004',\n", + " '20',\n", + " 'Statistics',\n", + " '53703',\n", + " '43.07391',\n", + " '-89.39356',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'early bird',\n", + " 'Maybe'],\n", + " ['LEC004',\n", + " '18',\n", + " 'Engineering: Mechanical',\n", + " '53706',\n", + " '35.689487',\n", + " '139.691711',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'no preference',\n", + " 'Yes'],\n", + " ['LEC004',\n", + " '18',\n", + " 'Engineering: Mechanical',\n", + " '53706',\n", + " '43.739507',\n", + " '7.426706',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC004',\n", + " '',\n", + " 'Engineering: Biomedical',\n", + " '53715',\n", + " '41.385063',\n", + " '2.173404',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'Yes',\n", + " 'no preference',\n", + " 'No'],\n", + " ['LEC004',\n", + " '18',\n", + " 'Communication arts',\n", + " '53715',\n", + " '22.543097',\n", + " '114.057861',\n", + " 'mushroom',\n", + " 'cat',\n", + " 'Yes',\n", + " 'early bird',\n", + " 'Yes'],\n", + " ['LEC004',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53715',\n", + " '42.36',\n", + " '-71.058884',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'Yes',\n", + " 'no preference',\n", + " 'Yes'],\n", + " ['LEC004',\n", + " '20',\n", + " 'Economics',\n", + " '53703',\n", + " '44.885',\n", + " '-93.147',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'early bird',\n", + " 'Yes'],\n", + " ['LEC004',\n", + " '20',\n", + " 'Health Promotion and Health Equity',\n", + " '53704',\n", + " '48.8566',\n", + " '2.349014',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC004',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53715',\n", + " '43.073051',\n", + " '-89.40123',\n", + " 'sausage',\n", + " 'dog',\n", + " 'Yes',\n", + " 'no preference',\n", + " 'Yes'],\n", + " ['LEC004',\n", + " '20',\n", + " 'Business: Finance',\n", + " '53706',\n", + " '41.10475',\n", + " '-80.64916',\n", + " 'basil/spinach',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC004',\n", + " '20',\n", + " 'Statistics',\n", + " '53703',\n", + " '42.360081',\n", + " '-71.058884',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC004',\n", + " '19',\n", + " 'Data Science',\n", + " '53703',\n", + " '38.72',\n", + " '75.07',\n", + " 'none (just cheese)',\n", + " 'dog',\n", + " 'Yes',\n", + " 'early bird',\n", + " 'Yes'],\n", + " ['LEC004',\n", + " '20',\n", + " 'Engineering: Mechanical',\n", + " '53705',\n", + " '48',\n", + " '7.85',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'No'],\n", + " ['LEC004',\n", + " '23',\n", + " 'Business: Finance',\n", + " '53703',\n", + " '31.230391',\n", + " '121.473701',\n", + " 'mushroom',\n", + " 'neither',\n", + " 'No',\n", + " 'night owl',\n", + " 'No'],\n", + " ['LEC004',\n", + " '21',\n", + " 'Engineering: Industrial',\n", + " '53703',\n", + " '37.94048',\n", + " '-78.63664',\n", + " 'Other',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC004',\n", + " '22',\n", + " 'Science: Biology/Life',\n", + " '53705',\n", + " '39.758161',\n", + " '39.758161',\n", + " 'pepperoni',\n", + " 'cat',\n", + " 'No',\n", + " 'early bird',\n", + " 'Yes'],\n", + " ['LEC004',\n", + " '20',\n", + " 'Engineering: Mechanical',\n", + " '53726',\n", + " '58.2996',\n", + " '14.4444',\n", + " 'sausage',\n", + " 'cat',\n", + " 'No',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC004',\n", + " '19',\n", + " 'Business: Finance',\n", + " '53706',\n", + " '41.878113',\n", + " '-87.629799',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'early bird',\n", + " 'No'],\n", + " ['LEC004',\n", + " '20',\n", + " 'Mathematics/AMEP',\n", + " '53703',\n", + " '34.746613',\n", + " '113.625328',\n", + " 'sausage',\n", + " 'neither',\n", + " 'Yes',\n", + " 'early bird',\n", + " 'Maybe'],\n", + " ['LEC004',\n", + " '22',\n", + " 'Computer Science',\n", + " '53703',\n", + " '10.315699',\n", + " '123.885437',\n", + " 'sausage',\n", + " 'dog',\n", + " 'Yes',\n", + " 'early bird',\n", + " 'No'],\n", + " ['LEC004',\n", + " '24',\n", + " 'Business: Information Systems',\n", + " '53703',\n", + " '37.566536',\n", + " '126.977966',\n", + " 'tater tots',\n", + " 'dog',\n", + " 'No',\n", + " 'early bird',\n", + " 'No'],\n", + " ['LEC004',\n", + " '19',\n", + " 'Economics',\n", + " '53703',\n", + " '52.877491',\n", + " '-118.08239',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC004',\n", + " '21',\n", + " 'Computer Science',\n", + " '53703',\n", + " '28.538336',\n", + " '-81.379234',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC004',\n", + " '21',\n", + " 'Data Science',\n", + " '53703',\n", + " '3.86',\n", + " '-54.2',\n", + " 'macaroni/pasta',\n", + " 'dog',\n", + " 'No',\n", + " 'early bird',\n", + " 'No'],\n", + " ['LEC004',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53715',\n", + " '39.952583',\n", + " '-75.165222',\n", + " 'macaroni/pasta',\n", + " 'dog',\n", + " 'Yes',\n", + " 'no preference',\n", + " 'Yes'],\n", + " ['LEC004',\n", + " '20',\n", + " 'Science: Other',\n", + " '53715',\n", + " '21.3099',\n", + " '157.8581',\n", + " 'pineapple',\n", + " 'dog',\n", + " 'No',\n", + " 'early bird',\n", + " 'Yes'],\n", + " ['LEC004',\n", + " '20',\n", + " 'Computer Science',\n", + " '53711',\n", + " '40.842358',\n", + " '111.749992',\n", + " 'pineapple',\n", + " 'cat',\n", + " 'No',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC004',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53703',\n", + " '40.6263',\n", + " '14.3758',\n", + " 'mushroom',\n", + " 'dog',\n", + " 'No',\n", + " 'early bird',\n", + " 'No'],\n", + " ['LEC004',\n", + " '22',\n", + " 'Engineering: Other|Chemical Engineering',\n", + " '53703',\n", + " '48.13913',\n", + " '11.58022',\n", + " 'macaroni/pasta',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC004',\n", + " '21',\n", + " 'Economics (Mathematical Emphasis)',\n", + " '53703',\n", + " '52.520008',\n", + " '13.404954',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'No'],\n", + " ['LEC004',\n", + " '25',\n", + " 'Science: Other|Biophysics PhD',\n", + " '53705',\n", + " '30.21161',\n", + " '-97.80999',\n", + " 'pineapple',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC004',\n", + " '20',\n", + " 'Undecided',\n", + " '53715',\n", + " '37.566536',\n", + " '126.977966',\n", + " 'none (just cheese)',\n", + " 'neither',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC004',\n", + " '18',\n", + " 'Engineering: Biomedical',\n", + " '53706',\n", + " '40.014984',\n", + " '-105.270546',\n", + " 'green pepper',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC004',\n", + " '20',\n", + " 'Engineering: Mechanical',\n", + " '53715',\n", + " '53.2779',\n", + " '6.1058',\n", + " 'sausage',\n", + " 'dog',\n", + " 'Yes',\n", + " 'no preference',\n", + " 'Yes'],\n", + " ['LEC004',\n", + " '19',\n", + " 'Engineering: Biomedical',\n", + " '53706',\n", + " '-37.81',\n", + " '144.96',\n", + " 'sausage',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC004',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53715',\n", + " '40.62632',\n", + " '14.37574',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'no preference',\n", + " 'Maybe'],\n", + " ['LEC004',\n", + " '18',\n", + " 'Computer Science',\n", + " '53706',\n", + " '51.507351',\n", + " '-0.127758',\n", + " 'green pepper',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC004',\n", + " '19',\n", + " 'Education',\n", + " '53715',\n", + " '32.715736',\n", + " '-117.161087',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC004',\n", + " '26',\n", + " 'Languages',\n", + " '53703',\n", + " '50.11',\n", + " '8.68',\n", + " 'sausage',\n", + " 'dog',\n", + " 'No',\n", + " 'no preference',\n", + " 'Yes'],\n", + " ['LEC004',\n", + " '53',\n", + " 'Mathematics/AMEP',\n", + " '53555',\n", + " '47.6',\n", + " '-122.3',\n", + " 'mushroom',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC004',\n", + " '17',\n", + " 'Computer Science',\n", + " '53706',\n", + " '43.073051',\n", + " '-89.40123',\n", + " 'Other',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC004',\n", + " '26',\n", + " 'Science: Biology/Life',\n", + " '53715',\n", + " '33.962425',\n", + " '-83.378622',\n", + " 'pineapple',\n", + " 'neither',\n", + " 'Yes',\n", + " 'no preference',\n", + " 'Yes'],\n", + " ['LEC004',\n", + " '24',\n", + " 'Engineering: Other|Civil and Environmental Engineering',\n", + " '53703',\n", + " '47.5',\n", + " '19.04',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'Yes',\n", + " 'early bird',\n", + " 'Maybe'],\n", + " ['LEC004',\n", + " '19',\n", + " 'Engineering: Biomedical',\n", + " '53711',\n", + " '40.712776',\n", + " '74.005974',\n", + " 'pineapple',\n", + " 'dog',\n", + " 'No',\n", + " 'early bird',\n", + " 'No'],\n", + " ['LEC004',\n", + " '21',\n", + " 'Science: Other',\n", + " '53715',\n", + " '27.963989',\n", + " '-82.799957',\n", + " 'pineapple',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC004',\n", + " '20',\n", + " 'Computer Science',\n", + " '53703',\n", + " '43.073051',\n", + " '-89.40123',\n", + " 'none (just cheese)',\n", + " 'cat',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC004',\n", + " '18',\n", + " 'Computer Science',\n", + " '53706',\n", + " '30.267153',\n", + " '-97.743057',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC004',\n", + " '19',\n", + " 'Data Science',\n", + " '53715',\n", + " '61.2176',\n", + " '149.8997',\n", + " 'pineapple',\n", + " 'cat',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC004',\n", + " '41',\n", + " 'Languages',\n", + " '53705',\n", + " '29.654839',\n", + " '91.140549',\n", + " 'pepperoni',\n", + " 'cat',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC004',\n", + " '18',\n", + " 'Engineering: Biomedical',\n", + " '53705',\n", + " '35.689487',\n", + " '139.691711',\n", + " 'basil/spinach',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC004',\n", + " '19',\n", + " 'Science: Biology/Life',\n", + " '53705',\n", + " '46.009991',\n", + " '-91.482094',\n", + " 'pineapple',\n", + " 'dog',\n", + " 'No',\n", + " 'early bird',\n", + " 'No'],\n", + " ['LEC004',\n", + " '18',\n", + " 'Data Science',\n", + " '53706',\n", + " '35.689487',\n", + " '139.691711',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC004',\n", + " '19',\n", + " 'Statistics',\n", + " '53706',\n", + " '36.778259',\n", + " '-119.417931',\n", + " 'pineapple',\n", + " 'cat',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC004',\n", + " '18',\n", + " 'Statistics',\n", + " '53703',\n", + " '60.472023',\n", + " '8.468946',\n", + " 'none (just cheese)',\n", + " 'dog',\n", + " 'No',\n", + " 'early bird',\n", + " 'No'],\n", + " ['LEC004',\n", + " '23',\n", + " 'Engineering: Mechanical',\n", + " '53703',\n", + " '38.82097',\n", + " '-104.78163',\n", + " 'sausage',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'No'],\n", + " ['LEC004',\n", + " '21',\n", + " 'Science: Other|Psychology',\n", + " '53715',\n", + " '23.12911',\n", + " '113.264381',\n", + " 'none (just cheese)',\n", + " 'cat',\n", + " 'No',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC004',\n", + " '18',\n", + " 'Engineering: Industrial',\n", + " '53706',\n", + " '19.896767',\n", + " '-155.582779',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC004',\n", + " '20',\n", + " 'Engineering: Mechanical',\n", + " '53715',\n", + " '23',\n", + " '90',\n", + " 'green pepper',\n", + " 'cat',\n", + " 'No',\n", + " 'no preference',\n", + " 'Yes'],\n", + " ['LEC004',\n", + " '19',\n", + " 'Information science',\n", + " '53703',\n", + " '40.712776',\n", + " '-74.005974',\n", + " 'pineapple',\n", + " 'cat',\n", + " 'Yes',\n", + " 'early bird',\n", + " 'Maybe'],\n", + " ['LEC004',\n", + " '',\n", + " 'Computer Science',\n", + " '53715',\n", + " '39.70698',\n", + " '-86.0862',\n", + " 'mushroom',\n", + " 'cat',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC004',\n", + " '21',\n", + " 'Engineering: Industrial',\n", + " '53703',\n", + " '41.878113',\n", + " '-87.629799',\n", + " 'pepperoni',\n", + " 'neither',\n", + " 'Yes',\n", + " 'early bird',\n", + " 'No'],\n", + " ['LEC004',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53703',\n", + " '51.507351',\n", + " '-0.127758',\n", + " 'none (just cheese)',\n", + " 'neither',\n", + " 'No',\n", + " 'no preference',\n", + " 'Maybe'],\n", + " ['LEC004',\n", + " '18',\n", + " 'Engineering: Mechanical',\n", + " '53706',\n", + " '39.739235',\n", + " '-104.99025',\n", + " 'pepperoni',\n", + " 'cat',\n", + " 'Yes',\n", + " 'no preference',\n", + " 'Maybe'],\n", + " ['LEC004',\n", + " '21',\n", + " 'Science: Biology/Life',\n", + " '53726',\n", + " '43',\n", + " '89',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC004',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53715',\n", + " '52.370216',\n", + " '4.895168',\n", + " 'mushroom',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC004',\n", + " '18',\n", + " 'Engineering: Mechanical',\n", + " '53706',\n", + " '20.92674',\n", + " '-156.69386',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC004',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53703',\n", + " '45.126887',\n", + " '-94.528067',\n", + " 'sausage',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC004',\n", + " '21',\n", + " 'Economics',\n", + " '53715',\n", + " '48.856613',\n", + " '2.352222',\n", + " 'basil/spinach',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'No'],\n", + " ['LEC004',\n", + " '21',\n", + " 'Engineering: Mechanical',\n", + " '53715',\n", + " '48.856613',\n", + " '2.352222',\n", + " 'mushroom',\n", + " 'cat',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC004',\n", + " '19',\n", + " 'Political Science',\n", + " '53703',\n", + " '55.679626',\n", + " '12.581921',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'Yes',\n", + " 'no preference',\n", + " 'Maybe'],\n", + " ['LEC004',\n", + " '29',\n", + " 'Engineering: Mechanical',\n", + " '53704',\n", + " '50.064651',\n", + " '19.944981',\n", + " 'sausage',\n", + " 'dog',\n", + " 'No',\n", + " 'early bird',\n", + " 'Maybe'],\n", + " ['LEC004',\n", + " '18',\n", + " 'Economics',\n", + " '53711',\n", + " '13.756331',\n", + " '100.501762',\n", + " 'Other',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC004',\n", + " '20',\n", + " 'Science: Other',\n", + " '53726',\n", + " '55.675758',\n", + " '12.56902',\n", + " 'none (just cheese)',\n", + " 'cat',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC004',\n", + " '18',\n", + " 'Engineering: Industrial',\n", + " '53706',\n", + " '51.507351',\n", + " '-0.127758',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'Yes',\n", + " 'no preference',\n", + " 'No'],\n", + " ['LEC004',\n", + " '25',\n", + " 'Computer Science',\n", + " '53703',\n", + " '38.736946',\n", + " '-9.142685',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC004',\n", + " '25',\n", + " 'Science: Chemistry',\n", + " '53703',\n", + " '37.566536',\n", + " '126.977966',\n", + " 'Other',\n", + " 'cat',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC004',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53715',\n", + " '48.137',\n", + " '11.576',\n", + " 'green pepper',\n", + " 'dog',\n", + " 'No',\n", + " 'early bird',\n", + " 'No'],\n", + " ['LEC004',\n", + " '19',\n", + " 'Computer Science',\n", + " '53703',\n", + " '41.902782',\n", + " '12.496365',\n", + " 'none (just cheese)',\n", + " 'neither',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'No'],\n", + " ['LEC004',\n", + " '18',\n", + " 'Business: Actuarial',\n", + " '53706',\n", + " '21.306944',\n", + " '-157.858337',\n", + " 'pineapple',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC004',\n", + " '20',\n", + " 'Data Science',\n", + " '53703',\n", + " '35.726212',\n", + " '-83.491226',\n", + " 'pepperoni',\n", + " 'cat',\n", + " 'No',\n", + " 'early bird',\n", + " 'Yes'],\n", + " ['LEC004',\n", + " '21',\n", + " 'Data Science',\n", + " '53703',\n", + " '34.746613',\n", + " '113.625328',\n", + " 'green pepper',\n", + " 'neither',\n", + " 'Yes',\n", + " 'no preference',\n", + " 'No'],\n", + " ['LEC004',\n", + " '23',\n", + " 'Economics',\n", + " '53703',\n", + " '43.083321',\n", + " '-89.372475',\n", + " 'mushroom',\n", + " 'dog',\n", + " 'Yes',\n", + " 'early bird',\n", + " 'No'],\n", + " ['LEC004',\n", + " '20',\n", + " 'Data Science',\n", + " '53703',\n", + " '43',\n", + " '87.9',\n", + " 'none (just cheese)',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC004',\n", + " '18',\n", + " 'Engineering: Mechanical',\n", + " '55088',\n", + " '48.135124',\n", + " '11.581981',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'Yes',\n", + " 'no preference',\n", + " 'No'],\n", + " ['LEC004',\n", + " '19',\n", + " 'Science: Biology/Life',\n", + " '53706',\n", + " '41.2',\n", + " '96',\n", + " 'pepperoni',\n", + " 'cat',\n", + " 'No',\n", + " 'early bird',\n", + " 'No'],\n", + " ['LEC004',\n", + " '18',\n", + " 'Engineering: Industrial',\n", + " '53706',\n", + " '49.74609',\n", + " '7.4609',\n", + " 'pepperoni',\n", + " 'cat',\n", + " 'No',\n", + " 'early bird',\n", + " 'Yes'],\n", + " ['LEC004',\n", + " '20',\n", + " 'Science: Other|Environmental Science',\n", + " '53715',\n", + " '43',\n", + " '-89',\n", + " 'mushroom',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC004',\n", + " '20',\n", + " 'Data Science',\n", + " '53703',\n", + " '41.878113',\n", + " '-87.629799',\n", + " 'green pepper',\n", + " 'dog',\n", + " 'No',\n", + " 'early bird',\n", + " 'Yes'],\n", + " ['LEC004',\n", + " '18',\n", + " 'Undecided',\n", + " '53706',\n", + " '39.3823',\n", + " '87.2971',\n", + " 'sausage',\n", + " 'dog',\n", + " 'Yes',\n", + " 'early bird',\n", + " 'No'],\n", + " ['LEC004',\n", + " '21',\n", + " 'Data Science',\n", + " '53703',\n", + " '31.230391',\n", + " '121.473701',\n", + " 'mushroom',\n", + " 'cat',\n", + " 'No',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC004',\n", + " '18',\n", + " 'Data Science',\n", + " '53715',\n", + " '50.8',\n", + " '-1.085',\n", + " 'Other',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC004',\n", + " '18',\n", + " 'Undecided',\n", + " '53706',\n", + " '26.452',\n", + " '-81.9481',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC004',\n", + " '',\n", + " 'Engineering: Biomedical',\n", + " '53715',\n", + " '41.878113',\n", + " '-87.629799',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'No'],\n", + " ['LEC004',\n", + " '18',\n", + " 'Engineering: Industrial',\n", + " '53706',\n", + " '43.073051',\n", + " '-89.40123',\n", + " 'sausage',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC004',\n", + " '20',\n", + " 'Science: Biology/Life',\n", + " '53706',\n", + " '13.756331',\n", + " '100.501762',\n", + " 'pineapple',\n", + " 'neither',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC004',\n", + " '20',\n", + " 'Business: Other',\n", + " '53715',\n", + " '42.818878',\n", + " '-89.494115',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC004',\n", + " '18',\n", + " 'Engineering: Industrial',\n", + " '53706',\n", + " '41.3874',\n", + " '2.1686',\n", + " 'none (just cheese)',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC004',\n", + " '19',\n", + " 'Computer Science',\n", + " '53703',\n", + " '40.678177',\n", + " '-73.94416',\n", + " 'Other',\n", + " 'cat',\n", + " 'No',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC004',\n", + " '20',\n", + " 'Engineering: Industrial',\n", + " '53703',\n", + " '39.359772',\n", + " '-111.584167',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'Yes',\n", + " 'early bird',\n", + " 'Maybe'],\n", + " ['LEC004',\n", + " '19',\n", + " 'Engineering: Industrial',\n", + " '53703',\n", + " '41.93101',\n", + " '-87.64987',\n", + " 'pepperoni',\n", + " 'neither',\n", + " 'No',\n", + " 'early bird',\n", + " 'No'],\n", + " ['LEC004',\n", + " '20',\n", + " 'Business: Finance',\n", + " '53715',\n", + " '38.71049',\n", + " '-75.07657',\n", + " 'sausage',\n", + " 'dog',\n", + " 'No',\n", + " 'early bird',\n", + " 'No'],\n", + " ['LEC004',\n", + " '21',\n", + " 'Engineering: Mechanical',\n", + " '53715',\n", + " '43.073051',\n", + " '-89.40123',\n", + " 'Other',\n", + " 'dog',\n", + " 'Yes',\n", + " 'early bird',\n", + " 'No'],\n", + " ['LEC004',\n", + " '18',\n", + " 'Engineering: Industrial',\n", + " '53706',\n", + " '44.261799',\n", + " '-88.407249',\n", + " 'sausage',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'No'],\n", + " ['LEC004',\n", + " '26',\n", + " 'Science: Other|Animal and Dairy Science',\n", + " '53705',\n", + " '53.270668',\n", + " '-9.05679',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'early bird',\n", + " 'Yes'],\n", + " ['LEC004',\n", + " '22',\n", + " 'Engineering: Mechanical',\n", + " '53726',\n", + " '55.864239',\n", + " '-4.251806',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC004',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53703',\n", + " '13.35433',\n", + " '103.77549',\n", + " 'none (just cheese)',\n", + " 'dog',\n", + " 'No',\n", + " 'no preference',\n", + " 'Maybe'],\n", + " ['LEC004',\n", + " '',\n", + " 'Business: Information Systems',\n", + " '53715',\n", + " '42.360081',\n", + " '-71.058884',\n", + " 'Other',\n", + " 'dog',\n", + " 'No',\n", + " 'no preference',\n", + " 'Maybe'],\n", + " ['LEC004',\n", + " '18',\n", + " 'Statistics',\n", + " '53706',\n", + " '27.35741',\n", + " '-82.615471',\n", + " 'none (just cheese)',\n", + " 'dog',\n", + " 'Yes',\n", + " 'early bird',\n", + " 'No'],\n", + " ['LEC004',\n", + " '19',\n", + " 'Business: Actuarial',\n", + " '53703',\n", + " '43.040433',\n", + " '-87.897423',\n", + " 'sausage',\n", + " 'cat',\n", + " 'No',\n", + " 'night owl',\n", + " 'No'],\n", + " ['LEC004',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '5',\n", + " '25.034281',\n", + " '-77.396278',\n", + " 'sausage',\n", + " 'dog',\n", + " 'Yes',\n", + " 'no preference',\n", + " 'Yes'],\n", + " ['LEC004',\n", + " '18',\n", + " 'Engineering: Industrial',\n", + " '53706',\n", + " '36.110168',\n", + " '-97.058571',\n", + " 'none (just cheese)',\n", + " 'dog',\n", + " 'No',\n", + " 'early bird',\n", + " 'Maybe'],\n", + " ['LEC004',\n", + " '21',\n", + " 'Computer Science',\n", + " '53703',\n", + " '43.07016',\n", + " '-89.39386',\n", + " 'mushroom',\n", + " 'cat',\n", + " 'Yes',\n", + " 'early bird',\n", + " 'No'],\n", + " ['LEC004',\n", + " '18',\n", + " 'Data Science',\n", + " '53706',\n", + " '41.878113',\n", + " '-87.629799',\n", + " 'macaroni/pasta',\n", + " 'dog',\n", + " 'Yes',\n", + " 'early bird',\n", + " 'Maybe'],\n", + " ['LEC004',\n", + " '20',\n", + " 'Computer Science',\n", + " '53715',\n", + " '35.016956',\n", + " '-224.24911',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC004',\n", + " '18',\n", + " 'Engineering: Industrial',\n", + " '53706',\n", + " '21.28482',\n", + " '-157.83245',\n", + " 'pineapple',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC004',\n", + " '20',\n", + " 'Legal Studies',\n", + " '53703',\n", + " '20.798363',\n", + " '-156.331924',\n", + " 'green pepper',\n", + " 'dog',\n", + " 'No',\n", + " 'early bird',\n", + " 'No'],\n", + " ['LEC004',\n", + " '',\n", + " 'Computer Science',\n", + " '53706',\n", + " '147',\n", + " '32.5',\n", + " 'pineapple',\n", + " 'cat',\n", + " 'No',\n", + " 'early bird',\n", + " 'Maybe'],\n", + " ['LEC004',\n", + " '18',\n", + " 'Engineering: Biomedical',\n", + " '53701',\n", + " '43.038902',\n", + " '-87.906471',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'No'],\n", + " ['LEC004',\n", + " '18',\n", + " 'Engineering: Mechanical',\n", + " '20815',\n", + " '39.640259',\n", + " '-106.370872',\n", + " 'sausage',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'No'],\n", + " ['LEC004',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53715',\n", + " '41',\n", + " '12',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'no preference',\n", + " 'Maybe'],\n", + " ['LEC004',\n", + " '20',\n", + " 'Journalism: Strategic Comm./Advertising',\n", + " '53703',\n", + " '43.073051',\n", + " '-89.40123',\n", + " 'Other',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC004',\n", + " '',\n", + " 'Engineering: Mechanical',\n", + " '53715',\n", + " '43',\n", + " '-87.9',\n", + " 'pepperoni',\n", + " 'cat',\n", + " 'Yes',\n", + " 'early bird',\n", + " 'Maybe'],\n", + " ['LEC004',\n", + " '19',\n", + " 'Engineering: Biomedical',\n", + " '53706',\n", + " '32.715736',\n", + " '117.161087',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'Yes',\n", + " 'no preference',\n", + " 'Yes'],\n", + " ['LEC004',\n", + " '18',\n", + " 'Data Science',\n", + " '53706',\n", + " '43.073051',\n", + " '-89.40123',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC004',\n", + " '18',\n", + " 'History',\n", + " '53706',\n", + " '42.19381',\n", + " '-73.362877',\n", + " 'none (just cheese)',\n", + " 'cat',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC004',\n", + " '19',\n", + " 'Science: Biology/Life',\n", + " '53151',\n", + " '41.878113',\n", + " '-87.629799',\n", + " 'sausage',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC004',\n", + " '18',\n", + " 'Data Science',\n", + " '53706',\n", + " '37.568291',\n", + " '126.99778',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'no preference',\n", + " 'Maybe'],\n", + " ['LEC004',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53717',\n", + " '41.2224',\n", + " '86.413',\n", + " 'Other',\n", + " 'dog',\n", + " 'Yes',\n", + " 'early bird',\n", + " 'Maybe'],\n", + " ['LEC004',\n", + " '19',\n", + " 'Engineering: Biomedical',\n", + " '53703',\n", + " '41.878113',\n", + " '-87.629799',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'Yes',\n", + " 'no preference',\n", + " 'Yes'],\n", + " ['LEC004',\n", + " '26',\n", + " 'Master of Public Affairs',\n", + " '53715',\n", + " '48.118145',\n", + " '-123.43074',\n", + " 'basil/spinach',\n", + " 'dog',\n", + " 'Yes',\n", + " 'early bird',\n", + " 'Yes'],\n", + " ['LEC004',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53703',\n", + " '-12.12168',\n", + " '-45.013481',\n", + " 'basil/spinach',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC004',\n", + " '18',\n", + " 'Data Science',\n", + " '53706',\n", + " '31.230391',\n", + " '121.473701',\n", + " 'sausage',\n", + " 'cat',\n", + " 'No',\n", + " 'night owl',\n", + " 'No'],\n", + " ['LEC004',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53703',\n", + " '40.712776',\n", + " '-74.005974',\n", + " 'sausage',\n", + " 'dog',\n", + " 'No',\n", + " 'early bird',\n", + " 'No'],\n", + " ['LEC004',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53715',\n", + " '37.98381',\n", + " '23.727539',\n", + " 'basil/spinach',\n", + " 'dog',\n", + " 'Yes',\n", + " 'early bird',\n", + " 'No'],\n", + " ['LEC004',\n", + " '18',\n", + " 'Engineering: Biomedical',\n", + " '53706',\n", + " '45.4894',\n", + " '93.2476',\n", + " 'mushroom',\n", + " 'cat',\n", + " 'No',\n", + " 'night owl',\n", + " 'No'],\n", + " ['LEC004',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53715',\n", + " '42.360081',\n", + " '-71.058884',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC004',\n", + " '18',\n", + " 'Engineering: Mechanical',\n", + " '53706',\n", + " '45.056389',\n", + " '-92.960793',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC004',\n", + " '21',\n", + " 'Business: Actuarial',\n", + " '53726',\n", + " '38.874341',\n", + " '-77.032013',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'no preference',\n", + " 'Yes'],\n", + " ['LEC004',\n", + " '18',\n", + " 'Engineering: Mechanical',\n", + " '53703',\n", + " '27.5041',\n", + " '82.7145',\n", + " 'sausage',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC004',\n", + " '27',\n", + " 'Environment & Resources',\n", + " '53703',\n", + " '37.389091',\n", + " '-5.984459',\n", + " 'mushroom',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC004',\n", + " '19',\n", + " 'Business: Actuarial',\n", + " '53726',\n", + " '32',\n", + " '-117',\n", + " 'pepperoni',\n", + " 'neither',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC004',\n", + " '21',\n", + " 'Business: Actuarial',\n", + " '53703',\n", + " '39.19067',\n", + " '-106.819199',\n", + " 'macaroni/pasta',\n", + " 'cat',\n", + " 'No',\n", + " 'no preference',\n", + " 'Maybe'],\n", + " ['LEC004',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53715',\n", + " '45.10994',\n", + " '-87.209793',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'Yes',\n", + " 'early bird',\n", + " 'No'],\n", + " ['LEC004',\n", + " '18',\n", + " 'Environmental Studies',\n", + " '53703',\n", + " '42.360081',\n", + " '-71.058884',\n", + " 'pineapple',\n", + " 'cat',\n", + " 'No',\n", + " 'no preference',\n", + " 'Maybe'],\n", + " ['LEC004',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53715',\n", + " '45',\n", + " '-87',\n", + " 'sausage',\n", + " 'cat',\n", + " 'Yes',\n", + " 'no preference',\n", + " 'Maybe'],\n", + " ['LEC004',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53703',\n", + " '48.137',\n", + " '11.575',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC004',\n", + " '20',\n", + " 'Engineering: Industrial',\n", + " '53711',\n", + " '48.856613',\n", + " '2.352222',\n", + " 'sausage',\n", + " 'cat',\n", + " 'No',\n", + " 'no preference',\n", + " 'No'],\n", + " ['LEC004',\n", + " '18',\n", + " 'Science: Other',\n", + " '53706',\n", + " '48.410648',\n", + " '-114.338188',\n", + " 'none (just cheese)',\n", + " 'dog',\n", + " 'No',\n", + " 'no preference',\n", + " 'Maybe'],\n", + " ['LEC004',\n", + " '18',\n", + " 'Mathematics/AMEP',\n", + " '53706',\n", + " '24.585445',\n", + " '73.712479',\n", + " 'pineapple',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC004',\n", + " '19',\n", + " 'Computer Science',\n", + " '53715',\n", + " '40.79254',\n", + " '-98.70807',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'No'],\n", + " ['LEC004',\n", + " '20',\n", + " 'Science: Other|Environmental Science',\n", + " '53715',\n", + " '43.073051',\n", + " '-89.40123',\n", + " 'sausage',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC004',\n", + " '20',\n", + " 'Engineering: Biomedical',\n", + " '53715',\n", + " '30.328227',\n", + " '-86.136975',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'Yes',\n", + " 'no preference',\n", + " 'Maybe'],\n", + " ['LEC004',\n", + " '21',\n", + " 'Science: Biology/Life',\n", + " '53703',\n", + " '41.385063',\n", + " '2.173404',\n", + " 'macaroni/pasta',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC004',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53703',\n", + " '41.385063',\n", + " '2.173404',\n", + " 'sausage',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes']],\n", + " 'LEC005': [['LEC005',\n", + " '',\n", + " 'Undecided',\n", + " '53706',\n", + " '43.073051',\n", + " '-89.40123',\n", + " 'none (just cheese)',\n", + " 'neither',\n", + " 'No',\n", + " 'no preference',\n", + " 'Maybe'],\n", + " ['LEC005',\n", + " '20',\n", + " 'Data Science',\n", + " '53705',\n", + " '37.8',\n", + " '112.5',\n", + " 'pepperoni',\n", + " 'cat',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC005',\n", + " '18',\n", + " 'Computer Science',\n", + " '53703',\n", + " '37.338207',\n", + " '-121.88633',\n", + " 'green pepper',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC005',\n", + " '20',\n", + " 'Engineering: Mechanical',\n", + " '53715',\n", + " '38.9072',\n", + " '-77.0369',\n", + " 'Other',\n", + " 'cat',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC005',\n", + " '19',\n", + " 'Data Science',\n", + " '53703',\n", + " '64.49796',\n", + " '165.40998',\n", + " 'sausage',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC005',\n", + " '20',\n", + " 'Engineering: Other|Engineering Physics: Scientific Computing',\n", + " '53715',\n", + " '43.073051',\n", + " '-89.4',\n", + " 'none (just cheese)',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC005',\n", + " '20',\n", + " 'Computer Science',\n", + " '53703',\n", + " '48.856613',\n", + " '2.352222',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC005',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53704',\n", + " '38.7',\n", + " '-77',\n", + " 'pepperoni',\n", + " 'cat',\n", + " 'Yes',\n", + " 'no preference',\n", + " 'No'],\n", + " ['LEC005',\n", + " '19',\n", + " 'Engineering: Other',\n", + " '53703',\n", + " '36.169941',\n", + " '-115.139832',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC005',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53703',\n", + " '43.078104',\n", + " '-89.431698',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC005',\n", + " '23',\n", + " 'Computer Science',\n", + " '53703',\n", + " '37.5',\n", + " '126.97',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'No'],\n", + " ['LEC005',\n", + " '21',\n", + " 'Business: Finance',\n", + " '53717',\n", + " '40.6461',\n", + " '-111.498',\n", + " 'sausage',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC005',\n", + " '17',\n", + " 'Science: Biology/Life',\n", + " '53706',\n", + " '-18.766947',\n", + " '46.869106',\n", + " 'basil/spinach',\n", + " 'dog',\n", + " 'Yes',\n", + " 'early bird',\n", + " 'Maybe'],\n", + " ['LEC005',\n", + " '18',\n", + " 'Data Science',\n", + " '53706',\n", + " '40.712776',\n", + " '-74.005974',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'Yes',\n", + " 'no preference',\n", + " 'Yes'],\n", + " ['LEC005',\n", + " '19',\n", + " 'Data Science',\n", + " '50703',\n", + " '42.360081',\n", + " '-71.058884',\n", + " 'sausage',\n", + " 'cat',\n", + " 'No',\n", + " 'night owl',\n", + " 'No'],\n", + " ['LEC005',\n", + " '18',\n", + " 'Computer Science',\n", + " '53706',\n", + " '37.54443',\n", + " '-121.95269',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC005',\n", + " '18',\n", + " 'Data Science',\n", + " '53706',\n", + " '17.384716',\n", + " '78.409424',\n", + " 'mushroom',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC005',\n", + " '18',\n", + " 'Computer Science',\n", + " '53706',\n", + " '43.769562',\n", + " '11.255814',\n", + " 'Other',\n", + " 'neither',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC005',\n", + " '20',\n", + " 'Science: Biology/Life',\n", + " '53703',\n", + " '44.67082',\n", + " '-93.24432',\n", + " 'mushroom',\n", + " 'dog',\n", + " 'No',\n", + " 'no preference',\n", + " 'Maybe'],\n", + " ['LEC005',\n", + " '20',\n", + " 'Economics',\n", + " '53703',\n", + " '48.856613',\n", + " '2.352222',\n", + " 'pepperoni',\n", + " 'neither',\n", + " 'No',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC005',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53715',\n", + " '35.689487',\n", + " '139.691711',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC005',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53703',\n", + " '32.8328',\n", + " '117.2713',\n", + " 'sausage',\n", + " 'neither',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC005',\n", + " '',\n", + " 'Computer Science',\n", + " '53703',\n", + " '43.073051',\n", + " '-89.40123',\n", + " 'pineapple',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'No'],\n", + " ['LEC005',\n", + " '19',\n", + " 'Computer Science',\n", + " '53706',\n", + " '-8.340539',\n", + " '115.091949',\n", + " 'pineapple',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC005',\n", + " '20',\n", + " 'Engineering: Mechanical',\n", + " '53703',\n", + " '26.147',\n", + " '-81.795',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'Yes',\n", + " 'early bird',\n", + " 'Yes'],\n", + " ['LEC005',\n", + " '19',\n", + " 'Business: Other',\n", + " '53706',\n", + " '43',\n", + " '-89',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'Yes',\n", + " 'no preference',\n", + " 'Yes'],\n", + " ['LEC005',\n", + " '21',\n", + " 'Business: Finance',\n", + " '53703',\n", + " '3.15443',\n", + " '101.715103',\n", + " 'pepperoni',\n", + " 'cat',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC005',\n", + " '18',\n", + " 'Engineering: Mechanical',\n", + " '53706',\n", + " '44.655991',\n", + " '-93.242752',\n", + " 'none (just cheese)',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC005',\n", + " '19',\n", + " 'Data Science',\n", + " '53715',\n", + " '41.94288',\n", + " '-87.68667',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC005',\n", + " '18',\n", + " 'Data Science',\n", + " '53703',\n", + " '44.2795',\n", + " '73.9799',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'No'],\n", + " ['LEC005',\n", + " '18',\n", + " 'Computer Science',\n", + " '53706',\n", + " '30.733315',\n", + " '76.779419',\n", + " 'none (just cheese)',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC005',\n", + " '20',\n", + " 'Mathematics/AMEP',\n", + " '53703',\n", + " '38.837702',\n", + " '-238.449497',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC005',\n", + " '',\n", + " 'Computer Science',\n", + " '53593',\n", + " '50.116322',\n", + " '-122.957359',\n", + " 'sausage',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC005',\n", + " '18',\n", + " 'Computer Science',\n", + " '53715',\n", + " '43.059023',\n", + " '-89.296875',\n", + " 'pepperoni',\n", + " 'cat',\n", + " 'No',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC005',\n", + " '19',\n", + " 'Engineering: Industrial',\n", + " '53703',\n", + " '22.2255',\n", + " '-159.4835',\n", + " 'pepperoni',\n", + " 'cat',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC005',\n", + " '18',\n", + " 'Engineering: Biomedical',\n", + " '53593',\n", + " '43.073051',\n", + " '-89.40123',\n", + " 'green pepper',\n", + " 'cat',\n", + " 'No',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC005',\n", + " '20',\n", + " 'Engineering: Mechanical',\n", + " '53715',\n", + " '41.283211',\n", + " '-70.099228',\n", + " 'sausage',\n", + " 'dog',\n", + " 'No',\n", + " 'no preference',\n", + " 'Maybe'],\n", + " ['LEC005',\n", + " '18',\n", + " 'Data Science',\n", + " '53715',\n", + " '25.26741',\n", + " '55.292679',\n", + " 'basil/spinach',\n", + " 'cat',\n", + " 'Yes',\n", + " 'early bird',\n", + " 'Yes'],\n", + " ['LEC005',\n", + " '19',\n", + " 'Business: Other',\n", + " '53726',\n", + " '43.038902',\n", + " '-87.906471',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC005',\n", + " '18',\n", + " 'Computer Science',\n", + " '53706',\n", + " '43.038902',\n", + " '-87.906471',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC005',\n", + " '18',\n", + " 'Science: Other|Science: Genetics and Genomics',\n", + " '53715',\n", + " '43.073051',\n", + " '-89.40123',\n", + " 'mushroom',\n", + " 'dog',\n", + " 'No',\n", + " 'no preference',\n", + " 'Yes'],\n", + " ['LEC005',\n", + " '20',\n", + " 'Engineering: Mechanical',\n", + " '53703',\n", + " '41.99884',\n", + " '-87.68828',\n", + " 'Other',\n", + " 'dog',\n", + " 'No',\n", + " 'no preference',\n", + " 'No'],\n", + " ['LEC005',\n", + " '20',\n", + " 'Science: Biology/Life',\n", + " '53703',\n", + " '32.05196',\n", + " '118.77803',\n", + " 'sausage',\n", + " 'neither',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC005',\n", + " '',\n", + " 'Computer Science',\n", + " '53705',\n", + " '51.507351',\n", + " '-0.127758',\n", + " 'basil/spinach',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC005',\n", + " '',\n", + " 'Civil engineering - hydropower engineering',\n", + " '53705',\n", + " '34',\n", + " '113',\n", + " 'pineapple',\n", + " 'neither',\n", + " 'No',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC005',\n", + " '18',\n", + " 'Computer Science',\n", + " '53706',\n", + " '40.7',\n", + " '-74.005',\n", + " 'pepperoni',\n", + " 'cat',\n", + " 'No',\n", + " 'early bird',\n", + " 'No'],\n", + " ['LEC005',\n", + " '18',\n", + " 'Data Science',\n", + " '53706',\n", + " '36.393154',\n", + " '25.46151',\n", + " 'none (just cheese)',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'No'],\n", + " ['LEC005',\n", + " '18',\n", + " 'Engineering: Mechanical',\n", + " '53706',\n", + " '41.88998',\n", + " '12.49426',\n", + " 'pineapple',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC005',\n", + " '19',\n", + " 'Economics',\n", + " '53703',\n", + " '40.592331',\n", + " '-111.820152',\n", + " 'none (just cheese)',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC005',\n", + " '19',\n", + " 'Data Science',\n", + " '53704',\n", + " '38.722252',\n", + " '-9.139337',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC005',\n", + " '21',\n", + " 'Economics',\n", + " '53703',\n", + " '37.751824',\n", + " '-122.420105',\n", + " 'green pepper',\n", + " 'cat',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC005',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53715',\n", + " '39.412327',\n", + " '-77.425461',\n", + " 'pepperoni',\n", + " 'cat',\n", + " 'Yes',\n", + " 'early bird',\n", + " 'Yes'],\n", + " ['LEC005',\n", + " '21',\n", + " 'Business: Finance',\n", + " '53703',\n", + " '38.178127',\n", + " '-92.781052',\n", + " 'mushroom',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC005',\n", + " '18',\n", + " 'Data Science',\n", + " '60521',\n", + " '41.9',\n", + " '87.6',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC005',\n", + " '23',\n", + " 'Business: Information Systems',\n", + " '53558',\n", + " '43.073051',\n", + " '-89.40123',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'Yes',\n", + " 'early bird',\n", + " 'No'],\n", + " ['LEC005',\n", + " '21',\n", + " 'Data Science',\n", + " '53703',\n", + " '25',\n", + " '121',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC005',\n", + " '20',\n", + " 'Business: Information Systems',\n", + " '53703',\n", + " '43.073051',\n", + " '-89.40123',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC005',\n", + " '19',\n", + " 'Computer Science',\n", + " '54706',\n", + " '34.05',\n", + " '-118.24',\n", + " 'sausage',\n", + " 'cat',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC005',\n", + " '18',\n", + " 'Engineering: Biomedical',\n", + " '53706',\n", + " '46.818188',\n", + " '8.227512',\n", + " 'pineapple',\n", + " 'dog',\n", + " 'Yes',\n", + " 'no preference',\n", + " 'Yes'],\n", + " ['LEC005',\n", + " '21',\n", + " 'Data Science',\n", + " '53703',\n", + " '36.4',\n", + " '117',\n", + " 'pineapple',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC005',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53704',\n", + " '35.6762',\n", + " '139.6503',\n", + " 'sausage',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC005',\n", + " '20',\n", + " 'Education',\n", + " '53703',\n", + " '41.878113',\n", + " '-87.629799',\n", + " 'basil/spinach',\n", + " 'cat',\n", + " 'Yes',\n", + " 'early bird',\n", + " 'No'],\n", + " ['LEC005',\n", + " '',\n", + " 'Mathematics/AMEP',\n", + " '53715',\n", + " '36.651199',\n", + " '117.120094',\n", + " 'mushroom',\n", + " 'neither',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC005',\n", + " '18',\n", + " 'Mathematics/AMEP',\n", + " '53706',\n", + " '46.482525',\n", + " '30.723309',\n", + " 'basil/spinach',\n", + " 'dog',\n", + " 'No',\n", + " 'early bird',\n", + " 'Yes'],\n", + " ['LEC005',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53705',\n", + " '40.712776',\n", + " '-74.005974',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'early bird',\n", + " 'No'],\n", + " ['LEC005',\n", + " '20',\n", + " 'Statistics',\n", + " '53703',\n", + " '43.073051',\n", + " '-89.40123',\n", + " 'sausage',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC005',\n", + " '18',\n", + " 'Engineering: Mechanical',\n", + " '53562',\n", + " '1.3521',\n", + " '103.8198',\n", + " 'green pepper',\n", + " 'cat',\n", + " 'No',\n", + " 'early bird',\n", + " 'Maybe'],\n", + " ['LEC005',\n", + " '18',\n", + " 'Business: Finance',\n", + " '53706',\n", + " '40.416775',\n", + " '-3.70379',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'Yes',\n", + " 'early bird',\n", + " 'No'],\n", + " ['LEC005',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53703',\n", + " '42.00741',\n", + " '-87.69384',\n", + " 'mushroom',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC005',\n", + " '20',\n", + " 'Engineering: Mechanical',\n", + " '53703',\n", + " '40',\n", + " '-74',\n", + " 'none (just cheese)',\n", + " 'dog',\n", + " 'Yes',\n", + " 'early bird',\n", + " 'No'],\n", + " ['LEC005',\n", + " '18',\n", + " 'Data Science',\n", + " '53706',\n", + " '23.7275',\n", + " '37.9838',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'Yes',\n", + " 'early bird',\n", + " 'Yes'],\n", + " ['LEC005',\n", + " '',\n", + " 'Data Science',\n", + " '53715',\n", + " '35.72',\n", + " '-78.89',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC005',\n", + " '20',\n", + " 'Information science',\n", + " '53590',\n", + " '44.92556',\n", + " '-89.51539',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC005',\n", + " '20',\n", + " 'Computer Science',\n", + " '53726',\n", + " '39.4817',\n", + " '106.0384',\n", + " 'Other',\n", + " 'neither',\n", + " 'Yes',\n", + " 'early bird',\n", + " 'Yes'],\n", + " ['LEC005',\n", + " '19',\n", + " 'Mathematics/AMEP',\n", + " '53715',\n", + " '48.85',\n", + " '2.35',\n", + " 'sausage',\n", + " 'cat',\n", + " 'No',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC005',\n", + " '19',\n", + " 'Data Science',\n", + " '53706',\n", + " '30.572815',\n", + " '104.066803',\n", + " 'mushroom',\n", + " 'neither',\n", + " 'No',\n", + " 'early bird',\n", + " 'Yes'],\n", + " ['LEC005',\n", + " '21',\n", + " 'Data Science',\n", + " '48823',\n", + " '11.451419',\n", + " '19.81',\n", + " 'mushroom',\n", + " 'neither',\n", + " 'No',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC005',\n", + " '21',\n", + " 'Data Science',\n", + " '53705',\n", + " '42.3601',\n", + " '71.0589',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'Yes',\n", + " 'no preference',\n", + " 'Yes'],\n", + " ['LEC005',\n", + " '19',\n", + " 'Computer Science',\n", + " '53706',\n", + " '48.856613',\n", + " '2.352222',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC005',\n", + " '20',\n", + " 'Mathematics/AMEP',\n", + " '53703',\n", + " '32.060253',\n", + " '118.796875',\n", + " 'pineapple',\n", + " 'cat',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC005',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53706',\n", + " '38.571739',\n", + " '-109.550797',\n", + " 'pepperoni',\n", + " 'cat',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC005',\n", + " '23',\n", + " 'Business: Information Systems',\n", + " '53705',\n", + " '27.99',\n", + " '120.69',\n", + " 'green pepper',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'No'],\n", + " ['LEC005',\n", + " '18',\n", + " 'Computer Science',\n", + " '53706',\n", + " '21.3099',\n", + " '157.8581',\n", + " 'pepperoni',\n", + " 'cat',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC005',\n", + " '21',\n", + " 'Economics',\n", + " '53705',\n", + " '25.032969',\n", + " '120.960518',\n", + " 'sausage',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC005',\n", + " '19',\n", + " 'Engineering: Industrial',\n", + " '53703',\n", + " '42.03992',\n", + " '87.67732',\n", + " 'sausage',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC005',\n", + " '21',\n", + " 'Mathematics/AMEP',\n", + " '53703',\n", + " '22.542883',\n", + " '114.062996',\n", + " 'pepperoni',\n", + " 'cat',\n", + " 'No',\n", + " 'no preference',\n", + " 'Maybe'],\n", + " ['LEC005',\n", + " '21',\n", + " 'Economics (Mathematical Emphasis)',\n", + " '53715',\n", + " '55.676098',\n", + " '12.568337',\n", + " 'pepperoni',\n", + " 'cat',\n", + " 'No',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC005',\n", + " '19',\n", + " 'Engineering: Biomedical',\n", + " '53703',\n", + " '41.8781',\n", + " '87.6298',\n", + " 'macaroni/pasta',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'No'],\n", + " ['LEC005',\n", + " '18',\n", + " 'Data Science',\n", + " '53706',\n", + " '40',\n", + " '74',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'no preference',\n", + " 'Yes'],\n", + " ['LEC005',\n", + " '18',\n", + " 'Data Science',\n", + " '53706',\n", + " '32.715736',\n", + " '-117.161087',\n", + " 'sausage',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC005',\n", + " '19',\n", + " 'Data Science',\n", + " '53703',\n", + " '-33.92487',\n", + " '18.424055',\n", + " 'none (just cheese)',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC005',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53703',\n", + " '-36.848461',\n", + " '174.763336',\n", + " 'none (just cheese)',\n", + " 'dog',\n", + " 'Yes',\n", + " 'no preference',\n", + " 'No'],\n", + " ['LEC005',\n", + " '18',\n", + " 'Data Science',\n", + " '53706',\n", + " '52.520008',\n", + " '13.404954',\n", + " 'pineapple',\n", + " 'dog',\n", + " 'Yes',\n", + " 'early bird',\n", + " 'No'],\n", + " ['LEC005',\n", + " '19',\n", + " 'Computer Science',\n", + " '53706',\n", + " '41.3784',\n", + " '2.1686',\n", + " 'sausage',\n", + " 'cat',\n", + " 'No',\n", + " 'no preference',\n", + " 'Yes'],\n", + " ['LEC005',\n", + " '',\n", + " 'Computer Science',\n", + " '53715',\n", + " '44.9778',\n", + " '93.265',\n", + " 'sausage',\n", + " 'cat',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC005',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53715',\n", + " '48.502281',\n", + " '-113.988533',\n", + " 'sausage',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC005',\n", + " '24',\n", + " 'Business: Other',\n", + " '53703',\n", + " '43.073051',\n", + " '-89.40123',\n", + " 'pineapple',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC005',\n", + " '21',\n", + " 'Science: Other|Personal Finance',\n", + " '53703',\n", + " '28.228209',\n", + " '112.938812',\n", + " 'pepperoni',\n", + " 'cat',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC005',\n", + " '18',\n", + " 'Environmental science',\n", + " '53706',\n", + " '31.224361',\n", + " '121.46917',\n", + " 'mushroom',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC005',\n", + " '18',\n", + " 'Engineering: Industrial',\n", + " '53706',\n", + " '40.712776',\n", + " '-74.005974',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC005',\n", + " '18',\n", + " 'Engineering: Industrial',\n", + " '53703',\n", + " '41.385063',\n", + " '2.173404',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'Yes',\n", + " 'no preference',\n", + " 'Yes'],\n", + " ['LEC005',\n", + " '21',\n", + " 'Economics',\n", + " '53703',\n", + " '40.016869',\n", + " '-105.279617',\n", + " 'pepperoni',\n", + " 'cat',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC005',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53711',\n", + " '38.8951',\n", + " '-77.0364',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'No'],\n", + " ['LEC005',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53703',\n", + " '41.881832',\n", + " '87.6298',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'no preference',\n", + " 'Yes'],\n", + " ['LEC005',\n", + " '18',\n", + " 'Data Science',\n", + " '53706',\n", + " '52.370216',\n", + " '4.895168',\n", + " 'basil/spinach',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC005',\n", + " '25',\n", + " 'Engineering: Other',\n", + " '53705',\n", + " '32.7157',\n", + " '-117.1611',\n", + " 'mushroom',\n", + " 'dog',\n", + " 'No',\n", + " 'no preference',\n", + " 'Yes'],\n", + " ['LEC005',\n", + " '18',\n", + " 'Computer Science',\n", + " '53706',\n", + " '1.28217',\n", + " '103.865196',\n", + " 'sausage',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC005',\n", + " '20',\n", + " 'Data Science',\n", + " '53703',\n", + " '45.259546',\n", + " '-84.938476',\n", + " 'mushroom',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC005',\n", + " '20',\n", + " 'Science: Biology/Life',\n", + " '53703',\n", + " '44.276402',\n", + " '-88.26989',\n", + " 'macaroni/pasta',\n", + " 'cat',\n", + " 'No',\n", + " 'no preference',\n", + " 'Maybe'],\n", + " ['LEC005',\n", + " '18',\n", + " 'Engineering: Industrial',\n", + " '53706',\n", + " '43.085369',\n", + " '-88.912086',\n", + " 'sausage',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC005',\n", + " '18',\n", + " 'Undecided',\n", + " '53706',\n", + " '43.073929',\n", + " '-89.385239',\n", + " 'sausage',\n", + " 'dog',\n", + " 'Yes',\n", + " 'early bird',\n", + " 'Yes'],\n", + " ['LEC005',\n", + " '20',\n", + " 'Engineering: Mechanical',\n", + " '53715',\n", + " '39.904202',\n", + " '116.407394',\n", + " 'sausage',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC005',\n", + " '21',\n", + " 'Economics',\n", + " '53715',\n", + " '46.81',\n", + " '-71.21',\n", + " 'pepperoni',\n", + " 'cat',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC005',\n", + " '21',\n", + " 'Engineering: Mechanical',\n", + " '53726',\n", + " '43.804801',\n", + " '-91.226075',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC005',\n", + " '21',\n", + " 'Computer Science',\n", + " '53703',\n", + " '43.07515',\n", + " '-89.3958',\n", + " 'sausage',\n", + " 'neither',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC005',\n", + " '20',\n", + " 'Data Science',\n", + " '53703',\n", + " '25.0838',\n", + " '77.3212',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC005',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53715',\n", + " '43.769562',\n", + " '11.255814',\n", + " 'basil/spinach',\n", + " 'neither',\n", + " 'No',\n", + " 'early bird',\n", + " 'No'],\n", + " ['LEC005',\n", + " '21',\n", + " 'Economics',\n", + " '53703',\n", + " '47.62772',\n", + " '-122.51368',\n", + " 'macaroni/pasta',\n", + " 'cat',\n", + " 'No',\n", + " 'no preference',\n", + " 'No'],\n", + " ['LEC005',\n", + " '18',\n", + " 'Data Science',\n", + " '53706',\n", + " '14.77046',\n", + " '-91.183189',\n", + " 'mushroom',\n", + " 'cat',\n", + " 'No',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC005',\n", + " '18',\n", + " 'Computer Science',\n", + " '53715',\n", + " '28.538336',\n", + " '-81.379234',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC005',\n", + " '18',\n", + " 'Engineering: Other',\n", + " '53706',\n", + " '41.385063',\n", + " '2.173404',\n", + " 'mushroom',\n", + " 'cat',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC005',\n", + " '20',\n", + " 'Engineering: Biomedical',\n", + " '53703',\n", + " '47.497913',\n", + " '19.040236',\n", + " 'Other',\n", + " 'cat',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'No'],\n", + " ['LEC005',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53715',\n", + " '33.448376',\n", + " '-112.074036',\n", + " 'pepperoni',\n", + " 'neither',\n", + " 'Yes',\n", + " 'early bird',\n", + " 'No'],\n", + " ['LEC005',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53703',\n", + " '43.073051',\n", + " '-89.40123',\n", + " 'pepperoni',\n", + " 'cat',\n", + " 'No',\n", + " 'no preference',\n", + " 'Yes'],\n", + " ['LEC005',\n", + " '19',\n", + " 'Science: Physics',\n", + " '53703',\n", + " '78.225',\n", + " '15.626',\n", + " 'sausage',\n", + " 'cat',\n", + " 'No',\n", + " 'early bird',\n", + " 'No'],\n", + " ['LEC005',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53715',\n", + " '35.0844',\n", + " '106.6504',\n", + " 'pineapple',\n", + " 'dog',\n", + " 'Yes',\n", + " 'early bird',\n", + " 'Yes'],\n", + " ['LEC005',\n", + " '18',\n", + " 'Economics',\n", + " '53706',\n", + " '43',\n", + " '-87.9',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'Yes',\n", + " 'early bird',\n", + " 'Maybe'],\n", + " ['LEC005',\n", + " '23',\n", + " 'Business: Other|Business Analytics',\n", + " '53703',\n", + " '31.230391',\n", + " '121.473701',\n", + " 'pineapple',\n", + " 'cat',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC005',\n", + " '18',\n", + " 'Computer Science',\n", + " '53706',\n", + " '43.0722',\n", + " '89.4008',\n", + " 'sausage',\n", + " 'cat',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC005',\n", + " '18',\n", + " 'Data Science',\n", + " '53706',\n", + " '56.117017',\n", + " '-3.879547',\n", + " 'pineapple',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC005',\n", + " '21',\n", + " 'Psychology',\n", + " '53703',\n", + " '43.038902',\n", + " '-87.906471',\n", + " 'macaroni/pasta',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC005',\n", + " '21',\n", + " 'Data Science',\n", + " '53703',\n", + " '38.240946',\n", + " '-85.757571',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'no preference',\n", + " 'Yes'],\n", + " ['LEC005',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53703',\n", + " '43.07291',\n", + " '-89.39439',\n", + " 'sausage',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC005',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53715',\n", + " '56.373482',\n", + " '-3.84306',\n", + " 'none (just cheese)',\n", + " 'dog',\n", + " 'No',\n", + " 'early bird',\n", + " 'Yes'],\n", + " ['LEC005',\n", + " '19',\n", + " 'Data Science',\n", + " '53703',\n", + " '41.381717',\n", + " '2.177925',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC005',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53714',\n", + " '43.089199',\n", + " '87.8876',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC005',\n", + " '19',\n", + " 'Engineering: Other',\n", + " '53590',\n", + " '38.4',\n", + " '11.2',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'Yes',\n", + " 'early bird',\n", + " 'No'],\n", + " ['LEC005',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53715',\n", + " '25.761681',\n", + " '-80.191788',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'No'],\n", + " ['LEC005',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53703',\n", + " '44.5133',\n", + " '88.0133',\n", + " 'mushroom',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC005',\n", + " '19',\n", + " 'Business: Finance',\n", + " '53703',\n", + " '38.98378',\n", + " '-77.20871',\n", + " 'none (just cheese)',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC005',\n", + " '18',\n", + " 'Business: Finance',\n", + " '53703',\n", + " '22.9068',\n", + " '43.1729',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC005',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53715',\n", + " '43.073051',\n", + " '-89.40123',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'early bird',\n", + " 'No'],\n", + " ['LEC005',\n", + " '18',\n", + " 'Engineering: Biomedical',\n", + " '53715',\n", + " '46.58276',\n", + " '7.08058',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'early bird',\n", + " 'No'],\n", + " ['LEC005',\n", + " '21',\n", + " 'Mathematics/AMEP',\n", + " '53703',\n", + " '13.756331',\n", + " '100.501762',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC005',\n", + " '20',\n", + " 'Engineering: Biomedical',\n", + " '53715',\n", + " '28.538336',\n", + " '-81.379234',\n", + " 'sausage',\n", + " 'cat',\n", + " 'No',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC005',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53715',\n", + " '42.15',\n", + " '-87.96',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC005',\n", + " '20',\n", + " 'Journalism',\n", + " '53715',\n", + " '41.3874',\n", + " '2.1686',\n", + " 'basil/spinach',\n", + " 'dog',\n", + " 'Yes',\n", + " 'early bird',\n", + " 'Maybe'],\n", + " ['LEC005',\n", + " '17',\n", + " 'Data Science',\n", + " '53706',\n", + " '40.7128',\n", + " '74.006',\n", + " 'macaroni/pasta',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC005',\n", + " '19',\n", + " 'Science: Other|Politcal Science',\n", + " '53703',\n", + " '41.878113',\n", + " '-87.629799',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'No'],\n", + " ['LEC005',\n", + " '18',\n", + " 'Engineering: Industrial',\n", + " '53706',\n", + " '45.440845',\n", + " '12.315515',\n", + " 'sausage',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC005',\n", + " '18',\n", + " 'Political Science',\n", + " '53706',\n", + " '42.360081',\n", + " '-71.058884',\n", + " 'macaroni/pasta',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC005',\n", + " '17',\n", + " 'Data Science',\n", + " '53703',\n", + " '49.2827',\n", + " '123.1207',\n", + " 'sausage',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC005',\n", + " '',\n", + " 'Statistics',\n", + " '53726',\n", + " '40.712776',\n", + " '-74.005974',\n", + " 'Other',\n", + " 'dog',\n", + " 'Yes',\n", + " 'no preference',\n", + " 'Yes'],\n", + " ['LEC005',\n", + " '32',\n", + " 'Communication Sciences and Disorder',\n", + " '53705',\n", + " '37.566536',\n", + " '126.977966',\n", + " 'pineapple',\n", + " 'dog',\n", + " 'Yes',\n", + " 'no preference',\n", + " 'Yes'],\n", + " ['LEC005',\n", + " '20',\n", + " 'Engineering: Biomedical',\n", + " '53711',\n", + " '35.689487',\n", + " '139.691711',\n", + " 'basil/spinach',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC005',\n", + " '22',\n", + " 'Science: Other|Atmospheric and oceanic science',\n", + " '53703',\n", + " '26.1224',\n", + " '80.1373',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'early bird',\n", + " 'No'],\n", + " ['LEC005',\n", + " '21',\n", + " 'Business: Finance',\n", + " '53703',\n", + " '43.11339',\n", + " '-89.37726',\n", + " 'sausage',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC005',\n", + " '19',\n", + " 'Computer Science',\n", + " '53715',\n", + " '48.8566',\n", + " '2.3522',\n", + " 'sausage',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC005',\n", + " '22',\n", + " 'Economics',\n", + " '53711',\n", + " '48.135124',\n", + " '11.581981',\n", + " 'pepperoni',\n", + " 'cat',\n", + " 'Yes',\n", + " 'no preference',\n", + " 'Yes'],\n", + " ['LEC005',\n", + " '18',\n", + " 'Undecided',\n", + " '53706',\n", + " '55.676098',\n", + " '12.568337',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'No'],\n", + " ['LEC005',\n", + " '21',\n", + " 'Science: Biology/Life',\n", + " '53703',\n", + " '21.23556',\n", + " '-86.73142',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC005',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53703',\n", + " '49.28273',\n", + " '-123.120735',\n", + " 'basil/spinach',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC005',\n", + " '18',\n", + " 'Engineering: Industrial',\n", + " '53715',\n", + " '21.306944',\n", + " '-157.858337',\n", + " 'none (just cheese)',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC005',\n", + " '18',\n", + " 'Science: Biology/Life',\n", + " '53706',\n", + " '44.513317',\n", + " '-88.013298',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'No'],\n", + " ['LEC005',\n", + " '19',\n", + " 'Data Science',\n", + " '53706',\n", + " '36.169941',\n", + " '-115.139832',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC005',\n", + " '20',\n", + " 'Engineering: Mechanical',\n", + " '53703',\n", + " '43.17854',\n", + " '-89.163391',\n", + " 'sausage',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC005',\n", + " '20',\n", + " 'Data Science',\n", + " '53715',\n", + " '43.355099',\n", + " '11.02956',\n", + " 'sausage',\n", + " 'dog',\n", + " 'No',\n", + " 'early bird',\n", + " 'Maybe'],\n", + " ['LEC005',\n", + " '24',\n", + " 'Mathematics/AMEP',\n", + " '53705',\n", + " '40.7',\n", + " '-74',\n", + " 'pineapple',\n", + " 'cat',\n", + " 'No',\n", + " 'early bird',\n", + " 'Maybe'],\n", + " ['LEC005',\n", + " '20',\n", + " 'Data Science',\n", + " '53726',\n", + " '31.230391',\n", + " '121.473701',\n", + " 'none (just cheese)',\n", + " 'dog',\n", + " 'Yes',\n", + " 'no preference',\n", + " 'Maybe'],\n", + " ['LEC005',\n", + " '18',\n", + " 'Engineering: Mechanical',\n", + " '53706',\n", + " '41.878113',\n", + " '-87.629799',\n", + " 'Other',\n", + " 'cat',\n", + " 'No',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC005',\n", + " '19',\n", + " 'Statistics',\n", + " '53703',\n", + " '43.05367',\n", + " '-88.44062',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'No'],\n", + " ['LEC005',\n", + " '19',\n", + " 'Data Science',\n", + " '53726',\n", + " '43.073051',\n", + " '-89.40123',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'early bird',\n", + " 'Yes'],\n", + " ['LEC005',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53726',\n", + " '46.870899',\n", + " '-89.313789',\n", + " 'sausage',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC005',\n", + " '18',\n", + " 'Data Science',\n", + " '53711',\n", + " '35.1796',\n", + " '129.0756',\n", + " 'pepperoni',\n", + " 'cat',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC005',\n", + " '17',\n", + " 'Statistics',\n", + " '53706',\n", + " '31.23',\n", + " '121.47',\n", + " 'sausage',\n", + " 'cat',\n", + " 'No',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC005',\n", + " '19',\n", + " 'Economics',\n", + " '53703',\n", + " '47.606209',\n", + " '-122.332069',\n", + " 'pineapple',\n", + " 'neither',\n", + " 'No',\n", + " 'no preference',\n", + " 'Maybe'],\n", + " ['LEC005',\n", + " '21',\n", + " 'Science: Biology/Life',\n", + " '53726',\n", + " '40.76078',\n", + " '-111.891045',\n", + " 'mushroom',\n", + " 'dog',\n", + " 'No',\n", + " 'no preference',\n", + " 'Yes'],\n", + " ['LEC005',\n", + " '18',\n", + " 'Engineering: Other',\n", + " '53706',\n", + " '64.147209',\n", + " '-21.9424',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC005',\n", + " '22',\n", + " 'Data Science',\n", + " '53711',\n", + " '39.738449',\n", + " '-104.984848',\n", + " 'none (just cheese)',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC005',\n", + " '21',\n", + " 'Engineering: Industrial',\n", + " '53715',\n", + " '1.352083',\n", + " '103.819839',\n", + " 'none (just cheese)',\n", + " 'neither',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC005',\n", + " '20',\n", + " 'Business: Actuarial',\n", + " '53703',\n", + " '45.003288',\n", + " '-90.329788',\n", + " 'sausage',\n", + " 'dog',\n", + " 'No',\n", + " 'early bird',\n", + " 'Maybe'],\n", + " ['LEC005',\n", + " '20',\n", + " 'Engineering: Mechanical',\n", + " '53703',\n", + " '43.073051',\n", + " '-89.40123',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'Yes',\n", + " 'early bird',\n", + " 'No'],\n", + " ['LEC005',\n", + " '19',\n", + " 'Data Science',\n", + " '53703',\n", + " '43.2708',\n", + " '89.7221',\n", + " 'sausage',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'No'],\n", + " ['LEC005',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53703',\n", + " '44.74931',\n", + " '-92.80088',\n", + " 'pineapple',\n", + " 'dog',\n", + " 'No',\n", + " 'early bird',\n", + " 'No'],\n", + " ['LEC005',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53703',\n", + " '18.34791',\n", + " '-64.71424',\n", + " 'basil/spinach',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'No'],\n", + " ['LEC005',\n", + " '19',\n", + " 'Engineering: Biomedical',\n", + " '53706',\n", + " '36.462',\n", + " '25.375465',\n", + " 'basil/spinach',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'No'],\n", + " ['LEC005',\n", + " '20',\n", + " 'Science: Physics',\n", + " '53703',\n", + " '46.2833',\n", + " '-89.73',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'early bird',\n", + " 'Maybe'],\n", + " ['LEC005',\n", + " '',\n", + " 'Data Science',\n", + " '53703',\n", + " '43.073051',\n", + " '-89.40123',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'No'],\n", + " ['LEC005',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53711',\n", + " '30.572815',\n", + " '104.066803',\n", + " 'pineapple',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC005',\n", + " '18',\n", + " 'Psychology',\n", + " '53706',\n", + " '9.167414',\n", + " '77.876747',\n", + " 'mushroom',\n", + " 'cat',\n", + " 'No',\n", + " 'early bird',\n", + " 'No']],\n", + " 'LEC002': [['LEC002',\n", + " '',\n", + " 'Undecided',\n", + " '53706',\n", + " '43.073051',\n", + " '-89.40123',\n", + " 'none (just cheese)',\n", + " 'neither',\n", + " 'No',\n", + " 'no preference',\n", + " 'Maybe'],\n", + " ['LEC002',\n", + " '21',\n", + " 'Engineering: Other',\n", + " '53703',\n", + " '24.713552',\n", + " '46.675297',\n", + " 'none (just cheese)',\n", + " 'cat',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC002',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '57303',\n", + " '41.878113',\n", + " '-87.629799',\n", + " 'pineapple',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC002',\n", + " '19',\n", + " 'Mathematics/AMEP',\n", + " '53558',\n", + " '40.712776',\n", + " '-74.005974',\n", + " 'sausage',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC002',\n", + " '21',\n", + " 'Science: Other|Political Science',\n", + " '53703',\n", + " '31.768318',\n", + " '35.213711',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'no preference',\n", + " 'Maybe'],\n", + " ['LEC002',\n", + " '19',\n", + " 'Business: Finance',\n", + " '53726',\n", + " '43.04156',\n", + " '87.91006',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC002',\n", + " '21',\n", + " 'Data Science',\n", + " '53713',\n", + " '29.868336',\n", + " '121.543991',\n", + " 'mushroom',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'No'],\n", + " ['LEC002',\n", + " '20',\n", + " 'Statistics',\n", + " '53703',\n", + " '40.7128',\n", + " '74.006',\n", + " 'Other',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC002',\n", + " '21',\n", + " 'Statistics',\n", + " '53703',\n", + " '52.370216',\n", + " '4.895168',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'Yes',\n", + " 'early bird',\n", + " 'Maybe'],\n", + " ['LEC002',\n", + " '18',\n", + " 'Undecided',\n", + " '53706',\n", + " '38.56247',\n", + " '-121.70411',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC002',\n", + " '18',\n", + " 'Data Science',\n", + " '53706',\n", + " '36',\n", + " '117',\n", + " 'Other',\n", + " 'dog',\n", + " 'No',\n", + " 'early bird',\n", + " 'Maybe'],\n", + " ['LEC002',\n", + " '',\n", + " 'Computer Science',\n", + " '53711',\n", + " '2.81375',\n", + " '101.504272',\n", + " 'sausage',\n", + " 'dog',\n", + " 'Yes',\n", + " 'no preference',\n", + " 'Maybe'],\n", + " ['LEC002',\n", + " '19',\n", + " 'Data Science',\n", + " '53704',\n", + " '26.473308',\n", + " '50.048218',\n", + " 'Other',\n", + " 'cat',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC002',\n", + " '22',\n", + " 'Economics',\n", + " '53703',\n", + " '34.052235',\n", + " '-118.243683',\n", + " 'pineapple',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC002',\n", + " '18',\n", + " 'Science: Physics',\n", + " '53703',\n", + " '32',\n", + " '118',\n", + " 'sausage',\n", + " 'neither',\n", + " 'No',\n", + " 'night owl',\n", + " 'No'],\n", + " ['LEC002',\n", + " '',\n", + " 'Computer Science',\n", + " '53706',\n", + " '43.073051',\n", + " '-89.40123',\n", + " 'Other',\n", + " 'neither',\n", + " 'Yes',\n", + " 'no preference',\n", + " 'Maybe'],\n", + " ['LEC002',\n", + " '20',\n", + " 'Engineering: Mechanical',\n", + " '53706',\n", + " '35.6762',\n", + " '139.6503',\n", + " 'sausage',\n", + " 'cat',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC002',\n", + " '21',\n", + " 'Business: Information Systems',\n", + " '53713',\n", + " '43.03638',\n", + " '-89.40292',\n", + " 'pineapple',\n", + " 'neither',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC002',\n", + " '22',\n", + " 'Science: Biology/Life',\n", + " '53711',\n", + " '43.073051',\n", + " '-89.40123',\n", + " 'mushroom',\n", + " 'cat',\n", + " 'No',\n", + " 'no preference',\n", + " 'No'],\n", + " ['LEC002',\n", + " '19',\n", + " 'Psychology',\n", + " '53715',\n", + " '30.5928',\n", + " '114.3052',\n", + " 'sausage',\n", + " 'cat',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC002',\n", + " '21',\n", + " 'Engineering: Mechanical',\n", + " '53705',\n", + " '37.566536',\n", + " '126.977966',\n", + " 'mushroom',\n", + " 'cat',\n", + " 'Yes',\n", + " 'no preference',\n", + " 'Maybe'],\n", + " ['LEC002',\n", + " '18',\n", + " 'Undecided',\n", + " '53715',\n", + " '48.775845',\n", + " '9.182932',\n", + " 'Other',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC002',\n", + " '19',\n", + " 'Business: Information Systems',\n", + " '53703',\n", + " '42.360081',\n", + " '-71.058884',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'no preference',\n", + " 'Yes'],\n", + " ['LEC002',\n", + " '21',\n", + " 'Business: Other|Accounting',\n", + " '53703',\n", + " '41.8781',\n", + " '87.6298',\n", + " 'pepperoni',\n", + " 'cat',\n", + " 'No',\n", + " 'night owl',\n", + " 'No'],\n", + " ['LEC002',\n", + " '17',\n", + " 'Undecided',\n", + " '53706',\n", + " '33.742185',\n", + " '-84.386124',\n", + " 'Other',\n", + " 'dog',\n", + " 'No',\n", + " 'no preference',\n", + " 'Yes'],\n", + " ['LEC002',\n", + " '18',\n", + " 'Data Science',\n", + " '53706',\n", + " '37.34163',\n", + " '-122.05411',\n", + " 'sausage',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC002',\n", + " '',\n", + " 'Business: Other|business analytics',\n", + " '53703',\n", + " '31.230391',\n", + " '121.473701',\n", + " 'none (just cheese)',\n", + " 'cat',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC002',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53726',\n", + " '47.141041',\n", + " '9.52145',\n", + " 'mushroom',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC002',\n", + " '',\n", + " 'Computer Science',\n", + " '53715',\n", + " '41.8781',\n", + " '87.6298',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'no preference',\n", + " 'Maybe'],\n", + " ['LEC002',\n", + " '26',\n", + " 'Science: Other|animal sciences',\n", + " '53705',\n", + " '25.204849',\n", + " '55.270782',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'no preference',\n", + " 'Maybe'],\n", + " ['LEC002',\n", + " '19',\n", + " 'Engineering: Industrial',\n", + " '53703',\n", + " '41.878',\n", + " '-87.63',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC002',\n", + " '19',\n", + " 'Mathematics/AMEP',\n", + " '53715',\n", + " '37.80718',\n", + " '23.734864',\n", + " 'pineapple',\n", + " 'cat',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC002',\n", + " '19',\n", + " 'Economics',\n", + " '53703',\n", + " '90.1994',\n", + " '38.627',\n", + " 'none (just cheese)',\n", + " 'dog',\n", + " 'No',\n", + " 'early bird',\n", + " 'Yes'],\n", + " ['LEC002',\n", + " '21',\n", + " 'Mathematics, Data Science',\n", + " '53703',\n", + " '30.572815',\n", + " '104.066803',\n", + " 'sausage',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC002',\n", + " '',\n", + " 'Computer Science',\n", + " '53717',\n", + " '36',\n", + " '139',\n", + " 'mushroom',\n", + " 'dog',\n", + " 'Yes',\n", + " 'early bird',\n", + " 'Yes'],\n", + " ['LEC002',\n", + " '21',\n", + " 'Mathematics/AMEP',\n", + " '53703',\n", + " '20.878332',\n", + " '-156.682495',\n", + " 'pepperoni',\n", + " 'cat',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC002',\n", + " '',\n", + " 'Undecided',\n", + " '53703',\n", + " '30.5723',\n", + " '104.0665',\n", + " 'sausage',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC002',\n", + " '18',\n", + " 'Engineering: Mechanical',\n", + " '53706',\n", + " '53707',\n", + " '-88.415382',\n", + " 'Other',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC002',\n", + " '21',\n", + " 'Economics',\n", + " '53705',\n", + " '25.03841',\n", + " '121.5637',\n", + " 'pepperoni',\n", + " 'cat',\n", + " 'No',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC002',\n", + " '19',\n", + " 'Engineering: Biomedical',\n", + " '53706',\n", + " '48.494904',\n", + " '-113.979034',\n", + " 'macaroni/pasta',\n", + " 'cat',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC002',\n", + " '20',\n", + " 'Economics',\n", + " '53703',\n", + " '43.769562',\n", + " '11.255814',\n", + " 'mushroom',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC002',\n", + " '20',\n", + " 'Engineering: Industrial',\n", + " '53703',\n", + " '44.389',\n", + " '12.9908',\n", + " 'sausage',\n", + " 'dog',\n", + " 'No',\n", + " 'early bird',\n", + " 'Maybe'],\n", + " ['LEC002',\n", + " '21',\n", + " 'Mathematics/AMEP',\n", + " '53715',\n", + " '42.360081',\n", + " '-71.058884',\n", + " 'mushroom',\n", + " 'neither',\n", + " 'Yes',\n", + " 'early bird',\n", + " 'Yes'],\n", + " ['LEC002',\n", + " '18',\n", + " 'Engineering: Industrial',\n", + " '53715',\n", + " '40.712776',\n", + " '-74.005974',\n", + " 'pineapple',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC002',\n", + " '24',\n", + " 'Computer Science',\n", + " '53715',\n", + " '30.704852',\n", + " '104.003904',\n", + " 'mushroom',\n", + " 'neither',\n", + " 'Yes',\n", + " 'no preference',\n", + " 'Maybe'],\n", + " ['LEC002',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53703',\n", + " '44.46534',\n", + " '-72.684303',\n", + " 'green pepper',\n", + " 'cat',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC002',\n", + " '20',\n", + " 'Engineering: Industrial',\n", + " '53726',\n", + " '43.038902',\n", + " '-87.906471',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC002',\n", + " '22',\n", + " 'Computer Science',\n", + " '53715',\n", + " '42',\n", + " '-71',\n", + " 'mushroom',\n", + " 'cat',\n", + " 'No',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC002',\n", + " '19',\n", + " 'Data Science',\n", + " '53703',\n", + " '33.4942',\n", + " '89.4959',\n", + " 'sausage',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC002',\n", + " '20',\n", + " 'Economics',\n", + " '53703',\n", + " '38.627003',\n", + " '-90.199402',\n", + " 'mushroom',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC002',\n", + " '22',\n", + " 'Mathematics/AMEP',\n", + " '53704',\n", + " '40.76078',\n", + " '-111.891045',\n", + " 'pineapple',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'No'],\n", + " ['LEC002',\n", + " '20',\n", + " 'Conservation Biology',\n", + " '53703',\n", + " '40.16573',\n", + " '-105.101189',\n", + " 'pineapple',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC002',\n", + " '21',\n", + " 'Science: Biology/Life',\n", + " '53703',\n", + " '43.038902',\n", + " '-87.906471',\n", + " 'none (just cheese)',\n", + " 'neither',\n", + " 'No',\n", + " 'no preference',\n", + " 'Yes'],\n", + " ['LEC002',\n", + " '',\n", + " 'Engineering: Mechanical',\n", + " '53706',\n", + " '14.34836',\n", + " '100.576271',\n", + " 'pepperoni',\n", + " 'neither',\n", + " 'No',\n", + " 'no preference',\n", + " 'Maybe'],\n", + " ['LEC002',\n", + " '',\n", + " 'Computer Science',\n", + " '53705',\n", + " '25.032969',\n", + " '121.565414',\n", + " 'pineapple',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC002',\n", + " '21',\n", + " 'Data Science',\n", + " '53711',\n", + " '120',\n", + " '30',\n", + " 'sausage',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC002',\n", + " '19',\n", + " 'Engineering: Industrial',\n", + " '53705',\n", + " '35.084385',\n", + " '-106.650421',\n", + " 'pineapple',\n", + " 'cat',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC002',\n", + " '21',\n", + " 'Economics',\n", + " '53715',\n", + " '37.369171',\n", + " '-122.112473',\n", + " 'mushroom',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'No'],\n", + " ['LEC002',\n", + " '19',\n", + " 'Business: Other|Marketing',\n", + " '53706',\n", + " '59.913868',\n", + " '10.752245',\n", + " 'macaroni/pasta',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC002',\n", + " '22',\n", + " 'Sociology',\n", + " '53703',\n", + " '53.483959',\n", + " '-2.244644',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC002',\n", + " '18',\n", + " 'Undecided',\n", + " '53706',\n", + " '43.073051',\n", + " '-89.40123',\n", + " 'pineapple',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC002',\n", + " '20',\n", + " 'Statistics',\n", + " '53715',\n", + " '23',\n", + " '113',\n", + " 'pineapple',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC002',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53703',\n", + " '26.345631',\n", + " '-81.779083',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC002',\n", + " '20',\n", + " 'Data Science',\n", + " '53703',\n", + " '43.073051',\n", + " '-89.40123',\n", + " 'macaroni/pasta',\n", + " 'dog',\n", + " 'Yes',\n", + " 'early bird',\n", + " 'Yes'],\n", + " ['LEC002',\n", + " '20',\n", + " 'Engineering: Mechanical',\n", + " '53715',\n", + " '23.7157',\n", + " '117.1611',\n", + " 'none (just cheese)',\n", + " 'cat',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC002',\n", + " '22',\n", + " 'Science: Other|Psychology',\n", + " '53703',\n", + " '37.82034',\n", + " '-122.47872',\n", + " 'mushroom',\n", + " 'dog',\n", + " 'No',\n", + " 'early bird',\n", + " 'No'],\n", + " ['LEC002',\n", + " '22',\n", + " 'Computer Science',\n", + " '53705',\n", + " '34.052235',\n", + " '-118.243683',\n", + " 'basil/spinach',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC002',\n", + " '18',\n", + " 'Economics',\n", + " '53715',\n", + " '41.878113',\n", + " '-87.629799',\n", + " 'basil/spinach',\n", + " 'cat',\n", + " 'No',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC002',\n", + " '18',\n", + " 'Engineering: Mechanical',\n", + " '53706',\n", + " '44.977753',\n", + " '-93.265015',\n", + " 'none (just cheese)',\n", + " 'cat',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC002',\n", + " '19',\n", + " 'Engineering: Biomedical',\n", + " '53703',\n", + " '37.98381',\n", + " '23.727539',\n", + " 'macaroni/pasta',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC002',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53711',\n", + " '41.95881',\n", + " '-85.32536',\n", + " 'Other',\n", + " 'dog',\n", + " 'No',\n", + " 'no preference',\n", + " 'No'],\n", + " ['LEC002',\n", + " '18',\n", + " 'Undecided',\n", + " '53706',\n", + " '43.060791',\n", + " '-88.119217',\n", + " 'Other',\n", + " 'neither',\n", + " 'No',\n", + " 'early bird',\n", + " 'Yes'],\n", + " ['LEC002',\n", + " '19',\n", + " 'Business: Information Systems',\n", + " '53715',\n", + " '44.5',\n", + " '-88',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC002',\n", + " '19',\n", + " 'Data Science',\n", + " '53705',\n", + " '21.59143',\n", + " '-158.01743',\n", + " 'Other',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC002',\n", + " '',\n", + " 'Business: Finance',\n", + " '53593',\n", + " '45.813042',\n", + " '9.080931',\n", + " 'Other',\n", + " 'dog',\n", + " 'No',\n", + " 'early bird',\n", + " 'Yes'],\n", + " ['LEC002',\n", + " '18',\n", + " 'Engineering: Biomedical',\n", + " '53706',\n", + " '17.385044',\n", + " '78.486671',\n", + " 'green pepper',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC002',\n", + " '',\n", + " 'Data Science',\n", + " '53713',\n", + " '30.316496',\n", + " '78.032188',\n", + " 'mushroom',\n", + " 'cat',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC002',\n", + " '',\n", + " 'Business: Information Systems',\n", + " '53703',\n", + " '35.689487',\n", + " '139.691711',\n", + " 'sausage',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC002',\n", + " '21',\n", + " 'Business: Other|MHR',\n", + " '53703',\n", + " '44',\n", + " '125',\n", + " 'Other',\n", + " 'neither',\n", + " 'No',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC002',\n", + " '18',\n", + " 'Undecided',\n", + " '53706',\n", + " '46.786671',\n", + " '-92.100487',\n", + " 'none (just cheese)',\n", + " 'cat',\n", + " 'No',\n", + " 'no preference',\n", + " 'Yes'],\n", + " ['LEC002',\n", + " '20',\n", + " 'Engineering: Industrial',\n", + " '53715',\n", + " '22.3',\n", + " '91.8',\n", + " 'sausage',\n", + " 'cat',\n", + " 'Yes',\n", + " 'early bird',\n", + " 'Maybe'],\n", + " ['LEC002',\n", + " '19',\n", + " 'Computer Science',\n", + " '53715',\n", + " '41.73993',\n", + " '-88.09423',\n", + " 'mushroom',\n", + " 'cat',\n", + " 'Yes',\n", + " 'no preference',\n", + " 'Yes'],\n", + " ['LEC002',\n", + " '21',\n", + " 'Economics',\n", + " '53703',\n", + " '26.074301',\n", + " '119.296539',\n", + " 'mushroom',\n", + " 'cat',\n", + " 'No',\n", + " 'no preference',\n", + " 'Maybe'],\n", + " ['LEC002',\n", + " '20',\n", + " 'Engineering: Industrial',\n", + " '53715',\n", + " '2.188477',\n", + " '41.379179',\n", + " 'sausage',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC002',\n", + " '18',\n", + " 'Data Science',\n", + " '53706',\n", + " '42.360081',\n", + " '-71.058884',\n", + " 'sausage',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC002',\n", + " '20',\n", + " 'Engineering: Mechanical',\n", + " '53703',\n", + " '46.453825',\n", + " '7.436478',\n", + " 'pineapple',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC002',\n", + " '20',\n", + " 'Economics',\n", + " '53703',\n", + " '30.49996',\n", + " '117.050003',\n", + " 'Other',\n", + " 'dog',\n", + " 'No',\n", + " 'early bird',\n", + " 'Maybe'],\n", + " ['LEC002',\n", + " '18',\n", + " 'Science: Biology/Life',\n", + " '53706',\n", + " '40.7831',\n", + " '73.9712',\n", + " 'basil/spinach',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC002',\n", + " '',\n", + " 'Business: Information Systems',\n", + " '53706',\n", + " '18.52043',\n", + " '73.856743',\n", + " 'green pepper',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC002',\n", + " '',\n", + " 'Computer Science',\n", + " '53706',\n", + " '29.424122',\n", + " '-98.493629',\n", + " 'none (just cheese)',\n", + " 'dog',\n", + " 'No',\n", + " 'no preference',\n", + " 'Yes'],\n", + " ['LEC002',\n", + " '20',\n", + " 'Engineering: Mechanical',\n", + " '53703',\n", + " '41.05995',\n", + " '-80.32312',\n", + " 'basil/spinach',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC002',\n", + " '21',\n", + " 'Science: Other',\n", + " '53703',\n", + " '41.878113',\n", + " '-87.629799',\n", + " 'pineapple',\n", + " 'dog',\n", + " 'Yes',\n", + " 'early bird',\n", + " 'No'],\n", + " ['LEC002',\n", + " '31',\n", + " 'Geoscience',\n", + " '53703',\n", + " '-41.126621',\n", + " '-73.059303',\n", + " 'pepperoni',\n", + " 'cat',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC002',\n", + " '18',\n", + " 'Engineering: Mechanical',\n", + " '53706',\n", + " '37.774929',\n", + " '-122.419418',\n", + " 'Other',\n", + " 'dog',\n", + " 'Yes',\n", + " 'no preference',\n", + " 'Yes'],\n", + " ['LEC002',\n", + " '19',\n", + " 'Science: Biology/Life',\n", + " '53703',\n", + " '51.492519',\n", + " '-0.25852',\n", + " 'sausage',\n", + " 'dog',\n", + " 'Yes',\n", + " 'no preference',\n", + " 'Yes'],\n", + " ['LEC002',\n", + " '19',\n", + " 'Data Science',\n", + " '53703',\n", + " '37.6',\n", + " '14.0154',\n", + " 'none (just cheese)',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC002',\n", + " '20',\n", + " 'Engineering: Industrial',\n", + " '53715',\n", + " '46.685631',\n", + " '7.8562',\n", + " 'Other',\n", + " 'cat',\n", + " 'No',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC002',\n", + " '22',\n", + " 'Economics',\n", + " '53706',\n", + " '41.385063',\n", + " '2.173404',\n", + " 'pineapple',\n", + " 'cat',\n", + " 'No',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC002',\n", + " '19',\n", + " 'Statistics',\n", + " '53703',\n", + " '43.769562',\n", + " '11.255814',\n", + " 'basil/spinach',\n", + " 'dog',\n", + " 'No',\n", + " 'no preference',\n", + " 'Yes'],\n", + " ['LEC002',\n", + " '19',\n", + " 'Business: Other|accounting',\n", + " '53703',\n", + " '43.38',\n", + " '-87.9',\n", + " 'sausage',\n", + " 'neither',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC002',\n", + " '18',\n", + " 'Science: Biology/Life',\n", + " '53706',\n", + " '40.122',\n", + " '25.4988',\n", + " 'sausage',\n", + " 'dog',\n", + " 'No',\n", + " 'early bird',\n", + " 'No'],\n", + " ['LEC002',\n", + " '18',\n", + " 'Data Science',\n", + " '53703',\n", + " '32.715736',\n", + " '-117.161087',\n", + " 'none (just cheese)',\n", + " 'cat',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC002',\n", + " '19',\n", + " 'Business: Finance',\n", + " '53715',\n", + " '42.360081',\n", + " '-71.058884',\n", + " 'mushroom',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC002',\n", + " '21',\n", + " 'Science: Biology/Life',\n", + " '53715',\n", + " '48.208176',\n", + " '16.373819',\n", + " 'Other',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'No'],\n", + " ['LEC002',\n", + " '18',\n", + " 'Engineering: Industrial',\n", + " '53706',\n", + " '10.480594',\n", + " '-66.903603',\n", + " 'mushroom',\n", + " 'neither',\n", + " 'No',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC002',\n", + " '',\n", + " 'Engineering: Industrial',\n", + " '53705',\n", + " '47.6',\n", + " '-122.33',\n", + " 'sausage',\n", + " 'dog',\n", + " 'No',\n", + " 'early bird',\n", + " 'No'],\n", + " ['LEC002',\n", + " '18',\n", + " 'Engineering: Industrial',\n", + " '53532',\n", + " '47.606209',\n", + " '-122.332069',\n", + " 'mushroom',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC002',\n", + " '17',\n", + " 'Engineering: Biomedical',\n", + " '53706',\n", + " '39.5755',\n", + " '-106.100403',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC002',\n", + " '20',\n", + " 'Data Science',\n", + " '53711',\n", + " '39.904202',\n", + " '116.407394',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC002',\n", + " '20',\n", + " 'Engineering: Mechanical',\n", + " '53703',\n", + " '41.28347',\n", + " '-70.099449',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC002',\n", + " '18',\n", + " 'Data Science',\n", + " '53706',\n", + " '3.864255',\n", + " '73.388672',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC002',\n", + " '18',\n", + " 'Computer Science',\n", + " '53706',\n", + " '22.543097',\n", + " '114.057861',\n", + " 'pepperoni',\n", + " 'cat',\n", + " 'No',\n", + " 'no preference',\n", + " 'Yes'],\n", + " ['LEC002',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53715',\n", + " '26.338',\n", + " '-81.775',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'Yes',\n", + " 'no preference',\n", + " 'Maybe'],\n", + " ['LEC002',\n", + " '',\n", + " 'Science: Other|Environmetal Science',\n", + " '53703',\n", + " '52.973558',\n", + " '-9.425102',\n", + " 'none (just cheese)',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC002',\n", + " '20',\n", + " 'Business: Finance',\n", + " '53703',\n", + " '40.7128',\n", + " '74.006',\n", + " 'pineapple',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC002',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53706',\n", + " '36.17',\n", + " '-115.14',\n", + " 'pepperoni',\n", + " 'cat',\n", + " 'No',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC002',\n", + " '18',\n", + " 'Science: Other',\n", + " '53706',\n", + " '35.6762',\n", + " '139.6503',\n", + " 'Other',\n", + " 'dog',\n", + " 'No',\n", + " 'no preference',\n", + " 'Yes'],\n", + " ['LEC002',\n", + " '18',\n", + " 'Data Science',\n", + " '53706',\n", + " '41.380898',\n", + " '2.12282',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC002',\n", + " '23',\n", + " 'Economics',\n", + " '53703',\n", + " '121',\n", + " '5',\n", + " 'pepperoni',\n", + " 'neither',\n", + " 'No',\n", + " 'no preference',\n", + " 'Maybe'],\n", + " ['LEC002',\n", + " '22',\n", + " 'Psychology',\n", + " '53703',\n", + " '25.032969',\n", + " '121.565414',\n", + " 'mushroom',\n", + " 'dog',\n", + " 'No',\n", + " 'no preference',\n", + " 'Yes'],\n", + " ['LEC002',\n", + " '18',\n", + " 'Engineering: Mechanical',\n", + " '53706',\n", + " '41.38879',\n", + " '2.15084',\n", + " 'sausage',\n", + " 'dog',\n", + " 'Yes',\n", + " 'no preference',\n", + " 'Maybe'],\n", + " ['LEC002',\n", + " '',\n", + " 'Computer Science',\n", + " '53706',\n", + " '41.8781',\n", + " '87.6298',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC002',\n", + " '17',\n", + " 'Business: Actuarial',\n", + " '53715',\n", + " '34.746613',\n", + " '113.625328',\n", + " 'sausage',\n", + " 'neither',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC002',\n", + " '18',\n", + " 'Computer Science',\n", + " '53706',\n", + " '35.96691',\n", + " '-75.627823',\n", + " 'sausage',\n", + " 'dog',\n", + " 'No',\n", + " 'early bird',\n", + " 'Yes'],\n", + " ['LEC002',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53703',\n", + " '44.822783',\n", + " '-93.370743',\n", + " 'sausage',\n", + " 'dog',\n", + " 'Yes',\n", + " 'early bird',\n", + " 'No'],\n", + " ['LEC002',\n", + " '20',\n", + " 'Business: Finance',\n", + " '53703',\n", + " '40.7831',\n", + " '73.9712',\n", + " 'sausage',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'No'],\n", + " ['LEC002',\n", + " '19',\n", + " 'Data Science',\n", + " '53715',\n", + " '25.73403',\n", + " '-80.24697',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC002',\n", + " '20',\n", + " 'Economics',\n", + " '53703',\n", + " '41.878113',\n", + " '-87.629799',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'Yes',\n", + " 'no preference',\n", + " 'Maybe'],\n", + " ['LEC002',\n", + " '23',\n", + " 'Business: Information Systems',\n", + " '53703',\n", + " '37.566536',\n", + " '126.977966',\n", + " 'sausage',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC002',\n", + " '17',\n", + " 'Business: Information Systems',\n", + " '53706',\n", + " '-6.17511',\n", + " '106.865036',\n", + " 'sausage',\n", + " 'neither',\n", + " 'No',\n", + " 'no preference',\n", + " 'Maybe'],\n", + " ['LEC002',\n", + " '25',\n", + " 'Science: Other|Geoscience',\n", + " '53711',\n", + " '46.947975',\n", + " '7.447447',\n", + " 'mushroom',\n", + " 'cat',\n", + " 'No',\n", + " 'no preference',\n", + " 'Yes'],\n", + " ['LEC002',\n", + " '20',\n", + " 'Economics',\n", + " '53703',\n", + " '46.7867',\n", + " '92.1005',\n", + " 'macaroni/pasta',\n", + " 'neither',\n", + " 'Yes',\n", + " 'early bird',\n", + " 'No'],\n", + " ['LEC002',\n", + " '21',\n", + " 'Business: Other|Marketing',\n", + " '53703',\n", + " '20.878332',\n", + " '-156.682495',\n", + " 'basil/spinach',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC002',\n", + " '',\n", + " 'Computer Science',\n", + " '53706',\n", + " '41.67566',\n", + " '-86.28645',\n", + " 'pineapple',\n", + " 'cat',\n", + " 'No',\n", + " 'no preference',\n", + " 'Maybe'],\n", + " ['LEC002',\n", + " '18',\n", + " 'Business: Other',\n", + " '53706',\n", + " '33.88509',\n", + " '-118.409714',\n", + " 'green pepper',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'No'],\n", + " ['LEC002',\n", + " '20',\n", + " 'Data Science',\n", + " '53715',\n", + " '10.97285',\n", + " '106.477707',\n", + " 'mushroom',\n", + " 'dog',\n", + " 'No',\n", + " 'no preference',\n", + " 'Maybe'],\n", + " ['LEC002',\n", + " '20',\n", + " 'Computer Science',\n", + " '53703',\n", + " '36.16156',\n", + " '-75.752441',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'Yes',\n", + " 'no preference',\n", + " 'Yes'],\n", + " ['LEC002',\n", + " '20',\n", + " 'Business: Other|Marketing',\n", + " '53703',\n", + " '35.689487',\n", + " '139.691711',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC002',\n", + " '18',\n", + " 'Engineering: Other|Engineering Mechanics',\n", + " '53706',\n", + " '35.689487',\n", + " '139.691711',\n", + " 'mushroom',\n", + " 'cat',\n", + " 'No',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC002',\n", + " '21',\n", + " 'Economics (Mathematical Emphasis)',\n", + " '53703',\n", + " '46.25872',\n", + " '-91.745583',\n", + " 'sausage',\n", + " 'dog',\n", + " 'Yes',\n", + " 'no preference',\n", + " 'Yes'],\n", + " ['LEC002',\n", + " '19',\n", + " 'Mathematics',\n", + " '53703',\n", + " '39.904202',\n", + " '116.407394',\n", + " 'tater tots',\n", + " 'cat',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC002',\n", + " '18',\n", + " 'Data Science',\n", + " '53703',\n", + " '40.706067',\n", + " '-74.030063',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC002',\n", + " '19',\n", + " 'Pre-Business',\n", + " '53703',\n", + " '39.60502',\n", + " '-106.51641',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'Yes',\n", + " 'early bird',\n", + " 'No'],\n", + " ['LEC002',\n", + " '20',\n", + " 'Mathematics/AMEP',\n", + " '53703',\n", + " '35.106766',\n", + " '-106.629181',\n", + " 'green pepper',\n", + " 'cat',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC002',\n", + " '20',\n", + " 'Business: Finance',\n", + " '53703',\n", + " '31.298973',\n", + " '120.585289',\n", + " 'pineapple',\n", + " 'cat',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'No'],\n", + " ['LEC002',\n", + " '18',\n", + " 'Economics',\n", + " '53706',\n", + " '48.856613',\n", + " '2.352222',\n", + " 'basil/spinach',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC002',\n", + " '19',\n", + " 'Engineering: Industrial',\n", + " '53715',\n", + " '45.914',\n", + " '-89.255',\n", + " 'sausage',\n", + " 'dog',\n", + " 'Yes',\n", + " 'early bird',\n", + " 'Yes'],\n", + " ['LEC002',\n", + " '19',\n", + " 'Computer Science',\n", + " '53703',\n", + " '20',\n", + " '110',\n", + " 'pineapple',\n", + " 'cat',\n", + " 'No',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC002',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53726',\n", + " '41.878113',\n", + " '-87.629799',\n", + " 'basil/spinach',\n", + " 'dog',\n", + " 'No',\n", + " 'early bird',\n", + " 'Yes'],\n", + " ['LEC002',\n", + " '19',\n", + " 'Industrial Engineering',\n", + " '53703',\n", + " '48.856613',\n", + " '2.352222',\n", + " 'basil/spinach',\n", + " 'dog',\n", + " 'No',\n", + " 'early bird',\n", + " 'Yes'],\n", + " ['LEC002',\n", + " '18',\n", + " 'Data Science',\n", + " '53706',\n", + " '43.073051',\n", + " '-89.40123',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC002',\n", + " '20',\n", + " 'Statistics',\n", + " '53703',\n", + " '31.224361',\n", + " '121.46917',\n", + " 'mushroom',\n", + " 'dog',\n", + " 'No',\n", + " 'no preference',\n", + " 'Maybe'],\n", + " ['LEC002',\n", + " '18',\n", + " 'Computer Science',\n", + " '53706',\n", + " '35.689487',\n", + " '139.691711',\n", + " 'green pepper',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC002',\n", + " '18',\n", + " 'Computer Science',\n", + " '53706',\n", + " '25.03841',\n", + " '121.563698',\n", + " 'pineapple',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC002',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53715',\n", + " '43.06827',\n", + " '-89.40263',\n", + " 'sausage',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'No'],\n", + " ['LEC002',\n", + " '18',\n", + " 'Engineering: Mechanical',\n", + " '53703',\n", + " '43',\n", + " '89.4',\n", + " 'pepperoni',\n", + " 'cat',\n", + " 'No',\n", + " 'no preference',\n", + " 'Maybe'],\n", + " ['LEC002',\n", + " '',\n", + " 'Mechanical Engineering',\n", + " '53703',\n", + " '41.8781',\n", + " '87.6298',\n", + " 'Other',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC002',\n", + " '26',\n", + " 'Science: Other',\n", + " '57075',\n", + " '42.76093',\n", + " '-89.9589',\n", + " 'Other',\n", + " 'dog',\n", + " 'Yes',\n", + " 'early bird',\n", + " 'No'],\n", + " ['LEC002',\n", + " '21',\n", + " 'Science: Other|Environmental science',\n", + " '53714',\n", + " '47.606209',\n", + " '-122.332069',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'Yes',\n", + " 'early bird',\n", + " 'Yes'],\n", + " ['LEC002',\n", + " '18',\n", + " 'Data Science',\n", + " '53706',\n", + " '35.69',\n", + " '139.69',\n", + " 'pineapple',\n", + " 'cat',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC002',\n", + " '18',\n", + " 'Computer Science',\n", + " '53706',\n", + " '42.807091',\n", + " '-86.01886',\n", + " 'none (just cheese)',\n", + " 'cat',\n", + " 'Yes',\n", + " 'early bird',\n", + " 'Yes'],\n", + " ['LEC002',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53703',\n", + " '45.892099',\n", + " '8.997803',\n", + " 'green pepper',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC002',\n", + " '20',\n", + " 'Computer Science',\n", + " '53715',\n", + " '40.755645',\n", + " '-74.034119',\n", + " 'sausage',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC002',\n", + " '18',\n", + " 'Data Science',\n", + " '53706',\n", + " '21.306944',\n", + " '-157.858337',\n", + " 'pineapple',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'No'],\n", + " ['LEC002',\n", + " '18',\n", + " 'Engineering: Industrial',\n", + " '53706',\n", + " '32.0853',\n", + " '34.781769',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC002',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53703',\n", + " '46.786671',\n", + " '-92.100487',\n", + " 'sausage',\n", + " 'dog',\n", + " 'No',\n", + " 'early bird',\n", + " 'No'],\n", + " ['LEC002',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53715',\n", + " '42.590519',\n", + " '-88.435287',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'early bird',\n", + " 'No'],\n", + " ['LEC002',\n", + " '23',\n", + " 'Data Science',\n", + " '53703',\n", + " '37',\n", + " '127',\n", + " 'pineapple',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC002',\n", + " '20',\n", + " 'Data Science',\n", + " '53703',\n", + " '43.06875',\n", + " '-89.39434',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'Yes',\n", + " 'no preference',\n", + " 'Maybe'],\n", + " ['LEC002',\n", + " '20',\n", + " 'Engineering: Mechanical',\n", + " '53703',\n", + " '41.499321',\n", + " '-81.694359',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC002',\n", + " '21',\n", + " 'Economics',\n", + " '53703',\n", + " '38.969021',\n", + " '-0.18516',\n", + " 'sausage',\n", + " 'dog',\n", + " 'Yes',\n", + " 'no preference',\n", + " 'No'],\n", + " ['LEC002',\n", + " '20',\n", + " 'Economics',\n", + " '53703',\n", + " '50.85',\n", + " '4.35',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'no preference',\n", + " 'Yes'],\n", + " ['LEC002',\n", + " '19',\n", + " 'Data Science',\n", + " '53715',\n", + " '36.39619',\n", + " '10.61412',\n", + " 'none (just cheese)',\n", + " 'cat',\n", + " 'No',\n", + " 'no preference',\n", + " 'Yes'],\n", + " ['LEC002',\n", + " '20',\n", + " 'Engineering: Mechanical',\n", + " '53711',\n", + " '43.073051',\n", + " '-89.40123',\n", + " 'green pepper',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'No'],\n", + " ['LEC002',\n", + " '30',\n", + " 'Life Sciences Communication',\n", + " '53562',\n", + " '52.399448',\n", + " '0.25979',\n", + " 'basil/spinach',\n", + " 'cat',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC002',\n", + " '20',\n", + " 'Business: Finance',\n", + " '53703',\n", + " '41.878',\n", + " '-87.629799',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'no preference',\n", + " 'Yes'],\n", + " ['LEC002',\n", + " '18',\n", + " 'Computer Science',\n", + " '53706',\n", + " '31.2304',\n", + " '121.4737',\n", + " 'pepperoni',\n", + " 'cat',\n", + " 'No',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC002',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53711',\n", + " '51.5',\n", + " '0.1276',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'No'],\n", + " ['LEC002',\n", + " '19',\n", + " 'International Studies',\n", + " '53703',\n", + " '8.25115',\n", + " '34.588348',\n", + " 'none (just cheese)',\n", + " 'dog',\n", + " 'Yes',\n", + " 'early bird',\n", + " 'Maybe'],\n", + " ['LEC002',\n", + " '21',\n", + " 'Languages',\n", + " '53703',\n", + " '37.389091',\n", + " '-5.984459',\n", + " 'mushroom',\n", + " 'cat',\n", + " 'No',\n", + " 'early bird',\n", + " 'No'],\n", + " ['LEC002',\n", + " '19',\n", + " 'Business: Actuarial',\n", + " '53703',\n", + " '37.774929',\n", + " '-122.419418',\n", + " 'pineapple',\n", + " 'dog',\n", + " 'No',\n", + " 'early bird',\n", + " 'No'],\n", + " ['LEC002',\n", + " '18',\n", + " 'Statistics',\n", + " '53706',\n", + " '40.713051',\n", + " '-74.007233',\n", + " 'none (just cheese)',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC002',\n", + " '18',\n", + " 'Computer Science',\n", + " '53706',\n", + " '12.523579',\n", + " '-70.03355',\n", + " 'pineapple',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC002',\n", + " '18',\n", + " 'Data Science',\n", + " '53706',\n", + " '47.987289',\n", + " '0.22367',\n", + " 'none (just cheese)',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC002',\n", + " '19',\n", + " 'Business: Actuarial',\n", + " '53715',\n", + " '45.17963',\n", + " '-87.150009',\n", + " 'sausage',\n", + " 'dog',\n", + " 'Yes',\n", + " 'no preference',\n", + " 'No'],\n", + " ['LEC002',\n", + " '20',\n", + " 'Business: Information Systems',\n", + " '53706',\n", + " '52.520008',\n", + " '13.404954',\n", + " 'none (just cheese)',\n", + " 'dog',\n", + " 'No',\n", + " 'early bird',\n", + " 'Yes'],\n", + " ['LEC002',\n", + " '20',\n", + " 'Accounting',\n", + " '53703',\n", + " '32.79649',\n", + " '-117.192123',\n", + " 'mushroom',\n", + " 'dog',\n", + " 'No',\n", + " 'no preference',\n", + " 'Yes'],\n", + " ['LEC002',\n", + " '22',\n", + " 'Economics',\n", + " '53703',\n", + " '37.6',\n", + " '127',\n", + " 'pineapple',\n", + " 'neither',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC002',\n", + " '42069',\n", + " 'Data Science',\n", + " '53704',\n", + " '43',\n", + " '-89',\n", + " 'none (just cheese)',\n", + " 'neither',\n", + " 'No',\n", + " 'no preference',\n", + " 'No'],\n", + " ['LEC002',\n", + " '20',\n", + " 'Business: Finance',\n", + " '53715',\n", + " '35.726212',\n", + " '-83.491226',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'Yes',\n", + " 'no preference',\n", + " 'Yes'],\n", + " ['LEC002',\n", + " '18',\n", + " 'Undecided',\n", + " '53706',\n", + " '43.769562',\n", + " '11.255814',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC002',\n", + " '19',\n", + " 'Engineering: Biomedical',\n", + " '53703',\n", + " '51.1784',\n", + " '115.5708',\n", + " 'pineapple',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'No'],\n", + " ['LEC002',\n", + " '18',\n", + " 'Computer Science',\n", + " '53706',\n", + " '32.060253',\n", + " '118.796875',\n", + " 'sausage',\n", + " 'dog',\n", + " 'Yes',\n", + " 'early bird',\n", + " 'Maybe'],\n", + " ['LEC002',\n", + " '18',\n", + " 'Journalism',\n", + " '53706',\n", + " '31',\n", + " '103',\n", + " 'none (just cheese)',\n", + " 'cat',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC002',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53703',\n", + " '39.290386',\n", + " '-76.61219',\n", + " 'mushroom',\n", + " 'dog',\n", + " 'No',\n", + " 'no preference',\n", + " 'No'],\n", + " ['LEC002',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53726',\n", + " '40.416775',\n", + " '-3.70379',\n", + " 'macaroni/pasta',\n", + " 'dog',\n", + " 'No',\n", + " 'early bird',\n", + " 'Maybe'],\n", + " ['LEC002',\n", + " '20',\n", + " 'Science: Biology/Life',\n", + " '53703',\n", + " '51.507351',\n", + " '-0.127758',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'Yes',\n", + " 'no preference',\n", + " 'Yes']],\n", + " 'LEC003': [['LEC003',\n", + " '',\n", + " 'Undecided',\n", + " '53706',\n", + " '43.073051',\n", + " '-89.40123',\n", + " 'none (just cheese)',\n", + " 'neither',\n", + " 'No',\n", + " 'no preference',\n", + " 'Maybe'],\n", + " ['LEC003',\n", + " '18',\n", + " 'Data Science',\n", + " '53715',\n", + " '43.073051',\n", + " '-89.40123',\n", + " 'pineapple',\n", + " 'cat',\n", + " 'Yes',\n", + " 'no preference',\n", + " 'Maybe'],\n", + " ['LEC003',\n", + " '19',\n", + " 'Data Science',\n", + " '53705',\n", + " '24.6806',\n", + " '46.57936',\n", + " 'pineapple',\n", + " 'cat',\n", + " 'No',\n", + " 'early bird',\n", + " 'No'],\n", + " ['LEC003',\n", + " '18',\n", + " 'Data Science',\n", + " '53706',\n", + " '36.102371',\n", + " '-115.174553',\n", + " 'none (just cheese)',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC003',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53558',\n", + " '43.073051',\n", + " '-89.40123',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC003',\n", + " '20',\n", + " 'Data Science',\n", + " '53703',\n", + " '43.073051',\n", + " '-89.40123',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC003',\n", + " '19',\n", + " 'Mathematics/AMEP',\n", + " '53715',\n", + " '19.075983',\n", + " '72.877655',\n", + " 'basil/spinach',\n", + " 'cat',\n", + " 'No',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC003',\n", + " '19',\n", + " 'Business: Other|Real Estate',\n", + " '53715',\n", + " '117',\n", + " '33',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'No'],\n", + " ['LEC003',\n", + " '19',\n", + " 'Data Science',\n", + " '53705',\n", + " '25',\n", + " '47',\n", + " 'mushroom',\n", + " 'cat',\n", + " 'No',\n", + " 'early bird',\n", + " 'Maybe'],\n", + " ['LEC003',\n", + " '18',\n", + " 'Computer Science',\n", + " '53706',\n", + " '5.93876',\n", + " '80.48433',\n", + " 'Other',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC003',\n", + " '21',\n", + " 'Economics',\n", + " '53715',\n", + " '43.073051',\n", + " '-89.40123',\n", + " 'none (just cheese)',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC003',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53715',\n", + " '45',\n", + " '-93',\n", + " 'sausage',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'No'],\n", + " ['LEC003',\n", + " '18',\n", + " 'Mathematics/AMEP',\n", + " '53706',\n", + " '31.230391',\n", + " '121.473701',\n", + " 'mushroom',\n", + " 'dog',\n", + " 'Yes',\n", + " 'early bird',\n", + " 'No'],\n", + " ['LEC003',\n", + " '19',\n", + " 'Business: Information Systems',\n", + " '53711',\n", + " '38.893452',\n", + " '-77.014709',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'early bird',\n", + " 'Yes'],\n", + " ['LEC003',\n", + " '20',\n", + " 'Mathematics/AMEP',\n", + " '53715',\n", + " '32.0853',\n", + " '34.781769',\n", + " 'mushroom',\n", + " 'dog',\n", + " 'No',\n", + " 'no preference',\n", + " 'Yes'],\n", + " ['LEC003',\n", + " '19',\n", + " 'Data Science',\n", + " '53715',\n", + " '42.701847',\n", + " '-84.48217',\n", + " 'tater tots',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC003',\n", + " '18',\n", + " 'Mathematics/AMEP',\n", + " '53706',\n", + " '40.179188',\n", + " '44.499104',\n", + " 'Other',\n", + " 'dog',\n", + " 'Yes',\n", + " 'no preference',\n", + " 'Yes'],\n", + " ['LEC003',\n", + " '21',\n", + " 'Data Science',\n", + " '53590',\n", + " '7.9519',\n", + " '98.3381',\n", + " 'Other',\n", + " 'dog',\n", + " 'Yes',\n", + " 'early bird',\n", + " 'Yes'],\n", + " ['LEC003',\n", + " '',\n", + " 'Business: Actuarial',\n", + " '53705',\n", + " '39.6336',\n", + " '118.16',\n", + " 'basil/spinach',\n", + " 'dog',\n", + " 'Yes',\n", + " 'early bird',\n", + " 'Yes'],\n", + " ['LEC003',\n", + " '18',\n", + " 'Data Science',\n", + " '53706',\n", + " '52.370216',\n", + " '4.895168',\n", + " 'mushroom',\n", + " 'cat',\n", + " 'Yes',\n", + " 'no preference',\n", + " 'No'],\n", + " ['LEC003',\n", + " '18',\n", + " 'Engineering: Mechanical',\n", + " '53706',\n", + " '52.368944',\n", + " '4.891663',\n", + " 'pepperoni',\n", + " 'cat',\n", + " 'No',\n", + " 'night owl',\n", + " 'No'],\n", + " ['LEC003',\n", + " '19',\n", + " 'Data Science',\n", + " '53715',\n", + " '3.1569',\n", + " '101.7123',\n", + " 'mushroom',\n", + " 'cat',\n", + " 'No',\n", + " 'early bird',\n", + " 'No'],\n", + " ['LEC003',\n", + " '18',\n", + " 'Computer Science',\n", + " '53706',\n", + " '51.500153',\n", + " '-0.1262362',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC003',\n", + " '20',\n", + " 'Engineering: Mechanical',\n", + " '53715',\n", + " '44.834',\n", + " '-87.376',\n", + " 'none (just cheese)',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'No'],\n", + " ['LEC003',\n", + " '25',\n", + " 'Data Science',\n", + " '53703',\n", + " '34.693737',\n", + " '135.502167',\n", + " 'pineapple',\n", + " 'dog',\n", + " 'No',\n", + " 'early bird',\n", + " 'Maybe'],\n", + " ['LEC003',\n", + " '17',\n", + " 'Computer Science',\n", + " '53703',\n", + " '19.075983',\n", + " '72.877655',\n", + " 'Other',\n", + " 'neither',\n", + " 'Yes',\n", + " 'no preference',\n", + " 'No'],\n", + " ['LEC003',\n", + " '20',\n", + " 'Business: Information Systems',\n", + " '53726',\n", + " '43.073051',\n", + " '-89.40123',\n", + " 'sausage',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'No'],\n", + " ['LEC003',\n", + " '',\n", + " 'Science: Other',\n", + " '53715',\n", + " '39.904202',\n", + " '116.407394',\n", + " 'mushroom',\n", + " 'cat',\n", + " 'No',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC003',\n", + " '25',\n", + " 'Data Science',\n", + " '53705',\n", + " '43.073051',\n", + " '-89.385239',\n", + " 'sausage',\n", + " 'cat',\n", + " 'No',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC003',\n", + " '',\n", + " 'Data Science',\n", + " '53706',\n", + " '35.719312',\n", + " '139.784546',\n", + " 'none (just cheese)',\n", + " 'neither',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC003',\n", + " '21',\n", + " 'Mathematics',\n", + " '53704',\n", + " '61.218056',\n", + " '-149.900284',\n", + " 'green pepper',\n", + " 'cat',\n", + " 'Yes',\n", + " 'early bird',\n", + " 'Maybe'],\n", + " ['LEC003',\n", + " '22',\n", + " 'Engineering: Other',\n", + " '53703',\n", + " '49.28273',\n", + " '-123.120735',\n", + " 'macaroni/pasta',\n", + " 'cat',\n", + " 'No',\n", + " 'early bird',\n", + " 'Maybe'],\n", + " ['LEC003',\n", + " '20',\n", + " 'Engineering: Mechanical',\n", + " '53726',\n", + " '39.81059',\n", + " '-74.71795',\n", + " 'basil/spinach',\n", + " 'dog',\n", + " 'No',\n", + " 'early bird',\n", + " 'Yes'],\n", + " ['LEC003',\n", + " '21',\n", + " 'Health Promotion and Health Equity',\n", + " '53711',\n", + " '37.2982',\n", + " '113.0263',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'early bird',\n", + " 'No'],\n", + " ['LEC003',\n", + " '20',\n", + " 'Engineering: Mechanical',\n", + " '53703',\n", + " '38.722252',\n", + " '-9.139337',\n", + " 'mushroom',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC003',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53714',\n", + " '43',\n", + " '-89.4',\n", + " 'none (just cheese)',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC003',\n", + " '18',\n", + " 'Computer Science',\n", + " '53706',\n", + " '43.073051',\n", + " '-89.40123',\n", + " 'mushroom',\n", + " 'neither',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC003',\n", + " '18',\n", + " 'Art',\n", + " '53706',\n", + " '36.25',\n", + " '138.25',\n", + " 'macaroni/pasta',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC003',\n", + " '17',\n", + " 'Engineering: Mechanical',\n", + " '53706',\n", + " '37.98381',\n", + " '23.727539',\n", + " 'pineapple',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'No'],\n", + " ['LEC003',\n", + " '22',\n", + " 'Mathematics/AMEP',\n", + " '53715',\n", + " '44.481586',\n", + " '-88.005981',\n", + " 'pepperoni',\n", + " 'neither',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC003',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53715',\n", + " '44.90767',\n", + " '-93.183594',\n", + " 'basil/spinach',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC003',\n", + " '18',\n", + " 'Data Science',\n", + " '89451',\n", + " '34.42083',\n", + " '-119.698189',\n", + " 'green pepper',\n", + " 'dog',\n", + " 'No',\n", + " 'early bird',\n", + " 'No'],\n", + " ['LEC003',\n", + " '19',\n", + " 'Computer Science',\n", + " '53703',\n", + " '41.3874',\n", + " '2.1686',\n", + " 'pepperoni',\n", + " 'cat',\n", + " 'No',\n", + " 'early bird',\n", + " 'No'],\n", + " ['LEC003',\n", + " '20',\n", + " 'Statistics (actuarial route)',\n", + " '53715',\n", + " '43.134315',\n", + " '-88.220062',\n", + " 'sausage',\n", + " 'dog',\n", + " 'No',\n", + " 'early bird',\n", + " 'No'],\n", + " ['LEC003',\n", + " '18',\n", + " 'Undecided',\n", + " '53706',\n", + " '41.256538',\n", + " '95.934502',\n", + " 'Other',\n", + " 'dog',\n", + " 'No',\n", + " 'no preference',\n", + " 'Yes'],\n", + " ['LEC003',\n", + " '18',\n", + " 'Data Science',\n", + " '53706',\n", + " '19.075983',\n", + " '72.877655',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'No'],\n", + " ['LEC003',\n", + " '22',\n", + " 'Economics',\n", + " '53703',\n", + " '40.753685',\n", + " '-73.999161',\n", + " 'green pepper',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC003',\n", + " '18',\n", + " 'Data Science',\n", + " '53706',\n", + " '51.507351',\n", + " '-0.127758',\n", + " 'pepperoni',\n", + " 'cat',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC003',\n", + " '',\n", + " 'Engineering: Mechanical',\n", + " '53706',\n", + " '42.44817',\n", + " '-71.224716',\n", + " 'pepperoni',\n", + " 'cat',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC003',\n", + " '17',\n", + " 'Engineering: Other|Computer Engineering',\n", + " '53706',\n", + " '42.36',\n", + " '-71.059',\n", + " 'basil/spinach',\n", + " 'neither',\n", + " 'No',\n", + " 'early bird',\n", + " 'Maybe'],\n", + " ['LEC003',\n", + " '21',\n", + " 'Business: Actuarial',\n", + " '53706',\n", + " '32.715736',\n", + " '-117.161087',\n", + " 'green pepper',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'No'],\n", + " ['LEC003',\n", + " '',\n", + " 'Engineering: Other|Computer engineering',\n", + " '53706',\n", + " '35.689487',\n", + " '139.691711',\n", + " 'Other',\n", + " 'cat',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC003',\n", + " '18',\n", + " 'Mathematics/AMEP',\n", + " '53715',\n", + " '41.385063',\n", + " '2.173404',\n", + " 'pepperoni',\n", + " 'cat',\n", + " 'Yes',\n", + " 'no preference',\n", + " 'Maybe'],\n", + " ['LEC003',\n", + " '20',\n", + " 'Computer Science',\n", + " '53705',\n", + " '30.274084',\n", + " '120.155067',\n", + " 'mushroom',\n", + " 'cat',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC003',\n", + " '18',\n", + " 'Computer Science',\n", + " '53706',\n", + " '45.45676',\n", + " '15.29662',\n", + " 'sausage',\n", + " 'dog',\n", + " 'Yes',\n", + " 'early bird',\n", + " 'Yes'],\n", + " ['LEC003',\n", + " '18',\n", + " 'Engineering: Industrial',\n", + " '53706',\n", + " '18.92421',\n", + " '-99.221565',\n", + " 'green pepper',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC003',\n", + " '17',\n", + " 'Data Science',\n", + " '53706',\n", + " '-7.257472',\n", + " '112.75209',\n", + " 'pineapple',\n", + " 'dog',\n", + " 'Yes',\n", + " 'early bird',\n", + " 'Yes'],\n", + " ['LEC003',\n", + " '',\n", + " 'Computer Science',\n", + " '53703',\n", + " '64.963051',\n", + " '-19.020836',\n", + " 'pineapple',\n", + " 'dog',\n", + " 'No',\n", + " 'no preference',\n", + " 'Maybe'],\n", + " ['LEC003',\n", + " '23',\n", + " 'Mathematics/AMEP',\n", + " '53715',\n", + " '24.88',\n", + " '102.8',\n", + " 'pineapple',\n", + " 'dog',\n", + " 'Yes',\n", + " 'early bird',\n", + " 'Yes'],\n", + " ['LEC003',\n", + " '19',\n", + " 'Science: Biology/Life',\n", + " '53703',\n", + " '41.38',\n", + " '2.17',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'Yes',\n", + " 'no preference',\n", + " 'Maybe'],\n", + " ['LEC003',\n", + " '18',\n", + " 'Engineering: Mechanical',\n", + " '53706',\n", + " '24.5554',\n", + " '81.7842',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'early bird',\n", + " 'Maybe'],\n", + " ['LEC003',\n", + " '20',\n", + " 'Mathematics/AMEP',\n", + " '53726',\n", + " '43.07199',\n", + " '-89.42629',\n", + " 'mushroom',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC003',\n", + " '18',\n", + " 'Business: Actuarial',\n", + " '53719',\n", + " '14.599512',\n", + " '120.984222',\n", + " 'pineapple',\n", + " 'cat',\n", + " 'Yes',\n", + " 'no preference',\n", + " 'Maybe'],\n", + " ['LEC003',\n", + " '17',\n", + " 'Computer Science',\n", + " '53715',\n", + " '37.38522',\n", + " '-122.114128',\n", + " 'Other',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'No'],\n", + " ['LEC003',\n", + " '18',\n", + " 'Computer Science',\n", + " '53706',\n", + " '37.386051',\n", + " '-122.083855',\n", + " 'sausage',\n", + " 'dog',\n", + " 'Yes',\n", + " 'no preference',\n", + " 'Maybe'],\n", + " ['LEC003',\n", + " '20',\n", + " 'Engineering: Mechanical',\n", + " '53715',\n", + " '43.02833',\n", + " '-87.971467',\n", + " 'pepperoni',\n", + " 'neither',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC003',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53715',\n", + " '43.07',\n", + " '-89.4',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'no preference',\n", + " 'Maybe'],\n", + " ['LEC003',\n", + " '19',\n", + " 'Engineering: Biomedical',\n", + " '53703',\n", + " '31.046051',\n", + " '34.851612',\n", + " 'Other',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC003',\n", + " '18',\n", + " 'Data Science',\n", + " '53705',\n", + " '31.23',\n", + " '121.47',\n", + " 'mushroom',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC003',\n", + " '20',\n", + " 'History',\n", + " '53703',\n", + " '31.62',\n", + " '74.8765',\n", + " 'Other',\n", + " 'cat',\n", + " 'Yes',\n", + " 'early bird',\n", + " 'No'],\n", + " ['LEC003',\n", + " '18',\n", + " 'Engineering: Mechanical',\n", + " '53706',\n", + " '39.738449',\n", + " '-104.984848',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'early bird',\n", + " 'Yes'],\n", + " ['LEC003',\n", + " '21',\n", + " 'Statistics',\n", + " '53705',\n", + " '41.878113',\n", + " '-87.629799',\n", + " 'macaroni/pasta',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC003',\n", + " '19',\n", + " 'Computer Science',\n", + " '53716',\n", + " '25.49443',\n", + " '-103.59581',\n", + " 'pepperoni',\n", + " 'cat',\n", + " 'No',\n", + " 'no preference',\n", + " 'Yes'],\n", + " ['LEC003',\n", + " '19',\n", + " 'Data Science',\n", + " '53706',\n", + " '64.963051',\n", + " '-19.020836',\n", + " 'pineapple',\n", + " 'dog',\n", + " 'No',\n", + " 'no preference',\n", + " 'No'],\n", + " ['LEC003',\n", + " '',\n", + " 'Business: Other',\n", + " '53706',\n", + " '50.07553',\n", + " '14.4378',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC003',\n", + " '18',\n", + " 'Engineering: Mechanical',\n", + " '53706',\n", + " '41.902782',\n", + " '12.496365',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'No'],\n", + " ['LEC003',\n", + " '17',\n", + " 'Science: Physics',\n", + " '53706',\n", + " '50.088153',\n", + " '14.399437',\n", + " 'Other',\n", + " 'cat',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC003',\n", + " '20',\n", + " 'Engineering: Mechanical',\n", + " '53703',\n", + " '44.501343',\n", + " '-88.06221',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC003',\n", + " '18',\n", + " 'Engineering: Mechanical',\n", + " '53703',\n", + " '45.659302',\n", + " '-92.466164',\n", + " 'macaroni/pasta',\n", + " 'dog',\n", + " 'No',\n", + " 'no preference',\n", + " 'Maybe'],\n", + " ['LEC003',\n", + " '19',\n", + " 'Data Science',\n", + " '53703',\n", + " '16.896721',\n", + " '42.5536',\n", + " 'none (just cheese)',\n", + " 'neither',\n", + " 'No',\n", + " 'early bird',\n", + " 'Maybe'],\n", + " ['LEC003',\n", + " '18',\n", + " 'Graphic Design',\n", + " '53706',\n", + " '40.713051',\n", + " '-74.007233',\n", + " 'Other',\n", + " 'dog',\n", + " 'Yes',\n", + " 'early bird',\n", + " 'Yes'],\n", + " ['LEC003',\n", + " '20',\n", + " 'Cartography and GIS',\n", + " '53726',\n", + " '43.0722',\n", + " '89.4008',\n", + " 'sausage',\n", + " 'cat',\n", + " 'No',\n", + " 'early bird',\n", + " 'Maybe'],\n", + " ['LEC003',\n", + " '',\n", + " 'Computer Science',\n", + " '53706',\n", + " '35.443081',\n", + " '139.362488',\n", + " 'sausage',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC003',\n", + " '18',\n", + " 'Engineering: Other',\n", + " '53706',\n", + " '40.73061',\n", + " '-73.9808',\n", + " 'mushroom',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'No'],\n", + " ['LEC003',\n", + " '21',\n", + " 'Business: Information Systems',\n", + " '53703',\n", + " '43.612255',\n", + " '-110.705429',\n", + " 'sausage',\n", + " 'dog',\n", + " 'Yes',\n", + " 'no preference',\n", + " 'No'],\n", + " ['LEC003',\n", + " '18',\n", + " 'Engineering: Mechanical',\n", + " '53706',\n", + " '41.902782',\n", + " '12.496365',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'early bird',\n", + " 'Maybe'],\n", + " ['LEC003',\n", + " '20',\n", + " 'Engineering: Mechanical',\n", + " '53715',\n", + " '41.878113',\n", + " '-87.629799',\n", + " 'Other',\n", + " 'cat',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC003',\n", + " '19',\n", + " 'Science: Other',\n", + " '53715',\n", + " '41.9028',\n", + " '12.4964',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC003',\n", + " '18',\n", + " 'Computer Science',\n", + " '53706',\n", + " '52.370216',\n", + " '4.895168',\n", + " 'basil/spinach',\n", + " 'cat',\n", + " 'No',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC003',\n", + " '19',\n", + " 'Engineering: Industrial',\n", + " '53703',\n", + " '5.838715',\n", + " '3.603516',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'Yes',\n", + " 'early bird',\n", + " 'No'],\n", + " ['LEC003',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53715',\n", + " '44',\n", + " '-94',\n", + " 'pineapple',\n", + " 'dog',\n", + " 'No',\n", + " 'early bird',\n", + " 'No'],\n", + " ['LEC003',\n", + " '19',\n", + " 'Economics (Mathematical Emphasis)',\n", + " '53705',\n", + " '31.230391',\n", + " '121.473701',\n", + " 'sausage',\n", + " 'neither',\n", + " 'Yes',\n", + " 'no preference',\n", + " 'Maybe'],\n", + " ['LEC003',\n", + " '19',\n", + " 'Business: Finance',\n", + " '53706',\n", + " '22.270979',\n", + " '113.576675',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC003',\n", + " '21',\n", + " 'Computer Science',\n", + " '53705',\n", + " '43.073051',\n", + " '-89.40123',\n", + " 'green pepper',\n", + " 'cat',\n", + " 'No',\n", + " 'no preference',\n", + " 'Maybe'],\n", + " ['LEC003',\n", + " '21',\n", + " 'Science: Other|Environmental Science',\n", + " '53703',\n", + " '20.8',\n", + " '-156.3',\n", + " 'basil/spinach',\n", + " 'cat',\n", + " 'No',\n", + " 'early bird',\n", + " 'Maybe'],\n", + " ['LEC003',\n", + " '18',\n", + " 'Engineering: Mechanical',\n", + " '53706',\n", + " '44.977753',\n", + " '-93.265015',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC003',\n", + " '',\n", + " 'Business: Other',\n", + " '53706',\n", + " '42.360081',\n", + " '-71.058884',\n", + " 'sausage',\n", + " 'cat',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'No'],\n", + " ['LEC003',\n", + " '18',\n", + " 'Engineering: Biomedical',\n", + " '53706',\n", + " '45.17099',\n", + " '-87.16494',\n", + " 'Other',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC003',\n", + " '22',\n", + " 'Economics',\n", + " '53715',\n", + " '43.073051',\n", + " '-89.40123',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'Yes',\n", + " 'early bird',\n", + " 'Yes'],\n", + " ['LEC003',\n", + " '19',\n", + " 'Mathematics/AMEP',\n", + " '53703',\n", + " '64.963051',\n", + " '-19.020836',\n", + " 'basil/spinach',\n", + " 'dog',\n", + " 'No',\n", + " 'no preference',\n", + " 'Yes'],\n", + " ['LEC003',\n", + " '18',\n", + " 'Business: Information Systems',\n", + " '53706',\n", + " '25.204849',\n", + " '55.270782',\n", + " 'none (just cheese)',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'No'],\n", + " ['LEC003',\n", + " '21',\n", + " 'Economics',\n", + " '53703',\n", + " '39.904',\n", + " '116.407',\n", + " 'pepperoni',\n", + " 'cat',\n", + " 'No',\n", + " 'night owl',\n", + " 'No'],\n", + " ['LEC003',\n", + " '19',\n", + " 'Data Science',\n", + " '53715',\n", + " '43.073051',\n", + " '-89.40123',\n", + " 'none (just cheese)',\n", + " 'dog',\n", + " 'No',\n", + " 'early bird',\n", + " 'Maybe'],\n", + " ['LEC003',\n", + " '18',\n", + " 'Data Science',\n", + " '53706',\n", + " '47.606209',\n", + " '-122.332069',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'early bird',\n", + " 'Yes'],\n", + " ['LEC003',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53715',\n", + " '20.924325',\n", + " '-156.690102',\n", + " 'sausage',\n", + " 'cat',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'No'],\n", + " ['LEC003',\n", + " '21',\n", + " 'Business: Actuarial',\n", + " '53715',\n", + " '43.073051',\n", + " '-89.40123',\n", + " 'pineapple',\n", + " 'cat',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC003',\n", + " '19',\n", + " 'Business: Actuarial',\n", + " '53715',\n", + " '60.391262',\n", + " '5.322054',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'early bird',\n", + " 'No'],\n", + " ['LEC003',\n", + " '19',\n", + " 'Data Science',\n", + " '53715',\n", + " '23.697809',\n", + " '120.960518',\n", + " 'pepperoni',\n", + " 'cat',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC003',\n", + " '18',\n", + " 'Data Science',\n", + " '53706',\n", + " '40.712776',\n", + " '74.005974',\n", + " 'pineapple',\n", + " 'dog',\n", + " 'Yes',\n", + " 'early bird',\n", + " 'No'],\n", + " ['LEC003',\n", + " '21',\n", + " 'Statistics',\n", + " '53703',\n", + " '31.230391',\n", + " '121.473701',\n", + " 'pineapple',\n", + " 'cat',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC003',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53715',\n", + " '65.68204',\n", + " '-18.090534',\n", + " 'sausage',\n", + " 'cat',\n", + " 'No',\n", + " 'no preference',\n", + " 'No'],\n", + " ['LEC003',\n", + " '19',\n", + " 'Engineering: Industrial',\n", + " '53715',\n", + " '41.73849',\n", + " '-71.30418',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC003',\n", + " '18',\n", + " 'Computer Science',\n", + " '53706',\n", + " '40.744678',\n", + " '-73.758072',\n", + " 'mushroom',\n", + " 'cat',\n", + " 'No',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC003',\n", + " '18',\n", + " 'Undecided',\n", + " '53706',\n", + " '43.2967',\n", + " '87.9876',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'No'],\n", + " ['LEC003',\n", + " '18',\n", + " 'Data Science',\n", + " '53706',\n", + " '47.48',\n", + " '-122.28',\n", + " 'basil/spinach',\n", + " 'dog',\n", + " 'No',\n", + " 'no preference',\n", + " 'Maybe'],\n", + " ['LEC003',\n", + " '20',\n", + " 'Science: Physics',\n", + " '53715',\n", + " '64.963051',\n", + " '-19.020836',\n", + " 'mushroom',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC003',\n", + " '21',\n", + " 'Languages',\n", + " '53511',\n", + " '39.952583',\n", + " '-75.165222',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC003',\n", + " '19',\n", + " 'Engineering: Industrial',\n", + " '53703',\n", + " '11.89',\n", + " '-85',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Maybe'],\n", + " ['LEC003',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53715',\n", + " '33.873417',\n", + " '-115.900993',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'early bird',\n", + " 'No'],\n", + " ['LEC003',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53715',\n", + " '45.40857',\n", + " '-91.73542',\n", + " 'sausage',\n", + " 'dog',\n", + " 'Yes',\n", + " 'no preference',\n", + " 'No'],\n", + " ['LEC003',\n", + " '18',\n", + " 'Engineering: Industrial',\n", + " '53706',\n", + " '20.798363',\n", + " '-156.331924',\n", + " 'none (just cheese)',\n", + " 'dog',\n", + " 'Yes',\n", + " 'early bird',\n", + " 'No'],\n", + " ['LEC003',\n", + " '19',\n", + " 'Undecided',\n", + " '53715',\n", + " '43.041069',\n", + " '-87.909416',\n", + " 'mushroom',\n", + " 'dog',\n", + " 'No',\n", + " 'no preference',\n", + " 'Maybe'],\n", + " ['LEC003',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53706',\n", + " '43',\n", + " '-88.27',\n", + " 'Other',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC003',\n", + " '20',\n", + " 'Business: Other|Accounting',\n", + " '53726',\n", + " '43',\n", + " '-89',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'Yes',\n", + " 'early bird',\n", + " 'Yes'],\n", + " ['LEC003',\n", + " '18',\n", + " 'Data Science',\n", + " '53562',\n", + " '42.66544',\n", + " '21.165319',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC003',\n", + " '18',\n", + " 'Engineering: Mechanical',\n", + " '53706',\n", + " '33.748997',\n", + " '-84.387985',\n", + " 'mushroom',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC003',\n", + " '19',\n", + " 'Business: Actuarial',\n", + " '53706',\n", + " '39.299236',\n", + " '-76.609383',\n", + " 'pineapple',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'No'],\n", + " ['LEC003',\n", + " '',\n", + " 'Engineering: Mechanical',\n", + " '53706',\n", + " '45.87128',\n", + " '-89.711632',\n", + " 'pepperoni',\n", + " 'neither',\n", + " 'Yes',\n", + " 'no preference',\n", + " 'Yes'],\n", + " ['LEC003',\n", + " '',\n", + " 'Computer Science',\n", + " '53703',\n", + " '43.07',\n", + " '-89.4',\n", + " 'pepperoni',\n", + " 'dog',\n", + " 'Yes',\n", + " 'no preference',\n", + " 'Maybe'],\n", + " ['LEC003',\n", + " '19',\n", + " 'Engineering: Industrial',\n", + " '53703',\n", + " '40.712776',\n", + " '-74.005974',\n", + " 'basil/spinach',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'No'],\n", + " ['LEC003',\n", + " '18',\n", + " 'Data Science',\n", + " '53706',\n", + " '40.712776',\n", + " '-74.005974',\n", + " 'Other',\n", + " 'dog',\n", + " 'Yes',\n", + " 'early bird',\n", + " 'No'],\n", + " ['LEC003',\n", + " '20',\n", + " 'Economics',\n", + " '53703',\n", + " '22.54',\n", + " '114.05',\n", + " 'pineapple',\n", + " 'dog',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC003',\n", + " '18',\n", + " 'Data Science',\n", + " '53706',\n", + " '36.974117',\n", + " '-122.030792',\n", + " 'pepperoni',\n", + " 'cat',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC003',\n", + " '18',\n", + " 'Mathematics/AMEP',\n", + " '53706',\n", + " '42.99571',\n", + " '-90',\n", + " 'sausage',\n", + " 'dog',\n", + " 'Yes',\n", + " 'night owl',\n", + " 'Yes'],\n", + " ['LEC003',\n", + " '19',\n", + " 'Engineering: Industrial',\n", + " '53715',\n", + " '24.713552',\n", + " '46.675297',\n", + " 'basil/spinach',\n", + " 'neither',\n", + " 'Yes',\n", + " 'early bird',\n", + " 'Maybe'],\n", + " ['LEC003',\n", + " '19',\n", + " 'Engineering: Mechanical',\n", + " '53705',\n", + " '46.589146',\n", + " '-112.039108',\n", + " 'none (just cheese)',\n", + " 'cat',\n", + " 'No',\n", + " 'night owl',\n", + " 'Yes']]}" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sec_buckets = bucketize(\"Lecture\")\n", + "sec_buckets" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's convert the above code into a function called 'bucketize'." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "19.61" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "def col_avg(data, header, col_name, min_bound, max_bound):\n", + " \"\"\"\n", + " data: list of list data structure representing rows\n", + " col_name: name of the column for which we want to compute average\n", + " min_bound, max_bound: bounds for the data (data cleaning)\n", + " Returns average of that column.\n", + " \"\"\"\n", + " total = 0\n", + " count = 0\n", + " for row_idx in range(len(data)):\n", + " col_data = cell(data, header, row_idx, col_name)\n", + " if col_data != None:\n", + " # handle bounds checking\n", + " if col_data < min_bound or col_data > max_bound:\n", + " continue\n", + " total += col_data\n", + " count += 1\n", + " \n", + " if count != 0:\n", + " return round(total / count, 2)\n", + " else:\n", + " return 0\n", + " \n", + "min_age = 0\n", + "max_age = 118\n", + "col_avg(cs220_data, cs220_header, \"Age\", min_age, max_age)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Average per bucket" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "def avg_per_bucket(buckets, avg_col_name):\n", + " \"\"\"\n", + " Computes and returns column average per bucket\n", + " \"\"\"\n", + " averages = {} # Key: bucket column; Value: average for that bucket\n", + " for bucket_name in buckets:\n", + " bucket_rows = buckets[bucket_name]\n", + " averages[bucket_name] = col_avg(bucket_rows, cs220_header, avg_col_name, min_age, max_age)\n", + " return averages" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "scrolled": false + }, + "source": [ + "### What is the average student age per lecture?" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'LEC001': 20.05,\n", + " 'LEC006': 18.63,\n", + " 'LEC004': 19.99,\n", + " 'LEC005': 19.42,\n", + " 'LEC002': 19.68,\n", + " 'LEC003': 19.14}" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "avg_per_bucket(sec_buckets, \"Age\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### What is the average student age in each major?" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'Engineering: Biomedical': 19.05,\n", + " 'Undecided': 18.22,\n", + " 'Engineering: Industrial': 18.86,\n", + " 'Engineering: Other|Engineering: Computer': 18.0,\n", + " 'Data Science': 19.09,\n", + " 'Mathematics/AMEP': 20.91,\n", + " 'Engineering: Other': 20.08,\n", + " 'Economics': 20.77,\n", + " 'Psychology': 20.57,\n", + " 'Science: Biology/Life': 20.22,\n", + " 'Engineering: Mechanical': 19.11,\n", + " 'Economics (Mathematical Emphasis)': 20.14,\n", + " 'Computer Science': 19.06,\n", + " 'Science: Other|Political Science': 21.0,\n", + " 'Business: Other': 21.12,\n", + " 'Business: Other|Real Estate': 19.5,\n", + " 'Engineering: Other|Engineering Physics: Scientific Computing': 20.0,\n", + " 'Business: Finance': 19.57,\n", + " 'Business: Information Systems': 20.29,\n", + " 'Statistics': 19.2,\n", + " 'Business: Actuarial': 19.24,\n", + " 'Science: Physics': 18.88,\n", + " 'Science: Other': 20.38,\n", + " 'Business: Other|Accounting': 20.5,\n", + " 'Business: Other|business analytics': 0,\n", + " 'Science: Other|animal sciences': 26.0,\n", + " 'Mathematics': 20.0,\n", + " 'Health Promotion and Health Equity': 20.5,\n", + " 'Art': 18.0,\n", + " 'Mathematics, Data Science': 21.0,\n", + " 'Science: Other|Science: Genetics and Genomics': 18.0,\n", + " 'Statistics (actuarial route)': 20.0,\n", + " 'Business: Other|Business: Accounting': 20.0,\n", + " 'Engineering: Other|Computer Engineering': 17.0,\n", + " 'Engineering: Other|Computer engineering': 0,\n", + " 'Engineering: Other|Material Science Engineering': 18.0,\n", + " 'Civil engineering - hydropower engineering': 0,\n", + " 'Science: Chemistry': 21.67,\n", + " 'Communication arts': 18.0,\n", + " 'Business andministration': 20.0,\n", + " 'Education': 19.5,\n", + " 'Pre-business': 18.0,\n", + " 'Science: Other|Environmental Science': 20.25,\n", + " 'History': 19.0,\n", + " 'Information science': 19.5,\n", + " 'consumer behavior and marketplace studies': 22.0,\n", + " 'Conservation Biology': 20.0,\n", + " 'Engineering: Other|Chemical Engineering': 22.0,\n", + " 'Science: Other|Biophysics PhD': 25.0,\n", + " 'Business: Other|Technology Strategy/ Product Management': 29.0,\n", + " 'Political Science': 19.33,\n", + " 'Graphic Design': 18.0,\n", + " 'Business: Other|Marketing': 20.0,\n", + " 'Cartography and GIS': 20.0,\n", + " 'Sociology': 20.5,\n", + " 'Business: Other|Consumer Behavior and Marketplace Studies': 20.0,\n", + " 'Atmospheric Sciences': 18.0,\n", + " 'Languages': 27.25,\n", + " 'Engineering Mechanics (Aerospace Engineering)': 18.0,\n", + " 'Science: Other|Psychology': 21.5,\n", + " 'Engineering: Other|Civil and Environmental Engineering': 24.0,\n", + " 'International Studies': 20.5,\n", + " 'Agricultural and Applied Economics': 20.0,\n", + " 'Business: Other|MHR': 21.0,\n", + " 'Medicine': 25.0,\n", + " 'Science: Other|Personal Finance': 21.0,\n", + " 'Environmental science': 18.0,\n", + " 'Geoscience': 31.0,\n", + " 'Business: Other|accounting': 19.0,\n", + " 'Design Studies': 32.0,\n", + " 'Science: Other|Environmetal Science': 0,\n", + " 'Science: Other|Atmospheric and Oceanic Sciences (AOS)': 20.0,\n", + " 'Business: Other|Business Analytics': 23.0,\n", + " 'Journalism': 19.0,\n", + " 'Science: Other|Politcal Science': 19.0,\n", + " 'Communication Sciences and Disorder': 32.0,\n", + " 'Science: Other|Geoscience': 25.0,\n", + " 'Science: Other|Atmospheric and oceanic science': 22.0,\n", + " 'Engineering: Other|Engineering Mechanics': 18.0,\n", + " 'Pre-Business': 19.0,\n", + " 'Industrial Engineering': 19.0,\n", + " 'Mechanical Engineering': 0,\n", + " 'Science: Other|Environmental science': 21.0,\n", + " 'Life Sciences Communication': 30.0,\n", + " 'Science: Other|Atmospheric and Oceanic Sciences': 19.0,\n", + " 'Rehabilitation Psychology': 19.0,\n", + " 'Accounting': 20.0,\n", + " 'Engineering: Other|Civil- Intelligent Transportation System': 37.0,\n", + " 'Science: Other|Animal and Dairy Science': 26.0,\n", + " 'Interior Architecture': 19.0,\n", + " 'Science: Other|Atmospheric & Oceanic Sciences': 20.0,\n", + " 'Computer Science and Statistics': 18.0,\n", + " 'Business analytics': 0,\n", + " 'Legal Studies': 20.0,\n", + " 'Journalism: Strategic Comm./Advertising': 20.0,\n", + " 'Master of Public Affairs': 26.0,\n", + " 'Environment & Resources': 27.0,\n", + " 'Environmental Studies': 18.0}" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "major_buckets = bucketize(\"Major\")\n", + "avg_per_bucket(major_buckets, \"Age\")" + ] + }, + { + "attachments": { + "table_rep.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAApkAAAHrCAYAAACErYYFAAAYUGlDQ1BJQ0MgUHJvZmlsZQAAWIWVWQk0Vd3b3+fO95rvNc/zTOZ5nud5JuGarimuMZRIMpWoEKWSjJVKoRKRBqUMvSRJJEOlUFEZ8h1D/d//+671fevba+1zfvfZz36GvZ89POcCwLXfNzIyDMEIQHhEDNXB1IDfzd2DHzsJcIAZEIAoEPUlR0fq29lZAbj8fv93WRoE0Mb7ucyGrH+3/6+FyT8gmgwAZAdjP/9ocjiMrwOASidHUmMAwKjBdKH4mMgN7AVjZipsIIwjN3DQFk7fwH5buHiTx8nBEMYXAcDR+vpSgwCgb4bp/HHkIFgO/RDcRozwp0TArLMw1iEH+/oDwCUN80iHh+/ewG4wFvf7m5yg/5Lp90emr2/QH7zly2bBGVGiI8N89/w/h+P/LuFhsb91iMKVNphq5rDhMzxuQ6G7LTcwLYxnI/xsbGFMhPEPiv8mP4wRhOBYM+ctfgQ3OdoQHjPACmM5f18jSxhzw9gkIszGapvuF0gxMYcxHCGIBEqMudN238yAaGPHbZmnqLsdbH/jQKqh/nbfy77UTb0b/J2xoc762/KHggPMf8v/lhjs5LplM5IQR3GxgTE9jFmjQx0tt3iQwonBhja/eaixDhv2C8NYIyDC1GBLPtI7kGrisM1PDY/+7S8yM5hibrONS2KCncy25Vwk+27azw7j5oAIfeffcgKi3ax+++IfYGS85TuyNyDCedtf5FhkjIHDdt8vkWF22/woQkCY6QZdEMbc0XGO231ROjFwQG7JR9lExtg5bdmJ8gvxtbDbsgeVAKyAITAC/CAWrn5gNwgBlGezTbPwr60WE+ALqCAIBACZbcrvHq6bLRHw0xEkgk8wCgDRf/oZbLYGgDiYvvaHuvWUAYGbrXGbPULBFIzDgSUIg3/HbvaK+KPNBbyDKZR/aSfDtobBdaPt3zR9mGK1TYn9LZef4TcnxhhjhDHDmGAkUJwoHZQmygp+6sFVAaWGUv9t7X/40VPoPvRb9AB6DP1yFyWN+g9/+IE1GIM1mGz77Pd3n1GisFRllAFKG5YPy0axojiBDEoJ1qSP0oV1K8NUw23LN7z/p+z/8uFvo77Nh5fDI/BseD28+D970kvSK/+RsjGmfx+hLVv9/oyr4Z+Wf+o3/NtI+8Nvy39yIjORDciHyHZkF7IF2QT4kW3IZmQ38s4G/hNF7zaj6Lc2h017QmE5lH/p893WuTGS0XJ1cu/lVrfaYgISYjYWmOHuyD1USlBwDL8+vPMH8JtHkGWl+RXkFOQB2DhHtraprw6b5wPE2vMfGvkgAKrzAOCX/0ML/wrAFQK8jVr/hybiDS8zDADVU+RYatwWDbXxQMOnEwO8ojgALxAC4rA/CkAFaAI9YAwsgC1wAu7AGx7lYDieqSAeJINUkAFywFFwApSAM+A8qAaXwDXQBFpAO3gAnoBeMABewdEzCT6CebAEViAIwkJ0EAnigPggEUgKUoDUIB3IGLKCHCB3yAcKgiKgWCgZOgDlQAVQCXQOqoGuQjehdqgL6oNeQuPQe+gLtIxAImgRzAgehChiB0INoY+wRDghdiKCEFGIREQ64giiGFGOuIhoRLQjniAGEGOIj4hFJEDSIFmRAkgZpBrSEGmL9EAGIqnIfchsZCGyHHkZeQue5+fIMeQs8icKgyKh+FEycASboZxRZFQUah8qF1WCqkY1ojpRz1HjqHnULzQdmhsthdZAm6Pd0EHoeHQGuhBdib6Bvg+vpkn0EgaDYcWIYVTh1eiOCcEkYXIxpzH1mLuYPswEZhGLxXJgpbDaWFusLzYGm4E9ib2IbcP2YyexP3A0OD6cAs4E54GLwKXhCnG1uFZcP24at4JnxIvgNfC2eH/8HnwevgJ/C9+Dn8SvEJgIYgRtghMhhJBKKCZcJtwnjBC+0tDQCNKo09jTUGj20xTTXKF5RDNO85OWSCtJa0jrRRtLe4S2ivYu7Uvar3R0dKJ0enQedDF0R+hq6O7RjdL9oCfRy9Kb0/vTp9CX0jfS99N/ZsAziDDoM3gzJDIUMjQw9DDMMuIZRRkNGX0Z9zGWMt5kfMG4yERikmeyZQpnymWqZepimiFiiaJEY6I/MZ14nniPOEFCkoRIhiQy6QCpgnSfNMmMYRZjNmcOYc5hvsT8jHmehciixOLCksBSynKHZYwVySrKas4axprHeo11kHWZjYdNny2ALYvtMls/23d2LnY99gD2bPZ69gH2ZQ5+DmOOUI58jiaO15woTklOe854zjLO+5yzXMxcmlxkrmyua1zD3AhuSW4H7iTu89zd3Is8vDymPJE8J3nu8czysvLq8YbwHudt5X3PR+LT4aPwHedr4/vAz8Kvzx/GX8zfyT8vwC1gJhArcE7gmcCKoJigs2CaYL3gayGCkJpQoNBxoQ6heWE+YWvhZOE64WERvIiaSLBIkchDke+iYqKuoodEm0RnxNjFzMUSxerERsTpxHXFo8TLxf+SwEioSYRKnJbolURIKksGS5ZK9kghpFSkKFKnpfqk0dLq0hHS5dIvZGhl9GXiZOpkxmVZZa1k02SbZD/vEN7hsSN/x8Mdv+SU5cLkKuReyRPlLeTT5G/Jf1GQVCArlCr8pUinaKKYotisuKAkpRSgVKY0pExStlY+pNyhvKaiqkJVuazyXlVY1Uf1lOoLNWY1O7VctUfqaHUD9RT1FvWfGioaMRrXNOY0ZTRDNWs1Z7TEtAK0KrQmtAW1fbXPaY/p8Ov46JzVGdMV0PXVLdd9qyek569XqTetL6Efon9R/7OBnAHV4IbBd0MNw72Gd42QRqZG2UbPjInGzsYlxqMmgiZBJnUm86bKpkmmd83QZpZm+WYvzHnMyeY15vMWqhZ7LTotaS0dLUss31pJWlGtblkjrC2sj1mP2IjYRNg02QJbc9tjtq/txOyi7G7bY+zt7EvtpxzkHZIdHjqSHHc51jouORk45Tm9chZ3jnXucGFw8XKpcfnuauRa4DrmtsNtr9sTd053inuzB9bDxaPSY9HT2POE56SXsleG1+BOsZ0JO7u8Ob3DvO/sYtjlu6vBB+3j6lPrs+pr61vuu+hn7nfKb55sSC4if/TX8z/u/z5AO6AgYDpQO7AgcCZIO+hY0Ptg3eDC4FmKIaWEshBiFnIm5HuobWhV6HqYa1h9OC7cJ/xmBDEiNKJzN+/uhN19kVKRGZFjURpRJ6LmqZbUymgoemd0cwwzfGHvjhWPPRg7HqcTVxr3I94lviGBKSEioXuP5J6sPdOJJokXklBJ5KSOZIHk1OTxvfp7z+2D9vnt60gRSklPmdxvur86lZAamvo0TS6tIO3bAdcDt9J50venTxw0PViXQZ9BzXhxSPPQmUxUJiXzWZZi1smsX9n+2Y9z5HIKc1ZzybmPD8sfLj68fiTwyLM8lbyyo5ijEUcH83XzqwuYChILJo5ZH2s8zn88+/i3E7tOdBUqFZ4pIhTFFo0VWxU3nxQ+efTkaklwyUCpQWn9Ke5TWae+n/Y/3V+mV3b5DM+ZnDPLZylnh86ZnmssFy0vPI85H3d+qsKl4uEFtQs1lZyVOZVrVRFVY9UO1Z01qjU1tdy1eXWIuti69xe9LvZeMrrUfFnm8rl61vqcK+BK7JUPV32uDl6zvNbRoNZw+brI9VM3SDeyG6HGPY3zTcFNY83uzX03LW523NK8deO27O2qFoGW0jssd/JaCa3prettiW2LdyPvzrYHtU907Op4dc/t3l+d9p3P7lvef/TA5MG9h/oP2x5pP2rp0ui6+VjtcdMTlSeN3crdN54qP73xTOVZY49qT3Oveu+tPq2+1n7d/vbnRs8f/GX+15MBm4G+QefBoRdeL8aG/IdmXoa9XBiOG155tX8EPZL9mvF14Sj3aPkbiTf1Yypjd8aNxrvfOr59NUGe+Pgu+t3qZPoU3VThNN90zYzCTMt7k/e9Hzw/TH6M/Lgym/GJ6dOpz+Kfr8/pzXXPu81PLlAX1r/kfuX4WvVN6VvHot3i6FL40sr37B8cP6p/qv18uOy6PL0Sv4pdLV6TWLv1y/LXyHr4+nqkL9V38yqAhCsiMBCAL1UA0LkDQOoFgOC5ledtFyR8+UDAbxdIFvqISIdP1B5UBtoEg8Q8wRbjIvBWBAkaLM0sbT9dE30VQyVjPVMzsYP0hLmXZYj1DdsM+0eOBc5lrjUeBC+Wj8BPJ0AUJAqxCrOLsImyi3GL80jwS/JLCUoLy4jKiu2QlpOTV1RQUdRQ0lU2VjFXNVczUTfRMNE01NLX1tLR0FXSk9UXNeAxZDYiGK0bfzWZMn1p1m3eYlFtecwqxTrExs3W2E7ZXsyBy5HRCeeMdIFcEW4od7wHoyeHl/BOGW+JXcI+fL6cfixkkj8xgBTIGsQVLEiRDlENNQlzCadEJO8uiKyIOkstjs6PyY3NisuOP5JQvKc6sTXp1V6wTzpl1/6Tqa8OCKbvPth+CJMplKWQbZDjmBt4OPFIfl710bv5wwWLx5lOyBRaFAUWHzhZVnKztP/Uu9OLZ7BnOc5Jlmudt63wuxBTebCqsLq65mbt47rhix8u/azHXWG7Kn5Nt8H9etSNrMbTTfXNbTe7bvXc7m15cqej9Wpb6d2U9l0dGveI96Y6b96vfXDqYc6jhC6/x+ZPZLvpu2ef3n92qiey16CP1DfRf+156l/2AyKDqMH3L7qH6l8WDMe8chlRe835enV09E372IXxrLe7J5zfaU0Kw1G2NP3XzPX3RR9SPobNkj+RP0fO5czfWJj7qvft3BLpe/FPqeVnqym/NNbX/zb/CsgZVAHaEsOCeY1twOXigwhGNJK0DLSrdNP0QwxDjG+Y3hE/kb4yL7Gssa6wrbH/4ljjXOL6yj3HM8U7wtfPf1/gpmClUI5wmIiVqKQYXuyDeJdEjWS2FEXaUkZGlk52bkef3HX5IoVkRbKSvbKBioKqgBpRbV39s8aIZpdWo3a5Tq5uvJ6PvoWBgiGnEcLovfEzkyum+WbR5k4WKpZslitWb6zv2dTa5tsl2Qc6ODrqO8k7C7iQXLGuy24f3Uc8uj3veNXvPOt9bNchn2Rfqh+F7OvvEeAUaB9kE2xJsQwxC9UMkw0XiGDZTROJiFyN+kH9Gb0Wi44jxgslaOxxSoxOKkxu2TuVQrOfL1UmTfuATbrfwfiMw4cqM9uyhrO/5zIfVjhinxdx9HB+XcGjY++OrxdyFikX250MLTlYeuZU8+nespkzv84xl0uc166wu0CujK06VF0M73PddXOXiJcV6x2vRF3Nu1bX0Hl95MaXJkwzx03JWxq3LVrc7gS2xrSl3E1tP9Bx8F5G56H7mQ+yH+Y+Otx1+PHhJ4e7c5/mPMvqOdSb3pfav/d53F9RA7sHI1/EDCW9PDh87FX5SMPrB6Mv33waB2+JE4Lv5Cd1psyn/WbOvv/0UXk26VPr51/zmgtxXy5/fbfIvmT5PeVHw8/pFe5Vh7XsX53b82+M0EfuQH5GtaMPYRyx4tgF3E18BsGBhptmlPY8XTi9OgOCoZ0xncmCyEDsJR1ltmVhYHnKms1mwg6xN3NEcApxDnHlcOtwf+Ip5TXj/cZXxm/G/1nguKCG4IjQXmF+4VYRb5FV0WIxJbFu8QDxVYljklKSbVKOUlPSqTIiMkOyuTsMdnyTq5L3VKBTaFOMVBJQ6ldOU1FQGVfNU9NW+6ReqmGusah5Xste65d2nY67Llb3hh5Zn6h/1yDSkN+w1yjNWMl42qTE1Ba+d9w2j7KQsnhnWWblYc1q/dymwNbBjmQ3aH/SwdtR2PGD01XnRBdjVwbXYbdK92gPA09az0GvMzuDvRW8V3bd98n39fKT8Fsid/ofC/ANVAxCBQ0G11JSQpxCpcPQYW/Cb0UU746PdI3SoPJGo6JnYwZi2+Pq48sS8vakJsYnhSb77925zy3Fab9Dqn2a/QGHdKeD7hk7DwVkhmZFZ6fkZOYWHC47UpPXePRefl/B6LHPJ1CFEkVexUdP3i9ZOSV72q/sxJnHZ1fLFc4HVJRc6KlCVWvVxNfW1328JHk5pL72ytw1lYb917sbOZrCmjtv8d1OaXnbatXW0i7fcbFT6v7VhwaPhh8ndPM97e053Of0XHQADH4cejf84TV4IzK+a6J2Cj2T+BF8qpgnf9VdUvvpvFq8Mf9b3/s2CkYFgBOHANj4nuNQA0DuRQDE9gDABueednQAOKkDhIApgBY7AGSh/ef8gODEkwBIgAdIAjVgBueXYXBOWQTqQReYAGsQO6QMOULR0AmoGXoN53zSCBdEKqIeMYpkQBog45GXkFNwluaFKkW9gjMxH/QF9CeMCiYV8wzLgw3HtuFIOAquHc+Jj8X3ExQJRYRVGjLNU1p12mo6drpcegR9Ev13hliGJcZEJogpm8hKrCCpkXqZQ1iwLBdYjVmn2DLZpdh7OWI4OThbufy5abiv8XjwInkv8XnCGUGfQJ6grRCT0HPhIhFPUQHRKbGL4tESGpKQZJdUvrQnHJ3zsv07WuQq5QsU9ilSlByVNVT4VCHVMbUW9eMaIZraWvRaI9o1OjG6uno4vT79BoPrhk1Gt4xbTe6Zdpn1mA9ajFpOWy1Yr9ji7FjtRR3UHK2cyM7JLsWurW4zHiRPfa/IneXeAz4EX32/JHKz//dAtaCk4PYQQqhzWEX44m6zyLKouWitmJzY0XilhKN7FpJckx/s005pTbVMm0jPytDOBFl9OVcOn8oryDc7hjx+vzC/OKDE8JR0meBZkXKlCpvKqOrS2ieXQL3qVZsG9xvBTck3T9y+dqe/bamDt9PsQcyjs4+fda/1yPTtfH5k4O4QaZg8cml0dpx7Qm1Sb1r+Pf2HF7NHPu+Ya18w+9L5TWGxZGn5h/3PC8sLqxprKb/ubu4fW/NPhOdfAqgCE+AKQsA+cBzUgU4wCn5AJEgOsoEioKNQA/QSARAScJafhriKeAvn8VbIdGQbcgWljTqA6kazowPRjRg8xhvTiGXEhmGf4KRxebhFvBf+AUGWUESDpImiGad1pn1MZ0jXSq9FfwfOYh8x2jOOwnnqOvE4SZb0lDkCzjybWX3ZaNia2QM5WDkecu7hkuYa5y7iseXF8Xbw7ec3EMAIPBUsFPIVlhVeFekWLROLEjeW4JL4IvlY6rx0ioynrOYOCTl2ebz8qsKc4oTSC+XHKrdVL6qVqB/SoGp6ahlqS+ow6izqDuu16tcbXDVsMGoyvm3SZtpp9ti81+KF5RuraesFmxU7nD2rg5ijupO1s7/LXtcSt5vuwx5rXoI7Lbxjdp316fGDyCr+EQE1gVPBopSQkKuhy+GmEYW7Z6K0qHuj22JRcVbxRQlTiepJR5Kn9xmnVKfSp+05MA3vJ72ZFlkPc8xyu4845I3lpxzjPX63MLCY/mRzqf9pUtmDs3vLVc5/uXC1KrZGqw5zceDyhSvJ17yuqzTSN03cvH77wB2bNva74x01ndQHWo+wXYNPap7u7/Hq03kuMsA0+GjI+eXkq8TXzKPXxpzGVyeqJ92nGWa6PmTOWn5mnHuxcPZryKLKd8SPnuXS1aBfitvzjwQYQLu5A4gDFTgC3EA4OAjOgNtgGF7/gpAFFAtVQIMIGoQRvPI7kDikPfIM8gvKAlWFxqOp6DcYJ3i122AHcGTcT3whQZ0wSXOSVo92hC6Jnp++iyGeUZJxgukM0Y8kQfrO/JCljDWJzZNdj0OKk52LhhvBvcqzzLvKDwSw8A2UR1hWRFvUQSxIfL/ESckbcN49L8u4Q0HOVX6fQoVij9KKioSqu1qBer8ms5a7doXOnJ62/mGDN0aKxjkm42Za5oUWX6zsrC/Z0tqF2T92lHTKcf7gauFW64H3pHg99BbdddBn0s+QXBmADPQPukcRDckInQm3iqiPZIlKoI7FGMVejmdP2LfnY5IbvE5VUqpSOdKOpKMOJmd8yfTIupq9nut0uOrI8lHH/MvHCMcpJx4USRXnnpwrdT11p0z0TD689/uf776gWVlVzVSTWDt10fFSS73olbyrSw3e1x80yjQdbZ6/ZX/78h1Ca2BbazuxI+Be433UA7uHpY8mHks8oXRXPh3v4ey17zvYf/352wHCoNwLhyHqyyPDNa/ujQy8nhpdeLM6Dr3FTmDeYSbB5PLUp+nRmafvmz+Uf8ycjfhk/VlqDjv3Zr55IeuLx1eJr1++tSymLRl9x3zv/JHyU/PnwvKFFY9VwmrjGvkX3a9r6+4b8x8dqKiweXxAtAYAoEfX17+KAoAtAGAtf319pXx9fe08nGyMAHA3bOs/pM2zhhGAs1wbqO/K4r/+y/kfiazUoRVG4s8AAAGdaVRYdFhNTDpjb20uYWRvYmUueG1wAAAAAAA8eDp4bXBtZXRhIHhtbG5zOng9ImFkb2JlOm5zOm1ldGEvIiB4OnhtcHRrPSJYTVAgQ29yZSA1LjQuMCI+CiAgIDxyZGY6UkRGIHhtbG5zOnJkZj0iaHR0cDovL3d3dy53My5vcmcvMTk5OS8wMi8yMi1yZGYtc3ludGF4LW5zIyI+CiAgICAgIDxyZGY6RGVzY3JpcHRpb24gcmRmOmFib3V0PSIiCiAgICAgICAgICAgIHhtbG5zOmV4aWY9Imh0dHA6Ly9ucy5hZG9iZS5jb20vZXhpZi8xLjAvIj4KICAgICAgICAgPGV4aWY6UGl4ZWxYRGltZW5zaW9uPjY2NTwvZXhpZjpQaXhlbFhEaW1lbnNpb24+CiAgICAgICAgIDxleGlmOlBpeGVsWURpbWVuc2lvbj40OTE8L2V4aWY6UGl4ZWxZRGltZW5zaW9uPgogICAgICA8L3JkZjpEZXNjcmlwdGlvbj4KICAgPC9yZGY6UkRGPgo8L3g6eG1wbWV0YT4K+/VJzQAAQABJREFUeAHsnQncTNUbx58XUdotUSFtkhRJ2ogoJMmSFklo0/IvCqn+bSoVStoTpSSlJJUUkRAtQmXL3xZlCSFLCOf//M64M3fmnXnfeeed5c7M7/l8Zu5yzj3nOd9z79xnzvKcHKMiFBIgARIgARIgARIgARKII4EicUyLSZEACZAACZAACZAACZCAJUAjkzcCCZAACZAACZAACZBA3AnQyIw7UiZIAiRAAiRAAiRAAiRAI5P3AAmQAAmQAAmQAAmQQNwJ0MiMO1ImSAIkQAIkQAIkQAIkQCOT9wAJkAAJkAAJkAAJkEDcCdDIjDtSJkgCJEACJEACJEACJEAjk/cACZAACZAACZAACZBA3AnQyIw7UiZIAiRAAiRAAiRAAiRAI5P3AAmQAAmQAAmQAAmQQNwJ0MiMO1ImSAIkQAIkQAIkQAIkQCOT9wAJkAAJkAAJkAAJkEDcCdDIjDtSJkgCJEACJEACJEACJEAjk/cACZAACZAACZAACZBA3AnQyIw7UiZIAiRAAiRAAiRAAiRAI5P3AAmQAAmQAAmQAAmQQNwJ0MiMO1ImSAIkQAIkQAIkQAIkQCOT9wAJkAAJkAAJkAAJkEDcCdDIjDtSJkgCJEACJEACJEACJEAjk/cACZAACZAACZAACZBA3AnQyIw7UiZIAiRAAiRAAiRAAiRAI5P3AAmQAAmQAAmQAAmQQNwJ0MiMO1ImSAIkQAIkQAIkQAIkUCydESxYsEC2b98etyKceuqpUrx48UKl988//8j8+fP9aZQoUUKqV6/uP452Z+/evTJnzhwxxthLihQpIjVr1pScnJxok4hLvCVLlsimTZsipgVexx13nBx44IER4zCABEiABEiABEgg+wjkqBHjs2LSsOwVK1aU33//PW6af/fdd1KnTp1CpTdx4kS58MIL/WnA+Nq6dav/ONodGHcnnHBCUPR169ZJmTJlgs4l+uCcc86Rb7/9Ns9sYPgeffTR0rhxY3n00UflqKOOyjM+A0kg3gR27Nghw4cPlwkTJkjz5s3lyiuvlP322y/e2TA9EiABEiCBAhBgd3kBYDFqeAL4nwJj//XXX5cqVarI4MGDw0fkWRJIEIF+/frJDTfcIO+9955ce+218sorryQoJyZLAiRAAiQQLQEamdGSYryoCGzbtk1uueUWmT59elTxGYkE4kEArZhueeedd9yH3CcBEiABEkgBgbQek/nAAw/Ixo0bw2Jbu3atDBgwICjsoosukkaNGgWdcx9gbCElbwLlypWTRx55xEb67bff5IsvvpDZs2f7x44iYPfu3XLNNdfIsmXL8k6MoWlLAOOh77zzThk/fnzCyxBNXueff778+uuvfl3OO+88/z53SIAESIAEUkMgrY3Mm266KSK1pUuXhjUye/ToEfEaBuRPoHz58nLzzTf7I/bp00dgbGLs5urVq/3nly9fbo3MY4891n+OO5lBAH8e8IcN4yATLdHmdf/998tff/0lY8eOlVatWsldd92VaNWYPgmQAAmQQD4E2F2eDyAG50/gmGOOkdtuuy1XxFmzZuU6xxPpTWDVqlV2Ytsff/yR8IIUJC/cgx988IH1NoGuck4+S3j1MAMSIAESyJdAWrdk5lu6OEXYuXOnLF68WOCeCC15eIHBpVBBBS9mtPqVKlVKKleuLPvvv39Bk8gzPlqW/ve//9mu66pVqxbaHVOemYUEHnrooSFnRP7+++9c58KdiJfemMWPWfmom5NPPlmKFYv99kYLGlw3IZ386gn1ig8MHQwniFbAB/n8+++/cuSRR9pPtPdVvJhBVwwtWbFihXVFVbp06Yjqb9iwwXoQQC9BLOLkg2sxQSzcPeOkG2teBXHxBYaot/Xr11sXXBUqVJDDDjvMUSGmrVNGDL3Ji2VMifMiEiABEkg3AnBhlImixgZcMwV9+vbtG3VRtevNaNe6Of74403RokWD0lHfkKZjx45GDbpc6X355ZdBcaFD7969jb5wgs6rexXTrl07s3Dhwlxp4IQatUHxkY66MMoVVw0Um74aQ0F6In31z2leffXVXNcU5MTZZ58dpEeNGjXCXt6kSZOgeNB38uTJYePiZGH0Rl5q+Pk/4FivXr2g/FFHp59+uhk5cmRYHaZOneq/HmnpnwcbTw0oo+P5/Gkhne7duxv9gxGUzk8//WTUZZPRPwz+uChz2bJlTevWrY0abUHxnQP1f2reffddWzeI7/6ULFnSdOjQwUC3cBIrs3BlhR461MHocIYgHdQ4MuPGjcuV/ebNm03t2rWD4kJ3dz1gXw3toGt1zKZp0KCBUYMy17Xqosu89tpr9l5wXxRLXjp0JkgXPLuRZNSoUaZZs2ZG/4Tk0qlatWrmiSeeMPoHI+zl8WAZNmGeJAESIIEMJIBWr4yUwhiZQ4cONYcffniuF5DbIMD+IYccYhYtWhTEL5yRGXqd+1hbvqxBGZSIHkRjZKrTd3PGGWfkq+ell15qtGUoNIuojvMzMleuXGmuv/76XDrA2NKZ5mHzKKzedevWzZWfm2no/nXXXWe0lTNIl9B6Un+mRlu0zIknnhg27c6dO9vrYZw9/vjjBsZnaD7uY20RM+pOJyhPHOhkmTyvQxow9EKlMMxCy6qtfaZt27Z56uH+c6ILHhidWJNnfKfsMLohYKnjNqO6Rr0R+IsbS164uH379kF56fANf5rODv6kXXbZZUHxHL1Dt5UqVTJff/21c6l/W1iW/oS4QwIkQAJZQIBGZphKbtmyZVQvIryY8PJ1S+hLKPTlFe4YRoVOmnEnk6+RiZcxrgtNDy9HtBBpt2tQGFrIYpFQIxP5abei/YRrnXL0GThwYNjs4qF3QY1M6NStW7cgfULrCUYmGDn6h26dFlH1v5grDlogTznllFytdWhN1hnP/nx1Fn6ua5EvWlHd+YUamYVlFlpWd16R9mEk//nnn1b3//73v0H6RboG5x0jU1erivoaXDdp0qSY88KF+RmZOuTF6OS0Aul0wAEHmB9//NHq5XwVlqWTDrckQAIkkA0ECj6wUN8I2SIHHXSQ3H777TJixAjR7lHrbBxj9NyCVYIwpi4vwfjIjz76SDCRYebMmXLVVVcFRccYN21ZCjqX3wHcCLnHxmnLq3UngzGfGJcJvdzjA4cNGyY//PBDfslGFQ7H6/hot2bY+Pfee6/ccccdYcMSoTfGMcIRN1wpYezsm2++ace9uhV4/vnnZd68ee5TQfvw7wlGjqix7h93i3G4+sdD1qxZI/fcc48TxW61q97W69y5c0WNMusj1ImA+8I9y/mzzz5zguxWhx7YcZ+YlY+xfEOGDBFtSQ2Kg4NEMEO6DRs2lE8//VR0yIZoSy1O+QXjUeHYHAJ3VLh/77vvPn84dtQIs+cR5nx0KEBQHByce+65okNVZNq0aaJDKKRr16654iAMUti8ciW878SDDz4oM2bMCArGMq3QB/cxloJFXbnHdGIM9uWXX25dcgVdGOYgWpZhLuUpEiABEshcAplqSRemuxwtmbqOedjxkhhPp3dD0Add246EtnSgNUQnGDjB/m24Lmb1B+gPz6u7HOPFQseT6Wo7/mudHX2xBul5xRVXOEFRb8O1ZIaW330cbjyfk1m89A5tyVQjzMnCvwVLtCS6dXO35obWkxMPrV3omoZgfOYll1xi1B+rPcY4Pycetjp5JVfd6mQeg9ZJdzwnvYcffjjovP6JMWrYGnTBO6I+Ro3+GXAO7djAwtZ1uLJefPHFQbrjHoU+br1Du5w///zzoHCMM44kaMnEWObHHnssqHxOfIwhdueFlki3FCQvXJdXSyaGSqBl1p0fnu/QcbZI55lnngmKh2vef/99BFmJF0snPW5JgARIIJMJxD79Vn99M1XQ0oI1zNFS4xasHY4WnlBRIyH0lP8YrWwlSpTwHzs7Oq7Ptpzt2rXLOWVbItHqmZ+gRQ4Oz92CtcO/+eYb9yk7g9d9Ak6tCys6FlF0Qo2dxY1ZuaGC1iC0xumEqdAg25KYCL21uzpXXuCIVka0ajqC1sa8BDO8P/zwQ+tBAPHg4xMtfY6o4eTs2u1JJ51kW6aDTuqBTh4JajUGd7SAo+XSLZgNjyUQn376adHJJtK0aVNRw0x0go0/WiLqWifoyOjRo4PuS9yjWHse5XcEreKxCrwn6CQZ6z/VnQaele+//150zK6478e8niH39bHsT5w4MddzC97gECrouXj22WftbHsnDK6R0KIZTpLBMly+PEcCJEAC6UCARmaYWqpfv77/LFycvP322/aljO7meL0M0ZUNQ8z9okUXdDQSrttXZ1zneym6kvUfU1CXYL4XhUSAsfTtt99aDuh+1NZR213sREN5tPXPdl2HGunJ1hurwLiNTKwIk1f5taXRb2A65XFvQ/X/5JNPBJ/8BMMXIC1atLB/XmBkuQXGq7YsSvPmzeWNN96QMmXK+IND80RAYesahmy4Pz4wgt1GZmHudbgngoN+yJ49e+wfKAw70ZZu6zLIBiTpa5m6iQoVnfEeesoea+u3NfLh0smRcNc7Yclg6eTFLQmQAAmkGwGOyYxQY3ix6Kxswdi8Xr162TGOhXnphsvGbUwgPFq/ku4XYLh0I53DGDOM/YuHoIUWS/dp92GQUYS0YczBYAuVZOuNsZRuwbjLSMuQIp77z4X7OuyjBRZjamMRx0gBMyzDGclIRKspxgm6W6STzSyW8kW6Bga9TpQS+J9Ul0G25T5c63ek6+N1Hj0QboEhqUMa3KeC9t1jmREQen1QZB6QAAmQAAlEJMCWzDBopk+fbrsOYZQ4gi5ZHfdlu2AjtYI4caPdhrZc6qzwqC4Nt1Qjuv/yE0xqULdL+UUrUDhaNnU8qG2lc1+os8ulS5cutsvZOZ9svTFRxy1wzh7J2Ta6PdH9HUlwbcWKFUVdNvmjwMhG62N+om6m/FGQv443tC3jmEiDSTduQcs5JhmhRRh/QpLNzK1LYffbtGljy+lOB0b0rbfeaocTqI9Md1DC9o844oigtDEhC892JEMz9M9E6PVBifGABEiABEggIgEamWHQ6KQc+xJygtCNqC5s7BjHaFsbnWsjbbEyTWgrFcbyRSM6aSFXNLQUnXbaabnOJ+MEWnzRFfzxxx/7s8MqSVhPGkv8OZJsvTFz2C15rdSEbs/8BPq7jUwYH2jljkWwvrb6bBTMxlYXQXblHycdtPZhHCCM9GQzc3SIZhs6vtZ9DcqFcZ+OoBUX45AxOx9/dtzDRJw4eW3zyiuv6xCG8aGhgnsDwzpCBWOk4QHCLepg3n3IfRIgARIggSgJsLs8BBTcyYS2Lj333HO5JtGEXFbgQxgWGKvmCF684QwKJ9y9VZ+Mgi4/t2Dt8LxexHhxRnIr5E4n1v1+/frlWsYRhsYvv/ziTzKZeqt/Qxk+fLg/b+yEMyqCIuRzgFY4t8BtD8YYRhIMT0ALM4YUQDCMwO1GB4YXJieBkXuyD+I64ziTyQz55iWhLX9w/YNWf7c496D6vXSfFvVSYA1yt4ugoAghBwXJK+TSXIeNGjWSgw8+OOi8egwQ96Q7J/CFF16wS006x9jiDwGFBEiABEig4ARoZIYwc7dUOUHuMVm6JJ1z2r9F19vPP/9sZ836T+7bQdccWkHhwxHrMWPyELoRYYC5RZfFs92x7nOR9tF1DyPVLfAzCF99GM/nGK8Yf6irllhDBrPlw+nuTqMw+1iLGr4q3YIxeW49E6U3JpRgPKM6LbeTSnTFJrnggguCJmmhuztUP7eu0ezD64C76xTlw8QntNDpMqQ2CbDHnxRdMcf+MUGXuDMmE61n8BmJbnbUP2ZvY5wvWrRDxypifXtIopjZxAv4haERoYKub/gXxX2my6faexiGZ+hz5PapimEM7nGnSBPPEJ4VZ6JWQfIK1Sn0GAZrqB9QPI+YGIZJWGh1Rx3Bv6u6qQq6HF4bdJnQoHM8IAESIAESiJKAvigzUmL1k6mGmdHWliBfefqSMurCxJx11llB5xWxPYa/QG2VMlgbPZwfPSdepK2O9TPwr+iWvPxkIp6+kCMuKQn/kFjWMTQ/7S52ZxHVfqifTB06EPE6rFoEVqH5auud/5p46B3qJzM0v9Bj1I22avp1wE5oPUHvaERnX+cqn5MfliLVsZ25wgcNGmSTDrdaEHRzrndvsTqQI4VlFm1Z4W/UrQPW9w4VrAfvjhNuf8qUKUYN8lzxcO/AV2u4JVt1uIJdLUiNan+W0eaFC/Lyk4lwrJqkLdG5dAqnv3MOS4eqwYzL/RJPlv5EuUMCJEACGUqALZn6RnELJmboWtfuU7aVBWPksIpOOEELZawzz9FNila40O68cPm4z6FlDu5m4NswVNAi5G59RTi6ZuEmJ5GC2dzuFW6cvHS9bus6CMep0Pvll1+2rbmOPoXZousUM6bhoidU0HKsTs2DTmM8X/Xq1YPOuQ/C3Tf/+c9/7CxzJ14qmDl5h24HDx6ca1hEaBwco2UerbBuwapZaNUPN8MfLcBOa7BzTbR5OfHz2sKdFoY26HrqeUXzh2H87tixY/1umPwB3CEBEiABEoieQIYaz0a7InO1WgwYMCCq4mrXnbnxxhuDWjTR0qIGnV2NBS2WStj/QcsMVtdRY9PoOC8zYcIEu1a2zlb2x3HHRwsJ1rrW8V9GX65hdVq+fHnQtWhd1Zdw2Lg6uca20qjvw6BrkCfWxdauwqA1tMMmEuFkvXr1gtLUmdIRYvpOb9myxa5r7i4v9tWQznVdrHqHtmSqIWdbwULzxOo9+ucgV744od27QeXCijAFEZ2BbNSRulEH7kHpQAe0ZtaqVcuoz0t7Pzjpape4XVEGLWrhWjCx7rwuLRnxnkA6sTCLtqx9+vQJKotO5nJUD9qilTXcOuB4DrCSFVq0IWj1Q92460XdA5knn3zS6Cx6g5Z1d5h6bbDPjjuzaPPq1KlTUFpoSQ0natQb9XtrdDhF0PPt6KG+aw1adPEsh5N4swyXB8+RAAmQQKYQyEFB9AeWEoYAxsnBGTZarTBGzO3AGutUYwUZjNmC66FIs5Mx3gu+KTEODTPTMdMVbmkixQ+jRtSn0BqE9cwx1g+r1yCf0NakqBNLYsSC6q2Gr10H21ERk47QWoqywy0U6gucQ/2QOvHjvUXLHGZLo1XyuOOOs+zzm+CCSSfQFWMXMYkL14X69cxLz4IyyyutWMMwznLRokWClYvgTxattmh1dQsmAmHCE54XuIhCC6EjmBiFMcpoZccEJzVSnaBc22jyynVRPifwPII/JvvhnoGLqoLUQT7JM5gESIAEsp4AjcysvwXSD0A4I7N79+7pVxBqTAIkQAIkQAIZTIBjMjO4clk0EiABEiABEiABEkgVARqZqSLPfEmABEiABEiABEgggwnQyMzgymXRSIAESIAESIAESCBVBGhkpoo88yUBEiABEiABEiCBDCZAIzODK5dFIwESIAESIAESIIFUEeDs8lSRZ74xE/jqq69E/VT6r8eSmSeeeKL/mDskQAIkQAIkQAKpJ0AjM/V1QA1IgARIgARIgARIIOMIsLs846qUBSIBEiABEiABEiCB1BOgkZn6OqAGJEACJEACJEACJJBxBGhkZlyVskAkQAIkQAIkQAIkkHoCNDJTXwfUgARIgARIgARIgAQyjgCNzIyrUhaIBEiABEiABEiABFJPgEZm6uuAGpAACZAACZAACZBAxhGgkZlxVcoCkQAJkAAJkAAJkEDqCdDITH0dUAMSIAESIAESIAESyDgCNDIzrkpZIBIgARIgARIgARJIPQEamamvA2pAAiRAAiRAAiRAAhlHgEZmxlUpC0QCJEACJEACJEACqSdAIzP1dUANSIAESIAESIAESCDjCNDIzLgqZYFIgARIgARIgARIIPUEaGSmvg6oAQmQAAmQAAmQAAlkHAEamRlXpSwQCZAACZAACZAACaSeAI3M1NcBNSABEiABEiABEiCBjCNAIzPjqpQFIgESIAESIAESIIHUE6CRmfo6oAYkQAIkQAIkQAIkkHEEaGRmXJWyQCRAAiRAAiRAAiSQegI0MlNfB9SABEiABEiABEiABDKOAI3MjKtSFogESIAESIAESIAEUk+ARmbq64AakAAJkAAJkAAJkEDGEaCRmXFVygKRAAmQAAmQAAmQQOoJ0MhMfR1QAxIgARIgARIgARLIOAI0MjOuSlkgEiABEiABEiABEkg9ARqZqa8DakACJEACJEACJEACGUeARmbGVSkLRAIkQAIkQAIkQAKpJ0AjM/V1QA1IgARIgARIgARIIOMI0MjMuCplgUiABEiABEiABEgg9QRoZKa+DqgBCZAACZAACZAACWQcARqZGVelLBAJkAAJkAAJkAAJpJ4AjczU1wE1IAESIAESIAESIIGMI0AjM+OqlAUiARIgARIgARIggdQToJGZ+jqgBiRAAiRAAiRAAiSQcQRoZGZclbJAJEACJEACJEACJJB6AjQyU18H1IAESIAESIAESIAEMo4AjcyMq1IWiARIgARIgARIgARST4BGZurrgBqQAAmQAAmQAAmQQMYRoJGZcVXKApEACZAACZAACZBA6gnQyEx9HVADEiABEiABEiABEsg4AjQyM65KWSASIAESIAESIAESSD0BGpmprwNqQAIkQAIkQAIkQAIZR4BGZsZVKQtEAiRAAiRAAiRAAqknQCMz9XVADUiABEiABEiABEgg4wjQyMy4KmWBSIAESIAESIAESCD1BGhkpr4OqAEJkAAJkAAJkAAJZBwBGpkZV6UsEAmQAAmQAAmQAAmkngCNzNTXATUgARIgARIgARIggYwjQCMz46qUBSIBEiABEiABEiCB1BOgkZn6OqAGJEACJEACJEACJJBxBGhkZlyVskAkQAIkQAIkQAIkkHoCNDJTXwfUgARIgARIgARIgAQyjgCNzIyrUhaIBEiABEiABEiABFJPgEZm6uuAGpAACZAACZAACZBAxhGgkZlxVcoCkQAJkAAJkAAJkEDqCdDITH0dUAMSIAESIAESIAESyDgCNDIzrkpZIBIgARIgARIgARJIPQEamamvA2pAAllLwBgj+FCSR4DMk8eaOZFAthOgkZntdwDLTwIpJNCyZUv5+OOPU6hB9mU9ZswYadWqVfYVnCUmARJIOoFiSc+RGZIACZDAPgI9e/aUypUrk0cSCZx55plStmzZJObIrEiABLKVAFsys7XmWW4S8AABdpWnphLIPTXcmSsJZBsBGpnZVuMsLwl4iEC/fv1k5syZHtIo81X54YcfpH///plfUJaQBEgg5QRy9B8tR92nvBqoAAmQAAmQAAmQAAlkFgG2ZGZWfbI0JJBWBJ566ilByxoleQS+//576du3b/IyZE4kQAJZS4BGZtZWPQtOAqknkJOTk3olslADcs/CSmeRSSAFBNhdngLozJIESIAESIAESIAEMp0AWzIzvYZZPhLwMIHLLrtM4LeRkjwCH330kcA/KYUESIAEEk2AfjITTZjpkwAJRCRAP5kR0SQsgH4yE4aWCZMACYQQoJEZAoSHJJAMAi+//LJs3brVOsVu1KiRvP/++7Jx40a55pprpGrVqn4V5s6dK+PHj5cVK1ZI8eLFpWnTplK/fn0pWrSo/PHHH/LOO+/YuHXr1pV///1XvvrqK9m+fbu0adNG6tSpI7/++quMHTvWpn3++efLRRdd5E977969dtINJoL89ttvUqtWLbnkkkvk0EMP9cdJ9E66OLf4/fffZcSIEX4c119/vZQqVUrGjRsnqCNIgwYNBAZcOki6cJ8xY4ZMmzbNIq1Xr56cffbZdh/Py/LlywVjS++++267TQfu1JEEso4AXBhRSIAEkktADRS4DjMHHnigcfZxjM8LL7xglXnggQfssXPe2Xbr1s2GT5w40R9+9NFH+/cRT41Q0717d7P//vsHnX/zzTfttWqQmnbt2gWF4brq1asbNV6TBqNFixZGu2+Tll+sGe3Zs8c0btzYz+vqq682CxYs8PPVPwZm8+bNsSaf1OtGjx5tdJhCUvOMNTP1oepnrgamTWb16tWmRIkS9ny6lCPW8vM6Ekh3ApLuBaD+JJCOBNyG5THHHGMuuOAC/8u0YcOGtkhXXnmlqVGjhnn22WfNyJEjTcWKFW0cGKYwaNxGJgxEbeE0xx9/vD8dnMMxXs7Yd+Ig8ccff9x/DsaottKZMmXK2HMdOnRIR6QJ13n9+vWmUqVKfm5HHnmk3T/kkEOswZlwBbI0A/ezMWfOHNOrVy9/HWhLZ5ZSYbFJID0IcOKPvnkpJJAqAuhy/e6772TSpEmirYhWDXQPasuZ3HjjjYKubHSRL1y4UHbs2GHDt23bJhs2bAhSGRNoJk+eLNpK5T+vBqbMnj1bpk6dKiVLlrTnFy9ebLdffvmlP95hhx1mu8ud9awRP1mSTn4yS5cuLR988IFoK5rFoy1qtpv2rbfeChrikCx2seaTbn4ye/To4S8q7hcMNYFg+IfTfe6PwB0SIAFPEeCYTE9VB5XJNgLazS3lypWzxcY+xvft2rVLdu/eLSeeeKI0adLEGo/aeikHH3xwRDxnnHGGDatcubI/TrVq1fzXaCuoHZ+JdCGrVq3yx3vkkUf8+/vtt59g/CEMWeSZaEk3f40Yc3nWWWfJlClTLJpixYqJtkQnGlPc008n7viThT9geDbc42K1RTPuXJggCZBAfAmwJTO+PJkaCcSNQJcuXayBecABB4iO/5OLL77Yn7ZjLPpP5LMTalSce+65/it0DKg1bGHcLlu2TD7++OOkGJhQALPL02WyDPR9+umn/QYmjjHZ6vLLLxcdvoDDtBBMCHO3DnpdaWdyj1tPHUYS9Dy4w7hPAiTgHQI0Mr1TF9SEBIIILF261B6j63zgwIHW+HMiNG/eXNauXescFnh78803+1s5sX/yySdLlSpVpEKFCnLrrbcWOL1YL0gnP5mYuX/PPffYoqKFuXXr1nZ/yZIl0qlTp1gRJP26dPSTqZPURMfA+lnhzwmFBEjA+wRoZHq/jqhhlhAoUiT4cbz//vvtWEq0MA4ePFh0QpA4cXTIt6Bru6DitGiiy3fChAk2TXTDY8wnjCV00SfTyISxULt27YIWI+nx16xZIzoRy46VxRjWIUOGyKuvvipHHHGE1QVjYZ977rmk6xVLhmg5TqeWTJQRLfd4DiDHHnusrQt7wC8SIAFPE+Cykp6uHiqX7QTQHQv/mY4xg25ZGJgwdOIl8JepM6et30eMMUymYJITjAaMR6UkhwD8q2JYBHyrpougJb9r165WXQzvuO2229JFdepJAllNgEZmVlc/C08CqSWA7vLOnTsLtpTkEEB3+dChQwXbdBD80YKnhJUrV9o/W3DCjnHKFBIgAe8ToJHp/TqihiRAAiSQtQR0AQHp2LGjLf9jjz0mGEZCIQESSA8CNDLTo56oJQlkJAH4PcRY03SaYZ7uFQE/mfCpmi6TZ+DrFcueQnCvqPP7dK8C6k8CWUMguQOwsgYrC0oCJBANAWciUjRxGSd+BNKJ++mnny74UEiABNKPAFsy06/OqHGCCAwbNszOuE5Q8kyWBEggiwk0btxY2rdvn8UEWPRsJMCWzGysdZY5LIGTTjrJztwOG8iTCSGg67Lb5QFr1aqVkPSZaG4CP/74o11q1JmtnTsGzySCAPzQUkgg2wiwJTPbapzlJQEPEfjmm28ES2HShVHyKgUujDBD+7zzzktepsyJBEggKwkEe3/OSgQsNAmQQKoIwOcnJfkEyD35zJkjCWQjARqZ2VjrLDMJeIRAv379ZObMmR7RJjvU+OGHH6R///7ZUViWkgRIIKUE2F2eUvzMnARIgARIgARIgAQykwBbMjOzXlkqEkgLAvCTiZY1SvIIwE9m3759k5chcyIBEshaAjQys7bqWXCvE4AT6lWrVuVSc/fu3TJ37lzBOubpLungrxG8MSM7r2591AfqK13GOqYD96VLl1qXYlhOMpysXbtWpkyZItu3bw8XzHMkQAJeIKA/ihQSIAGPEVixYoUpWrSoadKkSS7N9OWL2TLm3XffNTt37jRPP/200RnDueLxRHwIHHfccZY3mB9zzDFG1/z2J6wGjtFVaPzh5557rtm6das/nDsFJ6BrlZtWrVr5mapBbHQpyaCEcM/jPOpEVwAy2hoeFM4DEiABbxBgS6YXLH3qQAIhBF5++WXZs2ePfPHFFzJv3ryQ0MDhkiVL5O6775bx48cHTqbR3mWXXSZjxozxtMbt2rWTDz/8UAYPHixqQErv3r39+j700EMyadIke+7JJ5+U6dOne35tbTWSpWXLlv4yeG1nx44d8umnn9r7Gn5Ujz/+eHn88cetb0/oiu5+3PP6B0zefvttOeigg6RNmzb2efFaWagPCWQ9AW/YutSCBEjAIfDPP/+YMmXKmGrVqpkiRYqY66+/3gmyW3dLJk6kcyvmtGnTzO+//x5UPi8f3HLLLbb1DDqjFblUqVKmfv36fpUbNGhgDj30UIM69KpAd3D3qoDd2LFj/ephX1/U5rHHHrPnOnXqZI///PNPe/zSSy/ZY/2z4r+GOyRAAt4gwJbMrP+bQQBeIzBixAhZv369PPHEE9K8eXMZPny46As1rJqrV6+Wq666yo5NQwS0fmIyzVlnnSUnnHCCDdu0aZO99vPPPxft2hWsbNShQwdZt25d2DSTeVJ/BpOZXcx5geuMGTMEDMuWLStHHXWULFu2TP766y9xr1ZUs2ZNO1Z28eLFMeeVjAu9zH3//feXZs2a+THoEAW7f8ABB9gtxsbCeT/qAVKjRg27xbhZCgmQgLcI0Mj0Vn1QGxKQ559/XipVqiSXXHKJ3HXXXYLuQ22tCUsGYVOnThUYm5Du3btLr1695O+//7aGJowiGKxYWQcvbsSH4Yru9dtvvz1smsk8mS5+Ml988UXR8ZbWsBwyZIhg4oy2CFpU1atX9yPT1me774T5Azy0k25+MjFUAaKtxHaLFYtOPfVUu4+vdGDuV5Y7JJBlBLh2eZZVOIvrbQLajWlnKZ9//vny2muv2dnKGHOGMZowHtHKE0lgQL7wwgvSqFEjOysXhpB26Urx4sXlv//9r5QoUcKOK0SL0OGHH25bPBGO86kSr4/HdLicccYZopNR7PjRW2+9VS688EIpVsz38wmGjuzatcvugrlXBeMxvTwm080NM8sx1rVx48b+FmOdEGfvayeeThSyu/vtt59zilsSIAGPEGBLpkcqgmqQAAigFRMC1yw6/k9g0GCyCbrL0W2el6D7Fu52MJkGBiYEBiT2l+ta1RB0rSN85MiRcuyxx8ovv/xiz6fqK138ZGKdb7So3XbbbbYF0+myBTf3xCy4MoJUqFDBbr34lS5+Mvfu3Ss6Htn+SXrllVf8KNFV7nDGSece9jJzv/LcIYEsI0AjM8sqnMX1LgF0A8KQ6dixo/X9B/9/+MDIxLi0AQMG5Kl8+fLlbTi6z0OlatWqghYghP3888/289NPPwla6FIpjjGcSh3yyhstk+DviNNCqROyrJEOg+e7776zwRjn+O2331oDEzOivSxe5w52jz76qG2Rf/311y1rh2fdunXteGL8qYJgrCzE6U63B/wiARLwBAF2l3uiGqgECYjtEkdL5B133CHOJAeHS9euXaVbt27WpVGVKlWc00FbdIE3bdpURo8eLVdffbXtNl+wYIG0b99eLr/8cnnrrbdsN6/OzrUtnnh5wwWMe0xhUIJJOOjZs2cScok9i99++01OO+0021172GGHyfvvv2+NSEz2gdGOlmb14SjXXnutnXQ1Z84cOwwBYV6VOnXqCD5elokTJ1q3UOXKlRMMIcEHAt5o4X/11VeldevWdtwy/nzVrl1bYHxSSIAEPEbAG5PcqQUJZDcBOKDW2bJGu2XDgtCJPNY1zsUXX2y0Bce6bIEzdvc+LlyzZo11ZK3j02ycI4880qjvRpumjtc02sJmzyMcDq83bNgQNr9knWzRokWQc/Nk5RttPnCTo+MBzYEHHmi5qcFpZs2a5b9cZ50bNXyM/ikwJUuWNPoHwWg3rz/cizv6J8TokAkvqmZ10lWurAsvfVVa5u7t5MmTbZxRo0YZ3Ntw8XXOOecYXEMhARLwHoEcqOQxu5fqkAAJFJIAJkNs2bJF1I9jrpQw8xyTidDlm2rBrPfKlStblzSp1iWv/METQxfUB2bYaJj8gy5opzs9bCSPnMSwDIzRxTjTdBfUiRr36V4M6k8CGUuA3eUZW7UsWDYTwEzbcAYmmOgyfJ5Bky7/ccEzkoEJmKmcoR9LZaYL9/zKRgMzP0IMJ4HUEkh9U0Zqy8/cSYAEUkggXfxkphBR3LNONz+ZcQfABEmABJJGgN3lSUPNjEiABEiABEiABEggewiwJTN76polJQHPEUgXP5meA1cIhdLFT2YhishLSYAEPEKARqZHKoJqkEA2EkgHf42ZWC/knom1yjKRgPcI0Mj0Xp1QoxQRePbZZ60PPmSPVXHgExGOy+F/D+t/h4Zj1RwnfN26dTJw4EDp0qWL1R7L9r333nt2NRJcjxV7nnvuObn55pttOJYoVBdEduUShK9du9au9nPTTTfZcPgAHDFihF1NxgnHkpGRwtV1kV1S8sYbb7TXt2nTRt555x2ZP3++1R9rm2P97RtuuMGGw28mVhCCH02kry5g7ProWGEF0rZtW+tDc+HChTYcM5KxtKUTfsUVV4QN79y5s70e4cOGDZNff/3VXo+1vLFqC3x0Qq688krrtxOc4P8TywfC92HHjh1tOFYmevPNN+V///ufvX7FihUyaNAgue6662w4/IAifPHixRHDhw4d6g+Hv0ss09mhQwd7fbt27eSNN96QJUuW2Osx23rw4MHW3yUiXHPNNQI/okuXLrXh6ipKsGY5fI5CsEU4zoMftjh2hyO+E450EI50IfCrifyQL66HHtAHekGgJ/SF3ghHOVEelBsCDuABLk44eEQKB0eEgyt8ZGKVIvAGd1y/aNEiWx+oFwjqCfWFekM46hH1iXqFoJ5xP+C+QDjuE/hcdcJxn4QLx30FQfhLL71k7ztcj/sQ9yPuSwjuU9yvuG8RjvsY9zPuawjuczwPuO8RjvLgecFzA8FzgnA8V5HCsbqWE44VhPA84rmE4DnF84rnFtdjVSE8z85ynHjO8bzjuUc4fgfwe4DfDQh8eeL3Ar8bTrgN4BcJZBsBuDCikAAJGKMvcqOr4FgUunKL0Res2bRpk9FVcoyuC27UEDDqbNuG6yovNnzz5s1JCf/nn3+C8tcuT6MGgoH/TOiHcDVkzOzZs61+iQp3fEQifTVwjLpJsvmrKxmjBpXfh6ROLokqvFmzZqZPnz4mluvVAPPnv23bNqMGm/nxxx9t+XXZR4NwXa3H6pfocOSD/JAvBHpAH+SL+kl0OOoB+YM7BPWE+gBX5I9w1BfC4Sezfv36EcPzuz6vcNwXTjjuR9yXyB/3Ke5XJxz3aaLD8bw6+eM5xfOM5xaC5xjheK6hX6LD8TtCIYFsJMCJP9n2r4LlJQEPEUgXP5keQlZoVTLJT2ahYTABEiCBhBJgd3lC8TJxEiCBvAjoP/u8ghmWIALkniCwTJYESCCIAI3MIBw8IAESSCYB+slMJm1fXvSTmXzmzJEEspUAu8uzteZZbhIgARIgARIgARJIIAG2ZCYQLpMmARLImwD9ZObNJxGhOvlG+vbtm4ikmSYJkAAJBBHg2uVBOHhAAt4hALcwu3fvtgoddNBBUrly5QIpB7c1Bx54oBx11FEFui6ZkdPRX6O7XsAKa8FXqlQpmdgKnVe6cNcZ8rJnzx454YQTcpX5r7/+si6QqlSpIsWLF88VzhMkQAKpJ8Du8tTXATUggbAE9ttvP7+RiQgVK1a0vvrOOeecsPFDT8Lwad68ufVHGBrG49gJHH744aIuafwJwDfjqFGj/MfciR+Bs846S9TNkKhrsVyJPv3009K9e3frwxOGJoUESMB7BNhd7r06oUYk4CfQuHFjGTdunDz22GPWsIEz6EyaGQzn1WPGjPGXN112YFiOHz/efnr37p0uals9P/roI79T8bRSnMqSAAmkHQF2l6ddlVHhbCKAru6mTZvaj7PqClZpSbfu2Uh11rNnzwIPA4iUVjLPo/v2oosuSmaWccvrzDPPlLJly8YtPSZEAiRAApEIsCUzEhmeJwGPEEDLJboLv/76a6latWqQgTlp0iS7xCAMHixlB0PULVgOD0sNojsRS/Xpyibu4JTvp2urLJYR/OKLL0RX0kk5w1gUSFfusZSV15AACaSOAI3M1LFnziSQLwGsh1yqVCmpWbOmXSca61k7grWlGzVqZLvTixYtatfGrlGjhujSeU4UmTZtml1fuVy5cnbt7V69evnDvLCTrn4yP//8c9u6fNJJJ8mMGTO8gDJqHegnM2pUjEgCJFBIApz4U0iAvJwEEkUAE39gxGBc5rp166zxuHbtWhk6dKhccsklggkoMConT55sZ9euWbPGzsKtVauWTJkyxbZ4ooVzyJAhVsX27dvLhAkTZPXq1VKkCP9fxlpvmLX/77//CsY2PvDAA5YzZkFT4k+AE3/iz5QpkkAyCfBNk0zazIsECkgA4+eeeeYZGTZsmKCL9uijj7aTgNAtvn37dmnXrp3ffUv58uXl0ksvlVmzZvlzKVGihH+/SZMm8ueff4adqeuPlOSddPSTeeKJJ0q1atXkvvvuk1atWsny5cvtJ8noYs6OfjJjRscLSYAECkiARmYBgTE6CaSKAAxG+L1ES9qRRx5p1XB31WKcHQyII444IqyK3377rT3vXBs2UpJPpou/RgfL1q1bnV27hYEJQb2kk6Qb93RiS11JgAQCBDi7PMCCeyTgOQLz5s2zLZlwPA0jcebMmXaiT5kyZaRt27aCMZswGM4++2wZPXq0LF26VJ588kl/OTBhCK2guPb1118XtGaixdMrgtnl6STXXnut/P7771K/fn3BpKvZs2fbcbHpNFu7Tp06gg+FBEiABBJNgEZmogkzfRIoBAFM0sAH4zNPPvlkueeee+TRRx+1KQ4ePNiuNjN8+HDBBxOEnnjiCenRo4cNr127tnzyyScyffp026XeokULefHFFwuhTfwvhZ/Mzp07C7bpIBgfi8lXAwYMkGLFikmbNm08xzQ/jhhLinG92Hpd8mpxdcI4vtjrtUj9spkAJ/5kc+2z7BlBAMvubdy4UdC6GSoIW79+vZQuXdoaRaHhqT7+5ptvrJ9MjDVNJ8F4WCxlCEMz3eSPP/6wY0jPO++8dFOd+pIACaQZgfT7hUwzwFSXBBJNAO6LwhmYyBdhcF/kVUlXf40lS5b0KtKo9EpX7lEVjpFIgAQ8Q4ATfzxTFVSEBLKPQLr6yUznmqKfzHSuPepOAulFgN3l6VVf1JYESIAESIAESIAE0oIAWzLTopqoJAlkJoF09JOZ7jVBP5npXoPUnwTShwCNzPSpK2pKAhlHwJkhnHEF83iByN3jFUT1SCBDCNDIzJCKZDEKTwBLBLZs2dImdPrppwtcBKHVBzOfsWTjgw8+6He1g6Ub4coG49sQjqUaH3roIYGbIMgZZ5whgwYNsn4tEb5q1Sp5+OGH7Yo8CId7IYT/+OOP9vpw4a+++qo/HDOCH3nkEf/1WAkIa5djdR+kD9+NvXv3tstNIn34QXz55ZetH0eEr1y50ro+atasGYIFy/W99NJLMmfOHHv9ihUr7EpCF198sQ2H3024O4KfTVz/22+/yeOPP27X60aEc845R1544QX/KkRwSt6nTx/rhxPh5557rjz//PPyyy+/2Oux7CLcK8EFEAQzm5977jmBPmDu+PfEMpiQunXrysCBAwV+QpE/wtHqGSl8yZIlNvzCCy+019erV0+effZZmT9/vr1+8eLF0rdvX+vTEhHOP/9864ZowYIFNhwO7jE+tGHDhvZ6+MHESksLFy604YsWLZL+/fvLBRdcYMMbNGggTz/9tGDlJeiHLY5xHoJ4iI/rEI50kB7ShSAf5Id8EQ494BYJekGwJj30hd4IRzlQHpQLgnKCB8qNcHACL3CDgBPCwS00HPfG+PHjrT9VJ3zu3Lm2PpwZ56gn1BfqDdejHlGfqFcI/K2ivlHvCMdqVLgfcF9AmjZtau8X3DcIx32E+wn3FQT32WOPPSa47xCO+xD3Y906Z4rM+1H6nXuKTL7yIjEPdZEP1A+sXHqybKmRI4uw3+xoWV40R9afpPttTpMxem5b16tldufL5KFq6gN2zgxp2+xi+7zguUH6eM7wPOG5g2BlLDyPeO6ccDyPkcLhnxbheK4heM7xvOO5x/X4HcDvAX4XIHDJhd8L/G4gHL8jFBLIRgIck5mNtc4yhyWwefNmuyY1Zmrj5XDQQQdZ/5QbNmywM7Sx2suuXbsEjredcLixgYsgzOBOZDhW8dm2bZs/f6xhjlVmnPwTEY4Z1FhlCOVD+nDbs3PnTlt+5B9L+I4dO2xazvVYFrN169YCJ+dIPzR8//33t+u2O/nHGo46++eff/zpY3nNAw44QJz04xEO3ZAHdEX6SBt5YN15pB+PcDDCveakjzrAvpN+NOFYJQoG13vvvWfrMJrr8Uyg7p30USbcG07+sYQXV9+vh65YJHs//0CKLPlF5NvPRX4O+2jGdvJYvQxG/XGnqdXdUradfIZs0frBYgTQH88OnnHci9Afzzae4USEw4WYe4nX2ArEq0gg/QjQyEy/OqPGJJAxBNLVT2Y6V0BK/WSqISdTxop8PlLk+XdF9DCXVNEztbTFsXxlkSMqiJQ7SqS0LqN68CEixfYTKVJUxOwV2b1bZNsWkfVrRNatEln7u36Wi8zV5VPn5ErVd+KWS7QZ9iptKlbn/wcdHCEST5MACcSLQLF4JcR0SIAESKCgBOivsaDE4hM/6dw3rBMZ9qxItz65C/AfHaJy5gUip2hXdNWaIiXjsA78rp0ii7R1dN4skVlTRd5+W0TtUHlZDVx8INoVLzfosqYV0ORJIQESSAQBtmQmgirTJAESiIpAui0rGVWhPB4pqctKbt4o0ucOkb5q5DlSTXc6qXHXuI1IdW2xLJKEqQHGiCyeL/LlhyLvPSjytaOMbq9vJPLoGyJHVnSd5C4JkEA8CNDIjAdFpkECJEACJBBMYNz7OknnisC5K3VSzG3aklm3sQgm8KRS5miX+iuPiLyq40AdeVNbWtv/JzlGr5MntySQ4QSS8BcywwmyeCRAAjEToJ/MmNHFfGHC/WTu1fGSd+u4R8fAbKijshbqjJ53fxSp1yT1BibI1Txbjcxx2oW+Qg1L3Ydc11XkitNEdvzjO+Y3CZBAoQnQyCw0QiZAAvEjsFdf0HB788UXX1i3L5itHA/ZuHGjwE0N0veSpLO/xn///de6xpkyZYps2aITUNJIEsYd3dI9rxF55j0fjdf7iUzQ8ZEnnVogOpjFjvvV/YH3B7dgVjjYI27Mgi7yt6aLfPKOL4lR80SuPUsnJKnOFBIggcIT0AHgFBIggRQT2LNnj1E/iubggw/Wt7T4P+qmyFxxxRVG3asYdSFj1Bej0dnBBdZWfVLaNP/+++8CX8sLchNQv5DmxBNP9NeTusAxkyZNyh0x2870vwdmpu8z9YuYSz9hwgQ/W+d5GDFihD89PAdqKNs4hxxyiFE/lf6wmHcW/hzQvUuzmJPhhSRAAgECbMksvJ3OFEig0ATatGkjd911lxx77LHWqfW4ceNkyJAh0qpVK8FEDbSawfH23XffbR1pFzpDjySAiT9jxozxiDbRqwHn27vVhQ4crHfv3t36MIWvT/2zEH0iKYqJ+8lZdCCuKmzcINL9KV+S40f5xl4WMgM4oIfjeHwcR/vo7sdzAIfwb+uscfi6xPNTaPZobZ0706fxK5/p7PS5hdSel5MACehfTgoJkEAqCejKPbZFRh2TGzUmc6mizrL952JpxcTFXm3JnDZtmtHVivzlS5ed6dOnG10txq9ux44dbR3qyj/+c17dAW9wj7s8c6+vJfDSEwqdtNOSGa6FslOnTpa181zoSkH2WP+sFDpfm0CPdr5y3NoiPukxFRLIYgJsyeQfDRJIMYG33npLSpUqZZeJLFYst+tarOYCwRJ2V111lR2HhlZNLEGIpQyxBGGNGjXssoBOUfQ3zS4DiOUjq1SpYpf0QxhaRLGk35133ulEFTWYbFqffaatN0kW6JmOguUTjzxSHYTvk2OOOcbuYYWfdJCEcJ+0b1zjzY/GDQHuye+++y4oPSzxiKUanecC9z4ES0fGReBeCfLOx74tv0mABGImQCMzZnS8kAQKTwBdfHg5Yi1yHY+ZZ4JYlnDq1KnW2MREE+xj/WSsN42lDGE4fv21zwEg1oW+44477FKAV199tei4NZv2frqU3ymnnGINUEyqgGCNaqwt7axbbU8m6Qvrd8NoSGfBZCp0QR9//PFSsaL3fS2iqx/rqsddNv3mS7Lc0XFLGvc31jvHWvBY8hGCFYtOPVW7tvdJtWpwvCmiLbT7zhRyc4SuMATZ5NvwmwRIIHYCNDJjZ8crSaDQBIoWLSqHHXaYHd8XS2JYg7p3794ydOhQe/ns2bPtFi2ctWrVkjlz5sgjjzxi1wZ30u/Ro4ddVxvG5fz582Xs2LFyyy23yKGHHupESdoW4zExLtPLgrGXK1eu9H9CZ5IPGjTIGum9evXycjH8umE8JoziuEt5X4uizJ9V6KRhWC5dulR0MpUdlzx58mR7HyNhPDNYR90RtM5D8AcqLjJ/X4vocXFJjYmQQFYToJGZ1dXPwnuBACY0oHVp3Tpdeq+AorPP7RXoPsS+jlOT9evXC9y9NG/ePGxq5cqVk5tuuknee+89ue2226R48eLStav6CEyBpIOfTLiUqlSpkv9z//33+0nBEIJx2bhxY+ncubP/vJd3EuYn8+o7fcV+VO+lQk6AwmQeTIJDCyb+QKGV32mlx73utMIjw19+0eUjVSpU0HXO4yED7vKlcus98UiNaZBAVhOgkZnV1c/Ce4EAZsaqayHp0KGD3YbqNHHiRNm0Kf++uyL7lucrXbq0lCxZUubNU59/EaRnz56C8Z9oIerYsaOUL18+QszEnk6Yv8Y4qo2xl+hedj7OzGy0prVt29Ya95jl7PCPY9YJSyoh3FtcK1JOVV6snyfU4CzEeFu3f1j4w9y2bZvlDCB169a1f8iWLVuGQ5kxY4bdNmjQwG4L9TX8RZHRC3xJdOpeqKR4MQmQgEjuWQakQgIkkFQCcFOE7m24Zalataqd3INWHHTRwghEK6fOWo66OxAGBAzHwYMHC8ZmVq9e3XaLuwt11FFHyUUXXSRwlYTu81QJjF2vy+GHH27rJlTPbt26yaxZs6RevXry5JNP2mC0JmP4gpelTp06gk/cBZPW3ta1wS9qLfKAGmsHHCRy1xMFXuEH3d+YCNe0aVPBfTpq1Ci7iAAmvUEwtAPDRFq3bi2XXHKJDBgwQGrXrm2Nz0KV6YMhuvrP7b4k4ES+VJlCJceLSYAElEAWz6xn0UnAUwTeeecdoy9Oo5N4rEsWbRmzDr918oPRlhyjLTf2/Lvvvmt07KXdHz16tL8McOR+773qRkZFV0ExOhHI6EvaxsOjjo+OJ7ThcP+irZ3myiuvtMep+mrRooXR8YGpyj7mfLXlMoirwxdO2b0uuGd0HGzi1PzoTbRh+j5X1jJm1YoC5YWFCa655hqj3d+WsRr5pk+fPkFpqOFptIXZ4BnRmf5B7qSCIkZzsOkvY+5sE9B54IPRXMU4JEACURDIQRz9gaSQAAl4iMCGDRvsRJxwLo3ioeYDDzxgWzkxUahmzZrxSDKmNL755hupXLmydUkTUwK8qMAEMDt7+fLlifUm8PFwkcvaB3R7VVs0290mclDeHky5MS4AAEAASURBVBQCFyRhb9cukY+HibS9IZDZy4+LdLkvcMw9EiCBQhHgmMxC4ePFJJAYAhhXmSgDE7OjX3zxRbtiSioNTJDjf9zE3D/5pZpw7i10/fLV6lKona4DDrn5XpGD1Y1W71vVB9FyeyplXxt0gt2zOnmrRImAgdlQu/qxwg8NzJRVCzPOTAI0MjOzXlkqEohIAOPZNm7caGdFR4yUpIBM8JOZJFRxyyZhfjJDNSx/tI7RnCHyxQcijfY5qX/oZZ0GfqzIBTkiAx8Q6+4oGZ1pyxeJDNJxsy1OFClzhEi3Pj5tq+tmxCsiE9Ql0omnhJaAxyRAAoUkwO7yQgLk5SSQbgS++uor6+YIM6MpJJA0AnO+FXnlEZFXPw/OUu1NueZckRp1RU6pLVL9DJ8hqhPYCiwwWP9cLTJPfV1iHfKfvxH5cqLIbyEpXa4+Pe9Qo7NukwJPTApJiYckQAJ5EKCRmQccBpEACSSWAPxkNmzY0K54lNicmLpDAH4y4bUgZTP7t/wtMk0NzS9GamvmKEet3NviekrtTTlaDcIjjxU5pJR6Yt9PfaIUVT+ce/Xzr8jWzSJrlutyP2pQLtS46/UTSa6/UKRZO5EGl3LmeCRGPE8CcSagA1EoJEACJJAaAgnx15iaoqRVrinljrGZF1/h+zyjxiLGQmKVnZ+/F5kzSWSMdm1DdulHe9tFftr3wX6U0risSO3m2ip6praOqqV68ulYEijKixmNBEggXgTYkhkvkkyHBEiABEggPgT+2a6tkmt8n3Xa/Y3P1i2+1svde3ytmWjV3F/HepY9ct+nvEhp/WAGeyxd7fHRnKmQAAm4CNDIdMHgLgmQAAmQAAmQAAmQQHwIcHZ5fDgyFRIgARIgARIgARIgARcBGpkuGNwlARIgARIgARIgARKIDwEamfHhyFRIgARIgARIgARIgARcBGhkumBwlwRIgARIgARIgARIID4EaGTGhyNTIQESIAESIAESIAEScBGgkemCwV0SIAESIAESIAESIIH4EKCRGR+OTIUESIAESIAESIAESMBFgEamCwZ3SYAESIAESIAESIAE4kOARmZ8ODIVEiABEiABEiABEiABFwEamS4Y3CUBEiABEiABEiABEogPARqZ8eHIVEiABEiABEiABEiABFwEaGS6YHCXBEiABEiABEiABEggPgRoZMaHI1MhgcQT2LVLZMInic+HOZAACZAACZBAHAjQyIwDRCZBAkkh8OT9Io1biNzcVmTLpqRkyUxIgARIgARIIFYCNDJjJcfrSCCZBL79WuSh/r4cB30gckObZObOvEggNQQ2bhC55UqRDetSkz9zJQESKBSBHKNSqBR4MQmQQGIJoNXy+MNF3O/ZBb+IVK2e2HyZOgmkkgAMzKYni3yvN/7pJXWoyHKR0mVTqRHzJgESKCABtmQWEBijk0DSCXS/MdjAfOUZGphJrwRmmHQCj/bwGZjIePZ2kYsqs0Uz6ZXADEmgcATYklk4fryaBBJL4KMRIq3aBfJocbaYj6ZLTk5O4Bz3SCATCfy9We/9s0UmLQyUji2aARbcI4E0IEAjMw0qiSpmKYE/VopUqBRc+NV/iJQ/Kvgcj0ggUwnQ0MzUmmW5soQAu8uzpKJZzPQiYIdK39QyWOlP3qeBGUyER5lO4JBDRUZ/K9KwaqCk7DoPsOAeCXicAI1Mj1cQ1ctOAjkv9RP5bFag8LdcLdL88sAx90ggWwjQ0MyWmmY5M5AAu8szsFJZpDQnMP9nkVNqBApxtO4u0PFpBx8SOMc9Esg2Auw6z7YaZ3kzgABbMjOgElmEDCKwc6fI1bWCCzR6Kg3MYCI8ykYCbNHMxlpnmdOcAI3MNK9Aqp9hBHp3F/l5T6BQj98jcmbdwDH3SCCbCdDQzObaZ9nTkAC7y9Ow0qhyhhKY8qVI/YsChTungsjXS0X22y9wjnskQAIi4brOaxQXmfg7Hbbz/iABDxFIn5bMTX+JYKzatq2pxbf0V1154hMRuJdxidm7V8fN6Sosa1e7znKXBKIkgNVNmrkMTFw2bAINzCjxMVqWEQjXovnTLpFG+sfMC0tQrlwugndFKgW/KZM+F/lpZnRaLJwnAr0pJBBHAuljZH7wtm8yxKzvfMX/borI5x/FEUUUSb06QJf3U1cajVuIDB4YdEEOftiqnSby1AO+8zA2h72SeqM4SMssOUjFvVFYtF076b3iSuSNF3z3musUd0mABFwEvGxodtZ3BN4VkFS8C9AgU6qMGt0Xi1xypk+P/L5P1mVq7+rsi5UKnfPTL5vC0/EdFqF+0sfIDC3ATQ1FLm4lskv/vSZD/t4o0uUuX0597tMlzprnnSsMzA63iHz5Wd7xGBp/Asm+NwpbgpFDRd7S1nFHLr9ApONtzhG3JEACkQh42dB0dE7Fu+BRHdsNueUqkWeG2t0CfaVC5wIpmOGR0+0dlkd1pK+ROXiy+hH8UKS4jsPJS9b/qf/ObsgrRnRhi/d1fdxzs8i9j4uc2yDv62BgDn1RjdFL8o6H0AfuEFmzKv942RBj8niRIc9HX9Jw9RvtvRF9LomLuWKZyJXaiumWl991H3GfBEggLwJeNzRT8S6YoENtIC/psrRXXOfbL8h3QXQO9xtckLwyLW62vcPyqb9i+YR7N3iVGmWbdcyJitmzR3KmT9ZB39pqeNwJIg2ailQ6VmTdWpELy+tsXY10fBXRBZ9FrleDrkQJPRFGMCZl1rfaOrrD1zXvzOpdtijQPf77cs1nrHZD5GM8Iu+tOn4U42JKHiiyZKHIWDWKd6mLmguaiqlZR6RIEcm5p4tIv0F2X444Sid+NBapXjNIOYz3zHn1GZEqJ4scq+UbPsRuTbsbJEfTEBgqn4z0jROtcYZIm2tFimnVQoeRb/rSKqaTRyodI1LrHJFyR9pzMaeLq8OUJ6doUV9eUyeKTN33I9eomchZ5/vOY2zQtEm2/DL5C5E/14g0bSFydn1f+CStP3BtrfF3/KNlPF7HKbYR+WKMyHfTfAP6L23rq1tcEal+XfeGL2H9jlS3iJCfXv5E4rtj71t0q7kFZS1zhPsM90mABPIj4Bia7rXOnTGaqZ4MFPouQK/Y5x+LzJvt++07r6EY9YEbzbvAwWB/O775SuR/C0RQ9rPqBX4XMawLr8ay+nm5v7Zm7mvVdC52thjihWFo+C0/Rn9r3RKqM8K+n6oTEfV3/S9NvNqpIi2v0t9pfZ9F8Y6N+V3Dd1igVjz4Dgsol8eeLl+XHvLaQGPUnjRTvvTpe+GpvmMcvfCUbx/hzmfrFmOquo6d8+v/DF/eXl0C1zpxW9czBul8Nio4rH2z3Gn8ucYXp9v1vjC3vk6Yky62n39kzH//E5wuzg99MXfaO3b44p1TITj+e28Y8/3U4HNI49Kz9Jnea8yPM3KHIXzwc748Yk03UnmQap/7cufplKn/Q7nDoM+40cZM+yp32MU1jRn4eO7zEz7x1Uuk+nXfG9Apr7pFeF56ITxR8vQjwWXr1ilROTFdEsgOAps3GdOwavBzVaO4MZF+9xNFxf0b5HoX2N/lescH63fT5dG/C6DvHyuNOfeY4DTwO4r3IAT7rs/ePXt8593fC34JiuOPf/kFvlgune2Jvg/kjo/f9Ui/we68sB/ru4bvMB9Jr77DQus5zLHejWkioTe9+yG+7FzfA/DDN8bgc9/tPiNr7WpjcrSI1fWDfRhH4eTNl3zX1ylrzKi3fUZls9q+cz1uMmbXLmPef8t3/PwTxmz+K3cqjuEVzsiEMYiHXvWyPxAwnH6ZbczGDcZ07egLmzndpx8exlBxHlCk8Uh3Y776wpjbrjFm505japfyXT/+Y59et7bzHcNwcx7QnlqGn340ZuSbvjCk89PMwINf0HQjlWfxAl/6pxU1Zuki/fxqTEXNC+lv3xYw5u7o4NN94jhf2PWtjflnuzFffuo7RhlRX3+tVwPxVmPuvc2Y5UuMeesVX/h/rs27ft33Rn51C9aOkRlOr9C6iNcx+IOL8zlO97dtjVfqTIcEspfA35vDG5rr1iaPifs3yP3uwrsDz/zR+vl7ozEfDjfmvaHRvwtQAufd1OUKY6ZONGbQAGMO1fSQ7tRJxqCc2IcOkcrcuIYvzsN3+947a1b5jsMZmW6D9N3XjVk415gBjxozY7LvdzqadyzfYZn3DovyadI7MU3E/aBCZfdDPOxV3wOCB0v/Xdl/i06xSuk5GI95SbNavuvx4ncEBg7SwweC1jPsw9AJJ3kZmc4DjOvVQDL4t+3Ig3f60l222DmTe+s8oPowB5UNP6aOjt1vNAYftL7i3OP3BIzMpx4IpIkfNYQ/+1jAyCxoupHKM2KIL20YmY4+lTUv5Dd3TsCYQ+urii0LwtBCC3GMYujmCH6IIfixxI8p4t/QxncO3+Hq131vRFO3jpEZSa9AbvHZg8FdZR8XlAefWd/FJ22mQgIkoAZcBEMzWS2a7t+g0HeX0yiC99Ls7wO1Fc27APrj96JyyLvA+eOP310I4rQ427cf+o3GCYTrZ+/u3YFQnAtnZL7+vC+++z0SuCr8b7A7HPt8h2XWOyy0fvM4Tt+JP+4hAO1vCkwW0Vm5OTe00qdFH6FoZfEsX8yT1IWDI4eXFjlt3xjD7ducs7FtMQZy9veanl7+/DBdweUwkVW/Fzyt9pfosFIdV+rIP9udPV12UMfl4FPjLJFHdAxOrbMDYe69MuV8RxgP6UhB041Unq1bfCmW1bGjjj6dVBfoc9DBTm7+rS1LZT3cttp/LtdOseIiD3XV8UWq96i3fMF7d+eKFvFEDHUblV4RM4wi4EEtjw7z9Uu/B0VO1zG6FBIggfgQ0DGO8tF3Ig2rBtJzxmim2o/mWzr2/PrWOsZRx0Tiuf9IJ+dEK87v9vmXBr8Lztj3ex+Nb06Md4dcXFP84+h9Z8J/O7xOOCl8eEHOFvRdEy5tvsNE8rFPEv4OC1cvEc7p7JAMkN+WinS+XaSJTqJoow/t62Mkp8s3vuX4dM6NrNaHOS+po5NTFumDP+bdwEy8X2b7lvcrrxdi4k5h5I8VIifrQOmZu9Rg6ibyxIuq4/Mi/31KpKhOyIFgBYv8xJlY48Q7QpVTW9gO8r5Z3Svtm9Bj0/pzVfg0Rw/3XX1SNScV1WGfMe2cyS/dSOVp1sqXQon9xTzQN/AjuGh+QDcnj3BbGJQQN4shz4n0Higy+l0xl13hm+jki+X7zq9+E123bl2i2ceksf6vBWI20CbNbg+K669DIIx7JEACsRNwDM2W+sd70kJfOo6hmarJQLv1D/IW/a0fPEqknb5z7ETHdiJ7r47uXXBcFV854PJswHqfL0ycGfGG7/xpZ/q2eX1johB+cMbN8f3W4jgvOX6fcTl8kJhW7QK/6841+f0GO/GwLei7xv0ucNLhO0wknvaJwzVB28xoybxcH6xmp+tMOW0l3KwzqiGOwYJZ5Sv1uMdNaoDWF3l7kA0O+rr7Yd/hlR3Vce0ZIu2baqtjLd+5vi/7toX5hl5HH6DGxcNq8EIZFefBLneU77jnDSJ3XufL23cmuu97H/LFK6/pdLlC5Fb9wTpUW0o/1R8xR95RY7a/xkPZBryhbp80oJX+qOUleaUbqTynavpnlVPXUjMlp6LeWnD31LahyEmnaLmjaLlFayXkoX4+t05nqxE95wffuU3rJef5J3z7P0/V8n3g28+vfhNdtz4tovuGq48LmwfHHTouutaE4Kt4RAIkEA0Bx9D0SovmymUiFY7x/db/+K2vBGX2FSSadwE8ozza03dB6bIiN16uM9T1d1L/1FtBY0s08lJ/X6x6+q5AT9GARyJf1eQy30z1D6dITjn9Xcd7qqm+H5/r47smv9/gyCn7QvJ61zjX8h2mru46JsY+cRgnaptHV7q3gpxxIRhsDGlyum+cCPYf7enb3zfOxDxxP8765OsJgckxCB/7gRMSvMWsdUwQctIorfsYY+iIMyYTA5/DiTPY2hkT49YXOmCgt5M2xr044zI3rDPm6saBMGfikDsPZzxL58vcZwP7KD/GJjrpYzwQJvo4Yxyd89jWP9GYBTpwGxJrunmVB2NTr2gY0AV53nmdbza4M/bRPf6wsoZjDKcj7lmMmBU6+YtA2TCr3xnrhJn5kHD16743ECe/uo1GL6RTWLnqomAuwwcXNkVeTwIkEA2BZI/RdP8Gud8FGOvvTNzBb2OtQ3wTOVGGaN4FiPfvv76JN7je+TSq7hv3jnAIzrc6z7cf5tuOh3/t2dyzw69p4ovt1hlnMKkT3j6c/LBFHEi432BfSOA71ncN32E+hl55hwVqNOq9HMRMlAGbzHSt37DNG8UcVip3lyoUgW+yQw7PXyU0z+/dI6LpxF0cn5nanZxLkC/OR/LhmeuCMCfQUga94SMTAp+fZ5zjW+oSvtLQVRFL139our7UAz5Aw5UH3UJaH4J/2wUVXLv1b38d6AwhycH40wMP0l82IzlbNuWuy2jqN5F1m18ZnRU0nHjtm+myo2OdI25JgAQSTWCL/qa4u86RXw3t1klF1znGRWIMezifuAV5F2z6S+QA7a8uzHujINx37tQx9Ko3lqwMlWh+g0OvCT0OfdfwHRZMKJXvsGBNoj7KGCMz6hJnU0T3A9qzdzaV3FtlhTP/4/aNa4JmGA+1fl34H2pvaU5tSCCzCHjJ0MwssokpDd9hieGaxFR1gAWFBEggYQTQKtuhaXDyk76ggRlMhEckkBwCXhujmZxSMxcSSBkBGpkpQ5+EjEsfIdJJZ9xXr5GEzJhFWAL9H9alNJcFgnp10WVPGweOuUcCJJBcAnkZmuiupXiHAN9h3qmLGDVhd3mM4HgZCeRLYOZ0daN1XiBadd2dqWOxwo1hDcTiHgmQQDIIROo6/1I9gIQbK5kMnZgHCWQYARqZGVahLI5HCGzbqr5R1QH9Po9VViv4Nqte0yMKUg0SIAGhocmbgAQSSoDd5QnFy8SzlsC9twYbmPDxSQMza28HFtyjBPxd59UCCsJh+4UVdXIeu84DULhHArERYEtmbNx4FQlEJjDuQ10coE0gvMnpYuCgvgj/0wWgcI8EPETAtmiqu7dJ8wNKwb0Ru84DPLhHAjEQoJEZAzReQgIRCaxdLYLVl9zy+2+64lMl9xnukwAJeI0ADU2v1Qj1yQACbFrJgEpkEbxBwK5rcEvbYGXsEpw0MIOh8IgEPEjAdp3PEGnIrnMP1g5VSlMCNDLTtOKotvcI5Ax5XmT0NwHFrm8t0qZ94Jh7JEAC3iZAQ9Pb9UPt0o4Au8vTrsqosCcJ/DpPpCp8FO2T0rpdqku+RbOUqXMNtyRAAt4gEK7r/DRdlnfiKro38kYNUYs0IcCWzDSpKKrpYQK7dDZqhwuCFRzzFQ3MYCI8IoH0IRCuRfPnPSKNdLw1Z52nTz1S05QToJGZ8iqgAmlP4In7RL7XtcgdeairyHkNnCNuSYAE0pEADc10rDXq7DEC7C73WIVQnTQjMH2yGpSuVsxah4jMUIOzuLo/oZAACaQ/AXadp38dsgQpI0AjM2XomXHaE9iySaTy4SI69NIvC+bq2MxT/IfcIQESyAACNDQzoBJZhFQQYHd5Kqgzz8wg0P3GYANz0AAamJlRsywFCQQTcLrOG7km93GMZjAjHpFAGAJsyQwDhadIIF8CH40QadUuEK3F2WI+mi45OTmBc9wjARLILAJo0Wx1ns4y1x4LRzjr3CHBLQnkIkAjMxcSniCBfAj8sVKkQoiD9dV/5F7pJ59kGEwCJJCGBGhopmGlUeVUEWB3earIM9+0JGBX9bmpZbDun7xPAzOYCI9IIHMJoOsciy6w6zxz65glixsBGplxQ8mEsoFAzkv9RD6bFSjqLVeLNL88cMw9EiCBzCdAQzPz65gljAsBdpfHBSMTyQoC838WOaVGoKhH6+6CzSJ44VBIgASyjwC7zrOvzlniAhFgS2aBcDFy1hLYuUPk6lrBxR89lQZmMBEekUB2EYjYolmOKwNl153A0kYgQCMzAhieJoEgAr17iMBliSN9eomcWdc54pYESCBbCYQ1NBVGIxqa2XpLsNwBAuwuD7DgHgmEJzDlS5H6FwXCzqkgMmWZSLFigXPcIwESyG4CYbvOFcnEtSJljshuNix91hKgkZm1Vc+CR0Vg4waRimVEtrliL14gcnxV1wnukgAJkIAS2LZV5LJzQvxo6nkamrw9spQAu8uztOJZ7CgJdO0UbGC+8QINzCjRMRoJZB2BAw8SGTMjxL2RUmDXedbdCiywjwBbMnknkEAkAiOHilypRqYjl18g8v4k54hbEiABEghPgC2a4bnwbNYRoJGZdVXOAkdFYIWOuTzmuOCo6zi2KhgIj0iABCISCGdoYunzr/g7EpEZAzKOALvLM65KWaDCEjB7dBZ55xbByXwxhoP3g4nwiARIIC8C4brO5+oFF3DWeV7YGJZZBGhkZlZ9sjRxIJDz/BPBA/e7aZd54xCjMw75MAkSIIEMJ0BDM8MrmMXLjwC7y/MjxPDsIvDzjyI1agfKjB7zX3TGaMkDA+e4RwIkQAIFIYCu85bninz5S+Aqdp0HWHAvYwmwJTNjq5YFKzCBf7aLtHUZmEjgg+9oYBYYJC8gARIIIoAWzY+mi1x4auD0XN1F1znGelNIIEMJ0MjM0IplsWIg8GBXkUWu6/o9KHJ6HdcJ7pIACZBAjAQiGZoNy+c2NP/9V4wxMWbEy0jAOwRoZHqnLqhJKglMHCvS/7WABg2qiOmmRiaFBEiABOJFIBpDc9cukU6XSc7cOfHKlemQQMoI0MhMGXpmnFICPW8WgZsiyPo/tRuruW/f+R46TnKKFnWOuCUBEiCB+BDIy9Bc9bt6tmgpMnycOnV/Nz75MRUSSCEBTvxJIXxmnRoC6IbKKbLv/9W7r4uMHi7y3sSAMsMHi7S7PnDMPRIgARKIN4Fwk4HceVQWMUv3Sk5Ojvss90kgrQjQyEyr6qKycSHwxwqRCseET6p9M5Fh2nVOIQESIIFEE8jP0Px5lsippydaC6ZPAgkjwO7yhKFlwp4lsMQ9uydEy4FvhpzgIQmQAAkkiAC6zt+fHDlxdplHZsOQtCBAIzMtqolKxpXAkoWRk+v3kMjOHZHDGUICJEAC8SKAST63t4+c2pC+nGUemQ5D0oAAjcw0qCSqGGcCixZETvDJl0TqHCCCLnUKCZAACSSIgNm7V+T6Vr5JPpHyWC6cZR6JDc+nBQEamWlRTVQyrgQWuVbdCE34ND3RT9cpP7pSaAiPSYAESCBuBOzkwydfEXm5v4i6TIso7DKPiIYB3ifAiT/eryNqGG8CFXS25h8hiZbW4xeGiLmiY2DmeUgUHpIACZBAwgj8sVLkk5Hq6WKQyGTXuPHKnGWeMOZMOOEEaGQmHDEz8BSBnTtF9t8/WKUXnhS54U6REiHng2PxiARIgASSQyDU4OQs8+RwZy5xJ0AjM+5ImaCnCSycJ3JydZ+KD98t0u1+kUMO97TKVI4ESCCLCcDg3Lld5LiTshgCi56uBGhkpmvNUe/YCIz/WOTTD0R69RE5qkJsafAqEiABEiABEiCBfAnQyMwXESNkEgHM6PSv9pNJBWNZSIAESIAESMBjBGhkeqxCqA4JkAAJkAAJkAAJZAIBujDKhFpkGUiABEiABEiABEjAYwRoZHqsQqgOCZAACZAACZAACWQCARqZmVCLLAMJkAAJkAAJkAAJeIwAjUyPVQjVIQESIAESIAESIIFMIEAjMxNqkWUgARIgARIgARIgAY8RoJHpsQqhOiRAAiRAAiRAAiSQCQRoZGZCLbIMJEACJEACJEACJOAxAjQyPVYhVIcESIAESIAESIAEMoEAjcxMqEWWgQRIgARIgARIgAQ8RoBGpscqhOqQAAmQAAmQAAmQQCYQoJGZCbXIMpAACZAACZAACZCAxwjQyPRYhVAdEiABEiABEiABEsgEAjQyM6EWWQYSIAESIAESIAES8BgBGpkeqxCqQwIkQAIkQAIkQAKZQIBGZibUIstAAiRAAiRAAiRAAh4jQCPTYxVCdUiABEiABEiABEggEwjQyMyEWmQZSIAESIAESIAESMBjBGhkeqxCqA4JkAAJkAAJkAAJZAIBGpmZUIssAwmQAAmQAAmQAAl4jACNTI9VCNUhARIgARIgARIggUwgUCwTCsEykAAJkICXCfTt21d+/PFHycnJkSeeeEKOPfZYL6tL3UiABEggLgTYkhkXjEyEBEiABCITGDlypKxatUqaNGkipUuXjhyRISRAAiSQQQTYkplBlcmikAAJeJfAySefLJ06dfKugtSMBEiABOJMwFNG5pgxY2TatGnStGlTadSoUZyLGjm5PXv2SO/evWX79u22peHCCy+MHJkhJEACJEACJEACJEAC+RLwVHf5X3/9JcOHD5fx48fnq3g8I+zdu1dWr14tb7/9tkyYMCGeSSc9ra1bt0qHDh3kyiuvlDvvvDNs/ps2bZLq1avLkiVL5Oeff5ZTTz1VwMCr8s4779jyfPXVV/Lkk0/a/d9++y0h6o4ePVqaNWtm03788cflnnvuKXA+S5cutTr26dNHvv76a7v/7rvvFjidaC6IV13ecccdVs/169dLu3btwt47KA/uK4SvWLEiGvUYhwRIgARIIIsJeMrIRFdSzZo1k14d++23nwwaNCglece7sH/++acMGzZMjjrqKGnYsGHY5F944QX53//+Z+M89thj1sAsUsRTt0KQ3i+//LJ8+umngu7Gp556yhrGFStWDIoTjwNjjDz88MNywAEHyObNm6Vfv352v6BpQ1eMwUMdvPXWW3YfuidC4lGX+IP1/PPPy5YtW2TmzJkyYsQIOfjgg3Ope84550itWrVs+K+//pornCdIgARIgARIwE3Ak5YFDKBLLrlEypcvL507dxa0DLnls88+k3r16kmpUqXsLM1bbrlFNmzY4I4iaHU577zzpFy5coKXI17GbkEX+YABA+Tiiy+2XeTYD23N27lzpzz66KO21e/QQw+VGjVqyKuvviowRiBz5syxaZ911lkyatQoee+996RBgwY2z//+97/u7PLch1H40ksvhf0sXrw4z2sjBaI17rLLLssVjJbOZ599VqDz8uXLrd5uYxSGFcJ69OghLVq0sGW57rrrrFHqTgytihjWcNxxx0nlypXlrrvukrVr19oovXr1smmgDsuUKWOZILxs2bK2FQytb47kV5cYwvD999/LTTfdJCtXrhRce++990oijOJPPvnEGrCoQxhdMDTdbJo3b27Ldf7558uyZcvkmWeescfg9dprrzlFErA55phj5JprrpFJkybZexn3Trwlv7pE/UC3s88+2+oBligbzqEMOIZMnjzZbnHPQt+SJUtK165d7Tn31wUXXCBXXHGF+xT3SYAESIAESCAyATWYPCVq9MGCM+3btzf6EjfaYmXUwPDr+P7779twfdmZDz/80Dz99NNGjVFz5plnml27dtl4aiwapNO9e3cbp2fPnvaahQsX+tNp06aNUUPFqDFmOnbsaA488EAbB3EdQR44/8ADD5ixY8ea22+/3cbR1j8bZePGjeaNN94wamSZatWqGTWobJ5dunQxt956q5NMnlvoqi98c/rpp4f9oLwFEe0CtzrqkIOwl2mroClatKhBGdQ4t/sff/yxP+7s2bONtibbNLRr1KjxbcunXfD+ONjB9dptaoYOHWrU8LZ1oAa5jfPNN9+Y448/3pxwwglm4MCBZv/99zdqpBuEH3LIIUa7pG28aOpSDTZTokQJ8/vvv9v7Aaz//fdfe328v3QcsClWrJiZO3eu0T8n5rDDDjP6R8OfjXbbmyOPPNLo7GCjBqj56KOPLKcbbrjBLFiwwB9PjWmjfxqszriXp0+f7g+L505+dal/Xmz9Nm7c2OgfAJu1DjewOj/yyCNG/2jZc7hX1YC0+/qHzHTr1i2imvqHL8/7K+KFWR5wxhlnmBtvvDHLKbD4JEAC2UYArXKeEhiH5557rl+n/v37WwPGOaHjB412PdoX+B9//GHwUb9z9sX35ZdfOtHMjh07jLbQ2DAYoto6Y7Sr1YbDCMLLX1ur/PF1bKI95xiZMBoQ5+6777Z5OHnhJawtqP7rsFOnTh1riC1atCjofLQHeNnDcAr3iTYNJ15+RqYTL69ty5YtDV6KjoDT4Ycf7hz6t/Pnzzcvvvii0bGLRluWTe3atf1hqENtTbbHdevWtX8acIB9bTGz56Opy927dxvtmrXxteXNaAui3U/VF+q4QoUKRlsJrSEd7s+EtsT7//CAUSoFf6C0294+D9AD+p522mkGf24c0bHQRrvM7SGM+b///tsJyrWlkZkLSVQnaGRGhYmRSIAEMoyAp2aXq1FnBd3cjpx00kmiLz17iO5sfWkLurr1Re9EsVtt7bJjynAAp8foDkR3OroG4QAZHycddHND3F1/mPxStWpVex5f2ppl99VAFXzcgi5gNWJFW+j8p7WVU0488UT/cbQ7ej+Jtpj5dQ+9To04UcMg9HTCj0PrAF3HjmAYgRqRogaXaAuyYHykGuGiLaROlKAtOGkLpD2HOvnnn3/s0IRo6hJpVqlSxV6LsZJOOkEZJPEAdYxhEeCDMZfoMg8VbcH1n0rUWEx/BvnsaCu8nUw3ePBgO/wBW0xCwvPgiP6BcHbl6KOP9u9zhwRIgARIgAQKQ8CTRqb7BeguHMbhaXelnXygXZXuoKCX5v333y940cPY1O5P0W500e5sf3wYiRCM9cM4OwgmzGC2tSOOEYvxkhhb55Zw+oU7574m0j6umzFjhmzbti1sFLfhGzZCCk5iFj4MdXxgnEO0xVcwpjFaibYuo00P8TC2EJNuYDThHkiE4D7R7nFp3bq16NACu9VhG4I/OQWVZOiLMbPammknTEHfU045RbSluqCqMn4cCOhwHRkyZIhcfvnlgjHeFBIgARLIdAKeMjIxqQMtZuvWrRNMasAEBO2+s0YitjD8dKymYIk2TNTByxITfiZOnGhn8KLFEZMT8GLF7FcYb0gPk3VgQMJAQHz4wYShickNmEyCfR07KNpd7c8bs2jRCoWJPzAg0HIFowoTVaZMmWL3MRsXrnQwgQL6wR0QjEa0vhYvXjzqewcvfq8IeKEedCyqbV3FFmVDKzLc1lSqVMnyxfF3331ny67jVe1kIvwBQFzUG5hgIpAzuQR1ihZQCNzkoCU4mrosCBfUP4xMTBJKhOgQCuvCB3WL1kzturd/eC699FLbWoiJTQWRROvr6IIJPW+++aY1cHT8bdAfMicOt4klcNVVV9mZ+/itgg9gGpmJ5c3USYAEPELAS93/mEChWOwHk35mzZpl1Gizx2rcWFUx1vI///mPnaDhxMWYM/VnaNTos3Ewhk+NRHsdJvfoLGmjM63tsTOBZerUqUZnANtzyEMNBaOthvZYZ1/708EYQicfbDH+UlvybLjOmA4KQzjS0hY9G56Kr8KOybztttv8ZcIkEYxVxUQhlA2TXhzBpB9MyMF57UI2OuPblh0Te7Slxp+Gds8aTKBCPDUA7SQu7H/wwQd2nGB+denkl98WYzeRN3QFg3iLLglo1NWVLQfKrbP+jXos8JcTE9UKIonWN1QX/WMVNGY2NDzaY47JjJYU45EACZAACeQAgb70007QBY5WRLQIHHHEEWH1RyslxgCiNS6coOhIA3HUQAkXxZ5D696aNWtsS2qktCJenOQAuHvSmd3Wof1FF12U0NzBBS2VaMEsjERTl/ml/8MPP4j+AbCtoxji4HVJpr5wg4VWeayo5Tiaj5UPWm/RU4AFExJ9f8WqI68jARIgARLwBgFPdZcXBAm6LPObaJOfw250bVfeNyElr7xhyKZb99a4cePskINWrVrlVbRChcWLSzR1mZ+i3377re0Gvu+++/KL6onwZOiL4Qz4EwWjG3+i4DO2MKLeG+w45sKkwWtJgARIgASyh0DatmRmTxUVrKSYQKRd3nbMI1oYMXY1GwQz1n/66SfreDwdypsMfTHmFYamIzr0Q9Svq3NY4C2W9MS4ZMz4x2IHOtykwGnwAhIgARIggewhQCMze+qaJSUBEsgAAhjmg8mHGK6CVbkohSegY6TtJE9nouLVV19tJ/VFShlDkuACT300R4rC8zESwARdnTNhJ9xi1TJ4iAkVDIXDJDr80a1fv35CVoALzTPVx3ju1ce3wEsFVqLDsKVwkh8brE6Hyclw85gMKZKMTJgHCZAACZBAfAhgaVB4yMDypaECzxDVq1e33jTg7QIuxuAJwquiq2hZjw0oC1rKdZUxO8SjoPrqKmL+8ca6OIToRNCgJOBiDWnjA7/D8LXsFjDSyX3W28igQYOsZxJ3eOi+rvYWeirux3fccYfVF944dKKl3HnnnXHPw0mwU6dO8sorr9h7BUs2T1Z3cAWVeNQlelrQAwe/0ygzfBHDaHILXA/CIwvc1MEIvf76693Bcd2P1/NU2LqEHqgXeKbAstAYKgg+oZIfG/yZGj58uDXM8UwkRdQ6ppAACZAACaQBAazGpC8Go60RYbXF0q06xtloi5xp27atXe42bESPnIT3DqzGhhWnsIwrPHw4y51Gq6IaiHYVK/Vda/RlbJewfeihh4Iux/K4WEoY7PBxL6UbFFEPsEQwPEfkJcgzkQJvFtATK+Dp+Hq7r0ZVQrLEqmTwwjJixAgzcuRIm9e8efMKnFc86lKNW6MtlHZFMtzrOqnX9OjRI0gXLMPcpEkTG2fSpElWX3VXGBQnXgfxeJ7iUZc6FMwudQyPO/9v7zzg5qiq/n/y8lJU5FVQQIoBlPpHmjQjSFNKQpGmWELviBQB6SGAisQCBIL0SJESaujSpAXpTRRpoWkABRSpUu7/973z3N3ZfbbvPs9unpzz+ezOzJ07t/xm5s6555x7DsTzy/NBGOg8NYoNoa8lzcxfOmD7PRdWcsB66gU7Ao6AIzCdI5BcSEld3q8nuHCba665YojXxDhIIlTIJ//C0QXbfvvtF1228QHHpVt5OFw+3HzEF1544ejmjVj28q4Ry8FVHG7c5KUg1iVVZYx1L1/DQSrmIAlfoT75z41hZAlJqwWWgQ+bpHKF87Ifjwyx/BUHSWDiR1P+XAvn8zuSdAaYLEViyyfHfXlNiNeecMIJAaaAj++tt97aLx/9gGnjN2rUqH7nU0ItJhOGh/7zk+QuXVLY4mJPUbYio0q/CUMsH6mFULpkJM+RRx4ZJI2LbtcI8yopYkmoV8qmH4RApk4YcfkaLtTTyR3cr1EXzNCyyy4bmZlUvrxgxHtIfxWUJCaDHcf0LT07jd5LQieffPLJYdy4cUHmHqmaqltcEcrvceG8fC/HtioYSyGNMNPc205TvfeJMNXpWdCC01j9gQceWEi7/vrrY1qj97IeNjw3iXgWuGc884mawYZw3byzg0HOZA4Gyl6HI+AIOAIdQCAxY0mikS+Sjzd+Yo8++uiw2267xf28xA6px3LLLRc/TlIbB6R7MH/Jd3Aqi+vxgztx4sSgQBZh3nnnjcwb52F6ZI8YFFEtKIBFUMjYKDmEucNPrdTWsZhJkybFevCRq4hYQYEHYjkKQxvksizmgXHE56wCOAT8ItMWPrTlpEVykcnio7riiiuWnw5SIUa/yTCg8qAQJaIK/FCSjzoVLCFK62BQkNwpuERJnnRQi8nEvzKYyB6ugEm6jq0ChER/uvhdhgGAGafdUusWsoGJXOFFZhRGnIkAecA9kVT6QYFF4iHM3EAwURTO5IF7AHOJBJHnJ/88MClQMIfYPiYREFuF+A3jx48v+KZu9F7iH5m+8oNJq0bgsu6668b7ed999xWysc+1ibnlBBJqfp2meu+TIgpGCbq8rAR5C4nVT5kyJT5n+CVWqOWY1ui9bBQbCkVSj99mNACJmsGGSQ33vfw9SWV1cutMZifR9LIcAUfAERggBPjgE+iAgA9IjlohmKAvf/nLhUthFJC4lROS0JNOOinIvjFKRvPM3YgRI4K8C8RLUJGmQATsw5BAsgUNSJhgIPnY8tMimcggyBVWzENAAgJnQKj35YM17lf6U8S1eC3S0FYI5hcmmHqoV9HjwuGHH16xqFpMZroAxi/PFJIO0wEDlC8X1b/cyBWYIEUNi3lkD1fABWwoT/6aU/HhtddeKzAQYIjquJt05plnRkZ+p512igzyddddV9KcRu8l/ec+MDmBkaxGTFqYdBAAJD0v5GUfjBMDRxpMMRONbhB9oD0w6BDMNhOYvLlBo/eyUWyYwFEH71OemsEGTQjtPuKII6JkPV9Op/edyew0om2Ux8yOWS5SBtRiTo6AI+AIgACSOD7MfBgSI9cKMjCZWoRQuFRO9eMHKyWgkkNFOfvss0dJGh9wpHZE9UqUZzKR2KT2EFkN5gnGCokYbS3/IT1J0s5UXqPbdtTFRHzDVhXGlx/q5/nnnz8ynOX1t8pkouqnvzDoecJ+M0lok4S3HBeOUV8ite1V4rmhnbvssktbTaSPKTpfrYJ45pEEL7/88oVs2CbShjwTx3OHSUK3aNVVVw2YjUBsk8Q3JjT5Vw8bVPA8x5XuQTPY8Exi9gCWqPwHknx1uVDuFZLRdVzhKHsok21VrzTL2+EIOAJdRkCqMWN80AfNtCjFWCU6EKSQudEXqtR+JtvMGPNejGlTVUnKElcI415JH7OSn5hYa7Y8Kie4BL5ZZSbQVFvIjEuca665xqSSN6nt40+SuTjWShLVdHnVLpDkLZ664447SrKIcYh1kSgJajxHgIRybMREmyYSJdc2ciC1vMnO1hTOuJHsLeWR5NIUIjiu+gY7qZJbKkeMo0lCHu9BvRX6PPOa8JgYyoI3gOFyWUS6VMOF+iVBtsUWW6xwnHZeffVVO+CAAyI2Mo1IyR3fyr7WZANsY8eONe69VNkt1VEPG94BTZaixwEwLKdmsAFTnn2ZJMT7UV4Wx3gY4LnCW0NbNJAcbLNlYzPErADOGvuECy64IM4MMFDPr6xjJswqKuxvmHUS/1oPVKxu9OjR8XrKYaVaImY6lEs6KhpsUbgOtQ4zSGbnzNgxfm6UsL9ApVTpV65OaKRM1FioI5wcAUfAEaiEgD5iUfpQLi2rlLc8jZXXcn8UF3CgfkXiiBpUH5CgyFAxe1qty+p17MxYxIJqDqmfXMnEcRa7TrnTiSp7JJlIVZCAIlHaZpttojSOBRBchy3m008/HRf2oN5DKkUdzRDSnSTFzUu1GimDdtEHVLRIv5DgQNhjUha2knw7sE179NFHA9IgbE4POuiguI+dZ7oG6Rvn+WHDiK0d+3IVFSXNlAE2qOIxQ+A7g3QT7NBQQeRBkiqmKK7kRu2LylUBNOK3qNmV9dxH+ZGM9/CGG26IdXTyD/wuueSSKJlONpR873hmWLyDtLEZSqvXub5c3fvmm2/GBWkTJkwI8gUZsJ2VC6OShT/Uhf0l321NHiLOmI/kbTRTe5JkGZU7/RhIknuhiEkyHWmlrlrYYIvNO4AtNLhga42WIb/whzqbwYb3M/FNldq74YYbxj7lF15VylcvrafU5axMlJ+saIsB8wjzx0pI7HB4oSGMcXlAMQrWbDCuvCMfK/UYjDBo5TyGsTCM2OBAvMi83KwsZLCA6eQY2wTcHyTRcV4MHy+s8aeZSxyoGKzKf63cGGcya4DtpxwBRyAybIxvLEBplmBkuJaffFJG5iiptfkQJ2LRD2pt8qEmh+HiQw6jhk1oKkOSrcg8cXzVVVdFZoB9BAR81JnEJwaIdBgGVqc3oipNbUnbb3zjG5FpbXYBjCSzse3UT58SM0J/SePHNyb/gU/pbGk/TDKEfWr+XNoHm2STB7NOW9M5GMwdd9yxZFU9zCf2qykPWwQgtLVZkoQ2lrPKKqs0e2lD+WH4UjuxG4XWkEqYNLCBAW2GwJ8FWDxLlZhiGCcWFVE+Jg0w5+ULtLBR5bkkD4yS/EZWbMK2224b87CSeqCJxWC8S+n5aqW+Wthg/5vuQ35b3vdGsWHyl7cBLm8vNrbcI/qUnv/yPI0e9xSTmRrNC4fRb6UbhvSy/IVCsgnwzMqZCZJHDnUDMyOAAlBAw8AddxcQDzOzTlxdYHCLvQ+zdxjVRokZLrY2lX5p9ttoWeRzJrMZtDyvIzDjIcDiH8a6Vu0aG0UMqWczWp1q5SK5YxzHvUq7xHg+vRDueaZOnVqzuWCMxK6dfuHeiOch70WgZqU9cDJ9L6s1hfNIiGtNRvjOI0FmUU01Gj58eHSz1Q6+1couT8drAkxtu1QPm0bKbwQbNA1obqtR8mLRjmQ2ld2zNpl4/MerfZ6wWdFgZXIynE82iXVNsx+TCimGl8IWCPsFzS5ND2q0ZZK/L8M2hkgZkFYAxmPNykwSTdPsyiZOnAjTXVJ2rQMiDWAfUulH2CcnR8ARcAQ6iYCkD4btHxFEsJEbKJJblmhX2W75WqQQx3GZPLVblMntT9tlDFYBEm7E+1SrPjAmvF87/ZIWzuRnM34Da9XVS+ckAa0YKjK1kfP0SYvPUlK/rSSYMZqVBEf9zpEgc7gYOYooSe3gW7HwvkRNwiJvga0w/IVMKJriHyqVXQ+bSteUp9XCBv5GPj2jHSb2rtVIpjImCX3MWy1Po+n9g4I2euUA56OD5SS1eHzwiNubD4mUGMhkVI1hudThxotOPsIwnX322TEkk0TwsVgM229RKDOMbTEQljTTtt9++8hoysdcedUVjzGIlSq/4rlODKoVC/ZER8ARmGERYFxkkQEh/GTPN8Pi4B3PEOA5kOQqMgSOSREB+Xa1u+++O4afLKZ2dg8hFot+INlKxkmfJH8Gn9KrBJMpbYjJhMBkilC1mTLxMElnowCuaqYGTwxDpNlg3gHPJhVDnH0osoDJrsUkfo4vD7M9ZsTQvvvua6ymk9sMI5+MteOqQ7n8ifuygTGpaKJkEikmqxFlz2lw5sRmlZF6LEc2lHHLSjlmTeQjNijSAR6UbpB80cXVdMTOdXIEHAFHwBFwBBwBR2B6RqCn1OXMChA5a0WfKRpF3OdYvtwKGGtFmsn422S4Ht0WaDVVnMnhYgEGE5KBtynigsk202R3aajPESGjVk+Eeh3GVHaQMT9qdMW+Nfm4Sll86wg4Ao6AI+AIOAKOgCPQIgI9Jclspg/4iXv22WejP8lKdhn44EINjhhbKx3tqaeesqWXXrpQBec++clPRqkndp4Lyc4Je4hukksyu4m+1+0IOAKOgCPgCDgCnURgumUyOwlCr5QFk4nNqHzNmVyFGIbhTo6AI+AIOAKOgCPgCEyPCPSUunx6BLCTbWaxknzJxVXx9aIhdLJeL8sRcAQcAUfAEXAEHIFOI+CSzE4j6uU5Ao6AIzCACLBWEw8bLJTE3txp4BEgNCXrBLD3P+KIIwa+whm0BtwUYgaXCG8KCrQSXRSmtBl5i+kfoStZb6KoRxWhqJdH/sCj6yxFTax4facTXZLZaUS9PEfAEXAEBhABhYaM/n5xwVZOcvAdbc8VpcPkrDp+iBQYojxbzxzjgufb3/52dCfHYk72FTWn6fbJOb2NHDkyXodrOUUWKpRBzHLKTT+8khB7G1v8RklOsqMvRNpYjzrVp3r1dPL8dtttF72v8KzgZUUhmZsuvhP9VlQqUzCWwg83OoqE1HRbOnVBp94n/Nry/OE+SBG1DP+dzRLuGFl/gucdPOVUonp5WMty3nnnGf7B824gK5XVsTRcGDk5Ao6AI+AI9D4CxKrW4B+jk1Vq7VFHHRXk7i2G01XQikB43l4mwisSPnDatGnhU5/6VFhiiSVi1LZm2kx0NbmhC/IOEoiiI1v2GFY4lXHBBRcEucGLWBxwwAFB/pADYSWJf90MKcBHDE1Z75pO9KleHZ08ryAmMTzj+eefXwiv2Ux45dSWTvSbsKWEkCYCH79asbVTvQO57cT7ROQs3llCWvMMsX/IIYc03Wyi8BACW4FeCmG2ywtpJA/XEKqbd2IwyCWZHWPXvSBHwBFwBAYWASQhEL6Dy0nh82LgCYXdjSpHxZW2fOSxcePGGecUijCq2VG5scjwySefLCkKCen6669vCjsXvW7gmzhJ/RSOLpYxatSo6HQaqSrniZiGhAbJTyLF1Y5SMaIULbzwwkaQC7x6JHr77bdNH0Xbeeed7YUXXojXKk56dDeX8qQtkjV8I4v5SUmF7ZVXXhmltrRl/Pjx0Ywg328kSKgWkYr9/Oc/tzPOOMMuvPDC6Fc5Lw2+/PLLo4QHR96oaJE+KWxhoZ60QzQ57OepAyzzeZrpUyqv21si1iDBRLqFFJjnQpOT2Kz77rsv3kOem+Q/GleAHI8YMaLw7DTabyRpSOFwBq4JU8WuE+kHs4TZZpvNeHa6RfXep2OPPTbiABZiGmMzeX455pdcLyapMM/vzTffHBf37r333v26VQ8bnt9VV1214DO8XwFKaCQP1+F1J/8uViqrU2nOZHYKSS/HEXAEHIEBRiAxmZVC7qFWhMlbb731IrOFPdu6665baBFqNiKc8YHHiwUfRGw7jz766EIedoiGNtdcc9mYMWNiWDlJuAw7LggbUD5OikceQ/MSVYWAFqj/rr766oKa9eKLLzYYURYywtTtueeeBhMnaY6heoZgMGnjfvvtF+3MFpIbORjVcsLGjLJggAjQUU4E58D9HEzfiSeeaJKIxo9xeb50DEN7xRVXxLphjiEYn0033TQyNuBDffQbuzXqT0SgDzCAAVFs7Kh2x9dyYpga7VMqr9tbJg+TJk2KPqmJeoePap6fREwOYN7pVzK7IJIeQVC4V5IIx6yN9hvcmWzAnFdT+XIPqYMf97Rbka3qvU/41ubZ+Otf/1qwjebZUMz62PbkMhEbyrXWWisy5ewTEKZSVKBGsEn3pd0t4wfBahgPBpwGQ1zqddRGQINuUCz1oME2/u6///6aFxDYngD3Q4FQdaGa0YcqyIasapdQEygaU3j88cer5unECUl1gkKQBoUMC7StEj3//PPhrLPOCpqVNq3aq1SepzkCjSAgBjOgThRjFt56661GLumXRyF3g5iiQrokf0F2XoXjtIMK9aSTTgpi7IJs9ILcq6VTQRKsIOlXPEZFKglXYV/SmriPKnrJJZcML774YhCTEH8KpBFVhTfeeGPMI8lN0Ac67ksSFvRxjvuV/r761a/Ga1HztULgpo9pyU+xm4M+tLE4Se+CpE8lRcvOM+ZnbIKSqnPChAmFfGK2Yh5wgprpU6GQ6WAHDMTIh5122ikoFnhQ8JOSVjfabzGyQcxjkJQyaFJSUgYHYjyDJO7xWzBx4sSg8MxBE6V++XolgT7wXPG9gCQZj6YHeXMDSbqjOQjneR8wealE9bBJ10jLUFVd3mgeTS5ju7WILYhRTpcNyJaA7k41EGAQGj16dFCczyD1ScWcl156abS34KSkAgG7nzxJnRSvpwzN4uJAlD+v2XFQrNAgtU58ATWTy5/ut89HYaCZTEkeYpuxi1EUpKp979e4JhOkeokP+xe+8IX48VSkpn4lKBJUfHE///nPx4FOM75+eTqRcNhhh4WZZpopLLbYYkEzvaBZfJDUo6RoSW6CnPgHSWii7ZskKyXn0wEfHe432GkhQ0r2rSPQEgKSOMQPMx+0xMi1UhBMZn4ck0ovvlupLD44MF88/5K+hK233jowqV100UVTlhImU9KcQnskxQlaTBAnXrxH5Uwdx1KDBpi3VoixqFWCyeRd5AMPM8sYwjgqaVzQyvHYVkkwS4pn8q/IcHHiz4nEZMLs5wm7V8buoU48N9xDSeLa6uo777xTYO7rFcSzrmh90ca4Xt5unZcKO8jUIFbPluesVWoEm04wmQhQJK2P91MLrVptbkPXubpcb00twnXFOeecE9U+eTufdI1Qji4tCFOJSxHsntip7v5cAABAAElEQVTP04ILLhhDX1500UVRvYKtUp6Iy446SgbqtsACC+RPVdxHXUV4zYEiGeFHdRvidGxyUBsRHWkgCBWVBv0YkWny5MmGfdW9995bqEpG0zZ27Fg75ZRT4qpTzaSj6i2pbgoZO7CDio/7h/oDFY2kRfF+5YtGzYMtkmakRihTzbbtj3/8Yz5L3P/KV74S49CDHeU5OQLtIDDzzDMb4wc2WagTsd8aCEJF+NBDD0WVOfZjv/3tb02MaVNVEcIXNSqqQ97T/A/1YrPlUTl2kNgOPvDAA021JZ+ZcZZxDLU8bVtnnXXiu4vqEvUhpgN5YhzSR7/fmIzKMxHmC9i0ppDGKb2RLbZ6mApgBtDrxFgnTZL94Ac/iOYRrM5vhVDPSkJuv/zlL60RX9A8S1D5eM83UMKciJ80S600pWPXEA771ltvjd8png3MTFqhZrFppY50DbbNmLdgTsP9qEQdez4bYkVn4ExyBRK5fWb8lYgZsW5QkF1QYCUa+3rg+mVVvPUo7WSFGTOIasSsuJokUwxOYNbBT+4i+hWBFAJpHGUwSxejE2SgXpA0cAF5kAzKsD1KTVmViYpCL3GhPMqmH3feeWegTlZ/tiNFKBRcZydhfcMNNxRyggVSFaS9UFJPoT7vNIFNnmSLFKU5KU32SxEX2ZalpKgS5N5WomeeeSbmr/bsVLrG0xyBWgjoIxafKdTZzRIrr3mm5cInSvQ+/PDDaKbCu56k7ZiAcKxJb9DkKY4nSJLEREWpvj7uYbnllguywYwqeySZSLZ4d5BkaiFRQBqDpoXrxEwE3mvZ7AXU5csvv3w0M2mm7ZSHepV2cX2zhKRS9qgBrcnDDz8cUNfLrVEsE0ktxDuM9FUMQpC9adCiqWhWwDiKihOsZFsa24BGheslfIhSXVbzMy41S0mLo4VPzV46aPm5r2ABNlo0FevFjIJ7gVobCXszpIlSvJbreR7yhNYQaTLfHTGgsV68AGgykM8W9zX5ieVwvnzc7pd5EBIwKaFPyXSklSprYUN5L730UjQjwHQEyTnmZbyPeWokD/nBj/ez/Pp8WZ16Pl1dnke1wn5ifKoxCrwA2KrIYDpg14MbjsQQpeJ4EWVgHiTVCjAo3Fzs+ipRLSbz9ttvD5LoRfUVDG05oQqTxCOgcobpld+4+OAjXk+EChebGphR7Ek0M415UPMnwoUEqjIIRrUaE5Xyt7vFnocBjMGbPuTxw/Rg2WWXLVRBXmzScEsykMQLTD2asReqkVQ3YsVHKNHmm28e+FUiZzIroeJp7SCQxiPGgmZJPgjj88vHUP4e40cqqbX5WCdChYxam3yoybVAKL4L2NLlbRuxkWY8Id9VV10VYJbYl0YgfvgxuWFsJI0fJibyX9mwqjS1hy1MIuNmK2MRY1lqQ9ri5ogPdbLJhFHBJj71m3ww05jHQJLuxvpJhzGFsWQfkxrU6M0S4xh4gj/3tFcJ+9OEGd8CCJUwadxbGNBmiLGTbyF9zwsTKANTBiYRqT622P9W+lZipsT5chOHZtrSybx8l7mX+W9Ds+XXwoayyrGh/7jjylMjecjP5E8r9/OXlux38vl0JrME2v4HaVCvxmT2v6J/CjZIvFQYt3PzpBKPC3365wxRCllNkpny87LnmULSWSzEQ8cCokTMvqWOLjBBGBaTB7upZIzPlvLyD1yjhsqpnna3MjOIPu6QViAZYTaWiA8XM7c8YSeF9HWgCMnF8OHDA4sa8rNkJCDgB2aJ+OBUmmlz3pnMhJJvO4UA9oA8g63aNTbaDqSe+Pdrl5gw8vFEC9AuaUV3u0XUvR47TBb/MQbWIvrVjnYHyS73sR3JV6329fI5MOZXjWA2mdAn6XqlfIzP8oAQBuOZqFR/eZpcB4Vq9vnleWsd18Om1rXNnEPTgK11Nerk8+k2mXrTB5qw2xOzYri6wF8bftVw6yEmsGNV43oCwn9bIs38DV952HpCKQ/2MNgQpZ9Uz9E3HW2EpCIyfMVB5Bkoe8xYgf7EgMd2PvXUU0ZbcImSSKsLS3zvYbeCnRTpA0HYWGGngp82XEqwTZTcneR9AbKf0lM+3zoCA4UAfgOxKcSHIzZyA0WS9BXc07RTB3aQkoZ25H2VBqadpjR0raRz0YcgY2Atol+V3NDUuiZ/Djtu3DcdfPDB+eQZYh+M+VUjvjd8K6XZqphFQohon4/brMF4Jio2QomsF8BOGlth7HelcUNoVy17Q+n1sGmokBqZaB/PHHaYWuBXNWcnn8/qd7pq9X6iGQRYOMRCH+Le4twY0kzNtAItGt5igN4J4sMDYXgs1yFxnz8YMhgnXti0qIiFTIRWyxMDXiuEjzoMr6VCManpWymicA0MLW0kHF4inMZKEhIxgxllIRLEh6ucMFSW2i4yyck5bnmeWsfcK/yZSUphcknRzxGwZs/GAgzaILOGWJQkyLbDDjvUKrbquXbbW7VgPzFkEeA9ZZEBIfxYnOY0fSIgbyLRcXZ+rJ4+ezL4rUYAgn9WHOZ3k/hGsOgH4jvFpA+H9e1MPga6PzCZ8AP4gpWpS9XqOvp8VhOXenqGQDvqclSt2D6iKsdvVlpcg40JthPYSmJ4i+oFw3GM0nHlgw0U+9h5pmuwHSKNHzaK2E2yj+0gNp+UgQ0Rqnh83+F/DuNeMW7RborekAffdbjowcgYtS92mdhq4dcO9XozhFpDM6+o9im3r2mkHK7B3QN2qqiocPujp77EVoc6sCFFxY8KC8zArhK1Y6gMNuCKHSaqeK10D8cff3xU3+frwv4SrFhMAM7kr2aHU09d3k57823yfUfAEXAEHAFHoBcRcJvMOnelHSZT7kAiEwLjhEF5YkYwsieNH8bm+VVlKZ0tDFwyCk8MWP48+zA5yREsNiwYyKc8MJj438SOKxHMJ7aGKQ9bVqvT1mZJEtpYTrkT40bLoW/45KMPtEOunkpWwqdyMC5PhvY454WxLqd2DZVh6Fk0lceF/XJ7UOw1WQzBORYiHHfcceVNKRzXYjLbbW+hEt9xBBwBR8ARcAR6FIFhtEsfTKcqCIhRMEkXYxxSwrJND4Q6HrvPpEKv1GZ8emLbgnq6VbsW/JThVxL/lu2oymmLGORoryqGs1Jzo89K/NERqquSPQ82MWKWo7oCc4CBJHy24WcM7GrZbuH/ExMJLRqz8mdnMNs7kFh42Y6AI+AIOAKOQDUE3CazGjJl6TgDJl4tzsN7nbBd5FeLMOzn1w6xSEd+Nk1q33aKie2gnFoEIyxzgKpZOmmoXLWSvhMsqGIBVy3SSvQY77dansFsb7U2eLoj4Ag4Ao6AIzCQCLgksw66RH2RzWJcHS41d1zAU+eSGea0Qi7GFfK1JKaDBQYLnGSjGiOiDFadteqRH8IYOUW+0+LqQxYN5anX2ptvm+/3NgIon4hOgwagUwsHe7vHg9s6NFcsimg3qhreQ1gYItd1tt5665ncsw1uR4ZobTz/cthujz/+uBGFLy2oHaLdzbr12j/NHr5fRlpliucvLm72+YULXQebYbffZPbQPWbzzm+25npmc2eeYlImogsuvvji9rWvfS0lDexWjXJyBBwBR8ARqIbAS/IXeZMcbj90b9Aqu2q5Bi1dH4dor7333nv3q5NIKUTzkjuwuDBQ5iVNL+jrV+gAJpx33nlxYSKRhogAg3P3Z599tukaL7300hhRjQvxIUwQhzyxqFEePoKYkri4kgWEOJZngV85EeUHP4LtEgsyFQY3aDV0v/Y0UjbO7MEDf5wskMzHnG/k+mby4OORwBPghM3+Lbfc0szlMW+n7mWtinm+sZPHRp/nHLv4dmKF16qLc516n9q+l2eMh73s/9ts9UIXPpIP7rDDZv3zMG71EX441+hzpr/vvvum5AHd+sKfAYXXC3cEHIHpFYGP9MENe29bOmgvM1MIU5/qWpfwtiCxQwz7WKkRRALjA0zghy233DIGd6iUr1fSYGgIWztt2rQYLW2JJZZominGAwfhcTfbbLOAE3mi+YxReMg8EQUNLx9EOsLrRlogKR+H+WxxP3n06HeixQQY2nKmt15ROMLnPhOGmIhC7MstW73LWjpPiFKYNSLSpUWoeENpljpxL+vViUcVIusphn3MyiQBbB588MF6l7Z0vhPvU0fu5WnHZ+PQyp8N4aA9ir/rryj267LfFceqcQrKsvYSxWuKueLerrvuGiTNLEsdmENnMgcGVy/VEXAEpncE3n0nG6QX0TC521bFAXy9yi60BqO7yWOB1OX9qsPNGVFQiKOcGAfCxiY69thjoycJPFrAdOGpgYhVyetFyodUUerdGDKRyCqEckxRuAgLiTcKQtZSF1IRzss3YJQoIflJhHs0GA8kgzKpCXzY8p4uZIoUGWIksinCCAxgJUKyBpOFF4hyUtCEyGgQShemAKZDvkQL2YgxTlpeakndeLPIM5n7779/7Bv9kx/SwvVpB0zwpAGjirs4QkoeccQRJWFw8RpBXHMYSwV1iPtsE5NJ+FzK5yen2LFopKYp7frrr49p1E+bieNNu2DE24kwlPpQaUvUIeqCGcKNG0xcIi1QjPeQ9hHzHho1alRsL5Hi0rPT6L1EkobElLjnRHprhfJR2MCEtnPvO0313qdO38ua2CQmc/fvhnDHLQrxd1cIjE952mRENkYxMYaee6Y4Zj18f5bW9084Tt7ZwSBnMgcDZa/DEXAEpj8E3nsvhO021mD+btb21+QKTB+0+HvzP53rz8STQnirsZCJiRlLkpx8I/h4Ez8ZdfFuu+0W9/OMFdIemCM+ysTtRn0M8wejmSeuJ365IpUFYjKj7oV5g2B68OUr59PRjyyhYJEcch5JYQp3OWnSpFgP6l5U2cRKphzC76FGhmAcce2GWzAYM9rCh7acZL8cmSzaveKKK5afjmFdcfcGAwqD9KlPfaqE8UPCqSgyJSFiKYR45HmJHfHg6S/h9lJ/85UlKR/9heGFOQTvK6+8spANP7pIBWHCUUHj45d2JyaT8L9IXSlDi//idVOmTInxvAmpm0LW4geZmOsQzFwrMdvjxXX+mDxwD2AucYVHf/LPA5OCQw89NPYhqaXZEtoXP8Ep9nuj95K49uDBDyatXUJijes5JOGdpnrvU6fvZU1sEpMp3ARe9ptfWxjJRAv1pZ99ckop5p18UTFNe/iC5r7jH3qgSa1y6nUEiPvLgMYLNdRIxttRisHHkx9O6btN+OHEQXw14qOHI/lK/jqrXePpQwSB1RbOBu5pxfj1FXuGDeflFzb2Sx+NE/XRrcFs8sHHjhC/skiOWqFvfvObQSH7CpfCKCBpLCckoQo9FwMkIBnNM3cjRowoSACRVKb42+zDkEAELCDwAwwkjBM/bC5hLuR5IeZB6offXgj1vlx+xf1Kf9jhcS3S0GYJu1SkiY0STB2MdjnBANMGJJmJsI/deeed4yEMOOfBNBFjBGmJySQdCS9pyb8xDBqMaZ7hJfBEYpzAEDOJbpJC/UY7YGxMYZyvu+66kuY0ei//8pe/xMkIkxNwyBPjKuN/pV+l/jORATeeq25RJ+9lLWyiTbiembCFJh4HSzvBPr+jcrbHKe3Gq4pwLDtLlu+3E4pp2kMTwjOIJD4vGS7J1KEDZzLrAMlMbfTo0dEAu5rhdS2jc2bwzObTDwnBhAkTCuqnOtXH0wwy66yzTpx51Ms/GMbX9drQzPnkiJ0Hnh8z6bxKrZmy2s2L7RPSFtqheOQVi8NYmgGSPEgbqhHO87nnzPpxku80BBBAoqn7Hn/1urN0X76Uv9Ht2P0KUb7yVSD9S89dYuTy5xvdh8nMj2Py4Ro/1Ol6PjgESJh99tmjJA2pFpI9AhAkyjOZSN9Se7TSPUbmYvEI73F6p/NbpCdJ2pnKa3TbqrqYxT68z7SrEarHZCp0b6EYmK6tttoqHsOU01eEAnnCzjTPZHJu1VVXjaYG7K+xxhoDuniFOjpBPDf0b5dddmmrOJjJJAHNF8RzkX9W8vuod/OEWQG2x+22JV9mq/udvJfVsKFtJbbCF56VjUPz5lg47MUZZ5isQpoUxWPSfj85S+v7pyzMHsAYU4iBpP9RJU41ECCeNc6955tvvuguoTyrbo5pNmBSH0SXIjgnZz8R8bhxrSNVjkkdZPpQmFQx/Zxzp/yVtpQhO6pKp/qlScQf43cTE1fqiBgHXLZH/fL1SgL4acAwfUDiT4b7JluvrjQPP5yasUcH89UaoA+KSfJQ8VnIX6MPleljbTKmN0lr8qd8f3pFYMIxWcvH7Fu/B48WhneG+No/Stvje2ZTnzI7fJxVCkgglaBJXRtddJ144okmyVH9NrSQQ5G/oustqXBNtpkmG0kTY9pUSZIuGe7ecK+kj1nJT0xs0+VROX6KZT9pMhNoqi1k1kc0ji24vckTGNKeTlGKWS2NTKFIvh+KbFY4Tju4NiIG/dixY01Mq0lLlU41vZU9Yvw+SG3f9LWNXiDJZYzNLRvfOEbynWmFNFkyMeMm4YvJfrekCDFrdsYZZ1T85Z9BnoVNNtnEZPIRyyopJHegkM0m5j5io1DOuTOd3e3UvayFDS0uGRfe+HfWiZdyfVlpk+zglmuy7X25532JUr/OBBORFNYk4a+K4R/+8IeInQQmuUpa2B1IDnYolF0vrGQ9o3MwQMW1zTbbFOBIomoM7BMxi0P1gk3RUkstFXB5QFzzREjZkAIQyhF7Kux1MODP52nU+DqV2QtbPbJRTY6UopI9VjfaqIGuqiQztQfD/lqSTPKlRRpIi5ymcwTyRvQvd9j+68XnGwYHKRrvDOrsZomV12uuuWZcwIH6EckealDKS9J2xiSO5Usv2gwedthhUdJJiFr5xY3jDXade+21V1TZI8lEmoQEFEkm4xzSGMx7UGWiyWEMxRQGtebyyy8f8uNeI32gvCTF5fpmCdUzkkxsSa+66qq4WIUwutiVIomEkKyxcpkf9om82+yj7k42pOl95lokQVyDDSZjAeMwPxZTUA/aKmw4k5p/u+226ye9wwwBrJO5QbP9Ij/3EXtUysGEp9PEfSWsL5LpZEOZJLYs3knYNFpvsmulva2ouXmOeBa4d5g0YXOMtL3Swh8WkVEPYZzpx0BSJ+5lTWwOkEmG+hJGrhDCxqsWp60n/LTYrQfuLqanleVcM3pUMU/fHtjwfub5h/JMCrIS8UvmIOXnGz1WC5xqIVCPyUSNXcvonLLzTKZmVFGlhJo42R9iYMzLgN0QKyFZTchghR8wBlgIJpM81IWYOxmVYyyfVulJwhYZ0XqG9LHAHvhjoKZPyTiewQO1EundJGcyu4l+D9aNcfyI4dkAfvE5XW1gGo9YpNIsKahEfN9457ArhIFKam0+xIkw6WFCSz7U5AcddFC0A2VhD2MZ6fxOP/30aBLCPswbHyP2WcDAR52JcmKASJc2KLA6vZKqNNVdbYvLIT6KrS6AwfYTtSbt4MdiEcbQpILHvCWdy28Zp5PtJKvxOYeaFltySR8L16R2cV+GDx8e07mWVfyoy7nuuOOOK+kei4zAP63QLjnZ4AFCB8pm1ftAEMxywgMzAgj1PmncWxjQZoi+wvDzLLXCFGMrm9qT35ZjS5u4v+QpV7U3095G83biXtbE5hdjsvFH/VGnst/3R4ZQvgDx/DOK58m3kZ6L14vCqtQfJn9zzjlnOuy3xcaWe8TzyZjTDjmTWQe9NKi3I43KD8zpxcDuKQ22SC/LB4lkn4KkAUpMJi99IphUymOAhBo1vk7X98KWD9MFF1wQGW6Ya/qDFKWb5ExmN9HvwboP1GITBuwft2eL1omeYa/MO9KqXWOjbUDqiUubdonVq3w8y+0UWylXYX1buazkGiQ3MNdp7C052aEDJslTtYgpTf6rFctKexihdiiNmXkvAu2UNxjXorEaDK0VzD5utjrx3NTDpRP3kjpqYvPKS1lAiEfkI7QC41hoI5Ni8tTQuKBpwNa6GiExZpxpR8qeyvbY5UJyMEgLQEyzHdMgF+0kNbiY1EymGZhpADYNFiXNIB44tp1Si5WkazFJ4VirJk2q9VgeiZp12GKLLRbPcy02oL1OYJJIfvxMg6VhW7TjjjumZN86At1DYPIks2N+k9V/+3VmaymMGzSnQrVdcmu2P4j/kj7E91qLMEwM54C9J3KxY/zaJUn9TNLQdouJ10vj0XY54MdvIAnbuYWqjL1i3KMNpiIymXxQmqTGCHpK7e2aaNxdd91lcolkfC+mF5IEdMCbKtdMJhOQGNazE89NpQZ3+l5SR01sPjuPGb96pHfOvrR8xVw8a3K/Fe0wCXVajeReKz6T8uVaLUvD6QN/txtuytDOyGArX23xxwAkNbtxIzEW10rOGIv4Rz/6UQEEBiCpym2BBRYopLGDkThGzxAfmSeffNJkExSPm/nDqFcqLpP7kvjQNXPtQOZlgYMkAf2q6NX29mtoEwlDsU9NdL/3sz4/1WyT4qTOpjyXa/MTuf3B24WBYcGInHWb3AINXsVeU0cQkOo9Mj4UJrvCuJhG0qL4HWilAp4D2da2zKS2Uuf0cI28hNjdd99tMjkbsOZ2+l4OWENzBcNkwjfIhMDyAqtclriLkEfSWWMBcbvkTGa7CNa5nlXTUpvEVYxS08RVjmxh8LjJfDRkfG6sEGSVuqIqmNTgcSUlDKBU7ZHpYtYEIcGQAbrJrsVY4cf1Miqv04r+p1ndRxukru5/cpBS7rvvvjib1yImk/1HXFXIKnxWMJbTYLRXvvpMai6TTWtcvct9ol0L5aQSSJ1ZMSp1W5RKc69Y/d+KdGQw+lSOox83gcDnF0ZJ3sQFg5P185//vEndNTiVeS0dRUDu8Ixfp6iXPYd0qo+tloNXgYGkTt/LgWxrKhvPD6eeemo6rLpFE8pq/45Q0pv7tjIC7dpksgpcN6rkR7QHVognuyCM5Fkpnoztyc8KTs3EYqOITIHRO+mspMPwnH3CmmGr2Sx10qi32brz+TH8FnNWwCYZ9pcv/Bms9hJirtK9ov5ErG4tz7P99tun0yXbtBq1kj3vYPWppEF+4Ag4Ao6AI+AIDCICw6hLH02nKgggNZRLChOj0JRvyyrF1UwW42HPPvts9BOJFLMa4U9LritaVrGgimeWh5oGH6DdJB4/7JPwmYY9qULC9WtOL7W3X+NqJCAVlXF1xWdneu1Tje76KUfAEXAEHAFHoAQBV5eXwFH9QBJD0yo123TTTatnavMMRr/Y6dQj7DuT4996eSud76RRb6Xym0lD3V9vYUAvtbfRvil0nuWdMpdfNz32qbwPfuwIOAKOgCPgCNRCwCWZtdDROTk4N/mXizaVRLH49a9/XeeK3j/NgiKiEHXM5mKAuzy9tRc45IcwRk5hxT+RSuROowSl6bFPJR3wA0fAEXAEHIHuI/CrI832PMhMi2Z7kZzJ7MW74m1yBBwBR8ARcAQcAUegFgJ4wBi+iNk5cgX4/e4t4q3VRGcya6Hj5xwBR8AR6AACSLPRHiDZRsrNCnEnR8ARcATaQuCHW5uN17qK+VXK1P/2pDTzf9rqoF/sCDgCjoAjUBcBheQzRfmy888/3xTisG5+z+AIOAKOQE0EkGLCYEK4zL3ot3G31/6cyey1O+LtcQQcgSGHAL5gazk/HnId9g45Ao7AwCKAH993383quPYys+/tOLD1tVh6T64uD4r4MuwJhVN88VmzRZfKbA5a7KBf5gg4Ao6AI+AIOAKOgCMw+Aj0HpM59Ukb9r21ze56sYjGHt+zcMLZNkze6oc64ZMTicfPfvaztrpKqLEjjzzSiGJDjNKvf/3rbZXXzYuJmEQoPaLsEFKTMJwDQrffZPb++6VFz/UZs2VXLKTh13MY+R66x2xeGcKsqfivcyuOtZMj4Ag4Ao6AI+AIlCDQe0zmfXdlDObIFcw+rWDw511rdtJ5NmwFhTjavn+4wZLeDMABvjF33313e++994x4qMcff3y/Wi677DI77bTT7JprrrGf/OQn0VH6z3/+80I+YnETNvLKK6+05557LvqFhFFS9B7baKONCvnYwSl5J4g6p02bFusklFSzTCbhKwmheNJJJ8VQloSxrNT3TrS1VhnE91Z0pBha8xOf+ITtuuuuMZwmjuQ7Sv98xexrVRjxf//LbI7/s0CM4F0Uy/qMS0urfujeEkaUk77QoxQiP3IEHAFHwBGY8RDoPdHgrB8zO/tks6vvNzv3GrPzz8juytWTOnd3Xp7WX2JVpXTiVBMVZ7755rO115aEtYyQbBFznFifSNzGjRsX9/PZvvnNb9qYMWNs3XXXtcMPP9yQMl588cVGnO5yevXVV9uWYlLmzPKZRYxShacsr6LuMczp+PHjo+SQ+OIsVvjkJz9Z97qByHDTTTfFBRNEz+G3+eab21FHHaWQ0h0OVCWmvEAH7WGWfr8YExlMzg278qIigznucLO1l8gu2Xlk4dK04ws9EhK+dQQcAUfAEZhREeg9JnPjLc1G71q8H6v3SZf+JUlTp+g6GckuPIvZ78TAlqtHq9QxcuTIqKotP4108pFHHrE111wzMmYwmnlm9Nxzz43SRLY//vGPo/Ty8ssvtwUXXLCkqAMOOMBWWWWV6CAdpq6c1l9//XgOCaniZ8dwhWPHjjVCTCaCecVZ/AYbbBBV5Owj0Ux07LHHxjqo55BDDonJBx10UCGN0JkQ0kPo0EMPtZtvvtk+/vGP29577x3TBvsP5vyqq66KKnKiA9H2J5980v75z38OTFOGqdhvbWM2cnOzfcVI/uiIYj0TT8z2997WbL+xZmdpEgTd8w+zRx7I9vv+faFHCRx+4Ag4Ao6AIzADItB7TGb5Tfjzw1nKMlKX16LrLpeoSRxCI79tJaliyT+rsWA2//xIrZJrnkMNTjhIGMsTTzwxxt7OR9JBlY4UEClmIpg2mFPsCxNtvPHGtsMOO0Tm6emnn07JhS3n7r777ijlHDVqVFQhI9FLjCEZUSvvt99+hnocyethhx1Wch6V+btajYYLFeqD2CIhnGOOOWzppZeOaXfccYfBJI0YMcLY32WXXdoKYxkLbfEPbPEtCL2vCcEpp5wS24b6fkAIAenyK5utLqn1Z2Wuccm5xWoenpLtr7BKtmV1X6Ln+t+zdMq3joAj4Ag4Ao7AjIjA//Zyp+Mq80N3yJq4ze61m7rsSmZXSJ3ZCJ1yrNk195lt9jWzQ2Q7udQyjVxVMQ8xqhO99NJLabewfeKJJwzV6ayzzlpIY2fZZZctOV5ttdWM38SJE8UnI04rpRQzHckjElFoypQpkVndcMMN4/4ll1wSpak/+EFmu7rvvvvaMssU+4afPhYUwaQSLhPC1hQVPfaWMKbQ0UcfHdPZnzRpUmRA2e80YfP5j39IClhGMMlLLrlkCQ6ox7fddlt75pln7Oyzzy67ogOHn54rK2TFOc02kL3nLVea3THV7IDRZpv32X8+21fPfDkp9LKapDwsafLrAyRZ7UDXvAhHwBFwBBwBR6AbCPQ0kznsrJMyVeS3JFVaTkxkLfqcVvqiam+EFIPcjlLXWUw0wDT33HPbgw8+GNXWME/tEoxoosUXXzwuMuL4oYceisl5X3xf+tKXbIkl+uwG+y5C7Y+klZXnSF+xJ0UCutRSS/Xl0HqrT3+6sD///MJ1gAgm+He/+13F0lkglY+Ksueee9pFF11kV199dQnjXPHiVhKJ+5q38/yP1OFzCIdnVBgLe3j+lpFE9ZEPzR5/zGydUWYffJAxmNT3uQVaqdWvmUEQYDJ6zz33zCC99W46Ao7AoCCA8Cr/3RqUSpurpHeZTFTYO/4w683x5zTXq3q5VyoyavWytnt+5ZVXjnaNd955p62++uqF4j4Qg8JvttlmK6S1s/OZz8jVjogPGZJNiEVLlVTvMJio77HpRB3+2GNimlokzAWef/55W2ONNfqtlK9XJBLXddZZp1821OOfYyLQR3vssUdcvQ9Dmjc7SOfTFltS7DdhkpPNaTrX9PbNt4qXvPt2tr+SzBseuVRSTtli7nGA2X13FvMs8aXifoN7HW1vg3V6tu4gwAI6bLe/+93v2mKLLdadRnitjoAj4AgMNgJSQ/YevfHvEBaJ/HkIt9/c1faJScNKL8j2saV2vPbaa0H2g0H+L4MYoCD1edAioPDFL34x7LTTTrFM+X8Mimscf1KjB7lMivv6KAUt7Il5pCaO7eBaLeYJXKOV1kELgoLU3fEnRjPWM2HChCCpX/jqV78ar9luu+1i/nwHxPDGc3IFlE9uav+NN94IspmM5dxwww1NXdtoZq3Gj+WD1eTJk+NPEtrw1FNP9StCzHXMu/POO/c7VzfhluuZD4aw4pwhfG+DbJ/jr8xXvPSBu4vpay9R3B89qpgnt5fuWbVnp6325urxXUfAEXAEHAFHoBcR0Fe0B2m7jYsf8DUXCyH9Jowb9Ma2y2TSYC20CVJRRwYIhlXuhYLsC4PsEWN/5FuzcI7z6SfbzCAXPjGP1O4xfZZZZgmPP/540KrrQr599tkn5rn99tvD8OHDYzrXygdnkLo8Hh933HExT/rTApogiWFkelNas1v5BY1la8V3s5c2nB+mO+GRtrRb6vSSMiQVDlq8FPvEPWuaHnmg+MzBXPJbSr/77yot6vwzSvNtpL6//mppnr6jWkxm2+2tWKMnOgKOgCPgCDgCvYNA7zGZZ51Y+hFPH3y2B7QgoWoT604wmakJSByRTiKFHChCyjl16tQgV0o1q1hppZUio1szU52T+++/f2QAkTB2m2QmENvSjmQ2vP1WCI89HMJ9U0L42wtRYlyxX++9FwJM6cvTKp5OibWYzI60N1XkW0fAEXAEHIGhh8Bbb4aw6VdDOPgHIVxzSbZ/09W1+3nzdVm+yReFcODuIWy2eojfttpXDdjZ3rPJxL0Qvx6ja6+91oj+k1Z5t9K8Oeec0/gNJLEyfaGFFqpYxd///vdogylVs917773RPkxPVskq7ooXVkm866674iKcZANaJdugJP/xj3+M/Tj44INbr+9jHy/xNNB/jX9f0bNoRfmXlq9ZT72FHh1pb80W+ElHwBFwBByB6RqBD+S55DLZ/v/9KbN5tE6B/U1fqN2lF5/N8q05UusHLjG7+2X5/3vPjO9bF6j95c5daPRgVjnPPPPYNttsYzBot91222BW3fG6iJ7DgpizzjrLZBNqp59+enRf1GpFLMS54oorWmZSW6230nU77rhjdOOE66NeoHoLPXqtvb2AmbfBEXAEHAFHIIfAzH2uDz/2f2ZEQ4RmrbNYOJ2fRdd+os9TTConK2FQ/4chIx3UGr0yR8ARcAQcAUfAEXAEHIH6CMwtndoWW5ltua1CGa9vdv9dtd0v4nKPgCI3yNfz5IsU2VDeef7ZPTav99Tl9SH3HI7AoCMQzQqIY77/kYNet1foCDgCjoAjMIMiMHac2SKLZiZaP9zabPgXzE461uxTMr0jamGiC88SM/kPs622MyPf0iuYwv+ZLb50ytGVrUsyuwK7VzrdIXCNbFtGbWH26IN6eZeb7prvDXYEHAFHwBEYIgh8dSGF/HvO7MF7skAhf5Wv6yXETC4vu8sHcj6ee6C7bpPZAzfBm9DbCESLksO2zxp5zIG93VhvnSPgCDgCjsDQRmDMCVn/fnFYtj1J4bGhQ0/Ntj3075LMHroZ3pQeReBaRfkZuXmxcS7NLGLhe46AI+AIOAKDj8Aqc2dht2+9wWyNb5gpAnR47gMbpoh5vUQ9Kcm85ZZbYjxtYmpffPHFvYSXt2VGRGCDzeQG4ras59P+5uryGfEZ8D47Ao6AI9BLCBzxm6w1MJjQUeN7jsGkWT3JZC688MIxRvXdd99t119/Pe10cgQcAUfAEXAEHAFHwBEQAmH9TTMbzITGd3OLgFJaD2x7ksnEmfgOO+xgisXdAxB5ExwBR8ARcAQcAUfAEegdBAi8YqN2yBr066Pq+8/sUtN7ksnsEhZerSPgCDgCjoAj4Ag4Ar2PwDtvmx09Pmvn9r0XJTEB6ExmQsK3joAj4Ag4Ao6AI+AITA8InNu3knzMvmZz9EX26cF2O5PZgzfFm+QIOAKOgCPgCDgCjkBFBN5/3+ygfbJTu+1XMUuvJDqT2St3wtvhCDgCjoAj4Ag4Ao5APQQuO8/sVWXae1uzeT5XL3dXzzuT2VX4vXJHwBFwBBwBR8ARcASaQABXetttrPCRBzdxUXeyeuzy7uDutU5vCKy8unxGhOmt1d5eR8ARcAQcgaGGwF6HTDc9cknmdHOrvKGOgCPgCDgCjoAj4AhMPwj0pCRz6tSpdtNNN9krr7wy/SDpLXUEHAFHwBFwBBwBR8ARKCDQk5LM5557zm688UYbMWKErbfeeoXG+o4j4Ag4Ao6AI+AIOAKOwPSBwLAgmj6a6q10BLqEwMvTzB572GwuRaBaalmzmWfuUkO8WkfAEXAEHAFHYPpBoCclmdMPfN7SoYxA+Ogjs322M5t3PrN1NjBbbiWzFT9m9uzTQ7nb3jdHwBFwBBwBR6AjCLgksyMweiFDEoH33jWbTUzlIurdeluZnXxB1s31lje77oEh2WXvlCPgCDgCjoAj0CkEnMnsFJJeztBD4L//Ndt1SzGXF5nNOqvZ6/J+O6dU5tCb/zH7xOzZvv87Ao6AI+AIOAKOQD8EnMnsB4knOAI1EFhdYs07pprhDBc1upMj4Ag4Ao6AI+AIVETAmcyKsHiiI1ABgffek/p8tuyEr5erAJAnOQKOgCPgCDgCRQR84U8RC99zBGojMOGY7PyYfWvn87OOgCPgCDgCjoAjYC7J9IfAEWgEgeelIh/OCiARLo3mnjfb939HwBFwBBwBR8ARqIiASzIrwuKJjkAOARYAfWetLOHic5zBzEHju46AI+AIOAKOQDUEnMmshoynOwIJgTF7mU15zuzHu5ht/v2U6ltHwBFwBBwBR8ARqIGAq8trgOOnHAGbPMlsk29lQIwYbjaLXBlBc0pdfsmt2b7/OwKOgCPgCDgCjkA/BJzJ7AeJJzgCfQjk7TArgeIrzCuh4mmOgCPgCDgCjkBEwJlMfxAcAUfAEXAEHAFHwBFwBDqOgNtkdhxSL9ARcAQcAUfAEXAEHAFHwJlMfwYcAUfAEXAEHAFHwBFwBDqOgDOZHYfUC3QEHAFHwBFwBBwBR8ARcCbTnwFHwBFwBBwBR8ARcAQcgY4j4ExmxyH1Ah0BR8ARcAQcAUfAEXAEnMn0Z8ARcAQcAUfAEXAEHAFHoOMIOJPZcUi9QEfAEXAEHAFHwBFwBBwBZzL9GXAEHAFHwBFwBBwBR8AR6DgCzmR2HFIv0BFwBBwBR8ARcAQcAUfAmUx/BhwBR8ARcAQcAUfAEXAEOo6AM5kdh9QLdAQcAUfAEXAEHAFHwBFwJtOfAUfAEXAEHAFHwBFwBByBjiPgTGbHIfUCHQFHwBFwBBwBR8ARcAScyfRnwBFwBBwBR8ARcAQcAUeg4wg4k9lxSL1AR8ARcAQcAUfAEXAEHIH/dQiaQOCN180eut/s9dfMVl/bbM7PNHFx41lDCDbsnN+YvfKS2cdnN9t9/8Yv7lTO228yu+d2M7XFZtJcZPRuZp+Zu1Olt17OOkua3fy42Rv/NvvkHK2XoyvDhx9mOP/zlawc+rftHm2V6Rc7Ao6AI9ANBMJHH9mwB+82e+FZsyWW0e//daMZXqcjUILAMDE04iKc7KLfmj3+pwyIBYabbf+DUlDG/8zshweXpm32NbMzLjP71JzF9CsnmT14T3Y8l5jQPX5cPJff+88bZif/wuzdd7LUdTc0W3WNbP+Zv5p9YYlC7jh4DBtWOB6UnSVVn3i5At12oxjrdQqHXdtJODz1lxKMWmrPYw+bLb1c6aWD8Tq8957Z2B+ZffazZvuMKa2fo8P3Mpt5VrPDjjX7hc7/Q5ONn5/SP1+9lEceMLvqIrOPgtmWW5tdco7Zhx+Z7XeE2cc+Hq+Oz9aGX9ZE5hCzDbeoXuLTehh+d2Y26fjfmcy22d1s/s9Xz+9nHAFHoHMIPCLhxhUXZu/fzJIN7aLxIy/kuPcOs61WN3smV6X4TBt/g9nXvl5IjBPrXx9p9vbbWdpqa5mtPbJwvmSnXp1kZrK/1ZoaU/R9XE2Cl2+pvB33qT2WlFSSO2hkvEIw0Gj7c0X7bhcRgMl0EgILRpkdLEYIK8xRCsk7b2fpnPvKAiGssWjx+PC9SvNu/83iOfK//Vbp+XT08P2l+Y49LJ3Rd/+jEMbsXTgfjwtnB2nnlutDOObQQhvCbTcOUsV1qjlw9xB2/24I775bJ2P90x998EEIJx0bwj7bFftZ/7K2csR7+Z11s/ouObd/WY//KTv3/ZEhvPhctr/Bcv3zNZKy23ey60euEMJhP8z29Wz3e55GrZSdu+yC6qVyLvvEZdsLzqye1884Ao5AZxEYu1/p+/fIA6Xlf2vt4vnN1yjuz6VvUJ7+/a/iOd5n8lajenVy3S/GZOVd9rsQTj8h2z9zfLUSa6c3Ml410/7atfnZQUJAU6JBICQ3551m9u9Xzf53FrNd9zO761az6y43e+s/Zt/fyWyl1bKGvKMZ1qTfmj32kBnXfWFxs02/a4Z0EWnafVPMhulzN8ecFiRtHIZk67//Vfmnmv1L5Qcdr6yymFU9p2ndrderrj+YzTKb2fAvSMoodcJPTzJbcKHKHb/7Nl2vGWGOwiyz2rD5lbD51haOm5jV+eX/M3tA0sj77szl1C6SzV++ZvbpuUrTax3xauYo9mmz0ZJ2HRdTh111sdn1V5gtKlXxt7Y1+xyNyRFq9YslpXryz8J3ZrNlJJki36yShiWiX/f90QyJFOrhL6qs0cJ94cVSjmz7wrNmU24xe01YrrWu2SJHl86OU27uw03Xmj37hNm8C2o2vEGppHOq0q+6xOwD3ZsvLmW27kYWpcXci88p/256BppRv//5EbMbrjSbWyrtz85jNu1Fs4V0PxO99HdJ6s7VsyDJ8FfW1H2+1+wR/daRhHijb5ViwTWa+Q97+H6z2Wc3W28Ts1+flUoqbj/4wOzy880eVjmv/lP9WEK4bpM9i+RC4nz1pVkfP6Zyvru9+ni22X/+lT3nW+mYtuZo2KXnmZ3/e92jmSzoudbTWkrHHJwdgxdSTGi9nISRZ+HJx7L0T37KwnZ6By5Q21/5W5a25LJm638z2/+N2g6N0XO001rZ/k/Pzp7f7Cj7P+ZU9WN5vWdbyRTkG6WS+ZTvm9/Wu6Xfhisrr/BwcgSGEgI3XyNTqPuyb8tIvW+zfSwbT/78cDauIblPRN4pt5r9/QV9R4brW/P1LA/jxbmn6B3SWMF3aMURRSnis09rPJxk9r6+aTPNLM3CNhbm+ZwNu/8ufaM0HvxF49vc82X18k08VuVUogN3NfvZyf3PLCmx5TI3m13zXKZhOE7j9j6HadxS1tf1l75Hc+i7xfcGc6ytd+tfTqWUanViPrbf2OwKvt8L9mk21tK3AELKedHEbDwEj+VXMVtK7WScfu9tYT2TxmZhnbR2jYxXrbQ/Nsb/uobAoDCz996ZzXCyxzuEXbYsPUaKCP35kRCYeaV8+e2FE0NYpOzcc89k191/V+k1I4aH8NRfStPyZU2+KLsu/58kmXfflk+tuB8lQV/sa8s+O/TP8/qrxbobkWT2LyGEcklnvv3M5hJdf0WxrnwesHrlpSzXXX+onIf8f3shlRTCOadUz5eXZO67Y+V8P9y6WNahexbzLKR6Vlu4eEy9zJKboR02K71+0tmlV4//Wen5PBZbrFXM+9//hjB6VPW8KefL00JYZqbK+a65JMuVl4BS34k/L81/RtmMnmfh/5SPvBNPSjUVt489XLwevFMfeBZEH334YTEtnbvp2tK0T6hsKJW1yYgQpv0ty8M9qEZJmomkuBalfC7JrIWSn5veEMh/d5DupfcrbXkH33svBMaSlJbfbr9JCEgX82lfma+IAhqv/LkTjwmBb1o+Lb9fvDLbS1LFA3ctP1P5+KgDCmX301xwxdknZ+fpazWqV+fPDsnK4HuLRoj2p285ZTJO5vu0lM5PGFeaxncCana8aqT9Wcn+32UE/mdQuNtlVjSbMK5Y1Sma0Y1cwexAzQ4lHLLt987ObaFZDjMv6KA9zH51hGZl8cjs29ua/eSMvgNtDtjZ7GVJr3bcXDMidWO372TnZtHml7/VTO20Yt5pkvL8VdKfw36Ypc37ueK5FvaGjRtj9lTfhRtt2UIJTV6yxqJmp0kaleimq7M9JJJI4SBw+OOtZkjKPqFjbHPACJp/uNn31hMumnUiEfzLo1k6/3fclO0/8WdJNncpplNeJZokSd2vTs/OnHZ8JllOErcTdG6y7i20re7tbpKMQc/qd8dUs313VPrGZovpGFugZmivQ4uSvUrXbT5az5Ses0T7bCc7w+9mRxffIgnC+9n+hGP1bPThN0K4bFGlHXt+T5LQD7O2XnNpJkVPeUcKG2bpexwgaYHqSTSTZuaJxh2uWXrZs3HbDZLm92XYYuuUs7hFKr7e8mY7a3aPHSb731nXwpe0FQ37Hz3nl19YzP/9kRbW+EYRZ85cfmV2fpqkLNDhvzR78dm4az85NdtW+v++JCTQMROyrf87AjMSAhdpTFhhjqzHl9xqNpd2j/iRNDT6QPFbeBFpO46SxkhjCfSttc1O/bXecUnnoDOv0Bh3o9mR+2fH/I/TWMy4vfe22djKuAcxjjBe/erH2TG2/Wjwbr7ObLPVZWuZJbf8jy0l9tzQD7fur7nIzrT/j0aFMWq3gzMtGvsHjSuWi4QXKWiicdLCbP794jcd7LbfMzvb7HiVyvRt7yMwqExumtVoNtZvdvXkn4sznJ8eXGzWH28tpjN72Wz17BhJUNrfbuOiFGnnLbJrb7iyeB31LqYf9pJIYJBmlVOjkszjf1Is96cHlpeSHXdakvnog1m52ObRF+w1oasvLrZlW2Gw67ey30LKk7Am37vvhHDRb0PYc3QIzCaXzp1H+gblJYHcC+ieO4rlJEnm9zYopqX62Kb6kHImykvZ/vD7lNredpm+tpdLMimV54Z2IMWFXv1HsV3JhgnpAnmQUiY6aI9iPtKQOKb+UF/qZ16KcftN6WrVq+cg5Wd75aTiufzeL8dm+bgH7dABO2flfP1LWSlIK6n3uKNLSo2Sz76U/H5JpnSQJAmU8+LzKbX/1iWZ/THxlKGBAOMjzz/vfNIC5Xu27CzZ+SV0vo+iXTfaA67j3cjbDE59KkvnHNqzEcOz42svy65ONoic58f5/fVuo/krp3pSxZT/oXuLda782RDeejOdKd02IglstM7SkkuP+NYmfE47PoR/vFxs39OPl+TNj1H5/ZJM6aCR9qe8vu0qAhKNdIE2+nb/2RWSoUR51wuLLpVSzf72ouxcNNODHrpXUrvbs/2zJmc2nBwtv2pMC+uMki1an4SUlCf0O/NyrYTbXnaTJ8Q8Tf/9/DCzvQ7JLpOkNRz406aLaOWC8P+WzS773ELZltcU+sfL2Zb/24TB7y/KftzVL+q3fZ+U87C9MlvC8efIflJ4riRpYjklaZfSwyKLZ2eX1sy0nF7P1ZnqY7uIMi6j35eWK78iO0biVo9kg6u3oV6u+udXWTfLk199iS0UdNffs+2IzbMt/8utVNxnD6lCoke0k/r5wC1ZP5GAfmaelEPPVE6aSSr2rpUo2VIuOqLS2cbTdpWEBbrx0cy+6Yop2fF2u2fbvv8o+aywX5IpHcw9b9qT3e5fi/u+5wjMaAisv3M/W+oIwYv/zZD48gYFRIahvVhjhez4aX2TsBlk7IVO+VW25Z/1B1Oey47R7EEH/iTTQGVH2flxp2p8/qq0D31507lGtvfeWRzLVv6s2ZUavD7+iUauHLg8M8+sNRDqJzRO36Ezxmf7o/V9Tt+ZLCXT1FTY70vyzXSKQHeYzEpgLb50MfV0qfj+9Vqm4vzNL4rpy+nl5AcdNzFuCirZk8/Pjln0Ihp27aVm155nxoIX1MPnnCIGK8tip0qV2SyN3U+DwtHZVScdK1XKr2zY1htmqpBmy+pU/qWWLZaEKcHTYtD43TVNaly1cY31svMMXNAeUgHfJBXHqZdoQUwOb87lGKNhky8kxeyCM7Nt/n+5HIN0+wuxvvDUR1LTPmC2yQ+lcvpKPnfj+788Qkbvs9mwT+qRRKU/UJT6/RsxxiwWgqG8sKyfMKez9DXg2+vI1OL9DNc/v2N2orD7mgbIhb+QZcCgf/k+phyzBmhJYYuLpXKaT8wp9NrL2bbVfxZrSY0eaYvR2ZYJ1RyfbrXEbNFcunq++dOebx0BRyAhsJbU3NB51xZNjli4c43GPmi1zbPtmn3bZHqCCnzC77Jz/M+3QLb/q7HZ+POyxmt8Eh97WDEPCzmboSl/yBa8cs3GErRcp/HnejG2q+qjl/wAc64btHWfyvwJVZ6+ofuO6UZLvM5uIDAoctRqBs4LSXD1/vvFJiTxfFIf5LeoOXFbw0KVfHr5cVoUky+LBRq/PiqE+fvUEqiWy6mWurzcgDlfPwuAyqlddXn+eurCZdJvflXa70vPy0wOkskA+egfZgGpfat/IWtZPg+q1c/m8pAXd0V5NUa6vnyLGvWFZ4vlc36VeUqPMeyGtt6oND2VlQy9s1zF/2G5NmFQnqdy9zmpLLZS/UfTC1TU+XTuN+rkfNo/XwnhCqmt8mnl+2mR0LmnlebDdVU+L1hggpBPY9FY/viEn+Z7UVJ3XXVQ6ZX9j+68pbQuFve0Q7+fXCivZttcXd4Oyn5tLyLA2DdLbvzJv8O8Z4num1J4R+J7LgcnJe97MsnJL25hweJZJxbzMRYnSt8cysHUJ79YkrElT+l7Vmnhz5v/KZafb3va/9ND+ZKy/UbUzbXq7F9i7ZRk4kObcKnWLjXS/nbr8Os7gsAgSTL1KlYjXo9EB//M7Pg+0XpKY8uinskPZm5omAVKkBNph82yWSGG0xBqTNQV0CdyagLc0+DO4W9KRzJVyQVEvKjK3/sfVjmh5EVy0sTqudo7g1seXAHlSe4yoqujiZOLC3zoH7NFCOPyU6/I9lHrJ6N2VKv/UHJalEOO/76buRPCBCEv4ATCZciQI1xJPap7kSSCd/dJ5VARYeS9zW5ZZlxUNEPH9M3ih+mi8gUzyQF7tfLyz1DKo+gXFWnjLYsqm5QBSUOiD/tw/t6OcjV0hkTifSfuejHbWV0STCS88y+o4bJKHYWyPkx72fbLkjD00bApf0i7rW1HrJmp7rlaxv0273ytlZOuuvTcbE/G+Hk1ezrtW0dgSCNQNrwW+pr7PNmXpaXBjV4aE1/ry7XKPJkksm+Bnn3tG4XLbXNpj1gomGjtUWlPboVmyvYp52CN0UePzxbFHLqnBRbINErvV2t8XwFzSXXebSJiXKL91FenGQeBjrCqHS4kSqZwRI0bokqLdN54PQQ5rY5G19SNhBP3RyxwScTs7q+PZWksZNH5Qv6UJ79Ns8oGXBjlL6u4n5dEturCqGLBNRKRCD/zRKlLovLsSN/067foqjwfUjEZrdfNB8Z/+VMIb/y7vITWjlVOTSlaa6VWvCo+CzxfSDfrEe6MeIbyUvd611Q7n6QDLEJrh5KjdiQD9KMdyi+QqiT1yJftksw8Gr4/oyLAGP+XR7OFPpUwQOPDeJsIaekzfy0dU9HCscCI94+Fd89PTbn7b9O4UUmS2T93/ZRGJIGdrPPUX2fS1hXnrN+2RnI00v5GyvE8A46AvlBOEYHEZKIuZRVwq8Tq9fxq60aYzL23DeHm61qt0a+bnhAgelTy99rn/7Kp5l98TvH6pA5bd9n2mPMUXYqPSjXiI4jZSVIrup/Makh5uiPQeQQSw8fK9/12qrz6vZFamSgf/INi1LrN16h+VSfqZAX9vGpzGqvYlnnBqN6ACmeaaX+Fyz1p8BEYJHX5D7B0/AAAA2VJREFUdCAZXm3dbLHH5FsU0eTC1ht8p64/U4tKZlERiupiM7NTgYhrzvoKTk+YaPanBypk8qQhhwCRRK7+k1avqmenH9d89555on8Ept8/bMPqqcyq1YT/UCJLYXry46Or5VL0rKfMTjorO49FCr5XnRwBR2BwECDyHd+Kx/U767RSzyLNtICFjr87UYtDn8zK+3/LVb+6E3Xeeb4WWJZV8SeZW7VKzbS/1Tr8uo4iMAy+tqMlemGOgCNQHwFC0L3zpplCQzZDvK7DCC6Qf22ZsMC8tkqvyki3F+y2Wm2/X+cIOAK9iQBMISGKEymgRJD9eFxPkNJ8O6QRcCZzSN9e75wj4Ag4Ao6AI+AIOALdQcDV5d3B3Wt1BBwBR8ARcAQcAUdgSCPgTOaQvr3eOUfAEXAEHAFHwBFwBLqDgDOZ3cHda3UEHAFHwBFwBBwBR2BII+BM5pC+vd45R8ARcAQcAUfAEXAEuoOAM5ndwd1rdQQcAUfAEXAEHAFHYEgj4EzmkL693jlHwBFwBBwBR8ARcAS6g4Azmd3B3Wt1BBwBR8ARcAQcAUdgSCPgTOaQvr3eOUfAEXAEHAFHwBFwBLqDgDOZ3cHda3UEHAFHwBFwBBwBR2BII+BM5pC+vd45R8ARcAQcAUfAEXAEuoOAM5ndwd1rdQQcAUfAEXAEHAFHYEgj4EzmkL693jlHwBFwBBwBR8ARcAS6g4Azmd3B3Wt1BBwBR8ARcAQcAUdgSCPgTOaQvr3eOUfAEXAEHAFHwBFwBLqDgDOZ3cHda3UEHAFHwBFwBBwBR2BII+BM5pC+vd45R8ARcAQcAUfAEXAEuoOAM5ndwd1rdQQcAUfAEXAEHAFHYEgj4EzmkL693jlHwBFwBBwBR8ARcAS6g4Azmd3B3Wt1BBwBR8ARcAQcAUdgSCPgTOaQvr3eOUfAEXAEHAFHwBFwBLqDgDOZ3cHda3UEHAFHwBFwBBwBR2BII+BM5pC+vd45R8ARcAQcAUfAEXAEuoOAM5ndwd1rdQQcAUfAEXAEHAFHYEgj4EzmkL693jlHwBFwBBwBR8ARcAS6g4Azmd3B3Wt1BBwBR8ARcAQcAUdgSCPgTOaQvr3eOUfAEXAEHAFHwBFwBLqDgDOZ3cHda3UEHAFHwBFwBBwBR2BII/D/ARqmyJUlK7+KAAAAAElFTkSuQmCC" + } + }, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Nesting part 2: Tables\n", + "### Use a list of dictionaries to represent a table of data.\n", + "\n", + "<div>\n", + "<img src=\"attachment:table_rep.png\" width=\"600\"/>\n", + "</div>\n", + "\n", + "Steps (build a list of dictionaries)\n", + "- Start with an empty list\n", + "- Each row of data is one dictionary\n", + " - keys are the column names\n", + " - values are the data in each cell\n", + "\n", + "Why put data in table form?\n", + "- It seems redundant, but is used often in Web apps for storing info.\n", + "- Its a little easier to access subsets of the data without worrying about the header index method." + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "['Lecture',\n", + " 'Age',\n", + " 'Major',\n", + " 'Zip Code',\n", + " 'Latitude',\n", + " 'Longitude',\n", + " 'Pizza topping',\n", + " 'Pet preference',\n", + " 'Runner',\n", + " 'Sleep habit',\n", + " 'Procrastinator']" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Let's put the student survey data into a list of dictionaries\n", + "cs220_header" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "def transform(header, data):\n", + " \"\"\"\n", + " Transform data into a list of dictionaries\n", + " \"\"\"\n", + " dict_list = [] #should be defined outside the for loop, because it stores the entire data\n", + " \n", + " for row in cs220_data:\n", + " new_row = {} #should be defined inside the for loop, because it represents one row as a dictionary\n", + " for i in range(len(cs220_header)):\n", + " new_row[cs220_header[i]] = row[i]\n", + " dict_list.append(new_row)\n", + " return dict_list\n", + " \n", + "transformed_data = transform(cs220_header, cs220_data)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### What `Lecture` is the first student part of?" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "LEC001\n" + ] + } + ], + "source": [ + "print(transformed_data[0][\"Lecture\"])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### What is the `Major` of the last student?" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Economics\n" + ] + } + ], + "source": [ + "print(transformed_data[-1][\"Major\"])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Nesting part 3: Dictionary of Dictionaries" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "https://www.w3schools.com/python/python_dictionaries_nested.asp" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [], + "source": [ + "# dict of dicts example:\n", + "\n", + "nested_english_dict = {\n", + " \"shenanigans\": {\n", + " \"definition\": \"silly or high-spirited behavior; mischief.\",\n", + " \"usage\": \"widespread financial shenanigans had ruined the fortunes of many\",\n", + " \"fun_to_say\": 7 # on a scale of 1-10\n", + " },\n", + " \"bamboozle\": {\n", + " \"definition\": \"fool or cheat (someone).\",\n", + " \"usage\": \"Tom Sawyer bamboozled the neighborhood boys into painting for him\",\n", + " \"fun_to_say\": 8 # on a scale of 1-10\n", + " },\n", + " \"gubbins\": {\n", + " \"definition\": \"(objects) of little to no value.\",\n", + " \"usage\": \"I cleared all the gubbins off my desk before I started working\",\n", + " \"fun_to_say\": 10 # on a scale of 1-10\n", + " },\n", + " \"malarkey\": {\n", + " \"definition\": \"meaningless talk; nonsense.\",\n", + " \"usage\": \"don't give me that malarkey\",\n", + " \"fun_to_say\": 5 # on a scale of 1-10\n", + " },\n", + " \"gnarly\": {\n", + " \"definition\": \"gnarled.\",\n", + " \"usage\": \"twisted trees and gnarly roots\",\n", + " \"fun_to_say\": 2 # on a scale of 1-10\n", + " }\n", + "}\n", + "\n", + "# TODO: pick a word and add an inner dict" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### How can we use \"bamboozle\"?" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'Tom Sawyer bamboozled the neighborhood boys into painting for him'" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "nested_english_dict[\"bamboozle\"][\"usage\"]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Create a list of words with fun_to_say score greater than 7." + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "['bamboozle', 'gubbins']" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "fun_to_say_words = []\n", + "\n", + "for word in nested_english_dict:\n", + " fun_to_say = nested_english_dict[word][\"fun_to_say\"]\n", + " if fun_to_say > 7:\n", + " fun_to_say_words.append(word)\n", + "\n", + "fun_to_say_words" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.12" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/f22/meena_lec_notes/lec-18/lec18_dictionaries2_template.ipynb b/f22/meena_lec_notes/lec-18/lec18_dictionaries2_template.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..47542d9aa9a333048f2118ec2e1c0b8b8f075a22 --- /dev/null +++ b/f22/meena_lec_notes/lec-18/lec18_dictionaries2_template.ipynb @@ -0,0 +1,598 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Dictionaries 2 - Combining Dictionaries and Lists (nested data structures)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import csv" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Warmup 1: Answer these questions about dictionaries" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Keys can be what type? : Any type that is ________________\n", + "# Values can be what type? : \n", + "# Indexing? .... yes/no\n", + "# Slicing? ..... yes/no \n", + "# Mutable?......yes/no" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# inspired by https://automatetheboringstuff.com/2e/chapter16/\n", + "def process_csv(filename):\n", + " exampleFile = open(filename, encoding=\"utf-8\") \n", + " exampleReader = csv.reader(exampleFile) \n", + " exampleData = list(exampleReader) \n", + " exampleFile.close() \n", + " return exampleData\n", + "\n", + "survey_data = process_csv('cs220_survey_data.csv')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Warmup 2a: Split csv data into header and data" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "cs220_header = survey_data\n", + "cs220_data = survey_data\n", + "cs220_header" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Warmup 2b: Display the first 3 data rows" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def cell(data, header, row_idx, col_name):\n", + " \"\"\"\n", + " Returns the data value (cell) corresponding to the row index and \n", + " the column name of a CSV file.\n", + " \"\"\"\n", + " col_idx = header.index(col_name) \n", + " val = data[row_idx][col_idx] \n", + " \n", + " # handle missing values, by returning None\n", + " if val == '':\n", + " return None\n", + " \n", + " # handle type conversions\n", + " if col_name in [\"Age\", 'Zip Code',]:\n", + " return int(val)\n", + " elif col_name in ['Latitude', 'Longitude']:\n", + " return float(val)\n", + " \n", + " return val" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Warmup 3: Make a dictionary of frequency of `Major`\n", + "\n", + "- Initialize empty `dict` into a variable called `major_freq`\n", + "- Iterate over the data:\n", + " - Extract required column's data\n", + " - Make sure to handle missing data\n", + " - Check if current value of the column is a key in your `dict`:\n", + " - yes, update the count\n", + " - no, insert new key-value pair" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# TODO: iterate over each student's data from cs220_data\n", + "# TODO: extract \"Major\" column's value \n", + "# TODO: check if current student's major already a key in major_freq\n", + "# - if yes, increase the corresponding value by 1\n", + "# - if no, insert a new key-value pair\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### What is the most common `Major` among CS220 / CS319 students?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "most_used_key = None \n", + "max_value = None\n", + "\n", + "for major in major_freq:\n", + " if max_value == None or major_freq[major] > max_value:\n", + " max_value = major_freq[major]\n", + " most_used_key = major\n", + "\n", + "print(\"The major \\\"{}\\\" appeared {} times.\".format(str(most_used_key), max_value))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Learning Objectives:\n", + " - Handle key errors with get and pop using default values\n", + " - Understand the idea of nesting data structures\n", + " - Use a dictionary of lists to put rows of data into \"buckets\"\n", + " - Use a list of dictionaries to represent a table of data.\n", + " - Create a dictionary of dictionaries" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Default values with `get` and `pop` methods." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "None\n" + ] + } + ], + "source": [ + "suffix = {1: \"st\", 2: 'nd', 3: \"rd\"}\n", + "suffix.get(1)\n", + "\n", + "# TODO: what happens when you try to get a key that is not there? Try it.\n", + "\n", + "# TODO: what happens whey you try to pop a key that is not there? Try it.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "`get` and `pop` methods accept a second argument, which will be the default value if the first argument (key) does not exist.\n", + "\n", + "Syntax:\n", + "- `some_dict.get(some_key, default_value)`\n", + "- `some_dict.pop(some_key, default_value)`" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# get(key, default value) \n", + "print(suffix.get(3, 'th'))\n", + "print(suffix.get(5, 'th')) #default value, but does not add the key-value pair to the dict\n", + "\n", + "# pop(key, default value)\n", + "print(suffix.pop(7, 'th')) # no key-value pair to remove\n", + "print(suffix.pop(2, 'th'))\n", + "print(suffix)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### What are nested data structures?\n", + "A data structure containing another data structure as item is called as nest data structure." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Nesting part 1: Bucketizing/Binning" + ] + }, + { + "attachments": { + "Buckets.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABGAAAALUCAYAAABEhUTwAAAMa2lDQ1BJQ0MgUHJvZmlsZQAASImVVwdYU8kWnluSkJDQAhGQEnoTRHqREkKLICBVsBGSQEKJMSGI2NFFBXtBFCu6KqLoWgBZVMReFsXeF2VRWVkXdVEUlTcpoOu+8r3zfXPnv2fO/KfcmXvvAKDdx5VIclEdAPLE+dL4iBDm+NQ0JukZQAEOKMAZ6HB5MgkrLi4aQBns/y7vbgNE0d9wVnD9c/y/ih5fIOMBgEyEOIMv4+VB3AwAvoknkeYDQFTorabnSxR4HsT6UhggxGsVOEuF9yhwhgo3KW0S49kQXwNAg8rlSrMA0HoI9cwCXhbk0foEsauYLxIDoD0C4kCekMuHWBH7iLy8qQpcAbE9tJdADOMBPhnfcGb9jT9jiJ/LzRrCqryUohEqkklyuTP+z9L8b8nLlQ/6sIWNKpRGxivyhzW8mzM1SoGpEHeLM2JiFbWGuE/EV9UdAJQilEcmqexRE56MDesHGBC78rmhURCbQBwuzo2JVuszMkXhHIjhakELRfmcRIgNIV4skIUlqG22SafGq32hdZlSNkutv8CVKv0qfD2W5ySx1PxvhAKOmh/TKhImpkBMgdi6QJQcA7EWxC6ynIQotc3oIiE7ZtBGKo9XxG8NcbxAHBGi4scKMqXh8Wr70jzZYL7YNqGIE6PGh/KFiZGq+mBneFxl/DAX7JpAzEoa5BHIxkcP5sIXhIapcsdeCMRJCWqePkl+SLxqLk6R5Map7XFLQW6EQm8JsYesIEE9F0/Oh4tTxY9nSvLjElVx4kXZ3DFxqnjwlSAasEEoYAI5bBlgKsgGotbu+m54pxoJB1wgBVlAAHeoSjM4I0U5IobXBFAE/oBIAGRD80KUowJQAPWfh7SqqzPIVI4WKGfkgGcQ54EokAvv5cpZ4iFvyeA3qBH9wzsXNh6MNxc2xfi/1w9qv2pYUBOt1sgHPTK1By2JYcRQYiQxnOiAG+OBuD8eDa/BsLnhPrjvYB5f7QnPCG2Ep4RbhHbCvSmiYul3UY4F7ZA/XF2LjG9rgdtCTk88BA+A7JAZZ+DGwBn3gH5YeBD07Am1bHXciqowv+P+WwbfPA21HdmVjJKHkYPJ9t/P1HLU8hxiUdT62/qoYs0Yqjd7aOR7/+xvqs+HfdT3lthi7DB2HjuFXcSasHrAxE5iDdgV7LgCD62u35Sra9BbvDKeHMgj+oc/rtqnopIy1xrXLtdPqrF8QWG+YuOxp0pmSEVZwnwmC34dBEyOmOcygunm6uYGgOJbo3p9vWUovyEI49JXXfEyAAI8BgYGmr7qorUBOAL3DKXjq87eD74mCgG4sJwnlxaodLjiQoBvCW2404yAGbAC9jAfN+AF/EEwCANjQCxIBKlgMqyyEK5zKZgOZoH5oASUgZVgHdgItoIdYA/YDw6BetAEToFz4DK4Bm6BB3D1dIKXoAe8A/0IgpAQGkJHjBBzxAZxQtwQHyQQCUOikXgkFUlHshAxIkdmIQuQMmQ1shHZjlQjPyHHkFPIRaQNuYc8QbqQN8hHFEOpqD5qitqiI1EflIVGoYnoJDQLnYYWoQvR5WgFWoXuQ+vQU+hl9Bbajr5EezGAaWIMzAJzxnwwNhaLpWGZmBSbg5Vi5VgVVos1wud8A2vHurEPOBGn40zcGa7gSDwJ5+HT8Dn4Unwjvgevw8/gN/AneA/+hUAjmBCcCH4EDmE8IYswnVBCKCfsIhwlnIV7qZPwjkgkMoh2RG+4F1OJ2cSZxKXEzcQDxGZiG7GD2EsikYxITqQAUiyJS8onlZA2kPaRTpKukzpJfRqaGuYabhrhGmkaYo1ijXKNvRonNK5rPNfoJ+uQbch+5FgynzyDvIK8k9xIvkruJPdTdCl2lABKIiWbMp9SQamlnKU8pLzV1NS01PTVHKcp0pynWaF5UPOC5hPND1Q9qiOVTZ1IlVOXU3dTm6n3qG9pNJotLZiWRsunLadV007THtP6tOhaLlocLb7WXK1KrTqt61qvtMnaNtos7cnaRdrl2oe1r2p365B1bHXYOlydOTqVOsd07uj06tJ1R+nG6ubpLtXdq3tR94UeSc9WL0yPr7dQb4feab0OOka3orPpPPoC+k76WXqnPlHfTp+jn61fpr9fv1W/x0DPwMMg2aDQoNLguEE7A2PYMjiMXMYKxiHGbcbHYabDWMMEw5YMqx12fdh7w+GGwYYCw1LDA4a3DD8aMY3CjHKMVhnVGz0yxo0djccZTzfeYnzWuHu4/nD/4bzhpcMPDb9vgpo4msSbzDTZYXLFpNfUzDTCVGK6wfS0abcZwyzYLNtsrdkJsy5zunmguch8rflJ89+ZBkwWM5dZwTzD7LEwsYi0kFtst2i16Le0s0yyLLY8YPnIimLlY5VptdaqxarH2tx6rPUs6xrr+zZkGx8boc16m/M2723tbFNsF9nW276wM7Tj2BXZ1dg9tKfZB9lPs6+yv+lAdPBxyHHY7HDNEXX0dBQ6VjpedUKdvJxETpud2kYQRviOEI+oGnHHmerMci5wrnF+4sJwiXYpdql3eTXSemTayFUjz4/84urpmuu60/XBKL1RY0YVj2oc9cbN0Y3nVul2053mHu4+173B/bWHk4fAY4vHXU+651jPRZ4tnp+9vL2kXrVeXd7W3unem7zv+Oj7xPks9bngS/AN8Z3r2+T7wc/LL9/vkN+f/s7+Of57/V+MthstGL1zdEeAZQA3YHtAeyAzMD1wW2B7kEUQN6gq6GmwVTA/eFfwc5YDK5u1j/UqxDVEGnI05D3bjz2b3RyKhUaEloa2humFJYVtDHscbhmeFV4T3hPhGTEzojmSEBkVuSryDseUw+NUc3rGeI+ZPeZMFDUqIWpj1NNox2hpdONYdOyYsWvGPoyxiRHH1MeCWE7smthHcXZx0+J+HkccFzeuctyz+FHxs+LPJ9ATpiTsTXiXGJK4IvFBkn2SPKklWTt5YnJ18vuU0JTVKe3jR46fPf5yqnGqKLUhjZSWnLYrrXdC2IR1Ezonek4smXh7kt2kwkkXJxtPzp18fIr2FO6Uw+mE9JT0vemfuLHcKm5vBidjU0YPj81bz3vJD+av5XcJAgSrBc8zAzJXZ77ICshak9UlDBKWC7tFbNFG0evsyOyt2e9zYnN25wzkpuQeyNPIS887JtYT54jPTDWbWji1TeIkKZG0T/Obtm5ajzRKukuGyCbJGvL14U/9Fbm9/Af5k4LAgsqCvunJ0w8X6haKC6/McJyxZMbzovCiH2fiM3kzW2ZZzJo/68ls1uztc5A5GXNa5lrNXTi3c17EvD3zKfNz5v9S7Fq8uvivBSkLGheaLpy3sOOHiB9qSrRKpCV3Fvkv2roYXyxa3LrEfcmGJV9K+aWXylzLyss+LeUtvbRs1LKKZQPLM5e3rvBasWUlcaV45e1VQav2rNZdXbS6Y83YNXVrmWtL1/61bsq6i+Ue5VvXU9bL17dXRFc0bLDesHLDp43CjbcqQyoPbDLZtGTT+838zde3BG+p3Wq6tWzrx22ibXe3R2yvq7KtKt9B3FGw49nO5J3nf/T5sXqX8a6yXZ93i3e374nfc6bau7p6r8neFTVojbyma9/Efdf2h+5vqHWu3X6AcaDsIDgoP/j7T+k/3T4UdajlsM/h2iM2RzYdpR8trUPqZtT11Avr2xtSG9qOjTnW0ujfePRnl593N1k0VR43OL7iBOXEwhMDJ4tO9jZLmrtPZZ3qaJnS8uD0+NM3z4w703o26uyFc+HnTp9nnT95IeBC00W/i8cu+Vyqv+x1ue6K55Wjv3j+crTVq7XuqvfVhmu+1xrbRreduB50/dSN0BvnbnJuXr4Vc6vtdtLtu3cm3mm/y7/74l7uvdf3C+73P5j3kPCw9JHOo/LHJo+rfnX49UC7V/vxJ6FPrjxNePqgg9fx8jfZb586Fz6jPSt/bv68+oXbi6au8K5rv0/4vfOl5GV/d8kfun9semX/6sifwX9e6Rnf0/la+nrgzdK3Rm93/+XxV0tvXO/jd3nv+t+X9hn17fng8+H8x5SPz/unfyJ9qvjs8LnxS9SXhwN5AwMSrpSr/BXAYEMzMwF4sxsAWioAdHhuo0xQnQWVgqjOr0oE/hNWnReV4gVALewUv/HsZgAOwmYLG20eAIpf+MRggLq7DzW1yDLd3VRcVHgSIvQNDLw1BYDUCMBn6cBA/+aBgc87YbD3AGiepjqDKoQIzwzblBzXGYXzwHeiOp9+k+P3PVBE4AG+7/8FlTiO10mPo7EAAACKZVhJZk1NACoAAAAIAAQBGgAFAAAAAQAAAD4BGwAFAAAAAQAAAEYBKAADAAAAAQACAACHaQAEAAAAAQAAAE4AAAAAAAAAkAAAAAEAAACQAAAAAQADkoYABwAAABIAAAB4oAIABAAAAAEAAARgoAMABAAAAAEAAALUAAAAAEFTQ0lJAAAAU2NyZWVuc2hvdEgZ314AAAAJcEhZcwAAFiUAABYlAUlSJPAAAAHXaVRYdFhNTDpjb20uYWRvYmUueG1wAAAAAAA8eDp4bXBtZXRhIHhtbG5zOng9ImFkb2JlOm5zOm1ldGEvIiB4OnhtcHRrPSJYTVAgQ29yZSA2LjAuMCI+CiAgIDxyZGY6UkRGIHhtbG5zOnJkZj0iaHR0cDovL3d3dy53My5vcmcvMTk5OS8wMi8yMi1yZGYtc3ludGF4LW5zIyI+CiAgICAgIDxyZGY6RGVzY3JpcHRpb24gcmRmOmFib3V0PSIiCiAgICAgICAgICAgIHhtbG5zOmV4aWY9Imh0dHA6Ly9ucy5hZG9iZS5jb20vZXhpZi8xLjAvIj4KICAgICAgICAgPGV4aWY6UGl4ZWxZRGltZW5zaW9uPjcyNDwvZXhpZjpQaXhlbFlEaW1lbnNpb24+CiAgICAgICAgIDxleGlmOlBpeGVsWERpbWVuc2lvbj4xMTIwPC9leGlmOlBpeGVsWERpbWVuc2lvbj4KICAgICAgICAgPGV4aWY6VXNlckNvbW1lbnQ+U2NyZWVuc2hvdDwvZXhpZjpVc2VyQ29tbWVudD4KICAgICAgPC9yZGY6RGVzY3JpcHRpb24+CiAgIDwvcmRmOlJERj4KPC94OnhtcG1ldGE+CgWjI6oAAAAcaURPVAAAAAIAAAAAAAABagAAACgAAAFqAAABagAAi0bsD/DLAABAAElEQVR4AezdB3hTVRvA8TdpuncplA3iwAEi7o17D9wD91bEvScuFHHvvXBvxb3FvQfqp6KAbOjebZom33tumtumSaGlTZuk//M89d577jr3d2tp35zzHodPi1AQQAABBBBAAAEEEEAAAQQQQAABBCIm4CAAEzFbLowAAggggAACCCCAAAIIIIAAAghYAgRg+EZAAAEEEEAAAQQQQAABBBBAAAEEIixAACbCwFweAQQQQAABBBBAAAEEEEAAAQQQIADD9wACCCCAAAIIIIAAAggggAACCCAQYQECMBEG5vIIIIAAAggggAACCCCAAAIIIIAAARi+BxBAAAEEEEAAAQQQQAABBBBAAIEICxCAiTAwl0cAAQQQQAABBBBAAAEEEEAAAQQIwPA9gAACCCCAAAIIIIAAAggggAACCERYgABMhIG5PAIIIIAAAggggAACCCCAAAIIIEAAhu8BBBBAAAEEEEAAAQQQQAABBBBAIMICBGAiDMzlEUAAAQQQQAABBBBAAAEEEEAAAQIwfA8ggAACCCCAAAIIIIAAAggggAACERYgABNhYC6PAAIIIIAAAggggAACCCCAAAIIEIDhewABBBBAAAEEEEAAAQQQQAABBBCIsAABmAgDc3kEEEAAAQQQQAABBBBAAAEEEECAAAzfAwgggAACCCCAAAIIIIAAAggggECEBQjARBiYyyOAAAIIIIAAAggggAACCCCAAAIEYPgeQAABBBBAAAEEEEAAAQQQQAABBCIsQAAmwsBcHgEEEEAAAQQQQAABBBBAAAEEECAAw/cAAggggAACCCCAAAIIIIAAAgggEGEBAjARBubyCCCAAAIIIIAAAggggAACCCCAAAEYvgcQQAABBBBAAAEEEEAAAQQQQACBCAsQgIkwMJdHAAEEEEAAAQQQQAABBBBAAAEECMDwPYAAAggggAACCCCAAAIIIIAAAghEWIAATISBuTwCCCCAAAIIIIAAAggggAACCCBAAIbvAQQQQAABBBBAAAEEEEAAAQQQQCDCAgRgIgzM5RFAAAEEEEAAAQQQQAABBBBAAAECMHwPIIAAAggggAACCCCAAAIIIIAAAhEWIAATYWAujwACCCCAAAIIIIAAAggggAACCBCA0e+BRx99VNxud8h3w4477ihrrLGGXd/e4+wTWEEAAQQQQAABBBBAAAEEEEAAAQRUgACMIiQkJIjX6w35hrj//vvlpJNOsuvbe5x9AisIIIAAAggggAACCCCAAAIIIICAChCAUYT2BlbaexzfWQgggAACCCCAAAIIIIAAAggggEBLAQIwqtHewEp7j2sJzDoCCCCAAAIIIIAAAggggAACCCBAAEa/B9obWGnvcXxbIYAAAggggAACCCCAAAIIIIAAAi0FCMCoRnsDK+09riUw6wgggAACCCCAAAIIIIAAAggggEDMB2Cqq6tl5syZMnfuXFm+fLkUFRVZAZW8vDwZM2aMbLrppjJw4MAVvun2Blbae9wKb8ZOBBBAAAEEEEAAAQQQQAABBBDodQIxGYDx+Xzy4osvipml6LPPPgs7hXTgTTocDjnwwANlypQpQVNKB/abZXsDK+09ruW1WUcAAQQQQAABBBBAAAEEEEAAAQRiLgAza9YsOf744+W7777r0NszvWDMOeF6w7Q3sNLe4zrUMA5GAAEEEEAAAQQQQAABBBBAAIG4F4i5AMxtt90mZ5999iq9mHHjxsknn3wScm57AyvtPS7kBlQggAACCCCAAAIIIIAAAggggECvFoiLAEy/fv1k9OjR0qdPH5kzZ458//33YV+q0+mU8vJyycjICNrf3sBKe48LujgbCCCAAAIIIIAAAggggAACCCDQ6wViOgCz/vrry/XXXy+77rqrlccl8DYnTZokd911V2AzaGkS9m6zzTZBde0NrLT3uKCLs4EAAggggAACCCCAAAIIIIAAAr1eIGYDMCbIMm3aNElOTg55iW+++abstddeIfWmYsaMGSH72htYae9xYW9MJQIIIIAAAggggAACCCCAAAII9FqBmAvAfPjhh1JbWxsSRHG73WL2vfTSS/LCCy9IRUVF2JdKACYsC5UIIIAAAggggAACCCCAAAIIIBBBgZgLwLS2+OKLL+SJJ56Q559/XsrKylrvDtkmABNCQgUCCCCAAAIIIIAAAggggAACCERYIGYDMO+8846cccYZMnv27A4REYDpEBcHI4AAAggggAACCCCAAAIIIIBAFwjEXADG5/PJtddeK5MnTxav1xtCsP3228sJJ5wgEyZMCNlnKgjAhGWhEgEEEEAAAQQQQAABBBBAAAEEIigQcwGY5557Tg499NAQktTUVHn66adl/PjxUlxcLPn5+SHHmAoCMGFZqEQAAQQQQAABBBBAAAEEEEAAgQgKxFwA5vDDD5dnnnkmhOTGG2+U888/36pfUQDGJOg98MADg85v7+xG7T0u6OJsIIAAAggggAACCCCAAAIIIIBArxeIuQBMbm5u2GS7LQMwH330key4445hX+6FF14oxx9/vFRVVcnYsWOtY9obWGnvcWFvTCUCCCCAAAIIIIAAAggggAACCPRagZgLwAwaNEgWL14c8sL69esnRx99tBQWFsr06dOlsbEx5JiWFUcccYR1nKlrb2Clvce1vA/rCCCAAAIIIIAAAggggAACCCCAQMwFYA466CB58cUXO/3mCMB0mpALIIAAAggggAACCCCAAAIIIIBAOwViLgAza9Ys2WGHHaSoqKjNR3Q6nZKXl7fCYwjAtMnHDgQQQAABBBBAAAEEEEAAAQQQ6GKBmAvAmOf/5ZdfZOLEifLdd9+J2+22SdLT02WzzTaTqVOnWgGYzTff3BqSZB+gK0OHDpWDDz5Yjj32WFl33XWtXSkpKVJfX9/yMGv9kUcesY4L7GjvcYHjWSKAAAIIIIAAAggggAACCCCAAAJGICYDMIFXV1dXJ99//73U1tbKWmutZQVXHA5HYLdVb4I01dXVMnDgQGu/SeJL6biAz+MRX4NbrKWnQaShQbf1q9Gse8Tr0UCY2baO0zo9xqvHi9nWdXOsv85jLf11/v3epn3W9fR40fO8gXuYc00+H59PxOvVhVeXut5i6TP7rG3/Pv8xut50TOCc1vX29ZrO95nr6j2sezVdzz7Xqm9x70COIfP9pj2uxKFfTl3XpcNs67rDqmva13Sco+UxgXOazvcfH3wN67rWNZvvY10/cG7Tsvleet+EBHEkJYsjMVEcrkQRXTr1SxKTtE6/XC4RrXfquqlzJuk+a9u/tOrM8abO2mfO0WslNS2ta/mvbdfpPSkIIIAAAggggAACCCCAAAJtC8R0AKbtx2JPewXKXnpKKl9/zh9M0SBKcADFBE38AZP2Xo/jeqmACTBpYMYK+iRq8EeDPCbYYwV/NHhjBXVSU8WRkirOpi9Halrztu6TFvucuk+SU8QszfEO7aXmTNHjzTW0vmWgtZeK89gIIIAAAggggAACCCAQYwIEYGLshXV1c0seukNKH7u7qy/L9RCIrMAKgjPNQZumgI8GbUwQxwrwmICOOTctXZwZmeJM16/MLF1mWMGeyDaaqyOAAAIIIIAAAggggEBvFiAA05vfvj57yeP3SumDt61cwQxbSXD5h7KY4Simt4PVs0GHqTQtrV4PLtPrQXs/tDjGPtbqFWHOM0NhzFKv2XQdsy0JgaEyTde09usQGTO8JWiojxnWo0NtdOiOfziONt8MxbGG4/iH/5h1MyzHv79p+E6Y4T/W0B372v7jrN4VgWFBTUtreJG5n3UPc5wO89HzfC2GJtlDnJqGSDXvM0OnWgxvajrH2q/HWucFhlTZ+/zDqpqv0WKYlV7L1Pv3Ba5rhkf5h095G7XXkuZGChr6ZXIl6VCvoKFd1jF6nBkCpl/W8S3Os883+8zwM+uYpqV1jg4VM0szXMzcO9aLfp9ZAZkMDcbYgZlMSTCBmtbBGqtOAzfm2IwsSTDHa531fRzrDrQfAQQQQAABBBBAAAEEIiJAACYirLFzUU9JkTSWFNsBkUBQxQqQaEDEWprgCAWBFQhYASETiDEBHCtQ48/747NyA2mOIHe9eGtrROrrrKW3rlaXtbrtX3rrasSnOZ18eoy1T/f7mo7x6TE+PTZQb64RtUVz71jBGg3GWIGbFoGcQLDGDvKYwI05LjNbnDm5kpCd6w9KRu3D0TAEEEAAAQQQQAABBBDojAABmM7ocS4CCHS7gOlNZAVnmoI0QcGZpqCNtymw42sK7FgBHg3iBM7z1lSLt7pSvJWV0miWVZVWcKjbH6bVDa3gTVMwJiEnzwrKODUw48rNE7NsuW4CNlavG9ODi4IAAggggAACCCCAAAJRL0AAJupfEQ1EAIHuEDAJqL1VFdKowRgrOFNVZW2b4EwgWONfVuh2lf84Pd4+VgM5VtLq7mhs4B5m2JQGYkwwJkGDNNbSrGsQx6kBHJcJ0piATiCYY+q1lw4FAQQQQAABBBBAAAEEul+AAEz3m3NHBBCIUwFrmJQJ2NhBG3+wxgRpGiub1q1l0zF6XGNluTSWloi3oqxbcumY2aes3jNWoEaDNk09bkygxpXfz//Vp58k5Pe1jovTV8VjIYAAAggggAACCCDQ7QIEYLqdnBsigAACoQJmaJXXBGPKNBhTXiqeslJr2ahLq06XnqZ9jbrf1Pt0KFVEi+Z/cuVpIKavBmYCQRlduvoW6HZfK1iToEsT0KEggAACCCCAAAIIIIDAigUIwKzYh70IIIBA1AqYhMdWMEZ70JilFbgxvWlMgMb60vrSpkBOua6XaS8bkyy5q4sJ1DQFaMzSpQEbpwZuggI12rsmISunq+/M9RBAAAEEEEAAAQQQiBkBAjAx86poKAIIINB5ASt/TaBXjQZpPCZwo0EbT2mxNBYXiqdoubVsLFpm5brp/B1bXMEO1JgeNSZA0yJQY4Y/meBN/4HiTEtvcRKrCCCAAAIIIIAAAgjEhwABmPh4jzwFAggg0OUCJqeNHZTRwIynWL8KTYBGl0WF0mgFa5Z3eaDGmZUtroKBkjhgsBWQMUEZV/9BTXWD6EnT5W+aCyKAAAIIIIAAAgh0hwABmO5Q5h4IIIBAHAuYQE1zzxkTnPF/tQzUeIqXia+6a3LWmETCVlDGBGlMYGbAIP/SBGoKNEDTJ18cTM8dx99xPBoCCCCAAAIIIBCbAgRgYvO90WoEEEAg5gTsQE3TMKfgQI3pXbNMPMsWi7jdnXs2M9SpYIDVa8YK0DQFZhKtnjQapOnXXxwJrs7dg7MRQAABBBBAAAEEEOigAAGYDoJxOAIIIIBA5ATMbFCNJUXiWbrY/7VskTQsWWQFZgLLTs/+5HT6EwS3GNYUGOaUOHiYNdTJocdQEEAAAQQQQAABBBDoSgECMF2pybUQQAABBCIu0KjTdVvBmKUamGkdqNFtb4XO9tSZ4kqUxEFDJXHIMDEBmaQhw8U1eLi1TNApuBne1BlczkUAAQQQQAABBHqvAAGY3vvurScve+YRKX74DnGmpOrMI2niTE0XR6qua44Fa13rTb4Fp1WXbtWb/QkZmeLMzrW+ErJzJMGs63EUBBBAoKcFvLU1Tb1nTC+aReI2PWhMsEaHN5lloyYQXuWSlCxJGpQxwRl/UMYEaYZbX678vqt8WU5EAAEEEEAAAQQQiH8BAjDx/45X+IQlD98ppY/etcJj2r1T8y6YQIwVjLGW/sBMQo4GZ7J0XZcJZppZnXrW1bc/AZt2w3IgAgh0pYCvoUEarGCMPyDj70XjH+rkXjBXvDoEalWKCVabHjOJ2mMmsLSCNRqgScjNW5VLcg4CCCCAAAIIIIBAHAkQgImjl7kqj1J091Qp114wPVGc2ovGdOc3wRhXYNnPv51g1fWzgjk90TbuiQACvVfAW1Mj7oXzxLPgv6blPF3+Jw0L5om3vHSVYJzpGRqYWa1pWJMGaKzhTf5lQmb2Kl2TkxBAAAEEEEAAAQRiS4AATGy9ry5vrUl46autFW9djS5rxPzh4dN104XfzFjiram26q1jTF1ttX5pfVWFNOofIuaPkcbyMmks0z9K3PVd3j5JSrJmLEkcqPkYzCfLmpfBpV9J1nKIOHU4AAUBBBDoLgFvVWVzUEYDMg1NgRmz9FZWrFIzTA/BxKGaY2b4GpK02pqSNEK/dOnK77dK1+MkBBBAAAEEEEAAgegUIAATne8lJlvlra8TrwZiPFZgpswKzng0OOMtL7GSYnpKS6zcC57CJdZ0s6LDADpbTA8aK1mmBmdcA4dYuRkCARrTw4aCAAIIdJdAY1mJFZBxa88Zj/agMb1oGnTdBGdWZeYm8zMsacRakriaCcyspV9rSLJuM5ypu94o90EAAQQQQAABBLpWgABM13pytQ4ImD9WPIXLpFG/PIVLrXXP8qalbpt6b3VVB64YfKgzJ8/64yV5RPOnyonD15SEzKzgA9lCAAEEIizg0bwyZgiT9dWi14wZ2iQavO5I8f9sM71k/AEZ01vGBGkYytQRRY5FAAEEEEAAAQS6X4AATPebc8cOCJghUdYsJov0E+VFC/zd/RfNl4bF87V+sUhjYweu5j80Qbv1W938W3T1N3/IONPSO3wtTkAAAQQ6I2CGgTYWLRf3/LninvO3uOfO1uVsaZj3jw71rOzQpRN0Fib/zzbtLWMFnv29ZvjZ1iFGDkYAAQQQQAABBCImQAAmYrRcONICvkaPFYQx3fvdGpTxLPQHZhpMgEaDNR3NSeMqGGh9ipy81rqSvPYoSRm5npg6CgIIINATAqZHoBWQmftPc3Bm3r9WXq6OtMdVMEB/tvnzypghTVZwZtjq4kxJ7chlOBYBBBBAAAEEEECgkwIRC8AUFxfL119/HdK8hIQE2XXXXcXhcIj55O/dd9+Vb7/9VkpKSmTttdeWXXbZRUaMGBFyXsuKxYsXy19//SV//vmnzJ49W1JSUmTkyJHW+WaZk5PT8vCg9U8//VSqqkKHtZh7rrPOOkHHmo3ff/9d5s2bZ9fn5+fLZpttZm8HVubOnSt//PFHYNNepqamyg477GBvB1bKy8vlp59+kh9//FH+/fdfSUtLk2HDhsnYsWNl4403luRkkssGrFZlab63PEsWSb1+omw+STafKLvn6qfL/83RwIy73Zd06nTayRqIMQEZgjLtZuNABBCIkID1s23poqafaf7eMlaQxvrZ1oFE6PpvsGvgYP8wzdXXlqS115OUtTTo3K9/hFrOZRFAAAEEEEAAAQQiFoB5+eWX5YADDggrXFlZKSYAceSRR8rHH38cdIzL5ZKJEyfKbbfdFlRvNp577jk577zzZOHChSH7WlaYAMZdd90VNlBi9v3www8tD7fWt9hiC/nyyy9D6tdff32ZNWuWXZ+ZmSlLliyR9PTg4SoHH3ywvPDCC/ZxgRUT1GkZmPn7779lwoQJVhvML9LhSm5urhx66KFy7rnnyuqrrx7uEOpWUcCnQ5bM8CW3+UTZ6uqvQZk5/2hehrkiHk+7rkpQpl1MHIQAAt0o4PN6teef+dlmgs1NgRkzlEnzzoin/QnP7Z9vJvBsegOOHCWJGqihIIAAAggggAACCHReoEcCMAsWLJCdd97Z6sES7hE23XRT+eabb+xdJmhhgjIffPCBXbeyFdPD5vjjj5epU6dKXl6effiDDz4oJ510kr3dcsX0plljjTXsqu+++05MW1qXhx9+WI477ji72gSUCgoKpFanZ25dbr75ZjnnnHOs6tdee02OOuooqaho31Slt9xyi5x99tmtL8l2BATMcKaG+TprifaYqfvzN6n/63dx//17u3MwmKSYKaM2kJTRG0rq+hvqHy2jxaFTaFMQQACBnhSwfrbpTEz+/DKBoUwadNYZmkSDNu0p1mxM2jsmeeS6Vi8Z01smcdAwcTid7TmdYxBAAAEEEEAAAQSaBHokALPHHnvIW2+91eZLuPvuu+W0006z9pueMqNGjVppr5e2LmYCPe+995692ww/GjhwoJigSety5ZVXyuTJk+3qU045Re6//357O7DSurfM9OnTrcBKYH9gmaR/gC9atEjMsKXq6mrp27dv2CBN4PjWSwIwrUW6f9t8olz/5+8alJnVsaCMK9E/ZEkDMikakEkdtSFTx3b/6+OOCCDQhoBPh2L6E//+pT/b/pB6DTi7//6j3TPPOVLT/D1ktJdMkgZnTM6sxGEjxKHDjCkIIIAAAggggAAC4QV6JAATvin+WhO0MEN8Ar1WTC+WRx55ZEWnrHSf6fVywgkn2MeZ4M69995rbwdWzHCff/75x9qs0dl3BgwY0GZvFZMbZt1117WO3X333eWdd94JXMZeHnLIIfLss89a2y+99JIceOCB9r6WKyYgtMkmm8jy5cvl+++/l4YGf3dxAjAtlaJnfVWDMq4hwyW1KSCTMnojSRy6mpULKXqejJYggEBvFjDDYq1hTBqQqbMCMr9rYOZ/4i0vbR9LUrIkr7m2Bmb8vWVMYCZZk/46dGgxBQEEEEAAAQQQQEAk6gIw++23n5j8MaZ89NFHsuOOO7b5nkyOmb333ltMsMQMCwqX28WcnJ2dbQVWTE8UU3755RfZYIMNrPXW/zF5YEwPlyeeeEKOPvro1rvtbTM0yARICgsLrR41njD5Q8yQqUD7Tz75ZHnggQfs8wMrJuBkeuUkJiZaVaWlpda9r7/+ernwwgsZghSAiuKl9UeL5pCp+/VHqZv1o9Tql0enlF1ZcWbl+HvHbLi5pG28hZUMc2XnsB8BBBDobgHPssVSZ4Zl6pdZ1pueMiVF7WuG9gZMWn0tKyiTokOYTFAmaY2R4tRgDQUBBBBAAAEEEOhtAj0agDFBBzPz0dKlS61AhsF/9dVXZd9997XewwUXXCDTpk0L+07OOussufXWW+199fX1stNOO8nnn39u17Vcef31161gTaDOBFnCzdJ06qmnyj333CPjxo2TmTNnBg4PWZpgjhle9NBDD1n5aVofYHrTmJwyJheNKZdccomYoEq4cswxx8gVV1whq622mr3bDL2qq6uzcsvYlRFYqf3leym643pJ3XAzSdOvlDEbizMtOMFwBG4b95dsLCuR2t9+soMy9TqESbs2rfC5TR6Z1I38wZjUjbYk8eUKtdiJAAI9KeApKtShS5ovS3vKmICMyZvVqNNmt6voMKWkEWtKynpjJXn0WB2iOVZzygxt16kchAACCCCAAAIIxLJAjwVgTODllVdesQIwBtAEMq699loraBHoDdLW0B4ztbOZCSkwTCnwAkyPE5PzJVy57rrrrCBIYN/jjz8uJvDRuvTp00fMVNUm78zKipmV6Y477pAvvvgi5NApU6bIxRdfbNebnDd77rmnvd16xanJDM1MSpdddpmst956rXdHbLvk4Tul9NG7mq+v7TDTLqeYXhljN9UeGiYgk9a8n7VVEjD5FswfK4EeMnWzfhKvBmlWVFwDBkuq9oxJ03eRooEZV56/B9eKzmEfAggg0FMCJvBsAjFWbxkTlNHgjGfxwnY1x0pkrsGYFA3GmK/ktUeJMzmlXedyEAIIIIAAAgggECsCPRKASUlJsYYLBXKotIU1ZMiQsMl3zfChn376KeQ0k+g2IyMjpN5UmGmdn3nmGXufmbFo0KBBYob8tC4mOPTnn3+2rg7ZXnPNNa2hTa2nkzZTaZuZnvr37x90jhku9cYbbwTVtd4wPWbM0CrTu2fw4MhP/blo0pFS99O3rZvRvK2fVJpfhFM1CJBqAjKaw8SpyRcpnRdwm2FLP34jNd9/JbW6XFmehcTV1rSGKqVspEEZfRfO9PDf651vGVdAAAEEukagsbLC6iFjDV9q6i3jWTBPRPPNrLDov6PJa6xjzy5nZplzFQxc4SnsRAABBBBAAAEEol2gRwIwJh/Kfffdt1IbE8hobGwMOW677baTjz/+OKTeVASG/LTeaXrTtJ55yQxjuv3221sfGnbbBH1+/vnnsPtaV44fP97q3dO63gyTMj1cTO4Y70qm/zTBHTMEqnUQp/U1O7vtraoUMwzJBABqf/pG3LP/t+JfjM0vxWuPtoYspY7VIUv6iaUzJbWzzej155sgnvufv6T2h680IPOl1Ok78dXWtO2i7yFl/Y0kffNxkrbldpI0fPW2j2UPAgggEEUC3ppqqfvjV6n73QzT/Enq//hZvBqoWVlJyO/n7yFjkplrQMYk+3U05U9b2bnsRwABBBBAAAEEokGgRwIwv/32W7uG2ZgeICbPSutighN///1362prFqGCgoKQelPRugeMqfvjjz/a1Y4E7QXy77//ytZbbx22R465Vsvy5ptviplqu61ihjgdd9xxMmfOnLYOseo333xz+eqrr1Z4TFfvNJ9W1v7yndUzwx+QWUlPIE2wmDJmI8nceS9JH7eLJGRmd3WTeuX1fI0e/aPkF6n54Wup1R4ydb9p8M/Tdg4ZV/9BViAmfYtxOnxsM7ru98rvGh4agdgUsBKZ/zdHf85pQKbpq2Hevyt/GA2+JI8c1dxLRnPKuPL7rvw8jkAAAQQQQAABBHpIoEcCMJWVlW0OFWrp0FaiXHOM6Y0yZsyYlodbvWpMEt1w5fzzz5cbb7wxZNfKku2aEwI9Wq6++mq58sorQ67RssIMm5o3b56YnC4rKmbWpBdeeEGmTp1qzcoU7ljTm6ekpERycnLC7e6WusaKMqn9ORCQ+Vbc//7V9n01GJO22daSudOekrb1jgxValuqw3u8dbX6SfEP/uFK2kvGdOdvs+jsImmaMyZVgzEmIJOouWQoCCCAQCwJWEOXfv/ZCj7X/vajBqR/FZ/2nFlZMcHoZO0dY+WS0R6ayWusLY4EpsFemRv7EUAAAQQQQKB7BKI6AGOCHSboEa6Y4MyMGTPEJM01xfSq2XXXXWXx4sXhDpf333/fmiWp9c6nn35aJkyY0Lo6aPudd96xrz1s2DAJN+V04ITJkyeHDdKYnDVmhqYTTzxRTA6cQDFDrMwMSeGCQ+aYzz77zOp5Ezi+p5eN5aVWQKb2R+2Z8eO30jB3dvgmafLE9K23l4wd97SGyTh0um1K1wl4dArYmq9nSs2Xn0jNd5+LT/MftVUSdXhS2hbb6dc4SdXeSvwx0pYU9QggEK0CPh22654zW+p12FKtJjE3PWU8C/9beXP136KUdUZbQzYZNrtyLo5AAAEEEEAAgcgKRHUAxvQkGTFihObqC5+szww32mijjSyhTz7RP0RrwufMGD58uDXcJ1x+GJOXxQx1KioqCitt7v/PP//YuWVMgtyXX3457LGm14tps+kF07oEAj0DBw6U8847T0weGzPbkVtnx7n55pvFBG7CFZO3xuSvidbiKVouVR+9JVUfvGl9QhmunSZZrBmelKE9Y1I1gaxDh3RRuk7ADFeq/UV7x3yl/w989amsqOu+MzNL0rfaQdK221XSNt1KnNpbhoIAAgjEooCZdalWh2fWm54ys36Uuv/NEqmvW/GjmGGz623gz2OmwzXNOh8QrJiMvQgggAACCCDQdQJRHYAxj3nuuedaSWs788hmumszjKitcsEFF8i0adPC7jZDhMz+QFnRVNcm74vJ/xKuBAIwLfeZgI0JLrUVYDJJiJcvXy65ubktT4va9QadbrTygzekWoMx7jmhOXpMw81Uoxnb72bljEnWRIrhgmJR+4Ax0rCGJQulWgMxpneMSa4s7vqwLXfobFamV0yGBsfM0pmWHvY4KhFAAIFYELByZ/3zpwZjzNAlHbakwRnP0tA8ckHPor0zU0ZtqB8ObCZpGpBJXmeMOPTfXgoCCCCAAAIIIBAJgagPwJjhPjvttJOYxLWrUszwnuuuu26Fp86ePVtGjhwZEghJ0l/MFi5cKH379rXPN8ESc6w5p3VZUaAnXACm9fmttw888EArT0zr+ljYNl3Fqz580wrIeBYtCNvkhH79rSFK2fsfTp6SsEKdr/Tqp8FmquvqL7V3zJcfi2fZkvAX1WSWaZtubfVUSt96B0nI6rm8Q+EbSC0CCCDQcQFPUaF/tqWfvrUC0m19OGBfWWf1S9UPB1JNHq0NN9ckvzrTEr02bR5WEEAAAQQQQKBzAlEfgDGPZ4bpXHrppdZQnbZ6i7RmyMzMlLvuukuOOuqo1rvCbu+8885iere0LIcddpiYwEnrYoYMmWFELYuZLnrBggVieq2EKx0NwJjhSV988YVkZ8f+rEKmW7gZomQCMo06ZCmkaE+gdB0Sk3PY8dZY/ZD9VHSZQN2fs6T60/el6tP3xDN/bvjr6h8bKWM3tXrGpG+zM7OKhFeiFgEEYlCgsVSHLf30jRWMMT0EG+aveDZCh/YMTB2zsRWMMTPMJa+5jjj03ywKAggggAACCCCwKgIRC8CYBLn77LNPSJvMsBszC1JaWlrIvpVVmJmPHn/8cXnuuedkyZLwn+SPGjXKSqprAi8m30p7y4svvigHHXRQ0OGm1822224bVGc2zMxEgwYNkrq65rHmF198sUyZMiXk2ECFSbZrkvC+/vrrVvLgcD1ozLEmH82FF14oJ510kpgeOPFUTPCsTmdUqtRgTPUn74pXE/q2LiljNpHsw47TPCXbMzypNU4Xb1u9lD5733oX7tltTzeePGqsZOywu/ZW2kNcfZp7g3Vxc7gcAggg0O0CVg8ZDcjUWInlv5a2emwGGmbyaKVssKmVQyZNe8gkjliTf6sCOCwRQAABBBBAYKUCEQvArPTOnTjA/CFvkuaaIMzSpUslUYdPDBgwwPqKlR4jJvmvab+Ztam8vNwKFplkwbHS/k68PutUK3HsN59L2QuPS+13X4ZczjV0Nck99DjJ2G1fEsWG6HR9hcnfY4JiVTPfs/ImhL2DBk9Nt/yMnfayesc4MzLDHkYlAgggEKsCZphmjfaMqbMCMt/osM3FK3wUZ3aupGqPQdM7xgRkknTWOQoCCCCAAAIIINCWQEwGYNp6GOpjU6D+n7+k7NlHdJjSG6JzfAc9hEnam33ABMne73BJ0HVK5AWsma1mmp4x70ndL9+JaO+tkKJBz/Qtt5OMnfeWNF0ym1KIEBUIIBAHAg2aw6z2p6+bhix9rcNoC1f4VM68fH/vmM22kTT9cuk2BQEEEEAAAQQQCAgQgAlIsOxxAU/hMu0R84RUvvaseKurgtuj0yVn7bG/ZB96rCQNHha8j62ICTTqMLFqDcZUvjfDGj6mmapD7uVIT5eMbXWa8V32tvIkkLAyhIgKBBCIEwH3grlS98PXVi8Zk0PGq1Nhr6gkaRLf9C3GSdrm20ryujrDEvljVsTFPgQQQAABBOJegABM3L/i2HtAb021VMx4Qcqffzy0+7fDIenb7KQJe4+TFJ2pgtJ9AiZAZpIpV74/Q9x//xH2xs7cPpKpuWJMz5iU9caEPYZKBBBAIF4ETC4te8jSz9+Kt6K8zUdz6uxyqZtuJWkakEnfdBtJyKVXZ5tY7EAAAQQQQCBOBQjAxOmLjYfHMnliqj9+V0qfeVjcf/0e8khmzH3+pEt0Voq1Q/ZREVkB8ylw1XtvWMEYz8L/wt7MNXCwZO42XjK151Ji/0Fhj6ESAQQQiBcBk5/O/c+fUvPt51Lz1adS99tPIcNq7WfVDxOS1x6lPWO0d4wGZMw6vWNsHVYQQAABBBCIWwECMHH7auPrwcwnjOUaiDG/1AYV/SU2c++DpM+JZ/NpYhBM922Yqa1NMKbqIzPNePj8CCmavDd7rwMlbdwu5IvpvlfDnRBAoAcFzFDamu++kJqvZ+rXp23+fDRNNPnO0jbdWocrbau9ZLaWBE3uS0EAAQQQQACB+BMgABN/7zSun8g9718rYW/lO68GfbLoTM+Q3GMmSvaBR4pDE8RSul/A5/VqsspvpUqHKFnTjFdVhjTCvKd0nUUpS4MxKeuMDtlPBQIIIBCvAvWz/5Tqrz6R2m8+8/eOCZfg3Dy86R2z7vpWzxgrd8xI7R2jdRQEEEAAAQQQiH0BAjCx/w575RO458+Rotuv119kZwY9v0sT9PY5/SLJ2HqHoHo2ulfA53ZL9ecfSsWbL+s045+LaHCmdUlcbU3J2vMAydh1H3Fp7hgKAggg0FsEGisr9Gej9o7RXp3VGpDxlhS1+egmt5aZUckk8zU5ZBIys9s8lh0IIIAAAgggEN0CBGCi+/3QupUImK7dRXdcLw0akGlZUjfZ0soPkzRizZbVrPeAgEneW/H2K1L51ssSNl+My6Wf9G4nmRqMMd3vHQmuHmglt0QAAQR6RsDkjqnXxObWUCUNyNT/8UvYoLXVOp1FKXm9DaxZlUzumJS11u2ZRnNXBBBAAAEEEFglAQIwq8TGSdEkYJL1lr/8tJQ+cqd49VNFu+gvqlnjD5O84ycxnt5G6dmV2l++l8o3X5Kqj98RX21NSGOcefmSueu+krXPwZI0ZHjIfioQQACBeBdorCzX3p2fS7WVO2bmCqe6TujXXzI0t1b6drtaMwOSyDfevzt4PgQQQACBWBcgABPrb5D22wKN5aVS8vCdUvHqM0GfHjozsyT32NMl+4AJ9K6wtXp2xVtTo0l737J6xdT9+kPYxpheTFn7HS7pW+2g7y0h7DFUIoAAAvEsYPWO+es3a6iS6SFT/8evItpjJlwxQ5XSt93JCsikbri5OLR3IQUBBBBAAAEEokuAAEx0vQ9a0wUC7jmzpejOKTq+/sugqyUOHSH5Z1xsdd0O2sFGjwq4F8yzAjGVb78cdpaQhPx+krXvIZK198Hi0nUKAggg0FsFzAcNtTrNdbUOVTIBGW9FeVgK88FDmgav08ftbOWPcSYlhz2OSgQQQAABBBDoXgECMN3rzd26UaDq84+k+K4bQvKOZO42XvLPuVKcaWnd2BputTIBn84IYv6wKH/tWan58pOgXkzWudoLJn3rHa1eMak6rTWzgqxMlP0IIBDPAmb4be2P30r1p+9J1WcfiLe4MPzjpqRaCXwzdJiSyRvjTEsPfxy1CCCAAAIIIBBxAQIwESfmBj0p4GtokPIXp0vpY3eLt7rKbopr0BApuOJmSVlvjF3HSvQIeJYtkYrXn5PyGS+EnR3ENXQ1yR5/qGTuvh8zgkTPa6MlCCDQQwLWUKXffpSqT963AjKepYvCtyQxUdI23Vp7xmjeGJ0tMCErJ/xx1CKAAAIIIIBARAQIwESElYtGm0BjaYkOS7peqt57vblp2qMi97jTJffIU4TEhc0s0bTm83j0j4n3pfzVp6Xup29Dm6bd6jN32lOy9j9cUtYeHbqfGgQQQKAXCtT99bsViKn+5L2QWQJtDv03MGXspv4kvtvuLK4+fe1drCCAAAIIIIBAZAQIwETGlatGqUDVB29K4bQrgnrDpIzZWHvDTBNXwcAobTXNMgLuef9qguWnpfLtV4PeX0AnaeQoyT74KMncYQ9x6Ke8FAQQQAAB/dk59x+pmvmeVH/yrrhn/xmexOGQ5FFjxQxTMol8EwcMDn8ctQgggAACCCDQKQECMJ3i4+RYFGjQrtnLr7lA6nRK5EBxZmRK3/OukgztTUGJbgFvXa1UvT9Dyl95Rtx//xHSWKd+ipu9/wTJ1sS9CTl5IfupQAABBHqrQMPihf6cMZ++K/W//dwmQ9LI9axhSmaK66RhI9o8jh0IIIAAAggg0DEBAjAd8+LoOBEwCV9Ln7xfSh+5S0TXAyVDE/T2PecKkhQGQKJ8Wff7L1LxivaK0Smtxe0Obq0ZnrTbvpJz0NGStNoawfvYQgABBHq5gKdouVTpEE+TxLfuZx3i6fWGFUkasZZk7LqPZO68t7j69Q97DJUIIIAAAggg0D4BAjDtc+KoOBUwf8Avu/pc8SxaYD+ha+BgKbjSJOjdwK5jJboFGivKNE/Ms1Lx8lM6lfXykMamatLJnEOOsaZjDdlJBQIIINDLBcz01tWffWgFY2q++1LE0xAqosOUTM6YzF32kYztdxNnekboMdQggAACCCCAwAoFCMCskIedvUHAW1MtRbdcLZXvvNr8uCZB77ET/Ql6dZ0SGwImaW+V9oYpe+5xcf/1W0ijE4evLjkHH2N9mutMTgnZTwUCCCDQ2wXMjIE1X36iMyq9K9VfzxSprwslSUqS9K120J+l+0r65tuKw+UKPYYaBBBAAAEEEAgRIAATQkJFbxWo+vAtf4LeqkqbIGX9jaSfJuhN7D/IrmMlNgTqfv1BAzGPWp/qtu5a78zOtaaxztpvgrjymfkjNt4orUQAge4W8NbUWAl8q959XWp/+CrsMCWnTmWdseMekqnDlFI0kS8FAQQQQAABBNoWIADTtg17eqGAZ9liHZJ0fnCCXv3lcsDUeyVl9Ia9UCT2H9kknSx/8QmpePNF8VVXBz+QK9H6wyH38BMkafW1gvexhQACCCBgC3iKC8XMJFj57mthE6CbA12DhmiuGB2ipMGYpCHD7XNZQQABBBBAAAG/AAEYvhMQaCXg00SEpdNNgt47mxP0anfrgitusqbobHU4mzEiYLrVmyBM+QvTxbNkYUir07bcToecnaSBto1C9lGBAAIIINAs4J73rxWIqXpvhpgPLsKV5HVGayBmvGRq75iEXGakC2dEHQIIIIBA7xMgANP73jlP3E6But9+kiUXnSbeshL/GZqAsM/pF1nJXNt5CQ6LQgEzA1b15x9K+XOPiRmm1LqkjNlYco84SdK2GNd6F9sIIIAAAi0EfD6f1WO0UocoVX/8tnhbDOG1D9M8ammaCD1T88WkbbOjkH/LlmEFAQQQQKAXChCA6YUvnUduv4AZvrL4vBPEM3+ufVL2QUdJn0kXi8PptOtYiU2Buv/NkrInH5Dqme+L6B8SLUvS6iOtQEz6DruLg0TMLWlYRwABBEIEfG63VH+lyXtNMObLT8LOpORIS5eMbXe2kvembrQ5/46GKFKBAAIIIBDvAgRg4v0N83ydFjBTHC/VnjAte0uk6y+Q/a68iU/yOq0bHRdwL5irgZgHtUv96yF/NJhpyXMOO14y9zxAnEnJ0dFgWoEAAghEsUBjZblUf/S29TO15b+dLZucoAnQM3beW3vGjJfkNUa23MU6AggggAACcStAACZuXy0P1pUC5pO9ZddeYP1CGbhu8npjNDnvfZKQw9j2gEmsLz2Fy6Ts2Uel4vXnxFdbE/Q4ztw+1vCz7PGHiTMjM2gfGwgggAAC4QUaNOdWpeaKMT1jGubPCXuQyReTte+hVlJ0Z2pa2GOoRAABBBBAIB4ECMDEw1vkGbpFwIx1L757qpTrH+iB4ho8VAbc9JAkDR4WqGIZBwKm11P5S0/q7ElPire8NOiJnOkZkrXf4ZJ98NHiyssP2scGAggggEDbAnV//WYFYirff0O8pcUhBzrS0yVzl30la59DJHnNtUP2U4EAAggggECsCxCAifU3SPu7XaBM/ygvvv1aO2eIMzvXP031qLHd3hZuGFkBb12t9oZ5XnvFPCKNy5cG30xnxsre52DJOeJkceX3C97HFgIIIIBAmwImGXrtd1/4Z1L65F2RhoaQY5PXXb+5V0xKash+KhBAAAEEEIhFAQIwsfjWaHOPC1R99oEsm3yuSH2dvy2aG6Rg8s1WcsEebxwN6HIBn8ejXehfl7KnHpKG//4Nvj6BmGAPthBAAIEOCJgeh5VvvWIFu8MNUTK9DjN0BiWrVwy5Yjogy6EIIIAAAtEoQAAmGt8KbYoJgbo/fpUlF5wcPE21zo6Uo0NTKPEpYIahVWvwrWz6/VKvMygFFQIxQRxsIIAAAh0VqP3pWysHV1VbvWI095qVK0Znp3PSK6ajvByPAAIIIBAFAgRgouAl0ITYFWhYtMA/TfWCefZD5B5zmuSdcKa9zUp8CtR8PVNKHrlT6jUQF1QIxARxsIEAAgh0VKBRc2+ZXjHlM54Xz/y5IadbvWJ221eHgR4qSauvFbKfCgQQQAABBKJVgABMtL4Z2hUzAuYXxSU6TXX9rB/tNveZeKFOXXycvc1K/AoQiInfd8uTIYBAzwvU/PiNVLz2rFR/+r6IJ0yumFEbNPeKSU7p+QbTAgQQQAABBFYgQABmBTjsQqC9Al53vSy7dJLUfPWpfUrfC6+RrL0PtrdZiW8BKxDz6F1S//svwQ9Kj5hgD7YQQACBVRBoLCtp7hXTotdp4FLOjEzJ1F4xWaZXzIg1A9UsEUAAAQQQiCoBAjBR9TpoTCwLmCDMknOOl7qfv/M/hsOhiXlvlYwdd4/lx6LtHRRoMxCTmCjZ+x7CrEkd9ORwBBBAoLVAzQ9fa64Y0yvmgzZ6xYxt6hWzmzjpFdOaj20EEEAAgR4UIADTg/jcOv4EvDXVsmjSUeL+6zf/w7lcMuCGeyVt823j72F5ohUKrDAQs98EyT3qZEnIyVvhNdiJAAIIINC2QGOp9op5+2Upf11zxSz8L+RAZ2aWZO6jge8DjhBXv/4h+6lAAAEEEECguwUIwHS3OPeLewGTE2bRxAnSMK9pumKdonrgrY9I6piN4/7ZecBQgbYCMY60dMk59Fj9Ok6cuk5BAAEEEFg1ATNDXW0gV8zMML1iEhK0N+oekn3IMZIyctSq3YSzEEAAAQQQ6AIBAjBdgMglEGgt4ClaLotOPUw8SxZauxzp6TLwjun6i996rQ9lu5cI1HzzmZQ8fEfIrEnO7FzJPfoUyR5/uDg0XwwFAQQQQGDVBUyvmIq3XpIKM4PSwvkhF0rZYBPJ1uB3+pbbi8PpDNlPBQIIIIAAApEUIAATSV2u3asFzBTVC087TLzFhZaDU4ebDLr7KUkaNqJXu/T2h6/6/EMpuf9WaZg7O4jCVTBAco+bpEkkx4tDP62lIIAAAgisuoDpFVP9xcdS/tyjUvfTtyEXcg0eKtkHHyNZu+8nztS0kP1UIIAAAgggEAkBAjCRUOWaCDQJuOfMlkWnTxBvRblVk9C3QAbd+4wk9h+EUS8W8Hm9Uvne61L68J12L6kAR+LQEZJ30lmSsd2ugSqWCCCAAAKdEKj7+w8pf/ZRqfroLU3a6wm6kskTkzX+MMk2eWLy+wXtYwMBBBBAAIGuFiAA09WiXA+BVgJ1f/wqi888Wny1NdYe86nboHueEVdefqsj2extAr6GBil/7Tkpffwe8ZYWBz1+8tqjJe/kcyRtky2D6tlAAAEEEFg1ATM8uPzF6VLx2rPirawIvogmzc/YcU9/npi11g3exxYCCCCAAAJdJEAAposguQwCKxIwU2YuOf9EEbfbOixp9ZEy8K7pkpCZvaLT2NdLBLwanCt7/nEpf/oh8VZXBT11ykabS5+Tz5WUddcPqmcDAQQQQGDVBMzP3Iq3XpHyFx4Lnydmw80k55BjJW3L7cThcKzaTTgLAQQQQACBMAIEYMKgUIVAJASqPv9Ill16ukhjo3X55PXGyMDbHxdnSmokbsc1Y1CgsaJMSqc/IOUvPanBuvqgJ0gft7PVIyZJhyhREEAAAQQ6L2CGg1Z/8ZEOT3pM6n75LuSCriHDJVdnTsrQ3Fz8Wx3CQwUCCCCAwCoIEIBZBTROQWBVBUzej+VXn2+fbn6pK7hsqr3NCgJGwHSTL3nkTql88yU7YGfJaHLerPGHSt6xp0uCJnWmIIAAAgh0jUDdX7815Yl5O/jnrl7emZVj/ezN3t/kienbNTfkKggggAACvVKAAEyvfO08dE8KlL34pBTfdo3dhL7nXyVZ+x5qb7OCQEDAvWCelDx0m1R/qH8QtCjO9AyduvpUyT7wKKaubuHCKgIIINBZAc/ypVKmeWIqX39OvFWVwZdzJUrmTiZPzLGSvObawfvYQgABBBBAoB0CBGDagcQhCHS1wPIbLpXKN170XzYx0ZoZKUWTrlIQCCdgZvAovmuq1P34ddBul86m1efU8zRx5B5B9WwggAACCHROwFtj8sS8JOXPa56YxQtDLpa6yVaSd9xESRm9Ucg+KhBAAAEEEGhLgABMWzLUIxBBAa/m91h08iHinv0/6y6ugoEy+NFXJEG7OVMQaEvA5BEquWeaNMyfE3RIsibozZ90sf4hsGFQPRsIIIAAAp0TsPLEfP6hNTyp7tcfQi5mEqWbYaGpG2wSso8KBBBAAAEEWgsQgGktwjYC3STQsGiBLDx+P7uLc+pm28qAmx5gxoVu8o/V2/gaPVL+qk5d/ehd4i0rCXqM9O121R4x50vioCFB9WwggAACCHReoO5/s6Ts2Yel+uN3RTSBb8uSMnZTyT1moqRpQIaCAAIIIIBAWwIEYNqSoR6BbhCwZka66FT7TrnHT7I+SbMrWEGgDQEzXXXJE/fpNKqP29ObW4dqjoLsA47QPwROZZrzNuyoRgABBDoj4F74n5Q9fq+YxPqBmQ0D10sZs7Hkao+YtI23CFSxRAABBBBAwBYgAGNTsIJAzwgUP3CrlOkf0lZxOGTAzQ9J2qZb90xjuGvMCTQsXSTF990s1R+8GdR2Z1a29Wls9v4TxOFyBe1jAwEEEECg8wKmJ2vp9Puk8p1Xdfo6T9AFk0eN1RwxGojh3/MgFzYQQACB3i5AAKa3fwfw/D0u4GtslMVnH2cnWDXTXQ7RfDAmLwwFgfYK1P3xqybqvUFa5yhwDR4qfU6/SDK23rG9l+I4BBBAAIEOCJhAeKl+kFL51isaiGkIOtPk6Mo7bpKkbb5tUD0bCCCAAAK9U4AATO987zx1lAl4Sotl4bHjpbFoudWy5HVGy6B7nhGHzpBEQaAjAlWfvKs9Ym4Sz8L5Qael6qew+WddKklDRwTVs4EAAggg0DUCnmVLtEfM/VLxps5y2NAqEKMzHeYeO1HSt9q+a27GVRBAAAEEYlKAAExMvjYaHY8CdbN+lEWTjrS7MWftd7j0PffKeHxUninCAj7tCl/+8pOaqPdu8VZWNN9NhyJlH3SUlWfImZbeXM8aAggggECXCXgKl0npkxqImfFCcI4uvUPSWuv6AzHaK9Ghw44pCCCAAAK9S4AATO963zxtlAuUvfCEFN9+nd3KfldMk8xd9rG3WUGgIwKNFWVS8uDtUvHas0Ezdjjz8nW2pPMkc7fx/AHQEVCORQABBDog4CkqlLKnHpDy157TQEx90JlJa4y0kvWmb7szP4eDZNhAAAEE4luAAEx8v1+eLgYFll55llR/+La/5ckpMuTBFyRpxFox+CQ0OVoE6v/5S4puvUbqfvkuqEnJ642R/LMvlxTtGk9BAAEEEIiMgKdYAzFPPyzlrz4jUl8XdBPz73vuMadJ+na7isPpDNrHBgIIIIBA/AkQgIm/d8oTxbiAt6ZGFp54oDT896/1JK6hq8mQx14TZ1JyjD8Zze9pgSqdKano7qnSqN3jW5bMvQ6UPiefKwm5eS2rWUcAAQQQ6EIBk+/NCsS88rRIXW3QlROHr24ND03fYXd6xATJsIEAAgjElwABmPh6nzxNnAi45/1rBWF8tTXWE+UcebL+gXxOnDwdj9GTAl79njJJIsueeTgoSaQzPUNyjz9Dsg/QaasTmLa6J98R90YAgfgWaCwrkbJnH9VcXU+Jr6Y66GGTRq4nfU67QNI22jyong0EEEAAgfgQIAATH++Rp4hDgYrXn5fCGy/3P1lCggx++BVJ1jHjFAS6QqBh0QIpunOK1Hz+UdDlEldbQ/LPvEzSNt4iqJ4NBBBAAIGuFTB5uqxAzEvTxVcdHIhJ22KclauLIchda87VEEAAgZ4WIADT02+A+yPQhoDP55PFOitS3c/+vB3W1NT3P88Y8Ta8qF41gZpvPpNCTfzsmT836ALp43aRPpMuksT+g4Lq2UAAAQQQ6FqBxspy7ZX4iBWMCUrWq7MkZe6xv+SdcKa4+hZ07U25GgIIIIBAjwgQgOkRdm6KQPsE3AvmyoKj9raHivQ54xLJOfjo9p3MUQi0U8Catvr5x6XksbuDu8NrEui8406XnEOOFYdOYU1BAAEEEIicLjuf+AAAQABJREFUgJm+uuTB26Ty7VdE9EMYu+jP4pxDjpHcCSeKGS5KQQABBBCIXQECMLH77mh5LxEoefxeKdVfyExxpKbJ0CffFFfBwF7y9DxmdwqYmTqK771Jqt55Nei2ZlhSv/OvlpT1NwqqZwMBBBBAoOsF3HP+1oTp06T2m5lBF3fm5OmMSRMle/yhBMWDZNhAAAEEYkeAAEzsvCta2ksFTO+EBceOl4a5sy2B1M23lYE3PdhLNXjs7hCo++0nKbx5srhn/xl0u8w9D9DkkOdLQnZuUD0bCCCAAAJdL1Dzw9dSfM+N4v7r96CLuwYPlT6nnCcZOnU1BQEEEEAgtgQIwMTW+6K1vVSg7vefZdEph9pdkgsm3yIZO+3ZSzV47O4Q8DU2SvmL06XkodslMBuXua8zK8cKwphgjEPzE1AQQAABBCInYPLBVb0/Q0oeuE08SxcF3Sh5vTGSP/FCeicGqbCBAAIIRLcAAZjofj+0DgFboOi2a/QP4ietbdMNeejTb0uC/jFMQSCSAp7lS6Xo9mul+tP3g25jhiP1Pe8qSRqxZlA9GwgggAACXS/gc7ul/KUnpXT6feKtKA+6Qdo2O+mMSedK0tARQfVsIIAAAghEnwABmOh7J7QIgbAC3ppqmX/EHtKofxCbYmZG6HfJ9WGPpRKBrhao+epTKbzlavEsWdh8aU3Mm60JevOOnSjOlNTmetYQQAABBCIiYGZMKn3iPquHojQ0NN8jIUEy9zpI8o6fJK68/OZ61hBAAAEEokqAAExUvQ4ag8CKBao+/0iWXXSqfdCA2x+XtI02t7dZQSCSAt76Oil97B6dLvVhEc1NFCgmKXSfsy+XjK13CFSxRAABBBCIoECDDkcyw5Kq3ns96C4mWX/OYcfp1/Hi1HUKAggggEB0CRCAia73QWsQWKnA0svPlOqP37GOM4n4hjzxhjiTkld6Hgcg0FUC7nn/SuFNV0rdz98FXdJ0g+971mU6S9eAoHo2EEAAAQQiI1D39x9Wot66778KuoFTe8H0OeEMydzzQHFo7xgKAggggEB0CBCAiY73QCsQaLeAmSp4wYTdxVtVaZ2Tc8RJOhvCue0+nwMR6CqBirdfkeK7bxRvWUnzJXUoUp8TzpTsg47il/5mFdYQQACBiArUfD1Tiu+9Sdz//hV0n6Q115a+506WlFFjg+rZQAABBBDoGQECMD3jzl0R6JRAxYznpXDq5f5r6Cdbgx9+RZLXGNmpa3IyAqsi0FhRZv3SXznjhaDTk0aOkn4XT+H7MkiFDQQQQCByAj6vVyrfeVVKHrxNGguXBd0oc68DrQ9rEjSJPwUBBBBAoOcECMD0nD13RmCVBcy0lIsnHWkPAUnWT7YG3/fsKl+PExHorEDdrB+lcNqV4p7zd/OlNElvzuEnSN4xE8WRlNRczxoCCCCAQMQETL6usucek9LH7xXR9UBxZmVbQZjMvQ8Wh8MRqGaJAAIIINCNAgRguhGbWyHQlQLuBXNlwVF7S2AWhIIb7iUJalcCc60OC/gaPVL61EOaqPduEZ0yNVASdWrUfhdfKymjNwpUsUQAAQQQiLCAZ9liKbztOqn57IOgOyWvM1ryz7tKUkauF1TPBgIIIIBA5AUIwETemDsgEDGBojumSPnzj1vXT1p9pAx+7DU+1YqYNhdur4AJDhbecJnU/fJ90ClZ+0+wPn11pqUH1bOBAAIIIBA5gZqvPtVAzDXiWbSg+SbaAyZrv8Ml78SzJCEzq7meNQQQQACBiAoQgIkoLxdHILICjaUl8t/BO4qvtsa6UcHkWyRjpz0je1OujkA7BMwwucrXnpWie6eJr7raPiOhX3/pd/7VkrbFOLuOFQQQQACByAp43fVSNv0B7aX4QFAPRafmhOkz8ULJ2n18ZBvA1RFAAAEELAECMHwjIBDjAibZnjXOW5/DNXiYDH3qLZ19xhXjT0Xz40XAs3ypFN48WWq++DjokTJ23kvyz7xUSAgZxMIGAgggEFGBhkXzpfCWa6T2m5lB90kZs7HOlnSlJI1YK6ieDQQQQACBrhUgANO1nlwNgW4XMNNR/3fQDuKtrLDu3ffCayRLE+xREIgmgaoP3tQu8NcGTVntzM7VIMwlkrnLPtHUVNqCAAIIxL1A1afvSdHt10mjBsntorMqZh90lOQdd4Y409LsalYQQAABBLpOgABM11lyJQR6TKD0yQek5L6brfubIR7Dnn2fWWd67G1w47YEGstLpeiO66Xq3deCDkndfFtrWJKrYEBQPRsIIIAAApET8Orw5ZLH7pHy5x4V8XjsGyXk95P8SZdIxo6723WsIIAAAgh0jQABmK5x5CoI9KiAt65Wc8HsJN6SIqsdfc64RHIOPrpH28TNEWhLoOabz6TwxivEzNARKA5NzJt38rmSvf/hJJIOoLBEAAEEukHAPe9fHZZ0ldT9+E3Q3VI32VLyz7lCkoasFlTPBgIIIIDAqgsQgFl1O85EIKoEyl58Uop1lgNTTFK9YS98KM5UuhBH1UuiMbaAt0Y/eX3gFil/6UkRTdgbKCkbbqZTVk+RxAGDA1UsEUAAAQS6QaDq/RlSeNdU8RYXNt/NlSg5hx8vuUefKs7klOZ61hBAAAEEVkmAAMwqsXESAtEn4GtokPmH7mL3KsjVqSXz9BcmCgLRLFD320+y/IZLpUE/gQ0UhwYO8yddJFn7HBKoYokAAggg0A0C3uoqKXnodn9w3Ou17+jqP0jyz75c0rfa3q5jBQEEEECg4wIEYDpuxhkIRK1AxZsvSeH1l1jtc2ZkylDtBZOQmR217aVhCBgBEzwsefQuKdNcRtLiF/7UTbaSfhddJ+SG4fsEAQQQ6F6B+tl/WjPY1WuQvGXJ3G289DEz2GVmtaxmHQEEEECgnQIEYNoJxWEIxIKAr7FR5h+5p3jmz7Wam3PkydLn5HNioem0EQGp+98sWX7thdLwX3NvGGd6hpicRll7HoAQAggggEA3Cvh0eGilfrBTfO9N4tUk6oFikvSa4HiaJlCnIIAAAgh0TIAATMe8OBqBqBeo+uhtWXbFWf52pqTKsOc/EFdeftS3mwYiYAR8brcUP3iblD/7SFBumLQtxknfC68Vl/7iT0EAAQQQ6D6BxooyKbrtOql67/Wgm2ZqYDxfA+QmUE5BAAEEEGifAAGY9jlxFAIxI2A+sVp43H7inv0/q83ZBx4h+WddHjPtp6EIGAGTG2bZdReJZ8E8G8SpXd5NDoLMXfax61hBAAEEEOgegarPPrBmsPOWFts3TOjX398bZtOt7TpWEEAAAQTaFiAA07YNexCIWYGarz6VJeef5G+/zmAw7Ln3NI/GwJh9HhreOwW89XVSct/NUv7CE0EAadvsJH3Pv4qeXUEqbCCAAAKRF2jUoUiFt1wt1R++FXSzzH0OlvzTLxJnWnpQPRsIIIAAAsECBGCCPdhCIG4EFp56mNTP+tF6nsy9D5Z+F/qnqI6bB+RBeo1A7c/fyfIp2htm8UL7mZ1ZOdL33MmSsePudh0rCCCAAALdI1D1ybtSeNNk8ZaV2Dc0H/T0vXiKpG28hV3HCgIIIIBAsAABmGAPthCIG4Han76VxZOO9D9PUrIMf3WmJOgfrRQEYlHAW1sjxfdMk4pXng5qfvr2u2kg5kpJyMkLqmcDAQQQQCCyAo0afCm8+Sqp/vidoBtljT9M+px2gfaGSQuqZwMBBBBAQIQADN8FCMSxwILj9xf3X79bT5h36nmSO+HEOH5aHq03CNR8/5U11bpn2WL7cZ0afOmnn7qmb7W9XccKAggggED3CFR9+LYOS7oqaKYk14DB/t4wG27WPY3gLggggECMCBCAiZEXRTMRWBWBirdfkUJNZGqKq/8gGaozIjmczlW5FOcgEDUC3ppqKbrzBqmc8XxQmzL3PUTyJ10sTp39i4IAAggg0H0CHk3MWzTtSqme+X7QTc1EAHmnnMfP5SAVNhBAoDcLEIDpzW+fZ497ATOl77z9trU/lSqYcpdkbLtz3D83D9g7BGq++UyWX3+JNBYttx/YNWS4FFxxk6SsM9quYwUBBBBAoHsEqt6fIYW3XiPeinL7hq5BQ6TfJTdI6piN7TpWEEAAgd4qQACmt755nrvXCBQ/cKuUPXGf9bwpG20ug25/vNc8Ow8a/wKNFWVSaD51bZmDICFBco87XXKPOFkcuk5BAAEEEOg+AU9xof5cvkJqPv+o+aYOh2QfdJTknXyOOJNTmutZQwABBHqZAAGYXvbCedzeJ+BZtkT+O2gHEa/Xevgh09+UpNXW6H0QPHFcC1S8/aoU3Xa1+Kqr7edMHjVWCi6fJon66SsFAQQQQKB7BczP5eLbrxVvVaV9Y6uX4iXXS8roDe06VhBAAIHeJEAApje9bZ611wosvewMqdYpI00xsxP0PW+ytc5/EIgngYYlC2X5tRdK3S/f24/lSE2T/LMuk6w9D7DrWEEAAQQQ6B4Bjw4RXX7DpVL79czmG2pvmNxjJkrusRPJS9eswhoCCPQSAQIwveRF85i9WyBoSmpNULraq5+JMyOzd6Pw9HEp4NOeXqVPPiClj9wp4vHYz5g+bmfpe8E1kpCda9exggACCCDQPQIVb74kxXdMEW91lX3DlLGbSsGVt4grv69dxwoCCCAQ7wIEYOL9DfN8CDQJLDhqb3HP+dva6nPGxZJz8DHYIBC3AnU6/fryq86Thvlz7Gd09ukrBdr1PW2zbew6VhBAAAEEukfAs3ypLDO9FH/82r6hMydPh4reyM9lW4QVBBCIdwECMPH+hnk+BJoEKl5/XgpvvNzacg0eKkOfeU8c2g2YgkC8Cnjr66T4rqlS8crTQY9oTYt62gXiTEoOqmcDAQQQQCCyAlYvxcfvkdJH77Zz05k75hx5suSdcIYmTndFtgFcHQEEEOhhAQIwPfwCuD0C3SXgrauV/8yU1JUV1i0HTHtA0rYY11235z4I9JhAjeYeWDblYvGWFNltSBy+uvQz01Wvta5dxwoCCCCAQPcImKHRy646RxqLCu0bJmti3v6TdUhSwQC7jhUEEEAg3gQIwMTbG+V5EFiBQNHdU6X8mUesI1J1GMbAmx9awdHsQiB+BBrLSmT51Mul5rMPmh/KlSh9Tjpbsg87jt5gzSqsIYAAAt0i0FhaokOSLpDabz6z7+fMypZ+l06V9K22t+tYQQABBOJJgABMPL1NngWBlQg0LF4o8w/ZScTns44c8sy7kjRk+ErOYjcC8SNQMeN5KbrjevHV1tgPZYKR/S6bKq7cPnYdKwgggAACkRfw6e8jZU89KCUP3ibS2GjfMPuQY6XPqeeJw8WQJBuFFQQQiAsBAjBx8Rp5CATaL7DkolOl5vOPrBOyDzpK8s+8tP0ncyQCcSDQsGi+dn0/V+r/+NV+Gmdevj8R5CZb2XWsIIAAAgh0j0DdrB9l6ZVnS6Mm6g2U5HVGS8HVt0nigMGBKpYIIIBAzAsQgIn5V8gDINAxgZrvvpQlZx9rneRIT5fhr3wuzrS0jl2EoxGIcQFfo0c/cb1dynTK6pYle8KJOizpLBJBtkRhHQEEEOgGgcaKMlmu+boCHxKZWzozMqXvxVMkY9wu3dACboEAAghEXoAATOSNuQMCUSVguvsumLCHPT1v/rlXSvZ+h0dVG2kMAt0lYAKSy645PyhBb/K660vB5FslcSCfunbXe+A+CCCAQECg7LnHpPjeaSIeT6BKsg6YIPkTLxJHUpJdxwoCCCAQiwIEYGLxrdFmBDopUPbSU1J869XWVZLXGyOD73++k1fkdARiV8BTWizLr70wOBFkeob0veAaydhxj9h9MFqOAAIIxKhA3f9mybIrzhLPkoX2EyStuY4UXHO7JA0eZtexggACCMSaAAGYWHtjtBeBLhAw3Xzn7aO5Lpo+XRr64keS2H9QF1yZSyAQmwKmZ5iZIaz4gVvs/y/Mk2TufZCVJ8mZkhqbD0arEUAAgRgV8FZVyvIbLpXqT961n8CRli79THB8pz3tOlYQQACBWBIgABNLb4u2ItCFAkvOP0lqvvrUumKezjSQq7kvKAj0doG6P/VTV00E6Vm0wKZIHLa6FFx1qySvMdKuYwUBBBBAoHsEyl7WXrt3Xi/S0GDfMHPvgyX/rEvFmZxi17GCAAIIxIIAAZhYeEu0EYEICFS886oU6rALU0y33iGPvhqBu3BJBGJPwFtTLYXTrpCq999obrzmHehz+kWSs/+E5jrWEEAAAQS6RaB+9v9k6eVnimfhf/b9zO8uA264V1wFA+w6VhBAAIFoFyAAE+1viPYhECEBb3WVzN17CxG327rDkGfelaQhwyN0Ny6LQOwJVLz1shTeormS6mrtxqdts5P0u2SKJGRm23WsIIAAAghEXiBccNyZ20cGTLlLUkZvGPkGcAcEEECgCwQIwHQBIpdAIFYFll5yulTPfN9qfu4JZ0jeMRNj9VFoNwIREXDPn2MNSXLP/tO+fkK//tJ/8i2Ssv5Gdh0rCCCAAALdI1Dx+nMaHL9G83U1DUlKTJS+518tWXvs3z0N4C4IIIBAJwQIwHQCj1MRiHWBqg/f1j8uz7IeI3G1NWTo9Ddj/ZFoPwJdLuDTXmLF99wo5S9Ob752QoL0OfkcyT7seHE4HM31rCGAAAIIRFyg9pfvZemlk8RbVmLfK/vQY6XPaReIw+m061hBAAEEok2AAEy0vRHag0A3Cnh1aMXcvXQYUtMQiyFPzJCkEWt1Ywu4FQKxI1D1+UdSOOVi8eosYoGSttX20u+yqQxJCoCwRAABBLpJoGHpIll64ani/vcv+46pm20r/a+6RZwZmXYdKwgggEA0CRCAiaa3QVsQ6AGBpTrjS/WHb1l3zj36VMk70d8jpgeawi0RiHoBz/KlYv6fqZ/1o91Wl07hXnDN7ZKyzmi7jhUEEEAAgcgLeGtrZPk1F9jDqc0dE4eOkP433idJg4dFvgHcAQEEEOigAAGYDoJxOALxJlClOWCWaS4YU1z6y8qwZ9+Lt0fkeRDoUgFfo0eK771Jyp99tPm6rkT/LEkHHtFcxxoCCCCAQMQFfD6flDx4m5Q9cZ99L2dmlhRcfbukbbKlXccKAgggEA0CBGCi4S3QBgR6UMDkt5i79+biq662WjHo4ZclZeR6Pdgibo1AbAhUffaBFF53kXirKu0Gp++wu/S76DpxpqXbdawggAACCEReoEp78y7Tn8nirvffzOTqmnSJ5BAYjzw+d0AAgXYLEIBpNxUHIhC/AsuuvVCq3nnVekCTVDR/4gXx+7A8GQJdKNCweKEsvfxMcf/1m31V05Os/7V3SvIaI+06VhBAAAEEIi9Qpz+LTV6YxqLl9s0y9z5Y+p57pThcLruOFQQQQKCnBAjA9JQ890UgigRqvp4pS8470WqRq2CgDH3xI2Z2iaL3Q1OiW8DX0CBFd0yRileebm5oUrL0PedyydrroOY61hBAAAEEIi7gKS6UpRefJvV//GrfK2XMJtL/ujskISfPrmMFAQQQ6AkBAjA9oc49EYgyAZ/HI/P22VJndym3WjbovmclZdTYKGslzUEgugVM9/flUy8TX41/OJ9pbeZu4yX/vMniTEmN7sbTOgQQQCCOBMzwavPzuOrd1+ynMgnTB0zV5LyrM9ujjcIKAgh0uwABmG4n54YIRKfA8qmXS+WM563GZR90lOSfeWl0NpRWIRDFAu4Fc2XZpWeIe87fdisTV1vDGpKUNGyEXccKAggggEDkBUqfelBK7rtZRBP1muJITZN+V0yTjG12ivzNuQMCCCAQRoAATBgUqhDojQI1338lS846xnr0hPy+MuzlmeJwOnsjBc+MQKcEvPV1UnTzVVL51sv2daxf+i+4WjJ23tuuYwUBBBBAIPICNV9+IkuvOseebMDcMfeksyXvqFMif3PugAACCLQSIADTCoRNBHqrgK+xUeaN30a8pcUWwcA7p0vq2E17KwfPjUCnBSo0AFN40+TmGTn0ipn7Hip9z7pMHImJnb4+F0AAAQQQaJ+Ae+4/suSiU8SzaIF9QvpOe0rBJTeIIynJrmMFAQQQiLQAAZhIC3N9BGJIoPCWq6Xi5aesFmfrtI35Z10eQ62nqQhEn4D7379lyeVniGf+XLtxyeuubw1JcvXrb9exggACCCAQWYHGijJZetkZUvfjN/aNUjbcTAbccK8409LtOlYQQACBSAoQgImkLtdGIMYEWg5Dcg1dTYY9/U6MPQHNRSD6BLw1NZoM8lKp1iS9geLUmTgKrr5N0vSXfwoCCCCAQPcI+Bo9UnTrtVLx6jP2DZPWWlcG3PyQuHL72HWsIIAAApESIAATKVmui0AMCphZA+bstrE9ZGLYS5+Iq2BADD4JTUYg+gTKnn9ciu+eKqLD/aySkCB9Tj1fcg49NvoaS4sQQACBOBYoffIBf3Lepmd0DR4mA299RBIHDI7jp+bREEAgGgQIwETDW6ANCESRwOJzjpfabz+3WtT3ouska68Do6h1NAWB2Bao/eV7WXr5meItKbIfJH3H3aXfRVPEqbNzUBBAAAEEukeg4o0XpfBGHWrt9Vo3NBMQDLzlEUkawTTV3fMGuAsCvVOAAEzvfO88NQJtCpQ9/bAU33OjtT99xz2k/1W3tnksOxBAoOMCnqLlVh6C+t9+sk9OXG1N6T/lLkkaMtyuYwUBBBBAILICVZ99IMuuPFt7/rqtGzkzs2TAjfdLyugNI3tjro4AAr1WgABMr331PDgC4QXqZ/8pC4/d19pp8lQMn/GlOByO8AdTiwACqyTg82gegtuvk4pXnrbPd6ZnSN/Lp0nG1jvYdawggAACCERWoPbn72TphaeIt7rKf6OkZBlw7R2StuV2kb0xV0cAgV4pQACmV752HhqBtgV8Pp/M23tL8ZaVWAcNeuQVSdEEdRQEEOh6gYq3X5XCaVfYeZfMHXKPOU1yj5skDqez62/IFRFAAAEEQgTqZ/9PzBBsb2mxf5/m6Op78RTJ2m18yLFUIIAAAp0RIADTGT3ORSBOBZZdda5Uvf+G9XR9TtMkoYefEKdPymMh0PMCdX//IcsuOV08SxfZjUndbBspmHyzJGRm23WsIIAAAghETqBh0XxZfPax4lm80L5Jn0kXS84hx9jbrCCAAAKdFSAA01lBzkcgDgUq3npZCqdcbD1Z6iZb6swAj8bhU/JICESPQGNFmSybfK6dANu0zKWzcfSfcrckr7l29DSUliCAAAJxLOApLpQl5x4v7n/+sp8y54iTpM8p59rbrCCAAAKdESAA0xk9zkUgTgU8y5fKf/uP8z9dUpKs9s734tQx0RQEEIicgE9n4ih56HYpe+K+5pvo/3d9L7xGsnb152Vq3sEaAggggEAkBLxVlbJEc8LU6ax1gZKpM0L2Pf9qcejQJAoCCCDQGQECMJ3R41wE4lhg/oQ9pOG/f60nHKA9YNK0JwwFAQQiL2Bm5Vh+7QXiq662b5Z1wATJn3SJOFwuu44VBBBAAIHICHjd9bLsirOk5vOP7Bukb7uzDg29RRz6wRQFAQQQWFUBAjCrKsd5CMS5QNFt10r5i9Otp8zWHDD5mguGggAC3SPgXjBXll48URrm+YOg5q4pG2wi/XVmjgSdnYyCAAIIIBBZAV9joxROvUwqdVh2oKSM3VQG3HCvmFnrKAgggMCqCBCAWRU1zkGgFwhU6ac+yy461XrSpDXXkSGPvtoLnppHRCB6BLw1NbL8+oul+uN37Ea5CgZKf/3ln7wwNgkrCCCAQEQFiu6+Ucqfedi+h/mdaMDND4krL9+uYwUBBBBorwABmPZKcRwCvUzAW1Mtc3ffREQ/ATJl+Btf8cl7L/se4HGjQ6D0yQek5P5bRHSKeKukpErBpTdIxva7RUcDaQUCCCAQ5wJlTz8sxffcaD+la/BQGXjLo5I4cLBdxwoCCCDQHgECMO1R4hgE/s/efYBXUaUNHH9zU0lCCkkISQjNtS52UUDFFUUBFawIuiooIAKCCEivIh3pgiAIiihgQxARRaWswrc2FlxcC0tJSEIKIY2Um+SbmSzjuiR4b3LL3Jn/PE+Wydw557znd7IHeTNzjkUFUvs/JMX/+Ebrvfrec/itd1hUgm4j4F2Boq92SPrEIb9bFya6Z3+JfmKQ+Pn5eTc4WkcAAQQsIKDtEKm8knTmF1MB8QmSuGiNBCo71nEggAACjgqQgHFUivsQsKBAzquL5OSKhVrP1R0AGo58wYIKdBkBYwiUHjkkacprgfZjh/WAQm+8ReLHzRJbaJh+jRMEEEAAAfcIaK9nK4vzirJIr3oENEqSpMVrRH09lAMBBBBwRIAEjCNK3IOARQWKD3wnqf26a71Xf9PT9J0vLCpBtxEwhkB5fp5kTHxWTu/dpQcU2PxP2qKQgUlN9GucIIAAAgi4R6Do668k7bm+ShKmVGsgIClZkha9IQFx8e5pkFoRQMBUAiRgTDWcdAYB1wqoOwAc7nytVBQWaBUnv7lVgpKbu7YRakMAAacEKisqJHvJLGVRyJV6OVtEpMRPni+h17TRr3GCAAIIIOAegSIlCa4+kShlZVoDAY2bViVhYuPc0yC1IoCAaQRIwJhmKOkIAu4RSFO2wi3a9alWecyQ8RJ138PuaYhaEUDAKYG8jzdqW6Se+S2s2GwSM3CkRHV7zKl6uBkBBBBAwHkBdW0u9b+RxF6VhAls0kJZE+Z1dkdynpISCFhKgASMpYabziLgvEDuO29I9tzJWsGwWzpJo0nznK+EEggg4BaB4oP7JX1UfynPOqHXX7/zvRI3bJL4BQXp1zhBAAEEEHC9QMHu7ZIxdpCShLFrlauvhCYteF38oxu4vjFqRAABUwiQgDHFMNIJBNwnUPyvHyT1iXu1BgKU7Rabrt/uvsaoGQEEnBawZ2dK+ugBUvLDPr1scMsrpNELiyQghsfhdRROEEAAATcIFOzYJhnqwrzKa9vqEXTehZK4YLX4R0a7oTWqRAABXxcgAePrI0j8CLhZoFL5rc6hDlfo7zk327JX/COi3Nwq1SOAgDMClcpikJmzJ0j+lnf1Yv6xDaXR9Jck5KJL9WucIIAAAgi4XqBg+0eSMelZEWWNLvUIOv/iqiRM/UjXN0aNCCDg0wIkYHx6+AgeAc8IpPS5X0qUVx3UI+HFFRJ67Q2eaZhWEEDAKYHc9asle9F0/R8BoryGpG4fX/+2Lk7Vw80IIIAAAs4JFHyySTImDxeprNQKBl3YUpLmrxJbeH3nKuJuBBAwtQAJGFMPL51DwDUCmXMmSd57a7XKovsOkQaP9nNNxdSCAAIuFyj6+5eSMeEZqcg7pdcd3bO/RD8xSPz8/PRrnCCAAAIIuFYg76P3JHPqKD0JE3zJZZI491WxhYW7tiFqQwABnxUgAeOzQ0fgCHhOIE95rUH7DwqlydAbb5WEaYs91zgtIYCA0wJlqUe1LVLL/v2LXjasfSdpOGa62IJD9GucIIAAAgi4ViBv8wbJnD5WrzS45ZWS+OJKsYWG6tc4QQAB6wqQgLHu2NNzBBwWKD30kxx79C7tfnVdiWbv73K4LDcigIB3BCoKCyR9/BA5vXenHkDwxZcq68IsYXFeXYQTBBBAwPUCeRvfksxZE/SKQy5vJQmzl4mtHkkYHYUTBCwqQALGogNPtxFwRqBSWdn/0O1XixSf1oo13bibf8A5A8i9CHhJQP3/bvbCqXLq7TV6BP4NG0nCjJcl+PyL9GucIIAAAgi4ViBXmXez5z2vVxpy1XWSMEtJwvAUom7CCQJWFCABY8VRp88I1EIgdcDDUrzva61kvPIb9PAb2teiFooggIA3BHLffUOy57+gb5Pqp/wWtuGEOfz/2BuDQZsIIGAZgdz1qyR7wTS9v/VatZVGM5aKLShYv8YJAghYS4AEjLXGm94iUGuBLOU/IE4p/yGhHtE9B0iD3oO0c/4HAQR8Q6Do/3ZLxrjBor6apB3KgrwxA0ZIVPdevtEBokQAAQR8UCB37SuS/dIsPfJ6192oPIW4VPwCAvRrnCCAgHUESMBYZ6zpKQJ1Eij4ZLNkTBqq1VHvunaSOGd5neqjMAIIeF6g9PCvkvZcX7EfT9Ebr3/XAxI3dCL/GNBFOEEAAQRcK5Dz2lI5uWyuXmn47V0lftxM/XtOEEDAOgIkYKwz1vQUgToJlB47LMd63K7VYYtqIM03f1Wn+iiMAALeESjPzZH00QOl+B/f6AGoaxM0emGh+NeP1K9xggACCCDgOoGcFQvl5KuL9AqjHu0nMX2H6N9zggAC1hAgAWONcaaXCNRZoLKyUg53aiUVBflaXU3e/kwCGyXVuV4qQAABzwtUlpXJiRljpWDr+3rjAcnNJGHmyxKk/MmBAAIIIOB6gROzxkv+xnV6xXHPPS8RXbrp33OCAALmFyABY/4xpocIuEwgdfBjUvzNHq2++CkLJPwvVU/EuKwBKkIAAY8K/O9j8baISIl/foGEXt3ao3HQGAIIIGAFAXVnuvSRT0nRVzuqumuzaevBhLa5yQrdp48IIKAIkIDhxwABBBwWyF46R3LXLNPuj3y4j8Q+NczhstyIAALGFCj44mPJeP45kZLiqgCVhSHjhk2UiDsfMGbARIUAAgj4sEDF6SJJHfiIlP7rQFUvQupJ0uI1EnJhSx/uFaEjgICjAiRgHJXiPgQQkIId2yRjzNOaRMhVrSVpwWpUEEDABALFyj8E0kf0k/KsTL03kT0el5j+z4mfslsSBwIIIICA6wTsOVmS+uSDYk+rWhDdFh0jjZetl8CExq5rhJoQQMCQAiRgDDksBIWAMQXsGcflyH03a8HZwsKl2dav+ceZMYeKqBBwWsCemaHskPSklP58UC8bdtNt0nDCbLEFBevXOEEAAQQQqLtA6dFDktqvu1TkndIqC2zSQpKWvin+EVF1r5waEEDAsAIkYAw7NASGgDEF/n1nG6lQdlFRj+Q3tyoLdjY3ZqBEhQACTguoj8ZnTB4uRbs+1csGt7xCEqYvEX9l9zMOBBBAAAHXCai70aU+01OktFSrNOTyayRx7qviFxTkukaoCQEEDCVAAsZQw0EwCBhf4PiwPnJ6z04t0HjlN+PhHe4yftBEiAACDgtUVlRI9qIZcmr9Kr1MQOMmkjBrOTsk6SKcIIAAAq4RKPh8q2SMG6xXFta+k8RPmssTxroIJwiYS4AEjLnGk94g4HaBnBUL5eSri7R2Irs9JrGDRru9TRpAAAHPC+S+/bpkz39BRNmCXj1symPxCTOWSMilV3k+GFpEAAEETCyQu26VZC+cpvcwsnsviR04Uv+eEwQQMI8ACRjzjCU9QcAjAgW7t0vGyP5aWyHXtJGkeas80i6NIICA5wUKlFeRMiYO/W2HJOWx+PhxsyT85o6eD4YWEUAAARMLZM2bIqeUxPeZI+aZsRJ1/yNnvuVPBBAwiQAJGJMMJN1AwFMCpcf+Lcd6VP3jKyA+QZq+84WnmqYdBBDwgkDxwf2SNryvvvaTGkLMgBESpeySxIEAAggg4BoB9fXPjHGDpHDHJ1UVKjvQxb+wUMLbdXBNA9SCAAKGECABY4hhIAgEfEeg0m6XQ7dcJlJergXdfPs+sQWH+E4HiBQBBJwWKDueImnK+k9lyq4dZ46Iex+W2MFjxM/f/8wl/kQAAQQQqINARWmJHB/0qJQc+L6qFmUHuqSFr0nIn6+oQ60URQABIwmQgDHSaBALAj4icKT7bWJPOaJF23jVBxL8pwt9JHLCRACB2gqU55+S9JEDpHjf3/UqQq+/WeInvii2eqH6NU4QQAABBGovUH7qpKQ8+aD+31m2yGhJenmdBDVuWvtKKYkAAoYRIAFjmKEgEAR8R0B9HaHoqx1awPHPz2c9CN8ZOiJFoE4ClcpWqRlTR0rhpx/q9QRd2FLZIellCWgQq1/jBAEEEECg9gJlqUe1JExFbo5WiboTXeMl68Q/ukHtK6UkAggYQoAEjCGGgSAQ8C2BrAXT9C1qo/sOkQaP9vOtDhAtAgjUWqBS2RUpZ9lcyX39Zb2OgEZJkjBb2aa62Xn6NU4QQAABBGovUPzPf0jq08oivCXFWiUhl10ticrrSH7+AbWvlJIIIOB1ARIwXh8CAkDA9wTy3n9TMmdP1AKv3/FuaTh2hu91gogRQKBOAnkfrJfMORP19aBs4fUlfupiCb3qujrVS2EEEEAAgSoBbefJ0QNFlAV61SNS2RUpVtkdiQMBBHxXgASM744dkSPgNYGib/ZI2uDHtPaDW14hjZeu81osNIwAAt4TKNqzU9LHDZbK00VVQQQESsPRU6X+bV28FxQtI4AAAiYSOPnGcslZMlvvUfyEORLe4U79e04QQMC3BEjA+NZ4ES0ChhCwZ2bIkXvaabHYIqKk+Za9hoiLIBBAwPMCJT8fVLap7iPlWZl647yaqFNwggACCNRZIH3M08r21Nuq6lF2nkxetkGCzrugzvVSAQIIeF6ABIznzWkRAZ8XUNeAONThSpHi01pfmikJGH8lEcOBAALWFLBnpClJmL5SeugnHSDy/r9KzCBlm2qbTb/GCQIIIICA8wIVRYWS0vt+KTt6SCusLsqb/Mq7or76yYEAAr4lQALGt8aLaBEwjMCxXl2l9OcftXjU7RFD/nyFYWIjEAQQ8LxARWGBpI1WtqlWXlE8c4Td3FHix80Sv6CgM5f4EwEEEECgFgKlh3+VlL4PSKWSjFGP0OtvlkbTl4ifn18taqMIAgh4S4AEjLfkaRcBHxdIH/+MFH72kdaLuDHTJaLTPT7eI8JHAIG6ClSWlUnGlOekcPsWvaqQK6+VhGkv8ZtaXYQTBBBAoHYCBZ9vlQxl3a0zR3SfwdLgsf5nvuVPBBDwAQESMD4wSISIgBEFcpbPk5Orl2ihRSnbUMco21FzIIAAAuoritkL1a3qV+sYQeddKAlzXpGA2Ib6NU4QQAABBJwXyFo8U069uaKqoPL0S8Ls5RJ63Y3OV0QJBBDwigAJGK+w0ygCvi+Qt/V9yZwyQutI2F9ul0ZTFvh+p+gBAgi4TCB37SuS/dIsvb6A+ERJmLtCgpq00K9xggACCCDgnEBlebkcH9JLir+t2gDBFhEpjVe8K4EJjZ2riLsRQMArAiRgvMJOowj4vkDxD/sk9cluWkfU324nr/7A9ztFDxBAwKUCWqJ2+hgRu12rV901LWHWy6wZ5VJlKkMAAasJlJ/MkWOP3y3lyq6U6hF0/sWirsdnCwq2GgX9RcDnBEjA+NyQETACxhAozz8lhztdWxWM8hd+i+37WAjOGENDFAgYSqBo7y5JHztIKk8XVcWlbKHaaPI8CVMWkORAAAEEEKidQPE//yGp/R9SEtxlWgX1lbX4Gipr8nEggICxBUjAGHt8iA4BQwv8+842UpGbo8XY9J0vJCA+wdDxEhwCCHhHoPjH/ZI2rK8+X4i/v8QNnywRd97vnYBoFQEEEDCBQN7GtyRz1gS9J3HDJkrE3T307zlBAAHjCZCAMd6YEBECPiOQ8lQPKdn/rRZvwrxVEnpNG5+JnUARQMCzAqUpRyTt2cfFfjxFbzi6zzPKDh5P6d9zggACCCDgnMCJqaMkf8u7VYUCAiVp8RvKa56XO1cJdyOAgMcESMB4jJqGEDCfwH//pR87dIJE3qM8CsuBAAII1CBgz8lSnoTpI6U//VO/I0KZN2KHjBM/m02/xgkCCCCAgGMCFaUlktqvuz6v+sfFS+OV70lAdIxjFXAXAgh4VIAEjEe5aQwBcwmcXLNMcpbO0ToV+cCjEjtYWWyTAwEEEDiHQEVRoaSPGSin//6lflfYTbdJ/IQ54hcUpF/jBAEEEEDAMYGytBRJeeJeqcg7pRUIufJaSVSeTPZTXvfkQAABYwmQgDHWeBANAj4lULBjm2SMeVqLud517SRxznKfip9gEUDAOwKVyq5IJ14YIQWfbNYDCLm8lTSa/pL414/Qr3GCAAIIIOCYQNH/7Za0ob1FKiu1ApE9HpfYASMcK8xdCCDgMQESMB6jpiEEzCdQ+utPcuyxu7SOBTZpIU3WfmS+TtIjBBBwi0Cl8o+E7EUz5NS6V/X6g1pcIAkvrpSA2Dj9GicIIIAAAo4J5KxeIieXz9NvbjRjKTvO6RqcIGAMARIwxhgHokDAJwXKT52Uw3e01mK3hYVL84+/8cl+EDQCCHhPIPfNlZK9eIYeQEBiY0mcu0oCk5L1a5wggAACCPyxgJrYTh/VX4p2f6bdbFPWgWny2mbxj27wx4W5AwEEPCJAAsYjzDSCgHkFfv1LSxF7mdbB5tv3iS04xLydpWcIIOAWgfxtHyivJI0UKS/X6rfFxEmS8iRM0HkXuKU9KkUAAQTMKlCelyvHHr1TyrMytS6G3niLJEx7yazdpV8I+JwACRifGzICRsBYAkfuu1nsGce1oJqs+5TfWhtreIgGAZ8RKPryC0kbO0hE2dFDPWzKWjAJs5ZJSMsrte/5HwQQQAABxwS09WCefUK/OW7kFIm48wH9e04QQMB7AiRgvGdPywiYQiDlyW5S8sM+rS9JL62VkMuuNkW/6AQCCHheoPgf30ja8L5SUVhQ1bjyRF3C1EUSet2Nng+GFhFAAAEfFsia97ycenuN1gO/eqGSvOoDfknmw+NJ6OYRIAFjnrGkJwh4RSB99EAp3PmJ1nb85HkS3r6TV+KgUQQQMIdAyc8H5bjym9uKk9lVHQoIkPhxsyX8FuYWc4wwvUAAAU8IVJQUS0qve6Ts6CGtueBLr5KkRWvYmtoT+LSBwDkESMCcA4ePEEDgjwUy50ySvPfWajfGDB4jUQ88+seFuAMBBBA4h0BpyhFJe6aX2NNTq+7y85O4YRMlomv3c5TiIwQQQACB/xYo/tcBSX3yQWWtPrt2ObrvEGnwaL//voVzBBDwsAAJGA+D0xwCZhPIWf2SsuXhfK1bUX/tKzH9hpqti/QHAQS8IGDPzJDjQ3pJ2eFf9db5x4NOwQkCCCDgkMDvtqZWnihMWrZBQi64xKGy3IQAAq4XIAHjelNqRMBSAnmb35bM6WO0PtfveLc0HPvbdrKWgqCzCCDgcgF1N4+0ob2l5OB+ve7I7r0kZsAI8VOeiuFAAAEEEDi3QKWyu1zqgIel5MB32o2Bzc6TxivfE1tQ8LkL8ikCCLhFgASMW1ipFAHrCBTt2Slpw/poHa7X6npJnLvSOp2npwgg4HaBiqIiSRvdX4q//kpvq37neyVuxBTWMtBFOEEAAQRqFihLPSrHenaVytNF2k2R9z8isc+MrbkAnyCAgNsESMC4jZaKEbCGgLpgZkqvu7XOBjY/X5q8vtkaHaeXCCDgMYHKsjLJmPisFO7YprcZ1q6DxE98UfyCgvRrnCCAAAIIVC+Qt2m9ZM4Yp3+YMPdVCW3VVv+eEwQQ8IwACRjPONMKAqYVsOdkyZEu12v9s0VESfMte03bVzqGAALeE1Afo8+cNV7yldcezxwhV7WWhOlLxBYaeuYSfyKAAAII1CCQNvIpKdr9mfapf2xDSVZ+aeZfP7KGu7mMAALuECAB4w5V6kTAQgKVFRVy6OaWIso/jtSjxecHxC8w0EICdBUBBDwpkLV4ppx6c4XeZPBFl0rCnOXiHxmtX+MEAQQQQOBsAfvJbDn2yJ1SkZujfRh2SydpNGne2TdyBQEE3CZAAsZttFSMgLkF1HUZ7NkZUp6VKemj+ktFQb7W4bCbOkh5vnKuJGQSF74mfjabuSHoHQIIeFzg5JplkrN0jt5uYNPzJHHeqxIQF69f4wQBBBBA4GyBAuUJmAzlSZgzR/yE2RLe4a4z3/InAgi4WYAEjJuBqR4BswpkvTRLTq19pcbuRXbrKbGDRtX4OR8ggAACdRHI+0BZz0B5JUkqK7VqAhIaS+L81RKY2Lgu1VIWAQQQML3AiRljJX/TBq2ftvD6krx6kwTEJ5i+33QQASMIkIAxwigQAwI+KFBRfFp7jNWellJt9Opf5kHnXVDtZ1xEAAEEXCFQ8PlWyZg0TMReplWnrmmgJmGCmrZwRfXUgQACCJhSQH2K+VivLmJPPab1T11PK3H+KvHz8zNlf+kUAkYSIAFjpNEgFgR8TKBo7y5JG9r7rKiDLmwpySveOes6FxBAAAFXCxTt2alsUz1QpLREq9oW1UASld09gs+/yNVNUR8CCCBgGoHi/d9K6oCHRZS1/NQjRnlqOUp5epkDAQTcK0ACxr2+1I6A6QUyJg2Vgk9+v/V07NAJEnnPQ6bvOx1EAAFjCBR9u1fSR/STytNFWkC2+hHKwrwrJOSSy4wRIFEggAACBhTIXjZXcl9bWhVZcIg0eWOLBDZKMmCkhISAeQRIwJhnLOkJAl4R0FbUf6ijVOTnVbUfFCTNNv5N2dYwwivx0CgCCFhToPiHfcoTeU/oC4L7hYZJwsyXpd4VrawJQq8RQACBPxCotNslpfe9UvrLv7Q7Q29oLwnTl/xBKT5GAIG6CJCAqYseZRFAQBPI27xBMqeP1c7DO9wp8RN+250EIgQQQMBTAiU/H5TjQx7Xt1iVoGBJmLZYQq+7UQsh7+ONEhAbL6FXt/ZUSLSDAAIIGFqg+IfvJfXJB/UY45U5M/zGW/XvOUEAAdcKkIBxrSe1IWBJgUplF5LjAx+R4n1/l4R5qyT0mjaWdKDTCCDgfYHSw7/K8Wcek/KszKpgAgIlfvJcbbekjHGDpf5tXaTh2BneD5QIEEAAAYMInFB2lMvfuE6LRt0NKXnNFrHVCzVIdISBgLkESMCYazzpDQJeEyg9ckjSRj4lTdZuZRV9r40CDSOAgCpQpuzscXzwY2JPT60C8fcX8bNpuyWpryY12/Sl2JT1DjgQQAABBETK80/J0R7K6+S5ORpHZI8nJHbAc9AggIAbBEjAuAGVKhGwqkCZsiV1YEJjq3affiOAgIEE7CfSJVVNwhw7fFZU8ZPmSvgtnc+6zgUEEEDAqgJ5W9+XzCkjqrqvJK2TX31fglpcYFUO+o2A2wRIwLiNlooRQAABBBBAwJsCBbu3S8bI/meFENr2L9oCvWd9wAUEEEDAwgKpTyuvk3/3f5pAyGVXS+LiN3iq2cI/D3TdPQIkYNzjSq0IIIAAAggg4EUBbUFe5R8TFQX5Z0eh/Ha32cbd4h/V4OzPuIIAAghYVEBdQ+tYz67a65oqQdzIFyTizvstqkG3EXCPAAkY97hSKwIIIIAAAgh4SaCyokIyJg+Twi8+Vv4hYa82ipgh4yXqvoer/YyLCCCAgFUFspfNldzXlmrdt0VESZM3t4p/ZLRVOeg3Ai4XIAHjclIqRAABBBBAAAEjCKhPvxR9tUPUV5FO79kpFYUFeljBl1wmjZdt0L/nBAEEEEBApKKkWI799Q6xK+v6qUf9O+6ThqOmQoMAAi4SIAHjIkiqQQABBBBAAAHjClQqT8Kc/m6vFCrJmKLdn4k9I02S39omQY2bGjdoIkMAAQS8IKAmrtOG99VbTnpprahrwnAggEDdBUjA1N2QGhBAAAEEEEDAxwSKf/qn2AKDJKj5n3wscsJFAAEE3C+QPuZpKdyxTWsosPn5krzqffHzD3B/w7SAgMkFSMCYfIDpHgIIIIAAAggggAACCCDgjID9RLocfbiTVJ4u0oo1eGqYRD/cx5kquBcBBKoRIAFTDQqXEEAAAQQQQAABBBBAAAErC+S+9apkL5peRRBST5q+sUUC4hOtTELfEaizAAmYOhNSAQIIIIAAAggggAACCCBgLoHK8nJJeeIeKf3lX1rHQm9oLwnTl5irk/QGAQ8LkIDxMDjNIYAAAggggAACCCCAAAK+IFB84DtJ7dddDzV++ksSfsMt+vecIICAcwIkYJzz4m4EEEAAAQQQQAABBBBAwDICJ2aOk/wP1mv9VV9BSlZeRbIpryRxIICA8wIkYJw3owQCCCCAAAIIIIAAAgggYAmB8vxTcrRHR6nIzdH6G/34QGnw+NOW6DudRMDVAiRgXC1KfQgggAACCCCAAAIIIICAiQTyPnxHMqeN1nrkVy9Umqz/VAKiY0zUQ7qCgGcESMB4xplWEEAAAQQQQAABBBBAAAGfFKisqJCUnl2l9NBPWvwR9z0scUPG+2RfCBoBbwqQgPGmPm0jgAACCCCAAAIIIIAAAj4gUPTVDkkb3rcq0oAAafLGRxKY1MQHIidEBIwjQALGOGNBJAgggAACCCCAAAIIIICAYQVSB/5Vir//uxZf2C2dpdGkuYaNlcAQMKIACRgjjgoxIYAAAggggAACCCCAAAIGEyj+YZ+kPtlNjyppxTsScmFL/XtOEEDg3AIkYM7tw6cIIIAAAggggAACCCCAAAL/EUgf87QU7timfRdyTRtJmrcKGwQQcFCABIyDUNyGAAIIIIAAAggggAACCFhdoPToITn2yJ0i5eUaRcLclRLa6nqrs9B/BBwSIAHjEBM3IYAAAggggAACCCCAAAIIqAInZo2X/I3rNIyg8y+WxivfEz8/Pyn+6Z8S0CBOAmLjgEIAgWoESMBUg8IlBBBAAAEEEEAAAQQQQACB6gXsWZly5MFbRUqKtRsaPDVMSn/5UQo+2SxJS9+SkJZXVl+QqwhYXIAEjMV/AOg+AggggAACCCCAAAIIIOCsQPayuZL72tKziiXMXy2hV7c+6zoXEEBAhAQMPwUIIIAAAggggAACCCCAAAIOC1ScLpKcVxfLqbWvnFUmYfZyCW3d7qzrXEAAARIw/AwggAACCCCAAAIIIIAAAgg4KFD05ReSMX2MVORkVVsifuoiCW/XodrPuIiA1QV4AsbqPwH0HwEEEEAAAQQQQAABBBBwUKBCWfcle/FMyXv3jWpLxE98UcJvvaPaz7iIgNUFSMBY/SeA/iOAAAIIIIAAAggggAACTgoU7dkpGVNHnfUkTNzoaRLR+V4na+N2BKwhQALGGuNMLxFAAAEEEEAAAQQQQAABlwqU5+bIiRljpWjXdr3euGETJeLuHvr3nCCAwG8CJGB+s+AMAQQQQAABBBBAAAEEEEDASYG8Tesla8E0qVQW540ZNEqiuvV0sgZuR8AaAiRgrDHO9BIBBBBAAAEEEEAAAQQQcJtAacoROTF5mIQpC/BG/7Wv29qhYgR8WYAEjC+PHrEjgAACCCCAAAIIIIAAAgYRqCy3S1nKUQlq2sIgEREGAsYSIAFjrPEgGgQQQAABBBBAAAEEEEAAAQQQMKEACRgTDipdQgABBBBAAAEEEEAAAQQQQAABYwmQgDHWeBANAm4RsNvtcuTIETl06JCkpaVJZmbmWV9FRUVy+vRpKSkpkeLiYv3LZrNJYGDgWV8RERHSoEEDiYmJ0f5Uz9WvpKQkadasmTRt2lQSEhJELc+BAAIIWF2AedjqPwH0HwEEvC3APOztEaB9VYAEDD8HCJhIIDs7W77//nvZt2+f/Pjjj1rCRU26HD16VMrLyz3eUzVxk5ycrCVkLrnkEmnZsqX+FRkZ6fF4aBABBBBwtwDzsLuFqR8BBBA4twDz8Ll9+NS7AiRgvOtP6wjUWiA3N1d2794te/bs0RIuauIlJSWl1vV5uqCamLnsssukTZs20rZtW7n22mslLCzM02HQHgIIIFBrAebhWtNREAEEEHCJAPOwSxipxIMCJGA8iE1TCNRFQH11aOfOnbJr1y7ta//+/VJZWVmXKg1V1t/fX0vIqMmYdu3aya233qq90mSoIAkGAQQsLcA8bOnhp/MIIGAAAeZhAwwCIdRJgARMnfgojID7BCoqKmTv3r3y4Ycfal/qEy5WOtS1Y9SnYm6//Xbp2LGjtGrVStQkDQcCCCDgKQHmYeZhT/2s0Q4CCFQvwDzMPFz9T4bvXiUB47tjR+QmFFAXv92yZYu89957snXrVsnKyjJhL2vXpejoaOnSpYt069ZNezomKCiodhVRCgEEEDiHAPNwzTjMwzXb8JeAFXEAAAr6SURBVAkCCLhOgHm4Zkvm4ZptfOUTEjC+MlLEaVoBdXHc7du3y9q1a7XES15enmn76qqORUVFSdeuXbVkTIcOHbQdmlxVN/UggID1BJiHnR9z5mHnzSiBAAI1CzAP12xT0yfMwzXJGPs6CRhjjw/RmVhAXcNl2bJlsn79ejlx4oQheqruWhQSEqJ/BQcHa7snqdv2lZWV6V/qbyZKS0sNEXNsbKw88sgj8sQTT8if//xnQ8REEAgg4BsCzMOuGSfmYdc4UgsCVhRgHnbNqDMPu8bRE7WQgPGEMm0g8B8BNXGxYcMGWbp0qXz55ZcecVHXUklKSpIWLVrIeeedp20JHR8fL3FxcdpXw4YNtT8jIiKcWmOlsLBQcnJyfveVmpoqR44c+d1XZmamR/qpNtK6dWvp3bu3PPjggxIeHu6xdmkIAQR8R4B52L1jxTzsXl9qR8AMAszD7h1F5mH3+ta1dhIwdRWkPAIOCBw+fFgWLFggq1ev1hIWDhSp1S1NmzaVK664Qv+66KKLpHnz5qI+yeKtIz8/X3744Qc5cOCAqL/lOPOnOxMz9evX156IGTx4sJZw8lbfaRcBBIwjwDzMPGycn0YiQcCaAszDzMPW/Mn/fa9JwPzeg+8QcKmAunPRzJkztdeM1HdbXXmEhoZKmzZt5MYbb9S+rrzySlEX5vKVQ/1LWH0KSP366quvZN++fdrrTq6MX9016d5775Vnn31WezrGlXVTFwII+IYA83DN48Q8XLMNnyCAgOsEmIdrtmQertnGrJ+QgDHryNIvrwp8/vnnMmPGDPn4449dFoe6PssNN9wgnTp1knbt2slVV11lqsVn1Veadu/erZmpO0AdPHjQZXZqRW3btpWxY8dqfi6tmMoQQMCQAszDzg8L87DzZpRAAIGaBZiHa7ap6RPm4ZpkzHOdBIx5xpKeGEBg165dMnr0aC2R4Ipw1PVZOnfuLHfccYfcdtttoq7TYpXj2LFj2lbc6rbcakJGfV/YFYf6XuykSZM0T1fURx0IIGAsAeZh140H87DrLKkJASsJMA+7brSZh11naZSaSMAYZSSIw6cFvvvuOxkzZox89NFHde5HTEyM3HffffLQQw9prxapi+ha/VDXkdm0aZO2gLGrkjHXX3+9TJ48Wdq3b291XvqPgCkEXD0P33///dKjRw/m4f/8dDAPm+L/JnQCAbcKMA+7lVeYh93r66naScB4Spp2TCnwyy+/aE+8vP3221JZWVnrPtarV0/uueceLemiPumivm7EUb2A+pfPxo0bZcWKFbJjx446uast3H777fLiiy/KJZdcUn2DXEUAAUMLMA97fniYhz1vTosIGFmAedjzo8M87HlzV7VIAsZVktRjKQH1/cypU6fKnDlzpKSkpNZ9v/jii+XJJ5+Uxx57TKKiompdj1ULqn/hr1y5UlatWiVpaWm1ZggICNDGQX01SX0CiQMBBIwvwDxsjDFiHjbGOBAFAt4QYB72hvrZbTIPn21i5CskYIw8OsRmSIG33npLhg8fLikpKbWKT326RX20vV+/ftpiurWqhEK/E7Db7bJ582btSRb1vePaHmoSbMKECTJw4EBRkzIcCCBgTAHmYeONC/Ow8caEiBBwpwDzsDt1a1c383Dt3DxdigSMp8Vpz2cF1F151KTJzp07a9WHsLAw6dOnj7YlcnJycq3qoNAfC3z99dfak0nqa2HqX0S1OS6//HJZvny5tGrVqjbFKYMAAm4SYB52E6yLq2UedjEo1SFgIAHmYQMNxjlCYR4+B46XPyIB4+UBoHnjC6j/iJ81a5a2c05tXjeKi4uTp59+WgYMGCANGjQwfodNEqG6ary6tsvSpUtrtYOSuvjxoEGDZMqUKaImzzgQQMB7AszD3rOvS8vMw3XRoywCxhJgHjbWeDgaDfOwo1Keu48EjOesackHBfbt2yePP/64fPvtt05HHx0dLSNGjNCSL6GhoU6Xp4BrBNS1YdT1etQnWmqTQGvSpIksWbJE2w7cNRFRCwIIOCPAPOyMljHvZR425rgQFQKOCjAPOypl3PuYh40zNiRgjDMWRGIgATXL//zzz8u0adOkrKzMqcjUpyWeeeYZbZ2YyMhIp8pys/sE1DV71ETMK6+84vSYqlH17dtXe6KGp2HcN0bUjMB/CzAP/7eGOc6Zh80xjvTCOgLMw+Yba+Zh748pCRjvjwERGEzg8OHD0qNHD9mzZ49Tkfn7+2trxIwfP14aNmzoVFlu9pzAzz//LEOHDpVNmzY53egFF1wga9asYW0Yp+UogIBzAszDznn52t3Mw742YsRrRQHmYXOPOvOw98aXBIz37GnZgALr1q3TtiM+deqUU9HddNNNsnDhQrn00kudKsfN3hP49NNPtQWR9+/f71QQ6u5I6k5Jo0aNEjXpxoEAAq4VYB52raeRa2MeNvLoEJuVBZiHrTP6zMOeH2sSMJ43p0UDChQWFmoLrq5cudKp6Bo3bqwt0Nu9e3enynGzMQTKy8u1tWHUZEpubq5TQalJN/U/UOLj450qx80IIFC9APNw9S5mv8o8bPYRpn++JMA87Euj5bpYmYddZ+lITSRgHFHiHlMLHDp0SLp27SoHDhxwuJ/skOMwlU/cmJ6eri2WrG5d7cyRmJgoGzZskLZt2zpTjHsRQOB/BJiH/wfEgt8yD1tw0OmyoQSYhw01HF4JhnnYM+wkYDzjTCsGFdi2bZuoT6+cPHnS4QgvuugiUZ+UadOmjcNluNE3BNR1Yfr37y/qAmWOHoGBgTJ79mztCSpHy3AfAgj8JsA8/JsFZ6Ktz8U8zE8CAp4VYB72rLfRW+O/h907QiRg3OtL7QYWmDlzpraOR0VFhUNRqmt/DBs2TCZOnCjBwcEOleEm3xPIz8/XFulVt6125njooYdkxYoVEhIS4kwx7kXA0gLMw5Ye/ho7zzxcIw0fIOByAeZhl5OaokLmYfcNIwkY99lSs0EFSkpKpGfPnvLWW285HGGLFi3kzTfflGuvvdbhMtzo2wIbN26U3r17S1ZWlsMdad26tajl2AXLYTJutKgA87BFB97JbjMPOwnG7Qg4IcA87ASWhW9lHnb94JOAcb0pNRpYQH3VSF3vZdeuXQ5HqW5JvXTpUomIiHC4DDeaQ0B9F7ZXr16ydetWhzvUvHlz+fDDD+Xiiy92uAw3ImAlAeZhK4123fvKPFx3Q2pA4H8FmIf/V4TvzyXAPHwuHec/IwHjvBklfFTg6NGj0rFjRzl48KBDPQgLC5NFixZpT8s4VICbTCswf/58GT58uJSVlTnUx6ioKHnnnXekffv2Dt3PTQhYRYB52Coj7fp+Mg+73pQarSnAPGzNcXdFr5mHXaEoQgLGNY7UYnCB77//Xjp37ixpaWkORaoutPv+++/LhRde6ND93GR+gb/97W/SrVs3OX78uEOdVRfnXbVqlahrw3AggIAI8zA/BXUVYB6uqyDlrS7APGz1n4C69595uO6GJGDqbkgNBhdQXze64447RF1MypGjS5cu8vrrr/PKkSNYFrsnIyNDS8Ls3LnToZ6r25UvWbJE+vbt69D93ISAWQWYh806sp7vF/Ow581p0RwCzMPmGEcj9IJ5uG6jQAKmbn6UNrjAZ599JnfddZcUFRX9YaR+fn4yfvx4mTBhgqjnHAhUJ2C32+W5556TuXPnVvdxtddmzZql7aBV7YdcRMDkAszDJh9gL3SPedgL6DTp0wLMwz49fIYMnnm49sPy/wAAAP//8NH1SgAAQABJREFU7Z0JtFTVlb8PKGhEhagQBBXHOEC0VaLGAcGJOA+tcUzHtlUcaDsxxMaOi/U3RpEYHNoh0GqrUYnRNuIUwQkBFTVxaCfiPCAYRcUJJ4T613nte69eVd1bp6ruqXv2Pl+t5XpV9567797f77zfuW7uu9WtUHwZXhBQSGD69OnmgAMOMF988UXN6lZaaSVz/fXXt42vOZgBECgSmDx5shk9erT5+uuvnXiMGzfOnHnmmU5jGQQBLQTwYS1KhlkHPhymLmQVFgF8OCw9tGWDD9evaDcaMPVD44jwCdx+++3mkEMOMV9++WXNZPv27WvuuOMOs80229QcywAIlBKwFzV2nn3yySelmxPfjx071owfPz5xPzsgoIkAPqxJzXBrwYfD1YbM8ieAD+evQQwZ4MP1qUwDpj5ejBZA4M9//nPbnSxLliypme2GG25opk2bZjbYYIOaYxkAgWoEnnnmGbP33nubefPmVdtdsc3eBWPvhuEFAc0E8GHN6oZXGz4cniZklD8BfDh/DWLKAB92V5sGjDsrRgogMHv2bDNy5Ejz+eef18x22223NfZfBuwdMLwg0AyB+fPnm913393MnTvXKcx5551nxowZ4zSWQRCQRgAflqaYjnzxYR06UkU2BPDhbDgSpT4C+LAbLxowbpwYJYDAE088YUaMGGE+/vjjmtnacbb50qtXr5pjGQABFwILFy5sa/49+eSTLsPNJZdcYk4++WSnsQyCgBQC+LAUpXTmiQ/r1JWq6iOAD9fHi9HZEsCHa/OkAVObESMEEPjb3/5mhg0bZuwvfa3XHnvsYaZOnWq+9a1v1RrKfgjUReCjjz4ye+21l3n44YdrHtetWzdz7bXXmiOPPLLmWAZAQAIBfFiCSvpzxIf1a0yFyQTw4WQ27GkdAXw4nTUNmHQ+7BVAYMGCBWa77bZzegaHfVbHzTffbFZYYQUBlZGiRAKLFy82+++/v7nvvvtqpt+zZ09jH1w2fPjwmmMZAIGQCeDDIasTX274cHyaU7Ex+DCzICQC+HCyGjRgktmwRwCBzz77rO3Ol8cff7xmtvYrqW+88UbTo0ePmmMZAIFmCNh5ueeee5pZs2bVDNOnTx/z0EMPmc0226zmWAZAIEQC+HCIqpATPswciIkAPhyT2nJqxYera0UDpjoXtgogsGzZMnPwwQebW265pWa29gGp9qum7R0HvCDQCgL2q6l3220389hjj9U83aBBg8wjjzxi+vfvX3MsAyAQEgF8OCQ1yKWcAD5cToTPGgngwxpV1VMTPlypJQ2YSiZsEULgtNNOM/bbZGq9fvCDH5h77rmHB+7WAsX+zAksWrTI7LLLLuapp56qGXvrrbc29lsLeDZRTVQMCIgAPhyQGKRSlQA+XBULGxURwIcViam0FHy4q7A0YLry4JMQAv/93/9t/uVf/qVmtptvvrl54IEHzLe//e2aYxkAAR8E7IOhd9ppJ/PCCy/UDH/UUUe1PZi35kAGQCAAAvhwACKQghMBfNgJE4MEEsCHBYoWacr4cKfwNGA6WfBOCAH7vJcddtjBfPnll6kZr7/++m3fRvOd73wndRw7IeCbwGuvvdb2oOh333235qkuvPBC82//9m81xzEAAnkSwIfzpM+5GyGADzdCjWNCJoAPh6wOuVUj8Oqrrxr7lwmxXw/TgKk2O9gWLAF7C9tWW21lXn/99dQce/fubebMmWM23XTT1HHshECrCNhnwYwYMcLYB5KlvZZffvm2b1CyX6vOCwIhEsCHQ1SFnFwI4MMulBgjgQA+LEElcqxGAB82hgZMtZnBtiAJFAoFs++++5o777wzNT/7P7B33XVX2wNQUweyEwItJnDrrbeagw46yNgH5qW97F1b9l+2Bg4cmDaMfRBoOQF8uOXIOWHGBPDhjIESruUE8OGWI+eEGROI3YdpwGQ8oQjnj8DZZ59tzjjjjJonmDx5sjn++ONrjmMABPIgYP/E6Gc/+1nNU9s7YGbMmGG6d+9ecywDINAqAvhwq0hzHp8E8GGfdIntmwA+7Jsw8VtBIGYfpgHTihnGOZom8OCDD5qdd9655p0D9n9szz///KbPRwAI+CTw4x//2Fx33XU1T3HWWWc5NR1rBmIABDIggA9nAJEQwRDAh4ORgkTqIIAP1wGLocETiNWHacAEPzVJ0H5//BZbbGHsA/TSXvabZu6//35j/wSJFwRCJvD555+b7bffvubXU9u5bL+aervttgu5HHKLgAA+HIHIkZWID0cmuIJy8WEFIlJCFwKx+jANmC7TgA8hEjjmmGPMVVddlZpa//79zRNPPGHWXHPN1HHshEAoBGxDcejQoeaDDz5ITcl+m9dTTz1lVlllldRx7ISATwL4sE+6xM6LAD6cF3nO2wgBfLgRahwTOoEYfZgGTOizMvL8brnllraHlqZhWG655dq+Ncb+iRIvCEgiMH36dLPnnnsa+0C9tNc//dM/mWuuuSZtCPsg4I0APuwNLYEDIIAPByACKdQkgA/XRMQAwQRi82EaMIInq/bU33nnHTNkyBDz3nvvpZY6YcIEc9ppp6WOYScEQiVg5+55551XMz377V977bVXzXEMgECWBPDhLGkSK1QC+HCoypCXJYAPMw9iIBCTD9OAiWFGC63x0EMPNTfeeGNq9rvssou59957Tbdu3VLHsRMCoRJYsmRJ2zNe7J/Qpb3WXntt89xzz/GnSGmQ2Jc5AXw4c6QEDJAAPhygKKTUQQAf7kDBG8UEYvJhGjCKJ7Lk0v785z+bvffeO7WEPn36mKefftrY/zHlBQHJBF544QWz9dZbm8WLF6eWcdJJJ5lLL700dQw7IZAVAXw4K5LEkUAAH5agUnw54sPxaR5zxbH4MA2YmGd5oLXb/wkdPHiweeONN1IznDJlijn88MNTx7ATAlIIXHHFFea4445LTdfe6TVr1iyz4447po5jJwSaJYAPN0uQ4yUSwIclqqY3Z3xYr7ZUlkwgBh+mAZOsP3tyIvDzn//cnH/++alnt40X24DhBQFNBOwDeadNm5Za0iabbNJ251ePHj1Sx7ETAs0QwIebocexkgngw5LV05U7PqxLT6pxJ6Ddh2nAuM8FRraAgP26XfvVvEuXLk08W79+/czcuXPNaqutljiGHRCQSMDe9WUfPP3pp5+mpm8blD/72c9Sx7ATAo0SwIcbJcdxGgjgwxpUlF8DPixfQyponIB2H6YB0/jc4EgPBEaMGGEeeOCB1MjXX3+9OeKII1LHsBMCUglcfPHF5pRTTklNv3fv3uall14yffv2TR3HTgg0QgAfboQax2gigA9rUlNmLfiwTN3IOjsCmn2YBkx284RITRKYOnWqOfDAA1OjjBw5suafaKQGYCcEAiewbNmytme8zJkzJzXTY4891lx++eWpY9gJgXoJ4MP1EmO8RgL4sEZV5dSED8vRikz9EdDswzRg/M0bItdBwH712GabbWZefvnlxKO+9a1vtX0N73rrrZc4hh0Q0EDg+eefN1tssYX5+uuvE8vp3r27+ctf/mK22mqrxDHsgEA9BPDhemgxVjsBfFi7wmHWhw+HqQtZ5UNAqw/TgMlnPnHWMgIXXHCBOfXUU8u2dv04fvx4M3bs2K4b+QQBpQR++tOfmosuuii1uuHDh5sZM2akjmEnBFwJ4MOupBgXCwF8OBalw6kTHw5HCzIJg4BGH6YBE8bcijqLRYsWmfXXX998+OGHiRzsXS/2wbsrrLBC4hh2QEATAfv7sNFGG5n33nsvtax77rnH7Lbbbqlj2AmBWgTw4VqE2B8jAXw4RtXzq9nON3u9y/Vwfhpw5vAIaPRhGjDhzbPoMho3bpw566yzUuu+6aabzMEHH5w6hp0Q0EZg0qRJ5sQTT0wta9tttzWPPPJI6hh2QqAWAXy4FiH2x0oAH45V+dbXjQ+3njlnlEFAmw/TgJEx79Rm+cEHH7R1+z/++OPEGnfccUcze/bsxP3sgIBWAvbr2O0zXp5++unUEm+77Taz7777po5hJwSSCODDSWTYDgFj8GFmQSsI4MOtoMw5pBLQ5sM0YKTORCV5n3HGGebss89OrKZbt27mscceM0OHDk0cww4IaCYwbdo0s+eee6aWaB/Y++STTxr7+8ILAvUSwIfrJcb42Ajgw7Ep3vp68eHWM+eMsgho8mEaMLLmnqps33///ba7Xz755JPEug499FBzww03JO5nBwRiIGDvAnvooYdSS7355pvNQQcdlDqGnRAoJ4APlxPhMwSqE8CHq3Nha/ME8OHmGRIhDgJafJgGTBzzNcgqf/nLX5pzzjknMTf7NbvPPvus2XTTTRPHsAMCMRB44IEHzIgRI1JL3W677cycOXNSx7ATAuUE8OFyInyGQHUC+HB1LmxtngA+3DxDIsRBQIsP04CJY74GV+XixYvN2muvbew3byS9jjjiCHP99dcn7WY7BKIiYL/p6L777kut2T4ryf7rAC8IuBDAh10oMQYCnQTw4U4WvMuGAD6cDUeixENAgw/TgIlnvgZV6aWXXmpGjx6dmJO9++X55583G2+8ceIYdkAgJgL27pbtt98+teT99tvP3Hrrralj2AmBdgL4cDsJfkLAjQA+7MaJUe4E8GF3VoyEgCWgwYdpwDCXW05g2bJlbY2Vl19+OfHcRx11lLn22msT97MDAjESGD58uJk5c2Zi6fYhvLZxuckmmySOYQcELAF8mHkAgcYI4MONceOoSgL4cCUTtkDAhYB0H6YB46IyYzIlYP+F/oADDkiN+cwzz5ghQ4akjmEnBGIjcMcdd9T8uunjjz/eTJ48OTY01FsnAXy4TmAMh8A3BPBhpkJWBPDhrEgSJzYC0n2YBkxsMzaAemt1LffYYw8zffr0ADIlBQiERaBQKJjBgwebuXPnJibWq1cv8/bbb5tVVlklcQw7IIAPMwcg0BgBfLgxbhxVSQAfrmTCFgi4EJDuwzRgXFRmTGYE7P84brbZZqnx7Pe8jxw5MnUMOyEQK4Err7zSHHvssanlT5o0yYwaNSp1DDvjJYAPx6s9lWdDAB/OhmPMUfDhmNWn9iwISPZhGjBZzABiOBMYM2aMmThxYuJ4+6/79quneUEAAtUJfPnll2bQoEHmnXfeqT6guHXLLbc0TzzxROJ+dsRNAB+OW3+qb54APtw8w9gj4MOxzwDqb5aAZB+mAdOs+hzvTGDJkiVm4MCBZuHChYnHXH755TX/dT/xYHZAIBICY8eONRMmTEit9i9/+YsZOnRo6hh2xkcAH45Pcyr2QwAf9sM1hqj4cAwqU2MrCEj1YRowrZgdnKONwM0332wOPvjgRBqrrrpq27MrVlpppcQx7IAABIx55ZVXzEYbbWTs38AmvY477jjzX//1X0m72R4pAXw4UuEpO3MC+HDmSKMJiA9HIzWFeiYg1YdpwHieGITvJLDXXnuZu+66q3ND2Tv7zAr77ApeEIBAbQK77babue+++xIH9unTp+3PlHr27Jk4hh3xEcCH49Ociv0RwIf9sdUcGR/WrC61tZqARB+mAdPqWRLp+ezzKgYMGGCWLVuWSOCxxx4z3//+9xP3swMCEOgk8Mc//tEcdthhnRuqvLNfcbnffvtV2cOmGAngwzGqTs0+CeDDPunqjI0P69SVqvIjINGHacDkN1+iOvNll11mTj755MSaN998c/O///u/ifvZAQEIdCXw1VdftTU133///a47Sj4dfvjhZsqUKSVbeBszAXw4ZvWp3QcBfNgHVd0x8WHd+lJd6wlI9GEaMK2fJ1GeccSIEeaBBx5IrP2iiy4yp5xySuJ+dkAAApUE7J/tpT3npVevXubdd981PFepkl2MW/DhGFWnZt8E8GHfhHXFx4d16Uk1YRCQ5sM0YMKYN6qzqHW7Zffu3c38+fNN//79VXOgOAhkTeD+++83u+66a2rYG2+80RxyyCGpY9ipnwA+rF9jKsyHAD6cD3eJZ8WHJapGzhIISPNhGjASZpXwHGvdbrnzzjun3h0jvHzSh4A3AkuXLm37and7UZf0+tGPfmTs38fyipsAPhy3/lTvjwA+7I+ttsj4sDZFqScUAtJ8mAZMKDNHcR677LKLmTFjRmKFl156qTnppJMS97MDAhBIJjB69Ghjf4eSXvbbkBYuXGiWX375pCFsj4AAPhyByJSYGwF8ODf0ok6MD4uSi2SFEZDkwzRghE0uael+8sknZvXVVzdLliypmrr986MFCxaY73znO1X3sxECEEgnMHv2bDNs2LDUQTNnzqw5JjUAO0UTwIdFy0fyAgjgwwJEyjlFfDhnATi9egKSfJgGjPrpmG+BU6dONQceeGBiEsOHD0+9OybxQHZAAAJtBOxtl3379jWLFi1KJDJ27Fgzfvz4xP3s0E0AH9atL9XlTwAfzl+D0DPAh0NXiPykE5DkwzRgpM+2wPM/4YQTzOTJkxOznDhxojn11FMT97MDAhCoTeCwww5Lfc4LX/Nem6HmEfiwZnWpLRQC+HAoSoSZBz4cpi5kpYuAFB+mAaNr3gVXzXrrrWdef/31xLyeffZZM3jw4MT97IAABGoTuOaaa8zRRx+dOvCtt95qe2Bv6iB2qiSAD6uUlaICI4APByZIYOngw4EJQjoqCUjxYRowKqdfGEW98MILZpNNNklMZq211jLz5s1L3M8OCEDAjYD9FqQ111zTFAqFxAOuvfZac9RRRyXuZ4dOAviwTl2pKjwC+HB4moSSET4cihLkoZ2AFB+mAaN9JuZYX62v2zv22GPN5ZdfnmOGnBoCeggMHTrUPP7444kFjRo1ykyaNClxPzt0EsCHdepKVWESwIfD1CXvrPDhvBXg/DERkODDNGBimpEtrvXII480U6ZMSTzr//zP/5h//Md/TNzPDghAwJ3AmDFjjH2mUtLL/qmf/ZM/XnERwIfj0ptq8yWAD+fLP9Sz48OhKkNeGglI8GEaMBpnXiA1pf29a7du3cx7771nVltttUCyJQ0IyCZQ6xsW+J2TrW+j2ePDjZLjOAjUTwAfrp9ZDEfgwzGoTI2hEJDgwzRgQpktyvJYsGBB6gM/7bNh5s6dq6xqyoFAfgQWLlxo+vXrl5rA7bffbvbZZ5/UMezUQwAf1qMllcgggA/L0KmVWeLDraTNuSBgjAQfpgHDTPVCwP550SGHHJIY+5hjjjFXXnll4n52QAAC9RPYeOONzYsvvph44NixY8348eMT97NDFwF8WJeeVCODAD4sQ6dWZYkPt4o054FAJ4HQfZgGTKdWvMuQwKmnnmouuOCCxIi2+WKbMLwgAIHsCNjfqauuuiox4A9/+ENz1113Je5nhy4C+LAuPalGBgF8WIZOrcoSH24Vac4DgU4CofswDZhOrXiXIYHhw4ebmTNnJka0f36U9hXViQeyAwIQSCQwefJkc8IJJyTut19VbW+H5hUHAXw4Dp2pMiwC+HBYeuSdDT6ctwKcP0YCofswDZgYZ2ULal599dXNBx98UPVMffr0adtnHwrKCwIQyI7AnDlzzPbbb58a8N133zV9+/ZNHcNOHQTwYR06UoUsAviwLL18Z4sP+yZMfAhUEgjdh2nAVGrGliYJzJ8/36y11lqJUXbaaScza9asxP3sgAAEGiPw6aefmlVXXdUUCoXEAPfee6/ZddddE/ezQwcBfFiHjlQhjwA+LE8zXxnjw77IEhcC6QRC92EaMOn6sbcBAtOmTTN77rln4pEnnXSSufTSSxP3swMCEGicwAYbbGBeffXVxAATJ0409m/SeekmgA/r1pfqwiaAD4etT6uyw4dbRZrzQKCSQMg+TAOmUi+2NEngvPPOM6eddlpilN/97nepz6lIPJAdEIBATQIHHnigmTp1auI4+2AyvoEsEY+aHfiwGikpRCABfFigaB5Sxoc9QCUkBBwJhOzDNGAcRWSYO4Gf/OQn5ve//33iAQ899FDN51QkHswOCEAglcC4cePMWWedlTjGPhBwxowZifvZoYMAPqxDR6qQSQAflqlb1lnjw1kTJR4E3AmE7MM0YNx1ZKQjgR122ME8/PDDiaM/+uijtudUJA5gBwQg0DCBa665xhx99NGJx6+zzjrmjTfeSNzPDh0E8GEdOlKFTAL4sEzdss4aH86aKPEg4E4gZB+mAeOuIyMdCQwcODDxq2779etn3nnnHcdIDIMABOolYL/+3d7lkvTq3r27+eKLL0yPHj2ShrBdAQF8WIGIlCCWgP2igZ133jkxf3w4EY2qHfiwKjkpRhiBkH2YBoywyRR6ul999ZVZccUVE7+FZZtttjGPPvpo6GWQHwTEEnjzzTfNoEGDUvN/6aWXzIYbbpg6hp1yCeDDcrUjcx0E8GEdOjZTBT7cDD2OhUDzBEL2YRowzetLhBIC9n/svvvd75Zs6fr2Rz/6kfnjH//YdSOfIACBzAgsW7asrQm6ZMmSxJh333232X333RP3s0M2AXxYtn5kL58APixfw2YrwIebJcjxEGiOQMg+TAOmOW05uozAPffcY/bYY4+yrZ0f7bcjTZgwoXMD7yAAgcwJ2LtbXnnllcS49luQ7Lch8dJJAB/WqStVySKAD8vSK+ts8eGsiRIPAvUTCNWHacDUryVHpBC44oorzHHHHZc44rLLLjMnnnhi4n52QAACzRMYNmyYmT17dmIg2wRN+6r4xAPZIYIAPixCJpJUTgAfVi5wjfLw4RqA2A2BFhAI1YdpwLRA/JhOMX78ePMf//EfiSXffvvtZp999knczw4IQKB5AgcddJC55ZZbEgONGTPGnHfeeYn72SGbAD4sWz+y10EAH9ahY6NV4MONkuM4CGRHIFQfpgGTncZEKhKw/2M3ceLERBZz5swx2223XeJ+dkAAAs0TOP74483ll1+eGMh+TfVVV12VuJ8dsgngw7L1I3sdBPBhHTo2WgU+3Cg5joNAdgRC9WEaMNlpTKQigX/+5382V199dSKLF1980Wy00UaJ+9kBAQg0T+D000835557bmIgexeavRuNl04C+LBOXalKFgF8WJZeWWeLD2dNlHgQqJ9AqD5MA6Z+LTkihcC+++5r7rjjjsQR77//vllttdUS97MDAhBonoC9C83+61vSy96FZu9G46WTAD6sU1eqkkUAH5alV9bZ4sNZEyUeBOonEKoP04CpX0uOSCGw/fbbJ/6PXffu3c3XX39tunXrlhKBXRCAQLME7J8XpX3L0SabbGLmzp3b7Gk4PlAC+HCgwpBWVATw4ajkrigWH65AwgYItJxAqD5MA6blU0H3Ce3/2L3wwgtVi1x99dXNe++9V3UfGyEAgewI3HDDDebwww9PDLjeeuuZV199NXE/O2QTwIdl60f2Ogjgwzp0bLQKfLhRchwHgewIhOrDNGCy05hIRQLrrruueeONN6qyWGeddRL3VT2AjRCAQEME7Dcg2Se/J70GDBhg5s+fn7Sb7cIJ4MPCBSR9FQTwYRUyNlwEPtwwOg6EQGYEQvVhGjCZSUwgS8D+j93bb79dFYZ9+K59CC8vCEDAL4E777wz9eveuRvNL/+8o+PDeSvA+SFgDD4c9yzAh+PWn+rDIBCqD9OACWN+qMlijTXWMPZBu9VegwcPNs8++2y1Xeatt95q+1aWN9980yxdurTqGDZCAAL/R2DFFVc09vfJPuRvpZVWqsBy7733mt13371ie/uGXr16mU8//bT9Iz+VEcCHlQlKOUESwIeDlCWYpPDhYKQgEcUExPpwgRcEMiSw8sorF4q/51X/23LLLaueady4cYUePXpUPSYpFturM4ZLXFz69etXuOuuuyp+r2bOnJn6+7T88stXHMMGPQTw4bh8AN/PV298WI93ZlkJPpzv7yW+GBd/aT5ssjQbYkGgZ8+eif/jV/zq2wpAv/71rxPHY55xmSd6N6a3/Z175JFHuvxuPfzwwzV/r7ocwAdVBPDhxn6X8CC4NToH8GFVFppJMfgwftKon3BcY3NHkg/zJ0jFWc4rOwJpXzG90047mVmzZnWcbNGiRWbNNdc0X375Zcc23kAAAvUTGD58uJkxY0bHgXPmzDH2KzDTXsUrzLTd7BNMAB8WLB6piyWAD4uVzkvi+LAXrASFQCoBKT5MAyZVRnbWSyBtwRk2bJgp/mlER8jbb7/d7Lfffh2feQMBCDRGoHv37ubzzz83xe5/WwAaMI1x1HIUPqxFSeqQRAAflqSW/1zxYf+MOQMEyglI8WEaMOXK8bkpAvUsOH/4wx/MEUcc0dT5OBgCEPg/Ah9++KHp3bt32wcaMHHPCnw4bv2pPj8C+HB+7EM7Mz4cmiLkEwsBCT5MAyaW2diiOutZcOw3In3ve99rUWacBgJ6Cay77rrmtdde6yiQBkwHiijf4MNRyk7RORPAh3MWILDT48OBCUI6URAQ48OZPGmKIBD4hkDxtzvx4Z/FP0Gq4LTrrrsmjk+Lxb5kzrCJj80ll1zS5XeLh/B2wRHdhzQPwIfj84e0+cC+7OYDPhyd1aYWnPa7hQ9n93uXxpl98XGW4sN8C1KqfbKzXgJpZldtwVm4cGFhyJAhNGFSGldpTNkX3+JSrvmoUaMqfk1pwFQgiWpD+Rwp/YwP4xml84H32cwHfDgqi3UqNu13Cx/O5vcujTH74mMsyYdpwDjZKINcCaQZXrUFx8b94osvCmeeeWZhueWWoxFDI4Y54DgH+vfvX5g6dWrVX00aMFWxRLMRH47vwjNNc/b5mw/4cDS2Wnehab93XA/7+51M484+ndwl+jANmLotlQPSCKSZW9KC0x5v9OjR/M+34/98p3Fmn84FplzXO++8s/1Xp+InDZgKJFFtKJ8rpZ/x4Tj8oVRz3vvTHB+OylrrKjbt9w4f9vc7mcadfTq5S/RhHsJb/G3klR2Beh46Vn7WK664whx33HHlm/kMAQhUITBv3jyz1lprVdljDA/hrYolmo34cDRSU2jOBPDhnAUI+PT4cMDikJoqAhJ9mAaMqimYfzHNLDhXXnmlOfbYY/MvggwgIIDA/PnzzYABA6pmSgOmKpZoNuLD0UhNoTkTwIdzFiDg0+PDAYtDaqoISPRhGjCqpmD+xbDg5K8BGcRBQOKCE4cy+VeJD+evARnEQQAfjkPnRqrEhxuhxjEQqJ+ARB+mAVO/zhyRQoAFJwUOuyCQIQGJC06G5RMqhQA+nAKHXRDIkAA+nCFMZaHwYWWCUk6wBCT6MA2YYKeTzMRYcGTqRtbyCEhccORRlpkxPixTN7KWRwAflqdZqzLGh1tFmvPETkCiD9OAiX3WZlw/C07GQAkHgQQCEhechFLYnDEBfDhjoISDQAIBfDgBDJsNPswkgEBrCEj0YRowrZkb0ZyFBScaqSk0ZwISF5yckUVzenw4GqkpNGcC+HDOAgR8enw4YHFITRUBiT5MA0bVFMy/GBac/DUggzgISFxw4lAm/yrx4fw1IIM4CODDcejcSJX4cCPUOAYC9ROQ6MM0YOrXmSNSCLDgpMBhFwQyJCBxwcmwfEKlEMCHU+CwCwIZEsCHM4SpLBQ+rExQygmWgEQfpgET7HSSmRgLjkzdyFoeAYkLjjzKMjPGh2XqRtbyCODD8jRrVcb4cKtIc57YCUj0YRowsc/ajOtnwckYKOEgkEBA4oKTUAqbMyaAD2cMlHAQSCCADyeAYTMP4WUOQKBFBCT6MA2YFk2OWE7DhX8sSlNn3gQkLjh5M4vl/PhwLEpTZ94E8OG8FQj3/PhwuNqQmS4CEn2YBoyuOZh7NSw4uUtAApEQkLjgRCJN7mXiw7lLQAKREMCHIxG6gTLx4QagcQgEGiAg0YdpwDQgNIckE2DBSWbDHghkSUDigpNl/cRKJoAPJ7NhDwSyJIAPZ0lTVyx8WJeeVBMuAYk+TAMm3PkkMjMWHJGykbRAAhIXHIGYRaaMD4uUjaQFEsCHBYrWopTx4RaB5jTRE5DowzRgop+22QJgwcmWJ9EgkERA4oKTVAvbsyWAD2fLk2gQSCKADyeRYTs+zByAQGsISPRhGjCtmRvRnIUFJxqpKTRnAhIXnJyRRXN6fDgaqSk0ZwL4cM4CBHx6fDhgcUhNFQGJPkwDRtUUzL8YFpz8NSCDOAhIXHDiUCb/KvHh/DUggzgI4MNx6NxIlfhwI9Q4BgL1E5DowzRg6teZI1IIsOCkwGEXBDIkIHHBybB8QqUQwIdT4LALAhkSwIczhKksFD6sTFDKCZaARB+mARPsdJKZGAuOTN3IWh4BiQuOPMoyM8aHZepG1vII4MPyNGtVxvhwq0hzntgJSPRhGjCxz9qM62fByRgo4SCQQEDigpNQCpszJoAPZwyUcBBIIIAPJ4Bhs8GHmQQQaA0BiT5MA6Y1cyOas6QtOD/4wQ/Mww8/nMhi0qRJ5sQTT0zczw4IQKCTwOuvv24GDRrUuaHk3XPPPWeGDBlSsqXybaFQqNzIFhUE8GEVMlKEAAL4sACRckoRH84JPKeNjoBIHy5ehPOCQGYEir/19v/qqv630korFV577bWq51q6dGlhzz33rHpcUjy2V+cMlzi4XHjhhVV/l+zGq6++uubvUuLB7BBPIM0D8OE4/CFtDrAvuzmAD4u3S28FpP2e4cPZ/Q6mcWZfHJwl+jB3wBR/O3llRyCt42/P0qdPH7Pzzjubnj17dpy0uPoZ+y/2c+fO7djGGwhAoDaB4cOHm759+3YZuGjRInP//febZcuWddle/sH+3vHSSQAf1qkrVYVJAB8OU5e8s8KH81aA88dEQJoP04CJaXa2oNZaC04LUuAUEICAAwEaMA6QhA7Bh4UKR9rREcCH9UqOD+vVlsp0EcjDh2nA6JpDuVfDgpO7BCQAAScCeSw4TokxqGkC+HDTCAkAgZYQwIdbgjmXk+DDuWDnpBCom0AePkwDpm6ZOCCNAAtOGh32QSAcAnksOOFUrzsTfFi3vlSnhwA+rEfL8krw4XIifIZAmATy8GEaMGHOBbFZseCIlY7EIyOQx4ITGeLcysWHc0PPiSFQFwF8uC5cogbjw6LkItmICeThwzRgIp5wPkpnwfFBlZgQyJ5AHgtO9lUQsRoBfLgaFbZBIDwC+HB4mmSVET6cFUniQMAvgTx8mAaMX02ji86CE53kFCyUQB4LjlBU4tLGh8VJRsKREsCH9QqPD+vVlsp0EcjDh2nA6JpDuVfDgpO7BCQAAScCeSw4TokxqGkC+HDTCAkAgZYQwIdbgjmXk+DDuWDnpBCom0AePkwDpm6ZOCCNAAtOGh32QSAcAnksOOFUrzsTfFi3vlSnhwA+rEfL8krw4XIifIZAmATy8GEaMGHOBbFZseCIlY7EIyOQx4ITGeLcysWHc0PPiSFQFwF8uC5cogbjw6LkItmICeThwzRgIp5wPkpnwfFBlZgQyJ5AHgtO9lUQsRoBfLgaFbZBIDwC+HB4mmSVET6cFUniQMAvgTx8mAaMX02ji86CE53kFCyUQB4LjlBU4tLGh8VJRsKREsCH9QqPD+vVlsp0EcjDh2nA6JpDuVfDgpO7BCQAAScCeSw4TokxqGkC+HDTCAkAgZYQwIdbgjmXk+DDuWDnpBCom0AePkwDpm6ZOCCNAAtOGh32QSAcAnksOOFUrzsTfFi3vlSnhwA+rEfL8krw4XIifIZAmATy8GEaMGHOBbFZseCIlY7EIyOQx4ITGeLcysWHc0PPiSFQFwF8uC5cogbjw6LkItmICeThwzRgIp5wPkpnwfFBlZgQyJ5AHgtO9lUQsRoBfLgaFbZBIDwC+HB4mmSVET6cFUniQMAvgTx8mAaMX02ji86CE53kFCyUQB4LjlBU4tLGh8VJRsKREsCH9QqPD+vVlsp0EcjDh2nA6JpDuVfDgpO7BCQAAScCeSw4TokxqGkC+HDTCAkAgZYQwIdbgjmXk+DDuWDnpBCom0AePkwDpm6ZOCCNAAtOGh32QSAcAnksOOFUrzsTfFi3vlSnhwA+rEfL8krw4XIifIZAmATy8GEaMGHOBbFZrbzyymbx4sVi8ydxCMRAoHfv3ubDDz+ModQoa8SHo5SdooURwIeFCVZnuvhwncAYDoEcCOTlwzRgchBb8yl/+9vfmtNPP918/fXXmsukNgiIIWD/Fa70X+LsYmN/T4855hgxNZBofQTw4fp4MRoCvgngw74JhxcfHw5PEzKKm0BIPkwDJu656KX6L774ostdMPbz7373O3P22Wd7OR9BIQCB6gQmT55sjj76aNOzZ8/qA9iqlgA+rFZaChNGAB8WJliG6eLDGcIkFASaIBCaD9OAaUJMDq2PwFprrWXmz59f30GMhgAEGiKw6aabmueff76hYzlILwF8WK+2VBYeAXw4PE1CyAgfDkEFcoiFQIg+TAMmltkXQJ1bbLGFefrppwPIpP4Uhg4dak444YSqB9o/txozZoz59NNPq+5P25gWN+240n324VFnnnmmeeutt0o3V33fvXt3M2zYMPPd737XbLjhhmajjTZq+9m/f3+zaNGitgbZggUL2n4++eST5p577jHvvfde1VjlG7fZZpu22LYm+98KK6xgnnrqKfPXv/7VPPbYY2batGmmngddZR1vyJAh5qc//Wl52m2fb7rpJjN9+vSq+6RutPweffRRqemTtycC+HAlWHy4kkn7lqx82N76veOOO5r999/fbL755sb+D2jfvn3NRx991LbezJgxw0yZMsW8+OKL7adW8RMfViFj5kXgw5VI8eFKJu1bsvJhG69fv37mkEMOMVtvvbUZNGiQWWeddUyfPn3Mu+++2+bFDz74oLn66qvNm2++2X568T+D9OHi/xDxgkBLCBQvugrF32KR/5144ompjNZdd92G6qoVN/WkJTtHjBiRev7ixW/h4IMPLjz33HMlR9V+u3Tp0kKxeVI466yzCltuuWXVc/To0aNw4YUX1gx25513FlZfffWqMUrnRdbx2mMfddRRiTmee+65NfNqjyPlZ3HBSayXHfESwIcr1yB8uJJJlj689957F4rN+Jq/dEuWLCn85Cc/UeXF+HBN2aMcgA9Xeg4+XMkkSx+2/59S/IfGQvEfjWv+ztlr/+IzjAr2/FKuedPyDNGH7b9I84JASwiw4FSaaysWHHvx+8QTTzSt8a233lphxMXOeeGRRx5xjl3sqBe22267ijjtxpl1vPa49icNGGeZGKiYAD6MD7fKh1dZZZXCn/70p7p/m37xi18krhGlni7hfYgX/nULwgGZE8CH8eFW+XC7Txbvfq97HtuGzXLLLSfej0P0YRowdU9HDmiUAAtO6xecc845p1G5Ko6r1oCZM2dOxbhaG4p/0lRYddVVqxp61vHaFx77kwZMLWXYHwMBfBgftvO8FT68ySabNPwrdcopp1RdI0o9XcL7EC/8GxaFAzMjgA/jw3YytcKH232ykQaMzXHcuHHivThEH6YBY2cXr5YQGDlypNhf4lp3qoT4J0hnnHFGprqWN2CKf8vfcHz7J03ti0L7z6zjtcdt/xlbA+awww5rWB8O1EsAH27thX/MPtxMA6b4TLPC8ssvX7FOtPu5lJ/4sF4vbaYyfBgfbp8/rboebrQBU3w+ZKFXr16ivThEH+YhvMVVnFdrCMydO9cU/1Wr7SFP5Wf8+9//3vYQ2PLtoXwuNmDMZZddlpjOeuutZ15//fXE/Uk7asWdOnWqWbhwYdLhHdt/9atfdXkIb/FfV0zxz45M8dbBjjHNvrntttvaHqBo49iH+doHKg8ePLhq2BdeeMEU/57f2AffVnstXrzYrL/++m0P/bL7s45X7ZzFBoy59tprq+0yEyZMMGPHjq26L+SNlu/AgQMrUlx77bWNnRNrrrlmxT42xE0AH67UHx9+tw1K1j5cbMAYO9/KX8XnCxj7UF57vrTX9ttvb4p3RaYNCWIfPhyEDKKSwIcr5cKH/fhwO2n7BRwzZ84077//vvnP//xPYx98/uyzz7ZdQ9r/v9lpp53ah1b8LD5n0jzwwAMV20PaIM6H2ztw/IRAngS++uqrwhFHHBFsh7W4MKTi8XUHTKNxiyabmm/7zmJzp3DjjTcWit/iVNh5550LW221Vduf6vzmN78p3HvvvQX7IK72V+kdMGnd5FdffbVg//a/aMypf/8/ceLEDr2zjmfPXf6ftjtg/vVf/7VdGn5CIBMC+HB1jPhwodCIr5feAfPZZ5+1Pcy9eJFf6NmzZ6F3796Fq666qjrwb7YefvjhFT5e7ut5f8aHUyVkZwME8OHq0PDhxny43SPtl2CcdNJJHdfn7dvtz+K3IBXs/w8kvY488sigvViiD/MnSEmzje0tJ1Dsrgb7Cy6pAVP8emkn7Szv4teApjL/3ve+V7CNF/sqbcCkfeuRfXJ6u7Hbi+2k18MPP9wxLut47ecv/amtATN79uwktGyHQMME8OFKdI1c+OPDptDegHnllVcKxa/d7fD7dl+2386X9hB3e1HdPjbUn/hw5e8LW5ongA9XMsSHC23fTNTuha7X1+3ja/1M+5bUtC/PqBW3Ffsl+jANmMrfcbbkRODRRx8N9mJLUgPGfoNErdcll1xS19/XW/PdfffdO/S54447Ek/xwx/+sGOc/VfOpNc777zTMS7reNUMX1sDxv6+8IJA1gTw4UqijVz448OmsMYaaxSKt7a3/etqNU+220aPHl0J/JstBx54YMcakXR83tvx4UT52NEEAXy4Eh4+XCg0cn3t4pEHH3xwYdmyZZXQi1u++OKLwgorrBC0F0v0YRowVacbG/MgwIJTSf35558v2G8GSvvvoosu6mKMt9xyS2Wgki1TpkzpMt7FnMvHFP9+uSRi17fF5450iW+f8p70WnnlldvGZh2vPF/7mQZMkgpsh0AnAXy4k0X7O3y4UGjE16v5cPm2E044oR1zxc9NN920y1pSfmwInyVe+FeAZkNwBPDhSknw4Wx92H4zkP3H5euvv75QfGZjJfBvtowfPx4fTqTT+A4aMI2z48iMCbDgNAb0scce62KOtb7K2d4W3syFa/HBiW0d8aRs7V0vpfFfeumlpKEF+1WMWccrPXfpexowiTKwAwIdBPDhDhR1vcGHO3HV8xW7F1xwQeeBJe8+//zzQo8ePbqsJaV+Hsp7GjAlovE2MwL4cGMo8eFObrV8uPjFIZ2DE94VH9JbWHHFFfHhBD7NbKYB0ww9js2UAAtOYzjLFxz7sMSkl33IVrMXrsVv2EkK37bdPmCx9BzPPPNM4vgDDjigkHW80nOXvqcBkygDOyDQQQAf7kBR1xt8uBOX9fVS7016b58B87e//a3zwJJ3V1xxhVOMpNit2k4DpkQ03mZGAB9uDCU+3Mmtlg/XasDYu2K+/e1v48OdSDN9RwMmU5wEa4YAC05j9MoXnLfeeisxkH0YYrMXphtvvHFifLvD3tFSeo60fOxzZbKOV3ru0vc0YFJlYycE2gjgw41NBHy4k1vp88JKPbj8/X777dd5UMk7+ywC+wD48vEhfqYBUyIcbzMjgA83hhIf7uRWy4drNWBspEmTJtX1vMi8PFqiD9OA6ZyrvMuZAAtOYwKULzhPPfVUYqAsHqa10korJT6sy57Y7i81Yft3u0kv+xT3rOOVnrv0PQ2YJBXYDoFOAvhwJ4t63uHDnbSsr5d6b7X39qGOSXdH2ov+aseEuE3ihX+nUrwLlQA+3Jgy+HAnt1o+nPatR51RCoWpU6cG78cSfbibhVxc1HhBIHcCReM02267be55VEug+KAqU/w2h2q72ratt956pthNTtyftKNW3PPPP9+8/fbbSYe3bX/55ZdN0SA7xtx9992m2Pnu+Fz+5thjjzVXXnll+ea6Ps+fP98MGDCg6jHFr7Y2xQfvduyzXAYNGtTxufTNwIEDzYIFC0zW8UrP0f6+2IAx1157bfvHLj8nTJhgxo4d22Vb6B+KC44pPkQt9DTJTxgBfLhSMHzYmEZ8vZJk55bf/va35uc//3nnhm/e2fVgs802Mx999FHFvhA34MMhqiI/J3y4UkN8OFsfLv4JqCl+s5QZOnSo+X//7/+1+W4l9f/bsssuu5gZM2Yk7c59u0gfLu1y8R4CeRKwHczib3GQ/0n6Gupzzz03VcbiBW5hyJAhdXPu1atXxzGzZs1KPEfpg7/SHrD72WefFewzAKzmWcerNo+4AyZRMnZAoIMAPtyBouNN8SK1w/uqeUu1bfhw8lpun01Q7StPv/7668Lw4cPrZl2Nf6u22d8XXhDImgA+XEkUHy60fXFFu7e5Xl+3j0/7ucoqqxSeeOKJSujfbJk4cWLQvizRh/kTpMTpxo5WE2DBqSTeyIIzbNiwykBlWxYtWlSw49IMuX3f97///cLs2bMLDz30UMf4q666qixi58eDDjqoY9w666zTuaPsnb39sf0cWcdrj1v6kwZMmQB8hEAVAvhwJRR8uFBoxNdL/bf9/RZbbFH49NNPKyEXt/zyl7/sWBPax4f+U+KFf1X4bAyKAD5cKQc+3JwP2z/7TPPTM844oxL6N1v+9Kc/pR6bFrcV+yT6MA2YxOnGjlYTkLzg2L+1XGuttWr+t/LKK3cxMR931iy//PKFtG9CatfVPg/mF7/4RaFfv35dcrJmucYaaxRGjRrV1nhp/5fK0r+tPf3009vDVPycMmVKR7xTTz21Yn/7htK/K806XjXDpwHTTp6fEEgmgA9Xsmnkwh8frrwDZs011yy8+eablYCLW6ZNm9ZxR2Q1/w51m8QL/6oCsDEoAvhwpRz4cKHQyPV1u3faZ279/ve/L6y++uod1+jt++zPyy+/vBL6N1uuu+66qseUHp/ne4k+TAMmcbqxo9UEJC84rqz+8Ic/dDGxWg2YI488srDDDjvU/K/49/ld4h5xxBGuKRXsV81ZY77vvvsKjz/+eOGDDz6oemxpA6Z///6FxYsXVx1nGza/+tWvCmPGjCm8//77VcfYjTbHdsPOOl573NKfNGASpWAHBDoI4MMdKDre4MOFtj8ZqtfXS/3XPmz9r3/9awfT8jf266jtnZbl/82cObNg14fSWCG9l3jhX86ez+ERwIcrNcGHm/Ph4vMi26C+8847bf/4au9ut/9QYP8R9swzz6wEXrLlN7/5TbAebNcDiT5MA6ZkgvE2XwIxLDg33XRTFxOr1YBxVaT4ENkuce2zVe666y7Xw53GlTZgrOH9+te/djqu2qC///3vhZ49e3bJOet45RfpNGCqKcE2CHQlgA935VHPJ3y40tetDy+33HKF2267rR6UXcaG/JXUEi/8u8DlQ5AE8OHGZcGHq/twewOmlGz7He6l26q933///btcr5dfX+f9WaIP04CpNtPYlgsBFpzGsZcvONYM7UO10r6Sut6zlTdgevfunXqHS1r8Qw89tMLMs45XviDQgElThH0Q+D8C+HDjMwEfrvR168PFbxBsHGrxSBowTeHjYIEE8OHGRcOHq/twtQaMC+XPP/+87bEE5dfUIX2mAeOiJGMgkECABScBjMPmaguONUfb1Ljgggva/szIIUzqkPIGjI1v/4zoyy+/TD2ufOeFF15Y0XxpN/Ks47XHtT9pwJQrwWcIVBLAhyuZuG7Bhyuf+3LOOee44kscRwMmEQ07lBLAhxsXFh+u9GF7DdxIA2bp0qWFAw88MPGavfQaO8/3NGAa/33hSAi0/Q1fnr/AaefO6k+FWvUnSOW1DB48uHD//fc3PMvss2EOO+ywqiZs/47U5aG/H3/8cWKM0nyzjtcemwZMw/JzYEQEuPBvXOykC/92D4rNh9Merl4PZRow9dBirAYC+HDjKuLD1Rsw9v8/bEPF9WX/cfW4446ret3fvqaF8pMGjKuqjINAFQIhLzg//vGPq2Rc/6arr766i5llFXfcuHFd4iaZov0q0RtuuKHw9ttvpyZvH7A7a9aswnnnnVfYZpttasbu06dP4ZJLLml7mO/XX3/dJfYrr7xSsA8f3mijjWrGac8763g27gEHHNAlr9IP9uv32s8t5afEBaeUOe/DJIAPN64LPtz1wr+Rf3Etp2+fUbDBBhsE68/4cLlifM6CAD7cOEV8uKsPl17T2m+iO/nkk9u+dMM+jLfa66OPPipMnDixMHDgwGB9t7Qm+16iD3ez8IvJ84JA7gSKf+Jitt1229zziCWBAQMGmOLXTZviV9KZ4jdUmGLTxXz44Ydt/82bN88UO+UNoejVq5f5h3/4B7PCCiuY4jNoTPFblRqK035Q1vHa40r/WVxwTLE5Jr0M8g+MAD7cWkHw4dbyzvps+HDWRIlnCeDDrZ0Hsfqwvb4ufr23WWuttUzxWS+m+A+mZsGCBfb5sK0VoMmzSfRhGjBNis7h2RFgwcmOJZH0E5C44OhXRX6F+LB8DamgdQTw4daxjulM+HBMalNrswQk+jANmGZV5/jMCLDgZIaSQBEQkLjgRCCL+BLxYfESUkALCeDDLYQd0anw4YjEptSmCUj0YRowTctOgKwIsOBkRZI4MRCQuODEoIv0GvFh6QqSfysJ4MOtpB3PufDheLSm0uYJSPRhGjDN606EjAiw4GQEkjBREJC44EQhjPAi8WHhApJ+Swngwy3FHc3J8OFopKbQDAhI9GEaMBkIT4hsCLDgZMORKHEQkLjgxKGM7CrxYdn6kX1rCeDDreUdy9nw4ViUps4sCEj0YRowWShPjEwIsOBkgpEgkRCQuOBEIo3oMvFh0fKRfIsJ4MMtBh7J6fDhSISmzEwISPRhGjCZSE+QLAiw4GRBkRixEJC44MSijeQ68WHJ6pF7qwngw60mHsf58OE4dKbKbAhI9GEaMNloT5QMCLDgZACRENEQkLjgRCOO4ELxYcHikXrLCeDDLUcexQnx4ShkpsiMCEj0YRowGYlPmOYJsOA0z5AI8RCQuODEo47cSvFhudqReesJ4MOtZx7DGfHhGFSmxqwISPRhGjBZqU+cpgmw4DSNkAAREZC44EQkj9hS8WGx0pF4DgTw4RygR3BKfDgCkSkxMwISfZgGTGbyE6hZAiw4zRLk+JgISFxwYtJHaq34sFTlyDsPAvhwHtT1nxMf1q8xFWZHQKIP04DJTn8iNUmABadJgBweFQGJC05UAgktFh8WKhxp50IAH84Fu/qT4sPqJabADAlI9GEaMBlOAEI1R4AFpzl+HB0XAYkLTlwKyawWH5apG1nnQwAfzoe79rPiw9oVpr4sCUj0YRowWc4AYjVFgAWnKXwcHBkBiQtOZBKJLBcfFikbSedEAB/OCbzy0+LDygWmvEwJSPRhGjCZTgGCNUOABacZehwbGwGJC05sGkmsFx+WqBo550UAH86LvO7z4sO69aW6bAlI9GEaMNnOAaI1QYAFpwl4HBodAYkLTnQiCSwYHxYoGinnRgAfzg296hPjw6rlpbiMCUj0YRowGU8CwjVOgAWncXYcGR8BiQtOfCrJqxgflqcZGedHAB/Oj73mM+PDmtWltqwJSPRhGjBZzwLiNUyABadhdBwYIQGJC06EMokrGR8WJxkJ50gAH84RvuJT48OKxaW0zAlI9GEaMJlPAwI2SoAFp1FyHBcjAYkLTow6SasZH5amGPnmSQAfzpO+3nPjw3q1pbLsCUj0YRow2c8DIjZIgAWnQXAcFiUBiQtOlEIJKxofFiYY6eZKAB/OFb/ak+PDaqWlMA8EJPowDRgPE4GQjRFgwWmMG0fFSUDighOnUrKqxodl6UW2+RLAh/Plr/Xs+LBWZanLBwGJPkwDxsdMIGZDBFhwGsLGQZESkLjgRCqVqLLxYVFykWzOBPDhnAVQenp8WKmwlOWFgEQfpgHjZSoQtBECLDiNUOOYWAlIXHBi1UpS3fiwJLXINW8C+HDeCug8Pz6sU1eq8kNAog/TgPEzF4jaAAEWnAagcUi0BCQuONGKJahwfFiQWKSaOwF8OHcJVFbtv6AAAB+NSURBVCaAD6uUlaI8EZDowzRgPE0GwtZPgAWnfmYcES8BiQtOvGrJqRwflqMVmeZPAB/OXwONGeDDGlWlJl8EJPowDRhfs4G4dRNgwakbGQdETEDighOxXGJKx4fFSEWiARDAhwMQQWEK+LBCUSnJGwGJPkwDxtt0IHC9BFhw6iXG+JgJSFxwYtZLSu34sBSlyDMEAvhwCCroywEf1qcpFfkjINGHacD4mw9ErpMAC06dwBgeNQGJC07UggkpHh8WIhRpBkEAHw5CBnVJ4MPqJKUgjwQk+jANGI8TgtD1EWDBqY8Xo+MmIHHBiVsxGdXjwzJ0IsswCODDYeigLQt8WJui1OOTgEQfpgHjc0YQuy4CLDh14WJw5AQkLjiRSyaifHxYhEwkGQgBfDgQIZSlgQ8rE5RyvBKQ6MM0YLxOCYLXQ4AFpx5ajI2dgMQFJ3bNJNSPD0tQiRxDIYAPh6KErjzwYV16Uo1fAhJ9mAaM3zlB9DoIsODUAYuh0ROQuOBEL5oAAPiwAJFIMRgC+HAwUqhKBB9WJSfFeCYg0YdpwHieFIR3J8CC486KkRCQuOCgWvgE8OHwNSLDcAjgw+FooSkTfFiTmtTim4BEH6YB43tWEN+ZAAuOMyoGQsBIXHCQLXwC+HD4GpFhOATw4XC00JQJPqxJTWrxTUCiD9OA8T0riO9MgAXHGRUDIUADhjnghQA+7AUrQZUSkHjhr1QKVWXhw6rkpBjPBCT6MA0Yz5OC8O4EWHDcWTESAhIXHFQLnwA+HL5GZBgOAXw4HC00ZYIPa1KTWnwTkOjDNGB8zwriOxNgwXFGxUAIcAcMc8ALAXzYC1aCKiUg8cJfqRSqysKHVclJMZ4JSPRhGjCeJwXh3Qmw4LizYiQEJC44qBY+AXw4fI3IMBwC+HA4WmjKBB/WpCa1+CYg0YdpwPieFcR3JsCC44yKgRDgDhjmgBcC+LAXrARVSkDihb9SKVSVhQ+rkpNiPBOQ6MM0YDxPCsK7E2DBcWfFSAhIXHBQLXwC+HD4GpFhOATw4XC00JQJPqxJTWrxTUCiD9OA8T0riO9MgAXHGRUDIcAdMMwBLwTwYS9YCaqUgMQLf6VSqCoLH1YlJ8V4JiDRh2nAeJ4UhHcnwILjzoqREJC44KBa+ATw4fA1IsNwCODD4WihKRN8WJOa1OKbgEQfpgHje1YQ35kAC44zKgZCgDtgmANeCODDXrASVCkBiRf+SqVQVRY+rEpOivFMQKIP04DxPCkI706ABcedFSMhIHHBQbXwCeDD4WtEhuEQwIfD0UJTJviwJjWpxTcBiT5MA8b3rCC+MwEWHGdUDIQAd8AwB7wQwIe9YCWoUgISL/yVSqGqLHxYlZwU45mARB+mAeN5UhDenQALjjsrRkJA4oKDauETwIfD14gMwyGAD4ejhaZM8GFNalKLbwISfZgGjO9ZQXxnAiw4zqgYCAHugGEOeCGAD3vBSlClBCRe+CuVQlVZ+LAqOSnGMwGJPkwDxvOkILw7ARYcd1aMhIDEBQfVwieAD4evERmGQwAfDkcLTZngw5rUpBbfBCT6MA0Y37OC+M4EWHCcUTEQAtwBwxzwQgAf9oKVoEoJSLzwVyqFqrLwYVVyUoxnAhJ9mAaM50lBeHcCLDjurBgJAYkLDqqFTwAfDl8jMgyHAD4cjhaaMsGHNalJLb4JSPRhGjC+ZwXxnQmw4DijYiAEuAOGOeCFAD7sBStBlRKQeOGvVApVZeHDquSkGM8EJPowDRjPk4Lw7gRYcNxZMRICEhccVAufAD4cvkZkGA4BfDgcLTRlgg9rUpNafBOQ6MM0YHzPCuI7E2DBcUbFQAhwBwxzwAsBfNgLVoIqJSDxwl+pFKrKwodVyUkxnglI9GEaMJ4nBeHdCbDguLNiJAQkLjioFj4BfDh8jcgwHAL4cDhaaMoEH9akJrX4JiDRh2nA+J4VxHcmwILjjIqBEOAOGOaAFwL4sBesBFVKQOKFv1IpVJWFD6uSk2I8E5DowzRgPE8KwrsTYMFxZ8VICEhccFAtfAL4cPgakWE4BPDhcLTQlAk+rElNavFNQKIP04DxPSuI70yABccZFQMhwB0wzAEvBPBhL1gJqpSAxAt/pVKoKgsfViUnxXgmINGHacB4nhSEdyfAguPOipEQkLjgoFr4BPDh8DUiw3AI4MPhaKEpE3xYk5rU4puARB+mAeN7VhDfmQALjjMqBkKAO2CYA14I4MNesBJUKQGJF/5KpVBVFj6sSk6K8UxAog/TgPE8KQjvToAFx50VIyEgccFBtfAJ4MPha0SG4RDAh8PRQlMm+LAmNanFNwGJPkwDxvesIL4zARYcZ1QMhAB3wDAHvBDAh71gJahSAhIv/JVKoaosfFiVnBTjmYBEH6YB43lSEN6dAAuOOytGQkDigoNq4RPAh8PXiAzDIYAPh6OFpkzwYU1qUotvAhJ9mAaM71lBfGcCLDjOqBgIAe6AYQ54IYAPe8FKUKUEJF74K5VCVVn4sCo5KcYzAYk+TAPG86QgvDsBFhx3VoyEgMQFB9XCJ4APh68RGYZDAB8ORwtNmeDDmtSkFt8EJPowDRjfs4L4zgRYcJxRMRAC3AHDHPBCAB/2gpWgSglIvPBXKoWqsvBhVXJSjGcCEn2YBoznSUF4dwIsOO6sGAkBiQsOqoVPAB8OXyMyDIcAPhyOFpoywYc1qUktvglI9GEaML5nBfGdCbDgOKNiIAS4A4Y54IUAPuwFK0GVEpB44a9UClVl4cOq5KQYzwQk+jANGM+TgvDuBFhw3FkxEgISFxxUC58APhy+RmQYDgF8OBwtNGWCD2tSk1p8E5DowzRgfM8K4jsTYMFxRsVACHAHDHPACwF82AtWgiolIPHCX6kUqsrCh1XJSTGeCUj0YRownicF4d0JsOC4s2IkBCQuOKgWPgF8OHyNyDAcAvhwOFpoygQf1qQmtfgmINGHacD4nhXEdybAguOMioEQ4A4Y5oAXAviwF6wEVUpA4oW/UilUlYUPq5KTYjwTkOjDNGA8TwrCuxNgwXFnxUgISFxwUC18Avhw+BqRYTgE8OFwtNCUCT6sSU1q8U1Aog/TgPE9K4jvTIAFxxkVAyHAHTDMAS8E8GEvWAmqlIDEC3+lUqgqCx9WJSfFeCYg0YdpwHieFIR3J8CC486KkRCQuOCgWvgE8OHwNSLDcAjgw+FooSkTfFiTmtTim4BEH6YB43tWEN+ZAAuOMyoGQoA7YJgDXgjgw16wElQpAYkX/kqlUFUWPqxKTorxTECiD9OA8TwpCO9OgAXHnRUjISBxwUG18Angw+FrRIbhEMCHw9FCUyb4sCY1qcU3AYk+TAPG96wgvjMBFhxnVAyEAHfAMAe8EMCHvWAlqFICEi/8lUqhqix8WJWcFOOZgEQfpgHjeVIQ3p0AC447K0ZCQOKCg2rhE8CHw9eIDMMhgA+Ho4WmTPBhTWpSi28CEn2YBozvWUF8ZwIsOM6oGAgB7oBhDnghgA97wUpQpQQkXvgrlUJVWfiwKjkpxjMBiT5MA8bzpCC8OwEWHHdWjISAxAUH1cIngA+HrxEZhkMAHw5HC02Z4MOa1KQW3wQk+jANGN+zgvjOBFhwnFExEALcAcMc8EIAH/aClaBKCUi88Fcqhaqy8GFVclKMZwISfZgGjOdJQXh3Aiw47qwYCQGJCw6qhU8AHw5fIzIMhwA+HI4WmjLBhzWpSS2+CUj0YRowvmcF8Z0JsOA4o2IgBLgDhjnghQA+7AUrQZUSkHjhr1QKVWXhw6rkpBjPBCT6MA0Yz5OC8O4EWHDcWTESAhIXHFQLnwA+HL5GZBgOAXw4HC00ZYIPa1KTWnwTkOjDNGB8zwriOxNgwXFGxUAIcAcMc8ALAXzYC1aCKiUg8cJfqRSqysKHVclJMZ4JSPRhGjCeJwXh3Qmw4LizYiQEJC44qBY+AXw4fI3IMBwC+HA4WmjKBB/WpCa1+CYg0YdpwPieFcR3JsCC44yKgRDgDhjmgBcC+LAXrARVSkDihb9SKVSVhQ+rkpNiPBOQ6MM0YDxPCsK7E2DBcWfFSAhIXHBQLXwC+HD4GpFhOATw4XC00JQJPqxJTWrxTUCiD9OA8T0riO9MgAXHGRUDIcAdMMwBLwTwYS9YCaqUgMQLf6VSqCoLH1YlJ8V4JiDRh2nAeJ4UhHcnwILjzoqREJC44KBa+ATw4fA1IsNwCODD4WihKRN8WJOa1OKbgEQfpgHje1YQ35kAC44zKgZCgDtgmANeCODDXrASVCkBiRf+SqVQVRY+rEpOivFMQKIP04DxPCkI706ABcedFSMhIHHBQbXwCeDD4WtEhuEQwIfD0UJTJviwJjWpxTcBiT5MA8b3rCC+MwEWHGdUDIQAd8AwB7wQwIe9YCWoUgISL/yVSqGqLHxYlZwU45mARB+mAeN5UhDenQALjjsrRkJA4oKDauETwIfD14gMwyGAD4ejhaZM8GFNalKLbwISfZgGjO9ZQXxnAiw4zqgYCAHugGEOeCGAD3vBSlClBCRe+CuVQlVZ+LAqOSnGMwGJPkwDxvOkILw7ARYcd1aMhIDEBQfVwieAD4evERmGQwAfDkcLTZngw5rUpBbfBCT6MA0Y37OC+M4EWHCcUTEQAtwBwxzwQgAf9oKVoEoJSLzwVyqFqrLwYVVyUoxnAhJ9mAaM50lBeHcCLDjurBgJAYkLDqqFTwAfDl8jMgyHAD4cjhaaMsGHNalJLb4JSPRhGjC+ZwXxnQmw4DijYiAEuAOGOeCFAD7sBStBlRKQeOGvVApVZeHDquSkGM8EJPowDRjPk4Lw7gRYcNxZMRICEhccVAufAD4cvkZkGA4BfDgcLTRlgg9rUpNafBOQ6MM0YHzPCuI7E2DBcUbFQAhwBwxzwAsBfNgLVoIqJSDxwl+pFKrKwodVyUkxnglI9GEaMJ4nBeHdCbDguLNiJAQkLjioFj4BfDh8jcgwHAL4cDhaaMoEH9akJrX4JiDRh2nA+J4VxHcmwILjjIqBEOAOGOaAFwL4sBesBFVKQOKFv1IpVJWFD6uSk2I8E5DowzRgPE8KwrsTYMFxZ8VICEhccFAtfAL4cPgakWE4BPDhcLTQlAk+rElNavFNQKIP04DxPSuI70yABccZFQMhwB0wzAEvBPBhL1gJqpSAxAt/pVKoKgsfViUnxXgmINGHacB4nhSEdyfAguPOipEQkLjgoFr4BPDh8DUiw3AI4MPhaKEpE3xYk5rU4puARB+mAeN7VhDfmQALjjMqBkKAO2CYA14I4MNesBJUKQGJF/5KpVBVFj6sSk6K8UxAog/TgPE8KQjvToAFx50VIyEgccFBtfAJ4MPha0SG4RDAh8PRQlMm+LAmNanFNwGJPkwDxvesIL4zARYcZ1QMhAB3wDAHvBDAh71gJahSAhIv/JVKoaosfFiVnBTjmYBEH6YB43lSEN6dAAuOOytGQkDigoNq4RPAh8PXiAzDIYAPh6OFpkzwYU1qUotvAhJ9mAaM71lBfGcCLDjOqBgIAe6AYQ54IYAPe8FKUKUEJF74K5VCVVn4sCo5KcYzAYk+TAPG86QgvDsBFhx3VoyEgMQFB9XCJ4APh68RGYZDAB8ORwtNmeDDmtSkFt8EJPowDRjfs4L4zgRYcJxRMRAC3AHDHPBCAB/2gpWgSglIvPBXKoWqsvBhVXJSjGcCEn2YBoznSUF4dwIsOO6sGAkBiQsOqoVPAB8OXyMyDIcAPhyOFpoywYc1qUktvglI9GEaML5nBfGdCbDgOKNiIAS4A4Y54IUAPuwFK0GVEpB44a9UClVl4cOq5KQYzwQk+jANGM+TgvDuBFhw3FkxEgISFxxUC58APhy+RmQYDgF8OBwtNGWCD2tSk1p8E5DowzRgfM8K4jsTYMFxRsVACHAHDHPACwF82AtWgiolIPHCX6kUqsrCh1XJSTGeCUj0YRownicF4d0JsOC4s2IkBCQuOKgWPgF8OHyNyDAcAvhwOFpoygQf1qQmtfgmINGHacD4nhXEdybAguOMioEQ4A4Y5oAXAviwF6wEVUpA4oW/UilUlYUPq5KTYjwTkOjDNGA8TwrCuxNgwXFnxUgISFxwUC18Avhw+BqRYTgE8OFwtNCUCT6sSU1q8U1Aog/TgPE9K4jvTIAFxxkVAyHAHTDMAS8E8GEvWAmqlIDEC3+lUqgqCx9WJSfFeCYg0YdpwHieFIR3J8CC486KkRCQuOCgWvgE8OHwNSLDcAjgw+FooSkTfFiTmtTim4BEH6YB43tWEN+ZAAuOMyoGQoA7YJgDXgjgw16wElQpAYkX/kqlUFUWPqxKTorxTECiD9OA8TwpCO9OgAXHnRUjISBxwUG18Angw+FrRIbhEMCHw9FCUyb4sCY1qcU3AYk+TAPG96wgvjMBFhxnVAyEAHfAMAe8EMCHvWAlqFICEi/8lUqhqix8WJWcFOOZgEQfpgHjeVIQ3p0AC447K0ZCQOKCg2rhE8CHw9eIDMMhgA+Ho4WmTPBhTWpSi28CEn2YBozvWUF8ZwIsOM6oGAgB7oBhDnghgA97wUpQpQQkXvgrlUJVWfiwKjkpxjMBiT5MA8bzpCC8OwEWHHdWjISAxAUH1cIngA+HrxEZhkMAHw5HC02Z4MOa1KQW3wQk+jANGN+zgvjOBFhwnFExEALcAcMc8EIAH/aClaBKCUi88Fcqhaqy8GFVclKMZwISfZgGjOdJQXh3Aiw47qwYCQGJCw6qhU8AHw5fIzIMhwA+HI4WmjLBhzWpSS2+CUj0YRowvmcF8Z0JsOA4o2IgBLgDhjnghQA+7AUrQZUSkHjhr1QKVWXhw6rkpBjPBCT6MA0Yz5OC8O4EWHDcWTESAhIXHFQLnwA+HL5GZBgOAXw4HC00ZYIPa1KTWnwTkOjDNGB8zwriOxNgwXFGxUAIcAcMc8ALAXzYC1aCKiUg8cJfqRSqysKHVclJMZ4JSPRhGjCeJwXh3Qmw4LizYiQEJC44qBY+AXw4fI3IMBwC+HA4WmjKBB/WpCa1+CYg0YdpwPieFcR3JsCC44yKgRDgDhjmgBcC+LAXrARVSkDihb9SKVSVhQ+rkpNiPBOQ6MM0YDxPCsK7E2DBcWfFSAhIXHBQLXwC+HD4GpFhOATw4XC00JQJPqxJTWrxTUCiD9OA8T0riO9MgAXHGRUDIcAdMMwBLwTwYS9YCaqUgMQLf6VSqCoLH1YlJ8V4JiDRh2nAeJ4UhHcnwILjzoqREJC44KBa+ATw4fA1IsNwCODD4WihKRN8WJOa1OKbgEQfpgHje1YQ35kAC44zKgZCgDtgmANeCODDXrASVCkBiRf+SqVQVRY+rEpOivFMQKIP04DxPCkI706ABcedFSMhIHHBQbXwCeDD4WtEhuEQwIfD0UJTJviwJjWpxTcBiT5MA8b3rCC+MwEWHGdUDIQAd8AwB7wQwIe9YCWoUgISL/yVSqGqLHxYlZwU45mARB+mAeN5UhDenQALjjsrRkJA4oKDauETwIfD14gMwyGAD4ejhaZM8GFNalKLbwISfZgGjO9ZQXxnAiw4zqgYCAHugGEOeCGAD3vBSlClBCRe+CuVQlVZ+LAqOSnGMwGJPkwDxvOkILw7ARYcd1aMhIDEBQfVwieAD4evERmGQwAfDkcLTZngw5rUpBbfBCT6MA0Y37OC+M4EWHCcUTEQAtwBwxzwQgAf9oKVoEoJSLzwVyqFqrLwYVVyUoxnAhJ9mAaM50lBeHcCLDjurBgJAYkLDqqFTwAfDl8jMgyHAD4cjhaaMsGHNalJLb4JSPRhGjC+ZwXxnQmw4DijYiAEuAOGOeCFAD7sBStBlRKQeOGvVApVZeHDquSkGM8EJPowDRjPk4Lw7gRYcNxZMRICEhccVAufAD4cvkZkGA4BfDgcLTRlgg9rUpNafBOQ6MM0YHzPCuI7E2DBcUbFQAhwBwxzwAsBfNgLVoIqJSDxwl+pFKrKwodVyUkxnglI9GEaMJ4nBeHdCbDguLNiJAQkLjioFj4BfDh8jcgwHAL4cDhaaMoEH9akJrX4JiDRh2nA+J4VxHcmwILjjIqBEOAOGOaAFwL4sBesBFVKQOKFv1IpVJWFD6uSk2I8E5DowzRgPE8KwrsTePDBB81OO+3kfgAjIRAxgdmzZ5sdd9wxYgKU7oMAPuyDKjG1EsCHtSqbb134cL78ObssAhJ9mAaMrDmmNtvFixebE044wVx33XVqa6QwCGRJ4KijjjKTJk0yvXr1yjIssSImgA9HLD6lN0QAH24IGwelEMCHU+CwCwJVCEj0YRowVYRkU2sILFu2zEyYMMFMnjzZvPnmm6ZQKLTmxJwFAkoIdOvWzayzzjpm1KhR5t///d9N9+7dlVRGGa0igA+3ijTn0UoAH9aqbOvqwodbx5oz6SQgzYdpwOichyKqOuWUU8zFF18sIleShEDoBEaPHs3vU+giBZgfPhygKKQklgA+LFa6XBPHh3PFz8mVEZDgwzRglE06KeUsWLDArL322sZ2/XlBAALNE7B3v8ybN88MGDCg+WBEiIIAPhyFzBTZQgL4cAthKzkVPqxESMoIhoAEH6YBE8x0iSuRu+++24wcOTKuoqkWAp4JTJ8+3eyxxx6ez0J4LQTwYS1KUkdIBPDhkNQIPxd8OHyNyFAegdB9mAaMvDmlIuM777zT7LPPPipqoQgIhELgjjvuMHvvvXco6ZBH4ATw4cAFIj2RBPBhkbLlljQ+nBt6TqyYQOg+TANG8eQLuTQWnJDVITepBEJfcKRy1Zo3PqxVWerKkwA+nCd9eefGh+VpRsbhEwjdh2nAhD+HVGbIgqNSVorKmUDoC07OeDh9GQF8uAwIHyGQAQF8OAOIEYXAhyMSm1JbRiB0H6YB07KpwIlKCbDglNLgPQSyIRD6gpNNlUTJigA+nBVJ4kCgkwA+3MmCd7UJ4MO1GTECAvUSCN2HacDUqyjjMyHAgpMJRoJAoAuB0BecLsnyIXcC+HDuEpCAQgL4sEJRPZaED3uES+hoCYTuwzRgop2a+RbOgpMvf86uk0DoC45O6nKrwoflakfm4RLAh8PVJsTM8OEQVSEn6QRC92EaMNJnmND8WXCECkfaQRMIfcEJGl6EyeHDEYpOyd4J4MPeEas6AT6sSk6KCYRA6D5MAyaQiRJbGiw4sSlOva0gEPqC0woGnMOdAD7szoqREHAlgA+7kmKcJYAPMw8gkD2B0H2YBkz2mhPRgQALjgMkhkCgTgKhLzh1lsNwzwTwYc+ACR8lAXw4StkbLhofbhgdB0IgkUDoPkwDJlE6dvgkwILjky6xYyUQ+oITqy6h1o0Ph6oMeUkmgA9LVq/1uePDrWfOGfUTCN2HacDon4NBVsiCE6QsJCWcQOgLjnC86tLHh9VJSkEBEMCHAxBBUAr4sCCxSFUMgdB9mAaMmKmkK9G7777bjBw5UldRVAOBnAlMnz7d7LHHHjlnwemlEMCHpShFnpII4MOS1Mo/V3w4fw3IQB+B0H2YBoy+OSeiovnz55t11lnHLFu2TES+JAmB0Al0797dzJs3zwwYMCD0VMkvEAL4cCBCkIYaAviwGilbVgg+3DLUnCgSAhJ8mAZMJJMxxDJHjx5tLr300hBTIycIiCNgf58uvvhicXmTcL4E8OF8+XN2XQTwYV16tqoafLhVpDlPDAQk+DANmBhmYqA12rtfzj33XDN58uS2f7kvFAqBZkpaEAiTQLdu3czaa69tRo0aZcaOHWts158XBOohgA/XQ4uxEKgkgA9XMmFLfQTw4fp4MRoC5QSk+TANmHIF+QwBCEAAAhCAAAQgAAEIQAACEIAABDImQAMmY6CEgwAEIAABCEAAAhCAAAQgAAEIQAAC5QRowJQT4TMEIAABCEAAAhCAAAQgAAEIQAACEMiYAA2YjIESDgIQgAAEIAABCEAAAhCAAAQgAAEIlBOgAVNOhM8QgAAEIAABCEAAAhCAAAQgAAEIQCBjAjRgMgZKOAhAAAIQgAAEIAABCEAAAhCAAAQgUE6ABkw5ET5DAAIQgAAEIAABCEAAAhCAAAQgAIGMCdCAyRgo4SAAAQhAAAIQgAAEIAABCEAAAhCAQDkBGjDlRPgMAQhAAAIQgAAEIAABCEAAAhCAAAQyJkADJmOghIMABCAAAQhAAAIQgAAEIAABCEAAAuUEaMCUE+EzBCAAAQhAAAIQgAAEIAABCEAAAhDImAANmIyBEg4CEIAABCAAAQhAAAIQgAAEIAABCJQToAFTToTPEIAABCAAAQhAAAIQgAAEIAABCEAgYwI0YDIGSjgIQAACEIAABCAAAQhAAAIQgAAEIFBOgAZMORE+QwACEIAABCAAAQhAAAIQgAAEIACBjAnQgMkYKOEgAAEIQAACEIAABCAAAQhAAAIQgEA5ARow5UT4DAEIQAACEIAABCAAAQhAAAIQgAAEMiZAAyZjoISDAAQgAAEIQAACEIAABCAAAQhAAALlBGjAlBPhMwQgAAEIQAACEIAABCAAAQhAAAIQyJgADZiMgRIOAhCAAAQgAAEIQAACEIAABCAAAQiUE6ABU06EzxCAAAQgAAEIQAACEIAABCAAAQhAIGMCNGAyBko4CEAAAhCAAAQgAAEIQAACEIAABCBQToAGTDkRPkMAAhCAAAQgAAEIQAACEIAABCAAgYwJ0IDJGCjhIAABCEAAAhCAAAQgAAEIQAACEIBAOQEaMOVE+AwBCEAAAhCAAAQgAAEIQAACEIAABDImQAMmY6CEgwAEIAABCEAAAhCAAAQgAAEIQAAC5QT+P8/FL6Oce88nAAAAAElFTkSuQmCC" + } + }, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "<div>\n", + "<img src=\"attachment:Buckets.png\" width=\"600\"/>\n", + "</div>" + ] + }, + { + "attachments": { + "Binning_step1.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABGIAAALeCAYAAADh67erAAAMa2lDQ1BJQ0MgUHJvZmlsZQAASImVVwdYU8kWnluSkJDQAhGQEnoTRHqREkKLICBVsBGSQEKJMSGI2NFFBXtBFCu6KqLoWgBZVMReFsXeF2VRWVkXdVEUlTcpoOu+8r3zfXPnv2fO/KfcmXvvAKDdx5VIclEdAPLE+dL4iBDm+NQ0JukZQAEOKMAZ6HB5MgkrLi4aQBns/y7vbgNE0d9wVnD9c/y/ih5fIOMBgEyEOIMv4+VB3AwAvoknkeYDQFTorabnSxR4HsT6UhggxGsVOEuF9yhwhgo3KW0S49kQXwNAg8rlSrMA0HoI9cwCXhbk0foEsauYLxIDoD0C4kCekMuHWBH7iLy8qQpcAbE9tJdADOMBPhnfcGb9jT9jiJ/LzRrCqryUohEqkklyuTP+z9L8b8nLlQ/6sIWNKpRGxivyhzW8mzM1SoGpEHeLM2JiFbWGuE/EV9UdAJQilEcmqexRE56MDesHGBC78rmhURCbQBwuzo2JVuszMkXhHIjhakELRfmcRIgNIV4skIUlqG22SafGq32hdZlSNkutv8CVKv0qfD2W5ySx1PxvhAKOmh/TKhImpkBMgdi6QJQcA7EWxC6ynIQotc3oIiE7ZtBGKo9XxG8NcbxAHBGi4scKMqXh8Wr70jzZYL7YNqGIE6PGh/KFiZGq+mBneFxl/DAX7JpAzEoa5BHIxkcP5sIXhIapcsdeCMRJCWqePkl+SLxqLk6R5Map7XFLQW6EQm8JsYesIEE9F0/Oh4tTxY9nSvLjElVx4kXZ3DFxqnjwlSAasEEoYAI5bBlgKsgGotbu+m54pxoJB1wgBVlAAHeoSjM4I0U5IobXBFAE/oBIAGRD80KUowJQAPWfh7SqqzPIVI4WKGfkgGcQ54EokAvv5cpZ4iFvyeA3qBH9wzsXNh6MNxc2xfi/1w9qv2pYUBOt1sgHPTK1By2JYcRQYiQxnOiAG+OBuD8eDa/BsLnhPrjvYB5f7QnPCG2Ep4RbhHbCvSmiYul3UY4F7ZA/XF2LjG9rgdtCTk88BA+A7JAZZ+DGwBn3gH5YeBD07Am1bHXciqowv+P+WwbfPA21HdmVjJKHkYPJ9t/P1HLU8hxiUdT62/qoYs0Yqjd7aOR7/+xvqs+HfdT3lthi7DB2HjuFXcSasHrAxE5iDdgV7LgCD62u35Sra9BbvDKeHMgj+oc/rtqnopIy1xrXLtdPqrF8QWG+YuOxp0pmSEVZwnwmC34dBEyOmOcygunm6uYGgOJbo3p9vWUovyEI49JXXfEyAAI8BgYGmr7qorUBOAL3DKXjq87eD74mCgG4sJwnlxaodLjiQoBvCW2404yAGbAC9jAfN+AF/EEwCANjQCxIBKlgMqyyEK5zKZgOZoH5oASUgZVgHdgItoIdYA/YDw6BetAEToFz4DK4Bm6BB3D1dIKXoAe8A/0IgpAQGkJHjBBzxAZxQtwQHyQQCUOikXgkFUlHshAxIkdmIQuQMmQ1shHZjlQjPyHHkFPIRaQNuYc8QbqQN8hHFEOpqD5qitqiI1EflIVGoYnoJDQLnYYWoQvR5WgFWoXuQ+vQU+hl9Bbajr5EezGAaWIMzAJzxnwwNhaLpWGZmBSbg5Vi5VgVVos1wud8A2vHurEPOBGn40zcGa7gSDwJ5+HT8Dn4Unwjvgevw8/gN/AneA/+hUAjmBCcCH4EDmE8IYswnVBCKCfsIhwlnIV7qZPwjkgkMoh2RG+4F1OJ2cSZxKXEzcQDxGZiG7GD2EsikYxITqQAUiyJS8onlZA2kPaRTpKukzpJfRqaGuYabhrhGmkaYo1ijXKNvRonNK5rPNfoJ+uQbch+5FgynzyDvIK8k9xIvkruJPdTdCl2lABKIiWbMp9SQamlnKU8pLzV1NS01PTVHKcp0pynWaF5UPOC5hPND1Q9qiOVTZ1IlVOXU3dTm6n3qG9pNJotLZiWRsunLadV007THtP6tOhaLlocLb7WXK1KrTqt61qvtMnaNtos7cnaRdrl2oe1r2p365B1bHXYOlydOTqVOsd07uj06tJ1R+nG6ubpLtXdq3tR94UeSc9WL0yPr7dQb4feab0OOka3orPpPPoC+k76WXqnPlHfTp+jn61fpr9fv1W/x0DPwMMg2aDQoNLguEE7A2PYMjiMXMYKxiHGbcbHYabDWMMEw5YMqx12fdh7w+GGwYYCw1LDA4a3DD8aMY3CjHKMVhnVGz0yxo0djccZTzfeYnzWuHu4/nD/4bzhpcMPDb9vgpo4msSbzDTZYXLFpNfUzDTCVGK6wfS0abcZwyzYLNtsrdkJsy5zunmguch8rflJ89+ZBkwWM5dZwTzD7LEwsYi0kFtst2i16Le0s0yyLLY8YPnIimLlY5VptdaqxarH2tx6rPUs6xrr+zZkGx8boc16m/M2723tbFNsF9nW276wM7Tj2BXZ1dg9tKfZB9lPs6+yv+lAdPBxyHHY7HDNEXX0dBQ6VjpedUKdvJxETpud2kYQRviOEI+oGnHHmerMci5wrnF+4sJwiXYpdql3eTXSemTayFUjz4/84urpmuu60/XBKL1RY0YVj2oc9cbN0Y3nVul2053mHu4+173B/bWHk4fAY4vHXU+651jPRZ4tnp+9vL2kXrVeXd7W3unem7zv+Oj7xPks9bngS/AN8Z3r2+T7wc/LL9/vkN+f/s7+Of57/V+MthstGL1zdEeAZQA3YHtAeyAzMD1wW2B7kEUQN6gq6GmwVTA/eFfwc5YDK5u1j/UqxDVEGnI05D3bjz2b3RyKhUaEloa2humFJYVtDHscbhmeFV4T3hPhGTEzojmSEBkVuSryDseUw+NUc3rGeI+ZPeZMFDUqIWpj1NNox2hpdONYdOyYsWvGPoyxiRHH1MeCWE7smthHcXZx0+J+HkccFzeuctyz+FHxs+LPJ9ATpiTsTXiXGJK4IvFBkn2SPKklWTt5YnJ18vuU0JTVKe3jR46fPf5yqnGqKLUhjZSWnLYrrXdC2IR1Ezonek4smXh7kt2kwkkXJxtPzp18fIr2FO6Uw+mE9JT0vemfuLHcKm5vBidjU0YPj81bz3vJD+av5XcJAgSrBc8zAzJXZ77ICshak9UlDBKWC7tFbNFG0evsyOyt2e9zYnN25wzkpuQeyNPIS887JtYT54jPTDWbWji1TeIkKZG0T/Obtm5ajzRKukuGyCbJGvL14U/9Fbm9/Af5k4LAgsqCvunJ0w8X6haKC6/McJyxZMbzovCiH2fiM3kzW2ZZzJo/68ls1uztc5A5GXNa5lrNXTi3c17EvD3zKfNz5v9S7Fq8uvivBSkLGheaLpy3sOOHiB9qSrRKpCV3Fvkv2roYXyxa3LrEfcmGJV9K+aWXylzLyss+LeUtvbRs1LKKZQPLM5e3rvBasWUlcaV45e1VQav2rNZdXbS6Y83YNXVrmWtL1/61bsq6i+Ue5VvXU9bL17dXRFc0bLDesHLDp43CjbcqQyoPbDLZtGTT+838zde3BG+p3Wq6tWzrx22ibXe3R2yvq7KtKt9B3FGw49nO5J3nf/T5sXqX8a6yXZ93i3e374nfc6bau7p6r8neFTVojbyma9/Efdf2h+5vqHWu3X6AcaDsIDgoP/j7T+k/3T4UdajlsM/h2iM2RzYdpR8trUPqZtT11Avr2xtSG9qOjTnW0ujfePRnl593N1k0VR43OL7iBOXEwhMDJ4tO9jZLmrtPZZ3qaJnS8uD0+NM3z4w703o26uyFc+HnTp9nnT95IeBC00W/i8cu+Vyqv+x1ue6K55Wjv3j+crTVq7XuqvfVhmu+1xrbRreduB50/dSN0BvnbnJuXr4Vc6vtdtLtu3cm3mm/y7/74l7uvdf3C+73P5j3kPCw9JHOo/LHJo+rfnX49UC7V/vxJ6FPrjxNePqgg9fx8jfZb586Fz6jPSt/bv68+oXbi6au8K5rv0/4vfOl5GV/d8kfun9semX/6sifwX9e6Rnf0/la+nrgzdK3Rm93/+XxV0tvXO/jd3nv+t+X9hn17fng8+H8x5SPz/unfyJ9qvjs8LnxS9SXhwN5AwMSrpSr/BXAYEMzMwF4sxsAWioAdHhuo0xQnQWVgqjOr0oE/hNWnReV4gVALewUv/HsZgAOwmYLG20eAIpf+MRggLq7DzW1yDLd3VRcVHgSIvQNDLw1BYDUCMBn6cBA/+aBgc87YbD3AGiepjqDKoQIzwzblBzXGYXzwHeiOp9+k+P3PVBE4AG+7/8FlTiO10mPo7EAAACKZVhJZk1NACoAAAAIAAQBGgAFAAAAAQAAAD4BGwAFAAAAAQAAAEYBKAADAAAAAQACAACHaQAEAAAAAQAAAE4AAAAAAAAAkAAAAAEAAACQAAAAAQADkoYABwAAABIAAAB4oAIABAAAAAEAAARioAMABAAAAAEAAALeAAAAAEFTQ0lJAAAAU2NyZWVuc2hvdOF7ZkAAAAAJcEhZcwAAFiUAABYlAUlSJPAAAAHXaVRYdFhNTDpjb20uYWRvYmUueG1wAAAAAAA8eDp4bXBtZXRhIHhtbG5zOng9ImFkb2JlOm5zOm1ldGEvIiB4OnhtcHRrPSJYTVAgQ29yZSA2LjAuMCI+CiAgIDxyZGY6UkRGIHhtbG5zOnJkZj0iaHR0cDovL3d3dy53My5vcmcvMTk5OS8wMi8yMi1yZGYtc3ludGF4LW5zIyI+CiAgICAgIDxyZGY6RGVzY3JpcHRpb24gcmRmOmFib3V0PSIiCiAgICAgICAgICAgIHhtbG5zOmV4aWY9Imh0dHA6Ly9ucy5hZG9iZS5jb20vZXhpZi8xLjAvIj4KICAgICAgICAgPGV4aWY6UGl4ZWxZRGltZW5zaW9uPjczNDwvZXhpZjpQaXhlbFlEaW1lbnNpb24+CiAgICAgICAgIDxleGlmOlBpeGVsWERpbWVuc2lvbj4xMTIyPC9leGlmOlBpeGVsWERpbWVuc2lvbj4KICAgICAgICAgPGV4aWY6VXNlckNvbW1lbnQ+U2NyZWVuc2hvdDwvZXhpZjpVc2VyQ29tbWVudD4KICAgICAgPC9yZGY6RGVzY3JpcHRpb24+CiAgIDwvcmRmOlJERj4KPC94OnhtcG1ldGE+CptmxDwAAAAcaURPVAAAAAIAAAAAAAABbwAAACgAAAFvAAABbwAAbXUtIuMEAABAAElEQVR4AezdB7xT5f3H8d+d7L2HbFDZCDIVUFBRrAUURaXubeuirmqFtrbuat0469ai4P4jbhQBwYkiMpWN7M3d//M7kNzMc3OTJ8lJ8jl93SY54znPeZ9Ebr73GVll1iIsCCCAAAIIIIAAAggggAACCCCAAAJxF8giiIm7MSdAAAEEEEAAAQQQQAABBBBAAAEEbAGCGN4ICCCAAAIIIIAAAggggAACCCCAQIIECGISBM1pEEAAAQQQQAABBBBAAAEEEEAAAYIY3gMIIIAAAggggAACCCCAAAIIIIBAggQIYhIEzWkQQAABBBBAAAEEEEAAAQQQQAABghjeAwgggAACCCCAAAIIIIAAAggggECCBAhiEgTNaRBAAAEEEEAAAQQQQAABBBBAAAGCGN4DCCCAAAIIIIAAAggggAACCCCAQIIECGISBM1pEEAAAQQQQAABBBBAAAEEEEAAAYIY3gMIIIAAAggggAACCCCAAAIIIIBAggQIYhIEzWkQQAABBBBAAAEEEEAAAQQQQAABghjeAwgggAACCCCAAAIIIIAAAggggECCBAhiEgTNaRBAAAEEEEAAAQQQQAABBBBAAAGCGN4DCCCAAAIIIIAAAggggAACCCCAQIIECGISBM1pEEAAAQQQQAABBBBAAAEEEEAAAYIY3gMIIIAAAggggAACCCCAAAIIIIBAggQIYhIEzWkQQAABBBBAAAEEEEAAAQQQQAABghjeAwgggAACCCCAAAIIIIAAAggggECCBAhiEgTNaRBAAAEEEEAAAQQQQAABBBBAAAGCGN4DCCCAAAIIIIAAAggggAACCCCAQIIECGISBM1pEIhVYPOeMpm7plS+31Aqv2wvkw27ymRPkUhxWawlZ+7xuVki1fNEmtTMkjZ1sqR7k2zp1yJbGlS3NrAggAACCCCAAAIIpKzAhg0b5IsvvpDPPvtMrrvuOmnatGnKXgsVTz8Bgpj0u6dcUZoJfLu+VF75sUTmryuVUkKXuN/dbCuD6dMsW07rkiM9m2bH/XycAAEEEEAAAQQQQCB2gV9//dUOXWbOnGk/Llq0yFvoK6+8Iqeeeqr3NU8QSLYAQUyy7wDnRyCMwOodZXL/l8XylRXAsCRHoLcVyFzRN1da1qaFTHLuAGdFAAEEEEAAAQSCBcrKymThwoV24KItXj755BNZu3Zt8I4H1vzxj3+UBx54IOx2NiCQaAGCmESLcz4EIhCYvrTEDmEKSiLYmV3iKlAlR+wwZkQH6wkLAggggAACCCCAQMIFioqK5JtvvvFr8bJ169aI69G9e3f57rvvIt6fHRGItwBBTLyFKR+BSgo8+U2xvPgDCUwl2eK++xldc+T8XrlxPw8nQAABBBBAAAEEMl1g9+7dMnfuXG+LFx3rZe/evVGzZGdny5YtW6ROnTpRl8GBCJgUIIgxqUlZCMQoQAgTI2CcDyeMiTMwxSOAAAIIIIBARgps2rRJZs+e7W3x8tVXX0lxcbFRi7fffltGjhxptEwKQyBaAYKYaOU4DgHDAtod6a7ZZv/BMVxFirMErh2QK3RT4q2AAAIIIIAAAghEL7B69Wpvaxcd4+XHH38UHfclnsv1118vt99+ezxPQdkIRCxAEBMxFTsiED8BHZj3orcLhTFh4mdsqmQdM+axE/MZwNcUKOUggAACCCCAQNoL/Pzzz97gRQfWXblyZcKveeDAgTJr1qyEn5cTIhBKgCAmlArrEEiwwHUfFDE7UoLNYzmdzqZ05/C8WIrgWAQQQAABBBBAIC0FtEuRDoyrLV30R6eT1q5HyV7y8/Nl+/btUrVq1WRXhfMjIAQxvAkQSLLAN9b01H+2ghiW1BK455g86dk0O7UqTW0RQAABBBBAAAHDAjqI7rx587zBi7Y62bVrl+GzmClOW+MMGTLETGGUgkAMAgQxMeBxKAImBG74sEjmrS01URRlJFDg8ObZcvswWsUkkJxTIYAAAggggIALBLZt2yY6i5GnxcuXX34pOr10Kiz/+Mc/5Oabb06FqlLHNBcgiEnzG8zluVtg854yGTe1UErjOzaZuxFStHbZWSIvj8mXBtWtJywIIIAAAgjEKKBfbt944w1Zt26d1K1bVw455BDp379/hd0otDWCDnyqP5s3b7YHPK1Xr5506NBB2rRpE2OtOBwBkbVr19pjq3iCF+12FO+BdePlfswxx8iMGTPiVTzlIhCxAEFMxFTsiIB5gXeXlMg9c5gpybxsYkqc0D9XTuhojd7LggACCCCAQAwCOm5F7969ZdmyZX6l6FgWffr0kVatWomOb6GtDnbu3GkHLhs3bpTffvtNNMAJtzRs2FAGDx4sQ4cOtX+6du0qWVn8ASGcF+v3CyxdutTb2kXDF32dLkutWrVk69atkpPD72/pck9T9ToIYlL1zlHvtBC4/fMieX8F3ZJS9WYe0zZbbjiC7kmpev+oNwIIIOAWgWnTpsmYMWPiXp0GDRrYwYyOkaHhTLdu3SQ7m/HO4g7v4hOUlpbKggULvMHLp59+Khs2bHBxjWOvmo5nowEnCwLJFCCISaY+5854gUveKZQlW+iXlKpvhI71s+TRkfmpWn3qjQACCCDgEoF3331XRo4cmfDaaBcmbTHjCWZ69OhBMJPwu5DYExYUFMj8+fO9wcvnn38uO3bsSGwlkny2f//733L11VcnuRacPtMFCGIy/R3A9SdVYPQrBbKjMKlV4OQxCNS2Mphpp1WJoQQORQABBBBAQOypfZs0aSLaOiGZi45Nc+SRR3qDmZ49e9KFI5k3xMC5NWSZM2eON3jR5xrGZPIyevRomTp1aiYTcO0uECCIccFNoAqZK3Dc8wVSTIOYlH0D5Frd7N8bTxCTsjeQiiOAAAIuEhgxYoS89957LqqRSJ06deSII46wuzFpV6ZevXoRzLjqDgVXRscN0lYunoF1v/32WykpKQneMYPXNGrUyB5fKYMJuHQXCBDEuOAmUIXMFRj2XGb/RSId7vyHfyCISYf7yDUggAACyRbQL8/aGsXNS+3ateXoo4+WsWPHyqhRo6R69epurm5G1O2XX37xhi4avixatCgjrjvWi/zpp5/smcliLYfjEYhWgCAmWjmOQ8CAAEGMAcQkF0EQk+QbwOkRQACBNBK4/PLL5eGHH06JK9KBfy+99FK56qqrRJ+zxF9Ap4xeuHChzJw50w5f9HHNmjXxP3EanuGxxx6TCy+8MA2vjEtKFQGCmFS5U9QzLQUIYlL/thLEpP495AoQQAABtwgUFxfL+PHj5ZVXXnFLlSqsh7aSufbaa+Waa66hhUyFWpXbQacr//rrr/1avOjUyyyxC+jn7Lnnnou9IEpAIEoBgpgo4TgscoEdBWXyyo8lcl7PXMlhhkQ/OIIYP46UfJHOQQyf3ZR8S1JpBBBIcQEdsPf222+XSZMmiX4RT5WlZcuWcscdd8gZZ5yRKlV2XT13794tc+fO9bZ40YF19+zZ47p6pkOFWrduLdqtiwWBZAkQxCRLPoPOu31fmYyZUig9m2TLzUfmSr1q1ginLLYAQUzqvxHSOYjhs5v670+uAAEEUlfg559/lhtuuEHeeOMN0S4pqbLoODcPPfSQdOvWLVWqnLR6bt68WWbNmuVt8fLVV1+JtopiSYzAqlWrRANEFgSSIUAQkwz1DDun58ucXnbDaiITh+RJ50Y0jVEPghhVSO0lE4IYvUN8dlP7fUrtEUAgdQV0UNGnn35aXn75ZdEvjqmw5OTkyB//+Ef5+9//Ltp1iWW/gN4/HZTZM8aLjveSSiFbut3HF154gRZc6XZTU+h6MiqI0X/ECgsLg27PsGHDpEOHDt71ke7nPYAnjgK+QYzuqFP+Xn54rpx0cI7jcZmwkSAm9e9ypgQxeqf47Kb++5UrQACB1BXQL+xffPGFTJ8+3f4iP3/+fNd3W2natKnceeed9rg3WVmZ1yJaZzDyTCOtj3SFcdfn75JLLpFHHnnEXZWiNhkjkFFBjKbz2u82cJk8ebJcdNFF3tWR7uc9gCeOAoFBjGfn4W2z5er+eVI117Mm8x4JYlL/nmdSEOO5W3x2PRI8IoAAAskT0N9plyxZYk9XrF/wf/jhB5kyZYps3749eZUKc+b+/fvLAw88IH369AmzR+qvLikpkW+//dY7m5EGL5s2bUr9C0vjK+jSpYv9uUnjS+TSXCxAEGPdHIKY+L5DwwUxetZ2dbPkb0PzpHmtzPsriV4/QYwqpPaSiUGM3rFM/+ym9ruW2iOAQLoK7N27V1599VV56qmn5NNPP3VVtxdtEaMD+f7zn/8UHSg11Re1/vLLL70tXrS10q5du1L9sjKq/vqe1LCsfv36GXXdXKw7BAhirPtAEBPfN6NTEKNnrpkncuMRedK/ZeaNG5MKQUzVfJEe1r3pVC9Lqlmtl6pZ/VNW7yqT95aUyC4G8pdMDWIy/bMb3/9qUjoCCCAQu8Dy5cvtsWX++9//yurVq2Mv0FAJVapUkcsuu0yuv/56adKkiaFS41/Mtm3b7K5h2tJFx3jRrmGhhjyIf004g0kBHQz7pJNOMlkkZSEQkQBBjMVEEBPReyXqnSoKYrRgbQ8zvluOnNUjV7IzqHGM24OYTs2z5O8D86RRiJmubv6iSGYvC+7qF/UbJUUPzOQgRm9Zpn52U/TtSrURQCADBbQL04wZM+xWMvql0y3hQbVq1UTH6LjmmmtcOXPNunXrvK1dNHxZsGBByCEOMvAtlVaXPGHCBLn77rvT6pq4mNQQIIix7hNBTHzfrJEEMZ4a9GmWLTdZU1zXrpIZaYybg5gWDbPkmRH5Em5sPYKY/e/aTA9iMvWz67luHhFAAIFUEtDpkp9//nm55ZZbZMeOHa6oem5urowdO1auvPJK6devX9LqtHTpUm/woi1eli1blrS6cOLECfTt21fmzp2buBNyJgQOCKRMELN79267GeCKFSvkt99+s/vz6aC62qevR48eoh+i5s2bO97YSAfhjXQ/x5Ox0StQmSBGD2pSI0smWVNcd2qQ/mGMW4MYlb/3+Dzp1jB8dzGCmP1vcYKY/Q76/5n02S2/ap4hgAACqSfwr3/9S2666SbXVfzQQw+Vs88+2x5L5qCDDopb/bSV0Pfff+8NXrTFy/r16+N2Pgp2r4AGgdrtrEaNGu6tJDVLSwFXBzE6TZ8OOKYtVvQ/kE5NKXWwpVNOOUX0Hxbfqah971qkAUuk+/mWzfPwApUNYrSkPOv7/1X9cmVEh/Se4tqtQUwTazyYF0+0BofxWfYWi7y/skRmryu1Z7qav7JU9uzz2SFDnxLE+N/4TPns+l81rxBAAIHUEtizZ4+0b9/e1eGD/qH1hBNOkGOPPVZ69+4ttWrVihq5oKDAHtNFv0/oz6xZs1w5u1TUF8iBMQl88MEHMmzYsJjK4GAEKivg2iBG+2Gef/75Mm/evEpdk7aK0WNCtY6JNGCJdL9KVSyDd44miPFwnWAFMVf0zZW8NM1j3BrE9GqdJXcP9g9i/vhRofy0psxza3g8IEAQE/qtkC6fXQ35WRBAAIFUENA/YEa66Iw/Oj7Ls88+G+khSd1P/1t88MEH263gW7VqJS1atJBmzZqJDvyr2/RHwyWdAWflypUycOBAqVq1qrfFi85utG8ffz1K6k108cknTpwokyZNcnENqVo6Crg2iLnvvvvk6quvjsp8yJAh8sknnwQdG2nAEul+QSdgRUiBWIIYLbBT/f1dlZrUTL8vRG4NYk7qli1X9rSmszqwlFq/2x33QoHoI4u/AEGMv4fvq3T47BLE+N5RniOAgJsFKgpiSkpK5MMPP5QXXnhBpk2bJjt37nTz5cRUt+zsbAbWjUkwsw4++uij7c9GZl01V5tsgZQKYho3bizdunWTBg0aiE7Jp9PGhVr0P77bt2+XmjVr+m2ONGCJdD+/wnkRViDWIEYLrm01zrjpyDzp0zz8mCVhK+DiDW4LYqpYznWqZ9kzWI1sU94MqahE5Kx3C23JzTvKpCTEZEl1rRbDLetmSYMDMyztsnbfYE1zvWZzmYT7I10tqztutbzygG3b7jIpLNp/w9o3zZJmVvhWaJ1r4fpS106VTRDj/AFL9c8uQYzz/WUrAgi4RyBcEKOtQTR8eeWVV2TDhg3uqTA1QcAlAtWrV7fHicnLK/8jpEuqRjXSWCAlgpju3bvLbbfdJscdd5xoSOJZ/vSnP8mDDz7oeen3qKOdH3nkkX7rIg1YIt3Pr3BehBUwEcRo4fp1/dyeuXJG15ywM/mErYRLN7gtiLmwX46M65TrqHXL7CKZtbQ8ieneKkvO65IbdmDfjXvL5LWlJTL1+5KgAOe/o/PlIJ+WTk8tLJb/fVcik47Klf5Nyz/rxdbpHl1QLG8sKHFdqxyCGMe3i70xlT+7vkHM8steqPhi2QMBBBBIoEC7h8/0ns03iFm8eLG8+OKLdgCjswGxIICAs8CcOXOSOmuXc+3Ymo4Crg9iNGy566677D6ggTfgnXfekRNPPDFwtf36rbfeCtoWacAS6X4hT8zKIAFTQYyn4AEts+XGQXlSw38IE8/mlHp0WxBzkRXEnFZBEDPRCmI+t4KYbOvb9Z8G5spJ7coDEyf8FTtK5bqPi2SLz2yZz1hBTEufIOaZn4qlbe0sGdwidJkXvl8oy9e7q38UQYzTXfffloqfXYIY/3vIKwQQcJeAbxCzbt06efnll+3wJVyrcXfVntog4B6BO++8U6699lr3VIiapL2Aa4MY7cOqA4kFBi06c5Jue+2112TKlCmyY4fPtzqf20UQ44OR5Kemgxi9nBa19o8b086a3SeVl1QOYi6wQpvTKwhtAu/NKqur0sVvF0rBge5HgUHMrqIyqenTVcn3+M37ymTcq4W0iPFFifNzPrtWSzyfwXppERPnNxzFI4BApQV8gxj9Q6KOA8OCAAIVC1SrVk369Olj96DQXhRHHHFE0LAWFZfCHghEL+DaICbwknSaOR3Z/X//+5/dhy9we+BrgphAkeS9jseXOb2aKlajiWv658rwCFtkJE8g/JndFsTUsYZVal4nS049OMevVYp2Dbrqk/1jxKzYWCbNrADsiWODmyQ9+WOxvLukxA5aOjXOkhv75kmjA2PGeBT+t6RYJs/Z/4tiYBDj2Ucf9ZyFJWVS/UAwo12Tpnzrvl8waRHje9cie55Kn12CmMjuKXshgED8BKyR1mTL3p2ybtdmWas/Ozfbz1dsWycf/PJ1/E5MyQikkUDdunVlwIAB3uClb9++kp8f/LtsGl0yl+JyAdcHMdOnT5crrrhClixZUilKgphKccV153gFMZ5Kj7ZCg0v65EpuCo7j67YgxmM6tqdl2q18rBgd50Vbo3iWG4bkyjGt/LsP3fVVkUxfWD52jO5bo5rIy7/P94Ypum5fscjoVwvsQXnDBTH3fVMk//dTqTXjgcixh2bbdfmD1ZJm524twV0LQUz09yMVPrsEMdHfX45EAIHIBLYX7LaDlf1Byxbvc8/r9bu2WH+YONCUNLIi2QuBjBdo3ry5PY25tnbRn549e/q1cs14IACSLuDaIEYHHLv11lvtOd1L9dtYwHLUUUfJBRdcIGeeWT5Ime8uBDG+Gsl9Hu8gRq+uc8MsmTgkTxpaM/6k0pKqQcyb4/Klhk8XojXWbEfnTAvdbejkHjlyWffyUEfvz2UfFsrPa8skVBDz8uJieXyu+1q+hHtfEcSEk4lsvds/uwQxkd1H9kIAgdACuwr3eluyaKCyzvrRVi3rd5cHLnuKCkIfzFoEEIhYoF27djJ48GBvi5eOHTtGfCw7IpAMAdcGMTrF3rhx44JMtD+fjgI/atQo2bx5szRs2DBoH11BEBOSJSkrExHE6IXVqyry18F50qNJ6jSNScUgpoo1s9+746r4vZfeXF4i/5llNXUJsRzcPEseHubf9PNvc4tk5uLSoCCmyMpfRr5cEDS7UohiXbOKICb2W+Hmzy5BTOz3lxIQSFeBHQV7vIGKhiwartghy4HARVu07C7al66Xz3UhkDSB7Oxs6dq1qzd0GTp0qDRp0iRp9eHECEQj4Nog5owzzpCXXnop6Jp8R7R2CmJ0IN9TTjnF7/hIZ0OKdD+/wnkRViBRQYxWIMdqEHPhYbkytrN/t5mwlUvyhlQMYmrXEJk2xj+IefeXErnns9BBTEurtdIzx/sHMfd8XSTv/hgcxMzfUCrXz0it5tcEMWY+RG797BLEmLm/lIJAKgkUl5bIxj3bZMPurdaPPmrIos+tx11b7cBFn9OSJZXuKnVNZYEqVarIYYcd5tfipXbt2ql8SdQdAXFtEFOvXr2Qg/L6BjEfffSRDBs2LORtvP766+X888+XXbt2Sa9evex9Ig1YIt0v5IlZGSSQyCDGc/LBrbLluoF5Us1qveHmJRWDmFwr43rvDP8g5r1fS+TOmaGDmO6tsuTeIf5BzE1fFMmcZcFBzLPW9NXPzE+dbkn63iKIMfsJc9tnlyDG7P2lNATcKLCvuFCeWTBD3l8xX3QA3G37dlvD45a5sarUCYGMEKhVq5b079/f2+JFB9nVMIYFgXQScG0Q06JFC1m7dm2QdePGjeXss8+WjRs3ynPPPVfhNH3jx4+399OCIg1YIt0vqHKsCCmQjCBGK9Kqdpb8bWietLJmAXLrkopBjFq+emq+1KtS7rqzsExOnVpoD8AbaH3FoFz5fcDMVhfMKJQVG4LHiHl6YbE8/xVBTKBhsl7z2WX66mS99zgvAokS2Lpvp5z++q2yeMvqRJ2S8yCAQICAfr8bOHCgt8WL/hFdv4+xIJDOAq4NYsaOHSuvvvpqzPYEMc6ET34TuhWD81GV21pgneK1Rcn5cl3dGiP2WqtlzODW7hw3JlWDmAv75ci4Tv4D8Oq01I9Z01L7/g2xjTWFtU5znVWe2cjWAiu0mbJ/YN/AwXoJYiL/bPHZjdwqlj1ToUXM64s/l6/WLbYvM1uy5S+DzpAquf6t0JwMfI932s93W/2qteTqfmN9V4V9vnr7b/Lpqu9lzpqF8pvVvWOTNQ1vSVmJNKtRX1rUbiQH1WpkDbjeSga36hFRvdfs2CTP//i+fc0b92yXWlVqSPdGbeWc7sdJh/otwtbDd4OJMrS8xZtXyXM/vO8teuwhQ6R7k/be17E8KbBaafxr1otizR8ndaxr/HP/02IpzntsLHUuKi6W136eKd/+tkx+2rRSdhbulkMbtJZujaxBMlt3t+5ja+95onkSr2t2qsuV7z8oby2Z7bQL2xBAwLBA69atva1ddEajQw891PAZKA4B9wu4NohZsGCBHH300bJp06awijpQU/369R33IYgJy2dvcGsQ4Fzrym891Roz5oJeuZLjsjzGrf4VTV/duG6WPD8yP8jz87Ul8vrSEnuK6h6Ns+XczsHTij/yfbG8+t3+YI4gpvLvZc8Rbn3veOpn6jHZn91UCGKunvGQvLH0Cy/51+c+KnWr1fK+ruhJ4PEV7a/bG1arI1+e+7Djrt9vWCb3zntVPl35veN+no3Vc6vK8Da9ZGSH/jLECmXyc4P7lr6xeJbc8PHjUhBiKt/srGyZeMRZ8odux3iKDPloogxPwdOXfSmXvfcfz0u5bcgFclqXo7yvY3myzQqsDnv6EruIulVrytfnTY6lOO+x0db5x40r5NqPHpNFm1d6y/J9ov7X9j9VLu55ojYl890U8fN4XXO4Cui00X2eusQKBoNn5wx3DOsRQKByAvrvqAYtGrjorEZDhgwR7fnAgkCmC7g2iNEb891338nll18u8+bNk8LCQu+9qlGjhvTr10/uuOMOO4jRPoTaVcl3adWqlZx66qly7rnnSufOne1NVatWlYKC4CkCn3rqKXs/z/GR7ufZP5UfM+XLnN6jntZsSjcfmSv1qkX3C2I87rNb/SsKYtRiRGfrl+7ewV+UnJy+/m3/YLylB5rNEMQ4aTlvc+t7x7nW0W1N5meXICb0PXMKYkpKSuRfX7woTy+YHvrgCNZedfjJcsXhY/z2fM8KPS71CT38Nvq8uOuoi+XkQwf7rCl/aqKM8tJEog01fMsI9zxeoUQ0df52/RIZO+0fdkumcPX1rB/e5jB57Phrogpj4nXNnroFPn67YamMeW1i4GpeI4BADAJ5eXn2+JwavHjCFx37kwUBBPwFXB3EeKq6b98+mT9/vuzdu1c6deokGrL4/nKs6zWs2b17tzRv3tzezgfeo+f8mElf5lSiYTWRiUPypHMjdzSNcat/JEGMeh5nhTFX98yTvAi68b6/skTunV0sBeWZatD01XRNUtXIFre+dyKrfeX3StZn1/ffmuWXvVD5iifgiMAWLbG2iNFuJlVy/LseBl5Gw+p15eERVwaull2Fe+XCd+6WuesWBW3TFdnWX0bb1G4qjWrUlbU7N8uaXRultMy3Q+P+wwKDGJ3B5qjnJ8ie4vKpgLWsTvUPkqVb14jOcuNZqubky/un32l3e/Ks00cTZfiWp8+jCTUCywj3Ol6hRGXrvK+oUEb+7y+yYvs6b1Vzs3Pk8KYHS22ry9QPVkuZNbv8Wy/fM+xSGX3wEd79I30Sr2sOd/4l1nvnuJeuC7eZ9QggEIGA/oG8b9++3tBFB9atXr16BEeyCwKZLZASQUxm36L4Xn2mfZlTzVyrQcylfXJl1CERpAfx5Re3+p/Y1QpYepW3dlm5s0zOfd0nQfFxaVBHrF+4c+TEtjlSK9+/tVGJ1dr7M6u70jSru9IPq4K/bD16Yp50rFceij1sdVt67UC3JZ9TuPppsmZNcut7J543Kxmf3UwMYiob5HjuubaEOe/du+SzVQs8q+xHDUzO63G8jOo0SDrUbeHX5UjHHFm5c4N1zA/yzPfvya87NtjHBAYx98+bJvdZ3Zw8S8/G7eXxEyZIg+p1ZPu+XXLZ9P/I7LULPZvlkl6/k+sGjPO+1icmyvAr0HpR2VAj8Hin1/EKJSpb58e+eVtun/2St6qtajeWR4+/Wg5p0Mpep/f97i//J5Ot/TxLYyuo++iMe6R6flXPqoge43XN4U6uMyMNevYKa0rqLeF2YT0CCAQINGjQwB5Y19PipU+fPpKb6xzeBxTBSwQQsAQIYjL8bZCJX+Y8t3x4Wyts6J8nVZP4b0c6+WdbGUx1q8VRvRpZkmtlK9v2lMnOPSLF5X+o9tCn1SNBTOJvZyI/uwQxkd/f26zuSI9/+47fAV0btZHbhl4gXazBdCtcrJYxH/36jTxtBTJDrTFizu95gn2IftE/8rmrZP2e/V+Wa+fXkHdO/ZfV4qWht0j9Ij3i5RtkhzV4rC46mPDssx6UvANfDkyU4T2Zz5PKhho+h1b4NF6hRGXrfPH/3WtP6+yp8JTRE6V3s06el97H89++Sz5e+a339R1DL5SxnYd6X0fyJF7X7HTuN5d8IVe9/5DTLmxDIKMFdDwXT+iiY7x06dLFr2dCRuNw8QjEIEAQEwNeOhyaTkFANPejnTXorE5x3byWf0uOaMqK5phM94/GzG3HEMQk544k6rNLEBPZ/V2xdZ0c+/L1fmOIHN26pzVWyATRgfVjWQLHdbn8sN/LBGtQ2MDlrjmvyCNfv+ldfe/wy+T3ViscXUyU4S3Y50llQw2fQyt8Gq9QorJ1PvLZK71dj1pYM1x99of7QtZ9/rqf5dRpf/duO7/HCXLToDO9ryN5Eq9rrujcry761B7XaJvVuspti7Yoy7IGQs4WfbR+rApq+9LCEANWu63u1Cc1BQ4++GBv8KID6+oMRywIIGBegCDGvGlKlUgQIFLT6oFzw6A8GXBQbF8Wornx+Eej5q5jCGKSdz8S8dkliIns/k744GGZZs1o5Fm0Rcp74+6wuw551kX7eNWMB+XNpeXTC08dM0l6Nu0YVNy8tYvktNf/4V1/TNs+MtnqQqOLiTK8Bfs8qWyo4XNohU/jFUpUts49Hr9AdhbttevbsX5L+76GqvyOgj3S88kLvZs0iHti5LXe15E8idc1R3LufdZ04Romrd212Z5FSYMPnQlKg8QcKwDJycqxZgrU59Y660cfPa/3P1rbD+yfe+DR3sfe78C2A8fsP17L9JTvU651Dvvc1uP+2CV07Ye/+GdZvq183J7Qe7EWAWeBnJwc6dGjhzd40RYvjRo1cj6IrQggYESAIMYIY+oWQhCw/97pX5jO7JYjZ/fItX7BStz9xD9x1vE6E0FMvGQjKzfen12CmIrvQ2FxkfR++lLZfeDLuh4xecTVcky7PhUfHMEep079m8xfv9jes0G12jLvnIdDzshTWloqvZ682AoNrD6R1tKlYWt5y+rCpIuJMuyCAv6vsqFGwOGOL+MVSlS2zmNfmyRfbVhi11UDhE+ssV9a1mkcVHcd1Lfz4+d617er00w+OPNu7+tInsTrmiM5d6rtc/rrt8rctT+lWrWpb5IFdGZYz8C62t1o0KBBUrNmzSTXitMjkJkCBDGZed+9V00Q4KWwn/Rpli03WVNc166SmDQGf3//VHxFEOOOuxavzy5BTMX3d87qH+WMN/cHHrp3q9pN5JPx/674wAj38O0ac1iTDvLqyX8Le+RJU26yZvH5xd5uhzbnPmI/N1FGqJNWNtQIVUa4dfEKJSpb51s+fVqe//EDbzV7WAMlP221dKlbrZZ3nYZgus+kz57xruveuJ28fkp5CyXvBocn8bpmh1OmzKb1u7fKok2/yk+bV8pP1qMOir29YP+YSClzEVQ04QJ169YVncXIM8aLhjD5+fkJrwcnRACBYAGCmGCTjFpDEBB8u5tYg81Osqa47tQg/mEM/sH+qbaGIMY9dywen91MDGJOO/QoqZ5bxfHGDmzZRYa1Pcze538LP5EbPnncu/+Idn1DTm3t3aEyT6wBfDs+erZ37JnhbQ6Tx6zZksItZ711m3xuzcDkWRZd9F/Jt6bijrmMXKsPa4ilsqFGiCLCropXKFHZOuuX/pOm/NV7D7TCGnKNs94nLWo1lFU7N1pj8MyT5T7TW+s+o63xee6xxumpzBKva65MHZK9b1FpsSzZssYbuPy0aaUs2vyrbHXh+DXJtuL8wQLNmjWTI444whu8dO/ePeZxuoLPwhoEEDAhQBBjQjGFyyAICH3z8qzhYq7omysndIzvFNf4h/ZPpbUEMe66W6Y/u5kYxERyR8/ueqxMHHy2vet9c1+V+7+a5j1sQt9T5fI+v/e+juXJxj3bpN9/L/cWccohQ+TOoy/yvg58csV7D8jby+Z4V3965r+lal6VmMs4qE4Tb5m+TyobavgeW9HzeIUS0dT5P1++Jv+ZP7WiKvttj+Z9EK9r9quYi15s3rvDbt2yv5WL1dLFClyWbV0rxaVpPt2gi+5Bqlelffv23tBFW7107Bg8flaqXyP1RyBdBQhi0vXORnhdBAGhoUx/mQt9FhH8w8mkznqCGHfdK9OfXYKY0PfXN4i525qt6GGf2YpuG3KBnNblqNAHVnLtqu0bZMgL13iPOqPzMLl16Hne14FP/vzhozL158+8q2eMu1OqWC1iYi2jQ/0W3jJ9n0QTavge7/Q8XqFENHUuLikWnZ786QXvOVXZb9vDx10pI9r39VtX0Yt4XXNF54339hIrWNGBdT3dijzBiwaNLAhEKqADR3fr1s0bvOjAuk2bNo30cPZDAAGXCRDEuOyGJLo6BAHB4o2r75/Smq5JwTasCRYgiAk2SdaaeHx2MzGI6VC3heTn5jrexpMPPlLO7XG8vc8LP3wgf535tHf/c7sfL389Yrz3dSxPAgeAHdm+nzxw3BVhi7zo3Xvkg1++9m7/9vzHJT87128Q2WjKqF2lurdM3yfRhBq+xzs9j1coEUudZ678Th79+m350RqHxzMocq286tKlURuZs3ah93J0hqFZZ/1HGteo510XyZN4XXMk5za1z7aCXdZYLqvs1i2ebkWLra5GTDdtSjhzytGxXPr06eMNXrTLUZ06dTIHgCtFIM0FCGLS/AZXdHkEMf5C8Rrw0/8s5a/wL7dI1WcEMe64c/H67GZiEPP1uY/6DcRa0R3WL+fnvH2nd7d+zQ+Vl0bd7H0d65OeT1wkOwr3D0o6oHlneWHUTWGL9J3hR8e5+eGip+x9TZQR6qSxhBqhyvNdF69QwkidrbF71u7aIjXzq1qD29eQwO5pY6yg7u5hl/heTkTP43XNEZ28kjuVWga/bl9/oJXL/m5FGryss6a/ZkEgGoFatWr5Dazbr18/0VmOWBBAID0FCGLS875GfFUEAfupdFje07vmyLk9mb464jcPO9oCBDHJfSPE+7NLEFPx/V2zY6Mc+fxV3h21hcTssx+Q6taXdBPLiJevl8VbVttFHVz/IPm/cbeHLXbo89fIyh0b7O2+0yebKCPUSY2EGqEKttbFK5QwXect1jgnw1+6Trbt2+m9kumn3W4NeH+Q93WkT+J1zZGeP9x+u4v2Wa1cysMW7Vr0s/Wzt7gw3CGsR6BCgUaNGvkNrNurVy/JyYnv2IQVVoodEEAgYQIEMQmjdueJCGJEaliTYdw4KE8GHGSN0JvgBf8Eg8fhdAQxcUCNsMhEfHYJYiK7GadP+4fMXbfIu3NFY7l4d4zgydlv3W5P1au7Zln/m3/uw1LPmrUncFlvtdAY+OyfvKsHtugiz//+L/ZrE2V4C/Z5YjrU8Ck6ZYKYi//vXnl/xXxv1Y9q1VOePPFa7+vKPHFDELPamgVKW7bowLn2ozVr1CorbCyz/seCQCwCrVu3Fh3XxTOV9CGHHBJLcRyLAAIpLkAQk+I3MNbqZ3oQ0LauNR6MNVV1i9rxn6o61L3KdP9QJqm2jiAmOXcsUZ9dgpjI7u+7S+fIH2c84Lfzkyf8WY5q08tvXTQv7rIGA37EZzBg7fKiXV8Cl8Cxav7Ue5Rc3W+svZuJMgLPp68zPYh5dsEMmfTZM16a7KwsmTJ6ovRqGt3MLYkOYnR2ok+trnVfrP5Rftz0ix287Czc470eniAQrYD+29G5c2dv6KIBTMuWLaMtjuMQQCANBQhi0vCmVuaSMjkIGN42W67unydVncekrAxnpfdNpH/7plnS0idw+mWb1b/9N/7CV+mbFnAAQUwASAJeJvKzSxAT2Q3VWXVGvHyDLN++zntAg2p15P5jLpMBLbt611X0pKSkRF5f8oWs3blJ/nT4aHv31dt/k8EvXO09dJBV3nMn3eh9rU/Kykpl7NS/ydcbltrrNRCYOf4/0rxWA/u1iTLsggL+L5ODmFBTWl/b7zS5tPdJAUqRv0xkEPP5qgVy4ydPyBrrvcaCQKwCeXl5ol2LPC1edGDd+vXrx1osxyOAQBoLEMSk8c2N5NISGQREUp9E7JNrNX65uHeujDk0+f1wE+n/z2NypX/T8muesbJE7vi0OBHkaX0OgpjE3d5kfHYJYiK/v4s3r5JRr94i+0r8x80Yc/ARctPAM0N2J/KUXmCNtTHlp5ky+Zu3ZM2uTRI44O85b90hM1d979ldbjniLDmn+3He1w/Mmyb3znvV+3p4m8PksRMmeF/rExNl+BVovcjEIEZDt7988qS8+vNMPw7b/HhrqnErBIt2MR3EFBYXSb41fXlgnWau/F7Of+cuKbECPBYEohGoXr269O/f39viZcCAAaLrWBBAAIFIBQhiIpVK0/0SGQS4gbBBNZGJg/OkS+PEjwcT6voT6U8QE+oOxL6OICZ2w0hKSNZnNxWDGG2VUDPf+o9dBcthTTpY/y1sK1fPeEjeWPqFd++/DhovOuBuRcux7fvYM+b47jf158/kzx8+6rvKfl47v4b0bX6IdKrfQjrWbykNrTFeVlrjbizbulaWb1sr3/+2XLb4DPYaGMS8v3y+XDz9Xm+5udk5MqrTEdLVmjb5O6sVzBtWKxqdxcazPHPi9XJkq+6el/ajiTL8CrReZFoQs6twr1w6/T6ZtfoHP4pWtZvIm2Nvtd4PFb9v/A4MeGEqiNGw6HKrq9zHv34jLWs1lH8NOV/6t+xin21fUYEc9vQlso+BdgP0eekkoK1bBg0a5G3xcthhh4m2gmFBAAEEohUgiIlWLk2OS2QQkGyy7lb4csvgXOuvstH/tc70NSTSnyDG9N3bXx5BTHxcfUtN5mc3FYMYXzun55cf9nuZ0P/UoCDG6RjfbVPHTJKeIcYCeX/5PCuMmSw7i/b67l6p54FBjNX3SM6zWjB8Yo3nUdEysn0/eeC4K4J3M1FGQKmZFsQEDsqsHC1qNpSnrMF5NWCLdTEVxASOWdS7SUeZcvIku3r3ffmq3D9/WqxVTejxVXPzpU2dptKubjNpa/3sf9TXzaXnkxcmtC6ZcjIdz8UzqK4+dunSxWpY5Z7fHzPlPnCdCKSzAEFMOt/dCK4tkUFABNWJ2y6nWN2QLjosV3Lc0RDGe52J9CeI8bIbfUIQY5QzqLBkf3Z9f/FeftkLQfVzw4rAFi2R1ileQYyef+W2DXLdx5Ply3U/R1od734awpzXfYQc066Pd50+2b5vl5z99h126xm/DT4v+jU7RJ4Yea3UCDN1tokyfE6XcS1i3l4yW654/0EvwREHdZUHjvmT1Kla07suliemgpgXf/hQbp75lLcqra0WOx+P/7f9esIHj8i0xZ97t7nliY5r1MJqvVMetHgCl2bSrGZ9e8awUHVt9/CZoVazrpICBx98sB28eMZ4adOmTSVLYHcEEECgcgIEMZXzSru9n/wm/mOEFFineG1RSVLsqlldw68bmCeDW7ssgTmgQRCTlLeF0ZMmK4jhs2v0NoYtLBWCGO0KpF2CKrtc2WeMXNn3ZGu8jydk6qLKfzF97eSJ0qVRW8fTLtmyWl5Z+IlMX/6lrN+9xa/7kOfABlY3Jf2ieXSrXnLKIdbMInUaezYFPeqYHw999bq88OOHfl2ZGloDA5/V7Vi5tNfvJCenfCysoAKsFSbK8JQb2N3prqMulpMPHezZHNOjqVAisBKx1vl+azye+6zxeC477CSZYM1KlZVl7t9XU9e8s2CP/G7KzVb3tw2Sn50ntw4+V07pPMSmeG3RTLn2o8mBLAl7Xc8KrbQlS9u6/i1cWtdpYo1nE3lXl4KSIvnk1++srmLlXfYSdhEpfiL9b0TPnj39Wrw0atQoxa+K6iOAQKoJEMSk2h1Lwfpu31cmY6b4D96YiMtoZc0Q9LehedKqjnubkhLEJOKdEN9zJCuIie9V7S+dz66O8Vn+3w+3tohJxHvBxDlKS0tlw+6tdiBTZE0b3KxGPWlSo77k50b+5dNTD51dad2uzXb3p9r51a0gp4FkZ1cuEDBRhqc+8Xg0FUrEo27a4qlV3SbGizZ6zVZXtO82LJO29Zr5jWW0cc82GfjsFVJivQfjtVSxAhUNVtrVswIX7VLkfWwmdatE33pI6/yZNT6PtkyasWK+6Jg9LJUTuPfee+X888+XWrVqVe5A9kYAAQQMCxDEGAaluGCBZHyZG9wqW661WsJUr/zv98EXEMc1bg5itBtXq0ZZ0qhGlmjLolJrHMxNe8pk5ZYy2V2J3/2iLadWDZFqeeVfgrfuKrO+aIm0bpglDaxxfvKsP3qv2Fom662fovg37Ar7LiCICUsT1Qa3fXYJYqK6jRxkQMBoKGGgPokoIlHXfMvM/8rzP7wf0yVlWZ2FdHr08q5E+8ds0ZYuza1xc7SrkYlFB6Geu/YnO3zRlmVbrS56LNELPPnkk3LeeedFXwBHIoAAAoYECGIMQVJMeIFEBjHZ1u89F/TKldO6ODdND1/bxG5xYxBTtYrI+J45cmKbHKmVH/yLpAYys9eVyBPfl8jKjeWzlATKxVrOf0fny0E1/c+/1wpcNBQKXKYtK5bJX5YkJZAhiAm8G9G9dutnlyAmuvvJUbELJCqUiL2m5kpI1DXrjEmXv3e/PatSRbWvU6VGwCC5+8du0RYvOohuPJYyKZNv1i+Vt5fOlneXzpXfrFY8LNEJNGvWTDp27Cjt27eXtm3bysiRI0VnPGJBAAEEki0QcxCzefNmmTNnTtB1aP/L4447zm7WXWal+e+99558+eWXsmXLFjnkkEPk2GOPlXbt2gUd57ti7dq18vPPP8uiRYtkyZIlUrVqVdHBtPR4faxbt67v7n7PP/30U9m1K/ivBnrOQw891G9fffHjjz/KL7/84l3fsGFD6devn/e158mKFStk4cKFnpfex2rVqsnRRx/tfe15sn37dvnmm2/k66+/lmXLlkn16tWldevW0qtXL+nTp49UqWJ9603zJVFBTL2qIjcfmWfN4mE1m0iRxW1BTJsmWXKnNb13g6r+AUgoTutjLZN/KJYp3wY37zZRzjNWENMyIIgJVQ/PulVWi5kJHxXK5u2eNYl5JIiJ3dnNn12CmNjvLyVEJ5CoUCK62sXnqERes4Yd/7fsS3nL6ubzy/b19vgsza2xitrWsYIWqzuT57Fe1cR1Yflx0y92y5e3l86RNTs3xQc5TUvV36979OghvXv3th+7du0qnTt3ltq1a6fpFXNZCCCQ6gIxBzFTp06Vk08+OaTDzp07RYOIP/zhD/Lxxx/77ZObmyuXX3653HfffX7r9cUrr7wif/7zn2X16tVB23xXaJDx4IMPhgxMdNtXX33lu7v9fMCAAfLFF18Ere/evbssWLDAu177jq5bt05q1LD6R/gsp556qkyZMsVnzf6nGu74BjSLFy+WM888066DBlGhlnr16sm4ceNkwoQJdlIfap90WJeIIKaz1V1l4pA8aVi94gDBTaZuCmLqWb9rPn1CfshWME5mt80rkg8WlXp3MVVOZYMYrcD3m0rlmv8rsn69TtxCEBObtds/uwQxsd1fjo5eIJGhRPS1NHtkJl7zkq1rvOHLim3rzIKmcWn6+/lRRx0lw4cPl0GDBtmD7+p3CxYEEEAgVQTiGsSsWrVKjjnmGLtFSyiQvn37yty5c72bNLzQcOaDDz7wrqvoif6SrINu3XHHHVK/fn3v7o8//rhcdNFF3te+T7R1TYcOHbyr5s2bJ1qXwCWwH6kGS02aNJG9e4MHyLjnnnvkmmuusYt444035KyzzpIdO3YEFhny9b///W+5+uqrQ25Lh5XxDmJO6pQjlx+eK7mp0xDGe1vdFMTccWye9Gnij7hyZ5ncNrdIVm4uk5rVxO7yNaa9/y86JVYGM2Zagezas/+yTJUTKoh595cSeWlhiewrKpNuVsun63rnWU3DvZz2k5u/KJLZy8qDIf+t5l8RxERvmgqfXYKY6O8vR8YmkImhRKZc88rtG6xuR3PkLavr0c+bV8X2Rsmgo/WPpGPGjJHTTz/dDmHy8+PTNSyDSLlUBBBIokBcg5gTTjhB3n333bCX99BDD8lll11mb9eWM9qMsKJWMOEK08BnxowZ3s3aLal58+ai4UngMnHiRJk0aZJ39SWXXCKTJwdPZRjYeua5556zAxbvgQee6D8Ea9asEe3OtHv3btEp8EKFNYHHeV4TxHgkKvdYxRoG5pr+uTK8XWqMBxPq6twSxDSumyUv/c7/F5oN1sC857xZKIVF/jUf3ztHzu3sn348umB/FyVT5egZA4OYlxcXy+Nz/btBaReoJ4/1r/e3G0tlwvSASvtfgtFXBDGV50ylzy5BTOXvL0eYEciUUMJXK52vea01y9c7VviiAcyC35b7XjbPKxDQ8V30j53awp7ZjirAYjMCCKSMQFyDGCcFDS+064+nFYu2annqqaecDqlwm7aCueCCC7z7acjzyCOPeF97nuh/0JcuXWq/3LNnj+hAXuFar+jYMdrHVJfjjz9epk+fbj/3/b/TTjtNXn75ZXvVa6+9JqeccorvZu9zDYYOP/xw+e2332T+/PlSVLT/yyJBjJco4ifNrbFDdGrqdvVSqytS4AW6JYg55tBsuaGP/xRTE2cXyedLg1uW5Fu7vXZyvjUjVbn9AqtL0FVWlyBT5ahTYBDz9MJief4r/yBG97t1eK4MaFYexu0sLJNRryRuunSCGL0LkS+p9tkliIn83rKnWQGdmviUqZOk1BohvUG1WvLS6L+aPYELS0u3a9ZBdnWwXQ1gvl6/xOo2m8iOsy68wZWskg6ye9NNN9ld/el2VEk8dkcAAdcLJC2IGT16tOj4Mrp89NFHMmzYsLBYOgbN7373O9HQRLsLhRr7RQ+uU6eOHbBoyxRdvvvuO7vPqP0i4P90nBht8fLss8/K2WefHbC1/KV2GdKgZOPGjXYLm+Li4HlytSuVp/4XX3yxPPbYY+UFHHimwZO20snL2/9ld+vWrfa5b7vtNrn++uvpmhQkFn7FgJZWaDAoT2r6N4QIf4CLt7gliDm7T46cdah/KxftbrQ9eLxrW/O+4/OkW8Pybkxb9pXJ2CmFYqocPUmkQcyo7tnypx7+IdKJUwpk777E3HiCmMidU/GzSxAT+f1lTwQQENmyd4c9CLC2fJm3bpHo9NMslRNo06aN/O1vf7MDGJ38gwUBBBBIR4GEBDEaPuhMR+vXr7cDDYV8/fXX5fe//71tet1118ldd90V0veqq66Se++917utoKDAHpjr888/967zffLmm2/aoY1nnYYtoWZ1uvTSS+Xhhx+WIUOGyMyZMz27Bz1qqKPdjp544gl7/JrAHbR1jY454/ll/S9/+YtouBJqOeecc+SWW26xp8/zbNcuWfv27bPHnvGsS7dHU2PEaPuLs3vkyPhuuZZ3eii5JYj548AcGR0w9svxLxcEdUvyqP99WK4Mal7+y1Gx1XDmuBcKxFQ5ep5Ig5ijDs6Wm/v6BzHj3iqUjdsS88svQYznXRH+MZU/u57/tuvVLb/shfAXyRYEEMhYga37dsmM5fPsbkdz1iyUkrLg1qSJxjnooIPsFtj6e3OqLPo7t7aA0RbtjP+SKneNeiKAQLQCcQ9iNICZNm2aHcRoJTXQuPXWW+3wwtM6JFyXH50SWseM8XRf8lyktkDRMWFCLf/85z9FwxDP8swzz4gGIIFLgwYNRKe41nFpKlp0Fqf7779fZs2aFbTrv/71L7nxxhu963VMnJEjR3pfBz7Jzs4WnXnp5ptvli5dugRuTsvXJoKY2lbrl5usqan7NC9vhZEOWG4JYsb1ypELu/q3iHEKMyb/Lk861C2/F+t2l8n4qYViqhy9t5EGMaf2zJGLrXDOd/md1SJmDy1ifEmies5nV7whuwISxET1NuIgBNJSYHvBbnl/xXyr29Fc+Xz1D1JSGtx1NtEXrr8bjxgxwv7RbvX6h0zPRBKJrktlzlezZk27ZbjOmMp005WRY18EEEhlgbgGMVWrVrW7EXnGWAkHpal9qEF6e/bsKd98803QYTogrv5HO9Si00G/9NJL3k06aG6LFi1EuwIFLhoSLVq0KHB10Gvto6pjygROQ639VXVmqKZNm/odo92o3n77bb91gS/0r6za5Ur/kWzZsmXg5rR6HeuXuU71s2SSNTV1E2tcmHRb3BLEDOmULbf0829V8uB3xTLt++BfLHV66ldOqiI55TmMzN9QKtfPKBJT5eh9jiSI0ZZRj1mhULs65ZUpsqp8/IsFCeuJT4uY8J/KdPjs+raICX+lbEEAAQSSLxD4e6q+1rEJw3XpT3aNq1evLtpCXbvo60QXLAgggEAmCcQ1iNHxUh599NEKPTXQKCkJ/sI3dOhQ+fjjj0MeH+6XY21dEzhTk3Zv+s9//hOynMCVGv58++23gatDvh41apTd2idwozYD1RYvOrZMaalz81QNebRrVGCYE1hmKr+OJYg5vkOOXNk3V/LKe8GkMkVQ3d0SxNSwpqZ+/eQqku2Tde2xpog++91C2eIzC7tuv2lorgxt6X9DbptXJB8sKhVT5ShUJEHMSd2y5cqe/gHSBytL5LZPg8dyCsI3tIIgJjRkunx2w/1bE/qqWYsAAggkT8A3iNHW4//4xz8cu98nq6Z169YVnbFUHtx8MQAALTVJREFUW+sQwCTrLnBeBBBItkBcg5gffvghou432iJEx2EJXDSkWLx4ceBqu89rkyZNgtbrisAWMbpu4cKFEdVDBwRbtmyZHHHEESFb6GhZvss777wjOkV3uEW7Pp133nmyfPnycLvY6/v37y+zZ8923CeVN0YTxORZDRyusAKYEzr6f+FPZYdQdXdLEKN1u3Zwroxo7e+tYcwj1tTUS7eUSd1qWTL+kBzp0qC89Ykep7MUnTatUAoOTFRkqpzAIEbrMmVpicxZWypVrZ5Ix1p1Pb6Nf321Ppd+UCiL1yVmfBg9H0GMKpQv6fbZJYgpv7c8QwABdwtoEKN/jNQAJtT4iMmuvY6rePnll9sznDINdbLvBudHAIFkC8Q1iNm5c2fYLkS+Fx5uQF3dR1un9OjRw3d3u5WNNmUMtVx77bVy5513Bm2qaFBePcDTwuXvf/+7TJw4MagM3xXaneqXX34RHfPFadFZlqZMmSJ33HGHPYtTqH31F/0tW7aI/oUgHZfKBjFNauzvitSpgU/zjHSEsa7JTUFMVWscnsdPzJfmln+ki04G8aePC+WnNeXBh6lyAoOYSOrkaZkTyb6m9iGIKZfMpM9u+VXzDAEE0lFAW2TrmCuhWmzH83q1hYhnrJdjjz02oskcNIDRSTB0DMavv/46ntWrdNk66K6Onait5PV6CLcrTcgBCCCQpgKuCGI09NDwI9SiIc1bb70lOriuLtrK5rjjjpO1a9eG2l3ef/99e1alwI0vvviiPQ1e4Hrf19OnT/eW3bp1awk1VbVn/0mTJoUMa3RMG53R6cILLxQdI8ez6D/kOohwqJBI9/nss8/sljie/dPpsTJBTJ9m2dagvLlSu0rkYUAqW7kpiFHHOtbQS5OsQZG7+0xNHc53e0GZTJpTJN+vLA9hPPuaKKeyQcwD3xXJ6987dwX01M/kI0HMfs1M++yafA9RFgIIuE+gV69eEXdVj6X22j1ff9fV3231p3fv3hGHFdr9XSeU0Ikj9Pdjtyz6R0q9pjPOOMNuqR446YZb6kk9EEAAgWQKuCKI0ZYl7dq1CxoM1wOj3ZD0HyZdPvnkE9mzZ49nk99jmzZt7G5AodJ2HbdFu0Bt2rTJ7xjPCz2/DsjrOVYH0p06dapns9+j/gOjddZWMYGLJ/Bp3ry56OjvQ4cOtbtFFRYWyj333CMa4IRatCmpjm+TjkskQYzGLmd0zZFzeub6jVOSjh6+15TIIObmo3LlKJ+xXd5YXiL3zwoeS0XHgRnYPltGW+Pz9GwU3OJr/R7rL2/LSuSdRSWOMxPFWk6oIGa31T2pRp5/SLdoS6k8Z9VlzrLEhzB6LzM9iMnUz67v55jnCCCQXgK//fZbRC1Ror1q/WOfhi46w9GwYcMqPVOQ/qHw+eefl9tuuy1kF/5o6xXLcVWqVBFtfT569Gi7hXk6j30YixPHIoAAAh4BVwQxWpkJEybYg9t6KhbNo06Trd2Lwi3XXXed3HXXXSE3a9ch3e5ZnKbI1nFhdHyYUIsniPHdpsGNNhv1HUTNd7v+NUT/0a9Xr57v6rR5XlEQU8Maa/XGQXky4KDgL/1pgxDmQhIZxISpguPqfOve1LG6KtW2GnftLRLZZk1TvdeaFjq4DYxjMRJNOYFBzNMLi+Wlr0ukjjVrU93qWbLPqs/WXVZ9CpzPHe+tmRzEZPJnN97vK8pHAIHkCegf29q2bWusAjo7kIYUnvDl4IMPjqps/aPiU089ZXd3//XXX6Mqw9RB+ofLbt26ydFHH223RNc/PNaoUcNU8ZSDAAIIpL2Aa4IYTfeHDx8uOsBtNIt2+/nnP//peOiSJUtE//ELDES0/6pOn+07crvuo/vqMYGLU+ATKogJPD7w9SmnnGKPIxO4Pl1eOwUx7eruHw+mRW39u3rmLW4PYpJ5R0IFMc9/FTy7WjLrqOfO1CAm0z+7yX7fcX4EEIifgHb50d8Jdfy+aBcNKTzdjY488kjRFiPRLtoSfPLkyXL33XeH7ZofbdmRHlenTh27dXq/fv1k4MCB9g9djiLVYz8EEEAgWMA1QYxWTbvv3HTTTXYXnsCwJLjq+9foqOsPPvignHXWWeF28VuvA6Bpaxff5fTTTxcNUAIX7Uqk3Yt8F21quWrVKtFWLKGWygYxXbp0kVmzZon+A5euS7ggZnjbbLm6f549A066XntF10UQE16IICa8TaK28NlNlDTnQQABtwnowLd//etfI66WjmWov2Nq+KKD0moX9ViX7du3y0MPPST33ntv2K71sZ4j8Hhtxa1d/bt27Wr/9OzZU/SnQ4cO3u77gcfwGgEEEECg8gIxBzE6kO5JJ50UdGb9D7nOmqTNMSu76ExJzzzzjD0A2bp160Ierv9AnHnmmXYAU5l/7F599VUZO3asX5naCmfw4MF+6/SF/iWkRYsWsm+f1RfjwHLjjTfag6J5Xgc+6qC8Oljvm2++aQ8yHKpFjR6j49Vcf/31ctFFF4m2yEnnJfDLXK7V+OXSPrkyypoKOdMXgpjw7wCCmPA2idrCZzdR0pwHAQTcJqC/z5133nny7LPPhqxaXp7VpdoakFZDF/3RsQz1d18Ti45nqOGLhjAaxsR70W5Feq0auHTs2NFvsol4n5vyEUAAgUwViDmIiSectorRf4w0jFm/fr3oP3rNmjWzf1KlBYn259X66yxP+o+phkb6l4ZUqb+J++v7Za5hNZGJQ/Kkc4hBYE2cK9XKIIgJf8cIYsLbJGoLn91ESXMeBBBwq8CHH35o/2Fw+fLldveizp072+O9aHhRs6Y11aDBRbvJa/ejxx9/POzEFKZOp92KtDW5/kHw0EMPNVUs5SCAAAIIRCjg6iAmwmtgN5cLeL7MdW+cLbcMzpV61TJzPJhQt4kgJpTK/nUEMeFtErWFz26ipDkPAghkssDixYvlzjvvlOeee87uph8vCx1gVwOk888/X3R20KpVrZH4WRBAAAEEkiJAEJMU9sw66Y6CMnlxQYlceFiu5JhptZs2gAQx4W8lQUx4m0Rt4bObKGnOgwACmSgwb948O4CZOnWq6ADB8Vq0m/0555wj5557rrRv3z5ep6FcBBBAAIFKCBDEVAKLXREwLUAQE160XdMsqVu1vPXUis2lsnVn+P2TtSWdZ01KlinnRQABBNJZ4Oeff5arrrpKpk+fHrfL1FmadAxHDWB0AOGcHMblixs2BSOAAAJRCBDERIHGIQiYEiCIMSWZvHIIYpJnz5kRQACBVBOYPXu2jBgxQnbs2BGXqh9++OF2+KIzgtarVy8u56BQBBBAAIHYBQhiYjekBASiFiCIiZrONQcSxLjmVlARBBBAwNUCOoGDzkq0atUqo/XUmTg9M4nqYMIsCCCAAALuFyCIcf89ooZpLEAQk/o3lyAm9e8hV4AAAggkQuCdd96RE0880cipdMamMWPG2DMfHXXUUcamzjZSOQpBAAEEEKhQgCCmQiJ2QCB+Asc9XyDFZfErn5LjK5BrDWHz3vgq8T0JpSOAAAIIpIXA5MmT5ZJLLon6WnScl2OPPVbGjx8vo0aNkurVq0ddFgcigAACCCRXgCAmuf6cPcMFRr9SIDsKMxwhhS+/dr7ItNMIYlL4FlJ1BBBAIGECH374oQwfPrzS59NxXzR8GTdunDRu3LjSx3MAAggggID7BAhi3HdPqFEGCVzyTqEs2UKTmFS95R3rZ8mjI600hgUBBBBAAIEKBEpKSqR79+6ycOHCCvYUe5ppHfdFfzp16lTh/uyAAAIIIJBaAgQxqXW/qG2aCdz+eZG8v6I0za4qcy7nmLbZcsMReZlzwVwpAggggEBMAosWLbKnk165cmVQOfXr17dbvWjrlwEDBgRtZwUCCCCAQPoIEMSkz73kSlJQ4N0lJXLPnOIUrDlVVoEJ/XPlhI45YCCAAAIIIBCxgE5d/cQTT8inn34qu3fvlnbt2skJJ5xg/+Tn08oyYkh2RAABBFJYgCAmhW8eVU99gc17ymTc1EIppXdSyt3MbGug3pfH5EuD6tYTFgQQQAABBBBAAAEEEEAgQgGCmAih2A2BeAnc8GGRzFtL96R4+car3L7Ns+W2YXRLipcv5SKAAAIIIIAAAgggkK4CBDHpeme5rpQR+HZ9qUx4vyhl6ktF9wvcc0ye9GyaDQcCCCCAAAIIIIAAAgggUCkBgphKcbEzAvERuO6DIvlqHa1i4qNrvtTezbLlzuG0hjEvS4kIIIAAAggggAACCKS/AEFM+t9jrjAFBFbvKJOL3i6UgpIUqGyGV7GKNTbvYyfmS8vajA2T4W8FLh8BBBBAAAEEEEAAgagECGKiYuMgBMwLTF9aInfNZgYl87JmS7x2QK6M6MBMSWZVKQ0BBBBAAAEEEEAAgcwRIIjJnHvNlaaAwJPfFMuLP9Asxq236oyuOXJ+r1y3Vo96IYAAAggggAACCCCAQAoIEMSkwE2iipklQBjjzvtNCOPO+0KtEEAAAQQQQAABBBBINQGCmFS7Y9Q3IwS0m9L9XxYzZowL7raOCXNFX7ojueBWUAUEEEAAAQQQQAABBNJCgCAmLW4jF5GOAjqAr4YxzKaUvLursyNpCMPAvMm7B5wZAQQQQAABBBBAAIF0EyCISbc7yvWkncA31rTWrywssQOZ0rK0uzzXXVC2NRmSBjCndc6RXtYjCwIIIIAAAggggAACCCBgUoAgxqQmZSEQR4HNe8pk7ppS+X5DqfyyvUw27CqTPUUixYQzUavnWqFL9TyRJjWzpE2dLOneJFv6tciWBtWZmjpqVA5EAAEEEEAAAQQQQAABRwGCGEceNiKAAAIIIIAAAggggAACCCCAAALmBAhizFlSEgIIIIAAAggggAACCCCAAAIIIOAoQBDjyMNGBBBAAAEEEEAAAQQQQAABBBBAwJwAQYw5S0pCAAEEEEAAAQQQQAABBBBAAAEEHAUIYhx52IgAAggggAACCCCAAAIIIIAAAgiYEyCIMWdJSQgggAACCCCAAAIIIIAAAggggICjAEGMIw8bEUAAAQQQQAABBBBAAAEEEEAAAXMCBDHmLCkJAQQQQAABBBBAAAEEEEAAAQQQcBQgiHHkYSMCCCCAAAIIIIAAAggggAACCCBgToAgxpwlJSGAAAIIIIAAAggggAACCCCAAAKOAgQxjjxsRAABBBBAAAEEEEAAAQQQQAABBMwJEMSYs6QkBBBAAAEEEEAAAQQQQAABBBBAwFGAIMaRh40IIIAAAggggAACCCCAAAIIIICAOQGCGHOWlIQAAggggAACCCCAAAIIIIAAAgg4ChDEOPKwEQEEEEAAAQQQQAABBBBAAAEEEDAnQBBjzpKSEEAAAQQQQAABBBBAAAEEEEAAAUcBghhHHjYigAACCCCAAAIIIIAAAggggAAC5gQIYsxZUhICCCCAAAIIIIAAAggggAACCCDgKEAQ48jDRgQQQAABBBBAAAEEEEAAAQQQQMCcAEGMOUtKQgABBBBAAAEEEEAAAQQQQAABBBwFCGIcediIAAIIIIAAAggggAACCCCAAAIImBMgiDFnSUkIIIAAAggggAACCCCAAAIIIICAowBBjCMPGxFAAAEEEEAAAQQQQAABBBBAAAFzAgQx5iwpCQEEEEAAAQQQQAABBBBAAAEEEHAUIIhx5GEjAggggAACCCCAAAIIIIAAAgggYE6AIMacJSUhgAACCCCAAAIIIIAAAggggAACjgIEMY48bEQAAQQQQAABBBBAAAEEEEAAAQTMCRDEmLOkJAQQQAABBBBAAAEEEEAAAQQQQMBRgCDGkYeNCCCAAAIIIIAAAggggAACCCCAgDkBghhzlpSEAAIIIIAAAggggAACCCCAAAIIOAoQxDjysBEBBBBAAAEEEEAAAQQQQAABBBAwJ0AQY86SkhBAAAEEEEAAAQQQQAABBBBAAAFHAYIYRx42IoAAAggggAACCCCAAAIIIIAAAuYECGLMWVISAggggAACCCCAAAIIIIAAAggg4ChAEOPIw0YEEEAAAQQQQAABBBBAAAEEEEDAnABBjDlLSkIAAQQQQAABBBBAAAEEEEAAAQQcBQhiHHnYiAACCCCAAAIIIIAAAggggAACCJgTIIgxZ0lJCCCAAAIIIIAAAggggAACCCCAgKMAQYwjDxsRQAABBBBAAAEEEEAAAQQQQAABcwIEMeYsKQkBBBBAAAEEEEAAAQQQQAABBBBwFCCIceRhIwIIIIAAAggggAACCCCAAAIIIGBOgCDGnCUlIYAAAggggAACCCCAAAIIIIAAAo4CBDGOPGxEAAEEEEAAAQQQQAABBBBAAAEEzAkQxJizpCQEEEAAAQQQQAABBBBAAAEEEEDAUYAgxpGHjQgggAACCCCAAAIIIIAAAggggIA5AYIYc5aUhAACCCCAAAIIIIAAAggggAACCDgKEMQ48rARAQQQQAABBBBAAAEEEEAAAQQQMCdAEGPOkpIQQAABBBBAAAEEEEAAAQQQQAABRwGCGEceNiKAAAIIIIAAAggggAACCCCAAALmBAhizFlSEgIIIIAAAggggAACCCCAAAIIIOAoQBDjyMNGBBBAAAEEEEAAAQQQQAABBBBAwJwAQYw5S0pCAAEEEEAAAQQQQAABBBBAAAEEHAUIYhx52IgAAggggAACCCCAAAIIIIAAAgiYEyCIMWdJSQgggAACCCCAAAIIIIAAAggggICjAEGMIw8bEUAAAQQQQAABBBBAAAEEEEAAAXMCBDHmLCkJAQQQQAABBBBAAAEEEEAAAQQQcBQgiHHkYSMCCCCAAAIIIIAAAggggAACCCBgToAgxpwlJSGAAAIIIIAAAggggAACCCCAAAKOAgQxjjxsRAABBBBAAAEEEEAAAQQQQAABBMwJEMSYs6QkBBBAAAEEEEAAAQQQQAABBBBAwFGAIMaRh40IIIAAAggggAACCCCAAAIIIICAOQGCGHOWlIQAAggggAACCCCAAAIIIIAAAgg4ChDEOPKwEQEEEEAAAQQQQAABBBBAAAEEEDAnQBBjzpKSEEAAAQQQQAABBBBAAAEEEEAAAUcBghhHHjYigAACCCCAAAIIIIAAAggggAAC5gQIYsxZUhICCCCAAAIIIIAAAggggAACCCDgKEAQ48jDRgQQQAABBBBAAAEEEEAAAQQQQMCcAEGMOUtKQgABBBBAAAEEEEAAAQQQQAABBBwFCGIcediIAAIIIIAAAggggAACCCCAAAIImBMgiDFnSUkIIIAAAggggAACCCCAAAIIIICAowBBjCMPGxFAAAEEEEAAAQQQQAABBBBAAAFzAgQx5iwpCQEEEEAAAQQQQAABBBBAAAEEEHAUIIhx5GEjAggggAACCCCAAAIIIIAAAgggYE6AIMacJSUhgAACCCCAAAIIIIAAAggggAACjgIEMY48bEQAAQQQQAABBBBAAAEEEEAAAQTMCRDEmLOkJAQQQAABBBBAAAEEEEAAAQQQQMBRgCDGkYeNCCCAAAIIIIAAAggggAACCCCAgDkBghhzlpSEAAIIIIAAAggggAACCCCAAAIIOAoQxDjysBEBBBBAAAEEEEAAAQQQQAABBBAwJ0AQY86SkhBAAAEEEEAAAQQQQAABBBBAAAFHAYIYRx42IoAAAggggAACCCCAAAIIIIAAAuYECGLMWVISAggggAACCCCAAAIIIIAAAggg4ChAEOPIw0YEEEAAAQQQQAABBBBAAAEEEEDAnABBjDlLSkIAAQQQQAABBBBAAAEEEEAAAQQcBQhiHHnYiAACCCCAAAIIIIAAAggggAACCJgTIIgxZ0lJCCCAAAIIIIAAAggggAACCCCAgKMAQYwjDxsRQAABBBBAAAEEEEAAAQQQQAABcwIEMeYsKQkBBBBAAAEEEEAAAQQQQAABBBBwFCCIceRhIwIIIIAAAggggAACCCCAAAIIIGBOgCDGnCUlIYAAAggggAACCCCAAAIIIIAAAo4CBDGOPGxEAAEEEEAAAQQQQAABBBBAAAEEzAkQxJizpCQEEEAAAQQQQAABBBBAAAEEEEDAUYAgxpGHjQgggAACCCCAAAIIIIAAAggggIA5AYIYc5aUhAACCCCAAAIIIIAAAggggAACCDgKEMQ48rARAQQQQAABBBBAAAEEEEAAAQQQMCdAEGPOkpIQQAABBBBAAAEEEEAAAQQQQAABRwGCGEceNiKAAAIIIIAAAggggAACCCCAAALmBAhizFlSEgIIIIAAAggggAACCCCAAAIIIOAoQBDjyMNGBBBAAAEEEEAAAQQQQAABBBBAwJwAQYw5S0pCAAEEEEAAAQQQQAABBBBAAAEEHAUIYhx52IgAAggggAACCCCAAAIIIIAAAgiYEyCIMWdJSQgggAACCCCAAAIIIIAAAggggICjAEGMIw8bEUAAAQQQQAABBBBAAAEEEEAAAXMCBDHmLCkJAQQQQAABBBBAAAEEEEAAAQQQcBQgiHHkYSMCCCCAAAIIIIAAAggggAACCCBgToAgxpwlJSGAAAIIIIAAAggggAACCCCAAAKOAgQxjjxsRAABBBBAAAEEEEAAAQQQQAABBMwJEMSYs6QkBBBAAAEEEEAAAQQQQAABBBBAwFGAIMaRh40IIIAAAggggAACCCCAAAIIIICAOQGCGHOWlIQAAggggAACCCCAAAIIIIAAAgg4ChDEOPKwEQEEEEAAAQQQQAABBBBAAAEEEDAnQBBjzpKSEEAAAQQQQAABBBBAAAEEEEAAAUcBghhHHjYigAACCCCAAAIIIIAAAggggAAC5gQIYsxZUhICCCCAAAIIIIAAAggggAACCCDgKEAQ48jDRgQQQAABBBBAAAEEEEAAAQQQQMCcAEGMOUtKQgABBBBAAAEEEEAAAQQQQAABBBwFCGIcediIAAIIIIAAAggggAACCCCAAAIImBMgiDFnSUkIIIAAAggggAACCCCAAAIIIICAowBBjCMPGxFAAAEEEEAAAQQQQAABBBBAAAFzAgQx5iwpCQEEEEAAAQQQQAABBBBAAAEEEHAUIIhx5GEjAggggAACCCCAAAIIIIAAAgggYE6AIMacJSUhgAACCCCAAAIIIIAAAggggAACjgIEMY48bEQAAQQQQAABBBBAAAEEEEAAAQTMCRDEmLOkJAQQQAABBBBAAAEEEEAAAQQQQMBRgCDGkYeNCCCAAAIIIIAAAggggAACCCCAgDkBghhzlpSEAAIIIIAAAggggAACCCCAAAIIOAoQxDjysBEBBBBAAAEEEEAAAQQQQAABBBAwJ0AQY86SkhBAAAEEEEAAAQQQQAABBBBAAAFHAYIYRx42IoAAAggggAACCCCAAAIIIIAAAuYECGLMWVISAggggAACCCCAAAIIIIAAAggg4ChAEOPIw0YEEEAAAQQQQAABBBBAAAEEEEDAnABBjDlLSkIAAQQQQAABBBBAAAEEEEAAAQQcBQhiHHnYiAACCCCAAAIIIIAAAggggAACCJgTIIgxZ0lJCCCAAAIIIIAAAggggAACCCCAgKMAQYwjDxsRQAABBBBAAAEEEEAAAQQQQAABcwIEMeYsKQkBBBBAAAEEEEAAAQQQQAABBBBwFCCIceRhIwIIIIAAAggggAACCCCAAAIIIGBOgCDGnCUlIYAAAggggAACCCCAAAIIIIAAAo4CBDGOPGxEAAEEEEAAAQQQQAABBBBAAAEEzAkQxJizpCQEEEAAAQQQQAABBBBAAAEEEEDAUYAgxpGHjQgggAACCCCAAAIIIIAAAggggIA5AYIYc5aUhAACCCCAAAIIIIAAAggggAACCDgKEMQ48rARAQQQQAABBBBAAAEEEEAAAQQQMCdAEGPOkpIQQAABBBBAAAEEEEAAAQQQQAABRwGCGEceNiKAAAIIIIAAAggggAACCCCAAALmBAhizFlSEgIIIIAAAggggAACCCCAAAIIIOAoQBDjyMNGBBBAAAEEEEAAAQQQQAABBBBAwJwAQYw5S0pCAAEEEEAAAQQQQAABBBBAAAEEHAUIYhx52IgAAggggAACCCCAAAIIIIAAAgiYEyCIMWdJSQgggAACCCCAAAIIIIAAAggggICjAEGMIw8bEUAAAQQQQAABBBBAAAEEEEAAAXMCBDHmLCkJAQQQQAABBBBAAAEEEEAAAQQQcBQgiHHkYSMCCCCAAAIIIIAAAggggAACCCBgToAgxpwlJSGAAAIIIIAAAggggAACCCCAAAKOAgQxjjxsRAABBBBAAAEEEEAAAQQQQAABBMwJEMSYs6QkBBBAAAEEEEAAAQQQQAABBBBAwFGAIMaRh40IIIAAAggggAACCCCAAAIIIICAOQGCGHOWlIQAAggggAACCCCAAAIIIIAAAgg4ChDEOPKwEQEEEEAAAQQQQAABBBBAAAEEEDAnQBBjzpKSEEAAAQQQQAABBBBAAAEEEEAAAUcBghhHHjYigAACCCCAAAIIIIAAAggggAAC5gQIYsxZUhICCCCAAAIIIIAAAggggAACCCDgKEAQ48jDRgQQQAABBBBAAAEEEEAAAQQQQMCcAEGMOUtKQgABBBBAAAEEEEAAAQQQQAABBBwFCGIcediIAAIIIIAAAggggAACCCCAAAIImBMgiDFnSUkIIIAAAggggAACCCCAAAIIIICAowBBjCMPGxFAAAEEEEAAAQQQQAABBBBAAAFzAgQx5iwpCQEEEEAAAQQQQAABBBBAAAEEEHAUIIhx5GEjAggggAACCCCAAAIIIIAAAgggYE6AIMacJSUhgAACCCCAAAIIIIAAAggggAACjgIEMY48bEQAAQQQQAABBBBAAAEEEEAAAQTMCRDEmLOkJAQQQAABBBBAAAEEEEAAAQQQQMBRgCDGkYeNCCCAAAIIIIAAAggggAACCCCAgDkBghhzlpSEAAIIIIAAAggggAACCCCAAAIIOAoQxDjysBEBBBBAAAEEEEAAAQQQQAABBBAwJ0AQY86SkhBAAAEEEEAAAQQQQAABBBBAAAFHAYIYRx42IoAAAggggAACCCCAAAIIIIAAAuYECGLMWVISAggggAACCCCAAAIIIIAAAggg4ChAEOPIw0YEEEAAAQQQQAABBBBAAAEEEEDAnABBjDlLSkIAAQQQQAABBBBAAAEEEEAAAQQcBQhiHHnYiAACCCCAAAIIIIAAAggggAACCJgTIIgxZ0lJCCCAAAIIIIAAAggggAACCCCAgKMAQYwjDxsRQAABBBBAAAEEEEAAAQQQQAABcwIEMeYsKQkBBBBAAAEEEEAAAQQQQAABBBBwFCCIceRhIwIIIIAAAggggAACCCCAAAIIIGBOgCDGnCUlIYAAAggggAACCCCAAAIIIIAAAo4CBDGOPGxEAAEEEEAAAQQQQAABBBBAAAEEzAkQxJizpCQEEEAAAQQQQAABBBBAAAEEEEDAUYAgxpGHjQgggAACCCCAAAIIIIAAAggggIA5AYIYc5aUhAACCCCAAAIIIIAAAggggAACCDgKEMQ48rARAQQQQAABBBBAAAEEEEAAAQQQMCdAEGPOkpIQQAABBBBAAAEEEEAAAQQQQAABRwGCGEceNiKAAAIIIIAAAggggAACCCCAAALmBAhizFlSEgIIIIAAAggggAACCCCAAAIIIOAoQBDjyMNGBBBAAAEEEEAAAQQQQAABBBBAwJwAQYw5S0pCAAEEEEAAAQQQQAABBBBAAAEEHAUIYhx52IgAAggggAACCCCAAAIIIIAAAgiYEyCIMWdJSQgggAACCCCAAAIIIIAAAggggICjAEGMIw8bEUAAAQQQQAABBBBAAAEEEEAAAXMCBDHmLCkJAQQQQAABBBBAAAEEEEAAAQQQcBQgiHHkYSMCCCCAAAIIIIAAAggggAACCCBgToAgxpwlJSGAAAIIIIAAAggggAACCCCAAAKOAgQxjjxsRAABBBBAAAEEEEAAAQQQQAABBMwJEMSYs6QkBBBAAAEEEEAAAQQQQAABBBBAwFGAIMaRh40IIIAAAggggAACCCCAAAIIIICAOQGCGHOWlPT/7N15SBVbHMDxH9mq5ZpKmNkCUbYHRloZRGULFC1UBhG0QytFRAtFC0VF/VF/JC1SENEGEbZCEamUQVQXi4IitAwhK6ywMjUf5/CevF5en3OduffcO9+Bwd69d875zed338/3fs2cQQABBBBAAAEEEEAAAQQQQAABBJoUoBHTJA9vIoAAAggggAACCCCAAAIIIIAAAvYJ0Iixz5KREEAAAQQQQAABBBBAAAEEEEAAgSYFaMQ0ycObCCCAAAIIIIAAAggggAACCCCAgH0CNGLss2QkBAIuUFtbK6WlpfL69WspLy+XioqKP/Zv377J9+/fpbq6Wn78+NGwt2rVStq0afPHHhkZKbGxsRIXF6d/qj+rPSkpSbp37y4pKSnSpUsXUcezIYAAAm4XoA67/RvA+SOAQKAFqMOBzgDzN0eARkxzlPgMAoYJfPz4UZ48eSIej0devHihGy+q+fLmzRupq6vze7SqgZOcnKwbM6mpqdK/f/+GPSoqyu/xMCECCCDgtAB12GlhxkcAAQSaFqAON+3Du2YL0IgxOz9Eh4BUVlZKYWGhFBUV6caLasCUlZUFjYxq0AwcOFDS09MlIyNDhg0bJhEREUETP4EigAAC1GG+AwgggEBgBajDgfVndvsFaMTYb8qICLRIQN1SlJ+fLwUFBXovLi6W+vr6Fo1p0sFhYWG6MaOaMpmZmTJ27Fh9q5NJMRILAgi4W4A67O78c/YIIBB4Aepw4HNABM4K0Ihx1pfREfhfgV+/fsmDBw/k6tWreldXvLhpU2vLqKtksrKyZMKECZKWliaqWcOGAAII+EuAOkwd9td3jXkQQKBxAeowdbjxb0bovkojJnRzy5kZLKAWyb127ZpcunRJbty4IR8+fDA4Wv+GFhMTI1OmTJFZs2bpq2Xatm3r3wCYDQEEXCFAHfaeZuqwdxveQQAB+wSow94tqcPebULlHRoxoZJJzsN4AbWI7u3bt+XMmTO6AfPlyxfjYw50gNHR0TJ16lTdlBk3bpx+olOgY2J+BBAIXgHqsPXcUYetm3EEAgh4F6AOe7fx9g512JtMcL9OIya480f0QSCg1ng5evSonD9/Xt6/f29ExOopR+3bt2/Y27Vrp5+2pB73V1NT07Crv6n4+fOnETF37txZ5s2bJwsXLpR+/foZERNBIIBAcAhQh+3JE3XYHkdGQcCNAtRhe7JOHbbH0YRRaMSYkAViCDkB1cC4cOGC5OTkyL179/xyfmqtlaSkJOnZs6f06tVLP0o6MTFR4uPj9Z6QkKB/RkZGWlqDpaqqSj59+vTb/u7dOyktLf1tr6io8Mt5qkmGDx8uixYtktmzZ0vHjh39Ni8TIYBA8AhQh53NFXXYWV9GRyAUBKjDzmaROuysr9Oj04hxWpjxXSVQUlIihw4dklOnTunGhVMnn5KSIoMHD27Y+/TpIz169BB1ZUugtq9fv8qzZ8/k6dOnov7W45+fTjZoOnXqpK+QWb16tW48BercmRcBBMwRoA5Th835NhIJAu4UoA5Th935zbd21jRirHnxaQQaFVBPOtq3b5++/Ujd+2rnFh4eLunp6TJq1Ci9DxkyRNQCXsGyqV/G6qogtd+/f188Ho++DcrO+NVTlqZPny5r167VV8vYOTZjIYBAcAhQh73niTrs3YZ3EEDAPgHqsHdL6rB3G7e+QyPGrZnnvG0RuHPnjuzdu1du3rxpy3hqELV+y8iRI2XixImSmZkpQ4cODalFatWtToWFhdpMPTHq+fPnttmpgTIyMmTLli3az9aBGQwBBIwUoA5bTwt12LoZRyCAgHcB6rB3G2/vUIe9ybjndRox7sk1Z2qjQEFBgWzatEk3FOwYVq3fMmnSJJk8ebKMHz9e1Doubtnevn2rH+GtHuetGjPqfmI7NnXf7Pbt27WnHeMxBgIImCVAHbYvH9Rh+ywZCQE3CVCH7cs2ddg+y2AZiUZMsGSKOI0QePz4sWzevFmuX7/e4nji4uJkxowZMnfuXH3LkVps1+2bWmcmLy9PL3RsV1NmxIgRsmPHDhkzZozbeTl/BEJCwO46PHPmTMnOzqYO//3toA6HxL8mnAQCjgpQhx3lFeqws76mjE4jxpRMEIfRAq9evdJXwFy8eFHq6+t9jrVDhw4ybdo03XxRV76o25DYGhdQv4QuX74sJ06ckLt377bIXc2QlZUlBw8elNTU1MYn5FUEEDBagDrs//RQh/1vzowImCxAHfZ/dqjD/jf314w0YvwlzTxBKaDu39y9e7ccOHBAqqurfT6Hvn37ytKlS2X+/PkSHR3t8zhuPVD94s/NzZWTJ09KeXm5zwytW7fWeVC3LKkrktgQQMB8AeqwGTmiDpuRB6JAIBAC1OFAqP85J3X4T5NgfoVGTDBnj9gdFTh79qysX79eysrKfJpHXe2iLnlftmyZXnTXp0E46DeB2tpauXLlir6yRd2X7OummmHbtm2TFStWiGrOsCGAgJkC1GHz8kIdNi8nRISAkwLUYSd1fRubOuybm2lH0YgxLSPEE3AB9RQf1TzJz8/3KZaIiAhZvHixfpRycnKyT2Nw0P8LPHz4UF+ppG4XU7+QfNkGDRokx44dk7S0NF8O5xgEEHBIgDrsEKzNw1KHbQZlOAQMEqAOG5SMJkKhDjeBY/hbNGIMTxDh+U9A/c/8/v379ZN2fLkNKT4+XlauXCnLly+X2NhY/wXu8pnUKvNq7ZecnByfnrikFkletWqV7Nq1S1QTjQ0BBAInQB0OnH1LZqYOt0SPYxEwS4A6bFY+mhsNdbi5UuZ8jkaMObkgkgAKeDweWbBggTx69MhyFDExMbJhwwbdhAkPD7d8PAfYI6DWjlHr+agrXHxppHXr1k2OHDmiHyNuT0SMggACVgSow1a0zPwsddjMvBAVAs0VoA43V8rcz1GHzc3NfyOjEfNfEf7ZVQKq679z507Zs2eP1NTUWDp3dfXEmjVr9DoyUVFRlo7lw84JqDV9VEPm+PHjlnOqolqyZIm+woarY5zLESMj8G8B6vC/NULjz9Th0MgjZ+EeAepw6OWaOmx+TmnEmJ8jInRIoKSkRLKzs6WoqMjSDGFhYXoNma1bt0pCQoKlY/mw/wRevnwp69atk7y8PMuT9u7dW06fPs3aMZblOAABawLUYWtewfZp6nCwZYx43ShAHQ7trFOHzc0vjRhzc0NkDgqcO3dOP8b48+fPlmYZPXq0HD58WAYMGGDpOD4cOIFbt27phZOLi4stBaGepqSerLRx40ZRzTc2BBCwV4A6bK+nyaNRh03ODrG5WYA67J7sU4fNyzWNGPNyQkQOClRVVemFWXNzcy3N0rVrV72Q75w5cywdx4fNEKirq9Nrx6imSmVlpaWgVPNN/YdKYmKipeP4MAIINC5AHW7cJdRfpQ6HeoY5v2ASoA4HU7bsi5U6bJ+lHSP9BQAA///0BPtdAABAAElEQVTtnQm4FNWVxy/IYkSFqBAEFHGJKERHJYq4gRvu27iimRhHxYU4iaKDEz8mxgVRcRk3GDRqVDQaIy5EcENARU1cxo24KwiKoLjhEpaevh37vd6qurq66ta95/76+/heVd3tnN+5/T/vHbqr2uTyL8ULAh4QeOedd9SBBx6oXnnllcjetm3bVp122mnq/PPPV506dYo8jo52Evjoo4/UL3/5S/WnP/2pIQN79Oih7rrrLjVo0KCGxtEZAhAoJ4AOl/Pw8Qwd9jHq+GwTAXTYpmhkYws6nA33ylXbUIipRMK5RAIPPfSQOvLII9WSJUsiu9e3b1/1+9//Xm2//faRx9DRDQL333+/OuWUU9QHH3wQ2eD27durSy+9tFCYizyIjhCAQAsBdLgFBQd5Augw2wAC5gmgw+aZ27wiOpxtdCjEZMuf1Q0QuPjii9XZZ5+tVq5cGWm1du3aqZEjR6rf/va3qmPHjpHG0Mk9Al9++aU644wz1MSJExsyftiwYeqGG25Qq666akPj6AwBnwmgwz5HP9h3dDiYDS0QSJoAOpw0URnzocPZxZFCTHbsWTllAt9995069thj1R133BF5pQ033FDdfvvtatttt408ho5uE7j33nvV8ccfrxYvXhzZkYEDByo9rlu3bpHH0BECPhJAh32MeuM+o8ONM2MEBKISQIejkvK7HzpsPv4UYswzZ0UDBPRXkPT9YGbNmhV5taOOOkqNHz9erbnmmpHH0FEGAf1d2V/84hdq6tSpkR3q06ePmjJlitpss80ij6EjBHwigA77FO3mfUWHm2fIDBCoJIAOVxLhPIwAOhxGJ/k2CjHJM2XGjAnMnTtX7bXXXmrOnDmRLNE34b366qsLn56JNIBOYglceeWV6swzz1TLli2L5GOXLl3U3XffrXbddddI/ekEAV8IoMO+RDp5P9Hh5Jkyo58E0GE/456E1+hwEhTrz0Ehpj4jejhE4MUXX1T77LOP+vDDDyNZrW/IO3nyZLXppptG6k8n+QSefPJJdfjhh6sFCxZEclbfxPemm25S+t4xvCAAAaXQYXZBswTQ4WYJMt53Auiw7zugef/R4eYZ1puBQkw9QrQ7Q0B/DWnfffdV+qZTUV4HHHCAuuWWW/gqUhRYnvVZuHBhoRgzc+bMSJ7rx5xfd9116sQTT4zUn04QkEoAHZYaWfN+ocPmmbOiDALosIw42uAFOpxuFCjEpMuX2Q0ReOyxx9T++++vvv7667ortmnTRo0ePVr993//t9LHvCBQi8Dy5cvVWWedpS6//PJazTWvXXLJJYUnbtVs5CIEhBNAh4UHOAP30OEMoLOk0wTQYafDZ6Xx6HB6YaEQkx5bZjZEYNq0aeqggw5S3377bd0VV1ttNXXbbbcV+tftTAcI5AlMmDBBjRgxQulEFOWli3znnntulK70gYAYAuiwmFBa6Qg6bGVYMMoyAuiwZQERZg46nHxAKcQkz5QZDRK4//771WGHHab0o/nqvbp27aoeeOABHk1dDxTtVQT0Lzd6n0X92tuoUaPUmDFjqubhAgQkEkCHJUbVPp/QYftigkX2EECH7YmFZEvQ4WSjSyEmWZ7MZpDAX/7yl8InW6I84WbjjTcuPJp4o402MmghS0ki8PLLLxfuQTRv3rxIbulPxehPx/CCgGQC6LDk6NrnGzpsX0ywKHsC6HD2MfDJAnQ4uWhTiEmOJTMZJKBvRDZ06FD1zTff1F11u+22U/p/CvQnYnhBoBkC8+fPV3vssUfkR6Nzz5hmaDPWdgLosO0RkmkfOiwzrngVjwA6HI8bo5ojgA43x684mkJMkQQ/nSHw/PPPqyFDhqgvvviirs26ny7CdOrUqW5fOkAgCoFFixYVioAvvPBClO7q6quvVqeeemqkvnSCgCsE0GFXIiXTTnRYZlzxqjEC6HBjvOidLAF0uHmeFGKaZ8gMBgn8/e9/VzvvvLPSb/56rz333FNNnjxZ/eAHP6jXlXYINETg888/V/vss4966qmn6o7TT+bSj0k/+uij6/alAwRcIIAOuxAl+Taiw/JjjIfBBNDhYDa0mCOADjfHmkJMc/wYbZDAggUL1MCBA1WUe3Tsu+++6u6771YdO3Y0aCFL+URg6dKl6sADD1SPPvpoXbc7dOig9A3OBg8eXLcvHSBgMwF02Obo+GcbOuxfzPFYKXSYXWATAXQ4fjQoxMRnx0iDBL7++uvCJ2Gee+65uqvqR1nfeeedqn379nX70gECzRDQ+3LvvfdWM2fOrDtNly5d1JNPPqk233zzun3pAAEbCaDDNkYFm9Bh9oBPBNBhn6Ltjq/ocLxYUYiJx41RBgmsXLlSHXrooeqee+6pu6q+kap+RLX+BAIvCJggoB9pvfvuu6tnn3227nK9e/dWTz/9tOrevXvdvnSAgE0E0GGbooEtlQTQ4UoinEskgA5LjKocn9DhxmNJIaZxZowwTOCss85S+ukz9V7bb7+9evjhh7kxbz1QtCdOYMmSJWrXXXdVL774Yt25t9lmG6WfcsC9i+qiooNFBNBhi4KBKTUJoMM1sXBREAF0WFAwhbqCDjcWWAoxjfGit2ECv//979W///u/1111iy22UI8//rj64Q9/WLcvHSCQBgF9A+mddtpJvf7663WnP+aYYwo38K3bkQ4QsIAAOmxBEDAhEgF0OBImOjlIAB12MGiemowORw88hZjorOhpmIC+H8wOO+ygvvvuu9CVN9xww8LTa370ox+F9qMRAmkTePfddws3lP7444/rLnXFFVeo//iP/6jbjw4QyJIAOpwlfdaOQwAdjkONMTYTQIdtjg621SLwzjvvKP1NBX4frkWn9RqFmFYWHFlEQH+0beutt1bvvfdeqFWdO3dWs2fPVptttlloPxohYIqAvlfMkCFDlL5xWdirXbt2hScu6cex84KAjQTQYRujgk1RCKDDUSjRxwUC6LALUcLGWgTQ4VpUyq9RiCnnwZkFBHK5nNp///3VlClTQq3Rf8g++OCDhRulhnakEQKGCdx7773qkEMOUfrGemEv/Sku/T9dPXv2DOtGGwSME0CHjSNnwYQJoMMJA2U64wTQYePIWTBhAuhwOFAKMeF8aM2AwAUXXKDOOeecuitPmDBBnXjiiXX70QECWRDQXz369a9/XXdp/YmY6dOnq7Zt29btSwcImCKADpsizTppEkCH06TL3GkTQIfTJsz8Jgigw8GUKcQEs6ElAwJPPPGE2mWXXep+kkD/gXvZZZdlYCFLQiA6gZ/97Gfq1ltvrTvgvPPOi1R8rDsRHSCQAAF0OAGITGENAXTYmlBgSAME0OEGYNHVegLocO0QUYipzYWrGRDQz5/fcsstlb7RXthLP5nmscceU/qrSbwgYDOBb775Rg0aNKjuY631XtaPtB44cKDN7mCbBwTQYQ+C7JmL6LBnARfgLjosIIi4UEYAHS7D0XJCIaYFBQdZEzjuuOPUjTfeGGpG9+7d1fPPP6/WXXfd0H40QsAWArqwOGDAAPXpp5+GmqSf/vXiiy+qNdZYI7QfjRBIkwA6nCZd5s6KADqcFXnWjUMAHY5DjTG2E0CHqyNEIaaaCVcyIHDPPfcUbm4atvQqq6xSeMqM/uoSLwi4RGDatGlq7733VvrGe2Gvf/u3f1M333xzWBfaIJAaAXQ4NbRMbAEBdNiCIGBCXQLocF1EdHCYADpcHjwKMeU8OMuAwMKFC1X//v3V4sWLQ1cfO3asOuuss0L70AgBWwnovXvJJZfUNU8/LWyfffap248OEEiSADqcJE3mspUAOmxrZLBLE0CH2Qc+EECHW6NMIaaVBUcZETjiiCPUnXfeGbr6rrvuqh555BHVpk2b0H40QsBWAsuWLSvcA0Z/tS7std5666lXX32VryiFQaItcQLocOJImdBCAuiwhUHBpBYC6HALCg4EE0CHW4NLIaaVBUcZEPjLX/6i9t1339CVu3Tpol566SWl/0DlBQGXCbz++utqm222UUuXLg1145RTTlHXXHNNaB8aIZAUAXQ4KZLM4wIBdNiFKPlnIzrsX8x99hgd/mf0KcT4/C7I2Hf9x2i/fv3U+++/H2rJpEmT1FFHHRXah0YIuELg+uuvVyeccEKoufqTXzNnzlQ77rhjaD8aIdAsAXS4WYKMd5EAOuxi1OTajA7LjS2eBRNAh5WiEBO8P2hJmcAZZ5yhLrvsstBVdAFGF2J4QUASAX3j3qlTp4a61Ldv38Inwdq3bx/aj0YINEMAHW6GHmNdJoAOuxw9Wbajw7LiiTfRCfiuwxRiou8VeiZIQD+mVz/Sd8WKFYGzduvWTc2ZM0ettdZagX1ogICLBPSnwPQNqr/66qtQ83Wh8te//nVoHxohEJcAOhyXHOMkEECHJUTRfR/QYfdjiAfxCfiuwxRi4u8dRjZBYMiQIerxxx8PneG2225Tw4YNC+1DIwRcJXDVVVep0047LdT8zp07qzfffFN17do1tB+NEIhDAB2OQ40xkgigw5Ki6aYv6LCbccPq5Aj4rMMUYpLbR8wUkcDkyZPVwQcfHNp76NChdb+6EToBjRCwnMDKlSsL94CZPXt2qKXHH3+8mjhxYmgfGiHQKAF0uFFi9JdIAB2WGFV3fEKH3YkVlqZHwGcdphCT3r5i5hoE9CPLNt98c/XWW2/VaP3npR/84AeFx/f26dMnsA8NEJBA4LXXXlNbbrmlWr58eaA7bdu2VX/961/V1ltvHdiHBgg0QgAdboQWfaUTQIelR9hO/9BhO+OCVdkQ8FWHKcRks9+8XfXyyy9Xp59+eqj/Y8aMUaNGjQrtQyMEpBD41a9+pa688spQdwYPHqymT58e2odGCEQlgA5HJUU/Xwigw75E2h4/0WF7YoEldhDwUYcpxNix97ywYsmSJWrDDTdUn332WaC/+lMw+ga9HTt2DOxDAwQkEdDvh0022UQtXrw41K2HH35Y7b777qF9aIRAPQLocD1CtPtIAB32MerZ+az3m/59l9+Hs4sBK9tHwEcdphBj3z4Ua9Ho0aPVeeedF+rfXXfdpQ499NDQPjRCQBqB8ePHq5NPPjnUre222049/fTToX1ohEA9AuhwPUK0+0oAHfY18ub9RofNM2dFNwj4psMUYtzYl85b+emnnxaq/1988UWgLzvuuKOaNWtWYDsNEJBKQD/GXd8D5qWXXgp18b777lP7779/aB8aIRBEAB0OIsN1CCiFDrMLTBBAh01QZg1XCfimwxRiXN2pjtl9zjnnqAsuuCDQ6jZt2qhnn31WDRgwILAPDRCQTGDq1Klq7733DnVR39j3hRdeUPr9wgsCjRJAhxslRn/fCKDDvkXcvL/osHnmrOgWAZ90mEKMW3vTSWs/+eSTwqdhvvzyy0D7jzjiCHXHHXcEttMAAR8I6E+FPfnkk6Gu3n333eqQQw4J7UMjBCoJoMOVRDiHQG0C6HBtLlxtngA63DxDZvCDgC86TCHGj/2cqZe/+c1v1IUXXhhog3487yuvvKI222yzwD40QMAHAo8//rgaMmRIqKsDBw5Us2fPDu1DIwQqCaDDlUQ4h0BtAuhwbS5cbZ4AOtw8Q2bwg4AvOkwhxo/9nJmXS5cuVeutt57ST+oIeg0bNkzddtttQc1ch4BXBPSTkR599NFQn/W9lPT/FvCCQBQC6HAUSvSBQCsBdLiVBUfJEECHk+HILP4Q8EGHKcT4s58z8fSaa65RI0aMCFxbfxrmtddeU5tuumlgHxog4BMB/WmXQYMGhbp8wAEHqHvvvTe0D40QKBJAh4sk+AmBaATQ4Wic6BWdADocnRU9IaAJ+KDDFGLY66kRWLlyZaHA8tZbbwWuccwxx6hbbrklsJ0GCPhIYPDgwWrGjBmBruub9eoCZt++fQP70AABTQAdZh9AIB4BdDgeN0ZVE0CHq5lwBQJRCEjXYQoxUXYBfWIR0P9jf9BBB4WOffnll1X//v1D+9AIAd8IPPDAA3UfU33iiSeqCRMm+IYGfxskgA43CIzuEPieADrMVkiKADqcFEnm8Y2AdB2mEOPbjjbob70q5p577qmmTZtm0CKWgoAbBHK5nOrXr5+aM2dOoMGdOnVSH374oVpjjTUC+9AAAXSYPQCBeATQ4XjcGFVNAB2uZsIVCEQhIF2HKcRE2QX0aZiA/gNy8803Dx2nnxM/dOjQ0D40QsBXAjfccIM6/vjjQ90fP368Gj58eGgfGv0lgA77G3s8T4YAOpwMR59nQYd9jj6+J0FAsg5TiElihzBHFYGRI0eqcePGVV0vXtD/268fWc0LAhCoTeC7775TvXv3VgsXLqzdIX91q622Us8//3xgOw1+E0CH/Y4/3jdPAB1unqHvM6DDvu8A/G+WgGQdphDT7O5gfBWBZcuWqZ49e6pFixZVtRUvTJw4se7/9hf78hMCvhIYNWqUGjt2bKj7f/3rX9WAAQNC+9DoHwF02L+Y43E6BNDhdLj6MCs67EOU8dEEAak6TCHGxO7xbI27775bHXrooYFer7nmmoV7W6y22mqBfWiAAASUevvtt9Umm2yi9Hdkg14nnHCC+t///d+gZq57SgAd9jTwuJ04AXQ4caTeTIgOexNqHE2ZgFQdphCT8sbxcfp99tlHPfjgg4Gu63ta6Htb8IIABOoT2H333dWjjz4a2LFLly6Fry916NAhsA8N/hFAh/2LOR6nRwAdTo+t5JnRYcnRxTfTBCTqMIUY07tI+Hr6fhY9evRQK1euDPT02WefVT/96U8D22mAAARaCfzxj39URx55ZOuFGkf60ZgHHHBAjRYu+UgAHfYx6vicJgF0OE26MudGh2XGFa+yIyBRhynEZLefRK587bXXqlNPPTXQty222EL93//9X2A7DRCAQDmBf/zjH4Xi5ieffFLeUHJ21FFHqUmTJpVc4dBnAuiwz9HH9zQIoMNpUJU9JzosO754Z56ARB2mEGN+H4lecciQIerxxx8P9PHKK69Up512WmA7DRCAQDUB/XW+sPvAdOrUSX388ceK+y5Vs/PxCjrsY9TxOW0C6HDahGXNjw7Liife2EFAmg5TiLFjX4mwot7HMNu2bavmz5+vunfvLsJfnICAKQKPPfaY2m233UKXu/POO9Vhhx0W2odG+QTQYfkxxsNsCKDD2XB3cVV02MWoYbMLBKTpMIUYF3adIzbW+xjmLrvsEvppGUfcxEwIGCewYsWKwiPh9S93Qa/DDz9c6e/P8vKbADrsd/zxPj0C6HB6bKXNjA5Liyj+2EJAmg5TiLFlZwmwY9ddd1XTp08P9OSaa65Rp5xySmA7DRCAQDCBESNGKP0eCnrppyctWrRItWvXLqgL1z0ggA57EGRczIwAOpwZeqcWRoedChfGOkZAkg5TiHFs89lq7pdffqnWXntttWzZspom6q8lLViwQP3oRz+q2c5FCEAgnMCsWbPUzjvvHNppxowZdfuETkCj0wTQYafDh/EOEECHHQhSxiaiwxkHgOXFE5CkwxRixG9XMw5OnjxZHXzwwYGLDR48OPTTMoEDaYAABAoE9Mcxu3btqpYsWRJIZNSoUWrMmDGB7TTIJoAOy44v3mVPAB3OPga2W4AO2x4h7HOdgCQdphDj+m60xP6TTjpJTZgwIdCacePGqdNPPz2wnQYIQKA+gSOPPDL0PjA8Hr4+Q8k90GHJ0cU3Wwigw7ZEwk470GE744JVsghI0WEKMbL2ZWbe9OnTR7333nuB67/yyiuqX79+ge00QAAC9QncfPPN6thjjw3t+MEHHxRu7BvaiUaRBNBhkWHFKcsIoMOWBcQyc9BhywKCOSIJSNFhCjEit6dZp15//XXVt2/fwEV79eql5s2bF9hOAwQgEI2AfmrSuuuuq3K5XOCAW265RR1zzDGB7TTIJIAOy4wrXtlHAB22Lya2WIQO2xIJ7JBOQIoOU4iRvlMN+FfvMX3HH3+8mjhxogFLWAIC8gkMGDBAPffcc4GODh8+XI0fPz6wnQaZBNBhmXHFKzsJoMN2xiVrq9DhrCPA+j4RkKDDFGJ82rEp+Xr00UerSZMmBc7+pz/9Sf3rv/5rYDsNEIBAdAIjR45U+p5LQS/9FUD9VUBefhFAh/2KN95mSwAdzpa/raujw7ZGBrskEpCgwxRiJO5Mwz6FfR+2TZs2avHixWqttdYybBXLQUAmgXpPZOA9JzPu9bxCh+sRoh0CyRFAh5NjKWkmdFhSNPHFdgISdJhCjO27zHL7FixYEHpjUH3vmDlz5ljuBeZBwB0CixYtUt26dQs1+P7771f77bdfaB8a5RBAh+XEEk/cIIAOuxEnk1aiwyZpsxYElJKgwxRi2MlNEdBfOzrssMMC5zjuuOPUDTfcENhOAwQg0DiBTTfdVL3xxhuBA0eNGqXGjBkT2E6DLALosKx44o0bBNBhN+Jkykp02BRp1oFAKwHXdZhCTGssOYpB4PTTT1eXX3554EhdhNHFGF4QgEByBPR76sYbbwyccK+99lIPPvhgYDsNsgigw7LiiTduEECH3YiTKSvRYVOkWQcCrQRc12EKMa2x5CgGgcGDB6sZM2YEjtRfSwp7tHXgQBogAIFAAhMmTFAnnXRSYLt+xLX+mDQvPwigw37EGS/tIoAO2xWPrK1Bh7OOAOv7SMB1HaYQ4+OuTdDntddeW3366ac1Z+zSpUuhTd88lBcEIJAcgdmzZ6tBgwaFTvjxxx+rrl27hvahUQYBdFhGHPHCLQLosFvxSttadDhtwswPgWoCruswhZjqmHIlIoH58+erXr16Bfbeaaed1MyZMwPbaYAABOIR+Oqrr9Saa66pcrlc4ASPPPKI2m233QLbaZBBAB2WEUe8cI8AOuxezNKyGB1OiyzzQiCcgOs6TCEmPL60hhCYOnWq2nvvvQN7nHLKKeqaa64JbKcBAhCIT2CjjTZS77zzTuAE48aNU/o767xkE0CHZccX7+wmgA7bHR9T1qHDpkizDgSqCbiswxRiquPJlYgELrnkEnXWWWcF9r7uuutC72MROJAGCECgLoGDDz5YTZ48ObCfvoEZTywLxCOmAR0WE0occZAAOuxg0FIwGR1OASpTQiAiAZd1mEJMxCDTrZrAz3/+c/WHP/yhuuH7K08++WTd+1gEDqYBAhAIJTB69Gh13nnnBfbRNw6cPn16YDsNMgigwzLiiBduEkCH3Yxb0lajw0kTZT4IRCfgsg5TiIkeZ3pWENhhhx3UU089VXG19fTzzz8v3Mei9QpHEIBAUgRuvvlmdeyxxwZOt/7666v3338/sJ0GGQTQYRlxxAs3CaDDbsYtaavR4aSJMh8EohNwWYcpxESPMz0rCPTs2TPwEbndunVTCxcurBjBKQQgkBQB/dh4/amXoFfbtm3Vt99+q9q3bx/UhesCCKDDAoKIC84S0A8k2GWXXQLtR4cD0YhqQIdFhRNnHCPgsg5TiHFss9li7j/+8Q+16qqrBj61Zdttt1XPPPOMLeZiBwTEEZg7d67q3bt3qF9vvvmm2njjjUP70OguAXTY3dhhuQwC6LCMODbjBTrcDD3GQqB5Ai7rMIWY5uPv5Qz6D7wf//jHgb4ffvjh6o9//GNgOw0QgEBzBFauXFkohi5btixwooceekjtsccege00uE0AHXY7fljvPgF02P0YNusBOtwsQcZDoDkCLuswhZjmYu/t6Icffljtueeegf7rpymNHTs2sJ0GCECgeQL60y5vv/124ET6qUn66Um8ZBJAh2XGFa/cIoAOuxWvpK1Fh5MmynwQaJyAqzpMIabxWDMiT+D6669XJ5xwQiCLa6+9Vp188smB7TRAAALNE9h5553VrFmzAifSxdCwR8wHDqTBCQLosBNhwkjhBNBh4QGu4x46XAcQzRAwQMBVHaYQY2BzSFxizJgx6r/+678CXbv//vvVfvvtF9hOAwQg0DyBQw45RN1zzz2BE40cOVJdcsklge00uE0AHXY7flgvgwA6LCOOcb1Ah+OSYxwEkiPgqg5TiEluD3g1k/4Db9y4cYE+z549Ww0cODCwnQYIQKB5AieeeKKaOHFi4ET68dY33nhjYDsNbhNAh92OH9bLIIAOy4hjXC/Q4bjkGAeB5Ai4qsMUYpLbA17N9Itf/ELddNNNgT6/8cYbapNNNglspwECEGiewNlnn60uuuiiwIn0p9L0p9N4ySSADsuMK165RQAdditeSVuLDidNlPkg0DgBV3WYQkzjsWZEnsD++++vHnjggUAWn3zyiVprrbUC22mAAASaJ6A/lab/Ny7opT+Vpj+dxksmAXRYZlzxyi0C6LBb8UraWnQ4aaLMB4HGCbiqwxRiGo81I/IEBg0aFPgHXtu2bdXy5ctVmzZtYAUBCKRIQH/tKOypSH379lVz5sxJ0QKmzpIAOpwlfdaGwD8JoMN+7wR02O/4470dBFzVYQoxduwf56zQf+C9/vrrNe1ee+211eLFi2u2cRECEEiOwB133KGOOuqowAn79Omj3nnnncB2GtwmgA67HT+sl0EAHZYRx7heoMNxyTEOAskRcFWHKcQktwe8mmmDDTZQ77//fk2f119//cC2mgO4CAEIxCKgn5ik7xQf9OrRo4eaP39+UDPXHSeADjseQMwXQQAdFhHG2E6gw7HRMRACiRFwVYcpxCS2BfyaSP+B9+GHH9Z0Wt+kV9+slxcEIJAugSlTpoQ+Jp5Pp6XLP+vZ0eGsI8D6EFAKHfZ7F6DDfscf7+0g4KoOU4ixY/84Z8U666yj9A15a7369eunXnnllVpN6oMPPig8xWXu3LlqxYoVNftwEQIQ+CeBVVddVen3k74Z4GqrrVaF5ZFHHlF77LFH1fXihU6dOqmvvvqqeMpPYQTQYWEBxR0rCaDDVobFGqPQYWtCgSGCCYjV4RwvCMQgsPrqq+fy7/ea/7baaquaM44ePTrXvn37mmOC5uJ6bcZw8YtLt27dcg8++GDV+2rGjBmh76d27dpVjeGCHALosF86gO5nG290WI52JukJOpzt+xJd9Iu/NB1WSYoRc/lDoEOHDoF/AOYfmVsF4vzzzw/sj4j6JaLEO1689Xvu6aefLntvPfXUU3XfV2UDOBFFAB2O915Cg+AWdw+gw6IkNBFn0GH0JK6eMC7e3pGkw3w1Kf8u4NU4gbBHU++0005q5syZLZMuWbJErbvuuuq7775rucYBBCDQOIHBgwer6dOntwycPXt24VHyLRdqHOR/06xxlUsSCKDDEqKID64RQIddi1i69qLD6fJldgjUIiBFhynE1Iou1+oSCEs8O++8s8p/ZaJljvvvv18dcMABLeccQAAC8Qi0bdtWffPNNyr/vwGFCSjExOMoZRQ6LCWS+OESAXTYpWilbys6nD5jVoBAJQEpOkwhpjKynEci0Ejiuf3229WwYcMizUsnCEAgnMBnn32mOnfuXOhEISaclfRWdFh6hPHPVgLosK2RMW8XOmyeOStCQBOQoMMUYtjLsQg0knj0E5R+8pOfxFqHQRCAQCuBDTbYQL377rstFyjEtKDw8gAd9jLsOJ0xAXQ44wBYtjw6bFlAMMcLAmJ0OJE7VTGJdwTy7/LAm4Tmv5pUxWO33XYL7B82F23BnGHjH5urr7667L3FzXrLcHh3EqYB6LB/+hC2H2hLbj+gw95JbajDYe8tdDi5910YZ9r84yxFh3lqUqi80hhEIEz0aiWeRYsW5fr3708xJqSAFcaUNv+STGXMhw8fXvV2pBBThcSrC5V7pPQcHUYzSvcDx8nsB3TYK4mN5GzYewsdTuZ9F8aYNv8YS9JhCjGRZJZOlQTChK9W4tHjv/3229y5556bW2WVVSjIUJBhD0TcA927d89Nnjy58i1YOKcQUxOLNxfRYf9+AQ2LOW3p7Qd02BtZbdjRsPcdvw+n954M406bTO4SdZhCTMOSywBNIEzkghJPkdyIESNCx4fNTZtMcSWuwXGdMmVK8a1T9ZNCTBUSry6EvW/Q4eD3VBg32uBWaw+gw15Ja0PO1tovxWvoMHpS3Av8bH4vSNRhbtabf2fwapxAIzcnq5z9+uuvVyeccELlZc4hAIEaBObNm6d69epVo0UpbtZbE4s3F9Fhb0KNoxkTQIczDoDFy6PDFgcH00QRkKjDFGJEbVFzzjSTeG644QZ1/PHHmzOWlSDgMIH58+erHj161PSAQkxNLN5cRIe9CTWOZkwAHc44ABYvjw5bHBxME0VAog5TiBG1Rc05Q+Ixx5qV/CYgMfH4HdHkvEeHk2PJTBAII4AOh9Hxuw0d9jv+eG+OgEQdphBjbv+IWonEIyqcOGMxAYmJx2LcTpmGDjsVLox1mAA67HDwUjYdHU4ZMNND4HsCEnWYQgzbOxYBEk8sbAyCQMMEJCaehiEwoCYBdLgmFi5CIHEC6HDiSMVMiA6LCSWOWE5Aog5TiLF809lqHonH1shglzQCEhOPtBhl5Q86nBV51vWNADrsW8Sj+4sOR2dFTwg0Q0CiDlOIaWZHeDyWxONx8HHdKAGJiccoQMGLocOCg4trVhFAh60Kh1XGoMNWhQNjBBOQqMMUYgRv2DRdI/GkSZe5IdBKQGLiafWOo2YIoMPN0GMsBKITQIejs/KtJzrsW8TxNysCEnWYQkxWu8nxdUk8jgcQ850hIDHxOAPfckPRYcsDhHliCKDDYkKZuCPocOJImRACNQlI1GEKMTVDzcV6BEg89QjRDoFkCEhMPMmQYRZ0mD0AATME0GEznF1cBR12MWrY7CIBiTpMIcbFnWiBzSQeC4KACV4QkJh4vAicASfRYQOQWQICeQLoMNsgiAA6HESG6xBIloBEHaYQk+we8WY2Eo83ocbRjAlITDwZIxWzPDosJpQ4YjkBdNjyAGVoHjqcIXyW9oqARB2mEOPVFk7OWRJPciyZCQJhBCQmnjB/aYtOAB2OzoqeEGiGADrcDD3ZY9Fh2fHFO3sISNRhCjH27C+nLCHxOBUujHWYgMTE43A4rDIdHbYqHBgjmAA6LDi4TbqGDjcJkOEQiEhAog5TiIkYfLqVEyDxlPPgDAJpEZCYeNJi5du86LBvEcffrAigw1mRt39ddNj+GGGhDAISdZhCjIy9adwLEo9x5CzoKQGJicfTUCbuNjqcOFImhEBNAuhwTSxczBNAh9kGEDBDQKIOU4gxs3fErULiERdSHLKUgMTEYylq58xCh50LGQY7SgAddjRwBsxGhw1AZgkI5AlI1GEKMWztWARIPLGwMQgCDROQmHgahsCAmgTQ4ZpYuAiBxAmgw4kjFTMhOiwmlDhiOQGJOkwhxvJNZ6t5JB5bI4Nd0ghITDzSYpSVP+hwVuRZ1zcC6LBvEY/uLzocnRU9IdAMAYk6TCGmmR3h8VgSj8fBx3WjBCQmHqMABS+GDgsOLq5ZRQAdtiocVhmDDlsVDowRTECiDlOIEbxh03SNxJMmXeaGQCsBiYmn1TuOmiGADjdDj7EQiE4AHY7Oyree6LBvEcffrAhI1GEKMVntJsfXDUs822+/vXrqqacCPRw/frw6+eSTA9tpgAAEWgm89957qnfv3q0XSo5effVV1b9//5Ir1Ye5XK76IldEEECHRYQRJxwggA47EKSMTESHMwLPst4REKnD+V/SeUGgYQL5d7/+667mv9VWWy337rvv1pxzxYoVub333rvmuKD5uF6bM1z84HLFFVfUfC/pizfddFPd91LgYBqcJxCmAeiwH/oQtgdoS24PoMPOy2VqDoS9z9Dh5N6DYZxp84OzRB3mEzH5dy+vxgmE/Q+Anq1Lly5ql112UR06dGiZPJ8Flf4f/Dlz5rRc4wACEKhPYPDgwapr165lHZcsWaIee+wxtXLlyrLrlSf6fcdLJgF0WGZc8cpOAuiwnXHJ2ip0OOsIsL5PBKTpMIUYn3Zvgr7WSzwJLsVUEIBAEwQoxDQBz/Kh6LDlAcI8CHxPAB2WuxXQYbmxxTNZBGzUYQoxsvaYMW9IPMZQsxAEmiJgY+JpyiEGtxBAh1tQcAABqwmgw1aHpynj0OGm8DEYAsYI2KjDFGKMhV/WQiQeWfHEG7kEbEw8cmmb9QwdNsub1SAQlwA6HJec/ePQYftjhIUQ0ARs1GEKMezNWARIPLGwMQgCxgnYmHiMQxC6IDosNLC4JY4AOiwupC0OocMtKDiAgNUEbNRhCjFWbxl7jSPx2BsbLINAKQEbE0+pfRzHJ4AOx2fHSAiYJIAOm6Rtdi102CxvVoNAXAI26jCFmLjR9HwcicfzDYD7zhCwMfE4A89yQ9FhywOEeRD4ngA6LHcroMNyY4tnsgjYqMMUYmTtMWPekHiMoWYhCDRFwMbE05RDDG4hgA63oOAAAlYTQIetDk9TxqHDTeFjMASMEbBRhynEGAu/rIVIPLLiiTdyCdiYeOTSNusZOmyWN6tBIC4BdDguOfvHocP2xwgLIaAJ2KjDFGLYm7EIkHhiYWMQBIwTsDHxGIcgdEF0WGhgcUscAXRYXEhbHEKHW1BwAAGrCdiowxRirN4y9hpH4rE3NlgGgVICNiaeUvs4jk8AHY7PjpEQMEkAHTZJ2+xa6LBZ3qwGgbgEbNRhCjFxo+n5OBKP5xsA950hYGPicQae5Yaiw5YHCPMg8D0BdFjuVkCH5cYWz2QRsFGHKcTI2mPGvCHxGEPNQhBoioCNiacphxjcQgAdbkHBAQSsJoAOWx2epoxDh5vCx2AIGCNgow5TiDEWflkLkXhkxRNv5BKwMfHIpW3WM3TYLG9Wg0BcAuhwXHL2j0OH7Y8RFkJAE7BRhynEsDdjESDxxMLGIAgYJ2Bj4jEOQeiC6LDQwOKWOALosLiQtjiEDreg4AACVhOwUYcpxFi9Zew1jsRjb2ywDAKlBGxMPKX2cRyfADocnx0jIWCSADpskrbZtdBhs7xZDQJxCdiowxRi4kbT83EkHs83AO47Q8DGxOMMPMsNRYctDxDmQeB7Auiw3K2ADsuNLZ7JImCjDlOIkbXHjHlD4jGGmoUg0BQBGxNPUw4xuIUAOtyCggMIWE0AHbY6PE0Zhw43hY/BEDBGwEYdphBjLPyyFiLxyIon3sglYGPikUvbrGfosFnerAaBuATQ4bjk7B+HDtsfIyyEgCZgow5TiGFvxiKw+uqrq6VLl8YayyAIQMAMgc6dO6vPPvvMzGKsYpwAOmwcOQtCoGEC6HDDyJwagA47FS6M9ZSArTpMIcbTDdms25deeqk6++yz1fLly5udivEQgEACBPT/ypX+z5xOOvp9etxxxyUwO1PYSAAdtjEq2OQzAXTYv+ijw/7FHI/tJuCSDlOIsXsvWW3dt99+W/apGH1+3XXXqQsuuMBquzEOAtIITJgwQR177LGqQ4cO0lzDnzoE0OE6gGiGgCEC6LAh0BYugw5bGBRM8pKAazpMIcbLbZqu07169VLz589PdxFmhwAECgQ222wz9dprr0EDAmUE0OEyHJxAIFUC6HCqeJ2dHB12NnQY7iABF3WYQoyDG812k7fcckv10ksv2W5mTfsGDBigTjrppJpt+mtYI0eOVF999VXN9rCLYfOGjStt0zeZOvfcc9UHH3xQernmcdu2bdXOO++sfvzjH6uNN95YbbLJJoWf3bt3V0uWLCkUyhYsWFD4+cILL6iHH35YLV68uOZclRe33XbbwtzaJ/2vY8eO6sUXX1R/+9vf1LPPPqumTp3a0A2xkp6vf//+6le/+lWl2YXzu+66S02bNq1mm6sXNb9nnnnGVfOxOyUC6HA1WHS4mknxSlI6rD8SvuOOO6oDDzxQbbHFFkr/Idq1a1f1+eefF/LN9OnT1aRJk9Qbb7xRXFrET3RYRBgTdwIdrkaKDlczKV5JSof1fN26dVOHHXaY2mabbVTv3r3V+uuvr7p06aI+/vjjghY/8cQT6qabblJz584tLu/8Tyd1OP/HHS8IJEog/8tXLv9udvLfySefHMpigw02iOVXvXlDFy1pHDJkSOj6+V+Cc4ceemju1VdfLRlV/3DFihW5fBEld9555+W22mqrmmu0b98+d8UVV9SdbMqUKbm111675hyl+yLp+YpzH3PMMYE2XnTRRXXtKs7jys984gn0lwZ/CaDD1TkIHa5mkqQO77vvvrl8Ub7um27ZsmW5n//856K0GB2uG3YvO6DD1ZqDDlczSVKH9d8p+f9wzOX/87jue07/7p+/x1FOr+/K77xhdrqow/p/rnlBIFECJJ5qkTWRePQvwc8//3zTsbz33nurBDlfSc89/fTTkefOV9hzAwcOrJqnKKBJz1ecV/+kEBM5THQUTAAdRodN6fAaa6yR+/Of/9zwu+nMM88MzBGlmu7CsYt/ADQcMAY0TAAdRodN6XBRJ/Ofhm94n+rCzSqrrOK8HruowxRiGt6uDKhHgMRjPvFceOGF9cISub1WIWb27NmRxxc75r/qlFtzzTVrCnvS8xUTkP5JIaYYAX76TAAdRof1/jehw3379o39VjvttNNq5ohSTXfh2MU/AGIHjYGRCaDD6LDeLCZ0uKiTcQox2sbRo0c7r8Uu6jCFGL37eCVKYOjQoc6+met9csXGryadc845icavshCT/65/7Pn1V52KyaH4M+n5ivMWf/pWiDnyyCNjx4eBcgmgw2b/APBZh5spxOTveZZr165dVZ4o6rkrP9FhuVrajGfoMDpc3D+mfh+OW4jJ3z8y16lTJ6e12EUd5ma9+SzPK1kCc+bMUfn/5SrcDKpy5o8++qhws9jK67ac5wsx6tprrw00p0+fPuq9994LbA9qqDfv5MmT1aJFi4KGt1z/3e9+V3az3vz/tqj815FU/iOFLX2aPbjvvvsKN1rU8+ib/uobL/fr16/mtK+//rrKf99f6Rvk1notXbpUbbjhhoWbg+n2pOertWa+EKNuueWWWk1q7NixatSoUTXbbL6o+fbs2bPKxPXWW0/pPbHuuutWtXHBbwLocHX80eGPC1CS1uF8IUbp/Vb5yt9/QOmb9+r1wl6DBg1S+U9JhnWxog0dtiIMThmBDleHCx1OR4eLpPWDOmbMmKE++eQT9T//8z9K3yD9lVdeKfwOqf++2WmnnYpdq37m70OpHn/88arrNl0Qp8PFSh0/IWCCwD/+8Y/csGHDrK245hNEKIa0PhETd9682IbaW2zMF3lyd955Zy7/1KfcLrvsktt6660LX+G5+OKLc4888khO37Cr+Cr9RExYdfmdd97J6XsD5AU69P4A48aNa4l30vPptSv/SftEzC9/+ctiaPgJgUQIoMO1MaLDuVwcXS/9RMzXX39duOl7/pf9XIcOHXKdO3fO3XjjjbWBf3/1qKOOqtLxSl3P+hwdDg0hjTEIoMO1oaHD8XS4qJH6YRmnnHJKy+/nxev6Z/6pSTn990DQ6+ijj7ZaiyXqMF9NCtqNXE+NQL7aau0b3aVCTP6x1JFipHnnHx8ayvwnP/lJThdg9Ku0EBP2lCR9p/WiwOtfuoNeTz31VEu/pOcrrl/6U1ohZtasWUFouQ6B2ATQ4Wp0cf4AQIdVrliIefvtt3P5x/W26H1Rl/XT/MJu9q5/uS72tfUnOlz9fuFK8wTQ4WqG6HCu8CSjohZG/f262L/ez7CnqoY9ZKPevCbaJeowhZhqDeBKygSeeeYZa3/pcqkQo584Ue919dVXN/T9ey3Ce+yxR0t8HnjggcAl9tprr5Z++n89g14LFy5s6Zf0fLWEX1ohRr9feEEgaQLocDXROH8AoMMqt8466+TyH3kv/G9rLU3W10aMGFEN/PsrBx98cEuOCBqf9XV0ODB8NDRBAB2uhocO53Jxfr+OopGHHnpobuXKldXQ81e+/fbbXMeOHa3WYok6TCGm5nbkYpoESDzVdF977bWcfpJQ2L8rr7yyTCDvueee6olKrkyaNKmsfxSRruyT/35zyYzlh/n7kpTNr+8KH/RaffXVC32Tnq/SXn1OISYoClyHQCsBdLiVRfEIHc7l4uh6LR2uvHbSSScVMVf93GyzzcpySeVYG84l/gFQFQguGCeADlcjR4eT1WH9JCH9n8y33XZbLn9Px2rg318ZM2YMOhxIJ70GCjHpsWXmAAIkngAwdS4/++yzZSJZ7xHQ+uPizfwCm7/BYqFCHmSW/hRM6fxvvvlmUNecfoRj0vOVrl16TCEmMAw0QKCFADrcgqKhA3S4FVcjj+a9/PLLWweWHH3zzTe59u3bl+WSUj235ZhCTEnQOEyMADocDyU63Mqtng7nHzDS2jngKH8z39yqq66KDgfwSfMyhZg06TJ3TQIknppY6l6sTDz6popBL30zrmZ/gc0/kSdo+sJ1fSPG0jVefvnlwP4HHXRQLun5StcuPaYQExgGGiDQQgAdbkHR0AE63IpL63qp9gYd63vE/P3vf28dWHJ0/fXXR5ojaG5T1ynElASNw8QIoMPxUKLDrdzq6XC9Qoz+lMwPf/hDdLgVqdEjCjFGcbOYJkDiibcPKhPPBx98EDiRvmlis7+gbrrppoHz6wb9CZfSNcLs0fedSXq+0rVLjynEhIaNRggUCKDD8TYCOtzKrfR+YqUaXHl8wAEHtA4qOdL3KtA3iq/sb+M5hZiSwHGYGAF0OB5KdLiVWz0drleI0TONHz++oftJZqXREnWYQkzrXubIEAESTzzQlYnnxRdfDJwoiZturbbaaoE39dIL6/ZSMdbf6w166bu+Jz1f6dqlxxRigqLAdQi0EkCHW1k0coQOt9LSul6qvbWO9c0fgz4tqX/5rzXGxmsS/wBojSRHWRFAh+ORR4dbudXT4bCnJLXOkstNnjzZej2WqMNtdBDySY8XBIwRyAuo2m677Yyt18hC+RtaqfzTHwKH9OnTR+Wry4HtQQ315r3sssvUhx9+GDS8cP2tt95SeaFs6fPQQw+pfCW85bzy4Pjjj1c33HBD5eWGzufPn6969OhRc0z+kdgqf4PeljbNpXfv3i3npQc9e/ZUCxYsUEnPV7pG8ThfiFG33HJL8bTs59ixY9WoUaPKrtl+kk88Kn+zNdvNxD7HCKDD1QFDh5WKo+vVJFuvXHrppeqMM85ovfD9kc4Hm2++ufr888+r2my8gA7bGBX3bUKHq2OIDierw/mvhqr8k6jUgAED1G9/+9uC7lZT/+eVXXfdVU2fPj2oOfPrInW4tBrGMQRMENAVzfy72cp/Lj2++qKLLgoNV/4X3Vz//v0b5typU6eWMTNnzgxco/QGYWE34v36669z+h4BOuZJz1drH/GJmMCQ0QCBFgLocAuKloP8L6st2ldLW2pdQ4eDc7m+d0GtR6UuX748N3jw4IZZ1+Jv6pp+v/CCQNIE0OFqouhwrvCAi6K2Rf39utg/7Ocaa6yRe/7556uhf39l3LhxVuuyRB3mq0mB25GGtAiQeKrJxkk8O++8c/VEFVeWLFmS0/3ChLnY9tOf/jQ3a9as3JNPPtnS/8Ybb6yYsfX0kEMOaem3/vrrtzZUHOmPRRbXSHq+4rylPynEVASAUwjUIIAOV0NBh3O5OLpeqr/F4y233DL31VdfVUPOX/nNb37TkhOK/W3/KfEPgJrB4aJRAuhwNW50uDkd1l8HDdPTc845pxr691f+/Oc/h44Nm9dEm0QdphATuB1pSIuAy4lHfxezV69edf+tvvrqZWKWxidt2rVrlwt7clIxfvp+MWeeeWauW7duZTZp0VxnnXVyw4cPLxRgiv9zWfrd27PPPrs4TdXPSZMmtcx3+umnV7UXL5R+7zTp+WoJP4WYInl+QiCYADpczSbOHwDocPUnYtZdd93c3LlzqwHnr0ydOrXlE5K19NvWaxL/AKgZIC4aJYAOV+NGh3O5OL9fF7VT35PrD3/4Q27ttddu+R292KZ/Tpw4sRr691duvfXWmmNKx2d5LFGHKcQEbkca0iLgcuKJyuT2228vE7N6hZijjz46t8MOO9T9l//+ftm8w4YNi2pSTj+iTgv0o48+mnvuuedyn376ac2xpYWY7t2755YuXVqzny7c/O53v8uNHDky98knn9Tsoy9qG4vCnfR8xXlLf1KICQwFDRBoIYAOt6BoOUCHc4WvEjWq66X6q2/K/re//a2FaeWBfoy1/uRl5b8ZM2bkdH4oncumY4l/AFTGhnPzBNDhaubocHM6nL+fZAHqwoULC/8Jqz/trv/DQP9n7LnnnlsNvOTKxRdfbK0G63wgUYcpxJRsQA7NEPAh8dx1111lYlavEBOVfP5ms2Xz6nuvPPjgg1GHR+pXWojRwnf++edHGler00cffZTr0KFDmc1Jz1f5yzqFmFqR4BoEygmgw+U8GjlDh6t1XevwKquskrvvvvsaQVnW1+ZHWUv8A6AMPieZEECH42NHh2vrcLEQU0q2+In30mu1jg888MCy39crf7/O+lyiDlOIqbUTuZYqARJPfLyViUeLor75VtijrBtdrbIQ07lz59BPvITNf8QRR1SJetLzVSYGCjFhEaENAv8kgA7H3wnocLWuax3OP3EwPtT8SAoxTeFjsIME0OH4QUOHa+twrUJMFMrffPNN4XYFlb9T23ROISZKJOkDgToESDx1AIU010o8WiR1cePyyy8vfP0oZHikpspCjJ5ff73ou+++izS+2OmKK66oKsIUBT3p+Yrz6p8UYooR4CcEggmgw8Fs6rWgw9X3hbnwwgvrYavbTiGmLiI6CCOADscPKDpcrcP6d+A4hZgVK1bkDj744MDf2Ut/x87ymEJM/PcLIyHQQoDE04Ki4YOgxFMUxn79+uUee+yxhuctDtD3jjnyyCNrirH+nmmUmwN/8cUXgXMU7dQ/k56vODeFmGI0+QmBYALocDCbei3ocPkfAGE3Ya/HsrSdQkwpDY59IIAOx48yOlyuw8XfgfWtEXRhJepL/yfrCSecUPP3/uKctvykEBM1qvSDQAgBmxPPz372sxDLozfddNNNZaKW1LyjR48umzdIHPUjSO+4447chx9+GGq0vhHvzJkzc5dccklu2223rTt3ly5dcldffXXhpr/Lly8vm/vtt9/O6ZsUb7LJJnXnKdqd9Hx63oMOOqjMrtIT/di+4tqu/JSYeEpjwnE2BNDh+NzR4fI/AOL8D2wlfX0Pg4022shafUaHKyPGeRIE0OH4FNHhch0u/Z1WP7nu1FNPLTycQ9+0t9br888/z40bNy7Xs2dPa3W31Cd9LFGH2+jg5J3jBQFjBPJffVHbbbedsfV8X6hHjx4q/5hqlX+Unco/0ULliy/qs88+K/ybN2+eylfOYyHq1KmT+pd/+RfVsWNHlb9Hjco/hSnWPMVBSc9XnNf1n/nEo/JFMtfdwH7LCKDDZgOCDpvlnfRq6HDSRJlPE0CHze4DX3VY/36dfyy46tWrl8rfC0bl/+NULViwQN8n1mwAmlxNog5TiGlyUzC8cQIknsaZMcJfAhITj7/RtMdzdNieWGCJ/QTQYftj5KKF6LCLUcPmrAhI1GEKMVntJo/XJfF4HHxcb5iAxMTTMAQGJE4AHU4cKRMKJoAOCw5uhq6hwxnCZ2nnCEjUYQoxzm1D9w0m8bgfQzwwR0Bi4jFHj5WCCKDDQWS4DoFqAuhwNROuNE8AHW6eITP4Q0CiDlOI8Wf/WuMpiceaUGCIAwQkJh4HsIs3ER0WH2IcTJAAOpwgTKZqIYAOt6DgAAJ1CUjUYQoxdcNOh6QJkHiSJsp8kglITDyS4+WKb+iwK5HCThsIoMM2REGeDeiwvJjiUXoEJOowhZj09gszBxAg8QSA4TIEahCQmHhquMklwwTQYcPAWc5pAuiw0+Gz1nh02NrQYJiFBCTqMIUYCzeadJNIPNIjjH9JEpCYeJLkw1zxCKDD8bgxyk8C6LCfcU/ba3Q4bcLML4mARB2mECNphzriC4nHkUBhphUEJCYeK8B6bgQ67PkGwP2GCKDDCh7TJQAAI05JREFUDeGic0QC6HBEUHSDQJ6ARB2mEMPWNk6AxGMcOQs6TEBi4nE4HGJMR4fFhBJHDBBAhw1A9nAJdNjDoONybAISdZhCTOztwMC4BEg8cckxzkcCEhOPj3G0zWd02LaIYI/NBNBhm6Pjrm3osLuxw3LzBCTqMIUY8/vI+xVJPN5vAQA0QEBi4mnAfbqmRAAdTgks04okgA6LDGvmTqHDmYcAAxwiIFGHKcQ4tAGlmErikRJJ/DBBQGLiMcGNNcIJoMPhfGiFQCkBdLiUBsdJEUCHkyLJPD4QkKjDFGJ82LmW+UjisSwgmGM1AYmJx2rgnhiHDnsSaNxMhAA6nAhGJqkggA5XAOEUAiEEJOowhZiQgNOUDgESTzpcmVUmAYmJR2ak3PIKHXYrXlibLQF0OFv+UldHh6VGFr/SICBRhynEpLFTmDOUAIknFA+NECgjIDHxlDnISSYE0OFMsLOoowTQYUcDZ7nZ6LDlAcI8qwhI1GEKMVZtMT+MIfH4EWe8TIaAxMSTDBlmaYYAOtwMPcb6RgAd9i3iZvxFh81wZhUZBCTqMIUYGXvTKS9IPE6FC2MzJiAx8WSMlOXzBNBhtgEEohNAh6Ozomd0AuhwdFb0hIBEHaYQw742ToDEYxw5CzpMQGLicTgcYkxHh8WEEkcMEECHDUD2cAl02MOg43JsAhJ1mEJM7O3AwLgESDxxyTHORwISE4+PcbTNZ3TYtohgj80E0GGbo+Oubeiwu7HDcvMEJOowhRjz+8j7FUk83m8BADRAQGLiacB9uqZEAB1OCSzTiiSADosMa+ZOocOZhwADHCIgUYcpxDi0AaWYSuKREkn8MEFAYuIxwY01wgmgw+F8aIVAKQF0uJQGx0kRQIeTIsk8PhCQqMMUYnzYuZb5SOKxLCCYYzUBiYnHauCeGIcOexJo3EyEADqcCEYmqSCADlcA4RQCIQQk6jCFmJCA05QOARJPOlyZVSYBiYlHZqTc8godditeWJstAXQ4W/5SV0eHpUYWv9IgIFGHKcSksVOYM5QAiScUD40QKCMgMfGUOchJJgTQ4Uyws6ijBNBhRwNnudnosOUBwjyrCEjUYQoxVm0xP4wh8fgRZ7xMhoDExJMMGWZphgA63Aw9xvpGAB32LeJm/EWHzXBmFRkEJOowhRgZe9MpL0g8ToULYzMmIDHxZIyU5fME0GG2AQSiE0CHo7OiZ3QC6HB0VvSEgEQdphDDvjZOgMRjHDkLOkxAYuJxOBxiTEeHxYQSRwwQQIcNQPZwCXTYw6DjcmwCEnWYQkzs7cDAuARIPHHJMc5HAhITj49xtM1ndNi2iGCPzQTQYZuj465t6LC7scNy8wQk6jCFGPP7yPsVSTzebwEANEBAYuJpwH26pkQAHU4JLNOKJIAOiwxr5k6hw5mHAAMcIiBRhynEOLQBpZhK4pESSfwwQUBi4jHBjTXCCaDD4XxohUApAXS4lAbHSRFAh5MiyTw+EJCowxRifNi5lvlI4rEsIJhjNQGJicdq4J4Yhw57EmjcTIQAOpwIRiapIIAOVwDhFAIhBCTqMIWYkIDTlA4BEk86XJlVJgGJiUdmpNzyCh12K15Ymy0BdDhb/lJXR4elRha/0iAgUYcpxKSxU5gzlACJJxQPjRAoIyAx8ZQ5yEkmBNDhTLCzqKME0GFHA2e52eiw5QHCPKsISNRhCjFWbTE/jCHx+BFnvEyGgMTEkwwZZmmGADrcDD3G+kYAHfYt4mb8RYfNcGYVGQQk6jCFGBl70ykvSDxOhQtjMyYgMfFkjJTl8wTQYbYBBKITQIejs6JndALocHRW9ISARB2mEMO+Nk6AxGMcOQs6TEBi4nE4HGJMR4fFhBJHDBBAhw1A9nAJdNjDoONybAISdZhCTOztwMC4BEg8cckxzkcCEhOPj3G0zWd02LaIYI/NBNBhm6Pjrm3osLuxw3LzBCTqMIUY8/vI+xVJPN5vAQA0QEBi4mnAfbqmRAAdTgks04okgA6LDGvmTqHDmYcAAxwiIFGHKcQ4tAGlmErikRJJ/DBBQGLiMcGNNcIJoMPhfGiFQCkBdLiUBsdJEUCHkyLJPD4QkKjDFGJ82LmW+UjisSwgmGM1AYmJx2rgnhiHDnsSaNxMhAA6nAhGJqkggA5XAOEUAiEEJOowhZiQgNOUDgESTzpcmVUmAYmJR2ak3PIKHXYrXlibLQF0OFv+UldHh6VGFr/SICBRhynEpLFTmDOUAIknFA+NECgjIDHxlDnISSYE0OFMsLOoowTQYUcDZ7nZ6LDlAcI8qwhI1GEKMVZtMT+MIfH4EWe8TIaAxMSTDBlmaYYAOtwMPcb6RgAd9i3iZvxFh81wZhUZBCTqMIUYGXvTKS9IPE6FC2MzJiAx8WSMlOXzBNBhtgEEohNAh6Ozomd0AuhwdFb0hIBEHaYQw742ToDEYxw5CzpMQGLicTgcYkxHh8WEEkcMEECHDUD2cAl02MOg43JsAhJ1mEJM7O3AwLgESDxxyTHORwISE4+PcbTNZ3TYtohgj80E0GGbo+Oubeiwu7HDcvMEJOowhRjz+8j7FUk83m8BADRAQGLiacB9uqZEAB1OCSzTiiSADosMa+ZOocOZhwADHCIgUYcpxDi0AaWYSuKREkn8MEFAYuIxwY01wgmgw+F8aIVAKQF0uJQGx0kRQIeTIsk8PhCQqMMUYnzYuZb5SOKxLCCYYzUBiYnHauCeGIcOexJo3EyEADqcCEYmqSCADlcA4RQCIQQk6jCFmJCA05QOARJPOlyZVSYBiYlHZqTc8godditeWJstAXQ4W/5SV0eHpUYWv9IgIFGHKcSksVOYM5QAiScUD40QKCMgMfGUOchJJgTQ4Uyws6ijBNBhRwNnudnosOUBwjyrCEjUYQoxVm0xP4wh8fgRZ7xMhoDExJMMGWZphgA63Aw9xvpGAB32LeJm/EWHzXBmFRkEJOowhRgZe9MpL0g8ToULYzMmIDHxZIyU5fME0GG2AQSiE0CHo7OiZ3QC6HB0VvSEgEQdphDDvjZOgMRjHDkLOkxAYuJxOBxiTEeHxYQSRwwQQIcNQPZwCXTYw6DjcmwCEnWYQkzs7cDAuARIPHHJMc5HAhITj49xtM1ndNi2iGCPzQTQYZuj465t6LC7scNy8wQk6jCFGPP7yPsVSTzebwEANEBAYuJpwH26pkQAHU4JLNOKJIAOiwxr5k6hw5mHAAMcIiBRhynEOLQBpZhK4pESSfwwQUBi4jHBjTXCCaDD4XxohUApAXS4lAbHSRFAh5MiyTw+EJCowxRifNi5lvlI4rEsIJhjNQGJicdq4J4Yhw57EmjcTIQAOpwIRiapIIAOVwDhFAIhBCTqMIWYkIDTlA4BEk86XJlVJgGJiUdmpNzyCh12K15Ymy0BdDhb/lJXR4elRha/0iAgUYcpxKSxU5gzlACJJxQPjRAoIyAx8ZQ5yEkmBNDhTLCzqKME0GFHA2e52eiw5QHCPKsISNRhCjFWbTE/jCHx+BFnvEyGgMTEkwwZZmmGADrcDD3G+kYAHfYt4mb8RYfNcGYVGQQk6jCFGBl70ykvSDxOhQtjMyYgMfFkjJTl8wTQYbYBBKITQIejs6JndALocHRW9ISARB2mEMO+Nk6AxGMcOQs6TEBi4nE4HGJMR4fFhBJHDBBAhw1A9nAJdNjDoONybAISdZhCTOztwMC4BEg8cckxzkcCEhOPj3G0zWd02LaIYI/NBNBhm6Pjrm3osLuxw3LzBCTqMIUY8/vI+xVJPN5vAQA0QEBi4mnAfbqmRAAdTgks04okgA6LDGvmTqHDmYcAAxwiIFGHKcQ4tAGlmErikRJJ/DBBQGLiMcGNNcIJoMPhfGiFQCkBdLiUBsdJEUCHkyLJPD4QkKjDFGJ82LmW+UjisSwgmGM1AYmJx2rgnhiHDnsSaNxMhAA6nAhGJqkggA5XAOEUAiEEJOowhZiQgNOUDgESTzpcmVUmAYmJR2ak3PIKHXYrXlibLQF0OFv+UldHh6VGFr/SICBRhynEpLFTmDOUAIknFA+NECgjIDHxlDnISSYE0OFMsLOoowTQYUcDZ7nZ6LDlAcI8qwhI1GEKMVZtMT+MIfH4EWe8TIaAxMSTDBlmaYYAOtwMPcb6RgAd9i3iZvxFh81wZhUZBCTqMIUYGXvTKS9IPE6FC2MzJiAx8WSMlOXzBNBhtgEEohNAh6Ozomd0AuhwdFb0hIBEHaYQw742ToDEYxw5CzpMQGLicTgcYkxHh8WEEkcMEECHDUD2cAl02MOg43JsAhJ1mEJM7O3AwLgESDxxyTHORwISE4+PcbTNZ3TYtohgj80E0GGbo+Oubeiwu7HDcvMEJOowhRjz+8j7FUk83m8BADRAQGLiacB9uqZEAB1OCSzTiiSADosMa+ZOocOZhwADHCIgUYcpxDi0AaWYSuKREkn8MEFAYuIxwY01wgmgw+F8aIVAKQF0uJQGx0kRQIeTIsk8PhCQqMMUYnzYuZb5SOKxLCCYYzUBiYnHauCeGIcOexJo3EyEADqcCEYmqSCADlcA4RQCIQQk6jCFmJCA05QOARJPOlyZVSYBiYlHZqTc8godditeWJstAXQ4W/5SV0eHpUYWv9IgIFGHKcSksVOYM5QAiScUD40QKCMgMfGUOchJJgTQ4Uyws6ijBNBhRwNnudnosOUBwjyrCEjUYQoxVm0xP4wh8fgRZ7xMhoDExJMMGWZphgA63Aw9xvpGAB32LeJm/EWHzXBmFRkEJOowhRgZe9MpL0g8ToULYzMmIDHxZIyU5fME0GG2AQSiE0CHo7OiZ3QC6HB0VvSEgEQdphDDvjZOgMRjHDkLOkxAYuJxOBxiTEeHxYQSRwwQQIcNQPZwCXTYw6DjcmwCEnWYQkzs7cDAuARIPHHJMc5HAhITj49xtM1ndNi2iGCPzQTQYZuj465t6LC7scNy8wQk6jCFGPP7yPsVSTzebwEANEBAYuJpwH26pkQAHU4JLNOKJIAOiwxr5k6hw5mHAAMcIiBRhynEOLQBpZhK4pESSfwwQUBi4jHBjTXCCaDD4XxohUApAXS4lAbHSRFAh5MiyTw+EJCowxRifNi5lvlI4rEsIJhjNQGJicdq4J4Yhw57EmjcTIQAOpwIRiapIIAOVwDhFAIhBCTqMIWYkIDTlA4BEk86XJlVJgGJiUdmpNzyCh12K15Ymy0BdDhb/lJXR4elRha/0iAgUYcpxKSxU5gzlACJJxQPjRAoIyAx8ZQ5yEkmBNDhTLCzqKME0GFHA2e52eiw5QHCPKsISNRhCjFWbTE/jCHx+BFnvEyGgMTEkwwZZmmGADrcDD3G+kYAHfYt4mb8RYfNcGYVGQQk6jCFGBl70ykvSDxOhQtjMyYgMfFkjJTl8wTQYbYBBKITQIejs6JndALocHRW9ISARB2mEMO+Nk6AxGMcOQs6TEBi4nE4HGJMR4fFhBJHDBBAhw1A9nAJdNjDoONybAISdZhCTOztwMC4BEg8cckxzkcCEhOPj3G0zWd02LaIYI/NBNBhm6Pjrm3osLuxw3LzBCTqMIUY8/vI+xVJPN5vAQA0QEBi4mnAfbqmRAAdTgks04okgA6LDGvmTqHDmYcAAxwiIFGHKcQ4tAGlmErikRJJ/DBBQGLiMcGNNcIJoMPhfGiFQCkBdLiUBsdJEUCHkyLJPD4QkKjDFGJ82LmW+UjisSwgmGM1AYmJx2rgnhiHDnsSaNxMhAA6nAhGJqkggA5XAOEUAiEEJOowhZiQgNOUDgESTzpcmVUmAYmJR2ak3PIKHXYrXlibLQF0OFv+UldHh6VGFr/SICBRhynEpLFTmDOUAIknFA+NECgjIDHxlDnISSYE0OFMsLOoowTQYUcDZ7nZ6LDlAcI8qwhI1GEKMVZtMT+MIfH4EWe8TIaAxMSTDBlmaYYAOtwMPcb6RgAd9i3iZvxFh81wZhUZBCTqMIUYGXvTKS9IPE6FC2MzJiAx8WSMlOXzBNBhtgEEohNAh6Ozomd0AuhwdFb0hIBEHaYQw742ToDEYxw5CzpMQGLicTgcYkxHh8WEEkcMEECHDUD2cAl02MOg43JsAhJ1mEJM7O3AwLgESDxxyTHORwISE4+PcbTNZ3TYtohgj80E0GGbo+Oubeiwu7HDcvMEJOowhRjz+8j7FUk83m8BADRAQGLiacB9uqZEAB1OCSzTiiSADosMa+ZOocOZhwADHCIgUYcpxDi0AaWYSuKREkn8MEFAYuIxwY01wgmgw+F8aIVAKQF0uJQGx0kRQIeTIsk8PhCQqMMUYnzYuZb5SOKxLCCYYzUBiYnHauCeGIcOexJo3EyEADqcCEYmqSCADlcA4RQCIQQk6jCFmJCA05QOARJPOlyZVSYBiYlHZqTc8godditeWJstAXQ4W/5SV0eHpUYWv9IgIFGHKcSksVOYM5QAiScUD40QKCMgMfGUOchJJgTQ4Uyws6ijBNBhRwNnudnosOUBwjyrCEjUYQoxVm0xP4wh8fgRZ7xMhoDExJMMGWZphgA63Aw9xvpGAB32LeJm/EWHzXBmFRkEJOowhRgZe9MpL0g8ToULYzMmIDHxZIyU5fME0GG2AQSiE0CHo7OiZ3QC6HB0VvSEgEQdphDDvjZOgMRjHDkLOkxAYuJxOBxiTEeHxYQSRwwQQIcNQPZwCXTYw6DjcmwCEnWYQkzs7cDAuARIPHHJMc5HAhITj49xtM1ndNi2iGCPzQTQYZuj465t6LC7scNy8wQk6jCFGPP7yPsVSTzebwEANEBAYuJpwH26pkQAHU4JLNOKJIAOiwxr5k6hw5mHAAMcIiBRhynEOLQBpZhK4pESSfwwQUBi4jHBjTXCCaDD4XxohUApAXS4lAbHSRFAh5MiyTw+EJCowxRifNi5lvlI4rEsIJhjNQGJicdq4J4Yhw57EmjcTIQAOpwIRiapIIAOVwDhFAIhBCTqMIWYkIDTlA4BEk86XJlVJgGJiUdmpNzyCh12K15Ymy0BdDhb/lJXR4elRha/0iAgUYcpxKSxU5gzlACJJxQPjRAoIyAx8ZQ5yEkmBNDhTLCzqKME0GFHA2e52eiw5QHCPKsISNRhCjFWbTE/jCHx+BFnvEyGgMTEkwwZZmmGADrcDD3G+kYAHfYt4mb8RYfNcGYVGQQk6jCFGBl70ykvSDxOhQtjMyYgMfFkjJTl8wTQYbYBBKITQIejs6JndALocHRW9ISARB2mEMO+Nk6AxGMcOQs6TEBi4nE4HGJMR4fFhBJHDBBAhw1A9nAJdNjDoONybAISdZhCTOztwMC4BEg8cckxzkcCEhOPj3G0zWd02LaIYI/NBNBhm6Pjrm3osLuxw3LzBCTqMIUY8/vI+xVJPN5vAQA0QEBi4mnAfbqmRAAdTgks04okgA6LDGvmTqHDmYcAAxwiIFGHKcQ4tAGlmErikRJJ/DBBQGLiMcGNNcIJoMPhfGiFQCkBdLiUBsdJEUCHkyLJPD4QkKjDFGJ82LmW+UjisSwgmGM1AYmJx2rgnhiHDnsSaNxMhAA6nAhGJqkggA5XAOEUAiEEJOowhZiQgNOUDgESTzpcmVUmAYmJR2ak3PIKHXYrXlibLQF0OFv+UldHh6VGFr/SICBRhynEpLFTmDOUAIknFA+NECgjIDHxlDnISSYE0OFMsLOoowTQYUcDZ7nZ6LDlAcI8qwhI1GEKMVZtMT+MIfH4EWe8TIaAxMSTDBlmaYYAOtwMPcb6RgAd9i3iZvxFh81wZhUZBCTqMIUYGXvTKS9IPE6FC2MzJiAx8WSMlOXzBNBhtgEEohNAh6Ozomd0AuhwdFb0hIBEHaYQw742ToDEYxw5CzpMQGLicTgcYkxHh8WEEkcMEECHDUD2cAl02MOg43JsAhJ1mEJM7O3AwLgESDxxyTHORwISE4+PcbTNZ3TYtohgj80E0GGbo+Oubeiwu7HDcvMEJOowhRjz+8j7FUk83m8BADRAQGLiacB9uqZEAB1OCSzTiiSADosMa+ZOocOZhwADHCIgUYcpxDi0AaWYSuKREkn8MEFAYuIxwY01wgmgw+F8aIVAKQF0uJQGx0kRQIeTIsk8PhCQqMMUYnzYuZb5SOKxLCCYYzUBiYnHauCeGIcOexJo3EyEADqcCEYmqSCADlcA4RQCIQQk6jCFmJCA05QOARJPOlyZVSYBiYlHZqTc8godditeWJstAXQ4W/5SV0eHpUYWv9IgIFGHKcSksVOYM5QAiScUD40QKCMgMfGUOchJJgTQ4Uyws6ijBNBhRwNnudnosOUBwjyrCEjUYQoxVm0xP4wh8fgRZ7xMhoDExJMMGWZphgA63Aw9xvpGAB32LeJm/EWHzXBmFRkEJOowhRgZe9MpL0g8ToULYzMmIDHxZIyU5fME0GG2AQSiE0CHo7OiZ3QC6HB0VvSEgEQdphDDvjZOgMRjHDkLOkxAYuJxOBxiTEeHxYQSRwwQQIcNQPZwCXTYw6DjcmwCEnWYQkzs7cDAuARIPHHJMc5HAhITj49xtM1ndNi2iGCPzQTQYZuj465t6LC7scNy8wQk6jCFGPP7yPsVSTzebwEANEBAYuJpwH26pkQAHU4JLNOKJIAOiwxr5k6hw5mHAAMcIiBRhynEOLQBpZhK4pESSfwwQUBi4jHBjTXCCaDD4XxohUApAXS4lAbHSRFAh5MiyTw+EJCowxRifNi5lvlI4rEsIJhjNQGJicdq4J4Yhw57EmjcTIQAOpwIRiapIIAOVwDhFAIhBCTqMIWYkIDTlA4BEk86XJlVJgGJiUdmpNzyCh12K15Ymy0BdDhb/lJXR4elRha/0iAgUYcpxKSxU5gzlACJJxQPjRAoIyAx8ZQ5yEkmBNDhTLCzqKME0GFHA2e52eiw5QHCPKsISNRhCjFWbTE/jCHx+BFnvEyGgMTEkwwZZmmGADrcDD3G+kYAHfYt4mb8RYfNcGYVGQQk6jCFGBl70ykvSDxOhQtjMyYgMfFkjJTl8wTQYbYBBKITQIejs6JndALocHRW9ISARB2mEMO+Nk6AxGMcOQs6TEBi4nE4HGJMR4fFhBJHDBBAhw1A9nAJdNjDoONybAISdZhCTOztwMC4BEg8cckxzkcCEhOPj3G0zWd02LaIYI/NBNBhm6Pjrm3osLuxw3LzBCTqMIUY8/vI+xVJPN5vAQA0QEBi4mnAfbqmRAAdTgks04okgA6LDGvmTqHDmYcAAxwiIFGHKcQ4tAGlmErikRJJ/DBBQGLiMcGNNcIJoMPhfGiFQCkBdLiUBsdJEUCHkyLJPD4QkKjDFGJ82LmW+UjisSwgmGM1AYmJx2rgnhiHDnsSaNxMhAA6nAhGJqkggA5XAOEUAiEEJOowhZiQgNOUDgESTzpcmVUmAYmJR2ak3PIKHXYrXlibLQF0OFv+UldHh6VGFr/SICBRhynEpLFTmDOUAIknFA+NECgjIDHxlDnISSYE0OFMsLOoowTQYUcDZ7nZ6LDlAcI8qwhI1GEKMVZtMT+MIfH4EWe8TIaAxMSTDBlmaYYAOtwMPcb6RgAd9i3iZvxFh81wZhUZBCTqMIUYGXvTKS+eeOIJtdNOOzllM8ZCICsCs2bNUjvuuGNWy7OuUALosNDA4lYqBNDhVLB6Pyk67P0WAEADBCTqMIWYBjYAXZsnsHTpUnXSSSepW2+9tfnJmAECHhA45phj1Pjx41WnTp088BYXTRBAh01QZg1JBNBhSdG0wxd02I44YIU7BCTqMIUYd/afs5auXLlSjR07Vk2YMEHNnTtX5XI5Z33BcAhkQaBNmzZq/fXXV8OHD1f/+Z//qdq2bZuFGazpMAF02OHgYboVBNBhK8LgtBHosNPhw3gLCEjTYQoxFmwq6Sacdtpp6qqrrpLuJv5BwAiBESNG8H4yQlrWIuiwrHjiTbYE0OFs+bu6OjrsauSw20YCEnSYQoyNO0uQTQsWLFDrrbee0v8LwAsCEGiegP40zLx581SPHj2an4wZvCCADnsRZpw0SAAdNghbyFLosJBA4oY1BCToMIUYa7aTTEMeeughNXToUJnO4RUEMiIwbdo0teeee2a0Osu6RgAddi1i2OsCAXTYhSjZYyM6bE8ssEQOAdd1mEKMnL1opSdTpkxR++23n5W2YRQEXCXwwAMPqH333ddV87HbMAF02DBwlvOCADrsRZgTcxIdTgwlE0GghYDrOkwhpiWUHKRBgMSTBlXm9J2A64nH9/iZ9h8dNk2c9XwggA77EOXkfESHk2PJTBAoEnBdhynEFCPJz1QIkHhSwcqknhNwPfF4Hj7j7qPDxpGzoAcE0GEPgpygi+hwgjCZCgLfE3BdhynEsJVTJUDiSRUvk3tKwPXE42nYMnMbHc4MPQsLJoAOCw5uCq6hwylAZUrvCbiuwxRivN/C6QIg8aTLl9n9JOB64vEzatl5jQ5nx56V5RJAh+XGNg3P0OE0qDKn7wRc12EKMb7v4JT9J/GkDJjpvSTgeuLxMmgZOo0OZwifpcUSQIfFhjYVx9DhVLAyqecEXNdhCjGeb+C03SfxpE2Y+X0k4Hri8TFmWfqMDmdJn7WlEkCHpUY2Hb/Q4XS4MqvfBFzXYQoxfu/f1L0n8aSOmAU8JOB64vEwZJm6jA5nip/FhRJAh4UGNiW30OGUwDKt1wRc12EKMV5v3/SdJ/Gkz5gV/CPgeuLxL2LZeowOZ8uf1WUSQIdlxjUtr9DhtMgyr88EXNdhCjE+714DvpN4DEBmCe8IuJ54vAtYxg6jwxkHgOVFEkCHRYY1NafQ4dTQMrHHBFzXYQoxHm9eE66TeExQZg3fCLieeHyLV9b+osNZR4D1JRJAhyVGNT2f0OH02DKzvwRc12EKMf7uXSOeP/TQQ2ro0KFG1mIRCPhCYNq0aWrPPff0xV38bJIAOtwkQIZDoAYBdLgGFC4FEkCHA9HQAIHYBFzXYQoxsUPPwCgE5s+fr9Zff321cuXKKN3pAwEI1CHQtm1bNW/ePNWjR486PWmGwD8JoMPsBAgkSwAdTpanD7Ohwz5EGR9NEpCgwxRiTO4YT9caMWKEuuaaazz1HrchkCwB/X666qqrkp2U2cQTQIfFhxgHDRJAhw3CFrQUOiwomLiSOQEJOkwhJvNtJN8A/WmYiy66SE2YMKHwP/m5XE6+03gIgQQJtGnTRq233npq+PDhatSoUUr/LwAvCDRCAB1uhBZ9IVBNAB2uZsKVxgigw43xojcEKglI02EKMZUR5hwCEIAABCAAAQhAAAIQgAAEIAABCKREgEJMSmCZFgIQgAAEIAABCEAAAhCAAAQgAAEIVBKgEFNJhHMIQAACEIAABCAAAQhAAAIQgAAEIJASAQoxKYFlWghAAAIQgAAEIAABCEAAAhCAAAQgUEmAQkwlEc4hAAEIQAACEIAABCAAAQhAAAIQgEBKBCjEpASWaSEAAQhAAAIQgAAEIAABCEAAAhCAQCUBCjGVRDiHAAQgAAEIQAACEIAABCAAAQhAAAIpEaAQkxJYpoUABCAAAQhAAAIQgAAEIAABCEAAApUEKMRUEuEcAhCAAAQgAAEIQAACEIAABCAAAQikRIBCTEpgmRYCEIAABCAAAQhAAAIQgAAEIAABCFQSoBBTSYRzCEAAAhCAAAQgAAEIQAACEIAABCCQEgEKMSmBZVoIQAACEIAABCAAAQhAAAIQgAAEIFBJgEJMJRHOIQABCEAAAhCAAAQgAAEIQAACEIBASgQoxKQElmkhAAEIQAACEIAABCAAAQhAAAIQgEAlAQoxlUQ4hwAEIAABCEAAAhCAAAQgAAEIQAACKRGgEJMSWKaFAAQgAAEIQAACEIAABCAAAQhAAAKVBCjEVBLhHAIQgAAEIAABCEAAAhCAAAQgAAEIpESAQkxKYJkWAhCAAAQgAAEIQAACEIAABCAAAQhUEqAQU0mEcwhAAAIQgAAEIAABCEAAAhCAAAQgkBIBCjEpgWVaCEAAAhCAAAQgAAEIQAACEIAABCBQSYBCTCURziEAAQhAAAIQgAAEIAABCEAAAhCAQEoEKMSkBJZpIQABCEAAAhCAAAQgAAEIQAACEIBAJYH/BwNutGmsXwC7AAAAAElFTkSuQmCC" + } + }, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "<div>\n", + "<img src=\"attachment:Binning_step1.png\" width=\"600\"/>\n", + "</div>" + ] + }, + { + "attachments": { + "Binning_step2.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABFoAAALaCAYAAAABXjdxAAAMa2lDQ1BJQ0MgUHJvZmlsZQAASImVVwdYU8kWnluSkJDQAhGQEnoTRHqREkKLICBVsBGSQEKJMSGI2NFFBXtBFCu6KqLoWgBZVMReFsXeF2VRWVkXdVEUlTcpoOu+8r3zfXPnv2fO/KfcmXvvAKDdx5VIclEdAPLE+dL4iBDm+NQ0JukZQAEOKMAZ6HB5MgkrLi4aQBns/y7vbgNE0d9wVnD9c/y/ih5fIOMBgEyEOIMv4+VB3AwAvoknkeYDQFTorabnSxR4HsT6UhggxGsVOEuF9yhwhgo3KW0S49kQXwNAg8rlSrMA0HoI9cwCXhbk0foEsauYLxIDoD0C4kCekMuHWBH7iLy8qQpcAbE9tJdADOMBPhnfcGb9jT9jiJ/LzRrCqryUohEqkklyuTP+z9L8b8nLlQ/6sIWNKpRGxivyhzW8mzM1SoGpEHeLM2JiFbWGuE/EV9UdAJQilEcmqexRE56MDesHGBC78rmhURCbQBwuzo2JVuszMkXhHIjhakELRfmcRIgNIV4skIUlqG22SafGq32hdZlSNkutv8CVKv0qfD2W5ySx1PxvhAKOmh/TKhImpkBMgdi6QJQcA7EWxC6ynIQotc3oIiE7ZtBGKo9XxG8NcbxAHBGi4scKMqXh8Wr70jzZYL7YNqGIE6PGh/KFiZGq+mBneFxl/DAX7JpAzEoa5BHIxkcP5sIXhIapcsdeCMRJCWqePkl+SLxqLk6R5Map7XFLQW6EQm8JsYesIEE9F0/Oh4tTxY9nSvLjElVx4kXZ3DFxqnjwlSAasEEoYAI5bBlgKsgGotbu+m54pxoJB1wgBVlAAHeoSjM4I0U5IobXBFAE/oBIAGRD80KUowJQAPWfh7SqqzPIVI4WKGfkgGcQ54EokAvv5cpZ4iFvyeA3qBH9wzsXNh6MNxc2xfi/1w9qv2pYUBOt1sgHPTK1By2JYcRQYiQxnOiAG+OBuD8eDa/BsLnhPrjvYB5f7QnPCG2Ep4RbhHbCvSmiYul3UY4F7ZA/XF2LjG9rgdtCTk88BA+A7JAZZ+DGwBn3gH5YeBD07Am1bHXciqowv+P+WwbfPA21HdmVjJKHkYPJ9t/P1HLU8hxiUdT62/qoYs0Yqjd7aOR7/+xvqs+HfdT3lthi7DB2HjuFXcSasHrAxE5iDdgV7LgCD62u35Sra9BbvDKeHMgj+oc/rtqnopIy1xrXLtdPqrF8QWG+YuOxp0pmSEVZwnwmC34dBEyOmOcygunm6uYGgOJbo3p9vWUovyEI49JXXfEyAAI8BgYGmr7qorUBOAL3DKXjq87eD74mCgG4sJwnlxaodLjiQoBvCW2404yAGbAC9jAfN+AF/EEwCANjQCxIBKlgMqyyEK5zKZgOZoH5oASUgZVgHdgItoIdYA/YDw6BetAEToFz4DK4Bm6BB3D1dIKXoAe8A/0IgpAQGkJHjBBzxAZxQtwQHyQQCUOikXgkFUlHshAxIkdmIQuQMmQ1shHZjlQjPyHHkFPIRaQNuYc8QbqQN8hHFEOpqD5qitqiI1EflIVGoYnoJDQLnYYWoQvR5WgFWoXuQ+vQU+hl9Bbajr5EezGAaWIMzAJzxnwwNhaLpWGZmBSbg5Vi5VgVVos1wud8A2vHurEPOBGn40zcGa7gSDwJ5+HT8Dn4Unwjvgevw8/gN/AneA/+hUAjmBCcCH4EDmE8IYswnVBCKCfsIhwlnIV7qZPwjkgkMoh2RG+4F1OJ2cSZxKXEzcQDxGZiG7GD2EsikYxITqQAUiyJS8onlZA2kPaRTpKukzpJfRqaGuYabhrhGmkaYo1ijXKNvRonNK5rPNfoJ+uQbch+5FgynzyDvIK8k9xIvkruJPdTdCl2lABKIiWbMp9SQamlnKU8pLzV1NS01PTVHKcp0pynWaF5UPOC5hPND1Q9qiOVTZ1IlVOXU3dTm6n3qG9pNJotLZiWRsunLadV007THtP6tOhaLlocLb7WXK1KrTqt61qvtMnaNtos7cnaRdrl2oe1r2p365B1bHXYOlydOTqVOsd07uj06tJ1R+nG6ubpLtXdq3tR94UeSc9WL0yPr7dQb4feab0OOka3orPpPPoC+k76WXqnPlHfTp+jn61fpr9fv1W/x0DPwMMg2aDQoNLguEE7A2PYMjiMXMYKxiHGbcbHYabDWMMEw5YMqx12fdh7w+GGwYYCw1LDA4a3DD8aMY3CjHKMVhnVGz0yxo0djccZTzfeYnzWuHu4/nD/4bzhpcMPDb9vgpo4msSbzDTZYXLFpNfUzDTCVGK6wfS0abcZwyzYLNtsrdkJsy5zunmguch8rflJ89+ZBkwWM5dZwTzD7LEwsYi0kFtst2i16Le0s0yyLLY8YPnIimLlY5VptdaqxarH2tx6rPUs6xrr+zZkGx8boc16m/M2723tbFNsF9nW276wM7Tj2BXZ1dg9tKfZB9lPs6+yv+lAdPBxyHHY7HDNEXX0dBQ6VjpedUKdvJxETpud2kYQRviOEI+oGnHHmerMci5wrnF+4sJwiXYpdql3eTXSemTayFUjz4/84urpmuu60/XBKL1RY0YVj2oc9cbN0Y3nVul2053mHu4+173B/bWHk4fAY4vHXU+651jPRZ4tnp+9vL2kXrVeXd7W3unem7zv+Oj7xPks9bngS/AN8Z3r2+T7wc/LL9/vkN+f/s7+Of57/V+MthstGL1zdEeAZQA3YHtAeyAzMD1wW2B7kEUQN6gq6GmwVTA/eFfwc5YDK5u1j/UqxDVEGnI05D3bjz2b3RyKhUaEloa2humFJYVtDHscbhmeFV4T3hPhGTEzojmSEBkVuSryDseUw+NUc3rGeI+ZPeZMFDUqIWpj1NNox2hpdONYdOyYsWvGPoyxiRHH1MeCWE7smthHcXZx0+J+HkccFzeuctyz+FHxs+LPJ9ATpiTsTXiXGJK4IvFBkn2SPKklWTt5YnJ18vuU0JTVKe3jR46fPf5yqnGqKLUhjZSWnLYrrXdC2IR1Ezonek4smXh7kt2kwkkXJxtPzp18fIr2FO6Uw+mE9JT0vemfuLHcKm5vBidjU0YPj81bz3vJD+av5XcJAgSrBc8zAzJXZ77ICshak9UlDBKWC7tFbNFG0evsyOyt2e9zYnN25wzkpuQeyNPIS887JtYT54jPTDWbWji1TeIkKZG0T/Obtm5ajzRKukuGyCbJGvL14U/9Fbm9/Af5k4LAgsqCvunJ0w8X6haKC6/McJyxZMbzovCiH2fiM3kzW2ZZzJo/68ls1uztc5A5GXNa5lrNXTi3c17EvD3zKfNz5v9S7Fq8uvivBSkLGheaLpy3sOOHiB9qSrRKpCV3Fvkv2roYXyxa3LrEfcmGJV9K+aWXylzLyss+LeUtvbRs1LKKZQPLM5e3rvBasWUlcaV45e1VQav2rNZdXbS6Y83YNXVrmWtL1/61bsq6i+Ue5VvXU9bL17dXRFc0bLDesHLDp43CjbcqQyoPbDLZtGTT+838zde3BG+p3Wq6tWzrx22ibXe3R2yvq7KtKt9B3FGw49nO5J3nf/T5sXqX8a6yXZ93i3e374nfc6bau7p6r8neFTVojbyma9/Efdf2h+5vqHWu3X6AcaDsIDgoP/j7T+k/3T4UdajlsM/h2iM2RzYdpR8trUPqZtT11Avr2xtSG9qOjTnW0ujfePRnl593N1k0VR43OL7iBOXEwhMDJ4tO9jZLmrtPZZ3qaJnS8uD0+NM3z4w703o26uyFc+HnTp9nnT95IeBC00W/i8cu+Vyqv+x1ue6K55Wjv3j+crTVq7XuqvfVhmu+1xrbRreduB50/dSN0BvnbnJuXr4Vc6vtdtLtu3cm3mm/y7/74l7uvdf3C+73P5j3kPCw9JHOo/LHJo+rfnX49UC7V/vxJ6FPrjxNePqgg9fx8jfZb586Fz6jPSt/bv68+oXbi6au8K5rv0/4vfOl5GV/d8kfun9semX/6sifwX9e6Rnf0/la+nrgzdK3Rm93/+XxV0tvXO/jd3nv+t+X9hn17fng8+H8x5SPz/unfyJ9qvjs8LnxS9SXhwN5AwMSrpSr/BXAYEMzMwF4sxsAWioAdHhuo0xQnQWVgqjOr0oE/hNWnReV4gVALewUv/HsZgAOwmYLG20eAIpf+MRggLq7DzW1yDLd3VRcVHgSIvQNDLw1BYDUCMBn6cBA/+aBgc87YbD3AGiepjqDKoQIzwzblBzXGYXzwHeiOp9+k+P3PVBE4AG+7/8FlTiO10mPo7EAAACKZVhJZk1NACoAAAAIAAQBGgAFAAAAAQAAAD4BGwAFAAAAAQAAAEYBKAADAAAAAQACAACHaQAEAAAAAQAAAE4AAAAAAAAAkAAAAAEAAACQAAAAAQADkoYABwAAABIAAAB4oAIABAAAAAEAAARaoAMABAAAAAEAAALaAAAAAEFTQ0lJAAAAU2NyZWVuc2hvdPtsqgsAAAAJcEhZcwAAFiUAABYlAUlSJPAAAAHXaVRYdFhNTDpjb20uYWRvYmUueG1wAAAAAAA8eDp4bXBtZXRhIHhtbG5zOng9ImFkb2JlOm5zOm1ldGEvIiB4OnhtcHRrPSJYTVAgQ29yZSA2LjAuMCI+CiAgIDxyZGY6UkRGIHhtbG5zOnJkZj0iaHR0cDovL3d3dy53My5vcmcvMTk5OS8wMi8yMi1yZGYtc3ludGF4LW5zIyI+CiAgICAgIDxyZGY6RGVzY3JpcHRpb24gcmRmOmFib3V0PSIiCiAgICAgICAgICAgIHhtbG5zOmV4aWY9Imh0dHA6Ly9ucy5hZG9iZS5jb20vZXhpZi8xLjAvIj4KICAgICAgICAgPGV4aWY6UGl4ZWxZRGltZW5zaW9uPjczMDwvZXhpZjpQaXhlbFlEaW1lbnNpb24+CiAgICAgICAgIDxleGlmOlBpeGVsWERpbWVuc2lvbj4xMTE0PC9leGlmOlBpeGVsWERpbWVuc2lvbj4KICAgICAgICAgPGV4aWY6VXNlckNvbW1lbnQ+U2NyZWVuc2hvdDwvZXhpZjpVc2VyQ29tbWVudD4KICAgICAgPC9yZGY6RGVzY3JpcHRpb24+CiAgIDwvcmRmOlJERj4KPC94OnhtcG1ldGE+CiuRZA8AAAAcaURPVAAAAAIAAAAAAAABbQAAACgAAAFtAAABbQAAggxdFy6eAABAAElEQVR4AezdB3gU1d7H8X+STSCE0Is0QUBRUGoIKEiRjgooRWwUwXLVK2ABuSLCVVTgooj4YqeIKKCAgEoTpVelKSJFiigIgnRIf+cs7mZbkt3Nlpmd79xHMzvlzDmfk73Pk59nzonK0jZhQwABBBBAAAEEEEAAAQQQQAABBBDIt0AUQUu+DSkAAQQQQAABBBBAAAEEEEAAAQQQsAoQtPCLgAACCCCAAAIIIIAAAggggAACCARIgKAlQJAUgwACCCCAAAIIIIAAAggggAACCBC08DuAAAIIIIAAAggggAACCCCAAAIIBEiAoCVAkBSDAAIIIIAAAggggAACCCCAAAIIELTwO4AAAggggAACCCCAAAIIIIAAAggESICgJUCQFIMAAggggAACCCCAAAIIIIAAAggQtPA7gAACCCCAAAIIIIAAAggggAACCARIgKAlQJAUgwACCCCAAAIIIIAAAggggAACCBC08DuAAAIIIIAAAggggAACCCCAAAIIBEiAoCVAkBSDAAIIIIAAAggggAACCCCAAAIIELTwO4AAAggggAACCCCAAAIIIIAAAggESICgJUCQFIMAAggggAACCCCAAAIIIIAAAggQtPA7gAACCCCAAAIIIIAAAggggAACCARIgKAlQJAUg0C4BU5cyJINv2fK9j8z5cDpLPnzXJZcSBNJzwp3zYz7fEuUSKFYkbKFo6RK0SipXTZaGlWIlpKFtBNsCCCAAAIIIIAAAggggIAHAYIWDygcQsBIAluPZsrMnzJk85FMySRUCXrXRWsZS1K5aLmrVozUvSI66M/jAQgggAACCCCAAAIIIGAsAYIWY/UXtUXALnD4TJZM2Jgu32sBC1t4BBpogcsTyRapWIQRLuHpAZ6KAAIIIIAAAggggID+BAha9Ncn1AiBPAUW7c2whiwpGXleygVBFigQI9awpX11bYcNAQQQQAABBBBAAAEETC9A0GL6XwEAjCbwwZZ0mfEjCYve+u2e62OkXz2L3qpFfRBAAAEEEEAAAQQQQCDEAgQtIQbncQjkR4CQJT96wb+XsCX4xjwBAQQQQAABBBBAAAG9CxC06L2HqB8C/wio14XGrkvHQ+cCz9xoEV4j0nknUT0EEEAAAQQQQAABBIIoQNASRFyKRiBQAmri24cWpgpzsgRKNHjlqDlb3r0tjglyg0dMyQgggAACCCCAAAII6FqAoEXX3UPlELgsMHhZGqsLGeiXQa1GNKZ1rIFqTFURQAABBBBAAAEEEEAgUAIELYGSpBwEgiSwRVu++WktaGEzlsC4NrFS94poY1Wa2iKAAAIIIIAAAggggEC+BQha8k1IAQgEV+DZb9Jk0x+ZwX0IpQdcoGH5aHm1FaNaAg5LgQgggAACCCCAAAII6FyAoEXnHUT1zC1w4kKW9JyTKplZ5nYwYuujo0Q+vTNOShbSdtgQQAABBBBAAAEEEEDANAIELabpahpqRIGv9mTIuPWsNGTEvlN1fqqxRTperc2Oy4YAAggggAACCCCAAAKmESBoMU1X01AjCry6Ok2W7ue1ISP2napzm6ui5dmmvD5k1P6j3ggggAACCCCAAAII+CNA0OKPGvcgECKBR75MlT0neW8oRNwBf8zVJaLk7VvjAl4uBSKAAAIIIIAAAggggIB+BQha9Ns31AwBuWNmipxJBcKoAkW0jGXuXQWMWn3qjQACCCCAAAIIIIAAAn4IELT4gcYtCIRKoN30FElnQEuouAP+HIs2D+7i+whaAg5LgQgggAACCCCAAAII6FiAoEXHnUPVEGj1UQoIBhf45n6CFoN3IdVHAAEEEEAAAQQQQMAnAYIWn7i4GIHQChC0hNY7GE8jaAmGKmUigAACCCCAAAIIIKBfAYIW/fYNNUNACFqM/0tA0GL8PqQFCCCAAAIIIIAAAgj4IkDQ4osW1wZF4ExKlsz8KUMeqGuRmOigPMKwhRK0GLbr7BWP5KCF7669m9lBAAEEEEAAAQQQQMAuQNBip2AnXAKnL2XJnbNTpW7ZaBl2s0WKx2sziLJZBQhajP+LEMlBC99d4/9+0gIEEEAAAQQQQACBwAsQtATelBJ9FLD9saZuKxUv8kLzWKlZmqEtyoOgRSkYezND0KJ6iO+usX9PqT0CCCCAAAIIIIBA4AQIWhwsJ0+eLKmpqQ5HLu+2atVKqlevbj/u7XX2G9jJVcAxaFEXqiVxH2tokU41YnK9zwwnCVqM38tmCVpUT/HdNf7vKy1AAAEEEEAAAQQQyL8AQYuDYUxMjGRmZjocubz7zjvvyEMPPWQ/7u119hvYyVXANWixXdz6qmgZ1DhWClpsR8z3k6DF+H1upqDF1lt8d20S/EQAAQQQQAABBBAwowBBi0OvexugeHudQ9Hs5iKQU9CibqlaLEpGtoiV8onmnLeFoCWXXxyDnDJj0MJ31yC/nFQTAQQQQAABBBBAICgCBC0OrN4GKN5e51A0u7kI5Ba0qNsKx4oMbRorjSuab94WIwQtBeNE6mh9c03xKInXRh/Fa++PHD6XJYv3ZMi5C7l0vElOmTVoMft31yS/3jQTAQQQQAABBBBAwIMAQYsDircBirfXORTNbi4CeQUt6lY1nuW+G2KkVx2LRJtocIveg5ZrykfJf2+KldIeVooatjZN1u1zfxUvl1+FiDxl5qBFdahZv7sR+ctMoxBAAAEEEEAAAQS8EiBocWDyNkDx9jqHotnNRcCboMV2e1K5aHlOWwK6SAFzpC16DloqlIqSqe3jJCqHriBoufxba/agxazfXVu7+YkAAggggAACCCBgPoGICVrOnz8vK1eulP3798uxY8fkr7/+EhWIlChRQurUqSPJyclSvnz5XHvY2wDF2+tyfRgn7QK+BC3qprIJUTJCWwL6mpI5/IVvL9n4O3oNWpT86x1i5YZSOb/ORdBy+fePoCX7e2im7252q9lDAAEEEEAAAQQQMJuAoYOWrKws+eyzz0StCrRq1SqPSzPbOjRK+8/u3bp1k5dfftlpqWbbefXT2wDF2+scy2Y/ZwFfgxZVUqz29/3ARhZpXz2yl4DWa9BSVpuPZcZt2uQsDtvFdJGlhzJk3ZFM60pRmw9lyoVLDheYdJegxbnjzfLddW41nxBAAAEEEEAAAQTMJGDYoGXHjh3Sr18/2bRpk0/9pUa1qHs8jW7xNkDx9jqfKmbii/0JWmxcHbWg5Ylki8RGaN6i16ClXuUo+V8z56Dl8eWp8vPvWbau4ec/AgQtnn8VIv2767nVHEUAAQQQQAABBBAwg4Bhg5bx48fLoEGD/Oqj5s2by3fffed2r7cBirfXuT2AAx4F8hO0qAKvKXH5VaKyhSPvVSK9Bi2dboiWAXW15aD+2TK1fKXdxymifrI5CxC0OHs4fork765jO9lHAAEEEEAAAQQQMJdARAUtZcqUkRtuuEFKliwpv/76q2zevNljb0ZHR8vp06elcOHCTue9DVC8vc6pcD7kKJDfoEUVXEQbXPHczbGSVD7nOUNyrICOT+gtaCmgORctFGVdAerWKtnDiNIyRHp9lWqVPHEmSzI8LDZULFGkYrEoKfnPCkXntMv/1JaB/v1ElmhvAXrcEhO05aJjswO0U+ezJDXt8qXVroiSclq4lqo9a+fRTN0uJU3Q4rFr7Qcj9btrbyA7CCCAAAIIIIAAAqYTiIigpXbt2vLKK69Iu3btrPOs2Hrx3//+t0ycONH20emnmjj35ptvdjrmbYDi7XVOhfMhR4FABC2qcPXneN+6Frnn+pgcV8LJsRI6PaG3oOXBRjHS8xpLrlrD16XJmr3ZSUvtK6PkgVqWHCfOPX4xSz7fmyFztme4BTRT7oiTSg4jlT7cmS6ztmXIiJYWaXxFdtCTrj3u7R3p8sWODN2NqiFoyfXXxXoyEr+7ebeaKxBAAAEEEEAAAQQiVcDwQYsKU8aOHSsFChRw66Mvv/xSbrvtNrfj6sCCBQvcznkboHh7nccHc9BNIFBBi63gGytGy9AmsZLgPIWI7bShfuotaHlIC1ruyiNoeUELWlZrQUu09tfzv2+ySKeq2YFIbvj7z2TK4G/T5OSZ7KumakFLRYegZerP6XJVkShpVsFzmQ8uTZVfj+YwPCa72JDuEbR4zx1J313vW82VCCCAAAIIIIAAApEmYNig5ZtvvpGLFy+6hSWpqamizn3++ecye/ZsOXPG4a82h94jaHHACPNuoIMW1ZwKiZfnbamqrY5j5M3IQUt/LZS5O49QxrVvftNeJXp4Yaqk/PN6kGvQci4tSwo7vErkeP+JS1nS87NURrQ4ogR5n+9ukIEpHgEEEEAAAQQQQMCQAoYNWly116xZI9OmTZNZs2bJqVOnXE+7fSZocSMJ24Fg/LGmGlNAG/TwZGOLtPZyREXYAHJ5sN6ClqLatEbli0ZJjxoxTqNK1Ks7A7+7PEfL/uNZUk4LuN5v6z6k6IOf0uWrPRnWIOWaMlEyNDlWSv8zZ4uNYdaedHlnvTbpi7a5Bi22a9RP9czUjCwp9E/wol4dmr318n2O14V7nxEtvvdAJHx3fW81dyCAAAIIIIAAAghEioDhg5ZFixbJE088IXv27PGpTwhafOIK6sXBClpslb5DCwUeSbKIxYDz5OotaLGZdq+rmd6QPVeLmmdFjSaxbc82t0ibK51f7xn7fZos2pk9d4u6NiFe5NPOcfawRB27lC5yx2cp1klvcwpaxm9Jk69/zpRMrbi210Vb63K/NhLm7HlVgr42ghb/+8PI313/W82dCCCAAAIIIIAAAkYXMGzQkqUtU/LSSy/JiBEjtD+2nP94U53SsmVL6d+/v9x7770e+4igxSNLWA4GO2hRjapZKkpeaB4rpbQVc4y0GTVomd8zThIcXvH5XVstqM9cz6/1dK0TI4/Wzg5tVP88+k2q/PJHlscRLZ/uTpf3Nuhv5EpOv1cELTnJeHfcqN9d71rHVQgggAACCCCAAAKRKGDYoGXmzJnSs2dPtz6Jj4+XGTNmSJcuXeTEiRNSqlQpt2vUAYIWjyxhORiKoEU1rHhBkeebxUqdssYZ2mLEoKVArMhXPZ0np57/a4a8sUYbquJhq1E+Sv6vlfNrRiM3pMnK3ZluQYtaRvrWT1PcVifyUKxuDhG05L8rjPjdzX+rKQEBBBBAAAEEEEDAqAKGDVruuece+eSTT9zcx4wZI88884z1eG5Bi5oot1u3bk73e7uakLfXORXOhxwFQhW0qArEaANaHqxvke41nV9rybFyYT5hxKClSILI3Dudg5avDmTIuFWeg5aK2mijqR2cg5ZxP6TJVz+5By2b/8yUIUv+mSk3zH3j7eMJWryVyv06o313c28NZxFAAAEEEEAAAQQiWcCwQUvx4sU9TnrrGLQsX75cWrVq5bH/hgwZIv369ZNz585JvXr1rNd4G6B4e53HB3PQTSCUQYvt4c2ujJbBN8VKvDb6Qs+bEYMWi5ZhLb7HOWhZfDBDxqz0HLTUvjJKXm/uHLQ8tzZN1u9zD1qmacs7T91snNeG1O8WQUtgv2FG+e4GttWUhgACCCCAAAIIIGAkAcMGLRUqVJA//vjDzbpMmTLSu3dvOX78uHz00UeSkZH7H2X33Xef9TpVkLcBirfXuVWOAx4FwhG0qIpcWSRKRraIlSu1VXT0uhkxaFGWn/WIk+IFsl3PpmZJjzmp1gluXa2faGKRzi4rQ/Vfkir7/3Sfo2XyznSZ/n3u32nX8sP9maAl8D1ghO9u4FtNiQgggAACCCCAAAJGETBs0NK9e3f57LPP8u1M0JI74QdbPI9CyP0u386maI/4fFd4/ngupM3B+ow2sqVZZX3O22LUoOXBRjHS8xrnCW7Vss3vass2Zzn8elTRlnhWy0BHZWcy8neKFsrMvjxxruuqQwQtDnh57PLdzQOI0wgggAACCCCAAAIIBEnAsEHLjh075JZbbpG//vorR5ro6GgpUaJErtcQtOTIZz2h1z/0c6+172d7aHO29K9nkRid5S169c9reecyxaJk+q1xbp6r/8iQeXszrEs41ykTLX1rui+7PWl7uny27XLwRtDi+++y7Q69/u7Y6heon3r97gaqfZSDAAIIIIAAAgggYDwBwwYtinrbtm3y2GOPyaZNmyQ1NdWun5CQII0aNZLRo0dbg5bGjRtbXyWyX6DtXHnlldKjRw/p27ev1KxZ03qqYMGCkpKS4niZdf/DDz+0Xmc74e11tuuN/NMsf6ypPqqrrUY07GaLFI93GF4R5s7Tq39eQYtia18zWp5p4NskOD8cuzzZbeY/w14IWvz/BdTr747/Lcr5Tj1+d3OuLWcQQAABBBBAAAEEIl3A0EGLrXMuXbokmzdvlosXL8o111xjDVGiHN5FUMdVGHP+/HkpX7689byaTJctbwEz/bGmNErFi7zQPFZqltbH0Ba9+nsTtCjPdlrYMqhurMR6scjT0kMZ8vq6dEnJzkzdlnfm1SGl6t2m198d72rv+1V6++763gLuQAABBBBAAAEEEIgUgYgIWiKlM/TYDrP9sab6wKINaPlXkkW6XOtFOhDkTtOr/23XawFKvezRKofOZknfeQ4JiYNLyaIid9SIkduuipHEOOfRQhmZIqu014nmaq8T/fib4+wtlwt4+7ZYubp4duj1f9prRZ//81qRwyN0vRuuyXD1+rsTzM7S03c3mO2kbAQQQAABBBBAAAF9CxC06Lt/wl47M/6xZkNvfZUWJjSOlYLOc7raTofkZyT5R2sZSyFtxFDxhCixaNnJqQtZcvaCSHp45kEOSf+phxC0hIza/iA9fHftlWEHAQQQQAABBBBAwHQCBC2m63LfGhxJf+j71vLLV1fVJnVVS0CXT3QeieFPWf7cY3Z/f8z0dg9BS3h6JNzf3fC0mqcigAACCCCAAAII6EGAoEUPvaDjOvCHvkhh7Q2ZZ5vEyo2Vsl9hCVWX4R8q6eA9h6AleLZ5lRzO725edeM8AggggAACCCCAQOQKELREbt8GpGX8oX+ZUY1nufeGGOldxyLqFZhQbfiHSjp4zyFoCZ6tNyWH67vrTd24BgEEEEAAAQQQQCAyBQhaIrNfA9Yq/tB3pkwqFy3PaUtAFykQmrQFf2d/I34iaNFHr4X6u6uPVlMLBBBAAAEEEEAAgXAIELSEQ91Az+QPfffOKqtN5jpCWwL6mpLBD1vwd/c32hGCFv30WCi/u/ppNTVBAAEEEEAAAQQQCLUAQUuoxQ32PP7Q99xhsdp0LU8kW6Tj1cFdAhp/z/5GOkrQoq/eCtV3V1+tpjYIIIAAAggggAACoRQgaAmltgGfxR/6njstVH+s4e/Z30hHCVr01Vuh+u7qq9XUBgEEEEAAAQQQQCCUAgQtodQ24LP4Q9+908oUurzkM68OudtwxF2AoMXdJFxHQvndDVcbeS4CCCCAAAIIIIBA+AUIWsLfB7quAUGLc/eEekJN/J39jfiJoEUfvRbq764+Wk0tEEAAAQQQQAABBMIhQNASDnUDPZM/9C93lpr29u7rY6RvXZZ3NtCvry6qStAS3m4I13c3vK3m6QgggAACCCCAAALhFCBoCae+AZ5N0CKSECsytEms3FhJmwE3xBv+IQYPwuMIWoKA6mWR4fzuellFLkMAAQQQQAABBBCIQAGClgjs1EA2yex/6F9VTJuPRVvKuUKR4C/l7KnfzO7vycRoxwhawtNj4f7uhqfVPBUBBBBAAAEEEEBADwIELXroBR3Xwcx/6Le+KloGNY6VgpbwdVAo/atdESUVHQKlA6ey5OCxrPA1PkKeTNAS+o7Uw3c39K3miQgggAACCCCAAAJ6ESBo0UtP6LQeofxDXy8EFm3wysMNLHLndTFhr1Io/Ue1sUjjK7LbvORQhoxekR52A6NXgKAldD2op+9u6FrNkxBAAAEEEEAAAQT0JkDQorce0Vl9QvmHvh6aXjJe5IVmsVKrTOjnY/HU/lD6E7R46oH8HyNoyb+hNyXo7bvrTZ25BgEEEEAAAQQQQCAyBQhaIrNfA9aqUP6hH7BK+1lQbS1cGd7MIsXjwzMfi6dqh9KfoMVTD+T/GEFL/g3zKkGP39286sx5BBBAAAEEEEAAgcgVIGiJ3L4NSMtC+Yd+QCrsZyHdtNeEHqpvkRh9DGSxtyKU/gQtdvaA7hC0BJTTrTC9fnfdKsoBBBBAAAEEEEAAAdMIELSYpqv9a+gHW4I/R0eK9ojPd2X4V8F83hWvTXQ7+KZYaVZZZwnLP+0iaMlnB+vg9nAFLXx3ddD5VAEBBBBAAAEEEEDAlAIELabsdn01+vSlLLlzdmrIK3WltsLOyBaxcmVR/bwq5IpA0OIqYrzP4QpaQiHFdzcUyjwDAQQQQAABBBBAwGgCBC1G67EIrG84/lhrdmW0PKONZCkUq29QPQct6jWrK0tHSemEKFEjgzK1laD/upAlh05myfmL3rv6W05igkh8bHZI9ve5LInW6lS5VJSU1ObZidUWUNr/d5Yc1f5JC/7ArBwbTNCSI41fJ4zy3fWrcdyEAAIIIIAAAgggEBECBC0R0Y3GbkQog5Zo7e/y/vUsclet7GWM9aynx6ClYAGR++rGyG1VYiQxLjvosDmqwGXdkQx5f3uGHDqufchhy285U+6Ik0qFnZ9/UQtUVOjjus3dly7vbMwIS+BC0OLaG/59Ntp3179WchcCCCCAAAIIIIBAJAgEPWg5ceKErF+/3s0qJiZG2rVrJ1FRUZKVlSWLFy+WjRs3ysmTJ+Xaa6+Vtm3bStWqVd3uczzwxx9/yC+//CK7du2SPXv2SMGCBaVGjRrW+9XPYsWKOV7utL9ixQo5d+6c0zH1QT3zuuuuczv+008/yYEDB+zHS5UqJY0aNbJ/tu3s379fdu7cafto/xkfHy+33HKL/bNt5/Tp07Jlyxb54YcfZN++fVKoUCGpXLmy1KtXT5KSkqRAAe2v2gjfQhW0FC8oMuzmWKl7hTbswSCb3oKWKmWjZIy2/HXJgs4BhydO7Wst7/yYLrO3us+/E4hypmpBS0WXoMVTPWzHftNGvDy1PFVOnLYdCc1Pgpb8Oxvxu5v/VlMCAggggAACCCCAgFEFgh60zJkzR7p27erR5+zZs6KChvvvv1++/fZbp2ssFos89thjMn78eKfj6sPMmTPl6aeflsOHD7udczyggoqJEyd6DETUue+//97xcuv+jTfeKGvXrnU7Xrt2bdmxY4f9eGJiohw5ckQSErT3Fxy2Hj16yOzZsx2OXN5V4Y1jALN792659957rXVQQZOnrXjx4tKzZ0956qmnpFq1ap4uiYhjoQhaamqvk7zQPFZKFco7INATqp6CluKJIpM7xnkcxZKb2Sub0mTZrkz7JYEqx9egRVVg+1+Z8uTXaeL5G2evYkB3CFryx2nU727+Ws3dCCCAAAIIIIAAAkYWCGvQ8ttvv0mbNm2sI1I8ISYnJ8uGDRvsp1Q4ocKXZcuW2Y/ltaNGzPTr109Gjx4tJUqUsF/+3nvvyUMPPWT/7LijRsdUr17dfmjTpk2i6uK6ffDBB/LAAw/YD6vgqGzZsnLxovsEFePGjZMnn3zSeu0XX3whvXr1kjNnztjvzW3ntddek0GDBuV2iaHPBTto6XRNjDzW0CIW4wxksfennoKW0W1jJamsM+Khs1nyyoY0OXQiSwrHi/WVrDurOb+7k6FlLHfOTZFzFy43K1DleApavjqQIZ/szJBLaVlygzZyaXCDWCnoXB0ZtjZN1u3LDn7s2EHaIWjxH9bI313/W82dCCCAAAIIIIAAAkYXCGvQ0rFjR/nqq69yNHzrrbfk0UcftZ5XI1+uv/76PEex5FSYCnSWLFliP61eGypfvryocMR1e+GFF2TEiBH2w4888oi888479s+2HdfRLx999JE1QLGdt/2Mi4uT33//XdTrRufPn5fSpUt7DGNs17v+JGhxFfHucwFtGpYnG1ukdVVjzMfiqVV6CVrKFIuST26Pc6rin9rEt33mp0pqmtNhua9BjPSt6ZxuvL3j8itEgSpHPdE1aPl0d7q8t8H5NSX1itIHbZ3rvfV4pjy1yKXSzk0I6CeCFt85I+G763uruQMBBBBAAAEEEEAgUgTCGrTkhqjCCfVqjm0UihqV8uGHH+Z2S57n1CiW/v37269TIc6kSZPsn2076jWdvXv3Wj9euHBBypUrl+PoEzV3S82aNa3XdujQQRYtWmQrxv7zrrvukk8//dT6+fPPP5du3brZzznuqOCnYcOGcuzYMdm8ebOkpV3+Y5CgxVHJu/3y2twdaunmqsWN9aqQa+v0ErS0uS5ank1yXqLphXVpsnqv+8iQOO2yz7vGaSs6Zdvv0F7ZGai9shOocpSTa9AyeWe6TP/eOWhR173U2iI3lssO286mZkmXmaFbTpygRfWC91ukfHe9bzFXIoAAAggggAACCESagG6DljvuuEPU/C5qW758ubRq1SpHezUHzO233y4qFFGv83iae0XdXLRoUWuAokaWqG3btm1St25d677rv9Q8LWrEyrRp06R3796up+2f1Ss9Kgg5fvy4dYRMerr7OrLqVSdb/R9++GF599137ffbdlSwpEbZxMZe/mP277//tj77lVdekSFDhvDqkA3Ki583VtRCgSaxUth5IIMXd+rvEr0ELb2TYqTXdc6jVNTrQKfd55O2Io7vECs3lMp+zejkpSzpPjtVAlWOeoi3QUuX2tHy7zrOIdFts1Pk4qXQ9DdBi/fOkfTd9b7VXIkAAggggAACCCAQaQK6CFpUuKBWGjp69Kg1sFDI8+bNk86dO1u9Bw8eLGPHjvVoP3DgQHn99dft51JSUqR169ayevVq+zHHnfnz51tDGdsxFaZ4WhXpX//6l/zf//2fNG/eXFauXGm73O2nCm3Ua0Hvv/++df4Y1wvU6Bg154uaK0Zt//nPf0SFJ562Pn36yPDhw+Wqq66yn1avTF26dMk694v9YITtBGqOFiXcu06M3HeDRfOODCS9BC2P3xQjd7jMvdLh0xS314Zs6v9tZZEm5bNHkaRrA1/afZwigSpHPcfboKVljWgZluwctPRckCrHT4VmSlyCFttvRc4/I/G7m3NrOYMAAggggAACCCAQ6QJhD1pUwDJ37lxr0KKwVWDx0ksvWcMJ2+iOnF7JUUsmq5WHbK8X2TpLjSBRc7J42kaNGmUNO2znpk6dKirgcN1KliwpagloNS9MXptaBWnChAmyZs0at0tffvllGTp0qP24mpPm1ltvtX923YmOjha1ctGwYcOkVq1arqcj8nMggpYi2uiV57Slm5PKZ4+iiAQsvQQtPevFyIPXO49oyS2seOf2WKleLLsvjpzPkvvmpEqgylF9623Q0qNujDyshW+O2+3aiJYLjGhxJPFrn++uX2zchAACCCCAAAIIIBDhAmENWgoWLGh9zcc2x0lO1pUqVfI4Ca567WfLli1ut6kJZwsXLux2XB1QyyV/8skn9nNqhaAKFSqIelXHdVMh0K5du1wPu32++uqrra8kuS7TrJaoVisrXXHFFU73qNecFi5c6HTM9YMaAaNeiVKjdSpWrOh6OqI+5/ePtWtKRMkIbenmstq8LJG26SVoaX5NtAxv5DwqZOK2dJm73X1OFLV888xOBSQmO2eRzX9mypAlaRKoclQ/exO0qJFN72qhT9Wi2ZVJ06rcYUZKyJZ4ZkRLzt/KSP7u5txqziCAAAIIIIAAAghEukBYgxY1X8nbb7+dp7EKLDIy3P+ga9GihXz77bce77e9quN6Uo2OcV3pSL1+9MYbb7he6vGzCne2bt3q8ZzrwS5dulhH67geV683qREram6XzEz3yUQdr1chjnp1yTWscbzG6Pv5CVo6VI+RAckWic1+S8XoHE7110vQkqAt3TyvawGJdsiyLmhLKPf+KlVOOqxSrs4/18IiLSo6d8grm9Jk2a5MCVQ5CsmboKXTDdEyoK5zQLTsUIa8ssJ9LiUn+AB+IGjxjBnp313PreYoAggggAACCCCAgBkEwhq0/Pjjj169HqNGdKh5UFw3FULs3r3b9bB11Z6yZcu6HVcHXEe0qGM7d+70qh4xMTGyb98+adq0qccRNqosx+3LL78UtYR1Tpt6NemBBx6QX3/9NadLrMcbN24s69aty/UaI5/0J2iJ1QYoPKEFLB2vdv6D3sgOnuqul6BF1e2ZZhZpX9nZW4Utk7Slm/eezJJi8VFy37UxUqtk9ugRdZ9a5eeuuamS8s9CP4EqxzVoUXWZvTdD1v+RKQW1N4XaanXtUMW5vqo+/1qWKruPhGZ+FvU8ghalkL2Z5bub3WL2EEAAAQQQQAABBMwmENag5ezZszm+4uPYETlNWKuuUaNL6tSp43i5dZSMmszW0/bMM8/ImDFj3E7lNemtusE2QuW///2vvPDCC25lOB5QrzsdOHBA1JwruW1qlaLZs2fL6NGjrasgebpWjc45efKkFCtWzNNpwx/zNWgpm3D5VaFrSjoMrzC8gucG6CloKajNg/PebXFSXvP3dsvS8ox/f5sqP/+eHWwEqhzXoMWbOtlG1nhzbaCuIWjJljTTdze71ewhgAACCCCAAAIImE3AEEGLCjVUuOFpUyHMggULRE1eqzY1SqZdu3byxx9/eLpcli5dal2VyPXkjBkz5N5773U97PR50aJF9rIrV64snpZytt0wYsQIj2GMmlNGrYj04IMPipqjxrapV6PUikSeQiB1zapVq6wjaWzXR9JPX4KWpHLR2qS3FilSwPs/9o1spaegRTkW1aY+GqFNOlzbYenmnHxPp2TJiPVpsv1QdshiuzYQ5fgatLy5LU3mbc/9VT1b/QL5k6DlsqbZvruB/B2iLAQQQAABBBBAAAFjCRgiaFEjQ6pWrSquk83aqNVrQg0aNLB+/O677+TChQu2U04/q1SpYn1Nx9P8LWreFPWK0l9//eV0j+2Dev7evXvtyzSriWrnzJljO+30U41iUXVWo1pcN1ugU758eXn66adFzTOjVhdKTU2VcePGiQpoPG1qXhk1v0wkbt4ELSpWuef6GOlT1+I0T0gkeji2KZRBy7CWFmnpMLfKF79myIQ17nOZqHlYbqoWLXdo8+PULe0+YuvohSyZty9DvtyVkevKPvktx1PQcl57fSgh1jmE23UyUz7S6rJ+X+hDFtWXZg9azPrddfwes48AAggggAACCCBgLgFDBC2qS5566inr5LH56R61jLR6/SenbfDgwTJ27FiPp9WrPeq8bcttCWk1L4uan8XTZgtaHM+pYEaFSDkFSWoy4GPHjknx4sUdb4uY/byClgRtLtOhTWLlxkruf9RHDEIODQll0JJDFXI9HKf1TVHtVaIi2uCsi2kip7RlnC9qyya7j2HJtRjxpxzXoGXyznT55IcMKaqtelSsUJRc0urz9zmtPim5PzvYZ80ctJj5uxvs3yvKRwABBBBAAAEEENCvgGGCFvWaTuvWrUVNIOvPpl7LGTVqVK637tmzR2rUqOEWeMTFxVknvy1durT9fhWKqGvVPa5bboGOp6DF9X7Xz926dbPO4+J6PFI+5xa0VC12eT6WCkWcRylEStvzaofeg5a86h/M856Clunfu69OFsw6eFO2WYMWs393vfnd4BoEEEAAAQQQQACByBQwTNCi+NXrNc8995z1FZucRn+4dlNiYqJMnDhRevXq5XrK4+c2bdqIGq3iuN19992iAhLXTb3qo17/cdzUMsy//fabqFEonjZfgxb1WtGaNWukaNGinoqLiGM5BS2tr4qWQY1jrSvIRERD/WgEQUvOaAQtOduE6gzf3VBJ8xwEEEAAAQQQQAABIwkEPWhRE9V26tTJzUS9LqNWHSpUqJDbubwOqJWGpk6dKjNnzpQjR454vPz666+3Tm6rAhY1H4q322effSbdu3d3ulyNomnWrJnTMfVBrQRUoUIFuXRJe1fin23o0KHy8ssv2z66/VST3qrJcOfPn2+dxNfTiBh1k5ovZsiQIfLQQw+JGlETyZvrH2sWbfDKv5Is0kVbKtjsG0FLzr8BBC0524TqDN/dUEnzHAQQQAABBBBAAAEjCQQ9aAkmhhrVoiavVWHL0aNHJTY2VsqVK2f9xygjQNQkvKr+apWk06dPW0MhNWmvUeofiP51/GOtVLzIC81jpaaHSVYD8SyjlUHQknOPEbTkbBOqM3x3QyXNcyJNYPv27VK7du1IaxbtQQABBBBAAIF/BAwdtNCLkSFg+2OtdploGd7MIsXjzTkfi6feJGjxpHL5GEFLzjahOsN3N1TSPCeSBCZMmCCDBg2SV155xWmS/UhqI21BAAEEEEDA7AIELWb/DdBB+8+kZMmMHRnyYH2LxJhvYaFce4CgJWcegpacbUJ1hu9uqKR5TqQIqFeR1cT+aoJ/tak54D744AOJj9eGc7IhgAACCCCAQMQIELRETFfSkEgUIGjJuVerXhElxQpmj37afyJT/j6b8/XhOhPJqw6Fy5TnImBEgYMHD0pSUpL1lWfH+tevX1/mzZsnlSpVcjzMPgIIIIAAAggYWICgxcCdR9UjX4Cgxfh9TNBi/D6kBQjkV+DChQty0003ybZt2zwWVbZsWfn888+lSZMmHs9zEAEEEEAAAQSMJUDQYqz+orYmEyBoMX6HE7QYvw9pAQL5FVCrGapVDXPb1AqDEydOlAcffDC3yziHAAIIIIAAAgYQIGgxQCdRRfMKELQYv+8JWozfh7QAgfwIjBw5UkaMGOF1EY899piMHz9eLBaL1/dwIQIIIIAAAgjoS4CgRV/9QW0QcBJoNz1F0rOcDvHBQAIWbQqZxfcVMFCNqSoCCARSYP78+dKlSxfJyvLt/8hbtGghs2fPllKlSgWyOpSFAAIIIIAAAiESIGgJETSPQcAfgTtmpsiZVH/u5B49CBSJE5l7F0GLHvqCOiAQaoGdO3dK48aN5exZ/2bprlKlinWS3Dp16oS66jwPAQQQQAABBPIpQNCST0BuRyCYAo98mSp7Tvr2X0KDWR/K9k3g6hJR8vatWtrChgACphL4+++/JTk5Wfbu3ZuvdickJMiUKVOkW7du+SqHmxFAAAEEEEAgtAIELaH15mkI+CTw6uo0Wbo/06d7uFg/Am2uipZnm8bqp0LUBAEEgi6QkZEhHTp0kKVLlwbkWVFRUTJs2DBRc72ofTYEEEAAAQQQ0L8AQYv++4gamljgqz0ZMm59uokFjN30pxpbpOPVMcZuBLVHAAGfBAYMGCATJkzw6R5vLu7UqZNMnz5dEhMTvbmcaxBAAAEEEEAgjAIELWHE59EI5CVw4kKW9JyTKpm8PZQXle7OR2v/4fnTO+OkZCH+C7TuOocKIRAkgWnTpknv3r2DVLpIzZo1RU2wW61ataA9g4IRQAABBBBAIP8CBC35N6QEBIIq8Ow3abLpD14fCipyEApPLh8tr7TitaEg0FIkAroU2LhxozRr1kxSUlKCWr/ixYvLzJkzpU2bNkF9DoUjgAACCCCAgP8CBC3+23EnAiER2Ho0U55amhaSZ/GQwAmMaxMrda+IDlyBlIQAAroVOHLkiCQlJckff/wRkjrGxMTI2LFjZdCgQSF5Hg9BAAEEEEAAAd8ECFp88+JqBMIiMHhZmnx/hFEtYcH346ENykXLmNaMZvGDjlsQMJyAGsHSvHlz2bBhQ8jr3qtXL3n33XelQAGWkQ85Pg9EAAEEEEAgFwGCllxwOIWAXgQOn8mShxamSkqGXmpEPXISKKDNffvubXFSsQhzs+RkxHEEIkmgb9++1iWYw9UmtYz03LlzpXz58uGqAs9FAAEEEEAAARcBghYXED4ioFeBRXszZOw6ViDSa//Y6vXMjRZpX52Vhmwe/EQgkgXGjRsnTz/9dNibWK5cOWvY0qhRo7DXhQoggAACCCCAgAhBC78FCBhI4IMt6TLjR4a16LXL7rk+RvrVs+i1etQLAQQCKLBs2TJp3769ZGTo4/+T1etDb7/9tvTp0yeAraQoBBBAAAEEEPBHgKDFHzXuQSCMAoQtYcTP5dGELLngcAqBCBPYt2+fqFd2Tp48qbuWDRw4UP73v/+JmjCXDQEEEEAAAQTCI0DQEh53nopAvgTUa0QTNqYzZ0u+FANzs5qT5YlkXhcKjCalIKB/gXPnzknjxo3lp59+0m1lW7dubV0CukSJErqtIxVDAAEEEEAgkgUIWiK5d2lbRAuoCXJV2MJqROHrZrW6kApZmPg2fH3AkxEIpUBWVpbceeedMm/evFA+1q9nVatWTb744gupVauWX/dzEwIIIIAAAgj4L0DQ4r8ddyKgC4Et2rLPM3dmWAOXzCxdVCmiKxGtLSakApa7asZIPe0nGwIImEdg2LBhMmrUKMM0ODExUT766CPp3LmzYepMRRFAAAEEEIgEAYKWSOhF2oCAJnDiQpZs+D1Ttv+ZKQdOZ8mf57LkQppIOuGL378fFi1UKRQrUrZwlFQpGiW1y0ZLowrRUrIQSzf7jcqNCBhU4LPPPpMePXqIGtVipC0qKkrGjx8vTzzxhJGqTV0RQAABBBAwtABBi6G7j8ojgAACCCCAQLAFtm/fLjfddJOcP38+2I8KePlxcXHy7bffWusf8MIpEAEEEEAAAQQ8ChC0eGThIAIIIIAAAgggoI0WPHFCkpKS5MCBA4bkeP/996Vfv36GrDuVRgABBBBAwKgCBC1G7TnqjQACCCCAAAJBFUhPT5e2bdtaR4QE9UFBKlwt9fz6668HqXSKRQABBBBAAIGcBAhacpLhOAIIIIAAAgiYWuDRRx+VSZMmGdKgZcuWsmTJErFYLIasP5VGAAEEEEDAyAIELUbuPeqOAAIIIIAAAkER+OCDD6R///5BKTvYhVapUkU2b94sJUuWDPajKB8BBBBAAAEEPAgQtHhA4RACCCCAAAIImFdg7dq1okaEpKamGg4hISFBVP1r165tuLpTYQQQQAABBCJFgKAlUnqSdiCAAAIIIIBAvgUOHz5snfz2zz//zHdZoS5ALeU8e/Zs6dq1a6gfzfMQQAABBBBAwEGAoMUBg10EEEAAAQQQMK/ApUuXpGnTpvL9998bEmHkyJEyfPhwQ9adSiOAAAIIIBBJAgQtkdSbtAUBBBBAAAEE/Ba477775OOPP/b7/nDe2KVLF5kzZ46oUS1sCCCAAAIIIBBeAYKW8PrzdAQQQAABBBDQgcCrr74qQ4cO1UFNfK9CrVq1ZP369VK4cGHfb+YOBBBAAAEEEAi4AEFLwEkpEAEEEEAAAQSMJLBo0SK59dZbJTMz00jVtta1RIkSsnHjRqlWrZrh6k6FEUAAAQQQiFQBgpZI7VnahQACCCCAAAJ5CuzevVsaNWokp06dyvNavV0QExMjKiRq3bq13qpGfRBAAAEEEDC1AEGLqbufxiOAAAIIIGBegTNnzlhDll27dhkS4c0335THH3/ckHWn0ggggAACCESyAEFLJPcubUMAAQQQQAABjwLqNaFOnTrJl19+6fG83g/26dNHJk+erPdqUj8EEEAAAQRMKUDQYspup9EIIIAAAgiYW2DIkCEyZswYQyKoV51WrFghBQoUMGT9qTQCCCCAAAKRLkDQEuk9TPsQQAABBBBAwEng008/lbvvvtvpmFE+lC9fXjZv3izlypUzSpWpJwIIIIAAAqYTIGgxXZfTYAQQQAABBMwrsGXLFmnSpIlcvHjRcAhqBMvKlSslOTnZcHWnwggggAACCJhJgKDFTL1NWxFAAAEEEDCxwLFjxyQpKUl+++03QypMnTpVevXqZci6U2kEEEAAAQTMJEDQYqbepq0IIIAAAgiYVCAtLU1uueUWWb16tSEFnnnmGcPOKWNIcCqNAAIIIIBAPgQIWvKBx60IIIAAAgggYAyBhx9+WN59911jVNallm3atJGvv/5aYmJiXM7wEQEEEEAAAQT0KEDQosdeoU4IIIAAAgggEDCBt956Sx5//PGAlRfKgqpXry4bN26U4sWLh/KxPAsBBBBAAAEE8iFA0JIPPG5FAAEEEEAAAX0LqMljW7duLerVIaNtiYmJsn79eqlZs6bRqk59EUAAAQQQMLUAQYupu5/GI4AAAgggELkCBw8elIYNG8rx48cN18ioqCiZN2+edOrUyXB1p8IIIIAAAgiYXYCgxey/AbQfAQQQQACBCBS4cOGCdRnnrVu3GrJ1L7/8sgwdOtSQdafSCCCAAAIImF2AoMXsvwG0HwEEEEAAgQgU6NGjh8yePduQLevevbvMmjXLkHWn0ggggAACCCAgQtDCbwECCCCAAAIIRJTAiy++KMOHDzdkm+rUqSNr166VQoUKGbL+VBoBBBBAAAEECFr4HUAAAQQQQACBCBJYsGCBdO7cWbKysgzXqlKlSsnmzZulcuXKhqs7FUYAAQQQQACBbAFGtGRbsIcAAggggAACBhb4+eefpVGjRnL27FnDtcJisciyZcukefPmhqs7FUYAAQQQQAABZwGCFmcPPiGAAAIIIICAAQX+/vtvSU5Olr179xqw9iJvvfWWPProo4asO5VGAAEEEEAAAWcBghZnDz4hgAACCCCAgMEEMjIypGPHjrJkyRKD1fxydR955BGZNGmSIetOpRFAAAEEEEDAXYCgxd2EIwgggAACCCBgIIEnn3xSXn/9dQPVOLuqTZs2leXLl0tsbGz2QfYQQAABBBBAwNACBC2G7j4qjwACCCCAgLkFPvroI+nVq5chESpVqmSd/LZMmTKGrD+VRgABBBBAAAHPAgQtnl04igACCCCAAAI6F9i0aZM0a9ZMLl26pPOaulcvPj5eVq9eLfXr13c/yREEEEAAAQQQMLQAQYuhu4/KI4AAAgggYE6BI0eOSMOGDeX33383JMCMGTPk7rvvNmTdqTQCCCCAAAII5C5A0JK7D2cRQAABBBBAQGcCKSkp0qJFC1m/fr3OauZddf7zn//IqFGjvLuYqxBAAAEEEEDAcAIELYbrMiqMAAIIIICAuQUeeOABmTx5siER1OpICxYskOjoaEPWn0ojgAACCCCAQN4CBC15G3EFAggggAACCOhEYPz48TJo0CCd1Ma3atSoUUM2bNggRYsW9e1GrkYAAQQQQAABQwkQtBiqu6gsAggggAAC5hX45ptvpF27dpKRkWE4BBWuqJBFhS1sCCCAAAIIIBDZAgQtkd2/tA4BBBBAAIGIEPj111+tk9+ePHnScO1RrwktXLhQOnToYLi6U2EEEEAAAQQQ8F2AoMV3M+5AAAEEEEAAgRAKnDt3Tm688Ub58ccfQ/jUwD1q7Nix8vTTTweuQEpCAAEEEEAAAV0LELTounuoHAIIIIAAAuYWyMrKkq5du8rcuXMNCXHPPffIxx9/bMi6U2kEEEAAAQQQ8E+AoMU/N+5CAAEEEEAAgRAIDB8+XF588cUQPCnwj2jQoIGsWrVK4uPjA184JSKAAAIIIICAbgUIWnTbNVQMAQQQQAABcwvMmTNHunXrJmpUi9G2smXLyubNm6VixYpGqzr1RQABBBBAAIF8ChC05BOQ2xFAAAEEEEAg8AI7duywzsty/vz5wBce5BLj4uJk+fLl0qRJkyA/ieIRQAABBBBAQI8CBC167BXqhAACCCCAgIkFTpw4YV1haP/+/YZUeO+996R///6GrDuVRgABBBBAAIH8CxC05N+QEhBAAAEEEEAgQALp6enSrl0764iQABUZ0mL+/e9/y4QJE0L6TB6GAAIIIIAAAvoSIGjRV39QGwQQQAABBEwtoIKKiRMnGtKgRYsWsnTpUrFYLIasP5VGAAEEEEAAgcAIELQExpFSEEAAAQQQQCCfAh9++KH069cvn6WE5/YqVarIpk2bpFSpUuGpAE9FAAEEEEAAAd0IELTopiuoCAIIIIAAAuYVWLdunagRIampqYZDSEhIkLVr10rt2rUNV3cqjAACCCCAAAKBFyBoCbwpJSKAAAIIIICADwK///67JCUlydGjR324Sx+XRkVFyaxZs6zLUOujRtQCAQQQQAABBMItQNAS7h7g+QgggAACCJhY4NKlS3LzzTfL5s2bDanwwgsvyIgRIwxZdyqNAAIIIIAAAsERIGgJjiulIoAAAggggIAXAvfff79Mnz7diyv1d0nnzp1l7ty5oka1sCGAAAIIIIAAAjYBghabBD8RQAABBBBAIKQCY8eOlcGDB4f0mYF6WK1atUTNK5OYmBioIikHAQQQQAABBCJEgKAlQjqSZiCAAAIIIGAkgcWLF0vHjh0lMzPTSNW21rV48eLWFYaqVatmuLpTYQQQQAABBBAIvgBBS/CNeQICCCCAAAIIOAjs2bNHkpOT5dSpUw5HjbEbExMjX3/9tbRp08YYFaaWCCCAAAIIIBByAYKWkJPzQAQQQAABBMwrcObMGWnUqJHs2rXLkAjjx4+XAQMGGLLuVBoBBBBAAAEEQiNA0BIaZ56CAAIIIICA6QXUa0JqAtmFCxca0qJ3794yZcoUQ9adSiOAAAIIIIBA6AQIWkJnzZMQQAABBBAwtcDQoUPl1VdfNaSBGoWzYsUKKVCggCHrT6URQAABBBBAIHQCBC2hs+ZJCCCAAAIImFZg5syZ0rNnT0O2v1y5crJ582YpX768IetPpRFAAAEEEEAgtAIELaH15mkIIIAAAgiYTmDLli3StGlTuXDhguHarkawqJEsakQLGwIIIIAAAggg4I0AQYs3SlyDAAIIIIAAAn4JHD9+XJKSkuTQoUN+3R/um9ScLGpuFjYEEEAAAQQQQMBbAYIWb6W4DgEEEEAAAQR8EkhLS5NWrVrJqlWrfLpPLxc/+eSTMm7cOL1Uh3oggAACCCCAgEEECFoM0lFUEwEEEEAAAaMJPPLII/LOO+8YrdrW+rZu3VoWLVokMTExhqw/lUYAAQQQQACB8AkQtITPnicjgAACCCAQsQKTJk2SRx991JDtq1atmmzatEmKFy9uyPpTaQQQQAABBBAIrwBBS3j9eToCCCCAAAIRJ7By5UpRI0LUq0NG2xITE2XdunVSq1Yto1Wd+iKAAAIIIICATgQIWnTSEVQDAQQQQACBSBBQk96qyW/VJLhG26KiomTu3LnSuXNno1Wd+iKAAAIIIICAjgQIWnTUGVQFAQQQQAABIwuo5ZubNGkiW7duNWQzXnrpJXnuuecMWXcqjQACCCCAAAL6ESBo0U9fUBMEEEAAAQQMLXDXXXfJrFmzDNmGbt26WeuuRrWwIYAAAggggAAC+REgaMmPHvcigAACCCCAgFXg5ZdfNuxokNq1a8vatWslISGB3kQAAQQQQAABBPItQNCSb0IKQAABBBBAwNwCCxcutM5rkpmZaTiIUqVKWVcYqlKliuHqToURQAABBBBAQJ8CBC367BdqhQACCCCAgCEEfv75Z2ncuLGcOXPGEPV1rKTFYpGlS5dKixYtHA+zjwACCCCAAAII5EuAoCVffNyMAAIIIICAeQVOnTolycnJsmfPHkMivPXWW/Loo48asu5UGgEEEEAAAQT0K0DQot++oWYIIIAAAgjoViAjI0NuvfVWWbx4sW7rmFvF+vfvL++9915ul3AOAQQQQAABBBDwS4CgxS82bkIAAQQQQMDcAk8//bSMGzfOkAhqCerly5dLXFycIetPpRFAAAEEEEBA3wIELfruH2qHAAIIIICA7gSmT58u999/v+7q5U2FKlasKJs3b5ayZct6cznXIIAAAggggAACPgsQtPhMxg0IIIAAAgiYV2DTpk3SrFkzuXTpkuEQ4uPjZdWqVdKgQQPD1Z0KI4AAAggggIBxBAhajNNX1BQBBBBAAIGwChw9elSSkpLk999/D2s9/H34xx9/LPfcc4+/t3MfAggggAACCCDglQBBi1dMXIQAAggggIC5BVJTU63LIK9bt86QEEOGDJFXX33VkHWnMGaqlgAAQABJREFU0ggggAACCCBgLAGCFmP1F7VFAAEEEEAgLAL9+vWTDz/8MCzPzu9DO3ToIAsXLpTo6Oj8FsX9CCCAAAIIIIBAngIELXkScQECCCCAAALmFpgwYYIMGDDAkAjXXHONbNy4UYoWLWrI+lNpBBBAAAEEEDCeAEGL8fqMGiOAAAIIIBAyAbUMcrt27SQ9PT1kzwzUg1S4smHDBqlRo0agiqQcBBBAAAEEEEAgTwGCljyJuAABBBBAAAHzCaSlpcnhw4elYcOGcuLECcMBqNeEFixYIB07djRc3akwAggggAACCBhbgKDF2P1H7RFAAAEEEAi4wPnz56V9+/aye/duOXbsWMDLD0WBo0ePlsGDB4fiUTwDAQQQQAABBBBwEiBoceLgAwIIIIAAAuYWUKNXbr/9djHq6kKq9+6++26ZMWOGuTuS1iOAAAIIIIBA2AQIWsJGz4MRQAABBBDQl8COHTuka9eusmfPHn1VzIfa1K9fX1avXi3x8fE+3MWlCCCAAAIIIIBA4AQIWgJnSUkIIIAAAggYVkAt3fz444/LxYsXDduGMmXKyObNm6VSpUqGbQMVRwABBBBAAAHjCxC0GL8PaQECCCCAAAJ+Cxw5ckQGDhwos2bN8rsMPdwYGxsr3377rTRp0kQP1aEOCCCAAAIIIGBiAYIWE3c+TUcAAQQQMK+AWq75rbfekuHDh8uZM2cMD/HOO+/IQw89ZPh20AAEEEAAAQQQML4AQYvx+5AWIIAAAggg4LWAWrZ52rRp8sorr8i+ffu8vk/PFz722GMyceJEPVeRuiGAAAIIIICAiQQIWkzU2TQVAQQQQMC8AuoVoSlTpsjbb78thw4dihiI5s2by7Jly8RisURMm2gIAggggAACCBhbgKDF2P1H7RFAAAEEEMhRQC3V/OWXX8rs2bPl66+/loyMjByvNeKJypUrWye/LVWqlBGrT50RQAABBBBAIEIFCFoitGNpFgIIIICA+QQuXLgg69evl5UrV8ry5ctl7dq1EReu2Hq1UKFC1vbVqVPHdoifCCCAAAIIIICALgQIWnTRDVQCAQQQQAAB7wXURLYHDhyQX375RXbt2iXbtm2TLVu2WPfVOTNsapWk7t27m6GptBEBBBBAAAEEDCZA0GKwDqO6CCCAAAKRL3D27Fk5ePCg/Pbbb07/qGMqYDl8+LCYJVDx1NvDhg2TF1980dMpjiGAAAIIIIAAAmEXIGgJexdQAQQQQAABswqkpqZa5xhRr/vs2LFDdu7caV0JSM2twuZZoFOnTjJv3jyJioryfAFHEUAAAQQQQACBMAsQtIS5A3g8AggggIC5BDIzM2XhwoUyffp060S1al4VNu8EatasaZ2DJjEx0bsbuAoBBBBAAAEEEAiDAEFLGNB5JAIIIICA+QROnz4tH374obz55puyf/9+8wHks8XFixeXjRs3SvXq1fNZErcjgAACCCCAAALBFSBoCa4vpSOAAAIImFxg9+7d1nBlypQpcu7cOZNr+Nf8mJgY6/LUbdq08a8A7kIAAQQQQAABBEIoQNASQmwehQACCCBgHoElS5bIG2+8YQ0IsrKyzNPwILT0tddek0GDBgWhZIpEAAEEEEAAAQQCL0DQEnhTSkQAAQQQMKmAmm/lo48+kgkTJlgntjUpQ0Cb3atXL5k6dWpAy6QwBBBAAAEEEEAgmAIELcHUpWwEEEAAAVMIqGWYJ06cKO+99578/fffpmhzKBqZnJwsK1eulAIFCoTicTwDAQQQQAABBBAIiABBS0AYKQQBBBBAwIwCa9assb4eNGfOHMnIyDAjQdDaXK5cOevS1+XLlw/aMygYAQQQQAABBBAIhgBBSzBUKRMBBBBAIGIFUlNTZebMmdaA5fvvv4/YdoazYWoEy3fffSeNGzcOZzV4NgIIIIAAAggg4JcAQYtfbNyEAAIIIGA2gWPHjsnbb78tkyZNkqNHj5qt+SFt7+TJk6VPnz4hfSYPQwABBBBAAAEEAiVA0BIoScpBAAEEEIhIgUOHDslLL70k06ZNk5SUlIhso54aNXDgQHn99df1VCXqggACCCCAAAII+CRA0OITFxcjgAACCJhJQE1wO2TIEFGrCbEFX6B169ayaNEiiYmJCf7DeAICCCCAAAIIIBAkAYKWIMFSLAIIIICAcQXUyJV//etfol5hYQuNQNWqVWXTpk1SokSJ0DyQpyCAAAIIIIAAAkESIGgJEizFIoAAAggYU0CNXunUqZN88803xmyAAWttsVhk48aNUq9ePQPWniojgAACCCCAAALOAgQtzh58QgABBBAwscCZM2fk1ltvldWrV5tYITxNb9WqlXzxxReSkJAQngrwVAQQQAABBBBAIEACBC0BgqQYBBBAAAFjC6iVhDp06CBbt241dkMMWvsKFSrIypUrRb1CxIYAAggggAACCBhZgKDFyL1H3RFAAAEEAiKwd+9eadu2rezfvz8g5VGIbwIVK1aU7777TqpVq+bbjVyNAAIIIIAAAgjoUICgRYedQpUQQAABBEInsGrVKrnjjjvkxIkToXsoT7ILlC9fXlasWCHVq1e3H2MHAQQQQAABBBAwsgBBi5F7j7ojgAACCPgtkJWVJW+88YYMHjxY0tLS/C6HG/0XKFOmjDVkufbaa/0vhDsRQAABBBBAAAGdCRC06KxDqA4CCCCAQHAFVMCyaNEiGTVqlKxZsya4D9NKj46OlszMzKA/x2gPKFq0qPV1obp16xqt6tQXAQQQQAABBBDIVYCgJVceTiKAAAIIRJLAzJkzZdiwYaLmZAnmdsMNN1hXL7rtttukTp068vHHH8u4ceNkz549wXysYcouWLCgLFmyRG6++WbD1JmKIoAAAggggAAC3goQtHgrxXUIIIAAAoYVuHTpkvTs2dO6fHAwGhEfHy+33HKLNVxRy0NfeeWVbo9Ro1rat28vS5cudTtnpgNqhM+sWbOka9euZmo2bUUAAQQQQAABEwkQtJios2kqAgggYFaBQYMGyfjx4wPa/EqVKtlHraiQRYUtuW2rV6+WZs2aiXp1yczba6+9Jqo/2BBAAAEEEEAAgUgVIGiJ1J6lXQgggAACdoH69evLli1b7J/zs6Ned1GvATVs2NDrYtSIGvUK0e7du72+JxIv7Nevn7z//vuR2DTahAACCCCAAAII2AUIWuwU7CCAAAIIRKrAyJEjZcSIEflqXo0aNeSll16Sbt26+VzOs88+K6NHj/b5vki6oXHjxtYVhuLi4iKpWbQFAQQQQAABBBBwEyBocSPhAAIIIIBApAmkp6dL3759Zfr06T43TY2Gefrpp6VHjx4SExPj8/0//PCDJCcnS0ZGhs/3RsoNJUqUsI4o8jR3TaS0kXYggAACCCCAAAI2AYIWmwQ/EUAAAQQiXmDatGkyZMgQOXr0aK5trVixotx5551yzz33SKNGjXK9NreTKuBJSkqSbdu25XZZxJ+bO3eudOnSJeLbSQMRQAABBBBAAAElQNDC7wECCCCAgKkEUlNTRf3hv3z5ctm3b5+cO3dOEhISpHLlyqKWZVZzsDRo0ECioqLy7aJeNXr++efzXY6RC7j77rtlxowZRm4CdUcAAQQQQAABBHwSIGjxiYuLEUAAAQQQ8E7g559/lnr16klKSop3N0TgVUWKFLFOAFy2bNkIbB1NQgABBBBAAAEEPAsQtHh24SgCCCCAAAK5Cnz33XfSsmVLad68uah9xy0zM1OaNm0q69atczxsun01AfDgwYNN124ajAACCCCAAALmFiBoMXf/03oEEEAAAT8EpkyZYp1c13brCy+84LSq0RtvvCEDBw60nTblTzWKZf/+/RIfH2/K9tNoBBBAAAEEEDCvAEGLefueliOAAAII+CHQokUL6zLFjreq+V1U+KLOqXBBzfVy/vx5x0tMtz927Fjrak2mazgNRgABBBBAAAHTCxC0mP5XAAAEEEAAAW8E1OtBffr0kYMHD3q8XIUt6poHH3xQli1b5vEasxwsXbq0NXBSkwyzIYAAAggggAACZhMgaDFbj9NeBBBAAAGfBVSAouZjcdxmdH5OKiaWlme+eVs2HNllPVWjRg355ZdfHC8z5f6oUaPkP//5jynbTqMRQAABBBBAAAGCFn4HEEAAAQQQyEXA9VWhRuWulQHJXaVxhZrWuw6fOS7Nppt7PhZHPjWK5dChQ1KiRAnHw+wjgAACCCCAAAKmESBoMU1X01AEEEAAAV8E1CiWESNGOM3HokKWT+543q2YdYd/knvnv+x23IwHHn/8cXnzzTfN2HTajAACCCCAAAIIWAUIWvhFQAABBBBAwEXA06tCY1o+LN2ua+ZypYhaynnIt+/K57+scjtntgPR0dGyZ88eqVq1qtmaTnsRQAABBBBAAAG7AEGLnYIdBBBAAAEExDrh7dSpU+0UFRJLydhbHra/KmQ/oe1kZGTIwGVvyZf7NjgeNu1+t27dZPbs2aZtPw1HAAEEEEAAAQSUAEELvwcIIIAAAgj8I+BpPhZPrwqpy9PS0+XxJW/I0gM/4PePwKZNmyQpKQkPBBBAAAEEEEDA1AIELabufhqPAAIIIKAEPL0qNCDpTuukt56ELqWlyiOLXpeVv233dNqUx9q0aSNLliwxZdtpNAIIIIAAAggg4ChA0OKowT4CCCCAgOkEpkyZIn379nVqt1q62baqkNMJ7cP51EvS/8ux9iWdXc+b9fOqVaukadOmZm0+7UYAAQQQQAABBOwCBC12CnYQQAABBMwm4MurQsrmTMoFeWDhaPnhz71mo8q1va1bt5alS5fmeg0nEUAAAQQQQAABswgQtJilp2knAggggIBdQL0q1KdPHzl48KD9WNcaN8vYVo/YP7vunL50Tu5b8Ir8dPyA6ylTf46KipKNGzcyN4upfwtoPAIIIIAAAgg4ChC0OGqwjwACCCAQ8QKe5mPJ7VUhBXLiwmm5b/7L8svJwxHv42sDe/ToITNnzvT1Nq5HAAEEEEAAAQQiVoCgJWK7loYhgAACCLgKeHpVSI1iqViktOul9s9Hz52Ue794WfafPmI/xs5lgYIFC8quXbukcuXKkCCAAAIIIIAAAgj8I0DQwq8CAggggEDEC6hRLCNGjJAVK1bY29qo3LWS09LNtosOnzku92ghy+Gzx2yH+OkgMHz4cBk5cqTDEXYRQAABBBBAAAEECFr4HUAAAQQQiGgBf14VUiAHTh2xjmQ5cv5kRPv427hq1arJjh07JD4+3t8iuA8BBBBAAAEEEIhIAYKWiOxWGoUAAgggoATUhLdTp061Y6hRLAOSu+a4dLPtwt0nftPmZHlF/rp42nbI75/FCiZKyytry9zda/wuQ483qlWG1GpDbAgggAACCCCAAALOAgQtzh58QgABBBCIAIEDBw5YQxZfXxVSTd95fL+2utBoOXXpbL4l6pWtLhPbPiHlEkvK8BWTZfpPy/Jdph4KUAHW5MmT9VAV6oAAAggggAACCOhOgKBFd11ChRBAAAEE8iPg6VWhMS0flm7XNcuz2B+O7Ja+C8fI2bSLeV6b1wV9rm8n/2lyj1hiLNZLX1w1TSbvWJzXbbo/f+WVV8r27dulaNGiuq8rFUQAAQQQQAABBMIhQNASDnWeiQACCCAQFAE14a3j5KwVEkvJ2FsezvNVIVWZ9b/vlP5f/k8upKfkq27xlgLyasv+cvvVN9nLefv7BTJmw6f2z0bdiYqKkuXLl4tavYkNAQQQQAABBBBAwLMAQYtnF44igAACCBhMwNPSzXmtKmRr4oqDW+WRReMlJSPNdsivn1cVLSeT2g+Qa0pWst//2c8rZfC379g/G3ln8ODBMnr0aCM3gbojgAACCCCAAAJBFyBoCToxD0AAAQQQCKaAp1eFBiTdaZ301pvnLvl1kzy+5E1Jz8zw5vIcr2l7VZL8r9UjUjguexWeb/b/oAU4r0tGVmaO9xnlRJMmTURZWyyXX4UySr2pJwIIIIAAAgggEGoBgpZQi/M8BBBAAIGACUyZMkX69u3rVN6Mzs959aqQumm+thLQU9+8na8gJFp7neaZRnfJw/Vvd6qHmu/l3vkv53uUjFOhYfpQqlQp2bJli1SsWDFMNeCxCCCAAAIIIICAcQQIWozTV9QUAQQQQMBBID+vCqliZu38VoZ+94Fkaf/zdyuuLd08se3jcmPF652K2HPysPSY8185nXre6bgRP8TExMjXX38tbdq0MWL1qTMCCCCAAAIIIBByAYKWkJPzQAQQQACB/Aio11fU8sIHDx60F9O1xs0yVnttx9ttyvbF8t/V07y93ON1tctUlUntBlqXbna84MjZE9Jtzgg5cv6k42HD7r/22msyaNAgw9afiiOAAAIIIIAAAqEWIGgJtTjPQwABBBDwW8DTfCy+vCqkHjzp+/kydsNMv+ugbry75i0yomlviXWZr+T0pXPSXRvJsvfU7/kqXy83q0Br8uTJeqkO9UAAAQQQQAABBAwhQNBiiG6ikggggAACnl4VUqNYKhYp7TXOuPWz5K0fvvD6etcL46Jj5aVmfaRbzRaup+RiWorcp83JsuXPvW7nvDkQExVtnyumQIECkpKSv2WmvXlmbtfcdNNN1qWcVV3YEEAAAQQQQAABBLwXIGjx3oorEUAAAQTCIKBGsYwYMUJWrFhhf3qjcteKt0s3q5uysrLkpdUfyeQdi+1l+LpToXApebv9QKlV5iq3WzMyMuThRa/Jcm2ZaH+2mKgY67LQi7UVkD7/ZZU/RQT0nmrVqsn69etFTYLLhgACCCCAAAIIIOCbAEGLb15cjQACCCAQQoFAvCqUpS2trCa9nfXzd37XvKk22e2ENo9LsfhEj2U8o61c5G9AolYtelMru0P1xnL4zHHpqs3vcvzCKY/PCcVBFa6sXbtWrr766lA8jmcggAACCCCAAAIRJ0DQEnFdSoMQQACByBBQ84NMnTrV3hg1imVAclevl25WN6qRJk9+M0kW7F1nL8fXnUfrd5KnGnWXKO3VHk/b6HWfyDtbFno6leexKImSca0fkS7XNLVem56RLu0/fVZ+PX0kz3uDcUFCQoL1daHk5ORgFE+ZCCCAAAIIIICAKQQIWkzRzTQSAQQQMI7AgQMHrKsK5edVIdXa1PQ0eXzJBFl24Ae/Gl84Nl7+p80B07ZqUo73f7htkby05qMcz+d14tUW/aVHzZb2y17f8Jm8+f1c++dQ7sTFxcmCBQukbdu2oXwsz0IAAQQQQAABBCJOgKAl4rqUBiGAAALGFfD0qtCYlg9Lt+ua+dSoC6mX5MGvxsm6P3b6dJ/t4quLV7TOx3JV8XK2Q24/5+9eIwOX/Z/bcW8PjLy5j9x/Qxv75TuPH5DOnw3XJsTNsB8L1U50dLR8+umn0r1791A9kucggAACCCCAAAIRK0DQErFdS8MQQAABYwmoCW9Hjhxpr3SFxFIy9paHfXpVSN18JuW89F04xu/VfzpWayRjWj4kheIK2uviurP6t+3aM/7ndyjy3E33Sr+6He3FqleGOn/2vPx84pD9mLc7gwYNknLlysn8+fNlzZo11ol/vb1XXRelzRHz4YcfWkcR+XIf1yKAAAIIIIAAAgh4FiBo8ezCUQQQQACBEAp4WrrZl1WFbFX9S5tEtveC0X4FFmp55WdvvNspALGV6/hzx5/75O4vRsmFdP+WX34yubs8ntTFsUh5Y+Pn8sbmOU7HvPnQqlUrWbJkiagRKdu3b5e6dev6HLSMHz9eBgwY4M3juAYBBBBAAAEEEEDACwGCFi+QuAQBBBBAIDgCnl4VGpB0p3XSW1+fqFbsuW/+K3LozJ++3iol4ovIxLb/znP0zIFTR7RVgUbK35fO+vwMdcPjDbrIk9rEuo7bzuMHraNZfH1l6IorrpCtW7dK2bJlrcV17dpV5szxLaxp0qSJrF692rE67COAAAIIIIAAAgjkU4CgJZ+A3I4AAggg4J/AlClTpG/fvk43z+j8XJ5hh9MN/3w4c+mc3Db7eTl89pin07keq1ummvxf+4FyReESuV537Pzf0k0LWQ6fPZ7rdTmd7FenozzX5F6n02pVpM6fPy87/zrodDyvD2oEy7Jly6Rly8sT6W7btk3q1avn02gWVcb3339vHQWT1/M4jwACCCCAAAIIIOC9AEGL91ZciQACCCAQIIFAvSpkq86Lq6fL5O1f2z56/fOemq3khaa9JNZiyfWesykXpOe8F/16JUkVfH+tNjKyeR+3Z0zYNFfGb/rM7XheB6pUqSL79++3X+bPaJZHHnlEJk2aZC+DHQQQQAABBBBAAIHACBC0BMaRUhBAAAEEvBBQrwr16dNHDh7MHsHRtcbNMlZbRjk/W9NpT8gf5054XURcdKy81PwBr1YzUstE917wqmw4ssvr8h0v7H5tc3m15YPWSWcdj/+sjWLppI3C8fWVIVsZvXv3FjUqyJ/RLCVKlJA9e/aI+smGAAIIIIAAAgggEFgBgpbAelIaAggggEAOAp7mY/H3VSHXR1z3Th9JyUhzPezxc4XCpaxLN9cqc5XH844Hs7Iy5dFFE2Tx/k2Oh73e73J1ExnX+hEtZIl2usffV4acCtE+qFEtTz75pMydO9f1VK6f33nnHXnooYdyvYaTCCCAAAIIIIAAAv4JELT458ZdCCCAAAI+CHh6VUiNYqlYpLQPpeR86a0zh3r1Ws/NlW6QCW0el6IFC+dcmMOZ51d8KB//9I3DEe9321dNtk6wq+ZCcd3e1F4Zet2PV4Zs5TRv3tw6muXUqVNSv359n+ZmadSokaxbt85thI2tbH4igAACCCCAAAII5E+AoCV/ftyNAAIIIJCLgBrFMmLECFmxYoX9qkblrhV/lm62F+BhZ/qOpTJ81RQPZ7IPqRV/BiV3dRtdkn2F856/Sy6rUlpVrieTtAl2LTHuc7/sOnFIe2VomKRnZjg/0MtPKmRRrmq74447ZN68edZ9b/4VExMjmzZtsk6c6831XIMAAggggAACCCDguwBBi+9m3IEAAggg4IVAMF8Vcn28esXn4a9fl2UHfnA9JUXiEmScNnqm1VX13c7ldGDGj8tk2MrJOZ3O9bgaNfNeh6ckzhLrdl1+Xxn69ttvRY0OUtuWLVuso1msH7z81xNPPCFvvPGGl1dzGQIIIIAAAggggIA/AgQt/qhxDwIIIIBArgJqwtupU6far1GjWAZoo0kaV6hpPxbonczMTPlg29fykRaSqGWeixVMlA5VG8qAhndKmYTiXj9uyb6N8q/FEyRL+5+vm2rn5NuGSMHYOI+3+vvK0E033SSjRo2yhyyq8M6dO8v8+fM9PsfTwXLlysmuXbukSJEink5zDAEEEEAAAQQQQCBAAgQtAYKkGAQQQAABkQMHDlhXFQr2q0J5WasRLq4T0OZ1jzq/4feftRWGRktqpncT6zqWWb9sdZl2+1ApFFfQ8bB9/5cTv8nts5/z+ZWhunXrWkev2AvSdn744Qdp0KCB46E892fNmiXdu3fP8zouQAABBBBAAAEEEMifAEFL/vy4GwEEEEDgHwFPrwoNSLrTOpLFCEhqueWec1+Us2kXfa7uDaWvkumd/iOJBQp5vNffV4a6desms2fPdivz9ttvl4ULF7odz+lAx44d5csvv8zpNMcRQAABBBBAAAEEAihA0BJATIpCAAEEzCqgJrwdOXKkU/MDtXSzU6FB+nD4zHHpNmekHLvwt89PuK7klfJJ5+ekSC4rGfnzylBycrKsX7/ebXUgNZmtOuftVqhQIfnpp5+kSpUq3t7CdQgggAACCCCAAAL5ECBoyQcetyKAAAIIiHXekHC/KpSffvj74hnpqoUsB04f9bmY6sUqyKd3DJMS8TnPe+LPKkMVKlSQrVu3SqlSpdzqdOutt8pXX33ldjynA2PGjJFnnnkmp9McRwABBBBAAAEEEAiwAEFLgEEpDgEEEDCLgKdXhbrWuFnGaiv8GGW7kHpJ7pk/SrYf+9XnKlcucoXMuvN5KV2oWI73+vPKkMViEbW6UNOmTd3K3bBhgzRu3NjteE4H6tSpI5s3bxZVJhsCCCCAAAIIIIBAaAQIWkLjzFMQQACBiBKYMmWK9O3b16lNRnpVSFU8PSNd+n81Tlb+tt2pHd58qJhYWmZ2eV7KJZbM9XJ/Xhl69dVXZciQIR7Lbd++vSxevNjjOdeD0dHR1lePGjZs6HqKzwgggAACCCCAAAJBFCBoCSIuRSOAAAKRKNCiRQtxfVVIjWKpWKS0YZqblZUlTy2bJPP2rPG5zlcklLCGLJWKlsn1XjW5bufPnvdplSH1WtCCBQvc5mVRD1q7dq00adIk12c6nhwwYICMHz/e8RD7CCCAAAIIIIAAAiEQIGgJATKPQAABBCJBQL0q1KdPHzl48KC9OY3KXSuf3PG8/bNRdl5e87G8v837eU5s7SoVX1Rmae2tUqyc7ZDHn/68MlSpUiXrMs4lS3oeJdO6dWv55ptvPD7P9WDlypWtE+AmJCS4nuIzAggggAACCCCAQJAFCFqCDEzxCCCAQCQIeJqPxWivCtn64YOtX8motR/bPnr9s3jBRPm0yzC5ukTFPO+ZsGmOjN/0eZ7X2S5Qc6isXLlSbrzxRtshp5/qXPPmzZ2O5fZBTZbboUOH3C7hHAIIIIAAAggggECQBAhaggRLsQgggECkCHh6VWhActf/Z+9M4Gu6tj/+I4kQEomxhMZQU6gSbRpK1BCpoaYQxWtJKUpbLY0qJWJ8hrZ/HaMeovXQCJqGGmp4phpeDKkhqCEhHjUVqSGj/91Hc5ob5+ZO5065v93P7d1n77XX3vt70q1W9loLQb7+DrfFPReP4rXE2Xio+ceY4lWqLIRhyb+yn95hJ649chnKfZirVzZfYN68eRg7dmz+42PfwsgijC2GlIEDB2LZsmWGiFKGBEiABEiABEiABEjAAgRoaLEAVKokARIggeJAQNximTJlymPxWNRwFcrMyYK7aymrYsrLy0OH5ZFIu2NcGudybmWwrPuHaFq1rt71igC7Ii5Lyo0LemXzBbp3746EhIT8x8e+t2zZgpCQkMfalRpEOuiUlBTFtNBK8mwjARIgARIgARIgARJQnwANLeozpUYSIAEScHgCSq5Cc9oNR59GwWbvbcmvGxFzKBFrw6aiup6sPWZPVkDBvksnMCBhRoEW/dUyru749uXxaFGtvn5hjcSn++Px+cG1BskKIRFL5fDhw/Dx8dE5RrgT7du3T2d/wQ5xk0XcaGEhARIgARIgARIgARKwHQEaWmzHnjOTAAmQgF0SEAFvly5dKq/N17MS5rYfroqr0PwDqzE/aY2k+5kqdbGq12S4urjKc1myEvvrJkzd/a3BU7i7uGFx10i0rNHYoDHHr55Hz9WTkfswzyB5Nzc37N69G4GBgTrl169fj27duunsL9ghYrKI2CwsJEACJEACJEACJEACtiVAQ4tt+XN2EiABErAbAqmpqVJWocKpm9VwFcrf5IXbv+PluI+QkX1PahrcJBSTg1/L77bo94rj2zBxxyKD5nAr6YqFXcYg+MlnDJLPzsnBS9+Px/nblw2SF0Ii9bJIwayriBTUAQEBOHLkiC4Rud3T01PKMiQyF7GQAAmQAAmQAAmQAAnYlgANLbblz9lJgARIwC4IKLkKjX62N0TQW7XLz+eSMHzjp7Laz0PeQtd6ytl2ZCEVKr/dTEfoyg/0anIp4YKvQt9BSJ1n9crmC7y7+Uv8eOaX/Ee9371798bq1UVnJYqLi0O/fv306hICX3zxBUaNGmWQLIVIgARIgARIgARIgAQsS4CGFsvypXYSIAESsHsCIuBtdHS01jotnbr5n7+swDdH1klzlnUtjYS+01DHp7rWGizxMGTdXGy/oPuGSMkSJSAMP52fCjJ4+vHbFiLu5H8Mlq9Tpw4OHTqE8uXL6xwjbrP4+/vj5MmTOmXyO1q3bi1lJCqhWTsLCZAACZAACZAACZCA7QnQ0GL7d8AVkAAJkIDNCCilblbTVUjXxnJzczHwxxk4cPmUJFLfpwbW9pmKMm7uuoYY1S6yGk3Z9S32pB9HeKO2GN6sG9xcXXHnwZ8Y8ONMnLie9pg+EZNlfseR6FRXd8yUwoPC10Qj6crpws06n93d3bFnzx60aNFCp4zo2Lp1Kzp27FikjOgU+pKTk9GgQQO9shQgARIgARIgARIgARKwDgEaWqzDmbOQAAmQgF0RUHIVCmvQBnM7jLDaOq/e/QNd4ybixv3b0py9G7TGvA5vqjJ/waC7QuE3ncegY+1Hxo0H2VlYlLwBP5zejVRNzBjv0uXw4pNN8XaLXnjSu6pB85uSwUgo/vLLLzFy5Ei9c4gbRuKmkb4yffp0TJw4UZ8Y+0mABEiABEiABEiABKxIgIYWK8LmVCRAAiRgDwRiY2MRERGhtRRLuwppTVbgYa/mxsmribOQp3GVEWVm2yF4pXH7AhKmVadpbrMsObpJHjw+qD+GBRiWvUcepKMSn7IT47Yv0NGru1nEW1m5cqVugQI948ePx+zZswu0PF59+umncfDgQYjsRSwkQAIkQAIkQAIkQAL2Q4CGFvt5F1wJCZAACVicgJKrkLjFUsOrssXn1jXBl0kJ+PhAnNRdqqQb1oRFwb9ybV3iBrUfufIbIjTxWG5n3UX1chXxU79/wsvdw6CxRQn1XzsN+y/rj5tSWEf9+vWRlJQEkR3IkCIMMv3799cp6uLiIqWGDgoyPJaMTmXsIAESIAESIAESIAESUJUADS2q4qQyEiABErBPAsJVaPDgwUhL+zs2yfPVGsIa8Vj0ERGBX4eunycHqa3hWQXrwmeYbRi5rYnHcuzaeQRWayTFZ9G3jqL6hatQ5LYFuJRxvSgxxb4yZcpg3759aNq0qWK/UmNmZiaaN2+OlJQUpW7ptsu4ceMU+9hIAiRAAiRAAiRAAiRgWwI0tNiWP2cnARIgAYsTUIrHYitXIV2bFUaRbpp4LZf+fGTICKnVAgu6jNElbtV2pXgs7dq1w/bt2w1ax6JFi/D6668bJFtQ6OLFiwgPD5eMNPnt3t7emDt3LoYOHZrfxG8SIAESIAESIAESIAE7I0BDi529EC6HBEiABNQkoOQqNDowDEG+/mpOo4quX38/iz5ro5GTlyvp+7DlALzRvKsquk1VUthVqG3bthAxbkaMGIFNm/6OAaNLv7hFtGTJEl3dBrWLOCwizXPFihURHBwMDw/zXaAMmphCJEACJEACJEACJEACJhGgocUkbBxEAiRAAvZNQNxiEVlrduzYIS9UDVeh7JwcbD7/X5y4cQHnb11BuVJlEFD1KXSv1woepUrLc5la+e7oz4jaFSsNdylREv/uMRGB1Ruaqs7kceIWi8hcVDAeizCyCK6ijBkzBp9++qlU1/UvEax2//79EK5DLCRAAiRAAiRAAiRAAs5DgIYW53nX3CkJkICTEFByFZrTbjj6NAo2i8Cmswcwc+8KXLxz9TE9nm5lENYgGKMDe6O8Jl2yOWX05i+QeGavpKKKhw/Wa+K1VPQob45Ko8YquQoJNyFxOyi/nDp1Soq5kpWVld+k9V21alXs2bMHdevW1WrnAwmQAAmQAAmQAAmQQPEnQENL8X/H3CEJkIATERCuKkuXLpV37OtZCXPbDzfbVajgTRNZuUKlYcWa+O7lD80yjNzNeoCe8ZNw9tb/pBmCqvtjWfcPUbJkSYUZ1W2K3BqD1ad2yUrFLRZxM6igkSW/c9myZVLslezs7Pwm6btevXpYu3YtGjdurNXOBxIgARIgARIgARIgAecgQEOLc7xn7pIESKCYE0hNTZWyCqntKiSwbTy7HyM3faZFsK53dTzl44vTN9Nx/vZlrb7a5atpXH4m4IlyFbTajXn4TaO3Z/xk3M/JlIaNCuiBsUHhxqgwSjb9zjUII4suVyFdykRWoJiYGBw7dgxeXl4IDQ2V3kPp0ua7Uemak+0kQAIkQAIkQAIkQAL2TYCGFvt+P1wdCZAACegloOQqNPrZ3ho3njC9Yw0RCFkeKd8ucS3pgo87jMDLmpgsoojUzDvSkvHelq9wO+uurE6NeDA/nN6NMVu+lnUu7hKJF2s1k5/Vqii5CokAtuJ2EAsJkAAJkAAJkAAJkAAJGEuAhhZjiVGeBEiABOyIgHBriY6O1lqRmqmb//u/k+j3wzRZ/6y2Q9CvcXv5Ob+Scj0N/dZOw5/Z9/ObsLDzWHSoHSA/m1L56D+LsfzEVmlo+VJlsS58Jny9KpmiSnGMCHg7P2mN3Ofn5ydlFVJyFZKFWCEBEiABEiABEiABEiCBIgjQ0FIEHHaRAAmQgD0TEMYAS7gKFdzzF0k/4JMDq6QmD1d3HHp9AUq5uhUUketLft2Iabu/k5/r+dTAhn6zzIqtkpWTjbC1U3D8Wqqkt2mVOljVMwpurq7yPKZWlFI352cVMlUnx5EACZAACZAACZAACZAADS38GSABEiABByOg5CoU1qAN5mpcetQuCw+vx6y9yyW1lT28sX/wlzqnSDi9R3IhKigw58U30Mf/xYJNRtdF/JRucRNx5y/XpNeahGBK8GCj9eQPUHIVioqKkoLe5svwmwRIgARIgARIgARIgARMJUBDi6nkOI4ESIAEbEAgNjYWERERWjOr6SqkpVjzsPL4NkzYsUhqLoES2DZgHvy8nygshtzcXHSP/wgpNy5o9bV7shkWdYvUajPlYcv5gxi24RN56Gchb6FbvZbys6GV+JSdGLd9gZZ44dTNWp18IAESIAESIAESIAESIAEjCdDQYiQwipMACZCArQgouQqJWyw1vCpbbEkHNDFaXikQo6WDX3PEvPQeXFxc5DlFQNz3t36NtZobLYWLiKtyaMgClChRonCX0c9z9q5EzOFEaZxwY0roOw11NZmPDC10FTKUFOVIgARIgARIgARIgATMIUBDizn0OJYESIAErEBAuAqJDDhpaWnybGpk9ZGV6amEr4lG0pXTslRQdX8MeaYzGlXyw7lbl/D1wUTs/d8Jub+GZxWkZ1yVn3/uP8cog4g8sFAlLy8PAxNmyCmYRQyYH/pMRRk390KS2o/CVShy2wJcyrgudwwaNEgKeis3sEICJEACJEACJEACJEACKhGgoUUlkFRDAiRAApYgoBSPRQ1XoQu3f8ecfd9j1otD4enuUeTShaFiYMJMPNT8o6885e2Lue2HodeaKFl0tiZOS18z47TkK7t27xa6fj8B1+/flpp61nsBn4SMzO9+7FspHgtdhR7DxAYSIAESIAESIAESIAEVCdDQoiJMqiIBEiABNQkouQqNDgxDkK+/WdNsPpeEyK0LkJF9D51qP4uYzu/p1ffTmX14d8tXyMnL1Snr5/UElveYgCfKVUDAouG4/Vfw2sFNQjE5+DWd44ztEMaTf/w4E3kalyVRYruNQ/CTzzymRslVSMS4qVWr1mOybCABEiABEiABEiABEiABtQjQ0KIWSeohARIgAZUIiFssU6ZMsUjq5juZ99Dm23c0Rpb78mo/ajUQrzfrIj/rqggDx/wDq3Hg8imt2y0uJUoivNGLGPt8X1Qo4yUN77R8HM5o3IpEebVxCKLbDpbqav3r64M/SmmnI5/vh2EB3bTU5q9z/+WTcnvbtm0huLKQAAmQAAmQAAmQAAmQgKUJ0NBiacLUTwIkQAJGEFByFZrTbjj6NAo2QkvRohs0t1NGbf5cFhKGkpU9J6FFtfpyW1GVyxk3sOfiUWTkPMCTmngsjSvXkm6xFBzTO34yjlw9KzUNatIJUcGDCnabXRcBeH+7mY76FWtq6aKrkBYOPpAACZAACZAACZAACdiAAA0tNoDOKUmABEhAiYAIeLt06VK5y9ezkibeyXCzXYVkhQUq03Z9hyVHN8otVcv6YH34TPlGitxhYqVgAN2Ip0MxqY16rkO6lhS5NQarT+2Su8UtFnEzSLhgsZAACZAACZAACZAACZCAtQjQ0GIt0pyHBEiABHQQSE1NlbIK7dixQ5awdFahnNwc9NOkbT78+xl5zhdqNMG3L3+gScVcUm4ztdLm29G49OejLD8RTTtjUut/mKpK77j0O9c0MWdi5GxEYgBdhfRiowAJkAAJkAAJkAAJkICFCNDQYiGwVEsCJEAChhBQchUa/WxviKC3li7CBajrqom49SBDnurtFr3w3vN95GdTKg8f5qF+zCDkar5FeatFT4zRxG+xRFFyFYqKipJuslhiPuokARIgARIgARIgARIgAX0EaGjRR4j9JFCMCOTk5CAtLQ3nzp3D5cuXce3atcc+9+7dw/3795GZmYkHDx7In5IlS8LNze2xj5eXFypUqICKFStK36IuPr6+vlJ2Fz8/P1SrVg1iPIs2AeHWEh0drdWoRupmLYV6HnZd+BWD182Rg9uWQAks6RapmMVHjyq5++wflxCyYpz8vKRrJNr6NZOf1aqIwLzzk9ZoqWPqZi0cfLBDAjyH7fClcEkkQAJORYDnsFO9bpttloYWm6HnxCRgOQI3btzAkSNHkJycjJMnT0qGFWFcuXDhAnJzdafntdSKhIGmZs2akuHF398fTZo0kT/ly5e31LR2rVfEDbGmq1BRMAobLLxLe2Jd3xmo7lmxqGE6+xYnb8T0Pd9J/S4lXJA85Bt4lCqtU96UDqXUzcwqZApJjrEUAZ7DliJLvSRAAiRgGAGew4ZxopRlCNDQYhmu1EoCViNw69Yt7N69G/v27ZMMK8LAkp6ebrX5zZ1IGGCaNm2Kli1bolWrVggMDETZsmXNVWu345VchcIatMHcDiNstmbh6vNa4mzsST8mr6FZlbqI6zUZri6ucpuhlUGJ/8QuTVYiUQKqPoX4MO1bO4bqUZJTchUaNGgQYmNjlcTZRgJWIcBz2CqYOQkJkAAJ6CTAc1gnGnbYiAANLTYCz2lJwFQCwuVn586d2LVrl/Q5evQoRKrb4lJcXFwkw4swugQHB6Njx46SK1Jx2J8wBkRERGhtxdquQlqTF3i4ef8OusVNxJW7N+VWU7MFrTi+DXvTj0vpnXvVb212zJf8BcWn7MS47QvyH6Vvugpp4eCDlQjwHLYSaE5DAiRAAjoI8BzWAYbNdkOAhha7eRVcCAkoE8jLy8P+/fuxfv166SNurDhTEbFdxC2X0NBQvPTSS3juuecgjDGOVpRchcQtlhpele1mKwcvn8YrP0zXBLH9273si05vo8tTQTZfo5KrkDBc1apVy+Zr4wKKPwGew8XjHC7+P6ncIQkUXwI8h3kOO9pPNw0tjvbGuF6nICCC0P70009Yu3YtNm7ciOvXH6XJdYrN69mkj48PunfvjvDwcOm2S6lSpfSMsG23cBUaPHiwFIQ4fyWWTt2cP48p34uTN2jiqyyTh5Z1LY0f+05HbZ9qcps1K8JVKHLbAlzK+Pu/AaZutuYbcN65eA7rfveOdg7r3gl7SIAE7JkAz2Hdb4fnsG429tJDQ4u9vAmuw+kJiCC1W7duxfLlyyUDy507d5yeiT4A3t7e6NGjh2R0CQkJkTIi6RtjzX6leCxquApl5mTB3dVyBqY3N/wfNp3/r4yqQYUaWBs2DaXdLDenPFmBilI8FroKFQDEquoEeA4bj9Tez2Hjd8QRJEACtiTAc9h4+jyHjWdmjRE0tFiDMucggSIIiBgr33zzDeLi4nD16tUiJK3XJbIElS5dWv64u7tL2YpEOrzs7Gz5I37TkJWVZb2FFTFTpUqV8Oqrr2LIkCFo3LhxEZLW6VJyFRodGIYgX3+zFhB/4j/45/7vEddzEur4VDdLl67BGZn30H3VJKTduSKLWDtgr5KrkEiHLbiykIDaBHgOq0PU3s5hdXZFLSRAAtYgwHNYHco8h9XhqIYWGlrUoEgdJGAkAWGgWLVqFWJiYvDLL78YOdo0cRHrxNfXF3Xq1EHdunWl2BZVq1ZF5cqVpU+VKlWkby8vL6NioNy9exc3b97U+ly6dElylUlLS5O/r127ZtrCTRgVFBSEoUOHol+/fihXrpwJGkwfIm6xCIOAJVI3F3Trqe+juWXSZyrKuLmbvtgiRqZcT0Pv1VHIzM2WpWa1HYJ+jdvLz5aoiFssIt30/ssnZfV0FZJRsKIiAZ7DKsJUUGXLc1hhOWwiARKwQwI8hy37UngOW5avPu00tOgjxH4SUJFAamoqPvvsMyxdulQyTKioWkuVn58fmjVrJn8aNmyI2rVrQ9xMsVXJyMjA8ePHcezYMYjfWuR/W9IA4+npKd1wGT16tFWCpiq5Cs1pNxx9GgWrgv3q3T/QVZMZ6Mb925K+3g1aY16HN1XRraRE3J4Z95+Fclepkm5YEzYF/pVryW1qVpRchZYsWSLFuFFzHupybgI8h4v3OezcP93cPQk4BgGewzyHHeMn1bxV0tBiHj+OJgGDCIhMQXPmzJHcg4TvqZrFw8MDLVu2RJs2baRP8+bNIQJkOUoRf9iKWz3is3fvXiQnJ0tuSmquX2Qp6t27N8aMGQNh3bdEEQFvhQEtv/h6VsLc9sPNdhXK15f/LdImv5o4C3l/pfSeqbll8ooFb5mM2/YN4k/uyJ8eNb2qILHvDHi5e8htalQit8Zg9aldsiphLBRZhegqJCNhxUwCPId1Aywu57DuHbKHBEjAHgjwHNb9FngO62bjqD00tDjqm+O6HYKACNw5e/ZsbNq0SbX1ivgprVu3RufOnREcHIyAgAC7CwJrzmaFK9Lu3bslZiLjUkpKijnqHhvbqlUrfPTRRxK/xzpNaBB/MAojiyVchXQt56ukBMw7ECd1P7plEqW5ZVJbl7hZ7Q+ysxC2JgopNy7Ievo1aodZ7YbKz+ZU0u9cgzCy0FXIHIocWxQBnsNF0VHuc7RzWHkXbCUBErAXAjyHjX8TPIeNZ2ZvI2hosbc3wvUUCwK7du3ChAkTJIOBGhsS8VO6dOmCrl27olOnThBxVJylXLx4UUpxLdJdC8OL8OdVo4ibLdHR0RJPU/UpuQqNfrY3RNBbS5aHmtssQ9fPw/YLR6RpanhWwbrw6ZpbJmUtMm3arSt4edVH+DP7Pp57oj4+D30HVcqaf2tKyVUoKipKinFjkY1QqVMR4Dms3uu253NYvV1SEwmQgNoEeA6rR5TnsHosraWJhhZrkeY8TkHg8OHDmDhxIjZs2GD2fitWrIiwsDAMGDBAcgkSwWydvYg4L4mJiVIgYbWMLi+88AKmTp2K9u2NC/IqAt4KQ03Bokbq5oL6iqrffvAnumnitVz687okFlIrAAu6jC1qiFl9m88ewOGrZ/F+YLhRwZJ1TSoC3s5PWqPVzdTNWjj4YCIBtc/hPn36oH///jyH/3of9nQOm/gjwmEkQAIWJsBz2LKAeQ5blq9a2mloUYsk9Tg1gTNnzkg3WOLj4yFuG5haypQpg169eknGFXFzRbgJsSgTEH/IJCQkYNGiRZLbjjncxQyhoaH45JNP4O+vP/2yiBtiTVchZQLAr7+fRZ+10cjJexT3Z3xQfwwL6KZL3G7alVI3i9tBLCRgDgGew+bQM22sLc9h01bMUSRAApYkwHPYknSVdfMcVuZiD600tNjDW+AaHJaA8J+cOXMmPv74Y2RmZpq8j0aNGmH48OEYNGgQvL29TdbjrAPFH+yLFy+WgqdevnzZZAyurq7SexA3VcSNosJFyVUorEEbzO0worCo1Z6/O/ozonbFSvO5lCiJf/eYiMDqDa02vzETKbkKiZ/5WE3QWxYSMJUAz2FTyak7zlrnsLqrpjYSIAE1CPAcVoOi+Tp4DpvPUE0NNLSoSZO6nIrAypUrERkZifT0dJP2LW6riCvpI0aMkILamqSEg7QI5OTkYN26ddLNFOEXbGoRxi4RK+Stt96CML6IIowBERERWiqt6SqkNXGhh9Gbv0Dimb1Sa2UPb6wPn4FKmm97KvEpOzFu+wKtJdFVSAsHH0wgwHPYBGgWHmLJc9jCS6d6EiABEwjwHDYBmoWH8By2MGAD1dPQYiAoipFAPgGRBUcYR3bu3JnfZNR32bJl8cYbb0iphmvWrGnUWAobTiApKUm6aSTcucQfOKaUZ555BgsXLpQMaoVdhcQtlhpelU1Rq/qYe1kP0CN+Es7e+p+kO6i6P5Z1/xD2EtdHyVVIGK5q1aqlOgsqdA4CPIcd4z2reQ4/99xzjrFprpIEnIQAz2HHeNE8h233nmhosR17zuxgBMRf1ufOnSsFQDXFTahy5cp4++23MWrUKFSoUMHBdu+4yxVR2kXslZiYGFUyFj1frSFW9Jpkd0B+u5mOnvGTcT/nkQvbqIAeGBsUbtN1ClehyG0LcCnjUcBesZi2bduC8Vhs+locenKew475+sw9h4XR+J133sH06dMhflnBQgIkYDsCPIdtx96cmXkOm0PPtLE0tJjGjaOcjEBycjJef/11HDp0yOid+/j44IMPPpCMLB4eHkaP5wB1CIjYLSKejrihYoqhTKxiXFA/jAjors6CLKAl4fQevLflK1nzoi7vo12t5vKzNStK8VjoKmTNN1D85uI57Pjv1Nxz+Mknn8TXX3+NLl26OD4M7oAEHJAAz2EHfGmFlsxzuBAQCz7S0GJBuFTt+ASE1X7atGmYNWsWsrOzjdqQ+K3bu+++K7mdlC9f3qixFLYcARFTRxhc/vWvfxn9TsWq+vu3x8QX/gEPN3ejF3niWioysu7jed9GRo81dMCkHYvx7+NbJfHypcoiUROvxdouTkquQiIdtsjWxEICxhLgOWwsMfuXN/ccHjZsmHRTkbdb7P9dc4XFgwDP4eLxHgvugudwQRqWqdPQYhmu1FoMCKSmpqJ///7Yt2+fUbtxcXGRYrhMnjwZVapUMWosha1H4LfffsPYsWORmJho9KS1vavh044j0bRKHYPHxp3Yjsk7l0oGmnXhM1Hd8/GsRgYrK0IwKydbSvl87Np5SUqscVXPKLj9FdS3iKFmd4lbLPMPrMb+yydlXXQVklGwYgIBnsMmQHOgIeacw/Xr18eyZcvA2C0O9MK5VIckwHPYIV+bwYvmOWwwKqMFaWgxGhkHOAOB77//Xkrze/v2baO2K/5S+fnnn+Ppp582ahyFbUdgy5YtUmDio0ePGrUIl5IuGP1sb7zZojtEWuWiSuyvmzB197eySLMqdRHXazJcXR5lNJI7VKqk37mGbnETcSfrrqTx1cYhiG47WCXtymqUXIWWLFmCwYMtO6/yathaHAjwHC4Ob9GwPZh6DouscCJD3IcffgjxSw4WEiABdQnwHFaXpz1r4zms/tuhoUV9ptTowATu3r0rBdxbvHixUbuoUaOGFCj3lVdeMWoche2DgPgf9alTp5q0mOerN8Lnnd7WpFPW7R72x/076KoxfFy5e1OeY3CTUEwOfk1+Vruy9fwhvLHhY1nt/JBReLleK/lZzUrk1hisPvV3Om0/Pz8pHTZdhdSk7Dy6eA47z7suuNPc3FwphpYwmty6datgl966+CWH+Ath1apV9cpSgARIQD8BnsP6GRVHCZ7D6r5VGlrU5UltDkzg3Llz6NGjB44dO2bwLpgJwWBUdisojAEFUzdXKO2Jmw8yjFpv1bI++DL0HQQ8UV/nuEOXT6PfD9OR+zBXlvlCY6Dp8lSQ/Kx2Zc7elYg5/Mg1ysPVHQl9p6Guj69q04ibM8LIQlch1ZA6vSKew07/I4ArV65IwePj4+ONglG9enWsWrUKrVpZxqBs1GIoTAIOTIDnsAO/PJWWznNYHZA0tKjDkVocnMDmzZshbqP88ccfBu+kYcOGEDdfWrZsafAYCtoPAZFiuF27dloLEq5AowPDsDX1ECbtXIIrf/59A0VLUOHBVeNKNKHVQAxuGqrQ+6hpcfIGTN+zTO4v61oaP/adjto+1eQ2NSt5eXkYmDBDNoTU86mBtWHR8ChV2uxplFyFxM0gEdNS7WIAAAHASURBVPSWhQRMIcBz2BRqxXeMiJ81cuRIiICNhhY3NzfMmzdPuplq6BjKkQAJ/E2A5/DfLFiDFMeQ57DpPwk0tJjOjiOLCYE5c+ZI/t3iL6WGFOET/v7770t/oXR3Nz7zjCFzUMayBGJjYxEREaE1yfIeExHk6y+33c1+gBkao8hKTRBbY0p3jXvO7PbD4O7ipjjszQ3/h03n/yv3NahQA2vCpqKMCVmMZCVFVK7du4Wu30/A9fuP4g31rPcCPgkZWcQI/V0i4O38pDVagkzdrIWDD0YS4DlsJDAnEc/IyJCCli9cuNCoHQ8YMACLFi1C6dLmG5WNmpjCJODABHgOO/DLs+DSeQ6bDpeGFtPZcaSDE8jMzJQCda5cudLgndSpUwcrVqxAYGCgwWMoaF8ECrsKPV+tIVb0mqRzkT+fP4jx2xfiDyPciZpXfQrfdBmLimW8HtObkXkP3VdNQtqdK3JfWIM2mNthhPysdkXcPvnHjzOR9/ChpHp6cAQGNOlo0jRKqZvF7SAWEjCFAM9hU6g535iEhAQMHToU169fN3jzQUFBEOOY/c9gZBR0UgI8h530xRu5bZ7DRgLTiP8/AAAA///v0aVnAABAAElEQVTsnQn8FVP/x7/taadFmxak9bGmEq0kRGkRhafyoBBZqn89KAlRkgj10FM9KEqJipBS0YaEtFjb933f73/O1Z27zcy9d+4s33PmM8/Lc2fOOXPO97y/cz/n9v3NOSdHSDsIBwgEjMDu3bupVatWNH/+/LR73qFDBxo5ciQVKVIk7XtQkA+Br776ijp37kxr167VjWpbtQENubqbfm12sv3QHuo9+z80d92PZkWS0s8pUpJGt+hF559ZLilv5Y611GZyfzp68rieN6jRv+jWmk31a6dPRn4/jQYvfi9cbZ6cuWlym/5Uq9S5aTezaOMK6vjRs3HlO3XqRGPHjo1LwwUIpEsAOpwuKZQTBLZs2UJdunShmTNnpg2kcuXKNGPGDKpevXra96AgCASJAHQ4SN7Ovq/Q4cwY5kCgJTNgKC0/gXXr1tF1111HK1euTKszBQsWpBEjRoT/kZ7WDSjEjoAIsjRp0iTOrvGtHqd65WrEpaW6GPPTTBq0YDydOHUyVdFwfpF8BeiN6x6mK8rVTCr/wYqvqPdXb+rpeXPmoSltn6IaJSvpaU6eiJj6vZ8MpS/X/hCutnzhkjS9/bNUJF/BlM18sHIe9Z4zKq7cnDlzqHHjxnFpuACBdAlAh9MlhXKJBIYPH069evWi48ejgerEMrHXxYoVo8mTJ1PTpu4FsmPbwzkIyEIAOiyLp/jZCR1OzycItKTHCaUUIbBs2TK64YYbaPPmzWn1qFq1ajR16lSqWrVqWuVRiB8BEQyYO3eubljdMtXCb7GU1944sXN8v/lX6v75K7T14O60bs+dMxe9qL0107JK/aTy4i2ZD1ZFbTunSCmadosIfhRIKutEwr4jB+jGSU/Qhv3bw9VdXfES+s8Nj1GOHDlMq+/w4UBavHmVnt+oUaPwWyyVKlXS03ACApkQgA5nQgtljQh888031L59e9q0aZNRdlJanjx5wrrVsWPHpDwkgEAQCUCHg+h1Z/sMHU7NE4GW1IxQQhECYppQixYtaP/+/Wn1qGXLlvT2229jqlBatPgVEm+xPPXUU0lBlgmtn8zK2L1asKLbzJdp8ab03ogSjeXUAhkDG91FHWrE/0X1yPFj1HZKf1q5c51uU7NKl9GoGx7Vr50+Wb7tT63NAXT81Ilw1a806043VrkiqRkxVajX7FG0cf8OPU8EWQRXHCBglwB02C453JdIYOvWreFgy7x58xKzDK9z5sxJb7zxBt17772G+UgEgaAQgA4HxdPu9xM6bM0YgRZrPshVhMDs2bPppptuokOHDqXskfjrfr9+/ah///6Wf+lPWREK+EbAqalCiR04fPwo3a6tU7Js2x+JWWld963fke65uEVc2bV7ttBN2lsmB44f1tP7XqGVuyS+nJ7pwMm7y2dRv3ljqftlN9PDddpoz3nOuFqN1mPBVKE4RLiwQQA6bAMabrEkcOLECerduzcNGzbMslxs5pAhQ6hnz56xSTgHgcAQgA4HxtWedRQ6bI4agRZzNshRhMBnn31GN998Mx05ciRljwoUKEDvvvtuuHzKwijAkoBY8HbcuHG6bWKqUI86bTNej0WvIOZk6KKJ9NrSj/SUHJSDyhYuHvfWh55pcvJQ7TZacKNtXO5nfyyh+z4brqfl0gIfYg2Zy8tW09OcPlmlvUVTrXiFpGqNpgqJN4OwHksSKiRkQAA6nAEsFM2YwKhRo6h79+4kfvCnc4g/pgwYMCCdoigDAsoQgA4r40qWHYEOJ7sFgZZkJkhRiMC0adPolltuoaNHj6bsVcmS2uKg06dTnTp1UpZFAX4E1qxZE16wOHE9lmynCkV6Ggqdoiv/14O2HNwVTipZoBhNaTOAyhUpQXPX/qgFSl6mIyeORYpbfna7tCX1rndrXJlnvn6H/vvTp3paqQJn0gxtsdriBYrqaW6eiLdYhi+ZnLQeC6YKuUk9GHVDh4PhZ797Kf4RKcb7dKcH9+nThwYNGuS32WgfBDwhAB32BHPgG4EOxz8CCLTE88CVQgQ++eST8Jsp6exMcP7554e3jDzvvPMUIhCcrhhNFRrcpCu1q97QMQh/7t5E10zopdf3RvMe1Py8aFBu9c711GXGYNpy4O9AjF7Q5ES81SLebokcJ0+epNumDqTvt/4WSaIrytagd1r1TZraoxdw6MRoqtCYMWOw05ZDfINcDXQ4yN73vu8///xzeC229evXp9W4eKtFvN2CAwRUJgAdVtm7/PoGHY76BIGWKAucKURALPTVvHlzOnw4uu6FWffq1q1LItIv3mjBIR8BMa0l9hXwcoVL0JCmXR2ZKhRLY8X2v8I79kTS5t3xMiXuXLRF24nonx8Pot93b4wUs/xMXLNFBGlaTPw37T4SXbBZrKPyaN1bLOvJJrPXlyNp8ur5ehUVK1YM786BqUI6EpzYJAAdtgkOt2VFYOPGjdSsWTNauXJlWvVgzZa0MKGQpASgw5I6TnKzocN/OxCBFskfZJifTGDp0qXUpEkT2rdvX3JmQoooJ4IsBQsWTMjBpQwERDDAralCif3/ccvv1FrbIShyzOk4lCoWKx251D93Hd5Hnaa9QL/sWKOnWZ0MaNiZ7qzVTC/yzfqf6Z/a/SHtf5Hjvzf0osaVLo5cOvK5Yd92EkGWxK2bMVXIEbyBrwQ6HPhHwFcA27dvD/+x5YcffkjLjhEjRtADDzyQVlkUAgFZCECHZfGUmnZCh4kQaFHz2Q5sr1atWkUNGzYk8eVOdVx77bU0depUOuOMM1IVRT4zAkZThXpo03DEorduHWIr5otG36NvizywYRe6vdY1hs3tP3aIukwfTEu3RKcBGRbUEsWCui9dcx+1uuBKvcgr306hl7+drF8Xy1dIW6/lOSqjLbzrxGE0VUjssiXeDsIBAtkSgA5nSxD3O0Fg7969dMMNN9CCBQtSVid2G3z77bfp9ttvT1kWBUBABgLQYRm8pL6NQddhBFrUf8YD08NNmzZRvXr1KJ252S1atKDJkydTvnz5AsNHlY6OHTuWunTpEtcdsUNPvXI14tLcuOg49RlatOnv19EvKnUefdjuadNmDmlbQd+lBVuWbF5lWiaSkSdnbhp3Ux+tD9XDSWLh3c7avfO1t1vE0azSpTTk6vuoSL4C4ets/k8seDv8uylxVWDr5jgcuMiCAHQ4C3i41XECBw8epFatWtGXX36Zsu68efOSWMgR0yZTokIB5gSgw8wdFDDzgqzDCLQE7GFXtbuHDh0Kv8ny/fffp+yi2Op54sSJlCdPnpRlUYAXAbemCu05vJ9+1dZVyaF1t2aJSlQgb37Djr/23Uc0dMlEPW/6Lc9QjZKV9evEk8PaLkStJj2urdmyKTEr6VoEUSa1eYqqnFkunCdsavnBk3RHzWvo3ktvTCpvJ8Fo62ZMFbJDEvcYEYAOG1FBmt8ExHN5/fXX07x581KaUqxYMfrmm2+oRg33A/cpjUEBELBBADpsAxpucZ1AUHUYgRbXHy004DaBU6dOUbt27ejDDz9M2ZRYIE9s4Sz+coVDHgIiGNC5c2dau3atbnTbqg20tzy66dd2Ttbv3UYvLHqPPvljsX67mMpzXrGy1L5GI+r8j+aUO1duPS9xQdxaWpBlatunKWfOnHqZxJODx49o20I/RPuOHkzMSroWC/lOaTuAxNbR4jh+4gTlyR1tP+mGNBOMpgp16tQpvOhtmlWgGAhYEoAOW+JBps8ExJbP11xzDS1ZsiSlJWJB8EWLFlHp0slrcKW8GQVAwEcC0GEf4aPplASCqMMItKR8LFCAO4HevXuT2DUg1XHFFVfQF198gYVvU4Fili+CLGLR4tjDialCYjHYdlMG0LZDu2OrjjuvVLQ09bvyzriFaB/67FWa/scivVzfKzrSPZe00K+NTuat+0mbCvSCUVZSmgjeTGzdj/LndiYY+MHKedR7zqi4djBVKA4HLhwgAB12ACKqcJXA7t27qWnTprRs2bKU7Vx22WUkdmvBGm4pUaEAIwLQYUbOgCmGBIKmwwi0GD4GSJSFwH//+1/617/+ldLcCy+8kMQ/2M8888yUZVGADwGjqULiLZbEbZUztVisgXLthP+jP/ZsSuvW68+tQ8ObPRB+u2WrtgXzNeN70cETR8L35suVhz5qN5AuKH6OZV2N3nmE1u/bZlkmknnzBVeFF8iNXNv9NJoqJNa4qVSpkt0qcR8IJBGADichQQJTAmKh/AYNGtDq1atTWnjHHXeEF8hNWRAFQIABAegwAyfAhLQIBEmHEWhJ65FAIY4ExHosV155JR09etTSvHPPPTe868DZZ59tWQ6ZfAiIoJjYAcetrZvna2+YdIp5w6ROmar0cJ12VL5wSZqzdhm9v3IOrdgRnaYkyDSvfDm91vyh8DSh0cs+oWcXvKsDK1PwLJqsTfkpXegsPS3xZNjiSfTq91MTk02vn7zqTupy4XWm+VYZYqpQr9mjaOP+HXqxRo0ahYONegJOQMABAtBhByCiCk8J/PXXX+GF87dtSx34fvnll6lHjx6e2ofGQCBTAtDhTImhvN8E/vzzTxIzDVTXYQRa/H7S0L4tAuLVs0svvZTWrFljeX/RokVp4cKFVL3637u5WBZGJgsCIsjixlSh2M71mfMmTVz5VTipaN6C9HnHwfq6KCLxxMkT9PzC9+i/P30aLhP5v9baFswvam/UnDoV0haqfYJW7lwXyaKqZ5Wn91v3N90ZaOKKOdTnq7fC5cU6MCHtf1ZHrpy56N2W/6Y6ZatZFUvKM1qPBVOFkjAhwQEC0GEHIKIKXwiItVrEOCMWaLQ6cmtrZIkdixo2bGhVDHkg4BsB6LBv6NFwlgSCoMMItGT5kOB27wmEQiG66aabaMaMGZaNix9In376aXgBPMuCyGRDQCx4O27cON2eumWqUY86bR3furnrp8Poi7++C7djtajuTG2R3Ac/H0EntalGkaNjjavpmcZ30eb9O6n9h0/TxgPRt0bEls8jrn2IyhUpESmufw7WAjcjf5gWvi5TsDhtPbSLTmnPstVRokBR+viWZ6l0wfSmvBlNFRJvBokpWDhAwEkC0GEnaaIuPwh89NFH1KZNGy1wHtV3IzvE27DijYFy5f7eEc6oDNJAwA8C0GE/qKNNJwmorsMItDj5tKAuTwg8++yz9MQTT6Rsa9SoUXTvvfemLIcC/hMQbyaJIItbU4USe9hp2vM0f/3P4eQ2Va/S3lK5L7GIfj1pxVf0f1+9qV+Lk7dueIyaVrqU1u3dqgVbBsYtqFtEe0PmhSZ3U/Pz6uj3iHKtJj1Je4/9vfPQzVWupFqlzqVnvnlbL2N2It5oGd/qCcqZI4dZERJvsQxfMpkWb16ll8FUIR0FTlwgAB12ASqq9JyAmBr0yCOPpGxXvNEi3gy02mEuZSUoAAIOE4AOOwwU1flCQGUdRqDFl0cKjdol8PXXX5P4B2Sqv0CJH04vvfSS3WZwn4cEjKYKDW7SldpVd+9V7ce/Gk0TVswO9/JCLeAxVVvM1up45dsp9PK3k/Ui5QuXoi86vED5tJ2Bftu1gW6d+gztObJfzxcnYseiRudcSHuOHqBZfy3VF88Vee+27EtXlK9Fj856g6b++rVIsjwerXMLda99s2EZo6lCY8aMCQeuDG9AIghkSQA6nCVA3M6KwJ133knvvPNOSpsGDhyY1h95UlaEAiDgAAHosAMQUQUbAqrqMAItbB4xGJKKgNh//aKLLiKxkJ3VIXYUmD17NompQzh4ExDTWgYMGKAbWa5wCRrStKtjU4WOnjhGP2//i2pri93GHp/+voge+PxVPenz2wbT+WdZvxZ+94whNFtbKDdyPHhZa3qkbrvw5a8715MI3ny/9bdItumneINmSNNulEN7Q+WIZl+7KU8lLbybeLNYr0Vs+XzJ2efHZfX6ciRNXj1fT6tYsSKJXYUwVUhHghOHCUCHHQaK6nwncPjwYapfv37KbZ/Fbwqx5XO9evV8txkGBJsAdDjY/lex96rqMAItKj6tivbprrvuIvGXequjdOnStHTpUipTpoxVMeQxICCCAW5NFVq25Tf6YNV8mvbbQtp//JC2bsqDdMP50R/He48coEv/201fkPbei2+kPvU7WFLZom3rfO2E3nTg+OFwuTw5c9MXWoCmQrG/d7MSc6XF2yliEd3th/YY1iWmDIlAUq5cufT89fu2UyttYd09mk1WR4UipWjGrYOoYJ78tEG7RwRZMFXIihjy3CAAHXaDKur0m4D4A07t2rVp165dlqaIXQyXLVtGhQsXtiyHTBBwkwB02E26qNsvAirqMAItfj1NaDcjAh9++GF40Tqrm8Q/XsXuAGJqEQ6+BIymCvWo3Sa86G02Vu8/eojeWT6LJq+aR3/u3RxXVcHc+bVFZZ+hymdGA3A3TXqcftm+Jlwuf668NPO256lCUestwCf8Mpsenztarzv2rZZI4sFjR7QAz4LwmzS/7FhDObUdhqpoOxLdWr0xXVrmgkixuM952nbTXaYP1gM/cZkxF22qNqB21RpSx4+ejUkl6t+/P4m3g3CAgJsEoMNu0kXdfhP47LPP6PrrrycRNLc6/vnPf8Yt2m5VFnkg4DQB6LDTRFEfJwKq6TACLZyeLthiSGDr1q1Uq1Yt2rEjuruLUcEXXniBevfubZSFNCYExLSWLl26xFkzvtXjWU8V+vzP76j//LG09eDuuLojF2Ih2fZaoOO5xndHkuijX7+hR2a9rl/XK1uDxt/8uH5tdCJ+gF89viet2bslnC2m8kxuG536ZHRPumnPL5xA//lherrF9XLYullHgRMXCUCHXYSLqtkQEL8hhgwZktIesevhDTfckLIcCoCAkwSgw07SRF1cCaikwwi0cH3KYJdO4NZbb6WJEyfq10YnTZs2pVmzZoXXvTDKR5r/BNyaKjRs8Qf06vcfJnXw/GLltJ2BLqG62q49l2v/Fcp7RlKZjtoitos2rdTTn2v0L7qtZlP92ujkte8+oqFL/n4eRQBn6V3/oSL5ChgVzSjtxKmT1GZyP1p++i2bVDdjV6FUhJDvJAHosJM0URdXAsePHw+vwSKmIFsd55xzDv3yyy+YQmQFCXmOE4AOO44UFTIkoJIOI9DC8AGDSVECn3zyCbVo0SKaYHBWrFgx+umnn0j88MHBj4CYKtS5c2dau3atblxbbQrMkKu76dd2T95aNoOeWzA+7vazC55Jj9VpT22rXaUF3nLG5SVeiB2Dbnj/33QydDKclTdnHnqnVd+kxXNj79u8fydd+fZDetLI6x6ha8+trV9nc/Lnns3UUpvSdOj4UctqqlatSqtWRbdytiyMTBDIkgB0OEuAuF0qAqtXr6bLLruMDh48aGn3/fffT6+99pplGWSCgFMEoMNOkUQ9MhBQRYcRaJHhaQuojeJHTs2aNeP+gW6EYvz48dShg/VCpkb3Ic19AkbrsTgxVUhY/r62XkrfmPVSxNslD9VuS/de3ILy58mbducGaYGaN7WATeQomrcgTWrT33IXomojO9OxU8fDt7zQ+B66pUbjyO1Zf76/Yg71/eoty3rEjkXz5s2jq666yrIcMkEgWwLQ4WwJ4n4ZCbz11lt0zz33WJoOHbbEg0wHCUCHHYSJqqQhoIIOI9AizeMWPEMfe+wxeumllyw7LgIsItCCgx8Bo6lCPeq0zXo9FtHTBRuW050fPx+3eKzdgMeR48eo8/Tnacnm1TrEcoVK0Lst/63vKKRnaCdinZYa/+lCR0/+HWgZ3uwBuqlK/dgiWZ+LhXHnrvvRsp5q1aqF3+TKkyePZTlkgkA2BKDD2dDDvTITEAvjzpw507IL0GFLPMh0iAB02CGQqEY6ArLrMAIt0j1ywTBYbJ8otlo8efLvKR1GvS5VqhStXLmSzjrrLKNspPlEQLzFInbAcWvrZtGtztNeoHnrf9J72PeKjnTPJdZTzPTCBicHjh2m27WdfH7e/peeK3YqGti4C918QfxbI+9qOxs9OS+6zfh7Nz9JdbQ1YJw6Fm1cQY/OeoO2HLTeZlS0JwKRjzzyiFNNox4QiCMAHY7DgYuAERDTXcVC/AcOHLDsOXTYEg8ysyQAHc4SIG6XmoDsOoxAi9SPn7rGN2nShMQ/2K2Od999lzp27GhVBHkeEzCaKjS4SVdqV72hY5as37uNGr/7qP42S5uqV9GLV9+Xdf17jxyg26YOpNXaui2xR9OKF9N1lS+nqsXPoa+0bZhH/TCNDp34ew0V8ebLvDtfdmwRZhFkSdy6OdaWxPOiRYvSb7/9RiVLlkzMwjUIZE0AOpw1QlQgOYFXX32VHnoouiaXUXegw0ZUkOYUAeiwUyRRj6wEZNZhBFpkfeoUtnvq1KnUunVryx42b9485Su9lhUg03ECYsHbcePG6fWWK1yChjTt6shUIb1S7WTwwvdopBbsiBxT2jxFF5euErnM6nP7oT30rxkvajv/RN9ssarwWW2Xog4pdimyuj82r9eXI2ny6vl6UsOGDWnnzp3hnS30RIOTu+++m958802DHCSBgH0C0GH77HCnOgROnToVXgtr4cKFlp2CDlviQaZNAtBhm+Bwm1IEZNZhBFqUehTl74zY0qtGjRr0+++/m3bmjDPOCP/js3LlyqZlkOEdgTVr1oR3FXJzqlCkN2J9lDpjH6Cdh/eGkyoVLU2zbx8ayXbkMxQ6Re+v+IoGL55Ie47sN63z/ktbUs96t5rmp5uxYd92EkGWxZujuwhFtm5esWIFXXTRRXTixAnT6nLmzEnffvstXXrppaZlkAECmRCADmdCC2VVJwAdVt3DPPsHHebpF1jlDwFZdRiBFn+eF7RqQmDYsGH06KOPmuT+nTxo0CDq06ePZRlkekPAaKpQj9ptSCx668Yh3jipqwVaIseDl7WmR+q2i1w6+rnv6EEa8d1UmqdNF/pjzyZtC+hTlEP7X62SleixurdQwwoXZd2e0VShMWPGhANXkcoffvhhGj58eOTS8FMsPDxnzhzDPCSCQKYEoMOZEkN51QlAh1X3ML/+QYf5+QQW+UtARh1GoMXfZwatxxDYvXs3nXvuubRnz56Y1PhT8RaLWAA3X7588Rm48pyAWPB2wIABce06sXXz5v07qcQZRSlP7txxdYuLP3dvomsm9NLTs10EV69IO/n090V0daXLKG/u5F18xM5Emw7sIDEdKl/u9LeOjq0/8Xz4ksk0/LspenLFihVp7NixJIImsYf4PlSpUoV27NgRm5x0/sUXX9A111yTlI4EEMiEAHQ4E1ooGxQC0OGgeJpHP8XzJn7v4vcwD3/ACh4EZNRhBFp4PDuwQiPQr18/GjhwoCWLSZMmUbt27rzBYNkwMuMIiGCAG1OFZv31PfX8chS1vuBK6t+wU1yb4uLHLb9T6yn99XSn3p7ZdXgfNXj7Ya3dq+iZxnfp9bt10uHDgYZThczaGzlyJN13n/WCv3Xr1qVFixaZVYF0EEiLAHQ4LUwoFEAC0OEAOt2nLkOHfQKPZtkTkE2HEWhh/0gFw8Bdu3aFo/f79u0z7fBVV11F8+dHFws1LYgM1wgYTRVqW7UBDbm6W1ZtioWuXtTWRIld5PbVZt2pRZUr4updt2crNR4fnVp2z8UtqG/97Heeevabd2n0j5+E23rpmvuStnSOMyKLC6OpQv379w9vh21VrdjmXKzB8tNPP1kVo48//phuuukmyzLIBAEzAtBhMzJIBwEi6DCeAi8IQIe9oIw2ZCUgmw4j0CLrk6aY3U888QQ9++yzpr3KkSMHLVmyhGrXrm1aBhnuEhDTWrp06RLXiBNThcS6Kw999mrcGx5iLZTHr7yd7rro+rj2RECm6qjO2nopJ8PpVc4sTzNvG6Rtr5wzrlwmF6L9htrbLEdPHg/fdm7RMjTr9hczqSKtsh+snEe954yKKyvWVUmcKhRXIOZi5syZdP318TxissOnYuHcH374wbHtphPrx7XaBKDDavsXvcueAHQ4e4aowZoAdNiaD3JBQCYdRqAFz6vvBMQWtmIu6v795ju83HrrrfTee+/5bmtQDTCaKiTeYilfpGRWSMQbHg99PoJ2nN5FSFR21hlF6JVmD1D98rUM624/ZQB9t+VXPe8V7c2XGxPefNEzU5yIXYwe+eI1+vj36Nadrzd/iK47r26KOzPLznSqkFnt4q2ub775xiw7nD558mRq06aNZRlkgkAiAehwIhFcg4AxAeiwMRekZk8AOpw9Q9QQDAKy6DACLcF4Hln38vHHH6fnnnvO1Eaxfe3y5cupevXqpmWQ4Q4BMVWoc+fOtHbtWr2BumWq0YTWT+rXdk5EgGPk0mk0dMlEOqWdR47apS+gV699kM4udFYkKenz/V9mU9+5o/X084uVo886PG/rrZYB88bRuOWf63U1qXAxjb4xutiunmHzRASSes0eRRv3Rxey7dSpU3jRWztVGk3dSqynXr16tHBhNHCUmI9rEDAiAB02ooI0EEgmAB1OZoIUZwhAh53hiFrUJyCLDiPQov6zyLqHBw8epHPOOYfEThdmR8eOHendd981y0a6SwSMRMyJqUL7jhygR798g2avXRZn+d0X3UD/V+82ypUrV1x64sWBY4epybuP0c6Yt2DurNmMnmr4z4yCLYMXvhe3Jkz+XHnp8w6Ds35LJ2Kv0XosmUwVitST+Cl2Fvryyy8Tk+OuxVpGItqPAwTSIQAdTocSyoBAlAB0OMoCZ84QgA47wxG1BIeADDqMQEtwnkeWPX3ttdeoe/fupraJt1lWrFhBVatWNS2DDOcJGE0V6lGnLdUrVyOrxpZv+5PumzmcNmpbJUeOwnnO0BbT7UrXnnt5JCnl57TfFlAPbcpP7HH9uXVo2DX3G27PHFtOBGqGLZ5EY37+TE/OkzM3jdDepGl2rjNrABlNFRJr3FSqVElv0+6JeFulfv36lre3bNmSPvroI8syyASBCAHocIQEPkEgPQLQ4fQ4oVT6BKDD6bNCSRAQBGTQYQRa8Kz6RiC8sKkWQPn9999Nbbjjjjvo7bffNs1HhrMExFssTz31lCtbN3/06zfUe/Z/6PipE7rR1YtXoDeaP0wVip2tp5mdHD1xjPLlzqtn99DWdpkWs7aKyLhcm3rU9dKb6Kry/0gKuIjnbeLKr7TpSh/EvQ0j3mQZdf0j1KDChXrddk/EWyzDl0yOW9i3UaNGJLg6eSQGwhLrFotHiwBltWrVErNwDQJxBKDDcThwAQJpE4AOp40KBVMQgA6nAIRsEDAhwF2HEWgxcRyS3Scg/uJ+8803Wzb0888/U61axouiWt6IzIwJGE0VGtykK7Wr3jDjuoxu+HbTKur40bPajkGn9GzxBkqrC67Ur81Ovl7/Ez0yayS92PRealTx4nAxscVb989fpc/++jbptkLaWzJNtHI1SlSkrQd206pd62jljnW099jBuLIFc+ent1r0pLrlsl//x62pQnEGn76YPn16ym2c7733Xho1Kn6XI6O6kBZsAtDhYPsfvbdPADpsnx3ujCcAHY7ngSsQSJcAdx1GoCVdT6Kc4wRSRSGvvfZa+uyz6PQOxw1AhToBseDtuHHj9OtyhUvQkKZds54qpFd4+uTNH2bQoIXj9WQREJl2yzNUsVhpPS32JKQFZV759kN65bsPKaT9r1i+QjS9/XNUtnDxcDERbOnz1Zs0efX82NvSOr/07PPp2cZ3U9Xi56RV3qpQry9Hxtkg3mIRbwaJZ9yNQywmXLNmTVq5cqVp9QULFqTNmzdT4cKFTcsgAwSgw3gGQMAeAeiwPW64K5kAdDiZCVJAIB0C3HUYgZZ0vIgyjhMQ/0CsUcN6vQ+xT3rz5s0dbxsVRgmsWbMmvKvQ3Llz9UQndhXSKzM46frJS/TFmu/1HDF9aErbAXHTgkTm7sP76OFZr9P89T/rZcXJs43+RR1qNo1LW6K9LfP01/+jFTuiuyPFFYi5KJa/MPXVFt1tV72RtnhujpiczE837NtOIsiyePMq/WY3pgrplcecjB49mu6+++6YlOTTkSNHUteuXZMzkAICGgHoMB4DEMiOAHQ4O364GzqMZwAEsiXAWYcRaMnWu7jfFoGePXvS0KFDTe8Vf60XWzrjcI+A0VShHrXbkFj01s1j39FDdNOkx2n9vm16M+2qNaLB2rSgyPHDlt+o+2ev0OaDuyJJVDhPgdOL5hovWCvefvl6/XL6/K/vaOGGFbRFu/fQiaPh+8sUPCu8BkvTChfRledcSAXz5tfrtXtiNFVozJgx4cCV3Tozue/o0aNUsaI2NWrrVtPbLrnkElq6dKlpPjKCTQA6HGz/o/fZE4AOZ88w6DVAh4P+BKD/2RLgrMMItGTrXdyfMYHjx49TuXLlaPv27ab3vvnmmyn/Wm96MzJSEhDTWgYMGBBXzomtm+MqtLhYsX0NtZn8FB07dVwvFVkP5r8/zqRBC8Zra7mc1PPEWiuvN+9BFYqmXjRXv0k7OXz8KOXLlYfE7lVOHmLB2+HfTdGrFAEPsauQeP3Xy6NPnz70wgsvWDb57bffUu3axsEpyxuRqTQB6LDS7kXnPCQAHfYQtmJNQYcVcyi64xsBrjqMQItvj0RwG548eTK1a9fOFECRIkXCa0sUKFDAtAwy7BNInAvs9lQhM0vf/2U29Z07Ws8WAZG6ZavTPG3h29jj1upNaECDTkm7CMWW8fLcaOtmp3cVSrc/f/zxB1WpUoXEHFWz45577qH//Oc/ZtlIDygB6HBAHY9uO04AOuw40sBUCB0OjKvRUZcJcNVhBFpcdjyqTyZwww030KeffpqccTpFrCkh1pbA4SwBo6lCbas20KbjdHO2oQxqS1xENvZWse3ywIZdqK1Dux7F1m3n3GiqUP/+/cOL3tqpz6l7rrnmGvryyy9NqytWrFh4elHevNGtsU0LIyMwBKDDgXE1OuoBAeiwB5AVbAI6rKBT0SXfCHDUYQRafHscgtmwWE+ibNmydOpUdIvfRBJLliyhyy+/PDEZ11kQENNaunTpEleDE1OF9h05QIXzFbS9qKyY2tNmcj9avWtDnG2Vi5ah16/rkdaOQCdOnqDvtTVdnNiiOc6ImIsPVs6j3nPit0qeM2eO51OFYkzST99//3267bbb9GujE7F1ZMuWLY2ykBZAAtDhADodXXaVAHTYVbxKVg4dVtKt6JSPBDjqMAItPj4QQWz69ddfpwceeMC06xdeeCH9+OOPpvnIyJyA0VQh8RZL+SIlM68s5g7xhsdDn4+gO2s1owcvbx2Tk9npX7s3U8tJT9DBE0f0G3vWaU/3126lX5udbNq/U1s0dzj9vP0vmnDzE1S7TFWzorbTOU0VMurEsWPHwsHLnTt3GmWH0zp06EDjx0e31TYtiIxAEIAOB8LN6KSHBKDDHsJWpCnosCKORDfYEOCowwi0sHk8gmFIkyZNyGo9i+HDh9NDDz0UDBgu91Jw7ty5M61dG93y2Kn1WN5aNoOeXziBTmlrg+TQ/vd2yz5Uv3wt2z365PdF1P3zV/X7c+XIRe9rgZNLy1ygpyWezFv3Iz38xeu05+iBcNbZBc+kGe2fo7POKJJY1Na1CCT1mj2KNu7fod/fqVOn8KK3egKTEzHdzmodloIFC9K2bdsI6x4xcZjPZkCHfXYAmleSAHRYSbe61inosGtoUXGACXDTYQRaAvwwet31VK9Jip1hNm7cSKVLl/baNOXaE0EWMYjHHk5MFYrU9+Ki9+n1pR9HLsPBjRm3PEtnFzpLT8v05Ol5/6Oxyz/Tbyutbck8o/2zdGZC4ERs4/zykin06vcf6mXFSf1yNWnEtQ9SsTMKx6XbuTBaj4XLVCGj/syePZuuvvpqoyw9beLEiXTLLbfo1zgJJgHocDD9jl67TwA67D5jVVqADqviSfSDGwFuOoxAC7cnRGF7Ur0m2ahRI8u3XRRG42jXjKYK9ajTluqVq+FYO2KNnTs+fo4WbVqp11m79AU0odUTlCtXLj0tkxOx1kr7D5+mZdv+0G+7SntLZtxN/6etAfP39sy7Du8LT1dasPEXvYw4efCym+lhrY+RcnGZGV4YTRUSa9xUqlQpw5q8K37y5Mnwlunix5vZ0b59exLzV3EEmwB0ONj+R+/dIwAddo+tajVDh1XzKPrDhQA3HUaghcuTEQA7mjZtSuKtALPjtddeo/vvv98sG+kpCIi3WJ566imaO3euXtKpqUJ6hTEnOw7toRYTH6ft2mfkuPuiG+jfV94eucz4U6y5cuOkx2nPkf36vT1qtyERKPpu82p6UJtetPXgbj2vWL5CNOya+6hRxYv1NLsn4i2W4Usm0+LNq/QqZAr+de/encR3yOwQuw9t376dcufObVYE6QEgAB0OgJPRRd8IQId9Qy9Vw9BhqdwFYyUjwEmHEWiR7OGR1dz9+/dT8eLF6fjx44ZdENOGNm3aRGeffbZhPhKtCRhNFRrcpCu1c3lr5CWbVtHtHz1LJ7XpPJFj5HUP07XnXh65zPhTrL3SZfoQCmn/E4dYA6Z99cb0waq5ce1cVOo8eq15DypbuHjGbSTeINtUoUT7xfX8+fOpYcOGRll6mgjCpSqjF8aJcgSgw8q5FB1iRgA6zMwhDM2BDjN0CkxSigAnHUagRalHi29npk6dSq1bm+9MI6a7WL3twrdn/lsmFrwdN26cbki5wiVoSNOujk4V0is3OPnP0un0/KIJek7hPGfQNG29lgrF7AfNhi3+IGkNFr0B7aRzrebamzMdKXeu7N/O6PXlSJq8er5evXiLRbwZJJ5JmQ7xumTJkiVp9+7oGz+J9vfp04cGDRqUmIzrgBCADgfE0eimbwSgw76hl6Zh6LA0roKhkhLgpMMItEj6EMlmdrdu3WjUqFGmZg8dOpQeffRR03xkJBNYs2ZNeFchr6YKJVvwd0pI23mo26cv0RdrlupFqhevQFPaDqB8ufPqaZmciAVv7/z4eUpci6Vg7vz0fJO7qUWVKzKpzrDshn3bSQRZZJ0qZNSp2267zXIdFmyfbkQtOGnQ4eD4Gj31jwB02D/2MrQMHZbBS7BRdgJcdBiBFtmfJEnsr1y5MonAgNmxfPlyqlmzplk20hMIGE0ViqxlklDUk8t9Rw/SjROfoA37t+ntiek+zze5R7/O9EQsfNti4r/1NVkuOLM8vaFNS6p8ZplMq0oqbzRVaMyYMeHAVVJhiRLEm03iDSerY8OGDeGFc63KIE9NAtBhNf2KXvEiAB3m5Q9u1kCHuXkE9qhIgIsOI9Ci4tPFrE+rV6+matWqmVpVvnx5Wr9+vWk+MuIJiGktAwYMiEt0cuvmuIozuPhl21/UZspTdPzUCf2uTNeJOXDsMM3X1mi5/vx64TrEArgdpj5DrS6oTwMb3kVn5Mmn1233RCx4O/y7KfrtFStWJLGrkGxThfQOxJyIXYfKlClD4i0js+Ptt9+mO+64wywb6YoSgA4r6lh0ix0B6DA7l7AxCDrMxhUwRHECXHQYgRbFHzQO3Uu1jd3dd99Nb775JgdT2dsgggF+TxWygjThl9n0+NzRepH8ufLSlHYDqJo2lSjVsWrnOrp/5nBas3cLjb6hJzWpdEn4lt93baTzzyqX6va08o22bhZvB6l01K5dm77//nvTLnXt2pVGjhxpmo8MNQlAh9X0K3rFkwB0mKdf/LYKOuy3B9B+kAhw0GEEWoL0xPnU19tvv53Gjx9v2voHH3xAbdu2Nc1HBpHRVKG2VRvQkKu7scPz2KzX6cNfv9HtqlS0NH18yzNUKO8ZelriyQcr51G/eWPoyMlj4ayieQvS9PbPUbkiJRKL2ro2mirUv3//8KK3tipkfFPPnj1JrHlkdogpemKqHo5gEYAOB8vf6K2/BKDD/vLn2jp0mKtnYJeKBDjoMAItKj5ZzPpkNR81R44ctGPHDjrrrLOYWc3HHDGtpUuXLnEGcZgqFGdQzMXh40ep9Qf96NfdG/TU68+tQ69d10O/jpwcPXGM+s8fRxNXfhVJCn82OOcf9Eqz7lQ0f6G4dDsXIojTe078QsxihysVpgoZ8Ui1owG+c0bU1E+DDqvvY/SQDwHoMB9fcLIEOszJG7BFdQIcdBiBFtWfMp/7t2nTJsuFN8XaLStXrvTZSr7NG00VEm+xlC9Skq/RmmV/7t5ELSc9QYdOHNXtfPKqO6nLhdfp1+v2bKX7PnuZVmpThiJHDspBPS5vQw/Wbk0iIJDtEYSpQomMtm/fTqVKlUpMjrueNm0a3XjjjXFpuFCXAHRYXd+iZzwJQId5+sVPq6DDftJH20EkwEGHEWgJ4pPnYZ/FtKBbbrnFtMW77rqLRo+OrulhWjBgGWKqkNg9Zu3atXrP65apRhNaP6lfcz+Z/ttCeuiLEbqZuXLkooma/ZeUrkKf//mttrXyKNp//LCef2b+wtpbLA/QldrbLNkeYqpQr9mjaOP+HXpVnTp1Ci96qycofFK1alX69ddfTXvYp08fGjRokGk+MtQiAB1Wy5/ojRwEoMNy+MkrK6HDXpFGOyAQJeC3DiPQEvUFzlwg8Oijj9KwYcNMaxZBFhFswRElYLQeC+epQlHLk88GzBtH45Z/rmeUKXgWNat8Gf1v+Rd6mji57Owq9Grzh6h0oeynkBmtx6LyVKE4kKcvxHdKbFdtdlx33XX06aefmmUjXTEC0GHFHIruSEEAOiyFmzwzEjrsGWo0BAI6Ab91GIEW3RU4cYNA4tSXxDbEtCGrrZ8Ty6t+Ld5iEXu/Rw7xFkuPOm2pXrkakSSpPo+fOEHtpz5NP277w9Tuuy68nvpe0YFy5cplWibdDKOpQmI7bFXXYzHjMmrUKOrWzXyhZLEFtHiNGUcwCECHg+Fn9JIXAegwL3/4bQ102G8PoP0gEvBbhxFoCeJT52GfixcvTrt27TJssVixYuE8J9biMGxAwsTEt1kGN+lK7ao3lLAnUZM37ttBN016nPYcPRBN1M4K5TmDhjS9l5qfVycu3c6FeItl+JLJtHjzKv32Ro0akeAZxGPhwoVUv359y65v27aNSpbkvdaPZQeQmTYB6HDaqFAQBBwjAB12DKUSFUGHlXAjOiEZAb91GIEWyR4YmczduHEjlS9f3tTkBg0a0Lx580zzg5oh3sAYMGBAuPvlCpegCa2eYL/4bSpffbVmGd31yRC9WPXiFej15j2oYrHSeprdE6OpQmLajHg7KKjHgQMHqEiRIhQKhUwRzJo1i66++mrTfGSoQQA6rIYf0Qv5CECH5fOZWxZDh90ii3pBwJqA3zqMQIu1f5CbBYGZM2fS9ddfb1rD/fffT6+99pppfpAzYqcQiWDL/DuHS4/jpcWTaMT3U6ldtUY0sGFnypc7b9Z96vXlSJq8er5eT8WKFcML3gZtqpAOIObkvPPOoz///DMmJf506NChJOaM41CbAHRYbf+id7wJQId5+8cr66DDXpFGOyCQTMBPHUagJdkfSHGIwJAhQ6h3796mtb3xxhuW60iY3hiAjDVr1pAIFkR2HWpbtQGJbZ1lPkKhUzR37U/UuNLFWXdjw77t2q5FIzFVyIJk69ataerUqaYlxAJh2PHLFI8yGdBhZVyJjkhIADosodNcMBk67AJUVAkCaRLwU4cRaEnTSSiWOQGxne7//vc/0xu/+eablOtImN4cgAwRbKlcubLe0x6124QXxtUTAnpiNFWof//+JKZc4YgS6NevHw0cODCakHAmAnliNyYcahOADqvtX/SONwHoMG//eGUddNgr0mgHBJIJ+KnDCLQk+wMpDhG48soracGCBaa17d27N7yOhGkBZISnwXTp0iVMQkwhGtK0q7Q7EDnhTrHg7fDvpsRVFbStm+M6b3Ehdq+yWqemQoUK+htTFtUgS3IC0GHJHQjzpSYAHZbafY4ZDx12DCUqAoGMCfipwwi0ZOwu3JAugXLlypluIVuqVCnaunVrulUFupyK67XYcajR1s1B3VUoHX5z584NTz8zK5szZ046cuQI5cmTx6wI0hUgAB1WwInogrQExIL/Ygc8swM6bEZGrXTosFr+RG/kIuCnDiPQItezIo21x44do/z585vuelKnTh1avHixNP3x01AxhUgEW8Q/nMVRt0w1mtD6ST9N8rRto6lC4jXcsWPHemqHbI2tW7eOxOLAVsdvv/1G559/vlUR5ElMADossfNguhIEoMNKuDGrTkCHs8KHm0EgawJ+6jACLVm7DxUYERD/gLvggguMssJp7du3p/fff980HxnxBIK6XssHK+dR7zmj4mBgqlAcDtOLU6dOhYOdx48fNy3z+eefU7NmzUzzkSE3Aeiw3P6D9fITgA7L78NsewAdzpYg7geB7Aj4qcMItGTnO9xtQuCLL76ga6+91iSXwrsRvfDCC6b5yEgmIN7gCNJ6LUZThQSDSpUqJcNBiiEB8bbKH3/8YZgnEsWuQ2L3IRxqEoAOq+lX9EouAtBhufzltLXQYaeJoj4QyJyAXzqMQEvmvsIdaRB466236J577jEt+frrr9N9991nmo8MYwJiZ50BAwaEM8XiuBNaPUHli5Q0Lixpqpgq1Gv2KNq4f4feAzHHHeux6DjSPmnYsCHNnz/ftLwIdlptwW56IzKkIAAdlsJNMFJxAtBhxR2convQ4RSAkA0CHhDwS4cRaPHAuUFsYtCgQfTvf//btOvTpk2jG2+80TQfGcYEVF+vxWg9FkwVMn4W0klt06YNffjhh6ZFe/bsSUOGDDHNR4bcBKDDcvsP1qtBADqshh/t9gI6bJcc7gMB5wj4pcMItDjnQ9QUQ0D8A27o0KExKfGnCxcupHr16sUn4iotAiLY0rhxY31r3h6121CPOm3TupdzIaOpQuINHtFXHPYI3HvvvfTmm2+a3iwWWR4zZoxpPjLkJgAdltt/sF4NAtBhNfxotxfQYbvkcB8IOEfALx1GoMU5H6KmGAJiLRGrXWF+/fVXqlKlSswdOM2EgJhG06RJE/2WwU26UrvqDfVrmU7EWyzDl0ymxZtX6WZjqpCOIquTvn370vPPP29ah3irTLxdhkNNAtBhNf2KXslFADosl7+cthY67DRR1AcCmRPwS4cRaMncV7gjDQI33XQTTZ8+3bTkzp076ayzzjLNR0ZqAiqs12I0VUi8YSHetMCRPQHxVpn4a5rZId4qE2+X4VCTAHRYTb+iV3IRgA7L5S+nrYUOO00U9YFA5gT80mEEWjL3Fe5Ig0D9+vVN/wGXM2dOOnHiBOXIkSONmlDEjICYQiSCLePGjQsXqVumGk1o/aRZcXbpvb4cSZNXRxdqrVixYvgtKEwVcs5VImhltatQtWrVaOXKlc41iJpYEYAOs3IHjAkoAehwQB1/utvQ4WD7H73nQcAvHUaghYf/lbNC/ANu9erVhv0qXrw47dgR3VHGsBAS0yKQuF5L26oNaMjV3dK6169CG/ZtJxFkwVQh9z3w3nvvUYcOHUwbqly5Mv3555+m+ciQmwB0WG7/wXo1CECH1fCj3V5Ah+2Sw30g4BwBv3QYgRbnfIiaYghUqlRJX6w1Jjl8WqFCBdO8xLK4Tk1ApvVajKYK9e/fP/xmTuqeokSmBMSOQ2KldbOjbNmytHHjRrNspEtOADosuQNhvhIEoMNKuNF2J6DDttHhRhBwjIBfOoxAi2MuREWxBMQ/4DZv3hybpJ+LRXDFYrg4nCOQuF7LkKZdqV65Gs414EBNYsHb4d9NiasJWzfH4XD8YsaMGZbbqOPtMseRs6oQOszKHTAmoASgwwF1/OluQ4eD7X/0ngcBv3QYgRYe/lfOihIlSpBY8NboqFmzJi1fvtwoizZs2BDeBWXdunV08uRJwzJINCbw6aef6lwL5T2DOta82rigD6nTfl1Amw/u0ls+55xz6LbbbtOvcWKPQP78+Ul8n8RiewUKFEiqZNasWdSsWbOk9EhCwYIF6cCBA5FLfCpGADqsmEPRHZYEoMMs3cLGKOgwG1fAEIUJsNXhEA4QcIFAoUKFQtr32fC/Sy65xLDFfv36hfLkyWN4j1ldSDdmDC7B4lKqVKmQFmhL+l7NnTvX8vuUO3fupHuQoA4B6HCwdAC676+/ocPqaKeTPYEO+/u9hC4Giz83HSYnxQR1gUCEQN68eU3/gadtKRsppn8+88wzpuUhksESSfjbnr/Fd27RokX6d0qcLFiwIOX3Ku4GXChFADps77sEDQI3u88AdFgpCXWkM9Bh6IldPcF99p4dTjqMqUPaU4zDeQJWWzc3aNCA5s2bpze6e/duKlOmDB09elRPwwkIgEDmBMTW2GLdm8ixcOFCEltLWh3aL0mrbORJTAA6LLHzYLq0BKDD0rrOFcOhw65gRaUgYEmAiw4j0GLpJmTaJWA1sDRs2JC0KQ161dOmTaOWLVvq1zgBARCwRyBnzpx0+PBh0qL54QoQaLHHUZW7oMOqeBL9kIkAdFgmb7lvK3TYfcZoAQQSCXDRYQRaEj2Da0cIZDKwTJgwgTp27OhIu6gEBIJOYM+ePVS0aNEwBgRagv00QIeD7X/03j8C0GH/2HNrGTrMzSOwJygEOOgwAi1Bedo87mcmA4vYgegf//iHxxaiORBQj0ClSpXor7/+0juGQIuOIpAn0OFAuh2d9pkAdNhnBzBrHjrMzCEwJxAE2OiwIys9oRIQSCCgfYtNF+HUpg4llA6Frr76atPyVnUhz5wz2ASPzYgRI+K+W1gMNw5H4C6sNAA6HDx9sHoekOfc8wAdDpzUWnbY6rsFHXbue2fFGXnB48xFh7HrkKU8ItMuAStRMxpYtm/fHqpVqxaCLRYBKiumyAveIJLo865duyZ9XRFoSUISqITEZyT2GjoMzYh9HnDuzPMAHQ6UxKbVWavvFnTYme+dFWPkBY8xJx1GoCUtmUShTAlYCZvRwCLqP3LkSGjAgAGhXLlyIeCCgAuegTSfgdKlS4emTp1q+BVFoMUQS2ASocPB+4Fp5XPkufc8QIcDI6sZd9Tqe4ffw+59J624I09N7hx1GIGWjCUTN6RDwErEzAaWSL3du3fHP7LT/Ee2FWfkqTmQJPp1xowZka9O0icCLUlIApWQ+KzEXkOHg6EPsT7HuXs+hw4HSloz6qzV9w467N530oo78tTkzlGHsRiu9m3D4TyBTBb/Smz9rbfeonvuuScxGdcgAAIGBNavX0/ly5c3yCHCYriGWAKTCB0OjKvRUZ8JQId9dgDj5qHDjJ0D05QiwFGHEWhR6hHj05lsBpbRo0fT3XffzaczsAQEGBPYuHEjlS1b1tBCBFoMsQQmETocGFejoz4TgA777ADGzUOHGTsHpilFgKMOI9Ci1CPGpzMYWPj4ApaoTYDjwKI2cXl6Bx2Wx1ewVG4C0GG5/eem9dBhN+mibhCIEuCowwi0RP2DMwcJYGBxECaqAgELAhwHFgtzkeUhAeiwh7DRVKAJQIcD7X7LzkOHLfEgEwQcI8BRhxFoccy9qCiWAAaWWBo4BwH3CHAcWNzrLWrOhAB0OBNaKAsC9glAh+2zU/1O6LDqHkb/uBDgqMMItHB5OhSzAwOLYg5Fd9gS4DiwsIUVMMOgwwFzOLrrGwHosG/o2TcMHWbvIhioCAGOOoxAiyIPF7duYGDh5hHYoyoBjgOLqqxl6xd0WDaPwV5ZCUCHZfWc+3ZDh91njBZAQBDgqMMItODZdIUABhZXsKJSEEgiwHFgSTISCb4QgA77gh2NBpAAdDiATk+zy9DhNEGhGAhkSYCjDiPQkqVTcbsxAQwsxlyQCgJOE+A4sDjdR9RnjwB02B433AUCmRKADmdKLDjlocPB8TV66i8BjjqMQIu/z4SyrWNgUda16BgzAhwHFmaIAmsOdDiwrkfHPSYAHfYYuETNQYclchZMlZoARx1GoEXqR4qv8RhY+PoGlqlFgOPAohZheXsDHZbXd7Bcxy/2jgAAPthJREFULgLQYbn85aW10GEvaaOtIBPgqMMItAT5iXSx7xhYXISLqkEghgDHgSXGPJz6SAA67CN8NB0oAtDhQLk7o85ChzPChcIgYJsARx1GoMW2O3GjFQEMLFZ0kAcCzhHgOLA41zvUlA0B6HA29HAvCKRPADqcPquglYQOB83j6K9fBDjqMAItfj0NireLgUVxB6N7bAhwHFjYwAm4IdDhgD8A6L5nBKDDnqGWriHosHQug8GSEuCowwi0SPowcTcbAwt3D8E+VQhwHFhUYSt7P6DDsnsQ9stCADosi6e8txM67D1ztBhMAhx1GIGWYD6LrvcaA4vriNEACIQJcBxY4BoeBKDDPPwAK9QnAB1W38d2ewgdtksO94FAZgQ46jACLZn5EKXTJICBJU1QKAYCWRLgOLBk2SXc7hAB6LBDIFENCKQgAB1OASjA2dDhADsfXfeUAEcdRqDF00cgOI1hYAmOr9FTfwlwHFj8JYLWIwSgwxES+AQBdwlAh93lK3Pt0GGZvQfbZSLAUYcRaJHpCZLIVgwsEjkLpkpNgOPAIjVQhYyHDivkTHSFNQHoMGv3+GocdNhX/Gg8QAQ46jACLQF6AL3sKgYWL2mjrSAT4DiwBNkfnPoOHebkDdiiMgHosMreza5v0OHs+OFuEEiXAEcdRqAlXe+hXEYEMLBkhAuFQcA2AY4Di+3O4EZHCUCHHcWJykDAlAB02BRN4DOgw4F/BADAIwIcdRiBFo+cH7RmrAaWK664ghYsWGCKZOTIkXTfffeZ5iMDBEAgSmDNmjVUsWLFaELM2S+//EK1atWKSUk+DYVCyYlIUYIAdFgJN6ITEhCADkvgJJ9MhA77BB7NBo4ASx3WfmTjAAHHCWjfbvGvN8P/ChQoEPrrr78M2zx58mTo+uuvN7zPrD6kG3MGl2Bwefnllw2/SyJx7NixKb9LpjcjQ3oCVhoAHQ6GPlg9A8hz7hmADksvl651wOp7Bh127jtoxRl5weDMUYfxRov27cPhPAGrCL5orVixYtSoUSPKmzev3rg2ypH4C/zKlSv1NJyAAAikJtC4cWMqWbJkXMHdu3fT7Nmz6dSpU3HpiRfie4dDTQLQYTX9il7xJAAd5ukXv62CDvvtAbQfJALcdBiBliA9fR72NdXA4qEpaAoEQMCCAAItFnAkz4IOS+5AmB8YAtBhdV0NHVbXt+iZWgTc0GEEWtR6Rtj0BgMLG1fAEBCwJODGwGLZIDI9IwAd9gw1GgKBrAhAh7PCx/pm6DBr98A4ENAJuKHDCLToeHHiJAEMLE7SRF0g4B4BNwYW96xFzZkQgA5nQgtlQcA/AtBh/9i73TJ02G3CqB8EnCHghg4j0OKMb1BLAgEMLAlAcAkCTAm4MbAw7WrgzIIOB87l6LCkBKDDkjouDbOhw2lAQhEQYEDADR1GoIWBY1U0AQOLil5Fn1Qk4MbAoiInGfsEHZbRa7A5iASgw+p6HTqsrm/RM7UIuKHDCLSo9Yyw6Q0GFjaugCEgYEnAjYHFskFkekYAOuwZajQEAlkRgA5nhY/1zdBh1u6BcSCgE3BDhxFo0fHixEkCGFicpIm6QMA9Am4MLO5Zi5ozIQAdzoQWyoKAfwSgw/6xd7tl6LDbhFE/CDhDwA0dRqDFGd+glgQCGFgSgOASBJgScGNgYdrVwJkFHQ6cy9FhSQlAhyV1XBpmQ4fTgIQiIMCAgBs6jEALA8eqaAIGFhW9ij6pSMCNgUVFTjL2CToso9dgcxAJQIfV9Tp0WF3fomdqEXBDhxFoUesZYdMbDCxsXAFDQMCSgBsDi2WDyPSMAHTYM9RoCASyIgAdzgof65uhw6zdA+NAQCfghg4j0KLjxYmTBDCwOEkTdYGAewTcGFjcsxY1Z0IAOpwJLZQFAf8IQIf9Y+92y9BhtwmjfhBwhoAbOoxAizO+QS0JBDCwJADBJQgwJeDGwMK0q4EzCzocOJejw5ISgA5L6rg0zIYOpwEJRUCAAQE3dBiBFgaOVdEEDCwqehV9UpGAGwOLipxk7BN0WEavweYgEoAOq+t16LC6vkXP1CLghg4j0KLWM8KmNxhY2LgChoCAJQE3BhbLBpHpGQHosGeo0RAIZEUAOpwVPtY3Q4dZuwfGgYBOwA0dRqBFx4sTJwlgYHGSJuoCAfcIuDGwuGctas6EAHQ4E1ooCwL+EYAO+8fe7Zahw24TRv0g4AwBN3QYgRZnfINaEghgYEkAgksQYErAjYGFaVcDZxZ0OHAuR4clJQAdltRxaZgNHU4DEoqAAAMCbugwAi0MHKuiCRhYVPQq+qQiATcGFhU5ydgn6LCMXoPNQSQAHVbX69BhdX2LnqlFwA0dRqBFrWeETW8wsLBxBQwBAUsCbgwslg0i0zMC0GHPUKMhEMiKAHQ4K3ysb4YOs3YPjAMBnYAbOoxAi44XJ04SKFSoEB08eNDJKlEXCICAwwSKFi1Ke/bscbhWVMeFAHSYiydgBwiYE4AOm7NRIQc6rIIX0QfVCbilwwi0qP7k+NS/F198kfr27UsnTpzwyQI0CwIgEEtA/FUt9i9rYlAR39O77rorthjOFSIAHVbImeiKEgSgw0q4MaNOQIczwoXCIOA6AS91GIEW190Z3AaOHDkS91aLuH7jjTfo2WefDS4U9BwEfCAwatQo6ty5M+XNm9eH1tGknwSgw37SR9sgECUAHY6yCNoZdDhoHkd/uRLwWocRaOH6JChsV/ny5Wnjxo0K9xBdAwE+BKpXr04rVqzgYxAsYUEAOszCDTAiIASgwwFxdIbdhA5nCAzFQSALAn7oMAItWTgMt9ojcNFFF9FPP/1k72af76pduzZ169bN0AoxTapnz5504MABw3yrRKt6re6LzROLOA0YMIA2bNgQm2x4njNnTmrYsCFdcMEFdP7551OVKlXCn6VLl6bdu3eHA2GbNm0Kf/7www/0xRdf0I4dOwzrSkysU6dOuG7RJ/Ffvnz5aNmyZfTdd9/RkiVLaObMmZTJglNO11erVi16+OGHE80OX0+aNIk+++wzwzxZEwW/xYsXy2o+7HaJAHQ4GSx0OJlJJMUpHRavbF911VXUqlUruvDCC0n8Q7NkyZK0d+/e8HgzZ84cGj9+PP3666+RppX4hA4r4UbHOwEdTkYKHU5mEklxSodFfaVKlaJbbrmFLrvsMqpYsSJVqFCBihUrRtu2bQtr8ddff01jx46ldevWRZqX/tMXHdb+wYMDBDwloP24CmnfVin/u++++yxZVapUyVa/UtVr2WhMZpMmTSzb137khtq1axf65ZdfYu5KfXry5MmQFiQJDRw4MHTJJZcYtpEnT57Qyy+/nLKyGTNmhIoXL25YR+xz4XR9kbrvuOMOUxuff/75lHZF6pHlUxtYTPuLjOASgA4nj0HQ4WQmTupwixYtQlrQPeWX7vjx46FOnToppcXQ4ZRuD2QB6HCy5kCHk5k4qcPi3ynaHxRD2h+HU37nxG9/bY2hkGhflt+8Vnb6ocPiL8s4QMBTAhhYkkXUi4FF/MhdunRp1r7+6KOPkgRXi4SHFi1alHbdWoQ8VK9evaR6IgLpdH2ResUnAi1puwkFFSYAHYYOe6XDhQsXDk2ZMiXjb1OvXr1Mx4hYTZfh3I8f+BkDxw2eE4AOQ4e90uGITmpvs2f8nIvATK5cuaTXYz90GIGWjB833JAtAQws3g8szz33XLZu0+83CrQsXLhQz0/3RJuKFCpSpIihcDtdX2SAEZ8ItKTrIZRTmQB0GDosnm8vdLhatWq2v0oPPfSQ4RgRq+kynPvxA982dNzoGQHoMHRYPGxe6HBEJ+0EWoSN/fr1k16L/dBhBFrE04PDUwLNmzeX9sua6s0TjlOHnnjiCUf9mxho0eba265fTEWKiH/k0+n6IvVGPoMWaLntttts+wc3qksAOuztD/wg63A2gRZtzbFQ7ty5k8aJiJ7L8gkdVldLs+kZdBg6HHl+vPo9bDfQoq3fGCpYsKDUWuyHDmMxXG2UxuEtgZUrV5L2V6rwYkuJLW/ZsiW8GGtiOpdrLdBCr7/+uqk5lStXpjVr1pjmm2Wkqnfq1Km0fft2s9v19KeffjpuMVztryWkTRci7ZU/vUy2Jx9//HF4IUNRj1hUVyxsXLNmTcNqV69eTdp8exIL0BodBw8epHPPPTe8+JbId7o+oza1QAu9/fbbRln0wgsvUJ8+fQzzOCcKvuXKlUsy8ZxzziHxTJQpUyYpDwnBJgAdTvY/dHhbGIrTOqwFWkg8b4mHNv+fxOK4oj2ro379+qS95WhVhEUedJiFG6QyAjqc7C7osDs6HCEtNsKYO3cu7dy5k1555RUSC5AvX748/BtS/PumQYMGkaJJn9o6kPTVV18lpXNKYKfDkUgaPkGAA4Fjx46FOnbsyDZiqg0AlpjceqPFbr2amFraG8nUgjihiRMnhrRdk0KNGjUKXXrppeEpNoMHDw7NmjUrJBbEihyxb7RYRYf//PPPkJibrwmw5fz8oUOH6v52uj7RduJ/qr3R8uCDD0Zcg08QcIQAdNgYI3Q4FLKj67FvtBw6dCi8qLr2Yz6UN2/eUNGiRUNjxowxBn46tUOHDkk6nqjrfl9Dhy1diEwbBKDDxtCgw/Z0OKKRYjOK+++/X/99HkkXn9quQyHx7wGz4/bbb2etxRx1GFOHzJ4mpPtGQIuWsv0iyxRo0bZtTsuHgre2vaYl83/84x8hEWARR2ygxWqXIbFSeUTAxY9qs2PBggV6Oafri7Qf+6laoGX+/PlmaJEOArYJQIeT0dn5gQ8dplAk0PLHH3+EtO1sdb2P6LLYDc9qMXXx4zlSlusndDj5+4KU7AlAh5MZQodD4Z2AIlqY7u/rSPlUn1a7klptYpGqXi/yOeowAi3J32Gk+Exg8eLFbH9UyRRoETs2pDpGjBiR0fx3IbLNmjXT/TN9+nTTJq677jq9nPirpdmxdetWvZzT9RkJu2qBFvF9wQECThOADicTtfMDHzpMoRIlSoS0V9LDfy010mSR1r1792Tgp1Nat26tjxFm9/udDh02dR8ysiAAHU6GBx0Ohez8vk5HI9u1axc6depUMnQt5ciRI6F8+fKx1mKOOoxAi+HjhEQ/CWBgSaa/YsWKkNiJx+q/4cOHxwnghx9+mFxRTMr48ePjyqcjwolltPnFMTXGn2rrgsTVL1ZVNzsKFSoULut0fYn2imsEWsy8gHQQiBKADkdZRM6gw6GQHV030uHEtG7dukUwJ31Wr149bixJvJfDNccf+EkgkSAdAehwssugw87qsNiJR/wR+d133w1payomAz+dMmjQIOiwKR3zDARazNkgxycCGFjsgV+yZEmcCKbaIlm8zp3ND1RtAcNwhNvMWvEWS2z9v/32m1nRkNji0On6YtuOPUegxdQNyAABnQB0WEeR0Ql0OIork61rhw0bFr0x5uzw4cOhPHnyxI0lsXrO5RyBlhin4dQxAtBheyihw1FuqXRY28AjWtjkTFssN5Q/f37osAkfq2QEWqzoIM8XAhhY7GFPHFjEooVmh1jsKtsfqNqONmbVh9PFQoexbfz888+m5W+++eaQ0/XFth17jkCLqRuQAQI6AeiwjiKjE+hwFJfQ9VjtNTsXa7SsWrUqemPM2VtvvZVWHWZ1e5WOQEuM03DqGAHosD2U0OEot1Q6nCrQIt5yOfPMM6HDUaQZnSHQkhEuFPaCAAYWe5QTB5YNGzaYViQWJcz2B2jVqlVN6xcZ4g2V2Das7BHrvjhdX2zbsecItFi6DZkgECYAHbb3IECHo9xi1/OK1eDE85YtW0ZvijkTawWIhdgTy3O8RqAlxnE4dYwAdNgeSuhwlFsqHU4VaBE1jRw5MqP1HP3SaI46jEBL9FnEGRMCGFjsOSJxYFm2bJlpRU4salWgQAHTRbNEwyI/VmzFvFqzQ6ya7nR9sW3HniPQYuYFpINAlAB0OMoikzPocJSW0PVY7TU6F4srmr3tKH7cG93DMY3jD/yoJ3AmKwHosD3PQYej3FLpsNUuQ9FaQqGpU6ey12OOOpxDQNQGLRwgwIaAJpBUt25dNvbEGqItGEXa7gmxSXHnlStXJi06HJeWzkWqel966SXavHmzZVW///47aUKol/n8889Ji2Tr14knd999N40ePToxOaPrjRs3UtmyZQ3v0baMJm0BXD1PcKlYsaJ+HXtSrlw52rRpEzldX2wbkXMt0EJvv/125DLu84UXXqA+ffrEpXG/0AYW0hYz424m7JOMAHQ42WHQYSI7up5MMpry4osv0mOPPRZNOH0mxoMaNWrQ3r17k/I4JkCHOXpFfpugw8k+hA47q8Pa1E3SdnKi2rVr01NPPRXW3WTqf6c0bdqU5syZY5btezpLHY6NVuEcBDgQEBFJ7dvK8j+Ztnd+/vnnLd2p/ZAN1apVK2POBQsW1O+ZN2+eaRuxC3BZLXR76NChkJijL3zudH1GzxHeaDF1GTJAQCcAHdZR6Cfaj1Fd+4y0xSgNOmw+lou1A4y2Ej1x4kSocePGGbM24u9Vmvi+4AABpwlAh5OJQodD4Q0kItqW7u/rSHmrz8KFC4eWLl2aDP10ytChQ1nrMkcdxtQh08cJGX4RwMCSTN7OwNKwYcPkihJSdu/eHRLlrIQ3knf55ZeH5s+fH/rmm2/08mPGjEmoMXrZpk0bvVyFChWiGQln4rXFSBtO1xepN/YTgZYEB+ASBAwIQIeToUCHQyE7uh6rv5Hziy66KHTgwIFkyFrK448/ro8JkfLcPzn+wDeEi0SpCECHk90FHc5Oh8V0TSs9feKJJ5Khn06ZMmWK5b1W9XqRx1GHEWgxfZyQ4RcBmQcWMReyfPnyKf8rVKhQnFi58aZM7ty5Q1Y7D0X8K9Zr6dWrV6hUqVJxNglRLFGiRKhr167hAEvkL4+xc1/79u0bqSbpc/z48Xp9jz76aFJ+JCF23qfT9RkJOwItEfL4BAFzAtDhZDZ2fuBDh5PfaClTpkxo3bp1yYC1lJkzZ+pvOBrpN9c0jj/wDQEjUSoC0OFkd0GHQyE7v68j2inWxPrf//4XKl68uP4bPZInPt98881k6KdT3nnnHcN7Yu/385yjDiPQYvo4IcMvAjIPLOkymzBhQpxYpQq03H777aErr7wy5X/a/Pm4ejt27JiuSSGxhZsQ4C+//DL0/fffh3bt2mV4b2ygpXTp0qGDBw8alhOBmaeffjrUs2fP0M6dOw3LiERhY0SYna4vUm/sJwItpq5ABgjoBKDDOgr9BDocCk/1yVTXY/VXLHr+3Xff6UwTT8Q2z+LNycT/5s6dGxLjQ2xdnM45/sBPZItr+QhAh5N9Bh3OToe19RzDULdu3Rr+I6t4W138QUD8sXXAgAHJwGNSBg8ezFaDxXjAUYcRaIl5gHDKg0AQBpZJkybFiVWqQEu6ntEWc42rV6x98umnn6Z7e1rlYgMtQtieeeaZtO4zKrRly5ZQ3rx542x2ur7EH+MItBh5AmkgEE8AOhzPI5Mr6HCyrgsdzpUrV+jjjz/OBGVcWc5bPXP8gR8HDxdSEoAO23cbdNhYhyOBlliykTfWY9OMzlu1ahX3ez3x97Xf1xx1GIEWoycJab4SwMBiH3/iwCJETyxuZbXVc6atJQZaihYtavnGilX9t956a5JoO11fovAj0GLlEeSBwN8EoMP2nwTocLKuCx3WduyzD1W7E4GWrPDhZgkJQIftOw06bKzDRoGWdCgfPnw4vJxA4m9qTtcItKTjSZQJPAEMLPYfAaOBRYigCF4MGzYsPD3Ifu1/35kYaBH1i+k/R48ezajql19+OSnIEhFsp+uL1Cs+EWjJyE0oHFAC0GH7jocOJ6/L8txzz9kHevpOBFqyRogKJCMAHbbvMOhwsg6L38B2Ai0nT54MtW7d2vQ3e+xvbD/PEWix/33BnQEigIHFvrPNBpaI8NWsWTM0e/Zs2w2ItVtuu+02Q7EV8zzTWXx33759pnVE7BSfTtcXqRuBFtvux40BIgAdtu9s6HD8D3yrRc4zoYxASya0UFYFAtBh+16EDsfrcOQ3sFi6QARO0j3EH1Hvuecew9/9kTq5fCLQkq5XUS7QBDgPLHfeeacjvhk7dmycaDlVb79+/eLqNRM/sUXne++9F9q8ebNlf8RCt/PmzQsNGTIkVKdOnZR1FytWLDRixIjworonTpyIq/uPP/4IiUWAq1SpkrKeiN1O1yfqvfnmm+Psir0Q29pF2pblk+PAEssU53ISgA7b9xt0OP4Hvp2/oCbSF2sInHfeeWz1GTqc6DFcO0EAOmyfInQ4Xodjf9OKnd8eeOCB8OYXYlFco2Pv3r2hoUOHhsqVK8dWd2P7JM456nAOAVczDgcIsCGgTU2hunXrsrFHdUPKli1L2jbOpG31RtqOEKQFV2jPnj3h/9avX09a5NsWgoIFC9LFF19M+fLlI22NGNJ2MbJVT+Qmp+uL1Cv7pzawkBYEk70bsJ8ZAeiwtw6BDnvL2+nWoMNOE0V9ggB02NvnIKg6LH5fa9tmU/ny5Ulbi4W0P4zSpk2bxDqu3jogy9Y46jACLVk6Fbc7TwADi/NMUaO6BDgOLOrSDk7PoMPB8TV6mj0B6HD2DFFDMgHocDITpICAGQGOOoxAi5m3kO4bAQwsvqFHwxIS4DiwSIgRJicQgA4nAMElCFgQgA5bwEGWbQLQYdvocGMACXDUYQRaAvggcu8yBhbuHoJ9nAhwHFg48YEt9ghAh+1xw13BJAAdDqbf3e41dNhtwqhfJQIcdRiBFpWeMEX6goFFEUeiG54Q4DiweNJxNOIqAeiwq3hRuWIEoMOKOZRJd6DDTBwBM6QgwFGHEWiR4tEJlpEYWILlb/Q2OwIcB5bseoS7ORCADnPwAmyQhQB0WBZPyWUndFguf8Fafwlw1GEEWvx9JtC6AQEMLAZQkAQCJgQ4DiwmpiJZIgLQYYmcBVN9JwAd9t0FShoAHVbSreiUSwQ46jACLS45G9XaJ4CBxT473Bk8AhwHluB5Qb0eQ4fV8yl65B4B6LB7bINcM3Q4yN5H3zMlwFGHEWjJ1Iso7zoBDCyuI0YDChHgOLAohDewXYEOB9b16LgNAtBhG9BwS0oC0OGUiFAABHQCHHUYgRbdPTjhQgADCxdPwA4ZCHAcWGTgBhutCUCHrfkgFwRiCUCHY2ng3CkC0GGnSKKeIBDgqMMItAThyZOsjxhYJHMYzPWVAMeBxVcgaNwRAtBhRzCikoAQgA4HxNEedxM67DFwNCc1AY46jECL1I+UmsZjYFHTr+iVOwQ4Dizu9BS1ekkAOuwlbbQlOwHosOwe5Gk/dJinX2AVTwIcdRiBFp7PSqCtwsASaPej8xkS4DiwZNgFFGdIADrM0CkwiS0B6DBb10htGHRYavfBeI8JcNRhBFo8fgjQXGoCGFhSM0IJEIgQ4DiwRGzDp7wEoMPy+g6We08AOuw98yC0CB0OgpfRR6cIcNRhBFqc8i7qcYwABhbHUKKiABDgOLAEALvyXYQOK+9idNBBAtBhB2GiKp0AdFhHgRMQSEmAow4j0JLSbSjgNQEMLF4TR3syE+A4sMjME7b/TQA6jCcBBNInAB1OnxVKpk8AOpw+K5QEAY46jEALnkt2BDCwsHMJDGJMgOPAwhgXTEuTAHQ4TVAoBgIaAegwHgM3CECH3aCKOlUlwFGHEWhR9WmTuF8YWCR2Hkz3nADHgcVzCGjQcQLQYceRokKFCUCHFXauj12DDvsIH01LR4CjDiPQIt1jpL7BGFjU9zF66BwBjgOLc71DTX4RgA77RR7tykgAOiyj1/jbDB3m7yNYyIcARx1GoIXP8wFLThPAwIJHAQTSJ8BxYEnfepTkSgA6zNUzsIsjAegwR6/IbxN0WH4fogfeEeCowwi0eOd/tJQmAQwsaYJCMRDQCHAcWOAY+QlAh+X3IXrgHQHosHesg9QSdDhI3kZfsyXAUYcRaMnWq7jfcQIYWBxHigoVJsBxYFEYd2C6Bh0OjKvRUQcIQIcdgIgqkghAh5OQIAEETAlw1GEEWkzdhQy/CGBg8Ys82pWRAMeBRUaOsDmeAHQ4ngeuQMCKAHTYig7y7BKADtslh/uCSICjDiPQEsQnkXmfMbAwdxDMY0WA48DCChCMsUUAOmwLG24KKAHocEAd73K3ocMuA0b1ShHgqMMItCj1iKnRGQwsavgRvfCGAMeBxZueoxU3CUCH3aSLulUjAB1WzaM8+gMd5uEHWCEHAY46jECLHM9OoKzEwBIod6OzWRLgOLBk2SXczoAAdJiBE2CCNASgw9K4SipDocNSuQvG+kyAow4j0OLzQ4HmkwlgYElmghQQMCPAcWAxsxXp8hCADsvjK1jqPwHosP8+UNEC6LCKXkWf3CLAUYcRaHHL26jXNgEMLLbR4cYAEuA4sATQDcp1GTqsnEvRIRcJQIddhBvgqqHDAXY+up4xAY46jEBLxm7EDW4TwMDiNmHUrxIBjgOLSnyD2hfocFA9j37bIQAdtkMN96QiAB1ORQj5IBAlwFGHEWiJ+gdnTAhgYGHiCJghBQGOA4sU4GCkJQHosCUeZIJAHAHocBwOXDhEADrsEEhUEwgCHHUYgZZAPHpydRIDi1z+grX+EuA4sPhLBK07QQA67ARF1BEUAtDhoHja235Ch73ljdbkJsBRhxFokfuZUtJ6DCxKuhWdcokAx4HFpa6iWg8JQIc9hI2mpCcAHZbehSw7AB1m6RYYxZQARx1GoIXpwxJkszCwBNn76HumBDgOLJn2AeX5EYAO8/MJLOJLADrM1zcyWwYdltl7sN1rAhx1GIEWr58CtJeSAAaWlIhQAAR0AhwHFt04nEhLADosretguA8EoMM+QA9Ak9DhADgZXXSMAEcdRqDFMfeiIqcIYGBxiiTqCQIBjgNLELir3kfosOoeRv+cJAAddpIm6ooQgA5HSOATBFIT4KjDCLSk9htKeEwAA4vHwNGc1AQ4DixSA4XxYQLQYTwIIJA+Aehw+qxQMn0C0OH0WaEkCHDUYQRa8FyyI4CBhZ1LYBBjAhwHFsa4YFqaBKDDaYJCMRDQCECH8Ri4QQA67AZV1KkqAY46jECLqk+bxP3CwCKx82C65wQ4DiyeQ0CDjhOADjuOFBUqTAA6rLBzfewadNhH+GhaOgIcdRiBFukeI/UNxsCivo/RQ+cIcBxYnOsdavKLAHTYL/JoV0YC0GEZvcbfZugwfx/BQj4EOOowAi18ng9YcpoABhY8CiCQPgGOA0v61qMkVwLQYa6egV0cCUCHOXpFfpugw/L7ED3wjgBHHUagxTv/o6U0CWBgSRMUioGARoDjwALHyE8AOiy/D9ED7whAh71jHaSWoMNB8jb6mi0BjjqMQEu2XsX9jhPAwOI4UlSoMAGOA4vCuAPTNehwYFyNjjpAADrsAERUkUQAOpyEBAkgYEqAow4j0GLqLmT4RQADi1/k0a6MBDgOLDJyhM3xBKDD8TxwBQJWBKDDVnSQZ5cAdNguOdwXRAIcdRiBliA+icz7jIGFuYNgHisCHAcWVoBgjC0C0GFb2HBTQAlAhwPqeJe7DR12GTCqV4oARx1GoEWpR0yNzmBgUcOP6IU3BDgOLN70HK24SQA67CZd1K0aAeiwah7l0R/oMA8/wAo5CHDUYQRa5Hh2AmUlBpZAuRudzZIAx4Elyy7hdgYEoMMMnAATpCEAHZbGVVIZCh2Wyl0w1mcCHHUYgRafHwo0n0wAA0syE6SAgBkBjgOLma1Il4cAdFgeX8FS/wlAh/33gYoWQIdV9Cr65BYBjjqMQItb3ka9tglgYLGNDjcGkADHgSWAblCuy9Bh5VyKDrlIADrsItwAVw0dDrDz0fWMCXDUYQRaMnYjbnCbAAYWtwmjfpUIcBxYVOIb1L5Ah4PqefTbDgHosB1quCcVAehwKkLIB4EoAY46jEBL1D84Y0IAAwsTR8AMKQhwHFikAAcjLQlAhy3xIBME4ghAh+Nw4MIhAtBhh0CimkAQ4KjDCLQE4tGTq5MYWOTyF6z1lwDHgcVfImjdCQLQYScooo6gEIAOB8XT3vYTOuwtb7QmNwGOOoxAi9zPlJLWY2BR0q3olEsEOA4sLnUV1XpIADrsIWw0JT0B6LD0LmTZAegwS7fAKKYEOOowAi1MH5Ygm4WBJcjeR98zJcBxYMm0DyjPjwB0mJ9PYBFfAtBhvr6R2TLosMzeg+1eE+Cowwi0eP0UoL2UBDCwpESEAiCgE+A4sOjG4URaAtBhaV0Hw30gAB32AXoAmoQOB8DJ6KJjBDjqMAItjrkXFTlFAAOLUyRRTxAIcBxYgsBd9T5Ch1X3MPrnJAHosJM0UVeEAHQ4QgKfIJCaAEcdRqAltd9QwmMCGFg8Bo7mpCbAcWCRGiiMDxOADuNBAIH0CUCH02eFkukTgA6nzwolQYCjDiPQgueSHQEMLOxcAoMYE+A4sDDGBdPSJAAdThMUioGARgA6jMfADQLQYTeook5VCXDUYQRaVH3aJO4XBhaJnQfTPSfAcWDxHAIadJwAdNhxpKhQYQLQYYWd62PXoMM+wkfT0hHgqMMItEj3GKlvMAYW9X2MHjpHgOPA4lzvUJNfBKDDfpFHuzISgA7L6DX+NkOH+fsIFvIhwFGHEWjh83zAktMEMLDgUQCB9AlwHFjStx4luRKADnP1DOziSAA6zNEr8tsEHZbfh+iBdwQ46jACLd75Hy2lSQADS5qgUAwENAIcBxY4Rn4C0GH5fYgeeEcAOuwd6yC1BB0OkrfR12wJcNRhBFqy9Srud5wABhbHkaJChQlwHFgUxh2YrkGHA+NqdNQBAtBhByCiiiQC0OEkJEgAAVMCHHUYgRZTdyHDLwIYWPwij3ZlJMBxYJGRI2yOJwAdjueBKxCwIgAdtqKDPLsEoMN2yeG+IBLgqMMItATxSWTeZwwszB0E81gR4DiwsAIEY2wRgA7bwoabAkoAOhxQx7vcbeiwy4BRvVIEOOowAi1KPWJqdAYDixp+RC+8IcBxYPGm52jFTQLQYTfpom7VCECHVfMoj/5Ah3n4AVbIQYCjDiPQIsezEygrMbAEyt3obJYEOA4sWXYJtzMgAB1m4ASYIA0B6LA0rpLKUOiwVO6CsT4T4KjDCLT4/FCg+WQCGFiSmSAFBMwIcBxYzGxFujwEoMPy+AqW+k8AOuy/D1S0ADqsolfRJ7cIcNRhBFrc8jbqtU0AA4ttdLgxgAQ4DiwBdINyXYYOK+dSdMhFAtBhF+EGuGrocICdj65nTICjDiPQkrEbcYPbBDCwuE0Y9atEgOPAohLfoPYFOhxUz6PfdghAh+1Qwz2pCECHUxFCPghECXDUYQRaov7BGRMCGFiYOAJmSEGA48AiBTgYaUkAOmyJB5kgEEcAOhyHAxcOEYAOOwQS1QSCAEcdRqAlEI+eXJ3EwCKXv2CtvwQ4Diz+EkHrThCADjtBEXUEhQB0OCie9raf0GFveaM1uQlw1GEEWuR+ppS0HgOLkm5Fp1wiwHFgcamrqNZDAtBhD2GjKekJQIeldyHLDkCHWboFRjElwFGHEWhh+rAE2SwMLEH2PvqeKQGOA0umfUB5fgSgw/x8Aov4EoAO8/WNzJZBh2X2Hmz3mgBHHUagxeunAO2lJICBJSUiFAABnQDHgUU3DifSEoAOS+s6GO4DAeiwD9AD0CR0OABORhcdI8BRhxFoccy9qMgpAhhYnCKJeoJAgOPAEgTuqvcROqy6h9E/JwlAh52kiboiBKDDERL4BIHUBDjqMAItqf2GEh4TwMDiMXA0JzUBjgOL1EBhfJgAdBgPAgikTwA6nD4rlEyfAHQ4fVYoCQIcdRiBFjyX7AhgYGHnEhjEmADHgYUxLpiWJgHocJqgUAwENALQYTwGbhCADrtBFXWqSoCjDiPQourTJnG/MLBI7DyY7jkBjgOL5xDQoOMEoMOOI0WFChOADivsXB+7Bh32ET6alo4ARx1GoEW6x0h9gzGwqO9j9NA5AhwHFud6h5r8IgAd9os82pWRAHRYRq/xtxk6zN9HsJAPAY46jEALn+cDlpwmgIEFjwIIpE+A48CSvvUoyZUAdJirZ2AXRwLQYY5ekd8m6LD8PkQPvCPAUYcRaPHO/2gpTQIYWNIEhWIgoBHgOLDAMfITgA7L70P0wDsC0GHvWAepJehwkLyNvmZLgKMOI9CSrVdxv+MEMLA4jhQVKkyA48CiMO7AdA06HBhXo6MOEIAOOwARVSQRgA4nIUECCJgS4KjDCLSYugsZfhHAwOIXebQrIwGOA4uMHGFzPAHocDwPXIGAFQHosBUd5NklAB22Sw73BZEARx1GoCWITyLzPmNgYe4gmMeKAMeBhRUgGGOLAHTYFjbcFFAC0OGAOt7lbkOHXQaM6pUiwFGHEWhR6hFTozMYWNTwI3rhDQGOA4s3PUcrbhKADrtJF3WrRgA6rJpHefQHOszDD7BCDgIcdRiBFjmenUBZiYElUO5GZ7MkwHFgybJLuJ0BAegwAyfABGkIQIelcZVUhkKHpXIXjPWZAEcdRqDF54cCzScTwMCSzAQpIGBGgOPAYmYr0uUhAB2Wx1ew1H8C0GH/faCiBdBhFb2KPrlFgKMOI9DilrdRr20CGFhso8ONASTAcWAJoBuU6zJ0WDmXokMuEoAOuwg3wFVDhwPsfHQ9YwIcdRiBlozdiBvcJoCBxW3CqF8lAhwHFpX4BrUv0OGgeh79tkMAOmyHGu5JRQA6nIoQ8kEgSoCjDiPQEvUPzpgQwMDCxBEwQwoCHAcWKcDBSEsC0GFLPMgEgTgC0OE4HLhwiAB02CGQqCYQBDjqMAItgXj05OokBha5/AVr/SXAcWDxlwhad4IAdNgJiqgjKASgw0HxtLf9hA57yxutyU2Aow4j0CL3M6Wk9RhYlHQrOuUSAY4Di0tdRbUeEoAOewgbTUlPADosvQtZdgA6zNItMIopAY46jEAL04clyGZhYAmy99H3TAlwHFgy7QPK8yMAHebnE1jElwB0mK9vZLYMOiyz92C71wQ46jACLV4/BWgvJQEMLCkRoQAI6AQ4Diy6cTiRlgB0WFrXwXAfCECHfYAegCahwwFwMrroGAGOOoxAi2PuRUVOEcDA4hRJ1BMEAhwHliBwV72P0GHVPYz+OUkAOuwkTdQVIQAdjpDAJwikJsBRhxFoSe03lPCYAAYWj4GjOakJcBxYpAYK48MEoMN4EEAgfQLQ4fRZoWT6BKDD6bNCSRDgqMMItOC5ZEcAAws7l8AgxgQ4DiyMccG0NAlAh9MEhWIgoBGADuMxcIMAdNgNqqhTVQIcdRiBFlWfNon7hYFFYufBdM8JcBxYPIeABh0nAB12HCkqVJgAdFhh5/rYNeiwj/DRtHQEOOowAi3SPUbqG4yBRX0fo4fOEeA4sDjXO9TkFwHosF/k0a6MBKDDMnqNv83QYf4+goV8CHDUYQRa+DwfsOQ0AQwseBRAIH0CHAeW9K1HSa4EoMNcPQO7OBKADnP0ivw2QYfl9yF64B0BjjqMQIt3/kdLaRLAwJImKBQDAY0Ax4EFjpGfAHRYfh+iB94RgA57xzpILUGHg+Rt9DVbAhx1GIGWbL2K+x0ngIHFcaSoUGECHAcWhXEHpmvQ4cC4Gh11gAB02AGIqCKJAHQ4CQkSQMCUAEcdRqDF1F3I8IsABha/yKNdGQlwHFhk5Aib4wlAh+N54AoErAhAh63oIM8uAeiwXXK4L4gEOOowAi1BfBKZ9xkDC3MHwTxWBDgOLKwAwRhbBKDDtrDhpoASgA4H1PEudxs67DJgVK8UAY46jECLUo+YGp3BwKKGH9ELbwhwHFi86TlacZMAdNhNuqhbNQLQYdU8yqM/0GEefoAVchDgqMMItMjx7ATKSgwsgXI3OpslAY4DS5Zdwu0MCECHGTgBJkhDADosjaukMhQ6LJW7YKzPBDjqMAItPj8UaD6ZAAaWZCZIAQEzAhwHFjNbkS4PAeiwPL6Cpf4TgA777wMVLYAOq+hV9MktAhx1GIEWt7yNem0TwMBiGx1uDCABjgNLAN2gXJehw8q5FB1ykQB02EW4Aa4aOhxg56PrGRPgqMMItGTsRtzgNgEMLG4TRv0qEeA4sKjEN6h9gQ4H1fPotx0C0GE71HBPKgLQ4VSEkA8CUQIcdRiBlqh/cMaEAAYWJo6AGVIQ4DiwSAEORloSgA5b4kEmCMQR+P927RhHimQJA3CByw2Q4CTgDgYcYX0wRrhwBLAREvgcAQxw4SQguAEu84C3DOqanenq6qzMiMzvOTvdXZWV8UXtH1K+lcM7HD4UEpDDhSAtM4RAxBx20DLEq5erSIMlV7/stq1AxMHSVsTTSwjI4RKK1hhFQA6P0um6dcrhut6ellsgYg47aMn9TnW5e4Oly7YqaiOBiINlo1ItW1FADlfE9qj0AnI4fQtDFiCHQ7bFpoIKRMxhBy1BX5aRt2WwjNx9tR8qEHGwHFqD6+MJyOF4PbGjuAJyOG5vMu9MDmfunr3XFoiYww5aar8FnrdXwGDZS+QCAucCEQfL+eb8kVZADqdtnY03EJDDDdAHeKQcHqDJSiwmEDGHHbQUa6+FSgkYLKUkrTOCQMTBMoJ77zXK4d47rL6SAnK4pKa1/gjI4T8S/klgv0DEHHbQsr9vrqgsYLBUBve41AIRB0tqUJv/LSCHvQgElgvI4eVWrlwuIIeXW7mSQMQcdtDivQwnYLCEa4kNBRaIOFgCc9naQgE5vBDKZQR+Cshhr8EWAnJ4C1Vr9ioQMYcdtPT6tiWuy2BJ3Dxbry4QcbBUR/DA4gJyuDipBTsWkMMdN7dhaXK4Ib5HpxOImMMOWtK9Rv1v2GDpv8cqLCcQcbCUq85KrQTkcCt5z80oIIczdi3+nuVw/B7ZYRyBiDnsoCXO+2En/woYLF4FAssFIg6W5bt3ZVQBORy1M/YVUUAOR+xK/j3J4fw9VEE9gYg57KClXv89aaGAwbIQymUEfgpEHCwak19ADufvoQrqCcjhetYjPUkOj9RttR4rEDGHHbQc21X3FxcwWIqTWrBjgYiDpWPuYUqTw8O0WqEFBORwAURLXBCQwxdIfEHgUoGIOeyg5dJ2+aGVgMHSSt5zMwpEHCwZHe15V0AO73r4ROAqATl8lY7f1grI4bVy7htRIGIOO2gZ8U0MXrPBErxBthdKIOJgCQVkM6sE5PAqNjcNKiCHB238xmXL4Y2BLd+VQMQcdtDS1SvWRzEGSx99VEUdgYiDpU7lnrKlgBzeUtfavQnI4d46GqMeORyjD3aRQyBiDjtoyfHuDLVLg2Wodiv2SIGIg+XIktweQEAOB2iCLaQRkMNpWpVqo3I4VbtstrFAxBx20NL4pfD4iwIGy0UT3xC4TCDiYLlsr77PIyCH8/TKTtsLyOH2PehxB3K4x66qaSuBiDnsoGWrblt3tYDBsprOjQMKRBwsA7ahu5LlcHctVdCGAnJ4Q9yBl5bDAzdf6QcLRMxhBy0Ht9ENWwsYLFsLW78ngYiDpSffUWuRw6N2Xt1rBOTwGjX37BOQw/uE/E7gr0DEHHbQ8rc//goiYLAEaYRtpBCIOFhSwNnklQJy+EoePxLYEZDDOxw+FBKQw4UgLTOEQMQcdtAyxKuXq0iDJVe/7LatQMTB0lbE00sIyOESitYYRUAOj9LpunXK4brenpZbIGIOO2jJ/U51uXuDpcu2KmojgYiDZaNSLVtRQA5XxPao9AJyOH0LQxYgh0O2xaaCCkTMYQctQV+WkbdlsIzcfbUfKhBxsBxag+vjCcjheD2xo7gCcjhubzLvTA5n7p691xaImMMOWmq/BZ63V8Bg2UvkAgLnAhEHy/nm/JFWQA6nbZ2NNxCQww3QB3ikHB6gyUosJhAxhx20FGuvhUoJGCylJK0zgkDEwTKCe+81yuHeO6y+kgJyuKSmtf4IyOE/Ev5JYL9AxBx20LK/b66oLGCwVAb3uNQCEQdLalCb/y0gh70IBJYLyOHlVq5cLiCHl1u5kkDEHHbQ4r0MJ2CwhGuJDQUWiDhYAnPZ2kIBObwQymUEfgrIYa/BFgJyeAtVa/YqEDGHHbT0+rYlrstgSdw8W68uEHGwVEfwwOICcrg4qQU7FpDDHTe3YWlyuCG+R6cTiJjDDlrSvUb9b9hg6b/HKiwnEHGwlKvOSq0E5HArec/NKCCHM3Yt/p7lcPwe2WEcgYg57KAlzvthJ/8KGCxeBQLLBSIOluW7d2VUATkctTP2FVFADkfsSv49yeH8PVRBPYGIOeygpV7/PWmhgMGyEMplBH4KRBwsGpNfQA7n76EK6gnI4XrWIz1JDo/UbbUeKxAxhx20HNtV9xcXMFiKk1qwY4GIg6Vj7mFKk8PDtFqhBQTkcAFES1wQkMMXSHxB4FKBiDnsoOXSdvmhlYDB0kreczMKRBwsGR3teVdADu96+ETgKgE5fJWO39YKyOG1cu4bUSBiDjtoGfFNDF6zwRK8QbYXSiDiYAkFZDOrBOTwKjY3DSoghwdt/MZly+GNgS3flUDEHHbQ0tUr1kcxBksffVRFHYGIg6VO5Z6ypYAc3lLX2r0JyOHeOhqjHjkcow92kUMgYg47aMnx7gy1S4NlqHYr9kiBiIPlyJLcHkBADgdogi2kEZDDaVqVaqNyOFW7bLaxQMQcdtDS+KXw+IsCBstFE98QuEwg4mC5bK++zyMgh/P0yk7bC8jh9j3ocQdyuMeuqmkrgYg57KBlq25bd7WAwbKazo0DCkQcLAO2obuS5XB3LVXQhgJyeEPcgZeWwwM3X+kHC0TMYQctB7fRDVsLGCxbC1u/J4GIg6Un31FrkcOjdl7dawTk8Bo19+wTkMP7hPxO4K9AxBx20PK3P/4KImCwBGmEbaQQiDhYUsDZ5JUCcvhKHj8S2BGQwzscPhQSkMOFIC0zhEDEHHbQMsSrl6tIgyVXv+y2rUDEwdJWxNNLCMjhEorWGEVADo/S6bp1yuG63p6WWyBiDjtoyf1Odbl7g6XLtipqI4GIg2WjUi1bUUAOV8T2qPQCcjh9C0MWIIdDtsWmggpEzGEHLUFflpG39enTp+nu3bsjE6idwGKBjx8/Tnfu3Fl8vQsJLBGQw0uUXEPg/wJy2JuwhYAc3kLVmr0KRMxhBy29vm1J6/r+/fv06NGj6c2bN0krsG0CdQX++eef6dWrV9ONGzfqPtjTuhWQw922VmEbCcjhjWAHXlYOD9x8pa8SiJjDDlpWtdJNJQV+/PgxPX/+fHr9+vX0+fPn6ezsrOTy1iLQvcC1a9em27dvTw8fPpyePHkyXb9+vfuaFVhWQA6X9bTaeAJyeLyel65YDpcWtd5oAtFy2EHLaG9gwHofP348vXjxIuDObIlAPoHT01P/PuVrW/Mdy+HmLbCBjgTkcEfNrFiKHK6I7VHdC0TIYQct3b9msQv89u3bdOvWrenXKb7/ESBwvMCv/5rly5cv082bN49fzApDCMjhIdqsyIoCcrgidiePksOdNFIZYQQi5LCDljCvw5gb+fDhw3Tv3r0xi1c1gY0E3r9/P52cnGy0umV7E5DDvXVUPREE5HCELuTZgxzO0ys7zSPQOocdtOR5V7rc6bt376YHDx50WZuiCLQSePv27XT//v1Wj/fcZAJyOFnDbDeFgBxO0aYwm5TDYVphIx0JtM5hBy0dvUwZSzFYMnbNnqMLtB4s0X3sb1dADu96+ESghIAcLqE4zhpyeJxeq7SeQOscdtBSr9ee9B8CBst/oPiKwJECrQfLkdt3e2UBOVwZ3OOGEJDDQ7S5WJFyuBilhQicC7TOYQct563wRwsBg6WFumf2LtB6sPTu21t9cri3jqongoAcjtCFPHuQw3l6Zad5BFrnsIOWPO9Klzs1WLpsq6IaC7QeLI3L9/gDBeTwgWAuJ7BAQA4vQHLJuYAcPqfwB4FiAq1z2EFLsVZaaI2AwbJGzT0ErhZoPViu3p1fownI4WgdsZ8eBORwD12sV4McrmftSeMItM5hBy3jvGshKzVYQrbFppILtB4syfmG274cHq7lCq4gIIcrIHf0CDncUTOVEkagdQ47aAnzKoy5EYNlzL6reluB1oNl2+qsXlpADpcWtR6BaZLD3oJDBOTwIVquJbBMoHUOO2hZ1idXbSRgsGwEa9mhBVoPlqHxExYvhxM2zZbDC8jh8C0KtUE5HKodNtOJQOscdtDSyYuUtQyDJWvn7DuyQOvBEtnG3i4KyOGLJr4hcKyAHD5WcKz75fBY/VZtHYHWOeygpU6fPeUSAYPlEhhfEzhCoPVgOWLrbm0gIIcboHtk9wJyuPsWFy1QDhfltBiB3wKtc9hBixexqcCHDx+me/fuNd2DhxPoTeD9+/fTyclJb2WpZyMBObwRrGWHFpDDQ7f/4OLl8MFkbiCwV6B1Djto2dsiF2wp8PXr1+n27dvTjx8/tnyMtQkMI3D9+vXpy5cv082bN4epWaHHCcjh4/zcTWAuIIfnIj7vE5DD+4T8TuAwgQg57KDlsJ65egOB09PT6eXLlxusbEkC4wn8+vfpxYsX4xWu4qME5PBRfG4msCMgh3c4fFgoIIcXQrmMwAKBCDnsoGVBo1yyrcCv/5rl2bNn0+vXr3//P/FnZ2fbPtDqBDoTuHbt2nTr1q3p4cOH09OnT6dfp/j+R+AQATl8iJZrCVwUkMMXTXxzmIAcPszL1QTmAtFy2EHLvEM+EyBAgAABAgQIECBAgAABAgRWCjhoWQnnNgIECBAgQIAAAQIECBAgQIDAXMBBy1zEZwIECBAgQIAAAQIECBAgQIDASgEHLSvh3EaAAAECBAgQIECAAAECBAgQmAs4aJmL+EyAAAECBAgQIECAAAECBAgQWCngoGUlnNsIECBAgAABAgQIECBAgAABAnMBBy1zEZ8JECBAgAABAgQIECBAgAABAisFHLSshHMbAQIECBAgQIAAAQIECBAgQGAu4KBlLuIzAQIECBAgQIAAAQIECBAgQGClgIOWlXBuI0CAAAECBAgQIECAAAECBAjMBRy0zEV8JkCAAAECBAgQIECAAAECBAisFHDQshLObQQIECBAgAABAgQIECBAgACBuYCDlrmIzwQIECBAgAABAgQIECBAgACBlQIOWlbCuY0AAQIECBAgQIAAAQIECBAgMBdw0DIX8ZkAAQIECBAgQIAAAQIECBAgsFLAQctKOLcRIECAAAECBAgQIECAAAECBOYCDlrmIj4TIECAAAECBAgQIECAAAECBFYKOGhZCec2AgQIECBAgAABAgQIECBAgMBcwEHLXMRnAgQIECBAgAABAgQIECBAgMBKAQctK+HcRoAAAQIECBAgQIAAAQIECBCYCzhomYv4TIAAAQIECBAgQIAAAQIECBBYKeCgZSWc2wgQIECAAAECBAgQIECAAAECcwEHLXMRnwkQIECAAAECBAgQIECAAAECKwUctKyEcxsBAgQIECBAgAABAgQIECBAYC7wP+WT120zezBhAAAAAElFTkSuQmCC" + } + }, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "<div>\n", + "<img src=\"attachment:Binning_step2.png\" width=\"600\"/>\n", + "</div>" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Bucketizing/Binning process objective: build dict of list of lists data structure\n", + "- Initialize an empty `dict`\n", + "- Iterate over every row in your dataset\n", + " - Retrieve value of the column based on which you want to bucketize\n", + " - Check if bucketizing column is already a key in your `dict`:\n", + " - if no, insert a new key-value pair:\n", + " - key: unique value of bucktizing column\n", + " - value: initialize a new list, append current row as an item into the list, thereby creating a list of list data structure\n", + " - if yes, append current row to the list of list data structure (value of the key).\n", + "\n", + "After this process, each row ends up in a bin, based on the value of the bucketize column.\n", + "Number of bins = number of unique values in the bucketize column\n", + "\n", + "Why bucketize data?\n", + "- A way to organize our data, without losing information in the process" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Let's take another look at our 'cs220_survey_data.csv'\n", + "cs220_header" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Let's bucketize the data\n", + "buckets = dict() # Key: unique bucketize column value; Value: list of lists (rows having that unique column value)\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's convert the above code into a function called 'bucketize'." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def col_avg(data, header, col_name, min_bound, max_bound):\n", + " \"\"\"\n", + " data: list of list data structure representing rows\n", + " col_name: name of the column for which we want to compute average\n", + " min_bound, max_bound: bounds for the data (data cleaning)\n", + " Returns average of that column.\n", + " \"\"\"\n", + " pass\n", + " \n", + "min_age = 0\n", + "max_age = 118\n", + "col_avg(cs220_data, cs220_header, \"Age\", min_age, max_age)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Average per bucket" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def avg_per_bucket(buckets, avg_col_name):\n", + " \"\"\"\n", + " Computes and returns column average per bucket\n", + " \"\"\"\n", + " pass" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "scrolled": false + }, + "source": [ + "### What is the average student age per lecture?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### What is the average student age in each major?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "attachments": { + "table_rep.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAApkAAAHrCAYAAACErYYFAAAYUGlDQ1BJQ0MgUHJvZmlsZQAAWIWVWQk0Vd3b3+fO95rvNc/zTOZ5nud5JuGarimuMZRIMpWoEKWSjJVKoRKRBqUMvSRJJEOlUFEZ8h1D/d//+671fevba+1zfvfZz36GvZ89POcCwLXfNzIyDMEIQHhEDNXB1IDfzd2DHzsJcIAZEIAoEPUlR0fq29lZAbj8fv93WRoE0Mb7ucyGrH+3/6+FyT8gmgwAZAdjP/9ocjiMrwOASidHUmMAwKjBdKH4mMgN7AVjZipsIIwjN3DQFk7fwH5buHiTx8nBEMYXAcDR+vpSgwCgb4bp/HHkIFgO/RDcRozwp0TArLMw1iEH+/oDwCUN80iHh+/ewG4wFvf7m5yg/5Lp90emr2/QH7zly2bBGVGiI8N89/w/h+P/LuFhsb91iMKVNphq5rDhMzxuQ6G7LTcwLYxnI/xsbGFMhPEPiv8mP4wRhOBYM+ctfgQ3OdoQHjPACmM5f18jSxhzw9gkIszGapvuF0gxMYcxHCGIBEqMudN238yAaGPHbZmnqLsdbH/jQKqh/nbfy77UTb0b/J2xoc762/KHggPMf8v/lhjs5LplM5IQR3GxgTE9jFmjQx0tt3iQwonBhja/eaixDhv2C8NYIyDC1GBLPtI7kGrisM1PDY/+7S8yM5hibrONS2KCncy25Vwk+27azw7j5oAIfeffcgKi3ax+++IfYGS85TuyNyDCedtf5FhkjIHDdt8vkWF22/woQkCY6QZdEMbc0XGO231ROjFwQG7JR9lExtg5bdmJ8gvxtbDbsgeVAKyAITAC/CAWrn5gNwgBlGezTbPwr60WE+ALqCAIBACZbcrvHq6bLRHw0xEkgk8wCgDRf/oZbLYGgDiYvvaHuvWUAYGbrXGbPULBFIzDgSUIg3/HbvaK+KPNBbyDKZR/aSfDtobBdaPt3zR9mGK1TYn9LZef4TcnxhhjhDHDmGAkUJwoHZQmygp+6sFVAaWGUv9t7X/40VPoPvRb9AB6DP1yFyWN+g9/+IE1GIM1mGz77Pd3n1GisFRllAFKG5YPy0axojiBDEoJ1qSP0oV1K8NUw23LN7z/p+z/8uFvo77Nh5fDI/BseD28+D970kvSK/+RsjGmfx+hLVv9/oyr4Z+Wf+o3/NtI+8Nvy39yIjORDciHyHZkF7IF2QT4kW3IZmQ38s4G/hNF7zaj6Lc2h017QmE5lH/p893WuTGS0XJ1cu/lVrfaYgISYjYWmOHuyD1USlBwDL8+vPMH8JtHkGWl+RXkFOQB2DhHtraprw6b5wPE2vMfGvkgAKrzAOCX/0ML/wrAFQK8jVr/hybiDS8zDADVU+RYatwWDbXxQMOnEwO8ojgALxAC4rA/CkAFaAI9YAwsgC1wAu7AGx7lYDieqSAeJINUkAFywFFwApSAM+A8qAaXwDXQBFpAO3gAnoBeMABewdEzCT6CebAEViAIwkJ0EAnigPggEUgKUoDUIB3IGLKCHCB3yAcKgiKgWCgZOgDlQAVQCXQOqoGuQjehdqgL6oNeQuPQe+gLtIxAImgRzAgehChiB0INoY+wRDghdiKCEFGIREQ64giiGFGOuIhoRLQjniAGEGOIj4hFJEDSIFmRAkgZpBrSEGmL9EAGIqnIfchsZCGyHHkZeQue5+fIMeQs8icKgyKh+FEycASboZxRZFQUah8qF1WCqkY1ojpRz1HjqHnULzQdmhsthdZAm6Pd0EHoeHQGuhBdib6Bvg+vpkn0EgaDYcWIYVTh1eiOCcEkYXIxpzH1mLuYPswEZhGLxXJgpbDaWFusLzYGm4E9ib2IbcP2YyexP3A0OD6cAs4E54GLwKXhCnG1uFZcP24at4JnxIvgNfC2eH/8HnwevgJ/C9+Dn8SvEJgIYgRtghMhhJBKKCZcJtwnjBC+0tDQCNKo09jTUGj20xTTXKF5RDNO85OWSCtJa0jrRRtLe4S2ivYu7Uvar3R0dKJ0enQedDF0R+hq6O7RjdL9oCfRy9Kb0/vTp9CX0jfS99N/ZsAziDDoM3gzJDIUMjQw9DDMMuIZRRkNGX0Z9zGWMt5kfMG4yERikmeyZQpnymWqZepimiFiiaJEY6I/MZ14nniPOEFCkoRIhiQy6QCpgnSfNMmMYRZjNmcOYc5hvsT8jHmehciixOLCksBSynKHZYwVySrKas4axprHeo11kHWZjYdNny2ALYvtMls/23d2LnY99gD2bPZ69gH2ZQ5+DmOOUI58jiaO15woTklOe854zjLO+5yzXMxcmlxkrmyua1zD3AhuSW4H7iTu89zd3Is8vDymPJE8J3nu8czysvLq8YbwHudt5X3PR+LT4aPwHedr4/vAz8Kvzx/GX8zfyT8vwC1gJhArcE7gmcCKoJigs2CaYL3gayGCkJpQoNBxoQ6heWE+YWvhZOE64WERvIiaSLBIkchDke+iYqKuoodEm0RnxNjFzMUSxerERsTpxHXFo8TLxf+SwEioSYRKnJbolURIKksGS5ZK9kghpFSkKFKnpfqk0dLq0hHS5dIvZGhl9GXiZOpkxmVZZa1k02SbZD/vEN7hsSN/x8Mdv+SU5cLkKuReyRPlLeTT5G/Jf1GQVCArlCr8pUinaKKYotisuKAkpRSgVKY0pExStlY+pNyhvKaiqkJVuazyXlVY1Uf1lOoLNWY1O7VctUfqaHUD9RT1FvWfGioaMRrXNOY0ZTRDNWs1Z7TEtAK0KrQmtAW1fbXPaY/p8Ov46JzVGdMV0PXVLdd9qyek569XqTetL6Efon9R/7OBnAHV4IbBd0MNw72Gd42QRqZG2UbPjInGzsYlxqMmgiZBJnUm86bKpkmmd83QZpZm+WYvzHnMyeY15vMWqhZ7LTotaS0dLUss31pJWlGtblkjrC2sj1mP2IjYRNg02QJbc9tjtq/txOyi7G7bY+zt7EvtpxzkHZIdHjqSHHc51jouORk45Tm9chZ3jnXucGFw8XKpcfnuauRa4DrmtsNtr9sTd053inuzB9bDxaPSY9HT2POE56SXsleG1+BOsZ0JO7u8Ob3DvO/sYtjlu6vBB+3j6lPrs+pr61vuu+hn7nfKb55sSC4if/TX8z/u/z5AO6AgYDpQO7AgcCZIO+hY0Ptg3eDC4FmKIaWEshBiFnIm5HuobWhV6HqYa1h9OC7cJ/xmBDEiNKJzN+/uhN19kVKRGZFjURpRJ6LmqZbUymgoemd0cwwzfGHvjhWPPRg7HqcTVxr3I94lviGBKSEioXuP5J6sPdOJJokXklBJ5KSOZIHk1OTxvfp7z+2D9vnt60gRSklPmdxvur86lZAamvo0TS6tIO3bAdcDt9J50venTxw0PViXQZ9BzXhxSPPQmUxUJiXzWZZi1smsX9n+2Y9z5HIKc1ZzybmPD8sfLj68fiTwyLM8lbyyo5ijEUcH83XzqwuYChILJo5ZH2s8zn88+/i3E7tOdBUqFZ4pIhTFFo0VWxU3nxQ+efTkaklwyUCpQWn9Ke5TWae+n/Y/3V+mV3b5DM+ZnDPLZylnh86ZnmssFy0vPI85H3d+qsKl4uEFtQs1lZyVOZVrVRFVY9UO1Z01qjU1tdy1eXWIuti69xe9LvZeMrrUfFnm8rl61vqcK+BK7JUPV32uDl6zvNbRoNZw+brI9VM3SDeyG6HGPY3zTcFNY83uzX03LW523NK8deO27O2qFoGW0jssd/JaCa3prettiW2LdyPvzrYHtU907Op4dc/t3l+d9p3P7lvef/TA5MG9h/oP2x5pP2rp0ui6+VjtcdMTlSeN3crdN54qP73xTOVZY49qT3Oveu+tPq2+1n7d/vbnRs8f/GX+15MBm4G+QefBoRdeL8aG/IdmXoa9XBiOG155tX8EPZL9mvF14Sj3aPkbiTf1Yypjd8aNxrvfOr59NUGe+Pgu+t3qZPoU3VThNN90zYzCTMt7k/e9Hzw/TH6M/Lgym/GJ6dOpz+Kfr8/pzXXPu81PLlAX1r/kfuX4WvVN6VvHot3i6FL40sr37B8cP6p/qv18uOy6PL0Sv4pdLV6TWLv1y/LXyHr4+nqkL9V38yqAhCsiMBCAL1UA0LkDQOoFgOC5ledtFyR8+UDAbxdIFvqISIdP1B5UBtoEg8Q8wRbjIvBWBAkaLM0sbT9dE30VQyVjPVMzsYP0hLmXZYj1DdsM+0eOBc5lrjUeBC+Wj8BPJ0AUJAqxCrOLsImyi3GL80jwS/JLCUoLy4jKiu2QlpOTV1RQUdRQ0lU2VjFXNVczUTfRMNE01NLX1tLR0FXSk9UXNeAxZDYiGK0bfzWZMn1p1m3eYlFtecwqxTrExs3W2E7ZXsyBy5HRCeeMdIFcEW4od7wHoyeHl/BOGW+JXcI+fL6cfixkkj8xgBTIGsQVLEiRDlENNQlzCadEJO8uiKyIOkstjs6PyY3NisuOP5JQvKc6sTXp1V6wTzpl1/6Tqa8OCKbvPth+CJMplKWQbZDjmBt4OPFIfl710bv5wwWLx5lOyBRaFAUWHzhZVnKztP/Uu9OLZ7BnOc5Jlmudt63wuxBTebCqsLq65mbt47rhix8u/azHXWG7Kn5Nt8H9etSNrMbTTfXNbTe7bvXc7m15cqej9Wpb6d2U9l0dGveI96Y6b96vfXDqYc6jhC6/x+ZPZLvpu2ef3n92qiey16CP1DfRf+156l/2AyKDqMH3L7qH6l8WDMe8chlRe835enV09E372IXxrLe7J5zfaU0Kw1G2NP3XzPX3RR9SPobNkj+RP0fO5czfWJj7qvft3BLpe/FPqeVnqym/NNbX/zb/CsgZVAHaEsOCeY1twOXigwhGNJK0DLSrdNP0QwxDjG+Y3hE/kb4yL7Gssa6wrbH/4ljjXOL6yj3HM8U7wtfPf1/gpmClUI5wmIiVqKQYXuyDeJdEjWS2FEXaUkZGlk52bkef3HX5IoVkRbKSvbKBioKqgBpRbV39s8aIZpdWo3a5Tq5uvJ6PvoWBgiGnEcLovfEzkyum+WbR5k4WKpZslitWb6zv2dTa5tsl2Qc6ODrqO8k7C7iQXLGuy24f3Uc8uj3veNXvPOt9bNchn2Rfqh+F7OvvEeAUaB9kE2xJsQwxC9UMkw0XiGDZTROJiFyN+kH9Gb0Wi44jxgslaOxxSoxOKkxu2TuVQrOfL1UmTfuATbrfwfiMw4cqM9uyhrO/5zIfVjhinxdx9HB+XcGjY++OrxdyFikX250MLTlYeuZU8+nespkzv84xl0uc166wu0CujK06VF0M73PddXOXiJcV6x2vRF3Nu1bX0Hl95MaXJkwzx03JWxq3LVrc7gS2xrSl3E1tP9Bx8F5G56H7mQ+yH+Y+Otx1+PHhJ4e7c5/mPMvqOdSb3pfav/d53F9RA7sHI1/EDCW9PDh87FX5SMPrB6Mv33waB2+JE4Lv5Cd1psyn/WbOvv/0UXk26VPr51/zmgtxXy5/fbfIvmT5PeVHw8/pFe5Vh7XsX53b82+M0EfuQH5GtaMPYRyx4tgF3E18BsGBhptmlPY8XTi9OgOCoZ0xncmCyEDsJR1ltmVhYHnKms1mwg6xN3NEcApxDnHlcOtwf+Ip5TXj/cZXxm/G/1nguKCG4IjQXmF+4VYRb5FV0WIxJbFu8QDxVYljklKSbVKOUlPSqTIiMkOyuTsMdnyTq5L3VKBTaFOMVBJQ6ldOU1FQGVfNU9NW+6ReqmGusah5Xste65d2nY67Llb3hh5Zn6h/1yDSkN+w1yjNWMl42qTE1Ba+d9w2j7KQsnhnWWblYc1q/dymwNbBjmQ3aH/SwdtR2PGD01XnRBdjVwbXYbdK92gPA09az0GvMzuDvRW8V3bd98n39fKT8Fsid/ofC/ANVAxCBQ0G11JSQpxCpcPQYW/Cb0UU746PdI3SoPJGo6JnYwZi2+Pq48sS8vakJsYnhSb77925zy3Fab9Dqn2a/QGHdKeD7hk7DwVkhmZFZ6fkZOYWHC47UpPXePRefl/B6LHPJ1CFEkVexUdP3i9ZOSV72q/sxJnHZ1fLFc4HVJRc6KlCVWvVxNfW1328JHk5pL72ytw1lYb917sbOZrCmjtv8d1OaXnbatXW0i7fcbFT6v7VhwaPhh8ndPM97e053Of0XHQADH4cejf84TV4IzK+a6J2Cj2T+BF8qpgnf9VdUvvpvFq8Mf9b3/s2CkYFgBOHANj4nuNQA0DuRQDE9gDABueednQAOKkDhIApgBY7AGSh/ef8gODEkwBIgAdIAjVgBueXYXBOWQTqQReYAGsQO6QMOULR0AmoGXoN53zSCBdEKqIeMYpkQBog45GXkFNwluaFKkW9gjMxH/QF9CeMCiYV8wzLgw3HtuFIOAquHc+Jj8X3ExQJRYRVGjLNU1p12mo6drpcegR9Ev13hliGJcZEJogpm8hKrCCpkXqZQ1iwLBdYjVmn2DLZpdh7OWI4OThbufy5abiv8XjwInkv8XnCGUGfQJ6grRCT0HPhIhFPUQHRKbGL4tESGpKQZJdUvrQnHJ3zsv07WuQq5QsU9ilSlByVNVT4VCHVMbUW9eMaIZraWvRaI9o1OjG6uno4vT79BoPrhk1Gt4xbTe6Zdpn1mA9ajFpOWy1Yr9ji7FjtRR3UHK2cyM7JLsWurW4zHiRPfa/IneXeAz4EX32/JHKz//dAtaCk4PYQQqhzWEX44m6zyLKouWitmJzY0XilhKN7FpJckx/s005pTbVMm0jPytDOBFl9OVcOn8oryDc7hjx+vzC/OKDE8JR0meBZkXKlCpvKqOrS2ieXQL3qVZsG9xvBTck3T9y+dqe/bamDt9PsQcyjs4+fda/1yPTtfH5k4O4QaZg8cml0dpx7Qm1Sb1r+Pf2HF7NHPu+Ya18w+9L5TWGxZGn5h/3PC8sLqxprKb/ubu4fW/NPhOdfAqgCE+AKQsA+cBzUgU4wCn5AJEgOsoEioKNQA/QSARAScJafhriKeAvn8VbIdGQbcgWljTqA6kazowPRjRg8xhvTiGXEhmGf4KRxebhFvBf+AUGWUESDpImiGad1pn1MZ0jXSq9FfwfOYh8x2jOOwnnqOvE4SZb0lDkCzjybWX3ZaNia2QM5WDkecu7hkuYa5y7iseXF8Xbw7ec3EMAIPBUsFPIVlhVeFekWLROLEjeW4JL4IvlY6rx0ioynrOYOCTl2ebz8qsKc4oTSC+XHKrdVL6qVqB/SoGp6ahlqS+ow6izqDuu16tcbXDVsMGoyvm3SZtpp9ti81+KF5RuraesFmxU7nD2rg5ijupO1s7/LXtcSt5vuwx5rXoI7Lbxjdp316fGDyCr+EQE1gVPBopSQkKuhy+GmEYW7Z6K0qHuj22JRcVbxRQlTiepJR5Kn9xmnVKfSp+05MA3vJ72ZFlkPc8xyu4845I3lpxzjPX63MLCY/mRzqf9pUtmDs3vLVc5/uXC1KrZGqw5zceDyhSvJ17yuqzTSN03cvH77wB2bNva74x01ndQHWo+wXYNPap7u7/Hq03kuMsA0+GjI+eXkq8TXzKPXxpzGVyeqJ92nGWa6PmTOWn5mnHuxcPZryKLKd8SPnuXS1aBfitvzjwQYQLu5A4gDFTgC3EA4OAjOgNtgGF7/gpAFFAtVQIMIGoQRvPI7kDikPfIM8gvKAlWFxqOp6DcYJ3i122AHcGTcT3whQZ0wSXOSVo92hC6Jnp++iyGeUZJxgukM0Y8kQfrO/JCljDWJzZNdj0OKk52LhhvBvcqzzLvKDwSw8A2UR1hWRFvUQSxIfL/ESckbcN49L8u4Q0HOVX6fQoVij9KKioSqu1qBer8ms5a7doXOnJ62/mGDN0aKxjkm42Za5oUWX6zsrC/Z0tqF2T92lHTKcf7gauFW64H3pHg99BbdddBn0s+QXBmADPQPukcRDckInQm3iqiPZIlKoI7FGMVejmdP2LfnY5IbvE5VUqpSOdKOpKMOJmd8yfTIupq9nut0uOrI8lHH/MvHCMcpJx4USRXnnpwrdT11p0z0TD689/uf776gWVlVzVSTWDt10fFSS73olbyrSw3e1x80yjQdbZ6/ZX/78h1Ca2BbazuxI+Be433UA7uHpY8mHks8oXRXPh3v4ey17zvYf/352wHCoNwLhyHqyyPDNa/ujQy8nhpdeLM6Dr3FTmDeYSbB5PLUp+nRmafvmz+Uf8ycjfhk/VlqDjv3Zr55IeuLx1eJr1++tSymLRl9x3zv/JHyU/PnwvKFFY9VwmrjGvkX3a9r6+4b8x8dqKiweXxAtAYAoEfX17+KAoAtAGAtf319pXx9fe08nGyMAHA3bOs/pM2zhhGAs1wbqO/K4r/+y/kfiazUoRVG4s8AAAGdaVRYdFhNTDpjb20uYWRvYmUueG1wAAAAAAA8eDp4bXBtZXRhIHhtbG5zOng9ImFkb2JlOm5zOm1ldGEvIiB4OnhtcHRrPSJYTVAgQ29yZSA1LjQuMCI+CiAgIDxyZGY6UkRGIHhtbG5zOnJkZj0iaHR0cDovL3d3dy53My5vcmcvMTk5OS8wMi8yMi1yZGYtc3ludGF4LW5zIyI+CiAgICAgIDxyZGY6RGVzY3JpcHRpb24gcmRmOmFib3V0PSIiCiAgICAgICAgICAgIHhtbG5zOmV4aWY9Imh0dHA6Ly9ucy5hZG9iZS5jb20vZXhpZi8xLjAvIj4KICAgICAgICAgPGV4aWY6UGl4ZWxYRGltZW5zaW9uPjY2NTwvZXhpZjpQaXhlbFhEaW1lbnNpb24+CiAgICAgICAgIDxleGlmOlBpeGVsWURpbWVuc2lvbj40OTE8L2V4aWY6UGl4ZWxZRGltZW5zaW9uPgogICAgICA8L3JkZjpEZXNjcmlwdGlvbj4KICAgPC9yZGY6UkRGPgo8L3g6eG1wbWV0YT4K+/VJzQAAQABJREFUeAHsnQncTNUbx58XUdotUSFtkhRJ2ogoJMmSFklo0/IvCqn+bSoVStoTpSSlJJUUkRAtQmXL3xZlCSFLCOf//M64M3fmnXnfeeed5c7M7/l8Zu5yzj3nOd9z79xnzvKcHKMiFBIgARIgARIgARIgARKII4EicUyLSZEACZAACZAACZAACZCAJUAjkzcCCZAACZAACZAACZBA3AnQyIw7UiZIAiRAAiRAAiRAAiRAI5P3AAmQAAmQAAmQAAmQQNwJ0MiMO1ImSAIkQAIkQAIkQAIkQCOT9wAJkAAJkAAJkAAJkEDcCdDIjDtSJkgCJEACJEACJEACJEAjk/cACZAACZAACZAACZBA3AnQyIw7UiZIAiRAAiRAAiRAAiRAI5P3AAmQAAmQAAmQAAmQQNwJ0MiMO1ImSAIkQAIkQAIkQAIkQCOT9wAJkAAJkAAJkAAJkEDcCdDIjDtSJkgCJEACJEACJEACJEAjk/cACZAACZAACZAACZBA3AnQyIw7UiZIAiRAAiRAAiRAAiRAI5P3AAmQAAmQAAmQAAmQQNwJ0MiMO1ImSAIkQAIkQAIkQAIkQCOT9wAJkAAJkAAJkAAJkEDcCdDIjDtSJkgCJEACJEACJEACJEAjk/cACZAACZAACZAACZBA3AnQyIw7UiZIAiRAAiRAAiRAAiRAI5P3AAmQAAmQAAmQAAmQQNwJ0MiMO1ImSAIkQAIkQAIkQAIkUCydESxYsEC2b98etyKceuqpUrx48UKl988//8j8+fP9aZQoUUKqV6/uP452Z+/evTJnzhwxxthLihQpIjVr1pScnJxok4hLvCVLlsimTZsipgVexx13nBx44IER4zCABEiABEiABEgg+wjkqBHjs2LSsOwVK1aU33//PW6af/fdd1KnTp1CpTdx4kS58MIL/WnA+Nq6dav/ONodGHcnnHBCUPR169ZJmTJlgs4l+uCcc86Rb7/9Ns9sYPgeffTR0rhxY3n00UflqKOOyjM+A0kg3gR27Nghw4cPlwkTJkjz5s3lyiuvlP322y/e2TA9EiABEiCBAhBgd3kBYDFqeAL4nwJj//XXX5cqVarI4MGDw0fkWRJIEIF+/frJDTfcIO+9955ce+218sorryQoJyZLAiRAAiQQLQEamdGSYryoCGzbtk1uueUWmT59elTxGYkE4kEArZhueeedd9yH3CcBEiABEkgBgbQek/nAAw/Ixo0bw2Jbu3atDBgwICjsoosukkaNGgWdcx9gbCElbwLlypWTRx55xEb67bff5IsvvpDZs2f7x44iYPfu3XLNNdfIsmXL8k6MoWlLAOOh77zzThk/fnzCyxBNXueff778+uuvfl3OO+88/z53SIAESIAEUkMgrY3Mm266KSK1pUuXhjUye/ToEfEaBuRPoHz58nLzzTf7I/bp00dgbGLs5urVq/3nly9fbo3MY4891n+OO5lBAH8e8IcN4yATLdHmdf/998tff/0lY8eOlVatWsldd92VaNWYPgmQAAmQQD4E2F2eDyAG50/gmGOOkdtuuy1XxFmzZuU6xxPpTWDVqlV2Ytsff/yR8IIUJC/cgx988IH1NoGuck4+S3j1MAMSIAESyJdAWrdk5lu6OEXYuXOnLF68WOCeCC15eIHBpVBBBS9mtPqVKlVKKleuLPvvv39Bk8gzPlqW/ve//9mu66pVqxbaHVOemYUEHnrooSFnRP7+++9c58KdiJfemMWPWfmom5NPPlmKFYv99kYLGlw3IZ386gn1ig8MHQwniFbAB/n8+++/cuSRR9pPtPdVvJhBVwwtWbFihXVFVbp06Yjqb9iwwXoQQC9BLOLkg2sxQSzcPeOkG2teBXHxBYaot/Xr11sXXBUqVJDDDjvMUSGmrVNGDL3Ji2VMifMiEiABEkg3AnBhlImixgZcMwV9+vbtG3VRtevNaNe6Of74403RokWD0lHfkKZjx45GDbpc6X355ZdBcaFD7969jb5wgs6rexXTrl07s3Dhwlxp4IQatUHxkY66MMoVVw0Um74aQ0F6In31z2leffXVXNcU5MTZZ58dpEeNGjXCXt6kSZOgeNB38uTJYePiZGH0Rl5q+Pk/4FivXr2g/FFHp59+uhk5cmRYHaZOneq/HmnpnwcbTw0oo+P5/Gkhne7duxv9gxGUzk8//WTUZZPRPwz+uChz2bJlTevWrY0abUHxnQP1f2reffddWzeI7/6ULFnSdOjQwUC3cBIrs3BlhR461MHocIYgHdQ4MuPGjcuV/ebNm03t2rWD4kJ3dz1gXw3toGt1zKZp0KCBUYMy17Xqosu89tpr9l5wXxRLXjp0JkgXPLuRZNSoUaZZs2ZG/4Tk0qlatWrmiSeeMPoHI+zl8WAZNmGeJAESIIEMJIBWr4yUwhiZQ4cONYcffniuF5DbIMD+IYccYhYtWhTEL5yRGXqd+1hbvqxBGZSIHkRjZKrTd3PGGWfkq+ell15qtGUoNIuojvMzMleuXGmuv/76XDrA2NKZ5mHzKKzedevWzZWfm2no/nXXXWe0lTNIl9B6Un+mRlu0zIknnhg27c6dO9vrYZw9/vjjBsZnaD7uY20RM+pOJyhPHOhkmTyvQxow9EKlMMxCy6qtfaZt27Z56uH+c6ILHhidWJNnfKfsMLohYKnjNqO6Rr0R+IsbS164uH379kF56fANf5rODv6kXXbZZUHxHL1Dt5UqVTJff/21c6l/W1iW/oS4QwIkQAJZQIBGZphKbtmyZVQvIryY8PJ1S+hLKPTlFe4YRoVOmnEnk6+RiZcxrgtNDy9HtBBpt2tQGFrIYpFQIxP5abei/YRrnXL0GThwYNjs4qF3QY1M6NStW7cgfULrCUYmGDn6h26dFlH1v5grDlogTznllFytdWhN1hnP/nx1Fn6ua5EvWlHd+YUamYVlFlpWd16R9mEk//nnn1b3//73v0H6RboG5x0jU1erivoaXDdp0qSY88KF+RmZOuTF6OS0Aul0wAEHmB9//NHq5XwVlqWTDrckQAIkkA0ECj6wUN8I2SIHHXSQ3H777TJixAjR7lHrbBxj9NyCVYIwpi4vwfjIjz76SDCRYebMmXLVVVcFRccYN21ZCjqX3wHcCLnHxmnLq3UngzGfGJcJvdzjA4cNGyY//PBDfslGFQ7H6/hot2bY+Pfee6/ccccdYcMSoTfGMcIRN1wpYezsm2++ace9uhV4/vnnZd68ee5TQfvw7wlGjqix7h93i3G4+sdD1qxZI/fcc48TxW61q97W69y5c0WNMusj1ImA+8I9y/mzzz5zguxWhx7YcZ+YlY+xfEOGDBFtSQ2Kg4NEMEO6DRs2lE8//VR0yIZoSy1O+QXjUeHYHAJ3VLh/77vvPn84dtQIs+cR5nx0KEBQHByce+65okNVZNq0aaJDKKRr16654iAMUti8ciW878SDDz4oM2bMCArGMq3QB/cxloJFXbnHdGIM9uWXX25dcgVdGOYgWpZhLuUpEiABEshcAplqSRemuxwtmbqOedjxkhhPp3dD0Add246EtnSgNUQnGDjB/m24Lmb1B+gPz6u7HOPFQseT6Wo7/mudHX2xBul5xRVXOEFRb8O1ZIaW330cbjyfk1m89A5tyVQjzMnCvwVLtCS6dXO35obWkxMPrV3omoZgfOYll1xi1B+rPcY4Pycetjp5JVfd6mQeg9ZJdzwnvYcffjjovP6JMWrYGnTBO6I+Ro3+GXAO7djAwtZ1uLJefPHFQbrjHoU+br1Du5w///zzoHCMM44kaMnEWObHHnssqHxOfIwhdueFlki3FCQvXJdXSyaGSqBl1p0fnu/QcbZI55lnngmKh2vef/99BFmJF0snPW5JgARIIJMJxD79Vn99M1XQ0oI1zNFS4xasHY4WnlBRIyH0lP8YrWwlSpTwHzs7Oq7Ptpzt2rXLOWVbItHqmZ+gRQ4Oz92CtcO/+eYb9yk7g9d9Ak6tCys6FlF0Qo2dxY1ZuaGC1iC0xumEqdAg25KYCL21uzpXXuCIVka0ajqC1sa8BDO8P/zwQ+tBAPHg4xMtfY6o4eTs2u1JJ51kW6aDTuqBTh4JajUGd7SAo+XSLZgNjyUQn376adHJJtK0aVNRw0x0go0/WiLqWifoyOjRo4PuS9yjWHse5XcEreKxCrwn6CQZ6z/VnQaele+//150zK6478e8niH39bHsT5w4MddzC97gECrouXj22WftbHsnDK6R0KIZTpLBMly+PEcCJEAC6UCARmaYWqpfv77/LFycvP322/aljO7meL0M0ZUNQ8z9okUXdDQSrttXZ1zneym6kvUfU1CXYL4XhUSAsfTtt99aDuh+1NZR213sREN5tPXPdl2HGunJ1hurwLiNTKwIk1f5taXRb2A65XFvQ/X/5JNPBJ/8BMMXIC1atLB/XmBkuQXGq7YsSvPmzeWNN96QMmXK+IND80RAYesahmy4Pz4wgt1GZmHudbgngoN+yJ49e+wfKAw70ZZu6zLIBiTpa5m6iQoVnfEeesoea+u3NfLh0smRcNc7Yclg6eTFLQmQAAmkGwGOyYxQY3ix6Kxswdi8Xr162TGOhXnphsvGbUwgPFq/ku4XYLh0I53DGDOM/YuHoIUWS/dp92GQUYS0YczBYAuVZOuNsZRuwbjLSMuQIp77z4X7OuyjBRZjamMRx0gBMyzDGclIRKspxgm6W6STzSyW8kW6Bga9TpQS+J9Ul0G25T5c63ek6+N1Hj0QboEhqUMa3KeC9t1jmREQen1QZB6QAAmQAAlEJMCWzDBopk+fbrsOYZQ4gi5ZHfdlu2AjtYI4caPdhrZc6qzwqC4Nt1Qjuv/yE0xqULdL+UUrUDhaNnU8qG2lc1+os8ulS5cutsvZOZ9svTFRxy1wzh7J2Ta6PdH9HUlwbcWKFUVdNvmjwMhG62N+om6m/FGQv443tC3jmEiDSTduQcs5JhmhRRh/QpLNzK1LYffbtGljy+lOB0b0rbfeaocTqI9Md1DC9o844oigtDEhC892JEMz9M9E6PVBifGABEiABEggIgEamWHQ6KQc+xJygtCNqC5s7BjHaFsbnWsjbbEyTWgrFcbyRSM6aSFXNLQUnXbaabnOJ+MEWnzRFfzxxx/7s8MqSVhPGkv8OZJsvTFz2C15rdSEbs/8BPq7jUwYH2jljkWwvrb6bBTMxlYXQXblHycdtPZhHCCM9GQzc3SIZhs6vtZ9DcqFcZ+OoBUX45AxOx9/dtzDRJw4eW3zyiuv6xCG8aGhgnsDwzpCBWOk4QHCLepg3n3IfRIgARIggSgJsLs8BBTcyYS2Lj333HO5JtGEXFbgQxgWGKvmCF684QwKJ9y9VZ+Mgi4/t2Dt8LxexHhxRnIr5E4n1v1+/frlWsYRhsYvv/ziTzKZeqt/Qxk+fLg/b+yEMyqCIuRzgFY4t8BtD8YYRhIMT0ALM4YUQDCMwO1GB4YXJieBkXuyD+I64ziTyQz55iWhLX9w/YNWf7c496D6vXSfFvVSYA1yt4ugoAghBwXJK+TSXIeNGjWSgw8+OOi8egwQ96Q7J/CFF16wS006x9jiDwGFBEiABEig4ARoZIYwc7dUOUHuMVm6JJ1z2r9F19vPP/9sZ836T+7bQdccWkHhwxHrMWPyELoRYYC5RZfFs92x7nOR9tF1DyPVLfAzCF99GM/nGK8Yf6irllhDBrPlw+nuTqMw+1iLGr4q3YIxeW49E6U3JpRgPKM6LbeTSnTFJrnggguCJmmhuztUP7eu0ezD64C76xTlw8QntNDpMqQ2CbDHnxRdMcf+MUGXuDMmE61n8BmJbnbUP2ZvY5wvWrRDxypifXtIopjZxAv4haERoYKub/gXxX2my6faexiGZ+hz5PapimEM7nGnSBPPEJ4VZ6JWQfIK1Sn0GAZrqB9QPI+YGIZJWGh1Rx3Bv6u6qQq6HF4bdJnQoHM8IAESIAESiJKAvigzUmL1k6mGmdHWliBfefqSMurCxJx11llB5xWxPYa/QG2VMlgbPZwfPSdepK2O9TPwr+iWvPxkIp6+kCMuKQn/kFjWMTQ/7S52ZxHVfqifTB06EPE6rFoEVqH5auud/5p46B3qJzM0v9Bj1I22avp1wE5oPUHvaERnX+cqn5MfliLVsZ25wgcNGmSTDrdaEHRzrndvsTqQI4VlFm1Z4W/UrQPW9w4VrAfvjhNuf8qUKUYN8lzxcO/AV2u4JVt1uIJdLUiNan+W0eaFC/Lyk4lwrJqkLdG5dAqnv3MOS4eqwYzL/RJPlv5EuUMCJEACGUqALZn6RnELJmboWtfuU7aVBWPksIpOOEELZawzz9FNila40O68cPm4z6FlDu5m4NswVNAi5G59RTi6ZuEmJ5GC2dzuFW6cvHS9bus6CMep0Pvll1+2rbmOPoXZousUM6bhoidU0HKsTs2DTmM8X/Xq1YPOuQ/C3Tf/+c9/7CxzJ14qmDl5h24HDx6ca1hEaBwco2UerbBuwapZaNUPN8MfLcBOa7BzTbR5OfHz2sKdFoY26HrqeUXzh2H87tixY/1umPwB3CEBEiABEoieQIYaz0a7InO1WgwYMCCq4mrXnbnxxhuDWjTR0qIGnV2NBS2WStj/QcsMVtdRY9PoOC8zYcIEu1a2zlb2x3HHRwsJ1rrW8V9GX65hdVq+fHnQtWhd1Zdw2Lg6uca20qjvw6BrkCfWxdauwqA1tMMmEuFkvXr1gtLUmdIRYvpOb9myxa5r7i4v9tWQznVdrHqHtmSqIWdbwULzxOo9+ucgV744od27QeXCijAFEZ2BbNSRulEH7kHpQAe0ZtaqVcuoz0t7Pzjpape4XVEGLWrhWjCx7rwuLRnxnkA6sTCLtqx9+vQJKotO5nJUD9qilTXcOuB4DrCSFVq0IWj1Q92460XdA5knn3zS6Cx6g5Z1d5h6bbDPjjuzaPPq1KlTUFpoSQ0natQb9XtrdDhF0PPt6KG+aw1adPEsh5N4swyXB8+RAAmQQKYQyEFB9AeWEoYAxsnBGTZarTBGzO3AGutUYwUZjNmC66FIs5Mx3gu+KTEODTPTMdMVbmkixQ+jRtSn0BqE9cwx1g+r1yCf0NakqBNLYsSC6q2Gr10H21ERk47QWoqywy0U6gucQ/2QOvHjvUXLHGZLo1XyuOOOs+zzm+CCSSfQFWMXMYkL14X69cxLz4IyyyutWMMwznLRokWClYvgTxattmh1dQsmAmHCE54XuIhCC6EjmBiFMcpoZccEJzVSnaBc22jyynVRPifwPII/JvvhnoGLqoLUQT7JM5gESIAEsp4AjcysvwXSD0A4I7N79+7pVxBqTAIkQAIkQAIZTIBjMjO4clk0EiABEiABEiABEkgVARqZqSLPfEmABEiABEiABEgggwnQyMzgymXRSIAESIAESIAESCBVBGhkpoo88yUBEiABEiABEiCBDCZAIzODK5dFIwESIAESIAESIIFUEeDs8lSRZ74xE/jqq69E/VT6r8eSmSeeeKL/mDskQAIkQAIkQAKpJ0AjM/V1QA1IgARIgARIgARIIOMIsLs846qUBSIBEiABEiABEiCB1BOgkZn6OqAGJEACJEACJEACJJBxBGhkZlyVskAkQAIkQAIkQAIkkHoCNDJTXwfUgARIgARIgARIgAQyjgCNzIyrUhaIBEiABEiABEiABFJPgEZm6uuAGpAACZAACZAACZBAxhGgkZlxVcoCkQAJkAAJkAAJkEDqCdDITH0dUAMSIAESIAESIAESyDgCNDIzrkpZIBIgARIgARIgARJIPQEamamvA2pAAiRAAiRAAiRAAhlHgEZmxlUpC0QCJEACJEACJEACqSdAIzP1dUANSIAESIAESIAESCDjCNDIzLgqZYFIgARIgARIgARIIPUEaGSmvg6oAQmQAAmQAAmQAAlkHAEamRlXpSwQCZAACZAACZAACaSeAI3M1NcBNSABEiABEiABEiCBjCNAIzPjqpQFIgESIAESIAESIIHUE6CRmfo6oAYkQAIkQAIkQAIkkHEEaGRmXJWyQCRAAiRAAiRAAiSQegI0MlNfB9SABEiABEiABEiABDKOAI3MjKtSFogESIAESIAESIAEUk+ARmbq64AakAAJkAAJkAAJkEDGEaCRmXFVygKRAAmQAAmQAAmQQOoJ0MhMfR1QAxIgARIgARIgARLIOAI0MjOuSlkgEiABEiABEiABEkg9ARqZqa8DakACJEACJEACJEACGUeARmbGVSkLRAIkQAIkQAIkQAKpJ0AjM/V1QA1IgARIgARIgARIIOMI0MjMuCplgUiABEiABEiABEgg9QRoZKa+DqgBCZAACZAACZAACWQcARqZGVelLBAJkAAJkAAJkAAJpJ4AjczU1wE1IAESIAESIAESIIGMI0AjM+OqlAUiARIgARIgARIggdQToJGZ+jqgBiRAAiRAAiRAAiSQcQRoZGZclbJAJEACJEACJEACJJB6AjQyU18H1IAESIAESIAESIAEMo4AjcyMq1IWiARIgARIgARIgARST4BGZurrgBqQAAmQAAmQAAmQQMYRoJGZcVXKApEACZAACZAACZBA6gnQyEx9HVADEiABEiABEiABEsg4AjQyM65KWSASIAESIAESIAESSD0BGpmprwNqQAIkQAIkQAIkQAIZR4BGZsZVKQtEAiRAAiRAAiRAAqknQCMz9XVADUiABEiABEiABEgg4wjQyMy4KmWBSIAESIAESIAESCD1BGhkpr4OqAEJkAAJkAAJkAAJZBwBGpkZV6UsEAmQAAmQAAmQAAmkngCNzNTXATUgARIgARIgARIggYwjQCMz46qUBSIBEiABEiABEiCB1BOgkZn6OqAGJEACJEACJEACJJBxBGhkZlyVskAkQAIkQAIkQAIkkHoCNDJTXwfUgARIgARIgARIgAQyjgCNzIyrUhaIBEiABEiABEiABFJPgEZm6uuAGpAACZAACZAACZBAxhGgkZlxVcoCkQAJkAAJkAAJkEDqCdDITH0dUAMSIAESIAESIAESyDgCNDIzrkpZIBIgARIgARIgARJIPQEamamvA2pAAllLwBgj+FCSR4DMk8eaOZFAthOgkZntdwDLTwIpJNCyZUv5+OOPU6hB9mU9ZswYadWqVfYVnCUmARJIOoFiSc+RGZIACZDAPgI9e/aUypUrk0cSCZx55plStmzZJObIrEiABLKVAFsys7XmWW4S8AABdpWnphLIPTXcmSsJZBsBGpnZVuMsLwl4iEC/fv1k5syZHtIo81X54YcfpH///plfUJaQBEgg5QRy9B8tR92nvBqoAAmQAAmQAAmQAAlkFgG2ZGZWfbI0JJBWBJ566ilByxoleQS+//576du3b/IyZE4kQAJZS4BGZtZWPQtOAqknkJOTk3olslADcs/CSmeRSSAFBNhdngLozJIESIAESIAESIAEMp0AWzIzvYZZPhLwMIHLLrtM4LeRkjwCH330kcA/KYUESIAEEk2AfjITTZjpkwAJRCRAP5kR0SQsgH4yE4aWCZMACYQQoJEZAoSHJJAMAi+//LJs3brVOsVu1KiRvP/++7Jx40a55pprpGrVqn4V5s6dK+PHj5cVK1ZI8eLFpWnTplK/fn0pWrSo/PHHH/LOO+/YuHXr1pV///1XvvrqK9m+fbu0adNG6tSpI7/++quMHTvWpn3++efLRRdd5E977969dtINJoL89ttvUqtWLbnkkkvk0EMP9cdJ9E66OLf4/fffZcSIEX4c119/vZQqVUrGjRsnqCNIgwYNBAZcOki6cJ8xY4ZMmzbNIq1Xr56cffbZdh/Py/LlywVjS++++267TQfu1JEEso4AXBhRSIAEkktADRS4DjMHHnigcfZxjM8LL7xglXnggQfssXPe2Xbr1s2GT5w40R9+9NFH+/cRT41Q0717d7P//vsHnX/zzTfttWqQmnbt2gWF4brq1asbNV6TBqNFixZGu2+Tll+sGe3Zs8c0btzYz+vqq682CxYs8PPVPwZm8+bNsSaf1OtGjx5tdJhCUvOMNTP1oepnrgamTWb16tWmRIkS9ny6lCPW8vM6Ekh3ApLuBaD+JJCOBNyG5THHHGMuuOAC/8u0YcOGtkhXXnmlqVGjhnn22WfNyJEjTcWKFW0cGKYwaNxGJgxEbeE0xx9/vD8dnMMxXs7Yd+Ig8ccff9x/DsaottKZMmXK2HMdOnRIR6QJ13n9+vWmUqVKfm5HHnmk3T/kkEOswZlwBbI0A/ezMWfOHNOrVy9/HWhLZ5ZSYbFJID0IcOKPvnkpJJAqAuhy/e6772TSpEmirYhWDXQPasuZ3HjjjYKubHSRL1y4UHbs2GHDt23bJhs2bAhSGRNoJk+eLNpK5T+vBqbMnj1bpk6dKiVLlrTnFy9ebLdffvmlP95hhx1mu8ud9awRP1mSTn4yS5cuLR988IFoK5rFoy1qtpv2rbfeChrikCx2seaTbn4ye/To4S8q7hcMNYFg+IfTfe6PwB0SIAFPEeCYTE9VB5XJNgLazS3lypWzxcY+xvft2rVLdu/eLSeeeKI0adLEGo/aeikHH3xwRDxnnHGGDatcubI/TrVq1fzXaCuoHZ+JdCGrVq3yx3vkkUf8+/vtt59g/CEMWeSZaEk3f40Yc3nWWWfJlClTLJpixYqJtkQnGlPc008n7viThT9geDbc42K1RTPuXJggCZBAfAmwJTO+PJkaCcSNQJcuXayBecABB4iO/5OLL77Yn7ZjLPpP5LMTalSce+65/it0DKg1bGHcLlu2TD7++OOkGJhQALPL02WyDPR9+umn/QYmjjHZ6vLLLxcdvoDDtBBMCHO3DnpdaWdyj1tPHUYS9Dy4w7hPAiTgHQI0Mr1TF9SEBIIILF261B6j63zgwIHW+HMiNG/eXNauXescFnh78803+1s5sX/yySdLlSpVpEKFCnLrrbcWOL1YL0gnP5mYuX/PPffYoqKFuXXr1nZ/yZIl0qlTp1gRJP26dPSTqZPURMfA+lnhzwmFBEjA+wRoZHq/jqhhlhAoUiT4cbz//vvtWEq0MA4ePFh0QpA4cXTIt6Bru6DitGiiy3fChAk2TXTDY8wnjCV00SfTyISxULt27YIWI+nx16xZIzoRy46VxRjWIUOGyKuvvipHHHGE1QVjYZ977rmk6xVLhmg5TqeWTJQRLfd4DiDHHnusrQt7wC8SIAFPE+Cykp6uHiqX7QTQHQv/mY4xg25ZGJgwdOIl8JepM6et30eMMUymYJITjAaMR6UkhwD8q2JYBHyrpougJb9r165WXQzvuO2229JFdepJAllNgEZmVlc/C08CqSWA7vLOnTsLtpTkEEB3+dChQwXbdBD80YKnhJUrV9o/W3DCjnHKFBIgAe8ToJHp/TqihiRAAiSQtQR0AQHp2LGjLf9jjz0mGEZCIQESSA8CNDLTo56oJQlkJAH4PcRY03SaYZ7uFQE/mfCpmi6TZ+DrFcueQnCvqPP7dK8C6k8CWUMguQOwsgYrC0oCJBANAWciUjRxGSd+BNKJ++mnny74UEiABNKPAFsy06/OqHGCCAwbNszOuE5Q8kyWBEggiwk0btxY2rdvn8UEWPRsJMCWzGysdZY5LIGTTjrJztwOG8iTCSGg67Lb5QFr1aqVkPSZaG4CP/74o11q1JmtnTsGzySCAPzQUkgg2wiwJTPbapzlJQEPEfjmm28ES2HShVHyKgUujDBD+7zzzktepsyJBEggKwkEe3/OSgQsNAmQQKoIwOcnJfkEyD35zJkjCWQjARqZ2VjrLDMJeIRAv379ZObMmR7RJjvU+OGHH6R///7ZUViWkgRIIKUE2F2eUvzMnARIgARIgARIgAQykwBbMjOzXlkqEkgLAvCTiZY1SvIIwE9m3759k5chcyIBEshaAjQys7bqWXCvE4AT6lWrVuVSc/fu3TJ37lzBOubpLungrxG8MSM7r2591AfqK13GOqYD96VLl1qXYlhOMpysXbtWpkyZItu3bw8XzHMkQAJeIKA/ihQSIAGPEVixYoUpWrSoadKkSS7N9OWL2TLm3XffNTt37jRPP/200RnDueLxRHwIHHfccZY3mB9zzDFG1/z2J6wGjtFVaPzh5557rtm6das/nDsFJ6BrlZtWrVr5mapBbHQpyaCEcM/jPOpEVwAy2hoeFM4DEiABbxBgS6YXLH3qQAIhBF5++WXZs2ePfPHFFzJv3ryQ0MDhkiVL5O6775bx48cHTqbR3mWXXSZjxozxtMbt2rWTDz/8UAYPHixqQErv3r39+j700EMyadIke+7JJ5+U6dOne35tbTWSpWXLlv4yeG1nx44d8umnn9r7Gn5Ujz/+eHn88cetb0/oiu5+3PP6B0zefvttOeigg6RNmzb2efFaWagPCWQ9AW/YutSCBEjAIfDPP/+YMmXKmGrVqpkiRYqY66+/3gmyW3dLJk6kcyvmtGnTzO+//x5UPi8f3HLLLbb1DDqjFblUqVKmfv36fpUbNGhgDj30UIM69KpAd3D3qoDd2LFj/ephX1/U5rHHHrPnOnXqZI///PNPe/zSSy/ZY/2z4r+GOyRAAt4gwJbMrP+bQQBeIzBixAhZv369PPHEE9K8eXMZPny46As1rJqrV6+Wq666yo5NQwS0fmIyzVlnnSUnnHCCDdu0aZO99vPPPxft2hWsbNShQwdZt25d2DSTeVJ/BpOZXcx5geuMGTMEDMuWLStHHXWULFu2TP766y9xr1ZUs2ZNO1Z28eLFMeeVjAu9zH3//feXZs2a+THoEAW7f8ABB9gtxsbCeT/qAVKjRg27xbhZCgmQgLcI0Mj0Vn1QGxKQ559/XipVqiSXXHKJ3HXXXYLuQ22tCUsGYVOnThUYm5Du3btLr1695O+//7aGJowiGKxYWQcvbsSH4Yru9dtvvz1smsk8mS5+Ml988UXR8ZbWsBwyZIhg4oy2CFpU1atX9yPT1me774T5Azy0k25+MjFUAaKtxHaLFYtOPfVUu4+vdGDuV5Y7JJBlBLh2eZZVOIvrbQLajWlnKZ9//vny2muv2dnKGHOGMZowHtHKE0lgQL7wwgvSqFEjOysXhpB26Urx4sXlv//9r5QoUcKOK0SL0OGHH25bPBGO86kSr4/HdLicccYZopNR7PjRW2+9VS688EIpVsz38wmGjuzatcvugrlXBeMxvTwm080NM8sx1rVx48b+FmOdEGfvayeeThSyu/vtt59zilsSIAGPEGBLpkcqgmqQAAigFRMC1yw6/k9g0GCyCbrL0W2el6D7Fu52MJkGBiYEBiT2l+ta1RB0rSN85MiRcuyxx8ovv/xiz6fqK138ZGKdb7So3XbbbbYF0+myBTf3xCy4MoJUqFDBbr34lS5+Mvfu3Ss6Htn+SXrllVf8KNFV7nDGSece9jJzv/LcIYEsI0AjM8sqnMX1LgF0A8KQ6dixo/X9B/9/+MDIxLi0AQMG5Kl8+fLlbTi6z0OlatWqghYghP3888/289NPPwla6FIpjjGcSh3yyhstk+DviNNCqROyrJEOg+e7776zwRjn+O2331oDEzOivSxe5w52jz76qG2Rf/311y1rh2fdunXteGL8qYJgrCzE6U63B/wiARLwBAF2l3uiGqgECYjtEkdL5B133CHOJAeHS9euXaVbt27WpVGVKlWc00FbdIE3bdpURo8eLVdffbXtNl+wYIG0b99eLr/8cnnrrbdsN6/OzrUtnnh5wwWMe0xhUIJJOOjZs2cScok9i99++01OO+0021172GGHyfvvv2+NSEz2gdGOlmb14SjXXnutnXQ1Z84cOwwBYV6VOnXqCD5elokTJ1q3UOXKlRMMIcEHAt5o4X/11VeldevWdtwy/nzVrl1bYHxSSIAEPEbAG5PcqQUJZDcBOKDW2bJGu2XDgtCJPNY1zsUXX2y0Bce6bIEzdvc+LlyzZo11ZK3j02ycI4880qjvRpumjtc02sJmzyMcDq83bNgQNr9knWzRokWQc/Nk5RttPnCTo+MBzYEHHmi5qcFpZs2a5b9cZ50bNXyM/ikwJUuWNPoHwWg3rz/cizv6J8TokAkvqmZ10lWurAsvfVVa5u7t5MmTbZxRo0YZ3Ntw8XXOOecYXEMhARLwHoEcqOQxu5fqkAAJFJIAJkNs2bJF1I9jrpQw8xyTidDlm2rBrPfKlStblzSp1iWv/METQxfUB2bYaJj8gy5opzs9bCSPnMSwDIzRxTjTdBfUiRr36V4M6k8CGUuA3eUZW7UsWDYTwEzbcAYmmOgyfJ5Bky7/ccEzkoEJmKmcoR9LZaYL9/zKRgMzP0IMJ4HUEkh9U0Zqy8/cSYAEUkggXfxkphBR3LNONz+ZcQfABEmABJJGgN3lSUPNjEiABEiABEiABEggewiwJTN76polJQHPEUgXP5meA1cIhdLFT2YhishLSYAEPEKARqZHKoJqkEA2EkgHf42ZWC/knom1yjKRgPcI0Mj0Xp1QoxQRePbZZ60PPmSPVXHgExGOy+F/D+t/h4Zj1RwnfN26dTJw4EDp0qWL1R7L9r333nt2NRJcjxV7nnvuObn55pttOJYoVBdEduUShK9du9au9nPTTTfZcPgAHDFihF1NxgnHkpGRwtV1kV1S8sYbb7TXt2nTRt555x2ZP3++1R9rm2P97RtuuMGGw28mVhCCH02kry5g7ProWGEF0rZtW+tDc+HChTYcM5KxtKUTfsUVV4QN79y5s70e4cOGDZNff/3VXo+1vLFqC3x0Qq688krrtxOc4P8TywfC92HHjh1tOFYmevPNN+V///ufvX7FihUyaNAgue6662w4/IAifPHixRHDhw4d6g+Hv0ss09mhQwd7fbt27eSNN96QJUuW2Osx23rw4MHW3yUiXHPNNQI/okuXLrXh6ipKsGY5fI5CsEU4zoMftjh2hyO+E450EI50IfCrifyQL66HHtAHekGgJ/SF3ghHOVEelBsCDuABLk44eEQKB0eEgyt8ZGKVIvAGd1y/aNEiWx+oFwjqCfWFekM46hH1iXqFoJ5xP+C+QDjuE/hcdcJxn4QLx30FQfhLL71k7ztcj/sQ9yPuSwjuU9yvuG8RjvsY9zPuawjuczwPuO8RjvLgecFzA8FzgnA8V5HCsbqWE44VhPA84rmE4DnF84rnFtdjVSE8z85ynHjO8bzjuUc4fgfwe4DfDQh8eeL3Ar8bTrgN4BcJZBsBuDCikAAJGKMvcqOr4FgUunKL0Res2bRpk9FVcoyuC27UEDDqbNuG6yovNnzz5s1JCf/nn3+C8tcuT6MGgoH/TOiHcDVkzOzZs61+iQp3fEQifTVwjLpJsvmrKxmjBpXfh6ROLokqvFmzZqZPnz4mluvVAPPnv23bNqMGm/nxxx9t+XXZR4NwXa3H6pfocOSD/JAvBHpAH+SL+kl0OOoB+YM7BPWE+gBX5I9w1BfC4Sezfv36EcPzuz6vcNwXTjjuR9yXyB/3Ke5XJxz3aaLD8bw6+eM5xfOM5xaC5xjheK6hX6LD8TtCIYFsJMCJP9n2r4LlJQEPEUgXP5keQlZoVTLJT2ahYTABEiCBhBJgd3lC8TJxEiCBvAjoP/u8ghmWIALkniCwTJYESCCIAI3MIBw8IAESSCYB+slMJm1fXvSTmXzmzJEEspUAu8uzteZZbhIgARIgARIgARJIIAG2ZCYQLpMmARLImwD9ZObNJxGhOvlG+vbtm4ikmSYJkAAJBBHg2uVBOHhAAt4hALcwu3fvtgoddNBBUrly5QIpB7c1Bx54oBx11FEFui6ZkdPRX6O7XsAKa8FXqlQpmdgKnVe6cNcZ8rJnzx454YQTcpX5r7/+si6QqlSpIsWLF88VzhMkQAKpJ8Du8tTXATUggbAE9ttvP7+RiQgVK1a0vvrOOeecsPFDT8Lwad68ufVHGBrG49gJHH744aIuafwJwDfjqFGj/MfciR+Bs846S9TNkKhrsVyJPv3009K9e3frwxOGJoUESMB7BNhd7r06oUYk4CfQuHFjGTdunDz22GPWsIEz6EyaGQzn1WPGjPGXN112YFiOHz/efnr37p0uals9P/roI79T8bRSnMqSAAmkHQF2l6ddlVHhbCKAru6mTZvaj7PqClZpSbfu2Uh11rNnzwIPA4iUVjLPo/v2oosuSmaWccvrzDPPlLJly8YtPSZEAiRAApEIsCUzEhmeJwGPEEDLJboLv/76a6latWqQgTlp0iS7xCAMHixlB0PULVgOD0sNojsRS/Xpyibu4JTvp2urLJYR/OKLL0RX0kk5w1gUSFfusZSV15AACaSOAI3M1LFnziSQLwGsh1yqVCmpWbOmXSca61k7grWlGzVqZLvTixYtatfGrlGjhujSeU4UmTZtml1fuVy5cnbt7V69evnDvLCTrn4yP//8c9u6fNJJJ8mMGTO8gDJqHegnM2pUjEgCJFBIApz4U0iAvJwEEkUAE39gxGBc5rp166zxuHbtWhk6dKhccsklggkoMConT55sZ9euWbPGzsKtVauWTJkyxbZ4ooVzyJAhVsX27dvLhAkTZPXq1VKkCP9fxlpvmLX/77//CsY2PvDAA5YzZkFT4k+AE3/iz5QpkkAyCfBNk0zazIsECkgA4+eeeeYZGTZsmKCL9uijj7aTgNAtvn37dmnXrp3ffUv58uXl0ksvlVmzZvlzKVGihH+/SZMm8ueff4adqeuPlOSddPSTeeKJJ0q1atXkvvvuk1atWsny5cvtJ8noYs6OfjJjRscLSYAECkiARmYBgTE6CaSKAAxG+L1ES9qRRx5p1XB31WKcHQyII444IqyK3377rT3vXBs2UpJPpou/RgfL1q1bnV27hYEJQb2kk6Qb93RiS11JgAQCBDi7PMCCeyTgOQLz5s2zLZlwPA0jcebMmXaiT5kyZaRt27aCMZswGM4++2wZPXq0LF26VJ588kl/OTBhCK2guPb1118XtGaixdMrgtnl6STXXnut/P7771K/fn3BpKvZs2fbcbHpNFu7Tp06gg+FBEiABBJNgEZmogkzfRIoBAFM0sAH4zNPPvlkueeee+TRRx+1KQ4ePNiuNjN8+HDBBxOEnnjiCenRo4cNr127tnzyyScyffp026XeokULefHFFwuhTfwvhZ/Mzp07C7bpIBgfi8lXAwYMkGLFikmbNm08xzQ/jhhLinG92Hpd8mpxdcI4vtjrtUj9spkAJ/5kc+2z7BlBAMvubdy4UdC6GSoIW79+vZQuXdoaRaHhqT7+5ptvrJ9MjDVNJ8F4WCxlCEMz3eSPP/6wY0jPO++8dFOd+pIACaQZgfT7hUwzwFSXBBJNAO6LwhmYyBdhcF/kVUlXf40lS5b0KtKo9EpX7lEVjpFIgAQ8Q4ATfzxTFVSEBLKPQLr6yUznmqKfzHSuPepOAulFgN3l6VVf1JYESIAESIAESIAE0oIAWzLTopqoJAlkJoF09JOZ7jVBP5npXoPUnwTShwCNzPSpK2pKAhlHwJkhnHEF83iByN3jFUT1SCBDCNDIzJCKZDEKTwBLBLZs2dImdPrppwtcBKHVBzOfsWTjgw8+6He1g6Ub4coG49sQjqUaH3roIYGbIMgZZ5whgwYNsn4tEb5q1Sp5+OGH7Yo8CId7IYT/+OOP9vpw4a+++qo/HDOCH3nkEf/1WAkIa5djdR+kD9+NvXv3tstNIn34QXz55ZetH0eEr1y50ro+atasGYIFy/W99NJLMmfOHHv9ihUr7EpCF198sQ2H3024O4KfTVz/22+/yeOPP27X60aEc845R1544QX/KkRwSt6nTx/rhxPh5557rjz//PPyyy+/2Oux7CLcK8EFEAQzm5977jmBPmDu+PfEMpiQunXrysCBAwV+QpE/wtHqGSl8yZIlNvzCCy+019erV0+effZZmT9/vr1+8eLF0rdvX+vTEhHOP/9864ZowYIFNhwO7jE+tGHDhvZ6+MHESksLFy604YsWLZL+/fvLBRdcYMMbNGggTz/9tGDlJeiHLY5xHoJ4iI/rEI50kB7ShSAf5Id8EQ494BYJekGwJj30hd4IRzlQHpQLgnKCB8qNcHACL3CDgBPCwS00HPfG+PHjrT9VJ3zu3Lm2PpwZ56gn1BfqDdejHlGfqFcI/K2ivlHvCMdqVLgfcF9AmjZtau8X3DcIx32E+wn3FQT32WOPPSa47xCO+xD3Y906Z4rM+1H6nXuKTL7yIjEPdZEP1A+sXHqybKmRI4uw3+xoWV40R9afpPttTpMxem5b16tldufL5KFq6gN2zgxp2+xi+7zguUH6eM7wPOG5g2BlLDyPeO6ccDyPkcLhnxbheK4heM7xvOO5x/X4HcDvAX4XIHDJhd8L/G4gHL8jFBLIRgIck5mNtc4yhyWwefNmuyY1Zmrj5XDQQQdZ/5QbNmywM7Sx2suuXbsEjredcLixgYsgzOBOZDhW8dm2bZs/f6xhjlVmnPwTEY4Z1FhlCOVD+nDbs3PnTlt+5B9L+I4dO2xazvVYFrN169YCJ+dIPzR8//33t+u2O/nHGo46++eff/zpY3nNAw44QJz04xEO3ZAHdEX6SBt5YN15pB+PcDDCveakjzrAvpN+NOFYJQoG13vvvWfrMJrr8Uyg7p30USbcG07+sYQXV9+vh65YJHs//0CKLPlF5NvPRX4O+2jGdvJYvQxG/XGnqdXdUradfIZs0frBYgTQH88OnnHci9Afzzae4USEw4WYe4nX2ArEq0gg/QjQyEy/OqPGJJAxBNLVT2Y6V0BK/WSqISdTxop8PlLk+XdF9DCXVNEztbTFsXxlkSMqiJQ7SqS0LqN68CEixfYTKVJUxOwV2b1bZNsWkfVrRNatEln7u36Wi8zV5VPn5ErVd+KWS7QZ9iptKlbn/wcdHCEST5MACcSLQLF4JcR0SIAESKCgBOivsaDE4hM/6dw3rBMZ9qxItz65C/AfHaJy5gUip2hXdNWaIiXjsA78rp0ii7R1dN4skVlTRd5+W0TtUHlZDVx8INoVLzfosqYV0ORJIQESSAQBtmQmgirTJAESiIpAui0rGVWhPB4pqctKbt4o0ucOkb5q5DlSTXc6qXHXuI1IdW2xLJKEqQHGiCyeL/LlhyLvPSjytaOMbq9vJPLoGyJHVnSd5C4JkEA8CNDIjAdFpkECJEACJBBMYNz7OknnisC5K3VSzG3aklm3sQgm8KRS5miX+iuPiLyq40AdeVNbWtv/JzlGr5MntySQ4QSS8BcywwmyeCRAAjEToJ/MmNHFfGHC/WTu1fGSd+u4R8fAbKijshbqjJ53fxSp1yT1BibI1Txbjcxx2oW+Qg1L3Ydc11XkitNEdvzjO+Y3CZBAoQnQyCw0QiZAAvEjsFdf0HB788UXX1i3L5itHA/ZuHGjwE0N0veSpLO/xn///de6xpkyZYps2aITUNJIEsYd3dI9rxF55j0fjdf7iUzQ8ZEnnVogOpjFjvvV/YH3B7dgVjjYI27Mgi7yt6aLfPKOL4lR80SuPUsnJKnOFBIggcIT0AHgFBIggRQT2LNnj1E/iubggw/Wt7T4P+qmyFxxxRVG3asYdSFj1Bej0dnBBdZWfVLaNP/+++8CX8sLchNQv5DmxBNP9NeTusAxkyZNyh0x2870vwdmpu8z9YuYSz9hwgQ/W+d5GDFihD89PAdqKNs4hxxyiFE/lf6wmHcW/hzQvUuzmJPhhSRAAgECbMksvJ3OFEig0ATatGkjd911lxx77LHWqfW4ceNkyJAh0qpVK8FEDbSawfH23XffbR1pFzpDjySAiT9jxozxiDbRqwHn27vVhQ4crHfv3t36MIWvT/2zEH0iKYqJ+8lZdCCuKmzcINL9KV+S40f5xl4WMgM4oIfjeHwcR/vo7sdzAIfwb+uscfi6xPNTaPZobZ0706fxK5/p7PS5hdSel5MACehfTgoJkEAqCejKPbZFRh2TGzUmc6mizrL952JpxcTFXm3JnDZtmtHVivzlS5ed6dOnG10txq9ux44dbR3qyj/+c17dAW9wj7s8c6+vJfDSEwqdtNOSGa6FslOnTpa181zoSkH2WP+sFDpfm0CPdr5y3NoiPukxFRLIYgJsyeQfDRJIMYG33npLSpUqZZeJLFYst+tarOYCwRJ2V111lR2HhlZNLEGIpQyxBGGNGjXssoBOUfQ3zS4DiOUjq1SpYpf0QxhaRLGk35133ulEFTWYbFqffaatN0kW6JmOguUTjzxSHYTvk2OOOcbuYYWfdJCEcJ+0b1zjzY/GDQHuye+++y4oPSzxiKUanecC9z4ES0fGReBeCfLOx74tv0mABGImQCMzZnS8kAQKTwBdfHg5Yi1yHY+ZZ4JYlnDq1KnW2MREE+xj/WSsN42lDGE4fv21zwEg1oW+44477FKAV199tei4NZv2frqU3ymnnGINUEyqgGCNaqwt7axbbU8m6Qvrd8NoSGfBZCp0QR9//PFSsaL3fS2iqx/rqsddNv3mS7Lc0XFLGvc31jvHWvBY8hGCFYtOPVW7tvdJtWpwvCmiLbT7zhRyc4SuMATZ5NvwmwRIIHYCNDJjZ8crSaDQBIoWLSqHHXaYHd8XS2JYg7p3794ydOhQe/ns2bPtFi2ctWrVkjlz5sgjjzxi1wZ30u/Ro4ddVxvG5fz582Xs2LFyyy23yKGHHupESdoW4zExLtPLgrGXK1eu9H9CZ5IPGjTIGum9evXycjH8umE8JoziuEt5X4uizJ9V6KRhWC5dulR0MpUdlzx58mR7HyNhPDNYR90RtM5D8AcqLjJ/X4vocXFJjYmQQFYToJGZ1dXPwnuBACY0oHVp3Tpdeq+AorPP7RXoPsS+jlOT9evXC9y9NG/ePGxq5cqVk5tuuknee+89ue2226R48eLStav6CEyBpIOfTLiUqlSpkv9z//33+0nBEIJx2bhxY+ncubP/vJd3EuYn8+o7fcV+VO+lQk6AwmQeTIJDCyb+QKGV32mlx73utMIjw19+0eUjVSpU0HXO4yED7vKlcus98UiNaZBAVhOgkZnV1c/Ce4EAZsaqayHp0KGD3YbqNHHiRNm0Kf++uyL7lucrXbq0lCxZUubNU59/EaRnz56C8Z9oIerYsaOUL18+QszEnk6Yv8Y4qo2xl+hedj7OzGy0prVt29Ya95jl7PCPY9YJSyoh3FtcK1JOVV6snyfU4CzEeFu3f1j4w9y2bZvlDCB169a1f8iWLVuGQ5kxY4bdNmjQwG4L9TX8RZHRC3xJdOpeqKR4MQmQgEjuWQakQgIkkFQCcFOE7m24Zalataqd3INWHHTRwghEK6fOWo66OxAGBAzHwYMHC8ZmVq9e3XaLuwt11FFHyUUXXSRwlYTu81QJjF2vy+GHH27rJlTPbt26yaxZs6RevXry5JNP2mC0JmP4gpelTp06gk/cBZPW3ta1wS9qLfKAGmsHHCRy1xMFXuEH3d+YCNe0aVPBfTpq1Ci7iAAmvUEwtAPDRFq3bi2XXHKJDBgwQGrXrm2Nz0KV6YMhuvrP7b4k4ES+VJlCJceLSYAElEAWz6xn0UnAUwTeeecdoy9Oo5N4rEsWbRmzDr918oPRlhyjLTf2/Lvvvmt07KXdHz16tL8McOR+773qRkZFV0ExOhHI6EvaxsOjjo+OJ7ThcP+irZ3myiuvtMep+mrRooXR8YGpyj7mfLXlMoirwxdO2b0uuGd0HGzi1PzoTbRh+j5X1jJm1YoC5YWFCa655hqj3d+WsRr5pk+fPkFpqOFptIXZ4BnRmf5B7qSCIkZzsOkvY+5sE9B54IPRXMU4JEACURDIQRz9gaSQAAl4iMCGDRvsRJxwLo3ioeYDDzxgWzkxUahmzZrxSDKmNL755hupXLmydUkTUwK8qMAEMDt7+fLlifUm8PFwkcvaB3R7VVs0290mclDeHky5MS4AAEAASURBVBQCFyRhb9cukY+HibS9IZDZy4+LdLkvcMw9EiCBQhHgmMxC4ePFJJAYAhhXmSgDE7OjX3zxRbtiSioNTJDjf9zE3D/5pZpw7i10/fLV6lKona4DDrn5XpGD1Y1W71vVB9FyeyplXxt0gt2zOnmrRImAgdlQu/qxwg8NzJRVCzPOTAI0MjOzXlkqEohIAOPZNm7caGdFR4yUpIBM8JOZJFRxyyZhfjJDNSx/tI7RnCHyxQcijfY5qX/oZZ0GfqzIBTkiAx8Q6+4oGZ1pyxeJDNJxsy1OFClzhEi3Pj5tq+tmxCsiE9Ql0omnhJaAxyRAAoUkwO7yQgLk5SSQbgS++uor6+YIM6MpJJA0AnO+FXnlEZFXPw/OUu1NueZckRp1RU6pLVL9DJ8hqhPYCiwwWP9cLTJPfV1iHfKfvxH5cqLIbyEpXa4+Pe9Qo7NukwJPTApJiYckQAJ5EKCRmQccBpEACSSWAPxkNmzY0K54lNicmLpDAH4y4bUgZTP7t/wtMk0NzS9GamvmKEet3NviekrtTTlaDcIjjxU5pJR6Yt9PfaIUVT+ce/Xzr8jWzSJrlutyP2pQLtS46/UTSa6/UKRZO5EGl3LmeCRGPE8CcSagA1EoJEACJJAaAgnx15iaoqRVrinljrGZF1/h+zyjxiLGQmKVnZ+/F5kzSWSMdm1DdulHe9tFftr3wX6U0risSO3m2ip6praOqqV68ulYEijKixmNBEggXgTYkhkvkkyHBEiABEggPgT+2a6tkmt8n3Xa/Y3P1i2+1svde3ytmWjV3F/HepY9ct+nvEhp/WAGeyxd7fHRnKmQAAm4CNDIdMHgLgmQAAmQAAmQAAmQQHwIcHZ5fDgyFRIgARIgARIgARIgARcBGpkuGNwlARIgARIgARIgARKIDwEamfHhyFRIgARIgARIgARIgARcBGhkumBwlwRIgARIgARIgARIID4EaGTGhyNTIQESIAESIAESIAEScBGgkemCwV0SIAESIAESIAESIIH4EKCRGR+OTIUESIAESIAESIAESMBFgEamCwZ3SYAESIAESIAESIAE4kOARmZ8ODIVEiABEiABEiABEiABFwEamS4Y3CUBEiABEiABEiABEogPARqZ8eHIVEiABEiABEiABEiABFwEaGS6YHCXBEiABEiABEiABEggPgRoZMaHI1MhgcQT2LVLZMInic+HOZAACZAACZBAHAjQyIwDRCZBAkkh8OT9Io1biNzcVmTLpqRkyUxIgARIgARIIFYCNDJjJcfrSCCZBL79WuSh/r4cB30gckObZObOvEggNQQ2bhC55UqRDetSkz9zJQESKBSBHKNSqBR4MQmQQGIJoNXy+MNF3O/ZBb+IVK2e2HyZOgmkkgAMzKYni3yvN/7pJXWoyHKR0mVTqRHzJgESKCABtmQWEBijk0DSCXS/MdjAfOUZGphJrwRmmHQCj/bwGZjIePZ2kYsqs0Uz6ZXADEmgcATYklk4fryaBBJL4KMRIq3aBfJocbaYj6ZLTk5O4Bz3SCATCfy9We/9s0UmLQyUji2aARbcI4E0IEAjMw0qiSpmKYE/VopUqBRc+NV/iJQ/Kvgcj0ggUwnQ0MzUmmW5soQAu8uzpKJZzPQiYIdK39QyWOlP3qeBGUyER5lO4JBDRUZ/K9KwaqCk7DoPsOAeCXicAI1Mj1cQ1ctOAjkv9RP5bFag8LdcLdL88sAx90ggWwjQ0MyWmmY5M5AAu8szsFJZpDQnMP9nkVNqBApxtO4u0PFpBx8SOMc9Esg2Auw6z7YaZ3kzgABbMjOgElmEDCKwc6fI1bWCCzR6Kg3MYCI8ykYCbNHMxlpnmdOcAI3MNK9Aqp9hBHp3F/l5T6BQj98jcmbdwDH3SCCbCdDQzObaZ9nTkAC7y9Ow0qhyhhKY8qVI/YsChTungsjXS0X22y9wjnskQAIi4brOaxQXmfg7Hbbz/iABDxFIn5bMTX+JYKzatq2pxbf0V1154hMRuJdxidm7V8fN6Sosa1e7znKXBKIkgNVNmrkMTFw2bAINzCjxMVqWEQjXovnTLpFG+sfMC0tQrlwugndFKgW/KZM+F/lpZnRaLJwnAr0pJBBHAuljZH7wtm8yxKzvfMX/borI5x/FEUUUSb06QJf3U1cajVuIDB4YdEEOftiqnSby1AO+8zA2h72SeqM4SMssOUjFvVFYtF076b3iSuSNF3z3musUd0mABFwEvGxodtZ3BN4VkFS8C9AgU6qMGt0Xi1xypk+P/L5P1mVq7+rsi5UKnfPTL5vC0/EdFqF+0sfIDC3ATQ1FLm4lskv/vSZD/t4o0uUuX0597tMlzprnnSsMzA63iHz5Wd7xGBp/Asm+NwpbgpFDRd7S1nFHLr9ApONtzhG3JEACkQh42dB0dE7Fu+BRHdsNueUqkWeG2t0CfaVC5wIpmOGR0+0dlkd1pK+ROXiy+hH8UKS4jsPJS9b/qf/ObsgrRnRhi/d1fdxzs8i9j4uc2yDv62BgDn1RjdFL8o6H0AfuEFmzKv942RBj8niRIc9HX9Jw9RvtvRF9LomLuWKZyJXaiumWl991H3GfBEggLwJeNzRT8S6YoENtIC/psrRXXOfbL8h3QXQO9xtckLwyLW62vcPyqb9i+YR7N3iVGmWbdcyJitmzR3KmT9ZB39pqeNwJIg2ailQ6VmTdWpELy+tsXY10fBXRBZ9FrleDrkQJPRFGMCZl1rfaOrrD1zXvzOpdtijQPf77cs1nrHZD5GM8Iu+tOn4U42JKHiiyZKHIWDWKd6mLmguaiqlZR6RIEcm5p4tIv0F2X444Sid+NBapXjNIOYz3zHn1GZEqJ4scq+UbPsRuTbsbJEfTEBgqn4z0jROtcYZIm2tFimnVQoeRb/rSKqaTRyodI1LrHJFyR9pzMaeLq8OUJ6doUV9eUyeKTN33I9eomchZ5/vOY2zQtEm2/DL5C5E/14g0bSFydn1f+CStP3BtrfF3/KNlPF7HKbYR+WKMyHfTfAP6L23rq1tcEal+XfeGL2H9jlS3iJCfXv5E4rtj71t0q7kFZS1zhPsM90mABPIj4Bia7rXOnTGaqZ4MFPouQK/Y5x+LzJvt++07r6EY9YEbzbvAwWB/O775SuR/C0RQ9rPqBX4XMawLr8ay+nm5v7Zm7mvVdC52thjihWFo+C0/Rn9r3RKqM8K+n6oTEfV3/S9NvNqpIi2v0t9pfZ9F8Y6N+V3Dd1igVjz4Dgsol8eeLl+XHvLaQGPUnjRTvvTpe+GpvmMcvfCUbx/hzmfrFmOquo6d8+v/DF/eXl0C1zpxW9czBul8Nio4rH2z3Gn8ucYXp9v1vjC3vk6Yky62n39kzH//E5wuzg99MXfaO3b44p1TITj+e28Y8/3U4HNI49Kz9Jnea8yPM3KHIXzwc748Yk03UnmQap/7cufplKn/Q7nDoM+40cZM+yp32MU1jRn4eO7zEz7x1Uuk+nXfG9Apr7pFeF56ITxR8vQjwWXr1ilROTFdEsgOAps3GdOwavBzVaO4MZF+9xNFxf0b5HoX2N/lescH63fT5dG/C6DvHyuNOfeY4DTwO4r3IAT7rs/ePXt8593fC34JiuOPf/kFvlgune2Jvg/kjo/f9Ui/we68sB/ru4bvMB9Jr77DQus5zLHejWkioTe9+yG+7FzfA/DDN8bgc9/tPiNr7WpjcrSI1fWDfRhH4eTNl3zX1ylrzKi3fUZls9q+cz1uMmbXLmPef8t3/PwTxmz+K3cqjuEVzsiEMYiHXvWyPxAwnH6ZbczGDcZ07egLmzndpx8exlBxHlCk8Uh3Y776wpjbrjFm505japfyXT/+Y59et7bzHcNwcx7QnlqGn340ZuSbvjCk89PMwINf0HQjlWfxAl/6pxU1Zuki/fxqTEXNC+lv3xYw5u7o4NN94jhf2PWtjflnuzFffuo7RhlRX3+tVwPxVmPuvc2Y5UuMeesVX/h/rs27ft33Rn51C9aOkRlOr9C6iNcx+IOL8zlO97dtjVfqTIcEspfA35vDG5rr1iaPifs3yP3uwrsDz/zR+vl7ozEfDjfmvaHRvwtQAufd1OUKY6ZONGbQAGMO1fSQ7tRJxqCc2IcOkcrcuIYvzsN3+947a1b5jsMZmW6D9N3XjVk415gBjxozY7LvdzqadyzfYZn3DovyadI7MU3E/aBCZfdDPOxV3wOCB0v/Xdl/i06xSuk5GI95SbNavuvx4ncEBg7SwweC1jPsw9AJJ3kZmc4DjOvVQDL4t+3Ig3f60l222DmTe+s8oPowB5UNP6aOjt1vNAYftL7i3OP3BIzMpx4IpIkfNYQ/+1jAyCxoupHKM2KIL20YmY4+lTUv5Dd3TsCYQ+urii0LwtBCC3GMYujmCH6IIfixxI8p4t/QxncO3+Hq131vRFO3jpEZSa9AbvHZg8FdZR8XlAefWd/FJ22mQgIkoAZcBEMzWS2a7t+g0HeX0yiC99Ls7wO1Fc27APrj96JyyLvA+eOP310I4rQ427cf+o3GCYTrZ+/u3YFQnAtnZL7+vC+++z0SuCr8b7A7HPt8h2XWOyy0fvM4Tt+JP+4hAO1vCkwW0Vm5OTe00qdFH6FoZfEsX8yT1IWDI4eXFjlt3xjD7ducs7FtMQZy9veanl7+/DBdweUwkVW/Fzyt9pfosFIdV+rIP9udPV12UMfl4FPjLJFHdAxOrbMDYe69MuV8RxgP6UhB041Unq1bfCmW1bGjjj6dVBfoc9DBTm7+rS1LZT3cttp/LtdOseIiD3XV8UWq96i3fMF7d+eKFvFEDHUblV4RM4wi4EEtjw7z9Uu/B0VO1zG6FBIggfgQ0DGO8tF3Ig2rBtJzxmim2o/mWzr2/PrWOsZRx0Tiuf9IJ+dEK87v9vmXBr8Lztj3ex+Nb06Md4dcXFP84+h9Z8J/O7xOOCl8eEHOFvRdEy5tvsNE8rFPEv4OC1cvEc7p7JAMkN+WinS+XaSJTqJoow/t62Mkp8s3vuX4dM6NrNaHOS+po5NTFumDP+bdwEy8X2b7lvcrrxdi4k5h5I8VIifrQOmZu9Rg6ibyxIuq4/Mi/31KpKhOyIFgBYv8xJlY48Q7QpVTW9gO8r5Z3Svtm9Bj0/pzVfg0Rw/3XX1SNScV1WGfMe2cyS/dSOVp1sqXQon9xTzQN/AjuGh+QDcnj3BbGJQQN4shz4n0Higy+l0xl13hm+jki+X7zq9+E123bl2i2ceksf6vBWI20CbNbg+K669DIIx7JEACsRNwDM2W+sd70kJfOo6hmarJQLv1D/IW/a0fPEqknb5z7ETHdiJ7r47uXXBcFV854PJswHqfL0ycGfGG7/xpZ/q2eX1johB+cMbN8f3W4jgvOX6fcTl8kJhW7QK/6841+f0GO/GwLei7xv0ucNLhO0wknvaJwzVB28xoybxcH6xmp+tMOW0l3KwzqiGOwYJZ5Sv1uMdNaoDWF3l7kA0O+rr7Yd/hlR3Vce0ZIu2baqtjLd+5vi/7toX5hl5HH6DGxcNq8EIZFefBLneU77jnDSJ3XufL23cmuu97H/LFK6/pdLlC5Fb9wTpUW0o/1R8xR95RY7a/xkPZBryhbp80oJX+qOUleaUbqTynavpnlVPXUjMlp6LeWnD31LahyEmnaLmjaLlFayXkoX4+t05nqxE95wffuU3rJef5J3z7P0/V8n3g28+vfhNdtz4tovuGq48LmwfHHTouutaE4Kt4RAIkEA0Bx9D0SovmymUiFY7x/db/+K2vBGX2FSSadwE8ozza03dB6bIiN16uM9T1d1L/1FtBY0s08lJ/X6x6+q5AT9GARyJf1eQy30z1D6dITjn9Xcd7qqm+H5/r47smv9/gyCn7QvJ61zjX8h2mru46JsY+cRgnaptHV7q3gpxxIRhsDGlyum+cCPYf7enb3zfOxDxxP8765OsJgckxCB/7gRMSvMWsdUwQctIorfsYY+iIMyYTA5/DiTPY2hkT49YXOmCgt5M2xr044zI3rDPm6saBMGfikDsPZzxL58vcZwP7KD/GJjrpYzwQJvo4Yxyd89jWP9GYBTpwGxJrunmVB2NTr2gY0AV53nmdbza4M/bRPf6wsoZjDKcj7lmMmBU6+YtA2TCr3xnrhJn5kHD16743ECe/uo1GL6RTWLnqomAuwwcXNkVeTwIkEA2BZI/RdP8Gud8FGOvvTNzBb2OtQ3wTOVGGaN4FiPfvv76JN7je+TSq7hv3jnAIzrc6z7cf5tuOh3/t2dyzw69p4ovt1hlnMKkT3j6c/LBFHEi432BfSOA71ncN32E+hl55hwVqNOq9HMRMlAGbzHSt37DNG8UcVip3lyoUgW+yQw7PXyU0z+/dI6LpxF0cn5nanZxLkC/OR/LhmeuCMCfQUga94SMTAp+fZ5zjW+oSvtLQVRFL139our7UAz5Aw5UH3UJaH4J/2wUVXLv1b38d6AwhycH40wMP0l82IzlbNuWuy2jqN5F1m18ZnRU0nHjtm+myo2OdI25JgAQSTWCL/qa4u86RXw3t1klF1znGRWIMezifuAV5F2z6S+QA7a8uzHujINx37tQx9Ko3lqwMlWh+g0OvCT0OfdfwHRZMKJXvsGBNoj7KGCMz6hJnU0T3A9qzdzaV3FtlhTP/4/aNa4JmGA+1fl34H2pvaU5tSCCzCHjJ0MwssokpDd9hieGaxFR1gAWFBEggYQTQKtuhaXDyk76ggRlMhEckkBwCXhujmZxSMxcSSBkBGpkpQ5+EjEsfIdJJZ9xXr5GEzJhFWAL9H9alNJcFgnp10WVPGweOuUcCJJBcAnkZmuiupXiHAN9h3qmLGDVhd3mM4HgZCeRLYOZ0daN1XiBadd2dqWOxwo1hDcTiHgmQQDIIROo6/1I9gIQbK5kMnZgHCWQYARqZGVahLI5HCGzbqr5R1QH9Po9VViv4Nqte0yMKUg0SIAGhocmbgAQSSoDd5QnFy8SzlsC9twYbmPDxSQMza28HFtyjBPxd59UCCsJh+4UVdXIeu84DULhHArERYEtmbNx4FQlEJjDuQ10coE0gvMnpYuCgvgj/0wWgcI8EPETAtmiqu7dJ8wNKwb0Ru84DPLhHAjEQoJEZAzReQgIRCaxdLYLVl9zy+2+64lMl9xnukwAJeI0ADU2v1Qj1yQACbFrJgEpkEbxBwK5rcEvbYGXsEpw0MIOh8IgEPEjAdp3PEGnIrnMP1g5VSlMCNDLTtOKotvcI5Ax5XmT0NwHFrm8t0qZ94Jh7JEAC3iZAQ9Pb9UPt0o4Au8vTrsqosCcJ/DpPpCp8FO2T0rpdqku+RbOUqXMNtyRAAt4gEK7r/DRdlnfiKro38kYNUYs0IcCWzDSpKKrpYQK7dDZqhwuCFRzzFQ3MYCI8IoH0IRCuRfPnPSKNdLw1Z52nTz1S05QToJGZ8iqgAmlP4In7RL7XtcgdeairyHkNnCNuSYAE0pEADc10rDXq7DEC7C73WIVQnTQjMH2yGpSuVsxah4jMUIOzuLo/oZAACaQ/AXadp38dsgQpI0AjM2XomXHaE9iySaTy4SI69NIvC+bq2MxT/IfcIQESyAACNDQzoBJZhFQQYHd5Kqgzz8wg0P3GYANz0AAamJlRsywFCQQTcLrOG7km93GMZjAjHpFAGAJsyQwDhadIIF8CH40QadUuEK3F2WI+mi45OTmBc9wjARLILAJo0Wx1ns4y1x4LRzjr3CHBLQnkIkAjMxcSniCBfAj8sVKkQoiD9dV/5F7pJ59kGEwCJJCGBGhopmGlUeVUEWB3earIM9+0JGBX9bmpZbDun7xPAzOYCI9IIHMJoOsciy6w6zxz65glixsBGplxQ8mEsoFAzkv9RD6bFSjqLVeLNL88cMw9EiCBzCdAQzPz65gljAsBdpfHBSMTyQoC838WOaVGoKhH6+6CzSJ44VBIgASyjwC7zrOvzlniAhFgS2aBcDFy1hLYuUPk6lrBxR89lQZmMBEekUB2EYjYolmOKwNl153A0kYgQCMzAhieJoEgAr17iMBliSN9eomcWdc54pYESCBbCYQ1NBVGIxqa2XpLsNwBAuwuD7DgHgmEJzDlS5H6FwXCzqkgMmWZSLFigXPcIwESyG4CYbvOFcnEtSJljshuNix91hKgkZm1Vc+CR0Vg4waRimVEtrliL14gcnxV1wnukgAJkIAS2LZV5LJzQvxo6nkamrw9spQAu8uztOJZ7CgJdO0UbGC+8QINzCjRMRoJZB2BAw8SGTMjxL2RUmDXedbdCiywjwBbMnknkEAkAiOHilypRqYjl18g8v4k54hbEiABEghPgC2a4bnwbNYRoJGZdVXOAkdFYIWOuTzmuOCo6zi2KhgIj0iABCISCGdoYunzr/g7EpEZAzKOALvLM65KWaDCEjB7dBZ55xbByXwxhoP3g4nwiARIIC8C4brO5+oFF3DWeV7YGJZZBGhkZlZ9sjRxIJDz/BPBA/e7aZd54xCjMw75MAkSIIEMJ0BDM8MrmMXLjwC7y/MjxPDsIvDzjyI1agfKjB7zX3TGaMkDA+e4RwIkQAIFIYCu85bninz5S+Aqdp0HWHAvYwmwJTNjq5YFKzCBf7aLtHUZmEjgg+9oYBYYJC8gARIIIoAWzY+mi1x4auD0XN1F1znGelNIIEMJ0MjM0IplsWIg8GBXkUWu6/o9KHJ6HdcJ7pIACZBAjAQiGZoNy+c2NP/9V4wxMWbEy0jAOwRoZHqnLqhJKglMHCvS/7WABg2qiOmmRiaFBEiABOJFIBpDc9cukU6XSc7cOfHKlemQQMoI0MhMGXpmnFICPW8WgZsiyPo/tRuruW/f+R46TnKKFnWOuCUBEiCB+BDIy9Bc9bt6tmgpMnycOnV/Nz75MRUSSCEBTvxJIXxmnRoC6IbKKbLv/9W7r4uMHi7y3sSAMsMHi7S7PnDMPRIgARKIN4Fwk4HceVQWMUv3Sk5Ojvss90kgrQjQyEyr6qKycSHwxwqRCseET6p9M5Fh2nVOIQESIIFEE8jP0Px5lsippydaC6ZPAgkjwO7yhKFlwp4lsMQ9uydEy4FvhpzgIQmQAAkkiAC6zt+fHDlxdplHZsOQtCBAIzMtqolKxpXAkoWRk+v3kMjOHZHDGUICJEAC8SKAST63t4+c2pC+nGUemQ5D0oAAjcw0qCSqGGcCixZETvDJl0TqHCCCLnUKCZAACSSIgNm7V+T6Vr5JPpHyWC6cZR6JDc+nBQEamWlRTVQyrgQWuVbdCE34ND3RT9cpP7pSaAiPSYAESCBuBOzkwydfEXm5v4i6TIso7DKPiIYB3ifAiT/eryNqGG8CFXS25h8hiZbW4xeGiLmiY2DmeUgUHpIACZBAwgj8sVLkk5Hq6WKQyGTXuPHKnGWeMOZMOOEEaGQmHDEz8BSBnTtF9t8/WKUXnhS54U6REiHng2PxiARIgASSQyDU4OQs8+RwZy5xJ0AjM+5ImaCnCSycJ3JydZ+KD98t0u1+kUMO97TKVI4ESCCLCcDg3Lld5LiTshgCi56uBGhkpmvNUe/YCIz/WOTTD0R69RE5qkJsafAqEiABEiABEiCBfAnQyMwXESNkEgHM6PSv9pNJBWNZSIAESIAESMBjBGhkeqxCqA4JkAAJkAAJkAAJZAIBujDKhFpkGUiABEiABEiABEjAYwRoZHqsQqgOCZAACZAACZAACWQCARqZmVCLLAMJkAAJkAAJkAAJeIwAjUyPVQjVIQESIAESIAESIIFMIEAjMxNqkWUgARIgARIgARIgAY8RoJHpsQqhOiRAAiRAAiRAAiSQCQRoZGZCLbIMJEACJEACJEACJOAxAjQyPVYhVIcESIAESIAESIAEMoEAjcxMqEWWgQRIgARIgARIgAQ8RoBGpscqhOqQAAmQAAmQAAmQQCYQoJGZCbXIMpAACZAACZAACZCAxwjQyPRYhVAdEiABEiABEiABEsgEAjQyM6EWWQYSIAESIAESIAES8BgBGpkeqxCqQwIkQAIkQAIkQAKZQIBGZibUIstAAiRAAiRAAiRAAh4jQCPTYxVCdUiABEiABEiABEggEwjQyMyEWmQZSIAESIAESIAESMBjBGhkeqxCqA4JkAAJkAAJkAAJZAIBGpmZUIssAwmQAAmQAAmQAAl4jACNTI9VCNUhARIgARIgARIggUwgUCwTCsEykAAJkICXCfTt21d+/PFHycnJkSeeeEKOPfZYL6tL3UiABEggLgTYkhkXjEyEBEiABCITGDlypKxatUqaNGkipUuXjhyRISRAAiSQQQTYkplBlcmikAAJeJfAySefLJ06dfKugtSMBEiABOJMwFNG5pgxY2TatGnStGlTadSoUZyLGjm5PXv2SO/evWX79u22peHCCy+MHJkhJEACJEACJEACJEAC+RLwVHf5X3/9JcOHD5fx48fnq3g8I+zdu1dWr14tb7/9tkyYMCGeSSc9ra1bt0qHDh3kyiuvlDvvvDNs/ps2bZLq1avLkiVL5Oeff5ZTTz1VwMCr8s4779jyfPXVV/Lkk0/a/d9++y0h6o4ePVqaNWtm03788cflnnvuKXA+S5cutTr26dNHvv76a7v/7rvvFjidaC6IV13ecccdVs/169dLu3btwt47KA/uK4SvWLEiGvUYhwRIgARIIIsJeMrIRFdSzZo1k14d++23nwwaNCglece7sH/++acMGzZMjjrqKGnYsGHY5F944QX53//+Z+M89thj1sAsUsRTt0KQ3i+//LJ8+umngu7Gp556yhrGFStWDIoTjwNjjDz88MNywAEHyObNm6Vfv352v6BpQ1eMwUMdvPXWW3YfuidC4lGX+IP1/PPPy5YtW2TmzJkyYsQIOfjgg3Ope84550itWrVs+K+//pornCdIgARIgARIwE3Ak5YFDKBLLrlEypcvL507dxa0DLnls88+k3r16kmpUqXsLM1bbrlFNmzY4I4iaHU577zzpFy5coKXI17GbkEX+YABA+Tiiy+2XeTYD23N27lzpzz66KO21e/QQw+VGjVqyKuvviowRiBz5syxaZ911lkyatQoee+996RBgwY2z//+97/u7PLch1H40ksvhf0sXrw4z2sjBaI17rLLLssVjJbOZ599VqDz8uXLrd5uYxSGFcJ69OghLVq0sGW57rrrrFHqTgytihjWcNxxx0nlypXlrrvukrVr19oovXr1smmgDsuUKWOZILxs2bK2FQytb47kV5cYwvD999/LTTfdJCtXrhRce++990oijOJPPvnEGrCoQxhdMDTdbJo3b27Ldf7558uyZcvkmWeescfg9dprrzlFErA55phj5JprrpFJkybZexn3Trwlv7pE/UC3s88+2+oBligbzqEMOIZMnjzZbnHPQt+SJUtK165d7Tn31wUXXCBXXHGF+xT3SYAESIAESCAyATWYPCVq9MGCM+3btzf6EjfaYmXUwPDr+P7779twfdmZDz/80Dz99NNGjVFz5plnml27dtl4aiwapNO9e3cbp2fPnvaahQsX+tNp06aNUUPFqDFmOnbsaA488EAbB3EdQR44/8ADD5ixY8ea22+/3cbR1j8bZePGjeaNN94wamSZatWqGTWobJ5dunQxt956q5NMnlvoqi98c/rpp4f9oLwFEe0CtzrqkIOwl2mroClatKhBGdQ4t/sff/yxP+7s2bONtibbNLRr1KjxbcunXfD+ONjB9dptaoYOHWrU8LZ1oAa5jfPNN9+Y448/3pxwwglm4MCBZv/99zdqpBuEH3LIIUa7pG28aOpSDTZTokQJ8/vvv9v7Aaz//fdfe328v3QcsClWrJiZO3eu0T8n5rDDDjP6R8OfjXbbmyOPPNLo7GCjBqj56KOPLKcbbrjBLFiwwB9PjWmjfxqszriXp0+f7g+L505+dal/Xmz9Nm7c2OgfAJu1DjewOj/yyCNG/2jZc7hX1YC0+/qHzHTr1i2imvqHL8/7K+KFWR5wxhlnmBtvvDHLKbD4JEAC2UYArXKeEhiH5557rl+n/v37WwPGOaHjB412PdoX+B9//GHwUb9z9sX35ZdfOtHMjh07jLbQ2DAYoto6Y7Sr1YbDCMLLX1ur/PF1bKI95xiZMBoQ5+6777Z5OHnhJawtqP7rsFOnTh1riC1atCjofLQHeNnDcAr3iTYNJ15+RqYTL69ty5YtDV6KjoDT4Ycf7hz6t/Pnzzcvvvii0bGLRluWTe3atf1hqENtTbbHdevWtX8acIB9bTGz56Opy927dxvtmrXxteXNaAui3U/VF+q4QoUKRlsJrSEd7s+EtsT7//CAUSoFf6C0294+D9AD+p522mkGf24c0bHQRrvM7SGM+b///tsJyrWlkZkLSVQnaGRGhYmRSIAEMoyAp2aXq1FnBd3cjpx00kmiLz17iO5sfWkLurr1Re9EsVtt7bJjynAAp8foDkR3OroG4QAZHycddHND3F1/mPxStWpVex5f2ppl99VAFXzcgi5gNWJFW+j8p7WVU0488UT/cbQ7ej+Jtpj5dQ+9To04UcMg9HTCj0PrAF3HjmAYgRqRogaXaAuyYHykGuGiLaROlKAtOGkLpD2HOvnnn3/s0IRo6hJpVqlSxV6LsZJOOkEZJPEAdYxhEeCDMZfoMg8VbcH1n0rUWEx/BvnsaCu8nUw3ePBgO/wBW0xCwvPgiP6BcHbl6KOP9u9zhwRIgARIgAQKQ8CTRqb7BeguHMbhaXelnXygXZXuoKCX5v333y940cPY1O5P0W500e5sf3wYiRCM9cM4OwgmzGC2tSOOEYvxkhhb55Zw+oU7574m0j6umzFjhmzbti1sFLfhGzZCCk5iFj4MdXxgnEO0xVcwpjFaibYuo00P8TC2EJNuYDThHkiE4D7R7nFp3bq16NACu9VhG4I/OQWVZOiLMbPammknTEHfU045RbSluqCqMn4cCOhwHRkyZIhcfvnlgjHeFBIgARLIdAKeMjIxqQMtZuvWrRNMasAEBO2+s0YitjD8dKymYIk2TNTByxITfiZOnGhn8KLFEZMT8GLF7FcYb0gPk3VgQMJAQHz4wYShickNmEyCfR07KNpd7c8bs2jRCoWJPzAg0HIFowoTVaZMmWL3MRsXrnQwgQL6wR0QjEa0vhYvXjzqewcvfq8IeKEedCyqbV3FFmVDKzLc1lSqVMnyxfF3331ny67jVe1kIvwBQFzUG5hgIpAzuQR1ihZQCNzkoCU4mrosCBfUP4xMTBJKhOgQCuvCB3WL1kzturd/eC699FLbWoiJTQWRROvr6IIJPW+++aY1cHT8bdAfMicOt4klcNVVV9mZ+/itgg9gGpmJ5c3USYAEPELAS93/mEChWOwHk35mzZpl1Gizx2rcWFUx1vI///mPnaDhxMWYM/VnaNTos3Ewhk+NRHsdJvfoLGmjM63tsTOBZerUqUZnANtzyEMNBaOthvZYZ1/708EYQicfbDH+UlvybLjOmA4KQzjS0hY9G56Kr8KOybztttv8ZcIkEYxVxUQhlA2TXhzBpB9MyMF57UI2OuPblh0Te7Slxp+Gds8aTKBCPDUA7SQu7H/wwQd2nGB+denkl98WYzeRN3QFg3iLLglo1NWVLQfKrbP+jXos8JcTE9UKIonWN1QX/WMVNGY2NDzaY47JjJYU45EACZAACeQAgb70007QBY5WRLQIHHHEEWH1RyslxgCiNS6coOhIA3HUQAkXxZ5D696aNWtsS2qktCJenOQAuHvSmd3Wof1FF12U0NzBBS2VaMEsjERTl/ml/8MPP4j+AbCtoxji4HVJpr5wg4VWeayo5Tiaj5UPWm/RU4AFExJ9f8WqI68jARIgARLwBgFPdZcXBAm6LPObaJOfw250bVfeNyElr7xhyKZb99a4cePskINWrVrlVbRChcWLSzR1mZ+i3377re0Gvu+++/KL6onwZOiL4Qz4EwWjG3+i4DO2MKLeG+w45sKkwWtJgARIgASyh0DatmRmTxUVrKSYQKRd3nbMI1oYMXY1GwQz1n/66SfreDwdypsMfTHmFYamIzr0Q9Svq3NY4C2W9MS4ZMz4x2IHOtykwGnwAhIgARIggewhQCMze+qaJSUBEsgAAhjmg8mHGK6CVbkohSegY6TtJE9nouLVV19tJ/VFShlDkuACT300R4rC8zESwARdnTNhJ9xi1TJ4iAkVDIXDJDr80a1fv35CVoALzTPVx3ju1ce3wEsFVqLDsKVwkh8brE6Hyclw85gMKZKMTJgHCZAACZBAfAhgaVB4yMDypaECzxDVq1e33jTg7QIuxuAJwquiq2hZjw0oC1rKdZUxO8SjoPrqKmL+8ca6OIToRNCgJOBiDWnjA7/D8LXsFjDSyX3W28igQYOsZxJ3eOi+rvYWeirux3fccYfVF944dKKl3HnnnXHPw0mwU6dO8sorr9h7BUs2T1Z3cAWVeNQlelrQAwe/0ygzfBHDaHILXA/CIwvc1MEIvf76693Bcd2P1/NU2LqEHqgXeKbAstAYKgg+oZIfG/yZGj58uDXM8UwkRdQ6ppAACZAACaQBAazGpC8Go60RYbXF0q06xtloi5xp27atXe42bESPnIT3DqzGhhWnsIwrPHw4y51Gq6IaiHYVK/Vda/RlbJewfeihh4Iux/K4WEoY7PBxL6UbFFEPsEQwPEfkJcgzkQJvFtATK+Dp+Hq7r0ZVQrLEqmTwwjJixAgzcuRIm9e8efMKnFc86lKNW6MtlHZFMtzrOqnX9OjRI0gXLMPcpEkTG2fSpElWX3VXGBQnXgfxeJ7iUZc6FMwudQyPO/9v7zzg5qiq/n/y8lJU5FVQQIoBlPpHmjQjSFNKQpGmWELviBQB6SGAisQCBIL0SJESaujSpAXpTRRpoWkABRSpUu7/973z3N3ZfbbvPs9unpzz+ezOzJ07t/xm5s6555x7DsTzy/NBGOg8NYoNoa8lzcxfOmD7PRdWcsB66gU7Ao6AIzCdI5BcSEld3q8nuHCba665YojXxDhIIlTIJ//C0QXbfvvtF1228QHHpVt5OFw+3HzEF1544ejmjVj28q4Ry8FVHG7c5KUg1iVVZYx1L1/DQSrmIAlfoT75z41hZAlJqwWWgQ+bpHKF87Ifjwyx/BUHSWDiR1P+XAvn8zuSdAaYLEViyyfHfXlNiNeecMIJAaaAj++tt97aLx/9gGnjN2rUqH7nU0ItJhOGh/7zk+QuXVLY4mJPUbYio0q/CUMsH6mFULpkJM+RRx4ZJI2LbtcI8yopYkmoV8qmH4RApk4YcfkaLtTTyR3cr1EXzNCyyy4bmZlUvrxgxHtIfxWUJCaDHcf0LT07jd5LQieffPLJYdy4cUHmHqmaqltcEcrvceG8fC/HtioYSyGNMNPc205TvfeJMNXpWdCC01j9gQceWEi7/vrrY1qj97IeNjw3iXgWuGc884mawYZw3byzg0HOZA4Gyl6HI+AIOAIdQCAxY0mikS+Sjzd+Yo8++uiw2267xf28xA6px3LLLRc/TlIbB6R7MH/Jd3Aqi+vxgztx4sSgQBZh3nnnjcwb52F6ZI8YFFEtKIBFUMjYKDmEucNPrdTWsZhJkybFevCRq4hYQYEHYjkKQxvksizmgXHE56wCOAT8ItMWPrTlpEVykcnio7riiiuWnw5SIUa/yTCg8qAQJaIK/FCSjzoVLCFK62BQkNwpuERJnnRQi8nEvzKYyB6ugEm6jq0ChER/uvhdhgGAGafdUusWsoGJXOFFZhRGnIkAecA9kVT6QYFF4iHM3EAwURTO5IF7AHOJBJHnJ/88MClQMIfYPiYREFuF+A3jx48v+KZu9F7iH5m+8oNJq0bgsu6668b7ed999xWysc+1ibnlBBJqfp2meu+TIgpGCbq8rAR5C4nVT5kyJT5n+CVWqOWY1ui9bBQbCkVSj99mNACJmsGGSQ33vfw9SWV1cutMZifR9LIcAUfAERggBPjgE+iAgA9IjlohmKAvf/nLhUthFJC4lROS0JNOOinIvjFKRvPM3YgRI4K8C8RLUJGmQATsw5BAsgUNSJhgIPnY8tMimcggyBVWzENAAgJnQKj35YM17lf6U8S1eC3S0FYI5hcmmHqoV9HjwuGHH16xqFpMZroAxi/PFJIO0wEDlC8X1b/cyBWYIEUNi3lkD1fABWwoT/6aU/HhtddeKzAQYIjquJt05plnRkZ+p512igzyddddV9KcRu8l/ec+MDmBkaxGTFqYdBAAJD0v5GUfjBMDRxpMMRONbhB9oD0w6BDMNhOYvLlBo/eyUWyYwFEH71OemsEGTQjtPuKII6JkPV9Op/edyew0om2Ux8yOWS5SBtRiTo6AI+AIgACSOD7MfBgSI9cKMjCZWoRQuFRO9eMHKyWgkkNFOfvss0dJGh9wpHZE9UqUZzKR2KT2EFkN5gnGCokYbS3/IT1J0s5UXqPbdtTFRHzDVhXGlx/q5/nnnz8ynOX1t8pkouqnvzDoecJ+M0lok4S3HBeOUV8ite1V4rmhnbvssktbTaSPKTpfrYJ45pEEL7/88oVs2CbShjwTx3OHSUK3aNVVVw2YjUBsk8Q3JjT5Vw8bVPA8x5XuQTPY8Exi9gCWqPwHknx1uVDuFZLRdVzhKHsok21VrzTL2+EIOAJdRkCqMWN80AfNtCjFWCU6EKSQudEXqtR+JtvMGPNejGlTVUnKElcI415JH7OSn5hYa7Y8Kie4BL5ZZSbQVFvIjEuca665xqSSN6nt40+SuTjWShLVdHnVLpDkLZ664447SrKIcYh1kSgJajxHgIRybMREmyYSJdc2ciC1vMnO1hTOuJHsLeWR5NIUIjiu+gY7qZJbKkeMo0lCHu9BvRX6PPOa8JgYyoI3gOFyWUS6VMOF+iVBtsUWW6xwnHZeffVVO+CAAyI2Mo1IyR3fyr7WZANsY8eONe69VNkt1VEPG94BTZaixwEwLKdmsAFTnn2ZJMT7UV4Wx3gY4LnCW0NbNJAcbLNlYzPErADOGvuECy64IM4MMFDPr6xjJswqKuxvmHUS/1oPVKxu9OjR8XrKYaVaImY6lEs6KhpsUbgOtQ4zSGbnzNgxfm6UsL9ApVTpV65OaKRM1FioI5wcAUfAEaiEgD5iUfpQLi2rlLc8jZXXcn8UF3CgfkXiiBpUH5CgyFAxe1qty+p17MxYxIJqDqmfXMnEcRa7TrnTiSp7JJlIVZCAIlHaZpttojSOBRBchy3m008/HRf2oN5DKkUdzRDSnSTFzUu1GimDdtEHVLRIv5DgQNhjUha2knw7sE179NFHA9IgbE4POuiguI+dZ7oG6Rvn+WHDiK0d+3IVFSXNlAE2qOIxQ+A7g3QT7NBQQeRBkiqmKK7kRu2LylUBNOK3qNmV9dxH+ZGM9/CGG26IdXTyD/wuueSSKJlONpR873hmWLyDtLEZSqvXub5c3fvmm2/GBWkTJkwI8gUZsJ2VC6OShT/Uhf0l321NHiLOmI/kbTRTe5JkGZU7/RhIknuhiEkyHWmlrlrYYIvNO4AtNLhga42WIb/whzqbwYb3M/FNldq74YYbxj7lF15VylcvrafU5axMlJ+saIsB8wjzx0pI7HB4oSGMcXlAMQrWbDCuvCMfK/UYjDBo5TyGsTCM2OBAvMi83KwsZLCA6eQY2wTcHyTRcV4MHy+s8aeZSxyoGKzKf63cGGcya4DtpxwBRyAybIxvLEBplmBkuJaffFJG5iiptfkQJ2LRD2pt8qEmh+HiQw6jhk1oKkOSrcg8cXzVVVdFZoB9BAR81JnEJwaIdBgGVqc3oipNbUnbb3zjG5FpbXYBjCSzse3UT58SM0J/SePHNyb/gU/pbGk/TDKEfWr+XNoHm2STB7NOW9M5GMwdd9yxZFU9zCf2qykPWwQgtLVZkoQ2lrPKKqs0e2lD+WH4UjuxG4XWkEqYNLCBAW2GwJ8FWDxLlZhiGCcWFVE+Jg0w5+ULtLBR5bkkD4yS/EZWbMK2224b87CSeqCJxWC8S+n5aqW+Wthg/5vuQ35b3vdGsWHyl7cBLm8vNrbcI/qUnv/yPI0e9xSTmRrNC4fRb6UbhvSy/IVCsgnwzMqZCZJHDnUDMyOAAlBAw8AddxcQDzOzTlxdYHCLvQ+zdxjVRokZLrY2lX5p9ttoWeRzJrMZtDyvIzDjIcDiH8a6Vu0aG0UMqWczWp1q5SK5YxzHvUq7xHg+vRDueaZOnVqzuWCMxK6dfuHeiOch70WgZqU9cDJ9L6s1hfNIiGtNRvjOI0FmUU01Gj58eHSz1Q6+1couT8drAkxtu1QPm0bKbwQbNA1obqtR8mLRjmQ2ld2zNpl4/MerfZ6wWdFgZXIynE82iXVNsx+TCimGl8IWCPsFzS5ND2q0ZZK/L8M2hkgZkFYAxmPNykwSTdPsyiZOnAjTXVJ2rQMiDWAfUulH2CcnR8ARcAQ6iYCkD4btHxFEsJEbKJJblmhX2W75WqQQx3GZPLVblMntT9tlDFYBEm7E+1SrPjAmvF87/ZIWzuRnM34Da9XVS+ckAa0YKjK1kfP0SYvPUlK/rSSYMZqVBEf9zpEgc7gYOYooSe3gW7HwvkRNwiJvga0w/IVMKJriHyqVXQ+bSteUp9XCBv5GPj2jHSb2rtVIpjImCX3MWy1Po+n9g4I2euUA56OD5SS1eHzwiNubD4mUGMhkVI1hudThxotOPsIwnX322TEkk0TwsVgM229RKDOMbTEQljTTtt9++8hoysdcedUVjzGIlSq/4rlODKoVC/ZER8ARmGERYFxkkQEh/GTPN8Pi4B3PEOA5kOQqMgSOSREB+Xa1u+++O4afLKZ2dg8hFot+INlKxkmfJH8Gn9KrBJMpbYjJhMBkilC1mTLxMElnowCuaqYGTwxDpNlg3gHPJhVDnH0osoDJrsUkfo4vD7M9ZsTQvvvua6ymk9sMI5+MteOqQ7n8ifuygTGpaKJkEikmqxFlz2lw5sRmlZF6LEc2lHHLSjlmTeQjNijSAR6UbpB80cXVdMTOdXIEHAFHwBFwBBwBR2B6RqCn1OXMChA5a0WfKRpF3OdYvtwKGGtFmsn422S4Ht0WaDVVnMnhYgEGE5KBtynigsk202R3aajPESGjVk+Eeh3GVHaQMT9qdMW+Nfm4Sll86wg4Ao6AI+AIOAKOgCPQIgI9Jclspg/4iXv22WejP8lKdhn44EINjhhbKx3tqaeesqWXXrpQBec++clPRqkndp4Lyc4Je4hukksyu4m+1+0IOAKOgCPgCDgCnURgumUyOwlCr5QFk4nNqHzNmVyFGIbhTo6AI+AIOAKOgCPgCEyPCPSUunx6BLCTbWaxknzJxVXx9aIhdLJeL8sRcAQcAUfAEXAEHIFOI+CSzE4j6uU5Ao6AIzCACLBWEw8bLJTE3txp4BEgNCXrBLD3P+KIIwa+whm0BtwUYgaXCG8KCrQSXRSmtBl5i+kfoStZb6KoRxWhqJdH/sCj6yxFTax4facTXZLZaUS9PEfAEXAEBhABhYaM/n5xwVZOcvAdbc8VpcPkrDp+iBQYojxbzxzjgufb3/52dCfHYk72FTWn6fbJOb2NHDkyXodrOUUWKpRBzHLKTT+8khB7G1v8RklOsqMvRNpYjzrVp3r1dPL8dtttF72v8KzgZUUhmZsuvhP9VlQqUzCWwg83OoqE1HRbOnVBp94n/Nry/OE+SBG1DP+dzRLuGFl/gucdPOVUonp5WMty3nnnGf7B824gK5XVsTRcGDk5Ao6AI+AI9D4CxKrW4B+jk1Vq7VFHHRXk7i2G01XQikB43l4mwisSPnDatGnhU5/6VFhiiSVi1LZm2kx0NbmhC/IOEoiiI1v2GFY4lXHBBRcEucGLWBxwwAFB/pADYSWJf90MKcBHDE1Z75pO9KleHZ08ryAmMTzj+eefXwiv2Ux45dSWTvSbsKWEkCYCH79asbVTvQO57cT7ROQs3llCWvMMsX/IIYc03Wyi8BACW4FeCmG2ywtpJA/XEKqbd2IwyCWZHWPXvSBHwBFwBAYWASQhEL6Dy0nh82LgCYXdjSpHxZW2fOSxcePGGecUijCq2VG5scjwySefLCkKCen6669vCjsXvW7gmzhJ/RSOLpYxatSo6HQaqSrniZiGhAbJTyLF1Y5SMaIULbzwwkaQC7x6JHr77bdNH0Xbeeed7YUXXojXKk56dDeX8qQtkjV8I4v5SUmF7ZVXXhmltrRl/Pjx0Ywg328kSKgWkYr9/Oc/tzPOOMMuvPDC6Fc5Lw2+/PLLo4QHR96oaJE+KWxhoZ60QzQ57OepAyzzeZrpUyqv21si1iDBRLqFFJjnQpOT2Kz77rsv3kOem+Q/GleAHI8YMaLw7DTabyRpSOFwBq4JU8WuE+kHs4TZZpvNeHa6RfXep2OPPTbiABZiGmMzeX455pdcLyapMM/vzTffHBf37r333v26VQ8bnt9VV1214DO8XwFKaCQP1+F1J/8uViqrU2nOZHYKSS/HEXAEHIEBRiAxmZVC7qFWhMlbb731IrOFPdu6665baBFqNiKc8YHHiwUfRGw7jz766EIedoiGNtdcc9mYMWNiWDlJuAw7LggbUD5OikceQ/MSVYWAFqj/rr766oKa9eKLLzYYURYywtTtueeeBhMnaY6heoZgMGnjfvvtF+3MFpIbORjVcsLGjLJggAjQUU4E58D9HEzfiSeeaJKIxo9xeb50DEN7xRVXxLphjiEYn0033TQyNuBDffQbuzXqT0SgDzCAAVFs7Kh2x9dyYpga7VMqr9tbJg+TJk2KPqmJeoePap6fREwOYN7pVzK7IJIeQVC4V5IIx6yN9hvcmWzAnFdT+XIPqYMf97Rbka3qvU/41ubZ+Otf/1qwjebZUMz62PbkMhEbyrXWWisy5ewTEKZSVKBGsEn3pd0t4wfBahgPBpwGQ1zqddRGQINuUCz1oME2/u6///6aFxDYngD3Q4FQdaGa0YcqyIasapdQEygaU3j88cer5unECUl1gkKQBoUMC7StEj3//PPhrLPOCpqVNq3aq1SepzkCjSAgBjOgThRjFt56661GLumXRyF3g5iiQrokf0F2XoXjtIMK9aSTTgpi7IJs9ILcq6VTQRKsIOlXPEZFKglXYV/SmriPKnrJJZcML774YhCTEH8KpBFVhTfeeGPMI8lN0Ac67ksSFvRxjvuV/r761a/Ga1HztULgpo9pyU+xm4M+tLE4Se+CpE8lRcvOM+ZnbIKSqnPChAmFfGK2Yh5wgprpU6GQ6WAHDMTIh5122ikoFnhQ8JOSVjfabzGyQcxjkJQyaFJSUgYHYjyDJO7xWzBx4sSg8MxBE6V++XolgT7wXPG9gCQZj6YHeXMDSbqjOQjneR8wealE9bBJ10jLUFVd3mgeTS5ju7WILYhRTpcNyJaA7k41EGAQGj16dFCczyD1ScWcl156abS34KSkAgG7nzxJnRSvpwzN4uJAlD+v2XFQrNAgtU58ATWTy5/ut89HYaCZTEkeYpuxi1EUpKp979e4JhOkeokP+xe+8IX48VSkpn4lKBJUfHE///nPx4FOM75+eTqRcNhhh4WZZpopLLbYYkEzvaBZfJDUo6RoSW6CnPgHSWii7ZskKyXn0wEfHe432GkhQ0r2rSPQEgKSOMQPMx+0xMi1UhBMZn4ck0ovvlupLD44MF88/5K+hK233jowqV100UVTlhImU9KcQnskxQlaTBAnXrxH5Uwdx1KDBpi3VoixqFWCyeRd5AMPM8sYwjgqaVzQyvHYVkkwS4pn8q/IcHHiz4nEZMLs5wm7V8buoU48N9xDSeLa6uo777xTYO7rFcSzrmh90ca4Xt5unZcKO8jUIFbPluesVWoEm04wmQhQJK2P91MLrVptbkPXubpcb00twnXFOeecE9U+eTufdI1Qji4tCFOJSxHsntip7v5cAABAAElEQVTP04ILLhhDX1500UVRvYKtUp6Iy446SgbqtsACC+RPVdxHXUV4zYEiGeFHdRvidGxyUBsRHWkgCBWVBv0YkWny5MmGfdW9995bqEpG0zZ27Fg75ZRT4qpTzaSj6i2pbgoZO7CDio/7h/oDFY2kRfF+5YtGzYMtkmakRihTzbbtj3/8Yz5L3P/KV74S49CDHeU5OQLtIDDzzDMb4wc2WagTsd8aCEJF+NBDD0WVOfZjv/3tb02MaVNVEcIXNSqqQ97T/A/1YrPlUTl2kNgOPvDAA021JZ+ZcZZxDLU8bVtnnXXiu4vqEvUhpgN5YhzSR7/fmIzKMxHmC9i0ppDGKb2RLbZ6mApgBtDrxFgnTZL94Ac/iOYRrM5vhVDPSkJuv/zlL60RX9A8S1D5eM83UMKciJ80S600pWPXEA771ltvjd8png3MTFqhZrFppY50DbbNmLdgTsP9qEQdez4bYkVn4ExyBRK5fWb8lYgZsW5QkF1QYCUa+3rg+mVVvPUo7WSFGTOIasSsuJokUwxOYNbBT+4i+hWBFAJpHGUwSxejE2SgXpA0cAF5kAzKsD1KTVmViYpCL3GhPMqmH3feeWegTlZ/tiNFKBRcZydhfcMNNxRyggVSFaS9UFJPoT7vNIFNnmSLFKU5KU32SxEX2ZalpKgS5N5WomeeeSbmr/bsVLrG0xyBWgjoIxafKdTZzRIrr3mm5cInSvQ+/PDDaKbCu56k7ZiAcKxJb9DkKY4nSJLEREWpvj7uYbnllguywYwqeySZSLZ4d5BkaiFRQBqDpoXrxEwE3mvZ7AXU5csvv3w0M2mm7ZSHepV2cX2zhKRS9qgBrcnDDz8cUNfLrVEsE0ktxDuM9FUMQpC9adCiqWhWwDiKihOsZFsa24BGheslfIhSXVbzMy41S0mLo4VPzV46aPm5r2ABNlo0FevFjIJ7gVobCXszpIlSvJbreR7yhNYQaTLfHTGgsV68AGgykM8W9zX5ieVwvnzc7pd5EBIwKaFPyXSklSprYUN5L730UjQjwHQEyTnmZbyPeWokD/nBj/ez/Pp8WZ16Pl1dnke1wn5ifKoxCrwA2KrIYDpg14MbjsQQpeJ4EWVgHiTVCjAo3Fzs+ipRLSbz9ttvD5LoRfUVDG05oQqTxCOgcobpld+4+OAjXk+EChebGphR7Ek0M415UPMnwoUEqjIIRrUaE5Xyt7vFnocBjMGbPuTxw/Rg2WWXLVRBXmzScEsykMQLTD2asReqkVQ3YsVHKNHmm28e+FUiZzIroeJp7SCQxiPGgmZJPgjj88vHUP4e40cqqbX5WCdChYxam3yoybVAKL4L2NLlbRuxkWY8Id9VV10VYJbYl0YgfvgxuWFsJI0fJibyX9mwqjS1hy1MIuNmK2MRY1lqQ9ri5ogPdbLJhFHBJj71m3ww05jHQJLuxvpJhzGFsWQfkxrU6M0S4xh4gj/3tFcJ+9OEGd8CCJUwadxbGNBmiLGTbyF9zwsTKANTBiYRqT622P9W+lZipsT5chOHZtrSybx8l7mX+W9Ds+XXwoayyrGh/7jjylMjecjP5E8r9/OXlux38vl0JrME2v4HaVCvxmT2v6J/CjZIvFQYt3PzpBKPC3365wxRCllNkpny87LnmULSWSzEQ8cCokTMvqWOLjBBGBaTB7upZIzPlvLyD1yjhsqpnna3MjOIPu6QViAZYTaWiA8XM7c8YSeF9HWgCMnF8OHDA4sa8rNkJCDgB2aJ+OBUmmlz3pnMhJJvO4UA9oA8g63aNTbaDqSe+Pdrl5gw8vFEC9AuaUV3u0XUvR47TBb/MQbWIvrVjnYHyS73sR3JV6329fI5MOZXjWA2mdAn6XqlfIzP8oAQBuOZqFR/eZpcB4Vq9vnleWsd18Om1rXNnEPTgK11Nerk8+k2mXrTB5qw2xOzYri6wF8bftVw6yEmsGNV43oCwn9bIs38DV952HpCKQ/2MNgQpZ9Uz9E3HW2EpCIyfMVB5Bkoe8xYgf7EgMd2PvXUU0ZbcImSSKsLS3zvYbeCnRTpA0HYWGGngp82XEqwTZTcneR9AbKf0lM+3zoCA4UAfgOxKcSHIzZyA0WS9BXc07RTB3aQkoZ25H2VBqadpjR0raRz0YcgY2Atol+V3NDUuiZ/Djtu3DcdfPDB+eQZYh+M+VUjvjd8K6XZqphFQohon4/brMF4Jio2QomsF8BOGlth7HelcUNoVy17Q+n1sGmokBqZaB/PHHaYWuBXNWcnn8/qd7pq9X6iGQRYOMRCH+Le4twY0kzNtAItGt5igN4J4sMDYXgs1yFxnz8YMhgnXti0qIiFTIRWyxMDXiuEjzoMr6VCManpWymicA0MLW0kHF4inMZKEhIxgxllIRLEh6ucMFSW2i4yyck5bnmeWsfcK/yZSUphcknRzxGwZs/GAgzaILOGWJQkyLbDDjvUKrbquXbbW7VgPzFkEeA9ZZEBIfxYnOY0fSIgbyLRcXZ+rJ4+ezL4rUYAgn9WHOZ3k/hGsOgH4jvFpA+H9e1MPga6PzCZ8AP4gpWpS9XqOvp8VhOXenqGQDvqclSt2D6iKsdvVlpcg40JthPYSmJ4i+oFw3GM0nHlgw0U+9h5pmuwHSKNHzaK2E2yj+0gNp+UgQ0Rqnh83+F/DuNeMW7RborekAffdbjowcgYtS92mdhq4dcO9XozhFpDM6+o9im3r2mkHK7B3QN2qqiocPujp77EVoc6sCFFxY8KC8zArhK1Y6gMNuCKHSaqeK10D8cff3xU3+frwv4SrFhMAM7kr2aHU09d3k57823yfUfAEXAEHAFHoBcRcJvMOnelHSZT7kAiEwLjhEF5YkYwsieNH8bm+VVlKZ0tDFwyCk8MWP48+zA5yREsNiwYyKc8MJj438SOKxHMJ7aGKQ9bVqvT1mZJEtpYTrkT40bLoW/45KMPtEOunkpWwqdyMC5PhvY454WxLqd2DZVh6Fk0lceF/XJ7UOw1WQzBORYiHHfcceVNKRzXYjLbbW+hEt9xBBwBR8ARcAR6FIFhtEsfTKcqCIhRMEkXYxxSwrJND4Q6HrvPpEKv1GZ8emLbgnq6VbsW/JThVxL/lu2oymmLGORoryqGs1Jzo89K/NERqquSPQ82MWKWo7oCc4CBJHy24WcM7GrZbuH/ExMJLRqz8mdnMNs7kFh42Y6AI+AIOAKOQDUE3CazGjJl6TgDJl4tzsN7nbBd5FeLMOzn1w6xSEd+Nk1q33aKie2gnFoEIyxzgKpZOmmoXLWSvhMsqGIBVy3SSvQY77dansFsb7U2eLoj4Ag4Ao6AIzCQCLgksw66RH2RzWJcHS41d1zAU+eSGea0Qi7GFfK1JKaDBQYLnGSjGiOiDFadteqRH8IYOUW+0+LqQxYN5anX2ptvm+/3NgIon4hOgwagUwsHe7vHg9s6NFcsimg3qhreQ1gYItd1tt5665ncsw1uR4ZobTz/cthujz/+uBGFLy2oHaLdzbr12j/NHr5fRlpliucvLm72+YULXQebYbffZPbQPWbzzm+25npmc2eeYlImogsuvvji9rWvfS0lDexWjXJyBBwBR8ARqIbAS/IXeZMcbj90b9Aqu2q5Bi1dH4dor7333nv3q5NIKUTzkjuwuDBQ5iVNL+jrV+gAJpx33nlxYSKRhogAg3P3Z599tukaL7300hhRjQvxIUwQhzyxqFEePoKYkri4kgWEOJZngV85EeUHP4LtEgsyFQY3aDV0v/Y0UjbO7MEDf5wskMzHnG/k+mby4OORwBPghM3+Lbfc0szlMW+n7mWtinm+sZPHRp/nHLv4dmKF16qLc516n9q+l2eMh73s/9ts9UIXPpIP7rDDZv3zMG71EX441+hzpr/vvvum5AHd+sKfAYXXC3cEHIHpFYGP9MENe29bOmgvM1MIU5/qWpfwtiCxQwz7WKkRRALjA0zghy233DIGd6iUr1fSYGgIWztt2rQYLW2JJZZominGAwfhcTfbbLOAE3mi+YxReMg8EQUNLx9EOsLrRlogKR+H+WxxP3n06HeixQQY2nKmt15ROMLnPhOGmIhC7MstW73LWjpPiFKYNSLSpUWoeENpljpxL+vViUcVIusphn3MyiQBbB588MF6l7Z0vhPvU0fu5WnHZ+PQyp8N4aA9ir/rryj267LfFceqcQrKsvYSxWuKueLerrvuGiTNLEsdmENnMgcGVy/VEXAEpncE3n0nG6QX0TC521bFAXy9yi60BqO7yWOB1OX9qsPNGVFQiKOcGAfCxiY69thjoycJPFrAdOGpgYhVyetFyodUUerdGDKRyCqEckxRuAgLiTcKQtZSF1IRzss3YJQoIflJhHs0GA8kgzKpCXzY8p4uZIoUGWIksinCCAxgJUKyBpOFF4hyUtCEyGgQShemAKZDvkQL2YgxTlpeakndeLPIM5n7779/7Bv9kx/SwvVpB0zwpAGjirs4QkoeccQRJWFw8RpBXHMYSwV1iPtsE5NJ+FzK5yen2LFopKYp7frrr49p1E+bieNNu2DE24kwlPpQaUvUIeqCGcKNG0xcIi1QjPeQ9hHzHho1alRsL5Hi0rPT6L1EkobElLjnRHprhfJR2MCEtnPvO0313qdO38ua2CQmc/fvhnDHLQrxd1cIjE952mRENkYxMYaee6Y4Zj18f5bW9084Tt7ZwSBnMgcDZa/DEXAEpj8E3nsvhO021mD+btb21+QKTB+0+HvzP53rz8STQnirsZCJiRlLkpx8I/h4Ez8ZdfFuu+0W9/OMFdIemCM+ysTtRn0M8wejmSeuJ365IpUFYjKj7oV5g2B68OUr59PRjyyhYJEcch5JYQp3OWnSpFgP6l5U2cRKphzC76FGhmAcce2GWzAYM9rCh7acZL8cmSzaveKKK5afjmFdcfcGAwqD9KlPfaqE8UPCqSgyJSFiKYR45HmJHfHg6S/h9lJ/85UlKR/9heGFOQTvK6+8spANP7pIBWHCUUHj45d2JyaT8L9IXSlDi//idVOmTInxvAmpm0LW4geZmOsQzFwrMdvjxXX+mDxwD2AucYVHf/LPA5OCQw89NPYhqaXZEtoXP8Ep9nuj95K49uDBDyatXUJijes5JOGdpnrvU6fvZU1sEpMp3ARe9ptfWxjJRAv1pZ99ckop5p18UTFNe/iC5r7jH3qgSa1y6nUEiPvLgMYLNdRIxttRisHHkx9O6btN+OHEQXw14qOHI/lK/jqrXePpQwSB1RbOBu5pxfj1FXuGDeflFzb2Sx+NE/XRrcFs8sHHjhC/skiOWqFvfvObQSH7CpfCKCBpLCckoQo9FwMkIBnNM3cjRowoSACRVKb42+zDkEAELCDwAwwkjBM/bC5hLuR5IeZB6offXgj1vlx+xf1Kf9jhcS3S0GYJu1SkiY0STB2MdjnBANMGJJmJsI/deeed4yEMOOfBNBFjBGmJySQdCS9pyb8xDBqMaZ7hJfBEYpzAEDOJbpJC/UY7YGxMYZyvu+66kuY0ei//8pe/xMkIkxNwyBPjKuN/pV+l/jORATeeq25RJ+9lLWyiTbiembCFJh4HSzvBPr+jcrbHKe3Gq4pwLDtLlu+3E4pp2kMTwjOIJD4vGS7J1KEDZzLrAMlMbfTo0dEAu5rhdS2jc2bwzObTDwnBhAkTCuqnOtXH0wwy66yzTpx51Ms/GMbX9drQzPnkiJ0Hnh8z6bxKrZmy2s2L7RPSFtqheOQVi8NYmgGSPEgbqhHO87nnzPpxku80BBBAoqn7Hn/1urN0X76Uv9Ht2P0KUb7yVSD9S89dYuTy5xvdh8nMj2Py4Ro/1Ol6PjgESJh99tmjJA2pFpI9AhAkyjOZSN9Se7TSPUbmYvEI73F6p/NbpCdJ2pnKa3TbqrqYxT68z7SrEarHZCp0b6EYmK6tttoqHsOU01eEAnnCzjTPZHJu1VVXjaYG7K+xxhoDuniFOjpBPDf0b5dddmmrOJjJJAHNF8RzkX9W8vuod/OEWQG2x+22JV9mq/udvJfVsKFtJbbCF56VjUPz5lg47MUZZ5isQpoUxWPSfj85S+v7pyzMHsAYU4iBpP9RJU41ECCeNc6955tvvuguoTyrbo5pNmBSH0SXIjgnZz8R8bhxrSNVjkkdZPpQmFQx/Zxzp/yVtpQhO6pKp/qlScQf43cTE1fqiBgHXLZH/fL1SgL4acAwfUDiT4b7JluvrjQPP5yasUcH89UaoA+KSfJQ8VnIX6MPleljbTKmN0lr8qd8f3pFYMIxWcvH7Fu/B48WhneG+No/Stvje2ZTnzI7fJxVCkgglaBJXRtddJ144okmyVH9NrSQQ5G/oustqXBNtpkmG0kTY9pUSZIuGe7ecK+kj1nJT0xs0+VROX6KZT9pMhNoqi1k1kc0ji24vckTGNKeTlGKWS2NTKFIvh+KbFY4Tju4NiIG/dixY01Mq0lLlU41vZU9Yvw+SG3f9LWNXiDJZYzNLRvfOEbynWmFNFkyMeMm4YvJfrekCDFrdsYZZ1T85Z9BnoVNNtnEZPIRyyopJHegkM0m5j5io1DOuTOd3e3UvayFDS0uGRfe+HfWiZdyfVlpk+zglmuy7X25532JUr/OBBORFNYk4a+K4R/+8IeInQQmuUpa2B1IDnYolF0vrGQ9o3MwQMW1zTbbFOBIomoM7BMxi0P1gk3RUkstFXB5QFzzREjZkAIQyhF7Kux1MODP52nU+DqV2QtbPbJRTY6UopI9VjfaqIGuqiQztQfD/lqSTPKlRRpIi5ymcwTyRvQvd9j+68XnGwYHKRrvDOrsZomV12uuuWZcwIH6EckealDKS9J2xiSO5Usv2gwedthhUdJJiFr5xY3jDXade+21V1TZI8lEmoQEFEkm4xzSGMx7UGWiyWEMxRQGtebyyy8f8uNeI32gvCTF5fpmCdUzkkxsSa+66qq4WIUwutiVIomEkKyxcpkf9om82+yj7k42pOl95lokQVyDDSZjAeMwPxZTUA/aKmw4k5p/u+226ye9wwwBrJO5QbP9Ij/3EXtUysGEp9PEfSWsL5LpZEOZJLYs3knYNFpvsmulva2ouXmOeBa4d5g0YXOMtL3Swh8WkVEPYZzpx0BSJ+5lTWwOkEmG+hJGrhDCxqsWp60n/LTYrQfuLqanleVcM3pUMU/fHtjwfub5h/JMCrIS8UvmIOXnGz1WC5xqIVCPyUSNXcvonLLzTKZmVFGlhJo42R9iYMzLgN0QKyFZTchghR8wBlgIJpM81IWYOxmVYyyfVulJwhYZ0XqG9LHAHvhjoKZPyTiewQO1EundJGcyu4l+D9aNcfyI4dkAfvE5XW1gGo9YpNIsKahEfN9457ArhIFKam0+xIkw6WFCSz7U5AcddFC0A2VhD2MZ6fxOP/30aBLCPswbHyP2WcDAR52JcmKASJc2KLA6vZKqNNVdbYvLIT6KrS6AwfYTtSbt4MdiEcbQpILHvCWdy28Zp5PtJKvxOYeaFltySR8L16R2cV+GDx8e07mWVfyoy7nuuOOOK+kei4zAP63QLjnZ4AFCB8pm1ftAEMxywgMzAgj1PmncWxjQZoi+wvDzLLXCFGMrm9qT35ZjS5u4v+QpV7U3095G83biXtbE5hdjsvFH/VGnst/3R4ZQvgDx/DOK58m3kZ6L14vCqtQfJn9zzjlnOuy3xcaWe8TzyZjTDjmTWQe9NKi3I43KD8zpxcDuKQ22SC/LB4lkn4KkAUpMJi99IphUymOAhBo1vk7X98KWD9MFF1wQGW6Ya/qDFKWb5ExmN9HvwboP1GITBuwft2eL1omeYa/MO9KqXWOjbUDqiUubdonVq3w8y+0UWylXYX1buazkGiQ3MNdp7C052aEDJslTtYgpTf6rFctKexihdiiNmXkvAu2UNxjXorEaDK0VzD5utjrx3NTDpRP3kjpqYvPKS1lAiEfkI7QC41hoI5Ni8tTQuKBpwNa6GiExZpxpR8qeyvbY5UJyMEgLQEyzHdMgF+0kNbiY1EymGZhpADYNFiXNIB44tp1Si5WkazFJ4VirJk2q9VgeiZp12GKLLRbPcy02oL1OYJJIfvxMg6VhW7TjjjumZN86At1DYPIks2N+k9V/+3VmaymMGzSnQrVdcmu2P4j/kj7E91qLMEwM54C9J3KxY/zaJUn9TNLQdouJ10vj0XY54MdvIAnbuYWqjL1i3KMNpiIymXxQmqTGCHpK7e2aaNxdd91lcolkfC+mF5IEdMCbKtdMJhOQGNazE89NpQZ3+l5SR01sPjuPGb96pHfOvrR8xVw8a3K/Fe0wCXVajeReKz6T8uVaLUvD6QN/txtuytDOyGArX23xxwAkNbtxIzEW10rOGIv4Rz/6UQEEBiCpym2BBRYopLGDkThGzxAfmSeffNJkExSPm/nDqFcqLpP7kvjQNXPtQOZlgYMkAf2q6NX29mtoEwlDsU9NdL/3sz4/1WyT4qTOpjyXa/MTuf3B24WBYcGInHWb3AINXsVeU0cQkOo9Mj4UJrvCuJhG0qL4HWilAp4D2da2zKS2Uuf0cI28hNjdd99tMjkbsOZ2+l4OWENzBcNkwjfIhMDyAqtclriLkEfSWWMBcbvkTGa7CNa5nlXTUpvEVYxS08RVjmxh8LjJfDRkfG6sEGSVuqIqmNTgcSUlDKBU7ZHpYtYEIcGQAbrJrsVY4cf1Miqv04r+p1ndRxukru5/cpBS7rvvvjib1yImk/1HXFXIKnxWMJbTYLRXvvpMai6TTWtcvct9ol0L5aQSSJ1ZMSp1W5RKc69Y/d+KdGQw+lSOox83gcDnF0ZJ3sQFg5P185//vEndNTiVeS0dRUDu8Ixfp6iXPYd0qo+tloNXgYGkTt/LgWxrKhvPD6eeemo6rLpFE8pq/45Q0pv7tjIC7dpksgpcN6rkR7QHVognuyCM5Fkpnoztyc8KTs3EYqOITIHRO+mspMPwnH3CmmGr2Sx10qi32brz+TH8FnNWwCYZ9pcv/Bms9hJirtK9ov5ErG4tz7P99tun0yXbtBq1kj3vYPWppEF+4Ag4Ao6AI+AIDCICw6hLH02nKgggNZRLChOj0JRvyyrF1UwW42HPPvts9BOJFLMa4U9LritaVrGgimeWh5oGH6DdJB4/7JPwmYY9qULC9WtOL7W3X+NqJCAVlXF1xWdneu1Tje76KUfAEXAEHAFHoAQBV5eXwFH9QBJD0yo123TTTatnavMMRr/Y6dQj7DuT4996eSud76RRb6Xym0lD3V9vYUAvtbfRvil0nuWdMpdfNz32qbwPfuwIOAKOgCPgCNRCwCWZtdDROTk4N/mXizaVRLH49a9/XeeK3j/NgiKiEHXM5mKAuzy9tRc45IcwRk5hxT+RSuROowSl6bFPJR3wA0fAEXAEHIHuI/CrI832PMhMi2Z7kZzJ7MW74m1yBBwBR8ARcAQcAUegFgJ4wBi+iNk5cgX4/e4t4q3VRGcya6Hj5xwBR8AR6AACSLPRHiDZRsrNCnEnR8ARcATaQuCHW5uN17qK+VXK1P/2pDTzf9rqoF/sCDgCjoAjUBcBheQzRfmy888/3xTisG5+z+AIOAKOQE0EkGLCYEK4zL3ot3G31/6cyey1O+LtcQQcgSGHAL5gazk/HnId9g45Ao7AwCKAH993383quPYys+/tOLD1tVh6T64uD4r4MuwJhVN88VmzRZfKbA5a7KBf5gg4Ao6AI+AIOAKOgCMw+Aj0HpM59Ukb9r21ze56sYjGHt+zcMLZNkze6oc64ZMTicfPfvaztrpKqLEjjzzSiGJDjNKvf/3rbZXXzYuJmEQoPaLsEFKTMJwDQrffZPb++6VFz/UZs2VXLKTh13MY+R66x2xeGcKsqfivcyuOtZMj4Ag4Ao6AI+AIlCDQe0zmfXdlDObIFcw+rWDw511rdtJ5NmwFhTjavn+4wZLeDMABvjF33313e++994x4qMcff3y/Wi677DI77bTT7JprrrGf/OQn0VH6z3/+80I+YnETNvLKK6+05557LvqFhFFS9B7baKONCvnYwSl5J4g6p02bFusklFSzTCbhKwmheNJJJ8VQloSxrNT3TrS1VhnE91Z0pBha8xOf+ITtuuuuMZwmjuQ7Sv98xexrVRjxf//LbI7/s0CM4F0Uy/qMS0urfujeEkaUk77QoxQiP3IEHAFHwBGY8RDoPdHgrB8zO/tks6vvNzv3GrPzz8juytWTOnd3Xp7WX2JVpXTiVBMVZ7755rO115aEtYyQbBFznFifSNzGjRsX9/PZvvnNb9qYMWNs3XXXtcMPP9yQMl588cVGnO5yevXVV9uWYlLmzPKZRYxShacsr6LuMczp+PHjo+SQ+OIsVvjkJz9Z97qByHDTTTfFBRNEz+G3+eab21FHHaWQ0h0OVCWmvEAH7WGWfr8YExlMzg278qIigznucLO1l8gu2Xlk4dK04ws9EhK+dQQcAUfAEZhREeg9JnPjLc1G71q8H6v3SZf+JUlTp+g6GckuPIvZ78TAlqtHq9QxcuTIqKotP4108pFHHrE111wzMmYwmnlm9Nxzz43SRLY//vGPo/Ty8ssvtwUXXLCkqAMOOMBWWWWV6CAdpq6c1l9//XgOCaniZ8dwhWPHjjVCTCaCecVZ/AYbbBBV5Owj0Ux07LHHxjqo55BDDonJBx10UCGN0JkQ0kPo0EMPtZtvvtk+/vGP29577x3TBvsP5vyqq66KKnKiA9H2J5980v75z38OTFOGqdhvbWM2cnOzfcVI/uiIYj0TT8z2997WbL+xZmdpEgTd8w+zRx7I9vv+faFHCRx+4Ag4Ao6AIzADItB7TGb5Tfjzw1nKMlKX16LrLpeoSRxCI79tJaliyT+rsWA2//xIrZJrnkMNTjhIGMsTTzwxxt7OR9JBlY4UEClmIpg2mFPsCxNtvPHGtsMOO0Tm6emnn07JhS3n7r777ijlHDVqVFQhI9FLjCEZUSvvt99+hnocyethhx1Wch6V+btajYYLFeqD2CIhnGOOOWzppZeOaXfccYfBJI0YMcLY32WXXdoKYxkLbfEPbPEtCL2vCcEpp5wS24b6fkAIAenyK5utLqn1Z2Wuccm5xWoenpLtr7BKtmV1X6Ln+t+zdMq3joAj4Ag4Ao7AjIjA//Zyp+Mq80N3yJq4ze61m7rsSmZXSJ3ZCJ1yrNk195lt9jWzQ2Q7udQyjVxVMQ8xqhO99NJLabewfeKJJwzV6ayzzlpIY2fZZZctOV5ttdWM38SJE8UnI04rpRQzHckjElFoypQpkVndcMMN4/4ll1wSpak/+EFmu7rvvvvaMssU+4afPhYUwaQSLhPC1hQVPfaWMKbQ0UcfHdPZnzRpUmRA2e80YfP5j39IClhGMMlLLrlkCQ6ox7fddlt75pln7Oyzzy67ogOHn54rK2TFOc02kL3nLVea3THV7IDRZpv32X8+21fPfDkp9LKapDwsafLrAyRZ7UDXvAhHwBFwBBwBR6AbCPQ0kznsrJMyVeS3JFVaTkxkLfqcVvqiam+EFIPcjlLXWUw0wDT33HPbgw8+GNXWME/tEoxoosUXXzwuMuL4oYceisl5X3xf+tKXbIkl+uwG+y5C7Y+klZXnSF+xJ0UCutRSS/Xl0HqrT3+6sD///MJ1gAgm+He/+13F0lkglY+Ksueee9pFF11kV199dQnjXPHiVhKJ+5q38/yP1OFzCIdnVBgLe3j+lpFE9ZEPzR5/zGydUWYffJAxmNT3uQVaqdWvmUEQYDJ6zz33zCC99W46Ao7AoCCA8Cr/3RqUSpurpHeZTFTYO/4w683x5zTXq3q5VyoyavWytnt+5ZVXjnaNd955p62++uqF4j4Qg8JvttlmK6S1s/OZz8jVjogPGZJNiEVLlVTvMJio77HpRB3+2GNimlokzAWef/55W2ONNfqtlK9XJBLXddZZp1821OOfYyLQR3vssUdcvQ9Dmjc7SOfTFltS7DdhkpPNaTrX9PbNt4qXvPt2tr+SzBseuVRSTtli7nGA2X13FvMs8aXifoN7HW1vg3V6tu4gwAI6bLe/+93v2mKLLdadRnitjoAj4AgMNgJSQ/YevfHvEBaJ/HkIt9/c1faJScNKL8j2saV2vPbaa0H2g0H+L4MYoCD1edAioPDFL34x7LTTTrFM+X8Mimscf1KjB7lMivv6KAUt7Il5pCaO7eBaLeYJXKOV1kELgoLU3fEnRjPWM2HChCCpX/jqV78ar9luu+1i/nwHxPDGc3IFlE9uav+NN94IspmM5dxwww1NXdtoZq3Gj+WD1eTJk+NPEtrw1FNP9StCzHXMu/POO/c7VzfhluuZD4aw4pwhfG+DbJ/jr8xXvPSBu4vpay9R3B89qpgnt5fuWbVnp6325urxXUfAEXAEHAFHoBcR0Fe0B2m7jYsf8DUXCyH9Jowb9Ma2y2TSYC20CVJRRwYIhlXuhYLsC4PsEWN/5FuzcI7z6SfbzCAXPjGP1O4xfZZZZgmPP/540KrrQr599tkn5rn99tvD8OHDYzrXygdnkLo8Hh933HExT/rTApogiWFkelNas1v5BY1la8V3s5c2nB+mO+GRtrRb6vSSMiQVDlq8FPvEPWuaHnmg+MzBXPJbSr/77yot6vwzSvNtpL6//mppnr6jWkxm2+2tWKMnOgKOgCPgCDgCvYNA7zGZZ51Y+hFPH3y2B7QgoWoT604wmakJSByRTiKFHChCyjl16tQgV0o1q1hppZUio1szU52T+++/f2QAkTB2m2QmENvSjmQ2vP1WCI89HMJ9U0L42wtRYlyxX++9FwJM6cvTKp5OibWYzI60N1XkW0fAEXAEHIGhh8Bbb4aw6VdDOPgHIVxzSbZ/09W1+3nzdVm+yReFcODuIWy2eojfttpXDdjZ3rPJxL0Qvx6ja6+91oj+k1Z5t9K8Oeec0/gNJLEyfaGFFqpYxd///vdogylVs917773RPkxPVskq7ooXVkm866674iKcZANaJdugJP/xj3+M/Tj44INbr+9jHy/xNNB/jX9f0bNoRfmXlq9ZT72FHh1pb80W+ElHwBFwBByB6RqBD+S55DLZ/v/9KbN5tE6B/U1fqN2lF5/N8q05UusHLjG7+2X5/3vPjO9bF6j95c5daPRgVjnPPPPYNttsYzBot91222BW3fG6iJ7DgpizzjrLZBNqp59+enRf1GpFLMS54oorWmZSW6230nU77rhjdOOE66NeoHoLPXqtvb2AmbfBEXAEHAFHIIfAzH2uDz/2f2ZEQ4RmrbNYOJ2fRdd+os9TTConK2FQ/4chIx3UGr0yR8ARcAQcAUfAEXAEHIH6CMwtndoWW5ltua1CGa9vdv9dtd0v4nKPgCI3yNfz5IsU2VDeef7ZPTav99Tl9SH3HI7AoCMQzQqIY77/kYNet1foCDgCjoAjMIMiMHac2SKLZiZaP9zabPgXzE461uxTMr0jamGiC88SM/kPs622MyPf0iuYwv+ZLb50ytGVrUsyuwK7VzrdIXCNbFtGbWH26IN6eZeb7prvDXYEHAFHwBEYIgh8dSGF/HvO7MF7skAhf5Wv6yXETC4vu8sHcj6ee6C7bpPZAzfBm9DbCESLksO2zxp5zIG93VhvnSPgCDgCjsDQRmDMCVn/fnFYtj1J4bGhQ0/Ntj3075LMHroZ3pQeReBaRfkZuXmxcS7NLGLhe46AI+AIOAKDj8Aqc2dht2+9wWyNb5gpAnR47gMbpoh5vUQ9Kcm85ZZbYjxtYmpffPHFvYSXt2VGRGCDzeQG4ras59P+5uryGfEZ8D47Ao6AI9BLCBzxm6w1MJjQUeN7jsGkWT3JZC688MIxRvXdd99t119/Pe10cgQcAUfAEXAEHAFHwBEQAmH9TTMbzITGd3OLgFJaD2x7ksnEmfgOO+xgisXdAxB5ExwBR8ARcAQcAUfAEegdBAi8YqN2yBr066Pq+8/sUtN7ksnsEhZerSPgCDgCjoAj4Ag4Ar2PwDtvmx09Pmvn9r0XJTEB6ExmQsK3joAj4Ag4Ao6AI+AITA8InNu3knzMvmZz9EX26cF2O5PZgzfFm+QIOAKOgCPgCDgCjkBFBN5/3+ygfbJTu+1XMUuvJDqT2St3wtvhCDgCjoAj4Ag4Ao5APQQuO8/sVWXae1uzeT5XL3dXzzuT2VX4vXJHwBFwBBwBR8ARcASaQABXetttrPCRBzdxUXeyeuzy7uDutU5vCKy8unxGhOmt1d5eR8ARcAQcgaGGwF6HTDc9cknmdHOrvKGOgCPgCDgCjoAj4AhMPwj0pCRz6tSpdtNNN9krr7wy/SDpLXUEHAFHwBFwBBwBR8ARKCDQk5LM5557zm688UYbMWKErbfeeoXG+o4j4Ag4Ao6AI+AIOAKOwPSBwLAgmj6a6q10BLqEwMvTzB572GwuRaBaalmzmWfuUkO8WkfAEXAEHAFHYPpBoCclmdMPfN7SoYxA+Ogjs322M5t3PrN1NjBbbiWzFT9m9uzTQ7nb3jdHwBFwBBwBR6AjCLgksyMweiFDEoH33jWbTUzlIurdeluZnXxB1s31lje77oEh2WXvlCPgCDgCjoAj0CkEnMnsFJJeztBD4L//Ndt1SzGXF5nNOqvZ6/J+O6dU5tCb/zH7xOzZvv87Ao6AI+AIOAKOQD8EnMnsB4knOAI1EFhdYs07pprhDBc1upMj4Ag4Ao6AI+AIVETAmcyKsHiiI1ABgffek/p8tuyEr5erAJAnOQKOgCPgCDgCRQR84U8RC99zBGojMOGY7PyYfWvn87OOgCPgCDgCjoAjYC7J9IfAEWgEgeelIh/OCiARLo3mnjfb939HwBFwBBwBR8ARqIiASzIrwuKJjkAOARYAfWetLOHic5zBzEHju46AI+AIOAKOQDUEnMmshoynOwIJgTF7mU15zuzHu5ht/v2U6ltHwBFwBBwBR8ARqIGAq8trgOOnHAGbPMlsk29lQIwYbjaLXBlBc0pdfsmt2b7/OwKOgCPgCDgCjkA/BJzJ7AeJJzgCfQjk7TArgeIrzCuh4mmOgCPgCDgCjkBEwJlMfxAcAUfAEXAEHAFHwBFwBDqOgNtkdhxSL9ARcAQcAUfAEXAEHAFHwJlMfwYcAUfAEXAEHAFHwBFwBDqOgDOZHYfUC3QEHAFHwBFwBBwBR8ARcCbTnwFHwBFwBBwBR8ARcAQcgY4j4ExmxyH1Ah0BR8ARcAQcAUfAEXAEnMn0Z8ARcAQcAUfAEXAEHAFHoOMIOJPZcUi9QEfAEXAEHAFHwBFwBBwBZzL9GXAEHAFHwBFwBBwBR8AR6DgCzmR2HFIv0BFwBBwBR8ARcAQcAUfAmUx/BhwBR8ARcAQcAUfAEXAEOo6AM5kdh9QLdAQcAUfAEXAEHAFHwBFwJtOfAUfAEXAEHAFHwBFwBByBjiPgTGbHIfUCHQFHwBFwBBwBR8ARcAScyfRnwBFwBBwBR8ARcAQcAUeg4wg4k9lxSL1AR8ARcAQcAUfAEXAEHIH/dQiaQOCN180eut/s9dfMVl/bbM7PNHFx41lDCDbsnN+YvfKS2cdnN9t9/8Yv7lTO228yu+d2M7XFZtJcZPRuZp+Zu1Olt17OOkua3fy42Rv/NvvkHK2XoyvDhx9mOP/zlawc+rftHm2V6Rc7Ao6AI9ANBMJHH9mwB+82e+FZsyWW0e//daMZXqcjUILAMDE04iKc7KLfmj3+pwyIBYabbf+DUlDG/8zshweXpm32NbMzLjP71JzF9CsnmT14T3Y8l5jQPX5cPJff+88bZif/wuzdd7LUdTc0W3WNbP+Zv5p9YYlC7jh4DBtWOB6UnSVVn3i5At12oxjrdQqHXdtJODz1lxKMWmrPYw+bLb1c6aWD8Tq8957Z2B+ZffazZvuMKa2fo8P3Mpt5VrPDjjX7hc7/Q5ONn5/SP1+9lEceMLvqIrOPgtmWW5tdco7Zhx+Z7XeE2cc+Hq+Oz9aGX9ZE5hCzDbeoXuLTehh+d2Y26fjfmcy22d1s/s9Xz+9nHAFHoHMIPCLhxhUXZu/fzJIN7aLxIy/kuPcOs61WN3smV6X4TBt/g9nXvl5IjBPrXx9p9vbbWdpqa5mtPbJwvmSnXp1kZrK/1ZoaU/R9XE2Cl2+pvB33qT2WlFSSO2hkvEIw0Gj7c0X7bhcRgMl0EgILRpkdLEYIK8xRCsk7b2fpnPvKAiGssWjx+PC9SvNu/83iOfK//Vbp+XT08P2l+Y49LJ3Rd/+jEMbsXTgfjwtnB2nnlutDOObQQhvCbTcOUsV1qjlw9xB2/24I775bJ2P90x998EEIJx0bwj7bFftZ/7K2csR7+Z11s/ouObd/WY//KTv3/ZEhvPhctr/Bcv3zNZKy23ey60euEMJhP8z29Wz3e55GrZSdu+yC6qVyLvvEZdsLzqye1884Ao5AZxEYu1/p+/fIA6Xlf2vt4vnN1yjuz6VvUJ7+/a/iOd5n8lajenVy3S/GZOVd9rsQTj8h2z9zfLUSa6c3Ml410/7atfnZQUJAU6JBICQ3551m9u9Xzf53FrNd9zO761az6y43e+s/Zt/fyWyl1bKGvKMZ1qTfmj32kBnXfWFxs02/a4Z0EWnafVPMhulzN8ecFiRtHIZk67//Vfmnmv1L5Qcdr6yymFU9p2ndrderrj+YzTKb2fAvSMoodcJPTzJbcKHKHb/7Nl2vGWGOwiyz2rD5lbD51haOm5jV+eX/M3tA0sj77szl1C6SzV++ZvbpuUrTax3xauYo9mmz0ZJ2HRdTh111sdn1V5gtKlXxt7Y1+xyNyRFq9YslpXryz8J3ZrNlJJki36yShiWiX/f90QyJFOrhL6qs0cJ94cVSjmz7wrNmU24xe01YrrWu2SJHl86OU27uw03Xmj37hNm8C2o2vEGppHOq0q+6xOwD3ZsvLmW27kYWpcXci88p/256BppRv//5EbMbrjSbWyrtz85jNu1Fs4V0PxO99HdJ6s7VsyDJ8FfW1H2+1+wR/daRhHijb5ViwTWa+Q97+H6z2Wc3W28Ts1+flUoqbj/4wOzy880eVjmv/lP9WEK4bpM9i+RC4nz1pVkfP6Zyvru9+ni22X/+lT3nW+mYtuZo2KXnmZ3/e92jmSzoudbTWkrHHJwdgxdSTGi9nISRZ+HJx7L0T37KwnZ6By5Q21/5W5a25LJm638z2/+N2g6N0XO001rZ/k/Pzp7f7Cj7P+ZU9WN5vWdbyRTkG6WS+ZTvm9/Wu6Xfhisrr/BwcgSGEgI3XyNTqPuyb8tIvW+zfSwbT/78cDauIblPRN4pt5r9/QV9R4brW/P1LA/jxbmn6B3SWMF3aMURRSnis09rPJxk9r6+aTPNLM3CNhbm+ZwNu/8ufaM0HvxF49vc82X18k08VuVUogN3NfvZyf3PLCmx5TI3m13zXKZhOE7j9j6HadxS1tf1l75Hc+i7xfcGc6ytd+tfTqWUanViPrbf2OwKvt8L9mk21tK3AELKedHEbDwEj+VXMVtK7WScfu9tYT2TxmZhnbR2jYxXrbQ/Nsb/uobAoDCz996ZzXCyxzuEXbYsPUaKCP35kRCYeaV8+e2FE0NYpOzcc89k191/V+k1I4aH8NRfStPyZU2+KLsu/58kmXfflk+tuB8lQV/sa8s+O/TP8/qrxbobkWT2LyGEcklnvv3M5hJdf0WxrnwesHrlpSzXXX+onIf8f3shlRTCOadUz5eXZO67Y+V8P9y6WNahexbzLKR6Vlu4eEy9zJKboR02K71+0tmlV4//Wen5PBZbrFXM+9//hjB6VPW8KefL00JYZqbK+a65JMuVl4BS34k/L81/RtmMnmfh/5SPvBNPSjUVt489XLwevFMfeBZEH334YTEtnbvp2tK0T6hsKJW1yYgQpv0ty8M9qEZJmomkuBalfC7JrIWSn5veEMh/d5DupfcrbXkH33svBMaSlJbfbr9JCEgX82lfma+IAhqv/LkTjwmBb1o+Lb9fvDLbS1LFA3ctP1P5+KgDCmX301xwxdknZ+fpazWqV+fPDsnK4HuLRoj2p285ZTJO5vu0lM5PGFeaxncCana8aqT9Wcn+32UE/mdQuNtlVjSbMK5Y1Sma0Y1cwexAzQ4lHLLt987ObaFZDjMv6KA9zH51hGZl8cjs29ua/eSMvgNtDtjZ7GVJr3bcXDMidWO372TnZtHml7/VTO20Yt5pkvL8VdKfw36Ypc37ueK5FvaGjRtj9lTfhRtt2UIJTV6yxqJmp0kaleimq7M9JJJI4SBw+OOtZkjKPqFjbHPACJp/uNn31hMumnUiEfzLo1k6/3fclO0/8WdJNncpplNeJZokSd2vTs/OnHZ8JllOErcTdG6y7i20re7tbpKMQc/qd8dUs313VPrGZovpGFugZmivQ4uSvUrXbT5az5Ses0T7bCc7w+9mRxffIgnC+9n+hGP1bPThN0K4bFGlHXt+T5LQD7O2XnNpJkVPeUcKG2bpexwgaYHqSTSTZuaJxh2uWXrZs3HbDZLm92XYYuuUs7hFKr7e8mY7a3aPHSb731nXwpe0FQ37Hz3nl19YzP/9kRbW+EYRZ85cfmV2fpqkLNDhvzR78dm4az85NdtW+v++JCTQMROyrf87AjMSAhdpTFhhjqzHl9xqNpd2j/iRNDT6QPFbeBFpO46SxkhjCfSttc1O/bXecUnnoDOv0Bh3o9mR+2fH/I/TWMy4vfe22djKuAcxjjBe/erH2TG2/Wjwbr7ObLPVZWuZJbf8jy0l9tzQD7fur7nIzrT/j0aFMWq3gzMtGvsHjSuWi4QXKWiicdLCbP794jcd7LbfMzvb7HiVyvRt7yMwqExumtVoNtZvdvXkn4sznJ8eXGzWH28tpjN72Wz17BhJUNrfbuOiFGnnLbJrb7iyeB31LqYf9pJIYJBmlVOjkszjf1Is96cHlpeSHXdakvnog1m52ObRF+w1oasvLrZlW2Gw67ey30LKk7Am37vvhHDRb0PYc3QIzCaXzp1H+gblJYHcC+ieO4rlJEnm9zYopqX62Kb6kHImykvZ/vD7lNredpm+tpdLMimV54Z2IMWFXv1HsV3JhgnpAnmQUiY6aI9iPtKQOKb+UF/qZ16KcftN6WrVq+cg5Wd75aTiufzeL8dm+bgH7dABO2flfP1LWSlIK6n3uKNLSo2Sz76U/H5JpnSQJAmU8+LzKbX/1iWZ/THxlKGBAOMjzz/vfNIC5Xu27CzZ+SV0vo+iXTfaA67j3cjbDE59KkvnHNqzEcOz42svy65ONoic58f5/fVuo/krp3pSxZT/oXuLda782RDeejOdKd02IglstM7SkkuP+NYmfE47PoR/vFxs39OPl+TNj1H5/ZJM6aCR9qe8vu0qAhKNdIE2+nb/2RWSoUR51wuLLpVSzf72ouxcNNODHrpXUrvbs/2zJmc2nBwtv2pMC+uMki1an4SUlCf0O/NyrYTbXnaTJ8Q8Tf/9/DCzvQ7JLpOkNRz406aLaOWC8P+WzS773ELZltcU+sfL2Zb/24TB7y/KftzVL+q3fZ+U87C9MlvC8efIflJ4riRpYjklaZfSwyKLZ2eX1sy0nF7P1ZnqY7uIMi6j35eWK78iO0biVo9kg6u3oV6u+udXWTfLk199iS0UdNffs+2IzbMt/8utVNxnD6lCoke0k/r5wC1ZP5GAfmaelEPPVE6aSSr2rpUo2VIuOqLS2cbTdpWEBbrx0cy+6Yop2fF2u2fbvv8o+aywX5IpHcw9b9qT3e5fi/u+5wjMaAisv3M/W+oIwYv/zZD48gYFRIahvVhjhez4aX2TsBlk7IVO+VW25Z/1B1Oey47R7EEH/iTTQGVH2flxp2p8/qq0D31507lGtvfeWRzLVv6s2ZUavD7+iUauHLg8M8+sNRDqJzRO36Ezxmf7o/V9Tt+ZLCXT1FTY70vyzXSKQHeYzEpgLb50MfV0qfj+9Vqm4vzNL4rpy+nl5AcdNzFuCirZk8/Pjln0Ihp27aVm155nxoIX1MPnnCIGK8tip0qV2SyN3U+DwtHZVScdK1XKr2zY1htmqpBmy+pU/qWWLZaEKcHTYtD43TVNaly1cY31svMMXNAeUgHfJBXHqZdoQUwOb87lGKNhky8kxeyCM7Nt/n+5HIN0+wuxvvDUR1LTPmC2yQ+lcvpKPnfj+788Qkbvs9mwT+qRRKU/UJT6/RsxxiwWgqG8sKyfMKez9DXg2+vI1OL9DNc/v2N2orD7mgbIhb+QZcCgf/k+phyzBmhJYYuLpXKaT8wp9NrL2bbVfxZrSY0eaYvR2ZYJ1RyfbrXEbNFcunq++dOebx0BRyAhsJbU3NB51xZNjli4c43GPmi1zbPtmn3bZHqCCnzC77Jz/M+3QLb/q7HZ+POyxmt8Eh97WDEPCzmboSl/yBa8cs3GErRcp/HnejG2q+qjl/wAc64btHWfyvwJVZ6+ofuO6UZLvM5uIDAoctRqBs4LSXD1/vvFJiTxfFIf5LeoOXFbw0KVfHr5cVoUky+LBRq/PiqE+fvUEqiWy6mWurzcgDlfPwuAyqlddXn+eurCZdJvflXa70vPy0wOkskA+egfZgGpfat/IWtZPg+q1c/m8pAXd0V5NUa6vnyLGvWFZ4vlc36VeUqPMeyGtt6oND2VlQy9s1zF/2G5NmFQnqdy9zmpLLZS/UfTC1TU+XTuN+rkfNo/XwnhCqmt8mnl+2mR0LmnlebDdVU+L1hggpBPY9FY/viEn+Z7UVJ3XXVQ6ZX9j+68pbQuFve0Q7+fXCivZttcXd4Oyn5tLyLA2DdLbvzJv8O8Z4num1J4R+J7LgcnJe97MsnJL25hweJZJxbzMRYnSt8cysHUJ79YkrElT+l7Vmnhz5v/KZafb3va/9ND+ZKy/UbUzbXq7F9i7ZRk4kObcKnWLjXS/nbr8Os7gsAgSTL1KlYjXo9EB//M7Pg+0XpKY8uinskPZm5omAVKkBNph82yWSGG0xBqTNQV0CdyagLc0+DO4W9KRzJVyQVEvKjK3/sfVjmh5EVy0sTqudo7g1seXAHlSe4yoqujiZOLC3zoH7NFCOPyU6/I9lHrJ6N2VKv/UHJalEOO/76buRPCBCEv4ATCZciQI1xJPap7kSSCd/dJ5VARYeS9zW5ZZlxUNEPH9M3ih+mi8gUzyQF7tfLyz1DKo+gXFWnjLYsqm5QBSUOiD/tw/t6OcjV0hkTifSfuejHbWV0STCS88y+o4bJKHYWyPkx72fbLkjD00bApf0i7rW1HrJmp7rlaxv0273ytlZOuuvTcbE/G+Hk1ezrtW0dgSCNQNrwW+pr7PNmXpaXBjV4aE1/ry7XKPJkksm+Bnn3tG4XLbXNpj1gomGjtUWlPboVmyvYp52CN0UePzxbFHLqnBRbINErvV2t8XwFzSXXebSJiXKL91FenGQeBjrCqHS4kSqZwRI0bokqLdN54PQQ5rY5G19SNhBP3RyxwScTs7q+PZWksZNH5Qv6UJ79Ns8oGXBjlL6u4n5dEturCqGLBNRKRCD/zRKlLovLsSN/067foqjwfUjEZrdfNB8Z/+VMIb/y7vITWjlVOTSlaa6VWvCo+CzxfSDfrEe6MeIbyUvd611Q7n6QDLEJrh5KjdiQD9KMdyi+QqiT1yJftksw8Gr4/oyLAGP+XR7OFPpUwQOPDeJsIaekzfy0dU9HCscCI94+Fd89PTbn7b9O4UUmS2T93/ZRGJIGdrPPUX2fS1hXnrN+2RnI00v5GyvE8A46AvlBOEYHEZKIuZRVwq8Tq9fxq60aYzL23DeHm61qt0a+bnhAgelTy99rn/7Kp5l98TvH6pA5bd9n2mPMUXYqPSjXiI4jZSVIrup/Makh5uiPQeQQSw8fK9/12qrz6vZFamSgf/INi1LrN16h+VSfqZAX9vGpzGqvYlnnBqN6ACmeaaX+Fyz1p8BEYJHX5D7B0/AAAA2VJREFUdCAZXm3dbLHH5FsU0eTC1ht8p64/U4tKZlERiupiM7NTgYhrzvoKTk+YaPanBypk8qQhhwCRRK7+k1avqmenH9d89555on8Ept8/bMPqqcyq1YT/UCJLYXry46Or5VL0rKfMTjorO49FCr5XnRwBR2BwECDyHd+Kx/U767RSzyLNtICFjr87UYtDn8zK+3/LVb+6E3Xeeb4WWJZV8SeZW7VKzbS/1Tr8uo4iMAy+tqMlemGOgCNQHwFC0L3zpplCQzZDvK7DCC6Qf22ZsMC8tkqvyki3F+y2Wm2/X+cIOAK9iQBMISGKEymgRJD9eFxPkNJ8O6QRcCZzSN9e75wj4Ag4Ao6AI+AIOALdQcDV5d3B3Wt1BBwBR8ARcAQcAUdgSCPgTOaQvr3eOUfAEXAEHAFHwBFwBLqDgDOZ3cHda3UEHAFHwBFwBBwBR2BII+BM5pC+vd45R8ARcAQcAUfAEXAEuoOAM5ndwd1rdQQcAUfAEXAEHAFHYEgj4EzmkL693jlHwBFwBBwBR8ARcAS6g4Azmd3B3Wt1BBwBR8ARcAQcAUdgSCPgTOaQvr3eOUfAEXAEHAFHwBFwBLqDgDOZ3cHda3UEHAFHwBFwBBwBR2BII+BM5pC+vd45R8ARcAQcAUfAEXAEuoOAM5ndwd1rdQQcAUfAEXAEHAFHYEgj4EzmkL693jlHwBFwBBwBR8ARcAS6g4Azmd3B3Wt1BBwBR8ARcAQcAUdgSCPgTOaQvr3eOUfAEXAEHAFHwBFwBLqDgDOZ3cHda3UEHAFHwBFwBBwBR2BII+BM5pC+vd45R8ARcAQcAUfAEXAEuoOAM5ndwd1rdQQcAUfAEXAEHAFHYEgj4EzmkL693jlHwBFwBBwBR8ARcAS6g4Azmd3B3Wt1BBwBR8ARcAQcAUdgSCPgTOaQvr3eOUfAEXAEHAFHwBFwBLqDgDOZ3cHda3UEHAFHwBFwBBwBR2BII+BM5pC+vd45R8ARcAQcAUfAEXAEuoOAM5ndwd1rdQQcAUfAEXAEHAFHYEgj4EzmkL693jlHwBFwBBwBR8ARcAS6g4Azmd3B3Wt1BBwBR8ARcAQcAUdgSCPgTOaQvr3eOUfAEXAEHAFHwBFwBLqDgDOZ3cHda3UEHAFHwBFwBBwBR2BII/D/ARqmyJUlK7+KAAAAAElFTkSuQmCC" + } + }, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Nesting part 2: Tables\n", + "### Use a list of dictionaries to represent a table of data.\n", + "\n", + "<div>\n", + "<img src=\"attachment:table_rep.png\" width=\"600\"/>\n", + "</div>\n", + "\n", + "Steps (build a list of dictionaries)\n", + "- Start with an empty list\n", + "- Each row of data is one dictionary\n", + " - keys are the column names\n", + " - values are the data in each cell\n", + "\n", + "Why put data in table form?\n", + "- It seems redundant, but is used often in Web apps for storing info.\n", + "- Its a little easier to access subsets of the data without worrying about the header index method." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Let's put the student survey data into a list of dictionaries\n", + "cs220_header" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def transform(header, data):\n", + " \"\"\"\n", + " Transform data into a list of dictionaries\n", + " \"\"\"\n", + " \n", + "transformed_data = transform(cs220_header, cs220_data)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### What `Lecture` is the first student part of?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### What is the `Major` of the last student?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Nesting part 3: Dictionary of Dictionaries" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "https://www.w3schools.com/python/python_dictionaries_nested.asp" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# dict of dicts example:\n", + "\n", + "nested_english_dict = {\n", + " \"shenanigans\": {\n", + " \"definition\": \"silly or high-spirited behavior; mischief.\",\n", + " \"usage\": \"widespread financial shenanigans had ruined the fortunes of many\",\n", + " \"fun_to_say\": 7 # on a scale of 1-10\n", + " },\n", + " \"bamboozle\": {\n", + " \"definition\": \"fool or cheat (someone).\",\n", + " \"usage\": \"Tom Sawyer bamboozled the neighborhood boys into painting for him\",\n", + " \"fun_to_say\": 8 # on a scale of 1-10\n", + " },\n", + " \"gubbins\": {\n", + " \"definition\": \"(objects) of little to no value.\",\n", + " \"usage\": \"I cleared all the gubbins off my desk before I started working\",\n", + " \"fun_to_say\": 10 # on a scale of 1-10\n", + " },\n", + " \"malarkey\": {\n", + " \"definition\": \"meaningless talk; nonsense.\",\n", + " \"usage\": \"don't give me that malarkey\",\n", + " \"fun_to_say\": 5 # on a scale of 1-10\n", + " },\n", + " \"gnarly\": {\n", + " \"definition\": \"gnarled.\",\n", + " \"usage\": \"twisted trees and gnarly roots\",\n", + " \"fun_to_say\": 2 # on a scale of 1-10\n", + " }\n", + "}\n", + "\n", + "# TODO: pick a word and add an inner dict" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### How can we use \"bamboozle\"?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Create a list of words with fun_to_say score greater than 7." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.12" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +}