{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "e70dde1b",
   "metadata": {
    "cell_type": "code",
    "deletable": true,
    "editable": true
   },
   "outputs": [],
   "source": [
    "# import and initialize otter\n",
    "import otter\n",
    "grader = otter.Notebook(\"p13.ipynb\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "71e8e0c0",
   "metadata": {
    "deletable": true,
    "editable": true,
    "execution": {
     "iopub.execute_input": "2023-12-07T02:12:05.482739Z",
     "iopub.status.busy": "2023-12-07T02:12:05.482739Z",
     "iopub.status.idle": "2023-12-07T02:12:08.436831Z",
     "shell.execute_reply": "2023-12-07T02:12:08.435815Z"
    }
   },
   "outputs": [],
   "source": [
    "import public_tests"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "be5da508",
   "metadata": {
    "deletable": true,
    "editable": true,
    "execution": {
     "iopub.execute_input": "2023-12-07T02:12:08.442825Z",
     "iopub.status.busy": "2023-12-07T02:12:08.441825Z",
     "iopub.status.idle": "2023-12-07T02:12:08.447761Z",
     "shell.execute_reply": "2023-12-07T02:12:08.446745Z"
    }
   },
   "outputs": [],
   "source": [
    "# PLEASE FILL IN THE DETAILS\n",
    "# enter none if you don't have a project partner\n",
    "# you will have to add your partner as a group member on Gradescope even after you fill this\n",
    "\n",
    "# project: p13\n",
    "# submitter: NETID1\n",
    "# partner: NETID2  "
   ]
  },
  {
   "cell_type": "markdown",
   "id": "9ebcf32f",
   "metadata": {
    "deletable": false,
    "editable": false
   },
   "source": [
    " # Project 13: World University Rankings"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "107475bf",
   "metadata": {
    "deletable": false,
    "editable": false
   },
   "source": [
    "## Learning Objectives:\n",
    "\n",
    "In this project, you will demonstrate how to:\n",
    "\n",
    "* query a database using SQL,\n",
    "* process data using `pandas` **DataFrames**,\n",
    "* create different types of plots.\n",
    "\n",
    "Please go through [Lab-P13](https://git.doit.wisc.edu/cdis/cs/courses/cs220/cs220-f23-projects/-/tree/main/lab-p13) before working on this project. The lab introduces some useful techniques related to this project."
   ]
  },
  {
   "cell_type": "markdown",
   "id": "8b83f32c",
   "metadata": {
    "deletable": false,
    "editable": false
   },
   "source": [
    "<h2 style=\"color:red\">Warning (Note on Academic Misconduct):</h2>\n",
    "\n",
    "**IMPORTANT**: **P12 and P13 are two parts of the same data analysis.** You **cannot** switch project partners between these two projects. That is if you partnered up with someone for P12, you have to sustain that partnership until the end of P13.\n",
    "\n",
    "**You are  not allowed to use any late days for P13, even if you have late days remaining in your late days bank.** Now may be a good time to review [our course policies](https://cs220.cs.wisc.edu/f23/syllabus.html).\n",
    "\n",
    "Under any circumstances, **no more than two students are allowed to work together on a project** as mentioned in the course policies. If your code is flagged by our code similarity detection tools, **both partners will be responsible** for sharing/copying the code, even if the code is shared/copied by one of the partners with/from other non-partner student(s). Note that each case of plagiarism will be reported to the Dean of Students with a zero grade on the project. **If you think that someone cannot be your project partner then don’t make that student your lab partner.**\n",
    "\n",
    "**<font color = \"red\">Project partners must submit only one copy of their project on Gradescope, but they must include the names of both partners.</font>**"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "d37ea1eb",
   "metadata": {
    "deletable": false,
    "editable": false
   },
   "source": [
    "## Testing your code:\n",
    "\n",
    "Along with this notebook, you must have downloaded the files `public_tests.py` and `expected_dfs.html`. If you are curious about how we test your code, you can explore this file, and specifically the output of the function `get_expected_json`, to understand the expected answers to the questions.\n",
    "\n",
    "For answers involving DataFrames, `public_tests.py` compares your tables to those in `expected_dfs.html`, so take a moment to open that file on a web browser (from Finder/Explorer). `public_tests.py` doesn't care if you have extra rows or columns, and it doesn't care about the order of the rows or columns. However, you must have the correct values at each index/column location shown in `expected_dfs.html`.\n",
    "\n",
    "**IMPORTANT Warning:** Do **not** download the dataset `rankings.json` **manually**. Use the `download` function from P12 to download it. When we run the autograder, this file `rankings.json` will **not** be in the directory. So, unless your `p13.ipynb` downloads these files, the Gradescope autograder will **deduct** points from your public score."
   ]
  },
  {
   "cell_type": "markdown",
   "id": "463cc829",
   "metadata": {
    "deletable": false,
    "editable": false
   },
   "source": [
    "## Project Description:\n",
    "\n",
    "For your final CS220 project, you're going to continue analyzing world university rankings. However, we will be using a different dataset this time. The data for this project has been extracted from [here](https://www.topuniversities.com/university-rankings/world-university-rankings). Unlike the CWUR rankings we used in P12, the QS rankings dataset has various scores for the universities, and not just the rankings. This makes the QS rankings dataset more suitable for plotting (which you will be doing a lot of!).\n",
    "\n",
    "In this project, you'll have to dump your DataFrame to a SQLite database. You'll answer questions by doing queries on that database. Often, your answers will be in the form of a plot. Check these carefully, as the tests only verify that a plot has been created, not that it looks correct (the Gradescope autograder will manually deduct points for plotting mistakes)."
   ]
  },
  {
   "cell_type": "markdown",
   "id": "5fb98fa3",
   "metadata": {
    "deletable": false,
    "editable": false
   },
   "source": [
    "## Project Requirements:\n",
    "\n",
    "You **may not** hardcode indices in your code. You **may not** manually download **any** files for this project, unless you are **explicitly** told to do so. For all other files, you **must** use the `download` function to download the files.\n",
    "\n",
    "**Store** your final answer for each question in the **variable specified for each question**. This step is important because Otter grades your work by comparing the value of this variable against the correct answer.\n",
    "\n",
    "For some of the questions, we'll ask you to write (then use) a function to compute the answer. If you compute the answer **without** creating the function we ask you to write, we'll **manually deduct** points from your autograder score on Gradescope, even if the way you did it produced the correct answer.\n",
    "\n",
    "#### Required Functions:\n",
    "- `download`\n",
    "- `bar_plot`\n",
    "- `scatter_plot`\n",
    "- `horizontal_bar_plot`\n",
    "- `pie_plot`\n",
    "- `get_regression_coeff`\n",
    "- `get_regression_line`\n",
    "- `regression_line_plot`\n",
    "\n",
    "In this project, you will also be required to define certain **data structures**. If you do not create these data structures exactly as specified, we'll **manually deduct** points from your autograder score on Gradescope, even if the way you did it produced the correct answer.\n",
    "\n",
    "#### Required Data Structures:\n",
    "- `conn`\n",
    "\n",
    "You **must** write SQL queries to solve the questions in this project, unless you are **explicitly** told otherwise. You will **not get any credit** if you use `pandas` operations to extract data. We will give you **specific** instructions for any questions where `pandas` operations are allowed. In addition, you are also **required** to follow the requirements below:\n",
    "\n",
    "* You **must** close the connection to `conn` at the end of your notebook.\n",
    "* Do **not** use **absolute** paths such as `C://mdoescher//cs220//p13`. You may **only** use **relative paths**.\n",
    "* Do **not** hardcode `//` or `\\` in any of your paths. You **must** use `os.path.join` to create paths.\n",
    "* Do **not** leave irrelevant output or test code that we didn't ask for.\n",
    "* **Avoid** calling **slow** functions multiple times within a loop.\n",
    "* Do **not** define multiple functions with the same name or define multiple versions of one function with different names. Just keep the best version.\n",
    "\n",
    "For more details on what will cause you to lose points during code review and specific requirements, please take a look at the [Grading rubric](https://git.doit.wisc.edu/cdis/cs/courses/cs220/cs220-f23-projects/-/blob/main/p13/rubric.md)."
   ]
  },
  {
   "cell_type": "markdown",
   "id": "7c2b70ad",
   "metadata": {
    "deletable": false,
    "editable": false
   },
   "source": [
    "## Questions and Functions:\n",
    "\n",
    "Let us start by importing all the modules we will need for this project."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "3f7f49b0",
   "metadata": {
    "deletable": true,
    "editable": true,
    "execution": {
     "iopub.execute_input": "2023-12-07T02:12:08.453795Z",
     "iopub.status.busy": "2023-12-07T02:12:08.452779Z",
     "iopub.status.idle": "2023-12-07T02:12:08.681701Z",
     "shell.execute_reply": "2023-12-07T02:12:08.680670Z"
    },
    "tags": []
   },
   "outputs": [],
   "source": [
    "# it is considered a good coding practice to place all import statements at the top of the notebook\n",
    "# please place all your import statements in this cell if you need to import any more modules for this project\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "7d7b0e81",
   "metadata": {
    "deletable": true,
    "editable": true,
    "execution": {
     "iopub.execute_input": "2023-12-07T02:12:08.685887Z",
     "iopub.status.busy": "2023-12-07T02:12:08.685887Z",
     "iopub.status.idle": "2023-12-07T02:12:09.180224Z",
     "shell.execute_reply": "2023-12-07T02:12:09.179217Z"
    }
   },
   "outputs": [],
   "source": [
    "# this ensures that font.size setting remains uniform\n",
    "%matplotlib inline \n",
    "pd.set_option('display.max_colwidth', None)\n",
    "matplotlib.rcParams[\"font.size\"] = 13 # don't use value > 13! Otherwise your y-axis tick labels will be different."
   ]
  },
  {
   "cell_type": "markdown",
   "id": "b2100c90",
   "metadata": {
    "deletable": false,
    "editable": false
   },
   "source": [
    "Now, you may copy/paste some of the functions and data structures you defined in Lab-P13 and P12, which will be useful for this project."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "1437c209",
   "metadata": {
    "deletable": true,
    "editable": true,
    "execution": {
     "iopub.execute_input": "2023-12-07T02:12:09.184225Z",
     "iopub.status.busy": "2023-12-07T02:12:09.184225Z",
     "iopub.status.idle": "2023-12-07T02:12:09.190374Z",
     "shell.execute_reply": "2023-12-07T02:12:09.189367Z"
    },
    "tags": []
   },
   "outputs": [],
   "source": [
    "# copy/paste the definition of the function 'bar_plot' from lab-p13 here\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "74ff0bcc",
   "metadata": {
    "deletable": true,
    "editable": true
   },
   "outputs": [],
   "source": [
    "grader.check(\"bar_plot\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "412ec5d1",
   "metadata": {
    "deletable": true,
    "editable": true,
    "execution": {
     "iopub.execute_input": "2023-12-07T02:12:09.627750Z",
     "iopub.status.busy": "2023-12-07T02:12:09.627750Z",
     "iopub.status.idle": "2023-12-07T02:12:09.634048Z",
     "shell.execute_reply": "2023-12-07T02:12:09.633037Z"
    },
    "tags": []
   },
   "outputs": [],
   "source": [
    "# copy/paste the definition of the function 'scatter_plot' from lab-p13 here\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "224644c7",
   "metadata": {
    "deletable": true,
    "editable": true
   },
   "outputs": [],
   "source": [
    "grader.check(\"scatter_plot\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "78ad8ae5",
   "metadata": {
    "deletable": true,
    "editable": true,
    "execution": {
     "iopub.execute_input": "2023-12-07T02:12:09.995374Z",
     "iopub.status.busy": "2023-12-07T02:12:09.995374Z",
     "iopub.status.idle": "2023-12-07T02:12:10.001170Z",
     "shell.execute_reply": "2023-12-07T02:12:10.000158Z"
    },
    "tags": []
   },
   "outputs": [],
   "source": [
    "# copy/paste the definition of the function 'horizontal_bar_plot' from lab-p13 here\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "0b371d02",
   "metadata": {
    "deletable": true,
    "editable": true
   },
   "outputs": [],
   "source": [
    "grader.check(\"horizontal_bar_plot\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "aaabddd8",
   "metadata": {
    "deletable": true,
    "editable": true,
    "execution": {
     "iopub.execute_input": "2023-12-07T02:12:10.185685Z",
     "iopub.status.busy": "2023-12-07T02:12:10.185685Z",
     "iopub.status.idle": "2023-12-07T02:12:10.191616Z",
     "shell.execute_reply": "2023-12-07T02:12:10.190604Z"
    },
    "tags": []
   },
   "outputs": [],
   "source": [
    "# copy/paste the definition of the function 'pie_plot' from lab-p13 here\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "9e19d8ab",
   "metadata": {
    "deletable": true,
    "editable": true
   },
   "outputs": [],
   "source": [
    "grader.check(\"pie_plot\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "5377a113",
   "metadata": {
    "deletable": true,
    "editable": true,
    "execution": {
     "iopub.execute_input": "2023-12-07T02:12:10.473791Z",
     "iopub.status.busy": "2023-12-07T02:12:10.473791Z",
     "iopub.status.idle": "2023-12-07T02:12:10.480068Z",
     "shell.execute_reply": "2023-12-07T02:12:10.479055Z"
    },
    "tags": []
   },
   "outputs": [],
   "source": [
    "# copy/paste the definition of the function 'get_regression_coeff' from lab-p13 here\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "061b2f5a",
   "metadata": {
    "deletable": true,
    "editable": true
   },
   "outputs": [],
   "source": [
    "grader.check(\"get_regression_coeff\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "ea47f898",
   "metadata": {
    "deletable": true,
    "editable": true,
    "execution": {
     "iopub.execute_input": "2023-12-07T02:12:10.657059Z",
     "iopub.status.busy": "2023-12-07T02:12:10.657059Z",
     "iopub.status.idle": "2023-12-07T02:12:10.663001Z",
     "shell.execute_reply": "2023-12-07T02:12:10.661989Z"
    },
    "tags": []
   },
   "outputs": [],
   "source": [
    "# copy/paste the definition of the function 'get_regression_line' from lab-p13 here\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "f49fe4da",
   "metadata": {
    "deletable": true,
    "editable": true
   },
   "outputs": [],
   "source": [
    "grader.check(\"get_regression_line\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "a8bfc3d2",
   "metadata": {
    "deletable": true,
    "editable": true,
    "execution": {
     "iopub.execute_input": "2023-12-07T02:12:10.842863Z",
     "iopub.status.busy": "2023-12-07T02:12:10.842863Z",
     "iopub.status.idle": "2023-12-07T02:12:10.849808Z",
     "shell.execute_reply": "2023-12-07T02:12:10.849032Z"
    },
    "tags": []
   },
   "outputs": [],
   "source": [
    "# copy/paste the definition of the function 'regression_line_plot' from lab-p13 here\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "ce515c5f",
   "metadata": {
    "deletable": true,
    "editable": true
   },
   "outputs": [],
   "source": [
    "grader.check(\"regression_line_plot\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "5dd24901",
   "metadata": {
    "deletable": true,
    "editable": true,
    "execution": {
     "iopub.execute_input": "2023-12-07T02:12:11.222892Z",
     "iopub.status.busy": "2023-12-07T02:12:11.222892Z",
     "iopub.status.idle": "2023-12-07T02:12:11.230280Z",
     "shell.execute_reply": "2023-12-07T02:12:11.229265Z"
    },
    "tags": []
   },
   "outputs": [],
   "source": [
    "# copy/paste the definition of the function 'download' from p12 here\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "fed453d3",
   "metadata": {
    "deletable": true,
    "editable": true,
    "execution": {
     "iopub.execute_input": "2023-12-07T02:12:11.234275Z",
     "iopub.status.busy": "2023-12-07T02:12:11.234275Z",
     "iopub.status.idle": "2023-12-07T02:12:11.242461Z",
     "shell.execute_reply": "2023-12-07T02:12:11.241432Z"
    },
    "tags": []
   },
   "outputs": [],
   "source": [
    "# use the 'download' function to download the data from the webpage\n",
    "# 'https://git.doit.wisc.edu/cdis/cs/courses/cs220/cs220-f23-projects/-/raw/main/p13/rankings.json'\n",
    "# to the file 'rankings.json'\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "8811a4ec",
   "metadata": {
    "deletable": false,
    "editable": false
   },
   "source": [
    "### Data Structure 1: `conn`\n",
    "\n",
    "You **must** now create a **database** called `rankings.db` out of `rankings.json`, connect to it, and save it in a variable called `conn`. You **must** use this connection to the database `rankings.db` to answer the questions that follow."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b4a69f72",
   "metadata": {
    "deletable": true,
    "editable": true,
    "execution": {
     "iopub.execute_input": "2023-12-07T02:12:11.246461Z",
     "iopub.status.busy": "2023-12-07T02:12:11.246461Z",
     "iopub.status.idle": "2023-12-07T02:12:12.888374Z",
     "shell.execute_reply": "2023-12-07T02:12:12.887365Z"
    },
    "lines_to_next_cell": 0,
    "tags": []
   },
   "outputs": [],
   "source": [
    "# create a database called 'rankings.db' out of 'rankings.json'\n",
    "\n",
    "# TODO: load the data from 'rankings.json' into a variable called 'rankings' using pandas' 'read_json' function\n",
    "# TODO: connect to 'rankings.db' and save it to a variable called 'conn'\n",
    "# TODO: write the contents of the DataFrame 'rankings' to the sqlite database"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "3021183b",
   "metadata": {
    "deletable": true,
    "editable": true,
    "execution": {
     "iopub.execute_input": "2023-12-07T02:12:12.895377Z",
     "iopub.status.busy": "2023-12-07T02:12:12.895377Z",
     "iopub.status.idle": "2023-12-07T02:12:12.924448Z",
     "shell.execute_reply": "2023-12-07T02:12:12.923441Z"
    },
    "tags": []
   },
   "outputs": [],
   "source": [
    "# run this cell and confirm that you have defined the variables correctly\n",
    "\n",
    "pd.read_sql(\"SELECT * FROM rankings LIMIT 5\", conn)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "63fc47c8",
   "metadata": {
    "deletable": true,
    "editable": true
   },
   "outputs": [],
   "source": [
    "grader.check(\"conn\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "d75f6fea",
   "metadata": {
    "deletable": false,
    "editable": false
   },
   "source": [
    "**Question 1:** List **all** the statistics of the institution with the `Institution Name` *University of Wisconsin-Madison*. \n",
    "\n",
    "You **must** display **all** the columns. The rows **must** be in *ascending* order of `Year`.\n",
    "\n",
    "Your output **must** be a **DataFrame** that looks like this:\n",
    "\n",
    "||**Year**|**Rank**|**Institution Name**|**Country**|**Academic Reputation**|**Employer Reputation**|**Faculty Student**|**Citations per Faculty**|**International Faculty**|**International Students**|**International Research Network**|**Employment Outcomes**|**Sustainability**|**Overall**|\n",
    "|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n",
    "|**0**|2022|75|University of Wisconsin-Madison|United States|83.4|52.8|69.2|58.4|8.1|27.5|nan|nan|nan|66.2|\n",
    "|**1**|2023|83|University of Wisconsin-Madison|United States|82.4|48.1|70.6|41.9|37.7|23.8|93.2|84.6|nan|63.7|\n",
    "|**2**|2024|102|University of Wisconsin-Madison|United States|80.2|47.8|61.3|37.4|30.9|22.8|83.6|73.1|83.7|60.0|"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "a493dd4d",
   "metadata": {
    "deletable": true,
    "editable": true,
    "execution": {
     "iopub.execute_input": "2023-12-07T02:12:13.315441Z",
     "iopub.status.busy": "2023-12-07T02:12:13.315441Z",
     "iopub.status.idle": "2023-12-07T02:12:13.337845Z",
     "shell.execute_reply": "2023-12-07T02:12:13.336837Z"
    },
    "tags": []
   },
   "outputs": [],
   "source": [
    "# compute and store the answer in the variable 'uw_stats', then display it\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "46dbda26",
   "metadata": {
    "deletable": true,
    "editable": true
   },
   "outputs": [],
   "source": [
    "grader.check(\"q1\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "df32cce5",
   "metadata": {
    "deletable": false,
    "editable": false
   },
   "source": [
    "**Question 2:** What are the **top** *10* institutions in *Japan* which had the **highest** score of `International Students` in the `Year` *2024*?\n",
    "\n",
    "You **must** display the columns `Institution Name` and `International Students`. The rows **must** be in *descending* order of `International Students`.\n",
    "\n",
    "Your output **must** be a **DataFrame** that looks like this:\n",
    "\n",
    "||**Institution Name**|**International Students**|\n",
    "|---|---|---|\n",
    "|**0**|Tokyo Institute of Technology (Tokyo Tech)|31.7|\n",
    "|**1**|The University of Tokyo|29.2|\n",
    "|**2**|Waseda University|28.6|\n",
    "|**3**|Kyushu University|25.6|\n",
    "|**4**|Hitotsubashi University|22.4|\n",
    "|**5**|University of Tsukuba|21.2|\n",
    "|**6**|Kyoto University|20.8|\n",
    "|**7**|Nagoya University|19.1|\n",
    "|**8**|Hokkaido University|14.4|\n",
    "|**9**|Tohoku University|13.8|"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "5dff8ddf",
   "metadata": {
    "deletable": true,
    "editable": true,
    "execution": {
     "iopub.execute_input": "2023-12-07T02:12:13.741827Z",
     "iopub.status.busy": "2023-12-07T02:12:13.741827Z",
     "iopub.status.idle": "2023-12-07T02:12:13.755704Z",
     "shell.execute_reply": "2023-12-07T02:12:13.754466Z"
    },
    "tags": []
   },
   "outputs": [],
   "source": [
    "# compute and store the answer in the variable 'japan_top_10_inter', then display it\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "84836624",
   "metadata": {
    "deletable": true,
    "editable": true
   },
   "outputs": [],
   "source": [
    "grader.check(\"q2\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "a32f7b29",
   "metadata": {
    "deletable": false,
    "editable": false
   },
   "source": [
    "**Question 3:** What are the **top** *10* institutions in the *United States* which had the **highest** *reputation* in the `Year` *2023*?\n",
    "\n",
    "The `Reputation` of an institution is defined as the sum of `Academic Reputation` and `Employer Reputation`. You **must** display the columns `Institution Name` and `Reputation`. The rows **must** be in *descending* order of `Reputation`. In case the `reputation` is tied, the rows must be in *alphabetical* order of `Institution Name`.\n",
    "\n",
    "Your output **must** be a **DataFrame** that looks like this:\n",
    "\n",
    "||**Institution Name**|**Reputation**|\n",
    "|---|---|---|\n",
    "|**0**|Harvard University|200.0|\n",
    "|**1**|Massachusetts Institute of Technology (MIT) |200.0|\n",
    "|**2**|Stanford University|200.0|\n",
    "|**3**|University of California, Berkeley (UCB)|200.0|\n",
    "|**4**|University of California, Los Angeles (UCLA)|199.9|\n",
    "|**5**|Yale University|199.9|\n",
    "|**6**|Princeton University|198.8|\n",
    "|**7**|Columbia University|197.8|\n",
    "|**8**|New York University (NYU)|194.9|\n",
    "|**9**|University of Chicago|191.4|\n",
    "\n",
    "**Hint:** You can use mathematical expressions in your **SELECT** clause. For example, if you wish to add the `Academic Reputation` and `Employer Reputation` for each institution, you could use the following query:\n",
    "\n",
    "```sql\n",
    "SELECT (`Academic Reputation` + `Employer Reputation`) FROM rankings\n",
    "```"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "65dce186",
   "metadata": {
    "deletable": true,
    "editable": true,
    "execution": {
     "iopub.execute_input": "2023-12-07T02:12:14.136464Z",
     "iopub.status.busy": "2023-12-07T02:12:14.136464Z",
     "iopub.status.idle": "2023-12-07T02:12:14.149809Z",
     "shell.execute_reply": "2023-12-07T02:12:14.148803Z"
    },
    "tags": []
   },
   "outputs": [],
   "source": [
    "# compute and store the answer in the variable 'us_top_10_rep', then display it\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "58e68fd6",
   "metadata": {
    "deletable": true,
    "editable": true
   },
   "outputs": [],
   "source": [
    "grader.check(\"q3\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "fb2d82c7",
   "metadata": {
    "deletable": false,
    "editable": false
   },
   "source": [
    "**Question 4:** What are the **top** *10* countries which had the **most** *institutions* listed in the `year` *2022*?\n",
    "\n",
    "You **must** display the columns `Country` and `Number of Institutions`. The `Number of Institutions` of a country is defined as the number of institutions from that country. The rows **must** be in *descending* order of `Number of Institutions`. In case the `Number of Institutions` is tied, the rows must be in *alphabetical* order of `Country`.\n",
    "\n",
    "**Hint:** You **must** use the `COUNT` SQL function to answer this question.\n",
    "\n",
    "Your output **must** be a **DataFrame** that looks like this:\n",
    "\n",
    "||**Country**|**Number of Institutions**|\n",
    "|---|---|---|\n",
    "|**0**|United States|87|\n",
    "|**1**|United Kingdom|49|\n",
    "|**2**|Germany|31|\n",
    "|**3**|Australia|26|\n",
    "|**4**|China (Mainland)|26|\n",
    "|**5**|Russia|17|\n",
    "|**6**|Canada|16|\n",
    "|**7**|Japan|16|\n",
    "|**8**|South Korea|16|\n",
    "|**9**|Italy|14|"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "e6446be7",
   "metadata": {
    "deletable": true,
    "editable": true,
    "execution": {
     "iopub.execute_input": "2023-12-07T02:12:14.529483Z",
     "iopub.status.busy": "2023-12-07T02:12:14.529483Z",
     "iopub.status.idle": "2023-12-07T02:12:14.541942Z",
     "shell.execute_reply": "2023-12-07T02:12:14.540928Z"
    },
    "tags": []
   },
   "outputs": [],
   "source": [
    "# compute and store the answer in the variable 'top_10_countries', then display it\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "65f88652",
   "metadata": {
    "deletable": true,
    "editable": true
   },
   "outputs": [],
   "source": [
    "grader.check(\"q4\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "d5f22258",
   "metadata": {
    "deletable": false,
    "editable": false
   },
   "source": [
    "**Question 5:** Create a **bar plot** using the data from Question 4 with the `Country` on the **x-axis** and the `Number of Institutions` on the **y-axis**.\n",
    "\n",
    "In addition to the top ten countries, you **must** also aggregate the data for **all** the **other** countries, and represent that number in the **row** `Other`. You are **allowed** to do this using any combination of  SQL queries and pandas operations.\n",
    "\n",
    "You **must** first compute a **DataFrame** `num_institutions` containing the **Country**, and the **Number of Institutions** data.\n",
    "\n",
    "Your output **must** be a **DataFrame** that looks like this:\n",
    "\n",
    "||**Country**|**Number of Institutions**|\n",
    "|---|---|---|\n",
    "|**0**|United States|87|\n",
    "|**1**|United Kingdom|49|\n",
    "|**2**|Germany|31|\n",
    "|**3**|Australia|26|\n",
    "|**4**|China (Mainland)|26|\n",
    "|**5**|Russia|17|\n",
    "|**6**|Canada|16|\n",
    "|**7**|Japan|16|\n",
    "|**8**|South Korea|16|\n",
    "|**9**|Italy|14|\n",
    "|**10**|Other|202|\n",
    "\n",
    "**Hint**: You can use the `concat` method of a DataFrame to add two DataFrames together. For example:\n",
    "\n",
    "```python\n",
    "my_new_dataframe = pd.concat([my_dataframe, new_dataframe])\n",
    "```\n",
    "will create a *new* **DataFrame** `my_new_dataframe` which contains all the rows from `my_dataframe` and `new_dataframe`. In order to use this method, you will first have to create a **new** DataFrame with the **same** columns as `top_10_countries`, but with only **one row** of data. The `Country` **must** be `Other`, and the `Number of Institutions` **must** be the aggregate sum of institutions from all other countries. You **must** then *concatenate* this DataFrame with `top_10_countries`."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "a50e6e39",
   "metadata": {
    "deletable": true,
    "editable": true,
    "execution": {
     "iopub.execute_input": "2023-12-07T02:12:14.921037Z",
     "iopub.status.busy": "2023-12-07T02:12:14.921037Z",
     "iopub.status.idle": "2023-12-07T02:12:14.936662Z",
     "shell.execute_reply": "2023-12-07T02:12:14.935645Z"
    },
    "tags": []
   },
   "outputs": [],
   "source": [
    "# first compute and store the DataFrame 'num_institutions', then display it\n",
    "# do NOT plot just yet\n",
    "\n",
    "# TODO: use a SQL query similar to Question 4 to get the number of institutions of all countries\n",
    "#       (not just the top 10), ordered by the number of institutions, and store in a DataFrame\n",
    "# TODO: Use pandas to find the sum of the institutions in all countries except the top 10\n",
    "# TODO: create a new dictionary with the data about the new row that needs to be added\n",
    "# TODO: properly append this new dictionary to 'num_institutions' and update 'num_institutions'\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "1bde06bf",
   "metadata": {
    "deletable": true,
    "editable": true
   },
   "outputs": [],
   "source": [
    "grader.check(\"q5\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "026d1122",
   "metadata": {
    "deletable": false,
    "editable": false
   },
   "source": [
    "Now, **plot** `num_institutions` as **bar plot** with the **x-axis** labelled *Country* and the **y-axis** labelled *Number of Institutions*.\n",
    "\n",
    "You **must** use the `bar_plot` function to create the plot.\n",
    "\n",
    "**Important Warning:** `public_tests.py` can check that the **DataFrame** is correct, but it **cannot** check if your plot appears on the screen, or whether the axes are correctly labelled. If your plot is not visible, or if it is not properly labelled, the Gradescope autograder will **deduct points**.\n",
    "\n",
    "Your plot should look like this:"
   ]
  },
  {
   "attachments": {
    "q5.jpg": {
     "image/jpeg": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAJACAYAAACHRsJPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACI0UlEQVR4nO3dd1iTV/8G8PsJypIpqKjIdKGi1ronYh11I+6BW1u1ltpqFbWKVXGPutq693itu7ZOXHVra7WKIiB1i8hUBIHz+4MfaSLDECFPgvfnunK9zXNO4o0vki/nOUMSQggQEREREQBAIXcAIiIiIn3C4oiIiIhIBYsjIiIiIhUsjoiIiIhUsDgiIiIiUsHiiIiIiEgFiyMiIiIiFUXkDmCI0tPT8ejRI1haWkKSJLnjEBERkQaEEEhISECZMmWgUOQ8PsTiSAuPHj1CuXLl5I5BREREWrh//z4cHR1zbGdxpAVLS0sAGX+5VlZWMqchIiIiTcTHx6NcuXLKz/GcsDjSQuatNCsrKxZHREREBuZdU2I4IZuIiIhIBYsjIiIiIhUsjoiIiIhUsDgiIiIiUsHiiIiIiEgFiyMiIiIiFSyOiIiIiFSwOCIiIiJSweKIiIiISAWLIyIiIiIVLI6IiIiIVLA4IiIiIlLB4oiIiIhIhV4VR3fu3MF3332H+vXro0SJErC0tETNmjUxY8YMvHz5Mkv/p0+fYtCgQShVqhRMTU1RvXp1rFy5Msf337p1Kz7++GOYmZnB3t4evXr1QmRkZEF+SURERGRg9Ko4WrNmDRYsWABXV1dMnjwZc+fORaVKlTBp0iQ0bNgQSUlJyr6xsbFo3Lgxtm3bhsGDB2PJkiVwcnLCsGHDEBgYmOW9ly5dit69e8PMzAwLFy6Ev78/jhw5goYNG+LRo0e6/DKJiIhInwk9cunSJRETE5Pl+sSJEwUAsXTpUuW18ePHCwDil19+UevboUMHUbRoUREeHq689vz5c2FhYSFq1aol3rx5o/bnSZIkBg8enKeccXFxAoCIi4vL0+uIiIg+VAAK7KEpTT+/9WrkqHbt2rCxsclyvXv37gCA69evK69t3rwZrq6u6NKli1rfMWPG4M2bN9i+fbvy2t69e5GYmIjRo0ejSJEian9e06ZNsWPHDqSkpOTzV0NERESGSK+Ko5w8fPgQAFCyZEkAwJMnT3D//n00aNAgS98GDRpAkiRcvHhReS3zvxs2bJilf8OGDZGQkICQkJCCiE5EREQGRu+Lo7S0NEybNg1FihRBnz59APxXLDk6Ombpb2JiAnt7ezx48EB5Lbf+mddU+78tOTkZ8fHxag8iIiIqnPS+OBo9ejTOnz+PqVOnolKlSgCAV69eAcgohLJjamqq7POu/qampmp9shMUFARra2vlo1y5ctp9MURERKT39Lo4mjRpEpYvX44hQ4YgICBAed3c3BxAxohOdpKSkpR93tU/cwWcav+3TZgwAXFxccrH/fv38/7FEBERkUHQ2+Jo6tSpmDFjBvz8/PDTTz9BkiRlW9myZQFkfyvs9evXiI6OVruFllv/3G65ZTIxMYGVlZXag4iIiAonvSyOAgMDERgYiL59+2Lt2rVQKNRjOjg4wNHREefOncvy2vPnz0MIgTp16iivZf732bNns/Q/e/YsLCwsULly5Xz+KoiIiMgQ6V1xNG3aNEydOhV9+vTBunXrshRGmXr37o2IiAjs2rVL7fqCBQtQpEgR9OjRQ3mtU6dOMDc3xw8//IDU1FTl9cuXL+PUqVPo3r07jI2NC+YLIiIiIoMi/f/GTHph2bJlGDVqFJycnDBt2jQYGRmptZcqVQotW7YEAMTExKB27dp48uQJ/P394erqir179+LAgQOYPHkypk2bpvbaxYsXw9/fH40aNUK/fv3w/PlzLFy4EEWLFsXly5eVt940ER8fD2tra8TFxfEWGxERkQZUp8fkN01LGU0/v/WqOBowYADWr1+fY3uzZs1w4sQJ5fPHjx8jICAAv/76K+Lj41G+fHmMGjUKn332Wbav37x5M+bPn49bt27B3NwcLVu2RFBQEFxdXfOUk8URERFR3rA4KuRYHBEREeWNIRVHejfniIiIiEhOLI6IiIiIVLA4IiIiIlLB4oiIiIhIBYsjIiIiIhUsjoiIiIhUsDgiIiIiUsHiiIiIiEgFiyMiIiIiFSyOiIiIiFSwOCIiIiJSweKIiIiISAWLIyIiIiIVLI6IiIiIVLA4IiIiIlLB4oiIiIhIBYsjIiIiIhUsjoiIiIhUsDgiIiIiUsHiiIiIiEgFiyMiIiIiFSyOiIiIiFSwOCIiIiJSweKIiIiISAWLIyIiIiIVLI6IiIiIVLA4IiIiIlLB4oiIiIhIBYsjIiIiIhUsjoiIiIhU6F1xFBQUhG7dusHNzQ2SJMHFxSXHvpIk5fqYMWOGxv1jY2ML9gsjIiIig1BE7gBvCwgIQPHixVGrVq13FiwbN27M9vrUqVMRFhaGDh06ZGlr0qQJhg0bluV6sWLFtMpLREREhYveFUdhYWFwc3MDAFSrVg2JiYk59u3bt2+Waw8ePEBERARq166N6tWrZ2l3c3PL9nVEREREgB7eVsssjLS1du1apKenY8iQITn2SUlJQUJCwnv9OURERFQ46V1x9D6EEFi7di3Mzc3Rq1evbPvs3LkT5ubmsLKygp2dHYYMGYInT57k+r7JycmIj49XexAREVHhpHe31d7H8ePHERERgQEDBsDKyipLe506ddC1a1dUqFABr169QnBwMNauXYvDhw/jwoULKF26dLbvGxQUhMDAwIKOT0RERHpAEkIIuUPkJHPO0b179zTq36tXL2zbtg2nT59G48aNNXrNxo0b4efnh6FDh+Lnn3/Otk9ycjKSk5OVz+Pj41GuXDnExcVlW4QRERGROkmSCuy9NS1l4uPjYW1t/c7P70JTHMXExKB06dJwdXXFrVu38vTnuLq6IiUlBQ8fPtSov6Z/uURERJTBkIqjQjPnaNOmTUhOTsbgwYPz/FoXFxdERUUVQCoiIiIyNIWmOFq9ejWKFi0KPz+/PL1OCIG7d+/CwcGhgJIRERGRISkUxdHly5dx7do1dOjQASVLlsy2z9OnT7O9vmTJEjx48AAdO3YsyIhERERkIPRutdrGjRsRGRkJAIiKikJKSgqmT58OALCxscGoUaOyvGb16tUAkOveRkFBQTh69Cjat28PZ2dnJCUl4cSJE9i/fz8qVKiAqVOn5v8XQ0RERAZH7yZke3l54eTJk9m2OTs7Z5mcnZSUhNKlS8PS0hKRkZFQKLIfDNu3bx+WL1+OGzdu4Pnz55AkCe7u7ujcuTPGjh0La2trjTNyQjYREVHeGNKEbL0rjgwBiyMiIqK8MaTiqFDMOSIiIiLKLyyOiIiIiFSwOCIiIiJSweKIiIiISAWLIyIiIiIVLI6IiIiIVLA4IiIiIlLB4oiIiIhIBYsjIiIiIhUsjoiIiIhUsDgiIiIiUsHiiIiIiEhFvhZHqampiImJyc+3JCIiItIprYqjffv2YcKECWrXFixYAAsLC9jb26NTp05ITk7Ol4BEREREuqRVcTRv3jz8+++/yuf//PMPxo0bh8qVK8PHxwf79+/HDz/8kG8hiYiIiHRFq+IoJCQEtWrVUj7fsWMHihUrhjNnzmDnzp3o27cvNm3alG8hiYiIiHRFq+IoLi4OdnZ2yudHjx5FixYtYGFhAQBo0qQJIiMj8ychERERkQ5pVRyVLFlSWfzEx8fj8uXLaNy4sbI9OTkZaWlp+ZOQiIiISIeKaPOiBg0a4Mcff0S1atVw8OBBpKamom3btsr2sLAwlClTJt9CEhEREemKVsXR1KlT0bx5c3Tr1g0AMGjQIFSuXBkAIITA7t274e3tnX8piYiIiHREq+KoSpUquHXrFv744w/Y2NigSZMmyrbY2Fh89dVX8PLyyq+MRERERDojCSGE3CEMTXx8PKytrREXFwcrKyu54xAREek9SZIK7L01LWU0/fzWauRI1atXrxAdHZ1tMCcnp/d9eyIiIiKd0qo4Sk9Px5w5c7BkyRI8efIkx35csUZERESGRqviaPz48Zg3bx6qVq0KX19ftT2PiIiIiAyZVsXRpk2b0KZNGxw8eDC/8xARERHJSqtNIGNiYtCpU6f8zkJEREQkO62Ko6pVq+Lx48f5nYWIiIhIdloVR5MnT8aPP/6I+/fv53ceIiIiIllpNefo2rVrcHZ2RpUqVeDj4wNXV1cYGRmp9ZEkCZMnT87zewcFBeHq1au4cuUKIiIi4OzsjHv37mXbd+rUqQgMDMy27csvv8SiRYuyXN+6dSvmzZuHmzdvolixYmjZsiVmzZoFZ2fnPGclIiKiwkerTSAVincPOEmSpNVSfkmSULx4cdSqVQtXrlyBlZXVO4ujhQsXwt7eXq3Nw8MDH3/8sdq1pUuX4osvvkCjRo3Qt29fPH/+HIsWLYKJiQkuXbqk8Xlw3ASSiIgobwr9JpARERHavEwjYWFhcHNzAwBUq1YNiYmJ73xN586d4eLikmuf6OhoTJgwAbVq1cKJEydQpEjGl96mTRvUrVsX3333HVatWvXe+YmIiMiwaVUcFeQtqMzCKK8SEhJgamqKokWLZtu+d+9eJCYmYvTo0crCCABq166Npk2bYseOHVi+fDmMjY21+vOJiIiocNBqQraqxMRE3LhxAzdu3NBolKcg1KhRA1ZWVjA1NUXt2rWxffv2LH0uXrwIAGjYsGGWtoYNGyIhIQEhISEFnpWIiIj0m9bF0e3bt9GmTRvY2tqiRo0aqFGjBmxtbdG2bVvcvn07PzPmyMbGBkOGDMHixYuxb98+zJ8/H7GxsejZsyemT5+u1vfhw4cAAEdHxyzvk3ntwYMH2f45ycnJiI+PV3sQERFR4aTVbbXQ0FDUr18fcXFx8Pb2hqenJ4QQuHHjBg4dOoSGDRvi/PnzqFChQn7nVePv75/l2vDhw1GnTh0EBgaiX79+yluAr169AgCYmJhkeY2pqalan7cFBQXluCqOiIiIChet9zl68+YNzpw5g6NHj2LhwoVYtGgRjh49ijNnziAlJQVTpkzJ76waMTMzw9ixY5GamorDhw8rr5ubmwPIGAV6W1JSklqft02YMAFxcXHKB/d3IiIiKry0Ko6OHz+OUaNGZTt/p0GDBhgxYgSOHj363uG0lblyLSoqSnmtbNmyALK/dZbbLTcgY7TJyspK7UFERESFk1bFUXx8fK4r1lxcXGSdlxMaGgoAcHBwUF6rU6cOAODs2bNZ+p89exYWFhaoXLmybgISERGR3tKqOHJycsLx48dzbD9+/DicnJy0DqWJ1NRUREdHZ7keGxuLoKAgGBsbo3Xr1srrnTp1grm5OX744QekpqYqr1++fBmnTp1C9+7duYyfiIiItJuQ3b17dwQFBeGbb77BxIkTYWtrCwCIiYlBUFAQdu3ahYCAAK0Cbdy4EZGRkQAyboulpKQoV57Z2Nhg1KhRADK2EHB0dESXLl3g6ekJOzs7hIeHY82aNXj27BkWLVqkvJUGAPb29pg5cyb8/f3h5eWFfv364fnz51i4cCFKlSqFadOmaZWXiIiIChetjg9JSkpCmzZtcPr0aSgUCpQqVQoA8PTpU6Snp6Np06b4/ffflavA8sLLywsnT57Mtk31nLXk5GSMHDkSFy9exP3795GYmAhbW1vUq1cP/v7+aNGiRbbvsXnzZsyfPx+3bt2Cubk5WrZsiaCgILi6umqckceHEBER5Y0hHR+iVXEEAGlpaVi7di327NmD8PBwCCHg7u4OHx8fDBgwIMtBtIUJiyMiIqK8+SCKow8ZiyMiIqK8MaTi6L2PDyEiIiIqTDSakL1hwwYAQL9+/SBJkvL5u/j5+WmfjIiIiEgGGt1WUygUkCQJSUlJMDY2Vj7P7aWSJCEtLS1fw+oL3lYjIiLKG0O6rabRyFFwcDAAKPcBynxOREREVNhwQrYWOHJERESUN4Y0cqTVhOxBgwbhwoULObZfvHgRgwYN0uatiYiIiGSlVXG0bt06hIWF5dgeERGB9evXax2KiIiISC4FspQ/Pj6e55QRERGRQdL4bLW///4bf/31l/L56dOn1Q5wzRQTE4Ply5fzhHsiIiIySBoXR7t370ZgYCCAjElVP/30E3766ads+1pYWGDr1q35k5CIiIhIhzQujgYMGAAvLy8IIeDt7Y2JEyfik08+UesjSRIsLCxQpUoVrQ6dJSIiIpKbxsWRs7MznJ2dAQBTpkyBr68vqlWrVmDBiIiIiOTAfY60wH2OiIiI8saQ9jnSeORIFc9WIyIiosJKq5GjnM5We7sq5NlqREREBHwAI0fZna2WmpqKsLAwLF++HObm5pgxY4Y2b01EREQkq3yfc5ScnIy6devCz88PX3/9dX6+td7gyBEREVHeGNLIUb7vkG1iYoK+ffti+fLl+f3WRERERAWuQI4PMTExwcOHDwvirYmIiIgKVL4XR48fP8aPP/4IV1fX/H5rIiIiogKn1YRsb2/vbK+/ePECISEhSElJwfr1698rGBEREZEctCqOwsPDs0yskiQJxYsXR5cuXTBq1Cg0bNgwXwISERER6ZJWxdG9e/fyOQYRERGRftBqztGpU6cQFRWVY/vz589x6tQprUMRERERyUWr4qh58+Y4cuRIju3Hjh1D8+bNtQ5FREREJBetiqN3bbb05s0bKBQFsksAERERUYHSuoLJaafLuLg4/PbbbyhZsqTWoYiIiIjkonFxFBgYCCMjIxgZGUGSJPTt21f5XPVRvHhxbNu2DT179izI3EREREQFQuPVajVr1oSfnx+EENiwYQOaNGkCNzc3tT6SJMHCwgL16tVDr1698j0sERERUUHT6uBZV1dXLF68GB07dsz3QEFBQbh69SquXLmCiIgIODs7Z7t1gBACmzdvxoEDB3D58mU8evQI9vb2qFmzJiZOnIh69epleU1uh97FxMTAxsZGo4w8eJaIiChvDOngWa32OYqIiNDmZRoJCAhA8eLFUatWLcTGxubYLzk5Gf369UP16tXRo0cPuLm5KY8uadCgATZs2IC+fftmeV2TJk0wbNiwLNeLFSuWn18GERERGSitRo4KUnh4uPJ2XbVq1ZCYmJjtyFFqaipOnz6dZcuAJ0+eoFq1aihSpAgePXqktmpOkiT0798f69ate6+MHDkiIiLKm0I3cuTq6gqFQoGQkBAULVo0y1yj7EiShLCwMI3CqtLkvQGgSJEi2e6l5ODggKZNm2L37t149uwZHBwcsvRJSUlBcnIyLC0t85yPiIiICjeNiiNnZ2dIkqSs+pycnAq0AnxfDx8+hLGxcbZziHbu3IlNmzYhLS0NxYsXh4+PD6ZPn55tEZUpOTkZycnJyufx8fEFEZuIiIj0gEbF0YkTJ3J9rk9+/fVXXLx4EX379oWpqalaW506ddC1a1dUqFABr169QnBwMNauXYvDhw/jwoULKF26dLbvGRQUhMDAQF3EJyIiIplpNefo33//RYkSJWBmZpZte1JSEqKiouDk5PRe4XKbc5Sd27dvo0GDBjAzM8Off/6p0UaUGzduhJ+fH4YOHYqff/452z7ZjRyVK1eOc46IiIg0ZEhzjrTaIdvV1RW7d+/OsX3fvn1wdXXV5q21FhERgZYtWwJAnnbo7tevH1xcXPDrr7/m2MfExARWVlZqDyIiIiqcCuRstbS0NJ3OSbp37x6aN2+OhIQEHD58GNWrV8/T611cXBAVFVVA6YiIiMiQaLXPEZD78Nj58+dRvHhxbd86TyIjI9G8eXPExsbiyJEjqF27dp5eL4TA3bt3c52QTURERB8OjYujxYsXY/Hixcrn/v7+mDhxYpZ+sbGxiIuLg5+fX/4kzEVkZCS8vLwQExODw4cPo06dOjn2ffr0KUqVKpXl+pIlS/DgwQOMHDmyIKMSERGRgdC4OLKxsYGzszOAjKLEzs4uS7Gheraav7+/VoE2btyIyMhIAEBUVBRSUlIwffp0ZYZRo0YBABISEtC8eXPcu3cPX3zxBe7cuYM7d+6ovVfLli2VGYOCgnD06FG0b98ezs7OSEpKwokTJ7B//35UqFABU6dO1SovERERFS5arVZTKBTYtGkTevfune+BvLy8cPLkyWzbVM9Zu3fv3jsnfQcHB8PLywtAxiTx5cuX48aNG3j+/DkkSYK7uzs6d+6MsWPHwtraWuOM3CGbiIgobwxptZreHR9iCFgcERER5Y0hFUdaTchOTk7Gy5cv1SZdR0VFYfny5Xjx4gX69OmDunXravPWRERERLLSauRo4MCBuHr1Kq5duwYg46wyT09PhIaGAgCKFi2K06dPF9oCiSNHREREeWNII0da7XN0+vRpdOjQQfn8f//7H0JDQ7Fu3Tpcu3YNjo6OmDt3rjZvTURERCQrrYqjp0+fKleuAcDBgwfh6ekJPz8/eHp6YujQobhw4UK+hSQiIiLSFa2KI0mSkJaWpnx+4sQJNG/eXPm8VKlSePbs2funIyIiItIxrc9WO3ToEADgjz/+wJMnT9SKo4cPH8LGxiZfAhIRERHpklar1QYOHIgxY8bA09MTDx48gIODA1q1aqVsv3jxIipXrpxvIYmIiIh0RauRI39/fwQGBsLY2Bi1atXC7t27YWZmBgCIjo7G+fPn0bZt23wNSkRERKQL3ARSC1zKT0RElDeFfik/ERERUWGl1ZwjAHj58iW2bNmC0NBQREdHZ6naJEnC6tWr3zsgERERkS5pVRxdvHgR7dq1Q3R0dI59WBwRERGRIdLqttqYMWPw5s0b7NixA8+fP0d6enqWh+o+SERERESGQquRoytXriAgIABdu3bN7zxEREREstJq5MjKygr29vb5nYWIiIhIdloVRx07dsTvv/+e31mIiIiIZKdVcTR37lw8ffoUX3zxBcLCwjTeX4CIiIhI32m1CaRCoXjnZk6SJCE1NVXrYPqMm0ASERHljSFtAqnVhGw/P78C/SKJiIiI5KJVcbRu3bp8jkFERESkH3h8CBEREZEKFkdEREREKjS+rWZmZpaneUaSJOHly5dahSIiIiKSi8bFUb169TgJm4iIiAo9jYujEydOFGAMIiIiIv3AOUdEREREKlgcEREREalgcURERESkgsURERERkQq9K46CgoLQrVs3uLm5QZIkuLi45Nr/6dOnGDRoEEqVKgVTU1NUr14dK1euzLH/1q1b8fHHH8PMzAz29vbo1asXIiMj8/mrICIiIkOlUXEUHx+PtLS0gs4CAAgICMDx48fh7u4OW1vbXPvGxsaicePG2LZtGwYPHowlS5bAyckJw4YNQ2BgYJb+S5cuRe/evWFmZoaFCxfC398fR44cQcOGDfHo0aOC+pKIiIjIkAgNKBQKsXnzZuXzgQMHivPnz2vy0jwLCwtT/nfVqlWFs7Nzjn3Hjx8vAIhffvlF7XqHDh1E0aJFRXh4uPLa8+fPhYWFhahVq5Z48+aN8vqlS5eEJEli8ODBGmeMi4sTAERcXJzGryEiIvqQASiwh6Y0/fzWaOTIyMhIbeRo3bp1CAsLe8+yLHtubm4a9928eTNcXV3RpUsXtetjxozBmzdvsH37duW1vXv3IjExEaNHj0aRIv9t71S7dm00bdoUO3bsQEpKyvt/AURERGTQNCqOnJ2dcerUKbVrcu+W/eTJE9y/fx8NGjTI0tagQQNIkoSLFy8qr2X+d8OGDbP0b9iwIRISEhASElJwgYmIiMggaLRD9sCBAzFp0iT88ssvsLGxAQD4+/tj4sSJOb5GkqQCG10CgIcPHwIAHB0ds7SZmJjA3t4eDx480Kh/5rUHDx6gevXqWdqTk5ORnJysfB4fH/9+4YmIiEhvaVQcBQQEwNHREYcOHcKTJ08QGRkJOzs7lCpVqqDz5ejVq1cAMgqh7Jiamir7vKu/qampWp+3BQUFZTvBm4iIiAofjc9W8/Pzg5+fHwBAoVBg0qRJ6N27d4EFexdzc3MAUBvRUZWUlAQHB4ds+5uZmWXpq9rnbRMmTMCYMWOUz+Pj41GuXDntwxMREZHe0rg4UhUcHIwqVarkd5Y8KVu2LACo3TrL9Pr1a0RHR6NJkybZ9q9QoYJa/9xuuQEZo005jVARERFR4aLVJpDNmjVDiRIlAAA3b97EgQMHcODAAdy6dStfw+XGwcEBjo6OOHfuXJa28+fPQwiBOnXqKK9l/vfZs2ez9D979iwsLCxQuXLlggtMREREBkHrHbJPnjyJKlWqwNPTE506dUKnTp1QrVo1VK1aNcvKtoLSu3dvREREYNeuXWrXFyxYgCJFiqBHjx7Ka506dYK5uTl++OEHpKamKq9fvnwZp06dQvfu3WFsbKyT3ERERKS/pP/fmClPLl++jMaNG0OhUKB3797w9PSEEAI3btzA1q1bkZ6ejjNnzuDjjz/Oc6CNGzcqj/NYsmQJUlJS8PXXXwMAbGxsMGrUKGXfmJgY1K5dG0+ePIG/vz9cXV2xd+9eHDhwAJMnT8a0adPU3nvx4sXw9/dHo0aN0K9fPzx//hwLFy5E0aJFcfnyZeWtt3eJj4+HtbU14uLiYGVlleevkYiI6ENTkFsAaVrKaPr5rVVx1KFDB1y8eBHnzp3LsmljREQE6tevj3r16mHfvn15fWt4eXnh5MmT2bY5Ozvj3r17atceP36MgIAA/Prrr4iPj0f58uUxatQofPbZZ9m+x+bNmzF//nzcunUL5ubmaNmyJYKCguDq6qpxRhZHREREeVPoi6PixYvjyy+/xJQpU7Jtnzp1Kn744Qe8ePEir29tEFgcERER5Y0hFUdazTlKSkqCnZ1dju329vbK5fFEREREhkSr4qh8+fK53jLbu3cvypcvr3UoIiIiIrloVRz1798fR48eRffu3XHt2jWkpKQgJSUFf/31F3r06IHjx49j4MCB+Z2ViIiIqMBpNecoPT0d/fr1w9atW5X3ECVJghACQgj06tULmzZtkv1w2oLCOUdERER5Y0hzjrQqjjIdPXoUe/bsQXh4OIQQcHd3h4+PD1q0aKHtWxoEFkdERER588EURx8qFkdERER5Y0jFkdY7ZBMREREVRiyOiIiIiFSwOCIiIiJSweKIiIiISAWLIyIiIiIVeS6OXr9+jQ0bNuDChQsFkYeIiIhIVnkujkxMTDBkyBD8+eefBZGHiIiISFZ5Lo4kSYKTkxPi4+MLIg8RERGRrLQ+W23Tpk1ISUnJ7zyFkiRJBfYgIiKi/FVEmxc1bNgQu3btQs2aNTFixAiUL18e5ubmWfo1bdr0vQMSERER6ZJWx4coFOoDTm+PYAghIEkS0tLS3i+dnsrr8SH6sGU6ERGRnPThs1DTz2+tRo7Wrl2rzcuIiIiI9J5WxVH//v3zOwcRERGRXuAmkEREREQqtC6O7t+/j0GDBsHR0RHGxsY4fvw4ACAqKgqDBg3CpUuX8i0kERERka5oVRxFRESgdu3a+OWXX1C1alW1idclSpTA5cuXsWrVqnwLSURERKQrWs05mjhxIoyMjHDjxg2YmZmhZMmSau1t27bF/v378yUgERERkS5pNXJ09OhRfP755yhXrly2S/OcnZ3x4MGD9w5HREREpGtaFUfx8fEoXbp0ju0pKSlITU3VOhQRERGRXLQqjsqVK4d//vknx/Zz586hfPnyWociIiIikotWxVGXLl2wZs0a3LhxQ3kt8/ba9u3bsXPnTnTv3j1/EhIRERHpkFbHh8THx6NBgwa4d+8eGjVqhGPHjqF58+aIi4vD1atXUbNmTfzxxx8wNTUtiMyy4/EhREREeaMPn4Wafn5rNXJkZWWFc+fOYfDgwfjzzz8hhMDx48cRFhaGESNGIDg4uNAWRkRERFS4aTVy9LaoqCgIIVCiRIkCrQz1BUeOiIiI8kYfPgsLdOTobSVKlEDJkiV1XhhNnToVkiTl+ChatKhGff39/XWam4iIiPSXVptAZtq6dSt2796NsLAwSJIENzc3dOnSBT179syvfLnq0qVLtqvi/v77b8ydOxcdOnTI0rZw4ULY29urXfPw8CiwjERERGRYtCqOXr58iQ4dOuDkyZMQQsDGxgZCCFy9ehW//PILVq5ciX379qFYsWL5nVdN9erVUb169SzXhw8fDgAYPHhwlrbOnTvDxcWlQHMRERGR4dLqtlpAQABOnDiBL774Ao8ePcKLFy8QExODR48e4YsvvkBwcDAmTpyY31k18urVK2zbtg1ly5ZFmzZtsu2TkJCAN2/e6DgZERERGQKtiqPt27ejW7duWLRoERwcHJTXHRwcsGjRIvj6+mL79u35FjIvduzYgfj4eAwcOBBGRkZZ2mvUqAErKyuYmpqidu3aGuVMTk5GfHy82oOIiIgKJ62Ko4SEBDRv3jzHdm9vb9kKiNWrV0OSJAwaNEjtuo2NDYYMGYLFixdj3759mD9/PmJjY9GzZ09Mnz491/cMCgqCtbW18lGuXLmC/BKIiIhIRlot5W/QoAEaNmyI+fPnZ9s+ZswYnD17FufPn3/vgHlx+/ZtVK5cGS1atMDRo0ff2T8pKQl16tTB7du3cffuXTg7O2fbLzk5GcnJycrn8fHxKFeuHJfyExERaUgfPgsLdCn/9OnTsXLlSuzfvz9L2969e7Fq1SrMnDlTm7d+L6tXrwYADBkyRKP+ZmZmGDt2LFJTU3H48OEc+5mYmMDKykrtQURERIWTRqvV3r5FBQCurq7o3LkzKlWqBA8PD0iShJs3b+L27dvw9PTE5s2b4e3tne+Bc5KamooNGzagePHi8PHx0fh1mSvXoqKiCigZERERGRKNiqN169bl2BYSEoKQkBC1a3///TeuX7+uHMnRhf379+Pp06f48ssvYWJiovHrQkNDAUBtYjkRERF9uDQqjtLT0ws6x3vLLMSy29soNTUVcXFxsLOzU7seGxuLoKAgGBsbo3Xr1jrJSURERPrtvXbI1hePHj3C77//jrp168LT0zNLe2JiIhwdHdGlSxd4enrCzs4O4eHhWLNmDZ49e4ZFixahbNmyMiQnIiIifVMoiqN169YhLS0tx4nYZmZm6NOnDy5evIiDBw8iMTERtra2qFevHvz9/dGiRQsdJyYiIiJ9pdVSfgA4c+YMli9fjrt37yI6OjrLMjpJkhAWFpYvIfWNpksBM+nD8kUiIiI56cNnoaaf31qNHP30008YMWIEjI2NUalSJTg5OWnzNkRERER6R6viKCgoCDVr1sShQ4eynHBPREREZMi02gTy2bNnGDx4MAsjIiIiKnS0Ko48PDwQExOT31mIiIiIZKdVcTRx4kSsWLECjx8/zu88RERERLLSas5Rly5d8OrVK3h4eKBz585wdnaGkZGRWh9JkjB58uR8CUlERESkK1ot5b9z5w5at26NyMjInN9YkpCWlvZe4fQVl/ITERHljT58FhboUv4RI0bg+fPnWLJkCRo1agRbW1tt3oaIiIhI72hVHJ0/fx5jx47FyJEj8zsPERERkay0mpBtZWXFZfxERERUKGlVHHXv3h179uzJ5yhERERE8tOqOBo+fDhiY2Ph6+uL4OBgRERE4N9//83yICIiIjI0Wq1WUygUkCQJQohcZ59ztVoGfZihT0REJCd9+Cws0NVq3333XYF+kURERERy0Wrk6EPHkSMiIqK80YfPQk0/v7Wac0RERERUWGl1W+3UqVMa9WvatKk2b09EREQkG62KIy8vL42GxwrrhGwiIiIqvLQqjtauXZvlWmpqKsLCwrBu3Tq4uLhg+PDh7x2OiIiISNe0Ko769++fY9vYsWNRq1YtrQMRERERySnfJ2Tb2tpiyJAhmDNnTn6/NREREVGBK5DVara2tggPDy+ItyYiIiIqUPleHL1+/RobN26Eg4NDfr81ERERUYHTas7RoEGDsr3+4sULnDt3DlFRUZg7d+57BSMiIiKSg1bF0bp167K9Xrx4cVSsWBELFy5E79693ycXERERkSy0Ko7S09PzOwcRERGRXuDxIUREREQqWBwRERERqdD4tlrbtm3z9MaSJOHXX3/NcyAiIiIiOWlcHP3+++95emNNzl57X7n9GTExMbCxsVE+f/r0KSZMmIBff/0VcXFxqFixIr744gsMHTq0wHMSERGR4dC4ONJkEnZwcDDGjx+PS5cuoXTp0u8VTFNNmjTBsGHDslwvVqyY8r9jY2PRuHFjPHz4EP7+/nB1dcXevXsxbNgwPHr0CFOmTNFJViIiItJ/Wq1We9vff/+N8ePH49ChQ7C0tMT06dPx1Vdf5cdbv5Obmxv69u2ba5/Zs2fj7t27+OWXX9ClSxcAwNChQ9GxY0fMmDEDfn5+cHV11UVcIiIi0nPvNSH733//hZ+fH2rVqoXg4GB8+eWXCA8PR0BAAMzMzPIr4zulpKQgISEhx/bNmzfD1dVVWRhlGjNmDN68eYPt27cXdEQiIiIyEFoVRy9evMCYMWNQqVIlbNmyBb1798bt27exYMECFC9ePL8z5mrnzp0wNzeHlZUV7OzsMGTIEDx58kTZ/uTJE9y/fx8NGjTI8toGDRpAkiRcvHhRl5GJiIhIj+XptlpSUhIWLlyIuXPnIi4uDm3atMHs2bPh6elZUPlyVadOHXTt2hUVKlTAq1evEBwcjLVr1+Lw4cO4cOECSpcujYcPHwIAHB0ds7zexMQE9vb2ePDgQa5/TnJyMpKTk5XP4+Pj8/cLISIiIr2hcXH0888/IzAwEE+ePEGdOnUwe/ZsNGvWrCCzvdPbIz59+vRBs2bN4OfnhylTpuDnn3/Gq1evAGQUQtkxNTVV9slJUFAQAgMD8yc0ERER6TVJCCE06ahQKCBJEmrXrg1fX993v7EkYezYse8dUBuurq5ISUnBw4cPceXKFdSuXRvjxo3D7Nmzs/QtUaIEXF1dc721lt3IUbly5RAXFwcrK6t35inIbQ00/L+PiIhIVvrwWRgfHw9ra+t3fn7n6baaEAKXLl3CpUuX3tlXzuLIxcUFf/zxBwCgbNmyAJDtrbPXr18jOjoaTZo0yfX9TExMchx5Kqz04ZuYiIhIDhoXR8HBwQWZI98IIXD37l04ODgAABwcHODo6Ihz585l6Xv+/HkIIVCnTh1dxyQiIiI9pXFxJPf8orc9ffoUpUqVynJ9yZIlePDgAUaOHKm81rt3b8yZMwe7du1SW86/YMECFClSBD169NBJZiIiItJ/+bIJpByCgoJw9OhRtG/fHs7OzkhKSsKJEyewf/9+VKhQAVOnTlX2HT9+PHbu3Il+/frhypUryh2yDxw4gMmTJ8PNzU2+L4SIiIj0isEWR97e3ggJCcGmTZvw/PlzSJIEd3d3TJw4EWPHjoW1tbWyr62tLc6cOYOAgACsXLkS8fHxKF++PFasWIHPPvtMxq+CiIiI9I3Gq9XoP5rOds9kiJObDTEzERHpL334XNH08/u9jg8hIiIiKmxYHBERERGpYHFEREREpILFEREREZEKFkdEREREKlgcEREREalgcURERESkgsURERERkQoWR0REREQqWBwRERERqWBxRERERKSCxRERERGRChZHRERERCpYHBERERGpYHFEREREpILFEREREZEKFkdEREREKlgcEREREalgcURERESkgsURERERkQoWR0REREQqWBwRERERqWBxRERERKSCxRERERGRChZHRERERCqKyB2AKL9IklRg7y2EKLD3JiIi/cKRIyIiIiIVLI6IiIiIVLA4IiIiIlLB4oiIiIhIhcEWR3fu3MF3332H+vXro0SJErC0tETNmjUxY8YMvHz5Uq3v1KlTIUlStg9/f395vgAiIiLSSwa7Wm3NmjVYunQpOnTogN69e8PY2BjBwcGYNGkSduzYgfPnz8PMzEztNQsXLoS9vb3aNQ8PD13GJiIiIj1nsMVR165dMX78eNjY2CivffbZZ6hQoQJmzJiBNWvWYOTIkWqv6dy5M1xcXHQblIiIiAyKwd5Wq127tlphlKl79+4AgOvXr2f7uoSEBLx586YgoxEREZEBM9jiKCcPHz4EAJQsWTJLW40aNWBlZQVTU1PUrl0b27dv13U8IjU5zYXLjwczExFpx2Bvq2UnLS0N06ZNQ5EiRdCnTx/ldRsbGwwZMgSNGjWCnZ0dwsLCsHTpUvTs2ROhoaGYNGlSru+bnJyM5ORk5fP4+PgC+xqIiIhIXpIoROcijBw5EsuXL8f06dMxceLEXPsmJSWhTp06uH37Nu7evQtnZ+cc+06dOhWBgYFZrsfFxcHKyuqduQzxWAtmVsfM/zHEzEQkP3342REfHw9ra+t3fn4XmttqkyZNwvLlyzFkyBAEBAS8s7+ZmRnGjh2L1NRUHD58ONe+EyZMQFxcnPJx//79/IpNREREeqZQ3FabOnUqZsyYAT8/P/z0008aV6eZK9eioqJy7WdiYgITE5P3jUlEREQGwOBHjgIDAxEYGIi+ffti7dq1UCg0/5JCQ0MBAA4ODgUVj4iIiAyMQRdH06ZNw9SpU9GnTx+sW7cu28IoNTUV0dHRWa7HxsYiKCgIxsbGaN26tS7iEhERkQEw2Ntqy5Ytw5QpU+Dk5ISWLVti69atau2lSpVCy5YtkZiYCEdHR3Tp0gWenp6ws7NDeHg41qxZg2fPnmHRokUoW7asTF8FERER6RuDLY4uXboEAPj3338xYMCALO3NmjVDy5YtYWZmhj59+uDixYs4ePAgEhMTYWtri3r16sHf3x8tWrTQcXIiIiLSZ4VqKb+uaLoUMJM+LF/MK2ZWx8z/McTMRCQ/ffjZ8cEt5SciIiLKDyyOiIiIiFSwOCIiIiJSweKIiIiISAWLIyIiIiIVBruUn4goLwpqpQxX2BEVPhw5IiIiIlLBkSMiIj1liKNdzPwfjioaLo4cEREREalgcURERESkgsURERERkQrOOSIiIjIwnCdVsDhyRERERKSCxRERERGRChZHRERERCpYHBERERGpYHFEREREpILFEREREZEKFkdEREREKlgcEREREalgcURERESkgsURERERkQoWR0REREQqWBwRERERqWBxRERERKSCxRERERGRChZHRERERCpYHBERERGpYHFEREREpILFEREREZGKD6442rp1Kz7++GOYmZnB3t4evXr1QmRkpNyxiIiISE98UMXR0qVL0bt3b5iZmWHhwoXw9/fHkSNH0LBhQzx69EjueERERKQHJCGEkDuELkRHR8PFxQUVK1bEhQsXUKRIEQDA5cuXUbduXQwaNAirVq3S6L3i4+NhbW2NuLg4WFlZvbO/JEnvlT03BfV/HzOrY+b/GGJmoOByM7M6Zv4PM6vTh58dmn5+fzAjR3v37kViYiJGjx6tLIwAoHbt2mjatCl27NiBlJQUGRMSERGRPijy7i6Fw8WLFwEADRs2zNLWsGFDnDx5EiEhIahevXqW9uTkZCQnJyufx8XFAcioQOWmDxnyipl1g5l1g5l1g5l1wxAzA5rnzuz3rpGmD6Y4evjwIQDA0dExS1vmtQcPHmRbHAUFBSEwMDDL9XLlyuVzyryztraWO0KeMbNuMLNuMLNuMLNuGGJmIO+5ExIScn3NB1McvXr1CgBgYmKSpc3U1FStz9smTJiAMWPGKJ+np6fjxYsXsLOzy9d7qPHx8ShXrhzu37+v0VwmfWCImQHDzM3MusHMusHMusHM6oQQSEhIQJkyZXLt98EUR+bm5gAybpGZmZmptSUlJan1eZuJiUmWosrGxib/Q/4/Kysrg/kmzmSImQHDzM3MusHMusHMusHM/9FklOmDmZBdtmxZABm3zt6W2y03IiIi+rB8MMVRnTp1AABnz57N0nb27FlYWFigcuXKuo5FREREeuaDKY46deoEc3Nz/PDDD0hNTVVev3z5Mk6dOoXu3bvD2NhYxoQZt++mTJmS7bwofWWImQHDzM3MusHMusHMusHM2vlgNoEEgMWLF8Pf3x+NGjVCv3798Pz5cyxcuBBFixbF5cuXlbfeiIiI6MP1QRVHALB582bMnz8ft27dgrm5OVq2bImgoCC4urrKHY2IiIj0wAdXHBERERHl5oOZc0RERESkCRZHRERERCpYHBERERGp+GB2yDYUJ0+exIsXL/DJJ5/A0tJS7jhZCCFw5MgR3L17F9HR0VkO75MkCZMnT5YpXc7u3r2L8uXLyx3jg/Hy5UtIkpTjrvNEREDGzworKytMnTpVrz47WBzJZObMmTh58iQOHTqkvObr64s9e/YAyNjR+9y5c3q1vcDNmzfh4+ODu3fv5niisb4WRxUrVoSXlxeGDBkCX19fg9nz4/Lly7hw4QJiYmKQnp6u1qZPf9dXr17F9u3bERwcjH/++QevX78GkHFuYbVq1eDl5YVu3bqhdu3aMictXNLS0hASEpLt9wcANG3aVIZUWZ07dw5Lly5FaGhojr9UhYWFyZQuZ2FhYVi4cGGu/wb1Mffq1avRs2dPFCtWTO4o71SsWDHY2NigZMmSckdRw9VqMqlRowaaNWuGH374AQBw9OhRtGrVCoMGDUKNGjUwceJEDBgwQNmuD5o2bYqrV68iKCgITZo0ga2tbbb9nJ2ddZzs3UaPHo0tW7bgxYsXsLGxQd++fTF48GDUqFFD7mjZSkpKQpcuXXD48GEIISBJkvIDJfO/JUlCWlqarDkPHjyIwMBAXL58GUIIuLi4wN3dHXZ2dhBC4MWLF7h79y4iIyMhSRJq1aqFwMBAtG3bVtbcOTGUYhQAZs+ejVmzZiE+Pj7HPnJ/fwDAhg0bMHDgQBQtWhQVK1aEnZ1dtv2Cg4N1nCx3169fR+PGjZGcnIxKlSrh+vXrqFq1KqKjo/HkyRO4u7vD0dFR73IDgEKhgIWFBXr27IkhQ4agbt26ckfKVdeuXWFiYoLNmzfLHeU/gmRha2srlixZonw+atQo4ejoqHw+duxYUb58eTmi5cjU1FRMnTpV7hhaS05OFtu2bRMtW7YURkZGQqFQiNq1a4uffvpJxMfHyx1Pzfjx44VCoRCTJ08WJ06cEJIkiQ0bNojff/9dNGvWTNStW1eEhITImrFly5ZCkiTh5eUlVq9eLZ48eZJj3ydPnohVq1YJLy8voVAoRKtWrXSY9N1evXol2rRpIxQKhZAkSfm/qv+tUCjkjqm0cuVK5d/9zJkzhSRJYsyYMeLbb78V9vb2om7dumLdunVyxxRCCFGxYkXh4eEhHj58KHeUPOncubOwt7cXISEhIioqSkiSJI4dOyaEEOLnn38W9vb24p9//pE5ZfZ++eUX0a5dO1GkSBGhUChEtWrVxOLFi0V0dLTc0bIVHh4uypUrJwIDA/XmZzGLI5mYmpqKVatWKZ9XqVJFDBgwQPl8zZo1wtzcXI5oOSpbtqxYunSp3DHyRWRkpJgyZYpwcXERkiSJYsWKiYEDB4o//vhD7mhCCCHKly8vevToIYQQ4vnz52o/mN+8eSNq1qwpxo8fL2dE0b59e3H16tU8v+7q1auiQ4cOBZBIe4ZQjKr6+OOPRYMGDYQQWb8/Hj16JEqWLClWr14tZ0QlExMTsXjxYrlj5Jm9vb0ICAgQQvz3d3z06FFle79+/fTu+/htjx49EjNmzBDly5cXkiQJU1NT0atXL7WvQx+4urqKEiVKCIVCIRQKhShVqpRwdXVVe7i5uek0E1eryaRs2bL4+++/AQCRkZG4deuW2vyA6OhomJqayhUvWz179sTevXvljpEvnJycMHXqVPzzzz/o27cvXr16hXXr1qFJkyaoXr06duzYIWu++/fvo1mzZgAAIyMjAEBKSgoAoEiRIujVqxe2bdsmWz4A2L9/Pz766KM8v+6jjz7Cvn37CiCR9nbu3Ilu3bph2rRpqFatGoCMf6OtW7fG0aNHkZKSgnXr1skbUsWtW7fQrVs3ABm3+wAoz4wsXbo0hg0bhsWLF8uWT1XZsmWV37uGJCEhAe7u7gCgPHfz5cuXyvZGjRrhzJkzsmTTVOnSpREQEIDQ0FAcP34cXbt2xd69e9GqVSu4u7tj5syZePLkidwx4eTkhKpVq6Jp06Zo2rQpPDw84OzsrPZwcnLSaSZOyJZJx44dsWzZMqSnp+P8+fMwNTVFu3btlO3//POP3s3dmTFjBrp16wZfX1988cUXcHZ2Vn5wq9L1N7E2/vrrL6xatQpbtmxBbGws3NzcMGTIEBQpUgQrVqxAr169EBISgu+++06WfJaWlsr5IpaWllAoFHj06JGy3draWi9+qBUW9+/fx5gxYwDkXIyuWLECQUFBsmVUZWRkBAsLCwBQTrp98eKFst3FxQWhoaGyZHvbsGHDsHnzZnz11VfZ/rzQV6VKlUJUVBSAjH+DxYoVw507d5TtMTExejGnS1NeXl4wNTXF69ev8csvvyAiIgKTJk1CYGAgBg8ejDlz5ii/p3TtxIkTsvy5uWFxJJPJkyfj2rVrWLZsGUxNTbF48WLlbP2kpCTs3r0bgwcPljmluqJFi8LDwwPz5s1TrqrLjr7+wIiLi8PmzZuxevVq/PXXXyhSpAg6duyIYcOGoWXLlsp+X331FXr37o1ly5bJVhy5u7vj7t27ADI+CKtWrYqdO3di0KBBEEJg165dKFeunCzZCiNDK0adnJzw77//Asg4wbxcuXI4ffo0evbsCQC4dOkSihcvLmdEpbp162L37t2oW7cuRo4cCVdX12yLJH1ZWZepZs2auHz5svJ5s2bNsHjxYtStWxfp6elYunSp3i7oUBUdHY2NGzdi9erVuHnzJszMzDBgwAAMGzYMRYsWxeLFi/HTTz8hJiYGW7dulTuu/tDpTTzKIi4uTqSkpKhde/Xqlfjrr7/0bvLc119/rZzE/OWXX4qpU6dm+9BHffv2Febm5kKSJOHu7i5mzZolnj59mmP/zZs3C0mSdJhQ3cSJE0WZMmVEWlqaEEKIZcuWCUmShJubm3B3dxcKhULMmjVLtnxCCOUk5bw8jIyMZM2ck3r16okvv/xS+bx69eri008/FUIIkZ6eLlq1aiUqVKggU7qsPv/8c1GjRg3l86+//loYGRmJgQMHiv79+wsjIyMxdOhQ+QKqyJzYrjrBXfWhb5PdM23btk00bdpUvHr1SgghxJUrV4SFhYUyd7FixcTp06dlTpmzQ4cOiW7dugkTExMhSZKoUaOGWLp0qYiLi8vSd9KkScLKykqGlOpOnjwpJk6cKIYMGSJu3bolhBAiISFBnDx5UsTExOg0C5fyk8ZKlSqFpk2b4n//+5/cUfLMxMQEnTp1wrBhw/DJJ5+8s/+9e/dw8uRJ9O/fXwfpskpMTMTDhw/h7u6OIkUyBnjnz5+PzZs3w8jICF27dsW4ceOU803kMGDAgCx//tWrV3H9+nVUrFgRHh4eADLmx9y5cweenp6oVasW1q5dK0fcXE2aNAlr167F/fv3oVAosHz5cowaNQqurq6QJAkRERGYOXMmvv32W7mjAgBu376NEydOoH///jA1NcXLly/Rs2dPHDx4EADQqlUrbN68WS9Gj9avX69RP7n+reXF/fv3sXv3bhgZGeHTTz+Fm5ub3JGy5eLigvv378PMzAzdu3fH8OHDUa9evRz7b9++Hb169cp2ryxdSEtLQ+/evbFz507lNiVHjhyBt7c3Xr9+jTJlyuCbb75BQECA7kLptBQjNfHx8SIwMFA0atRIlC9fXpw9e1YIIURUVJQIDAxUVs76wsLCQvz0009yx9BKbqNElD+OHj0qihUrJn755Zcsbf/73/9EsWLFlCuq9E1CQoIICQkRb968UV6bN2+e+Oijj0Tt2rXFrFmzRHp6uowJNRMbGysSEhLkjkEyq1Gjhli2bFm2o0TZefnypbh3714Bp8rZjBkzhJGRkVi0aJEICQlRW30phBCDBg0SjRo10mkmjhzJJCoqCo0bN0Z4eDjKly+PO3fuKCtlIGPOSadOnbBgwQKZk/6nZcuWqFatGhYuXCh3FNJDDRs2RL169XL8/vjyyy9x6dIlnD17VsfJiLT38uVLnDt3Dk+fPsUnn3yCUqVKyR2p0KlcuTIaNmyINWvWIDo6GiVKlMDRo0eVn4fz5s3D/Pnz8fjxY51l4oRsmUyaNAlPnjzBhQsX4OTklGXr9E6dOuHYsWMypcvevHnz0Lp1a3h5eaFTp05yx8mzf//9Fz/99FOuRxjI9Xd+6tQpAP9NSs18/i76NIn12rVr8PPzy7Hdw8MDq1at0mGiwiNz8nVe6dPK0adPn+Ly5cs5HnWS2/eOXFasWIEJEyYgPj5eeasncxVbuXLl8MMPP2DYsGFyxzR49+7dw9dff51ju42NDWJiYnSYiMWRbA4cOICRI0eiVq1aiI6OztLu5uamV/uqABmruCwtLdGlSxc4OjrCxcUly6oTOQuM3Pz222/w8fFBSkoKLC0t9WIuhiovLy9IkoSkpCQYGxsrn+dE6MnxIaosLCxw5swZfPbZZ9m2nzp1Sralwm8ztGLUxcVFq/ll+vD9kZ6ejpEjR2LVqlW5zmnRt+Lol19+wciRI9GpUyd06NABQ4YMUbaVKFECbdq0wd69e/WiOMocYckLffpZbWlpqbYVxdtCQ0NRokQJHSZicSSb58+fKzcYy45CoVAe3qkvwsPDIUmS8rdRbX+blcOECRNgb2+PPXv26OXhp2vWrIEkSShatCgA6OWk5Xfp0qULfv75Zzg7O2Ps2LGwsbEBAMTGxmLOnDnYvn07hg8fLm/I/2doxeh3332XJd/+/fvx559/4pNPPkGVKlUAZOyPduzYMXz00Ufo0KGDHFGzmDdvHn766Sf07dsXrVq1gp+fH2bPng1LS0ssWrQI1tbWerN/lKq5c+fC29sbu3fvRnR0tFpxBAC1a9fGypUrZUqnLvNns6Fq3LgxNm3ahHHjxmVpi46Oxpo1a/Dpp5/qNBOLI5k4ODjkeprz1atX9WpIHMgY+jRUISEhmD59ul4WRkDGyi9VhrBy522zZs1SHkw8e/ZslCpVCpIk4cmTJ0hPT0fdunUxa9YsuWMCMLxidOrUqWrPt2/frjwt/u3v6YsXL6Jly5aoXLmyDhPmbP369WjdujU2bNigHCX/+OOP4e3tjX79+qF69eq4cuWKVqMfBen69euYM2dOju2lS5fGs2fPdJgoZ4b8sxkAJk6ciMaNGyu/J4CMz8Bbt25hzpw5ePXqFcaPH6/bUDqd/k1Kn332mShZsqR49OhRlrOR/vjjD2FsbCzGjRsnc8rCo2zZsgZ5vpOhefPmjfjpp59Eu3btROXKlUXlypVFu3btxMqVK9VWgtH7qVmzpvLcr+yMHz9ebR8kOZmamir/7b148UJIkiR+//13Zfv3338vKlasKFe8HFlaWipzv/0zWgghpk2bJuzs7OSKV+j8+uuvolSpUlkOfC5VqpQ4dOiQzvNw5EgmU6ZMwb59+1CzZk20b98ekiRhzZo1WLFiBfbu3YuyZcvqzZ4qb0tKSkJwcDDCw8MBZKys8/LygpmZmczJcta7d2/s2rULo0ePljtKtgrDhFsg46iNYcOG6cU8jMIsJCQEQ4cOzbG9XLlyakddyMnMzEx5NpmFhQUkSVIbcXFwcMD9+/flipejGjVq4NChQ9n+zEhLS8OOHTtQp04dGZIVTm3btkVkZCSOHDmCW7duQQiBihUronXr1vJ8tui8HCOlf//9V3To0EEYGRmpVcvt27cX9+/flztetrZs2SLs7OyUVX1mZjs7O7Flyxa54+UoJCRE1KtXT3Ts2FEcO3ZMhIeHi8jIyCwPuWiz27Q+7ipsqM6cOSOWLFmidm3btm3CxcVFWFlZidGjR+vVPkeOjo6iXbt2Oba3bdtWODo66jBRzmrWrKk2Cl6xYkXRu3dv5fMePXoIFxcXOaLlatu2bUKSJDFx4kTl3juHDh0SN27cEB07dhQKhUIcPHhQ7pg5evHihZg7d67o2rWraNGihWjevLnaw9vbW+6Ieo37HOmBuLg43LlzB0IIlC9fXu9WUmU6cuQI2rRpg1KlSmHEiBHw9PSEEAI3btzA8uXL8ezZM/z+++8a7UCtawqFApIkKSfW5kSuCbdTp07VakLllClTCiCN9l6+fIktW7bkul3C6tWrZUqXs1atWqFYsWLYvXs3gIw5HB4eHihevDhKly6NP//8EytWrNCbEbEJEyZg9uzZ6N27N7799ltUqlQJQMaI0uzZs7Ft2zZ8++23mDlzpsxJga+//hr79u1THoQ7ffp0fPfdd2jWrBmEEDh9+jS++eYbzJ49W+akWU2aNAkzZ87M8rNDCIHAwEBMnjxZ5oTZi4yMRKNGjfDo0SNYW1sjPj4exYsXV26jYG9vj2LFiiEiIkLuqHqLxZFMNmzYgKZNm8LFxSXb9nv37uHUqVN6tbzV29sb//77Ly5dugRbW1u1thcvXqBu3bpwdnbWm+WhqjQtPvSt2DAkFy9eRLt27bLdmiKTvm0/kKl06dL46quvlKtlZs2ahWnTpiEiIgKlSpVCx44d8fTpU1y4cEHmpBlSUlLQs2dP7NmzB5IkqX1oCyHg4+ODbdu2KSecy+nx48f4+++/4eXlBRMTE6SlpcHf31/tKJyFCxfC1NRU7qjZunLlCrZs2YKQkBDlrZ6+ffvq7eIOAOjXrx92796N/fv3w9PTEyVLlsTRo0dRv359zJgxA9u2bcPJkyfh6Ogod1Slbdu2YcmSJcpfrN4mSRJSU1N1lofFkUyMjIywceNG9O7dO9v27du3o3fv3nr1QWJlZYUJEyZgwoQJ2bbPnDkTs2bNQnx8vI6TkT5o3Lgxbty4gVWrVsHb21tvR0CzY2pqih9//FG5atDb2xsmJib47bffAAA//vgjJk6cmGvhJ4fDhw9j3759ypWv7u7u6Ny5s16O3hqSV69eYd68eahXrx5at24td5w8K1OmDHr06IGFCxcqd5w+cuQIWrRoAQDo3LkzihUrhs2bN8ucNMPcuXMxfvx42NnZoX79+rCzs8u2ny5XlXJCtkzeVZMmJydn2WBRbmlpabn+dmdmZqZXxVxhkZiYiNjY2Gw30NOnCdlXrlxBQEAAunbtKneUPLO1tcWTJ08AZPzbO3/+fJZbJvq27xiQcTuwVatWcscodMzNzTFz5kwsXbpU7ihaiY6ORrVq1QBAOXqYlJSkbG/ZsiUCAwNlyZadZcuWoV69ejh27JjeLOxhcaRD8fHxiI2NVT6Pjo7OdpVSTEwMtm7dirJly+ow3btVqVIFW7duxahRo7IM17958wZbt25Vbkanr9LS0hASEpLjEQb6dBzHtm3bMH36dNy6dSvHPvpUjFpZWcHe3l7uGFr56KOPsHr1arRq1Qq7du1CcnKy2ohB5u010t7WrVuxe/duhIWFQZIkuLm5oUuXLujZs6fc0bLl7u6Op0+fyh1DKyVKlFB+1lhaWsLU1FRtL6SUlBS1YkluT548wbhx4/SmMALA1Wq6NHXqVI1XIUmSJIKCguSOrGbNmjVCkiTRsGFDsWfPHnHnzh1x584dsXv3btGoUSOhUCjE2rVr5Y6Zo1mzZgkbGxuDWP21e/duIUmSqFSpkvj888+FJEmiT58+okePHsLExETUrl1bTJ06Ve6YaoYMGSI6duwodwyt/PHHH6JYsWLKf3uffvqpWnuVKlVEz549ZUqXvTdv3oj//e9/4ptvvhGDBw8WAwcOVHsMGjRI7ohCCCESExNF8+bNlX+3tra2wsbGRrlC09vbWyQmJsodM4ulS5cKZ2dn8eLFC7mj5FmrVq2En5+f8nmzZs2Eh4eHiIyMFBEREaJy5cqidu3aMiZUV6VKFTFz5ky5Y6jhnCMdOnnyJE6cOAEhBKZNmwYfHx9Ur15drY8kSbCwsEC9evXQqFEjmZLmLCAgIMdVJePHj8eMGTN0nEgzq1atwrBhw9CsWTO0atUKEydOxFdffYWiRYti9erVcHNzw4gRI/RmZ+rGjRsjJiYGV65cQWJionJCpbe3N27cuIFGjRphw4YNenUAcGxsLNq0aYM6derA398fbm5uBnWkwZ07d3Do0CHY2NigZ8+eytHR6OhoTJ8+HT4+PnozsvjixQs0b94cN27cUK6iyvxRrrqySh9GFr/88kssWbIEo0ePxvjx4+Hg4AAgY7Rg1qxZ+OGHHzB69GgsWrRI3qBv2bBhAxYuXIgHDx6gf//+KF++PMzNzbP006dFM5mWL1+OBQsW4Pr16zAzM8Px48fRunVr5Wi5JEnYtWsXOnbsKHPSDKtWrUJQUBD++usvWFpayh0HACdky6Z58+aYNGmScoKcIQkNDcXevXsRHh4OIYRyEmj58uXljpaj2rVrw9jYGGfPnlVOUMwsNh4/foyaNWsiKCgIgwYNkjsqgIxbVJMmTcK4cePw4sUL2Nvb49ChQ2jZsiUAYOzYsTh9+jTOnz8vc9L/ZG6XkBtdrzgprEaMGIHVq1fjxx9/hJeXF9zd3XHo0CE4OTnh+++/R2hoqLLQk5uDgwOaNWuG7du3Z9verVs3nDlzBo8fP9ZxstwpFIp39tGXAlQTly5dwtatW2FkZAQfHx80bNhQtiwbNmzIcm358uV48OABBg0aBFdX12zn3OqyEOWcI5kEBwfLHUFrFSpUwDfffCN3jDy5desWpk+fDgDKD/DMD+nSpUtj2LBhWLx4sd4UR2lpacoVG5n34ePi4pTtlSpVwooVK2TJlhM/Pz+DGilSlZycjJcvX6qtsIuKisLy5cvx4sUL9O3bV692Q/7111/h5+eHgQMHKlfQGRkZoVKlSti0aRO8vLwwYcIEvfgeSUhIQPPmzXNs9/b2xsGDB3WYSDOG/DM6O3Xq1NGb7+EBAwaojXaqyvw5/TZJklgcfWgMZTWSITMyMoKFhQUAoFixYgAybk1kcnFxUW5Spw8cHR3x4MEDABnFUcmSJXH58mXlSrDbt28rvw59sW7dOrkjaO2zzz7D1atXce3aNQAZE1YbN26s/J748ccfcfr0adStW1fOmEpPnjxRZilSJOPHuOpqus6dO2Pu3Ll6URxVr149139boaGh8PT01GEizTRr1kzuCFpzc3PDokWLcrxtduDAAYwePVp5BJSuGULhyeJIRvq+GkmbU7IlSdLLTSCdnJyUKwNNTExQrlw5nD59WrlS5tKlS3q1L0/Dhg1x5MgR5aaUHTt2xOLFi2Fubo709HQsW7YMHTp0kDll4aH6vQAA//vf/xAaGop169bho48+UhYb//vf/2RM+Z/ixYvj1atXADJWIxUtWlTtfLKiRYsiJiZGrnhqMudreXl5Zfme3bt3L1atWoU9e/bIEy4PEhMTAUD5S5Y+u3fvnjJvdl6+fInIyEgdJlJnCIUniyOZ7NmzB71790bFihUxfPhw/Pjjj+jduzdSU1OxZ88eeHp6on379rJmDA8Pz3Kb5OXLl3j+/DkAwNraGsB/t3vs7e319gdH06ZNsX//fnz//fcAMuY5LFq0CElJSUhPT8emTZv05pYakDGnZPfu3UhKSoKZmRlmzJiBCxcuYOrUqQCAqlWrYt68efKGzIWhjYY+ffoUzs7OyucHDx6Ep6enchh/6NChWL58uVzxsqhYsaLylyqFQoGPPvoI69atw4ABA5CWloYNGzbAzc1N5pQZNm/eDFdXV3Tu3BmVKlWCh4cHJEnCzZs3cfv2bXh6emLTpk3YtGmT8jX6csxMVFQUJk+ejN27dyt/7tnb28PX1xeBgYEoUaKEzAm1c//+fb36We3t7Y2JEyfmOAc3ODgY33//PY4fP667UHItk/vQNWrUSFSpUkUkJSWJqKgoIUmSOHbsmBBCiOvXrwsrKyuxZ88emVOqCw8PF87OzmLUqFHi0aNHyuuPHj0SI0eOFC4uLiIiIkK+gLkICQkRP/74o0hKShJCZCwvbt++vXIJf5s2bUR0dLTMKXOXnp4url27Jm7cuCHS0tLkjpOtrVu3iqpVqxrEdgmqLC0txYoVK5TPy5QpI7788kvl8zVr1ggTExMZkmVv+vTpwtbWVrx+/VoIIcT27duFJEnC3NxcuSXBqlWrZE6ZIfOA6rw89OH75PHjx8LZ2VlIkiQqVKggOnfuLDp16iQqVKggJEkSzs7O4vHjx3LHVNqzZ49yGwdJkkSzZs2ybO8wcOBA0blzZ2FhYSE++eQTuSMrSZIkNm/enGP7tm3bdP49weJIJpaWlmL27NlCCCGio6OFJEni8OHDyvZvvvlG1KtXT6542ercubPw9fXNsd3X11f4+PjoMNH7i42NFQkJCXLHUPPy5UsRGBgofv/9d7mj5Ikh7s2UqXr16qJz585CCCHOnDkjFAqF2i8n33//vShVqpRc8bJIT09XFkaZdu7cKXx8fETXrl3Ftm3bZEpWeAwZMkQUKVIk2w/trVu3iqJFi4phw4bJkCx7U6dOVSsucyo8LS0txSeffCJu374td2SldxVHS5YsEebm5jpMJARvq8nEEFcjnThxItdTvlu0aIGAgAAdJnp/mbcG9YmhHl0wb948eHh4KPdm+vHHHzFo0CC1vZlq1qwpd8xsDRw4EGPGjIGnpycePHgABwcHtWM5Ll68iMqVK8uYUJ0kSTAxMVG75uvrC19fX5kSFT4HDx7EZ599lu35lz179sSZM2ewe/duGZJlb8qUKco5igqFAps2bcrx7E59cOrUKZw4cUL5fNeuXbh7926WfjExMdi2bRtq1Kihw3SccyQbQ1yNlJqaioiIiBzbw8PD9X7Pj1evXuHevXuIjo7OdhmpvmzyZ4hHF/z999+YNGkSTE1NlZOFM78fqlWrhmHDhiEoKEivNq7M5O/vj4SEBOzZswe1atVCUFCQ8peW6OhonD9/3uC2r6D38/z5c+X5ZNnx9PTEqlWrdJhIc8HBwXp/lFNwcLDyfLfMTSl37dqVbV93d3csXLhQl/FYHMnFEFcjNW3aFMuWLUPLli2VmxFmOnz4MJYtW6a3m1omJCTgq6++wsaNG7PdhFDo0Y7CQMaE7Llz52LEiBGwtbWVO45GDHE0VNXkyZOzHDYLAHZ2dnj27JkMiXL38uVLbNmyBaGhodkW+/oyqRnI+O1/9erVuHDhQrbnGurjKlcHBwdcunQJw4cPz7b90qVLenXe3pw5c9SeX7hwIdf+kiRh7NixBRkpV/7+/hgwYACEEMqtB97+xSnzxAg5VhKzOJKJIa5Gmj9/Pho1aoQ2bdqgRo0aaqtOrl27BltbW73LnOmzzz7D1q1b4ePjgyZNmuh9wWFpaQlbW1tUrFjRYI4uMMTRUEN18eJFtGvXTrkBZHb0pTiKjIxEo0aN8OjRI1hbWyM+Ph7FixdXFkn29vZ6+X3RqVMnLF++HDVr1sTnn3+u3LE5LS0NP/30E9atW4eRI0fKnPI/48ePz1N/uYsja2tr5bSGtWvXolmzZmorRuXG40P0iBAC169fh5GRETw8PDTavl7X7t27h4CAABw4cEBt34+OHTti+vTpcHFxkTdgDqysrNCjRw+sXLlS7igaMcSjCwYOHIjQ0FCcOXMGADBs2DBs3LgREyZMQHp6OubMmYMOHTrkeIyEnKZNm/bOPpIkZTuyJIfGjRvjxo0bWLVqFby9vfVqj6639evXD7t378b+/fvh6empPCewfv36mDFjBrZt24aTJ0/C0dFR7qhqXrx4gUaNGuHOnTsoXrw4KlasCCDjDL4XL16gYsWKOHv2rN78onXy5Mk8v0bf9ht69eoV4uLiYG1tne0vg7rE4kgmp06dgoeHR477ZDx//hw3b97UmzkwbxNCKG81lCxZUu+PjbCzs0NQUBCGDRsmdxSNaPqDTp9+uF26dAm7d+/G5MmTYWZmhqioKHzyySe4fv06gIzR0IMHD6JcuXIyJ80qt2JU3w5yBTJG5gICAvSmWMtNmTJl0KNHDyxcuFB5ruGRI0eUt+A7d+6MYsWKYfPmzTInzSohIQGzZ8/Gnj17lLtJu7m5wcfHB+PGjYOpqanygGLSTlRUFObOnYtffvkF9+7dU153cXGBr68vvvnmG5QsWVL3wXS6No6UFAqF3u3rUJh17dpVDBkyRO4YHxxD2JtJCCHu3buX5XH37l1x6NAh0aZNG9GgQQNx584duWMqlSxZUixfvlzuGBoxNjZW7rkUFxcnJEkS+/fvV7YvXbpUlChRQq54ag4dOqRx3+TkZNGuXbsCTFP4nTt3TpQqVUpIkiSMjY2Fp6enaNy4sfD09BTGxsZCkiTh4OAgzp8/r/Ns+nff5gMh3jFg9+bNG727rXbq1KlcH6dPn8bly5f1cvLq/PnzcfToUSxduhRv3ryRO847eXt75zpBNTg4WKvjXXRNkiRUr14dVatW1bvvZ1XOzs5ZHu7u7mjVqhUOHjwIIyMjrF27Vu6YSh07dsTvv/8udwyNlChRArGxsQAy5tKZmpqqjRCkpKQgKSlJnnBv8fX1xfnz59/ZLzU1Fb6+vvjtt990kKpwevbsGTp06IDk5GQsW7YMsbGx+Pvvv3H69Gn8/fffiImJwZIlS/D69Wt06NBB958rOi/HSAiRsenVli1bsm2LjY0VvXv3FmXKlNFxqtxlbi6myaNmzZpqm1rqg02bNgkjIyNRtGhR4eTkJFxdXdUebm5uckdU0scdYz9kixYtEmXLlpU7hlJMTIyoV6+eGDVqlLh7965IT0+XO1KOWrVqJfz8/JTPmzVrJjw8PERkZKSIiIgQlStXFrVr15Yx4X/KlSsn7OzsxI0bN3Lsk5KSIjp06CAkSRIjRozQYbrCZezYscLY2FhcuXIl136XLl0SJiYmYty4cTpKloGr1XQoMDBQOfFTkiT07dsXffv2zbG/v7+/jpJpZs2aNVi2bBlu376Nvn37onLlyhBCICQkBJs3b4aHhwf69euHkJAQbNy4Ee3atcPx48fRuHFjuaNj3bp1GDx4MExMTFCxYkW9mUSpraioKJiamsqaQZuzuyRJQlhYWAGkKVgpKSm5rgzTteLFi0OSJFy6dCnHM98kScp22wpd69SpExYsWKBcmfvdd9+hdevWcHV1BfDfHjf64MiRI2jSpAlat26NM2fOZFlgkpaWhu7du+PAgQMYPnw4li1bJk/QQuDXX39Fv379UKtWrVz71a5dG3369MH+/fsxe/ZsHaXjUn6dqlmzJvz8/CCEwIYNG9CkSZMsHzCZ+zrUq1cPvXr1kilp9hITE/H06VPcvn0bpUuXVmubNGkS6tevD2NjYyxduhTjx49HzZo1MXPmTBw8eFCmxP+ZMWMGPvroIxw6dEi5F4++0fcdY9/m5OSk9xPx88Ply5exePFieHh4yB1Fyc/Pz2D+7keMGIERI0Yon3t7e+OPP/7A1q1bUaRIEfj4+KBhw4YyJvxPpUqVcOjQIXh5eaFly5Y4c+aMci+jzMJo7969GDp0qF7v2WUI7t27h6+++kqjvvXr18e2bdsKONFbdDpORUouLi5i7969csfIk4oVK4rvv/8+x/Zp06aJypUrK59/++23wtbWVhfR3snMzEwsW7ZM7hi50vRsJEmSRPny5WWZpFhYvX2LNfNhbW0tFAqFMDY2Fr/99pvcMUlHTp48KczNzUX16tVFbGysSE1NFb6+vkKSJC7syCeWlpYaLypYvny5sLS0LOBE6jhyJJPcjuHQV5GRkbmeRWZtba020bJ8+fLKYyTkVqlSJbx48ULuGLnS9x1jC7PsRsEkSUKtWrVQsWJFDBs2TG/38NJHb+/W/C5GRkawsbGBp6cn6tatW0CpNNe0aVPs2LEDPj4++PTTT+Ho6Ihdu3Zh4MCB+Pnnn+WOVyhUqFABwcHB+Pzzz9/ZNzg4GOXLl9dBKhU6LcUoR2FhYWLGjBlixIgRYtmyZeLVq1dyR8rCzc1NNGvWLNvJn2lpaaJJkybC1dVVeW3GjBmidOnSuoyYox07dogyZcqIhw8fyh1FI+vWrRMRERFyx6D/d+bMGeHt7S13jGwlJCSI+/fvi8jIyCwPueQ26pnbQ6FQiI8++khv/p1u2bJFGBkZCYVCIQYOHCh3nEJl2rRpwsjI6J0jsgcPHhRGRka53rUoCNwEUodWr16NH374Ab/99hvKlCmjvH7kyBF06dIFr169Um42V7VqVZw9exYWFhYyJlY3a9YsBAQEoEWLFvjqq6+UO8aGhIRg0aJFCA4OxowZM5Tb2Ddu3BhWVlZ6Medo2rRp2L9/P27fvg0fHx+4uLgojwPIpE87IOckMjISL168QM2aNfVyzsm2bduwZMkS5Xlfb9OXScKqoqOjERYWBjs7O7i7u6u1Xbx4EZMnT8bRo0ehUCj0ahuIbdu2Yfr06bh161aOfeTatDKvuzULIRAfH49z585hwYIF6NKlC7Zu3VpA6XKmOjcq0++//45nz56hb9++WbajkCSJk7K1lJCQgOrVq+Px48cYM2YMhgwZojYHNzw8HD///DMWLVqE0qVL4++//4alpaXuAuq0FPvAde7cWdSqVUvtWnp6unBzcxMKhUIEBASI/fv3i8GDBwtJksS0adNkSpq99PR0MWrUqGyX9EuSJEaOHKnsm5SUJH788Udx8eJFGRP/R9PfWvXFqlWr1JY/CyHEl19+qfz7/uijj0RMTIw84XIwZ84coVAoRIkSJUSHDh3EgAEDsn3oi9TUVDF8+HDlyIBCoRD169cXT58+FfHx8aJPnz5CoVCIIkWKiL59+4pbt27JHVlp9+7dQpIkUalSJfH5558LSZJEnz59RI8ePYSJiYmoXbu2mDp1qtwxtTJmzBhhZ2cny5+tzUgXae/27duiYsWKyr9La2tr4eTkpJzrJ0mSqFChgiz/9jhypENubm7o3r07Zs2apbx29uxZNG7cGP3791fbZK5FixaIjY3FlStX5Iiaq5CQEOzbtw8RERHK+TEdOnTQq9U8b4uMjNSon74cfFi3bl3UqFFDeRbchQsX0KBBA7Ru3RpVqlTBkiVLMG7cOEyfPl3mpP9xcXFBmTJlcOzYMZiZmckd550WLVqEMWPGoFy5cqhXrx7u3r2Lv/76Cz4+Pnj69CnOnz+Pvn37YvLkyVlGlOTWuHFjxMTE4MqVK0hMTFSeV+bt7Y0bN26gUaNG2LBhQ5Y5a4Zg69atGDlypCxzBDX9OaFKX35mGKqkpCSsWrUKO3fuxD///IP4+HhYWVmhWrVq6NKlC4YMGSLPOWs6L8c+YBYWFuKnn35Su5b52/bvv/+udn3evHnCyspKl/EKrZcvX4rAwMAsf8f6zM7OTixatEj5fOzYsaJEiRIiJSVFCCHEyJEjhYeHh1zxsmViYqL3KwJV1apVS1SvXl28fPlSeW3EiBFCkiRRokQJvV4NaGlpKWbPni2EECI6OlpIkqS26eo333wj6tWrJ1c8IoOnv/v5F0JFihRBSkqK2rWLFy8CAOrUqaN23c7ODsnJyTrLVpiZm5tj5syZuH//vtxRNJaYmAgrKyvl82PHjuGTTz5RHnL50Ucf6d3X4+7ujri4OLljaOzOnTvw8/NT+600c+XM+PHjUa9ePbmivVNaWppyv67MUTrVv/tKlSrhxo0bsmQjKgxYHOmQq6ur2rk9aWlpOH36NNzd3bMszY6Ojoa9vb2uI77TuXPn0KdPH9StWxfu7u5wc3NTe+jb7YdM7u7uePr0qdwxNObg4IA7d+4AyDiD6Nq1a2jSpImyPSEhIcuEcrl99dVXWLVqFRISEuSOopGXL1/CwcFB7Vrm82rVqskRSWOOjo548OABgIziqGTJkrh8+bKy/fbt2yhWrJhc8YgMHvc50qGuXbsiMDAQDRs2hJeXF9auXYuoqCgMGjQoS98LFy4ot9fXFxs2bMDAgQNRtGhRVKxYEU5OTnJH0tiIESMwd+5cjBgxwiCODmnRogWWL18Oe3t7HD9+HJIkoW3btsr2O3fuwNHRUcaEWRkbG6NEiRLw8PDAoEGD4Orqmm0B5+fnJ0O67GW3txGQMcqrzxo2bIgjR45gypQpADIOol28eDHMzc2Rnp6OZcuWoUOHDjKnJDJcnJCtQ4mJiahduzZCQ0MBZCxfLVeuHK5evap2pEVcXBzKli2LMWPGKM9i0weVKlWCkZERjh49qrYVgSHYsGEDFi5ciAcPHqB///4oX758tpP89OWD+8GDB/jkk0+Uo0dTpkxRfhCmpqaibNmy8PX1zfFcLTm8vcw5O5Ikyba8/G0KhQI9e/ZEzZo1lddevXqF77//HoMHD86y6ZwkSRg7dqyOU2bv0qVL2L17NyZPngwzMzNERUXhk08+wfXr1wEAVatWxcGDB1GuXDmZkxIZJhZHOpaYmIiff/4ZoaGhcHNzw9ChQ2FjY6PW5/z589i8eTM+//xzVKlSRZ6g2TA1NcWcOXMwevRouaPkmaF9cAMZt11v3rwJa2trtVG6+Ph4BAcHo0aNGnq1a7Ome9s0a9asgJNoRpPvCVX69v3xNiEErl+/DiMjI3h4eOT56yOi/7A4Io25u7vj888/xzfffCN3lDwztA9uKnh53agQ4PcH0YeCxRFpbPbs2di2bRsuX76sd5OBC5t///1Xo36GNO+L3k9KSgpGjx6NypUrw9/fP8d+CxYswN27d/HDDz/o/dwpIn3F4og0FhwcjAkTJuDNmzcYOXJkjhNumzZtKkM6zSUnJ+P58+coUaIEjI2N5Y6TLYVCodHxIHLe5tmwYQMAoF+/fpAkSfn8XfRlXpehWbVqFT7//HNcu3Yt19vt169fx0cffYTVq1ejf//+OkxY+Jw7dw5Lly5VHofz9selJEkICwuTKR0VJBZHpLHszhVSJf7/XDh9nZdx9epVfPPNNzhz5gzS0tJw5MgReHt749mzZ+jVqxcmTJiATz75RO6YAICpU6dm+ftNTU1FWFgY9u7dC09PT3z66afKSdpyyCzgkpKSYGxsrHye248Uff7+0Hdt2rSBsbEx9u3b986+HTt2RGpqql6ca2io3l6dq7poRlVwcLCOk5EucMyVNKZ6vImh+euvv9CkSRPY29vDz89P7WspWbIkkpKSsH79er0qjnISHh6OBg0aoHbt2roLlI3MD4XM0Td+SBSsP//8E99++61GfZs1a4a5c+cWcKLCbcaMGahUqZJBrs6l98fiiDRmyEP03333HcqWLYurV6/i9evXWLNmjVp7ixYtsGPHDpnS5Y2bmxuGDx+OKVOmoF27drLleHtyMicrF6yYmJgcRy/eZmdnh5iYmAJOVLhFRkZizpw5LIw+UFzrSR+E06dPY8iQIbCwsMh2Lo+TkxMePXokQzLtlC1bFjdv3pQ7BumQlZUVoqKiNOr7/PlzWFpaFnCiwq1s2bJZjnuiDwdHjihHp06dAvDfBOvM5++ijxOyX79+DWtr6xzb4+PjdZjm/e3Zs0dvd/p++vQpLl++jJiYGKSnp2dp54Rs7VSrVg2HDh3SaCuNw4cPo2rVqjpIVXgNGzYMmzdvxldffcXVuR8gFkc64u3tnefXSJKEY8eOFUAazXh5ealNuM18nhN9npDt7u6OK1eu5Nh+7NgxvdpwM6ed0V+8eIHjx4/jxo0bGDdunI5T5S49PR0jR47EqlWrsi2KMrE40o6vry/8/f2xa9cudOnSJcd+u3fvxrFjx7Bo0SLdhSsE3v7lr169eti9ezfq1q1r0KtzSTssjnQkPDw8S2Hx8uVLPH/+HACUoxqZJ2vb29vDwsJCtyHfsmbNGkiSpDwJ3pAnZPfu3Rvff/89unXrhlq1agH4b7XdnDlzcOjQISxevFjOiGpym5Dt4OCA6dOnazw5V1fmzZuHn376CX379kWrVq3g5+eH2bNnw9LSEosWLYK1tTWCgoLkjmmwhg0bhh9//BE9e/bE119/jWHDhqmdvxgREYGVK1di/vz5qFy5MoYOHSpjWsOT3S9/mSsvhwwZYnCrc+n9cCm/TCIiItC8eXN06NABAQEBKF26NADg8ePHmDFjBn799VcEBwfr1fEQmnjz5o2ymNInKSkpaN26NU6dOoUKFSogNDQUVapUQVRUFKKiotCyZUscPHhQb45ciIyMzHJNkiQUL15cWTS/fPlSr05er1q1KpycnPDbb78hOjoaJUqUwNGjR+Ht7Y2XL1+ievXq+Oyzz/TmfDJDFBkZiXbt2uHmzZuQJAmWlpawsrJCQkIC4uPjIYSAh4cHDhw4oHcHV+u79evXa/U6Q16oQrkQJIvOnTsLX1/fHNt9fX2Fj4+PDhNl79ChQxr3TU5OFu3atSvANO/nzZs3Yv78+eLjjz8W5ubmwszMTNSoUUPMmzdPvHnzRu54Gvvjjz/EoEGDhJWVldxR1JiamorFixcLIYR48eKFkCRJ/P7778r277//XlSsWFGueIXG69evxdKlS0WzZs2EnZ2dKFq0qLCzsxNeXl5i6dKlIikpSe6IRAaPxZFMbGxsxPLly3NsX758ubCxsdFhouxZWFiIc+fOvbPfmzdvRPv27YVCodBBqg/P06dPxZw5c0TlypWFQqEQkiSJGjVqyB1Lja2trVixYoUQQoiUlBShUCjEhg0blO0rV64UZmZmcsUjypOBAweK8+fP59h+4cIFMXDgQB0mIl3Sj3sIH6DU1FRERETk2B4eHq4X97JtbW3Rvn17/PPPPzn2SU1Nha+vL3799Vd89tlnOkxXuKWnp+PAgQPw8fFBuXLlMH78eBgbGyMoKAihoaH466+/5I6oxtnZWfk9XbRoUZQvXx6///67sv3o0aMoVaqUXPGI8mTdunW5Hg0SERGh9a040n+ckC2Tpk2bYtmyZWjZsiVatmyp1nb48GEsW7YMLVq0kCndf44cOYImTZqgdevWOHPmTJY5UGlpaejWrRv279+P4cOHY9myZfIEzcHjx48hSRIcHBwAZCzp/+GHH7L0c3JyQs+ePXUdL1uhoaFYs2YNNmzYgMePH6N06dLo1asXNm7ciClTpuS6UklO3t7e2LVrF2bPng0g48y17777Do8ePYIQAqdPn9ZoGTqRIYiPj9fbsxnp/XFCtkxCQkLQqFEjxMbGokaNGvDw8IAkSbh58yauXbsGW1tb/PHHH6hUqZLcUfHnn3/Cy8sLJUuWxJkzZ5S//aelpaF79+7YvXs3hg4dip9++knmpOpu376NatWqqa3sypwo/PYZYEWKFMGNGzdQsWJFueJiw4YNWL16NU6fPg0TExN07NgRAwYMQOvWrREREYEKFSpg586delscPX78GH///Te8vLxgYmKCtLQ0+Pv7Y/PmzTAyMkLXrl2xcOFCmJqayh2VKFt///23ckR2wIABGD58OBo0aJClX0xMDJYvXw5zc3P8+eefOk5JOiHvXb0PW0REhOjVq5ewtLQUkiQJSZKEpaWl6NOnj4iIiJA7npqTJ08Kc3NzUb16dREbGytSU1OFr6+vkCRJDBkyRO542Ro3bpwoWbKkSE5OVl57/vy5kCRJLFiwQJw4cUKcOHFCHD9+XBQvXlyMHz9exrRCSJIkKlSoIH788UcRGxur1nb37l0hSZL45ZdfZEpHVPhNnTpV+bM4c25fTg9LS0tx4MABuSNTAeFtNRm5uLhgy5YtEELg2bNnADIOQc1to0W5NG3aFDt27ICPjw8+/fRTODo6YteuXRg4cCB+/vlnueNlKzg4GB07dsx26LtGjRpqZ4H16NFD1g03AcDU1BRhYWHYvn07zM3N4evrC3Nzc1kzEX1IBgwYAC8vLwgh4O3tjYkTJ2Y5jFqSJFhYWKBKlSocBS3EWBzpAUmSDGKiart27bB+/Xr069cPFy5cwIABA7B69Wq5Y+UoNDRU4z1IKleujG3bthVwotw9efIEmzdvxpo1a9C/f3+MHDkSXbt2xYABA/T28Mt///03z69xcnIqgCRE78/Z2RnOzs4AgClTpsDX1xfVqlWTORXJgcWRjBISErBw4UIcPnwYT58+xYYNG9CgQQM8f/4cy5cvR/fu3VG5cmVZM44YMSLLNScnJzx79gzGxsZZ2iVJ0ptJ2S9fvsyyy7itrS2uX7+eZYM8KysrvHz5UpfxsrCyssLnn3+Ozz//HH///TdWrVqFLVu2YP369cp5Uvp20rqLi0ueRzr1YRUm0btMmTJF7ggkI07IlklUVBQaN26M8PBwlC9fHnfu3MGRI0eUZ7C5u7ujU6dOWLBggaw587pjtD5tp1+yZEmMGTMG48ePf2ffWbNmYcGCBcrbm/oiJSUFu3btwurVq3H8+HEAQJUqVdCtWzf4+vrKfrioQqGAmZkZOnTogBIlSmj0miVLlhRwKqL3t2HDBo368azAwonFkUyGDx+Obdu2ITg4GE5OTihZsqTyqAUAGDNmDI4dO4Zr167JmjO7YyzeJXNYWm4tWrSAEEJZVOQm8+9dk75yiYyMxJo1a7B+/Xr8+++/UCgUSE1NlTVTp06d8Ntvv0GSJLRr1w6DBg1C27Zt9eYYFiJtKRSKLKtaAWQZKdWXXwYpf/G2mkwOHDiAkSNHolatWoiOjs7S7ubmhnXr1uk+2Fv0pdDRhq+vL7744gvs27cPHTt2zLHfnj17cPLkyWz3P9Inzs7OCAwMxNSpU3H48GGsWbNG7kjYu3cvnj17hvXr12P9+vXo2LEjHBwc0L9/fwwcOFDWrRGI3kdwcHCWa6mpqQgLC1Mu458xY4YMyUgn5Fso92EzNjYWq1atEkL8t7z82LFjyvZly5bxqIX39Pr1a+Hh4SFMTEzE5MmTxb1799Ta7927JyZNmiRMTEyEh4eHeP36tUxJC49z586JoUOHCmtra6FQKETDhg3F6tWrRUJCgtzRiPLN69evRfXq1cW8efPkjkIFhGPfMnFwcMh1a/qrV69yVc97MjExUZ5OPn36dLi5ucHW1hbOzs6wtbWFm5sbZsyYARcXFxw4cAAmJiZyRzZ49evXx88//4wnT55g/fr1EEJg6NChss+dI8pPJiYm6Nu3L5YvXy53FCogLI5k0rZtW6xevRqPHz/O0nb27Fls3LgRnTp1kiFZ4eLm5oY///wTixcvRuPGjWFkZITHjx/DyMgIjRs3xqJFi/Dnn3/Czc1N7qiFyp9//olTp07hn3/+gRACxYsXlzsSUb4yMTHBw4cP5Y5BBYQTsmXy5MkTfPzxx0hNTUX79u2xbt069OrVC8nJydi7dy/Kli2LK1eu8EOFDMbjx4+xYcMGrF27FqGhoShdujT8/PwwcOBAVKhQQe54RPnm8ePHygUft27dkjsOFQAWRzK6f/8+Ro4ciYMHDyI9PR1AxkqItm3bYsWKFXB0dJQ5IVHu3rx5g3379mHt2rU4fPgwFAoFOnbsiEGDBqFVq1ZctUYGK3MF69tevHiBkJAQpKSkKDfFpcKHxZEeiIuLw507dyCEQPny5TlaRAbD3t4eMTEx+OijjzBw4ED06dMHNjY2csciem/ZbXAqSRKKFy+OihUrYtSoUWjYsKFM6aigsTiSyYYNG9C0aVO4uLhk237v3j2cOnWKG4yRXsvcBFLTLR8kScI///xTwKmIiN4PiyOZGBkZYePGjejdu3e27du3b0fv3r1l3WAsp2Hl3EiSJPsBrqQ72hwfEhERUUBpiIjyBzeBlMm7atLk5GQYGRnpKE32wsPDs3zwvXz5Es+fPwcAWFtbA8i4LQhk3GJ5+ywzKtzu3bsndwSiAvXgwQPs27cP4eHhADKOdurQoQPnhBZyLI50KD4+HrGxscrn0dHR2Z5qHhMTg61bt6Js2bI6TJfV2x98ERERaN68OUaOHImAgACULl0aQMbKjRkzZuDXX3/V6+M3iIjyYtasWZgyZQpSU1PVfqH19/fHtGnT8O2338qYjgoSb6vpUGBgIKZNm6ZRXyEEZs6cqdGhqbri4+MDIyMj7Ny5M9v2rl27Ij09Hbt27dJxMiKi/LVt2zb07t0b1atXxzfffANPT08IIXDjxg3Mnz8ff//9N7Zs2YIePXrIHZUKAIsjHTp58iROnDgBIQSmTZsGHx8fVK9eXa2PJEmwsLBAvXr10KhRI5mSZs/W1hYzZ87E559/nm37ihUrEBAQgJiYGB0nIzn07dsXU6ZMyfMeRqGhoQgMDMSmTZsKKBnR+6tXrx7evHmDs2fPwtTUVK0tOTkZ9evXh4mJCc6fPy9TQipIvK2mQ82aNUOzZs0AZBRKI0aMQIsWLWROpbnU1NRcJ9OGh4fzhOoPSFhYGKpWrYpPP/0Ufn5+aN26dY5zzhITE/H7779j48aN+O2331CnTh0dpyXKm3/++QfTpk3LUhgBGbtj9+vXD999950MyUgXWBzJJLsTn/Vd06ZNsWzZMrRs2RItW7ZUazt8+DCWLVtmUMUevZ9z585h69at+P7779GtWzcoFAp4eHjA3d0dxYsXhxACMTExuHv3LkJCQpCeno4qVapg48aNvBVBek+hUCAlJSXH9jdv3uR5pSYZDt5WI42FhISgUaNGiI2NRY0aNeDh4QFJknDz5k1cu3YNtra2+OOPP1CpUiW5o5KOBQcHY8eOHTh16hRu376t3PE9s2Dy8vJCt27d0LRpU5mTEmmmSZMmiIqKwuXLl7OMiCYkJKBOnTooWbIkTp06JVNCKkgsjnREoVBAoVDg1atXMDY2hkKheOdvHZIkITU1VUcJNXPv3j0EBATgwIEDSExMBABYWFigY8eOmD59eo6bWtKHIz09HdHR0ZAkCXZ2dvztmgzS/v370alTJ7i5ueGLL75AlSpVAGTcblu6dCkiIiKwd+9etG/fXuakVBBYHOnIgAEDIEkSVq1aBSMjI+Xzd1m7dq0O0uWdEALPnj0DAJQsWZIfgERU6Pz888/4+uuv8fLlS+XPOCEEihUrhvnz52PYsGEyJ6SCwuKIiIgoB3FxcThy5AjCw8MhhIC7uztatmyp3ASXCicWR5QnCQkJWLhwIQ4fPoynT59iw4YNaNCgAZ4/f47ly5eje/fuqFy5stwxiYiItMbVanrg1atXiI6OzvZIEScnJxkSZS8qKgqNGzdGeHg4ypcvj/DwcCQlJQHIODpk/fr1iI2NxYIFC2ROSkSUv2JjY3Hw4EE8fPgQVapUQbt27eSORAWIxZFM0tPTMWfOHCxZsgRPnjzJsZ8+7Rs0adIkPHnyBBcuXICTkxNKliyp1t6pUyceOktEBmv37t1Yu3YtfvzxR5QpU0Z5/erVq+jQoQOePHkCIQQkSYK3tzcOHjyIokWLypiYCgqLI5mMHz8e8+bNQ9WqVeHr6ws7Ozu5I73TgQMHMHLkSNSqVQvR0dFZ2t3c3LBu3TrdByMiygc7duzAnTt31AojABg4cCAeP36MXr16oUGDBti3bx+OHTuG5cuX48svv5QpLRUkFkcy2bRpE9q0aYODBw/KHUVjz58/h7u7e47tCoUCr1+/1mEiIqL8c+XKFXTo0EHt2tWrV3H9+nV06tQJmzdvBgCMHDkSdevWxY4dO1gcFVIKuQN8qGJiYtCpUye5Y+SJg4MDwsLCcmy/evWqXs2RIiLKi2fPnqF8+fJq106fPg1JktC/f3/lNUmS4Ovri1u3buk6IukIiyOZVK1aFY8fP5Y7Rp60bdsWq1evzjb32bNnsXHjRoMr+Ch//fHHH2jfvj1KlCiBIkWKwMjISO1RpAgHq0l/Ze7srurSpUsAgAYNGqhdd3BwwMuXL3WSi3SPxZFMJk+ejB9//BH379+XO4rGpkyZgiJFiqBmzZoYN24cJEnCmjVr0K1bN3h5eaFMmTL49ttv5Y5JMjl16hSaN2+OCxcuoF69ekhPT0fz5s1Rp04dCCFQrVo19OvXT+6YRDlydnbGtWvX1K6dPn0aZcuWRalSpdSux8XFoXjx4rqMRzrEX+Nkcu3aNTg7O6NKlSrw8fGBq6srjIyM1PpIkoTJkyfLlDArBwcHnD9/HiNHjsT69eshhMCWLVsgSRLatm2LFStW8IfFB2zGjBkoXbo0Ll++DEmSULJkSQQEBMDb2xuHDx9G165dsXz5crljEuXo008/xYoVK9CxY0d4eXnh559/xv379zFy5Mgsfa9cucJpBIUYN4GUiULx7kE7SZL0aim/qri4ONy5cwdCCJQvX55FEcHW1hZjxozB5MmT8eLFC9jb2+Pw4cP45JNPAGRMYr116xaOHz8uc1Ki7EVFRcHT0xNRUVHKa1ZWVrh27ZpaIfT69WuUKVMGgwcPxty5c+WISgWMI0cyiYiIkDtCnm3YsAFNmzaFi4sLrK2tUadOHbX2e/fu4dSpU/Dz85MpIckpOTkZZcuWBQCYmJgAyNhRPVPNmjWxadMmWbIRaaJEiRK4fPky5syZg9DQULi5ueGbb77JMkJ0/vx5NGrUCN26dZMpKRU0FkcycXZ2ljtCng0cOBAbN26Ei4tLtu0XLlzAwIEDWRx9oEqXLq2crF+sWDHY2Njgxo0b8PHxAQA8ePCAE7JJ7zk6OuKHH37ItY+Xlxe8vLx0E4hkwZ9UpLF33YFNTk7OMm+KPhx16tTBmTNnlM9btWqFhQsXwtnZGenp6Vi6dCnq1asnY0IiIs2wONKhQYMG5dgmSRLMzMzg6uqKjh07okKFCjpMlrP4+HjExsYqn0dHR+Pff//N0i8mJgZbt25V3lahD8/gwYOxbt06JCUlwczMDDNnzsSpU6cwYMAAABkT+ufMmSNvSCIiDXBCtg5pMgk7s9+ECRPw/fffF3CidwsMDMS0adM06iuEwMyZMzF+/PgCTkWGIjExEcePH4eRkREaN24Ma2truSMREb0TiyMdioyMzLX91atX+Oeff7B06VKcPn0aO3bsgK+vr47SZe/kyZM4ceIEhBCYNm0afHx8UL16dbU+kiTBwsIC9erVQ6NGjWRKSkRElD9YHOmhN2/eoFatWihZsqRenXLfvHlzTJo0CS1atJA7ChERUYHhDtl6qGjRoujRowf+/PNPuaOoCQ4OZmFEudq2bRsaNWqEkiVLZjk6hMeHEJGh4E8qPVWqVCme20MGZe7cuRg/fjzs7OxQv3592NnZyR2JiEgrLI70VFhYmOwfLgqFAgqFAq9evYKxsTEUCgUkScr1NZIkITU1VUcJSZ8sW7YM9erVw7Fjx2BmZiZ3HCIirbE40kOPHz/GqlWrZL+F5efnB0mSlHsXZT4nys6TJ08wbtw4FkZEZPBYHOnQhg0bcm1PSkrCzZs3sW3bNiQmJmLcuHE6Spa9devW5fqcSJW7uzvi4uLkjkFE9N64Wk2H3nVbKvP/inLlymHFihVo27atrqIRvbdVq1YhKCgIf/31FywtLeWOQ0SkNY4c6dDatWtzbc/cIbtWrVp6fwzHq1evEB0dne2RIm8f0kgfBmNjY5QoUQIeHh4YNGgQXF1ds/0+5tl7RKTvOHJEGktPT8ecOXOwZMkSPHnyJMd+aWlpOkxF+kKTHeAlSeL3BxHpPY4ckcbGjx+PefPmoWrVqvD19ZV9NR3pl+DgYLkjEBHlC44ckcbKlCmDmjVr4uDBg3JHISIiKjDcIZs0FhMTg06dOskdg4iIqEDxthpprGrVqnj8+LHcMUhPZG5N0a9fP0iS9M6tKjJxQjYR6TveViON7d27F8OHD8elS5dQrlw5ueOQzDK3pkhKSlLbQT23HymckE1EhoAjR6Sxa9euwdnZGVWqVIGPj0+2S7UlScLkyZNlSki6lDkB29jYWO05EZGh48gRaYxLtYmI6EPAkSPSWEREhNwRiIiIChxHjogo3wghcPToUYSGhma7gzpvuxKRIWBxRET5IjQ0FJ07d0ZISEiOk7J525WIDAFvq1GuBg0alGObJEnK8+A6duyIChUq6DAZ6ZsvvvgCYWFhmD17Nry9vbmDOhEZLI4cUa40mYSd2W/ChAn4/vvvCzgR6SsLCwuMGjUKs2bNkjsKEdF74cgR5epdk7BfvXqFf/75B0uXLsXMmTNRs2ZN+Pr66igd6RNjY2O4urrKHYOI6L1x5IjyxZs3b1CrVi2ULFkSx44dkzsOyaB79+4wNTXVeKdsIiJ9xbPVKF8ULVoUPXr0wJ9//il3FJLJwoULcfbsWcyfPx8pKSlyxyEi0hpHjijfrFy5EqNGjUJycrLcUUgH3NzcslxLTExEdHQ0FAoFypQpk+0O6mFhYbqKSESkFc45onwTFhbGFUofECcnJ0iSJHcMIqJ8x5EjyhePHz+Gp6cnWrRoge3bt8sdh4iISGssjihX75pcm5SUhJs3b2Lbtm2Ii4vDH3/8gY8//lhH6YiIiPIfiyPKlUKhyPXWSea3T7ly5bBixQq0bdtWV9FID6SkpGD06NGoXLky/P39c+y3YMEC3L17Fz/88AOKFOHdfCLSb/wpRblau3Ztru2ZO2TXqlUry+RbKvw2bNiA1atX49q1a7n2a9myJcaNG4d69eqhf//+OkpHRKQdjhwRkdbatGkDY2Nj7Nu37519O3bsiNTUVBw8eFAHyYiItMd9johIa3/++Se8vLw06tusWTNcvXq1YAMREeUDFkdEpLWYmBiNt2+ws7NDTExMASciInp/LI6ISGtWVlaIiorSqO/z589haWlZwImIiN4fiyMi0lq1atVw6NAhjfoePnwYVatWLeBERETvj8UREWnN19cXx48fx65du3Ltt3v3bhw7dgxdu3bVUTIiIu1xtRoRaS05ORm1atVCaGgovv76awwbNgyurq7K9oiICKxcuRLz589H+fLlceXKFZiamsqYmIjo3VgcEdF7iYyMRLt27XDz5k1IkgRLS0tYWVkhISEB8fHxEELAw8MDBw4cUCuciIj0FYsjInpvycnJWLVqFf73v//hxo0biI+Ph5WVFTw9PdG1a1cMHjyYI0ZEZDBYHBERERGp4IRsIiIiIhUsjoiIiIhUsDgiIiIiUsHiiIiIiEgFiyMiIiIiFSyOiIiIiFSwOCIivfL69WssWbIEzZo1g52dHYoWLYqSJUuidevWWLlyJZKTk+WOmMW6deuwaNEiuWMQUT7hPkdEpDfu3bun3G3b29sbrVu3RokSJRAdHY0TJ07gt99+w+DBg/Hzzz/LHVWNl5cX7t27h3v37skdhYjyQRG5AxARARkjRu3bt8ft27exY8cOdOvWTa39m2++wY0bN3D48GGZEuafxMREWFhYyB2DiHLA22pEpBdWr16Nf/75B2PGjMlSGGWqVq0axowZo3btjz/+QJs2bWBjYwMzMzPUqFEDS5YswduD4l5eXnBxccnynvfu3YMkSZg6dary2okTJyBJEtatW4dVq1ahSpUqMDExgbOzM+bMmaP2ekmScPLkSURGRkKSJOUjcxTJxcUFXl5e+PPPP9G6dWtYW1vD09MTu3fvhiRJWLlyZbZfa40aNeDk5IT09PR3/M0RUX7jyBER6YX//e9/AIDhw4dr/JqDBw+iU6dOsLe3h7+/P2xtbfHLL79g9OjRuH79+nvffluxYgWePXuGIUOGwNraGps2bcK3334LR0dH9O7dGwCwceNGzJgxA8+fP8fChQuVry1RooTyv//991+0aNEC3bp1g6+vLxITE9GhQweULl0aq1evxtChQ9X+3MuXL+Pvv//Gd999B4WCv8MS6ZwgItIDxYsXF5aWlhr3T01NFc7OzsLS0lLcv39f7XqbNm0EAPHHH38orzdr1kw4OztneZ+IiAgBQEyZMkV5LTg4WAAQpUuXFjExMcrrL1++FPb29qJ+/fpq75HTewshhLOzswAg1qxZk6UtICBAABDXr19Xu/7ZZ58JhUIh7t27l8vfABEVFP5KQkR6IT4+HlZWVhr3v3r1KiIjIzFgwAA4OjoqrxsZGSEgIAAAsGvXrvfKNHDgQNjY2Cifm5ubo379+ggNDc3T+9jZ2aF///5Zrg8dOhQKhQKrV69WXktKSsLWrVvxySefwNnZWevsRKQ9FkdEpBesrKyQkJCgcf/w8HAAQNWqVbO0eXp6qvXRlpubW5ZrdnZ2iI6OzvP7ZHd7zMXFBS1btsTGjRuRkpICANi5cyfi4uIwZMgQ7UIT0XtjcUREesHT0xPx8fEICwvTqL/I4y4kkiRlez01NTXH1xgZGeXpz8iJubl5jm3Dhg1DdHQ09uzZAyBjYrq9vT06deqUL382EeUdiyMi0gtdu3YFgBxXb73N3d0dAPDPP/9kabtx44ZaHwAoXrw4Xrx4kaXv+44uATkXXpro2LEjHBwcsHr1aty9exenTp2Cn58fjI2N3zsXEWmHxRER6YXBgwfDw8MD8+fPz3Gu0PXr1zF//nwAQK1ateDs7Iz169fj4cOHyj7p6ekICgoCAPj4+CivV6xYEQkJCbh48aJaX9UVZtqysLBAbGxsnkezAKBIkSIYOHAgjh49iilTpkAIwVtqRDLjUn4i0gtmZmY4cOAA2rVrB19fX3zyySdo1aoV7O3tER0djZMnT+LgwYPKZe9GRkZYvnw5OnXqhDp16mD48OGwtbXFrl27cPLkSQwdOhQNGzZUvv+wYcMwf/58+Pj44Msvv4SxsTF27tyZ6201TdWrVw8HDhzA6NGjUb9+fRgZGaFDhw4oVqyYRq8fOnQoZs2ahS1btqBhw4bw8PB470xE9B5kXi1HRKTm5cuXYtGiRaJx48bC1tZWFClSRJQoUUK0bt1arF69WiQnJ6v1P336tGjVqpWwsrISJiYmolq1amLx4sUiPT09y3v/+uuvokaNGsLY2FiULl1ajBs3ToSEhOS4lH/t2rVZ3qN///7i7R+dCQkJws/PT9jZ2QlJkgQAERERIYTIWMrfrFmzd37drVq1ynHJPxHpFs9WIyLSA+3bt8epU6fw+PFjjUeciKhgcM4REZHM7t69i99++w39+vVjYUSkBzhyREQkkwsXLuDWrVv44YcfcOvWLdy8eROurq5yxyL64HHkiIhIJitWrMCgQYMQHx+PzZs3szAi0hMcOSIiIiJSwZEjIiIiIhUsjoiIiIhUsDgiIiIiUsHiiIiIiEgFiyMiIiIiFSyOiIiIiFSwOCIiIiJSweKIiIiISMX/AYrTJNp5NPxdAAAAAElFTkSuQmCC"
    }
   },
   "cell_type": "markdown",
   "id": "26bd5e92",
   "metadata": {
    "deletable": true,
    "editable": true
   },
   "source": [
    "<div><img src=\"attachment:q5.jpg\" style=\"height: 300px;\"/></div>\n",
    "\n",
    "<center> <b>Delete</b> this cell before you submit the notebook to reduce the size of your file.</center>"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "71f45ff1",
   "metadata": {
    "deletable": true,
    "editable": true,
    "execution": {
     "iopub.execute_input": "2023-12-07T02:12:15.661702Z",
     "iopub.status.busy": "2023-12-07T02:12:15.660717Z",
     "iopub.status.idle": "2023-12-07T02:12:16.017877Z",
     "shell.execute_reply": "2023-12-07T02:12:16.016842Z"
    },
    "tags": []
   },
   "outputs": [],
   "source": [
    "# create the bar plot using the DataFrame 'num_institutions' with the x-axis labelled \"Country\" \n",
    "# and the y-axis labelled \"Number of Institutions\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "e5c8cd4b",
   "metadata": {
    "deletable": false,
    "editable": false
   },
   "source": [
    "**Question 6:** Create a **bar plot** of the **top** *10* countries with the **highest** *total* `Overall` listed in the `year` *2022*.\n",
    "\n",
    "The `Total Score` of a `Country` is defined as the **sum** of `Overall` of **all** institutions in that `Country`. You **must** display the columns `Country` and `Total Score`. The rows **must** be in *descending* order of `Total Score`.\n",
    "\n",
    "You **must** first compute a **DataFrame** `top_10_total_score` containing the **Country**, and the **Total Score** data.\n",
    "\n",
    "Your **DataFrame** should looks like this:\n",
    "\n",
    "||**Country**|**Total Score**|\n",
    "|---|---|---|\n",
    "|**0**|United States|4441.9|\n",
    "|**1**|United Kingdom|2543.8|\n",
    "|**2**|Australia|1243.3|\n",
    "|**3**|Germany|1235.3|\n",
    "|**4**|China (Mainland)|1138.5|\n",
    "|**5**|Japan|796.3|\n",
    "|**6**|Canada|785.6|\n",
    "|**7**|South Korea|739.1|\n",
    "|**8**|Netherlands|673.6|\n",
    "|**9**|Russia|582.6|"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "73f55d5c",
   "metadata": {
    "deletable": true,
    "editable": true,
    "execution": {
     "iopub.execute_input": "2023-12-07T02:12:16.021871Z",
     "iopub.status.busy": "2023-12-07T02:12:16.021871Z",
     "iopub.status.idle": "2023-12-07T02:12:16.033924Z",
     "shell.execute_reply": "2023-12-07T02:12:16.033924Z"
    },
    "tags": []
   },
   "outputs": [],
   "source": [
    "# compute and store the answer in the variable 'top_10_total_score', then display it\n",
    "# do NOT plot just yet\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "7bb12427",
   "metadata": {
    "deletable": true,
    "editable": true
   },
   "outputs": [],
   "source": [
    "grader.check(\"q6\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "51185aa2",
   "metadata": {
    "deletable": false,
    "editable": false
   },
   "source": [
    "Now, **plot** `top_10_total_score` as **bar plot** with the **x-axis** labelled *Country* and the **y-axis** labelled *Total Score*.\n",
    "\n",
    "You **must** use the `bar_plot` function to create the plot.\n",
    "\n",
    "**Important Warning:** `public_tests.py` can check that the **DataFrame** is correct, but it **cannot** check if your plot appears on the screen, or whether the axes are correctly labelled. If your plot is not visible, or if it is not properly labelled, the Gradescope autograder will **deduct points**.\n",
    "\n",
    "Your plot should look like this:"
   ]
  },
  {
   "attachments": {
    "q6.jpg": {
     "image/jpeg": "iVBORw0KGgoAAAANSUhEUgAAAlMAAAJACAYAAACpA+PdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB7FklEQVR4nO3dd1gUV9sG8HsWkCJFpdgQBQyKXWLXKBpbbIhYorEbNZYoMYlRE2OJvaHGkihYsKFJbDGaWIJiF0uMRrGBXVQQKYIgcL4/+NjXleKyK8wO3L/r2ut15xwm97ywu8/OnDlHEkIIEBEREZFOVHIHICIiIlIyFlNEREREemAxRURERKQHFlNEREREemAxRURERKQHFlNEREREemAxRURERKQHY7kDFHbp6el4+PAhrKysIEmS3HGIiIhIC0IIxMfHo1y5clCpcj/3xGIqnz18+BAVKlSQOwYRERHp4N69e3B0dMy1D4upfGZlZQUg45dhbW0tcxoiIiLSRlxcHCpUqKD+HM8Ni6l8lnlpz9ramsUUERGRwmgzRIcD0ImIiIj0wGKKiIiISA8spoiIiIj0wGKKiIiISA8spoiIiIj0wGKKiIiISA8spoiIiIj0wGKKiIiISA8spoiIiIj0wGKKiIiISA8spoiIiIj0wGKKiIiISA8spoiIiIj0wGKKiIiISA8spoiIiIj0YCx3AMqeJEn5un8hRL7un4iIqKjgmSkiIiIiPbCYIiIiItIDiykiIiIiPbCYIiIiItIDiykiIiIiPbCYIiIiItIDiykiIiIiPbCYIiIiItIDiykiIiIiPbCYIiIiItIDiykiIiIiPbCYIiIiItIDiykiIiIiPbCYIiIiItIDiykiIiIiPbCYIiIiItIDiykiIiIiPbCYIiIiItIDiykiIiIiPbCYIiIiItIDiykiIiIiPbCYIiIiItIDiykiIiIiPbCYIiIiItIDiykiIiIiPbCYIiIiItIDiykiIiIiPbCYIiIiItIDiykiIiIiPRh0MZWYmAgXFxdIkoTPPvssS/vjx48xePBglC5dGmZmZqhVqxZWr16d4/62bNmC999/H+bm5rCzs0Pv3r1x586dbPvmdd9ERERUNBnLHSA333//PZ4+fZpt2/Pnz9GsWTM8ePAAvr6+cHZ2xq5duzBs2DA8fPgQU6ZM0ei/bNkyfP7552jatCn8/PwQFRWFxYsXIyQkBKGhoShXrpzO+yYiIqIiTBio8+fPCyMjI7FgwQIBQAwfPlyjfcKECQKA+O233zS2d+7cWZiYmIjw8HD1tqioKGFpaSk8PDzEq1ev1NtDQ0OFJEliyJAhOu/7bWJjYwUAERsbq/XPCCEEgHx9EBERUc7y8vltkJf50tLSMHToULRr1w4+Pj7Z9tm0aROcnZ3RrVs3je3jxo3Dq1evsHXrVvW2Xbt2ISEhAWPGjIGx8f9OxtWrVw/NmzfHtm3bkJKSotO+iYiIqGgzyGJq8eLFuHLlCpYtW5Zte2RkJO7du4fGjRtnaWvcuDEkScKZM2fU2zL/3aRJkyz9mzRpgvj4eISFhem07zclJycjLi5O40FERESFl8EVU3fu3MGUKVMwefJkODs7Z9vnwYMHAABHR8csbaamprCzs8P9+/e16p+5LbN/Xvf9ptmzZ8PGxkb9qFChQo59iYiISPkMrpgaMWIEKlasiK+++irHPomJiQAyipvsmJmZqfu8rb+ZmZlGn7zu+00TJ05EbGys+nHv3r0c+xIREZHyGdTdfJs3b8a+fftw5MgRmJiY5NjPwsICQMYltewkJSWhTJky2fY3NzfP0vf1Pnnd95tMTU1zLMSIiIio8DGYM1MpKSn44osv0KlTJzg5OeH27du4ffu2+pJafHw8bt++jdjYWJQvXx4Asr3c9vLlS0RHR2tcpsut/5uX9fK6byIiIiraDKaYSkxMxJMnT7Bnzx44OzurHx988AGAjLNWzs7OWLlyJcqUKQNHR0ecPHkyy35OnToFIQTq16+v3pb57xMnTmTpf+LECVhaWqJq1aoAkOd9ExERUdFmMMVU8eLFsWPHjiyPn3/+GQDQrl077NixQz1VQp8+fRAREYHt27dr7GfRokUwNjZGr1691Nu8vLxgYWGBpUuXIjU1Vb397NmzCAkJQc+ePVGsWDH19rzsm4iIiIo2SQgh5A6Rm9u3b8PZ2RnDhw/HTz/9pN4eExODevXqITIyUmOW8j179mDy5MmYPn26xn6WLFkCX19fNG3aFP369UNUVBT8/PxgYmKCs2fPqi/v6bLv3MTFxcHGxgaxsbGwtrbW+uckSdK6ry4M/NdOREQkq7x8fhvUAPS8KFmyJI4dO4ZJkyZh9erViIuLQ+XKlbFy5cps1/EbO3Ys7OzssHDhQvj6+sLCwgJt2rTB7NmzNQopXfZNRERERZfBn5lSOp6ZIiIiUp68fH4bzJgpIiIiIiViMUVERESkBxZTRERERHpgMUVERESkBxZTRERERHpgMUVERESkBxZTRERERHpgMUVERESkBxZTRERERHpgMUVERESkBxZTRERERHpgMUVERESkBxZTRERERHpgMUVERESkBxZTRERERHpgMUVERESkBxZTRERERHpgMUVERESkBxZTRERERHpgMUVERESkBxZTRERERHpgMUVERESkBxZTRERERHpgMUVERESkBxZTRERERHpgMUVERESkBxZTRERERHpgMUVERESkBxZTRERERHpgMUVERESkBxZTRERERHpgMUVERESkBxZTRERERHpgMUVERESkBxZTRERERHpgMUVERESkBxZTRERERHpgMUVERESkBxZTRERERHpgMUVERESkBxZTRERERHpgMUVERESkBxZTRERERHpgMUVERESkBxZTRERERHpgMUVERESkBxZTRERERHpgMUVERESkBxZTRERERHpgMUVERESkBxZTRERERHpgMUVERESkBxZTRERERHpgMUVERESkBxZTRERERHpgMUVERESkBxZTRERERHpgMUVERESkBxZTRERERHpgMUVERESkBxZTRERERHpgMUVERESkBxZTRERERHpgMUVERESkBxZTRERERHowqGLq2rVr+OSTT+Du7g4bGxsUL14c7u7u+PLLLxEZGZml/+PHjzF48GCULl0aZmZmqFWrFlavXp3j/rds2YL3338f5ubmsLOzQ+/evXHnzp1s++Z130RERFQ0Gcsd4HX3799HZGQkvL294ejoCGNjY1y6dAk///wztmzZggsXLqB06dIAgOfPn6NZs2Z48OABfH194ezsjF27dmHYsGF4+PAhpkyZorHvZcuW4fPPP0fTpk3h5+eHqKgoLF68GCEhIQgNDUW5cuXUffO6byIiIirChAJs3bpVABAzZ85Ub5swYYIAIH777TeNvp07dxYmJiYiPDxcvS0qKkpYWloKDw8P8erVK/X20NBQIUmSGDJkiMY+8rLvt4mNjRUARGxsrNY/I4QQAPL1QURERDnLy+e3QV3my4mzszMAICYmRr1t06ZNcHZ2Rrdu3TT6jhs3Dq9evcLWrVvV23bt2oWEhASMGTMGxsb/OxlXr149NG/eHNu2bUNKSopO+yYiIqKizSCLqZcvXyIqKgr379/HwYMHMWLECABAhw4dAACRkZG4d+8eGjdunOVnGzduDEmScObMGfW2zH83adIkS/8mTZogPj4eYWFhOu37TcnJyYiLi9N4EBERUeFlkMWUv78/7O3tUaFCBbRp0wZPnjzB+vXr0bJlSwDAgwcPAACOjo5ZftbU1BR2dna4f/++eltu/TO3ZfbP677fNHv2bNjY2KgfFSpU0OqYiYiISJkMagB6pq5du6Jq1apISEjAhQsX8Pvvv2tc4ktMTASQUdxkx8zMTN3nbf3NzMw0+uR132+aOHEixo0bp34eFxfHgoqIiKgQM8hiytHRUX1mqGvXrvDx8UH9+vWRmJiIiRMnwsLCAkDGJbXsJCUloUyZMurnr/c3NzfP0vf1Pnnd95tMTU1zLMSIiIio8DHIy3xvqlWrFurWrYsVK1YAAMqXLw8A2V5ue/nyJaKjozUu0+XW/83LenndNxERERVtiiimgIwzQs+ePQMAlClTBo6Ojjh58mSWfqdOnYIQAvXr11dvy/z3iRMnsvQ/ceIELC0tUbVqVZ32TUREREWbQRVT2c1yDgDBwcG4fPkyGjVqpN7Wp08fREREYPv27Rp9Fy1aBGNjY/Tq1Uu9zcvLCxYWFli6dClSU1PV28+ePYuQkBD07NkTxYoV02nfREREVLRJQgihyw/Gx8fDz88P+/fvx+PHjxEYGIjGjRsjKioKK1asQM+ePdVne7Tl7e2NR48eoVWrVqhYsSJevnyJc+fOISgoCBYWFjh8+DDq1KkDIGPOqXr16iEyMlJjlvI9e/Zg8uTJmD59usa+lyxZAl9fXzRt2hT9+vVDVFQU/Pz8YGJigrNnz6ov7+my79zExcXBxsYGsbGxsLa21vrnJEnSuq8udPy1ExERFQl5+vzWZVbQJ0+eCDc3N2FsbCyqVq0qVCqVOHTokLrdxcVFfPHFF3ne79atW0WHDh2Eo6OjMDU1FWZmZqJKlSpi9OjR4s6dO1n6P3z4UAwcOFDY29sLU1NTUb16dbFy5coc979x40ZRt25dYWZmJkqVKiV69eqV42zmed13TjgDOhERkfLk5fNbpzNTw4cPR1BQEIKDg+Hk5AQHBwccPHgQrVq1ApAxU/ihQ4dw8eLFvO660OGZKSIiIuXJy+e3TmOm9uzZg1GjRsHDwyPbD30XFxfcu3dPl10TERERKYpOxVRUVBRcXV1z3qlKhZcvX+ocioiIiEgpdCqmypQpg1u3buXYfv78eTg5OekcioiIiEgpdCqmOnTogICAADx69ChL24kTJ7BhwwZ4eXnpHY6IiIjI0Ok0AD0yMhLvv/8+UlNT0alTJ6xbtw69e/dGcnIydu3ahfLly+PcuXMoVapUfmRWFA5AJyIiUp68fH7rPM/U3bt3MXr0aOzduxfp6ekZO5MkdOjQAStXruSSK/+PxRQREZHy5OXzW+eFjp2cnLB7927Exsbi+vXrEEKgcuXKPBtFRERERUqex0y9ePECRkZG+OGHHwAANjY2qF+/Pho0aMBCioiIiIqcPBdTxYsXR4kSJeDg4JAfeYiIiIgURae7+Vq2bImQkJB3nYWIiIhIcXQqpubPn4+jR49i+vTpiI+Pf9eZiIiIiBRDp7v5XFxckJCQgOjoaACAvb09LCwsNHcsSblO7FlU8G4+IiIi5cn3u/mcnJzy/cOeiIiISAl0KqYOHz78jmMQERERKZNOY6aIiIiIKIPOk3YCwP3797F7926Eh4cDAFxdXdG5c2fOfk5ERERFhs7F1Jw5czBlyhSkpqZqDGb29fXF9OnT8c0337yTgERERESGTKfLfEFBQZg0aRLc3d2xfv16XLhwAefPn0dgYCCqVauGSZMmYevWre86KxEREZHB0WlqhIYNG+LVq1c4ceIEzMzMNNqSk5PRqFEjmJqa4tSpU+8sqFJxagQiIiLlycvnt05npv777z/07ds3SyEFAKampujXrx8uX76sy66JiIiIFEWnYkqlUiElJSXH9levXnEeKiIiIioSdCqmateujXXr1iEhISFLW3x8PNauXYu6devqHY6IiIjI0Ol0N9/48ePh5eWFOnXq4PPPP0e1atUAZFz+W7ZsGSIiIrBgwYJ3GpSIiIjIEOk0AB0AVq1ahS+//BIvXrxQX9ITQqB48eJYuHAhhg0b9k6DKhUHoBMRESlPXj6/dS6mACA2NhYHDhxAeHg4hBBwdXVFmzZtYGNjo+suCx0WU0RERMqT7wsdZ7KxsUH37t312QURERGRouk0AP3ChQtYvnx5ju3Lly/HP//8o2smIiIiIsXQqZiaNm0a/vjjjxzb9+3bh+nTp+scioiIiEgpdCqmQkND0aJFixzbW7RogTNnzugcigoHSZLy/UFERCQ3nYqpqKgolCpVKsf2EiVKICoqSudQREREREqhUzHl4OCAK1eu5Nh++fLlXIstIiIiosJCp2KqdevWWL16NcLCwrK0XblyBQEBAWjdurXe4YiIiIgMnU7zTN26dQseHh549eoVBg0ahFq1agEA/vnnH6xfvx7FihVDaGgo3nvvvXceWGmK8jxTBTGmifNlERFRfsj3eaZcXV1x6NAhDBw4ECtXrtRoq169OtauXctCioiIiIoEnSftrFevHi5fvox//vkHN27cgBACVapUQe3atd9lPiIiIiKDptcM6ABQp04d1KlT5x1EISIiIlIevYspAAgPD0dQUBAePHiAatWqYfDgwTA3N38XuyYiIiIyaFoXUwEBAVi6dCn27duHcuXKqbcfOHAA3bp1Q2JiIoQQkCQJP//8M06cOAFLS8t8CU1ERERkKLSeGmHPnj0wNjbWKKSEEPjss8+QmJiICRMmYPfu3Rg0aBAuX74MPz+/fAlMREREZEi0LqYuXryINm3aaGw7efIkIiIi0L9/f8ycOROdOnWCv78/WrZsiZ07d77rrEREREQGR+ti6unTp3BxcdHYdvz4cUiShI8//lhje4cOHXDz5s13k5CIiIjIgGldTBkbGyMlJUVjW+ZixvXr19fYbmtri+Tk5HcQj4iIiMiwaV1MOTs749SpU+rnaWlpOHr0KFxdXbOswxcdHQ07O7t3l5KIiIjIQGldTHXv3h2//PILVqxYgStXrmDChAl4+vQpunfvnqXv6dOn4ezs/E6DEhERERkirdfmS0hIQL169XDjxg0AGXfyVahQAefPn4etra26X2xsLMqXL49x48Zh+vTp+ZNaQbg2X/7i2nxERJQf8mVtPktLS5w9exarVq3CjRs34OLigqFDh6JEiRIa/a5evYpBgwZlGZROREREVBhpfWaKdMMzU/mLf75ERJQf8vL5rfWYKSIiIiLKisUUERERkR5YTBERERHpgcUUERERkR5YTBERERHpgcUUERERkR5YTBERERHpQatJOwcPHpznHUuShICAgDz/HBEREZGSaDVpp0qV9xNYkiQhLS1Np1CFCSftzF+ctJOIiPLDO19OJj09/Z0EIyIiIipsOGaKiIiISA8spoiIiIj0oNVlvuykpqZi586dOH36NGJiYrJcCuQAdCIiIioKdCqmnj17hpYtW+Ly5csQQkCSJPVA4Mx/s5giIiKiokCny3zfffcdwsLC4O/vj1u3bkEIgb/++gtXr15F7969Ub9+fURHR7/rrEREREQGR6di6o8//kD//v0xaNAg9e2CRkZGqFKlCjZu3Ahzc3NMnDjxnQYlIiIiMkQ6FVORkZFo0KABAMDYOONK4cuXL9XtXbt2xe7du99BPCIiIiLDplMxVapUKSQmJgIArKysYGJignv37qnbTUxMEBMT824SEhERERkwnYopNzc3XL16NWMHKhXq1q2LdevWITk5GYmJiQgMDISLi0ue93v9+nV8//33aNSoEezt7WFlZYU6depg5syZePHiRZb+jx8/xuDBg1G6dGmYmZmhVq1aWL16dY7737JlC95//32Ym5vDzs4OvXv3xp07d7Ltm9d9ExERUdGkUzHVtm1bbNu2DcnJyQCAcePG4fTp0yhVqhQcHBxw9uxZfPHFF3ne75o1a7Bo0SI4Oztj8uTJmD9/PqpUqYLvvvsOTZo0QVJSkrrv8+fP0axZMwQFBWHIkCH48ccf4eTkhGHDhmHatGlZ9r1s2TL06dMH5ubm8PPzg6+vLw4cOIAmTZrg4cOHGn3zum8iIiIqwoQO0tPTxcuXLzW2/frrr8Lb21t0795dBAUF6bJbERoaKmJiYrJs//bbbwUAsWzZMvW2CRMmCADit99+0+jbuXNnYWJiIsLDw9XboqKihKWlpfDw8BCvXr3S+O9JkiSGDBmisY+87PttYmNjBQARGxur9c8IIQSAfH0UhPw+hoI6DiIiKnry8vmtiE+jixcvCgBi+PDh6m0VKlQQzs7OWfoGBwcLAGL27NnqbQEBAQKAWLduXZb+LVq0EFZWViI5OVmnfb8NiynlHwcRERU9efn81ukyX6tWrXDo0KEc24ODg9GqVStddp2tBw8eAAAcHBwAZNxNeO/ePTRu3DhL38aNG0OSJJw5c0a9LfPfTZo0ydK/SZMmiI+PR1hYmE77JiIioqJNp2Lq8OHDePz4cY7tT548wZEjR3QO9bq0tDRMnz4dxsbG+OSTTwD8r7hydHTM0t/U1BR2dna4f/++eltu/TO3ZfbP677flJycjLi4OI0HERERFV75stDx06dPYWZm9k72NWbMGJw6dQpTp05FlSpVAEA9LYOpqWm2P2NmZqbu87b+mTkz++R132+aPXs2bGxs1I8KFSrkenxERESkbFqvzRcSEoLDhw+rn2/fvh03b97M0i8mJgZBQUGoXbu23uG+++47rFixAp9++ikmTZqk3m5hYQEA6rsJ35SUlIQyZcpk29/c3DxL39f75HXfb5o4cSLGjRunfh4XF8eCioiIqBDTupgKDg5WTwsgSRK2b9+O7du3Z9vX1dUVfn5+egWbOnUqZs6cif79++Pnn3+GJEnqtvLlywNAtpfbXr58iejoaHzwwQfZ9n/vvfc0+r95WS+v+36Tqalpjme1iIiIqPDR+jKfr68vIiIiEB4eDiEEFi9ejIiICI3H7du3ERUVhRs3bqBhw4Y6h5o2bRqmTZuGvn37Yu3atVCpNGOWKVMGjo6OOHnyZJafPXXqFIQQqF+/vnpb5r9PnDiRpf+JEydgaWmJqlWr6rRvIiIiKuJ0uV1w3bp1IiIiQpcffatp06YJAOKTTz4RqampOfYbP358jnNBGRsbi1u3bqm3PX36VFhYWOQ4z9TgwYN13vfbcGoE5R8HEREVPXn5/JaEEELfgiwhIQEAYGlpqdd+li9fjtGjR8PJyQnTp0+HkZGRRnvp0qXRpk0bABljs+rVq4fIyEj4+vrC2dkZu3btwp49ezB58mRMnz5d42eXLFkCX19fNG3aFP369UNUVBT8/PxgYmKCs2fPqi/v6bLv3MTFxcHGxgaxsbGwtrbW+udev6yZH97Br/2t8vsYgII5DiIiKnry9Pmta8X25MkTMXz4cOHg4CBUKpVQqVTCwcFBjBgxQjx58kSnfQ4YMCDXsxAtWrTQ6P/w4UMxcOBAYW9vL0xNTUX16tXFypUrc9z/xo0bRd26dYWZmZkoVaqU6NWrV46zmed13znhmSnlHwcRERU9+X5mKjIyEo0aNcLdu3dRuXJlVK9eHUIIXLlyBTdv3oSTkxNOnTqV611vRQXPTOWvgjgOIiIqevLy+a3TPFOTJ0/GgwcPsHHjRly/fh07duzAzp07cf36dWzevBkPHz7ElClTdApPREREpCRaT43wur179+Kzzz5Dnz59srR9/PHHOHbsGHbs2KF3OCIiIiJDp9OZqaioKNSoUSPH9po1ayI6OlrnUERERERKoVMxVaZMGYSGhubYHhoaitKlS+scioiIiEgptC6m7t69q156xcvLC+vWrcOyZcuQlpam7pOWloYVK1Zg3bp16Nq16zsPS0RERGRotL6bz8jICBs2bECfPn3w7NkzNG3aFNevX0epUqXg5uYGALh+/TqePXsGNzc3nDhxAiVLlszX8ErAu/nyF+/mIyKi/JAvd/O9/qFVqlQpnDlzBhMnTkTp0qVx4cIFXLhwAaVLl8akSZNw5swZFlJERERUJOh0Nx8AWFlZYcaMGZgxY8a7zENERESkKDoNQCciIiKiDHk6M7V9+3bcvHlTq76SJGHy5Mk6hSIiIiJSCq0HoKtUKkiSpPWAX0mSNO70K6o4AD1/cQA6ERHlh7x8fufpzNSkSZPQunVrvcIRERERFSZ5Kqbc3d3RokWL/MpCREREpDgcgE5ERESkBxZTRERERHpgMUVERESkB63HTKWnp+dnDiIiIiJF4pkpIiIiIj2wmCIiIiLSA4spIiIiIj2wmCIiIiLSA4spIiIiIj2wmCIiIiLSA4spIiIiIj2wmCIiIiLSA4spIiIiIj2wmCIiIiLSA4spIiIiIj2wmCIiIiLSA4spIiIiIj2wmCIiIiLSA4spIiIiIj2wmCIiIiLSA4spIiIiIj2wmCIiIiLSA4spIiIiIj2wmCIiIiLSA4spIiIiIj2wmCIiIiLSA4spIiIiIj2wmCIiIiLSA4spIiIiIj2wmCIiIiLSA4spIiIiIj2wmCIiIiLSA4spIiIiIj2wmCIiIiLSA4spIiIiIj2wmCIiIiLSA4spIiIiIj2wmCIiIiLSA4spIiIiIj0Yyx2AyNBJkpTv/w0hRL7uvzAcAxGRoeKZKSIiIiI9sJgiIiIi0gOLKSIiIiI9sJgiIiIi0gOLKSIiIiI9sJgiIiIi0gOLKSIiIiI9cJ4pIlIMzpdFRIaIZ6aIiIiI9MBiioiIiEgPLKaIiIiI9MBiioiIiEgPBldMzZ49Gz169ICLiwskSUKlSpVy7f/48WMMHjwYpUuXhpmZGWrVqoXVq1fn2H/Lli14//33YW5uDjs7O/Tu3Rt37tx5J/smIiKiosfg7uabNGkSSpUqBQ8PDzx//jzXvs+fP0ezZs3w4MED+Pr6wtnZGbt27cKwYcPw8OFDTJkyRaP/smXL8Pnnn6Np06bw8/NDVFQUFi9ejJCQEISGhqJcuXI675uIiIiKKGFgbt26pf539erVRcWKFXPsO2HCBAFA/PbbbxrbO3fuLExMTER4eLh6W1RUlLC0tBQeHh7i1atX6u2hoaFCkiQxZMgQnfedm9jYWAFAxMbGatU/E4B8fRSE/D4GHkfROobCdBxEZPjy8vltcJf5XFxctO67adMmODs7o1u3bhrbx40bh1evXmHr1q3qbbt27UJCQgLGjBkDY+P/nZCrV68emjdvjm3btiElJUWnfRMREVHRZXDFlLYiIyNx7949NG7cOEtb48aNIUkSzpw5o96W+e8mTZpk6d+kSRPEx8cjLCxMp30TERFR0aXYYurBgwcAAEdHxyxtpqamsLOzw/3797Xqn7kts39e9/265ORkxMXFaTyIiIio8FJsMZWYmAggo7jJjpmZmbrP2/qbmZlp9Mnrvl83e/Zs2NjYqB8VKlTQ5nCIiIhIoRRbTFlYWADIOBOUnaSkJHWft/VPSkrS6JPXfb9u4sSJiI2NVT/u3bunzeEQERGRQim2mCpfvjwAZHu57eXLl4iOjta4TJdb/zcv6+V1368zNTWFtbW1xoOIiIgKL8UWU2XKlIGjoyNOnjyZpe3UqVMQQqB+/frqbZn/PnHiRJb+J06cgKWlJapWrarTvomIiKjoUmwxBQB9+vRBREQEtm/frrF90aJFMDY2Rq9evdTbvLy8YGFhgaVLlyI1NVW9/ezZswgJCUHPnj1RrFgxnfZNRERERZfBzYC+YcMG9fIuT58+RUpKCmbMmAEAKFGiBEaPHq3uO2HCBPz666/o168fzp07p56lfM+ePZg8ebLGnFV2dnaYNWsWfH194enpiX79+iEqKgp+fn4oXbo0pk+frpEjL/smIiKiIizfpxDNoxYtWuQ4M3F2s6E/fPhQDBw4UNjb2wtTU1NRvXp1sXLlyhz3v3HjRlG3bl1hZmYmSpUqJXr16pXjbOZ53Xd2OAM6j8MQjqMwHENhOg4iMnx5+fyWhBAClG/i4uJgY2OD2NjYPA1GlyQpH1MBBfFrz+9jAHgc2ioMxwAUnuMgIsOXl89vRY+ZIiIiIpIbiykiIiIiPbCYIiIiItIDiykiIiIiPbCYIiIiItIDiykiIiIiPbCYIiIiItIDiykiIiIiPRjccjJERIVdYZiUl4j+h8UUERHlGWejJ/ofXuYjIiIi0gOLKSIiIiI9sJgiIiIi0gPHTBERUZHFsV/0LvDMFBEREZEeWEwRERER6YHFFBEREZEeWEwRERER6YED0ImIiBSMg+jlxzNTRERERHpgMUVERESkBxZTRERERHpgMUVERESkBxZTRERERHpgMUVERESkB06NQERERLJT8hQPPDNFREREpAcWU0RERER6YDFFREREpAcWU0RERER6YDFFREREpAcWU0RERER6YDFFREREpAcWU0RERER6YDFFREREpAcWU0RERER6YDFFREREpAcWU0RERER6YDFFREREpAcWU0RERER6YDFFREREpAcWU0RERER6YDFFREREpAcWU0RERER6YDFFREREpAcWU0RERER6YDFFREREpAcWU0RERER6YDFFREREpAcWU0RERER6YDFFREREpAcWU0RERER6YDFFREREpAcWU0RERER6YDFFREREpAcWU0RERER6YDFFREREpAcWU0RERER6YDFFREREpAcWU0RERER6YDFFREREpAcWU0RERER6YDFFREREpAcWU0RERER6YDFFREREpAcWU0RERER6YDGViy1btuD999+Hubk57Ozs0Lt3b9y5c0fuWERERGRAWEzlYNmyZejTpw/Mzc3h5+cHX19fHDhwAE2aNMHDhw/ljkdEREQGQhJCCLlDGJro6GhUqlQJbm5uOH36NIyNjQEAZ8+eRYMGDTB48GD4+/trta+4uDjY2NggNjYW1tbWWmeQJEmn7NoqiF97fh8DwOPQVmE4BoDHoa3CcAwAj0NbheEYAMM7jrx8fvPMVDZ27dqFhIQEjBkzRl1IAUC9evXQvHlzbNu2DSkpKTImJCIiIkNh/PYuRc+ZM2cAAE2aNMnS1qRJExw5cgRhYWGoVatWlvbk5GQkJyern8fGxgLIqHANiaHl0RWPw3AUhmMACsdxFIZjAHgchqQwHAOQt+PI7KvN2SwWU9l48OABAMDR0TFLW+a2+/fvZ1tMzZ49G9OmTcuyvUKFCu84pX5sbGzkjvBO8DgMR2E4BqBwHEdhOAaAx2FICsMxALodR3x8/Ft/jsVUNhITEwEApqamWdrMzMw0+rxp4sSJGDdunPp5eno6nj17Bltb23y7HhwXF4cKFSrg3r17eRqXZWgKw3EUhmMACsdxFIZjAHgchqQwHANQOI6jII5BCIH4+HiUK1furX1ZTGXDwsICQMYlO3Nzc422pKQkjT5vMjU1zVKElShR4t2HzIa1tbViXxivKwzHURiOASgcx1EYjgHgcRiSwnAMQOE4jvw+Bm3PZHEAejbKly8PIONS3ptyuwRIRERERQ+LqWzUr18fAHDixIksbSdOnIClpSWqVq1a0LGIiIjIALGYyoaXlxcsLCywdOlSpKamqrefPXsWISEh6NmzJ4oVKyZjQk2mpqaYMmVKtmO8lKQwHEdhOAagcBxHYTgGgMdhSArDMQCF4zgM7Rg4aWcOlixZAl9fXzRt2hT9+vVDVFQU/Pz8YGJigrNnz6ovBRIREVHRxmIqF5s2bcLChQtx9epVWFhYoE2bNpg9ezacnZ3ljkZEREQGgsUUERERkR44ZoqIiIhIDyymiIiIiPTAYoqIiIhID5wBvZA4cuQInj17htatW8PKykruOFoRQuDAgQO4efMmoqOjsywmKUkSJk+eLFO6ouXmzZuoXLmy3DHeiRcvXkCSpBxXKSAietc4AF1hZs2ahSNHjuCvv/5Sb/Px8cHOnTsBZMzefvLkSYOfuuHKlSvw9vbGzZs3c1yRW5IkpKWlFXCyvDt79ixOnz6NmJgYpKena7QppSBUqVTw9PTEp59+Ch8fH4OZu0Ub58+fx9atWxEcHIz//vsPL1++BJCxjmaNGjXg6emJHj16oF69ejInfbuTJ09i2bJluHHjRo5fMG7duiVTOt2kpaUhLCws29cHADRv3lyGVNq5desW/Pz8cn19K+338aY7d+7g2bNnqFOnTr6tH1sUsJhSmNq1a6NFixZYunQpAODgwYNo27YtBg8ejNq1a+Pbb7/FwIED1e2Gqnnz5jh//jxmz56NDz74ACVLlsy2X8WKFQs4mfaSkpLQrVs37N+/H0IISJKk/vDL/LdSCsIxY8Zg8+bNePbsGUqUKIG+fftiyJAhqF27ttzRcrR3715MmzYNZ8+ehRAClSpVgqurK2xtbSGEwLNnz3Dz5k3cuXMHkiTBw8MD06ZNQ4cOHeSOnq3AwEAMGjQIJiYmcHNzg62tbbb9goODCziZ7ubOnYs5c+YgLi4uxz6G+vq4dOkSmjVrhuTkZFSpUgWXLl1C9erVER0djcjISLi6usLR0VExvw9/f38cPXoU69evV2/z9fXFjz/+CCDjs+Xvv/8usLVk9WGQX2AFKUrJkiXFjz/+qH4+evRo4ejoqH7+9ddfi8qVK8sRLU/MzMzE1KlT5Y6hlwkTJgiVSiUmT54sDh8+LCRJEoGBgeLPP/8ULVq0EA0aNBBhYWFyx9RacnKyCAoKEm3atBFGRkZCpVKJevXqiZ9//lnExcXJHU9DmzZthCRJwtPTUwQEBIjIyMgc+0ZGRgp/f3/h6ekpVCqVaNu2bQEm1Z6bm5twd3cXDx48kDvKO7F69Wr172jWrFlCkiQxbtw48c033wg7OzvRoEEDsW7dOrlj5qhr167Czs5OhIWFiadPnwpJksShQ4eEEEKsWrVK2NnZif/++0/mlNqrX7+++PTTT9XPT506JSRJEu3btxfjxo0TJiYm4ttvv5Ux4dslJiaK9u3bC5VKJSRJUv/v6/9WqVSyZGMxpTBmZmbC399f/bxatWpi4MCB6udr1qwRFhYWckTLk/Lly4tly5bJHUMvlStXFr169RJCCBEVFaXxZvvq1StRp04dMWHCBDkj6uzOnTtiypQpolKlSkKSJFG8eHExaNAgcfz4cbmjCSGE6NSpkzh//nyef+78+fOic+fO+ZBIf6ampmLJkiVyx3hn3n//fdG4cWMhRNbXx8OHD4WDg4MICAiQM2Ku7OzsxKRJk4QQ/8t/8OBBdXu/fv0M9m8pO7a2tmLx4sXq519//bWwt7cXKSkpQgghRo0aJdzd3eWKpxVD/gLLu/kUpnz58vj3338BZFzrvnr1qsaYg+joaJiZmckVT2sff/wxdu3aJXcMvdy7dw8tWrQAABgZGQEAUlJSAADGxsbo3bs3goKCZMunDycnJ0ydOhX//fcf+vbti8TERKxbtw4ffPABatWqhW3btsma7/fff0fdunXz/HN169bF7t278yGR/sqXL6/++ykMrl69ih49egCAeixO5lqnZcuWxbBhw7BkyRLZ8r1NfHw8XF1dAUC9FuuLFy/U7U2bNsWxY8dkyaaLhIQEWFtbq58fOnQIrVu3homJCYCM18a9e/fkiqeVX3/9FT169MD06dNRo0YNABmvm3bt2uHgwYNISUnBunXrZMnGYkphunTpgp9++gmff/45unfvDjMzM3Ts2FHd/t9//xn0OKNMM2fOhJmZGXx8fHD48GFERETg7t27WR6GzMrKSj3ew8rKCiqVCg8fPlS329jYIDIyUq54evnnn38wevRoODo6YuPGjXBxccGsWbMwd+5cvHjxAr1798b06dPljlmoDBs2DJs2bTLYMUR5ZWRkBEtLSwBA8eLFAQDPnj1Tt1eqVAk3btyQJZs2SpcujadPnwLIeH0XL14c169fV7fHxMQo6ndVpkwZdf4nT57g4sWL+OCDD9Tt8fHx6i+FhsqQv8ByagSFmTx5Mi5evIjly5fDzMwMS5YsgYODA4CMAdE7duzAkCFDZE75diYmJnB3d8eCBQvUdyJmx5DfrFxdXXHz5k0AGS/s6tWr49dff8XgwYMhhMD27dtRoUIFmVNqLzY2Fps2bUJAQAD++ecfGBsbo0uXLhg2bBjatGmj7vfFF1+gT58+WL58Ob7//nsZExcuDRo0wI4dO9CgQQOMGjUKzs7O2X64GfLdb69zcnJSfyEyNTVFhQoVcPToUXz88ccAgNDQUJQqVUrOiLmqU6cOzp49q37eokULLFmyBA0aNEB6ejqWLVtm0DdovOnDDz/EihUrYGdnh7///huSJGncjHH9+nU4OjrKmPDtDPoLrCwXF0lvsbGx6mvdmRITE8U///wjoqOjZUqlvS+//FI9wHns2LFi6tSp2T4M2bfffivKlSsn0tLShBBCLF++XEiSJFxcXISrq6tQqVRizpw5MqfUTt++fYWFhYWQJEm4urqKOXPmiMePH+fYf9OmTUKSpAJMqClzoGleHkZGRrLl1UbmQNrXB9S+/pBzcK0uRowYIWrXrq1+/uWXXwojIyMxaNAgMWDAAGFkZCSGDh0qX8C3CAoKEs2bNxeJiYlCCCHOnTsnLC0t1b+P4sWLi6NHj8qcUnv37t0TVapUUf99vf7++urVK+Hg4CBGjBghY8K3a9iwoRg7dqz6ea1atcRHH30khBAiPT1dtG3bVrz33nuyZOPUCCSL0qVLo3nz5vjll1/kjqKzhIQEPHjwAK6urjA2zjjJu3DhQmzatAlGRkbo3r07xo8fr4i5W0xNTeHl5YVhw4ahdevWb+1/+/ZtHDlyBAMGDCiAdFkNHDgwy/+v58+fx6VLl+Dm5gZ3d3cAGeN2rl+/jpo1a8LDwwNr166VI65WXr9lPTdy/X+eV9euXcPhw4cxYMAAmJmZ4cWLF/j444+xd+9eAEDbtm2xadMmgz479aZ79+5hx44dMDIywkcffQQXFxe5I+VJWloarly5AhsbGzg5Oam3x8XFITg4GLVr10alSpXkC/gW3333HdauXYt79+5BpVJhxYoVGD16NJydnSFJEiIiIjBr1ix88803BZ6NxZQCxcfHw8/PD/v378fjx48RGBiIxo0bIyoqCitWrEDPnj1RtWpVuWPmysrKCgsXLsSwYcPkjkLIGEOReblYiQ4dOgQvLy8EBgaiW7duGm2//vorBg4ciN27d6NVq1YyJaRMsbGxGuOpiLRlyF9gWUwpzNOnT9GsWTOEh4ejcuXKuH79Og4cOKD+kHB1dYWXlxcWLVokc9LctWnTBjVq1ICfn5/cUagQaNKkCRo2bJjj39PYsWMRGhqKEydOFHAyUroXL17g5MmTePz4MVq3bo3SpUvLHUkrut7A8/oZK9IeB6ArzHfffYfIyEicPn0aTk5OWc4meHl54dChQzKl096CBQvQrl07eHp6wsvLS+44WgkJCQHwvwHAmc/fRikDhu/evYuff/4516VMDPVv6+LFi+jfv3+O7e7u7vD39y/ARLp7/Pgxzp49m+PyK7kdp5wK44f3ypUrMXHiRMTFxUGSJBw4cEB9l1+FChWwdOlSgz27XqlSJZ3O0BjyTT+GjMWUwuzZswejRo2Ch4cHoqOjs7S7uLjINs9GXnzxxRewsrJCt27d4OjoiEqVKmW5c8nQPrw9PT0hSRKSkpJQrFgx9fOcCAUtJ7Nv3z54e3sjJSUFVlZWihrHAgCWlpY4duwYPvvss2zbQ0JCDP6yUnp6OkaNGgV/f/9si6hMhlpMFbYP799++w2jRo2Cl5cXOnfujE8//VTdZm9vj/bt22PXrl0GW0x9//33WX4fv//+Oy5cuIDWrVujWrVqADKm0zl06BDq1q2Lzp07yxE1R0r6AstiSmGioqLUE8llR6VSqRd6NWTh4eGQJEn9rdTQ55QCgDVr1kCSJPUkd4Y8mDmvJk6cCDs7O+zcuVMRCwK/qVu3bli1ahUqVqyIr7/+Wr2+2PPnzzFv3jxs3boVw4cPlzfkWyxYsAA///wz+vbti7Zt26J///6YO3curKyssHjxYtjY2GD27Nlyx8xRYfjwft38+fPRqlUr7NixA9HR0RrFFADUq1cPq1evlind202dOlXj+datW9WLNr/5Gj9z5gzatGljcGNtlfQFlsWUwpQpUybXVcrPnz9v0KfNM92+fVvuCHk2cOBAjedKuatKG2FhYZgxY4YiCykAmDNnjnrh7Llz56J06dKQJAmRkZFIT09HgwYNMGfOHLlj5mr9+vVo164dAgMD1Wed33//fbRq1Qr9+vVDrVq1cO7cOYMdRF8YPrxfd+nSJcybNy/H9rJly+LJkycFmEg/c+bMwahRo7J9jTdo0AAjR47E7Nmz0atXLxnSZU9JX2BZTClMhw4dEBAQgM8//1y9xEGmEydOYMOGDfD19ZUnHCmWnZ1dlr8nJbGxscHx48exZs0a7N69W/2Fo06dOujatSsGDhyovvvHUIWHh6vPnqlUGYtTvHr1CkDGDOKDBg2Cv78/vv76a9ky5oUSP7xfZ2RklOsZjocPH6pndleCsLAwDB06NMf2ChUqaMzwbgiU9AXWsN9dKIspU6Zg9+7dqFOnDjp16gRJkrBmzRqsXLkSu3btQvny5WWZY0NXSUlJCA4ORnh4OICMuxE9PT1hbm4uc7KsCuMA20x9+vTB9u3bMWbMGLmj6MzY2BjDhg0z2DEsb2Nubq4uaC0tLSFJksaZjzJlyhj82mmvU+KH9+tq166Nv/76K9vXRFpaGrZt24b69evLkEw3dnZ22Lt3L0aOHJlt+x9//AFbW9sCTlWIyDJVKOnl7t27onPnzsLIyEhjtuROnTqJe/fuyR1Pa5s3bxa2trbq2Z0zj8PW1lZs3rxZ7nhZ6DLrtlJmrA4LCxMNGzYUXbp0EYcOHRLh4eHizp07WR6Uf+rUqSPGjx+vfu7m5ib69Omjft6rVy9RqVIlOaLpxNHRUXTs2DHH9g4dOghHR8cCTJQ3QUFBQpIk8e2334qwsDAhSZL466+/xOXLl0WXLl2ESqUSe/fulTum1iZMmCAkSRKffPKJ+Pfff0VycrJITk4WFy9eFH369BEqlUpMnDhR7pi5OnbsmPjxxx81tgUFBYlKlSoJa2trMWbMGJGeni5LNs4zpWCxsbG4fv06hBCoXLmyou7AOnDgANq3b4/SpUtj5MiRqFmzJoQQuHz5MlasWIEnT57gzz//1Go27oIydepUne5WmjJlSj6kebdUKhUkSVIP4MyJod55BWTMB7R58+Zcp3YICAiQKd3bffnll9i9e7d68d8ZM2bg+++/R4sWLSCEwNGjR/HVV19h7ty5MifVzsSJEzF37lz06dMH33zzDapUqQIg44zV3LlzERQUhG+++QazZs2SOWnOvvvuO8yaNSvLa0MIgWnTpmHy5MkyJ9ReSkoKPv74Y+zcuROSJGkcixAC3t7eCAoKUo9PMkRt27ZF8eLFsWPHDgAZY2/d3d1RqlQplC1bFhcuXMDKlStlOTvNYkphAgMD0bx58xyn/L99+zZCQkIM9vbpTK1atcLdu3cRGhqKkiVLarQ9e/YMDRo0QMWKFQ1qaoTCTNtC0VALwzNnzqBjx47ZTheSydCnqXj06BH+/fdfeHp6wtTUFGlpafD19dWY3dnPzw9mZmZyR9VKYfjwBoBz585h8+bNCAsLgxACbm5u6Nu3r2Jv1ti/f7/GuEJXV1d07drVoL645qRs2bL44osvMH78eAAZ4/KmT5+OiIgIlC5dGl26dMHjx49x+vTpAs/GYkphjIyMsGHDBvTp0yfb9q1bt6JPnz4G/aEBANbW1pg4cSImTpyYbfusWbMwZ84cxMXFFXAyUqJmzZrh8uXL8Pf3R6tWrRR1lrawU+KHd2JiIhYsWICGDRuiXbt2cseh/2dmZoaffvpJPTC9VatWMDU1xb59+wAAP/30E7799ttcv1TlFw5AV5i31b7JyclZJr80RGlpabl+wzY3Nzf4gvB1CQkJeP78ebaTLSphALrSnTt3DpMmTUL37t3ljkJvaNu2Ldq2bSt3jDyxsLDArFmzsGzZMrmj0GtKliyJyMhIABmfdadOncpyqVWueRZZTClAXFwcnj9/rn4eHR2d7Z1lMTEx2LJlC8qXL1+A6XRTrVo1bNmyBaNHj85ymv/Vq1fYsmWLepI/QxYUFIQZM2bg6tWrOfZRUlGYlpaGsLCwHJcyMdSlcaytrWFnZyd3jHdiy5Yt2LFjB27dugVJkuDi4oJu3brh448/ljtakeLq6orHjx/LHeOdUvKSUQBQt25dBAQEoG3btti+fTuSk5M1zhxmXu6TAy/zKcC0adMwffp0rfoKITBr1ixMmDAhn1PpZ+3atRgyZAgaN26M8ePHa8yOvGDBApw8eRIBAQFZ5hkxJDt37kS3bt3g5uaGVq1a4aeffkKfPn2QmpqKnTt3ombNmujUqZPBjjN609y5c996adVQC8OhQ4fiyZMn2LVrl9xRdPbixQt07twZR44cgRACJUqUgBACsbGxkCQJnp6e2L17t6LmNsp8LZw+fTrbAt2QbwpYvnw55s+fjwsXLmQZ16lE2i4ZFRERUcDJtHfixAm0bdsWSUlJEEKgffv22Lt3r7q9evXqqFWrFrZs2VLg2VhMKcCRI0dw+PBhCCEwffp0eHt7o1atWhp9JEmCpaUlGjZsiKZNm8qUNG8mTZqU451JEyZMwMyZMws4Ud40a9YMMTExOHfuHBISEuDg4ICDBw+iVatWuHz5Mpo2bYrAwEBFLOTs7++PYcOGoUWLFmjbti2+/fZbfPHFFzAxMUFAQABcXFwwcuRIg5007/nz52jfvj3q168PX19fuLi46HTnpZzGjh2LH3/8EWPGjMGECRNQpkwZAEBkZCTmzJmDpUuXYsyYMVi8eLG8QbX07NkztGzZEpcvX1bfCZf5cfP63XGGWqAHBgbCz88P9+/fx4ABA1C5cmVYWFhk6WfoN/tkqlOnDqKiohS7ZFSm69ev46+//kKJEiXw8ccfq69sREdHY8aMGfD29pbnDHr+z75A75Knp6c4ePCg3DHemevXr4v58+eLESNGiM8++0zMnz9f3LhxQ+5YWrGyshJz584VQggRHR0tJEkS+/fvV7d/9dVXomHDhnLFy5P3339fNG7cWAghRFRUlJAkSRw6dEgIIcTDhw+Fg4ODCAgIkDNirrSZA8zIyEjumLkqXbq06NmzZ47t3bt3F2XKlCnARPoZMWKEKFasmFizZo0IDw9Xvz7CwsLEJ598Iho0aCBiYmLkjpmjzLnvcnsoZR45IYQwNTUV8+fPlztGocUxUwoTHBwsd4R36r333sNXX30ldwydpKWlqWcMzpyxPTY2Vt1epUoVrFy5UpZseXX16lXMmDEDANRndFJTUwFk3I48bNgwLFmyBIMHD5YtY2769++vuDNRb4qPj0fLli1zbG/VqpXGJQ1D98cff6B///4YNGiQ+u4qIyMjVKlSBRs3boSnpycmTpxosK+RwvZeq/Qlo4CMQecvXrzQuET59OlTrFixAs+ePUPfvn1lm5WexZSC8Q4yeTk6OuL+/fsAMoopBwcHnD17Vn1H2bVr1xQzvsXIyAiWlpYAoM787NkzdXulSpXUk0kaonXr1skdQW+1atXK9f/jGzduoGbNmgWYSD+RkZFo0KABAKjXRXz9TquuXbti/vz5BltMtWjRQu4I71RhWDLqs88+w/nz53Hx4kUAGXOZNWvWTP26+emnn3D06FH1311BYjGlQEq8g0yXle4N/c6SJk2a4MCBA+oB5l26dMGSJUtgYWGB9PR0LF++HJ07d5Y5pXacnJzUd4iampqiQoUKOHr0qPoOstDQUM7dlM8yx3t4enpm+bvZtWsX/P39sXPnTnnC6aBUqVJITEwEAFhZWcHExERjbUETExPExMTIFS/PEhISAED9pUNphgwZgpCQEHh5eWHs2LFwdnbOdhodQ/4i/vp7EgD88ssvuHHjBtatW4e6deuqC/RffvmlwLOxmFKYnTt3ok+fPnBzc8Pw4cNzvIPM0ISHh2e5DPPixQtERUUBAGxsbAD87zKZnZ2dwb9pjRw5Ejt27EBSUhLMzc0xc+ZMnD59GlOnTgWQcWfJggUL5A2ppebNm+P333/HDz/8AADo0aMHFi9ejKSkJKSnp2Pjxo0Ge4nvTUo9Y7tp0yY4Ozuja9euqFKlCtzd3SFJEq5cuYJr166hZs2a2LhxIzZu3Kj+GUO+G87NzU39hU+lUqFu3bpYt24dBg4ciLS0NAQGBsLFxUXmlLl7+vQpJk+ejB07dqjfq+zs7ODj44Np06bB3t5e5oTay/x7EkJgz549OfYztC/ir3v8+DEqVqyofr53717UrFlTfRPA0KFDsWLFClmy8W4+hSksd5BFRESgZcuW6Ny5MyZNmoSyZcsCyFhSY+bMmfjjjz8QHByc47I5hkoIgUuXLsHIyAju7u5QqVRyR9LKtWvXcPjwYQwYMABmZmZ48eIFPv74Y/UYnbZt22LTpk0GfXZKiWdsX6fL34oh3w03c+ZMLFy4EI8ePYKpqSm2bduGjz/+GObm5pAkCUlJSVi1ahWGDBkid9RsRUZGolGjRrh79y4qV66M6tWrQwiBK1eu4ObNm3BycsKpU6fUd10aOqUvGQVkzCc3b948fPbZZwCA8uXLq7/4ARlT7owYMUKeiTtlHf5OeVZY7iDr2rWr8PHxybHdx8dHeHt7F2CivHnx4oWYNm2a+PPPP+WOkq+eP38u4uPj5Y7xVjt27BCSJIkqVaqIESNGCEmSxCeffCJ69eolTE1NRb169cTUqVPljlmkpKeni5cvX2ps+/XXX4W3t7fo3r27CAoKkimZdj799FNhbGwsNm3alKVty5YtwsTERAwbNkyGZEVXrVq1RNeuXYUQQhw7dkyoVCqxc+dOdfsPP/wgSpcuLUs2FlMKY2FhIfz9/YUQQiQmJgpJksQvv/yibl+9erUoXry4XPG0VqJECbFixYoc21esWCFKlChRgInyztTUVKxevVruGCSEaNq0qahWrZpISkoST58+1Zja4dKlS8La2lrjTZfobcqVKydGjx6dY/uoUaNEuXLlCjAR+fn5CUmSRI0aNUSJEiVEuXLlRGJiorq9c+fOokWLFrJk45gphSksd5ClpqbmOtNueHi4wV6+yFQYl5tITEzE7du3s11qAjDc5WT+/fdffPfddzAzM1MPes78+6lRowaGDRuG2bNnG/zlbzIcUVFRqFGjRo7tNWvWhL+/fwEmejeUumQUAPj6+iI+Ph47d+6Eh4cHZs+erZ6WJjo6GqdOnZJtqh0WUwpTWO4ga968OZYvX442bdqgTZs2Gm379+/H8uXL8eGHH8qUTjsjR47E/PnzMXLkSMUvNxEfH48vvvgCGzZsUM8v9Tph4LNVF5Y5v2JiYhAQEJDr8iuGfIfrm168eIHNmzfnuhacoQ6gL1OmDEJDQzF8+PBs20NDQ2VbB05XSl4yKtPkyZOzLG4MALa2tnjy5IkMiTKwmFKYwnIH2cKFC9G0aVO0b98etWvX1rhz6eLFiyhZsqTBH4eVlRVKliwJNzc3xS838dlnn2HLli3w9vbGBx98oLjisDCcsb1z5w6aNm2Khw8fwsbGBnFxcShVqpS6qLKzszP4Y3jdmTNn0LFjR/WEndkx5GLKy8sLK1asQJ06dTBixAj1NAJpaWn4+eefsW7dOowaNUrmlNrz9/fHxIkT37pkFOmGd/MVAkKhd5Ddvn0bkyZNwp49ezTmcOnSpQtmzJhh8HfyafP/syGfzXmdtbU1evXqhdWrV8sdRSeDBg3CjRs3cOzYMQDAsGHDsGHDBkycOBHp6emYN28eOnfujK1bt8qcNGf9+vXDjh078Pvvv6NmzZrqO3UbNWqEmTNnIigoCEeOHIGjo6PcUbXSrFkzXL58Gf7+/mjVqpVB3wmanWfPnqFp06a4fv06SpUqBTc3NwAZa8M9e/YMbm5uOHHihGK+eNSrVw/FihXDiRMnEB0dDXt7e/Wd4I8ePUKdOnUwe/Zsg54CZfr06W/tI0lStmeu8huLKYUJCQmBu7t7jvObREVF4cqVKwZ93ftNQgj16VkHBwfFLAty5MgRrfopYSZlW1tbzJ49G8OGDZM7ik5CQ0OxY8cOTJ48Gebm5nj69Clat26NS5cuAcg4Y7t3715UqFBB5qQ5K1euHHr16gU/Pz/1h92BAwfUl7u7du2K4sWLY9OmTTIn1Y65uTkmTZokywfbuxIfH4+5c+di586dCA8PBwC4uLjA29sb48ePh5mZmXqhXUNXvHhxzJgxA1988QWePXsGOzs7/Pnnn2jbti2AjMtnu3fvVs8ubohy+wIr9+LZvMynMC1btsSGDRvQp0+fbNsPHTqEPn36KOJsSCZJkhQ39gBQRpGkrVatWiE0NFSxxVT9+vU11uSyt7fHP//8o6gzttHR0eoBz5kf0ElJSer2Nm3aYNq0abJk04W1tTXs7OzkjpEn+/fvVxcXQMal/BkzZqjXrXxdSkoKvL29c50A05AofckoANnetJSamopbt27Bz88PsbGxWL9+vQzJAMN+d6Es3nYi8dWrVwb/oQFknGHL7XH06FGcPXtW1gGFb9OqVatcBwMHBwfrtIyOHBYuXIiDBw9i2bJlePXqldxx3glJklCrVi1Ur15dEa8Je3t7PH/+HEDGh7iZmRlu376tbk9JSdEorgxdly5d8Oeff8odI098fHxw6tSpt/ZLTU2Fj48P9u3bVwCp3o2clozKpIQloypWrJjl4erqirZt22Lv3r0wMjLC2rVr5Qkny4QMpDNJksTmzZuzbXv+/Lno06ePIuY+kSRJqFQqrR516tTRmJjUUEiSlO2EfpmCgoKESqUqwET62bhxozAyMhImJibCyclJODs7azxcXFzkjliotW3bVvTv31/9vEWLFsLd3V3cuXNHREREiKpVq4p69erJmDBvYmJiRMOGDcXo0aPFzZs3RXp6utyR3qpChQrC1tZWXL58Occ+KSkponPnzkKSJDFy5MgCTKefESNGiNq1a6uff/nll8LIyEgMGjRIDBgwQBgZGYmhQ4fKF/AdWLx4sShfvrws/21e5lOAadOmqQfeSZKEvn37om/fvjn29/X1LaBkuluzZg2WL1+Oa9euoW/fvqhatSqEEAgLC8OmTZvg7u6Ofv36ISwsDBs2bEDHjh3x999/o1mzZnJH19rTp09hZmYmdwytrFu3DkOGDIGpqSnc3NwMflCtLmu6SZKEW7du5UOad8PLywuLFi1S36n7/fffo127dnB2dgaQkX/79u0yp9ReqVKlIEkSQkNDc1wvTZKkbKfikMuBAwfwwQcfoF27djh27FiWm2DS0tLQs2dP7NmzB8OHD8fy5cvlCaqDsWPHonbt2nj58iXMzMwwbdo0XLt2TX1ZrG3btpgzZ47MKfWTkpKS692j+YkD0BVg165d2LlzJ4QQCAwMxAcffJDlw0SSJFhaWqJhw4bo3bu3wV/WWLZsGebNm4fTp0+r1+XL9ODBAzRq1AiTJ0/GsGHDcP/+fdSpUwcNGjRQrxUnl5CQEBw+fBhAxlpX3bp1Q61atbL0i4mJQVBQEJydnXHixIkCTpl37733HmxsbPDXX3+p52syZJ6enjrdqBAcHJwPafLPmTNnsGXLFhgbG8Pb2xtNmjSRO5LWBg4cqNXvSLbLMjm4cOECPD094eDggGPHjqnHc2YWUjt27MDQoUPx888/y5z03YiNjdUYT6VUZ8+eRdeuXeHg4IDz588XfABZzoeRzipVqiR27doldwy9ubm5iR9++CHH9unTp4uqVauqn3/zzTeiZMmSBREtV1OnThWSJKkvU2b+O7tH5cqVxalTp+SOrBVzc3OxfPlyuWMQGYQjR44ICwsLUatWLfH8+XORmpoqfHx8hCRJ4tNPP5U7XpH15tCDzIeNjY1QqVSiWLFiYt++fbJk42U+hcltCRYluXPnDmxsbHJst7Gx0Rh8W7lyZfUyIXLy9fXFwIEDIYSAi4sLFi9enGWJksyzhIY+mPN1VapU0bizhwrGvHnz8tTfyMgIJUqUQM2aNdGgQYN8SkXNmzfHtm3b4O3tjY8++giOjo7Yvn07Bg0ahFWrVskdr8hycnLKcrZTkiR4eHjAzc0Nw4YNk21+Ql7mU7jw8HAEBQXhwYMHqF69OgYNGqReTsOQubq6okKFCggODs7y4khPT4enpyfu37+vnttl1qxZWLZsGR4+fChH3GytX78eLVq0MPjJRbXxyy+/wNfXF6GhoShXrpzccYoMXS/HS5KE2rVrY8+ePYr4fSUkJOD58+fZrgXn5OQkQyLtbNmyBf369YMQAgMGDMCaNWvkjqQ1lUqV50vhhjaGLa+OHz+O77//XpYll3hmSgECAgKwdOlS7Nu3T+ON88CBA+jWrRsSExPVk5X99NNPOHHihMFf/x46dCgmTZqEtm3b4osvvlDPLhwWFobFixfj+PHjmDlzprr/3r17UadOHZnSZm/AgAHZbr9z5w6ePXuGOnXqKGYC0qtXr6JcuXKoWrUqvL29UalSJfXyGZnkmllYW0FBQfjxxx/V68C9yRA/KPI6hksIgbi4OJw8eRKLFi3Cl19+iS1btuRTOv0FBQVhxowZuHr1ao59DGlOvOyWU3FycsKTJ09QrFixLO2SJBnsIPT+/fsr5v1HG9HR0bh16xZsbW3h6uqq0XbmzBlMnjwZBw8elG+8sCwXFylPunbtKjw8PDS2paenCxcXF6FSqcSkSZPE77//LoYMGSIkSRLTp0+XKan20tPTxejRo7OdIkGSJDFq1Ch136SkJPHTTz+JM2fOyJg4K39/f41b2YUQYuzYserjqFu3roiJiZEnXB7lNvbr9TFihmrevHlCpVIJe3t70blzZzFw4MBsH4XJuHHjhK2trdwxcrRjxw4hSZKoUqWKGDFihJAkSXzyySeiV69ewtTUVNSrV09MnTpV7pgatHkdKOU1UVikpqaK4cOHCyMjI/V7a6NGjcTjx49FXFyc+OSTT4RKpRLGxsaib9++4urVq7Lk5GU+BXBxcUHPnj01bls9ceIEmjVrhgEDBmjcDfPhhx/i+fPnOHfunBxR8ywsLAy7d+9GRESEehxS586d4e7uLne0t2rQoAFq166tXs/u9OnTaNy4Mdq1a4dq1arhxx9/xPjx47OdPdnQ3LlzR6t+FStWzOckuqlUqRLKlSuHQ4cOKeIy97uwZcsWjBo1ymDHujVr1gwxMTE4d+4cEhIS1GsNtmrVCpcvX0bTpk0RGBiYZcyhnLR9HbzOUF8Tr0tMTMSCBQvQsGFDtGvXTu44ebJ48WKMGzcOFSpUQMOGDXHz5k38888/8Pb2xuPHj3Hq1Cn07dsXkydPznLGqkDJUsJRnlhaWoqff/5ZY1vmN/E///xTY/uCBQuEtbV1QcYrsmxtbcXixYvVz7/++mthb28vUlJShBBCjBo1Sri7u8sVT2svXrwQ06ZNy/K3pCSmpqa8G9HAWFlZiblz5wohhIiOjhaSJGlMvvvVV1+Jhg0byhWvyDE1NRWrV6+WO0aeeXh4iFq1aokXL16ot40cOVJIkiTs7e0N5o5pw56MiAAAxsbGSElJ0dh25swZANBYjwzIWLA2OTm5wLIVZQkJCbC2tlY/P3ToEFq3bq1eV61u3bq4d++eXPG0ZmFhgVmzZikia05cXV0RGxsrdwx6TVpamnrOssyzha//jqpUqYLLly/Lkq0ocnV1xePHj+WOkWfXr19H//79YWFhod42YsQIAMCECRPQsGFDuaJpYDGlAM7OzhrrRaWlpeHo0aNwdXXNcvt9dHS0YhYXPXnyJD755BM0aNAArq6ucHFx0XjIespWC2XKlMH169cBAE+ePMHFixfxwQcfqNvj4+OzDOI2VEp9o830xRdfwN/fH/Hx8XJHof/n6OiI+/fvA8gophwcHHD27Fl1+7Vr19QL7lL+GzlyJFavXo2YmBi5o+TJixcvUKZMGY1tmc8zFwY3BLybTwG6d++OadOmoUmTJvD09MTatWvx9OlTDB48OEvf06dPq5efMGSBgYEYNGgQTExM4ObmZtC3R+fkww8/xIoVK2BnZ4e///4bkiShQ4cO6vbr16/D0dFRxoTaGzlyJObPn4+RI0ca/FIy2SlWrBjs7e3h7u6OwYMHw9nZOdtCtn///jKkK5qaNGmCAwcOYMqUKQAyFj5esmQJLCwskJ6ejuXLl6Nz584ypyw6rKysULJkSbi5uWHAgAGoXLmyxtmeTIb4Gslubikg46qNoeAAdAVISEhAvXr1cOPGDQAZt0dXqFAB58+f11j6IzY2FuXLl8e4cePUa/kZqipVqsDIyAgHDx5UxDw52bl//z5at26tPjs1ZcoU9QdHamoqypcvDx8fnxzXJTMkgYGB8PPzw/379xX3RgtoN1+TJEkGdRt+YRcaGoodO3Zg8uTJMDc3x9OnT9G6dWtcunQJAFC9enXs3bsXFSpUkDlp0aDU14hKpcLHH3+sMTVOYmIifvjhBwwZMgSVK1fW6C9JEr7++usCTsliSjESEhKwatUq3LhxAy4uLhg6dChKlCih0efUqVPYtGkTRowYgWrVqskTVEtmZmaYN28exowZI3cUvaSlpeHKlSuwsbHROLsWFxeH4OBg1K5dWxGTeir1jTbTkSNHtOrXokWLfE5CuRFC4NKlSzAyMoK7u7vBryFamCj1NZLXvxG53qdYTJEsXF1dMWLECHz11VdyRyEo942WiAo3bd+bXifH+xSLKZLF3LlzERQUhLNnzypmkPab7t69q1U/JY4HI9JFSkoKxowZg6pVq8LX1zfHfosWLcLNmzexdOlSgxr3UlQkJycjKioK9vb2KFasmNxxCgUWUySL4OBgTJw4Ea9evcKoUaNyHDDcvHlzGdJpR9u1rwz10lhOlPBGGxgYCADo168fJElSP38bQx3zVVj4+/tjxIgRuHjxYq5DDS5duoS6desiICAgx2WZDMHJkyexbNky9RJFb35cSpKEW7duyZQu786fP4+vvvoKx44dQ1paGg4cOIBWrVrhyZMn6N27NyZOnIjWrVvLHVORWEyRLN68Dv5mUSL+f61BQy5Epk6dmiV3amoqbt26hV27dqFmzZr46KOP1IPSDZ2S3mgzC9mkpCQUK1ZM/Ty3tzND/3sqDNq3b49ixYph9+7db+3bpUsXpKamYu/evQWQLO/evOP49Zt9XpfX9RXl8s8//6Bp06aws7NDmzZtsHbtWvVrHMi4+9LV1RUbNmyQOaky8fwqyeL1JXCUaurUqTm2hYeHo3HjxqhXr17BBdLDP//8gw8++AB2dnbo37+/xu/HwcEBSUlJWL9+vcEUU5kfYJlnzpTygVbYXbhwAd98841WfVu0aIH58+fncyLdzZw5E1WqVFH0Hcev+/7771G+fHmcP38eL1++xJo1azTaP/zwQ2zbtk2mdMrHYopkYcin9t8FFxcXDB8+HFOmTEHHjh3ljvNWSnujfXOAKQfGG4aYmJgcz+C8ydbW1qAnkLxz5w7mzZtXKAopADh69CgmTpwIS0vLbFfJcHJywsOHD2VIVjjwvlSifFK+fHlcuXJF7hhaOXr0KD799FNYWlpmOw6Mb7SkDWtrazx9+lSrvlFRUbCyssrnRLorX758lmW8lOzly5ewsbHJsT0uLq4A0xQ+PDNFBSIkJATA/waUZz5/G0MegP42O3fuVMxs4oXljfbx48c4e/YsYmJikJ6enqWdA9DzV40aNfDXX39pNeXJ/v37Ub169QJIpZthw4Zh06ZN+OKLLxR7x/HrXF1dce7cuRzbDx06ZPDzExoyFlMGLnNwYF5IkoRDhw7lQxrdeXp6agwYznyeEyUMQM9plvlnz57h77//xuXLlzF+/PgCTqUbpb/RpqenY9SoUfD398+2iMrEYip/+fj4wNfXF9u3b0e3bt1y7Ldjxw4cOnQIixcvLrhwb/HmF7yGDRtix44daNCggWLvOH5dnz598MMPP6BHjx7w8PAA8L8bf+bNm4e//voLS5YskTOiovFuPgNXqVKlLEXHixcvEBUVBQDqswmZq7Hb2dnB0tIS4eHhBRv0LdatWwdJktC/f39IkoT169dr9XOGPLYqt5l5y5Qpg9GjR+Obb75RxLfaWbNm4YcffsDu3bvh4eEBe3t7HDp0CC1btsS8efMwceJELFmyBKNHj5Y7arbmzZuHCRMmoG/fvmjbti369++PuXPnwsrKCosXL4aNjQ1mz56t05cT0l5ycjI8PDxw48YNfPnllxg2bJjGWqERERFYvXo1Fi5ciMqVK+PcuXMwMzOTMfH/ZDfVyesfj0q84/h1KSkpaNeuHUJCQvDee+/hxo0bqFatGp4+fYqnT5+iTZs22Lt3L2el1xGLKYWJiIhAy5Yt0blzZ0yaNAlly5YFADx69AgzZ87EH3/8geDgYEUsYfI2r169gomJidwxcnTnzp0s2yRJQqlSpWBpaQkgo/AtXrx4QUfLM6W/0VavXh1OTk7Yt28foqOjYW9vj4MHD6JVq1Z48eIFatWqhc8++0yWNbuKmjt37qBjx464cuUKJEmClZUVrK2tER8fj7i4OAgh4O7ujj179hjUouzafsF7kyF/4XtTamoqli5dis2bN+Pq1asQQsDNzQ39+vXD2LFjOYGqPgQpSteuXYWPj0+O7T4+PsLb27sAE2nvr7/+0rpvcnKy6NixYz6myV/Hjx8XgwcPFtbW1nJH0dqrV6/EwoULxfvvvy8sLCyEubm5qF27tliwYIF49eqV3PFyZWZmJpYsWSKEEOLZs2dCkiTx559/qtt/+OEH4ebmJle8Iufly5di2bJlokWLFsLW1laYmJgIW1tb4enpKZYtWyaSkpLkjkj0TrGYUpgSJUqIFStW5Ni+YsUKUaJEiQJMpD1LS0tx8uTJt/Z79eqV6NSpk1CpVAWQ6t15/PixmDdvnqhatapQqVRCkiRRu3ZtuWMVCSVLlhQrV64UQgiRkpIiVCqVCAwMVLevXr1amJubyxWPFGjQoEHi1KlTObafPn1aDBo0qAATkSHjOT2FSU1NRURERI7t4eHhBnsNv2TJkujUqROOHDmS4108qamp8PHxwR9//IERI0YUcMK8S09Px969exEQEIC9e/ciNTUVNWrUwOzZs+Hj4wNXV1e5IxYJFStWVL8uTExMULlyZfz555/o168fAODgwYMoXbq0nBFJYdatW4fWrVujYcOG2bZHRERg/fr1WeZkM2RCCBw8eDDX5XEmT54sUzplYzGlMM2bN8fy5cvRpk0btGnTRqNt//79WL58OT788EOZ0uXuwIED+OCDD9CuXTscO3Ysy7iutLQ09OjRA7///juGDx+O5cuXyxNUCzdu3MCaNWsQGBiIR48eoWzZsujduzc2bNiAKVOm5HonkyF59OgRJElCmTJlAGRMkbB06dIs/ZycnPDxxx8XdDyttWrVCtu3b8fcuXMBZKzZ9/333+Phw4cQQuDo0aNa3a5PpK24uDiDXbsyOzdu3EDXrl0RFhaW47JLLKZ0xwHoChMWFoamTZvi+fPnqF27Ntzd3SFJEq5cuYKLFy+iZMmSOH78OKpUqSJ31GxduHABnp6ecHBwwLFjx9RnC9LS0tCzZ0/s2LEDQ4cOxc8//yxz0uwFBgYiICAAR48ehampKbp06YKBAweiXbt2iIiIwHvvvYdff/1VEcXUtWvXUKNGDcyYMUO9BEjm4O0317kzNjbG5cuX4ebmJlfcXD169Aj//vsvPD09YWpqirS0NPj6+mLTpk0wMjJC9+7d4efnZzB3jpFh+vfff/HPP/8AAAYOHIjhw4ejcePGWfrFxMRgxYoVsLCwwIULFwo4pW7at2+Pw4cPY8aMGWjVqlWOM9VXrFixgJMVEjJeYiQdRUREiN69ewsrKyshSZKQJElYWVmJTz75RERERMgd762OHDkiLCwsRK1atcTz589Famqq8PHxEZIkiU8//VTueLmSJEm899574qeffhLPnz/XaLt586aQJEn89ttvMqXLm/HjxwsHBweRnJys3hYVFSUkSRKLFi0Shw8fFocPHxZ///23KFWqlJgwYYKMaYny39SpU9XvqZnjHnN6WFlZiT179sgdWWvFixcX33zzjdwxCi1e5lOgSpUqYfPmzRBC4MmTJwAyFqPNbRJMQ9K8eXNs27YN3t7e+Oijj+Do6Ijt27dj0KBBWLVqldzxcmVmZoZbt25h69atsLCwgI+PDywsLOSOpZPg4GB06dIl20sVtWvX1ljvrlevXgY3ESzRuzZw4EB4enpCCIFWrVrh22+/zbK4tyRJsLS0RLVq1RR1prNYsWIGNRVFYcNiSsEkSVLsoNqOHTti/fr16NevH06fPo2BAwciICBA7lhvFRkZiU2bNmHNmjUYMGAARo0ahe7du2PgwIGKWxD1xo0bWs+RU7VqVQQFBeVzory5e/dunn/GyckpH5JQYVGxYkX1Za4pU6bAx8cHNWrUkDnVu9G6dWscP34cw4cPlztKocRiSoHi4+Ph5+eH/fv34/HjxwgMDETjxo0RFRWFFStWoGfPnqhatarcMbMYOXJklm1OTk548uQJihUrlqVdkiSDG4RubW2NESNGYMSIEfj333/h7++PzZs3Y/369eqxRjExMXLH1MqLFy/Uk4tmKlmyJC5dupTlG6y1tTVevHhRkPHeKrvVAd7GUO90JcMzZcoUuSO8U35+fmjRogUWLlyIzz//XFGD55WAA9AV5unTp2jWrBnCw8NRuXJlXL9+HQcOHFAvk+Hq6govLy8sWrRI5qRZ5XX2bKUs1ZCSkoLt27cjICAAf//9NwCgWrVq6NGjB3x8fAx2MVcHBweMGzcOEyZMeGvfOXPmYNGiRerLyoZApVLB3NwcnTt3hr29vVY/8+OPP+ZzKiosAgMDtepnqOs9uri4ZNmWkJCA6OhoqFQqlCtXLstSV5Ik4datWwUVsVBhMaUww4cPR1BQEIKDg+Hk5AQHBwf1shkAMG7cOBw6dAgXL16UOWlW2S2/8jZKu7Pkzp07WLNmDdavX4+7d+9CpVIhNTVV7ljZ+vDDDyGEUBeAucn8+9Kmb0Hx8vLCvn37IEkSOnbsiMGDB6NDhw4Gu+QNKUvmWn1vfkS+eTbUUL/wvW0x+ZwEBwfnQ5rCj5f5FGbPnj0YNWoUPDw8EB0dnaXdxcUF69atK/hgWlBaYaSLihUrYtq0aZg6dSr2799v0BP6+fj44PPPP8fu3bvRpUuXHPvt3LkTR44cyXb+KTnt2rULT548wfr167F+/Xp06dIFZcqUwYABAzBo0CCDncaBlCG7oiI1NRW3bt1ST4swc+ZMGZJp5/Dhw3JHKFrku5GQdFGsWDHh7+8vhPjfbeyHDh1Sty9fvpzLZpBWXr58Kdzd3YWpqamYPHmyuH37tkb77du3xXfffSdMTU2Fu7u7ePnypUxJtXPy5EkxdOhQYWNjI1QqlWjSpIkICAgQ8fHxckejQubly5eiVq1aYsGCBXJH0dqRI0fEkydPcmx/+vSpOHLkSAEmKlx4PlxhypQpk+s17fPnz/OOJdKKqakp9uzZA2dnZ8yYMQMuLi4oWbIkKlasiJIlS8LFxQUzZ85EpUqVsGfPHpiamsodOVeNGjXCqlWrEBkZifXr10MIgaFDhxrk+EFSNlNTU/Tt2xcrVqyQO4rWWrZsiQMHDuTYfujQIbRs2bIAExUuLKYUpkOHDggICMCjR4+ytJ04cQIbNmyAl5eXDMlIiVxcXHDhwgUsWbIEzZo1g5GRER49egQjIyM0a9YMixcvxoULF7IdzGqoLly4gJCQEPz3338QQqBUqVJyR6JCyNTUFA8ePJA7htbEW4ZHv3r1iuMN9cAB6AoTGRmJ999/H6mpqejUqRPWrVuH3r17Izk5Gbt27UL58uVx7tw5foBQkfLo0SMEBgZi7dq1uHHjBsqWLYv+/ftj0KBBeO+99+SOR4XMo0eP1DdwXL16Ve44WlGpVNi0aRN69+6dpS02NhYjR47E4cOHFVUgGhIWUwp07949jBo1Cnv37kV6ejqAjDtMOnTogJUrV8LR0VHmhET579WrV9i9ezfWrl2L/fv3Q6VSoUuXLhg8eDDatm3Lb9mkl8w7WN/07NkzhIWFISUlRT3xsKGaNm0apk+frnV/X19fLFy4MB8TFV4sphQsNjYW169fhxAClStX5tkoKlLs7OwQExODunXrYtCgQfjkk09QokQJuWNRIZHdpLCSJKFUqVJwc3PD6NGj0aRJE5nSaWfXrl3YuXMnhBAIDAzEBx98kOWSfebyOA0bNkTv3r35JURHLKYUJjAwEM2bN0elSpWybb99+zZCQkIMdiI5onclc9JObafckCQJ//33Xz6nIjJMzs7OWLJkSa7ToJDuWEwpjJGRETZs2IA+ffpk275161b06dPH4CaSy+mUeW4kSeLiupQjXZaTiYiIyKc0RFSUcdJOhXlb7ZucnJxliQBDEB4enuWD78WLF4iKigIA2NjYAMi4dAlkXMJ5c904otfdvn1b7ghUBNy/fx+7d+9GeHg4gIwluzp37qzYsakhISHqdV2//PJLVK1aFQkJCTh//jxq1arFS+U6YjGlAHFxcXj+/Ln6eXR0NO7evZulX0xMDLZs2YLy5csXYDrtvPnBFxERgZYtW2LUqFGYNGkSypYtCyDjLpmZM2fijz/+MKilS4io6JkzZw6mTJmC1NRUjS+yvr6+mD59Or755hsZ0+VNWloa+vTpg19//RVCCEiShN69e6Nq1aowNjZG165d8dVXX2HSpElyR1UkXuZTgLzckSGEwKxZs7RavFZO3t7eMDIywq+//ppte/fu3ZGeno7t27cXcDIiIiAoKAh9+vRBrVq18NVXX6FmzZoQQuDy5ctYuHAh/v33X2zevBm9evWSO6pWZs2ahe+//x4LFy5E+/bt4e7urrGu65AhQ3Dt2jUcO3ZM5qTKxDNTCuDp6Qkgo1CaPn06vL29UatWLY0+r9+R0bRpUxlS5s3hw4cxa9asHNs//PBDfkOiHPXt2xdTpkzJ8xxSN27cwLRp07Bx48Z8SkaFhZ+fH+rUqYMTJ07AzMxMvb1OnTro0aMHGjVqBD8/P8UUU4GBgejfvz/Gjh2b7bqu7u7u2Lt3rwzJCgcWUwrQokULtGjRAgBw5MgRjBw5Eh9++KHMqfSTmpqa62Dg8PBwgxtET4bj1q1bqF69Oj766CP0798f7dq1y3GMXUJCAv78809s2LAB+/btQ/369Qs4LSnRf//9h+nTp2sUUplMTU3Rr18/fP/99zIk083t27fx5Zdf5theokQJxMTEFGCiwoXFlMJkt5K5EjVv3hzLly9HmzZt0KZNG422/fv3Y/ny5YovGCn/nDx5Elu2bMEPP/yAHj16QKVSwd3dHa6urihVqhSEEIiJicHNmzcRFhaG9PR0VKtWDRs2bFDMmQSSl0qlQkpKSo7tr169yvPdpHKysrLCs2fPcmy/ceMG7O3tCzBR4cIxUySLsLAwNG3aFM+fP0ft2rXh7u4OSZJw5coVXLx4ESVLlsTx48dRpUoVuaOSgQsODsa2bdsQEhKCa9euqVcFyCywPD090aNHDzRv3lzmpKQkH3zwAZ4+fYqzZ89mOesZHx+P+vXrw8HBASEhITIlzBtvb2/cvHkT//77L549ewZ7e3v1mKno6GhUrVoVH330EQIDA+WOqkgspgycSqWCSqVCYmIiihUrBpVK9dZvQ5IkITU1tYAS6u727duYNGkS9uzZg4SEBACApaUlunTpghkzZuQ4MSlRTtLT0xEdHQ1JkmBra6uoMwdkWH7//Xd4eXnBxcUFn3/+OapVqwYg4/LfsmXLEBERgV27dqFTp04yJ9XO2bNn0axZMzRu3Bj9+vXDp59+innz5sHc3Bzz5s1DVFQUQkND1cdJecNiysANHDgQkiTB398fRkZG6udvs3bt2gJI924IIfDkyRMAgIODAz8AicggrFq1Cl9++SVevHihfl8SQqB48eJYuHAhhg0bJnPCvNm7dy8GDx6sfr+VJAlCCDg4OCAwMBBt27aVOaFysZgiIiLKQWxsLA4cOIDw8HAIIeDq6oo2bdqoJxpWmuTkZOzfvx9hYWEQQsDNzQ3t2rWDubm53NEUjcUUySY+Ph5+fn7q2XgDAwPRuHFjREVFYcWKFejZsyeqVq0qd0wiIqJc8W4+BUtMTER0dHS2S8w4OTnJkEh7T58+RbNmzRAeHo7KlSsjPDwcSUlJADKWklm/fj2eP3+ORYsWyZyUiAh4/vw59u7diwcPHqBatWro2LGj3JHeqkOHDnnqL0kS/vjjj3xKU7ixmFKY9PR0zJs3Dz/++CMiIyNz7GfoczR99913iIyMxOnTp+Hk5AQHBweNdi8vLy5yTEQFaseOHVi7di1++uknlCtXTr39/Pnz6Ny5MyIjI9VLsbRq1Qp79+6FiYmJjIlz9+eff+apP8er6o7FlMJMmDABCxYsQPXq1eHj4wNbW1u5I+lkz549GDVqFDw8PLKdjdfFxQXr1q0r+GBEVGRt27YN169f1yikAGDQoEF49OgRevfujcaNG2P37t04dOgQVqxYgbFjx8qU9u0ypwnJTXBwMCZMmIDQ0FD1GqmUdyymFGbjxo1o37694qf9j4qKgqura47tKpUKL1++LMBERFTUnTt3Dp07d9bYdv78eVy6dAleXl7YtGkTAGDUqFFo0KABtm3bZtDFVG7+/fdfTJgwAX/99ResrKwwY8YMfPHFF3LHUiyV3AEob2JiYuDl5SV3DL2VKVMGt27dyrH9/PnzBj/ui4gKlydPnqBy5coa244ePQpJkjBgwAD1NkmS4OPjg6tXrxZ0RL3dvXsX/fv3h4eHB4KDgzF27FiEh4dj0qRJvKNPDyymFKZ69ep49OiR3DH01qFDBwQEBGR7LCdOnMCGDRsKRdFIBef48ePo1KkT7O3tYWxsDCMjI42HsTFPxFPusrssFhoaCgBo3LixxvYyZcrgxYsXBZLrXXj27BnGjRuHKlWqYPPmzejTpw+uXbuGRYsWoVSpUnLHUzwWUwozefJk/PTTT7h3757cUfQyZcoUGBsbo06dOhg/fjwkScKaNWvQo0cPeHp6oly5cvjmm2/kjkkKERISgpYtW+L06dNo2LAh0tPT0bJlS9SvXx9CCNSoUQP9+vWTOyYZuIoVK+LixYsa244ePYry5cujdOnSGttjY2MVUYQkJSVh1qxZcHV1xeLFi9GyZUtcuHABgYGBPPv/DvGrmsJcvHgRFStWRLVq1eDt7Q1nZ2cYGRlp9JEkCZMnT5YpoXbKlCmDU6dOYdSoUVi/fj2EENi8eTMkSUKHDh2wcuVKRbxRkWGYOXMmypYti7Nnz0KSJDg4OGDSpElo1aoV9u/fj+7du2PFihVyxyQD99FHH2HlypXo0qULPD09sWrVKty7dw+jRo3K0vfcuXMGX4ysWrUK06ZNQ2RkJOrXr4+5c+eiRYsWcscqlDhpp8KoVG8/mShJksFPjfC62NhYXL9+HUIIVK5cmUUU5VnJkiUxbtw4TJ48Gc+ePYOdnR3279+P1q1bA8gYMHz16lX8/fffMiclQ/b06VPUrFkTT58+VW+ztrbGxYsXNQqnly9foly5chgyZAjmz58vR1StZK7lWq9ePfj4+Ly1vyRJ+PrrrwsgWeHDM1MKExERIXeEdyIwMBDNmzdHpUqVYGNjg/r162u03759GyEhIejfv79MCUlJkpOTUb58eQCAqakpgIwZ9jPVqVMHGzdulCUbKYe9vT3Onj2LefPm4caNG3BxccFXX32V5QzUqVOn0LRpU/To0UOmpNoTQiA0NFQ99is3LKZ0x2JKYSpWrCh3hHdi0KBB2LBhAypVqpRt++nTpzFo0CAWU6SVsmXLqm9mKF68OEqUKIHLly/D29sbAHD//n0OQCetODo6YunSpbn28fT0hKenZ8EE0kNwcLDcEYoMvruQLN52dTk5OTnLWDCinNSvXx/Hjh1TP2/bti38/PxQsWJFpKenY9myZWjYsKGMCYkKHsdHFRwWUwowePDgHNskSYK5uTmcnZ3RpUsXvPfeewWYLG/i4uLw/Plz9fPo6GjcvXs3S7+YmBhs2bJFfdmG6G2GDBmCdevWISkpCebm5pg1axZCQkIwcOBAABk3PMybN0/ekERUaHEAugJoM+g8s9/EiRPxww8/5HMi3UybNg3Tp0/Xqq8QArNmzcKECRPyORUVVgkJCfj7779hZGSEZs2awcbGRu5IRFRIsZhSgDt37uTanpiYiP/++w/Lli3D0aNHsW3bNq3u3ChoR44cweHDhyGEwPTp0+Ht7Y1atWpp9JEkCZaWlmjYsCGaNm0qU1IiIiLtsZgqRF69egUPDw84ODjg0KFDcsfJVcuWLfHdd9/hww8/lDsKERGRXjgDeiFiYmKCXr164cKFC3JHeavg4GAWUvROBQUFoWnTpnBwcMiylAyXkyGi/MR3l0KmdOnSiloviuhdmD9/PiZMmABbW1s0atQItra2ckcioiKExVQhc+vWLYP8IFGpVFCpVEhMTESxYsXUM/PmRpIkpKamFlBCUrLly5ejYcOGOHToEMzNzeWOQ0RFDIupQuTRo0fw9/c3yMtn/fv3hyRJ6rmjMp8TvQuRkZEYP348CykikgWLKQUIDAzMtT0pKQlXrlxBUFAQEhISMH78+AJKpr1169bl+pxIH66uroiNjZU7BhEVUbybTwHedkks81dYoUIFrFy5Eh06dCioaEQGwd/fH7Nnz8Y///wDKysrueMQURHDM1MKsHbt2lzbM2dA9/DwUOQSLImJiYiOjs52iZk3Fxglyk6xYsVgb28Pd3d3DB48GM7Oztm+FrjWIxHlB56ZIlmkp6dj3rx5+PHHHxEZGZljv7S0tAJMRUqlzSoBkiTx74mI8gXPTJEsJkyYgAULFqB69erw8fExyDsQSTmCg4PljkBERRjPTJEsypUrhzp16mDv3r1yRyEiItILZ0AnWcTExMDLy0vuGERERHrjZT6SRfXq1fHo0SO5Y5BCZU4X0q9fP0iS9NbpQzJxADoR5Qde5iNZ7Nq1C8OHD0doaCgqVKggdxxSmMzpQpKSkjRm1M/t7YwD0Ikov/DMFMni4sWLqFixIqpVqwZvb+9sb2WXJAmTJ0+WKSEZsswB58WKFdN4TkQkB56ZIlnwVnYiIioseGaKZBERESF3BCIioneCZ6aIqFAQQuDgwYO4ceNGtjPq87IxEeUXFlNEpHg3btxA165dERYWluMgdF42JqL8wst8VGAGDx6cY5skSeo1Brt06YL33nuvAJOR0n3++ee4desW5s6di1atWnFGfSIqUDwzRQVGm0Hnmf0mTpyIH374IZ8TUWFhaWmJ0aNHY86cOXJHIaIiiGemqMC8bdB5YmIi/vvvPyxbtgyzZs1CnTp14OPjU0DpSMmKFSsGZ2dnuWMQURHFM1NkcF69egUPDw84ODjg0KFDcschBejZsyfMzMy0ngmdiOhd4tp8ZHBMTEzQq1cvXLhwQe4opBB+fn44ceIEFi5ciJSUFLnjEFERwzNTZJBWr16N0aNHIzk5We4oZIBcXFyybEtISEB0dDRUKhXKlSuX7Yz6t27dKqiIRFSEcMwUGaRbt27xjizKkZOTEyRJkjsGEREAnpkiA/To0SPUrFkTH374IbZu3Sp3HCIiolyxmKIC87bBwUlJSbhy5QqCgoIQGxuL48eP4/333y+gdERERLphMUUFRqVS5XppJvNPsUKFCli5ciU6dOhQUNFIgVJSUjBmzBhUrVoVvr6+OfZbtGgRbt68iaVLl8LYmCMbiOjd4zsLFZi1a9fm2p45A7qHh0eWwcNEbwoMDERAQAAuXryYa782bdpg/PjxaNiwIQYMGFBA6YioKOGZKSJSpPbt26NYsWLYvXv3W/t26dIFqamp2Lt3bwEkI6KihvNMEZEiXbhwAZ6enlr1bdGiBc6fP5+/gYioyGIxRUSKFBMTo/X0Gba2toiJicnnRERUVLGYIiJFsra2xtOnT7XqGxUVBSsrq3xORERFFYspIlKkGjVq4K+//tKq7/79+1G9evV8TkRERRWLKSJSJB8fH/z999/Yvn17rv127NiBQ4cOoXv37gWUjIiKGt7NR0SKlJycDA8PD9y4cQNffvklhg0bBmdnZ3V7REQEVq9ejYULF6Jy5co4d+4czMzMZExMRIUViykiUqw7d+6gY8eOuHLlCiRJgpWVFaytrREfH4+4uDgIIeDu7o49e/ZoFFpERO8SiykiUrTk5GT4+/vjl19+weXLlxEXFwdra2vUrFkT3bt3x5AhQ3hGiojyFYspIiIiIj1wADoRERGRHlhMEREREemBxRQRERGRHlhMEREREemBxRQRERGRHlhMEREREemBxRQRKdbLly/x448/okWLFrC1tYWJiQkcHBzQrl07rF69GsnJyXJHzGLdunVYvHix3DGI6B3iPFNEpEi3b99Wz37eqlUrtGvXDvb29oiOjsbhw4exb98+DBkyBKtWrZI7qgZPT0/cvn0bt2/fljsKEb0jxnIHICLKq5cvX6JTp064du0atm3bhh49emi0f/XVV7h8+TL2798vU8J3JyEhAZaWlnLHIKJc8DIfESlOQEAA/vvvP4wbNy5LIZWpRo0aGDdunMa248ePo3379ihRogTMzc1Ru3Zt/Pjjj3jzBL2npycqVaqUZZ+3b9+GJEmYOnWqetvhw4chSRLWrVsHf39/VKtWDaampqhYsSLmzZun8fOSJOHIkSO4c+cOJElSPzLPUlWqVAmenp64cOEC2rVrBxsbG9SsWRM7duyAJElYvXp1tsdau3ZtODk5IT09/S3/zxFRfuCZKSJSnF9++QUAMHz4cK1/Zu/evfDy8oKdnR18fX1RsmRJ/PbbbxgzZgwuXbqk9+XAlStX4smTJ/j0009hY2ODjRs34ptvvoGjoyP69OkDANiwYQNmzpyJqKgo+Pn5qX/W3t5e/e+7d+/iww8/RI8ePeDj44OEhAR07twZZcuWRUBAAIYOHarx3z179iz+/fdffP/991Cp+P2YSBaCiEhhSpUqJaysrLTun5qaKipWrCisrKzEvXv3NLa3b99eABDHjx9Xb2/RooWoWLFilv1EREQIAGLKlCnqbcHBwQKAKFu2rIiJiVFvf/HihbCzsxONGjXS2EdO+xZCiIoVKwoAYs2aNVnaJk2aJACIS5cuaWz/7LPPhEqlErdv387l/wEiyk/8GkNEihMXFwdra2ut+58/fx537tzBwIED4ejoqN5uZGSESZMmAQC2b9+uV6ZBgwahRIkS6ucWFhZo1KgRbty4kaf92NraYsCAAVm2Dx06FCqVCgEBAeptSUlJ2LJlC1q3bo2KFSvqnJ2I9MNiiogUx9raGvHx8Vr3Dw8PBwBUr149S1vNmjU1+ujKxcUlyzZbW1tER0fneT/ZXa6rVKkS2rRpgw0bNiAlJQUA8OuvvyI2NhaffvqpbqGJ6J1gMUVEilOzZk3ExcXh1q1bWvUXeZwBRpKkbLenpqbm+DNGRkZ5+m/kxMLCIse2YcOGITo6Gjt37gSQMRDfzs4OXl5e7+S/TUS6YTFFRIrTvXt3AMjx7rY3ubq6AgD++++/LG2XL1/W6AMApUqVwrNnz7L01ffsFZBzoaaNLl26oEyZMggICMDNmzcREhKC/v37o1ixYnrnIiLdsZgiIsUZMmQI3N3dsXDhwhzHOl26dAkLFy4EAHh4eKBixYpYv349Hjx4oO6Tnp6O2bNnAwC8vb3V293c3BAfH48zZ85o9H39DjxdWVpa4vnz53k+WwYAxsbGGDRoEA4ePIgpU6ZACMFLfEQGgFMjEJHimJubY8+ePejYsSN8fHzQunVrtG3bFnZ2doiOjsaRI0ewd+9e9TQCRkZGWLFiBby8vFC/fn0MHz4cJUuWxPbt23HkyBEMHToUTZo0Ue9/2LBhWLhwIby9vTF27FgUK1YMv/76a66X+bTVsGFD7NmzB2PGjEGjRo1gZGSEzp07o3jx4lr9/NChQzFnzhxs3rwZTZo0gbu7u96ZiEg/LKaISJFcXFxw7tw5rF69Gr/++itmz56N+Ph4lCxZEh4eHli9ejX69u2r7t+hQwcEBwfjhx9+wKJFi5CcnIz33nsPS5Ysweeff66xb2dnZ+zcuROTJk3C5MmTYWtri379+mHw4MGoWrWqXrl9fX1x48YNbNmyBcuXL4cQAhEREVoXU87OzmjTpg3279/Ps1JEBoJr8xERKUynTp0QEhKCR48eaV2EEVH+4ZgpIiIFuXnzJvbt24d+/fqxkCIyEDwzRUSkAKdPn8bVq1exdOlSXL16FVeuXIGzs7PcsYgIPDNFRKQIK1euxODBgxEXF4dNmzaxkCIyIDwzRURERKQHnpkiIiIi0gOLKSIiIiI9sJgiIiIi0gOLKSIiIiI9sJgiIiIi0gOLKSIiIiI9sJgiIiIi0gOLKSIiIiI9/B+lLfgk7X1FJAAAAABJRU5ErkJggg=="
    }
   },
   "cell_type": "markdown",
   "id": "b7d2709a",
   "metadata": {
    "deletable": true,
    "editable": true
   },
   "source": [
    "<div><img src=\"attachment:q6.jpg\" style=\"height: 300px;\"/></div>\n",
    "\n",
    "<center> <b>Delete</b> this cell before you submit the notebook to reduce the size of your file.</center>"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "a92c3a75",
   "metadata": {
    "deletable": true,
    "editable": true,
    "execution": {
     "iopub.execute_input": "2023-12-07T02:12:16.851991Z",
     "iopub.status.busy": "2023-12-07T02:12:16.851991Z",
     "iopub.status.idle": "2023-12-07T02:12:17.107894Z",
     "shell.execute_reply": "2023-12-07T02:12:17.107894Z"
    },
    "tags": []
   },
   "outputs": [],
   "source": [
    "# create the bar plot using the DataFrame 'top_10_total_score' with the x-axis labelled \"Country\" \n",
    "# and the y-axis labelled \"Total Score\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "de1479dc",
   "metadata": {
    "deletable": false,
    "editable": false
   },
   "source": [
    "**Question 7:** What are the **top** *10* institutions in the *United States* which had the **highest** *International Score* in the `year` *2024*?\n",
    "\n",
    "The *International Score* of an institution is defined as the **sum** of `International Faculty` and `International Students` scores of that institution. You **must** display the columns `Institution Name` and `International Score`. The rows **must** be in *descending* order of `International Score`.\n",
    "\n",
    "Your output **must** be a **DataFrame** that looks like this:\n",
    "\n",
    "||**Institution Name**|**International Score**|\n",
    "|---|---|---|\n",
    "|**0**|Massachusetts Institute of Technology (MIT) |188.2|\n",
    "|**1**|Rice University|185.8|\n",
    "|**2**|California Institute of Technology (Caltech)|181.0|\n",
    "|**3**|Yale University|168.6|\n",
    "|**4**|University of Pennsylvania|166.3|\n",
    "|**5**|University of Chicago|165.6|\n",
    "|**6**|University of Rochester|163.1|\n",
    "|**7**|University of California, Berkeley (UCB)|156.1|\n",
    "|**8**|Johns Hopkins University|155.8|\n",
    "|**9**|Northeastern University|154.5|"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "e8e84295",
   "metadata": {
    "deletable": true,
    "editable": true,
    "execution": {
     "iopub.execute_input": "2023-12-07T02:12:17.112905Z",
     "iopub.status.busy": "2023-12-07T02:12:17.112905Z",
     "iopub.status.idle": "2023-12-07T02:12:17.126900Z",
     "shell.execute_reply": "2023-12-07T02:12:17.125869Z"
    },
    "tags": []
   },
   "outputs": [],
   "source": [
    "# compute and store the answer in the variable 'top_10_inter_score', then display it\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "f030725a",
   "metadata": {
    "deletable": true,
    "editable": true
   },
   "outputs": [],
   "source": [
    "grader.check(\"q7\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "71ad92ee",
   "metadata": {
    "deletable": false,
    "editable": false
   },
   "source": [
    "**Question 8:** Create a **scatter plot** representing the `Citations per Faculty` (on the **x-axis**) against the `Overall` (on the **y-axis**) of each institution in the `Year` *2024*.\n",
    "\n",
    "You **must** first compute a **DataFrame** `citations_overall` containing the **Citations per Faculty**, and the **Overall** data from the `Year` *2024*, of each **institution**."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "39556952",
   "metadata": {
    "deletable": true,
    "editable": true,
    "execution": {
     "iopub.execute_input": "2023-12-07T02:12:17.502426Z",
     "iopub.status.busy": "2023-12-07T02:12:17.502426Z",
     "iopub.status.idle": "2023-12-07T02:12:17.515978Z",
     "shell.execute_reply": "2023-12-07T02:12:17.514948Z"
    },
    "tags": []
   },
   "outputs": [],
   "source": [
    "# first compute and store the DataFrame 'citations_overall', then display its head\n",
    "# do NOT plot just yet\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "980bd4b4",
   "metadata": {
    "deletable": true,
    "editable": true
   },
   "outputs": [],
   "source": [
    "grader.check(\"q8\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "7e867525",
   "metadata": {
    "deletable": false,
    "editable": false
   },
   "source": [
    "Now, **plot** `citations_overall` as **scatter plot** with the **x-axis** labelled *Citations per Faculty* and the **y-axis** labelled *Overall*.\n",
    "\n",
    "You **must** use the `scatter_plot` function to create the plot.\n",
    "\n",
    "**Important Warning:** `public_tests.py` can check that the **DataFrame** is correct, but it **cannot** check if your plot appears on the screen, or whether the axes are correctly labelled. If your plot is not visible, or if it is not properly labelled, the Gradescope autograder will **deduct points**.\n",
    "\n",
    "Your plot should look like this:"
   ]
  },
  {
   "attachments": {
    "q8.jpg": {
     "image/jpeg": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAG4CAYAAABPb0OmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB8eUlEQVR4nO2de3xU1dX3fzNJmCQQQhICARMkQBI1yqPhomgikqIDCFV8VUqsFoHS1laltg8lWIWoSB9rFS81JZGKrRrTCkhrQ0JpsWgVEq9t39YMJKCRgEoSEm6JXNb7h+/MM5M5M+cy57LPzPp+PuejnDk5Z5999uW31157bQcRERiGYRiGYRgAgNPqBDAMwzAMw4gEiyOGYRiGYRg/WBwxDMMwDMP4weKIYRiGYRjGDxZHDMMwDMMwfrA4YhiGYRiG8YPFEcMwDMMwjB/xVifAjpw9exbt7e1ISUmBw+GwOjkMwzAMwyiAiHD06FGMHDkSTmdo+xCLIw20t7cjJyfH6mQwDMMwDKOBtrY2ZGdnh/ydxZEGUlJSAHyVuYMHD7Y4NQzDMAzDKKGnpwc5OTm+fjwULI404J1KGzx4MIsjhmEYhrEZci4x7JDNMAzDMAzjB4sjhmEYhmEYP1gcMQzDMAzD+MHiiGEYhmEYxg8WRwzDMAzDMH6wOGIYhmEYhvGDxRHDMAzDMIwfLI4YhmEYhmH8YHHEMAzDMAzjh3DiaM2aNbjpppswZswYOBwOjB49Ouz1n332GRYuXIjhw4cjMTER48ePR3V1dcjra2pqMGHCBCQlJWHo0KGYP38+Pv74Y53fgmEYhmEYuyLc9iErVqxAeno6ioqKcOTIkbDXHjlyBMXFxThw4ACWLl2K3NxcbNmyBUuWLEF7eztWrlwZcP3TTz+NO++8E1dccQUef/xxHD58GGvXrsXOnTvR1NSEkSNHGvhmDMMwDMPI4fF40NLSgnHjxiEvL8+aRJBgtLS0+P6/sLCQzj333JDXLl++nADQxo0bA87PmTOHEhISqLW11Xfu8OHDNGjQICoqKqJTp075zjc1NZHD4aBFixYpTmN3dzcBoO7ubsV/wzAMwzBMaDo6OsjtdhMA3+F2u6mzs1O3Zyjtv4WbVhszZozia1988UXk5ubihhtuCDh/zz334NSpU6itrfWd27JlC44dO4a77roL8fH/azCbOHEirrzySvzud7/Dl19+GfkLMAzDMAyjmrKyMmzfvj3g3Pbt2zF//nzT0yKcOFLKoUOH0NbWhilTpgT9NmXKFDgcDjQ2NvrOef//8ssvD7r+8ssvx9GjR/HRRx9JPquvrw89PT0BB8MwDMNECx6PB1u3bsWePXsse35DQwPOnDkTcP7MmTNoaGgwPV22FUcHDhwAAGRnZwf95nK5MHToUHz66aeKrvee87/enzVr1iA1NdV35OTkRJx+hmEYhrGazs5OzJgxAwUFBZg1axby8/MxY8YMdHV1mZqOlpaWsL/v3bvXpJR8hW3F0YkTJwB8JYSkSExM9F0jd31iYmLANf0pLy9Hd3e372hra4so7QzDMAxjJqEsQ6JMZY0dOzbs7+PGjTMpJV9hW3GUnJwM4KspLylOnjzpu0bu+pMnTwZc0x+Xy4XBgwcHHAzDMAwjOuEsQyJNZeXn58PtdiMuLi7gfFxcHNxut+mr1mwrjs455xwA0lNhvb296OjoCJhCC3d9uCk3hmEYhrEr4SxDok1l1dTUYPr06QHnpk+fjpqaGlPTAdhYHGVlZSE7Oxtvv/120G+7du0CEWHSpEm+c97/f+utt4Kuf+uttzBo0CCcd955xiWYYRiGYUxEzjLU30rTH7OnsojI1OeFw7biCPhKEe/btw+bNm0KOP/YY48hPj4e8+bN85277rrrkJycjCeffBKnT5/2nX/nnXewc+dO3HzzzRgwYIBpaWcYhmEYI5GzDJ05c0aoqawbb7wRDQ0NAecaGhpw4403mpoOAHCQSFINwG9/+1vfdh5PPfUUvvzyS/zoRz8CAAwZMgQ/+MEPfNd2dXVh4sSJOHToUECE7Ndeew333XcfHnjggYB7P/HEE1i6dCmuuOIK3HrrrTh8+DAef/xxJCQk4J133vFNvcnR09OD1NRUdHd3s/8RwzAMIyQejwcFBQVhf/duo+UvStxuN2pqapCWlhZwrZFRq5WkVY/nKu6/dQs7qRNTp04NiI7pf0hFy25vb6cFCxZQZmYmuVwuKiwspMrKypD3f+GFF+iSSy6hxMRESk9Pp3nz5gVE0lYCR8hmGIZh7IDb7aa4uLiAvjQuLo7cbnfAdR6Ph+rq6sjj8QScNyNqNRFRVVVVyL4fAFVXV+vyHKX9t3CWIzvAliOGYRjGDnR1dSmyDIVixowZ2L59e4DfUlxcHKZPn476+nrd0lldXY0lS5aE/X3x4sURP0dp/83iSAMsjhiGYRg7sWfPHuzdu1fVtJhZU11mPktp/21rh2yGYRiGYeTJy8vDzJkzVQkMM5f65+fno7S0FA6HI+C8w+FAaWkpxzliGIZhGMZ6zI5a/corr+Caa64JOHfNNdfglVde0fU5SoiXv4RhGIZhmFjDG7U6lM+R3tactLQ01NfXa5oC1Bu2HDEMwzAMI4kVUau1TAHqDVuOGIZhGIaRRCRrjpmwOGIYhmEYJix5eXkxIYq88LQawzAMwzCMHyyOGIZhGIZh/GBxxDAMwzAM4weLI4ZhGIZhGD9YHDEMwzAMw/jB4ohhGIZhGMYPFkcMwzAMwzB+sDhiGIZhGIbxg8URwzAMwzCMHxwhm2EYhmEYS/B4PGhpaRFuWxK2HDEMwzAMYyqdnZ2YMWMGCgoKMGvWLOTn52PGjBno6uqyOmkAWBwxDMMwDGMyZWVl2L59e8C57du3Y/78+RalKBAWRwzDMAzDBODxeLB161bs2bPHkHs3NDTgzJkzAefPnDmDhoYGQ56pFhZHDMMwjG0xshOPRcyY7mppaQn7+969e3V7llZYHDEMwzC2Q3SfFbtixnTX2LFjw/4+btw43Z6lFRZHDMMwjO0Q3WfFjpg13ZWfnw+32424uLiA83FxcXC73UKsWmNxxDAMw9gKO/is2BEzp7tqamowffr0gHPTp09HTU2Nbs+IBI5zxDAMw9gKJZ24CNYHu2HmdFdaWhrq6+uxZ88e7N27V7g4RyyOGIZhGFthB58VO+Kd7tq+fXuAVS4uLg7Tp083RLzk5eUJJYq88LQawzAMYyvs4LNiV0Sf7jILBxGR1YmwGz09PUhNTUV3dzcGDx5sdXIYhmFijq6uLsyfPx8NDQ2+c263GzU1NUhLS7MwZdGBqNNdkaK0/2ZxpAEWRwzDMGIQrZ04YwxK+2/2OWIYhmFsi54+K6JughpriPAdbO1z9Nlnn+G73/0ucnJyMGDAAIwaNQp33303jhw5InntwoULMXz4cCQmJmL8+PGorq42P9EMwzCMUHBASTEQ6TvYdlrt888/x+TJk9He3o7vfOc7uPDCC/Gvf/0L69atQ2FhIf7+978jOTkZAHDkyBFMmjQJBw4cwNKlS5Gbm4stW7bgT3/6E1atWoWVK1eqejZPqzEMw0QPM2bMCLlCq76+3sKUxRZmfAfF/TfZlKVLlxIAeumllwLOv/TSSwSAHnzwQd+55cuXEwDauHFjwLVz5syhhIQEam1tVfXs7u5uAkDd3d3aX4BhGIaxnObmZgIQ8vB4PFYnMSYw6zso7b9tO622Y8cOJCUl4Rvf+EbA+Xnz5iExMRHPPfec79yLL76I3Nxc3HDDDQHX3nPPPTh16hRqa2tNSTPDMEwsYKfNYO2wCWosINp3sK046u3tRWJiIhwOR8B5p9OJpKQktLa24vDhwzh06BDa2towZcqUoHtMmTIFDocDjY2NYZ/V19eHnp6egINhGIYJRCSfEaVwQEnr8Xg8+PTTT8NeY/Z3sK04uuCCC9DV1YUPPvgg4PwHH3zgq4iffPIJDhw4AADIzs4OuofL5cLQoUNlP8qaNWuQmprqO3JycvR5CYZhmCjCjpvBckBJ6/AX00uWLJG8xqrvYFtxdPfdd8PpdOLmm29GXV0dPvnkE2zduhXz5s1DQkICAODEiRM4ceIEgK+EkBSJiYm+a0JRXl6O7u5u39HW1qbvyzAMw9gcO28Gy1GhrUFKTPefDbLqO9g2ztHUqVPx4osvYunSpbj22msBfDWltnDhQhQWFmLz5s0YPHgwTp06BeCrqTEpTp48iaysrLDPcrlcIcUVwzAMY+/NYEXfBDUa8Yrp/tD/X0BfXV2NqVOnWvYdbCuOAOAb3/gGbrzxRvzrX//C0aNHkZ+fj+HDh2Py5MmIj4/HuHHjfP5BUlNnvb296OjoQElJidlJZxiGiSqiwXdH1E1QoxE5MX3OOedY+i1sLY4AID4+HhdffLHv34cOHcL777+PqVOnIjk5GcnJycjOzsbbb78d9Le7du0CEWHSpEkmpphhGCb6sGJHd8a+iC6mbetzJMXZs2dx11134cyZM7j33nt958vKyrBv3z5s2rQp4PrHHnsM8fHxmDdvntlJZRiGiTrYd8eeWBF6IZwjfHFxMfbu3Wupn5ptI2QfO3YMkydPxty5c5Gbm4vu7m7U1NTg3XffxerVq7FixQrftV1dXZg4cSIOHToUECH7tddew3333YcHHnhA1bM5QjbDWI8I+y8x0rDvjj3o7OxEWVlZgO+P2+1GTU0N0tLSDH9+V1cX5s+fH/D8jIwMdHR0GJaeqI+Q3dfXR/PmzaPRo0eTy+WitLQ0uuaaa6i+vl7y+vb2dlqwYAFlZmaSy+WiwsJCqqys1PRsjpDNMNbR0dFBbrc7IHqu2+2mzs5Oq5PGMLbC7XZTXFxcQF2Ki4sjt9ttajo8Hg/V1dVRSUmJ4elR2n/b1nJkJWw5Yhjr4H2wGCZyPB4PCgoKwv5uptXPrPQo7b+jyueIYZjoxs6xdBhGJMzerkPOr4m3D2EYhtGIaA0ow9gVpavF1DhrS12rdEsZ0VavsThiGMY2iNaAMoxdkds2JSMjQ/E+eeEEkNItZfLz85GRkSGZ1oyMDN4+hGEYJhTRvA+WnXayZ6KDcKEX1OyTF+rar3/964qnwT0eT8AqNX86OjpMrxcsjhiGsRXRFktHybQDCyfGCLzbpng8HtTV1cHj8aC+vh5ffPGFKlET6to333wz7PP9p8FFmzK3fYRshmHExYhYRNG2D1a4EfpLL71kaRwaJjbov22Kmn3y5K4Nh/80uGhT5mw5YhhGd5Q6YUZCXl4eZs6caWthJLf67vrrr1c8tcEweqFGqITyE/JSXFysaBpctClzFkcMw+iOGn+FWEZu1P3GG29w2ALGdNQIlfvvvx8Oh0PyPm63G3/4wx8UT4OLNGXOQSA1wEEgGSY0ogWXExm5vApHXV0dZs6cqXOKGOYrpLb26D+lK1d+m5qaMHHiRADqtpQxcspcaf/NPkcMw+iKGn+FWCfcTvZTpkwJ69DKYQsYI1Hi2ydX17/44gvf//f3a/Ii5ZcY6loz4Wk1hmF0RTTHStEJNZXwhz/8QSgfDCY2CefbF0ldN8MvMRJYHDEMoyuiOVaKTqjl1GlpaUL5YDDKECHsgpFp8L93JHVdeL9E3ba6jSGU7urLMLFKZ2cnud3ugN213W43dXZ2Wp00W+Ldtdzj8VidlIhpbm6Omnfxp6Ojw/Iyb2QaQt27tbVV9TObm5sDru9/GFk2lPbfLI40wOKIYZQRTZ06ExkiiAcjcbvdFBcXF/B+cXFx5Ha7oyINcvdWU9fr6urCiqO6urqI0xsKpf03r1bTAK9WYxjGLhgRiFMLM2bMkHQ8nz59Ourr6y1Llx5EskJTr+9j5CpRve9t5YpWpf03+xwxDMNEISI5vMoFu7R7zCYtW1/o/X2M3H5D73vbwS+RxRHDMEwUIpLDq2j7ZumNllVben8fI1eJGnFv0RcbsDhiGIaJMkSz1ER7eAe1lhAjvo+R1hgj7h1ulaYIsDhiGIaJMkSz1NhhGiVS1FhCjPo+RlpjjLq3qHskskO2Btghm2EYkRFxCxcl21FEA0q2vjD6+xi5/YaR9zYDpf03iyMNsDhiGEZ0RF0dZvfOVS9E/T7RDq9WYxiGCYEIUYyNRlSHV1GnUcxG1O/DfAVbjjTAliOGsSednZ0oKyuL+qkdf9hSIzb8fcyFp9UMhMURw9gTUaYyRAnMyDCxBk+rMQzD+CHC8vZQgf+ampqifpqPsQexMOWsBBZHDMPEBCIsb5cK/NfQ0IDJkydbHsWaiW1EiqguAiyOGIaJCawORBjKctUfq6JYM7GNSBHVRYDFEcMwMYHVgQjlLFdeomW/McY+iDDlLBosjhiGiRmsXD4tZ7nqj933G2PsgwhTzqJha3F07NgxPPjgg7jwwgsxaNAgZGZm4oorrsALL7wQdO1nn32GhQsXYvjw4UhMTMT48eNRXV1tQaoZhrEKK/dzCmW5CoXd9xtj7IOZU852cfi2rTg6e/Ys3G43Vq1ahUsvvRSPPfYYVqxYgZMnT+LWW2/F/fff77v2yJEjKC4uxssvv4xFixbhqaeewqhRo7BkyRJUVFRY+BYMw1iBVYEIpSxXDocj4N9Kpvns0sEw9sCMKWfbOXyTTXnrrbcIAC1dujTg/IkTJygrK4uGDx/uO7d8+XICQBs3bgy4ds6cOZSQkECtra2qnt3d3U0AqLu7W/sLMAwTs3g8Hqqrq6OmpiZyu90EwHe43W7q7OyU/LuOjg5V1zOMUjo7Ow0tW263m+Li4gLuHxcXR263W5f7K0Vp/23bIJD19fWYOXMmHnnkEfz3f/93wG8XXHABent70draCgAYNWoU4uPjff/28vrrr2PatGlYs2YNli9frvjZHASSYRg9URolWZQglkz0YkTEbpE2Qlbaf8ebkhoDmDx5MgYPHoxHHnkEo0ePxmWXXYZjx46hqqoKzc3NeO655wAAhw4dQltbG8rKyoLuMWXKFDgcDjQ2NoZ9Vl9fH/r6+nz/7unp0fdlmKiFIyEzSsjLy5MtH94VRf3xX1GUl5fHZY6JCKmyGGmZUuLwLVpZta3PUXp6Ol599VWkpqbi5ptvxqhRo3DBBRdgw4YN2LJlC2677TYAwIEDBwAA2dnZQfdwuVwYOnQoPv3007DPWrNmDVJTU31HTk6O/i/ERBW2m19nhEeug3n//fe5zDG6olc7ZnWMMS3YVhwBX608ueSSS/DjH/8YmzZtwq9//Wvk5eXh5ptvxtatWwEAJ06cAPCVEJIiMTHRd00oysvL0d3d7Tva2tr0fREm6uCAaozeyHUwTz/9NJc5Rlf0asesjjGmCVM8oAzgH//4ByUmJtKvfvWrgPO9vb103nnnUVZWFvX29tI777xDAGjZsmWS9xk6dChNmjRJ1bPZIZsJR3Nzc4DTYf/D4/FYnUTGpoRyai0uLuYyx+iK3u2Y0Q7fSlHaf9vWcvT444+jt7cXN910U8B5l8uF66+/HocOHcJHH32Ec845BwAkp856e3vR0dEhOeXGMFrhgGqMUYQKYnnnnXeG/Tu1ZY5DBTB6t2NWxhjTgm0dsr2+RKdOnQr6zXvu9OnTyMrKQnZ2Nt5+++2g63bt2gUiwqRJk4xNLBNT2HF+nbEH3g6m/4oij8cT9u+UlrnOzk6UlZUFOH673W7U1NQI24nFOkY54BvVjilZfCACtrUcXXDBBQCADRs2BJw/evQofv/732PgwIEoLCwE8NW86b59+7Bp06aAax977DHEx8dj3rx5pqSZiQ1sOb/O2Ir+QSz1KnPsKycu/a15Ri/6iPl2zJxZPv3Zv38/paenk8PhoFtuuYUqKyvp4YcfprFjxxIAevTRR33XdnZ20pgxYyg5OZlWrFhB1dXVNHv2bAJA9913n+pns88RI4co8+tM7BBpmWNfOTEJFfiztLTU8KCKerZjzc3NVFdXZ3k5Utp/21YcERG1tbXRHXfcQQUFBZSUlESDBg2i4uJievnll4OubW9vpwULFlBmZia5XC4qLCykyspKTc9lccQoxRsJ2eoGgYkdtJa5urq6sOKorq7OoBQz4QjlhG+mkI2kHRMtqnvUR8i2Eo6QzTBMtCFSFGPmK+S+SSjq6uowc+ZMA1KkHtGiuivtv23rc8QwDMPoR8z7mAiI3IqxUIiy6MMb1d1fGAGBUd1FhcURwzAMAyB0qICamhqLUiQWZoc4kFsx5nQGduGiCVk7hzVhccQwDMMAsF8sGrOwajugcNa80tJSXH311QHnRROydg5rwj5HGmCfI4ZhmNjBSr+Zrq4uzJ8/P2Tsqf4xr0TDrj5HLI40wOKIYewP715vLXbJf6Md1ZXmg9EiyKjvISfuzEZx/234urkohJfyM4x9EW1pcaxht/w3KsSBKPlgVjpECWvCS/kNhC1HDGNfRDPzxxp2y3+jLEei5IMo6TALnlYzEBZHDGNPOJaPtdg1//UWEKLkgyjpMBOOc8QwDNMPOy8tjgbsmv96hzgQJR9ESYeIxFudAIZhGLOw89LiaMCu+e8NcaCXU7Qo+SBKOkSELUcMw8QMHAXaWuye/3l5eZg5c2bE6RQlH0RJh4iwOGIYJqbgKNDWwvn/FaLkgyjpEA12yNYAO2QzjP0RPXhetKMk/+0SCykSRCmHVqfDrG/Nq9UMhMURwzCMcXR2dqKsrEyYwIGMcZj9rXm1GsMwDGNLysrKsH379oBz27dvx/z58y1KEWMUon5rFkcMwzCMMHg8HjQ0NATEFAKAM2fOoKGhAXv27LEoZYzeyH3rP//5zxaljMURwzAMIxAceyf68Xg82Lp1K3bu3Bn2umuuuQYzZsxAV1eXSSn7XzjOEcMwDCMMHHsnepHyL5LDO8Vm9lYmbDliGIZhhIFj70QvUv5FDocj7N9YNZ3K4ohhGIYRCo69E32E8i9SumDe7OlUFkcMwzAh8PpGsBOwuXi36/B4PKirq4PH40F9fT0v47cxcr5kDz30UNjfzZ5OZXHEMAzTj87OTsyYMQMFBQWYNWsW8vPzLXMMNRuRBKFe23Uw1iPnS3bzzTcLNZ3K4ohhGF0RqXPViqixV4wklgUhYzz5+fkoLi6G0xkoO/zFj0jTqRwhWwMcIZthgomWqMYejwcFBQVhf49GS8aMGTOwffv2AJ+QuLg4TJ8+3fSVQkwgdt9GJdwqNak2wsitTDhCNsMwphIt1pZYjLPDgRfFoL/VNVqseVJtg9PpRElJiaQvmQjTqSyOGIaJmGjqXGMxzk4sCkKRCCWCbrrpJtsPOEK1DWfPnsUbb7whbNvA4ohhmIiJps41FuPsxKIgFIlQVte//vWvth9wKGkbRPRTZHHEMEzERFvnKpJjqBnEoiAUhXBW13DYZcAh1zasWbNGyGlDFkcMw0RMtHWusRhnJ9YEoSjIWVZCYZcBR7i2ISMjA2+99VbAeVGmDXm1mgZ4tRrDBNPV1YX58+fbfrVarGPkSiEmGLnVkU6nE2fPnvX9244rCKXahuLiYrz55psh/8aoVaExsVpt1apVcDgcIY+EhISA6z/77DMsXLgQw4cPR2JiIsaPH4/q6mqLUs8w0UUsWluiERFWCsUS4SwrpaWluPrqqwPO29GaJ9U2rFixIuzfWD1tGG/p0yPkhhtukDQt/uMf/8DPf/5zzJkzx3fuyJEjKC4uxoEDB7B06VLk5uZiy5YtWLJkCdrb27Fy5Uozk84wUUteXh53rIxp2D0GEPDVlGZ/y4pXBKWlpZlqzTMyP/3bBrlJK8unDSkKWbJkCQGg1157zXdu+fLlBIA2btwYcO2cOXMoISGBWltbFd+/u7ubAFB3d7duaWYYhmGU09HRQW63mwD4DrfbTZ2dnVYnTTMej4fq6urI4/GY/mwr8tPtdlNcXFzAM+Pi4sjtdhv2TKX9d9T5HJ04cQIjRoxASkoKPv74Y5+pctSoUYiPj0dra2vA9a+//jqmTZuGNWvWYPny5YqewT5HDMMw1sIRvfXFivy0wk9Raf9t62k1KX73u9+hp6cHd911l08YHTp0CG1tbSgrKwu6fsqUKXA4HGhsbAx5z76+PvT19fn+3dPTo3/CGYZhGEV4l7/3xz8GkF2n2KzAqvz0+iKJuAjA1g7ZUqxfvx4OhwMLFy70nTtw4AAAIDs7O+h6l8uFoUOH4tNPPw15zzVr1iA1NdV35OTk6J9whmEYRhHRFHRUDjMCJMrlZ01NjaHPF3ERQFSJo+bmZrz55psoLS1Fbm6u7/yJEycAfCWEpEhMTPRdI0V5eTm6u7t9R1tbm74JZxiGYRQTbUFHpTBzXzW5/Fy5cqVQARrNIKrE0fr16wEAixcvDjifnJwMAAFTY/6cPHnSd40ULpcLgwcPDjgYRjREDMEvIpxP9ifago5KoXYj50jKdaj87I8oARpNwTCXcJM5deoUDR8+nNLT06m3tzfgt4MHDxIAKisrC/q7kydPksPhoLlz5yp+Fq9WY0QiGlftGAHnU3TR2dkZtd+zubk54L36H/6r2fQq11L5qeT5dkNp/x01lqM//vGP+Oyzz3DrrbcGTZ9lZWUhOzsbb7/9dtDf7dq1C0SESZMmmZVUhtEVtSPMWIXzKbqI5qCjanyq9CrX/vlZUVGh+PlRizlazXiuvfZaAkD/+Mc/JH9ftmxZyDhH8fHx1NLSovhZbDliREHNCDMWaG5ulowTE4v5FCovGPFRWl6NKtfRXF9iynLU3t6O+vp6TJ48GRdddJHkNcuXL8eYMWNw66234t5778Wzzz6LOXPm4I9//CPKy8sxZswYk1PNMJETS6t2wiHnvBpL+WSmIy9jDEp9qowq11b7dAnhF2iSWDOU1atXEwCqqqoKe117ezstWLCAMjMzyeVyUWFhIVVWVqp+HluOGFGI5hGeHP6WEblIu7GUT1ZEHWb0R4lPlZHl2gqfLjP8ApX231EhjsyGxREjErHWGUo1oEo6iFjIp1gSgbGC3JYiRpdrM7c0MaOO6i6OHA4HOZ1OVUdcXFzELyIiLI4YkYjmVTtSSDWg4Y66ujoiio18qqurU5QXTPQQLeXaLGGvtP9WvH3IbbfdBofDofRyhmFMQuQQ/HoTapuDcHgDAsZCPsVCcEQmELuXa4/Hg5aWFt9OFqHYu3evqe8VdRvPmgFvPMsw1rB161bMmjVL0bWxugkpb8jK2IHOzk6UlZUpHux4PB5dxJHS/jsqVqsxDBMbyFlG/Jk+fTpqamoMTI2Y1NTUYPr06QHnYjUv7Ireq7WEWP3VD6n4TFKzU1ZFPWfLkQbYcsQw1hHOMvLUU0/ZcmrBCOw6zRLLSFlT3G43ampqNAW31Pt+euHxeFBQUKDoWr3Tq7T/ViyOtMQBcjgcsnEY7AiLI4axjq6uLsyfP1+4Bp9hIkXvKVFRp1jlpserq6txzjnnGCLsdRdHV111lSaH7B07dqj+G9FhccQw1sOWESaakLOmqPW50ft+emJl2pT234pXq73++ut6pIthGAbA/65S0Spu8vLyWBQxUYOSaNdqyrve99MTbwTuUFYtEeo1O2QzjE2xq9Mmb2/BMMHoHYZB9LAOwi8c0CWqUozBQSAZK9E7xL4ZIfv9ibZI1bzBK6MXetcNO9Q1MyNwE5m0fcjevXvp+9//Pk2cOJHGjh1Lubm5AceYMWMiub2wsDhirMSMBtTpdFJxcbHOKY+u7S3MFpVM9KN3tOtoiZ6tJ0r7b81L+f/5z3+iuLgYfX19KCgowD//+U8UFhaio6MDhw4dwtixY5Gdnc0O2QyjI2Y7bZaUlGDLli26rQKTW6VSV1eHmTNn6vIsoxF1JRBjf/RebMCLF/4Xw4NA3n///RgwYAA+/PBD/OUvfwEAPPHEE2hvb8e6detw5MgR/PKXv9R6e4ZhJFDiZKnn/f7+979j/vz5qu4ZDtH9IJTi3cbEXxgBwJkzZ9DQ0CBUsD3GfuTl5WHmzJm6CRm97xcLaBZHb775JpYsWYKCggLfEn+vEerb3/42Zs6cieXLl+uTSoZhAJjvtHn27FldO3vvKpW4uLiA81ZFwdWK3iKVYRix0CyOjh496mtYBwwYAAA4fvy47/crrrgCb775ZoTJYxjGH73Fhfd+Tmf4pkDPzl74VSoKsKsFTMRtJBhGRDSLo+HDh+OLL74AAKSkpGDgwIHweDy+37u6uoJMzgzDRI7e4qKmpgaXX3552Gv07Oy9u4h7PB7U1dXB4/Ggvr7eVtGt7WYB4/AJDKMOzQ7Z1113HQYMGIDf//73AIDZs2fjww8/xIsvvoizZ8/im9/8JsaMGYOdO3fqmmARYIdsRgT0drK88sor8fe//x1nz571nWMH49DYaRsTOefxSANy6oUo6WCiF8X9t9blcC+//DJdeeWVdOLECSIievfdd2nQoEHkdDrJ6XTSwIED6Y033tB6e6HhpfxMNMLLfrVhdpwWtciFTygpKbH8m3NYBMYsDF/KL0VbWxs2b96MuLg4zJw5U9NmtXaALUdMNBPOIsUje/shFz7B4XDAvxuwwlrIYREYs9B941l/vvzyS+zatQsjRoyIyQaSxRFjNKKJkMbGRnzve9/De++95zsn6hQSE4hcLKtwf2dG2RN5g1Qm+jA0zlFcXBy+9rWvYevWrZoTyDBMMKI5znrTc+mllwYIIwDYvn27rjGQGGPIz89HcXGx6r8zKxwBh0VgRESzOMrKyoKOM3KMDvAyXftTVlaG7du3B5yzUoRIpccLBzy0D3feeafqvzErHIFdwyIw0Y3mpfw33XQTXnnlFRZIAiCatYHRhmhRl0Olpz88shefiy++WPG1ZocjsFtYBKvgwa+5aBZHixcvxrFjx3DNNdfgtddew0cffYRPPvkk6GCMRzRrA6MN0aYX5NLjhUf24hNOgGRkZAScsyIgZzQEBjUK0Qe/USvatC6Hczgc5HQ6ff8NdUQjIi3lj6ZdzmMd0b6lXHpirYw1NzcHLdmXOicq4UI1iBKOQJR0iITb7aa4uLiA7xYXF0dut9vSdNk1/ILS/jteq6i6//77fXuqMcYTavWSEmsDm6XtgXd0H2pJs9nf0ZueP//5zwGBIfsT7WWss7MTZWVlAcEeS0tLAQB//etffeesWL2nZlWjNzK5VKiGtLQ0Ib5hXl6eEOkQBe/Udn/8p9qtyq9wMxZREX7BJLEWVZhpOZJT56JZG5jIEC0QY2dnJxUXF8d0GZMauTscjqB8MHM0b9dRO6OOurq6sHWvrq7OknTZud9R2n9r9jlijMU7j3vdddeF9SdiZ8boQrR9x9LS0vDGG2+gpKQkaHPaWChjoZzSSWIhil6O80p8OETxM9Tb3yRq/Vc0IupKPtH8Iw0hEgXW09NDFRUVdMUVV9C4cePorbfeIiKiL774gioqKug///lPJLcXFiMtR1IjwlCHV52LZm1goo9YLWNyI3epQ+toXqk1SIRRuxKLthrfIbaEhUZEnyMRyqBWlPbfmsXR559/Tvn5+RQfH0/nnXceOZ1O+stf/uL7fcyYMfTDH/5Q6+2FxkhxJFURlDbC7MzIGI2oZcwox2ilTul6dAxKO0ERplpCpXXatGmaRI6IAkAURB2YRPLNrFzIYLg4WrJkCQ0ePJjeffdd+uKLL8jhcASIox/+8Ic0fvx4rbdXzJEjR2j58uWUn59PLpeL0tLSaMqUKbRp06aA6w4dOkS33347DRs2jFwuF1100UVUVVWl6ZlGiSO1DbFoHRTDmI0ZFgczfI7UjMStHrXLPV9th2n1+9gF0QYmWkSbCBZCw8XRyJEjqby8nIiIDh8+HCSOnnrqKUpLS9N6e0V88sknNHbsWEpLS6N77rmHnn32WXryySfpjjvuoLVr1/qu6+rqonHjxlFSUhKVl5dTVVUVXXvttQSAVq1apfq5RokjpSZ8UUdUdlrWzChH5O9qhsVBqhMoLS2l0tJS3Rp5tdYgKy0tWqYaw4kcESxhjHbUiDYRLISGi6MBAwbQs88+S0TS4uiXv/wlJSUlab29IqZOnUpZWVn0ySefhL1u+fLlBIA2btwYcH7OnDmUkJBAra2tqp5rteVIBJOqPyKMBhj9Ef27mm1xkOoE9BrNq30XK6datEw1hhM5bDmKDUT5zoaLo1GjRoW1HC1atIgKCgq03l6WnTt3EgB6/PHHiYjo1KlTdOzYMclrc3JyKDc3N+j8jh07CACtWbNG1bPN9jmKi4ujkpKSmB69M+Yj+neVszgUFRUJI+SUoCW/rZpqkUqr0+nU3PmJXtaYyBHFQmi4OPrud79Lw4YNo/b29iBx9Pe//50GDBhAy5Yt03p7WbzWoC1bttDcuXMpPj6eANC5555LTz31lO+6gwcPEgAqKysLukdvby85HA6aO3du2Gf19vZSd3e372hrazNMHInqfBcKUUYDjL6I/l2bm5upqqoqbBrt1rnaqe6HSmtpaakmkSPSu4s8jWxnRGlTDBdHBw8epJEjR9KwYcNo4cKF5HQ66ZZbbqEbb7yREhISaPTo0dTR0aH19rJcf/31BIAyMzNp8uTJ9Pzzz9NvfvMbuuyyywgAPfDAA0RE9M477xCAkEItMzOTJk2aFPZZK1eulPyYRgaBFM35LhSijAYYfRH1u6oJdSGKkFOLXeo+UXBaIxU5Vr676NPI0YAIFkLDxRHRVw7Rc+bMobi4OHI4HL591mbPnk1tbW2R3FqWr33tawSARo8eTb29vb7zfX19NHbsWEpKSqLOzk7f9Nt9990neZ+cnBwqLCwM+ywzLUd2Q5TRgBZ4hBgaUb+rmlAXVgu5WMZOAs+L2o6b2w/1iGAhNEUceTly5Ag1NjbS7t27DbUW+TN79mwCQCtWrAj67f777ycAtHXrVlnL0dChQ2UtR/0RaeNZERBhNKAGHiEqQ7TvqtURWGnnxZ1d7CJXtrZt2+a7ltuPyLFSPBu+fcjnn3/u+//U1FRMmjQJkydPRnp6utZbqiI7OxsAMGLEiKDfvOc6OztxzjnnAAA+/fTToOt6e3vR0dHhuxejjZqaGkyfPj3g3PTp01FTU2NRisIjytYLoiPad5XbskDr9iadnZ2YMWMGCgoKMGvWLOTn52PGjBno6uqKOM16w9trGINc2brmmmt8ZYLbj8jJy8vDzJkzxd56SKv6io+Ppzlz5tArr7xCfX19Wm+jmQ0bNoS0CJWXlxMA2r59OxERZWdnh12t9vDDD6t6NluOpLGDKV3U6SKREeW7yn27/hvkKh3Ni2Yhk4KtFcaixCoZFxenehNmtkaKh+HTat/85jdp0KBB5HQ6KT09ne644w56++23td5ONV1dXTR48GDKysqiI0eO+M739PTQyJEjKS0tjY4fP05ERMuWLSNAOs5RfHw8tbS0qHo2iyP7IqqjsT/coIZGTsioFXJ2Ect2EHB2R4s/W6j2g8WsuJjic3Ts2DHasGGDb/mm0+mk/Px8evjhh2UDM+rB+vXrCQDl5+fTI488Qj//+c/pvPPOI4fDQc8//7zvus7OThozZgwlJyfTihUrqLq62uezFMpROxwsjuyLyJ0hN6jy6O3QaRexLGqZjSakypbaw/stWMyKi6kO2UREn376KT388MN0/vnnk8PhoLi4OPra176m1+1D8oc//IGuuOIKGjhwICUnJ/uCJfanvb2dFixYQJmZmeRyuaiwsJAqKys1PZPFkb0RteESNV0iYlVkaiuwg4CLJhoaGsLmd3Fxcdh6aocyZTVRvfFsOGpqaig1NZWcTqcRt7ccFkf2RoTlpP3hBtU6iouLg6I7iyRKuWyYT7iBilz7wWI2NCJYx00XR0eOHKF169bRFVdcQU6nkxwOB40fP16v2wsFi6PoQBRHYyJuUK0gXEBJq8Vyf8ywKuoxmo8WfzklA6hQ7QeL2dCIYB03RRydPn2a/vjHP9JNN91ESUlJ5HA4aNiwYXT33XfTe++9F8mthYbFEaM33KCaT6j9wUpKSqxOWhBGWjv1GM3rbREQRWRpHUCJIAJEQ5Q2znBxdPfdd9OwYcPI6XSSy+WiG264gbZs2UKnTp3SekvbwOKIMQJuUM1DlIZaKUZOR+hR7vQquyJMu+iBiFP3ViOKddxwceRwOGjy5Mn0y1/+MuY+OIsjxgiUNqiijKrtjCgNtVKMEs56iEQ9hWa0DRBEmrq3GlEGJIaLo//85z9a/9T2sDhijCRUgxoto2oREKWhVoKRadVDJOolNO30TdTCA5qvEEH8Gr59yHnnnQcAOHHiBA4ePIgTJ05ovRXDMH6ECq3P2xboR35+PtxuN+Li4gLOK91yxEzktrbYu3ev5nuPHTs27O/jxo0z5R6Ase9pFXbamsYMRNuSKByaxNEXX3yBZcuWYezYsUhJSUF2djZSUlIwduxYLFu2LGDfNYZhIsfj8aChoQFnzpwJOH/mzBk0NDTwXlsasEtDrZf4kEIPkaiX0Oy/N15/4uPjFd1HTyLdy44HNIGkpaWhvr4eHo8HdXV18Hg8qK+vR1pamtVJC0atSertt9+m4cOHk8PhoAEDBtBFF11ExcXFdNFFF9GAAQPI4XBQVlYW7dq1S7PZS3R4Wo0xG7v5yNgJO/iFGDkdoYfzsB73EKmM6zGFHc3ThHbGEJ+jzz77jIYOHUpDhgyhZ555hk6cOBHw+/Hjx+npp5+mIUOGUGZmJn322WfqU24DWBwxZsMNbWTY3efDjNVPeojESO4hUhnXQ4yKJPaY/8UQcfTf//3fNGDAAHr33XfDXtfU1EQul4uWLVum5va2gcURYwUiODPajWhzYreDlSsSRCjjeok0q8WelQMCkQcjhoijCy64gBYtWqTo2oULF9L555+v5va2gcURYwUcO0U9InS2IiFyp0UkRhnX0+JjRfmzckAQybPNKpuGiKPk5GSqrq5WdG1VVRUlJyerub1tYHHEWEm0Ww/0wuqRu0jYzYJmZRnXs9xYIfasHBBoebbZZdMQcZSSkkLPPPOMomufeeYZSklJUXN728DiiGHEh30+/pdYs6BFaoXQO7/MEntWDgi0PtvssmlInKO8vDzs2LFD0bU7duyIaIkpwzBMJBi5BN5OxFIYCL3iCikJ86BmmX+o2GV6Y2WsKC3PFrlsqhJH119/PTZt2oT6+vqw123duhWbNm3CDTfcEFHimOgn0jgiDBMKOwV6NJJoDK4YCr3iCoWLxyMlwCZMmIB33nlHz1fRhJUDAi3PFrpsqjFH9fT00OjRo8nlclF5eTm1tLQE/N7S0kI/+clPyOVy0ejRo6mnp0e9zcsG8LRa5NjNB4KxJyI4+FpNrPhemfWeUtNAIpUtO/kcWVE2Ddtbrbm5mfLz88nhcJDT6aTU1FQaNWoUpaamktPpJIfDQXl5eVG99xqLo8iJNR8Ixlpi3Yk9FuqbGT5mcp25CHlq5YBAy7NF9TnStPHsiRMn6Mknn6Qrr7ySMjIyKCEhgTIyMmjq1Kn0xBNP0PHjxzUl2i6wOIqMWBnJMvKIvrQ8WogFC5oZ7YqcABOpDbNyQKDm2WaXTaX9t4OIKNy0GxNMT08PUlNT0d3djcGDB1udHNuxdetWzJo1K+TvdXV1mDlzpokpYsyms7MTZWVlaGho8J1zu92oqakJuc+Sx+NBS0sLxo0bFzP+QnqzZ88e7N271/A8tOpbzZgxA9u3bw9w8I2Li8P06dNlfWWV4PF4UFBQIHsdt2HqMatsKu6/DZFmUQ5bjiJDzQiPLQvRiRpTeqz6p9mx7Fv9rcywQrjdbnI6ncJbjkTHqvJt6LRarMPiKHLkOkerG1nGONROf8SCv4w/di77Ut/K6XSa/q2MnFKSEmCxUC71wuryzeLIQFgcRY7cCM8OHaIdR/YiIOe3UVRU5CsHseifZoeyL4Xct2pqarI6ibrS1NRERUVFthSxZiHVRlpdvlkcGQiLI/2QGuGJ3iFaPfIxG28D19DQoIsYVLPix4oo15GK3kj+XvSyHw4lojcaCdWGxfLAKVQb2djYaHn5ZnFkICyOjEX0bR+sHvmYhVQDp5cYVOq3YaZYiFT06iGa9S77ZnbSct9K6nupSZ8dBEesDZxCEaqN7G9ps6JtZ3FkICyOjEXk0bPIadObcMHuIhWDnZ2dihtKs8RopM/RI516lS+rOmml31RN+uwkOGJl4BQOJSLZyvaTxZGBsDgyHlEbGausWmaPmpU2cJGkR6kQCOefple+RCpK9BTNepR9q+qP0mkTNekTtS3oTywNnMKhZHqVfY6iFBZHxiNq0DqzG0CrRs1Kg91FKgbVdHz+vh1650ukoldP0Rxp2be6k5b7pmpDedhFcIjuDmAWShzzebValMLiyDxE3PbBzJGsVaNmMyxHRNJCoLi4WLah1DtfRLIcedFa9q3upOXEnZr0Wf0uarCTkDMaJfXTqradxZGBsDiKbcyyalnd2Kr1OdI6xdXR0UElJSWK81PPfPFPswg+R3pgdbnxEqrzi1bLEZE4ZcBqRLX8E7E4MhQWR9GNXCdv1lSX1aPmcMHu/N830vxQ26HokS9SaS4pKaH09PSAcxkZGdTa2qo5v6zqEETvpKPR54hIrDIgAiJa/mNCHIVrILu6ugKuPXToEN1+++00bNgwcrlcdNFFF1FVVZWm57I4kqa/qLDD0lt/lHbyZkUBFmXU7G3gtm3bJvk9I+m8tLyjHvkSyirmcDgi7oRF6BBE76TVpE/0d5FChDKgJ3Zry8MRM+KopKSEfvvb3wYdX375pe+6rq4uGjduHCUlJVF5eTlVVVXRtddeSwBo1apVqp/L4igQKVGRkZFhq8aMSFknb3YUYNFHzZEKFa1WICMFmZVCVG9E76TVpE/0d4lGIrUKiyiqYkYcfetb35K9bvny5QSANm7cGHB+zpw5lJCQoNhs7oXFUSDhfFNE7NClkOswt23bRs3NzVRRURH2Or2jAIs+atYibvwbTK3iKpJ8UboST4lIYxi1iCgYQqF1ECJybKqYEkd9fX3U09MT8rqcnBzKzc0NOr9jxw4CQGvWrFH1XBZH/4vaUbioDYKWDtPMdxR11KxEVHoJ1WCWlpZqtgJpyZdYshwx4iCyYJAiEquwyBbvmBFHAwcO9H2E9PR0WrRoER08eNB3zcGDBwkAlZWVBf19b28vORwOmjt3btjn9Pb2Und3t+9oa2tjcfT/USsqRB2BRxLV1S7vaBRylkNvBxCqwSwtLTW90zDS54hhpBBZMEihdcpbFF/JUMSEOJo0aRL9z//8D23atIleeOEFWrRoETmdTsrJyaH29nYiInrnnXcIAC1btkzyHpmZmTRp0qSwz1m5cqXkR2ZxFD2WIyJl04Nq3tFO5vNICLeqzdsBFBcXy+aZmdYxqTSXlpZSaWmpqSItGpAq57FS9pUiumCQQmuarV5lK0dMiCMpfvOb3xAA+va3v01ERDt37iQAdN9990len5OTQ4WFhWHvGY2WIz0br2jwOSKS7+TlDu872s18rpX6+nqqqKjwTZ01NDRozjurNlSVEmSiTmGKhlQ5Z4EpjYiCQUkd0mLtEl0Ixqw4IiIaPXo0jRw5kojkLUdDhw6VtRz1x84+R0Z03FKiwo6r1bxo7eTlpo/MEIdGjti9996+fXvQ983IyKD169drFkeib6gqRyxaSqTKef9pSbsMjIxGJMGgpg5pXfgg8hRiTIujq666ihISEogovM/RyZMnFfkc9cfO4sjIQtt/xG3nEbicNcybZ/3f0apG0EjRIHVvqWPIkCFhfy8uLrbthqqhEFWsGQ07tatHlLKrJR1q23KRV9nGrDg6e/YsZWdnU05Oju9cdnZ22NVqDz/8sKpn2FUciTR6ER25KbZQFd0q87mRDa8aX6wJEyaETIfdN1SVQoQOL5TVSk9rVv97cTgE9YggGMyuQyIOkKNeHB06dEjy/BNPPEEA6Pvf/77v3LJlywiQjnMUHx9PLS0tqp5tV3Ek4ry36PhXbiUV3YoO3MhnqrUQLF++PGQH4O1gQ0XalkO08mu1WAtltWppadGtEw71jMbGRtXiSKQO0kqUCgYjpmpFq0NWEPXi6O6776bCwkL6yU9+Qs888wz94he/oDlz5hAAysvLoy+++MJ3bWdnJ40ZM4aSk5NpxYoVVF1dTbNnzyYgtKN2OMwUR3qP/rjxMh6zrQlGNnhqLQRe52z/DkCvqSfRyq/VHU2ocpaRkaFb+QtXltnnyBh2795NRUVFuojb/ohUh6zy04t6cbRlyxZyu910zjnnkMvlosTERCosLKR7772Xjhw5EnR9e3s7LViwgDIzM8nlclFhYSFVVlZqerYZ4sgoXwYRpgGiHbPN56JYjlJSUiSfpWeZE6n8WtnRaI3LpWewzKamJl6tpiPhfPv0LONW1yGr/fSiXhxZiRniyKgCLMK8d6xg5ny7KD5H/cuT3gJCtPJrVUejNaK7GmuWUssYh0PQByX1TI/8tLoOWS3OWBwZiNHiyIwRKTde0UW4Bi9S83Woe2/cuJHGjh1LTqczZENn1NSTKOXXqo5GBMuR1XkfTSj9nnpO1VpRh0QoUyyODMRocWS1LwNjPkYENdTbfK0lbIEIjaEZWNHRROpz1D+Ipz/e8qhH+IVoRG9/GaWWQLvXFxH6NhZHBhINliNGDIycfzfafK20oTPDjB6LQRhDWa1aW1vDlqm9e/dKBvFsbW2VLI92DuiqN0bVV7k23+l0+uqLncu6CH0biyMDsbPPEWM9/o2bUd/ZjEZI6TOMnHqy2rlTBEJZrUKd7y92/EVQqPJYUlJi2w5ZT6zy7dM7RIOVWN23sTgyEDPEkZ4dip1HGtGE0kjTeggYs8zXaho6I6aerG5o7UZ9fb3i8mfFqF5kjB5wSLX5RUVF1NTURETRU9atdghncWQgZsY5Uhp4UOoaHlUbjxrhqXbVVyQCxizztd4NnZr8FMFEbzcqKio0i6NY93U0a8Ah1eZHY1m3alEFiyMDESVCtpz4iZaRhoioFZ5W7EVl5vePtKHTIuRFcO60G2w50o6VAoXLun6wODIQUcRRuM4vGkcaIqFWeKiJS6OXgLHafK0GLUKOy7g2QvkcGV0eowGrBpxc1vWDxZGBiCCO5CpLdXU1jzQMQktDpcZypFbAyE1FiRITKBSRNPyxbh3V4k/Y2tqqSiCJKqiNRipvrRxwxHpZ1wsWRwYigjiSs0RUVVXxSMMgtJq4wzVuWgRMtPiURTJlYGRnJfJCBj2+/bZt2+jOO+8Mm/dSMZDkEDnflKAkb60YcNjJEiwyLI4MRARxpGS0zSMNY9Bq6dC7cbPz9/XvQPWYMtCzs7KD6NTz2+t1LzvkmxJEr1eiW4JFh8WRgYggjojkKzGPNIwjkgZUj8bNrj4IoTrQ0tJSRflphlVC9M7RzP3qIl2NKVK+KcGu9YpRDosjAxFFHCkVP6GWhsbC6MOo97RaeGqdirL6u4fqQEtLS8Pmp1lWCTt0jmbsV6f3akwR8k0JvCos+mFxZCCiiCMvcpYI/w4xWkzfcpj1nlaZuNV2RiJ8dyVpDpWfZlkl7NA5miFE9F6NKUK+KSFaRJ7dMXIQx+LIQEQTR6EItU9SuF3Uo4VoMPHLoeYdRciPSKxdZnVYdukcjfyeRqzGFCXflCBCXYlVzBjEsTgyELuII7URme3UgIUjmhrqcCid2hMlP7Smw2yrhB06RyOndY1YjWknrJ4yNxurp9r9MaMMsTgyEDuIIy0Rme1i+pYjWkz8SpGb2hMpP+wQ7FEvB2UzMGJaV5TVmFYT7avCRJhq98eses7iyEDsII7URGSONouKKJYSURApP7R2oFZYJfw7x927d1NRUZEwHYnRmLkaUzTBGSuIZukzaxDH4shA7CCO1FiO7Gj6lkO0im81ouWH2g7UKquE1OhahPwzGjPyWzTLRSwh0oDJ7DSxODIQO4gjotAdYv+tA6KxQTKjcbfTiFfv/LDq3c2e6lDit2eH76+F5uZmqq6upurqakPe0QjBbqc6aSUiTbX7wz5HNscu4ihchxjt8+lejHhPO494I80PO7+7WpRaX6PNh82Mb6y3lSCWyqUeiGg5IjJnUMviyEDsIo68xIoQMgvRpqjMJJbevba2VpE4irZ6ZcY31ttyEUvlUi9EzrOGhgaqqKjQtLefHCyODEQEccTmY2uor6+PqY7SH1FHm0ZRXFwc9n2dTqcQHYmemPWN9XxOrJVLvRBxdaFIcY6cYITC4/Fg69at2LNnj+TvnZ2dmDFjBgoKCjBr1izk5+djxowZ6OrqMjml9kcur/3x5vuMGTPCXrd37169kiccLS0tYX8X+d3VfGvv9W+++WbYa66++mrU1NTokTxhMOsb5+fnw+12Iy4uLuB8XFwc3G438vLyFN/LzuXSStLS0lBfXw+Px4O6ujp4PB7U19cjLS1N0/3U1jEpysrKsH379oBz27dvx/z58zXfUzO6ybEYwgjLkVLFLLIp1Gy0Ws+0jE6UBtSM5lGqHUfoWkeictM+a9euNekNzMXMb6yX5cKO5TKa0Mvaw6vVogAjxJES0cONwFdEWhnVCkwljrmxIlDdbrettp/ROpiI5bqmpX5EMsWvh0+kUYNGdl+QR6+85zhHUYDe4kiuIfY6pYm6/NJsIqmMWjo9JQE1rZ6rN4OOjg4qLS0NevfS0lIh3z1SgROrVlqlFh2RVojp6T/T3NxMtbW1QT5nsVDHpQgnEO3oO8biyED0FkdKO9/GxsaYHc16ibQCaRGYSsVrtGM3sRDpYEJEh1UzkbPoiFgeIrFChQv4KcK7mY0S8WvHVYcsjgzEbMuRfwERsUEyk0gro1xeV1dXU0NDQ1ADK3K+m2H6t+M0k15p5lAYwdixPMjBfoWBWOHqwXGODOL48eOUm5tLAOg73/lO0O+HDh2i22+/nYYNG0Yul4suuugiqqqqUv0cs3yOpI6mpqaYHs3qURmV5rV/3opoRTBzWsOuU7oii1o7Y9fy0B/vwKKhoUFRe2Cnd4sENe2sEXXMyAFJTIqjH/3oRzRo0CBJcdTV1UXjxo2jpKQkKi8vp6qqKrr22msJAK1atUrVc4wQR1Kdb7iKGcuj2Ugro1ReOxwOyfzuf1+R8t3Mjt+ulgIRRa0d6W+dtGt58CI3hWbnd9MDNeLXbnUs5sTRe++9R3FxcfToo49KiqPly5cTANq4cWPA+Tlz5lBCQgK1trYqfpaRQSDlRjCxUDHl0KsyejweqqqqsmWDaEXnZGcrjEiilkjeyVWUtIazTtq5PKixHtvt3fRAS/siWh0LRUyJo9OnT9OECRNo1qxZtG/fPklxlJOTQ7m5uUF/u2PHDgJAa9asUfw8oyNki9boGN1Ya72/HpVRiTN8/5GSCFgxrWG3EWI4rBIg4cSGSKu/vIRri+xaHpTumdf/sMO76Ylo/ZBexJQ4evTRRykpKYlaW1slxdHBgwcJAJWVlQX9bW9vLzkcDpo7d27I+/f29lJ3d7fvaGtrM1QcidLoGN1Yi9AZKG0oRRsNWTmtYZcRohRWl7lwHY5onZHSMiZSeVAiepUOiLzHf/3Xf1FTU5OJbyEGovRDehMz4mj//v00cOBAevjhh4mIJMXRO++8QwBo2bJlkvfIzMykSZMmhXzGypUrJSuN0XurWd3oGN1Yi9IZyJnYS0tLTU2PUkTJPzthZZ5ptVhYJc7t5HStRvTKfQc7BTk1A6v7Ib2JGXE0c+ZMuuCCC+jLL78kImlxtHPnTgJA9913n+Q9cnJyqLCwMOQzzLYciYDRlgmRHDrDOcM7HA5hxVG0juyMwuoyp9Zi4X/U1tYamjYprM4vNagVvVLX9xdFIr+vXRDJf85LTGw8+9JLL2Hr1q2orKxEQkJCyOuSk5MBAH19fZK/nzx50neNFC6XC4MHDw44oh2jN3MUabPItLQ0PPnkk5K/ERH++te/RrSZolFIbRz55JNPYteuXUKm12qsLnNjx47V/Lff+c53dNlcWmpz0FAbhuq5OayReDweNDQ04MyZMwHnz5w5g4aGBsm6UFNTg+nTpwecu/jii8M+hzewVY6aDdL12LDWEMzRavrT19dHw4YNo9mzZ9O+fft8xxtvvEHAV/5F+/btoyNHjoT1OTp58qSsz1F/jHbIFoFYshwRkeyqNZGmEKQIN60QyehNxJGfVkQoc+EsHP23q+h/lJSUaH6uVPkoLS0N2g6mv+XRDtbJSKb//KeMRCgf0YISS55V/n9RP63W1dWlyBztXYWWnZ0ddrWa12dJCbEgjohiw+dIabwT0RvGUNMEGRkZmhofqx2XjcLqMhdObNTW1hpWDqXeWyq2V6i8ENnvRE9RY3X5iAaUfg+r8jrqxdGXX35JmzdvDjrWrVvna3A2b97s+xDLli0jQDrOUXx8PLW0tCh+thniyIgRu9p7Gj1qFGFUKueMbYeGUY2jr9L3idZOQoQyRyQtNpR8Ry0WTC2O4CKKoHDoVV5FKR92Roklz0orXdSLo1CEinPU2dlJY8aMoeTkZFqxYgVVV1fT7NmzCQjtqB0KI8WRESP2SO9p9KjRqlGpkk5D74bRCNGrxdFXav84/zRGU8cphTcAaHV1tVDvIze1piWtWsqH6NPI/dFb1IhsKRMdJe2HlSshWRxJ7K3W3t5OCxYsoMzMTHK5XFRYWEiVlZWqn2GkODJixB6tVoBIkaug1dXVuj1LL9ErJa4iWSIulQ47LeHWwu7du6moqCgoDxobGy3vEDs7O4OmQiOtr7FgOfLCokYM5Pqc3bt3W1b+YlYcmYFR4siIEXssWAG0YmbeRCpQ5cSVlu0QQqVD9DKj1fqmZj8tK6dSOjs7qaSkRNf0ROpzxJiHf/m264IIOUue2+0OuZ8l+xzZGKPEkREj9mi3AkSKGVY1PcSGXDqlGqOMjAxVgsnonbYjJVLrmxoBafW7EulrBZEqH0pWqynBrh24aMiJdzv6PmnxrevvF6w3LI4MhC1HxqBXI6vmPmY4YEYqUNV8Q//GqLOzU9aHJVQ6RHRM1SLYvGVBbkNnO9QPPZDqrLSKMJFXNNpRsEXD4hAlKPGBM7IcsTgyELN9jpxOJxUVFem6jFekiqZXIxvJfYz0VYhUoGoRV1J5MWHCBNXpEMWHQ20eqplCi0S4xjIitisiC7ZwqPELs7ouRoqSdzWyHLE4MhAjxVG4rSy0VnQRrQD+6NXIithY65E2LeIq1POkptpEyaNwqBWIkfhg2aUjstI6IqpFWuQ2IBxqVhRGg2BXWj+NKEcsjgzEjDhHHo+HioqKdK3oSq0AZja6ejWyojbWXiIVqFIrmICv/Ir6I5cX/afaRBLKoVDzfbWszurvHKpHh2pUPRLBOiKiL6PobUA49LYciT6t2NjYGLRi1KxyxOLIQMwKAml2RTe60fX3//BWXL0aWbn7FBUVCSEAtExTqS0LSvJUlOkyNSi1CqgZhRcVFdFf/vIXXcu90fVIBOuIiEJERMGmBj18jkQQzuFQO93NliObYYY4sqKiG9XohqsQegW9k2usQ72H2VYyLc9SWxZE7Lj0QKn1Te79t23bJvkd9BKMRooXkb6tCCLNH7PzRu+2Qw+XCtG+SX9ECCnB4shAotFyZOTzwo2I9PSDcbvd5HQ6Fb2HmSOsSJ+lp8+RKI1kJCgRMeHe30hBbHS9Fck6IqIvoxnl3ui2w798qxHsIglnLekzqxyxODIQszaeNbODM6rRVVoh9PCDaWxspLFjxyp6DzPzVo9nqb2HiB2XmUi9/7Rp0yKK66NEVBktXqzsAEO9v0hTtGaUe1EHHiIJZy3pq66uNqUcsTgyELPEkZkdnFGNrlL/j0j8YNTMY3ujzprVwej1LK1lQaSOywr8319rp6bGUmBG2TK7cxbdj0UKo8q9yNYZkdMmUvpYHBmIWeLIi1kdnBGNrlLLkdZ3a25upqKiItnpNP/3MHOEpfezokHsWLGSJpKGWW29MFq8mG0VFNVSYgWiW2dE/1YipI/FkYGYLY78MbJjMarRlfM50lIx1K568H8PO1qO9MSqZb5WWiC0dmpavp9Z4sUMoSxi+bUS0fPD7NkGteVPhOl+FkcGYoU40sOpV2lB1rvRDbcKQ2vFUBpErKKiQjJ6slTcIKfTKazPkR4YIU7UlCsr80FrpxaJpSAarHyiW0qsQJT6HA4jy54e7YiVdYPFkYFYIY7M8JcwGm+FCLWUWimRBkwLJawyMjIMyRcRRktE+jbqasuVCCNuLe8vQrqtJNbfXwpR6rNV2EEchoPFkYGYLY7M9JewA0qcvEO9Y319vWWNfUNDA1VUVNC2bdsMe0Yo9O7k1JYrESwQWjs1q+qQKFGOpUJk2L0N0YNosAyqxSyxbGTZZ3FkIGaLIzP9JeyAEstR/05PqY+SEZ20CNY7PcWJlnIlUllU26npaSlQ0uiLUF686WxsbAwKfwCASktLY8ZSYgfMEtJGD3LMKPssjgxEdMuRt6JUV1dbPlo3ilCj+aKiIlVTaWZ00mZYHuQaRz3FidYG0u5WzEgsBXKNvv/3szKflAwi7PTNoh2zhbTWgZFIfoksjgzESHEUqiApKTQdHR2y23FYNVrXGzWjeaU+Skb4HBltMVHTOOrV8Gh9J6lvVlxcTLW1tbYui0oIlffTpk1TterSinAe0dh+RAtWCGmlzxTVL5HFkYEYIY7kClJLS0vQCquMjAxqbW31/X2ondujeeSnZDSvNBClEflitBlaTeOo5/RQJI2yx+Oh2tpaKikp0SUtoqNk3z+l4shIa6+ahQ5Gp4WRx6qpaqXtiKh+iSyODMQIcSRXkOR+V2MxitZOKBRqG/1IGxV/65+RDZjWe+vhSKpmE1itllBRHJIjRak4N6Ns6plOu38Xu2P1Iodw7YjIfoksjgxEb3EkVygaGhoi+h0wb98apZjd8U2bNk1xo6+1UQll/SstLTXE9C3XOBYVFRkugkM1kOEsoXLlvbGx0XKHZD1RK86lDrNWx4mSFpEQVaSLtMihPyL7JbI4MhC9xZFcQaqoqAj7+/Lly2UbNFEqtlUrcUpLS8nhcChq/LXmVaiKXVpaasg7K5musaoTC+djU1RUJCvq7Oy4LYUaXx6pw8jVcf7XGpkWuyHCqkE5RF3koHUR0fbt28O6j+gBiyMDMdty9Otf/zrs7xMmTAj7e3FxsS7p1AMrKrPSRt/pdIZc7RbpMzwej6LpLLWjVKkYNFYLY7m8kEuvSO+iF+GixPc/vPXByNVxUigZpNk1/4m01S0RhYc/IgekVLqIyOzVkSyODMQsnyP/IzU1VVYAmRn1WQtWmYG1+HyobWAinf/XOkrt7OyUtcSY7Tir1cfG4XDQ+PHjhXoXvVEyBa5H56alYxd5miYStNQtu+WFiAEplQg3K1ZHsjgyECPEkZqRpdRRW1sb9PclJSXCCCMi6xwI5Rq6wsLCiEeIkTamkYxSRWvItfrYDB48mC677LKw1zQ1NZn6LnojVweqq6sjfgZH1A9EyzuZ0VaJ6sukN6GEm1WrI1kcGYhRcY4icdz0FjyrRhBKKrqVnXioBlJulZ+aNGntWPTIF9E6Nan0KPX5CnfYpZMOVR/MqAORdOyiTdNEKiC05reR38kOvkxmYNXqSBZHBmJUnCO56REg2F/D6lGd2opuVSceqtGvra3V3JEofYZco6fHKFW0Tq2zs1NyheDAgQMjFkgij7SV1Aej64AeHbvV0zR6CYhI6pZR30m0gYyZqAlzYlTesDgyECt8jrxHf0uH1SMOtRXdjE483Gizf6NvxAhRbceye/du3dJgdafmT6QrtPQQrGajpD6YUQfs3gHrlf5I6rcR30m0KXCtqLXoqQlz0t/CrHfdYHFkIGavVvMXRkTidICRVHQj3kHraDPUii+znNndbnfIKSe7dGb9UTtF7O34zF59p6ffh9r6YGQ9NtuSaGU+yqFWaPV/Fz2/k9WBGyMlkjZWTZiTpqYmw+oGiyMDMTvOkfeora3V5Xl6IVpF1zra7OzslNx6RYTAe3Z1QFbrT+BtYMMtTNDze6hp5JV2/KLVByLjB1JG+M/onY9KhaIZvkB2txwZtQrSzAF/1Iujjz76iMrKyui8886jwYMHU3JyMp133nl0zz330MGDB4OuP3ToEN1+++00bNgwcrlcdNFFF1FVVZWmZ+stjurr6xV1IKJVHD2ngyJFrgJWV1db4nwph4gdKpHxjrD9v01/mpqagnzw9OyotMZgCZcGu3d8WjBi+s6ofJTrgM2airTrlKfW7yJaGxf14mj79u1UWlpK5eXl9Mtf/pLWrVtHP/jBD2jgwIE0YsQIOnTokO/arq4uGjduHCUlJVF5eTlVVVXRtddeSwBo1apVqp9ttuXI6XQKWXHkVnqZafVQaqmQ6tysrLyidah6jp6V+hyZPf2qNM+1dGJ27fi0YGTZNTMfm5ubqaqqyrR6KMLiCS2DH63tpFw56R9yxugQB1EvjkLhXX20evVq3znv9hobN24MuHbOnDmUkJCgOjS52T5HxcXFvj2pjDY9Kn2GEstAUVGRYenUkp5QDazVAkWkDlXPtMjF7lIa5kDvMq+kkddaJkTo+PRCLu+NHFSYkY9KojPr8S6hsMJ3NJLBj97xs/q3A2aFOIhZcdTY2EgA6Mc//rHvXE5ODuXm5gZdu2PHDgJAa9asUfUMs1arOZ1OKikpMaXQqH2GUkuNmRVfzeooLbvEExnTWUt1BF5BbCZGTmfU1tZSSUmJ4vJlZJlX8p6RdvxGd3xGDpSU5r0Zgwoj8zGS9sKuRDr4icSvU26moaSkxJRBYsyIo5MnT9IXX3xBbW1t9Oc//9m3z9hf//pXIiI6ePAgAaCysrKgv+3t7SWHw0Fz584N+4ze3l7q7u72HW1tbbqLo3AjJTMsC1pWdChpVMycT1YTZbx/uuRGqkYL1I6ODlXiwQjMmF4MFy3X/7zRZV7u/lZbE0NhxkBJTd6LZPVUg1UxdqxEjzIdiUVP67ZCete3mBFHTz31VEAm5uTk0PPPP+/7/Z133iEAtGzZMsm/z8zMpEmTJoV9xsqVKyU/mN4RsonMicPTH63PMHvZtVI8Ho9mH4JQnbdRnYBXFEjtjWd2w2yFINi9e3eQ47WeUctDoXXfJ6s7S6PTpLYM2HUaMRIfRbui5+BHi0Uvkh0g9Bxkx4w48lqMNm/eTPfffz9dcskltHbtWt/vO3fuJAB03333Sf59Tk4OFRYWhn2GGZajUKgp0FpN7VorjVnLrrWiV0dihGhQ4+9g9dSkEd8y3PvLCW49G8pwjbxVHb8dtx4RJfaaUiJZ3WpXRLCGhmpfvDM+oY5t27bploaYEUf9+fDDD2nAgAH08MMPE5G85Wjo0KGylqP+GLW3mhRKCnSkpvZIK02oZdeNjY2WNph6dW5GTDep8XewemrSCEGg5v2tFItE5nX8cvXYrM1QRcr7cETqdyWiZdBorH5nM7ZxkiNmxRER0aWXXkrZ2dlEFN7n6OTJk4p8jvpjpjgiki/QehR4Pe7h7UQaGxuFMrVH2rnp3WGoNS9bNTVplCBQ+v5G7CMo8k7oovhBWd2ByqGX35VdpwQjQZR3tsJ9xEtMi6Px48dTcnKy79/Z2dlhV6t5rUxKMVIcSTXe4Qq0XoVKajWB1kojeuOqheLi4rCdtdR3855raGgI+E2pv4OSyLOidvThUPr+eu4jqCWgo5l5a2TsJbWIsnoyFHrngWhTgmaUPT3fWa/0mtVvRL04koqCTUT017/+lZxOJ5WWlvrOLVu2jADpOEfx8fHU0tKi6tlGiCOpxru4uJhqa2vDWmL0MLVLPbt/YC6lRCLWROzsw/nGuN1uamlpCfq9tLSUSktLQ/6NN9yE3BGq8zYrHohRyJUR/6CnejXiShteq/JWrh5XVVVRXV0dNTU1mZI+EVZPSmGnaT+12K1e651es6xaUS+Orr/+err00kupvLycfvWrX9HatWvp1ltvpYSEBEpNTaX333/fd21nZyeNGTOGkpOTacWKFVRdXU2zZ88mILSjdjjMinMU7vA27Ho0Fnoqdi1iTeRGQcpi5J9GJbtKS+VrqDwvKSmRFQPRYJkLV971/vZq6ohVeatmqtXtNnZjTiJxy5hoW1Hoiah5Hgqj0mu0JS/qxVFtbS3NmjWLsrOzyeVyUWJiIhUUFNAPfvAD+vjjj4Oub29vpwULFlBmZia5XC4qLCykyspKTc82O0K2XMMeSSE1259GahWIiI1CR0eH7JJyuVVV4Q6tFoBoGTlLjRKLiooM2XJGaYdqdd6GEoz9xbb/wMiITsTqfLBr2iLBbu9lt/T6E/XiyErM3lst3FFVVUW1tbWa/TPknl1RUaG6oCuxguntMyXXUajpSJqbm6moqCisBSjSw9shqx0lRdvI2Qx/D6VlzOq8VRPENFR90gOr80EOEQdTkSJ6nvfHbun1h8WRgYhkOfI/JkyYQMuXL1cVE0Lps9U0vlKNfKjRb6TiTG5KTs2UnZrYQ5Eeoqyck7q/aH5feqCkQxVlNOwVjNXV1YrLk56bU4uSD6EQZcWVnoie5/2xW3r9YXFkICL4HEkJDv9DzRSF2y0f6VrLyExJpOqGhgZF7xpqtYyeYQ60xt7pn3dKfI4iQa+Rs78QEtnvSw+Udqih6kJGRoZwe90Z2SnZwToj2iqzSLFDnvtjt/R6YXFkIEaIo0hM6uEOJR1cZ2cnZWRk6N74Njc3U0VFRdj71dXVKRYl/Tsouc5DTnj5v0t9fb3qvI2Li6PS0lJVq9X0WBId6chZSghlZGQYEldINOQ61FB1wel0UlFRkekdsVrBrtd0RjRaZ0THbnluVHqNtl6zODIQI+McyXXoDz30kCpzu5IOTs0IVWtogFBHU1OTKmFYUlLie46SKTm5d4lkKs2/IZDqdL270U+cONGQBk/ryFlth2vVyNyKKT4ldcHMDkvtoEnvuDXRZp2xA3bLc73Sa5b1msWRgRgdIVuu85JbRSV1hNsrSI1DuNbQAFKHw+EIEG4ej0dW0PinQQ/LkRqhkJGRoXoJtZzp2SwB4H3O+vXrVZcds50rrZziU1IXrPh+Sqaoi4uLI3pGtE+tMmJj1jQdiyMDMVocyY0W4+LiKCMjQ5N/jFRjp2S0rFdoAKnD34Fcyd/7d9aR+Bzp4dMRrnOUu3+kQfaUdMx6OJmLMJVk1hSfmjJhRZDEUGJeD5+oUPleXFysaqWnnawejDkoWU1sVhvE4shAzNpbTc7yocWCpNUZWWnDL7eBoNz9m5ub6YILLlBcUeTmvcP9riWEgleYKRlly92/v4+PUr8WNSN8Jc724Q7/SPN6IFIjGQql1kQrfLSkyrPWaPb+RLpq1UirEwsuMZEbGKrZZ9PM0AAsjgzELHGkpMB4/Vr6j2Lljv4FOlSjW1tbq6pR0iLYvB2NnFN4uOXKcvPeUr9HYjnSY2m4lk5I6bOJiHbv3q35+cBX0556iSOlnacI8VMiXRwRrrPQq4PX2y8l0v3+jLD28TSfmIT7Lkos1VJBTNlyFCWYJY6UFhhvIdu4cSMVFRUpauRCdTKRNLp6xWsKdYSbOtDa+ajxOfL6dES6HYUSS06ojkXNs5WWBS2dvVqUdp5K/MjMsiJ4PB4qKipS/f3865ZdOni1dVfNIEPrtwpVdyL1rWIiI9wm3FrDobjd0lsxsc+RzTBLHBGF71RCNbxNTU2yzptaxU+onee9oircM//rv/5L94460s5HjZWgtraWiORH2dXV1WHvr8a61l8Ay61UVLoVhv/x0EMPKbqnXFkIV27UfNNQnWJ/y6IZIkPL9xNhrzYtqOnY/MuEEdY+Jf56ognMaEfJlkpaj1BhUXi1ms0wUxyF85mJxBlZDVICRCqWj1zFaWhokO2I1TTKeryjt5Pftm2bYkGpZbl3f4uc0o6otrZW01JuNauu1IgXLWJUbecpVealFiCYKTKUfD9RI24rRc1AQU/LkZTQVuKvJ6LAjGYi9V9UWq5441kbY6Y48tK/wChpkPQK0iVVKaSiQIdaRafEn0ht5680D0IRqpNXatqVEzdyHbfSjqikpCToOaHyXq2/k39ZUCoytYhRrd/JW+bVBPMMh9qp13DXNzY2Bk1bqnXIF3X/KW++S5U9PX2OwgltpZZP0QRmtGK0y4SZdYLFkYGY6XMUahpL6fQKUWR+RFqceidMmBDwbynBpHZTV6mGVq7zqaqqCvneoRpzpaZdpeJGLs9D+bV4l1ArzR+pNIaanpJaEadESEciRiOx8EUqMtRau9Q6nIbaqsdulqP+qBlchZp+DLegQ4nlW41/F2McSi15Ut9UTVtvRp1gcWQgRosjqQZ42rRpIbekMLKQaXXq9a50U7p3mpbOX81oxv/vlXRaSgWlGpEailCdkFxYhOrqatmtMNRaDsO9dyQiJRIrZqQiQ60wC3e9nvfq/46iLldXM7gKtXpWi9Du7OxU5d9lZ0T+/kTy38u7LVKoeu4fPNdqPzwWRwZilDjyVpDi4mLJKZv+ClzJ9Eqk6dEqZrzp0BJLSGnnTxR6eqt/3vjni5zoqKioUDX1olfjrWXqVMt9taLHSjKtadHaoKrNw0jKvNQ7yYlCu6xmU4OSb6VGaJeUlETtvn92+v6hLNH+Wzp5CVfPrd5DjsWRgegtjvSIYmxEIYtE2Ph3mHp2Nv3RsveU0ukqpXlp5EjI6lFWf6SW8ZqxkkxLg6p042N/Iinz4SxnoToL0b5vpKgJP6K07lvdmRqJnb6/mu+gxBJmtON1KFgcGYje4kjpyqVQhxILixqam5upqqqKli5dGva5Spbm19XVhWwAEhISwgoTNXgrmtw0l9yKNC2NlJGNt9UdQ7hIt97DzJVkShpUNYMNoy1H4bC7T5IUaixCaoWBVZ0pkfJpLyNDXIhCuO9gB0sYiyMD0VMc6bEKQI/pEm8HqMavSelKIi2xYqQcXPXIz8LCQsPy18jG2+yOQYnAcDqdQc73IjTwSgYbZvkchcOuq9nCoabDb2lpCbI4ZmRkUGtrq4VvEIjSzt6MEBd2wA6WMBZHBqKnOIrEjG9EeH4tokFphfDv4I1sGEKlR+tmvXZspCIlUmumVXkX6R5hROGtdXpa8uxqOZBDaXtgh47UyHeJtu9vl/dhcWQgoliOIjVXau0A+1d6rf4gRlWkSKNSi1qpzULPmCZm552c6FbjbB/OWqeXJc8OAkEtRoeFMAsj/Kf6E03f3y6WMBZHBmKVz5F3ZYAZK4+0iDK1HYbRDYMaS1VKSkrUNFKRotaaKbW60qq8s0On64/VPmVGYlRYCLNQmkarQlyIhl3qHosjA9FbHCldcWX1SrTq6mpdC7iZDYNcxW1qaoqaRipSlApnrwASrYG342jcSmdjK7BDR2qG5chLtHx/O9Q9FkcGYlSco1AB1EJF4I0EtZYjIwu3WQ2DkoobLY1UpEjlVf/YUf0FkCh5J5pYY6SxQ0caTf5TZmCHusfiyEDM2D7EjI5G6XReaWmpUIVbK3aouKKgJNKt6Igi1hhp7FAflabRDu9iJiLXPaX9t4OICIwqenp6kJqaiu7ubgwePNjq5Gimq6sL8+fPR0NDg++c2+3GQw89hA8++AAAMHXqVOTl5VmUQmPYs2cP9u7di3HjxkXdu+kN5xVjNHYoY0rTaId3iXWU9t8sjjQQLeLIC1dohmEYJhZQ2n/Hm5gmRlDy8vJYFDEMwzDM/8dpdQIYhmEYhmFEgsURwzAMwzCMHyyOGIZhGIZh/LCtOPJ4PLj//vtx2WWXITMzEykpKbj44ouxevVqHD9+POj6zz77DAsXLsTw4cORmJiI8ePHo7q62oKUMwzDMAwjMrZ1yP71r3+Np59+GnPmzEFZWRkGDBiAHTt24Kc//Sl+97vfYdeuXUhKSgIAHDlyBMXFxThw4ACWLl2K3NxcbNmyBUuWLEF7eztWrlxp8dswDMMwDCMKtl3K/84772DcuHEYMmRIwPmf/vSnWL16NZ5++ml8//vfBwCUl5fjZz/7GTZu3IgbbrjBd+3Xv/511NfXo7m5Gbm5uYqfHW1L+RmGYRgmFlDaf9t2Wm3ixIlBwggAbr75ZgDAP//5T9+5F198Ebm5uQHCCADuuecenDp1CrW1tYamlWEYhmEY+2DbabVQHDhwAAAwbNgwAMChQ4fQ1taGsrKyoGunTJkCh8OBxsbGsPfs6+tDX1+f7989PT06pphhGIZhGJGwreVIijNnzuCBBx5AfHw8brnlFgD/K5ays7ODrne5XBg6dCg+/fTTsPdds2YNUlNTfUdOTo7+iWcYhmEYRgiiShzddddd2LVrF1atWoWCggIAwIkTJwB8JYSkSExM9F0TivLycnR3d/uOtrY2fRPOMAzDMIwwRM202k9/+lM888wzWLx4MVasWOE7n5ycDAAB02L+nDx5EllZWWHv7XK5AsSV14edp9cYhmEYxj54+225tWhRIY5WrVqF1atX47bbbsO6devgcDh8v51zzjkAIDl11tvbi46ODpSUlKh63tGjRwGAp9cYhmEYxoYcPXoUqampIX+3vTiqqKhARUUFvvnNb+K5556D0xk4U5iVlYXs7Gy8/fbbQX+7a9cuEBEmTZqk6pkjR45EW1sbUlJSAoSYGnp6epCTk4O2tjYOB2AwnNfmwXltLpzf5sF5bR5G5jUR4ejRoxg5cmTY62wtjh544AGsWrUKt9xyCzZs2BAkjLyUlZXhkUcewaZNmwKW8z/22GOIj4/HvHnzVD3X6XRKOnhrYfDgwVzRTILz2jw4r82F89s8OK/Nw6i8Dmcx8mJbcfTLX/4SK1euxKhRo3D11VejpqYm4Pfhw4fj6quvBgAsX74cr7zyCm699Va8++67vgjZr732Gu677z6MGTPGildgGIZhGEZAbCuOmpqaAACffPIJFixYEPT71KlTfeIoLS0Nb775JlasWIHq6mr09PRg3LhxqKysxHe/+10zk80wDMMwjODYVhxt2LABGzZsUHz9iBEj8NxzzxmXIJW4XC6sXLkyZIgBRj84r82D89pcOL/Ng/PaPETIa9vurcYwDMMwDGMEURUEkmEYhmEYJlJYHDEMwzAMw/jB4ohhGIZhGMYPFkcMwzAMwzB+sDgymZqaGkyYMAFJSUkYOnQo5s+fj48//tjqZNkWj8eD+++/H5dddhkyMzORkpKCiy++GKtXr8bx48eDrv/ss8+wcOFCDB8+HImJiRg/fjyqq6stSHl0cOLECYwZMwYOh0MyLAbnd2R0d3ejvLwcBQUFSExMRHp6Oi6//HJs3rw54DrO58g5duwYHnzwQVx44YUYNGgQMjMzccUVV+CFF14IupbzWxlr1qzBTTfd5GsjRo8eHfZ6tflqaH9KjGk89dRTBICuuOIKqqyspAcffJAyMjJo5MiRdODAAauTZ0t+8pOf0MCBA+kb3/gGPfHEE1RZWUk333wzAaDx48fTiRMnfNd2dXXRuHHjKCkpicrLy6mqqoquvfZaAkCrVq2y8C3sy49+9CMaNGgQAaDvfOc7Ab9xfkfGJ598QmPHjqW0tDS655576Nlnn6Unn3yS7rjjDlq7dq3vOs7nyDlz5gxdfvnl5HQ6aeHChbRu3Tp67LHH6JJLLiEAdN999/mu5fxWDgBKT0+n6dOnU1paGp177rkhr1Wbr0b3pyyOTOLw4cM0aNAgKioqolOnTvnONzU1kcPhoEWLFlmYOvvS1NREXV1dQefvvfdeAkBPP/2079zy5csJAG3cuDHg2jlz5lBCQgK1trYandyo4r333qO4uDh69NFHJcUR53dkTJ06lbKysuiTTz4Jex3nc+S89dZbBICWLl0acP7EiROUlZVFw4cP953j/FZOS0uL7/8LCwvDiiM1+WpGf8riyCTWr19PAGjDhg1Bv02dOpVSUlKor6/PgpRFJx9++GFQh52Tk0O5ublB1+7YsYMA0Jo1a8xMoq05ffo0TZgwgWbNmkX79u2TFEec39rZuXMnAaDHH3+ciIhOnTpFx44dk7yW8zlytm7dSgDokUceCfrt/PPPD8hfzm9tyIkjNflqRn/KPkcm0djYCAC4/PLLg367/PLLcfToUXz00UdmJytqOXDgAABg2LBhAIBDhw6hra0NU6ZMCbp2ypQpcDgcvm/EyLN27Vr8+9//xtNPPy35O+d3ZNTV1QEAxowZgxtuuAFJSUkYNGgQRo8eHZDnnM/6MHnyZAwePBiPPPIIfv/736OtrQ3/+c9/8MMf/hDNzc1YtWoVAM5vo1Cbr2b0pyyOTMLbWWdnZwf95j336aefmpqmaOXMmTN44IEHEB8fj1tuuQVA+Px3uVwYOnQo579CPv74Y6xcuRL33XcfcnNzJa/h/I4Mb8O+ePFiHDhwAOvXr8dvfvMbjBgxAnfeeScefPBBAJzPepGeno5XX30VqampuPnmmzFq1ChccMEF2LBhA7Zs2YLbbrsNAOe3UajNVzP6U9vurWY3Tpw4AQCSe8UkJiYGXMNExl133YVdu3bhoYceQkFBAYDw+Q989Q04/5Xxve99D+eeey5+/OMfh7yG8zsyjh49CgAYOHAgdu7c6cvHefPm4YILLsCaNWvwgx/8gPNZR9LS0nDJJZdg7ty5uPzyy3HkyBFUVlbi5ptvxsaNGzFz5kzOb4NQm69m9KdsOTKJ5ORkAEBfX1/QbydPngy4htHOT3/6UzzzzDNYvHgxVqxY4TsfLv+Br74B5788L730ErZu3YrKykokJCSEvI7zOzKSkpIAAGVlZQEdwIABA3DLLbfg5MmT2L17N+ezTvzzn//ElClTMH36dPz85z/H3Llzcfvtt+ONN97Aueeei4ULF6Kvr4/z2yDU5qsZ/SmLI5M455xzAEib+sKZCBnlrFq1CqtXr8Ztt92GdevWweFw+H4Ll/+9vb3o6Ojg/Jfhyy+/xA9/+EPMnj0bo0aNwv79+7F//35fnh49ehT79+9Hd3c353eEePNmxIgRQb95z3V2dnI+68Tjjz+O3t5e3HTTTQHnXS4Xrr/+ehw6dAgfffQR57dBqM1XM/pTFkcmMWnSJADAW2+9FfTbW2+9hUGDBuG8884zO1lRQ0VFBSoqKvDNb34Tzz33HJzOwKKdlZWF7OxsvP3220F/u2vXLhCR7xsx0pw4cQKff/45XnvtNeTm5vqOkpISAF9ZlXJzc1FZWcn5HSGXXXYZAKCtrS3ot08++QQAMHz4cM5nnfB2qKdOnQr6zXvu9OnTnN8GoTZfTelPI1rrxijmiy++oOTk5JBxGRYuXGhh6uxNRUUFAaBbbrmFTp8+HfK6ZcuWhYyjER8fHxCTgwnmyy+/pM2bNwcd69atIwDkdrtp8+bN5PF4iIjzOxK6urpo8ODBlJWVRUeOHPGd7+npoZEjR1JaWhodP36ciDif9WDp0qUEgH72s58FnO/p6aFRo0bRwIED6eTJk0TE+a0VuaX8avLVjP6UxZGJrF271hfR81e/+hU99NBDlJGRQVlZWfTpp59anTxb8vTTTxMAGjVqFG3YsIF++9vfBhzbtm3zXdvZ2Uljxoyh5ORkWrFiBVVXV9Ps2bODIuAy6ggV54jzOzK8sVzy8/PpkUceoZ///Od03nnnkcPhoOeff953Hedz5Ozfv5/S09PJ4XDQLbfcQpWVlfTwww/T2LFjCQA9+uijvms5v5Xzm9/8hh588EF68MEHadiwYTRkyBDfv5966qmAa9Xmq9H9KYsjk3nhhRfokksuocTEREpPT6d58+ZxRNUI+Na3vkUAQh5Tp04NuL69vZ0WLFhAmZmZ5HK5qLCwkCorK61JfJQQShwRcX5Hyh/+8Ae64ooraODAgZScnEwlJSVUV1cXdB3nc+S0tbXRHXfcQQUFBZSUlESDBg2i4uJievnll4Ou5fxWxtSpU0O2zVJWJLX5amR/6iAiimxijmEYhmEYJnpgh2yGYRiGYRg/WBwxDMMwDMP4weKIYRiGYRjGDxZHDMMwDMMwfrA4YhiGYRiG8YPFEcMwDMMwjB8sjhiGYRiGYfxgccQwDMMwDOMHiyOGYRiGYRg/WBwxTJSyYMECOBwO05+7YcMGOBwOvP7666Y/mzGeq666CqNHj7Y6GQxjKCyOGMZG9Pb24qmnnsLUqVORkZGBhIQEDBs2DG63G9XV1ejr6wv796+//jpWrVqFI0eORJSODz74AKtWrcL+/fsjug8TyFVXXQWHwyF5XHXVVVYnLySvvvoqVq1aZXUyGEY3eG81hrEJ+/fvx7XXXot///vfKC0thdvtRmZmJjo6OvD6669j69atWLRoEaqqqgAAp06dwpkzZ5CYmOi7x6pVq1BRUYF9+/ZFNPrfsGEDbr/9duzYsSOo0z5z5gxOnTqFAQMGwOnk8ZcarrrqKrz11lv49a9/HfTb8OHDcfXVV1uQqkCuuuoq7N+/P0AYL1iwAM8//zy4O2GihXirE8AwjDy9vb2YPXs2mpub8bvf/Q433XRTwO8//vGP8a9//Qvbtm3znUtISEBCQoLZSUVcXBzi4uJMf64dOH78OAYOHBj2GqfTiW9+85smpYhhGCl4WMcwNmD9+vX4v//3/+Kee+4JEkZeLrzwQtxzzz2+f/f3ObrqqqtQUVEBAMjNzfVN12zYsAEA8NFHH+GOO+5AYWEhUlJSkJycjAkTJqC6ujrgOQsWLMDtt98OAJg2bZrvPt5plVA+Rx0dHbjrrrswatQoDBgwACNHjsTixYtx8ODBgOtef/11X7qeffZZXHDBBXC5XDj33HPxyCOPBL33W2+9hVmzZiErKwsulwtZWVm4+uqr8cYbb8jmq9d/prW1Fddddx1SU1ORkpKC6667Dnv37g26nohQWVmJCRMmIDk5GSkpKZg2bRp27NgRcN3+/ft9eVJbW4sJEyYgKSkJ3//+92XTFI6zZ89i9erVuPLKK5GVlYUBAwZg1KhR+N73voeOjg7Jv9m4cSOmTZuGIUOGIDk5GQUFBbjrrrvw5ZdfAgjvI6bEv2j06NF4/vnnASBgGvD111/Hddddh4EDB6K7uzvo795//304HA7ce++96jKBYUyALUcMYwN+//vfAwC+853vaL7Hvffei/T0dGzevBmPP/44hg4dCgC4/PLLAXwlSt58801cf/31GDVqFI4dO4bf//73WLJkCQ4fPozy8nJfGlwuF6qqqrBixQqcf/75AIDx48eHfHZPTw+Ki4vR3NyMb33rW5g8eTL+9a9/Yd26ddi2bRuampowfPjwgL+prKzE559/jsWLFyM1NRUvvPACfvKTnyA7OxtlZWUAgObmZlx99dXIysrCXXfdhaysLHz++ed4++238f7776OkpEQ2X44fP45p06Zh8uTJWLNmDfbs2YNnnnkGu3fvxnvvvYeRI0f6rr311ltRU1ODG2+8Ebfffjv6+vrw4osv4uqrr8amTZvw9a9/PeDer776Kp566il873vfw3e/+10MHjxYNj0AcPjw4aBzaWlpOHXqFB599FHcdNNNmDt3LpKTk9HY2Ij169fjzTffxLvvvosBAwb4/ubee+/Fww8/jMLCQtxzzz3IyspCS0sLNm7ciAceeCDgWq2sXbsWjz32GN544w389re/9Z0///zzsWTJEvzhD39ATU0Nvvvd7wb83fr16+FwOLBo0aKI08AwukMMwwhPeno6paSkqPqbb33rW9S/iq9cuZIA0L59+4KuP378eNC5M2fO0NSpU2nw4MH05Zdf+s4/99xzBIB27NgR9DdSv917770EgNauXRtw7QsvvEAA6Nvf/rbv3I4dOwgAjRgxgrq6ugLSN3ToULrssst855544gkCQI2NjaGyISxTp04lAHT33XcHnN+0aRMBoMWLF/vObdy4kQDQr371q4BrT506RRMmTKDRo0fT2bNniYho3759BIASEhLoo48+Up0eqeP999+ns2fP0okTJ4L+7tlnnyUAVFtb6zu3e/duAkClpaXU29sbcP3Zs2d9aQ33LadOnUrnnnuu7Dmpskb0VfkZNWoUTZgwIeD8yZMnKS0tjUpLS8NlB8NYBk+rMYwN6OnpUWx10EpycrLv/3t7e9HR0YHOzk5cc8016OnpwUcffaT53ps3b0Z6ejruuOOOgPNlZWUYN24cNm/eHPQ3t99+O4YMGRKQvssuuwx79uzxnfP+/uqrr6K3t1dz+pYvXx7w77lz56KgoACvvvqq79yLL76IgQMH4vrrr8fhw4d9x5EjRzBnzhzs378/IG0AcO2116KgoEBVWhISEvDnP/856Bg3bhwcDgeSkpIAfOX4fuTIERw+fBilpaUAgN27dwekFwBWr14Nl8sV8Azv1JfROJ1OLFy4EO+++y4+/PBD3/lNmzahq6sLixcvNjwNDKMFFkcMYwMGDx6Mo0ePGvqMY8eO4cc//jFGjRqFpKQkDB06FJmZmT6fkK6uLs33bm1tRX5+fpCDuMPhQGFhIQ4fPoyenp6A38aMGRN0n4yMjADfmm984xtwu914+OGHkZaWhmnTpmHNmjXYt2+f4rQNGTIEWVlZQefPP/98HD582Ocv85///AfHjx9HVlYWMjMzAw6vv9Vnn30WcI+8vDzF6fDidDoxffr0oGPQoEEAgN/97ne49NJLkZSUhLS0NGRmZvryyv8beYVauOlOM1i8eDHi4uKwfv1637n169cjPT0dN9xwg4UpY5jQsM8Rw9iAiy66CH/729/Q0tKCsWPHGvKM+fPn409/+hOWLFmCK6+8Eunp6YiPj0ddXR0ef/xxnD171pDnUojl30pWvA0YMAD19fV455130NDQgJ07d6KiogIVFRV47rnnMH/+fNl7hLKgeNPl/Z2IkJ6ejtra2pD3uvDCCwP+7W+N04ONGzdi3rx5mDx5Mp544gnk5OQgMTERZ86cwYwZMwK+EREpsg6Fu+b06dMRp/mcc87BrFmz8MILL+CRRx7BwYMHsWPHDtx5551BFi2GEQUWRwxjA2688Ub87W9/Q3V1NX72s59pvk+ojvDIkSP405/+hFtvvRW/+tWvAn7bvn274vuEYsyYMfB4PDh16lSQ9ejf//43hg4dGtG04cSJEzFx4kTce++9OHjwICZMmIDly5crEkddXV04dOhQkPXoo48+CkhXfn4+mpubMWnSJKSmpmpOayS88MILSExMxI4dOwKEl9SUZ0FBAerr6/Hhhx9iypQpIe+Znp4OAOjs7Az6bd++fYrCQciVhyVLluCPf/wjNm/ejH//+98gIp5SY4SGp9UYxgYsWrQI559/Pn7xi19g06ZNktf885//xC9+8Yuw9/FOzfSfIvNaafpbcQ4ePIhnn31W8X1CMXfuXHR2dmLdunUB519++WXs3btX8/SK1KquESNGYMSIEZKdfSj6C87NmzejubkZ119/ve/crbfeCiJCeXm5pLWr/5SaEcTFxcHhcARZiB566KGga70r+n76059KRk73vkN+fj6AYBFcU1OD9vZ2RemSKw+zZs1CTk4OqqqqsGHDBkyePBkXXXSRonszjBWw5YhhbEBSUhJee+01XHvttfg//+f/YPr06bjmmmswdOhQdHR04G9/+xvq6urw7W9/O+x9Lr30UgBAeXk55s+fD5fLhUsvvRS5ubm45ppr8MILLyApKQmTJk3Cxx9/jHXr1iE3Nzcohs7EiRPhdDqxZs0adHV1ITk5GRdeeGHQtJKXZcuW4ZVXXsFdd92F999/H5MmTfIt5c/OzsYDDzygKV8eeughbNu2DbNnz0Zubi4AYOvWrXjvvfcUxxQaOnQoNm3ahPb2dlx11VW+pfzDhw/3xYUC4Fu+X1lZiQ8++ABz5szB0KFD8emnn+Ltt9/G3r170draquk9lHLjjTdi48aNKC0txW233YZTp07h1VdfxYkTJ4KunTx5Mn7yk5/gf/7nfzBhwgTMmzcPWVlZ2LdvH1555RU0NjZiyJAhKCgowPTp07Fu3ToQES6++GJ88MEH2Lx5M8aNG4dTp07JpuvSSy/F008/je9///uYOXMmEhISUFpaimHDhgH4yo9q0aJFPt+s+++/X9d8YRjdsWiVHMMwGjh+/DitXbuWiouLKS0tjeLj4ykzM5PcbjetX7+e+vr6fNeGWl69evVqGjVqFMXFxREAeu6554iI6IsvvqBFixbRiBEjyOVy0YUXXkhVVVUhl3qvX7+e8vPzKT4+ngDQypUriSj00vDDhw/TD37wA8rOzqaEhATKysqiRYsW0YEDBwKu8y7l96bLn/7vtGPHDrr55pvp3HPPpcTERBoyZAhNnDiRnnnmGTp9+rRsfnqXpbe0tNDXv/51SklJoUGDBtHXv/512rNnj+Tf/OY3v6Hi4mJKSUkhl8tF5557Ls2dO5defvll3zXepfzePFHK1KlTyeVyhb2mqqqKzj//fHK5XJSVlUXf/va3qaOjgwDQt771raDrX3rpJbr88stp0KBBlJycTAUFBXT33XcHlJWDBw/SjTfeSCkpKTRw4ECaMWMG/fvf/1a8lP/06dO0dOlSysrKIqfTKfn929raKC4ujgYOHEg9PT1qsoVhTIf3VmMYJmaR2ieMMYZDhw4hJycHt912W8DKNYYREfY5YhiGYQznmWeewenTpyOK8s4wZsE+RwzDMIxhvPzyy/jkk0/w85//HNdccw0mT55sdZIYRhYWRwzDMIxhzJ8/H4mJiSgpKcGvf/1rq5PDMIpgnyOGYRiGYRg/2OeIYRiGYRjGDxZHDMMwDMMwfrA4YhiGYRiG8YPFEcMwDMMwjB8sjhiGYRiGYfxgccQwDMMwDOMHiyOGYRiGYRg/WBwxDMMwDMP48f8APE+lxAc30mwAAAAASUVORK5CYII="
    }
   },
   "cell_type": "markdown",
   "id": "fb22fc1a",
   "metadata": {
    "deletable": true,
    "editable": true
   },
   "source": [
    "<div><img src=\"attachment:q8.jpg\" style=\"height: 300px;\"/></div>\n",
    "\n",
    "<center> <b>Delete</b> this cell before you submit the notebook to reduce the size of your file.</center>"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "2b7897b3",
   "metadata": {
    "deletable": true,
    "editable": true,
    "execution": {
     "iopub.execute_input": "2023-12-07T02:12:18.436675Z",
     "iopub.status.busy": "2023-12-07T02:12:18.436675Z",
     "iopub.status.idle": "2023-12-07T02:12:18.688586Z",
     "shell.execute_reply": "2023-12-07T02:12:18.687578Z"
    },
    "tags": []
   },
   "outputs": [],
   "source": [
    "# create the scatter plot using the DataFrame 'citations_overall' with the x-axis labelled \"Citations per Faculty\" \n",
    "# and the y-axis labelled \"Overall\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "4b64b888",
   "metadata": {
    "deletable": false,
    "editable": false
   },
   "source": [
    "**Question 9:** Create a **scatter plot** representing the `Academic Reputation` (on the **x-axis**) against the `Employer Reputation` (on the **y-axis**) of each institution from the *United States* in the `year` *2023*.\n",
    "\n",
    "You **must** first compute a **DataFrame** `reputations_usa` containing the **Academic Reputation**, and the **Employer Reputation** data from the `Year` *2023*, of each **institution** in the `Country` *United States*."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "0205db15",
   "metadata": {
    "deletable": true,
    "editable": true,
    "execution": {
     "iopub.execute_input": "2023-12-07T02:12:18.693588Z",
     "iopub.status.busy": "2023-12-07T02:12:18.692587Z",
     "iopub.status.idle": "2023-12-07T02:12:18.705860Z",
     "shell.execute_reply": "2023-12-07T02:12:18.704850Z"
    },
    "tags": []
   },
   "outputs": [],
   "source": [
    "# first compute and store the DataFrame 'reputations_usa', then display its head\n",
    "# do NOT plot just yet\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "cf7160f9",
   "metadata": {
    "deletable": true,
    "editable": true
   },
   "outputs": [],
   "source": [
    "grader.check(\"q9\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "7396270e",
   "metadata": {
    "deletable": false,
    "editable": false
   },
   "source": [
    "Now, **plot** `reputations_usa` as **scatter plot** with the **x-axis** labelled *Academic Reputation* and the **y-axis** labelled *Employer Reputation*.\n",
    "\n",
    "You **must** use the `scatter_plot` function to create the plot.\n",
    "\n",
    "**Important Warning:** `public_tests.py` can check that the **DataFrame** is correct, but it **cannot** check if your plot appears on the screen, or whether the axes are correctly labelled. If your plot is not visible, or if it is not properly labelled, the Gradescope autograder will **deduct points**.\n",
    "\n",
    "Your plot should look like this:"
   ]
  },
  {
   "attachments": {
    "q9.jpg": {
     "image/jpeg": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAG4CAYAAABPb0OmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABWOklEQVR4nO3deVhU9f4H8PcwKqsghDuKgIBpV8nEcsskvIN2szSXwDUz9XfTIqubS65llJVYWeaWS+m0XDXLFGpaLK+SW7dssQEURciNXUEQ+P7+8Jm5M84AM2f2mffreeZ54nvOnPnMgXvPx+/y+cqEEAJEREREBADwcnQARERERM6EyRERERGRDiZHRERERDqYHBERERHpYHJEREREpIPJEREREZEOJkdEREREOpo5OgBXVF9fj8LCQrRs2RIymczR4RAREZEJhBCoqKhAhw4d4OXVcP8QkyMJCgsL0alTJ0eHQURERBLk5+cjLCysweNMjiRo2bIlgBs3NzAw0MHREBERkSnKy8vRqVMn7XO8IUyOJNAMpQUGBjI5IiIicjFNTYnhhGwiIiIiHUyOiIiIiHQwOSIiIiLSweSIiIiISAeTIyIiIiIdTI6IiIiIdDA5IiIiItLB5IiIiIhIB5MjIiIiIh1OlxylpaVhzJgxiIyMhEwmQ5cuXRo9/8KFC5g6dSratm0LHx8f9OzZE+vXr2/wfKVSiTvuuAO+vr4IDQ1FcnIyzpw5Y+VvQURERK7K6ZKj+fPn45tvvkFUVBSCg4MbPbe0tBQDBw7Ehx9+iEcffRRvvfUWOnfujOnTp2Pp0qUG569evRopKSnw9fVFeno6UlNT8dVXX6F///4oLCy01VciIiIiE02ZMgURERF49NFHHReEcDK5ubna/+7Ro4cIDw9v8Ny5c+cKAGLHjh167ffff79o3ry5OHXqlLbt8uXLIiAgQPTu3Vtcv35d237kyBEhk8nEo48+anKMZWVlAoAoKysz+T1ERETUsK1btwoABq8PP/zQap9h6vPb6XqOIiMjTT5327ZtiIiIwKhRo/Ta58yZg+vXr+Ojjz7Stu3evRtXrlzBE088gWbN/rffbp8+fXD33Xfj448/Rk1NjeVfgIiIiMw2adIko+0PP/ywnSNxwmE1U50/fx75+fno16+fwbF+/fpBJpPh8OHD2jbNf/fv39/g/P79+6OiogInT540+lnV1dUoLy/XexEREdENarUa+/btQ3Z2tqT3T5kypdHj9h5ic9nkqKCgAAAQFhZmcMzb2xuhoaE4d+6cSedr2nTP15WWloagoCDtq1OnThbHT0RE5OqKi4uRlJSE2NhYDB8+HDExMUhKSkJJSYlZ19m/f3+jx7/55htLwjSbyyZHlZWVAG4kQsb4+Phoz2nqfB8fH71zbjZv3jyUlZVpX/n5+RbFTkRE5A5SUlKgUqn02lQqFZKTk826zuDBgxs9npCQYHZslnDZ5MjPzw/AjSEvY6qqqrTnNHV+VVWV3jk38/b2RmBgoN6LiIjIk6nVamRmZqKurk6vva6uDpmZmWYNsW3evLnR4xs3bpQSomQumxx17NgRgPGhsGvXrqGoqEhvCK2x8xsbciMiIiJDubm5jR7Pyckx+VpqtbrR41LnMknlsslRu3btEBYWhkOHDhkcy8rKghAC8fHx2jbNfx88eNDg/IMHDyIgIADdunWzXcBERERuJCoqqtHjXbt2Nfla//3vfxs9bk6iZQ0umxwBN8Y6T58+jZ07d+q1r1y5Es2aNcO4ceO0bQ888AD8/Pzw5ptvora2Vtt+9OhRfP/99xg7dixatGhht9iJiIhcWUxMDBQKBeRyuV67XC6HQqFAdHS0ydd66623Gj1uTqJlDTIhhLDrJzbh/fff127n8dZbb6GmpgZPP/00AKBVq1aYNWuW9tySkhL06dMH58+fR2pqKiIiIrB7927s2bMHCxcuxLJly/Su/cYbbyA1NRUDBgzAxIkTcfnyZaSnp6N58+Y4evSoduitKeXl5QgKCkJZWRnnHxERkccqKSlBcnIyMjMztW0KhQJKpbLJXS401Go1YmNjGzw+cOBA/PDDDxbHCpj+/Ha65Oiee+5pcElfeHg48vLy9Nr++usvzJ8/H1988QXKy8vRtWtXzJo1CzNnzjR6jW3btuH111/HH3/8AT8/PwwdOhRpaWmIiIgwOUYmR0RERP+TnZ2NnJwcdO3a1aweIwDYt28fhg8f3uDxjz76CGPHjrU0RAAunBy5AiZHRERE1tFUz5FarTY74WqIqc9vl55zRERERK7NmnOXrIXJERERETmUUqlEYmKiXltiYiKUSqVD4mnW9ClEREREthMcHIyMjAyL5i5ZE5MjIiIicgrR0dEOTYo0OKxGREREpIPJEREREZEOJkdEREREOpgcEREREelgckRERESkg8kRERERkQ4mR0REREQ6mBwRERER6WByRERERKSDFbKJiIjIatRqNXJzcx2+BYgl2HNEREREFisuLkZSUhJiY2MxfPhwxMTEICkpCSUlJU2+V61WY9++fcjOzrZDpE1jckREREQWS0lJgUql0mtTqVRITk5u8D2WJFS2xOSIiIiILKJWq5GZmYm6ujq99rq6OmRmZjbYIyQlobIHzjkiIiIii+Tm5jZ6PCcnRzv/SK1WY//+/bh48SIyMzMNztVNqBw1Z4nJEREREVkkKiqq0eNdu3ZFcXExRo8ejW+//daka+omVPbGYTUiIiKySExMDBQKBeRyuV67XC6HQqFAdHQ0UlJSTE6MgBsJlaMwOSIiIiKLKZVKJCYm6rUlJiZCqVRq5ySZQjehchQOqxEREZHFgoODkZGRgezsbOTk5OjVOcrKyjL5OpqEypGYHBEREZHVREdHG/T6NDUnCQDWr1+PwYMHO0XhSA6rERERkU1p5iQZI5PJoFAoMG3aNKdIjAAmR0RERGQHSqUSCQkJBu1Dhgxx+DDazTisRkRERDYXHByMr7/+GtnZ2di/fz8AOM0w2s2YHBEREZHdGJuT5Gw4rEZERESkg8kRERERkQ4mR0REREQ6mBwRERER6WByRERERKSDq9WIiIjIatRqNXJzc/W2D3E17DkiIiIiixUXFyMpKQmxsbEYPnw4YmJikJSUhJKSEkeHZjYmR0RERGSxlJQUqFQqvTaVSoXk5GQHRSQdkyMiIiKyiFqtRmZmJurq6vTa6+rqkJmZiezsbAdFJg2TIyIiIrJIbm5uo8dzcnLsFIl1MDkiIiIii0RFRTV6vGvXrnaKxDqYHBEREZFFYmJioFAoIJfL9drlcjkUCoXLrVpjckRERERGqdVq7Nu3z6Q5Q0qlEomJiXptiYmJUCqVtgrPZljniIiIiPQUFxcjJSUFmZmZ2jaFQgGlUong4GCj7wkODkZGRgays7ORk5Pj0nWOZEII4eggXE15eTmCgoJQVlaGwMBAR4dDRERkVUlJSVCpVHqrz+RyORITE5GRkeHAyCxj6vObw2pERESk5W7L8qVgckRERERa7rYsXwomR0RERKTlbsvypWByRERERFrutixfCiZHREREpMedluVLwaX8REREpMedluVLweSIiIiIjIqOjvaopEiDw2pEREREOpgcEREREelgckRERESkg8kRERERkQ4mR0REREQ6mBwRERER6WByRERERKTDpZOjK1eu4IUXXsBtt92GgIAAtG7dGgMGDMAHH3xgcO6FCxcwdepUtG3bFj4+PujZsyfWr1/vgKiJiIjImblsEcj6+nooFApkZWVhypQpeOKJJ3D16lW8//77mDhxItRqNZYtWwYAKC0txcCBA1FQUIDU1FRERERg9+7dmD59OgoLC7F48WIHfxsiIqIb1Go1cnNzPa4qtTORCSGEo4OQ4tChQ+jfvz9SU1ORnp6uba+qqkJkZCSEEDh//jwAYN68eXj55ZexY8cOjBo1SnvuiBEjkJGRgT///BMREREmf3Z5eTmCgoJQVlaGwMBA630pIiLyWMXFxUhJSUFmZqa2TaFQQKlUIjg42IGRuQ9Tn98uO6xWVlYGAOjQoYNeu6+vL4KDg+Hn56dt27ZtGyIiIvQSIwCYM2cOrl+/jo8++sj2ARMRETUiJSUFKpVKr02lUiE5OdlBEXkulx1W69u3LwIDA7FixQp06dIFd911F65cuYJ169bhzz//xKZNmwAA58+fR35+PlJSUgyu0a9fP8hkMhw+fLjRz6qurkZ1dbX25/Lycut+GSIi8mhqtVqvx0ijrq4OmZmZyM7O5hCbHblsz1FISAg+/fRTBAUFYezYsejcuTO6d++OzZs3Y/fu3Zg0aRIAoKCgAAAQFhZmcA1vb2+Ehobi3LlzjX5WWloagoKCtK9OnTpZ/wsREZHHys3NbfR4Tk6OnSIhwIWTIwAIDg7G7bffjmeeeQY7d+7Ee++9h+joaIwdOxb79u0DAFRWVgK4kQgZ4+Pjoz2nIfPmzUNZWZn2lZ+fb90vQkREHi0qKqrR4127drVTJAS48LDaiRMn0K9fP6xatQozZszQtqekpCAuLg5Tp05FXl6edu6R7rCYrqqqKrRr167Rz/L29m4wuSIiIrJUTEwMFAoFVCoV6urqtO1yuRyJiYkcUrMzl+05Sk9Px7Vr1zBmzBi9dm9vbzz44IM4f/48Tp48iY4dOwKA0aGza9euoaioyOiQGxERkT0plUokJibqtSUmJkKpVDooIs/lsj1HmrlE169fNzimaautrUW7du0QFhaGQ4cOGZyXlZUFIQTi4+NtGywREVETgoODkZGRgezsbOTk5LDOkQO5bM9R9+7dAQCbN2/Wa6+oqMAnn3wCf39/9OjRA8CNobbTp09j586deueuXLkSzZo1w7hx4+wSMxERUVOio6MxbNgwJkYOJLkI5NWrV7F9+3ZkZ2ejqKgIN19GJpNh48aNVgnSmDNnzqB3794oKSlBSkoKBg4ciJKSEmzcuBG5ubl47bXX8PTTTwMASkpK0KdPH5w/f16vQvaePXuwcOFCbSVtU7EIJBHRDazmTK7E1Oe3pOTo8OHDuO+++1BUVNTwhWUyvUlltnDu3DmkpaXh66+/xtmzZyGXyxEXF4dZs2YZ9Ab99ddfmD9/Pr744guUl5eja9eumDVrFmbOnGn25zI5IiJPx2rO5IpsmhwNHDgQv/76KzZs2ICEhASEhIRYFKyrYXJERJ4uKSmpwZVVGRkZDoyMqGE23T7k2LFjePrppzF69GiPS4yIiDydpprzzaMDutWciVyZpOQoMDAQoaGh1o6FiIhcAKs5k7uTlBxpdrMnIiLPw2rO5O4kJUevvvoqLly4gNmzZyM3N9dgpRoREbkvTTVnuVyu1y6Xy6FQKLhqjVyepAnZXl5ekMlkjV9YJkNtba3kwJwZJ2QTkacrKSlBcnIyV6uRSzH1+S2pQvakSZOaTI6IiMh9sZozuTPJRSA9GXuOiIiIXI9Nl/ITERERuSuLNp7NysrCzp07cerUKQA3VjCMHDkSd911l1WCIyIiIrI3ycnRzJkzsX79eoOVaq+99hqmT5+ONWvWWBwcERERkb1JGlZbvXo11q1bB4VCge+//x4lJSUoKSnB999/j6SkJKxbtw5vv/22tWMlIiIisjlJE7Lj4uLQqlUrfPvttwar1oQQGDJkCEpKSvDzzz9bLVBnwgnZRORK1Go1cnNzuaKMPJ5NJ2Sr1Wo89NBDRpfzy2QyPPTQQ9xbh4jIwYqLi5GUlITY2FgMHz4cMTExSEpKQklJiaNDI3JqkpIjb29vlJaWNni8pKQE3t7eUmMiIiIrSElJgUql0mtTqVRITk52UERErkFScnTnnXfi3XffxV9//WVw7K+//sLatWu5Yo2IyIHUajUyMzNRV1en115XV4fMzEz27hM1QtJqtYULF2LIkCG49dZb8cgjj6B79+4AgN9++w1btmxBZWUlFi5caNVAiYjIdLm5uY0ez8nJ4fwjB+EcMOcnKTkaMGAAPv30U/zzn//EG2+8oXcsPDwc27dvR//+/a0SIBERmS8qKqrR4127drVTJKRRXFyMlJQU7kfnAizaPqS+vh7Hjx/HqVOnIIRAVFQUevfuDS8v9y68zdVqROQKkpKSoFKp9IbW5HI5EhMTkZGR4cDIPBN/H45n6vObe6tJwOSIiFxBSUkJkpOT2VPhBNRqNWJjYxs9ziE22zP1+W3R9iFEROS8goODkZGRgezsbOTk5HCOiwNxDphrMSk5ioiIgJeXF06ePInmzZsjMjKyyffIZLIm/xiIiMj2oqOj+eB1MM4Bcy0mJUfh4eGQyWTaoo+dO3c2WgCSiIiIDMXExEChUDQ454jJq3PhnCMJOOeIiMh1OMvSec4Bczybzjk6e/YsWrduDV9fX6PHq6qqcOnSJXTu3FnK5YmIiCzmbEvnOQfMdUhacx8REYFdu3Y1ePyzzz5DRESE5KCIiIgs5azbp0RHR2PYsGFMjJyYpOSoqZG4uro6zkkiIiKzqdVq7Nu3z+LtTbh9CllCcrXGxpKfrKwshISESL00ERF5mOLiYiQlJSE2NhbDhw9HTEwMkpKSUFJSIul6piydJ2qIyXOO3njjDb2tQlJTU7FgwQKD80pLS1FWVoZJkyZZJ0IiInJ7jQ2BSakezaXzZAmTk6NWrVohPDwcAHDmzBnccsstaNu2rd45MpkMAQEBuPPOO5GammrVQImIyD1phsBupjsEZu78HC6dJ0uYnBxNnjwZkydPBgB4eXnh+eefR0pKis0CIyIiz2Cr6tFKpdJg6XxiYiKUSqXZ1yLPImkpf319vbXjICIiD2WrITAunSepuLcaERE5lK2HwLh9CplLcnKUm5uL9PR0/PjjjygpKTHoTeLeakREZCoOgZEzkZQcnThxAgMHDkR1dTViY2Nx6tQp9OjRA0VFRTh//jyioqIQFhZm7ViJiMhNcQiMnImkOkeLFi1CixYt8PPPP+Prr78GcGOpf2FhIdauXYvS0lK8/fbbVg2UiIjcH6tHkzOQlBwdOHAA06dPR2xsrLYYpKZq9mOPPYZhw4Zh7ty51ouSiIiIyE4kJUcVFRXa1QUtWrQAAFy9elV7fMCAAThw4IAVwiMiIiKyL0nJUdu2bXHp0iUAQMuWLeHv7w+1Wq09XlJSYrCfDREREZErkDQhOy4uDkePHtX+PHjwYLzxxhvo27cv6uvrsXr1avTq1ctqQRIRERHZi6Seo5SUFFy8eBFVVVUAgGXLlqG0tBRDhgzBvffei9LSUrz00ktWDZSIiBpnrR3tiTydTGhmUlsoPz8fu3btglwux7BhwxAZGWmNyzql8vJyBAUFoaysDIGBgY4Oh4g8XHFxMVJSUvRqBCkUCiiVSgQHBzswMiLnYurz22rJkSdhckREziQpKanB6tJSdrQnclemPr8lDavJ5XJs3769weMfffQR5HK5lEsTEZEZNDva37wIRndHeyIyj6TkqKnOJnZGERHZhyk72hOReSQlRwC0xR+N+fPPPxEUFCT10kREZCJb7WhP5MlMXsq/ZcsWbNmyRfvziy++iPXr1xucV1JSghMnTmDEiBHWiZCIiBpk6x3tiTyRyclRaWkpTp8+DeBGr9GlS5dQWVmpd45MJkNAQAAeeeQRvPjii9aNlIiIjOKO9kTWJWm1mpeXFz744AOkpKTYIianx9VqROSMuKM9UeNMfX5LqpB9+vRptG7dWnJwRERkfdHR0UyKiKxAUnIUHh5u7TiIiEgitVqN3Nxc9hgRWYmk5CghIaHJc2QyGb7++msplyciIhOwMjaRbUhKjk6dOmWwlL+2thZ//fUX6uvrERoaCn9/f6sESERExqWkpEClUum1qVQqJCcnszI2sUfRApKSo7y8PKPt1dXVWLlyJTZt2oT9+/dbEhcRETUiMzNTr8dIQ7cyNh+Inok9ipaTXATSGG9vb8ybNw933nkn5syZY81LExERbjz4kpKSkJSU1Oh5rIztetRqNfbt22fxli+N9SiSaayaHGkMHDjQ6L9oiIjIMsYefMawMrbr0CS8sbGxGD58OGJiYpCUlISSkhKzr8W99qzDJsnR6dOnUVNTY4tLGygrK8O8efMQGxsLHx8fhISEoH///ti1a5feeRcuXMDUqVPRtm1b+Pj4oGfPnkYrfBMROauGHny65HI5FAoFh9RciDV7erjXnnVImnN09uxZo+3FxcVQqVR48803cc8991gSl0ny8/MxZMgQFBcX45FHHkH37t1RWVmJkydP6sVYWlqKgQMHoqCgAKmpqYiIiMDu3bsxffp0FBYWYvHixTaPlYjIUk09+ABWxnY1moT3ZlLnjnGvPeuQlBx16dKlwY1nhRDo1q0b3nzzTYsCM8XEiRNx9epV/Pzzz+jUqVOD573yyivIycnBjh07MGrUKADAY489hhEjRmD58uWYNGkSIiIibB4vEZElmnrwffnllxg6dKidoiFrMKWnx5zkiHvtWYek5GjRokUGyZFMJkNISAhiYmKQmJgILy+bjNhp/fDDD9i/fz/S09PRqVMn1NbWorq62mgJgW3btiEiIkKbGGnMmTMHn3/+OT766CPMnTvXpvESEVmqqQcfEyPXY4ueHu61ZzlJydGSJUusHIb59u7dCwCIjIzEqFGj8Pnnn6O2thbh4eF45plnMGvWLADA+fPnkZ+fb3QfuH79+kEmk+Hw4cONflZ1dTWqq6u1P5eXl1vxmxARmY4PPvdii56e4OBgZGRkcK89C0hKjpzByZMnAQDTpk1DREQENm7cCJlMhnfeeQezZ89GSUkJFi5ciIKCAgBAWFiYwTW8vb0RGhqKc+fONfpZaWlpWLp0qfW/BBG5FXsU3eODz/3YKuHlXnvSyYQQQsobq6qqsGrVKuzatQu5ubmQyWTaXpwnn3wSvr6+1o5VT2JiIr7++mt06dIFJ0+ehLe3NwCgpqYG3bt3R2FhIQoKCvDrr7/i7rvvxsKFC7Fs2TKD63Tu3BmBgYH49ddfG/wsYz1HnTp1anJXXyLyDCy6R9bAhNf2ysvLERQU1OTzW9LEoIsXL6JPnz5YsGAB1Go1wsPD0alTJ6jVasyfPx/x8fG4dOmS5OBNoUm+UlJStIkRALRo0QLjx49HVVUVfvzxR/j5+QGAXnKjq6qqSntOQ7y9vREYGKj3IiLSYNE9sobo6GgMGzaMiZETkJQcPfvsszh58iRWrlyJixcv4vjx4/jpp59w8eJFvP766/jjjz/w7LPPWjtWPZphsvbt2xsc07QVFxejY8eOAGB06OzatWsoKioyOuRGRGQKFt0jcj+SkqM9e/bg0UcfRWpqKlq0aKFtb9GiBZ566ik88sgj+Pzzz60WpDF33XUXgBu1jm6mqXHUtm1btGvXDmFhYTh06JDBeVlZWRBCID4+3qaxEpH7YtE9IvcjKTmqqalB7969Gzzep08fm1fIfuCBBxAYGIitW7eirKxM215RUYEtW7YgODgY/fr1A3Cjy/v06dPYuXOn3jVWrlyJZs2aYdy4cTaNlYjcF4vuEbkfSavV4uPjcfz48QaPHzt2DH379pUclClatWqF9PR0PProo+jbty+mTZsGmUyGjRs34q+//sLmzZu1c4nmzp2Lf//735g4cSKOHTumrZC9Z88eLFy4EJGRkTaNlYjclzMX3bPH6jkityQkOH78uAgODhZvvvmmqKmp0bZfv35drFq1SoSEhIiffvpJyqXN9tlnn4kBAwYIf39/4efnJwYNGiT27t1rcF5hYaGYMmWKaN26tfD29hY9evQQa9askfSZZWVlAoAoKyuzNHwicgPFxcVCoVAIANqXQqEQxcXFDomnqKjIqeIhchamPr8lLeVPSEhAfn4+Tp06hcDAQERGRkImkyE3Nxfl5eWIiooymOQsk8nw9ddfW5zMOQNTlwISkWdxlqXYSUlJDfZkZWRkOCwuIkcz9fktKTlqbG+1xpw+fdrs9zgjJkdE5KzUajViY2MbPc4hNvJUpj6/Jc05ysvLkxoXERHZkLU3MiXyRLbdHZaIiOyKq+eILGdRcnT69Gls2LABy5cv1/Ym1dTU4OzZszZfyk9ERIY0q+fkcrleu1wuh0KhYK8RkQkkJ0fPPfccYmJiMH36dCxatAinTp0CcKPqdPfu3fHOO+9YLUgiIjKdUqlEYmKiXps1NjIl8hSSkqO1a9fi1VdfxeOPP44vv/wSunO6AwMDMWLECJtXyCYiIuOCg4ORkZEBtVqNvXv3Qq1WIyMjg5vgEplI0oTsd955B6NGjcKqVatQVFRkcLxnz55YvXq1xcEREZF00dHRHEYjkkBSz5FarcbQoUMbPN66dWtcvnxZclBEREREjiKp58jHxwdXrlxp8PiZM2fQqlUrqTEREXkUbvNB5Fwk9Rz17dsXu3btMnqsqqoKW7duxYABAywKjIjI3RUXFyMpKQmxsbEYPnw4YmJikJSUhJKSEkeHRuTRJCVHzz77LA4dOoQJEybgp59+AgAUFBTgiy++wN13342CggI888wzVg2UiMjdpKSkQKVS6bWpVCokJyc7KCIiAiRuHwIA69atw5NPPomamhoIIbTbibRo0QJr1qzBlClTrBmnU+H2IURkKW7zQWR/Nt0+BACmT5+OESNG4JNPPsHJkychhEBMTAzGjBmDjh07Sr0sEZFH4DYfRM5LcnIEAO3atcPs2bMN2oUQ+OCDDzBx4kRLLk9E5La4zQeR87L63mpKpRLdu3d362E1IiJLcZsPIudlVnJ04MABPPDAA+jevTsGDRqEtWvXao+pVCr87W9/w4QJE1BYWIjnnnvO6sESEbkTbvNB5JxMHlb7z3/+g3vvvRfXr1/Xth08eBDl5eUQQmDu3Llo1aoVFi5ciNTUVNY5IiJqgmabj+zsbOTk5LDOEZGTMHm12ogRI/Ddd99h27ZtuPfee5GdnY3JkyfjzJkzuHLlCqZPn47ly5d7RFLE1WpERESux9Tnt8nDaj/++CNmzJiB+++/H35+fujVqxdee+01lJWVYfLkyXj77bc9IjEiIiIi92bysFpRURF69Oih16b5+f7777duVEREZFfcwoTof0zuOaqvr0eLFi302jQ/t2zZ0rpRERGRXXALEyJDZtU5Ki8vx8WLF7U/FxUVAQBKS0v12jXatGljYXhERGRLjW1hkpGR4aCoiBzL5AnZXl5e2i1CdOluHaJ3YZkMtbW1lkfohDghm4jcAbcwIU9j9e1DJk+ebJXAiIjIOXALEyLjTE6ONm3aZMs4iIjIzriFCZFxVt8+hIiIXAO3MCEyjskREZEH4xYmRIbMWq1GRETuhVuYOA5rSzkvJkdERITo6Gg+oO2kuLgYKSkpyMzM1LYpFAoolUoEBwc7MDLS4LAaERGRlajVauzbtw/Z2dkNntNYbSlyDkyOiIiILGRqpXG1Wo3MzEzU1dXptdfV1SEzM7PRpIrsx+zk6OrVq0hISMDGjRttEQ8REZHLMbU3yJTaUuR4ZidH/v7+OHLkiC1iISIicjnm9AZZo7aUKUN3ZBlJw2pxcXH4448/rB0LEZFV8SFC9mBOb5AltaW4SbD9SEqOli5dig0bNmD//v3WjoeIyGJ8iJA9mdsbJLW2FCdy24/JG8/qmjp1Ko4cOYLff/8dcXFxiI6Ohp+fn/6FZTK3nZfEjWeJnFtSUhJUKpXeMIdcLkdiYiJ3miebkPI3Z05tKW4SbB2mPr8lJUdeXk13OMlkMoPxV3fB5IjIefEhQo5QUlKC5ORkm9Uu2rdvH4YPH97g8b1792LYsGEWf467M/X5LakIZH19veTAiIhsiTvNkyPYutI4Nwm2L1bIJiK3wocIOZKtKo1rJnI3NHTHhN+6LCoCefXqVahUKmzbtg0XLlywVkxERJJxp3lyV9wk2H4kJ0dr1qxBx44d8fe//x2TJk3Cb7/9BgC4dOkSfHx8sG7dOqsFSURkDj5EyB1phu7UajX27t0LtVqNjIwM7sdmA5ImZO/YsQNjxozBAw88gPvvvx/Tpk2DSqVCQkICAODBBx/E9evX8cUXX1g9YGfACdlkL9y12zLcaV46/u2ROzL1+S2p5+jVV19FQkICdu3ahQceeMDgeJ8+ffDrr79KuTQRgXV6rCU6OhrDhg3jw90M/NsjkpgcnThxAiNHjmzwePv27XHx4kXJQRG5GmtXYmaxN3IU/u0RSUyO5HJ5ozWMCgsL4e/vLzkoIldhi39lc9duchT+7RHdICk56tWrl16hK111dXX4+OOPER8fb1FgRK7AFv/K5q7d5Cj82yO6QVJyNGvWLOzbtw/PP/88Ll++DACora3Fb7/9hlGjRuH333/HE088YdVAiZyNrf6VzTo95Cj82yO6QVJyNG7cOMyfPx8vvfQSunfvDgAYNmwYevbsic8//xxLlixhGXNye7b6Vzbr9JCj8G+P6AZJS/k1jh07hu3bt+PkyZMQQiAmJgYTJkxAnz59rBmj0+FSfgJsu4eXrfdpImoI//bIndl041lPx+SINGy9+zvr9JCj8G+P3JFNk6OFCxdi2rRpCA8PtyhIV8XkiDT4r2wiItdh0+TIy8sLXl5eSEhIwLRp0zBy5Eg0b97cooBdCZMjuhn/lU1E5Pxsmhz99NNP2LhxI5RKJUpLSxESEoKJEyfi0UcfRY8ePSwK3BUwOSIiInI9dplzVF1djR07dmDjxo347rvvAAB9+/bFY489hnHjxrltIUgmR0RERK7H7hOyT58+jffeew9btmxBQUEB/P398fDDD2PGjBm44447rPERToPJERERkeux6cazxnTs2BG33XYbunbtCiEEqqqqsHnzZvTt2xfDhw/HX3/9Za2PIiIiIrIZi5OjEydOIDU1FR06dEBKSgpyc3OxZMkS5OXlIT8/HwsWLMB3332HqVOnWiPeRlVWViIyMhIymQwzZ840OH7hwgVMnToVbdu2hY+PD3r27In169fbPC4iIiJyHc2kvKmiogJKpRIbNmzAsWPH4OXlheHDh2P69OkYPnw4ZDKZ9txly5YhICAAS5cutVrQDVm0aBEuXbpk9FhpaSkGDhyIgoICpKamIiIiArt378b06dNRWFiIxYsX2zw+IrIetVqN3NxcrhAkIquTlBy1b98eVVVV6NSpExYvXoxp06ahQ4cODZ4fHh6OqqoqyUGa4qeffsKqVavwyiuv4JlnnjE4/sorryAnJwc7duzAqFGjAACPPfYYRowYgeXLl2PSpEmIiIiwaYxEZLni4mKkpKSwthQR2YykYbXExER8/vnnOH36NBYtWtRoYgTc2Iutvr5eUoCmqKurw2OPPQaFQoGHHnrI6Dnbtm1DRESENjHSmDNnDq5fv46PPvrIZvERkfWkpKRApVLptalUKiQnJzsoIiJyN5J6jj799FMrh2GZVatW4ffff8cnn3xi9Pj58+eRn5+PlJQUg2P9+vWDTCbD4cOHG7x+dXU1qqurtT+Xl5dbHjQRmU2tVuv1GGnU1dUhMzMT2dnZHGIjIotJSo40zp07h88++wynTp0CAERFReH+++9HWFiYVYIzxZkzZ7B48WIsXLgQERERyMvLMzinoKAAAIzG5e3tjdDQUJw7d67Bz0hLS7PLnCkialxubm6jx3NycpgcEZHFJCdHL7/8MhYvXoza2lrolkpKTU3FsmXL8Nxzz1klwKb83//9H8LDw43OM9KorKwEcCMRMsbHx0d7jjHz5s3DnDlztD+Xl5ejU6dOEiMmIqmioqIaPd61a1c7RUJE7kzSnKMPP/wQ8+fPx6233ootW7bgp59+wvHjx7F161Z0794d8+fPt8scnu3bt2Pfvn1Ys2ZNo3u7+fn5AYDe0Jiuqqoq7TnGeHt7IzAwUO9FRPYXExMDhUIBuVyu1y6Xy6FQKNhrRERWISk5Sk9PR1xcHLKysjBhwgT06tULcXFxmDBhArKystCzZ0+kp6dbO1Y9NTU1eOqpp/CPf/wDnTt3Rl5eHvLy8rTDYxUVFcjLy0NZWRk6duwIAEaHzq5du4aioiK7DgUSkXRKpRKJiYl6bYmJiVAqlQ6KiIjcjaTk6LfffsOECRPg4+NjcMzb2xsTJ07Er7/+anFwjamsrMTFixexZ88eREREaF+DBg0CcKNXKSIiAmvWrEG7du0QFhaGQ4cOGVwnKysLQgjEx8fbNF4iso7g4GBkZGRArVZj7969UKvVyMjI4DJ+IrIaSXOOvLy8UFNT0+Dx69ev6xWCtAV/f3/s2rXLoP3ixYuYMWMGFAoFZs6ciR49egC4sfx3xYoV2Llzp95y/pUrV6JZs2YYN26cTeMlciR3LJgYHR3tNt+FiJyLpI1nBw0ahEuXLuHo0aMICAjQO1ZRUYH4+Hi0adMG33//vdUCNVVeXh4iIiIwY8YMvPvuu9r2kpIS9OnTB+fPn9erkL1nzx4sXLgQy5YtM/kzuPEsuQoWTCQi+h9Tn9+Seo7+9a9/4YEHHkBcXBxmz56N7t27A7gx3LZ69WqcPn0ar732mrTIbSQ4OBgHDhzA/PnzsX79epSXl6Nr165Ys2aN0X3YiNxBYwUTMzIyHBQVEZFzk9RzBADr1q3D008/jatXr2qH0IQQ8Pf3x+uvv47p06dbNVBnwp4jcgVqtRqxsbGNHuewFBF5Epv2HAHA9OnTMW7cOHz11Vc4deoUhBCIiorC0KFDERQUJPWyRGQlLJhIRCSNRRWyg4KCMHr0aGvFQkRWxIKJRETSSFrKT0TOjwUTiYikMannKCEhwewLy2QyfP3112a/j4isR6lUIjk5WW+1WlMFE91x2b+pPPm7E9H/mJQcnTp1yuZ1i4jI+jQFE7Ozs5GTk9PoQ9+Tl/178ncnIkOSV6t5Mq5WI3eUlJQElUqFuro6bZtcLkdiYqLbL/v35O9O5ElMfX4zOZKAyRG5G09e9u/J353I09h8Kb/G77//jtzcXMhkMkRGRmoLQhKR6/DkZf+e/N2JyDjJyZFKpcKsWbOQnZ2t1x4bG4u33noL9957r8XBEZF9ePKyf0/+7kRknKSl/CqVCsOGDUNBQQEee+wxpKenY+XKlZg2bRrOnTuHYcOG4ZtvvrF2rERkI5687N+TvzsRGSdpztGdd96JwsJCZGVloWPHjnrHzp07h7vuugudOnXCoUOHrBaoM+GcI3JHJSUlBsv+PWXFlid/dyJPYtM5R7/88gsWLFhgkBgBQFhYGGbMmIG0tDQplyYiBzFn2b+78eTvTkSGJCVHrVq1QsuWLRs8HhgYiFatWkmNiYgcKDo62mMTA0/+7kT0P5LmHI0ZMwZKpRK1tbUGx65fvw6lUokxY8ZYHBwRERGRvUnqOZo5cyYOHjyIu+++G0899RS6desGmUyG33//Henp6airq8PMmTNx9uxZvfd17tzZKkETERER2YqkCdleXl6QyWQQQhhsK6K5nLHtRnSrz7oyTsh2H9xLi4jIc9h0QvaiRYu41xq5NO6lZV9MQonIlXD7EAnYc+T6uJeWfTAJJSJnYurzW9KEbCJXplarkZmZaTDMW1dXh8zMTIOq7yRdSkoKVCqVXptKpUJycrKDIiIiappFe6up1Wrk5OSgqKgIxjqgJk2aZMnliWyCe2nZhyYJvZluEsr7TETOSFJyVFBQgMmTJ+Pbb78FAKOJkUwmY3JETol7adkHk1AiclWSkqMZM2Zg//79SE1NxaBBgzh3gFyKZi+thuYc8YFtHUxCichVSUqOvvnmGzz55JN47bXXrB0PkV0olUqDvbQSExOhVCodGJV7YRJKRK5KUnLUsmVL/quPXBr30rIPJqFE5IokLeV/9NFHUVFRgY8//tgWMTk9LuUnMg+TUCJyBqY+vyUlR6Wlpbj33nsxZMgQPP744+jSpYtHFYVkckREROR6bFrnqFWrVpg0aRLS09PRtWtXNGvWDHK5XO/VrJlFVQKIXJZarca+fftYL4mIyEVJymBeeeUVzJ8/H+3atUN8fDxXqxGB1aCJiNyFpGG1Tp06oVu3bti3b59H9hBxWI2M4ZYkZC/cq45IGpsOqxUXF2P06NEemRgRGcMtScgeiouLkZSUhNjYWAwfPhwxMTFISkpCSUmJo0MjciuSkqNevXohPz/f2rEQuSxTqkETWYp71RHZh6TkaPny5Vi3bh1++ukna8dD5JJYDZpsjb2TRPYjaVzs/fffR4cOHdC3b1/069cPERERkMvleufIZDJs3LjRKkESOTtWgyZb4151RPYjaUK2l1fTHU4ymczgXzjughOyyZiSkhKDatBcrUbWolarERsb2+hxJkdEjTP1+S2p56i+vl5yYETuiluSkC2xd5LIfiTNOSKihkVHR2PYsGEu87Bi0UrXoVQqkZiYqNfGveqIrM8ma/GvXLmCwsJCxMTE2OLyRFqs9yKduUUrea8dj72TRPZhcs+RXC7H9u3btT9XVFTg73//O37++WeDc3fv3o1bb73VOhESGcF6L5YzdVk477XzcbXeSSJXY3JydPO87ZqaGqhUKhQVFVk9KKKmuGK9F2cavjJnWbgr3msiIktwzhG5HFer9+KMPS+mFq10tXtNRGQNTI7I5bhaNWpn7HkxtWilq91rIiJrYHJELseVqlE7a8+LZln4zcVb5XI5FAqFdi6LK91rIiJrYXJELsfUB7utmDN3yJl7XkxZFu7oe01E5AhmLeXfs2cPzp07BwCorKyETCbDhx9+iKNHj+qdxz3XyNaUSqVBNWpb13sxd+k74Nw9L6YuC3fEvXY3LINA5FpM3j7ElC1D9C7M7UPIDuxZ7yUpKanB6sQZGRlWf5+zYW0d80lJqInIdkx9fpucHO3fv9/sIAYPHmz2e1wBkyPPY8m+VtxzzXO5S2JM5C6svreauyY6RKawZEd0VjX2TJrJ+DfTnYzPvwMi52ST7UOI3I015g5FR0drH4acg+L+LEmoicixuFqNyATWWrXljAUhyTaceTI+ETWOyRGRiYwtfe/VqxdefPFFk6/hjAUhpXKm7VCcEcsgELkuJkdEJtLMHTp8+DB69+4NADh+/Dji4+NN6v1x1oKQ5mLvl+lMqSVFRM6HyRGRmRYuXIiff/5Zr82U3h9nLghpDnfq/bI1TUKtVquxd+9eqNVqZGRkcJUikZMzeSk//Q+X8nsuS5b0W/JeZ+EO34GIPJepz2/2HBGZwZLeH3eYg+IuvV9ERI1hckRkBktXILn6HBSuwCIiT8DkiMgMlvb+uPocFHfo/SIiaorLJkdqtRqLFi3CXXfdhdatW6Nly5aIi4vD8uXLcfXqVYPzL1y4gKlTp6Jt27bw8fFBz549sX79egdETpZwhuXj1uj9iY6OxrBhw1wymXD13i8ioqa47ITsuXPnYvXq1bj//vvRr18/tGjRAt9++y0+/vhj9OzZE1lZWfD19QUAlJaWIj4+HgUFBUhNTUVERAR2796NL774AkuWLMHixYvN+mxOyLY/e27gaWr1ak/fDsTTvz8RuR6Tn9/CRR05ckSUlJQYtC9YsEAAEKtXr9a2zZ07VwAQO3bs0Dv3/vvvF82bNxenTp0y67PLysoEAFFWViYpdjKfQqEQcrlcANC+5HK5UCgUVvuMoqIioVAo9D5DoVCI4uJiq30GERE5jqnPb5cdVuvTpw9atWpl0D527FgAwIkTJ7Rt27ZtQ0REBEaNGqV37pw5c3D9+nV89NFHNo2VLGOv4oms30NERIALzzlqSEFBAQCgTZs2AIDz588jPz8f/fr1Mzi3X79+kMlkOHz4cKPXrK6uRnl5ud6L7Kep5eNKpdLiBMldqlcTEZHl3Co5qqurw7Jly9CsWTOMHz8ewP+SpbCwMIPzvb29ERoainPnzjV63bS0NAQFBWlfnTp1sn7w1KCmlo8vXrzY4i0sWL+HiIg03Co5euKJJ5CVlYUlS5Zoq/hWVlYCuJEIGePj46M9pyHz5s1DWVmZ9pWfn2/dwKlRDS0fv5klQ2Cs30NERBpukxw9//zzeOeddzBt2jTMnz9f2+7n5wfgxtCYMVVVVdpzGuLt7Y3AwEC9F9mXseXjN7NkCIz1e8znDGUViIhswS2SoyVLlmD58uWYNGkS1q5dC5lMpj3WsWNHADA6dHbt2jUUFRUZHXIj56JbPHHp0qWNnit1CIz1e0xTXFyMpKQkxMbGYvjw4RYPaRIRORuXT46WLl2KpUuXYsKECdi0aRO8vPS/Urt27RAWFoZDhw4ZvDcrKwtCCMTHx9srXLJQdHQ0Hn744UbPkToE5urVq+2Fq/qIyN25dHK0bNkyLFmyBOPHj8fmzZsNEiONlJQUnD59Gjt37tRrX7lyJZo1a4Zx48bZI1yyElsPgbly9Wpb46o+IvIEzRwdgFRvv/02Fi9ejM6dO2Po0KEGQx9t27bF0KFDAdyopv3vf/8bEydOxLFjx7QVsvfs2YOFCxciMjLSEV+BLKBUKpGcnKxXMZtDYLZnyqo+JpVE5OpcNjk6cuQIAODs2bOYMmWKwfHBgwdrk6Pg4GAcOHAA8+fPx/r161FeXo6uXbtizZo1mDlzpj3DJivRDIFxCwv7ampVn1wux759+/j7ICKX5rJ7qzkS91YjT5aUlASVSqU3tObl5YXg4GAUFRVp22y19x0RkVSmPr9des4REdmfsVV9gYGBKC0t1WvjJG0iclVMjsiuWBvH9QUHB2P79u0YOHCgtq20tJSTtInIbTA5Irtwl9o4TO5uSElJMVoewxhuvUJErobJEdmFq9fGcZfkzhoaWs7fEG69QkSuhskR2Zw71MZx9eTOmppazq/BrVeIyFUxOSKbc/Ud790hubOmppbza7DuFBG5KiZHZHOuvuO9qyd31hYTE6M3GduYL7/8kluvEJHLYnJENtfYdh8DBw5ETk6OU/e+uHpyZwuzZ89u9Hhtba2dIiEisj4mR2QXxmrjtGrVCgcOHLB4grOtV5DZei83VxQXF9focU9MGInIfTA5Iru4ecf7QYMGWVw00J4ryIwld548p4YJIxG5M24fIgG3D7GMWq1GbGxso8dNebga28ZCLpcjMTFRm4jl5uZadZ8vd97Lzdz7VVJSYrD5L7cMISJnZurz22U3niXXZY2d3TUryG6mWUE2aNAgHDhwQNturYd2dHS02yVFxcXFSElJMTvJ4ea/ROSuOKxGdmeNCc5NJVgHDx7U+9lTaxKZwtIaTtHR0Rg2bBgTIyJyG0yOyO6sMV+lqQSrvr5e72dPrUnUFNZwIiIyxOSIHMLSCc4NJVheXo3/SXtaTaKmsIYTEZEhJkfkEDevXlOr1WYXDTSWYDU1QZ5LzPWxhhMRkSGuVpOAq9Wci2ZCsGZYriGDBg3C999/b8fIXENTq/6IiNyFqc9v9hyRy9NMCG5ql/hZs2bZKSLXwhpORET6uJSf3EZTQ0S33367nSJxLVyST0Skj8kROYy1izRqJmk3NETEB37j3LGGExGRFBxWI7szd9sPc/ZO4xARERFZihOyJeCEbMuYOgFYauVmwL23+SAiImlMfX4zOZKAyZF05uyrxlVURERkTVytRk7J1KKD5lRuNmfYjYiIqClMjsiuTC06aEoSZe7cJSIiIlMwOSK7MnVfNVOSKEs3TCUiIjKGyRHZnSkryppKooQQ3DCViIhsgskR2Z2p+6oZS6L69esHpVLJDVOJiMhmmBx5GEdPXtb9fM22Hw0ttQ8ODsb27dsxaNAgbduBAweQnJyM0NDQRj+HG6YSEZFUrJDtISypGeTIz09JScHBgwf12jTzjFgNm4iIbIF1jiRwxTpHjq4ZZOrn624pIoRotCbSkSNH8Pzzzzss4SMiItdi6vObPUcuzpT9yTQ1g26mO3nZlj0tpnz+LbfcYtCz1Lt370ave+nSJW6YSkREVsc5Ry7KnBo/jp68bMrnG1uW/9///rfR92nmFTU1d4mIiMgcTI5clDk1fkwtvGgrTX2+XC43uiy/vr5ee9yY2bNns+AjERFZHZMjF2TO1hpAwzWDvLy8MHDgQJv3uDRVs+jm73GzXr16GW1nwUciIrIFJkcuSMowmbGaQfX19Thw4IBdttxorPBjUz1LaWlpRttZ8JGIiGyByZELkjJMpim8OGjQIHh56f/a7dED01jhR0t7lljwkYiIrInJkQsydX+ym6nVavzwww/auTwa9uyBaWjytCU9Syz4SERE1sTkyEWZsj/ZzRy9aq0xlvQscZUaERFZE4tASuBMRSDNqfGjVqsbLaqoVqudNtEoKSlBcnKyXh2kgQMH4rPPPmPBRyIiMompz2/2HLk4c2r8uHIPTGP7rHE5PxERWROTIw8jZTjOWTS0zxqX8xMRkTVxWE0CZxpWk8rYcJwpW5E4iisPCRIRkXPg3mrUqOjoaG0yUVxcbLCvmbNt4GrKZHImR0REZA1MjpzIzTvS26sXx9hWJF999RWSk5ORkZFh0882FZfzExGRvTA5cgLGem502bIXR7MVyc3q6+uRmZmJo0ePok+fPlb/XHNpJpOrVCq9opByuRyJiYnsNSIiIqvhhGwnYKznRpctJx03NVw1Y8YMm3yuFK48mZyIiFwHJ2RLYM0J2U1NNL75XGv3kJjy+c422dmc2k5EREQarHPkIprqudFliwrWMTEx6N27t90/1xLm1HYiIiIyF5MjB2tqorEuW006fvfddx3yuURERM6IyZGDNVS1WpetK1jHx8e7bOVsIiIia2Ny5ASMTTTWZY9Jx5zsTEREdAMnZEtgqwrZuhONAThk0jEnOxMRkbsy9fnN5EgCd9g+hIiIyNNwtRoRERGRBEyOiIiIiHR4XHKkVCpxxx13wNfXF6GhoUhOTsaZM2ccHRYRERE5CY9KjlavXo2UlBT4+voiPT0dqamp+Oqrr9C/f38UFhY6OjwiIiJyAh4zIbuoqAhdunRBTEwMfvzxRzRrdmPP3aNHj6Jv376YOnUqNmzYYNK1OCGbiIjI9XBC9k12796NK1eu4IknntAmRgDQp08f3H333fj4449RU1PjwAiJiIjIGXhMcnT48GEAQP/+/Q2O9e/fHxUVFTh58qTR91ZXV6O8vFzvRURERO7JY5KjgoICAEBYWJjBMU3buXPnjL43LS0NQUFB2lenTp1sFygRERE5lMckR5WVlQAAb29vg2M+Pj5659xs3rx5KCsr077y8/NtFygRERE5VLOmT3EPfn5+AG4Mkfn6+uodq6qq0jvnZt7e3kaTKiIiInI/HpMcdezYEcCNobOb9wxrbMjNGM0CP849IiIich2a53ZTC/U9JjmKj4/H2rVrcfDgQYPk6ODBgwgICEC3bt1MulZFRQUAcO4RERGRC6qoqEBQUFCDxz2mztHly5cRHh6Obt26Ga1z9Mgjj2Djxo0mXau+vh6FhYVo2bIlZDJZg+eVl5ejU6dOyM/PZz0kO+E9ty/eb/vjPbc/3nP7suX9FkKgoqICHTp0gJdXw9OuPabnKDQ0FC+99BJSU1Nxzz33YOLEibh8+TLS09PRtm1bLFu2zORreXl5mTwEBwCBgYH8H5Sd8Z7bF++3/fGe2x/vuX3Z6n431mOk4THJEQA8+eSTCA0Nxeuvv47U1FT4+flh6NChSEtL085JIiIiIs/mUckRAIwfPx7jx493dBhERETkpDymzpEjeHt7Y/HixSwDYEe85/bF+21/vOf2x3tuX85wvz1mQjYRERGRKdhzRERERKSDyRERERGRDiZHRERERDqYHBERERHpYHJkI0qlEnfccQd8fX0RGhqK5ORknDlzxtFhuTS1Wo1FixbhrrvuQuvWrdGyZUvExcVh+fLluHr1qsH5Fy5cwNSpU9G2bVv4+PigZ8+eWL9+vQMidx+VlZWIjIyETCbDzJkzDY7znltHWVkZ5s2bh9jYWPj4+CAkJAT9+/fHrl279M7j/bbclStX8MILL+C2225DQEAAWrdujQEDBuCDDz4wOJf32zxpaWkYM2aM9v8zunTp0uj55t5fmz5nBVndW2+9JQCIAQMGiDVr1ogXXnhB3HLLLaJDhw6ioKDA0eG5rOeee074+/uLhx9+WLzxxhtizZo1YuzYsQKA6Nmzp6isrNSeW1JSIrp27Sp8fX3FvHnzxLp168R9990nAIglS5Y48Fu4tqeffloEBAQIAGLGjBl6x3jPrePs2bMiKipKBAcHizlz5ogNGzaIN998U/zzn/8Uq1at0p7H+225uro60b9/f+Hl5SWmTp0q1q5dK1auXCluv/12AUAsXLhQey7vt/kAiJCQEJGYmCiCg4NFeHh4g+eae39t/ZxlcmRlly9fFgEBAaJ3797i+vXr2vYjR44ImUwmHn30UQdG59qOHDkiSkpKDNoXLFggAIjVq1dr2+bOnSsAiB07duide//994vmzZuLU6dO2Tpct3P8+HEhl8vFa6+9ZjQ54j23jsGDB4t27dqJs2fPNnoe77flDh48KACI1NRUvfbKykrRrl070bZtW20b77f5cnNztf/do0ePRpMjc+6vPZ6zTI6sbOPGjQKA2Lx5s8GxwYMHi5YtW4rq6moHROa+fv75Z4OHdadOnURERITBud9++60AINLS0uwZosurra0Vd9xxhxg+fLg4ffq00eSI99xy33//vQAg0tPThRBCXL9+XVy5csXoubzfltu3b58AIFasWGFw7NZbb9W7v7zflmkqOTLn/trjOcs5R1Z2+PBhAED//v0NjvXv3x8VFRU4efKkvcNyawUFBQCANm3aAADOnz+P/Px89OvXz+Dcfv36QSaTaX9PZJpVq1bh999/x+rVq40e5z23jr179wIAIiMjMWrUKPj6+iIgIABdunTRu/e839bRt29fBAYGYsWKFfjkk0+Qn5+PP/74A0899RT+/PNPLFmyBADvt62Ze3/t8ZxlcmRlmgd1WFiYwTFN27lz5+wakzurq6vDsmXL0KxZM+2eeY39Dry9vREaGsrfgRnOnDmDxYsXY+HChYiIiDB6Du+5dWj+D33atGkoKCjAxo0bsXXrVrRv3x6zZ8/GCy+8AID321pCQkLw6aefIigoCGPHjkXnzp3RvXt3bN68Gbt378akSZMA8H7bmrn31x7PWY/beNbWKisrAcDonjA+Pj5655DlnnjiCWRlZeHFF19EbGwsgMZ/B8CN3wN/B6b7v//7P4SHh+OZZ55p8Bzec+uoqKgAAPj7++P777/X3s9x48ahe/fuSEtLw6xZs3i/rSg4OBi33347Ro4cif79+6O0tBRr1qzB2LFjsWPHDgwbNoz328bMvb/2eM6y58jK/Pz8AADV1dUGx6qqqvTOIcs8//zzeOeddzBt2jTMnz9f297Y7wC48Xvg78A027dvx759+7BmzRo0b968wfN4z63D19cXAJCSkqL3f/wtWrTA+PHjUVVVhR9//JH320pOnDiBfv36ITExEa+++ipGjhyJRx55BD/88APCw8MxdepUVFdX837bmLn31x7PWSZHVtaxY0cAxrv0GusKJPMsWbIEy5cvx6RJk7B27VrIZDLtscZ+B9euXUNRURF/ByaoqanBU089hX/84x/o3Lkz8vLykJeXp72vFRUVyMvLQ1lZGe+5lWjuUfv27Q2OadqKi4t5v60kPT0d165dw5gxY/Tavb298eCDD+L8+fM4efIk77eNmXt/7fGcZXJkZfHx8QCAgwcPGhw7ePAgAgIC0K1bN3uH5VaWLl2KpUuXYsKECdi0aRO8vPT/jNu1a4ewsDAcOnTI4L1ZWVkQQmh/T9SwyspKXLx4EXv27EFERIT2NWjQIAA3epUiIiKwZs0a3nMrueuuuwAA+fn5BsfOnj0LAGjbti3vt5VoHqTXr183OKZpq62t5f22MXPvr12esxatdSMDly5dEn5+fg3WX5g6daoDo3N9S5cuFQDE+PHjRW1tbYPn/etf/2qwZkazZs306m+QcTU1NWLXrl0Gr7Vr1woAQqFQiF27dgm1Wi2E4D23hpKSEhEYGCjatWsnSktLte3l5eWiQ4cOIjg4WFy9elUIwfttDampqQKAePnll/Xay8vLRefOnYW/v7+oqqoSQvB+W6qppfzm3F97PGeZHNnAqlWrtJU73333XfHiiy+KW265RbRr106cO3fO0eG5rNWrVwsAonPnzmLz5s3i/fff13t9+eWX2nOLi4tFZGSk8PPzE/Pnzxfr168X//jHPwyq3pL5GqpzxHtuHZoaLjExMWLFihXi1VdfFd26dRMymUxs2bJFex7vt+Xy8vJESEiIkMlkYvz48WLNmjXipZdeElFRUQKAeO2117Tn8n6bb+vWreKFF14QL7zwgmjTpo1o1aqV9ue33npL71xz76+tn7NMjmzkgw8+ELfffrvw8fERISEhYty4caygaqHJkycLAA2+Bg8erHd+YWGhmDJlimjdurXw9vYWPXr0EGvWrHFM8G6koeRICN5za/nss8/EgAEDhL+/v/Dz8xODBg0Se/fuNTiP99ty+fn54p///KeIjY0Vvr6+IiAgQAwcOFB8+OGHBufyfptn8ODBDf7/tbFeJHPvry2fszIhhLBsYI6IiIjIfXBCNhEREZEOJkdEREREOpgcEREREelgckRERESkg8kRERERkQ4mR0REREQ6mBwRERER6WByRERERKSDyRERERGRDiZHRCTJPffcgy5dujg0hry8PMhkMixZssShcXiKJUuWQCaTIS8vz9GhENkUkyMiF1BWVgY/Pz/IZDJs3rzZ0eG4tc2bN0Mmk2lfXl5eCAoKwoABA5z63n/66adWSRK/++47LFmyBKWlpRZfi8hVMTkicgHbt2/HtWvXEBUVhY0bNzo6HKcRHh6OqqoqPP/881a/9uOPP473338fmzdvxr/+9S8UFhbikUcewUsvvWT1z7KGTz/9FEuXLrX4Ot999x2WLl1qNDl6/vnnUVVVhfDwcIs/h8iZMTkicgEbN27E3XffjaeffhoHDhzAn3/+6eiQnIJMJoOPjw+aNWtm9WsPHDgQEyZMwKRJk7BgwQIcPHgQ/v7+WLFiBerq6qz+ea6gWbNm8PHxgUwmc3QoRDbF5IjIyf3yyy84duwYpkyZguTkZHh7e+O9994zem5NTQ1WrFiBuLg4+Pn5ISgoCH369MHq1au15xQWFuLpp59GXFwcgoOD4ePjg+7du+OVV14x+tAvKChAcnIyWrVqhYCAACQkJOD48eMNxnv06FGMHDkSoaGh8Pb2RmxsLJYvX47a2lq98zRzlvLy8jBy5Ei0atUKwcHBmDJlCq5cuYL6+nq89NJLiIiIgLe3N26//Xb88MMPetdobM7Rjh07MGTIELRq1Qp+fn6IjY3FE088gZqamsZud4Pat2+PW2+9FWVlZbh06ZLesezsbEycOBHt27dHixYt0KVLFzz77LO4evWq3nlTpkyBTCbDpUuXMGnSJNxyyy3w8/NDQkICjh07pnfud9991+AwquY6Gl26dMGWLVsAQG9I8LvvvgMAHD58GFOmTEFMTAz8/PzQsmVLDBgwALt27dK77j333KPtfYqIiNBeRxNDQ3OOzp49iylTpuh9/zlz5qCsrEzvPM2Q5TfffINXXnkFkZGR8Pb2RkxMjDZ+Imdg/X9uEZFVbdiwAf7+/hg9ejQCAgIwYsQIbN26FcuXL9frMampqYFCocB3330HhUKBiRMnwtvbGydOnMDOnTsxa9YsADeSrU8//RSjRo1CREQEampqsG/fPsydOxenTp3C2rVrtdcsLS3FoEGDcObMGUybNg1xcXE4cuQI7r33Xtxyyy0Gse7duxcjR45E165d8fTTTyMkJASHDh3CokWL8N///heffPKJ3vlXr17FkCFDMGTIELz88ss4duwYNmzYgKqqKoSGhuLw4cOYPXs2rl+/jtdeew0jRozAmTNnEBgY2Og9W7BgAV566SX06NEDc+bMQbt27ZCbm4sdO3Zg2bJlaNGihdm/h5qaGpw9exZeXl5o1aqVtv3YsWNISEhAq1atMGPGDHTs2BG//PIL3nzzTfznP//B/v370bx5c71rJSUlISQkBEuWLMH58+exevVqDB48GAcPHkTPnj3Njm3VqlVYuXIlfvjhB7z//vva9ltvvRUAsGvXLqjVaiQnJyMsLAxFRUXYsmULRo0ahW3btiElJUV730JCQrBr1y6kp6cjNDQUANC/f/8GPzs/Px99+/ZFcXExZs6ciW7duuHQoUNIT0/HN998g0OHDsHX11fvPfPmzcO1a9cwc+ZMtGjRAu+++y6mTJmCrl27YsCAAWZ/fyKrE0TktK5duyZCQkLEpEmTtG1ffPGFACB2796td+4rr7wiAIgFCxYYXKeurk7735WVlaK+vt7gnAkTJggvLy9RWFiobZs3b54AINasWaN37quvvioAiPDwcG1bVVWVaNOmjRg0aJC4fv263vkrV64UAMS3336rbRs8eLAAIF5//XW9cx966CEhk8lEfHy83nV2795tEMvp06cFALF48WJt248//igAiISEBHHt2jW9a9fX1xv97ro2bdokAIh169aJS5cuiQsXLoijR4+K0aNHCwBizJgxeuf37NlTxMTEiPLycr32nTt3CgBi06ZN2rbJkycLAGLkyJF6cRw9elTIZDKRmJiobfv2228N3n/zdZpq07hy5YpB29WrV0VMTIy49dZb9doXL14sAIjTp08bvMfYsfHjxwsA4tNPP9U798UXXxQAxPLly7VtmnsbFxcnqqurte3nzp0TLVq0EA8//LDR+InsjcNqRE5s165dKC4uxpQpU7RtCoUC7du3N5iYvW3bNgQFBRmdnOzl9b//qfv6+mqHZGpqalBcXIzLly9DoVCgvr4eR48e1Z67e/du3HLLLZg2bZre9WbPno2WLVvqtX311Ve4ePEiJk2ahNLSUly+fFn7Gj58OADgyy+/1HuPXC7H448/rtc2YMAACCEwY8YMvZ6xQYMGAQBycnKM3yyd+wAAy5cvh7e3t94xzTCRKaZPn47WrVujbdu26NOnD3bs2IFHHnlEb0jzxIkT+OWXX/Dwww+jurpa7zsPHDgQ/v7+Bt8ZAP71r3/pxXHHHXdg6NCh+Oabb1BeXm5SfObw9/fX/ndlZSWKiopQWVmJhIQE/PHHH5I/s76+Hp999hn+9re/4YEHHtA7NmfOHAQEBGDnzp0G7/vnP/+p13vXsWNHxMTEIDs7W1IcRNbGYTUiJ7Zx40a0bt0aYWFheknB0KFDsX37dpw/fx7t2rUDcGPey9/+9jf4+Pg0es3a2lq8/PLL2Lp1K3JyciCE0DteUlKi/e/c3FzcfvvtBhOevb29ERkZqbei6Y8//gAAPPbYY3jssceMfvaFCxf0fm7fvr1BAhMcHAwABjWUNO1FRUWNfj/NA1bK8JSuBQsW4J577kF1dTWOHTuGl19+GcXFxXrxar7zsmXLsGzZMqPXufk7A/8b7tLVvXt3fPnllzh9+jR69eplUew3u3jxIp5//nns3r0bFy9eNDheWlra5FClMZcuXUJFRQV69OhhcMzX1xdRUVE4deqUwbHIyEiDtltuuQVnzpwxOwYiW2ByROSk8vLy8PXXX0MIgZiYGKPnbNmyBc8995xZ133qqaewevVqjBs3DgsWLECbNm3QvHlzHD9+HM899xzq6+v1zje1p0WTZL388su44447jJ7ToUMHvZ/lcnmD12vo2M3JnLHj1lhNddtttyExMREAcN9996Fbt24YN24cFi9erF3Or4klNTUV9913n9HraJK6pmiupYm9se9w8+T2xtTX12Po0KE4efIknnjiCcTHxyMoKAhyuRybNm3C9u3bDX7npjLld2GM1N8tkb0wOSJyUps2bYIQAmvXrkVISIjB8WXLluG9997TJkcxMTH4888/ce3atUZ7jz744APcfffd+PDDD/XajQ1XRUVFQa1Wo7a2Vq/3qLq6GqdOndKLS5PA+fn5aZMKR4iNjUVGRgZ+/vln9OvXz2rXHTt2LN555x2sXLkSM2bMQHh4uPY7e3l5mfWd//jjD9x1110GbV5eXtoeM829LS4uNni/sd6YhpIpzdDfokWLDOogbdiwweTrGNOmTRu0bNkSv/32m8Gxa9eu4dSpU+jWrZvJ1yNyFpxzROSE6uvrsXnzZnTv3h3Tp0/H6NGjDV7jx4+HWq3GgQMHAADjx49HWVkZXnzxRYPr6f6LXC6XG/wL/erVq0hPTzd434MPPoiioiKDh+hbb72FiooKvTaFQoE2bdpgxYoVuHz5ssG1qqqqDN5jC5qVV88//zyqq6sNjlvSO7F48WJUV1dr73FcXBz+9re/Yd26dUaTy9raWqPJzYoVK/TiOH78OFQqFRISErTDWxEREWjWrBlUKpXeew8ePIisrCyDawYEBADQHxYF/tdLc/P3/vXXXw2W8jd2HWO8vLwwYsQInDhxAnv27NE7tmrVKly5cgWjRo1q8jpEzoY9R0RO6KuvvsLZs2exaNGiBs956KGHMHfuXGzcuBEDBw7Ek08+ic8//xzLly/H0aNH8fe//x0+Pj747bff8Oeff2ofsqNHj8batWsxbtw4JCYm4sKFC3jvvfeMLs1/9tlnoVQq8fjjj+O///0vevXqhSNHjmDXrl2IiorSG97x8/PD1q1b8eCDD6Jbt26YOnUqoqOjUVpaipMnT2Lnzp3YtWsX7rnnHqvfL119+/bFc889h1deeQV33HEHxo0bh3bt2uH06dP497//jcOHD+stxTfHkCFDtNuIzJs3D5GRkdi6dSsSEhIQFxeHqVOnokePHqisrEROTg527tyJtLQ0vQn1AHDmzBkoFAqMGDECf/31F1avXg1fX1+8/vrr2nMCAgIwZcoUbNiwAcnJybjnnnuQnZ2NTZs2oWfPnvj555/1rnnnnXdi9erVePzxxzFs2DA0b94cCQkJuPXWW9GjRw+sWLEClZWViI2NhVqtxtq1a3HbbbcZ1Ky68847AdxYbq+pq3XnnXciIiLC6D1JS0uDSqXCQw89pF3Kn5WVha1bt6JXr1548sknJd1rIoey+/o4ImrSmDFjBADxyy+/NHpez549hb+/v3YZeVVVlXjxxRdF9+7dhbe3twgKChJ9+vQRb7/9tvY9V69eFc8884zo3Lmz8Pb2Fl27dhVpaWlCpVIZXTp+7tw58fDDD4ugoCDh7+8vhgwZIo4dOyYGDx6st5Rf48SJE2L8+PGiQ4cOonnz5qJNmzaiX79+YtmyZaKoqEh7XkPv1yz31l32rwFATJ48WfuzsaX8Gtu3bxf9+/cXAQEBws/PT8TGxoonn3xSbwm5MZrPVyqVRo9nZGQIAGLKlCnatry8PDFjxgwRHh4umjdvLkJCQkTv3r3F3LlzxdmzZ7XnaZbbX7x4UUyYMEGEhIQIX19fMWTIEHH06FGDz6qoqBDTpk3TnjdgwADxn//8x+iy/draWpGamiratWsnvLy89O5hXl6eGD16tAgNDRW+vr4iPj5e7Ny5s8Fl+8uXLxedO3cWcrlc72+iofPz8vLEpEmTRNu2bUXz5s1F586dxVNPPSVKS0uN3ltjv9uG/h6IHEEmBGfAERHZw5QpU7BlyxZOPCZycpxzRERERKSDyRERERGRDiZHRERERDo454iIiIhIB3uOiIiIiHQwOSIiIiLSweSIiIiISAeTIyIiIiIdTI6IiIiIdDA5IiIiItLB5IiIiIhIB5MjIiIiIh3/Dz5t09csEP4PAAAAAElFTkSuQmCC"
    }
   },
   "cell_type": "markdown",
   "id": "b8c6cfca",
   "metadata": {
    "deletable": true,
    "editable": true
   },
   "source": [
    "<div><img src=\"attachment:q9.jpg\" style=\"height: 300px;\"/></div>\n",
    "\n",
    "<center> <b>Delete</b> this cell before you submit the notebook to reduce the size of your file.</center>"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "75c882ba",
   "metadata": {
    "deletable": true,
    "editable": true,
    "execution": {
     "iopub.execute_input": "2023-12-07T02:12:19.474346Z",
     "iopub.status.busy": "2023-12-07T02:12:19.474346Z",
     "iopub.status.idle": "2023-12-07T02:12:19.707182Z",
     "shell.execute_reply": "2023-12-07T02:12:19.706170Z"
    },
    "tags": []
   },
   "outputs": [],
   "source": [
    "# create the scatter plot using the DataFrame 'reputations_usa' with the x-axis labelled \"Academic Reputation\" \n",
    "# and the y-axis labelled \"Employer Reputation\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "402d0e41",
   "metadata": {
    "deletable": false,
    "editable": false
   },
   "source": [
    "**Question 10:** Create a **scatter plot** representing the `International Students` (on the **x-axis**) against the `Faculty Student` (on the **y-axis**) for the **top ranked** institution of **each** `Country` in the `Year` *2023*.\n",
    "\n",
    "You **must** first compute a **DataFrame** `top_ranked_inter_faculty` containing the **International Students**, and the **Faculty Student** data from the `Year` *2023*, of the **top** ranked **institution** (i.e., the institution with the **least** `rank`) of each **country**.\n",
    "\n",
    "**Hint:** You can use the `MIN` SQL function to return the least value of a selected column. However, there are a few things to keep in mind while using this function.\n",
    "* The function must be in **uppercase** (i.e., you must use `MIN`, and **not** `min`).\n",
    "* The column you are finding the minimum of must be inside backticks (``` ` ```). For example, if you want to find the minimum `Rank`, you need to say ```MIN(`Rank`)```.\n",
    "\n",
    "If you do not follow the syntax above, your code will likely fail."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "e0785ff5",
   "metadata": {
    "deletable": true,
    "editable": true,
    "execution": {
     "iopub.execute_input": "2023-12-07T02:12:19.711180Z",
     "iopub.status.busy": "2023-12-07T02:12:19.711180Z",
     "iopub.status.idle": "2023-12-07T02:12:19.726324Z",
     "shell.execute_reply": "2023-12-07T02:12:19.725251Z"
    },
    "tags": []
   },
   "outputs": [],
   "source": [
    "# first compute and store the DataFrame 'top_ranked_inter_faculty', then display its head\n",
    "# do NOT plot just yet\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "7f7ce28e",
   "metadata": {
    "deletable": true,
    "editable": true
   },
   "outputs": [],
   "source": [
    "grader.check(\"q10\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "f8726dfb",
   "metadata": {
    "deletable": false,
    "editable": false
   },
   "source": [
    "Now, **plot** `top_ranked_inter_faculty` as **scatter plot** with the **x-axis** labelled *International Students* and the **y-axis** labelled *Faculty Student*.\n",
    "\n",
    "You **must** use the `scatter_plot` function to create the plot.\n",
    "\n",
    "**Important Warning:** `public_tests.py` can check that the **DataFrame** is correct, but it **cannot** check if your plot appears on the screen, or whether the axes are correctly labelled. If your plot is not visible, or if it is not properly labelled, the Gradescope autograder will **deduct points**.\n",
    "\n",
    "Your plot should look like this:"
   ]
  },
  {
   "attachments": {
    "q10.jpg": {
     "image/jpeg": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAG4CAYAAAC+ZBgrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABNlklEQVR4nO3deViU5f4/8PeA7AiCIKggsg2mHrJFE5dQDzUjqZnnZIG5UamZdchjJ7HMLaUsl06mlZlo1tS33DrGUlOmdXJJ26zUAURFXBJnBBRFwfv3hz/mODOAM8Ps835d11yX3s89Mx8eeOb5zL1KhBACRERERKTlYe8AiIiIiBwNEyQiIiIiPUyQiIiIiPQwQSIiIiLSwwSJiIiISA8TJCIiIiI9TJCIiIiI9LSxdwDO6Nq1azh58iTatm0LiURi73CIiIjICEII1NTUoFOnTvDwaLmNiAmSGU6ePIno6Gh7h0FERERmKC8vR1RUVIt1mCCZoW3btgCun+CgoCA7R0NERETGqK6uRnR0tPY+3hImSGZo7FYLCgpigkRERORkjBkew0HaRERERHqYIBERERHpYYJEREREpIcJEhEREZEeJkhEREREepggEREREelhgkRERESkhwkSERERkR4mSERERER6HC5Bys3NxYMPPoi4uDhIJBJ07dq1xfpnzpxBVlYWIiIi4Ovri+TkZKxevbrZ+gqFAnfccQf8/PwQFhaGjIwMHDt2zMI/BRERETkzh9tqZNasWQgNDcXtt9+O8+fPt1j3/PnzGDBgACoqKpCdnY3Y2Fhs3boVkyZNwsmTJzFnzhyd+itWrMBTTz2F/v37Y9myZaisrMTy5cuxc+dO/PDDD+jUqZMVfzJyNSqVCqWlpUhISEBiYqK9wyEiMoo9Pruc8vNSOJjS0lLtv3v06CFiYmKarTtz5kwBQGzcuFGnfPjw4cLLy0scOXJEW1ZZWSkCAwPF7bffLq5evaot/+GHH4REIhGPPvqo0TFWVVUJAKKqqsro55DrOHfunJDJZAKA9iGTyYRarbZ3aETkRA4fPizy8/OFSqWyyfuZ8tllqdgc7fPSlPu3wyVIN7pZghQdHS1iY2MNyrdv3y4AiNzcXG3ZmjVrBACRl5dnUD81NVW0bdtW1NXVGRUXEyT3JpPJhKenp84F7+npKWQymb1DIyInYK+kwZjPLkvH5mifl6bcvx1uDJKxTp8+jfLycqSkpBgcS0lJgUQiwd69e7Vljf/u16+fQf1+/fqhpqYGhw4davK96urqUF1drfMg96RSqVBUVISGhgad8oaGBhQVFaG4uNhOkRGRs8jMzIRSqdQpUyqVyMjIsNp7GvvZZcnYnP3z0mkTpIqKCgBAVFSUwTEfHx+EhYXhxIkTRtVvLLux/o1yc3MRHBysfURHR7c6fnJOpaWlLR4vKSmxUSRE5IzslTQY89ll6dic/fPSaROk2tpaANeToab4+vpq69ysvq+vr04dfTk5OaiqqtI+ysvLWxU7Oa/4+PgWjyckJNgoEiJyRvZKGoz57LJ0bM7+eem0CZK/vz+A691fTbl06ZK2zs3qX7p0SaeOPh8fHwQFBek8yD1JpVLIZDJ4enrqlHt6ekImkznF7AyVSoWCggKHb94mckX2ShqM+eyydGzO/nnptAlS586dATTdLXb58mWcO3dOpzutpfotdb8R6VMoFEhLS9MpS0tLg0KhsFNExlGr1ZDL5UhKSkJ6ejqkUinkcjk0Go29QyNyG/ZMGm722WWN2Jz18xKA403zv9HNZrFFRUW1OItt0aJF2rJ33323xVlsgYGBnMVGJlGpVDadottajjabhMhdqdVqu059b+mzy1qxOcrnpSn3b4kQQtglMzNCz549ceHCBRw9erTJ48899xwWL16MjRs3YtSoUdryESNGoKCgAIcPH0ZcXBwAoLKyEjExMejWrRv27NmDNm2ur5G5b98+9OnTBxMnTsSaNWuMiqu6uhrBwcGoqqpidxs5BZVKhaSkpBaPO3pzN5GrKS4uRklJiUMunujIsbWGKfdvh1tJ+/3339du/XH27FlcuXIFL730EgCgXbt2mDZtmrbuzJkz8emnn2Ls2LHYv3+/diXtbdu2Yfbs2drkCADCwsKwaNEiZGdnY9CgQRg7diwqKyuxbNkyREREYP78+bb9QYlsyJjBl670IUjkDBITEx32unPk2GzF4VqQBg0ahB07djR5LCYmxqA16dSpU5g1axY+//xzVFdXIyEhAdOmTcOUKVOafI0PPvgAS5YswcGDB+Hv74977rkHubm5iI2NNTpGtiCRs2EL0nVOud0BEVmMKfdvh0uQnAETJHJGcrkcSqVSZ40TT09PpKWlobCw0I6RWZ9arUZmZiaKioq0ZTKZDAqFAiEhIXaMzLkwwSRnZ8r922lnsRGRaZx6Nkkr2WPlYlfCGZBkLFdaRoQtSGZgCxI5M1cdfNkcdi+2nju3PpJxnKWVli1IRNSsxMREDB061G2SAmff7sDenH0/LbINV2ylZYJERC7N2bc7sDcmmHQzrppEM0EiIpfm7Nsd2BsTTLoZV02imSARkctz5wHqrcUEk27GVZNoJkhE5PJCQkJQWFgIlUqF/Px8qFQqFBYWOtTgUUfGBJNa4qpJNGexmYGz2IjIHbnbDEgynkajQUZGhkvNYmOCZAYmSERERIYcPYl26r3YiIiIyDm50h5uHINEREREpIcJEhEREZEeJkhEREREepggEREREelhgkRERESkhwkSERERkR5O8yeyA5VKhdLSUoddK4TIFngdkCNjCxKRDanVasjlciQlJSE9PR1SqRRyuRwajcbeoRHZDK8DcgZMkIhsKDMzE0qlUqdMqVQiIyPDThER2R6vA3IG3GrEDNxqhMyhUqmQlJTU4nF2M5Cr43VA9mTK/ZstSEQ2Ulpa2uLxkpISG0VCZD+8DshZMEEispH4+PgWjyckJNgoEiL74XVAzoIJEpGNSKVSyGQyeHp66pR7enpCJpOxW4HcAq8DchZMkIhsSKFQIC0tTacsLS0NCoXCThER2R6vA3IGHKRtBg7SptYqLi5GSUkJ138ht8brgGzNlPs3EyQzMEEiIiJyPqbcv7mSNpGJuPovEZHr4xgkIiNx9V8iIvfBBInISFz9l4jIfTBBIjKCSqVCUVERGhoadMobGhpQVFSE4uJiO0VGRETWwASJyAhc/ZeIyL0wQSIyAlf/JSJyL0yQiIzgrqv/qlQqFBQUsAuRiNwOEyQymbveNN1p9V/O2CMid8eFIs3grgtFqtVqZGZmoqioSFsmk8mgUCgQEhJix8hsyx1W/5XL5VAqlTqD0j09PZGWlobCwkI7RkZEZD6upG1l7pog8abpHlQqFZKSklo87qqJIRG5NlPu3+xiI6Nwmrv74Iw9IiImSGQk3jTdB2fsERExQSIj8abpPtx1xh4R0Y2YIJFReNN0L+40Y4+IqCkcpG0Gdx2krdFokJGR4faz2NyJO8zYIyL3wVlsVuauCVIj3jSJiMgZmXL/bmOjmMiFJCYmMjEiIiKXxgSJiIiIHIZKpUJpaandeyk4SJvIxtx1qxYiopY42hZHTJCIbMTRLn4iIkeSmZkJpVKpU6ZUKpGRkWGXeJggEdmIo138RESOwhF3a2CCRGQDjnjxExE5CkfcrYEJEpENOOLFT0TkKBxxtwYmSEQ24IgXPxGRo3DE3RqYIBHZgCNe/EREjsTRtjjiStpmcPeVtMk83KqFiOjmrLlbA7casTImSNQa3KqFiMg+uNUIkQPjVi1ERI6PY5CIiIiI9DBBIiIiItLDBImIiIhIj1MnSBcuXMCCBQvQs2dPBAYGIjw8HP3798eGDRsM6p45cwZZWVmIiIiAr68vkpOTsXr1ajtETURERI7OaQdpX7t2DTKZDLt378aECRPw9NNP4+LFi3j//fcxduxYqFQqzJ8/HwBw/vx5DBgwABUVFcjOzkZsbCy2bt2KSZMm4eTJk5gzZ46dfxrHpFKpUFpaytlWROTQ+FlFViGc1Pfffy8AiOzsbJ3y2tpaERkZKSIiIrRlM2fOFADExo0bdeoOHz5ceHl5iSNHjpj03lVVVQKAqKqqMv8HcGDnzp0TMplMANA+ZDKZUKvV9g6NiEiLn1VkKlPu307bxVZVVQUA6NSpk065n58fQkJC4O/vry374IMPEBsbi1GjRunUnT59Oq5evYqPP/7Y+gE7Ee46T0TOgJ9VZE1O28XWp08fBAUFYfHixejatSv69u2LCxcu4J133sHhw4exdu1aAMDp06dRXl6OzMxMg9dISUmBRCLB3r17W3yvuro61NXVaf9fXV1t2R/GgTTuOq/vxl3n2YRNRPbGzyqyNqdtQQoNDcWWLVsQHByM0aNHo0uXLujevTvy8vKwdetWjBs3DgBQUVEBAIiKijJ4DR8fH4SFheHEiRMtvldubi6Cg4O1j+joaMv/QCZSqVQoKChAcXGxRZ/PXeeJyBnws4qszWkTJAAICQnBbbfdhhkzZmDTpk147733kJiYiNGjR6OgoAAAUFtbC+B6MtQUX19fbZ3m5OTkoKqqSvsoLy+37A9iArVaDblcjqSkJKSnp0MqlUIul0Oj0Vjk+dx1noicAT+ryNqcNkE6cOAAUlJSkJaWhldffRUPPPAAJk6ciG+//RYxMTHIyspCXV2ddizSjV1kN7p06ZLOeKWm+Pj4ICgoSOdhL63tc7/Z87nrPBE5A35WkbU5bYK0bNkyXL58GQ8++KBOuY+PD0aOHInTp0/j0KFD6Ny5MwA02Y12+fJlnDt3rsnuN0fU2Ofe0NCgU35jn7slnq9QKJCWlqZTJy0tDQqFwgI/BRGRZfCziqzJaQdpN44tunr1qsGxxrL6+npERkYiKioKu3btMqi3e/duCCHQu3dv6wZrIcb0ubf0rcnY54eEhKCwsJC7zhORQ+NnFVmT07Ygde/eHQCQl5enU15TU4NPPvkEAQEB6NGjB4Dr3UplZWXYtGmTTt2lS5eiTZs2eOihh2wSc2u1ts/d1OcnJiZi6NCh/MAhIofGzyqyBqdtQcrOzsb69euRk5ODAwcOYMCAAdBoNFizZg2OHz+O1157Db6+vgCAmTNn4tNPP8XYsWOxf/9+7Ura27Ztw+zZsxEXF2fnn8Y4jX3uSqVSp5vM09MTaWlpTX443LjCrDnPJyIickvWX7fSesrLy8XUqVNFUlKS8PPzE4GBgWLAgAHio48+Mqh78uRJMWHCBBEeHi58fHxEjx49xKpVq8x6X3uupK1Wq41aOba5FWaPHDnClWeJiMgtmXL/lgghhJ1yM6dVXV2N4OBgVFVV2W1G28363OVyebMtReyzJyIid2TK/ZsJkhkcIUFqiUqlQlJSUovHmRQREZG7MeX+7bSDtKl5XGGWiBxRa3cAILIlJkguiCvMEpEjae0OAET2wATJBXGFWSJyJK3dAYDIHpgguSiuMEtEjqC1OwAQ2YvTroNELeMKs0TkCFq7AwCRvTBBcnGJiYn88CEiu+GYSHJW7GIjIiKr4ZhIMoYjznBkgkRERFbFMZHUHEee4ciFIs3g6AtFEhE5Io6JJH032/XB0riStpUxQSIiImode+z6wJW0iYiIyKE5+q4PTJCIiIjI5hx9hiMTJCIiIrI5R5/hyASJiIiI7MKRZzhyoUgiIiKyC0fe9YEJEhEREdmVI+76wC42IiIiIj1MkIiIiIj0MEEiIiIi0mNWguTp6YkPP/yw2eMff/yxwbQ9IiIiImdhVoJ0s91JuHsJEREROTOzZ7FJJJJmjx0+fBjBwcHmvjQREbkRlUqF0tJSh5riTWR0grRu3TqsW7dO+/+XXnoJq1evNqin0Whw4MABjBgxwjIREhGRS1Kr1cjMzERRUZG2TCaTQaFQICQkxI6REZmQIJ0/fx5lZWUArrcenT17FrW1tTp1JBIJAgMDMXHiRLz00kuWjZRaxG9gRORsMjMzoVQqdcqUSiUyMjJQWFhop6iIrpMIMwYMeXh4YMOGDcjMzLRGTA6vuroawcHBqKqqQlBQkF1j4TcwInJGKpUKSUlJLR7nlz2yNFPu32YN0i4rK8PIkSPNeSpZWEvfwIiIHFVpaWmLx0tKSmwUCVmaSqVCQUEBiouL7R1Kq5iVIMXExMDf39/SsZCJVCoVioqK0NDQoFPe0NCAoqIip//jJCLXFR8f3+LxhIQEG0VClqJWqyGXy5GUlIT09HRIpVLI5XJoNBp7h2YWsxeK3LVrF8aMGYM+ffogPj4ecXFxOo+b/fFT6/EbGBE5K6lUCplMZrBmnqenJ2QyGbvXnJCr9WiYNc1//fr1mDhxIry8vCCVStGlSxdLx0VG4DcwInJmCoUCGRkZOmMo09LSoFAo7BgVmaOxR0PfjT0azpb0mpUgLVy4EElJSVAqlejUqZOlYyIjNX4DUyqVOt1snp6eSEtLc7o/RiJnxpmkpgsJCUFhYSGKi4tRUlLCc+fEjOnRcLbfrVldbMeOHcOUKVOYHDkAhUKBtLQ0nTJ+AyOyHVcbd2EPiYmJGDp0qNPdQOl/XLFHw6wEqXPnzrhy5YqlYyETNM4SqKysRGFhIVQqFfLz86FSqVBYWMgp/kQ24mrjLojM4YpjysxKkCZNmoQPPvjAYPYUWV9z31bDwsL4DYzIxjiTlOh/XK1Hw6wxSH369MHmzZvRp08fPPnkk4iNjTXIGgHg7rvvbnWApIsrzxI5Dlccd0FkLlcbU2b2Sto6L6K3ca0QAhKJxGVbmOy1krY5K89y4CiR9RhzTQoheA0SOQhT7t9mtSCtXbvWrMCodUz5tsotSIisr6WZpHfffTeeeuopXoNETsqsFiR35wwtSHK5vNnp/+yKI7IcjUZjsJaPTCbD1atXsWPHDl6DRA7ElPs3EyQz2HOzWmMSH24CSWR7N467EELwGiRyQFbfrBYAysvLkZWVhaioKHh7e+Prr78GAJw9exZZWVn44YcfzH1paoExswS4BQmR7d24lg+vQSLnZ9YYpLKyMvTt2xeXL19G3759cerUKe2x8PBw7Nu3D++++y569+5tsUDpOmNmCbjigl1EzoTXIJHzM6sF6fnnn4enpyd+++03fPDBB9DvpUtPT8d3331nkQCpaS2tPOuKC3YRORNeg0TOz6wESalU4oknnkB0dLTBFH8AiImJwYkTJ1odHJnP1RbsInI2vAaJnJtZXWzV1dXo2LFjs8evXLmC+vp6s4Oi1nO1BbuInA2vQSLnZlaCFB0djd9//73Z47t27WIfu4NITEzkhzKRHfEaJHJOZnWxjRo1Cu+99x5+++03bVljV9vHH3+MTz/9FKNHj7ZMhEREREQ2ZtY6SNXV1UhJScHRo0fRv39/fPXVVxg8eDCqqqrw448/olevXvjvf/8LX19fa8Rsd/ZcB4mIiIjMY/V1kIKCgrBr1y48+uij+OmnnyCEwNdff43S0lJMnToV27dvd9nkiIiIiFyfRVbSPnv2LIQQCA8Pb3JWm6thCxIREZHzsfpmtfrCw8Mt8TKkR6VScRdwIiIiOzAqQdq5c6dZL3733Xeb9Tx3p1arkZmZyV3Aichi+IWLyDRGdbF5eHiY1XV244aqrsTaXWzGbEhLRGQMfuEi+h+Ld7GtXbvWoOyNN97AoUOHMGbMGHTv3h0A8Pvvv+PDDz/ELbfcgmnTppkROqlUKp0PskYNDQ0oKipCcXExv/0RkdEyMzOhVCp1ypRKJTIyMviFi6gFRiVI48eP1/n/ihUrcOrUKRw8eBDR0dE6x55//nmkpKTgwoULlovSjRizCzgTJCIyBr9wEZnPrGn+b7zxBiZPnmyQHAHX92GbMmUK3njjjVYH5464CzgRWYoxX7iILEWlUqGgoADFxcX2DsUizEqQjh07hnbt2jV7vF27djh27Ji5Mbk17gJORJbCL1xkC2q1GnK5HElJSUhPT4dUKoVcLodGo7F3aK1iVoIUFRWFTz75pMlB2PX19fj444/RuXPnVgdnjKqqKuTk5CApKQm+vr4IDQ1Fv379sHnzZp16Z86cQVZWFiIiIuDr64vk5GSsXr3aJjGairuAE5El8AsX2UJL49ycmVnrIE2ePBnPPfcc/vrXv+Kf//wnunXrBolEgj/++ANLlizB7t27sXjxYkvHaqC8vByDBw+GWq3GxIkT0b17d9TW1uLQoUM4fvy4tt758+cxYMAAVFRUIDs7G7Gxsdi6dSsmTZqEkydPYs6cOVaP1RTcBZyILEWhUCAjI0NnLBK/cJGluPQ4N2Gm7Oxs4eHh0eRj+vTp5r6sSVJTU0VkZKQ4fvx4i/VmzpwpAIiNGzfqlA8fPlx4eXmJI0eOmPS+VVVVAoCoqqoyOWYiIntQqVQiPz9fqFQqe4dCLiQ/P18AaPaRn59v7xB1mHL/btVWIyqVCp999pl2IGB8fDxGjBgBqVTayrTt5r799lvcfffdWLZsGbKzs1FfX4+6ujoEBAQY1O3SpQvatGmDI0eO6JR/8803GDx4MHJzczFz5kyj35tbjRAREV3PA5KSklo87kgtSDbbakQqlWLGjBmteQmz5efnAwDi4uIwatQo/Oc//0F9fT1iYmIwY8YM7TpMp0+fRnl5OTIzMw1eIyUlBRKJBHv37rVp7ERERK6gcZxbc4sbO1JyZCqzBmk7gkOHDgEAHnvsMVRUVGDNmjVYv349OnbsiKeeegoLFiwAAFRUVAC4PrBcn4+PD8LCwnDixIkW36uurg7V1dU6DyIiInLdiUVmtSANGTLkpnUkEgm++uorc17eKDU1NQCAgIAA7Ny5Ez4+PgCAhx56CN27d0dubi6mTZuG2tpaANAe1+fr66ut05zc3FzMmzfPgtETERG5BledWGRWgnTkyBGDvdnq6+tx6tQpXLt2DWFhYU2OBbIkPz8/ANenF96Y/Hh7e2PMmDGYP38+9uzZg/DwcADXW4GacunSJURGRrb4Xjk5OZg+fbr2/9XV1U0ukklEROSuEhMTXSIxamRWgnT06NEmy+vq6rB06VKsXbsWO3bsaE1cN9XYZdaxY0eDY41larUavXr1AoAmu9EuX76Mc+fOYeDAgS2+l4+PT7MtUEREROR6LDoGycfHBzk5Objrrrt0WlysoW/fvgCur4Wkr3ENpIiICERGRiIqKgq7du0yqLd7924IIdC7d2+rxkpERETOxSqDtAcMGNDkwlGWdP/99yMoKAjr169HVVWVtrympgbr1q1DSEgIUlJSAFzvhisrK8OmTZt0XmPp0qVo06YNHnroIavGSkRERM6lVdP8m1NWVoYrV65Y46W12rVrh2XLluHRRx9Fnz598Nhjj0EikWDNmjU4deoU8vLy4O/vDwCYOXMmPv30U4wdOxb79+/XrqS9bds2zJ49G3FxcVaNlYiIiJyLWQnSjdt43EitVkOpVOLf//43Bg0a1Jq4jJKVlYXw8HC88sormDdvHoQQuOOOO7B06VIMHTpUWy8kJATfffcdZs2ahdWrV6O6uhoJCQlYtWoVpkyZYvU4iYiIyLmYtZK2h4eHwSy2RkIIdOvWDZ999pnL7hTNlbSJiIicj9VX0n7xxRcNEiSJRILQ0FBIpVKkpaXBw8Np16AkIiIiN9eqvdjclS1akFQqFUpLS11mwS0iIiJ7M+X+bVYzT1ZWFvbs2dPs8b179yIrK8ucl3Z7arUacrkcSUlJSE9Ph1QqhVwuh0ajsXdoREREbsOsBCkvLw+lpaXNHi8rK8O6devMDsqdZWZmQqlU6pQplUpkZGTYKSIiIiL3Y5WBQtXV1fD29rbGS7s0lUqFoqIinR2RAaChoQFFRUUoLi62U2RERETuxehB2r/++it+/vln7f+//fZb1NfXG9TTaDRYuXIlunXrZpEA3UlLrXIAUFJSwvFIRERENmB0grR582btjvYSiQRvv/023n777SbrBgYGQqFQWCZCNxIfH9/icVddNoGIiMjRGJ0gTZgwAYMGDYIQAkOGDMHzzz+PtLQ0nToSiQSBgYHo3r07fH19LR6sq5NKpZDJZFAqlTrdbJ6enkhLS2PrERERkY0YnSDFxMQgJiYGADBnzhz87W9/Q8+ePa0WmLtSKBTIyMjQ2csuLS2NLXJEREQ2xHWQzGCLdZCKi4tRUlLCdZCIiIgsxCrrIKnVavz444+ora3VKRdC4JVXXoFUKkVAQAD69OljME2dTJeYmIihQ4cyOSIiIrIDoxOkV155BQMGDDCYgp6Tk4NZs2ahtLQUfn5+2LdvH4YNG4ZffvnF4sESERER2YLRCdJ3332H9PR0tG3bVltWVVWF119/HeHh4Th48CAqKyuxY8cOeHl5YenSpVYJmIiIiMjajE6QysrKcNttt+mUffXVV6irq8MzzzwDqVQKABg4cCAyMzPx7bffWjZSIiIiIhsxaQxSp06ddMr27NkDiUQCmUymU96rVy+cOnXKMhESERER2ZjRCVJ4eDjOnDmjU7Z79254e3ujR48eOuXe3t7w8vKyTIRERERENmZ0gtS9e3d88sknuHbtGgDg1KlT2LNnD/r27WuQDJWVlSEiIsKykRIRERHZiNELRf7jH//AsGHDMHDgQPTv3x/btm3D1atX8eijjxrU/fLLL5GcnGzRQImIiIhsxegEKT09HTNnzsSrr76KXbt2AQCeeuopPPLIIzr1fv75Z/zwww+YOHGiZSMlIiIishGTV9KurKxEaWkp4uLiEB4ebnD8zJkzOHHiBLp164aAgACLBepIbLGSNhEREVmWKfdvo1uQGoWFhSEsLKzZ4xERERx/RERERE7N6EHaRERERO6CCRIRERGRHiZIRERERHqYIBERERHpYYJEREREpMesBKmmpsbScRARERE5DLMSpI4dOyIrKwvff/+9peMhIiIisjuzEqQhQ4Zgw4YNGDhwILp3746lS5eisrLS0rERERER2YVZCdJnn32G8vJyLFq0CNeuXcOMGTMQFRWF0aNH44svvrB0jEREREQ2ZfJWI0359ttvsWbNGnz66ae4dOkSoqOjkZWVhYkTJyI6OtoScToUbjVCRETkfEy5f1skQWpUU1ODJ598Ehs2bIBEIoGHhweGDh2K559/HnfddZel3sbumCARERE5H1Pu3xaZ5n/27Fm89tpr6NOnDzZs2IC2bdvi8ccfx+TJk7Fjxw70798fq1evtsRbEREREVmd2S1IQggUFBRgzZo12LZtG65evYo77rgDkyZNQmZmJgICAgAAVVVV+Nvf/gaVSoXjx49bNHh7YQsSERGR8zHl/t3GnDeYPXs28vLycPLkSQQGBiIrKwuTJ09Gr169DOoGBwdj/PjxmDBhgjlv5VZUKhVKS0uRkJCAxMREe4dDRETktsxKkBYuXIg777wTc+bMQUZGhra1qDm33347XnzxRbMCdAdqtRqZmZkoKirSlslkMigUCoSEhNgxMiIiIvdkVhfbzz//3GRrkbuwdBebXC6HUqlEQ0ODtszT0xNpaWkoLCxs9esTERGRDQZpT58+HV999VWzx7dv344hQ4aY89JuR6VSoaioSCc5AoCGhgYUFRWhuLjYTpERERG5L7MSpG+++QZnzpxp9viff/6JHTt2mB2UOyktLW3xeElJiY0iISIiokYWmeav7+zZs/D19bXGS7uc+Pj4Fo8nJCTYKBIiIiJqZPQg7Z07d+Kbb77R/n/Tpk1Ntm5oNBp89NFHuPXWWy0SoKuTSqWQyWTNjkHibDYiIiLbM3qQ9rx58zBv3rzrT5JI0NLT4uPjsWHDBpdaPftGlh6krdFokJGRwVlsREREVmSVrUaqqqpw/vx5CCEQFxeH5cuX4/7779d9MYkEgYGBCA0NNT96J2CthSKLi4tRUlLCdZCIiIiswCoLRQYHByM4OBgAsHbtWqSmpiImJqZ1kZKOxMREJkZEREQOwKyFIsePH2/pOIiIiIgchlEJ0vr168168XHjxpn1PCIiIiJ7MmoMkoeHx00HZhu8sERisPihq+BmtURERM7H4mOQtm/fbpHAyDzcxJaIiMi2jEqQUlNTrR0HNYGb2BIREdmHVVbSJsvIzMyEUqnUKVMqlcjIyLBTRERERO7BrFlsxg7a5iBt8zVuYqvvxk1s2d1GRERkHWYlSBMmTGhy0LZEItH5PxMk8xmziS0TJCIiIuswK0FqatB2fX09SktLsXLlSvj7+2PhwoWtDs6dcRNbIiIi+zF6qxFj1dXVoU+fPhg3bhz++c9/WvKlHYatpvnL5fJmN7EtLCy02vsSERG5IlPu3xYfpO3j44NHHnkEK1eutPRLux2FQoG0tDSdsrS0NCgUCjtFROTeVCoVCgoKUFxcbO9QiMjKzOpiuxkfHx9UVFRY46XdSkhICAoLC7mJLZGdcckNIvdj8S62U6dO4a9//SuEEDh48KAlX9phONpK2lxIksi62N1N5BosvpK2viFDhjRZrlarcejQIVy5cgXr1q0z56Vbpba2Fj179kRZWRkmT56Mt956S+f4mTNnkJOTg88//xxVVVWQSqV46qmn8Pjjj9s8Vkvgt1oi6+OSG0TuyawE6ciRIwZT+iUSCUJDQzFq1ChMmzYN/fr1s0iApnjxxRdx9uzZJo+dP38eAwYMQEVFBbKzsxEbG4utW7di0qRJOHnyJObMmWPjaFuvpYUk+a2WyDK45AaRezIrQTp69KiFw2i9n376CcuXL8crr7yCGTNmGBx/5ZVXUFJSgo0bN2LUqFEAgMcffxwjRozAwoULMW7cOMTGxto6bLPxWy2RbXDJDSL35BJbjTQ0NODxxx+HTCbD3/72tybrfPDBB4iNjdUmR42mT5+Oq1ev4uOPP7ZFqBZjzLdaImo9qVQKmUwGT09PnXJPT0/IZDJ+ESFyUWYlSEqlEjk5Oc0ez8nJaXIxSWtZvnw5/vjjD6xYsaLJ46dPn0Z5eTlSUlIMjqWkpEAikWDv3r3Nvn5dXR2qq6t1HvbGb7VEtsMlN4jcj1kJ0uLFi1tsoSgrK8Mrr7xidlCmOHbsGObMmYPZs2c320XWuORAVFSUwTEfHx+EhYXhxIkTzb5Hbm4ugoODtY/o6GjLBN8K/FZLZDuNS26oVCrk5+dDpVKhsLCQkyGIXJhZCdIvv/yCvn37Nnv8rrvuwi+//GJ2UKZ44oknEBMT0+S4o0a1tbUAridDTfH19dXWaUpOTg6qqqq0j/Ly8tYFbSH8VktkW4mJiRg6dCi/gBC5AbMGaVdVVSEgIKDZ435+ftBoNGYHZawPP/wQBQUF2LFjB7y8vJqt5+/vD+B6V1lTLl26hMjIyGaf7+Pj02xyZU+2WEiSaywREZE7MitB6ty5M3788cdmj+/fv7/FhMMSrly5gmeeeQbDhg1Dly5dtDPrGrvKampqcPToUYSEhKBz5846x250+fJlnDt3DgMHDrRqvNaUmJho8eSFaywREZElOOsXbbO62O677z7k5eXh66+/NjimVCqxbt06pKentzq4ltTW1uLPP//Etm3bEBsbq300JjoffvghYmNjsWrVKkRGRiIqKgq7du0yeJ3du3dDCIHevXtbNV5n09IaS0RERDejVqshl8uRlJSE9PR0SKVSyOVym/QwWYJZW42cOXMGt99+O06fPg25XI7k5GQAwM8//4wvvvgCkZGR2LdvHzp27GjxgBtdvXoVn3/+uUH5n3/+icmTJ0Mmk2HKlCno0aMHEhMT8dxzz2Hx4sU66yABwIgRI1BQUIDDhw8jLi7OqPd2tK1GLE2lUiEpKanF4870LYCIiGzPEbfosfpWIxEREfj+++/xxBNPoLCwEAUFBQCur6Y9dOhQrFixwqrJEQB4eXlh5MiRBuWNXW1du3bVOT5z5kx8+umnGDt2LPbv369dSXvbtm2YPXu20cmRO+DKwURE1BqusJixWQkSAMTExCA/Px8ajQYlJSUQQiAxMdFhx6eEhITgu+++w6xZs7B69WpUV1cjISEBq1atwpQpU+wdnkPhGktERNQarvBF26wuNnfn6l1sgGM2jRIRkXNw1KEapty/W73VyIULF3DixAkcP37c4EHOi2ssERGRuVxhMWOzW5A++ugjvPTSSzh48GCzdW5sfXAl7tCC1MiaaywREZHr0mg0yMjIcKjlYqw+SHvLli3IzMyEVCrF5MmT8dZbbyEzMxP19fXYsmUL/vKXv2DYsGFmBU+OxRprLBERkeuzxWLG1mRWC9KAAQOg0Wiwf/9+XLhwAR06dIBSqcSQIUPw22+/oX///li/fj3uv/9+a8Rsd+7UgkREROQqrD4G6ddff8X48ePh6+sLD4/rL9HYndazZ09MmjQJubm55rw0ERERkd2ZlSA1NDSgffv2AK7vuwZc35+tUVJSEn777TcLhEdERERke2YlSFFRUdp9zfz8/NChQwfs27dPe/zw4cMtbmZLplOpVCgoKEBxcbG9QyEiInJ5Zg3S7tevH7788kvMmTMHwPXtOl5//XX4+/vj2rVrePPNNzF8+HCLBuquuGksERGR7Zk1SPuHH37A5s2bMXv2bPj5+eHs2bNIS0vDgQMHAAA9evRAfn4+oqOjLR6wI7DlIG0u2EhERGQZpty/jU6Qdu7ciVtuuQXh4eFNHhdC4MCBA/D09MQtt9yiHbztimyVIDnqSqRERETOyCqz2AYPHowvv/xS+/8LFy5g1KhR2sHYEokEycnJ6NGjh0snR7ZkzF42REREZHlGZzL6DU11dXXYsmUL/vzzT4sHRddx01gyFQfzExFZBpt6HJgr7GVDtqFWqyGXy5GUlIT09HRIpVLI5XJoNBp7h0ZE5JSYIDk4bhpLxsjMzIRSqdQpUyqVyMjIsFNERETOzaxp/mQ7zr6XDVmfSqXSWQaiUUNDA4qKilBcXMy/GSIiE5mUIG3btk27QGRtbS0kEgk++ugjnUUiG0kkEjz77LOWiZK4aSw1y5jB/PzbISIyjdHT/E2dmSaRSHTW7nEl3KyWHAmXgyAiMo4p92+jW5C2b9/e6sCIyPIaB/M3t6AokyMiItMZnSClpqZaMw4iagWFQoGMjAydsUgczE9EZD4O0iazqFQqlJaWctC4g+BgfiIiy2KCRCbh5rmOjYP5iYgsg+sgkUm43g4REbkDJkhktMb1dvRnJ9643g4REZErYIJERuPmuURE5C6YIJHRuHkuERG5CyZIZDRunktERO6CCRKZhJvnEhGRO+A0fzIJ19shIiJ3wASJzML1doiIyJWxi42IiIhIDxMkIiIiIj3sYnMw3OOMiIjI/tiC5CDUajXkcjmSkpKQnp4OqVQKuVwOjUZj79CIiIjcDhMkB8E9zoiIiBwHEyQHwD3OiIicm0qlQkFBAT+vXQgTJAfAPc6IiJwTh0e4LiZIDoB7nBEROScOj3BdTJAcAPc4IyJyPhwe4dqYIDkI7nFGRORc3HF4hDuNteI6SA6Ce5wRETkXdxoeoVarkZmZiaKiIm2ZTCaDQqFASEiIHSOzHrYgOZjExEQMHTqUyRERkYNzp+ER7jjWigkSERGRmdxheIS7jrViFxsREZGZ3GF4hDFjrVztZwaYIBEREbVaYmKiwyYJrd3j053GWt2IXWxEREQuyFKLWLrTWKsbMUEiIiJyQZYcWO0OY630SYQQwt5BOJvq6moEBwejqqoKQUFB9g6HiIhIh0qlQlJSUovHzWn5cfaxVqbcvzkGiYiIyMVYa2C1I4+1sjR2sREREbkYdx1YbUlMkIiIiFyMuw6stiQmSE7MnfbEISIi01hiYLU732c4BskJueOeOEREZJrWLGLJ+wxnsZnF3rPY5HI5lEqlzrLvnp6eSEtLQ2Fhoc3jISIi1+Kq9xlT7t9MkMxgzwTJWlM3iYiIANe+z5hy/+YYJCdjzNRNIiIic/E+cx0TJCfDqZtERGRNvM9cxwTJyXDqJhERWRPvM9c5bYKkUqnw4osvom/fvggPD0fbtm3Rq1cvLFy4EBcvXjSof+bMGWRlZSEiIgK+vr5ITk7G6tWr7RB567njnjhERGQ7vM848SDtmTNnYsWKFRg+fDhSUlLg7e2N7du34//+7/+QnJyM3bt3w8/PDwBw/vx59O7dGxUVFcjOzkZsbCy2bt2Kzz//HHPnzsWcOXNMem97z2Jr5Ox74hARkWNztfuMW8xi27dvHxISEtCuXTud8hdeeAELFy7EihUr8OSTTwIAcnJy8PLLL2Pjxo0YNWqUtu6IESNQWFiIw4cPIzY21uj3dpQEiYiIiIznFrPY7rzzToPkCABGjx4NADhw4IC27IMPPkBsbKxOcgQA06dPx9WrV/Hxxx9bNVZzuPPqpURERPbmtAlScyoqKgAAHTp0AACcPn0a5eXlSElJMaibkpICiUSCvXv3tviadXV1qK6u1nlYi1qthlwuR1JSEtLT0yGVSiGXy6HRaKz2nkRERKTLpRKkhoYGzJ8/H23atMGYMWMA/C9hioqKMqjv4+ODsLAwnDhxosXXzc3NRXBwsPYRHR1t+eD/v8zMTCiVSp0ypVKJjIwMq70nERER6XKpBOnpp5/G7t27MXfuXO0qoLW1tQCuJ0NN8fX11dZpTk5ODqqqqrSP8vJyywb+/6lUKhQVFeks7Q5cT/yKiorY3UZERGQjLpMgvfDCC1i5ciUee+wxzJo1S1vu7+8P4Ho3WVMuXbqkrdMcHx8fBAUF6TysgauXEhEROQaXSJDmzp2LhQsXYty4cXj77bchkUi0xzp37gwATXajXb58GefOnWuy+80euHopERGRY3D6BGnevHmYN28eHnnkEaxduxYeHro/UmRkJKKiorBr1y6D5+7evRtCCPTu3dtW4baIq5cSERE5BqdOkObPn4+5c+dizJgxyMvLM0iOGmVmZqKsrAybNm3SKV+6dCnatGmDhx56yBbhGqW51UsXLFjAaf9EREQ24rQLRb755puYNm0aunTpgvnz5xu0ukREROCee+4BAGg0Gtx55504ffq0zkra27Ztw+zZszF//nyT3tsWC0U2rl4aFhaG2bNno6ioSHtMJpNBoVAgJCTEKu9NRETkitxiJe0JEyZg3bp1zR5PTU3FN998o/3/qVOnMGvWLHz++eeorq5GQkICpk2bhilTppj83rZcSVsul0OpVOrMbPP09ERaWhoKCwut+t5ERESuxC0SJHuyVYKkUqm0yxU0d5zjkoiIiIzjFluNuANO+yciInfhaFtsMUFyYJz2T0RErs5Rt9higuTAOO2fAMf7VkVEZEmOusUWEyQH19y0f4VCYaeIyFYc9VsVEZGlOPIWW0yQHFxISAgKCwuhUqmQn58PlUqFwsJCTvF3A476rYqIyFIceaxtG7u9M5kkMTGRXWpupPFblb4bv1Xx74GInJ0jj7VlCxKRA3Lkb1VERJbiyGNtmSAROSBH/lZFRGRJjjrWll1sRA6o8VtVc6uos3uNiFxF41jbxi22EhISHOIzji1IRA7KUb9VERFZQ2JiIoYOHeoQyRHAFiQih+Wo36qIiNwBEyQiB8cZjEREtscuNiIiIiI9bEEit6ZSqVBaWsruKyIi0sEWJHJL3MaDiIhawgSJ3BK38SAiopawi43cRmN3mqenJ7fxICKiFjFBIpenVquRmZnZZFLUlJKSEiZIRERujl1s5PKa6k5rCbfxICIitiCRS1OpVEa3HHEbDyIiasQWJHJppaWlRtflNh5ERNSILUjk0uLj41s8/sUXX6C+vp7rIBERkQ4mSOTSpFIpZDIZlEolGhoatOWN3Wn33HOPHaMjIiJHxS42cnkKhQJpaWk6ZexOIyKilrAFiVxeSEgICgsLUVxcjJKSEnanERHRTTFBIreRmJjIxIiIiIzCLjYiIiIiPUyQiIiIiPQwQSIiIiLSwwSJiIiISA8TJCIiIiI9nMXmQFQqFUpLSzkNndwerwUisje2IDkAtVoNuVyOpKQkpKenQyqVQi6XQ6PR2Ds0IpvitUBEjoIJkgPIzMyEUqnUKVMqlcjIyLBTRET2wWuBiByFRAgh7B2Es6murkZwcDCqqqoQFBTUqtdSqVRISkpq8Ti7GMgd8FogImsz5f7NFiQ7Ky0tbfF4SUmJjSIhsi9eC0TkSJgg2Vl8fHyLxxMSEmwUCZF98VogIkfCBMnOpFIpZDIZPD09dco9PT0hk8nYpUBug9cCETkSJkgOQKFQIC0tTacsLS0NCoXCThER2QevBSJyFBykbQZLDtK+UXFxMUpKSmy69gvXmyFHZI9rwVp4jRE5DlPu30yQzGCtBMmW1Go1MjMzUVRUpC2TyWRQKBQICQmxY2SujTdL98FrjMjxcBYb3RTXm7EtLoDofniNETk3tiCZwdlbkLjejO3J5XIolUo0NDRoyzw9PZGWlobCwkI7RkbWwGuMyDGxBYlaxPVmbEulUqGoqEgnOQKAhoYGFBUVobi42E6RkbXwGiNyfkyQ3BDXm7Et3izdD68xIufHBMkNcb0Z2+LN0v3wGiNyfkyQ3BTXm7Ed3izdE68xIufGQdpmcPZB2jdypfVmHJlGo0FGRganfLshXmNEjoPrIFmZKyVIZFu8WRIR2Y8p9+82NoqJiAAkJiYyMSIicgIcg0RERESkhwkSERERkR4mSERERER6mCARERER6WGCRERERKSHCRIRERGRHiZIRERERHqYIBERERHpYYJEREREpIcJEhEREZEebjVihsbt66qrq+0cCRERERmr8b5tzDa0TJDMUFNTAwCIjo62cyRERERkqpqaGgQHB7dYRyKMSaNIx7Vr13Dy5Em0bdsWEonE5OdXV1cjOjoa5eXlN91NmCyD59y2eL5tj+fc9njObcsS51sIgZqaGnTq1AkeHi2PMmILkhk8PDwQFRXV6tcJCgriRWVjPOe2xfNtezzntsdzblutPd83azlqxEHaRERERHqYIBERERHpYYJkBz4+PpgzZw58fHzsHYrb4Dm3LZ5v2+M5tz2ec9uy9fnmIG0iIiIiPWxBIiIiItLDBImIiIhIDxMkIiIiIj1MkIiIiIj0MEGyMYVCgTvuuAN+fn4ICwtDRkYGjh07Zu+wnJpKpcKLL76Ivn37Ijw8HG3btkWvXr2wcOFCXLx40aD+mTNnkJWVhYiICPj6+iI5ORmrV6+2Q+Suo7a2FnFxcZBIJJgyZYrBcZ5zy6iqqkJOTg6SkpLg6+uL0NBQ9OvXD5s3b9apx/PdehcuXMCCBQvQs2dPBAYGIjw8HP3798eGDRsM6vJ8myY3NxcPPvig9jOja9euLdY39fxa7D4ryGbeeOMNAUD0799frFq1SixYsEC0b99edOrUSVRUVNg7PKf13HPPiYCAAPHwww+L119/XaxatUqMHj1aABDJycmitrZWW1ej0YiEhATh5+cncnJyxDvvvCPuu+8+AUDMnTvXjj+Fc/vnP/8pAgMDBQAxefJknWM855Zx/PhxER8fL0JCQsT06dPFu+++K/7973+LqVOniuXLl2vr8Xy3XkNDg+jXr5/w8PAQWVlZ4u233xZLly4Vt912mwAgZs+era3L8206ACI0NFSkpaWJkJAQERMT02xdU8+vJe+zTJBspLKyUgQGBorbb79dXL16VVv+ww8/CIlEIh599FE7RufcfvjhB6HRaAzKn3/+eQFArFixQls2c+ZMAUBs3LhRp+7w4cOFl5eXOHLkiLXDdTk//vij8PT0FK+99lqTCRLPuWWkpqaKyMhIcfz48Rbr8Xy33vfffy8AiOzsbJ3y2tpaERkZKSIiIrRlPN+mKy0t1f67R48eLSZIppxfS99nmSDZyJo1awQAkZeXZ3AsNTVVtG3bVtTV1dkhMtf1yy+/GNywo6OjRWxsrEHd7du3CwAiNzfXliE6vfr6enHHHXeI9PR0UVZW1mSCxHPeejt37hQAxLJly4QQQly9elVcuHChybo8361XUFAgAIjFixcbHLvlllt0zi/Pd+vcLEEy5fxa+j7LMUg2snfvXgBAv379DI7169cPNTU1OHTokK3DcmkVFRUAgA4dOgAATp8+jfLycqSkpBjUTUlJgUQi0f6eyDjLly/HH3/8gRUrVjR5nOfcMvLz8wEAcXFxGDVqFPz8/BAYGIiuXbvqnHueb8vo06cPgoKCsHjxYnzyyScoLy/HwYMH8cwzz+Dw4cOYO3cuAJ5vazP1/Fr6PssEyUYab9ZRUVEGxxrLTpw4YdOYXFlDQwPmz5+PNm3aYMyYMQBa/h34+PggLCyMvwMTHDt2DHPmzMHs2bMRGxvbZB2ec8to/FB/7LHHUFFRgTVr1mD9+vXo2LEjnnrqKSxYsAAAz7elhIaGYsuWLQgODsbo0aPRpUsXdO/eHXl5edi6dSvGjRsHgOfb2kw9v5a+z7YxKVoyW21tLQA0uYeMr6+vTh1qvaeffhq7d+/GSy+9hKSkJAAt/w6A678H/g6M98QTTyAmJgYzZsxotg7PuWXU1NQAAAICArBz507t+XzooYfQvXt35ObmYtq0aTzfFhQSEoLbbrsNDzzwAPr164fz589j1apVGD16NDZu3IihQ4fyfFuZqefX0vdZtiDZiL+/PwCgrq7O4NilS5d06lDrvPDCC1i5ciUee+wxzJo1S1ve0u8AuP574O/AOB9++CEKCgqwatUqeHl5NVuP59wy/Pz8AACZmZk6H/7e3t4YM2YMLl26hD179vB8W8iBAweQkpKCtLQ0vPrqq3jggQcwceJEfPvtt4iJiUFWVhbq6up4vq3M1PNr6fssEyQb6dy5M4Cmm/daahYk08ydOxcLFy7EuHHj8Pbbb0MikWiPtfQ7uHz5Ms6dO8ffgRGuXLmCZ555BsOGDUOXLl1w9OhRHD16VHtea2pqcPToUVRVVfGcW0jjOerYsaPBscYytVrN820hy5Ytw+XLl/Hggw/qlPv4+GDkyJE4ffo0Dh06xPNtZaaeX0vfZ5kg2Ujv3r0BAN9//73Bse+//x6BgYHo1q2brcNyKfPmzcO8efPwyCOPYO3atfDw0P3zjoyMRFRUFHbt2mXw3N27d0MIof09UfNqa2vx559/Ytu2bYiNjdU+Bg4cCOB661JsbCxWrVrFc24hffv2BQCUl5cbHDt+/DgAICIigufbQhpvplevXjU41lhWX1/P821lpp5fi99njZ7vRq1y9uxZ4e/v3+z6DFlZWXaMzvnNmzdPABBjxowR9fX1zdb717/+1eyaGm3atNFZn4OaduXKFbF582aDx9tvvy0ACJlMJjZv3ixUKpUQgufcEjQajQgKChKRkZHi/Pnz2vLq6mrRqVMnERISIi5evCiE4Pm2hOzsbAFAvPzyyzrl1dXVokuXLiIgIEBcunRJCMHz3Vo3m+Zvyvm19H2WCZINLV++XLvC51tvvSVeeukl0b59exEZGSlOnDhh7/Cc1ooVKwQA0aVLF5GXlyfef/99nccXX3yhratWq0VcXJzw9/cXs2bNEqtXrxbDhg0zWB2XTNfcOkg855bRuMaLVCoVixcvFq+++qro1q2bkEgkYt26ddp6PN+td/ToUREaGiokEokYM2aMWLVqlVi0aJGIj48XAMRrr72mrcvzbbr169eLBQsWiAULFogOHTqIdu3aaf//xhtv6NQ19fxa8j7LBMnGNmzYIG677Tbh6+srQkNDxUMPPcSVVltp/PjxAkCzj9TUVJ36J0+eFBMmTBDh4eHCx8dH9OjRQ6xatco+wbuQ5hIkIXjOLeWzzz4T/fv3FwEBAcLf318MHDhQ5OfnG9Tj+W698vJyMXXqVJGUlCT8/PxEYGCgGDBggPjoo48M6vJ8myY1NbXZz+umWpNMPb+Wus9KhBDC+A45IiIiItfHQdpEREREepggEREREelhgkRERESkhwkSERERkR4mSERERER6mCARERER6WGCRERERKSHCRIRERGRHiZIRERERHqYIBGRw+vatSsGDRpk7zAMHD16FBKJBHPnzrV3KGZx1PNK5AiYIBE5gG+++QYSiQQvv/yy2a+xZcsWp71RA8Dy5cuRl5dn7zCs6s8//8S//vUv9OzZE23btkVwcDASExPx8MMPY9OmTTp18/LysHz5cvsEagU///wz5s6di6NHj9o7FCKjtLF3AERkGVu2bMG6deucNklavnw5unbtigkTJhgcO3z4MCQSie2DsqDy8nL07t0bNTU1GDNmDJ544gkAQElJCT7//HNcuHABo0aN0tbPy8vD0aNHkZ2dbaeILevnn3/GvHnzMGjQIHTt2tXe4RDdFBMkIrqpuro6eHp6ok0b+3xk+Pj42OV9LenVV1/FmTNn8Nlnn2H48OE6x5YtW4YTJ07YKTIiagq72Igc1I3jW7Zs2YI77rgDvr6+6NixI5599lnU19dr63bt2hXr1q0DAEgkEu3jm2++0dYpLi7G2LFj0bFjR3h7e6Nr16549tlncfHiRZ33nTBhAiQSCc6ePYusrCxERETAz88PJ06cwNy5cyGRSHDo0CH861//QufOneHj44Nbb70V+fn5Bj/DypUrce+996Jz587w9vZGx44d8cgjj+h0szT+nMeOHcOOHTt04r/x52tqrMx//vMfDBw4EG3btkVAQAD69OkDhUJhUK+x1eLEiRMYPXo0QkJCEBAQAJlMBpVKpVO3pqYGL7zwAu666y6EhYXBx8cHCQkJmDlzJmpra1v8nbWk8X0GDx7c5PGoqCjtvyUSCXbs2IFjx47pnI/G8yaRSJpsacvLyzP4vQPAwYMHcd999yEwMBDt2rXD/fffjyNHjjQbq1KpxL333ot27drB19cXycnJeOuttwzqNf5efv/9d8jlcm234d///necPn1aW2/ChAmYOHGi9udv/HkaWzvVajWmT5+O+Ph4+Pr6IiQkBMnJyVi4cGGzMRJZG1uQiBxcfn4+Vq5ciSlTpuCxxx7D1q1b8dprryEkJASzZs0CcL17aunSpfj222/x/vvva597yy23AAD279+PIUOGoF27dpg8eTI6d+6MX3/9Ff/+97/x3//+Fzt27ICXl5fO+95zzz3o1KkTZs+ejYsXLyIwMFB7bPz48fDx8cGzzz6LK1euYPny5Rg5ciRUKpVO98mSJUvQr18/3HPPPWjXrh1+++03vPvuu/j6669x4MABtG/fHuHh4Xj//ffxzDPPICwsDM8//7xR5+Wdd97B5MmTkZiYiJycHHh7e2PDhg3IzMxEWVmZ9tw0unjxIlJTU5GSkoJFixahrKwMr7/+Ou6//3789ttv8PT0BABUVFRgzZo1ePDBBzFmzBh4enpix44dWLx4MX766ScUFRUZ/8u7QVxcHABg9erVyM7ObrHL8P3338fChQtRWVmJZcuWacvDw8NNft+ysjIMGDAAtbW1mDp1KuLi4vDVV19h8ODBTSZ877zzDqZMmYK+ffvi+eefR2BgIL788ks88cQTKC0txauvvqpTv6KiAkOGDMGoUaPwwAMP4KeffsI777yD6upqfPHFFwCAyZMnw8fHB++88w5mzZql/btMTk4GADz44IPYuXMnJk+ejFtvvRWXLl2CSqXCN998Y/TfA5HFCSKyu+3btwsAIjc3V1tWVlYmAAh/f39RVlamLb927Zro0aOHiIyM1HmN8ePHi+Yu6eTkZCGVSkV1dbVO+aZNmwQAsXbtWoPXGTdunMHrzJkzRwAQ9913n7h27Zq2fO/evQKAmDlzpk79CxcuGLyGUqkUAMQrr7yiUx4TEyNSU1ObjF//mEajEQEBAaJr167i/Pnz2vKLFy+K5ORk0aZNG3Hs2DFteWpqapPvuXjxYgFAFBYWasvq6urE1atXDWJ44YUXBACxZ88ebVnj72jOnDlNxn2j0tJSERQUJACI6OhokZmZKZYtWyb27dvXZP3U1FQRExPT5DEAYvz48Qbla9euFQDE9u3btWUZGRkCgCgoKNCp++STTwoAOuf15MmTwsfHRzz88MMGr/30008LDw8PUVJSoi2LiYkRAMTHH3+sU3fq1KkCgDh48GCLsQkhxPnz5wUAMXXq1CZ/ViJ7YRcbkYMbOXKkTquMRCLB4MGDcfr0aVy4cOGmzz9w4AB+/fVXPPzww6irq0NlZaX2MWDAAAQEBGi/6d9o+vTpzb7mP/7xD50WkN69e6Nt27YoLi7WqRcQEAAAuHbtGqqqqlBZWYlbb70VwcHB2LNnz01jb86XX36Jixcv4qmnnkJwcLC23N/fHzNmzEB9fT0+++wzned4eHjg6aef1ikbMmQIAOjE7e3trR1rVV9fD41Gg8rKSqSlpQGA2XHHxcXhl19+wdSpU3Ht2jV8+OGHeOaZZ3DnnXciOTkZ+/fvN+t1W3Lt2jX85z//wa233gq5XK5zTL+FDQA+/fRT1NXVYeLEiTp/J5WVlRg+fDiuXbuGr776Suc5nTp1wujRo3XKGs9rSUnJTWP08/ODr68vdu/ezRlu5FCYIBE5uMaumRu1b98eAHDu3LmbPv/gwYMAgPnz5yM8PFzn0aFDB1y8eBFnzpwxeF5iYqJJMYWGhhrE8/XXX2PQoEEICAhAu3bttO9bVVUFjUZz09ib0zh+pkePHgbH/vKXv+jUadSpUyf4+vrqlDV3HleuXInk5GT4+PggNDQU4eHh2jFQrYm7a9euePPNN3HixAmcPHkSGzduxIgRI3DgwAEMGzYMarXa7Nduyp9//okLFy5ou7Ru1KlTJ53kEvjf34pMJjP4W7nnnnsAwOBvpbV/n97e3nj99dfx+++/IzY2Ft27d8e0adPw5ZdfGvdDElkJxyARObjGsTFNEULc9PmNdbKzs3Hfffc1WSckJMSgzN/f3+SYboxn7969uPfee5GQkICXX34ZsbGx8PPzg0QiwcMPP4xr167dNPbmtPRzN3fM2PO4ZMkSzJgxA/feey+efvppdOrUCd7e3qioqMCECRNaFfeNOnbsiFGjRmHUqFHIzMyEQqFAfn4+HnnkEbNf88aB+zcydomExvOwdu1anUHjN9JPiFr79wkAkyZNwogRI/D5559j586d2Lx5M958802MHDkSGzduhIcHv8uT7TFBInIRzd0EpVIpgOtdTI3dRLagUCjQ0NCAgoICxMbGassvXrzYZCuMKescxcfHAwB+//13yGQynWO///67Th1TbdiwAV27dkVBQYHOjbmwsNCs1zNGSkoKFAoFKioqtGUtnY/Q0NAmW5v0W806dOiAwMBA/PHHHwZ1T548iaqqKp2yxr+V9u3bW/xv5Wa/38jISDz66KN49NFHce3aNTz++ON47733sGPHjmZn/hFZE9NyIhfROMtMP/no1asX/vKXv+Cdd95pckxIfX29xbt2gP+1LOi3IixatKjJVpjAwECju6/uueceBAQEYMWKFaiurtaWX758GUuWLEGbNm0M1hoyJW6JRKITd319fatWOQeA7du349KlSwbljeOEAKB79+7a8sDAQJw/f77JVhipVIpdu3bpzELTaDRYu3atTj0PDw+MGDECv/zyi0GCt2jRIoPXffDBB+Hj44O5c+c2OcOtqqoKdXV1N/lJm9bc32dtba3Be3l4eKBXr14AYJW/TSJjsAWJyEXcddddWLFiBZ588kkMHToUXl5eGDJkCDp06ID169djyJAh6NWrF7KystCjRw/U1taipKQEmzZtQm5ubpPr6rTGAw88gGXLliE9PR2TJk2Ct7c3vvzyS/z6668ICwtrMv733nsPc+fORVJSkrYrrint2rXDkiVLMGXKFPTu3RsTJ06El5cXNmzYgJ9//hkLFy5Ely5dzIr773//O3JycjB06FCMGjUK1dXV+PDDDw2WQTDVkiVL8N///hfDhg3DHXfcgeDgYJw+fRobN27E/v37MXjwYJ0u0Lvuugvbtm3D008/jb59+8LT0xPDhw9HQEAApk2bhkceeQRDhgzB2LFjcf78eaxevRoxMTE66w8BwEsvvYTCwkI88MADePLJJ7XT/Pft22fwe4iKisKqVavw2GOP4ZZbbsG4ceMQExODs2fP4sCBA9iyZQv++OMPs1bCvvPOO+Hh4YHc3FxoNBr4+/ujZ8+eqK+vR2pqKh544AH06NED7du3x6FDh7Bq1Sp06tTJpq2eRDrsNHuOiG7Q0jT/pqaQN063v3H6f319vcjOzhaRkZHCw8PDYEr10aNHxeTJk0VMTIzw8vISoaGh4vbbbxczZ84Ux48f19ZrabmApt63UVPT9Ddv3ixuv/124e/vL9q3by8eeughcezYsSbrnjp1Stx///0iODhYANCJobklALZu3Sr69+8v/P39hZ+fn+jdu7f44IMPDOo1N2W+qXNcX18vFi1aJOLj44W3t7fo0qWLePbZZ8Uff/xhUNeUaf67du0S06dPF3feeafo0KGDaNOmjQgODhZ9+/YVS5YsEZcvX9apX1NTI8aNGyfat28vJBKJwXlfvHix6NKli/D29hbdunUTa9asaXYq/R9//CHS09NFQECACAoKEiNGjBClpaXNntfvvvtOjBw5UoSHhwsvLy/RsWNHMWjQIPHaa6+JS5cuaes19/zGv+cbl48QQog1a9YIqVQq2rRpoz1vlZWVIjs7W9x6662iXbt2wtfXV8TFxYmpU6fq/F0S2ZpECCNH0RERERG5CY5BIiIiItLDBImIiIhIDxMkIiIiIj1MkIiIiIj0MEEiIiIi0sMEiYiIiEgPEyQiIiIiPUyQiIiIiPQwQSIiIiLSwwSJiIiISA8TJCIiIiI9TJCIiIiI9Pw/lZfF8MZnHeMAAAAASUVORK5CYII="
    }
   },
   "cell_type": "markdown",
   "id": "606932c6",
   "metadata": {
    "deletable": true,
    "editable": true
   },
   "source": [
    "<div><img src=\"attachment:q10.jpg\" style=\"height: 300px;\"/></div>\n",
    "\n",
    "<center> <b>Delete</b> this cell before you submit the notebook to reduce the size of your file.</center>"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "e5b7e9ca",
   "metadata": {
    "deletable": true,
    "editable": true,
    "execution": {
     "iopub.execute_input": "2023-12-07T02:12:20.584364Z",
     "iopub.status.busy": "2023-12-07T02:12:20.584364Z",
     "iopub.status.idle": "2023-12-07T02:12:20.807685Z",
     "shell.execute_reply": "2023-12-07T02:12:20.806673Z"
    },
    "tags": []
   },
   "outputs": [],
   "source": [
    "# create the scatter plot using the DataFrame 'top_ranked_inter_faculty' with the x-axis labelled \"International Students\" \n",
    "# and the y-axis labelled \"Faculty Student\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "c1e07968",
   "metadata": {
    "deletable": false,
    "editable": false
   },
   "source": [
    "### Correlations:\n",
    "\n",
    "You can use the `.corr()` method on a **DataFrame** that has **two** columns to get the *correlation* between those two columns.\n",
    "\n",
    "For example, if we have a **DataFrame** `df` with the two columns `Citations per Faculty` and `Overall`, `df.corr()` would return\n",
    "\n",
    "||**Citations per Faculty**|**Overall**|\n",
    "|---------|------|---------|\n",
    "|Citations per Faculty|1.000000|0.617044|\n",
    "|Overall|0.617044|1.000000|\n",
    "\n",
    "You can use `.loc` here to **extract** the *correlation* between the two columns (`0.617044` in this case)."
   ]
  },
  {
   "cell_type": "markdown",
   "id": "d473b7f9",
   "metadata": {
    "deletable": false,
    "editable": false
   },
   "source": [
    "**Question 11:** Find the **correlation** between `International Students` and `Overall` for institutions from the `Country` *United Kingdom* that were ranked in the **top** *100* in the `year` *2022*.\n",
    "\n",
    "Your output **must** be a **float** representing the absolute correlation. The **only** `pandas` operations you are **allowed** to use are: `.corr`, `.loc` and `.iloc`. You **must** use SQL to gather all other data."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "935ba9ca",
   "metadata": {
    "deletable": true,
    "editable": true,
    "execution": {
     "iopub.execute_input": "2023-12-07T02:12:20.811704Z",
     "iopub.status.busy": "2023-12-07T02:12:20.811704Z",
     "iopub.status.idle": "2023-12-07T02:12:20.820951Z",
     "shell.execute_reply": "2023-12-07T02:12:20.819920Z"
    },
    "tags": []
   },
   "outputs": [],
   "source": [
    "# compute and store the answer in the variable 'uk_inter_score_corr', then display it\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "59fbafa2",
   "metadata": {
    "deletable": true,
    "editable": true
   },
   "outputs": [],
   "source": [
    "grader.check(\"q11\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "7649cf84",
   "metadata": {
    "deletable": false,
    "editable": false
   },
   "source": [
    "Let us now define a new score called `Citations per International` as follows:\n",
    "\n",
    "$$\\texttt{Citations per International} = \\frac{\\texttt{Citations per Faculty} \\times \\texttt{International Faculty}}{100}.$$\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "d2d81f69",
   "metadata": {
    "deletable": false,
    "editable": false
   },
   "source": [
    "**Question 12:** Find the **correlation** between `Citations per International` and `Overall` for **all** institutions in the `year` *2024*.\n",
    "\n",
    "Your output **must** be a **float** representing the absolute correlation. The **only** `pandas` operations you are **allowed** to use are: `.corr`, `.loc` and `.iloc`. You **must** use SQL to gather all other data."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "01855a94",
   "metadata": {
    "deletable": true,
    "editable": true,
    "execution": {
     "iopub.execute_input": "2023-12-07T02:12:21.184195Z",
     "iopub.status.busy": "2023-12-07T02:12:21.184195Z",
     "iopub.status.idle": "2023-12-07T02:12:21.193654Z",
     "shell.execute_reply": "2023-12-07T02:12:21.193654Z"
    },
    "tags": []
   },
   "outputs": [],
   "source": [
    "# compute and store the answer in the variable 'cit_per_inter_score_corr', then display it\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b68f7252",
   "metadata": {
    "deletable": true,
    "editable": true
   },
   "outputs": [],
   "source": [
    "grader.check(\"q12\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "cb05ad59",
   "metadata": {
    "deletable": false,
    "editable": false
   },
   "source": [
    "**Question 13:** What are the **top** *15* countries with the **highest** *total* of `Citations per International` in the `Year` *2024*.\n",
    "\n",
    "The *total* `Citations per International` of a `Country` is defined as the **sum** of `Citations per International` scores of **all** institutions in that `Country`. You **must** display the columns `Country` and `Sum of International Citations`. The rows **must** be in *descending* order of `Sum of International Citations`.\n",
    "\n",
    "Your output **must** be a **DataFrame** that looks like this:\n",
    "\n",
    "||**Country**|**Sum of International Citations**|\n",
    "|---|---|---|\n",
    "|**0**|United States|2294.2671|\n",
    "|**1**|United Kingdom|2279.9530|\n",
    "|**2**|Australia|1895.6595|\n",
    "|**3**|Canada|822.9573|\n",
    "|**4**|Netherlands|749.9450|\n",
    "|**5**|Switzerland|664.2349|\n",
    "|**6**|Germany|635.0223|\n",
    "|**7**|China (Mainland)|578.7473|\n",
    "|**8**|Hong Kong SAR|513.1582|\n",
    "|**9**|France|385.9691|\n",
    "|**10**|Sweden|382.8463|\n",
    "|**11**|New Zealand|344.3393|\n",
    "|**12**|Belgium|300.6716|\n",
    "|**13**|Denmark|217.8851|\n",
    "|**14**|Finland|210.7134|"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "f7117c50",
   "metadata": {
    "deletable": true,
    "editable": true,
    "execution": {
     "iopub.execute_input": "2023-12-07T02:12:21.554330Z",
     "iopub.status.busy": "2023-12-07T02:12:21.554330Z",
     "iopub.status.idle": "2023-12-07T02:12:21.568216Z",
     "shell.execute_reply": "2023-12-07T02:12:21.567185Z"
    },
    "tags": []
   },
   "outputs": [],
   "source": [
    "# compute and store the answer in the variable 'top_cit_per_inter', then display it\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "9a5da3ad",
   "metadata": {
    "deletable": true,
    "editable": true
   },
   "outputs": [],
   "source": [
    "grader.check(\"q13\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "57aec620",
   "metadata": {
    "deletable": false,
    "editable": false
   },
   "source": [
    "**Question 14:** Among the institutions ranked within the **top** *300*  in the `Year` *2023*, find the **average** `Citations per International` for **each** `Country`.\n",
    "\n",
    "You **must** display the columns `Country` and `Average Citations per International` representing the **average** of `Citations per International` for **each** `Country`. The rows **must** be in *descending* order of `Average Citations per International`. You **must** **omit** rows where `Citations per International` and `International Faculty` columns are **missing** by using the clause:\n",
    "\n",
    "```sql\n",
    "WHERE (`Citations per Faculty` IS NOT NULL AND `International Faculty` IS NOT NULL)\n",
    "```\n",
    "\n",
    "\n",
    "**Hint:** To find the **average**, you can use `SUM()` and `COUNT()` or you can simply use `AVG()`.\n",
    "\n",
    "Your output **must** be a **DataFrame** whose **first ten rows** look like this:\n",
    "\n",
    "||**Country**|**Average Citations per International**|\n",
    "|---|---|---|\n",
    "|**0**|Singapore|92.950000|\n",
    "|**1**|Australia|82.001726|\n",
    "|**2**|Hong Kong SAR|78.318000|\n",
    "|**3**|Switzerland|78.004875|\n",
    "|**4**|Netherlands|58.039117|\n",
    "|**5**|United Kingdom|56.838479|\n",
    "|**6**|Sweden|52.991567|\n",
    "|**7**|Canada|48.342191|\n",
    "|**8**|Denmark|47.686267|\n",
    "|**9**|Belgium|47.580433|"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "12f99017",
   "metadata": {
    "deletable": true,
    "editable": true,
    "execution": {
     "iopub.execute_input": "2023-12-07T02:12:21.940142Z",
     "iopub.status.busy": "2023-12-07T02:12:21.940142Z",
     "iopub.status.idle": "2023-12-07T02:12:21.955374Z",
     "shell.execute_reply": "2023-12-07T02:12:21.954347Z"
    },
    "tags": []
   },
   "outputs": [],
   "source": [
    "# compute and store the answer in the variable 'avg_cit_per_inter', then display it\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "db4f03e4",
   "metadata": {
    "deletable": true,
    "editable": true
   },
   "outputs": [],
   "source": [
    "grader.check(\"q14\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "a651fd5d",
   "metadata": {
    "deletable": false,
    "editable": false
   },
   "source": [
    "**Question 15** Find the **institution** with the **highest** value of `Citations per International` for **each** `Country` in the `Year` *2024*.\n",
    "\n",
    "Your output **must** be a **DataFrame** with the columns `Country`, `Institution Name`, and a new column `Maximum Citations per International` representing the **maximum** value of `Citations per International` for that country. The rows **must** be in *descending* order of `Maximum Citations per International`. You **must** **omit** rows where `Maximum Citations per International` is **missing** by using the clause:\n",
    "\n",
    "```sql\n",
    "HAVING `Maximum Citations per International` IS NOT NULL\n",
    "```\n",
    "\n",
    "**Hint:** You can use the `MAX()` function to return the largest value within a group.\n",
    "\n",
    "Your output **must** be a **DataFrame** whose **first ten rows** look like this:\n",
    "\n",
    "||**Country**|**Institution Name**|**Maximum Citations per International**|\n",
    "|---|---|---|---|\n",
    "|**0**|United States|Massachusetts Institute of Technology (MIT) |100.0000|\n",
    "|**1**|Hong Kong SAR|City University of Hong Kong|99.9000|\n",
    "|**2**|Switzerland|University of Bern|99.2000|\n",
    "|**3**|Australia|The University of Western Australia|98.9000|\n",
    "|**4**|Canada|Western University|98.0051|\n",
    "|**5**|Macau SAR|University of Macau|96.9000|\n",
    "|**6**|China (Mainland)|Zhejiang University|95.3552|\n",
    "|**7**|Singapore|Nanyang Technological University, Singapore (NTU)|94.4000|\n",
    "|**8**|United Kingdom|Imperial College London|94.0000|\n",
    "|**9**|France|Institut Polytechnique de Paris|92.3930|"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "55dc6c25",
   "metadata": {
    "deletable": true,
    "editable": true,
    "execution": {
     "iopub.execute_input": "2023-12-07T02:12:22.367420Z",
     "iopub.status.busy": "2023-12-07T02:12:22.367420Z",
     "iopub.status.idle": "2023-12-07T02:12:22.386841Z",
     "shell.execute_reply": "2023-12-07T02:12:22.385810Z"
    },
    "tags": []
   },
   "outputs": [],
   "source": [
    "# compute and store the answer in the variable 'max_cit_per_inter', then display it\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b87683f3",
   "metadata": {
    "deletable": true,
    "editable": true
   },
   "outputs": [],
   "source": [
    "grader.check(\"q15\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "dbbdfd94",
   "metadata": {
    "deletable": false,
    "editable": false
   },
   "source": [
    "**Question 16**: Among the institutions ranked within the **top** *50*  in the `Year` *2022*, create a **horizontal bar plot** representing the **average** of both the`Citations per Faculty` and `International Faculty` scores for **all** institutions in **each** `Country`.\n",
    "\n",
    "You **must** first create a **DataFrame** `country_citations_inter` with **three** columns: `Country`, `Average Citations per Faculty` and `Average International Faculty` representing the name, the average value of `Citations per Faculty` and the average value of `International Faculty` for each country respectively.\n",
    "\n",
    "You **must** ensure that the countries in the **DataFrame** are **ordered** in **increasing** order of the **difference** between the `Average Citations per Faculty` and `Average International Faculty`."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "2745f090",
   "metadata": {
    "deletable": true,
    "editable": true,
    "execution": {
     "iopub.execute_input": "2023-12-07T02:12:22.777526Z",
     "iopub.status.busy": "2023-12-07T02:12:22.777526Z",
     "iopub.status.idle": "2023-12-07T02:12:22.791573Z",
     "shell.execute_reply": "2023-12-07T02:12:22.790544Z"
    },
    "tags": []
   },
   "outputs": [],
   "source": [
    "# first compute and store the DataFrame 'country_citations_inter', then display it\n",
    "# do NOT plot just yet\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "8941e634",
   "metadata": {
    "deletable": true,
    "editable": true
   },
   "outputs": [],
   "source": [
    "grader.check(\"q16\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "68d7d67b",
   "metadata": {
    "deletable": false,
    "editable": false
   },
   "source": [
    "Now, **plot** `country_citations_inter` as **horizontal bar plot** with the **x-axis** labelled *Country*.\n",
    "\n",
    "You **must** use the `horizontal_bar_plot` function to plot this data. Verify that the countries are **ordered** in **decreasing** order of the **difference** between `Average Citations per Faculty` and `Average International Faculty`. Verify that the **legend** appears on your plot.\n",
    "\n",
    "**Hint:** If you want the countries in the plot to be ordered in **decreasing** order of the difference, you will need to make sure that in the DataFrame, they are ordered in the **increasing** order.\n",
    "\n",
    "**Important Warning:** `public_tests.py` can check that the **DataFrame** is correct, but it **cannot** check if your plot appears on the screen, or whether the axes are correctly labelled. If your plot is not visible, or if it is not properly labelled, the Gradescope autograder will **deduct points**.\n",
    "\n",
    "Your plot should look like this:"
   ]
  },
  {
   "attachments": {
    "q16.jpg": {
     "image/jpeg": "iVBORw0KGgoAAAANSUhEUgAAAr4AAAGhCAYAAACH77emAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAChj0lEQVR4nOzdd1gUV/fA8e+CAtIRsSAoRTFgjcYOFsTee0PFhjWWxBg1FqxYghpbbAjYO2JBIxHRN/6MPWqMXVFjLAEFFAQE9vcHL/u67qKAKCrn8zz7JNy5c+fMrMrZu2fuKJRKpRIhhBBCCCE+czp5HYAQQgghhBAfgiS+QgghhBAiX5DEVwghhBBC5AuS+AohhBBCiHxBEl8hhBBCCJEvSOIrhBBCCCHyBUl8hRBCCCFEviCJrxBCCCGEyBcK5HUAQnxM0tLS+OeffzAxMUGhUOR1OEIIIYTIAqVSybNnz7C2tkZHJ/N5XUl8hXjFP//8g62tbV6HIYQQQogcuHfvHjY2Nplul8RXiFeYmJgA6X9xTE1N8zgaIYQQQmRFXFwctra2qt/jmZHEV4hXZJQ3mJqaSuIrhBBCfGLeVqYoN7cJIYQQQoh8QRJfIYQQQgiRL0jiK4QQQggh8gVJfIUQQgghRL4gN7cJoY2vDeh/wHV8fWI/3LGEEEKIfEoS389cYGAgffv25fDhwzRo0CCvwxFCvEFqaiovX77M6zCEEOKjUKBAAXR1dXP1gVKS+L6jx48f8+OPPxIaGsqdO3fQ0dGhaNGiVKtWjS5dutChQ4f3HkNkZCSBgYG0a9eOKlWqvJfx7e3tGTRoEMuXL1fbdvXqVRo3bkx0dDQ7duygWbNmuX58IT53SqWShw8fEhMTk9ehCCHER0VXV5eiRYtiZmaWKwmwJL7v4N69e1SvXp1nz57Rs2dPhgwZAsCNGzfYt28fz58//2CJ79SpU7Gzs3sviW9mzp07R9OmTXn58iUHDx6kbt26H+zYQnxOMpLeokWLYmhoKI/LFkLke0qlkpSUFOLi4njw4AEvXrygRIkS7zyuJL7vYN68eTx69Ijdu3fTunVrtW0LFizg77//zqPI3r+jR4/SunVrDA0N+fXXX6lUqVKujR0fH4+RkVGujSfExyw1NVWV9FpaWuZ1OEII8VExMTFBX1+fqKgoihYtiq6u7juNJ6s6vINr164B0LBhQ63btT0res+ePbi5uWFiYoKRkRE1atRg06ZNGv3s7Oy01uRGRESgUCgIDAwEwMfHR3X8vn37olAoUCgUeHl5qe2XlpbGnDlzcHBwQF9fHycnJ4KCgrJxtv+zb98+mjVrhqWlJb/99ptG0hsdHc2IESMoVaoUenp6WFtbM2DAAB48eJDpuSxduhQXFxf09fWZN2+eqs+WLVtwdXXFxMQEQ0NDatasyfbt2zVi2rJlC23atKFUqVLo6+tTpEgR2rVrx4ULF3J0jkJ8KBk1vYaGhnkciRBCfJyMjIxQKpW5cg+EzPi+AwcHBwBWrVrFqFGj3vr15MqVKxk0aBBly5Zl/Pjx6OnpsX79enr06MHt27eZMGFCtmPo0KEDL1++ZNasWXh7e+Pm5gaAo6OjWr/x48eTmJjI4MGD0dPTY/ny5Xh5eVGmTJlslShs3LiRPn36UK5cOQ4ePIi1tbXa9ri4OFxdXbl69Sp9+vShRo0a/Pnnn6xYsYKDBw9y6tQpihUrprbPwoULefLkCQMHDqRYsWLY2toCMHHiRGbOnEmzZs2YPn06urq6BAcH07lzZ5YsWcKwYcNUYyxduhQrKyuGDBmClZUVN2/eZOXKldStW5ezZ89StmzZbF1XIT40KW8QQgjt5Oa2j8SYMWPYsGED33zzDQsWLMDNzY3q1avj5uZGtWrV1PrGxMTwzTffYGdnx6lTpzAzMwNg6NCh1K5dmylTpuDp6UmpUqWyFUOlSpV48uQJs2bNonbt2nh6emrtl5yczKlTp9DT0wOgc+fOODg4sGTJkiwnvr/88gurVq2ievXqhIaGUrhwYY0+c+fO5cqVKyxcuJCRI0eq2uvUqYOnpyeTJk1i5cqVavvcu3ePq1evUqRIEVXbmTNnmDlzJuPGjcPX11fV/vXXX9OuXTvGjx9P7969MTExAWD//v0a5RG9e/emSpUqLFiwgGXLlmk9p6SkJJKSklQ/x8XFZelaCCGEEOLTI4nvO3BwcOD8+fPMmzePkJAQNm7cyMaNGwGoWLEiAQEBqgQ4LCyM+Ph4pk2bpkp6If3rzTFjxtC7d292797N8OHD30usQ4cOVSW9ACVLlsTJyYnr169neYxHjx6RlpaGjY0NpqamWvsEBwdTuHBhhg4dqtbeo0cPfHx8CA4O1kh8e/furZb0Aqrr2Lt3b6KiotS2tWnThpCQEI4fP06TJk0AVEmvUqnk2bNnJCcnY2VlRbly5Thx4kSm5+Tr68vUqVM12isk+qOj/IBfPY/b9+GOJT4qJU108WlYlORCcSgKJOZ1OEKID6CSjXleh5BvSY3vO7Kzs2Pp0qX8/fff/PPPP+zYsYM2bdpw8eJFWrVqxZMnTwC4desWAOXLl9cYo2LFimp93oeMsoxXWVpaEh0dneUxPD096dOnDzt27KBr165aa21u3bqFk5MTBQsWVGtXKBSUL1+eqKgojVlVbWUIly9fBsDFxQUrKyu1V//+/YH0RDzD2bNnadWqFSYmJpiZman6Xrx4kadPn2Z6TuPHjyc2Nlb1unfvXpavhxBCfOx+nj+byrYW3L9394Me99Tx36hsa0HI1o0f9Ljiw/Dy8vpky7NkxjcXlShRgg4dOtChQwd69OjBpk2bCA0NxdPTE6VSmel+2rZl9gcqJSUlR7Fldhfkm+J6nY6ODmvWrEFHR4eAgAC6dOnC1q1bNZLczGR2LG039WT0DQ0NzXT8jA8Rd+/epV69epiZmTFp0iTKlSuHkZERCoWCUaNG8fz580xj0tfXR19fP0vxC5EX2iw5ltchqNk9PHeWLXwWF4tHNWcSE18wzW8pbbv0yJVx84PU1FRCg7cRums7l/88z7O4WAwNjSj7hQsNmrSgY4/eGBmbZLr/lUsXOfzLPtp07kFJ2+yV173q/r277N62kYZNW/JF+Yo5Hkeo8/LyyvTm89KlSxMZGflhA8qiiIgIIiIiGDVqFObm5nkdTqYk8X1PateuzaZNm7h//z7wv5vNLl26RNOmTdX6Xrp0Sa0PQOHChVWzxa/SNiv8IT916ejosHr1ahQKBWvWrKFTp05s27ZNVUbh4ODAtWvXePnypUbC+tdff1GkSJFMyyRe5eTkxIEDB7CxsVHNiGcmODiY+Ph49uzZo7HCRnR0tCS2QnyE9u/aTlJSIral7QnevE4S3yyKffqUkf17cO7U75SvXJUefQdRtHgJnj+L4/yZUyyaM41jEYdYsXEnAANHjKHf0FHovfLv4NVLF1m+YA5f1XZ9p8T3n7/vsnzBHKxtSmkkvtVq1uHk9QcUyOLEiNC0ZMkStdJIAGNj4zyK5u0iIiKYOnUqXl5eH3XiK6UO7+Dw4cO8ePFCoz0tLY09e/YA6V/VAzRu3BgjIyOWLFmi9lV/YmIifn5+FChQQG0tYCcnJ65cuaJKnCH9RqylS5dqHC/jL8KbvtLPTRnJ74ABA9i9ezcdO3YkOTkZgPbt2/PkyRNWrFihts/mzZu5ceNGlh/okXGT3oQJE7TOcj9+/Fj1/xmz2a/PKK9atYqHDx9m/cSEEB9M8Ob1VKtZh97ewzh36ncib2b9foP3ISEhPk+Pn1XfDe3LuVO/M2byTDbuPYT3yDG069oTzwFDmPfzGvYcPU2Vr2qo+hcoUAB9A4MP/rW0jo4O+gYG77zm6ucoIT7zbyFf1bFjRzw9PdVe7dq1e7/B5QOS+L4DPz8/rK2t6dWrFwsXLiQgIABfX19q1KhBWFgYDRs2pGXLlgCYm5vj5+fH7du3qV69OrNnz8bPz4/atWvzxx9/MHXqVLUVHYYPH87Lly/x8PDgp59+Yt68eVSvXp1ChQppxOHi4oKxsTHLli1j5cqVbN68+Y03dOUGhULBypUr8fb2Zu/evXTo0IGkpCTGjh1LuXLlGDFiBP3792f58uUMHz6cXr16YWNjw7Rp07I0fvXq1Zk6dSp79+6lSpUqTJs2jdWrVzN9+nTatWuntkZy8+bNMTQ0pFevXvj6+rJ8+XJ69erFuHHjNJZ1E0LkvWuX/+Svi3/QpnMPmrXthJ6+PsFb1qu2p6am4vGVC50aay+r2Ll5HZVtLQjbF6JqS05KYvViP9o3qk31MsVxLV+ar/t24/Kf6mt5v1p7ujlwFe3da/GVYzGCli8G4OK5M0waPZTW9b6iZllran9hS5/2TTm0f6/WWM6ePI5Xh+bUKFOC+pUc+WHUYJ5ER1HZ1oJJo4dq9D+weyd9OjSj9he21CxrTc/WHmrn8SZHD/3Cid+O0KRVO3oN1BwboERJW4Z8M0718+s1vpNGD2Xyt+lLQQ7o0prKthZUtrXg5/mzAXj88AE/TptIl6ZuuFawo3qZ4rR3r8WaZQtJTU1VG3dAl/TJmsnfDlONk3HOmdX4vniRwJK5M2jtVo2vHIvRoHIZvhvSj8hbN9T63b93VxVX+IF9dGvRgOplitOo2hfMnzFJY0LkxtXLfDekL42rl6eaQ1EaVC6DV4fmhB94+43Dk0YPpbKtBU+io/hh1GDqVXSgZllrBnRtw18X/tC6T1bfx4xrcuK3I/Tp0Ixa5Wz42qvbW2N6m2XLltGkSRNKliyJnp4eJUqUwNPTM9MyiMOHD9OyZUssLS0xMDDAwcGB/v37q24ef/0ZAa/KSj1vgwYNVDeK29vbq54pEBgYyMiRI1EoFKpnH7zq8ePH6Onp0bNnz+xdgHcgpQ7vYOLEiWzbto2jR49y8OBBnjx5gpGREc7Ozvj5+TFs2DB0dP732WLQoEGUKFGCuXPnMn36dJRKJRUqVGDDhg306KH+NV/dunUJDAxk1qxZfPfdd5QsWZIhQ4bw1Vdf0ahRI7W+hQoVYuPGjUycOJGvv/6a5ORk+vTpQ82aNd/r+SsUCpYvX46Ojg7Lly+nffv2BAcHc+zYMXx8fNi1axfr1q3D0tKSPn36MG3aNI01fN9k8uTJVKtWjUWLFrFw4ULi4+MpWrQoFSpU4KefflL1c3R0ZP/+/UyYMIFZs2ahq6tL3bp1OXLkCMOHD/9o66GEyK92blpHIUMjGrdsg6GRMQ0aN2fvji18PXYSBQoUQFdXl5btOxG4fDFXLl3U+Bp97/bNmJqZU9+jGZD+EJAhvTpx/sxJWnXoSvc+A3j2LI7gTevwat+MNdv3Ub7yl2pjbPD/mdiYp3To3gdLKyuKW5cEIPyXvdy5fYPmbTtSrIQ1MU+fsGf7Zr7x7oXvopW0aN9ZNcYfp08wqEd7DA2N6DP4aywsi3Ak7ADDenVGmyVzZ7BqsR91GzRi2JgJ6OjqEn5gL2MGezF++ly6eQ1843UL25ueWHXq6ZWt6/2qTp5eFNTXY8eGIAYM/wb7sk4AODmn3zNx/fIlDv+yj0bNW1HStjQvX77kt8O/8pPvVP6+G8nk2QsBaNS8FSkvX7J6yXw69uxD1Rq1AbAtbZ/psVNSUhjWqzNnTvwf7s1a0bP/YB7cv8fmIH+OHz3E2l0HcShbTm2f/4SHsWWtP509+9KhWy8OH9xP0IolmJqZM+DrbwGIefqEgd3aAtDZsy8lStoSG/OEyxfPc/7sSdybtczStRnaqxNm5hYM/mYc0Y8fsTloFf06t2LtrgM4OVdQ9cvu+3jpwjkOHdhL+269aNOpe5ZiAXjy5AkFCqinaaampujp6eHn50edOnVo3Lgx5ubm/Pnnn6xevZrw8HAuXryo9hTIFStWMGTIEGxtbRk6dCilSpXi7t277Nmzh7///ltjVaWc+OGHHyhcuDDBwcEsWLBANWadOnWoXr06ixYtYs2aNcyePVttv7Vr1/Ly5UsGDBjwzjFklUKZnbubhPjMxcXFYWZmhu2orejoy5O0xPuXsZxZUWsbFAX0NLZ/bje3JScl4fGVM/U8mjJjwc8A/Cf8IMP7dOUn/w00aNICSJ/B6+hRB88BQ/luykzV/vfv3aVl3Sp09uzLD7P8AFi7cil+0yeybO026jb0UPV9/iyOjh51sCllh/+29BnbU8d/Y0CX1piZWxBy5BQWhdUfE52QEI+hofqa4C9eJNC1Wf30h+iE/65q92zTmMt/nmdH2DHsHNNXp1EqlXw7qA+H9u+hTafuTF+Qvob4Xxf+oHvLhvQbNoqR46aojT+qf09O/t9/CDt16Y03pXVr0YDLF89z9MItzCwssnC102dmly+YQ+j/nVfV84Zs3cjkb4exeuseqtd2Veuf+OKF1tKICSMHsX/Xdg6evIRVseLA/66ltpsTtW3buWktU8eOxLP/EL7zmaXqe+7U73h1aE4tt4aq2uT79+7Sok5lDAoZsvPQcVXsSqWSjh51iI15yqEzVwCIOBjKyP49mfdzAE1atcvSdXnVpNFD2b19E+7NWjF/5VrVuf914Q96tHKnpmt9VmwMVrVl532sbJv+Pq3cHELNuvVUfd+0nNmbbm4LDg6mXbt2xMfHa6xdf+jQITw8PJgzZw5jx44F4O+//8bR0ZEyZcpw/PhxjXts0tLS0NHRISIigoYNGxIQEKDx5NeMeF5NF7W1+fj4MHXqVG7fvo2dnZ3aGHXr1uXWrVvcu3dPLZl3cXEhOTmZ69evv3FWOTExkdu3b2Nvb4+BgYHWPhm/v2NjY994L5HM+AqhxZ9Tm2bpJjwh3pXqH/Tippn+g/4xedf1Rzdv3kxszFNGD/VWjVW+Z0dmjivBoZAtjOjX47/HqU21atUI27ODwOWLVLWiIQGLUSqVfDPsf/sf3reTsmXL0rl5A+CVr8ANDGnRrClBQUGUtdSnUKFCPLFKvyeir1cf6lfSVgr1v/NLSEjgxYsXKA30aN7Eg+XLl2NnqoOpqSmPHj3i4rnTdOjQgTb1q6uNMHPKDxzavwcLIz1VjEEL0u/7GDPMGysD9a/pPbt25PDBUJ7dvUzt/65Nrs3LF+l1yLWdbTVmAjNTzDT9z5RzCVPs/hvL2cLpH+odrYy1vJ//+zk5OZnnz5+TlpZGt/at2bdzKwn/XKdStS8AVNfStrChxjjato2P+AWFQsHCOdOxtPxf/0o2zVjr7k5ERITq+pqmxADQoX07mteupDZ28yYeLFmyBAfzAhgbGxNTJr307dKJIwzs3l7jhrC3sTBK/8A5c8oPqkQ1Pa4GBDRuzK+//qqKKyfvY5UqVRjYtU22YgLYunUrFq99wKlcuTLwv7Xr09LSePbsGS9fvqRy5cqYmZmplTpu27aN5ORkJk2apPV32qvfSr9P3t7eeHl5sW/fPtq2TZ+d/7//+z8uX77MrFmzPmgNuiS+QgghPhh/f3+srKywsbHhxo3/1XU2btyYjRs38vDhQ4oXT59R7N27NyNHjuSXX36hRYv0meB169ZRrlw5tVKuy5cv8+LFC6ysrDI9blRUlOpx6KB9/XBIrzmcOHEiISEhajfRZoiJicHU1JTbt28DUK5cOY0+X3zxhUbbq2uTZ+bVtcm1yUhc4uLitD45MzekpKQwe/Zs1q5dy40bNzRuGn6Xm6hv3bpFsWLF1L6Gz1CxYkXCw8OJjIykUqX/JbqZrUEP6av2GBsbU69ePfr27UtAQAAbNmzgq6++wsPDgy5dulChQgWN/TPj7Oys0ebi4sLBgwe5ffs2lStXztH7mNmftbdxc3NT/V14XXh4ONOmTePEiRMkJqo/+ObV9yjjIVUZCXNe6dKlC6NHj8bf31+V+Pr7+1OgQAGNGeb3TRJfIYQQH0RkZCSHDh1CqVTi5OSktU9QUBDff/89kP7ExzFjxrB27VpatGjB8ePHuX79OjNnzlTbR6lU4uLiolb7/7rXk2Jt64enpaXRuHFjrly5wogRI6hevTpmZmbo6uoSEBDAxo0bSUtLUx0zO7KzNnlmKlasyNmzZzl37pzGvR65ZfTo0SxZsoSuXbvyww8/ULRoUQoWLMjZs2f5/vvvVeefE9ldzx4yX4P+9X3WrFnDmDFjCA0N5bfffmPBggXMnDmTOXPmMGbMmHeOOWNGMifvo7Y/a+/i5MmTNGnShDJlyjB79mzs7e0pVKgQCoWCbt26qb1HWf1z+qYZ15w+P+BVhQoVwtPTk2XLlvHPP/9gamrK1q1badGiBSVKlHjn8bNDEl8hhBAfREBAAEqlkhUrVmidsZw2bRpr1qxRJb5FihShRYsWhISEEBsby9q1a9HR0aFXr15q+zk5OfHgwQPc3d3f6avbixcvcuHCBSZPnqzxKPPVq1er/ZwxE3nlyhWNcbS1ZWdt8sx06tSJoKAgVq1a9U6J75uSnPXr11OvXj02b96s1v7q7HxWxtEm40bk6OhojVnfS5cuoaOjo1Ebmh0uLi64uLgwZswY4uLicHNzY8KECYwYMUK11vybXL58mVq1amm0vRpXbryP72rTpk2kpqayf/9+7O3/dzNhfHy8xox8xjcSf/zxh9YZ7QwZfx+z+vwAbd7252HQoEEsXryYoKAgihYtyvPnzz/oTW0ZZDkzIYQQ711aWhqBgYG4uLjg7e1Np06dNF49e/bk2rVr/Pbbb6r9+vTpQ2JiIhs2bGDr1q00bNhQrWQBoFevXvz777/MmzdP67HfVkKQIbM1wf/880+Cg4PV2ooVK0aNGjXYu3cvV69eVbUrlUqtcWRnbfLMtGzZkoYNG7JlyxYWL16stc+dO3eYMmWK1m0Z3rT2u66ursb5x8fHs2DBgmyNo0379u1RKpX4+vqqtR8/fpzw8HA8PDxydG/FkydPNGaiTU1NKVOmDC9fvuTZs2dZGmfu3Llq53727Fl+/fVX3N3dVXHlxvv4rjL7czpr1iyN69CpUyf09PSYMWOG2jMEMmSMYW9vT4ECBfj111/Vtv/f//0fv//+u8Z+2rztz0P58uWpXbs2a9asYfXq1VhbW6tKmD4kmfEVQgjx3oWFhXH37l0mT56caZ+OHTsybtw4/P39cXVNX20gY+3R8ePHExcXR58+fTT2GzlyJGFhYYwbN46IiAgaNWqEqakpd+/e5dChQxgYGHD48OG3xujs7Ez58uWZO3cuCQkJlCtXjmvXrrFixQoqVKjA2bNn1fr7+fnRqFEj6taty7Bhw7CysmL37t2qX/yvzoBlrE0+ZcoUqlSpQpcuXbC2tubBgwecOXOG0NBQ1YOAMqNQKNi6dStt2rRhxIgRrF+/njZt2mBtbU1cXBz/93//x65duzSeYPm6r776Ch0dHXx9fXn69CmGhoZUqFCBChUq0KlTJ1asWEHXrl3x8PDg0aNHrFmzRmtd7qtryBsZGWFqaoq9vX2mS2l6eXmxbt06/Pz8iIyMxN3dnTt37rB06VJMTU1ZuHDhG+POzNq1a1mwYAHt27fH0dERfX19fvvtN3bu3Kn685MVd+7coWnTprRp04YHDx6wZMkSChUqhJ+fn6pPbryP76p9+/YsWLCAFi1a4O3tjZ6eHmFhYVy4cEFjaTIbGxsWLlzIsGHDqFixIr1796Z06dLcv3+fkJAQ1qxZQ5UqVTA2NsbLy4vVq1fTvXt3GjRowPXr1wkICKBSpUqcP3/+rXFlvO/jx4+ne/fu6OvrU7NmTbVZ6UGDBuHl5cWNGzeYMGFCnjzgRBJfIYQQ752/vz+QPgOVmTJlylCpUiW2bdvGokWLMDExQU9Pj+7du7NkyRKMjY21Pv2xYMGC7Nu3j2XLlrFu3TrVjKe1tTU1atTQmixro6ury759+xgzZgxBQUHEx8dToUIFgoKCOH/+vEbi6+rqSlhYGBMmTGDu3LkYGRnRunVrVq5cqaq7fFVW1yZ/kyJFinD06FHWr1/Pxo0bWbhwITExMZiYmFCxYkXmzp1L//793zhG6dKlWbVqFXPmzGHQoEGkpKQwZcoUKlSowPz58zExMWHr1q2EhIRga2uLt7c31atXx8PDQ22c7K4hX6BAAfbv38/MmTPZsmULu3fvxtTUlJYtWzJt2jStNwpmRYMGDfjjjz/Yt28f//zzD7q6upQuXRpfX19GjhyZ5XEOHDjAN998w5QpU3jx4gW1atVi3rx5ajfbQe68j++ibt267Nixg+nTpzNp0iQKFSqEh4cHR44coV69ehr9hwwZgqOjI/PmzWPRokUkJSVhbW1No0aN1L49yZjV37lzJyEhIVStWpU9e/awcuXKLCW+rq6uzJw5kxUrVtC/f39SU1MJCAhQS3y7dOnCqFGjiI2Nfeuf0/dF1vEV4hVZXQdQiNySlfUpxafl9OnTVK9eHV9fX8aNG/f2HUSe0rYmrXg/kpKSKFmyJJUrV+bQoUNZ3i831/GVGl8hhBAiB5RKpcZSUkqlUvV0qiZvWJNXiPxow4YNREdHM3jw4DyLQUodhBBCiBxISkqidOnSeHp64uTkRExMDCEhIRw/fpwePXpQtWrVvA5RiI/Cnj17uHPnDj4+Pjg7O2stWfpQJPEVQgghcqBgwYK0bNmSkJAQHjx4QGpqqmpt1W+//TavwxPio/H111/zzz//UK1aNVavXp0nN7VlkBpfIV4hNb7iQ5MaXyGEeDOp8RVCCCGEECKbJPEVQgghhBD5giS+QgghhBAiX5Cb24TQxtcG9LP3HHohcsTYFur6weMXUED+zH20rL/M6wiEELngk5/xbdCgAXZ2dlnqGxERgUKhIDAw8L3GlFW1a9emR48eeXLs3LgW2bn275OXl5fao0EBWrVqRePGjfMoIiGEEEJ8jD7KxDcxMZHFixdTv359LC0tKViwIEWLFqVp06asWrWKpKSkvA7xnW3atIlTp05pPLfezs4OhUKBpaVlpufZtm1bFAoFCoWCyMjIDxDtp2fatGn8+uuv7N27N69DEUIIIcRH4qMrdYiMjKRly5b89ddfuLu78/3332NlZUV0dDQREREMHjyYU6dOsXLlymyPXa9ePV68eEHBggXfQ+TZM23aNJo1a8YXX3yhsc3AwIAnT56we/duOnfurLbt0aNHhIaGYmBgoPHEoOz4mK7F+1C1alXq16/P1KlTadWqVV6HI4QQQoiPwEc145uYmEirVq24evUqW7du5dChQ4wdO5a+ffsyZswY9u7dy/nz57Umi1mho6ODgYFBni6cDHD48GGuXLlC7969tW4vXbo0X375JQEBARrb1q5dC0Dr1q3fKYaP5Vq8T7169eL06dOcPn06r0MRQgghxEfgo0p8/f39uXTpEt98843GTGeGChUq8M0332i0//3333Tp0gULCwuMjIxo2rQp165dU+ujra711bbVq1fj4uKCvr4+pUuXZu7cuRrHOXjwIF27dsXBwYFChQphbm5OkyZNOHLkSJbPc+vWrSgUCpo1a5Zpn759+3Lw4EHu37+v1h4YGEjLli0pWrSoxj7//PMP3377LVWqVMHCwgIDAwNcXFyYM2cOqampuX4ttDl58iReXl44OTlhaGiIiYkJdevWJTg4WKNvRm3u06dPGThwIEWLFsXAwIC6dety4sQJjf4xMTEMGTKEokWLYmhoSK1atfj1118zjaVly5YAbNmyJUuxCyGE+HR9LPedaKNQKPDy8srrMHJFZGQkCoUCHx+fvA4lRz6qUodt27YBMGjQoGztFx8fT/369alduzazZs3i9u3b/PTTT7Rt25Y///wzS7OaP//8M48fP2bAgAGYmZmxfv16vv/+e2xsbNRuQAsMDCQmJoa+fftSokQJ7t+/z+rVq2nUqBGHDx/Gzc3trcc6cuQIzs7Ob3yySM+ePRkzZgxr165l/PjxAPz+++/89ddf+Pr6cvDgQY19Lly4wK5du+jQoQP29vYkJyezf/9+xo0bx61bt1ixYsVbY8vOtdAmODiYa9eu0b17d2xsbIiOjiYoKIgOHTqwYcMGrfs3a9aMokWLMmXKFKKiopg/fz4tWrQgMjISExMTAF6+fEnTpk05efIk3bp1w83NjatXr9K2bVscHR21xlK8eHHs7Ow4fPhwls5biI/SygZ5HYE674hcGSY27hklvmzKi8REAub74NW1Ta6M+zmLjIzE3t6eQYMGsXz58hyNERERQUREBKNGjcLc3Dx3A/wAMn4Hjxo1Kq9DeS8y3uPMBAQEfLQJtI+PD1WqVKFdu3Z5HcobfVSJ78WLFzExMck0kclMVFQU3333HWPHjlW1WVlZMXbsWH799VeaNm361jHu3bvHX3/9pfqHoF+/fpQuXZrFixerJWurVq3CyMhIbd/BgwdTvnx5fH1935r4pqamcvXqVdVsZGYKFy5MmzZtCAgIUCW+a9asoVixYrRo0UJr4lu/fn1u3LihtsLBqFGj6NWrF6tXr8bHx4cSJUq88biQ9WuhzcSJE/H19VVrGzFiBF9++SUzZszQun+1atVYtmyZ6mcXFxe6dOnCxo0bVR+CAgICOHnyJN9//z2zZ89W9XVzc8v02wEAR0dHjh07lun2pKQktZsI4+Li3nh+QojcsTH4AIlJSTja2eC/eZckvh9IREQEU6dOxcvL65NNfCMjI7UmvgcPHkSpVH74oN4Dd3d3+vbtq9Fep06dPIgma6ZOnUqfPn0k8c2OuLg4ihUrlu39dHR0GDFihFqbu7s7ANevX89S4tu3b1+1fwQyvko/fvy4Wr9Xk97nz5+TlJSErq4uNWvW5Pfff3/rcaKjo0lLS6Nw4cJv7duvXz9atGjBsWPHqFq1Klu2bGHQoEEUKKD9bStUqJDq/5OTk3n+/DlpaWk0bdqU9evXc/r06SzVBmf1Wmjz6vVJSEjgxYsXKJVK3N3dWb58OXFxcRoz3aNHj1b7+dX3LkNISAgKhULtww1Ap06dcHJy0ihryWBpaUliYiLPnj1TzR6/ytfXl6lTp2q0V0j0R0dp+JazFeLdlSyoi4/SiuQ0GxRpehrbK+VBTG9yIS3z2ajsWLJpP9Vq1qFp6/bM/GEMu6+nYOdYNlfGzomEhHgMDY0y7/B3zAeLJTP3H6R/MI+OT+JCDuN5FJd+U/TlB3HEFcjZGJlJSUkhLTUVPX39XB33VfFJKbxMTXvL+b94b8fPTCUb81wdr2zZsnh6eubqmCLdR1Xja2pqyrNnz7K9n7W1NQYGBmptlpaWQHqimRUODg4abZaWlhr737x5k27dumFhYYGJiQlFihTBysqK0NBQnj59+tbjZMzGZuVTaZMmTbC2tiYgIIDt27cTFxen9RNghpSUFGbMmIGTkxMGBgZYWlpiZWVFr169ALIUH2T9Wmjz+PFjvL29KVasGEZGRqrrk/G1XExMzFuPp+29u3nzJsWKFdP6gcHZ2TnTeDKu8+vr/GYYP348sbGxqte9e/fefIJCiHd27fKf/HXxD9p07kGztp3Q09cneMt61fbU1FQ8vnKhU+O6WvffuXkdlW0tCNsXompLTkpi9WI/2jeqTfUyxXEtX5qv+3bj8p8X1PY9dfw3KttaELJ1I5sDV9HevRZfORYjaPliAC6eO8Ok0UNpXe8rapa1pvYXtvRp35RD+7UvjXj25HG8OjSnRpkS1K/kyA+jBvMkOorKthZMGj1Uo/+B3Tvp06EZtb+wpWZZa3q29lA7j5zIOFZGLDXLWlO/kiM+340gIf65ql//zq1YvmAOAC3qVKayrYXqWmT499FDZoz/hqY1K1DNoSge1ZyZ9v0ooqP+VTvmz/NnU9nWghtXLzNv6g80rl6e6o7FOH/2FCFbN1LZ1oITx46yZtlCWtStwleOxWhd7yt2b9uk9ZqM6NudpjUr8JVjMepXcmRU/55cu/ynxnme/v0Y//x9TxV7ZVsL7t+7qzq/5rU1PyqeO/U7Qzw74Vq+NDXKlKBzE1c2BqzU+D08afRQKttaEBcTw9SxI2lQpSzVyxSnT/umXDinfpN0Wloaqxb9SN+OLXCvWg49PT1KlSrFkCFDspx35NSVK1cYOnQo5cuXx8TEBENDQ6pVq8aqVau09o+Li+OHH37A2dlZlRu4urqyefNmVZ/M6qOzUs+bcX8QQFBQkGq5VTs7Ox49eoSenh49e/bUuu+IESNQKBSZTl69Dx/VjG/FihU5cuQIN2/ezFa5w5tqeLP6tUdW6oCfPXuGm5sbCQkJjBo1iooVK2JiYoKOjg6+vr6Eh4e/dQxLS0t0dHSylITq6urSu3dvli5dyqVLl6hVq9Ybk7zRo0ezZMkSunbtyg8//EDRokUpWLAgZ8+e5fvvvyctLe2tx8w4bk6kpaXRuHFjrly5wogRI6hevTpmZmbo6uoSEBDAxo0btcaQ2fFef+8yS17f5MmTJxgYGGBsbKx1u76+PvrvcXZCCKFp56Z1FDI0onHLNhgaGdOgcXP27tjC12MnUaBAAXR1dWnZvhOByxdz5dJFvihfUW3/vds3Y2pmTn2P9BuEX758yZBenTh/5iStOnSle58BPHsWR/CmdXi1b8aa7fsoX1n9yWsb/H8mNuYpHbr3wdLKiuLWJQEI/2Uvd27foHnbjhQrYU3M0yfs2b6Zb7x74btoJS3a/6+06o/TJxjUoz2Ghkb0Gfw1FpZFOBJ2gGG9tJdfLZk7g1WL/ajboBHDxkxAR1eX8AN7GTPYi/HT59LNa2COr+nVvy4yqn9P2nXtScsOXTh9/DeCN69DR0eHyXMWAjDg628xNbcg/MBevpsyC/P/TiRUqVYTgAf379GrbVNSXibTrpsntqXtuXfnNlvXruHU//2HjfvCMTE1UzvuhBHeFDI0pLf3MBQKBVZFi/HPfxPRRbOnkZyUSGfPvhQsqMe29QFM+mYotnb2fFm9lmqMLUGrsbAsQpde/bCwLMK9O7fZsSGIPu2bs3l/BKXt0/OBmT8tZ/Xi+cQ8iWbMlJmq/S3+O1mizX/CDzKqf0/MC1vSs/8QTM3M+TV0N3Mmf8+NK3+prs2rhvTqROEiRRg8aiwxT5+wbtVShvfuwv7j5zEy/u99J8nJBK1cQpOW7XBv1ooy1pacPHkSf39/fvvtN86cOYOenuY3OFmVmJhIVFSUWluBAgUwNzcnIiKC3377jXbt2lGqVCmeP3/Otm3b8Pb2JioqSlUeCemTTa6urly6dIkuXbowZMgQUlNTOXfuHHv37qVbt245jjGDs7Mz69ato1evXri5ueHt7Q2AsbExxYoVo23btuzcuZOnT59iYWGh2i8pKYkNGzZQr149nJyc3jmOrPqoEt9OnTpx5MgRVq1apVbH+bEIDw/nwYMHrFmzRmPmdeLEiVkaQ0dHB2dnZ27cuJGl/n379mX27Nn8/vvvb127eP369dSrV0/tUxyQ5WO9q4sXL3LhwgUmT56sUT6wevXqdxrb0dGR/fv38+TJE41Z38uXL2e6340bN6hQocI7HVsIkXuSk5IIDd6GR4vWGBqlfyBt07k7B/fu4rfwgzRo0gKA1p26E7h8MXu2b1ZLfO/fu8vZk8fp7NlX9ZX6poCVnD7+G8vWbqNuQw9V3669+9PRow7zZ0zCf5v6jO3Df+4TcuQUFoXVk6aBI8YwctwUtbYe/QbRtVl9Vi32U0t8f5w2kbS0NIKCD6jKNLp7DeTbQX346+IfamP8deEPVi32o9+wUWrj9+jrzaj+PVk0ZzqtO3VTJVbZde3yJdbu+oVKVasD0NmzL/HPnxGydQNjJs/A0MiY2vUa8sfpE4Qf2EvDpi0paVtKbQzfiWNJeZnMlgNHKFaipKq9cYu29GrbmPWrf2bIN+PU9jE1t2DFxmC1CYzzZ04B8PJlMhv3hlPwvwlg45Ztaen6JZsDV6klvkvXbdMoM2ndsRtdmtVj/apl/DDLD4BWHboSvGkdSYkvaNWh61uvSWpqKrN+GIO+QSE27j2kOqduXgP52qsrOzYG0aZzd6p8VVNtP5eKlVXHBHAoW47vhvQldNd2Onum/+7X09fn11OXMfhviWElG3MGDRpEnTp1GDBgALt27aJLly5vjTEzQUFBBAUFqbVVrlyZP/74g969ezN48GC1baNHj8bd3Z3Zs2czZswY1Rr9EyZM4NKlS6xatYoBAwao7ZPVybC3KVasGJ6envTq1QsHBweNEg1vb2+2b9/Ohg0bGD58uKp9165dPHnyRCOu9+2jKnXo378/zs7O+Pn5sXPnTq19Ll68iJ+fn9Zt71vGX+zXZyIPHjyodfmtzDRo0IArV65k6UYqJycnfvrpJ6ZMmULXrm/+i66rq6sRW3x8PAsWLMhybO8is+vz559/al3OLDvatWuHUqnUWFZt+/btmX5F8vDhQ+7cuUP9+vXf6dhCiNxz6MBeYmOe0qbz/250rVO/EVZFixO8+X/lDmXKOeNSsQr7Q7arLce4d8cWlEolrTt3V7WF7tpGKXtHXCp/ydMn0arXy5cvqeXWkHOnfifxhXrdZ+uO3TSSXkAtAXvxIoGYp09IfPGCGnXcuHX9Ks+f/bfO9t/HXDx3mvoezdRqkxUKBV5DRmiMG7pru+q4r8b49Ek09Rs3J/75M1XCmBOVq1VXJb0ZqtepR0pKiqoU4E3iYmP5T/hB3Bo1RU/fQC0+a9tS2No5cPyo5reaPfsNzvRbu669+6uSXoBiJawpbe/I3du31PplXHOlUsnzZ3E8fRKNhWUR7BzKcPGPM2+NPTOXL57nn7/v0aZzd7VEXldXlwHD05dF1VbC4jlQvUSlRt16AGpxKxQKVdKbmppKTEwMUVFRqntUspMTaNOqVSvCwsLUXhkrMxka/u/+k8TERKKjo3ny5AlNmjQhLi6OK1euAOmJ7ebNm/niiy/o37+/xjF0dD5MCujh4YGDgwP+/v5q7f7+/piZmdGpU6cPEkeGj2rGt1ChQuzdu5eWLVvSsWNHPDw8aNKkCUWKFCE6OpojR44QGhrKwIE5/zroXbi6ulK8eHG+/fZbIiMjsbGx4Y8//mDdunVUrFiRixcvZmmczp07s3TpUg4cOJClT4Sv37iXmU6dOrFixQq6du2Kh4cHjx49Ys2aNaqa2ffN2dmZ8uXLM3fuXBISEihXrhzXrl1jxYoVVKhQgbNnz+Z4bC8vL1avXs2cOXO4c+cO9erV48qVK6xevTrTa79v3z6Ad/rULYTIXbu2rMfCsgjFSlirJRK16jVg/67tRD1+RJGi6Tc5t+rUjblTxvF/Rw7h5t4EgL07t2DnWJZKX36l2vf29WskJr6gQeUymR435mk0xQvZqH4uZa95LwNAdNS/LJ03k8MHQ3nyWl0rwLO4WIxNTLl/7w4Adg6ax7TXcpPe7RtXAWjvXktj2/+O/TjTbW9TspSdRpu5Rfq3Y7FZKK27c+sGaWlp7N62kd3bNmrtY6PlGJldx8z6m1sU5p/76vdSXL54nqV+szh9/BgvEuLVtpUsVfqtsWfm77uRADg6aT70qswX5dX6vOr1uDOuY8zTJ2rtv+wJZu3KpVy5dIGUly/VtmX1nprMlCxZEg8PD63bnj9/jo+PD1u3btV6X0rGsaOionj69CmNGzfOUalgblEoFAwcOJDx48dz9uxZqlatyp07dzh06BCDBw9WuzH/Q/ioEl9Iv9HpzJkzrFq1iu3bt+Pr68uzZ8+wsLCgatWqrFq1Ks/udDQ3N+eXX35h7NixLF68mJSUFKpVq0ZoaCj+/v5ZTnzr16+Pi4sL69aty9WkbP78+ZiYmLB161ZCQkKwtbXF29ub6tWrZ/oXKDfp6uqyb98+xowZQ1BQEPHx8VSoUIGgoCDOnz//TolvwYIF+eWXXxg3bhw7duxg165dVK5cmZCQENavX6/12q9bt46qVatSo0aNdzktIUQuuX/vLid+O4JSqaRNva+09tm9fRP9ho4CoEW7TsyfMYk92zfj5t6E82dOcvf2Tb4eq15aplQqcXD6gu99fLWMmM6icBG1nw0Kaa7akpaWxuAe7bl98zo9+npTvnJVjE1M0dXVJWTrBkJ3bSctTak6ZnZk9F+6disFCmh/VLy2BC2rdHXecK8Lb481o0/zth1p11X771j9124iB+3XMYNOZveLvHLtHty/R99OLTE2McV75BjsHMpSyNAQhULBXJ/xGolwduR0abNM73N5ZbxfQ3czdmg/KlSpxvc+vtSqVA4DAwNSU1Np1qxZrpURaNO9e3f27duHt7c39erVo3DhwhQoUIDQ0FAWLFigOnZ2zj+zxDglJSVXYu7bty+TJ09m9erVLFu2jICAANLS0j54mQN8hIkvpE/jjxw5kpEjR761b0REhNZ2Ozs7jTe9QYMGWWrLEBgYqPZkM4BKlSpx4MABjb5ubm4afd9k0qRJeHp6cvXqVcqVK6dqj4yMzNL+S5YsYcmSJWpthoaGzJs3j3nz5mn0fx/XQtu1L126tOpBJK9q3769xl2h2sbMLF5I/+CxfPlyjYXbPTw8NMY5d+4cR48eJSTk3e6WFkLknpCtG1AqlUyavQAzcwuN7SsWzmXXlg2qxNeisCVuDRsTcXA/z+Ji2bN9Mzo6OrTqqF72VdrBkX8fP6JG3Xrv9PXt9SuXuHb5EoNGjWXot+PVtu3ctFbt54xZwds3r/M6bW2lHcpwLOIQxYpbU9a5fI5jfFeZJTil7BxQKBQkJydTy63BB4sn/MA+XiTEsyhgEzXqqK+DHxvzVPMGsWzMXNqWTl967+a1Kxrbblz967997LIX8H/t3bkVfX0DVm/dTaFChqrlzDLKDN6XmJgY9u3bR69evTR+F77+JFMrKyssLCw4f/48SqXyjbO+hQsX5swZzbKSW7duaemdfcWKFaNNmzZs3LiRefPmERgYSNWqVfnyyy/fvnMu+ygT3/ygW7du/PTTT0ydOpWNG7V/rSRybvLkybi7u2dp3WJt/pza9I1P1hMityQmJnL79m3si5tqLMv4McrpeqVpaWns37kZFxcXpn0/SmuflJiHjBs3jrjIP3F1dQXg68EDOHwwlPMR+zgUGkLDhg1pUkP9htWB/bz47rvv+GXTKr7//nuNcR89eqRaI/6JVfoNdbaFDTXORScmPRkvaqKvtu3PP//k8C/ppVPOJUyxszEHG3Nq1KjBfw79gn78I9UEhlKpZNqo9ITEwkhPNc6owf3ZuGYFgYtmExwcrLEe++PHj7U+iv5VpikxAFga6WvE/uqxMpwtnD4b62hlrNrmaJ0+813cIFW9v405LVq04MCBUJ7duUTduupLySmVSqKiorCysgKgmKmB+vV4y3EzGOkXoKCujqr9qGX6++FQxEit76pVq4h6/IjSpUurtRe3NOf6XxepWNJMI5F7fezyJeozoXRp9u3YzLzpkylZMr3ONy0tjfH+6RNH3r27q/pbGKUn2Zn9GX/1Ghc2NkBHR0H5EqaqVYOUSiUzZszQum9uyexemgcPHmjcRK6jo0P37t1ZtmwZ/v7+GrOrrybDTk5O7Ny5k5MnT6q+JU1LS8vWPULGxsZvLPHw9vZmx44dDB48mDt37mj9u/ohSOKbh7LyQAiRM3v27MnrEIQQrwgLC+Pu3btMnjw50z4dO3Zk3Lhx+Pv7qxLfli1bYmlpyfjx44mLi6NPnz4a+40cOZKwsDDGjRtHREQEjRo1wtTUlLt373Lo0CEMDAyy9Ojy7N6n4OfnR6NGjahbty7Dhg3DysqK3bt3q375v5qYVa9enalTpzJlyhSqVKlCly5dsLa25sGDB5w5c4bQ0FCSk5OzdC3fRc2a6SsYjB8/nu7du6Ovr0/NmjWxt7fn559/xtXVlYYNG9KrVy+qVq1KWloat27dIiQkhN69e79xPdecaN68OYaGhvTq1Yvhw4djYWHBsWPHCA0NxdHRUeOr9po1a7J3715GjBhBrVq10NXVpXXr1hpPVIX0JHHZsmW0bduW6tWrM2jQICwsLNi5cydHjhxh4MCBOX4SWqdOndixYwfu7u707t2bly9fsmvXLhISEnI0XlaZmJjQpEkT1q9fT6FChahevTp37txhxYoV2Nvba6whPGPGDMLDwxk4cCBhYWG4urqiVCo5d+4cKSkprFu3DkhPSv38/Gjfvj0jR45ET0+P7du3Z6vUoWbNmvz666/MmzcPW1tbjIyM1CafGjdujIODgyr2tz0J9n2RxFcIIcR7l3FH95vu4C5TpgyVKlVi27ZtLFq0CBMTE/T09OjevTtLlizB2NiYDh06aOxXsGBB9u3bx7Jly1i3bh1TpqQvF2ZtbU2NGjW0JsvaZPc+BVdXV8LCwpgwYQJz585V/aJfuXIl9vb2GjftTJ48mWrVqrFo0SIWLlxIfHw8RYsWpUKFCvz0009ZivFdubq6MnPmTFasWEH//v1JTU0lICAAe3t7bG1tOXPmDHPmzCEkJIQNGzZgYGCAra0trVu3fi83CmcsVTlhwgRmzZqFrq4udevW5ciRIwwfPlyj/G/UqFFcv36dTZs2sXTpUpRKJbdv39aa+AK0aNGCw4cPM336dObPn09SUhJly5blp59+4uuvv85x3N26dePZs2csWLCAMWPGYGFhQevWrZk9e/Z7v6F8/fr1jBs3jj179hAUFETZsmWZOXMmBQsW1Fhq1cLCguPHjzNr1ix27txJcHAwJiYmuLi4qJ2/vb09u3btYsKECUyaNAlLS0t69epFv379+OKLrNWeL126lKFDhzJt2jSeP39O6dKl1RJfhULBgAEDmDBhAp07d8bMzOwNo70/CuXn8mBrIXJBXFwcZmZmxMbGSqmD+CBUpQ729p9EqYN4u9OnT1O9enV8fX0ZN27c23cQIp/48ccf+e677zh69Chubm5v3+G/svLvZFZ/f39U6/gKIYQQnwqlUkliYqJGW8YDmJo0aZIXYQnxUUpJSeHnn3/GxcUlW0lvbpNSByGEECIHkpKSKF26NJ6enjg5ORETE0NISAjHjx+nR48eVK1aNa9DFCLP3b59m+PHjxMSEsKtW7fy/IZ+SXyFEEKIHChYsCAtW7YkJCSEBw8ekJqaSpkyZZg9ezbffvttXocnxEfhyJEj9O3blyJFijB58mS6d+/+9p3eI6nxFeIVUuMrPjSp8RVCiDeTGl8hhBBCCCGySRJfIYQQQgiRL0jiK4QQQggh8gVJfIUQ4iMgt1sIIYR2ufnvoyS+QgiRhwoWLAjw3h91KoQQn6r4+HgUCoXq38t3IcuZCSFEHtLV1cXc3JzHjx8DYGhoiEKhyOOohBAibymVSlJSUoiLiyMuLg5zc3N0dXXfeVxJfIUQIo8VL14cQJX8CiGESKerq0uJEiUwMzPLlfEk8RVCG18b0M+lWTef2NwZR3y2FAoFJUqUoGjRorx8+TKvwxFCiI9CgQIF0NXVzdVvwSTxFUKIj4Surm6ufJUnhBBCO7m5TWRJREQECoWC2bNn53UoQgghhBA5IomvEEIIIYTIFyTxFUIIIYQQ+YIkviLHli1bRpMmTShZsiR6enqUKFECT09PIiMjNfoqFAq8vLz49ddfqVWrFoaGhhQrVowRI0bw/Plztb7//PMP3377LVWqVMHCwgIDAwNcXFyYM2cOqampan0DAwNRKBSEh4czZ84cHBwc0NfXx8nJiaCgoPd5+kIIIYT4xMjNbSLH/Pz8qFOnDo0bN8bc3Jw///yT1atXEx4ezsWLF7G0tFTrf/bsWbZv387AgQPp3bs3hw8fZvHixVy4cIHw8HB0dNI/h124cIFdu3bRoUMH7O3tSU5OZv/+/YwbN45bt26xYsUKjVjGjx9PYmIigwcPRk9Pj+XLl+Pl5UWZMmWoW7fuB7keQgghhPi4SeIrcuzChQsYGRmptbVp0wYPDw/8/f0ZO3as2raLFy8SHBxMu3btABg6dCgjR45k0aJFbNq0iZ49ewJQv359bty4obZ8yahRo+jVqxerV6/Gx8eHEiVKqI2dnJzMqVOn0NPTA6Bz5844ODiwZMmSNya+SUlJJCUlqX6Oi4vL/oUQQgghxCdBEl+RYxlJb1paGs+ePePly5dUrlwZMzMzTpw4odG/XLlyqqQ3w7hx41i0aBHBwcGqxLdQoUKq7cnJyTx//py0tDSaNm3K+vXrOX36NK1bt1YbZ+jQoaqkF6BkyZI4OTlx/fr1N56Dr68vU6dO1WivkOiPjtLwzRcgq8bty51xhBDiIxA5u2VehyBEjkmNr8ix8PBwGjRogJGREebm5lhZWWFlZUVsbCxPnz7V6O/s7KzRVqJECczNzbl586aqLSUlhRkzZuDk5ISBgQGWlpZYWVnRq1cvAK1jOzg4aLRZWloSHR39xnMYP348sbGxqte9e/feet5CCCGE+DTJjK/IkZMnT9KkSRPKlCnD7Nmzsbe3p1ChQigUCrp160ZaWprGPpk9eUWpVKptGz16NEuWLKFr16788MMPFC1alIIFC3L27Fm+//57rWNntui/Uql843no6+ujr6//xj5CCCGE+DxI4ityZNOmTaSmprJ//37s7e1V7fHx8VpnZAH++usvjbYHDx4QGxurNmO7fv166tWrx+bNm9X63rhxI5eiF0IIIUR+JKUOIkcyZlhfn1GdNWuW1hlZgKtXr7Jr1y61tjlz5gDQvn17tbFfHzc+Pp4FCxa8a9hCCCGEyMdkxlfkSPv27VmwYAEtWrTA29sbPT09wsLCuHDhAkWKFNG6T8WKFfH09GTgwIGULVuWw4cPs337durXr0/37t1V/Tp16sSKFSvo2rUrHh4ePHr0iDVr1mgsjyaEEEIIkR0y4yuyJGMGNmOmt27duuzYsQMjIyMmTZqEj48PhQoV4siRIxpLnGWoWrUqu3bt4v/+7//49ttvOXr0KMOHD2fPnj2qNXwB5s+fz5gxY/j999/5+uuvCQoKwtvbm9mzZ7//ExVCCCHEZ0uhfNvdP0IAISEhtGvXjpUrVzJw4MBs769QKOjTpw+BgYG5H1wuiouLw8zMjNjYWExNTfM6HCGEEEJkQVZ/f8uMr8iS33//HUgvVxBCCCGE+BRJja94o02bNnH69GkWL15MpUqVqFmzZl6HJIQQQgiRI5L4ijcaOnQoCoWCdu3aMX/+/EzX4hVCCCGE+NhJ4iveKLM1ebNLSsmFEEIIkdekxlcIIYQQQuQLkvgKIYQQQoh8QRJfIYQQQgiRL0jiK4QQQggh8gVJfIUQQgghRL4gia8QQgghhMgXJPEVQgghhBD5giS+QgghhBAiX5DEVwghhBBC5AuS+AohhBBCiHxBEl8hhBBCCJEvFMjrAIT4KPnagL4ir6MQQggB4BOb1xGIz4TM+AohhBBCiHxBEl9BREQECoUi01dERERehyiEEEII8c6k1EGodO3alVatWmm0Ozs750E0QgghhBC5SxJfoVKlShU8PT2z1DclJYXU1FT09fXfc1RCCCGEELlDSh3EW/n4+KBQKLh06RLffPMNNjY26Ovrc/z4cQC2bNlCmzZtKFWqFPr6+hQpUoR27dpx4cIFjbHs7Oxo0KABly5dolmzZpiYmGBmZkanTp14+PChRv+4uDh++OEHnJ2dMTAwwNLSEldXVzZv3qzW78GDBwwZMoRSpUqhp6eHtbU13t7ePH78+P1cFCGEEEJ8cmTGV6gkJCQQFRWl1vbqjG7Pnj0xMjLi22+/RaFQUKJECQCWLl2KlZUVQ4YMwcrKips3b7Jy5Urq1q3L2bNnKVu2rNqY9+/fx93dnQ4dOtC+fXvOnTvHypUriYuL4+DBg6p+MTExuLq6cunSJbp06cKQIUNITU3l3Llz7N27l27dugFw9+5dateuTXJyMv3798fR0ZGbN2+ybNkyDh8+zOnTpzEzM9N6zklJSSQlJal+jouLe7eLKIQQQoiPliS+QmX69OlMnz5dra1t27ZUqVIFgMKFCxMWFoaurq5an/3792NkZKTW1rt3b6pUqcKCBQtYtmyZ2rYbN26wZcsWunTpomrT1dVl2bJlXLlyhS+++AKACRMmcOnSJVatWsWAAQPUxkhLS1P9//Dhw0lOTubcuXPY2Nio2jt16kStWrVYsGABPj4+Ws/Z19eXqVOnarRXSPRHR2modR8hhBDvJnJ2y7wOQeRTUuogVPr3709YWJjaa9q0aartI0eO1Eh6AVXSq1QqiYuLIyoqCisrK8qVK8eJEyc0+ltbW6slvQDu7u5AelIM6Ynt5s2b+eKLL+jfv7/GGDo66X90Y2Ji2LdvH61atcLAwICoqCjVy87OjjJlyqjNIr9u/PjxxMbGql737t1722USQgghxCdKZnyFSpkyZfDw8NBo37lzJ4BGyUKGs2fPMnnyZCIiIoiPj1fbZm9vr9HfwcFBo83S0hKA6OhoAKKionj69CmNGzdGocj8QRLXrl0jLS2NwMBAAgMDtfbRdrwM+vr6coOeEEIIkU9I4iuyzNBQ86v/u3fvUq9ePczMzJg0aRLlypXDyMgIhULBqFGjeP78ucY+2maNMyiVSrX/vk1Gv+7du9OvXz+tfQoVKpSlsYQQQgjxeZPEV7yT4OBg4uPj2bNnDw0bNlTbFh0dnePZVCsrKywsLDh//jxKpTLTWd8yZcqgUChISkrSOlsthBBCCJFBanzFO8mYvX19hnbVqlValyfLKh0dHbp3787Vq1fx9/fX2J5xPEtLS1q0aEFISAjHjh3T2u/ff//NcRxCCCGE+HzIjK94J82bN8fQ0JBevXoxfPhwLCwsOHbsGKGhoTg6OpKSkpLjsWfMmEF4eDgDBw4kLCwMV1dXlEol586dIyUlhXXr1gHw888/4+rqSsOGDenVqxdVq1YlLS2NW7duERISQu/evTNd1UEIIYQQ+YckvuKdODo6sn//fiZMmMCsWbPQ1dWlbt26HDlyhOHDhxMZGZnjsS0sLDh+/DizZs1i586dBAcHY2JigouLC19//bWqn62tLWfOnGHOnDmEhISwYcMGDAwMsLW1pXXr1horSAghhBAif1Ios3oXkRD5QFxcHGZmZsTGxmJqaprX4QghhBAiC7L6+1tqfIUQQgghRL4gia8QQgghhMgXJPEVQgghhBD5giS+QgghhBAiX5DEVwghhBBC5AuS+AohhBBCiHxBEl8hhBBCCJEvSOIrhBBCCCHyBUl8hRBCCCFEviCJrxBCCCGEyBck8RVCCCGEEPmCJL5CCCGEECJfkMRXCCGEEELkC5L4CiGEEEKIfEESXyGEEEIIkS8UyOsAhPgo+dqAviKvoxBCCCE+Hz6xeR2BzPh+ihQKBV5eXnkdRqYaNGiAnZ1dXoeBl5cXCoUkr0IIIYRIJ4lvLnv8+DFjx46lQoUKmJiYYGZmRtmyZenWrRs7d+58b8dduHAhgYGB7218IYQQQohPnZQ65KJ79+5RvXp1nj17Rs+ePRkyZAgAN27cYN++fTx//pwOHTq883FevHiBrq6uWtvChQuxs7P7qGeChRBCCCHykiS+uWjevHk8evSI3bt307p1a7VtCxYs4O+//86V4xgYGOTKOLkpLS2NpKQkChUqlNehCCGEEEJoJaUOuejatWsANGzYUOt2GxsbAAYMGICBgQGJiYmqbSdPnkShUGBiYsLLly9V7UePHkWhULBmzRpV26s1vpGRkSgUCu7cucORI0dQKBSqF/yvzjWzV2RkpGrc2NhYvv/+e8qUKYO+vj5WVlZ0796dW7duqZ1HYGAgCoWCX3/9lenTp+Po6Ii+vj5btmzJ9NqcPHkSLy8vnJycMDQ0xMTEhLp16xIcHKzRNyPmp0+fMnDgQIoWLYqBgQF169blxIkTGv1jYmIYMmQIRYsWxdDQkFq1avHrr79mGosQQggh8ieZ8c1FDg4OAKxatYpRo0ZlemOVu7s7/v7+HDt2jEaNGgEQHh6Ojo4Oz58/5+TJk9StW1fVnrGPNlZWVqxbt47Ro0dTpEgRfvjhB7XtgwYNwsPDQ63txYsXfPvtt6SmpmJiYgKkJ7116tTh7t279OvXj/Lly/PgwQN+/vlnatasyenTpyldurTaOGPGjCElJYWBAwdiampKuXLlMr02wcHBXLt2je7du2NjY0N0dDRBQUF06NCBDRs20KNHD419mjVrRtGiRZkyZQpRUVHMnz+fFi1aEBkZqYr75cuXNG3alJMnT9KtWzfc3Ny4evUqbdu2xdHRMdN4MiQlJZGUlKT6OS4u7q37CCGEEOLTJIlvLhozZgwbNmzgm2++YcGCBbi5uVG9enXc3NyoVq2aql9GEnvo0CG1xDcjgTt06JBa4uvg4JDpKglGRkZ4enoyceJEihUrhqenp9r22rVrU7t2bdXPaWlpdOzYkfj4eHbu3ImlpSUAkyZN4tatW/z+++9UrlxZ1d/Ly4uKFSsyZcoUjZvnEhMTOXfuXJbKGyZOnIivr69a24gRI/jyyy+ZMWOG1sS3WrVqLFu2TPWzi4sLXbp0YePGjQwaNAiAgIAATp48yffff8/s2bNVfd3c3OjcufNb4/L19WXq1Kka7RUS/dFRGr51fyGEEEK8XeTslnkdAiClDrnKwcGB8+fPM3ToUNLS0ti4cSOjR4/mq6++olKlSpw5cwaA4sWL4+zszKFDhwBITk7m2LFjNG7cmIYNG6raExISOHHiRKazvTkxevRodu3axYIFC2jbti0ASqWSjRs3UrduXUqWLElUVJTqZWRkRK1atTh48KDGWEOGDMlyTa+RkZHq/xMSEoiOjiYhIQF3d3cuX76sdaZ19OjRaj9nXIfr16+r2kJCQlAoFIwdO1atb6dOnXBycnprXOPHjyc2Nlb1unfvXpbORwghhBCfHpnxzWV2dnYsXbqUpUuX8uDBA44fP05QUBC7d++mVatWXLp0icKFC+Pu7s7y5cuJjY3l/PnzqiTQwMCAUaNGkZCQwG+//UZycrJqVvhdLVy4kEWLFjFixAhGjBihav/333+Jjo7m0KFDWFlZad1XR0fzM1LZsmWzfOzHjx8zceJEQkJCePz4scb2mJgYTE1N1doySkcyZMxOR0dHq9pu3rxJsWLFKFy4sMaYzs7OqrrrzOjr66Ovr5/l8xBCCCHEp0sS3/eoRIkSdOjQgQ4dOtCjRw82bdpEaGgonp6euLu7s3TpUo4cOcLZs2cpUqQIlSpVwsDAgOTkZH777TdVfW9mN8tlx65du/j2229p06YNCxYsUNumVCpVx5kwYUKWxzQ0zFopQFpaGo0bN+bKlSuMGDGC6tWrY2Zmhq6uLgEBAWzcuJG0tDSN/V5fsu31eDPIQyqEEEIIkRWS+H4gtWvXZtOmTdy/fx9ITzJ1dHQ4dOgQZ8+exd3dHYVCQbly5ShZsiSHDh0iPDyc8uXLU6xYsbeO/6bk7+TJk/To0YOqVauyadMmjdlbKysrzM3NiY2N1bgRLjdcvHiRCxcuMHnyZI162tWrV7/T2I6Ojuzfv58nT55ozPpevnz5ncYWQgghxOdFanxz0eHDh3nx4oVGe1paGnv27AHSb9ACsLCwoHLlyoSGhnLy5Em1cgZ3d3dCQkI4d+5clsscjI2Nefr0qUb7rVu3aN26NUWLFmXPnj1aZ2l1dHTo2bMnZ8+eZfPmzVrH11aekFUZM7evz9T++eefWpczy4527dqhVCqZO3euWvv27dvfWuYghBBCiPxFZnxzkZ+fH8eOHaNVq1ZUq1YNMzMzHj58yI4dOzhz5gwNGzakZcv/3dXo7u6On58fgEbiu27dOtX/Z0XNmjVZs2YNPj4+lCtXDoVCQbdu3ejevTuPHz9m/PjxWte2bd++PUZGRsycOZNjx47Ro0cPgoODqV27Nnp6ety5c4fQ0FCqVauW40ciOzs7U758eebOnUtCQgLlypXj2rVrrFixggoVKnD27NkcjQvpq06sXr2aOXPmcOfOHerVq8eVK1dYvXo1FStW5OLFizkeWwghhBCfF0l8c9HEiRPZtm0bR48e5eDBgzx58gQjIyOcnZ3x8/Nj2LBhamUGjRo1ws/Pj1KlSqmtOZuRBOvq6lK/fv0sHXvGjBlERUWxcOFCYmNjAejWrRuPHj0C0FhKLMPt27cxMjLCzMyMY8eO4efnx9atW9m9ezcFChTAxsYGV1dXBgwYkKNrknEe+/btY8yYMQQFBREfH0+FChUICgri/Pnz75T4FixYkF9++YVx48axY8cOdu3aReXKlQkJCWH9+vWS+AohhBBCRaF8/ftnIfKxuLg4zMzMiI2N1VhlQgghhBAfp6z+/pYaXyGEEEIIkS9I4iuEEEIIIfIFSXyFEEIIIUS+IImvEEIIIYTIFyTxFUIIIYQQ+UKOE187OzumTZvGvXv3cjMeIYQQQggh3oscJ75mZmb4+Pjg4OBAixYt2LlzJykpKbkZmxBCCCGEELkmx4nv+fPnOXnyJAMGDOD48eN07tyZkiVLMnbsWK5evZqbMQohhBBCCPHOcuUBFomJiWzbtg1/f3/+85//AFCnTh0GDhxI586dKVSo0DsHKsSHIA+wEEIIIT49H/QBFgYGBvTq1YuIiAiuXbtG9+7dOXbsGH379qVEiRKMGDGCO3fu5MahhBBCCCGEyJFcW9UhJSWF7du3M3z4cDZv3oxCoaBx48a4ubmxbNkyXFxcCAkJya3DCSGEEEIIkS3vXOrw119/4e/vz7p164iKiqJ48eL07duXgQMHYmdnB8CNGzfo0qUL8fHxUv8rPmpS6iCEEEJ8erL6+7tATg/g7++Pv78/J06cUM3uent706ZNG3R1ddX6lilThhEjRjBgwICcHk4IIYQQQoh3kuPEd+DAgZQoUYLx48czcOBASpcu/cb+Li4u9OrVK6eHE0IIIYQQ4p3kuNRh165dtG7dWmN2V4hPmeqrknEmmOor8jocIYQQ4vPhE/vehn6vqzrEx8fz7bffsmTJkhwHKHKmQYMGqtppIYQQQgiRdTlKfI2MjIiOjsbIyCi348m3Hj9+zNixY6lQoQImJiaYmZlRtmxZunXrxs6dO/M6PCGEEEKIT16Oa3xr1arFmTNn5Ia1XHDv3j2qV6/Os2fP6NmzJ0OGDAHSV8PYt28fz58/p0OHDgAcPHiQXHjmiBBCCCFEvpPjxHf27Nl4eHhQu3ZtevfunZsx5Tvz5s3j0aNH7N69m9atW6ttW7BgAX///bfqZz09vQ8d3kcrPj5evnUQQgghRJbl+AEW33zzDWZmZvTt25eiRYtSq1Yt3N3d1V6NGjXKzVg/W9euXQOgYcOGWrfb2Nio/l9bjW9G299//02XLl2wsLDAyMiIpk2bqsZ+1b179+jatSvm5uYYGxvj7u7O2bNntY598OBBunbtioODA4UKFcLc3JwmTZpw5MgRjXEz9r916xZt27bFzMwMExMT2rZty40bNzT6JyQkMHHiRMqWLYu+vj5WVlZ07dpVI+bIyEgUCgU+Pj5s2bKFatWqUahQIYYNG6bq8+uvv9KkSRPMzc0xMDCgUqVKLF++XOv1FEIIIUT+lOMZ31u3bqFQKChVqhQAjx49yrWg8hsHBwcAVq1axahRo1Aosr+aQHx8PPXr16d27drMmjWL27dv89NPP9G2bVv+/PNP1eobT58+xdXVlfv37+Pt7U3FihU5e/YsjRo1okiRIhrjBgYGEhMTo3r89P3791m9ejWNGjXi8OHDuLm5acTRsGFDatSoga+vL9evX2fZsmWcOHGCs2fPYm1tDaQ/6a958+YcPXqU9u3bM2rUKO7cucPSpUv55ZdfOH78OM7Ozmpj79q1i8WLFzNkyBAGDx6sumtz5cqVDB48mFq1avHDDz9gbGxMWFgYQ4YM4ebNm8ybNy/b11MIIYQQn593fnKbeHe3bt3iyy+/JC4uDltbW9zc3KhevTpubm5Uq1ZNrW+DBg2IjIwkMjJSre3IkSPMmTOHsWPHqtrnzZvH2LFjOXDgAE2bNgVg3LhxzJkzB39/f/r166fqu2jRIkaOHEnp0qXVxtZWTvDo0SPKly9PjRo1CA0N1Yhj5MiRLFy4UNUeHBxMhw4dGDBgAKtWrQJg9erVDBw4kFGjRrFgwQJV32PHjuHq6krjxo05ePAgkD7ja29vT8GCBbl48SLlypVT9X/w4AH29va0b9+eTZs2qcU5cuRIlixZwrVr13B0dNR67ZOSkkhKSlL9nPEeyHJmQgghRC77CJYzy/GM7927d7GysqJQoUJat7948YJ///1XNSMsMufg4MD58+eZN28eISEhbNy4kY0bNwJQsWJFAgICNBLg1+no6DBixAi1Nnd3dwCuX7+uSnxDQkKwsrKiT58+an0HDx7MpEmTNMZ9Nel9/vw5SUlJ6OrqUrNmTX7//XetsYwbN07t5/bt21OuXDl27dqlSnyDg4NRKBRMnDhRrW/dunVxd3fn0KFDxMXFqf3hbdmypVrSC7B9+3aSkpLo27cvUVFRattat27NokWLOHToUKaJr6+vL1OnTtVor5Doj47SUOs+QgghxKcmcnbLvA7ho5DjGl97e3uCg4Mz3b57927s7e1zOny+Y2dnx9KlS/n777/5559/2LFjB23atOHixYu0atWKJ0+evHF/a2trDAwM1NosLS0BiI6OVrXdvn2bMmXKaDx4RE9PT1Vy8aqbN2/SrVs3LCwsMDExoUiRIlhZWREaGsrTp081+pubm1O8eHGNdmdnZ6KiooiNTf+0d+vWLYoVK6aK8VUVK1YkLS1NbeYZoGzZshp9L1++DEDTpk2xsrJSezVu3Bh4cxnO+PHjiY2NVb3u3buXaV8hhBBCfNpyPOP7tgqJ1NTUHNWqCihRogQdOnSgQ4cO9OjRg02bNhEaGoqnp2em+7zpCXpZrWZ5vd+zZ89wc3MjISGBUaNGUbFiRUxMTNDR0cHX15fw8HCNMTJ7zzPGztj+ppgy22ZoqDkDm9E3ICBA7SbAV2lL6DPo6+ujr6+f6XYhhBBCfD5ynPhC5kkOwO+//07hwoXfZXgB1K5dm02bNnH//v1cGc/e3p4bN26QmpqqliwnJydz+/ZtLCwsVG3h4eE8ePCANWvW0LdvX7VxXi9RyPD06VMePnyoMet75coVihQpoipdcHR0ZP/+/URHR2vM+l66dAkdHZ0sPaHOyckJSJ/d9vDweGt/IYQQQuRf2Sp1+Omnn3BwcFDNoI0aNUr186uvwoULs3TpUlq2lHqSrDh8+DAvXrzQaE9LS2PPnj0AuLi45Mqx2rRpw7///ktQUJBa+/Lly4mLi1Nry0iMX5+BPXjwICdOnMj0GLNnz1b7OTg4mKtXr9KuXTtVW/v27VEqlfj6+qr1PX78OOHh4Xh4eLyxOD1D586d0dfXx8fHh4SEBI3tsbGxajevCSGEECL/ytaMr7m5OaVLlwbgzp07WFpaUqxYMbU+CoUCY2NjatasyahRo3It0M+Zn58fx44do1WrVlSrVg0zMzMePnzIjh07OHPmDA0bNsy1DxFjx45l06ZNeHt7c/r0aSpVqsSZM2fYuXMnZcqUISUlRdXX1dWV4sWL8+233xIZGYmNjQ1//PEH69ato2LFily8eFFj/CJFirBz507++ecfGjRooFrOrFixYmo3kXl5ebFu3Tr8/PyIjIzE3d1dtZyZqamp2qoQb2JjY8PPP//MgAEDcHZ2pnfv3pQuXZp///2XixcvsmvXLv76668szR4LIYQQ4vOWrcS3T58+qtUAdHR0mDhxIj169HgvgeUnEydOZNu2bRw9epSDBw/y5MkTjIyMcHZ2xs/Pj2HDhqGjk+P7ENVYWlryn//8h++++44NGzawdu1aateuTXh4OP369VObeTY3N+eXX35h7NixLF68mJSUFKpVq0ZoaCj+/v5aE18jIyPCw8MZPXo048aNQ6lU0qxZM/z8/FRr+AIUKFCA/fv3M3PmTLZs2cLu3bsxNTWlZcuWTJs2TWP1hjfp27cvTk5O/Pjjj6xYsYKYmBiKFClCuXLlmD59utab7YQQQgiR/8g6vgJIf6CElZUVNWvW5MCBAzkaQ9saw5+ajHUAbUdtRUdfljMTQgjxefjclzN77+v4ik/XixcvNNZfXrZsGTExMTRp0iSPovq4/Dm1aZZqjIUQQgjx6XinxHfz5s0sXryY69evq60Vm0GhUKjVjIqPQ4sWLShdujRVq1ZFoVBw7NgxtmzZgpOTE97e3nkdnhBCCCHEe5HjxHfevHmMGzcOS0tLatWqpfVBBOLj1KpVK9atW8euXbtISEigRIkSDB06FB8fH4yNjfM6PCGEEEKI9yLHNb52dnZYW1tz6NChTB9bLMSnJqs1QkIIIYT4eGT193eOlwp4+PAhnp6ekvQKIYQQQohPQo4TX0dHR2JjY3MzFiGEEEIIId6bHCe+o0ePZvXq1Tx79iw34xFCCCGEEOK9yPHNbXp6elhZWeHs7Ey/fv2wt7dXPeL2Vb17936nAIUQQgghhMgNOb65LStPElMoFKSmpuZkeCHyhNzcJoQQQnx63vsDLA4fPpzTXYUQQgghhPjgcpz41q9fPzfjEEIIIYQQ4r3K8c1tQgghhBBCfEpyPOM7bdq0t/ZRKBRMmjQpp4cQQgghhBAi17yXm9sUCgVKpVJubhOfHLm5TQghhPj0vPeb227fvq3RlpKSws2bN1mwYAGxsbEEBQXldHghhBBCCCFyVY5nfN9EqVRSr1493NzcmDVrVm4PL8R7o/rEOM4EU31FXocjhBBCfPp83v+TfrM64/tebm5TKBR06tSJtWvXvo/hRT7g4+ODQqEgMjJS1RYYGIhCoSAiIiLP4hJCCCHEp+u9reqQnJxMdHT0+xpeALGxsRgaGqJQKAgMDPwgx4yJicHHx0eSTyGEEEJ8ct5L4nv69Gl++uknnJ2d38fw4r82btxIYmIijo6O+Pv7f5BjxsTEMHXq1DxJfHv16sWLFy+oV6/eBz+2EEIIIT59Ob65zcHBQWv7kydPePbsGQUKFGD16tU5Dky8nb+/P/Xq1aNr164MHTqUq1evUq5cubwOS0N8fDxGRkbvPI6uri66urq5EJEQQggh8qMcz/iWKlWK0qVLq73s7Ozw8PDg+++/5+rVqzRr1iw3YxWvuHDhAmfOnMHLy4vu3bujr6/PmjVr1PpERkaiUCjw8fHR2F9bDe29e/fo378/pUuXRl9fH0tLS6pXr86qVauA9Bpbe3t7AKZOnYpCoUChUNCgQQMAIiIiVGUXS5cuxcXFBX19febNmwfAyZMn8fLywsnJCUNDQ0xMTKhbty7BwcFZOmdtNb7Pnj1j4sSJ1KxZkyJFiqCvr0+ZMmUYN24cCQkJWbyaQgghhMgPcjzjKzWeeWv16tUYGRnRqVMnjI2NadOmDWvXrmXmzJkUKJD9tzUlJYXGjRtz//59hgwZQrly5YiLi+PPP//k6NGjDBw4kHr16rFgwQJGjx5N+/bt6dChAwDFihVTG2vhwoU8efKEgQMHUqxYMWxtbQEIDg7m2rVrdO/eHRsbG6KjowkKCqJDhw5s2LCBHj16ZDvu+/fv4+/vT+fOnenZsye6urocOXKEuXPncu7cOX755ZdsjymEEEKIz1OOE1+Rd5KSktiwYQMdO3bE2NgYAC8vL7Zt20ZoaCht2rTJ9ph//fUXV69eZe7cuXz33Xda+zg4ONCuXTtGjx5NpUqV8PT01Nrv3r17XL16lSJFiqi1T5w4EV9fX7W2ESNG8OWXXzJjxowcJb4ODg7cu3dPLdkfNmwYkyZNYsaMGZw8eZIaNWpkun9SUhJJSUmqn+Pi4rIdgxBCCCE+De+c+P7+++/s3LmTW7duAeDo6Ej79u2pVavWOwcntAsODubJkyd4eXmp2po2bUqJEiXw9/fPUeJrZmYGQHh4OL1799aYxc2O3r17ayS9gFqdb0JCAi9evECpVOLu7s7y5cuJi4vL9tPS9PT0VP+fkpLCs2fPSE1NxcPDgxkzZnDixIk3Jr6+vr5MnTpVo71Coj86SsNsxSKEEELklcjZLfM6hE/COyW+gwcPZtWqVbz+DIwff/wRb29vfv7553cKTmjn7++PlZUVNjY23LhxQ9XeuHFjNm7cyMOHDylevHi2xixdujSTJ09mxowZWFtbU7lyZRo1akTHjh2z/SGmbNmyWtsfP37MxIkTCQkJ4fHjxxrbY2JicvSY4GXLlrF8+XIuXbpEWlqa2ranT5++cd/x48fzzTffqH6Oi4tTlWYIIYQQ4vOS45vblixZwsqVK2natClHjx7l6dOnPH36lKNHj9KsWTNWrlzJ0qVLczNWQfoNa4cOHeLff//FycmJsmXLql5r164lJSVF9ahohSLzJ4+lpKRotE2dOpUbN26waNEinJycCAgIoHbt2owYMSJbMRoaas6UpqWl0bhxY4KCgujduzdbtmzhwIEDhIWFqUocXk9as8LPz49hw4ZRokQJVqxYwb59+wgLC1Ota/y2MfX19TE1NVV7CSGEEOLzlOMZ39WrV1OvXj327dunlmC5urqyd+9eGjZsyMqVKxk2bFiuBCrSBQQEoFQqWbFiBYULF9bYPm3aNNasWcP333+v2v7kyRONfhmlKa+zt7dn2LBhDBs2jKSkJNq2bcvixYsZPXo09vb2b0ym3+TixYtcuHCByZMna5QWvMuyd+vXr8fOzo79+/ejo/O/z3EHDhzI8ZhCCCGE+DzlOPG9du0ac+bM0ZoIKRQKOnbsyPfff/9OwQl1aWlpBAYG4uLigre3t9Y+N2/eZNy4cfz222+4urpSvHhxwsPDUSqVqvfq1q1b7Nq1S22/jKfAFSxYUNWmr69P+fLl+eWXX3jy5An29vaqm+neVkLwuoz1d18vi/nzzz+zvJxZZuMqFAq1cVNSUpg9e3aOxxRCCCHE5ynHia++vj4xMTGZbn/69Cn6+vo5HV5oERYWxt27d5k8eXKmfTp27Mi4cePw9/fH1dWV4cOHM3HiRJo3b067du34559/WL58ORUqVODUqVOq/Q4fPoy3tzcdO3bEyckJExMT/vjjD1asWEGlSpWoUqUKAJaWljg6OrJ582bKlCmDlZUVRYsWxd3d/Y2xOzs7U758eebOnUtCQgLlypXj2rVrrFixggoVKnD27NkcXZNOnToxfvx4mjdvTocOHYiLi2Pjxo1qCbwQQgghBLxD4luzZk2WL1/OgAEDKFGihNq2Bw8esGLFClnZIZdlPJa4U6dOmfYpU6YMlSpVYtu2bSxatIjvv/+e2NhY1q1bR0REBC4uLvj7+3PmzBm1xLdy5cp06NCBI0eOsGHDBlJTU7G1tWXMmDF89913ak9MW7duHaNHj2bs2LEkJiZSv379tya+urq67Nu3jzFjxhAUFER8fDwVKlQgKCiI8+fP5zjx/e6771Aqlfj7+zNy5EiKFy9O165d6du3Ly4uLjkaUwghhBCfJ4Xy9e+es+jYsWM0bNgQQ0NDtSTj0qVLBAUFkZCQwOHDh6lTp06uBizE+xQXF4eZmRm2o7aioy/LmQkhhPg05PflzDJ+f8fGxr7xRvUcJ74AoaGhDB06lLt376q1ly5dmmXLltG8efOcDi1EnsjqXxwhhBBCfDyy+vv7ndbxbdGiBbdu3eLs2bPcunULpVKJo6MjVatWVbvDXgghhBBCiLz2zk9u09HR4auvvuKrr77KjXiEEEIIIYR4L7I1LZucnMzgwYNZuHDhG/vNnz+foUOHan1IghBCCCGEEHkhW4nv2rVr8ff3p0mTJm/s17hxY1auXMmGDRveKTghhBBCCCFyS7YS3+3bt9O8efO3LhNVsWJFWrRowZYtW94pOCGEEEIIIXJLthLfc+fO0aBBgyz1rV+/fo7XZhVCCCGEECK3ZSvxffr0KZaWllnqa2lpme3H2gohhBBCCPG+ZCvxNTU15d9//81S36ioKExMTHIUlBBCCCGEELktW4lvhQoV+OWXX7LU9+DBg5QvXz5HQQkhhBBCCJHbspX4duzYkfDwcHbu3PnGfsHBwRw6dIhOnTq9U3BCCCGEEELklmwlvt7e3nzxxRd069aN8ePHc/v2bbXtt2/fZsKECXTr1o0vvviCgQMH5mqwQgghhBBC5JRCqVQqs7PDnTt3aNmyJX/99RcKhQITExNMTU159uwZcXFxKJVKnJ2d2bt3L/b29u8rbiHei6w+61sIIYQQH4+s/v7O1owvQOnSpTlz5gyLFy/Gzc2NAgUK8PDhQ3R1dalXrx6LFy/mzJkzkvQKIYQQQoiPSrZnfIX4nMmMrxBCCPHpyerv7wIfMCYhPh2+NqCvyOsohBAi9/jE5nUEQuS5bJc6iJzz8vJCofjwyZSdnV2Wn7gnhBBCCPG5ksT3vwIDA1EoFAQGBmrdHhkZiUKhwMvLK1ePGxERgY+PDzExMbk6bk49e/aMWbNm8eWXX2Jubo6xsTH29va0a9eO1atXq/XdtWsXPj4+73zMj+0aCCGEEOLzJInvB7Rq1SpevHih1hYREcHUqVM/iqTv2bNnVK9enSlTpuDs7My0adP48ccf6dy5M3fu3OGnn35S679r1y6mTp36zsf9mK6BEEIIIT5fUuP7ARUsWJCCBQvmdRiZWrVqFVevXmXRokV8/fXXGtv//vvvPIhKCCGEECJ3yIzvO8gof/Dx8WHXrl1Uq1YNAwMDSpQowXfffUdKSopa/9drfBs0aKCaMbW3t0ehUGiUWzx48IAhQ4ZQqlQp9PT0sLa2xtvbm8ePH2vEc/nyZVq2bImxsTHm5ua0bduWW7duZfl8rl27BkDDhg21brexsVH9v52dHUFBQQCquBUKBREREQCcPHkSLy8vnJycMDQ0xMTEhLp16xIcHKw2Zm5egydPnvDNN9/g6OiIgYEBFhYWVKpUiZkzZ2b5GgghhBDi8yUzvrkgNDSUZcuWMXjwYAYMGEBISAg//vgjFhYWTJgwIdP9fvjhBwoXLkxwcDALFiygSJEiANSpUweAu3fvUrt2bZKTk+nfvz+Ojo7cvHmTZcuWcfjwYU6fPo2ZmRmQ/tQ8V1dXEhISGDp0KA4ODhw6dIiGDRuSkJCQpfNwcHAAICAggDlz5lCgQOZ/PBYuXMj8+fP5z3/+w7p161Ttzs7OQPpjq69du0b37t2xsbEhOjqaoKAgOnTowIYNG+jRo0euX4POnTtz9OhRBg0aROXKlXnx4gXXrl0jIiKCH374IUvXQAghhBCfL1nH978CAwPp27cvAQEBWm9gi4yMxN7enj59+qhmIzPaDA0NuXTpEnZ2dgAolUoqVqxIdHQ0Dx48UI3h5eVFUFAQr15yHx8fpk6dyu3bt1X7Z2jTpg3Hjx/n3LlzarOtp0+fplatWkycOFF1c1mPHj3YtGkT+/fvp1mzZqq+w4cPZ+nSpdSvX181G5uZp0+fUrlyZe7du0fRokVxc3OjRo0a1K1bl9q1a6Ojo/4FgbbzyRAfH4+RkZFaW0JCAl9++SW6urr89ddfuXoNYmNjMTc3Z+jQoSxduvSN5/mqpKQkkpKSVD/HxcVha2tL7DgTTGU5MyHE50SWMxOfMVnH9wNq166dWsKmUCho2LAhS5Ys4fnz5xgbG2d7zJiYGPbt20fv3r0xMDAgKipKtc3Ozo4yZcpw8OBBfHx8SEtLY8+ePVSuXFkt6QWYMGFClhNBCwsLzpw5g5+fH9u3b2fHjh3s2LEDSC9DWL58OU2aNMnSWK8mvQkJCbx48QKlUom7uzvLly8nLi7urQ+IyM41KFSoEAYGBvz+++9ERkZqJNCZ8fX11XqDXoVEf3SUhlkaQwghPgnj9uV1BJ+VyNkt8zoEkQNS45tN2tbhzSgReJWlpSUA0dHROTrOtWvXSEtLIzAwECsrK43X1atXefToEQCPHz/m+fPnqjKDV1lbW6tKAbLCysqK2bNnc+PGDf79919CQ0Pp3bs3kZGRtG/fnhs3bmRpnMePH+Pt7U2xYsUwMjKiSJEiWFlZsXz5coAsreCQnWugp6fHTz/9xKVLl7C3t8fFxYXhw4cTFhb2xmOMHz+e2NhY1evevXtZOj8hhBBCfHpkxve/ChUqBKCx3FiGjDrZjH6v0tXVzXTcnFaSZOzXvXt3+vXrp7XP67Hk9sMxihQpQvPmzWnevDklS5bE19eXzZs3M3HixDful5aWRuPGjbly5QojRoygevXqmJmZoaurS0BAABs3biQtLe2tx8/uNfD29qZNmzbs27ePo0ePEhwczNKlS2nXrh07duzQKNUA0NfXR19f/62xCCGEEOLTJ4nvf9nb2wOo1Z6+KqM9o19uySxZLVOmDAqFgqSkJDw8PN44RtGiRTE2NtYa+z///ENs7LvXddWuXRuA+/fvq9oyi/3ixYtcuHCByZMna5QRvP4QjDeNk51rkKF48eL079+f/v37k5aWxsCBA1mzZg1HjhzJdLUKIYQQQuQPUurwX1WrVsXW1pbNmzfzzz//qG1LTk5myZIlKBQK2rRpk6vHzaj/ffr0qVq7paUlLVq0ICQkhGPHjmnsp1Qq+ffffwHQ0dGhTZs2nD9/ngMHDqj1mzVrVpZjOX78eKYlCCEhIQC4uLi8NfaMGfDXZ7v//PNPjeXM3jROdq5BQkKCxuoVOjo6VKlSBUhf6kwIIYQQ+ZvM+P5XgQIF+Pnnn2nfvj0VK1ZkwIABODo68ujRI7Zs2cKlS5cYP3485cqVy9Xj1qxZE0ivNe3evTv6+vrUrFkTe3t7fv75Z1xdXWnYsCG9evWiatWqpKWlcevWLUJCQujdu7dqVYcZM2Zw4MAB2rdvz7Bhw1TLmZ0+fVq1RNjbbNiwgYCAAFq0aEHNmjWxtLQkOjqa0NBQDh8+jIuLi1rJQc2aNVmyZAnDhg2jefPmFCxYEHd3d5ydnSlfvjxz584lISGBcuXKce3aNVasWEGFChU4e/Zsrl+Da9euUb9+fdq3b0/58uWxtLTkypUr/Pzzz1hbW2d5xlgIIYQQny9JfF/RsmVLjh07xty5cwkKCiI6OhojIyO+/PJLtmzZQpcuXXL9mK6ursycOZMVK1bQv39/UlNTCQgIwN7eHltbW86cOcOcOXMICQlhw4YNGBgYYGtrS+vWrdXisbe357fffmPMmDEsX74cXV1dGjRowOHDh3F3d89SLIMHD8bc3JzDhw8zf/58oqKi0NfXp0yZMkyZMoVvvvlGbbWG7t27c+bMGTZv3syWLVtIS0vj8OHDNGjQgH379jFmzBiCgoKIj4+nQoUKBAUFcf78eY3ENzeuga2tLf369ePw4cOEhISQmJiItbU1vXv3Zty4cdm6wU8IIYQQnydZx1eIV2R1HUAhhBBCfDyy+vtbanyFEEIIIUS+IImvEEIIIYTIFyTxFUIIIYQQ+YIkvkIIIYQQIl+QxFcIIYQQQuQLkvgKIYQQQoh8QRJfIYQQQgiRL0jiK4QQQggh8gVJfIUQQgghRL4gia8QQgghhMgXJPEVQgghhBD5giS+QgghhBAiX5DEVwghhBBC5AuS+AohhBBCiHxBEl8hhBBCCJEvFMjrAIT4KPnagL4ir6MQQgghPh8+sXkdgcz4CiGEEEKI/OGTT3wjIiJQKBTMnj070z7GxsY0aNDgwwWVCxQKBc2aNdNof/jwIZUrV6ZAgQIEBATkQWTZFxkZyeDBg/niiy8wNDTEwsICFxcX+vTpw+HDhzPd7+DBgygUCnR0dLh161amYysUCrVXoUKFKF++PFOmTCEhIeF9nZYQQgghPjFS6vAJiYyMpHHjxty7d49t27bRvn37vA7prc6ePUv9+vUpWLAgvXv3xtnZmRcvXnDt2jX27NmDiYkJDRs21Lqvv78/tra2/PvvvwQEBDB9+vRMj+Pu7k7fvn0B+Pfff9mxYwfTpk3j999/55dffnkv5yaEEEKIT4skvp+Iv/76iyZNmhAbG8u+ffto1KhRXoeUJT4+Pjx//pzz589TqVIltW1Llizh4cOHWveLjo4mJCSEcePGcfnyZQIDA5k6dSo6Otq/pChbtiyenp6qn0eOHEnNmjU5ePAgZ86coVq1arl3UkIIIYT4JH3ypQ7vYs+ePbi5uWFiYoKRkRE1atRg06ZNGv0aNGiAnZ0df//9N126dMHCwgIjIyOaNm3KtWvXNPrfu3ePrl27Ym5ujrGxMe7u7pw9e1Y1TnadOnWKevXqkZiYyKFDhzSS3oSEBCZOnEjZsmXR19fHysqKrl27asSWURbg4+PDrl27qFatGgYGBpQoUYLvvvuOlJQUjWOHhIRQtWpVVb8RI0Zw6dIl1Thvc+3aNSwtLTWSXgAdHR2sra217rd+/XqSk5Pp06cPXl5e/P3339maudXR0VGVt1y/fj3L+wkhhBDi8/XZJL4JCQlERUVpfWmzcuVK2rRpw6NHjxg/fjxTp04lOTmZHj16MGvWLI3+8fHx1K9fHz09PWbNmsWwYcOIiIigbdu2pKamqvo9ffoUV1dXduzYQY8ePZg3bx6Ojo40atSI+/fvZ/u8wsPDcXd3x8DAgKNHj1KjRg217SkpKTRv3pyZM2dSsWJF5s+fT9++fdm7dy81atTg8uXLGmOGhobi7e1Ny5YtWbBgAZUrV+bHH39k7ty5av22b99O+/btefr0KZMmTWLs2LGcOHGCPn36ZDl+BwcHoqOj2blzZ7bOe82aNbi5uWFvb0+TJk0oUaIE/v7+2Rrjxo0bAFhaWmbaJykpibi4OLWXEEIIIT5Pn02pw/Tp099YA/qqmJgYvvnmG+zs7Dh16hRmZmYADB06lNq1azNlyhQ8PT0pVaqUap+oqCi+++47xo4dq2qzsrJi7Nix/PrrrzRt2hSAOXPmcPfuXfz9/enXr5+qb8WKFRk5ciSlS5fO8jldvHiRFi1aYGtrS1hYmNbZ4sDAQI4ePcqoUaNYsGCBqr1t27a4uroycuRIDh48qLbPpUuXuHTpkmq8wYMHU7FiRRYvXsyECROA9IR61KhRWFhYcPLkSaysrAAYNmwY9erVy/I5TJo0iV9//ZWOHTtStmxZXF1dqV69Og0aNMDZ2VnrPqdOneLChQusWbMGAF1dXTw9Pfnpp5+IioqiSJEiGvskJiaqPuRERUWxdetWdu3ahY2NzRvj9fX1ZerUqRrtFRL90VEaZvk8hRBCfNoiZ7fM6xDEB/DZzPj279+fsLAwrS8DAwO1vmFhYcTHx/P111+rkl4AQ0NDxowZQ0pKCrt371bbR0dHhxEjRqi1ubu7A+pfpYeEhGBlZaUxKzp48GBMTU2zdU5Pnz4lKSmJYsWKaU32AIKDg1EoFEycOFGtvW7duri7u3Po0CGNWcx27dqpJdEKhYKGDRvy8OFDnj9/DsCZM2e4f/8+Xl5eqqQXQE9Pj9GjR2f5HGrXrs2ZM2fo1asXT58+JSAggKFDh+Li4kK9evW0rtbg7++PoaEhnTt3VrV5eXmRnJzMunXrtB4nKCgIKysrrKyscHZ2ZsqUKdSvX5+wsDD09fUzjW/8+PHExsaqXvfu3cvyuQkhhBDi0/LZzPiWKVMGDw8Prdt0dXXVfs5ItsqXL6/Rt2LFimp9MlhbW2sk0BlfoUdHR6vabt++TdWqVTWOqaenh4ODA0+fPs3K6QBQr149atSowfTp02natCkHDhzAxMRE41yKFSum9ev8ihUrEh4eTmRkpFqNrYODg0bfV8/F2NiY27dvA1CuXDmNvl988UWWzyEjjrVr1wJw584dfvvtN1asWMF//vMf2rZty5kzZ9DT0wPSS1Y2bdpEgwYN1G5809PTo1y5cvj7+2tNvFu1asXIkSNJTU3l5s2bzJ07l4cPH2JkZPTG2PT19d+YGAshhBDi8/HZJL7ZoVQqs73t9UQ2q+PlpN+rpk2bhkKhYNq0aark99WZ4/d1LjkZNytKly5N6dKl6dGjB25ubhw7doyTJ0/i6uoKpNcVx8XFERoaSmhoqNYxTpw4Qc2aNdXaSpYsqfbBp3nz5lSoUIHu3bvzn//8B4VCnsImhBBC5HefTalDdjg6OgLpta6vy2jL6JNd9vb23LhxQ+2GN4Dk5GTVLGp2TZ06FR8fH44fP65a0iyDo6Mjjx49Upt1znDp0iV0dHRytJJExqzwlStXNLZdvXo12+O9TqFQqJLXV2/68/f3p3jx4mzbtk3jtXnzZgoWLKiq/X0Te3t7xowZw7Fjx9iyZcs7xyuEEEKIT1++THwbN26MkZERS5YsUat/TUxMxM/PjwIFCtC6descjd2mTRv+/fdfgoKC1NqXL1/+TisGTJkyhWnTpnHixAm15Ld9+/YolUp8fX3V+h8/fpzw8HA8PDyyXVsMUK1aNaytrQkKCuLff/9VtScnJ6vdRPc2YWFhWpdJe/HiheqmOxcXFyC9Vvro0aN06NCBTp06aby6du1Ko0aN2Lx5c5aeyDZ69GjMzMzw8fHR+CAihBBCiPwnX5Y6mJub4+fnx+DBg6levTp9+/alYMGCrF+/nj/++IOZM2eqreiQHWPHjmXTpk14e3tz+vRpKlWqxJkzZ9i5cydlypTRmgRm1aRJk9DR0WHixIl4eHgQFhaGl5cX69atw8/Pj8jISNzd3blz5w5Lly7F1NSUhQsX5uhYBQoUYP78+XTv3p0aNWowcOBAChUqxObNm0lLSwPIUvnA6NGjiYqKok2bNlSqVAlDQ0Pu3bvHxo0buXbtGr1791bVVWfM5Hbq1CnT8Tp27MiBAwfYtm3bW5dVMzc3Z/jw4cycOZONGzfSq1evrJ6+EEIIIT5D+XLGF2DQoEGqFRimT5/OpEmTKFiwIBs2bFAt6ZUTlpaW/Oc//6FDhw5s2LCBMWPGEBkZSXh4OKamphQqVOid4v7hhx+YNWsWp0+fxsPDg2fPnrF//34mTJjAH3/8wahRo/D396dly5acOHEi0yXDsqJr167s2LEDc3Nzpk6dyty5c6lTpw5LliwByNK5zJ8/n44dO3LixAl8fHzw9vZm0aJFWFtb4+/vT0BAAACpqamqlRnetPxYu3bt0NXVzfKavqNHj8bY2Jhp06bJrK8QQgiRzymU73KnksiylJQUrKysqFmzJgcOHMjrcN7J9u3b6dy5M5s2baJbt255HU6uiouLw8zMjNjY2ByViAghhBDiw8vq7+98O+P7Pr148UKjbdmyZcTExNCkSZM8iChnkpOTtd6k5+fnR8GCBWnYsGEeRSaEEEIIkX35ssb3fWvRogWlS5ematWqKBQK1coCTk5OeHt753V4WXbr1i2aN29Ojx49sLOz49GjR2zevJlLly4xYcIEihUrltchCiGEEEJkmSS+70GrVq1Yt24du3btIiEhgRIlSjB06FB8fHwwNjbO6/CyzMrKilq1arF+/XoeP36MQqHAxcWFlStXMnDgwLwOTwghhBAiW6TGV4hXSI2vEEII8emRGl8hhBBCCCFeIYmvEEIIIYTIFyTxFUIIIYQQ+YIkvkIIIYQQIl+QxFcIIYQQQuQLkvgKIYQQQoh8QRJfIYQQQgiRL0jiK4QQQggh8gVJfIUQQgghRL4gia8QQgghhMgXJPEVQgghhBD5QoG8DkCIj5KvDegr8joKIYQQ4tPkE5vXEWglM76v8fLyQqH48AmPnZ0dDRo0yPVxAwMDUSgURERE5PrY2fW+zlEIIYQQIis+qcQ3I4kLDAzUuj0yMhKFQoGXl1euHjciIgIfHx9iYmJyddycyDjHwYMHa2y7evUqpUqVwsjIiAMHDuRBdEIIIYQQH69PKvH9EFatWsWLFy/U2iIiIpg6depHkfhm5ty5c7i5ufHs2TMOHjxIs2bNAOjVqxcvXrygXr16eRyhEEIIIUTeksT3NQULFsTAwCCvw8iWo0eP0qBBA3R1dTly5Ah169ZVbdPV1cXAwAAdHXmrhRBCCJG/ffbZUEZpgI+PD7t27aJatWoYGBhQokQJvvvuO1JSUtT6v17j26BBA6ZOnQqAvb09CoVCo9ziwYMHDBkyhFKlSqGnp4e1tTXe3t48fvxYI57Lly/TsmVLjI2NMTc3p23btty6dSvH57dv3z6aNWuGpaUlv/32G5UqVVLbrq3GN6MtPDycOXPm4ODggL6+Pk5OTgQFBWkcIy0tjdmzZ6v1W7x4cab1w9k9x4CAAL766isMDQ0xMTGhYcOGHDx4UKNfRo3wH3/8gYeHB8bGxhQtWpRvv/2WlJQUEhMTGTNmDCVLlsTAwAA3NzcuXbqUvQsqhBBCiM9WvlnVITQ0lGXLljF48GAGDBhASEgIP/74IxYWFkyYMCHT/X744QcKFy5McHAwCxYsoEiRIgDUqVMHgLt371K7dm2Sk5Pp378/jo6O3Lx5k2XLlnH48GFOnz6NmZkZALdv38bV1ZWEhASGDh2Kg4MDhw4domHDhiQkJGT7nDZu3EifPn0oV64cBw8exNraOlv7jx8/nsTERAYPHoyenh7Lly/Hy8uLMmXKqM0ajxw5kiVLluDq6srIkSOJjY1lzpw5FC9eXGPM7J7jhAkT8PX1pVq1akyfPp3ExET8/f1p1qwZ69ato2fPnmr9//77b5o0aUL37t3p1KkTYWFhzJ8/H11dXS5fvsyLFy8YN24cUVFR/Pjjj7Rr144rV66gq6ur9RokJSWRlJSk+jkuLi5b11AIIYQQn458k/heunSJS5cuYWdnB8DgwYOpWLEiixcvfmPi27hxY44dO0ZwcDDt2rVT7Z9h+PDhJCcnc+7cOWxsbFTtnTp1olatWixYsAAfHx8gPYl+8uQJ+/fvV9XgDhs2jOHDh7N06dJsnc8vv/zCqlWrqF69OqGhoRQuXDhb+wMkJydz6tQp9PT0AOjcuTMODg4sWbJElfhevnyZJUuW0LBhQ8LCwlQJZP/+/fniiy80xszOOV67do3Zs2dTs2ZNjhw5gr6+PpD+3lSoUIGvv/6adu3aYWRkpNrn5s2b7Nixgw4dOqj6fvXVV/z444+0bduWsLAw1Yy9paUlI0eOJCwsTBXL63x9fVUz+q+qkOiPjtIw6xdTCCFEnouc3TKvQxAfuc++1CHD60mrQqGgYcOGPHz4kOfPn+dozJiYGPbt20erVq0wMDAgKipK9bKzs6NMmTKqr+zT0tLYs2cPlStX1kjC3pR4Z+bRo0ekpaVhY2ODqalpjuIfOnSoKukFKFmyJE5OTly/fl3Vtnv3bgBGjx6tNmtasmRJPD091cbL7jmGhISgVCoZO3asKumF9IR16NChPH36lMOHD6vtY2Njo0p6M9StWxelUsnw4cPVylTc3NwAuHHjRqbXYPz48cTGxqpe9+7dy7SvEEIIIT5tn+WMr7Z1eB0cHDTaLC0tAYiOjsbY2Djbx7l27RppaWkEBgZmusRaxnEfP37M8+fPcXZ21uhjbW2tKofIKk9PT5KTkwkKCqJr165s3ryZggULZmuMzK7JnTt3VD/fvn0bgHLlymn0fX3GN7vnmFH3W758eY3+FStWVOuT4fUZdwALCwut2zLao6OjNfbJoK+vr5Z0CyGEEOLz9UklvoUKFQLQWG4sQ0YNaUa/V2VW4wmgVCpzFE/Gft27d6dfv35a+7weS249HENHR4c1a9ago6NDQEAAXbp0+f/27j0qymr9A/j35eIMwy2QmxfQQUUDPCmmlqgUKXpEPWBqoWFqSOop0w4ZaKmkiHkJWyoXARVF85IRGXZW1vGSmWnl8ZQ60lJRvGSCOMNdkf37w8X8HAdQdGRi5vtZi7Wa/e79zvM+b/A+a7tnD7Zv396k4rehnNydj8Zy09CxB73Ghzl3Y/fxQa6HiIiIzFeLKnyVSiUA4OTJk/Uer2uv62coDRVynTt3hiRJqK6uxqBBgxo9h5ubG+zs7OqN/fLly1Crm/7VfhYWFsjIyIAkSVi3bh1Gjx6NHTt26CxfeFR1s8IqlQo+Pj46x06fPq3zuqnX2KlTJwB31l/fO6NctxtDXR8iIiKiR9Wi1vgGBATA09MTW7duxeXLl3WO3bx5E6tXr4YkSRg5cqRB37duGURJSYlOe+vWrTFs2DDk5ubi+++/1xsnhMC1a9cA3ClSR44ciePHj+t9q9rixYsfOra64jcqKgpffPEFXnzxRdy8efOhz3evESNGAABWrlyJ27dva9svXbqE7OxsvViaco1hYWGQJAnLly/Xifn69etITk6Gk5MTv+KYiIiIDKZFzfhaWVkhJSUF4eHh6N69O6KiotCpUydcvXoV27Ztw4kTJxAXF1fvetRH0bdvXwB3PggVEREBmUyGvn37QqlUIiUlBf3798fzzz+PyMhIBAQEoLa2FmfPnkVubi4mTJig3dVh0aJF+Pe//43w8HD885//1G719dNPP2m3SXsYkiRh7dq1sLCwwNq1azFq1Cjs3LnTIGtXfX19MX36dCQnJ+O5557D6NGjodFokJaWhm7duuGnn37SmRFvyjV26dIFsbGxSExMRGBgICIiIrTbmf3xxx/YuHGjzo4ORERERI+iRRW+ABAaGorvv/8eS5cuRVZWFoqLi2Fra4uePXti27ZtGDt2rMHfs3///khISEBaWhpee+013L59G+vXr4dSqYSnpyd+/vlnfPjhh8jNzcXmzZshl8vh6emJESNG6MSjVCpx8OBBxMTEIDU1FZaWlnjuueewd+9eBAcHP1KMkiQhNTUVFhYWSE1NRXh4OHJych710gEAq1atQrt27bB27VrMnj0bHTt2xNy5c1FTU4OffvpJZx1zU69x8eLF6Ny5M9asWYO5c+fC0tISTz/9NJKTkzFkyBCDxE9EREQEAJLgJ3/oIdXtzXvlypV6v8yiJdJoNHB0dIRarX7obeKIiIioeT3o87tFrfEl46hvF42LFy9i48aN6N69u8kUvURERGTaWtxSB2p+WVlZ2LRpE4YNGwY3NzecOXMG6enpqKiowNKlS40dHhEREdEDYeFL9xUQEIDPP/8cq1atwvXr16FQKNC3b1/MmTMHQUFBxg6PiIiI6IFwjS/RXbjGl4iIqOXhGl8iIiIioruw8CUiIiIis8DCl4iIiIjMAgtfIiIiIjILLHyJiIiIyCyw8CUiIiIis8DCl4iIiIjMAgtfIiIiIjILLHyJiIiIyCyw8CUiIiIis2Bl7ACI/pIS2wMyydhREFFLsEBt7AiI6AFxxpeIiIiIzAIL3xakqqoKycnJCA4OhqurK6ytrfHEE0+gd+/emD17NlQqlbFDJCIiIvrL4lKHFuLs2bMYPnw4Tp06haCgIMyaNQtt2rRBWVkZ/vvf/2L9+vVYsWIFLly4gHbt2hk7XCIiIqK/HBa+LUBlZSVCQ0Nx5swZfPbZZwgPD9frU1VVhaSkJEiSYdellpeXw9bW1qDnJCIiIjIGLnVoATIyMqBSqfDOO+/UW/QCgFwuR1xcHNq2bavTXl1djcWLF8PPzw9yuRxPPPEERowYgWPHjun027dvHyRJwoYNG7BmzRr4+vpCJpNh2bJlKCgogCRJWLBgAbZv344ePXrAxsYGnTt3xvr16wEAFy5cwOjRo+Hs7Ax7e3uMGzcOarXuBz5UKhWmT58OPz8/2NvbQ6FQoFevXkhPT9e7ngULFkCSJKhUKsyePRvt2rWDTCbDU089hd27d2v7Xb16Fa1atcL48ePrzcuMGTMgSRLy8/Pvn2giIiIyaZzxbQE+/fRTAEBUVFSTxt26dQtDhw7FoUOHEBkZiTfeeANqtRoZGRkIDAzEgQMH8PTTT+uMWblyJa5fv44pU6bA3d0dnp6e2mNffvkl0tLSMG3aNDg7O2PdunWYPHkyrK2t8d577+GFF17A4sWLcfToUaxbtw5yuRzr1q3Tjt+3bx8OHjyIsLAweHl5oaysDDt27EB0dDSKiooQFxendw2vvvoqZDIZ3nnnHdy8eRMrV65EWFgY8vPz0bFjR7i7u+Mf//gHPvvsM5SUlMDJyUk7trq6Gps3b8bAgQPh4+PTpNwRERGR6ZGEEMLYQVDjWrdujZqaGr0Z1Nu3b6OkpESnzdbWFjY2NgCAjz76CP/617/w1VdfYejQodo+Go0G/v7+8Pb2xr59+wDcKUqff/55ODs74/Tp03BxcdH2LygogFKphK2tLU6dOqUthouKiuDp6Ynq6mokJSXhrbfe0o4ZNWoUdu3ahZKSEtjZ2QEAKioqoFAodOKtra1FcHAwjh07hqKiIlhbWwO4M+MbHx+P0NBQ7Nq1S7uE4+jRo+jTpw9iY2ORmJgIANizZw9CQkKwatUqvPHGG9pzb9u2DS+//DI2btyIyMjIenNbXV2N6upqndx4enpCHWsPB25nRkQPgtuZERmdRqOBo6Mj1Go1HBwcGuzHGd8WQKPRwMPDQ6/91KlT6N69u05bYmIiYmNjAQCbN29Gly5d8PTTT6OoqEin3+DBg5GVlYXKykptoQwAEyZM0Cl67xYWFqYzA+zi4gIfHx+cOHECU6dO1ek7YMAA5OTkoKCgAP7+/gCgU/RWVVWhvLwcQgiEhIRg//79UKlUetfz1ltv6axb7t27N+zt7fH7779r2wYNGgRvb29kZmbqFL6ZmZlwdHTE6NGj672eunzFx8frtftXZcJCKOoZQaauYEmosUMgIqLHhIVvC+Dg4ACNRqPXrlQqsWfPHgDA8ePHERMTo3P81KlTqKyshKura4Pnrpu1rdOlS5cG+yqVSr02JycntGnTBjKZTK8dAIqLi7VtZWVl2nXChYWFeue6d/YaALy9vfXanJ2ddc4rSRKmTJmCuLg4/PLLLwgICMD58+fx7bffYurUqTqF/b3i4uLw9ttva1/XzfgSERGR6WHh2wL4+fnhu+++w7lz53SKT1tbWwwaNAgAYGWlfyuFEPD19cXHH3/c4LnvLYrvXYpwN0tLyya118VQJyIiAnl5eYiOjsbAgQPh7OwMKysr7N69G0lJSaitrX3gc9+7QmfSpEmYN28eMjIykJycjPXr16O2tva+66JlMple0U5ERESmiYVvC/Diiy/iu+++Q0ZGBhISEh54nI+PD65cuYLg4GBYWBh3A48bN24gLy8PkZGRSE1N1Tn2zTffPPL53d3dMXLkSGzZsgXLli3Dhg0bEBAQgJ49ez7yuYmIiMg0cDuzFmDKlCnw8fHBsmXLkJOTU2+f+j6jGBkZiWvXrmHZsmX1jrl69apB42xM3cztvXFeuXIFGRkZBnmP6OhoqNVqTJ06FefPn2/yLhhERERk2jjj2wIoFArk5eVh+PDhGDVqFJ577jmEhITAw8MDGo0GKpUK27Ztg6WlJby8vLTj3nrrLezZswexsbHYt28fXnjhBTg4OODChQv49ttvIZfLsXfv3ma5Bnt7e4SEhCA7Oxs2Njbo3bs3zp8/j7S0NCiVSp01uw9r8ODB8Pb21r7HuHHjDBA5ERERmQoWvi1E586dcezYMWRkZGDnzp1YsWIF1Go1bG1t0blzZ0RFRWHy5Mno1q2bdoy1tTXy8vKQnJyMTZs2Yf78+QCAtm3bok+fPnj11Veb9Rqys7MRGxuLXbt2ISsrC126dEFCQgKsra0xadKkRz6/JEmIiorCnDlzMGbMGDg6OhogaiIiIjIV3MeXTMry5cvxzjvv4MCBAxgwYECTx9ftA+g5czssZNzOzBxxOzMiopbnQffxZeFLJqOmpgZdu3aFXC7HiRMnHuocD/qLQ0RERH8d/AILMhvnzp3DDz/8gNzcXJw9exZbtmwxdkhERET0F8TCl1q8/fv3Y9KkSXBxccG8efMQERFh7JCIiIjoL4hLHYjuwqUORERELc+DPr+5jy8RERERmQUWvkRERERkFlj4EhEREZFZYOFLRERERGaBhS8RERERmQUWvkRERERkFlj4EhEREZFZYOFLRERERGaBhS8RERERmQUWvkRERERkFlj4EhEREZFZsDJ2AER/SYntAZlk7CiIiIgMa4Ha2BEYFWd8qUVZsGABJElCQUGBsUMhIiKiFoaFrxmoqqrCqlWrEBQUhNatW8Pa2hpubm4YMmQI0tPTUV1dbewQiYiIiB47LnUwcQUFBQgNDcXJkycRHByMd999F66uriguLsa+ffswdepUHD16FGvXrjV2qERERESPFQtfE1ZVVYXhw4fj9OnT2L59O8aMGaNzPCYmBr/99hu+/vprI0VIRERE1Hy41MGEZWZm4sSJE3j77bf1it46/v7+ePvtt7Wvjxw5gokTJ8LHxwcKhQL29vYIDAxETk6O3tiJEydCkiSUlJRgypQpcHNzg1wuR2BgIH788UedvrW1tUhISMDAgQPh4eGBVq1awcvLC9OmTUNxcbHeuaurqxEXF4f27dtDLpfjqaeewtatW+u9BpVKhenTp8PPzw/29vZQKBTo1asX0tPTm5IuIiIiMnGc8TVhO3bsAAC8/vrrDzwmJycH+fn5iIiIQPv27VFcXIysrCyMGjUKmzdvxrhx4/TGDB06FG5ubpg/fz6Kiorw0UcfYdiwYSgoKIC9vT0A4ObNm1i+fDnGjBmD8PBwKBQKHDlyBJmZmTh48CB+/vlntGrVSnvOiIgI5OTkYOjQoQgNDcWlS5cQHR2NLl266L3/vn37cPDgQYSFhcHLywtlZWXYsWMHoqOjUVRUhLi4uKamjoiIiEyQJIQQxg6CHo/WrVvj1q1b0Gg0DzymvLwctra2Om0VFRXo2bMnLC0tcfLkSW37xIkTkZWVhWnTpiE5OVnbvmPHDowdOxapqanaolsIgaqqKtjY2OicOzMzE1FRUdi2bRvGjh0LAPj6668xZMgQvPzyy/jkk0+0fY8cOYJnnnkGQgicO3cOHTt21ManUCh0zltbW4vg4GAcO3YMRUVFsLa2rvd6q6urdT7cp9Fo4OnpCXWsPRy4nRkREZkaE93OTKPRwNHREWq1Gg4ODg3244yvCdNoNHB3d2/SmLuL3oqKClRWVkIIgeDgYKSmpkKj0ej9DzVr1iyd18HBwQCA33//XdsmSZK26L19+zZKS0tRU1Oj7fvjjz9qC9/c3FwAwLvvvqtz3j59+mDQoEHYs2ePTvvdRW9VVRXKy8shhEBISAj2798PlUqF7t2713u9iYmJiI+P12v3r8qEhVDUM4KISFfBklBjh0BED4hrfE2Yg4MDSktLmzTmzz//RHR0NNzd3WFrawsXFxe4uroiNTUVAHDjxg29Md7e3jqvW7duDQB6a3e3b9+Ovn37wsbGBk5OTnB1ddWOLSkp0fY7c+YMJElCt27d9N7L19dXr62srAwxMTHw8vKCjY2NNua5c+fqnftecXFxUKvV2p/CwsIG+xIREVHLxhlfE9a9e3fs378fZ86cQadOne7bv7a2FoMHD4ZKpcKMGTPQu3dvODo6wtLSEuvXr8eWLVtQW1urN87S0rLe8929imbnzp146aWX0KdPH3z88cfw9PSEXC7H7du3MXTo0HrP+6AiIiKQl5eH6OhoDBw4EM7OzrCyssLu3buRlJTU6LllMhlkMtlDvzcRERG1HCx8Tdjo0aOxf/9+pKenY8mSJfft/+uvv+J///sf5s2bp/fP/xkZGY8US3Z2NuRyOfbu3auzNEGlUun17dSpE4QQUKlU6NGjh86xu9cYA3dmoPPy8hAZGamdla7zzTffPFLMREREZFq41MGEvfbaa3jyySexYsUKfPbZZ/X2+fXXX7FixQoA/z9ze+/nHX/77bd6tzNrCktLS0iSpDP7KoTAokWL9PqGhYUBAD788EOd9iNHjugVsw3FfOXKlUcu1omIiMi0cMbXhNnY2ODLL79EaGgoXnzxRQwaNAghISFwcXFBcXEx9u/fj927d2PKlCkAgCeffBJ+fn5YunQpKioq0LVrV+Tn5yMtLQ3+/v745ZdfHjqW0aNHY+fOnQgODsaECRNw69YtfP7556ioqNDrO3jwYISHh2Pr1q1Qq9UIDQ3FxYsXsWbNGvTo0QPHjh3T9rW3t0dISAiys7NhY2OD3r174/z580hLS4NSqax3j2AiIiIyTyx8TZy3tzd+/vlnpKen49NPP0ViYiJKS0vh5OSEgIAApKen45VXXgFwZ/Y0Ly8PMTExyMrKQnl5Ofz9/ZGVlYXjx48/UuH78ssvo7S0FElJSYiJiYGTkxNGjBiBJUuWaD8Md7dPPvkE8+fPx6ZNm/Cf//wHPj4+SEtLw+nTp3UKX+DOMorY2Fjs2rULWVlZ6NKlCxISEmBtbY1JkyY9dMxERERkWriPL9Fd6vYB9Jy5HRYybmdGRPfH7cyIjI/7+BI9gt/ihzT6i0NEREQtDz/cRkRERERmgYUvEREREZkFFr5EREREZBZY+BIRERGRWWDhS0RERERmgbs6EN2lbnc/jUZj5EiIiIjoQdU9t++3Sy8LX6K71H3Tm6enp5EjISIioqYqLS2Fo6Njg8dZ+BLdxdnZGQBw4cKFRn9xyLA0Gg08PT1RWFjI/ZObGXNvHMy78TD3xvG48y6EQGlpKdq2bdtoPxa+RHexsLiz7N3R0ZF/EI3AwcGBeTcS5t44mHfjYe6N43Hm/UEmrPjhNiIiIiIyCyx8iYiIiMgssPAluotMJsP8+fMhk8mMHYpZYd6Nh7k3DubdeJh74/ir5F0S99v3gYiIiIjIBHDGl4iIiIjMAgtfIiIiIjILLHyJiIiIyCyw8CUiIiIis8DClwjAJ598gl69esHGxgYuLi6IiIjA+fPnjR2WScjPz8e8efPwzDPPwNXVFfb29ujRowcSEhJQXl6u1//q1auYPHky3N3dIZfL8be//Q3p6elGiNz0VFRUwNvbG5IkYerUqXrHmXvDUqvViIuLQ9euXSGXy+Hs7Ix+/fohJydHpx/zblhlZWVYuHAh/P39YWdnB1dXVwQGBiI7O1uvL3PfdImJiRgzZoz2b0nHjh0b7d/UHD/u5zG/uY3M3urVq/Hmm28iMDAQSUlJKCoqwsqVK3HgwAEcPXr0vl9/SI1bt24dVq9ejREjRmDcuHFo1aoV9u7di/feew/bt2/H4cOHYWNjAwC4ceMG+vfvj0uXLmHmzJlQKpXIzc1FdHQ0Ll++jPnz5xv5alq2efPm4dq1a/UeY+4Nq7CwEM8//zyuX7+OSZMmwdfXFxUVFVCpVLhw4YK2H/NuWLW1tRgyZAgOHz6MiRMnYsaMGSgvL8emTZsQGRmJ/Px8fPDBBwCY+4c1Z84cODs7IyAgADdu3Gi0b1Nz3CzPY0FkxoqKioSdnZ0ICAgQt27d0rYfPXpUSJIkXnvtNSNGZxqOHj0qSkpK9Nrnzp0rAIjVq1dr22JjYwUAsXPnTp2+I0aMENbW1uLs2bOPO1yT9csvvwhLS0uxfPlyAUC8/vrrOseZe8MKCgoSHh4e4sKFC432Y94N69ChQwKAmDlzpk57RUWF8PDwEO7u7to25v7hnDlzRvvffn5+okOHDg32bUqOm+t5zMKXzFpmZqYAIDZs2KB3LCgoSNjb24vq6mojRGb6jh8/rleAeXp6CqVSqdd37969AoBITExszhBNRk1NjejVq5cYNmyYOHfuXL2FL3NvOAcOHBAARFJSkhBCiFu3bomysrJ6+zLvhvXVV18JAGLp0qV6x5588kmdXDP3j+5+hW9Tctxcz2Ou8SWzduTIEQBAv3799I7169cPpaWlUKlUzR2WWbh06RIAwM3NDQDwxx9/oLCwEM8++6xe32effRaSJGnvFzXNypUrcfLkSaxevbre48y9Ye3evRsA4O3tjVGjRsHGxgZ2dnbo2LGjzj1g3g2vT58+cHBwwNKlS7Fjxw4UFhbi1KlTmDVrFk6fPo0FCxYAYO6bQ1Nz3FzPYxa+ZNbqiq/27dvrHatru3jxYrPGZA5u376NDz74AFZWVhg/fjyAxu+FTCaDi4sL78VDOH/+PObPn4/3338fSqWy3j7MvWHVPZyjoqJw6dIlZGZmYuPGjWjTpg3efPNNLFy4EADz/jg4Ozvj888/h6OjI8aOHQsvLy/4+vpiw4YNyM3NxYQJEwAw982hqTlurucxP9xGZq2iogIA6v3ucLlcrtOHDGfGjBk4fPgwFi1ahK5duwJo/F4Ad+4H70XTTZs2DR06dEBMTEyDfZh7wyotLQUA2Nra4sCBA9q8vvTSS/D19UViYiLeeOMN5v0xcXJyQs+ePREeHo5+/frhxo0bSElJwdixY7Fz5078/e9/Z+6bQVNz3FzPY874kllTKBQAgOrqar1jlZWVOn3IMN577z0kJycjKioKc+bM0bY3di+AO/eD96JptmzZgq+++gopKSmwtrZusB9zb1h1u5SMGzdO5yHeqlUrjB8/HpWVlfjxxx+Z98fg119/xbPPPotBgwZh2bJlCA8Px6RJk/Ddd9+hQ4cOmDx5Mqqrq5n7ZtDUHDfX85iFL5m1du3aAaj/n08a+2cXejgLFixAQkICJkyYgLS0NEiSpD3W2L2oqqpCcXEx70UT3Lx5E7NmzcLw4cPh5eWFgoICFBQUaPNbWlqKgoICqNVq5t7A6nLVpk0bvWN1bdevX2feH4OkpCRUVVVhzJgxOu0ymQxhYWH4448/oFKpmPtm0NQcN9fzmIUvmbXevXsDAA4dOqR37NChQ7Czs0O3bt2aOyyTFB8fj/j4eLzyyitYv349LCx0//x4eHigffv2+OGHH/TGHj58GEII7f2i+6uoqMCff/6JL7/8EkqlUvszYMAAAHdmg5VKJVJSUph7A3vmmWcA3NnL9151e/i6u7sz749BXYF069YtvWN1bTU1Ncx9M2hqjpvtefzI+0IQtWDXrl0TCoWiwX0DJ0+ebMToTEd8fLwAIMaPHy9qamoa7Dd79uwG93y0srLS2T+SGnfz5k2Rk5Oj95OWliYAiCFDhoicnByRn58vhGDuDamkpEQ4ODgIDw8PcePGDW27RqMRbdu2FU5OTqK8vFwIwbwb2syZMwUAsWTJEp12jUYjvLy8hK2traisrBRCMPeGcL/tzJqS4+Z6HrPwJbO3cuVKAUAEBgaK1NRUsWjRItG6dWvh4eEhLl68aOzwWrzVq1cLAMLLy0ts2LBBbNq0Sefn66+/1va9fv268Pb2FgqFQsyZM0ekp6eL4cOHCwDi/fffN+JVmI6G9vFl7g2rbk9SHx8fsXTpUrFs2TLRrVs3IUmSyMrK0vZj3g2roKBAODs7C0mSxPjx40VKSopYvHix6NSpkwAgli9fru3L3D+cjRs3ioULF4qFCxcKNzc38cQTT2hfr1q1SqdvU3PcHM9jFr5EQojs7GzRs2dPIZfLhbOzs3jppZf4rT0G8uqrrwoADf4EBQXp9L98+bKYOHGicHV1FTKZTPj5+YmUlBTjBG+CGip8hWDuDe2LL74QgYGBwtbWVigUCjFgwACxe/duvX7Mu2EVFhaK6dOni65duwobGxthZ2cn+vfvL7Zu3arXl7lvuqCgoAb/ntc3+9vUHD/u57EkhBCPvmCCiIiIiOivjR9uIyIiIiKzwMKXiIiIiMwCC18iIiIiMgssfImIiIjILLDwJSIiIiKzwMKXiIiIiMwCC18iIiIiMgssfImIiIjILLDwJSIiIiKzwMKXiIiIiMwCC18iIiIiMgssfImIiIjILLDwJSIiIiKz8H/6D3ZY8ANZnAAAAABJRU5ErkJggg=="
    }
   },
   "cell_type": "markdown",
   "id": "d5a5b39a",
   "metadata": {
    "deletable": true,
    "editable": true
   },
   "source": [
    "<div><img src=\"attachment:q16.jpg\" style=\"height: 300px;\"/></div>\n",
    "\n",
    "<center> <b>Delete</b> this cell before you submit the notebook to reduce the size of your file.</center>"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "03b34bac",
   "metadata": {
    "deletable": true,
    "editable": true,
    "execution": {
     "iopub.execute_input": "2023-12-07T02:12:23.514947Z",
     "iopub.status.busy": "2023-12-07T02:12:23.514947Z",
     "iopub.status.idle": "2023-12-07T02:12:23.884101Z",
     "shell.execute_reply": "2023-12-07T02:12:23.883092Z"
    },
    "tags": []
   },
   "outputs": [],
   "source": [
    "# create the horizontal bar plot using the DataFrame 'country_citations_inter' with the x-axis labelled \"Country\" \n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "058ff1ef",
   "metadata": {
    "deletable": false,
    "editable": false
   },
   "source": [
    "**Question 17:** Create a **scatter plot** representing the `Overall` (on the **x-axis**) against the `Rank` (on the **y-axis**) for **all** institutions in the `Year` *2022*. Additionally, **plot** a **regression line** within the same plot.\n",
    "\n",
    "You **must** first compute a **DataFrame** containing the **Overall**, and the **Rank** data from the `Year` *2022*. You **must** use the `get_regression_line` function to compute the best fit line."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "554f5b22",
   "metadata": {
    "deletable": true,
    "editable": true,
    "execution": {
     "iopub.execute_input": "2023-12-07T02:12:23.888316Z",
     "iopub.status.busy": "2023-12-07T02:12:23.888316Z",
     "iopub.status.idle": "2023-12-07T02:12:23.905705Z",
     "shell.execute_reply": "2023-12-07T02:12:23.904678Z"
    },
    "tags": []
   },
   "outputs": [],
   "source": [
    "# first compute and store the DataFrame 'overall_rank', then display its head\n",
    "# do NOT plot just yet\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "9bcd5432",
   "metadata": {
    "deletable": true,
    "editable": true
   },
   "outputs": [],
   "source": [
    "grader.check(\"q17\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "c87dbebc",
   "metadata": {
    "deletable": false,
    "editable": false
   },
   "source": [
    "Now, **plot** `overall_rank` as **scatter plot** with a **regression line** with the **x-axis** labelled *Overall* and the **y-axis** labelled *Rank*.\n",
    "\n",
    "You **must** use the `regression_line_plot` function to plot this data.\n",
    "\n",
    "**Important Warning:** `public_tests.py` can check that the **DataFrame** is correct, but it **cannot** check if your plot appears on the screen, or whether the axes are correctly labelled. If your plot is not visible, or if it is not properly labelled, the Gradescope autograder will **deduct points**.\n",
    "\n",
    "Your plot should look like this:"
   ]
  },
  {
   "attachments": {
    "q17.jpg": {
     "image/jpeg": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAG4CAYAAACHA6lwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABwJklEQVR4nO3deVxU1f/H8dcICCJKKKYpLpi7ZqJigVu5RGmLml/N3dQ0+1phq2ZmaklZuWRFuXwzl8zKzDJNLSstV1wq9w3NvUAEFUTE+/vjxvxEtgGGGRjez8djHl/mzLn3fg6m8/mee+7nWAzDMBARERGRfCvh7ABEREREXIUSKxERERE7UWIlIiIiYidKrERERETsRImViIiIiJ0osRIRERGxEyVWIiIiInbi7uwAiptr165x6tQpypQpg8VicXY4IiIiYgPDMLhw4QKVK1emRIms56WUWDnYqVOnqFq1qrPDEBERkTw4fvw4AQEBWX6uxMrBypQpA5h/MGXLlnVyNCIiImKLhIQEqlatav0ez4oSKwdLu/1XtmxZJVYiIiJFTE7LeLR4XURERMROlFiJiIiI2IkSKxERERE7UWIlIiIiYidKrERERETsRE8FioiIFHEpKSmkpqY6O4wix83NDQ8PD7ue06USq+wegYyLi+Omm26yvj979iyjR4/mu+++Iz4+njp16vDkk0/y2GOPZXr8okWLePvtt9mzZw+lS5emY8eOvPHGG1SvXt3ewxAREbFJQkICMTExJCcnOzuUIsvT0xN/f3+7lUByqcQKoHXr1gwdOjRDe+nSpa0/nz9/nlatWnHy5EnCw8MJDAxk2bJlDB06lFOnTjFu3Lh0x7733ns8+eSTtGzZkqlTpxITE8O0adNYt24dW7dupXLlygU+LhERkeslJCRw8uRJfHx88Pf3x8PDQ1ul5YJhGKSkpBAfH8/JkycB7JJcWQzDMPJ9lkLCYrEwYMAA5s6dm22/0aNH88Ybb7BkyRK6detmbX/wwQf5/vvv2b9/P4GBgQDExsZSo0YN6tSpw+bNm3F3N3PRqKgoWrRowaBBg5g9e7bNMSYkJODr60t8fLwKhIqISJ4dOXIEDw8PAgIClFDlg2EYnDhxgpSUFGrWrJllP1u/v11y8fqVK1e4cOFClp8vXLiQwMDAdEkVwDPPPENKSgqLFy+2ti1btoyLFy/y1FNPWZMqgObNm9OmTRs+//xzrly5Yv9BiIiIZCElJYXk5GR8fX2VVOWTxWLB19eX5ORkUlJS8n0+l0usvvzyS7y9vSlbtizly5dnyJAhnDlzxvr5mTNnOH78OCEhIRmODQkJwWKxsGXLFmtb2s+hoaEZ+oeGhnLhwgX27duXZTzJyckkJCSkexWErl27UrFiRbp3714g5xcRkcIjbaG6vRdeF1dpv0d7PADgUolVcHAwr7zyCl988QULFiyga9eufPzxx7Ro0YLTp08DWO+jZrYzddoCthMnTljbsuuf1nZ9/xtFRETg6+trfVWtWjXvA8xEZGQkFouFr7/+mr///pslS5ZgsViYM2eOXa8jIiKFj2ar7MOev0eXWrx+/UwTQJ8+fWjbti39+/dn3LhxzJw5k8TERMBMojLj5eVl7QNk29/Lyytdn8yMHj2aZ555xvo+bXdse3niiScybR8yZAjt2rWzrhUTERGRgudSM1aZ6devHzVq1OC7774DwNvbGyDLR1OTkpKsfXLqn5SUlK5PZjw9PSlbtmy6l7107do1289r1qxJdHS03a4nIiIi2XP5xAqgRo0a/PPPPwBUqVIFyPz23eXLl4mNjU132y+7/tndJnSEDRs25Njn9ttvd0AkIiIiBe/48eM8/PDDVKxYEYvFQpcuXahRowZ33XWXs0OzcvnEyjAMDh06RKVKlQCoVKkSAQEBbNy4MUPfTZs2YRgGwcHB1ra0nzNLYjZs2ICPjw/16tUroOizl9mC+htduHCBNWvWOCAaERGRgjVgwADWrl3Lc889x/z58xk5cmSm/ebOncu0adMcG9y/XCaxOnv2bKbtM2bM4MSJEzz44IPWtt69exMdHc1XX32Vru+UKVNwd3enZ8+e1raHHnoIb29v3n33Xa5evWptj4qKYt26dfTo0YOSJUvaeTS2Wbp0qU39VqxYUcCRiIiIFKzk5GR+/vln+vfvz/PPP0/fvn1p27Yt+/fvZ/Xq1en6OjOxcpnF6xEREfzwww/cf//9VK9enaSkJH7++We+/fZbateuzauvvmrtO2rUKL788kv69evHtm3brJXXly9fztixY9MVCPP392fSpEmEh4dz11130a9fP2JiYpg6dSoVK1ZkwoQJThjt/5s9ezZDhgzJts/777/P1KlTHRSRiIiI/Z09exbDMPDz80vXntXDaE5juIhly5YZYWFhRpUqVQxPT0/Dy8vLaNiwoTFmzBjj/PnzGfqfOnXKGDhwoFGhQgXD09PTaNiwoREZGZnl+RcsWGAEBQUZXl5eRrly5YyePXsaR44cyXWc8fHxBmDEx8fn+tisPPTQQwaQ7euTTz6x2/VERMS5kpKSjD179hhJSUnODsUhBgwYkOl3208//WRUr17daNu2rbVvVt+D0dHRWZ7flt+nrd/fLrWlTVFQEFvazJkzJ8dZK3d3d7tUlBUREee7fPky0dHRBAYGWkv/WBkGZFMGyKm8vSEPNaM2btzI5s2bGTlyJF27drXunNKxY0fuuOMOatSowc8//wzAggULeP311613l9J07do13b7B18v29/kvW7+/XeZWYHE2ePDgHBOrq1evMmXKlHQ1tURExAUlJoKPj7OjyNzFi5BFcpOdkJAQbrnlFkaOHEnjxo3p27dvln379u3L7NmzSUpKyrZfQXGZxevF3SuvvJJjn2effZa4uDgHRCMiIlI8acbKRYwfP56JEyeS053dFi1acPDgQQdFJSIiDuftbc4MFUbZFNR2FUqsXMj27dsJCgrKts+hQ4c4ePAgtWvXdlBUIiLiUBZLnm63iX3oVqALadKkiU1rqH799VcHRCMiIuIcztycWomVi3nnnXdy7DN8+HAHRCIiIuIcPj4+nD9/PsflMQVBiZULatKkSbafJycnM2XKFMcEIyIi4mB33HEH8fHxPPXUUyxcuJDPPvuMS5cuOeTaSqxcUPfu3XPs8+yzzzogEhEREccLDw+nf//+LFq0iH79+tGrVy/++ecfh1xbBUIdrCAKhGbGlvvLERERjBo1qsBiEBGRgmFLQUuxnT0LhGrGykX98ssvOfZZtmyZAyIREREpPpRYuag2bdoQGhqabZ+tW7c6KBoREZHiQYmVC8tpx+/U1FTWrFnjoGhERERcnxIrF9a+ffsc+3z88ccOiERERKR4UGLlwsaMGZNjn88++8wBkYiIiBQPSqxc3Pz587P93DAMwsPDHROMiIiIi1Ni5eL69u1LhQoVsu0zffp0B0UjIiL2pIpJ9mHP36MSq2Lg5ZdfzrFP//79HRCJiIjYg5ubGwApKSlOjsQ1pP0e036v+aHEqhh46qmncuwzf/584uLiHBCNiIjkl4eHB56ensTHx2vWKp8MwyA+Ph5PT088PDzyfT53O8QkRUDv3r359NNPs+3TunVrdu3a5aCIREQkP/z9/Tl58iQnTpzA19cXDw8Pm3bdEJNhGKSkpBAfH8/FixepUqWKXc6rLW0czFFb2mTGlr9wCxcupHfv3g6IRkRE8ishIYGYmBiSk5OdHUqR5enpib+/f47fybZ+fyuxcjBnJlYtWrSwqdr6uXPn8PPzc0BEIiJiDykpKaSmpjo7jCLHzc3N5tt/tn5/61ZgMTJx4kTuvffeHPu1aNGCgwcPOiAiERGxBw8PD7usD5L80+L1YiQsLMymWbJDhw4psRIREckDJVbFzM6dOylVqlSO/X799VcHRCMiIuJatMbKwZy5xup6OS1kL1mypBZDioiI/MvW72/NWBVTHTp0yPbzK1euMG/ePAdFIyIi4hqUWBVTjzzySI59BgwYQHR0tAOiERERcQ26FehgheVWINhW16pMmTIkJCQ4IBoREZHCS7cCJUevvPJKjn0uXLjAV1995YBoREREij7NWDlYYZqxAihRokSO+0xVr16do0ePOiYgERGRQkgzVmKT7du359jn2LFjqmslIiJiAyVWxVyTJk146KGHcuz3+eefOyAaERGRok2JlfDAAw/k2Ofvv/92QCQiIiJFmxIrYfDgwbi5uWXbJ6fPRURERImV/CsqKirbz6dOnaqaViIiIjlQYiWAudaqY8eO2fapWbMmcXFxDopIRESk6FFiJVa///57jn1ySr5ERESKMyVWYhUaGppjn23btqn0goiISBZcOrFKTEykZs2aWCwWHn/88Qyfnz17lkGDBlGxYkW8vLxo3Lgxs2bNyvJ8ixYtolmzZpQqVQp/f3969erFsWPHCnIIDrV06VKb+h06dKiAIxERESmaXDqxeuWVV/jnn38y/ez8+fO0atWKzz77jMGDBzNjxgyqVavG0KFDGT9+fIb+7733Hr1796ZUqVJMnTqV8PBw1qxZQ2hoKKdOnSrooTjM7Nmzc+yzaNEiB0QiIiJSBBkuavv27Yabm5vx9ttvG4AxbNiwdJ+PGjXKAIwlS5aka3/ggQcMDw8P48iRI9a2mJgYw8fHx2jatKmRkpJibd+6dathsViMwYMH2xxXfHy8ARjx8fF5HFnBu/POOw0g25eIiEhxYuv3t0vOWKWmpvLYY48RFhbGww8/nGmfhQsXEhgYSLdu3dK1P/PMM6SkpLB48WJr27Jly7h48SJPPfUU7u7u1vbmzZvTpk0bPv/8c65cuVIwg3GC+++/P8c+o0ePdkAkIiIiRYtLJlbTpk1jz549vPfee5l+fubMGY4fP05ISEiGz0JCQrBYLGzZssXalvZzZou7Q0NDuXDhAvv27bNT9M43ZsyYHPu88cYbKr0gIiJyA5dLrI4dO8a4ceMYO3YsgYGBmfY5efIkAAEBARk+8/T0xN/fnxMnTtjUP63t+v7XS05OJiEhId2rKHj++edz7HP77bc7IBIREZGiw+USq+HDh1O9enWee+65LPskJiYCZhKVGS8vL2ufnPp7eXml63OjiIgIfH19ra+qVavaNpDcOnECXn4ZsogjtyZPnpxjn+PHj7N27Vq7XE9ERMQVuFRi9emnn7Jy5UoiIyPx8PDIsp+3tzdgziZlJikpydonp/5JSUnp+txo9OjRxMfHW1/Hjx+3bTC59eST8Prr0KgRrF5tl1M+8cQTOfZp3769troRERH5l8skVleuXGHkyJHcf//9VKtWjaNHj3L06FHrLboLFy5w9OhR4uPjqVKlCpD57bvLly8TGxub7rZfdv2zu00I5ixX2bJl070KxKBBULUqREdDWBj07Qt//52vU77//vs29WvcuHG+riMiIuIqXCaxSkxM5O+//2b58uUEBgZaX61btwbM2azAwEAiIyOpVKkSAQEBbNy4McN5Nm3ahGEYBAcHW9vSft6wYUOG/hs2bMDHx4d69eoV0Mhs9MADsHs3PP00lCgBCxdC/frw8cdgGHk+rS1rrS5evEhkZGSeryEiIuIqLIaRj2/dQiQlJYXvvvsuQ/vff//NsGHDCAsL4/HHH6dhw4bUrl2bF198kcmTJ7NkyZJ0JRcefPBBVq5cyf79+6lZsyYAMTExVK9enXr16rF582ZryYWoqChatGjBo48+ypw5c2yKMyEhAV9fX+Lj4wtu9ioqCh57DHbuNN/fdRd89BHUqZOn07m5uXHt2rUc+507dw4/P788XUNERKQws/X722USq6wcPXqUwMBAhg0bxocffmhtj4uLo3nz5pw5c4bw8HACAwNZtmwZy5cvZ+zYsUyYMCHdeaZPn054eDgtW7akX79+xMTEMHXqVDw8PIiKirLeLsyJQxIrgKtXYdo0GDfOXNDu6QljxsCLL0LJkrk61c6dOwkKCsqxX8OGDdm1a1ceAxYRESm8bP3+dplbgbnl5+fHr7/+So8ePZg1axYjRowgOjqayMjIDEkVwNNPP82CBQtITEwkPDycKVOm0KFDBzZs2GBzUuVQ7u7w3HOwaxfcey8kJ8Mrr0CTJvDrr7k6VZMmTfjhhx9y7Ld7926WLVuWx4BFRESKPpefsSpsHDZjdT3DgMWLzfVXaQvahw6FN96AXNy6q1OnDgcPHsyx35EjR7KsISYiIlIUacZK/p/FAo88Anv3wpAhZtvMmebi9sWLbV7cvnnzZpv61axZk51p67tERESKESVWxUm5cjBrFvzyC9StC2fPmgnX/ffDsWM5Hu7n58eOHTtsulRQUJC2vBERkWJHiVVx1KYN/P47vPqquZB9xQpo0ACmTDEXvWejSZMmTJ8+3abLpJW6EBERKS60xsrBnLLGKjv79sGwYbBunfm+aVPzNmGzZtke5u7uTmpqao6n37p1K82bN7dHpCIiIk6jNVZim3r14KefYPZscyH79u3QogU88wxcvJjlYVFRUTadPjQ0lJdfftmmRe8iIiJFnWasHKzQzVhd7+xZGDkSFi0y31erBh98AJ07Z9o9OjraWkTVFq1bt2bZsmUqIioiIkWOZqwk9ypWhE8/hZUroUYN+Osvc2F7jx5w+nSG7oGBgbm6zbd+/Xp69eplx4BFREQKFyVWktG995qFRZ9/Htzc4IsvzNIMH30EN2xt06VLl1ydetWqVbotKCIiLkuJlWSudGmYPNncd7B5c4iPh8cfN58o3L3b2m3MmDFYLJZcnfrQoUP2jlZERKRQUGIl2WvSBDZtgunTwccHfvsNgoJg7Fi4fBmAn3/+OVen7Ny5swqIioiIS1JiJTlzc4OnnoI9e+DBByElBV57DRo3hp9+ok2bNhiGwdixY21akG8YBi1atHBA4CIiIo6lxEpsV7UqfP01LFkCt9wCBw9Cu3bw6KMQG8uECROIj4/n2WefzfFUKSkpjB49uuBjFhERcSCVW3CwQl1uITfi4+GllyAy0txr0N8fpk6FPn3AYqFkyZKkpKTkeJpz586p/IKIiBR6KrcgBcvXF95/31xz1agRxMRAv34QFgaHD7NlyxZKlMj5P68qVapoT0EREXEZSqwkf0JCYNs2mDQJvLxgzRpo1Igm339P6r+L27OTlJREu3btHBCoiIhIwVNiJflXsiSMHg1//gnt25tPC44eDc2aMbBevRwP37lzp2pbiYiIS1BiJfZTq5Y5YzVvHpQvD3/+yf/272cGUCaHQyMjIx0RoYiISIFSYiX2ZbGYa6327YMBA7AYBiOAPUCXbA6bOXOm1lqJiEiRp8RKCoa/P8ydCz/8QEr16gQAS4GvgCqZdL906RI333wz0dHRDg1TRETEnpRYScFq3x6PvXthzBhSgK6Ys1cjyPgf39WrV6lVq5ZmrkREpMhSYiUFr1QpeO01+jVsyAagLDAD2ADcdkPXa9euUaFCBc1ciYhIkaTEShzmtl69aAU8DsQDdwDbgTeAUtf1S01NpWnTpk6IUEREJH+UWInDjBkzBiwWPgLqA18A7sCLwC7gnuv6nj9/njVr1jghShERkbxTYiUO9fPPPwNwGugBPAD8BdQEVgELgAr/9p05c6bjAxQREckHJVbiUG3atMEwDKpXrw7AcqAhMA1IBfoA+4BHgS+//NJJUYqIiOSNEitxih07dli3srkIjMRcc7UDKAf8D1gLvNS9u7NCFBERyTUlVuIUfn5+/Pjjj9x0003Wtm1AMPAccAm4Gxi3ZAlMmADJyU6JU0REJDeUWIlTpd0STJMKvIN5e3AF4AkwbhypjRvDr786PD4REZHcUGIlTvXmm29m2n4M6Az0BM4CbgcOQOvWMGwYqICoiIgUUkqsxKnCwsKwWCxZfv45UA+wPh84cybUrw+LF4NhOCBCERER2ymxEqebNGlStp+fB4YBE++5B+rVg7Nn4ZFH4P774dgxR4QoIiJiE4th6P/2O1JCQgK+vr7Ex8dTtmxZZ4dTaJQsWZKUlJQc+82fPZu+J07ApElw5Qp4e8PEifDUU+Du7oBIRUSkOLL1+1szVlIobNmyBTc3txz79RsyBP8ZMzjx3XfQpg0kJsKzz8Idd8C2bQ6IVEREJGtKrKRQaNKkCVevXrWpb2xsLLf37Ak//QSzZ4OfH2zfDi1awMiRcPFiAUcrIiKSOSVWUqg8+uijNvU7d+4c8xYsgMGDYe9e6NULrl2DadOgYUNYvrxgAxUREcmE1lg5mNZY5Sy7pwSv5+npyeXLl/+/4fvvYfhwOHrUfP+f/8D06XDLLfYPUkREihWtsZIia7mNs03JycmsWbPm/xvuvRd27YLnnwc3N/jiC7M0w4cfmrNZIiIiBUyJlRQ6nTt35siRI3h4eOTYd8iQIcRdXzC0dGmYPBmioiA4GOLjzVms1q1h9+4CjFpERESJlRRSgYGBXLlyhXLlymXb76+//qJ7Zhs1N2kCGzeatwJ9fGDDBggKgrFj4frbhyIiInbkMonV/v376dOnD/Xr18fX15fSpUtTv359nn32Wc6cOZOh/9mzZxk0aBAVK1bEy8uLxo0bM2vWrCzPv2jRIpo1a0apUqXw9/enV69eHFNxygLXvn37HPusXbuWefPmZfzAzc2sb7VnDzz4IKSkwGuvQePG5hOFIiIiduYyidWJEyc4c+YMXbt2JSIigqlTp9KhQwc++ugjmjZtytmzZ619z58/T6tWrfjss88YPHgwM2bMoFq1agwdOpTx48dnOPd7771H7969KVWqFFOnTiU8PJw1a9YQGhrKqVOnHDnMYicsLMymfgMGDCA4ODj9bcE0VavC11/DkiVQuTIcPAjt2sGjj0JsrH0DFhGR4s1wcYsXLzYA4/XXX7e2jRo1ygCMJUuWpOv7wAMPGB4eHsaRI0esbTExMYaPj4/RtGlTIyUlxdq+detWw2KxGIMHD85VPPHx8QZgxMfH53FExY+bm5sB2PRyc3NL9+eXwfnzhvHEE4ZhsRgGGIa/v2HMn28Y1645bkAiIlLk2Pr97TIzVlkJDAwESDeTsXDhQgIDA+nWrVu6vs888wwpKSksXrzY2rZs2TIuXrzIU089hft1W6Y0b96cNm3a8Pnnn3PlypUCHkXxFhUVZXPf1NRUatasSXR0dOYdfH3h/ffht9+gUSOIiYF+/SAsDA4ftlPEIiJSXLlcYnX58mViYmI4ceIEP/zwA8OHDwegU6dOAJw5c4bjx48TEhKS4diQkBAsFgtbtmyxtqX9HBoamqF/aGgoFy5cYN++fVnGk5ycTEJCQrqX5E6TJk04cuRIro65/fbbs+8QEmJWa580Cby8YM0aM9F64w1zLZaIiEgeuFxiNXv2bCpUqEDVqlXp2LEjf//9N5988gl33303ACdPngQgICAgw7Genp74+/tz4sQJa1t2/dParu9/o4iICHx9fa2vqlWr5n1wxVhgYCBffPGFzf0vXLhAZGRk9p08PGD0aPjzT2jf3nxacPRoaNYMNm3KZ8QiIlIcuVxi1aVLF9asWcPSpUt55ZVX8Pf3T3cbMDExETCTqMx4eXlZ++TU38vLK12fzIwePZr4+Hjr6/jx47kflADQvXt3fH19be4/YsQI2zrWqmXOWM2bB+XLm4lWaCiMGAGaYRQRkVxwucQqICCADh060KVLF8aPH8/cuXN54YUXiIiIAMDb2xswb9FlJikpydonp/5JSUnp+mTG09OTsmXLpntJ3u3YsYPy5cvb1PfatWvMnTvXthNbLOZaq337YMAAMAxzLVb9+rB0ad4DFhGRYsXlEqsbNW7cmKCgID744AMAqlSpAmR+++7y5cvExsamu+2XXf/sbhNKwQgMDCQmJobVq1cTHh6eY/+pU6fm7gL+/jB3LvzwgzmTdeoUdOsGXbpANrd8RUREoBgkVmDOLJ07dw6ASpUqERAQwMaNGzP027RpE4ZhEBwcbG1L+3nDhg0Z+m/YsAEfHx/q1atXQJFLVjp27MjUqVOtM5FZ+eOPP/D19c36KcGstG8Pf/wBY8aAuzssW2bOXs2YAamp+YhcRERcmcskVplVVwf46aef2LVrF3feeae1rXfv3kRHR/PVV1+l6ztlyhTc3d3p2bOnte2hhx7C29ubd999l6tXr1rbo6KiWLduHT169KBkyZJ2Ho3YatSoUZQokf1/xgkJCdSsWZOIiAgOHjxo+8lLlTIrte/YYa65unjRrOQeGgq//57PyEVExBVZDMMwnB2EPXTt2pXTp0/Trl07qlevzuXLl9m2bRufffYZ3t7e/PzzzzRp0gQwa1o1b96cM2fOEB4eTmBgIMuWLWP58uWMHTuWCRMmpDv39OnTCQ8Pp2XLlvTr14+YmBimTp2Kh4cHUVFR1tuFtkhISMDX15f4+Hitt7KT2rVrc+jQIZv7t2vXji+//BI/Pz/bL3LtGsycCS++aC5od3ODZ5+FceMgmzV2IiLiGmz+/nZEtVJHWLx4sdGpUycjICDA8PT0NLy8vIy6desaI0aMMI4dO5ah/6lTp4yBAwcaFSpUMDw9PY2GDRsakZGRWZ5/wYIFRlBQkOHl5WWUK1fO6NmzZ/YVvrOgyuv2Fx4ebnNl9rRXmzZt8naxkycNo3t3s2o7GEZgoGF8/719ByQiIoWOrd/fLjNjVVRoxqpgWCyWXB+zdetWmjdvnrcLfvst/Pe/kFY+o3dvmDoVbr45b+cTEZFCzdbvb5dZYyXF2/Lly3N9TK9evfJ+wQcegD17IDwcSpSATz+FevXgf/8z57JERKRYUmIlLqFz584YhsGQIUNsPubQoUMsW7Ys7xf18TFnqTZvhiZNIC4OBg+Gdu1g//68n1dERIosJVbiUmbNmsWRI0coU6aMTf1v3Ig7T5o3h61b4e23zYXsP/8MjRvDhAmQRSFaERFxTUqsxOUEBgaSkJDAkiVLclx7de3aNcaPH5//i7q7m08J7t4N990HV66YTwwGBcH69fk/v4iIFAlavO5gWrzuWNHR0dSsWTPHfnb9a2AY8PnnZs2rv/822x57DN58E3JT4kFERAoNLV4XwZy9uvfee3Ps179/f/td1GKBnj3NfQcfe8xsmzXLrNy+eLEWt4uIuDAlVuLybNlTcP78+fj7++d+65vs+PmZRUXXrTOfGDx7Fh55BDp3hqNH7XcdEREpNJRYicsLCwvLcdsbgNjYWJo1a2b/AFq3hp07Yfx4KFkSVq6Ehg3hnXfgum2SRESk6FNiJcXCnDlzbOoXFxfHmjVr7B+Apye88oq5sXPbtpCYCM89By1awLZt9r+eiIg4hRIrKRYGDhyIl5eXTX3ffffdggukbl346SeYM8e8Vbhjh5lcjRxpbvIsIiJFmhIrKTb27NljU7+8VHHPFYsFBg0yF7f37m1u8Dxtmnl7sKCvLSIiBUqJlRQbgYGB7Nixw6Z9BS0WC506dWLu3LkFF9DNN8PChfD99xAYCH/9ZW6V06MHnD5dcNcVEZECozpWDqY6VoWDm5sb165ds6mvu7s7W7dupUmTJgUXUGKiubj9nXcgNRV8feGNN2DoUHMvQhERcSrVsRLJxuuvv25z36tXrxIUFERcXFzBBeTtbRYQjYqC4GCIj4fhw80nCnfvLrjrioiIXSmxkmJp1KhReHh45OqYW265pWCTKzA3c964EaZPNzd53rDB3Bbn5Zfh8uWCvbaIiOSbEisptrZs2WJTfas0ycnJ1KxZs+CTKzc3czucPXvgwQchJQVefx1uuw3Wri3Ya4uISL4osZJiq0mTJqSmpuYquTp//jwtWrTg4MGDBRjZv6pWha+/hiVLoHJlOHQI2reHgQMhJqbgry8iIrmmxEqKvW3btuXqtuChQ4eoU6cO9957b8HPXlks0K2bOXv1xBPm+08+MfcdnD9f+w6KiBQySqyk2GvSpAlXrlzh448/pnnz5jYf98MPP9CrV68CjOw6vr7w/vvw22/QqJE5Y9W/P9xzDxw+7JgYREQkRyq34GAqt1D4lStXLlczUQcOHKB27doFGNENUlLg7bdhwgRzQbuXl7ldznPPQS4X5IuIiG1UbkEkj7Zt20aZMmVs7t+sWTOio6MLMKIbeHjA6NGwaxd06GAmVy+9BM2awaZNjotDREQyUGIlcoPAwEASEhIoVaqUTf0vXLhAcHBwAUeViVtvhdWrzbVW/v7w558QGgojRkBCguPjERERJVYiWdm9e7dN298AxMbGMmXKlAKOKBMWC/TtC3v3mk8LGoa5Fqt+fVi61PHxiIgUc1pj5WBaY1W0REdHU79+fZKTk23q7/S/TmvXwrBhZmkGgIcegvfeg4AA58YlIlLEaY2ViB0EBgZy+fJl3NzcbOpfsWLFgi/BkJ127eCPP2DMGHB3h2XLzNmrGTPMPQhFRKRAKbESsUFUVJRNta7+/vtvKlas6NjF7DcqVQpeew127jTXXF28aFZyDw2F3393XlwiIsWAEisRG6TVugoKCsqxb0pKCk2bNnVAVDlo2BDWr4fISChbFrZsMZ8cfOEFSEx0dnQiIi5JiZVILnz22Wc29Tt//jyjRo0q4GhsUKIEPP64ubi9e3fzduBbb5lFRletcnZ0IiIuR4mVSC7UqVPH5mKgb775Jm3atHHumqs0lSvDF1/AN9+YexBGR8O990KfPvD3386OTkTEZSixEsmlzZs327y34Pr166lZs2bhSK4AHnjA3HcwPNyczfr0U6hXD+bM0b6DIiJ2oMRKJJf8/PzYv38/vr6+NvU/f/48AQEBREVFFXBkNvLxgalTYfNmCAqCuDgYMgTuvhv273d2dCIiRZoSK5E8CAwM5Pz584SGhtrUPzExkeDgYJo1a1Z4Eqzmzc0F7W+/Dd7e8Msv0LixuQehjXW7REQkPSVWIvnw8ccf56r/9u3bCQ4O5rbbbisctwfd3eHZZ2H3brjvPrhyBcaNgyZNzCcKRUQkV5RYieRDnTp1aN68ea6P27VrF+XKlWPnzp32DyovatSA776Dzz6DihVh3z5o0waGDjVvFYqIiE2UWInk0+rVqwkLC8vTsUFBQURERHDw4EE7R5UHFgv07GmWZnjsMbNt1iyzcvvixVrcLiJiAyVWIvnk5+fH999/z4EDB6hbt26uj3/ppZeoU6cO7du3Lxy3B/38YOZMWLfOTKrOnoVHHoHOneHoUWdHJyJSqCmxErGT2rVrs3HjRsqVK5en49euXUuXLl3sG1R+tG4NO3bA+PFQsiSsXGlWc3/nHbh61dnRiYgUSkqsROzIz8+PQ4cO0apVqzwdv27dOtauXWvnqPLB0xNeecXc2LltW3MrnOeegxYtoLA83SgiUojkK7H68ccfc+zz+uuv5+cSIkWOn58f69ev58CBA6xYsYIlS5bk6vj27dsXnpIMaerWhZ9+MguJ+vmZM1l33AEjR5qbPIuICJDPxOrhhx/mjz/+yPLzt956i1deeSU/l7DZgQMHeOWVV7jzzjupUKECZcqUoUmTJrz++utcunQpQ/+zZ88yaNAgKlasiJeXF40bN2bWrFlZnn/RokU0a9aMUqVK4e/vT69evTh27FhBDkmKuNq1a3PffffRrVs3duzYkatjg4ODqV+/fuFKsCwWGDTIfGKwd2+4dg2mTYMGDeDbb50dnYhI4WDkQ2hoqFG5cmXj2LFjGT6bNm2aYbFYjCFDhuTnEjZ78cUXjdKlSxuPPPKIMX36dCMyMtLo0aOHARiNGzc2EhMTrX3j4uKMWrVqGaVKlTJGjx5tzJw50+jcubMBGK+++mqGc8+YMcMAjJYtWxqRkZHGxIkTjfLlyxuVK1c2Tp48mas44+PjDcCIj4/P95ilaDly5IhRunRpA8jVq27dusa0adOMAwcOOHsI6X3/vWEEBhqG+bygYXTvbhinTjk7KhGRAmHr93e+Eqtz584Z9erVM+rXr2/ExsZa299//33DYrEY/fv3z8/pc2Xr1q1GXFxchvYxY8YYgPHee+9Z20aNGmUAxpIlS9L1feCBBwwPDw/jyJEj1raYmBjDx8fHaNq0qZGSkpLuehaLxRg8eHCu4lRiJUuWLDEsFkuuEyzAuP32243FixcXniTr0iXDeOEFw3BzM5OrsmUNIzLSMFJTnR2ZiIhdOSSxMgzDOHr0qHHLLbcYLVu2NJKSkoxZs2YZJUqUMHr16mVcu3Ytv6fPt99//90AjGHDhlnbqlatagQGBmbo+9NPPxmAERERYW2bM2eOARhz587N0L9t27ZGmTJljOTkZJvjUWIlhmHOXuUlsbr+FRYWZpw7d87ZQzHt2GEYwcH/P3sVGmoYu3Y5OyoREbux9fs7308FVq9enRUrVvDnn38SGhrK448/TteuXZk/fz4WiyW/p8+3kydPAnDzzTcDcObMGY4fP05ISEiGviEhIVgsFrZs2WJtS/s5sz3hQkNDuXDhAvv27cvy+snJySQkJKR7iQQGBnLkyBFKlMj7X8FVq1bRvXt3O0aVD02awMaN8O675ibPGzaYGzy//DJcvuzs6EREHMYu5RaaNGnCV199xe7du+ncuTOLFy/Gzc3NHqfOl9TUVCZMmIC7uzt9+vQB/j/RCggIyNDf09MTf39/Tpw4YW3Lrn9a2/X9bxQREYGvr6/1VbVq1bwPSFxKYGAgMTExlClTJs/nWLt2LcuWLbNjVPng5gZPPgl79sBDD0FKCrz+Otx2GxSmEhIiIgXIPTeda9asme3nbm5ubN++ndq1a1vbLBYLhw8fzlt0+fTUU0+xadMmXnvtNWtF7MTERMBMojLj5eVl7ZNTfy8vr3R9MjN69GieeeYZ6/uEhAQlV2Ll5+fHsWPH6NSpE5s2bcrTObp06cK5c+fw8/Ozc3R5VLUqfP01LF0KI0bAoUPQvj0MGABvvw3+/s6OUESkwOQqsapWrVq2t/eqV6+e74Ds5eWXX+aDDz5gyJAhvPTSS9Z2b29vwLxFl5mkpCQqVaqUaf9SpUpl6Ht9n8x4enpmmcSJgJlcbdy4kaioKPr27cv+/ftzfY5y5coRHh5Op06d6NixYwFEmQddu0K7djBmDHzwAXzyibnR85Qp0LevWb5BRMTVOGjNl0ONGzfOAIz+/fsbqTc8nXT69GkDMHr37p3huKSkJMNisRhdu3a1tg0bNswAMn0Ka/To0QZg/P777zbHpsXrkpMDBw4Y06ZNM+rVq5enRe3ly5dP92RrobBxo2E0avT/i9s7dDCMQ4ecHZWIiM0ctni9sBk/fjzjx4+nb9++fPzxxxkWB1eqVImAgAA2btyY4dhNmzZhGAbBwcHWtrSfN2zYkKH/hg0b8PHxoV69enYehRRntWvX5umnn2bv3r1s3bqVBg0a5Or42NhYgoKCCii6PLrzTti+HSIiwMsLfvgBGjUy36ekODs6ERG7sVtilZiYyPHjx/nrr78yvBxlwoQJvPrqq/Tp04e5c+dm+cRV7969iY6O5quvvkrXPmXKFNzd3enZs6e17aGHHsLb25t3332Xq9dtPBsVFcW6devo0aMHJUuWLJgBSbHXvHlzdu/ezdatW3N1XHx8PDVq1CAuLq6AIssDDw8YNQp27YIOHcynBV96CZo2NZ8oFBFxARbDMIy8Hnzt2jUmT57MjBkzOHPmTJb9UlNT83oJm73//vuMGDGCatWqMWHChAxPJVasWNG69iQuLo7mzZtz5swZwsPDCQwMZNmyZSxfvpyxY8cyYcKEdMdOnz6d8PBwWrZsSb9+/YiJiWHq1Kl4eHgQFRVFlSpVbI4zISEBX19f4uPjKVu2bP4HLsXGzp07cz0T5eHhwf79+wkMDCygqPLIMGDhQnOvwZgYc73V8OEwaRL4+jo7OhGRDGz9/s5XYvXCCy/w9ttv07BhQ+6++27Kly+fab9x48bl9RI2GzhwIJ988kmWn7dt25aff/7Z+v706dO89NJLfPfddyQkJFCrVi1GjBjB448/nunxCxcu5J133mHv3r14e3vTsWNHIiIicv2FpcRK8iMuLg5/f3+uXbtm8zE33XRT4Zq5ul5MDDz/PMyda76vXBlmzDAXvmtxu4gUIg5JrCpXrkyTJk1YsWJFXk9R7CixkvyKjo6madOmnD9/3uZjlixZQrdu3QouqPxauxaGDTNLMwA8+CC8955ZukFEpBCw9fs7X2us4uLieOihh/JzChHJpcDAQOLi4li9ejUVKlSw6ZiHH36YtYW5SGe7dvDnn2aldg8P+OYbaNDArOTugKUEIiL2kq/EqmHDhpw+fdpesYhILnTs2JH9+/fj4eFhU//27dsTFBRUeG8LennBxImwYweEhsLFi/D00xASAr//7uzoRERskq/EauzYsXz44YccP37cXvGISC74+fnlKrnauXMnFSpUKNyzVw0bwvr18OGH5kL2rVuhWTN44QXIZpcDEZHCIF9rrCZMmMB3333Hnj176Nq1K4GBgRmexrNYLIwdOzbfgboKrbGSgjBnzhyGDBmSq2Nat27NsmXLCs9WOJk5fdqctfriC/N9YCBERkJYmHPjEpFixyGL17OqE5XuAhaLQ8otFBVKrKSglCxZkpRcFtssW7YsR48eLdzJFcDy5fDEE5A2O967N0ydCjff7Ny4RKTYcEhidezYMZv6FaY9BJ1NiZUUlJ07dxIcHJyukK0tSpQowaFDhwpfrasbXbwIr7wC06fDtWvg5wdvvQWDBqk0g4gUOIckVpJ7SqykoE2ePJkXX3wx18cdOXKk8CdXANu2wWOPmYvcAdq2hY8+grp1nRuXiLg0h5RbEJHC54UXXuDcuXO53sPy1ltvLbxPDF6vWTPYsgXefhu8veGXX6BxYxg/HpKTnR2diBRz+Z6xunr1Kl9//TWbN28mLi4uQ0Voi8XCnDlz8hWkK9GMlThScHAwUVFRNve3WCzMnj2b1q1bU7t27QKMzE6OHjXXXq1cab6vVw9mzoTWrZ0aloi4HofcCjx37hx33303u3btwjAMLBYLaadL+1mL19NTYiWOFBcXR69evVi1alWujw0LC2PixIns3LkTi8VC27ZtC2eyZRjw+efm04Nnz5ptQ4bA5MnmOiwRETtwyK3Al19+mX379jF79mwOHz6MYRisWrWKvXv30qtXL4KDg4mNjc3PJUQkH/z8/Pj+++85cOAAixcvxpKLRd6rVq2iRYsWDB06lMcee4w6deoQGBjIV199VYAR54HFAj17wt695torgNmzoX59+OwzM/ESEXGQfM1YVa9enXvuuYdZs2YRGxtLhQoV+OGHH2jXrh0Ad911F/Xr1ycyMtJuARd1mrESZ4qOjqZmzZr5Pk/ZsmUZNGgQnTp1omPHjnaIzI7Wrzf3Hdy713x/333wwQdQo4ZTwxKRos0hM1ZnzpyhRYsWALi7uwNw+fJl6+ddunThm2++yc8lRMSOAgMDOXLkSK5mrjKTkJDAtGnTuOeee/D39yc6OtpOEdpB69bmE4MTJkDJkub6q4YNzcXuuSxFISKSW/lKrMqVK0fiv1tMlClTBg8Pj3Tb23h4eBSNp4xEipHAwEBiY2PznVyliY2NJTg42C7nshtPTxg7Fv74wyzHkJgIzz8PLVpALhbzi4jkVr4Sqzp16rD33+n2EiVKEBQUxNy5c0lOTiYxMZF58+bZ5baDiNiXn58fhw8fttv5YmNjC+ct/7p14aefYM4ccyH7jh1wxx0wcqRZcFRExM7ylVjdc889fP755yT/WzvmmWeeYfPmzZQrV46bb76ZrVu3MnLkSLsEKiL2lXZbsEyZMnY53xNPPMHBgwftci67sljM6uz79kGfPmbV9mnToEED+PZbZ0cnIi4mX4vXDcPgypUreHp6WtuWLFnCwoULcXNzo3v37vTs2dMugboKLV6XwmjNmjVs3LiRatWqUbFiRSpUqMCLL77I2rVrc32uZs2a8cILLxAUFFQ4yzOsWgXDh0PaurDu3eHdd+GWW5wbl4gUaoViS5tff/2VcePG8eOPPxbUJYocJVZSlBw8eJAvv/yS119/nUuXLuX6+FatWvHwww/j4+NTuOpgJSaaldrfeQdSU6FsWXjzTRg6FGzYXF5Eip8CT6xiY2M5fPgw5cuX59Zbb0332ZYtWxg7diw//PADJUqUICUlJS+XcElKrKSoWrNmDcOGDcvXE4B169Zl+PDhdOrUqXAkWb//biZTW7aY70NDzX0HGzVyblwiUugUWLmF1NRUHn/8cSpWrEhISAh16tQhJCSEv//+mwsXLtC3b19CQkJYu3YtvXv35s8//8zXQESkcOjYsWO+F6jv37+f8PBw6tSpQ/v27Z3/1PDtt8OGDeatQB8f8+egIBgzBpKSnBubiBRJuZ6xmjZtGs888wxVq1bljjvu4NChQ+zcuZOuXbty9uxZNm3aRN++fRk7dmyGmSzRjJUUfWXKlOGinZ6oa9KkCZMmTaJWrVrOn8E6fhyefBKWLTPf16plzl79W/BYRIq3ArsV2KxZM65evcrGjRvx9vYG4L///S+RkZH4+/vz7bffcscdd+QvehemxEqKuujoaOrWrWv3W/wNGzZk7ty5NG/e3K7nzbWlS2HECDh1ynw/YIBZXNTf37lxiYhTFditwAMHDtC/f39rUgUwfPhwAEaNGqWkSsTFBQYGcvbsWZo1a2bX8+7evZvg4GBCQkKce4uwa1fYswf++1+zVMMnn0C9ejB/vvYdFJEc5TqxunTpEpUqVUrXlva+kRZ8ihQLfn5+REVFWTd3tmeStWnTJmrWrOnc5MrXF957z1xzddttEBsL/ftDx45w6JDz4hKRQi9PzxXfuBVG2vu0/QJFpHioXbs2PXr0sCZZK1asYPXq1SxevJg777wzz+c9f/481apVY+vWraxcudJ5hUfvvBO2bYOICPDygh9/NBOtiAjQ084ikolcr7EqUaIEjzzyCE2aNLG2JSYmMnHiRAYPHkytWrXSX8Bi4fnnn7dLsK5Aa6ykODl48CArVqzgpZdesu4rmlfNmzdn9erV+Pn52Sm6XDp82CwsumaN+b5RI5g5E0JCnBOPiDhUgS1eL5HL4nkWi4XU1NRcHePKlFhJcRQXF8eDDz7Ir7/+mq/zuLm5sXr1ato560k9w4CFC829BmNizDVYw4fDpEnm7UMRcVkFllj98ssvuQ6mbdu2uT7GVSmxkuIsKiqKYcOGsX379nydx+mzV7Gx8NxzMHeu+b5yZZgxw1z4fsNSCRFxDYViSxvJSImViHmLcMeOHYwbN459+/bl6Rzu7u589NFHtG7d2nk1sNauhccfh7Q1YA8+aC56r1rVOfGISIFRYlVIKbESSS8kJIRNmzbl6xytW7dm2bJlzpnBunwZXn/d3GswJcWs4P7662a5Bjc3x8cjIgWiwOpYiYjY04oVK/K9Zmr9+vVUq1bNOSUavLxg4kTYscPca/DiRXj6aXNR+86djo9HRJxKiZWIOJWfnx8//vgjW7dupUGDBnk+z8WLF6lQoQL/+9//nFOeoWFDWL8ePvzQXMi+dSs0bw4vvACXLjk+HhFxCiVWIlIoNG/enN27d1vrYeVla5vU1FQGDx5MnTp1aNOmjeNnsEqUgGHDYO9e+M9/IDUV3nrLLM3w/feOjUVEnEKJlYgUKrVr1+a+++5j9erVhIWF5fk869evp3bt2s65PXjLLfD55/Dtt+ZC9qNH4b77oHdvOHvW8fGIiMMosRKRQsnPz4/vv/+eAwcO8L///Y8yZcrk+hyxsbG0atXKeZXb77/f3Hdw5EhzNmvRIqhfH+bM0b6DIi5KiZWIFGq1a9fm0UcfJSEhgdWrV+Pl5ZWr4/fs2UOdOnVo1KgRUVFRBRRlNnx8YMoU2LIFgoIgLg6GDIG77oI8lpoQkcJLiZWIFBkdO3Zkz549lCtXLtfH7t69m+DgYGrWrOmcBKtZMzO5eucd8PaGdevg9tth/HhITnZ8PCJSIJRYiUiREhgYSGxsLJ988gmenp65Pj46Oprg4GCqVavGV199VQARZsPdHZ55Bnbvhk6d4MoVePVVaNLEfKJQRIo8JVYiUiT179+fy5cvs3r1akaNGpXrfUyPHz/Oww8/jK+vr+NLNNSoAcuXw+LFULGieUuwTRt47DHzVqGIFFkulVhFRETwn//8h5o1a2KxWKhRo0a2/c+ePcugQYOoWLEiXl5eNG7cmFmzZmXZf9GiRTRr1oxSpUrh7+9Pr169OHbsmJ1HISK50bFjRyIiIhg9enSejk9ISEhXomHr1q2sXLmy4BMtiwV69DBLMwwdarbNnm0ubv/sMy1uFymiXGpLG4vFQrly5WjatCnbtm2jbNmyHD16NNO+58+fJzg4mJMnTxIeHk5gYCDLli3ju+++49VXX2XcuHHp+r/33ns8+eSTtGzZkr59+xITE8O0adPw9PRk69atVK5c2aYYtaWNSMEpUaIE9vwnrWnTpnz00Ud5qqmVa7/+aiZYe/ea7++7Dz74wJzdEhGns/n723Ahhw8ftv7csGFDo3r16ln2HTVqlAEYS5YsSdf+wAMPGB4eHsaRI0esbTExMYaPj4/RtGlTIyUlxdq+detWw2KxGIMHD7Y5xvj4eAMw4uPjbT5GRGzzyy+/GBaLxQDs+mrdurVx7ty5gh/A5cuGMWGCYZQsaRhgGN7ehvHWW4Zx3b87IuIctn5/u9StwJo1a9rcd+HChQQGBtKtW7d07c888wwpKSksXrzY2rZs2TIuXrzIU089hbu7u7W9efPmtGnThs8//5wrV67kfwAiki9t2rTh2rVrRERE0KpVK6pWrWqX865fv56aNWvy+eefZ7hFeODAAfvdOvT0hLFj4Y8/oG1bSEyE55+H4GBzixwRKfRcKrGy1ZkzZzh+/DghISEZPgsJCcFisbBlyxZrW9rPoaGhGfqHhoZy4cIF9mVRjyY5OZmEhIR0LxEpWKNGjWL9+vX89ddf/Pjjj3h7e+f7nOfPn6dnz57UqVOHe++9lyNHjnDvvfdSt25dOnXqZG23yxqtunXhp5/MQqJ+fuZmznfeCeHhcOFCvsciIgWnWCZWJ0+eBCAgICDDZ56envj7+3PixAmb+qe1Xd//ehEREfj6+lpf9vp/0CJim3bt2nHp0iVWr17NgAEDsFgs+T7nDz/8QHBwMKtXr07XvmrVKlq0aGFNtGrVqpX3kg4WCwwaZD4x2KcPXLsG06ebmz1/+22+xyAiBaNYJlaJiYkAWdbA8fLysvbJqX9aFejr+19v9OjRxMfHW1/Hjx/PV+wikjcdO3Zk7ty5xMbG0qxZs3ydKzU1lXPnzuW4UP7w4cM8/PDD+Pj4sHbt2rxd7OabYcECcxPnwEA4fhwefBC6d4dTp/J2ThEpMMUysUq7LZCcRbXjpKSkdLcOsuuflJSUrs+NPD09KVu2bLqXiDiPn58fUVFRHDhwgMWLF+c7ybLFpUuXaN++PbfffjtLlizJ263CsDDYtQtefBHc3GDJErM0Q2SkOZslIoVCsUysqlSpAmR+++7y5cvExsamu+2XXf/sbhOKSOFVu3ZtevTokS7JatWqVYFe848//qB79+7WW4Vt2rQh7oaCoNkuhvf2hjfegG3boEULSEiAJ56A1q3NpEtEnK5YJlaVKlUiICCAjRs3Zvhs06ZNGIZBcHCwtS3t5w0bNmTov2HDBnx8fKhXr17BBSwiBSotyVq/fr1NM1lubm52ue769eupXbs2cXFxnDt3LtPF8DcmXoC5x+CGDTBjhrnJ84YN5gbPY8bAv7PoIuIcxTKxAujduzfR0dEZFpZOmTIFd3d3evbsaW176KGH8Pb25t133+Xq1avW9qioKNatW0ePHj0oWbKkw2IXkYJjy0xWhw4daN26tV2uFxsby4MPPkiXLl1YtWpVus9WrVrFnXfemfmBbm4wYoRZULRLF7h6FSZNgsaNIa/ruUQk31yq8vr8+fOtW8zMmDGDK1eu8OyzzwJw0003MWLECGvfuLg4mjdvzpkzZ9JVXl++fDljx45lwoQJ6c49ffp0wsPDadmyJf369SMmJoapU6fi4eFBVFSU9XZhTlR5XaRoOnjwIIcOHaJWrVrWWaZevXqlS4bKly9PbGys3a/t5uZGVFQUTZo0ybrT0qVmopW2oH3AAHj7bfD3t3s8IsVRsay83rZt2ywrJ2dWhf3UqVPGwIEDjQoVKhienp5Gw4YNjcjIyCzPv2DBAiMoKMjw8vIyypUrZ/Ts2TNdhXZbqPK6iGs5cOCAsWLFCuPAgQOGYRjGjz/+aLi5udm9+rvFYsm5+nt8vGGMGGEYFotZub18ecOYN88wrl1zwG9CxLXZ+v3tUjNWRYFmrERcX1xcHHfffTe///67Xc9bvXr1LPc/TWfTJnPfwT//NN+3bw8ffgi1atk1HpHixNbv72K7xkpEpKD4+fmxc+dODhw4wLRp02jQoEGWfUuUKGFzyYdjx45Rv359Ro8ezZo1a7LueOed5pODERHg5QU//gi33WauwdL2WyIFSjNWDqYZK5Hi6eDBg+zYsYPJkyezbds2a3tYWBiLFi3i1ltvzfwJwGzcdNNNvPPOO7Ru3ZratWtn3unwYRg+HNISsUaNYOZMyGRLLxHJmq3f30qsHEyJlYjcuBAeIDo6muDg4Dwvfm/atCkfffQRzZs3z/ihYcDChTByJMTEmNvlPP64OaPl65ufoYgUG0qsCiklViKSnREjRvD+++/n+fi0GbB//vmHw4cPp0veiI2F556DuXPN97fcYtbC6tbNTLZEJEtKrAopJVYikhNfX18SEhLyfPxNN93E+fPnre+bNWvGCy+8QFBQkJlk/fQTDBsGadXdH3wQ3nsPtEm8SJa0eF1EpIjauXMnHh4eeT7++qQKYNu2bfTs2dNazX2rjw+r3nqL2P/+Fzw84JtvuFq3Lv+8/DKkpuYzepHiTTNWDqYZKxGxRUGVbLBYLFz/z36Iry+T4+NJqy2/y9sby8yZNOzTx67XFSnqdCuwkFJiJSK5cfDgQX755RfefPNNDh06VCDXsACPAW8CNwFXgaU1alDzk0/Yvn8/FouFtm3bZv3koUgxoMSqkFJiJSJ5kdkWOvZWCZgGpO2UGg0MB9KuWK9ePebPn5/5k4ciLk6JVSGlxEpE8uP6Ug3NmzfP1yL3rHQCPgCq//v+U2Ak8Pe/79u1a8eXX36Z+ZOHIi5KiVUhpcRKROwls9pX5cqVIzU1lfj4+HyduzQwAXgacAPOAc8D//v38xs3nE4r8+Dn58eBAwc4fPgwbm5upKamKvESl6DEqpBSYiUi9rZmzRo2btxISEgIHTt2JC4ujgcffJBff/013+duCsz6938BfgGGAftv6Ofm5kbbtm3x8PDI9HZltgVMRYoAJVaFlBIrEXGUtNuG7u7uXL16lQoVKvDyyy+nS3xunHnKjBvwFDARcyYrGYj493XjzoMlSpTg2rVrWZ4rLCyMIUOGsGfPHmsimDbDpZktKcyUWBVSSqxExNlu3FInKiqKYcOGsX379myPqw68D3T+9/1ezNmr9fmIxcPDg5SUFOv7W2+9lcmTJ9OtW7d8nFXE/pRYFVJKrESksEpLuCpUqMCLL77I2rVrM+33H+BdzKcIwbxV+AJw3o6xeHl58cQTT/D4449rFksKBSVWhZQSKxEpKqKioujbty/796dfUeXn54fl/HkmGQbD/m07i7nQfXEBxNG8eXOef/55goKCMAxDtw3FKZRYFVJKrESkqEkrUgrQtm1b/P39rTW1WgIzgQb/9v0es/bVUQfEpQXx4khKrAopJVYi4irSbh3WrlaNWl99hfHaa1iuXCEReAWz2Kgjdh5s2LAhc+fOVYIlBUqJVSGlxEpEXNaBAzBsGPz8MwDnAwN5smRJFuy/sThDwUgrXOrn5/dvOAf45ZdftCWP2IUSq0JKiZWIuDTDgLlz4bnn4Nw5KFGCuH792PrAA7j7+dGjR4905R1ufCowv8LCwvj000/5z3/+k2Hxfbt27XjjjTeIiYmhVq1aWq8luaLEqpBSYiUixcLff8Mzz8DCheb7qlXh/ffhgQcyFDRdu3YtXbp04cKFC3a5dKtWrfjtt9/Izddb69atWbZsWbrZLiVdcj0lVoWUEisRKVZWr4bHH4foaPP9ww/Du+9C5coZus6bN49hw4Zx+fJlBwdpKl++PFu2bOGJJ55IV0S1QYMGDB06lE6dOinJKsaUWBVSSqxEpNhJTIQJE+DttyE1FcqWhTfeMNdjlSiRofuaNWtYvnw5ZcqU4ZdffrHL1jy2uummm7hw4QKpqZkvu69RowbvvPOOCpgWQ0qsCiklViJSbP3+OwwdClu2mO9DQmDmTGjUKNvDrq8UHx8fT7t27bK8bdiqVSuHJGKlS5fmm2++oV27dgV+LSkcbP3+zvh/FURERArC7bfDhg0wYwb4+MDGjRAUBGPGQFJSlofVrl2b++67j9q1a9O8eXOOHTvGnXfemaFfu3bt+OabbwgLC8NisRTkSLh06RLt27cnJCSEuLi4Ar2WFC2asXIwzViJiAAnTsCTT8LXX5vva9WCDz+E9u1tPsWNhUvT1j/FxcXRvXv3LLfksbfy5ctz8OBB68J3cU26FVhIKbESEbnO0qUwYgScOmW+798f3nkH/P3zferrE68mTZrw8ssvp1uUfqMSJUrg5+fH+fPns1xjlZVWrVqxfr25HfWcOXP4+eefad++PQMHDszQV08cFk1KrAopJVYiIjdISDBvB77/vlkHq3x5mDIF+vUDO9/Su36j6ZEjR6ZbjxUWFkZkZCTDhw/PNgHLyldffUXPnj3T1eXy8PBgy5YtNGnShHPnztG7d+905w4LC2PixInW2lpKtAovJVaFlBIrEZEsbN4Mjz0Gf/5pvm/f3rw9WKtWgV3y+oXx1yc1UVFRDBkyhN9//93mc7m5uWU60+Xh4cGVK1e49957+eGHH9L1sVgs6ept1apVi0WLFml7nkJIiVUhpcRKRCQbKSnmbNWrr8Lly+DlBWPHmpXcS5Z0eDgHDx7kyy+/5OWXX+batWt5Pk9ERASjR4+2uf+NBUszk3ZLMS2h04xXwVJiVUgpsRIRscHhwzB8OKxZY75v1MgszRAS4pRw4uLiuPvuuzOdwSpRogQVK1bk9OnTWR5/991389NPP+XqmmFhYXz//fcZ2jO7pZjGloRM8kblFkREpOi69VZYtQoWLDAXsu/aBS1bwhNPQHy8w8Px8/Nj586dbN26lQYNGqT7rGPHjowaNSrb4++5555cX3PVqlUcPHgwQ3vv3r354YcfMj1m/fr1BAYGWktAHDhwgJUrV2Z6HikYmrFyMM1YiYjkUmwsPP88fPyx+f6WW8xaWN262X1xu60yW5tVsmTJTDeUzm6NVU5WrFjBfffdZ31/4MAB6tatm+Nxvr6+NGvWLF3JiVtvvZXJkyeranweacZKRERcQ/ny8L//wdq1ULs2nD4N3btDly5w/LhTQrq+aGmaLVu24OHhka5f2lOBAIsWLaJDhw65uk6tGxbuHz582Kbj4uPjM9TxOnz4MA8//DB+fn5MmjSJ2bNnayarAGjGysE0YyUikg+XL8OkSeZegykpZgX3114za2G5uTk7OgDmzp3Ljz/+mGUdq+tLPoSGhmY6ywWZr7GydcYqN9q1a8eXX36Zp3VZN9bkcuUaXVq8XkgpsRIRsYM9e8x9B3/7zXzfvLm5uD0oyLlx5VJ0dDRBQUHE37BuLLtF6Hm5pZiTrBbKZyWzBfTly5cnNjY23TkXLVrkMgvplVgVUkqsRETs5No1mDULXnzRXNDu5gYjR5qlGkqXdnZ0ubJmzRqWL1/OzTffTI8ePbKd7YmLi6NXr155KmKanQMHDtg8y2RLcufm5kaHDh0YOXIkmzdvJiQkhI4dO+YYQ2Gd8VJiVUgpsRIRsbPTpyE8HD7/3HxfowZERsK99zozqgKXlyKm2blxoXxW8nM7snz58mzdupXAwMB07ZnNgLVu3Zp33nmn0FSl1+J1EREpHm65BRYvhuXLoVo1OHoU7rsPevWCs2edHV2Bad68eZYlINq1a0e7du1ydb4bF8pnxdYF9JmJjY0lODg4Q3tmJSTWr19PixYt6NSpE3Xq1OHee+8lLi6OVatWMWHCBNak1TgrZDRjlQuLFi3i7bffZs+ePZQuXZqOHTvyxhtvUL16dZvPoRkrEZECdPEivPIKTJ9u3iq86SZ46y0YNAhKuPZcQmYlINauXUuXLl24cOFCtsfmZo2VPRbQr1692npb0Nbzubm5UaJEiXSL/cuXL8/ixYu5cuUKtWrVwjCMAruVaPP3tyE2mTFjhgEYLVu2NCIjI42JEyca5cuXNypXrmycPHnS5vPEx8cbgBEfH1+A0YqIFHNRUYbRtKlhmNs6G0abNoaxd6+zo3Ka1atXG6NGjTJuv/12A0j3ateunXHu3LlcnS8sLMxwc3PLcC5bX+PHj7eea8WKFXk+T3avsLCwXI8rO7Z+f2vGygaxsbHUqFGDOnXqsHnzZtzd3QHz/naLFi0YNGgQs2fPtulcmrESEXGQq1fNQqIvvwyJieZeg6NHmy9PT2dH5zQHDx7kl19+AaBt27Z5mtnJbAH9jU8FZicvM1a5lbZ4PjdPO2ZHi9ft6H//+x+DBw9m7ty5DBgwIN1nd911F9u3bycmJoaSNmwQqsRKRMTBjh2D//4XvvvOfF+vHnz0EbRp49y4XMCNtx+vfx8SEpJpolW+fHliYmLStbVu3Zpff/21QGLMzdOO2dHidTtKq5obGhqa4bPQ0FAuXLjAvn37Mj02OTmZhISEdC8REXGg6tXh22/NBe4VK8K+fdC2LTz2GPy7p57kzY0V6K9/v3XrVsqXL5+uf9pTgTf65ptvMvS1l0OHDhXIebOixMoGJ0+eBCAgICDDZ2ltJ06cyPTYiIgIfH19ra+qVasWXKAiIpI5iwV69DCTqmHDzLbZs83Zq88+M1diiV0FBgYSExPD6tWrGT9+PKtXryYmJiZDqQUwN7k+ePAgrVq1yvJ8N24XZCtbn3a0F90KtEH79u1Zu3YtqamplLjhqZK024RffPEF3bt3z3BscnIyycnJ1vcJCQlUrVpVtwJFRJzp11/Nyu1795rv770XPvgAMvnSF8e6/nYiYP3Z3d2d4OBgm9dxOWuNlbtdrubivL29ATNJKlWqVLrPkpKS0vW5kaenJ57FeJGkiEih1KoV7NgBkyebew1+/z00bAjjx5vV29319egstWvXTrcm6vqfY2JiWLNmDRs3bqRRo0bMnDkzywr0HTp0YNGiRQUe7430X44NqlSpApi3+25cAJfdbUIRESnEPD1h7Fjo2dO8Pfjzz/DCC/Dpp+a+g5kUshTn69ixo/WJwm7dumU5w+WsSu1aY2WDtCqxGzZsyPDZhg0b8PHxoV69eo4OS0RE7KFOHVi7Fv73PyhXDnbuhDvvhKefhhwKa4rzXb9g/sbF9M6gxMoGDz30EN7e3rz77rtcvXrV2h4VFcW6devo0aOHTaUWRESkkLJY4NFHzTVXffqYVdvffRcaNIBvvnF2dFKEKLGygb+/P5MmTWL79u3cddddfPTRR7z++uvce++9VKxYkQkTJjg7RBERsYebb4YFC2DVKqhZE06cgIcegu7d4dQpZ0cnRYASKxs9/fTTLFiwgMTERMLDw5kyZQodOnRgw4YN1jVYIiLiIu65B/78E0aNAjc3WLIE6teHyEhzNkskCyq34GCqvC4iUsT88YdZmmHzZvN9SIi5uL1RI+fGJQ6lyusiIiL20Lgx/Pabue9gmTKwcSMEBcGYMfBvyR2RNEqsREREcuLmBiNGwJ490LWrucHzpElm0vXjj86OTgoRJVYiIiK2CgiAr76CpUuhShU4dAg6dIABA+CGjYWleFJiJSIikltdupizVyNGmKUa5s0z9x2cN0/7DhZzSqxERETyomxZc93Vxo1w220QG2vOXHXsCAcPOjs6cRIlViIiIvlxxx2wbRu88QZ4eZlrrm67zVyDdeWKs6MTB1NiJSIikl8eHvDii7BrlzljlZxsPjXYtClksh2auC4lViIiIvZy661m1fYFC8DfH3bvhlat4IknID7e2dGJAyixEhERsSeLxdxvcN8+c/9BwzArttevb1Zw1+J2l6bESkREpCCULw//+x+sXQu1a8Pp0+aegw89BMePOzs6KSBKrERERArS3Xeb2+KMHWuuxfr2W3P2avp0SE11dnRiZ0qsRERECpqXF0yYADt3QsuWcOkShIfDnXfCjh3Ojk7sSImViIiIozRoAOvWwUcfga8vREVBcDA8/7yZbEmRp8RKRETEkUqUgKFDYe9e6NHDvB349tvQqBF8/72zo5N8UmIlIiLiDLfcAosXw/LlUK0aHD0K990HvXrB2bPOjk7ySImViIiIM3XubNa7euYZczbrs8/MfQdnz4Zr15wdneSSEisRERFn8/GBd96BLVvMau3nz8Njj8Fdd5m3DKXIUGIlIiJSWDRrBps3w5Qp4O0N69fD7bfDq6+a2+RIoafESkREpDBxd4eRI2HPHvM2YUoKjB9vJli//OLs6CQHSqxEREQKo+rVzWKiixdDxYqwf795a3DIEDh3ztnRSRaUWImIiBRWFotZkmHfPhg2zGybM8es3L5okfYdLISUWImIiBR2N90EH35orrlq0AD+/ht69zbLM0RHOzs6uY4SKxERkaKiVStzC5yJE8HTE1atgoYN4a234OpVZ0cnKLESEREpWkqWhJdfNjd2vusuSEqCF14wt8bZutXZ0RV7SqxERESKojp1YO1a+PhjKFfO3OD5zjvh6afhwgVnR1dsKbESEREpqiwWGDjQXNzet69Zqf3dd811WN984+zoiiUlViIiIkVdhQowfz6sXg01a8KJE/DQQ9C9O5w65ezoihUlViIiIq6iY0f4808YNQrc3GDJErM0wwcfaN9BB1FiJSIi4kq8vSEiArZvhzvugIQE+O9/oWVLM+mSAqXESkRExBU1bgy//QYzZkCZMrBpk7nB80svmU8SSoFQYiUiIuKq3NxgxAhz38GuXc1aVxERcNtt8OOPzo7OJSmxEhERcXUBAfDVV7B0KVSpAocPQ4cO0L8//POPs6NzKUqsREREiosuXczZqyefNEs1zJ9vLm7/5BPtO2gnSqxERESKk7JlzVpXGzea67BiY81aWB06wMGDzo6uyFNiJSIiUhzdcQdERcGbb0KpUmYV99tug0mT4MoVZ0dXZCmxEhERKa48PMx9BnftgnvugeRkGDPGfHpwwwZnR1ckKbESEREp7mrWhO+/hwULzCruu3dDq1bwxBMQH+/s6IoUJVYiIiJiLmbv0wf27oVBg8zF7JGR5uL2JUu0uN1GLpVYffTRR/Tp04d69epRokQJLBZLtv0vXLjAM888Q9WqVfH09KROnTq88cYbXL16NdP+q1evpnXr1vj4+HDTTTdx//3386eq2IqIiCspXx7mzIGffoI6deD0aXPPwYcegr/+cnZ0hZ7FMFwnBa1RowaxsbEEBQURHR3NiRMnyGp4KSkptGnThq1bt/LEE0/QuHFj1q1bx/z58xk4cCAff/xxuv7ffPMNXbt2pUGDBgwdOpTk5GRmzJhBXFwcv/32G7fddptNMSYkJODr60t8fDxly5bN95hFREQKzOXL5mL2N96AlBQoXRpee80s1+Dm5uzoHMrm72/DhURHRxupqamGYRhG586djeyG9+GHHxqA8c4776RrHzFihAEY69evt7alpKQYVatWNQICAoz4+Hhr+7Fjx4zSpUsb7du3tznG+Ph4A0h3HhERkUJt927DaNnSMMwbgobRvLlhbN/u7Kgcytbvb5e6FVijRg1KlLBtSAsXLqRUqVIMHz48Xfuzzz4LwIIFC6xt69at4/jx4wwZMiRdllqtWjW6d+/O2rVrOXXqlB1GICIiUgg1aADr1sFHH4Gvr1mmITgYnnsOLl1ydnSFikslVra6du0a27ZtIygoiFKlSqX7rEaNGtxyyy1s2bLF2pb2c2hoaIZzhYaGYhgGUVFRBRu0iIiIM5UoAUOHmovbe/SA1FR45x1o2BBWrnR2dIVGsUys4uLiSExMJCAgINPPAwICOHHihPX9yZMnre2Z9QXS9b9ecnIyCQkJ6V4iIiJF1i23wOLF8N13UL06HDsGnTpBr15w9qyzo3M6d2cHcKMrV64wadIkm/sPHDiQGjVq5OoaiYmJAHh6emb6uZeXl7VPTv29vLzS9blRREQE48ePz1V8IiIihV6nTma9q3HjYOpU+OwzsxbWW2+Z5RpsXJrjagplYpWbROSuu+7KdWLl7e0NmLNJmUlKSrL2yal/UlJSuj43Gj16NM8884z1fUJCAlWrVs1VvCIiIoVS6dLw9tvQu7d5m3DbNnjsMZg3z1yPVb++syN0uEKXTvr4+GAYhs2vu+66K9fX8PPzo1SpUlnevjt58mS6235VqlQBMr/dl91tQjBnucqWLZvuJSIi4lKaNoVNm2DKFDPZWr8ebr8dXn3V3CanGCl0iZUjlChRgmbNmrFjxw7rjFOao0ePcvr0aYKDg61taT9vyGTfpA0bNmCxWGjWrFnBBi0iIlKYubvDyJHm7cHOnc26V+PHmwnWL784OzqHKZaJFUDv3r1JSkoiMjIyXfuUKVMA6Nu3r7Wtbdu2VKlShdmzZ6dbfP7XX3/x5Zdfcvfdd1tntURERIq16tXh22/h88+hUiXYvx/uuguGDIFz55wdXYFzqcrr3377Lb///jtg1qHav38/EydOtH7+8ssvW39OSUmhVatWbNu2jSeeeILbb7+ddevWMW/ePPr168e8efPSnXvp0qU8/PDDNGzYkGHDhlkrr8fGxvLbb7/RuHFjm2JU5XURESk2zp+HUaPM9VYAN98M06bBI4+YexMWIbZ+f7tUYjVw4EA++eSTLD+/cajx8fGMGzeOL774gpiYGKpVq8ajjz7KCy+8gLt7xnX9q1atYsKECezcuRN3d3datWrFpEmTuP32222OUYmViIgUO7/+CsOGwZ495vuwMHOD58BA58aVC8UysSoKlFiJiEixdOUKTJ5s7jWYnAylSplrsMLDwcPD2dHlyNbv72K7xkpEREQcqGRJePll+OMPc81VUhK88IK5Nc7Wrc6Ozm6UWImIiIjj1KkDa9fCxx9DuXLw++9wxx3w9NNw4YKzo8s3JVYiIiLiWBYLDBwI+/ZB375gGPDuu+Zmz9984+zo8kWJlYiIiDhHhQowfz6sXg01a8KJE/DQQ/Dww/BvAe6iRomViIiIOFfHjvDnn2ZpBnd3+OorczucDz6Aa9ecHV2uKLESERER5/P2hogIc7/BO+4w11v997/QsqWZdBURSqxERESk8GjcGH77Dd57D8qUMfcgbNoUXnrJfJKwkFNiJSIiIoWLm5s5W7V3L3TtClevmrNZt90GP/7o7OiypcRKRERECqcqVcz1VkuXmj8fPgwdOkD//vDPP86OLlNKrERERKRw69LF3A7nySfNUg3z55uL2z/5xCzVUIgosRIREZHCr2xZs9bVxo3mOqzYWLMWVocOcPCgs6OzUmIlIiIiRccdd0BUFLz5prnf4Nq15tqr11839yN0MiVWIiIiUrR4eJj7DO7aBffcY27q/PLL5tODGzY4NTQlViIiIlI01awJ338PCxaYVdx37zbrXr3xhtNCUmIlIiIiRZfFAn36mKUZBg0y37du7bRwlFiJiIhI0Ve+PMyZA/v3m7NWTqLESkRERFxH7dpOvbwSKxERERE7UWIlIiIiYidKrERERETsRImViIiIiJ0osRIRERGxEyVWIiIiInaixEpERETETpRYiYiIiNiJEisRERERO1FiJSIiImInSqxERERE7ESJlYiIiIidKLESERERsRN3ZwdQ3BiGAUBCQoKTIxERERFbpX1vp32PZ0WJlYNduHABgKpVqzo5EhEREcmtCxcu4Ovrm+XnFiOn1Evs6tq1a5w6dYoyZcpgsVicHU6BSEhIoGrVqhw/fpyyZcs6O5wCV5zGW5zGCsVrvMVprFC8xqux2odhGFy4cIHKlStTokTWK6k0Y+VgJUqUICAgwNlhOETZsmVd/i/x9YrTeIvTWKF4jbc4jRWK13g11vzLbqYqjRavi4iIiNiJEisRERERO1FiJXbn6enJuHHj8PT0dHYoDlGcxlucxgrFa7zFaaxQvMarsTqWFq+LiIiI2IlmrERERETsRImViIiIiJ0osRIRERGxEyVWIiIiInaixEpyZf/+/fTp04f69evj6+tL6dKlqV+/Ps8++yxnzpzJ0P/s2bMMGjSIihUr4uXlRePGjZk1a5YTIrePxMREatasicVi4fHHH8/weVEfr8ViyfJ1/vz5dH2L+lgB4uPjGT16NHXr1sXLy4ty5coRGhrK0qVL0/Ur6mN99dVXs/2z9fDwSNe/qI/34sWLTJw4kUaNGuHj40OFChVo2bIlCxYsyNC3qI8VzDE8/vjjVK1alZIlS1KtWjWefvrpDH9n0/oWhfFGRETwn//8x/rvbY0aNbLtn9txLVq0iGbNmlGqVCn8/f3p1asXx44ds0vsqrwuuXLixAnOnDlD165dCQgIwN3dnT///JOPPvqIRYsWsWPHDipWrAjA+fPnadWqFSdPniQ8PJzAwECWLVvG0KFDOXXqFOPGjXPyaHLvlVde4Z9//sn0M1cZb+vWrRk6dGiG9tKlS1t/doWxHj9+nLvvvptz587x6KOP0qBBAxITE9m3bx9//fWXtZ8rjLVbt27UqlUrQ/sff/zBW2+9xQMPPGBtK+rjvXbtGmFhYWzatImBAwfy1FNPcenSJebPn0+/fv04cOAAEyZMAIr+WAH+/vtv7rjjDk6dOsWwYcNo1KgRu3btIjIyknXr1vHbb7/h7e0NFK3xvvTSS5QrV46mTZtmmiBeL7fjeu+993jyySdp2bIlU6dOJSYmhmnTprFu3Tq2bt1K5cqV8xe8IWIHixcvNgDj9ddft7aNGjXKAIwlS5ak6/vAAw8YHh4expEjRxwdZr5s377dcHNzM95++20DMIYNG5buc1cYL2AMGDAgx36uMNa2bdsalSpVMv76669s+7nCWLMydOhQAzCWL19ubSvq492wYYMBGOHh4enaExMTjUqVKhkVK1a0thX1sRqGYYSHhxuA8emnn6Zr//TTTw3AmDhxorWtKI338OHD1p8bNmxoVK9ePcu+uRlXTEyM4ePjYzRt2tRISUmxtm/dutWwWCzG4MGD8x27Eiuxiy1bthiA8dxzz1nbqlatagQGBmbo+9NPPxmAERER4cgQ8+Xq1atGs2bNjE6dOhnR0dGZJlauMN60xCo5OdlISEjIsl9RH+u6desMwJg6daphGIaRkpJiXLx4MdO+RX2sWbl06ZJRtmxZo0qVKsbVq1et7UV9vCtXrjQAY/LkyRk+q1+/frqxFfWxGoZh3H777UapUqWMa9eupWtPTU01vLy8jJo1a1rbiup4c0qscjOuOXPmGIAxd+7cDP3btm1rlClTxkhOTs5XvFpjJXly+fJlYmJiOHHiBD/88APDhw8HoFOnTgCcOXOG48ePExISkuHYkJAQLBYLW7ZscWjM+TFt2jT27NnDe++9l+nnrjTeL7/8Em9vb8qWLUv58uUZMmRIuvVzrjDWFStWAFCzZk26detGqVKl8PHxoUaNGun+jF1hrFn5/PPPSUhI4NFHH8XNzQ1wjfG2aNGCsmXLMnnyZL744guOHz/O3r17GTlyJPv37+fVV18FXGOsYP5b7OXlhcViSddeokQJSpUqxZEjR4iJiXGZ8d4ot+NK+zk0NDRD/9DQUC5cuMC+ffvyFZPWWEmezJ49myeffNL6vmrVqnzyySfcfffdAJw8eRKAgICADMd6enri7+/PiRMnHBNsPh07doxx48YxduxYAgMDOXr0aIY+rjLe4OBgunfvTu3atUlMTOSnn37i448/ZvXq1WzevJlbbrnFJcaa9g/nkCFDCAwMZM6cOVgsFj744AOefPJJ4uLiGDt2rEuMNStpYx40aJC1zRXGW65cOb7++msee+wxevToYW2/6aabWLZsGffffz/gGmMFaNCgAfv372fnzp00adLE2r5z507i4uIA+OuvvzD+3WSlqI/3Rrn9c8yuf1rbiRMnaNy4cZ5jUmIledKlSxfq1avHxYsX2bFjB99++631LzGYT88BWe7X5OXlZe1T2A0fPpzq1avz3HPPZdnHVcZ74/9j7dOnD23btqV///6MGzeOmTNnusRYL1y4AJgL8tetW2cdS8+ePWnQoAERERGMGDHCJcaamf379/Prr7/Svn17AgMDre2uMl4/Pz+CgoLo2rUroaGhnD9/nsjISHr06MGSJUu47777XGasTz/9NMuWLaNHjx5MmzaNRo0asXv3bsLDw/Hw8CAlJYXExERrYlXUx3uj3P45Ztffy8srXZ+80q1AyZOAgAA6dOhAly5dGD9+PHPnzuWFF14gIiICwPoUSnJycqbHJyUlWfsUZp9++ikrV64kMjIywyPp13OV8WamX79+1KhRg++++w5wjbGWKlUKgN69e6f7B7ZkyZL06dOHpKQkNm/e7BJjzcycOXMAc8bueq4w3j///JOQkBA6dOjAW2+9RdeuXXn00UdZv3491atXZ9CgQSQnJ7vEWAHatm3LwoULSUhIoHPnzlSvXp3777+fNm3aWGfnypYt6zLjvVFux5Vd/6SkpHR98kqJldhF48aNCQoK4oMPPgCgSpUqAJlOLV++fJnY2NhMp2ILkytXrjBy5Ejuv/9+qlWrxtGjRzl69Kh1TBcuXODo0aPEx8e7xHizU6NGDWuZCVcYa1p8t9xyS4bP0trOnTvnEmO90dWrV5k3bx7lypWja9eu6T5zhfFOnTqVy5cv85///Cddu6enJ126dOHMmTPs27fPJcaa5pFHHuHEiRPs2LGDdevWcerUKWbNmsWJEydwd3enVq1aLjXe6+V2XNn1z+42YW4osRK7SUpK4ty5cwBUqlSJgIAANm7cmKHfpk2bMAyD4OBgR4eYK4mJifz9998sX76cwMBA66t169aAOZsVGBhIZGSkS4w3K4ZhcOjQISpVqgS4xp/tnXfeCZi1rG6UVsOqYsWKLjHWG3377becPXuWfv36Zbgd4grjTftyTElJyfBZWtvVq1ddYqzXc3d3p0mTJrRu3ZqKFSty5swZduzYQdu2bfH29na58abJ7bjSft6wYUOG/hs2bMDHx4d69erlL6h8PVMoxc7p06czbV+7dq1RokQJo127dta2F154IcvaIu7u7unqlBRGV65cMZYuXZrh9dFHHxmAERYWZixdutQ4cOCAYRhFf7xnzpzJtH369OkGYPz3v/+1thX1scbFxRlly5Y1KlWqZJw/f97anpCQYFSuXNnw8/MzLl26ZBhG0R/rjTp37mwAxh9//JHp50V9vGl1nd5444107QkJCUa1atWM0qVLG0lJSYZhFP2xZiU1NdX4z3/+Y1gsFmPt2rXW9qI63pzKLeRmXP/884/h7e2dZR2rQYMG5TteJVaSK126dDHuuOMOY/To0caHH35oTJs2zejXr5/h4eFh+Pr6Gjt27LD2PXfunFGzZk3D29vbeOmll4xZs2YZ999/vwEYY8eOdd4g8imrOlZFfbxPP/200bBhQ+PFF180PvjgA+Odd94xHnjgAQMwateubfzzzz/WvkV9rIbx//Vs6tSpY0yePNl46623jHr16hkWi8X45JNPrP1cYaxpTp48abi5uRktWrTIsk9RH+/Ro0eNcuXKGRaLxejTp48RGRlpTJo0ybj11lsNwHj77betfYv6WA3DMC5cuGDUr1/fGv/bb79tNGvWLEPBZsMoWuOdN2+eMXHiRGPixInGzTffbNx0003W9zNmzEjXN7fjmjZtmgEYLVu2ND788EPjtddeM8qXL29UqlTJOHHiRL5jV2IlubJ48WKjU6dORkBAgOHp6Wl4eXkZdevWNUaMGGEcO3YsQ/9Tp04ZAwcONCpUqGB4enoaDRs2NCIjI50Quf1klVgZRtEe77Jly4ywsDCjSpUq1j/bhg0bGmPGjEk3q5OmKI81zTfffGO0bNnSKF26tOHt7W20bt3aWLFiRYZ+rjBWwzCM119/3QCMmTNnZtuvqI/3+PHjxhNPPGHUrVvXKFWqlOHj42O0atXK+OyzzzL0LepjTU5ONnr27GnUqFHD8PT0NPz8/Ix77rnH+P777zPtX1TG27ZtWwPI9JXZ7FVux7VgwQIjKCjI8PLyMsqVK2f07NnTbpXnLYbx7zOYIiIiIpIvWrwuIiIiYidKrERERETsRImViIiIiJ0osRIRERGxEyVWIiIiInaixEpERETETpRYiYiIiNiJEisRERERO1FiJSIiImInSqxERIqQu+66ixo1aqRrGzhwIBaLxTkBiUg6SqxExGUlJCQwceJEmjZtSpkyZfD29qZBgwY8//zznD171tnhiYgLcnd2ACIiBeHAgQOEhYVx7NgxunXrxuDBg/Hw8GDTpk1Mnz6djz/+mG+//ZaQkBBnhyoiLkSJlYi4nMTERB544AFOnjzJt99+S+fOna2fDR06lCeeeIIOHTrw0EMP8eeff1KxYkWHx3j16lVSU1Px9PR0+LVFpODoVqCIuJw5c+Zw4MABRo4cmS6pStO8eXMmTZrEP//8w1tvvQXA3r17sVgsPPXUU5mes1+/fri7u3PmzBlr2+nTpxk+fDjVqlWjZMmSVK5cmaFDh/L333+nO/bVV1/FYrGwe/dunnnmGQICAvD09GTjxo0ALF68mAcffJBq1arh6emJv78/Xbp04Y8//rDXr0REHMRiGIbh7CBEROypbdu2rFu3joMHD1KrVq1M+yQmJnLTTTdRpUoVoqOjAWjRogXR0dGcOnUKDw8Pa9+LFy9SqVIl2rZty3fffQfAX3/9RUhICFeuXGHw4MHceuutHD58mA8++ICKFSsSFRWFr68vYCZW48eP5/bbb6d06dJ0794di8XCfffdR926dWnTpg0VKlSgefPmVKhQgcOHDzNz5kyuXLnC9u3bqV27tjWWu+66i6NHj3L06FFr28CBA/nkk0/QP+cizqdbgSLicnbt2kWZMmWyTKoAvL29qVu3Lrt27eLixYv4+PgwYMAARowYwcqVK3nwwQetfZcsWcKlS5cYMGCAtW3EiBFcuXKFHTt2EBAQYG3v3r07d955J1OnTuXVV19Nd81y5cqxZs0a3Nzc0rWvXLmS0qVLp2vr378/TZo0YerUqXzwwQd5+TWIiBPoVqCIuJyEhATrbFF20vrEx8cD0KtXL0qWLMm8efPS9Zs3bx433XSTNdk6f/483333Hffffz9eXl7ExMRYXzVq1KBWrVqsXr06w/WefvrpDEkVYE2qDMMgISGBmJgYKlSoQN26ddm8eXPuBi8iTqXESkRcTtmyZa3JUnbS+qQlWOXKlaNz584sX76cuLg4AE6cOMHPP/9Mz5498fLyAswnDq9du8bcuXOpUKFChtf+/fszLedw/S29623fvp3777+fMmXK4Ovraz3Pn3/+aY1DRIoG3QoUEZfTqFEj1q1bx6FDh7K8HXjp0iX2799PjRo18PHxsbYPGDCApUuXsnjxYh5//HHmz5/PtWvX6N+/v7VP2lqmXr16MWjQoEzPX6pUqQxt3t7eGdr++usv2rRpg6+vL2PHjqVu3bqULl0ai8VCeHg4Fy9ezNXYRcS5lFiJiMvp1q0b69atY+bMmUyePDnTPnPnziUlJYVu3bqla+/UqRMVKlRg3rx51sSqVq1ahIaGWvvUqlULi8VCcnIyHTp0yFesS5cu5dKlS3z77bfcfffd6T6LjY1VOQaRIka3AkXE5QwZMoRatWoxbdo0VqxYkeHzqKgoxowZQ4UKFXj++efTfebh4UGvXr3YuHEjixYtYu/evekWrQOUL1+eTp06sWzZMn777bcM5zcMg3/++cemWNPWXN34RN+sWbPSlXYQkaJBM1Yi4nJKly7NN998w7333sv999/Pww8/zN133427uzubN29mwYIF+Pj48PXXX1OpUqUMxw8YMIB3332Xxx9/HIvFQr9+/TL0iYyMpFWrVtx9993069ePpk2bcu3aNY4cOcKyZcvo379/hqcCM3Pffffh7e1Nv379GDFiBH5+fvz222+sWLGCW2+9latXr9rjVyIiDqLESkRcUv369fnjjz+YPn06X331FStXriQ1NZXq1avz5JNP8txzz2WaVAE0bdqURo0asWvXLu666y6qV6+eoU/VqlXZtm0bb775JsuWLWPhwoV4eXlRtWpVHnjgAXr06GFTnLfeeisrV67kpZdeYtKkSbi5udGyZUt++eUXRowYka5elYgUfioQKiIiImInWmMlIiIiYidKrERERETsRImViIiIiJ0osRIRERGxEyVWIiIiInaixEpERETETpRYiYiIiNiJEisRERERO1FiJSIiImInSqxERERE7ESJlYiIiIidKLESERERsZP/A9G3sTGl5UqWAAAAAElFTkSuQmCC"
    }
   },
   "cell_type": "markdown",
   "id": "ad4a3871",
   "metadata": {
    "deletable": true,
    "editable": true
   },
   "source": [
    "<div><img src=\"attachment:q17.jpg\" style=\"height: 300px;\"/></div>\n",
    "\n",
    "<center> <b>Delete</b> this cell before you submit the notebook to reduce the size of your file.</center>"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "1c5f6090",
   "metadata": {
    "deletable": true,
    "editable": true,
    "execution": {
     "iopub.execute_input": "2023-12-07T02:12:24.979630Z",
     "iopub.status.busy": "2023-12-07T02:12:24.979630Z",
     "iopub.status.idle": "2023-12-07T02:12:25.271818Z",
     "shell.execute_reply": "2023-12-07T02:12:25.270807Z"
    },
    "tags": []
   },
   "outputs": [],
   "source": [
    "# create the scatter plot and the regression line using the DataFrame 'overall_rank' with the x-axis labelled \"Overall\" \n",
    "# and the y-axis labelled \"Rank\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "ad06f06e",
   "metadata": {
    "deletable": false,
    "editable": false
   },
   "source": [
    "**Food for thought:** Does our linear regression model fit the points well? It looks like the relationship between the `Overall` and `Rank` is **not quite linear**. In fact, a cursory look at the data suggests that the relationship is in fact, inverse."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "5c3c0102",
   "metadata": {
    "deletable": true,
    "editable": true,
    "execution": {
     "iopub.execute_input": "2023-12-07T02:12:25.275837Z",
     "iopub.status.busy": "2023-12-07T02:12:25.275837Z",
     "iopub.status.idle": "2023-12-07T02:12:25.279330Z",
     "shell.execute_reply": "2023-12-07T02:12:25.279330Z"
    }
   },
   "outputs": [],
   "source": [
    "# Food for thought is an entirely OPTIONAL exercise\n",
    "# you may leave your thoughts here as a comment if you wish to\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "5f766d24",
   "metadata": {
    "deletable": false,
    "editable": false
   },
   "source": [
    "**Question 18:** Create a **scatter plot** representing the **inverse** of the `Overall` (on the **x-axis**) against the `Rank` (on the **y-axis**) for **all** institutions in the `Year` *2022*. Additionally, **plot** a **regression line**  within the same plot.\n",
    "\n",
    "The `Inverse Overall` for each institution is simply defined as `1/Overall` for that institution. You **must** first compute a **DataFrame** containing the **Inverse Overall**, and the **Rank** data from the `Year` *2022*. You **must** use the `get_regression_line` function to compute the best fit line."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "9e5568c5",
   "metadata": {
    "deletable": true,
    "editable": true,
    "execution": {
     "iopub.execute_input": "2023-12-07T02:12:25.284361Z",
     "iopub.status.busy": "2023-12-07T02:12:25.283341Z",
     "iopub.status.idle": "2023-12-07T02:12:25.298991Z",
     "shell.execute_reply": "2023-12-07T02:12:25.298991Z"
    },
    "tags": []
   },
   "outputs": [],
   "source": [
    "# first compute and store the DataFrame 'inverse_overall_rank', then display its head\n",
    "# do NOT plot just yet\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "4704ad27",
   "metadata": {
    "deletable": true,
    "editable": true
   },
   "outputs": [],
   "source": [
    "grader.check(\"q18\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "b26a070c",
   "metadata": {
    "deletable": false,
    "editable": false
   },
   "source": [
    "Now, **plot** `inverse_overall_rank` as **scatter plot** with a **regression line** with the **x-axis** labelled *Inverse Overall* and the **y-axis** labelled *Rank*.\n",
    "\n",
    "You **must** use the `regression_line_plot` function to plot this data.\n",
    "\n",
    "**Important Warning:** `public_tests.py` can check that the **DataFrame** is correct, but it **cannot** check if your plot appears on the screen, or whether the axes are correctly labelled. If your plot is not visible, or if it is not properly labelled, the Gradescope autograder will **deduct points**.\n",
    "\n",
    "Your plot should look like this:"
   ]
  },
  {
   "attachments": {
    "q18.jpg": {
     "image/jpeg": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAG4CAYAAABPb0OmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABmkUlEQVR4nO3dd3hU1brH8e+kkJBCAgRBihCkKShdCFVBig1ERSRIERTlKAi2AyoHwRL1qlRFFARRpAgqimgAAREpKYDHhoNDkQ7JkIRQQgj7/rGTOZk0EpJMJsnv8zzz3Oy1197zzr5zmNdVLYZhGIiIiIgIAB4lHYCIiIiIO1FyJCIiIpKJkiMRERGRTJQciYiIiGSi5EhEREQkEyVHIiIiIpkoORIRERHJxKukAyiNLl26xJEjRwgMDMRisZR0OCIiIpIPhmFw+vRpatasiYdH7u1DSo6uwJEjR6hTp05JhyEiIiJX4ODBg9SuXTvX80qOrkBgYCBgPtxKlSqVcDQiIiKSH0lJSdSpU8fxO54bJUdXIKMrrVKlSkqORERESpnLDYnRgGwRERGRTJQciYiIiGSi5EhEREQkEyVHIiIiIpkoORIRERHJRLPVXCAtLY3U1NSSDqNU8vb2xtPTs6TDEBGRcsTtkqO8ptedOnWK4OBgx/Hx48eZMGEC3377LYmJiTRq1IjRo0fzyCOP5Hj94sWLeeutt/jjjz/w9/enR48evP7669StW7eoPwZgrsR57NgxEhMTMQyjWN6jrLNYLAQFBVGjRg2tRi4iIi7hdskRQOfOnRk5cmS2cn9/f8ffCQkJdOrUicOHDzN27FhCQ0NZuXIlI0eO5MiRI0yaNMnp2lmzZjF69Gg6duzI1KlTiYuLY9q0aWzatIno6Ghq1qxZ5J8jMTGRhIQEqlWrhr+/v37cC8gwDM6cOcPJkyepWLGiU2IsIiJSXCyGmzVpWCwWhg4dyoIFC/KsN2HCBF5//XVWrFjBPffc4yjv06cP33//PX/99RehoaEAxMfHU69ePRo1asT27dvx8jJzwpiYGG666SaGDx/O3Llz8x1jUlISQUFBJCYm5roIpGEY7NmzB39/f2rVqpXve0t2hw8f5syZMzRs2FAJpoiIXLH8/H6DGw/IvnDhAqdPn871/KJFiwgNDXVKjACeeuopUlNTWbp0qaNs5cqVJCcnM2bMGEdiBNCmTRu6dOnCsmXLuHDhQpHGn5aWRlpamlbQLgKVKlVyPE8REZHi5pbJ0fLly/Hz86NSpUpUrVqVhx9+mGPHjjnOHzt2jIMHDxIWFpbt2rCwMCwWC1FRUY6yjL87dOiQrX6HDh04ffo0u3fvLtLPcPHiRQCnZEyuTMYzzHimIiIixcntfrnbtm3LfffdR8OGDTl79iwbNmxg/vz5rFmzhu3bt3P11Vdz+PBhgBx31PXx8SEkJIRDhw45yvKqn1F26NAhbrzxxhxjSklJISUlxXGclJSU78+jbqDC0zMUERFXcrvkKHOLD8CgQYPo2rUrQ4YMYdKkSXzwwQecPXsWMBOhnPj6+jrqAHnW9/X1daqTk4iICCZPnlywDyIiIiIFdn+fPrBpE5duvZXly5eXSAxu2a2W1eDBg6lXrx7ffvstAH5+fgBOrTmZnTt3zlHncvXPnTvnVCcnEyZMIDEx0fE6ePDglX0QERERydETTzxBQ4uF8d98w2eJiRxbsQKLxcK8efNcHkupSI4A6tWrx8mTJwEcs78yd51lOH/+PPHx8U5daHnVz6vLLYOPjw+VKlVyekl2Bw8e5N5776V69epYLBbuvvtu6tWrx80331zSoYmIiBuKjIzkySefJCgoiLh332UH0Ao4Bfim13n44YddHlepSI4Mw+Dvv/+mRo0aANSoUYPatWuzdevWbHW3bduGYRi0bdvWUZbx95YtW7LV37JlCwEBATRp0qSYoi8/hg4dyvr163nmmWf45JNPGDduXI71FixYwLRp01wbnIiIuA2bzUZISAi9e/fmgxkzeDMpiSVAILAJaAH8kKn+fffd59oADTdy7NixHMunT59uAMbjjz/uKHvuuecMwFixYoVT3bvuusvw8vIybDabo+zkyZOGn5+f0apVKyM1NdVRHh0dbVgsFmP48OEFijMxMdEAjMTExFzrnDt3zvjjjz+Mc+fOFejepdX58+cNi8VijBkzJlt5SkqKU1nXrl2NunXr5vve5e1ZioiUdf7+/gZgNAbjFzAMMNLAmAKGJxhkeV111VVF8r75+f02DMNwqwHZERERrFu3jjvvvJO6dety7tw5Nm7cyDfffEPDhg156aWXHHXHjx/P8uXLGTx4MLGxsY4VsletWsXEiROpX7++o25ISAivvfYaY8eO5eabb2bw4MHExcUxdepUqlevzpQpU0rg05Ytx48fxzAMKleu7FSe26B5EREpf2JjY2nXrh1paWkMBmYD/sBx4EFgXS7Xde7c2VUhmookFSsiK1euNHr16mXUqlXL8PHxMXx9fY2mTZsaL7zwgpGQkJCt/pEjR4xhw4YZ1apVM3x8fIymTZsas2fPzvX+n376qdGyZUvD19fXqFKlijFgwABj7969BY5TLUfOhg4dmi3LB4wNGzYYdevWNbp27eqom1M9wNi3b1+u9y9Pz1JEpCzz9PQ0/MD4KL21yADjBzBq5PLbkPEqKqWy5ahPnz706dMn3/Wvvvpq5s+fn+/6gwYNYtCgQVcSWtExDMhj2YAS5ecHV7Cm0KOPPkqLFi0YN24c/fr1c6xaft1112Wr+8knn/Dqq686Wu4yVKtW7crjFhERt2az2WjevDmN09JYBjQF0oDJwKvApTyuLcj2XkXFrZKjcuHsWQgIKOkocpacDJk2982vsLAwrr76asaNG8eNN97Igw8+mGvdBx98kLlz53Lu3Lk864mISNkwb948Hv/Xvwi/cIFZgB9wFBgI/JjHdb179+a7775zSYxZKTkSERGRIjdz5kzGjh1LxUuXmIs5pgggEhgMnMxS39fXl8cee4zbb7+dHj16uDTWrJQcuZqfn9lC447yWAhTREQkP2w2G+3atSM+Pp4bgWVAY+AiMBF4A3MgUWaenp6ORZndgZIjV7NYrqjrSkRExN3NmzePxx9/nJSUFEYC0zEXczwEPAD8nMM1np6exMTEuDLMy1JyJC6njWRFRMoGq9WKzWbj77//Zty4caSlpREILMBMhgC+BYYC8Tlc7+/vT7Ib9qYoORKXCwgIICEhAcMwlCiJiJRCdrud8PBwIiMjncpbYnajNQBSgQnAO2TvRgOoWrUq0dHRxR3qFSkV24dI2dKuXTsSExMZM2YMixYtYsmSJZw5c6akwxIRkXwKDw9n3TrnJRsfB7ZiJkYHgC7A22RPjDw8PFizZg1xcXGEhoa6ItwCU8uRuNzYsWPZs2cPixcv5t1338UwDPbt24e/xmKJiLg9q9Xq1GIUBMwD7k0/Xgk8hLl5bFbe3t5ERUXRokWL4g6zUJQcSZGoV68ehpG94XT//v3ZygICAvj4449dEJWIiBSVyMhIPvvsMxYuXOgoawssBUKBC8CzwIwcrq1QoQIvv/wyzz33nEtiLSwlRyIiIpKrzFPzMxuLOS2/ArAXGABknXPm4eHB999/X+LrFhWUkiMRERHJVdbEqDLmbLSMzb6WAw8DiVmuKy1daDnRgGwRERHJUWRkpFNiFAbswkyMUoB/Af1xToxq1KjBzJkzuXDhQqlMjEAtRyIiIpKD9evX07t3bwAswDPAa5iJwx7gfsxEKcOwYcN4/vnnadiwoYsjLXpKjkRERCSbW2+9FYAQ4GPg9vTyxcCjwOlMdS0WC/Pnz3dpfMVJyZGIiIg4efXVVzEMg07AEqAWcA4YA8zNUtdisbBx40YXR1i8NOaomOU0vV0KRs9QRMR1Xn/9dSa++CLPAxsxE6PdQDucE6P27dsTERHBpUuX6NKlSwlEWnzUclRMvLzMR3vx4sUSjqT0y3iGGc9URESKltVqZfPmzTz99NNUSEjge6Bn+rmFmAOvM+9jEBERwfjx410ep6vo16aYeHp64unpSVJSEoGBgSUdTqmWlJTkeJ4iIlJ0su6RdguwCLgaOIu5JciCLNdYLJYynRiBkqNiY7FYuOqqqzh69Cg+Pj74+/trk9UCMgyDM2fOkJSUxNVXX63nJyJSxLp06cIff/yBBzAR+A/meJvfMafo/5nDNWVtfFFOlBwVo6CgIM6dO0dcXBwnT54s6XBKJYvFQnBwMEFBQSUdiohImREbG0v79u25ePEiNYDPMFuNwNwnbTTmAOysIiIiytz4opxYDI12LbCkpCSCgoJITEykUqVKl62flpZGamqqCyIre7y9vdWdJiJSxCpUqEBqaio9gE+Bq4Bk4DHMbrWcWCwWLl265KoQi0V+f7/VcuQCGi8jIiLuwGq18t5773EpNZVXgAmY3Wi/YO6N9lcu15XF6fp5UXIkIiJSxmUeeF0LWA9kdI69D4wDzudwnZeXF+PGjePNN990VahuQcmRiIhIGZcx8Po2zKn5IUAS8AiwLEvdunXrMnDgQLp160aPHj1cHapbUHIkIiJSRmUMvObiRV4Hnssox+xGs2Wp7+Xlxf79+10ZoltSciQiIlLGWK1WbDYbd955J7UuXWIJ0CH93EzMTWQv5HBddHS0y2J0Z0qOREREyoisizrehbmIYxUgARgBfJHLtREREbRo0aL4gywFNJX/ChR0Kr+IiIgr9O7dm3Xr1uGRlsYbmAOtAaIwu9H253JdWZimnx+ayi8iIlKOWK1WIiMjqQcsBW5KL38HGA/kttpeeZumnx9KjkREREqhjHFFDRo04ODBg3Tv3p17MFe4DgbswDDgm1yuv+WWW+jZs2eZ3yftSig5EhERKUWyjisC8MEcaP1E+vEWYCDwTw7Xe3p6EhMTo/FFeVByJCIiUopkrFmU4VrMtYpapR+/AbwIXMzhWn9/f5KTk4s9xtLOo6QDEBERkcubOXMmHh4e/P7772TMpRoA7MBMjOKA2zHHF+WUGFWtWpVff/3VVeGWakqORERE3JjNZiMkJIQxY8Y4kiJfzG0/lgCVgE1AC+C7HK6/9dZbWbNmDXFxcYSGhroo6tJN3WoiIiJurHnz5pw5c8Zx3AizG605cAl4DXgJSMvhWovFwtq1a10QZdmiliMRERE3NHPmTCwWi1NiNAhz64/mwHGgFzCR3BMjTdG/Mmo5EhERcSM2m4127doRHx/vKKsIzAKGpx+vx0yUjqUfN2vWjE2bNjFnzhzWrFmjKfqFpBWyr4BWyBYRkeISFBREUlKS4/h6zG60ppjdaJOBV9L/BnOz2NTU3JZ4lMzy+/utbjURERE3YLPZqFSpklNiNAyIxkyMjgLdgSn8LzHy9vbWZrHFQMmRiIhICbNarTRr1ozTp08D4A8sBOYDfsAazNloG9Pre3p68sYbb3DhwgUt5lgMNOZIRESkhNjtdm6//Xa2b9/uKLsBsxutCeZA64nA60DGGBhPT08uXsxpJSMpKkqORERESkjPnj2JjY11HD8CzMBcx+gQ5hYgmzPV9/b2JioqyqUxlkfqVhMREXExm81G5cqVHYlRIPAZ8AFmYrQasxstIzHy8vJSN5oLqeVIRETExdq1a0dCQgJgJkHLgIaY235MAN7mf91ogYGBToO0pfgpORIREXGhyMhIxxpG/wLeAXyAA8ADwLZMdQMCAvjll19cHmN5p+RIRETEhbZv304QMBe4L71sJfAQcCpTPU9PT8fsNXEtJUciIiIuMnv2bL6ZNIkdQH3gAvAcMD1LPS8vL61fVII0IFtERKSYWK1WvvvuO/bs2QOGwV//+hc/YyZG+4COOCdGXl5ezJ8/n9TUVA28LkFqORIRESlidrud8PBwIiMjAaiMuaDjtPTzK4ARQGKmaypUqMDu3bsJDQ11ZaiSA7UciYiIFLHw8HDWrVsHQHtgJ9AXSAEexxxrlJjlmuDgYCVGbkItRyIiIkXIarUSGRmJBXgGeA3wBv4G7sdMlHLSuXNnF0Uol6OWIxERkSKyfv16GjduTFXgG+D/MBOjJUArck+MAJYvX+6CCCU/lByJiIgUkVtvvZVOwC7gDuA8MBJzG5C8JuXPnTu3+IOTfFO3moiISBF49eWXGW8YTMH8cd2N2Y32ax7XeHl5kZqa6pL4JP/cuuXo7Nmz1K9fH4vFwmOPPZbt/PHjxxk+fDjVq1fH19eXG2+8kQ8//DDX+y1evJjWrVtTsWJFQkJCGDhwIAcOHCjOjyAiIuXAL2vX0vY//+E1zMToE6ANeSdGVatWxWq1uiQ+KRi3bjn6z3/+w8mTJ3M8l5CQQKdOnTh8+DBjx44lNDSUlStXMnLkSI4cOcKkSZOc6s+aNYvRo0fTsWNHpk6dSlxcHNOmTWPTpk1ER0dTs2ZNV3wkEREpazZs4KqePWkOnMWcjbYgh2oRERG0bt2arVu3EhYWRo8ePVwaphSA4aZ27NhheHp6Gm+99ZYBGI8++qjT+fHjxxuAsWLFCqfyu+66y/D29jb27t3rKIuLizMCAgKMVq1aGampqY7y6Ohow2KxGCNGjChQbImJiQZgJCYmXsEnExGRsuCvP/4wtvbubVwEwwDjNzCuN/eLzfayWCwlHa4Y+f/9dstutbS0NB555BF69erFvffem2OdRYsWERoayj333ONU/tRTT5GamsrSpUsdZStXriQ5OZkxY8bg5fW/xrI2bdrQpUsXli1bxoULF4rnw4iISJlit9sJv+UWDl5/Pe2//x5P4CPgJuCPXK7ZuHGjy+KTwnPL5GjatGn88ccfzJo1K8fzx44d4+DBg4SFhWU7FxYWhsViISoqylGW8XeHDh2y1e/QoQOnT59m9+7ducaTkpJCUlKS00tERMqnf7dqxdSNG+kOJAODMVe7PptL/fnz59OlSxeXxSeF53bJ0YEDB5g0aRITJ07MdaXQw4cPA1C7du1s53x8fAgJCeHQoUP5qp9Rlrl+VhEREQQFBTlederUyf8HEhGRMiF2+3Ze8/BgzoEDVAf+izno+tM8rvH29mbYsGEuiU+KjtslR6NGjaJu3bo888wzudY5e9bMz318fHI87+vr66hzufq+vr5OdXIyYcIEEhMTHa+DBw9e/oOIiEjZcegQZ9u353nDwAN4H2gH/JXHJZ6enk69GFJ6uNVstc8++4zvvvuOH3/8EW9v71zr+fn5AWZ3V07OnTtHjRo1cqxfsWLFbHUz18mJj49PromYiIiUbUc/+gjvESPoDCRhLuq49DLXWCwWLl68WPzBSbFwm5ajCxcuMG7cOO68806uueYa9u/fz/79+x3dXadPn2b//v0kJiZSq1YtIOeusPPnzxMfH+/UhZZX/by63EREpBxLTWXfgAFcPWIEIcAOoDX5S4x27NhR/PFJsXGb5Ojs2bOcOHGCVatWERoa6nhlbMT32WefERoayuzZs6lRowa1a9dm69at2e6zbds2DMOgbdu2jrKMv7ds2ZKt/pYtWwgICKBJkybF9MlERKS0+Xb2bHYEBhK6bBkAs4AOmJvH5qVp06bEx8fTokWLYo5QipPbdKv5+/vz5ZdfZis/ceIEjz76KL169eKxxx6jadOmAISHh/Pmm2/yxRdfOE3nf+edd/Dy8mLAgAGOsr59+zJmzBhmzJjBoEGDHNP5Y2Ji2LRpEw899BAVKlQo5k8oIiLuzGq18vnnn/PLyy/zfkoKVYAEzJloX+RxnaenJ9988w0NGjSgYcOGLolVipfbJEfe3t7cfffd2cr3798PQL169ZzOjx8/nuXLlzN48GBiY2MdK2SvWrWKiRMnUr9+fUfdkJAQXnvtNcaOHcvNN9/M4MGDiYuLY+rUqVSvXp0pU6YU86cTERF3Zbfbue+++9i8YQOvA8vSy6OAB4B9eVzr6elJTEyMWorKGLdJjgqqcuXKbN68meeff54PP/yQpKQkGjRowOzZs3Pch+3JJ58kJCSEt99+m7Fjx+Ln50ePHj2IiIhwjEkSEZHyY968eWzcuJFdu3aR/Ntv/IQ5Aw1gKvBvIK8tYX18fDh//nyxxymuZzEMwyjpIEqbpKQkgoKCSExMpFKlSiUdjoiIFEBsbCxhYWGkppqpTz/MFa6DATswDPjmMvewWCzYbLZc1+MT95Tf32+3GZAtIiJS3CIjI7nppptITU2lAjADczxRMLAVaMnlE6PAwEAlRmWckiMRESnzbDYbISEh9O7dm0uXLnEtsAUYnX7+DaAL8E8e97j22mtZsWIFSUlJSozKuFI75khERORyrFYrNpuN++67z7ETQn9gLlAJiAOGAN/lcY/AwEC++uorunXrVuzxintQy5GIiJQ5drud3r1707hxY26//XbOnj2LLzAbczZaJeAnoAW5J0ahoaGOliIlRuWLWo5ERKTMCQ8PZ926dY7jRphJUXPgEhABTALSMl3j5eXF7NmzAejatavWLCrHlByJiEiZYrVaiYyMdBwPwtwoNgA4ATwIrM1yjbe3N1FRUVqvSAB1q4mISClmtVr57rvv2LNnj+P4tddeA6Ai5tiiTzETow2YLUeZE6MKFSowf/58Lly4oMRIHNRyJCIipY7dbic8PNyphahq1arEx8cDcB1mN1ozzG60KcDL6X9nCAgI4L///a9mnkk2So5ERMTtZcw6O3r0KIcOHeKbb75h586dTnUyEqOhwHuAH3AUs1ttQ5b7eXp6cvr06eIPXEolJUciIuK2cmohyo0/8C5mcgSwBhiMOc4os4zxRSK50ZgjERFxW+Hh4axdm3X4dHbNgGjMxCgNeAHoTfbE6N5779X4IrkstRyJiIhb+uKLL/LVYvQw5jYgFYHDwEDMNYyyslgsLF++vEhjlLJJyZGIiLiNefPmsXHjRrp3787DDz+cZ91AYA5mMgSwGrPlKC6HuhaLhY0bNxZlqFKGKTkSEZESFxsbS1hYGKmpqQB8+umnedZvgTkbrSFwEXgemF+lCnF2u6NOgwYNqFGjBnfccQfjx48vpsilLFJyJCIiJS5zYnQ5o4CpgA9wyGLh4P/9H4/06cObDRuyZ88e/v77bxo0aKAVruWKKTkSEZESNW/evHwlRpUwF3Xsn378vbc3123fTljLlo46DRs2VFIkhabZaiIiUmLWr19/2bFFAG2AnZiJ0QXgr0cfpXdKCnUzJUYiRUUtRyIiUiJsNhvdu3e/bL0xwP8BFYB9QOonn9D4wQeLOTopz5QciYiIy0VFRdGuXbs861QGFlgs9DEMAPa3bk3ounUQHFz8AUq5pm41ERFxGbvdTu/evS+bGLXD7EbrYxhQoQLMnEm96GglRuISajkSERGXCQ8PZ82aNbmetwBPARGAN8C118KyZdCqlWsCFEEtRyIi4iIZK14b6d1kWVUFvgbeIj0xGjAAduxQYiQup+RIRERc4r777sv1XEfMbrQ7gfPAnqefhsWLoVIlF0Un8j9KjkREpNhYrVYiIiKwWCw5thhZgPHARqAO8BcQ/+23NHzrLbBYXBqrSAaNORIRkSJnt9sJDw/Pc+PYasAnQK/049VVqhC2axeV69RxRYgiuVLLkYiIFCmr1UqPHj1Yu3ZtrnW6ArswE6OzwFd33cXtcXFKjMQtqOVIRESKhN1up2/fvmzevDnXOh7AC8AkwBP4HRjk5cWur792TZAi+aDkSERECiUyMpINGzYwe/ZskpKScq1XHVgEZKyJ/RHwpMXCT9HRLohSJP+UHImIyBWx2Wy0a9eO+Pj4y9btjpkYVQeSgVHAp4Bx6VKxxihyJTTmSERErkh+EiNPYAqwBjMx+i/mJrKLLBZ+/PHHYo9R5EooORIRkQKLjIy8bGJUE/gBmIj5YzMHGH799QyLiODSpUt06dKl+AMVuQLqVhMRkQLbvn17nud7YU7TrwacBh4B1lWtStzvvxd/cCKFpJYjEREpsNOnT+dY7oW5L9r3mInRTqAVZmIUrYHXUkpYjNw2uZFcJSUlERQURGJiIpW0tL2IlEOWHFavrg0swdwKBOCzKlX4c/hwuvTsSY8ePVwZnkiO8vv7rW41ERHJN5vNRuPGjbOV3wkswNw8NtnTk9NTpxI+erSLoxMpGkqOREQkT1arFZvNhre3d7YWIG/MbrSn04+jgadr1GCTEiMpxZQciYhIji63P1o9zG60dunHU4F/A4N79cqxvkhpoeRIRERyFB4enuv+aHcD84Fg4BQwDMjYAGTevHnFH5xIMdJsNRERyWbdunVERkZyKcsK1hWA6cCXmInRVqAF/0uMlixZ4rogRYqJWo5ERCSbO+64I1tZfWAp5grXAG9ibiJ7EfD09OTixYsui0+kOKnlSEREHNavX4/FYuHChQtO5f0x1yxqA8QBd2COL8pIh/bs2ePKMEWKlZIjEREBzAHY3bt3dyrzAd4DlgGVgJ8wu9FWp5/39PRk7969hIaGujBSkeKl5EhERLDZbISEhDiVNQS2AaPSj18DbgEOpx+3bt2akydPKjGSMkdjjkREyimr1cqyZcs4efIk8+bNI/OGCeGYG8UGACeAwcAaIDg4mM8++4wGDRrQsGHDEolbpLgpORIRKWfsdjt9+/Zl8+bN2c5VBGYAD6cfbwAGAUcBPz8/duzYoZYiKfOUHImIlDM9e/YkNjY2W/l1mGOLmgGXgJeBKel/A5w5c8ZVIYqUKCVHIiLlhM1mo02bNiQkJGQ7NxR4F/DHbCUahNlqlOHHH390RYgibkHJkYhIOdGuXbtsiZE/ZlI0NP14LfAg5jgjAIvFQnx8PJUrV3ZVmCIlTrPVRETKgVmzZhEfH+9U1gxzo9ihQBrmgo69+V9iFBwcjM1mU2Ik5Y5ajkREyjCr1crnn3/Oiy++6FQ+ApiJOQD7MDAQcw2jwMBAnnnmGcLCwujRo4fL4xVxB0qORETKILvdzn333ceGDRucygMwp+iHpx9/BwzBXPW6SpUqxMTEaDaalHvqVhMRKYPCw8OzJUbNgVjMxOgi5vYfdwB2Dw/WrFlDfHy8EiMR1HIkIlLmrFu3jsjISKeyx4CpgC/wD/AAsDX93Buvv64uNJFM3Krl6K+//mLQoEFcd911BAUF4e/vz3XXXcfTTz/NsWPHstU/fvw4w4cPp3r16vj6+nLjjTfy4Ycf5nr/xYsX07p1aypWrEhISAgDBw7kwIEDxfmRRERcxmq18tFHHzklOpWApcBszMToa6Al/0uMPD09efbZZ10dqohbc6uWo0OHDnHs2DH69etH7dq18fLy4tdff2XOnDksXryYnTt3Ur16dQASEhLo1KkThw8fZuzYsYSGhrJy5UpGjhzJkSNHmDRpktO9Z82axejRo+nYsSNTp04lLi6OadOmsWnTJqKjo6lZs2ZJfGQRkUKJjIxkw4YN/PDDD8TExDida42ZGF0LpGJ2o03Ncn3Wa0QEMEqBpUuXGoDx6quvOsrGjx9vAMaKFSuc6t51112Gt7e3sXfvXkdZXFycERAQYLRq1cpITU11lEdHRxsWi8UYMWJEgeJJTEw0ACMxMfEKP5GISOH8/fffRqVKlQwgx9cYMFLAMMDYC0bbLOf9/f2d/p0UKQ/y+/vtVt1quckYIHjq1ClH2aJFiwgNDeWee+5xqvvUU0+RmprK0qVLHWUrV64kOTmZMWPG4OX1v8ayNm3a0KVLF5YtW8aFCxeK+VOIiBQNm81Gw4YNSUpKynYuGPgCmA5USP+7JeZ6RgA1atRgxYoVJCcna/C1SC7cqlstw/nz50lOTub8+fPs3r2b8ePHA3D77bcDcOzYMQ4ePEh4eHi2a8PCwrBYLERFRTnKMv7u0KFDtvodOnTgxx9/ZPfu3dx44405xpOSkkJKSorjOKd/kEREXKVp06YYhpGt/CbMbrR6QArwNObq1xn8/f05evSoK0IUKdXcsuVo7ty5VKtWjTp16tCjRw9OnDjBxx9/zC233ALA4cOHAahdu3a2a318fAgJCeHQoUOOsrzqZ5Rlrp9VREQEQUFBjledOnWu/MOJiFyh2NhYvLy8nP5jDcACPAVsxkyM/gY64JwYWSwWfv31VxdFKlK6uWXL0d13302TJk1ITk5m586dfPPNN05damfPngXMRCgnvr6+jjqXq+/r6+tUJycTJkzgqaeechwnJSUpQRIRlwsLCyMtLc2prArwMXBn+vFSYCSQuX07MDCQX375Rd1oIvnklslR7dq1HS06d999N/feey9t27bl7NmzTJgwAT8/P4Bs//WU4dy5c9SoUcNxnLl+xYoVs9XNXCcnPj4+uSZiIiKuMG/ePFJTU53KOgBLgDrAeWAs5urXAK1bt6ZHjx5069ZNaxiJFJBbdqtldeONN9KyZUvee+89AGrVqgXk3BV2/vx54uPjnbrQ8qqfV5ebiIi72Lhxo+NvC+a0/B8xE6O/gHaYidFHH32E1WolJiaGiIgIJUYiV6BUJEdgtvDY7XbAnG1Ru3Zttm7dmq3etm3bMAyDtm3bOsoy/t6yZUu2+lu2bCEgIIAmTZoUU+QiIlfOarUyceJEPv30UwCqAauB1zGb/j8F2gBWX1/27t3LQw89RMOGDUssXpGywK2So5xWwQbYsGEDv/32G+3bt3eUhYeHs2/fPr744gunuu+88w5eXl4MGDDAUda3b1/8/PyYMWMGFy9edJTHxMSwadMm7r//fipUqFDEn0ZE5MpFRUXRunVrGjduzCuvvAJAF2AX0Bs4C4wABgPnPD05d+6cxhSJFBGLkdN80BLSr18/jh49Srdu3ahbty7nz58nNjaWJUuW4Ofnx8aNG2nRogVgrnnUpk0bjh075rRC9qpVq5g4cSJTpkxxuvf06dMZO3YsHTt2ZPDgwcTFxTF16lS8vb2JiYlxdL3lR1JSEkFBQSQmJlKpUqWifAQiUs7Z7XZ69uxJbGyso8wDeB54CfAE/gDuB34HPDw8iI2NdfzbKCK5y+/vt1slR8uWLePjjz/mv//9LydPnsRisVC3bl169OjBs88+yzXXXONU/+jRozz//PN8++23JCUl0aBBA5544gkee+yxHO+/aNEi3n77bf7880/8/Pzo0aMHERERBf6vLSVHIlLUrFYrmzdv5tFHH3Vq4a6O2XV2a/rxfOAJzJYjMMdk/vLLLy6NVaS0KpXJUWmh5EhEikpUVBSjRo1ix44d2c51AxYBNYAzwCjgkyx1nn76ad56661ij1OkLMjv77dbTuUXESnrcuo+y+AJ/Ad4EbNL7VegP+astKyUGIkUPSVHIiIuZrPZaNKkiVP3WYargcVA1/TjD4AnMdcxymrVqlXFFqNIeabkSETEhex2e66JUS/MbrNqwGnMla6XZDp/zTXXEBAQwG233aYWI5FipORIRMSFWrZsmS0x8gReBiakH+8EBgB7Ms57erJt2zbatGnjsjhFyjO3WudIRKSsio2NxdPTk3/++cepvDawkf8lRu8CYfwvMQoODmbPnj1KjERcSC1HIiLFzGaz5Zjc3IG5aWxVIBF4GFiO9kUTKWlKjkREilnz5s2djr2B14Bn0o+jMbvRDnh4EL19u1qJREqYkiMRkWI0a9Yszpw54ziuiznIOmMzpGmYm8he8vLib6tVW4CIuIFCjTn64YcfLlvn1VdfLcxbiIiUWmvXrmX06NGO476Yg63bA6eAu4FxwNV163LixAklRiJuolDJ0b333st///vfXM//3//9H//5z38K8xYiIqWO3W6nd+/e9OzZE4AKmC1EXwGVgW1AC2Al5t5o+/fvp3LlyiUSq4hkV6jkqGnTptx2223ZZl+AudHrv//9b4YPH16YtxARKXW6du1KZGQkAPWBnzEXcgT4P6AzkPGvZk4rZItIySpUcrRq1SoqVapE7969sdvtjvL33nuPcePGMXjwYD788MNCBykiUhrYbDYCAgL47bffALgP2AG0AeIxZ6c9B2SscvTmm2/SokWLEohURPJS6I1nDxw4QFhYGPXr12fdunV8+umnPProowwYMIBFixZhsViKKla3oY1nRSQrm81Gw4YNMQwDH+Ad4F/p5zYDA4FDmep7enrmuEq2iBQfl208W7duXVavXk3Xrl3p0KED//3vf+nXrx+ffPJJmUyMRERy0rJlSwzDoCGwDHNMEZhT9v8DpGWpHxMT48LoRKQgimSF7BYtWvDFF1/w+++/c8cdd7B06VI8PT2L4tYiIm5vwYIFnD59moFALGZidAJzr7QXcE6MfHx82Lt3r7rTRNxYgVqO6tevn+d5T09PduzYQcOGDR1lFosFm812ZdGJiLgxq9XKggULmBYRwQfAI+nlG4BBwNEs9f39/UlOTnZpjCJScAVKjq655po8u8rq1q1b6IBERNyd3W7n7rvv5qeffqIJsB24AbiEuYHslPS/M6tatSrR0dEujlRErkSBkqONGzcWUxgiIu5v3rx5bNy4kV27dvHbb78xBHgP8AeOYbYWrc/huo8//pghQ4a4MlQRKQRtHyIichkrVqxgwIABpKWZo4f8gPnAsPTz64AHgeM5XKvESKT0KbLk6OzZs8THx5PTygDXXHNNUb2NiIjL2O12evbs6bRQY1PM2WjXYw60ngREkL0bDSA4OFiJkUgpVKjk6NKlS7z55pvMnDmTY8eO5Vov47+2RERKC5vNRpMmTZzWIhoBzAQqAoeBcGBTLtd7e3uzY8eOYo9TRIpeoZKj8ePH89Zbb9G0aVPuvfdeqlatWlRxiYiUGLvdTuPGjR3/YRcAvI85pgjgO2AIEJfL9a1bt2bt2rXaL02klCpUcvTpp5/Su3dvVq9eXVTxiIiUKLvdTu3atR2JUXNgKdAYc9uPFzD3R8tpa4GAgABWrlxJt27dXBWuiBSDQiVHp06dom/fvkUVi4hIibLZbDRq1IhLl8wRRI8BUwFf4CDwALAlU30vLy9eeuklTpw4wZ133kmPHj1cHrOIFL1CJUdNmzbl6NGsy5yJiJQuVquVzZs3M2LECAAqAR8AA9LPf4M5M82e6Rpvb2+ioqK00rVIGVSo7UMmTpzI+++/z8GDB4sqHhERl7Hb7fTu3ZvGjRs7EqNWwA7MxCgVeArog3NiNHPmTC5cuKDESKSMKlTL0S+//ELdunW5/vrr6devH6Ghodn2VLNYLEycOLFQQYqIFIfw8HDWrl3rOH4CeAvwAfZjJkhRmep7enqyZ88eQkNDXRmmiLiYxchpYaJ88vC4fMOTxWIpc1P5k5KSCAoKIjExkUqVKpV0OCJyBSZOnMgrr7wCQDAwD7gn/dyXwHAgIVP9ihUrcvjwYc1AEynF8vv7XaiWo3379hXmchERl7PZbLRr1474+HgAbgKWAKFACvAMMCvLNR4eHkqMRMqRQiVH2mhWREqbzInROOANwBuwAfdjjjfK6u+//1ZiJFKOFGpAtohIaRIZGUl8fDxVgK+BdzATo2X8byB2ZoGBgezdu1djjETKmULvrXbx4kW++uortm/fzqlTpxzrg2SwWCzMmzevsG8jIlJoixcvpgOwGLgGOA+MBeZkqXf77bczduxYrVskUk4VakC23W7nlltu4bfffsMwDCwWi2Pj2Yy/NSBbRNyBPS6ON6tV4xXM/yq0Ynaj/ZKlnre3NxcuXHB5fCJS/PL7+12obrUXX3yR3bt3M3fuXGw2G4ZhEBkZyZ9//snAgQNp27ato29fRKQkWK1Wpj7/PNurVeN1zMRoEdCanBOjqKiobPcQkfKlUMnRt99+y5AhQ3jooYccGZinpyeNGzfm008/pWLFikyYMKFIAhURKQi73U779u15uHFj7o+I4DbgHDACeBBIzlK/fv36WthRRIBCJkfHjh3jpptuAsw9hgDOnz/vOH/33Xfz9ddfF+YtREQKzG6306RhQ27dvp0NQC3gD6At8FEu1zzyyCMui09E3FuhBmRXqVKFs2fPAuasDm9vb6etRLy9vTl16lThIhQRKaBht93GZ3Y7t6YfLwAeB87mcc348eOLPS4RKR0K1XLUqFEj/vzzT/NGHh60bNmSBQsWkJKSwtmzZ1m4cCH169cvkkBFRPLj4Mcf80FUFLcCZ4ChwEPknRj9+OOPLolNREqHQiVHPXv2ZNmyZaSkpADw1FNPsX37dqpUqcJVV11FdHQ048aNK5JARUTylJZG/BNPUGvYMGoAvwJtgIV5XGKxWLDb7XTp0sU1MYpIqVCoqfyGYXDhwgV8fHwcZStWrGDRokV4enpy3333MWDAgCIJ1J1oKr+Iezn1++/s69iRVomJAHwIPIk5ADs3wcHB7NixQws8ipQjLpnKb7FYnBIjgHvvvZcvvviCzz//nFq1atG9e/fCvIWISJ7+mjGDi82a0SoxkdNAODCS3BOj0NBQVqxYwalTp5QYiUiOrnhAdnx8PDabjapVq3Lttdc6nYuKimLixImsW7cODw/tUCIiRc9+4gTft21L+D//ALALc1HHPXlc07RpU3777TcXRCcipVmBM5e0tDQee+wxqlevTlhYGI0aNSIsLIwTJ05w+vRpHnzwQcLCwli/fj3h4eH8+uuvxRG3iJQzVquV7777jj179sDBgxxs0MCRGL0LtCfvxAigTZs2xR2miJQBBW45mjlzJh988AF16tShXbt2/P3332zfvp1Ro0Zx/Phxtm3bxuDBg5k4cWK2FiURkYKy2+2Eh4cTGRkJwO3AJxYLzQ2DROBhYHk+7/XCCy8UU5QiUpYUODn65JNPuOGGG9i6dSt+fn4APP7448yePZuQkBB+/vln2rVrV+SBikj5FB4ezrp16/ACXgOeBTAMYoABwN583qdNmzY0bNiwmKIUkbKkwN1qVquVIUOGOBIjgFGjRgHmImpKjESkqERFRREZGUmttDR+Ij0xAqYDHcl/YtSrVy/WrFlTLDGKSNlT4JajM2fOUKNGDaeyjONmzZoVTVQiUq5ZrVZ27drFsGHD6AvMByoDpzAXdFx5mesDAwNZv349J0+epEGDBmoxEpECuaLZahaLJcfjjP3VRESuhN1up2/fvmzevBlv4E1gbPq5bcADwIHL3CMoKIh9+/ZRuXLlYoxURMqyK8pmVq1axaFDhxzHZ8+exWKxsGTJEmJiYpzqWiwWnn322ay3EBFxYrfbCQ0NJSkpiVBgKeZGsQBvAc8DqZe5R6dOnfj666+VGIlIoRR4heyCrltksVhIS0sr0DXuTitkixQtm81GkyZNuHjxIvcC84AgIB5zb7RvL3N9q1atmDNnjqbqi0ie8vv7XeCWow0bNhQqMBGRrNq0aYPnxYtMAx5PL9sMDAQO5XJNcHAwn332mcYUiUiRK3By1LVr1+KIQ0TKIavVytSpUwlJSGAZ0DK9/DVgEnAxl+uqVKlCTEyMtv8QkWKhvT1ExOXsdjudO3emcePGJLz/PjswE6OTQC/gBXJOjHx8fFixYgXx8fFKjESk2LhVcmS1WvnPf/5D+/btqVatGoGBgbRo0YJXX32VM2fOZKt//Phxhg8fTvXq1fH19eXGG2/kww8/zPX+ixcvpnXr1lSsWJGQkBAGDhzIgQOXm/siIkUpKiqKunXrErN5M3OAxUAgsBFoDuS2GlGnTp04evQo99xzj4siFZHyyq3m3n/00UfMmjWLu+66i/DwcCpUqMCGDRt48cUXWbZsGdu2baNixYoAJCQk0KlTJw4fPszYsWMJDQ1l5cqVjBw5kiNHjjBp0iSne8+aNYvRo0fTsWNHpk6dSlxcHNOmTWPTpk1ER0dTs2bNkvjIImWe1Wrlxx9/5OzZs6xYsYKffvqJxsDnwA3AJeAVYAqQ09SNpUuX0rJlS40rEhHXMdxIdHS0cerUqWzlL7zwggEYs2bNcpSNHz/eAIwVK1Y41b3rrrsMb29vY+/evY6yuLg4IyAgwGjVqpWRmprq9H4Wi8UYMWJEgeJMTEw0ACMxMbFA14mUJ/Hx8Ua7du0MwOk1GIxkMAwwjoLRPcv5zK8333yzpD+GiJQh+f39dqtutTZt2hAcHJyt/P777wfg119/dZQtWrSI0NDQbE3sTz31FKmpqSxdutRRtnLlSpKTkxkzZozTQpVt2rShS5cuLFu2jAsXLhTxpxEpn6xWK9OmTeOaa65h+/btjnI/4CNgIeAPrANaAD/kch9vb2+tkSYiJcKtkqPcHD58GICrrroKgGPHjnHw4EHCwsKy1Q0LC8NisRAVFeUoy/i7Q4cO2ep36NCB06dPs3v37lzfPyUlhaSkJKeXiDiz2+1069aNxo0bM27cOKdxgtcDUZhbf6QBEzEHXh/P5V7e3t5O/xsWEXElt0+O0tLSmDJlCl5eXgwaNAj4X7JUu3btbPV9fHwICQlxWsE7r/oZZZnrZxUREUFQUJDjVadOnSv/QCJlVHh4eI7roA0HooGmwBGgG+YYo0s53KN69erMnz+fCxcu0KJFi2KMVkQkd26fHI0ZM4Zt27bx0ksv0bhxY8DcrgTMRCgnvr6+jjqXq+/r6+tUJycTJkwgMTHR8Tp48OCVfRiRMuqLL74gMjLSqSwA+ARztWs/4HvMbrRNudyjW7du/PnnnwwbNqz4AhURyQe3mq2W1Ysvvsh7773Hww8/zPPPP+8o9/PzA8zurpycO3eOGjVq5Fg/Y7Zb5rqZ6+TEx8cn10RMpLyz2+3ce++9TmU3AsuAxpjrFb2IuYls1r2Krr/+ekaOHMntt9+u2Wgi4jbcNjl66aWXePXVVxkyZAhz5szBYrE4ztWqVQvIuSvs/PnzxMfH07lz5xzrZ/0HOK8uNxHJm81mo1GjRk5lI4HpgC9wEHMLkJ8znW/fvj3jxo3T9HwRcVtu2a02efJkJk+ezIMPPsj8+fOzbXZbo0YNateuzdatW7Ndu23bNgzDoG3bto6yjL+3bNmSrf6WLVsICAigSZMmRfwpRMouq9XKK6+8wvXXX8+lS+booUBgCTAHMzH6BrMbLSMxuv7664mOjmbr1q3cf//9SoxExH25ZmWB/Js8ebIBGIMGDTIuXryYa73nnnsu13WOvLy8DJvN5ig7efKk4efnl+s6R8OHDy9QjFrnSMqr+Ph4o1OnTtnWI2oFxp70tYsugPFUpnN16tQxoqOjSzp0EZF8/35bDMPIOgygxLz77rs88cQTXHPNNUyZMgVPT0+n89WrV6dHjx4AnDp1ijZt2nDs2DGnFbJXrVrFxIkTmTJlitO106dPZ+zYsXTs2JHBgwcTFxfH1KlT8fb2JiYmxtH1lh9JSUkEBQWRmJhIpUqVCv/BRUqJzp07s3nzZqeyJ4C3AB9gP/AAkLG6kaenJxcv5rZ9rIiIa+X799slqVo+DR06NNeVcgGja9euTvWPHDliDBs2zKhWrZrh4+NjNG3a1Jg9e3au9//000+Nli1bGr6+vkaVKlWMAQMGOK2knV9qOZLyJj4+3mjdurXT/x6DwFie3lpkgPEFGMFZ/je7c+fOkg5dRMShVLYclRZqOZLypnfv3k5T9dsCS4FQ4ALwDDAzU30PDw/i4uKoXLmyS+MUEclLfn+/3XJAtoi4j3Xr1jklRuMwB1mHAjagA86JUXBwMH///bcSIxEptZQciUie7r77bgAqAyuBdwBv4HOgFRCbXq9ixYqsWbOGU6dOERoaWgKRiogUDbdd50hESpbdbqdnz56cOXOGMMxp+tcA5zFbj97PVDcwMJBffvlFSZGIlAlKjkQkR3379mVHbCzPAq9h/mNhBe4HfslULzAwUJsxi0iZouRIRJxktBgdiI1lFXB7evki4DEgOVNdHx8ffvnll2z3EBEpzZQciYiD3W4nNDSU5klJ7AJqAeeA0ZgbyGbVv39/daWJSJmjAdkiApj7pF191VWMTkpiA2Zi9CdwEzknRgDdu3d3WXwiIq6iliMRwWq10rN5c1alpdEjvWwB8DhwNpdrvL29GTZsmCvCExFxKSVHIuWY3W7nvvvugw0b2ApcDZwB/gUszOM6T09PoqKiXBKjiIirKTkSKcceHDiQrhs2MBGzj/03zNlof+Zxjb+/P8nJyXnUEBEp3ZQciZRTm5Ys4dk1a7gl/fhD4EnMAdi5qVq1KtHR0cUfnIhICdKAbJFyKDYigiYDB3ILcBoIB0aSe2I0cuRI1qxZQ1xcnGaniUiZp5YjkXLEfuIEkWFhDNi7Fw9gF2Y32p48runcuTNz5sxxSXwiIu5ALUci5cWhQxxs2JCB6YnRe0B78k6MevXqxcqVK10Tn4iIm1ByJFIerF7NhaZNaZ6URBJma9HjQEou1evXr090dDTff/89lStXdl2cIiJuQN1qImWU1Wpl719/0XzZMq7+9FMqADHAAGBvHtf5+/tjs9lcE6SIiBtSciRShlitVlavXs3cuXM5/fvvLMFcuwhgBvAscCGP6y0WC7/++muxxyki4s6UHImUARmLOW7YsAGAPsB8oApwChgOfHWZe1SsWJHff/9ds9FEpNxTciRSykVGRjJq1Cj27duHN/AmMDb93HbMbrQDl7mHt7c3Z8/mtlGIiEj5ouRIpJSy2Wy0a9eO+Ph4AEKBpUDb9PNvAc8Dqfm419y5c4slRhGR0kjJkUgplTkxugf4CAgC4oFhwKp83qdq1aoMGTKkOEIUESmVNJVfpBSaNWsW8fHx+AAzgRWYidHPQEsKlhhpOxAREWdqORIphZ588kkaYHajtUoviwD+A1zMoX6vXr145ZVXOHnyJMePH+eff/4hLCyMHj16uCpkEZFSQ8mRSCnz4osv0v/SJT4AKgEngcFAZA51AwIC2LBhA23atHFpjCIipZm61URKiaioKFpddx11Xn2VJZiJ0Y9AC3JOjDp16sQ///yjxEhEpIDUciTipqxWKzabjZCQEP79739zZMMGlgE3ApeAV4HJQFqW63r27MmsWbNo2LChq0MWESkTlByJuJmoqCgeeugh/vjjD0fZg8DXQABwLP34h1yu79ixoxIjEZFCUHIk4ibsdju3334727dvd5T5Yc5GG55+/AMwCDiex33CwsKKLUYRkfJAyZGIG7Db7TRq1MixbhHA9cAyoClm19lkzK60S3ncp2rVqpqBJiJSSEqORNxAt27dnBKjh4BZmC1HR4BwzMHXealSpYrWLBIRKQKarSZSgqKiomjQoAG//PILAP7AQszVrv0wZ6G1IPfEqGLFiowcOZI1a9YQHx+vTWNFRIqAWo5ESkBO44tuAD4HGmMu5Pgi5iayRi73aN++PatXr6Zy5crFHa6ISLmi5EjExex2O6GhoSQlJTnKRgLTAV/gIDAQcyuQDFWrVuX7779n165dAHTt2lUz0kREiomSIxEXstlsNG7cmLQ0c3WiQOAD4IH086swN42Nz3RN8+bN2bBhA5UrV9aCjiIiLqAxRyIuYLVaWbZsGY0aNXIkRi2BWMzEKBV4BuiDc2LUvn17du3apa4zEREXUsuRSDGy2+2Eh4cTGem8wcfjwNuAD7AfM0HanuXaXr16sXjxYleEKSIimSg5EilG4eHhrF271nEcBMwF7ks//gpz2n5CpmsCAwNZv369utBEREqIutVEiskXX3xBZGQkly6Zyza2BXZiJkYXgCeBfjgnRu3bt+fAgQNKjERESpBajkSKgd1u595773UcjwXeACoAe4EBQEym+h4eHmzfvl1JkYiIG1DLkUgRW7t2LVWrVgWgMmbX2VTMxOhzzIHYmRMjT09P/v77byVGIiJuQi1HIkXEbrfTs2dPYmNjAWgPLAWuAc4D44D3s1wTGBjIgQMHNBtNRMSNqOVIpAjYbDZq1KhBbGwsFuBZ4CfMxMiKmShlTYw6deqkxEhExA2p5UikCLRu3ZrU1FSqYu6Ndnt6+WfAo0ByproeHh7s3r1bK1yLiLgptRyJFFJERASJiYl0AnZhJkbngEeAQTgnRgCxsbFKjERE3JhajkSukN1up2/fvvy8eTPPA1MAT+BP4H7gtyz1PTw8iIuLUzeaiIibU3IkcgXsdjuNGjXCMz6e74Ge6eUfY65+fSZL/eDgYHbs2KHESESkFFC3msgV6Nu3LzfEx7MLMzE6g7lh7DCyJ0YzZ87k1KlThIaGujRGERG5MkqORApo4fz5dNu8mXXA1ZjdZ20xW42yatasGU888YRL4xMRkcJRt5pIAZz64w9qDx/OkPTjucAYzAHYWXl7e7Np0ybXBSciIkVCLUci+bRp4kQuNG1KN8wZaIMwZ6TllBgFBwfz119/aYyRiEgppJYjkcuw/fUXX7ZowVPnz+OBOV3/fmBPDnUtFgvLly/nnnvucWmMIiJSdNRyJJKXQ4c43qwZz6QnRrOBMHJOjAAmTpyoxEhEpJRTciSSm9WrOX/ddXS4eJEkzNaif2Huk5abyZMnuyY2EREpNm6XHEVERNC/f3/q16+PxWKhXr16edY/fvw4w4cPp3r16vj6+nLjjTfy4Ycf5lp/8eLFtG7dmooVKxISEsLAgQM5cOBAEX8KKdVSU+G55+COO/BNTiYWaAV8fpnLfvzxRxcEJyIixc3txhw9//zzVKlShVatWpGQkJBn3YSEBDp16sThw4cZO3YsoaGhrFy5kpEjR3LkyBEmTZrkVH/WrFmMHj2ajh07MnXqVOLi4pg2bRqbNm0iOjqamjVrFuMnk1Lhn39IuO02gv/4A4AZmJvIXsjjEh8fH44eParB1yIiZYXhZmw2m+Pvpk2bGnXr1s217vjx4w3AWLFihVP5XXfdZXh7ext79+51lMXFxRkBAQFGq1atjNTUVEd5dHS0YbFYjBEjRuQ7xsTERAMwEhMT832NuL+//u//jAQPD8MA4xQY/cDgMq/AwEDDbreXdOgiIpIP+f39drtutfr16+e77qJFiwgNDc02APapp54iNTWVpUuXOspWrlxJcnIyY8aMwcvrfw1mbdq0oUuXLixbtowLF/JqH5Cyyn7sGIuvvppGzz5L0KVLRAEtgS8vc52fnx8HDhxQi5GISBnjdslRfh07doyDBw8SFhaW7VxYWBgWi4WoqChHWcbfHTp0yFa/Q4cOnD59mt27dxdfwOI2rFYr3333HXv27CFh50721a7NwGPHAHgb6ATsv8w9PD09OXTokBIjEZEyyO3GHOXX4cOHAahdu3a2cz4+PoSEhHDo0KF81c8oO3ToEDfeeGO28ykpKaSkpDiOk5KSChe8lAi73U54eDiRkZEA9AM+AloDdmAosCof9/Hy8sJqtSoxEhEpo0pty9HZs2cBMxHKia+vr6PO5er7+vo61ckqIiKCoKAgx6tOnTqFil1cy2q18uGHH9KxY0ciIyPxwRxo/QUQDPwMtCB/iVHr1q05ceKENpEVESnDSm1y5OfnB+DUopPZuXPnHHUuV//cuXNOdbKaMGECiYmJjtfBgwcLFbu4ht1up1u3bjRu3JiRI0eye/durgW2AKPT67wO3Axc7v+jgYGB/PDDD8TExKjFSESkjCu1yVGtWrUAnLrOMpw/f574+HinLrS86ufV5QZma1OlSpWcXuL++vfvz4YNGxzH9wM7MNcsOgncBkwALuZxj4oVK7JixQqSkpLo1q1bcYYrIiJuotQmRzVq1KB27dps3bo127lt27ZhGAZt27Z1lGX8vWXLlmz1t2zZQkBAAE2aNCm+gMWl1q1bx/r16wHwxdz2YylQCdiE2Y32/WXu0b59ew4fPqztQEREyplSmxwBhIeHs2/fPr744gun8nfeeQcvLy8GDBjgKOvbty9+fn7MmDGDixf/11YQExPDpk2buP/++6lQoYLLYpfiExUVRY8ePQBoBGwDHgMuAS8D3YAjeVzv7+9PdHQ0W7duVReaiEg55Haz1T755BPHdh4nT57kwoULvPLKKwAEBwfzxBNPOOqOHz+e5cuXM3jwYGJjYx0rZK9atYqJEyc6rZkUEhLCa6+9xtixY7n55psZPHgwcXFxTJ06lerVqzNlyhTXflApMlarFZvNRkhICP/+978dXWmDgPeBAOA48CCw7jL36tSpE19//bWSIhGRcsxiGIZR0kFkdvPNN+e6R1XdunXZv3+/U9nRo0d5/vnn+fbbb0lKSqJBgwY88cQTPPbYYzneY9GiRbz99tv8+eef+Pn50aNHDyIiIgo0+ygpKYmgoCASExM1/qgE2e12evbsSWxsrFN5RWAmMCL9eD1monQsh3v06tWLV155hZMnT9KgQQMaNmxYrDGLiEjJye/vt9slR6WBkqOSZ7PZuO6660hNTXUqvw5zg9imQBowGXgVs0stg7+/Px999BEtW7ZUMiQiUo7k9/fb7brVRPKjTZs22RKjYcC7gB/mmKJwIGsbpKenJwcPHlS3mYiI5KpUD8iW8mn58uUkJCQ4jv2Bj4H5mIlRJOZstJwSoz179igxEhGRPKnlSEqd8ePHO/6+AVgGNMFcr2gi8AaQta84MDBQm8SKiEi+qOVISpWoqChsNhsAjwDbMROjQ5grXb9O9sSoffv2SoxERCTf1HIkpcoDDzxAIDAHGJhe9i3mprHx6ce9e/fm3nvvBaBr164adC0iIgWi5EhKBZvNRps2baiXkEAk0BBIxdz+4x2cW4sGDBjAsGHDSiBKEREpCzSV/wpoKr/rVQoMZHByMu8APsAB4AHM1a8z8/DwIC0tzeXxiYiI+8vv77fGHIlbs9ls1AkMZF5yMu9iJkYrgZZkT4wAZs2a5dL4RESk7FG3mrgtq9XKo61a8eOZM9QHLgDPAjNyqR8cHMyoUaNcF6CIiJRJSo7E7djtdvr26UPrn38mEqgA7AUGADG5XOPl5cWOHTtcFqOIiJRd6lYTt2G1Wlm2bBmt6tXj6Z9/ZhpmYrQcaEXuiVGzZs04ceJEgfbHExERyY1ajqTERUVFMWrUKHbs2EE7zJWt6wIpwDhgdh7XtmnThujoaFeEKSIi5YSSIykRVquVXbt28eabbxIbG4sFeAZ4DfAG9gD3A7vyuEevXr1YvHhx8QcrIiLlipIjcSm73U54eDiRkZGOsqqYe6PdkX68GHgUOJ3Hfd544w2ee+65YotTRETKLyVH4lL9+/dn/fr1juNOmMlQbeAcMAaYe5l7VK1aVYmRiIgUGw3IFpdZt26dIzGyYK5uvQEzMdoNtCN/iZHGGImISHFSy5EUK6vVis1mw9PTkz59+gBQDfgE6JVeZyHwL+BMLvfw9/dn9OjRdOvWjR49ehR7zCIiUr4pOZJiYbfb6du3L5s3b3Yq7wp8BtQEzgKPAwvyuE+nTp34+uuvqVy5cnGFKiIi4kTJkRQ5u93OtddeS0JCgqPMA3gR+A/gCfwO9Af+zHJtYGAgCxYsoGLFijRo0ICGDRu6KGoRERGTkiMpUsuXL+fBBx8kJSXFUVYdWAR0Tz+eB4zGHICdmVqJRETEHSg5kiJhs9lo06aNU2sRmAnRIswEKRl4LP04M09PT7Zt20abNm1cEaqIiEielBxJodntdho3bkxaWpqjzBN4CXges0vtF8xFHa1Zrg0ODmbHjh3a+kNERNyGpvJLodhsNkJCQpwSo5rAD5hjjDyA94H2/C8xslgsXHvttaxZs4ZTp04pMRIREbei5Eiu2Nq1a2nQoAGGYTjKemNu+dEVSAIGAKOA85mu69mzJ9HR0ZqWLyIibkndalJgdrud22+/ne3btzvKvIBXgH+nH8diJka29OPAwEDmzp1Ly5YtNQNNRETcmpIjKRC73U5oaChJSUmOsjqYW4B0TD+eibmJ7IX0Y81CExGR0kTJkeSbzWbLNvD6TsxNY6sACcAI4Iv0cx4eHqxdu5Zu3bq5OlQREZErpuRILstqtbJ69Wqeeuopx/gibyACeDq9ThRmN9r+9GOLxUJcXJxai0REpNRRciS5ymlsEUA9YAnmRrEA7wDjgdRMdWw2mxIjEREplTRbTXK0fPlyateunS0x6gfsxEyM7EAfzNajjMTI09OTvXv3anq+iIiUWkqOxMnatWsJCgqif//+nDv3vw0+KgAzMMcTBQNbgBbAN5mubd68OSdPnlRiJCIipZq61QQwu9B69uxJbGxstnPXAkuB1unHb2Au8Hgx/djDw4Pt27dr+w8RESkTlBwJNpuNJk2acPHixWzn+gNzgUpAHDAE+C7TeS8vL6xWq1qLRESkzFC3Wjlnt9tzTIx8gfeAZZiJ0SbMbrTMiVHr1q05ceKEEiMRESlTlByVc126dMmWGDUCtmFu+3EJc+XrbsDh9PPNmzcnOjqamJgYzUgTEZEyR91q5VhUVBS///67U1k4MAcIAI4DDwLr0s9df/31fPzxxxpbJCIiZZqSo3LsgQcecPxdEXM22sPpx+uBQcAxzH3RvvrqK610LSIi5YKSo3LGarVis9nw9PRk3759AFyHObaoGWY32mTMrrRLwIoVK7jnnntKKlwRERGXU3JUTtjtdvr27cvmzZudyocC7wL+wFHMbrWN6ec+/vhjJUYiIlLuKDkqB+x2O6GhoSQlJTnK/DGToqHpx2swxxedTD/28/NjyJAhLo1TRETEHWi2Whlns9moXr26U2LUDIjGTIzSgOeB3vwvMQL45pvMa1+LiIiUH2o5KqMiIyPZvn07b775ptNU/YcxB15XBA4BA4HNWa7t1q2bBl+LiEi5peSojLHZbLRr1474+Hin8gDMKfrh6cerMVe7dq4FzZo1Y/ny5cUep4iIiLtSclTG3HTTTdjtdqeyFpiz0Rpi7oc2AXgbMLJc6+Xlxa+//uqCKEVERNyXkqMyJCIiIltiNAqYCvgAB4AHMFe/zsrb25uoqKhij1FERMTdKTkqA+x2O+Hh4URGRjrKKmFuGNs//Xgl8BBwKtN1EydOZN++fXTv3p1hw4a5KlwRERG3puSoDLj77rv56aefHMetMbvR6gMXgOeA6Vmu6dy5M1OmTHFZjCIiIqWFkqNSKGOV6wYNGnDq1CmnxGgM8H9ABWAvMACIyXJ9r169WLx4scviFRERKU2UHJUiOa1y7evrC0Aw8BHQL718Oea0/cT044YNGzJ9+nQaNGhAw4YNXRaziIhIaaPkqJRYvnw5Q4YM4dy5c07l58+fpx2wBKgHpABPAe9lquPt7c327dupXLmyq8IVEREptZQcuTGr1crmzZt5+umnSUhIyHbegpkIRQDewN/A/cDOTHX8/f359ddflRiJiIjkk5IjN5TbJrGZVQE+Bu5MP14CjAROZ6pToUIFkpOTiy1OERGRskjJkZux2+00bNgw23pFmXUEFgN1gPOYg7A/zKHed999VywxioiIlGXaeNbN9OzZM9fEyAKMBzZiJka7gZvIOTHS/mgiIiJXptwlR4sXL6Z169ZUrFiRkJAQBg4cyIEDB0o6LOx2O82aNSM2NjbH89WA7zDHF3kBnwBtgEOVK2dLgnr16qX90URERK5QuepWmzVrFqNHj6Zjx45MnTqVuLg4pk2bxqZNm4iOjqZmzZolEpfdbqdRo0bZNovN0BX4DKgJnAUeBxYAnTp14uuvv6Zy5crs2bOHv//+W1P1RURECsliGEbW/UfLpPj4eOrVq0ejRo3Yvn07Xl5mXhgTE8NNN93E8OHDmTt3br7ulZSURFBQEImJiVSqVKnQsXXu3DnHwdcewAvAJMAT+B1zNtrBwEC++uordZuJiIgUQH5/v8tNt9rKlStJTk5mzJgxjsQIoE2bNnTp0oVly5Zx4cIFl8eVMV0/q+rAGmAKZmI0D+hfty7T1qwhKSlJiZGIiEgxKTfJUcaO8x06dMh2rkOHDpw+fZrdu3fneG1KSgpJSUlOr6Jis9mylXUHdqX/32RgMDCrRQt+3rmTHj16FNl7i4iISHblJjk6fPgwALVr1852LqPs0KFDOV4bERFBUFCQ41WnTp0ii+vaa691/O2J2VK0BqgB/Bdz0PWq4GB27typhRxFRERcoNwkR2fPngXAx8cn27mM/cky6mQ1YcIEEhMTHa+DBw8WWVyNGjWiV69eVLBYWAtMxPx/yvtAO+BklSrs2LGjyN5PRERE8lZukiM/Pz/A7CLLKmO/sow6Wfn4+FCpUiWnV1FavHgxt/TsSSyQBDwAvFanDotWrCA+Pp7Q0NAifT8RERHJXbmZyl+rVi3A7DrLOtU9ry43V6hcuTLff/89e37/nR3bt/Ny586aji8iIlJCyk3LUdu2bQHYsmVLtnNbtmwhICCAJk2auDosJw2bNuXm4cOVGImIiJSgcpMc9e3bFz8/P2bMmMHFixcd5TExMWzatIn777+fChUqlGCEIiIi4g7KTbdaSEgIr732GmPHjuXmm29m8ODBxMXFMXXqVKpXr86UKVNKOkQRERFxA+UmOQJ48sknCQkJ4e2332bs2LH4+fnRo0cPIiIiHGOSREREpHwrN9uHFKWi3j5EREREip+2DxERERG5AkqORERERDJRciQiIiKSiZIjERERkUyUHImIiIhkouRIREREJBMlRyIiIiKZKDkSERERyUTJkYiIiEgm5Wr7kKKSsah4UlJSCUciIiIi+ZXxu325zUGUHF2B06dPA1CnTp0SjkREREQK6vTp0wQFBeV6XnurXYFLly5x5MgRAgMDsVgsRXbfpKQk6tSpw8GDB7VnWw70fHKnZ5M3PZ+86fnkTs8mb6Xt+RiGwenTp6lZsyYeHrmPLFLL0RXw8PCgdu3axXb/SpUqlYovWUnR88mdnk3e9HzypueTOz2bvJWm55NXi1EGDcgWERERyUTJkYiIiEgmSo7ciI+PD5MmTcLHx6ekQ3FLej6507PJm55P3vR8cqdnk7ey+nw0IFtEREQkE7UciYiIiGSi5EhEREQkEyVHIiIiIpkoORIRERHJRMnRFVq8eDGtW7emYsWKhISEMHDgQA4cOJDv62NjY+nduzdBQUEEBgZy8803s2nTpmz1jh49ygsvvEDv3r2pVq0aFouFYcOGFcm9i4u7Ppubb74Zi8WS4+urr766gk96ZVz1fH788Ucef/xxbrjhBgIDA6lWrRodO3Zk8eLFue4rVF6+OwV9NuXtu/Ptt9/Sp08f6tWrh5+fH5UrV6Z169bMmDGD8+fPF+rexcldn487fH9c9Wyy+u9//4u3tzcWi4UlS5YU6b2LlSEFNnPmTAMwOnbsaMyePdt4+eWXjapVqxo1a9Y0Dh8+fNnro6KijIoVKxp169Y1/u///s+YMWOG0axZM8PLy8tYu3atU90NGzYYgFGnTh3jtttuMwBj6NChRXLv4uDOz6Zr165GSEiI8cknn2R7HTx4sLAfPV9c+XzatWtnXH311ca//vUvY86cOcY777xjtGvXzgCMhx9+uFD3Lg7u/GzK23cnIiLC6Nevn/Hyyy8bH374oTFjxgyjf//+BmB0797duHTp0hXfu7i48/Mp6e+PK59NZmlpacZNN91kBAQEGICxePHiIrt3cVNyVEBxcXFGQECA0apVKyM1NdVRHh0dbVgsFmPEiBGXvUf79u0Nf39/48CBA46yhIQEo1atWkbDhg2d/oeVlJRknDhxwjAMwzh58uRlE4CC3Luoufuz6dq1q1G3bt2Cf7Ai4urns2HDBqf3MQzzH6vOnTsbgPHbb79d8b2Lmrs/m/L23cnNqFGjDMD4+eefi/zeheHuz6ckvz8l+WymT59u+Pv7G5MnT841OSrp705ulBwV0Lx58wzAWLBgQbZzXbt2NQIDA42UlJRcr7fZbAZgDBs2LNu5SZMmGYCxdevWHK+9XAJQmHsXBXd+Nhkx1K1b10hLSzMSExONtLS0y3+oIlSSzyez6dOnZ/uHqjx/dzLL6dlkxKDvjmG8+eabBmCsWrWqyO9dGO78fDJiKKnvT0k9m3/++ccIDAw03nzzTWP+/Pk5/u/KHb47udGYowKKiooCoEOHDtnOdejQgdOnT7N79+4rvj5znaKOrTD3Lor3L8lnk+Hw4cMEBAQQFBSEv78/t99+OzExMYW6Z365y/M5fPgwAFdddVWR3/tKufOzyXyuvH13Tp8+TVxcHPv27eOzzz7jjTfeoHLlyoSFhRX63kXJnZ9PhpL6/pTUs3n88cepV68e48aNK/J7u4JXibxrKZbxj2ft2rWzncsoO3ToEDfeeGOhri/O2IqLOz8bgHr16tGhQwduuOEGfHx82LlzJzNmzKBjx4589913dOvW7YrvnR/u8HwOHz7MnDlzqF+/Pp07dy7SexeGOz8bKL/fnYceeogVK1Y4jtu0acN7771HlSpVCn3vouTOzwdK9vtTEs/m888/Z9WqVWzevBkvr9zTDHf47uRGyVEBnT17FiDHfWR8fX2d6hTH9cUZW2G587MBWLBggdPxPffcw4MPPkirVq147LHHsFqtV3zv/Cjp53P27Fn69etHcnIyK1euxNvbu8juXVju/Gyg/H53Jk2axGOPPcbJkyfZsGEDv//+OwkJCUUaW1Fw5+cDJfv9cfWzSUhI4Mknn2TEiBE5tggVZWzFSd1qBeTn5wdASkpKtnPnzp1zqlMc1xdnbIXlzs8mN40bN+b+++9nz5497Nmzp0jvnVVJPp/z58/Tt29fYmJi+Oijj+jatWuRxlZY7vxsclMevjs33HADt956KwMHDuSDDz5gyJAh9O7dm59//rnIYisK7vx8cuOq74+rn81zzz3HxYsXeeONN4o9tuKk5KiAatWqBeTc1JdXE2FRXV+csRWWOz+bvNSrVw+AkydPFvm9Myup53P+/HnuvvtufvjhB+bMmcOQIUOKPLbCcudnk5ey/t3JavDgwQC8//77RX7vwnDn55MXV3x/XPlsdu7cydy5c3nyySdJSkpi//797N+/n7i4OMD8nPv373ckQ+7w3cmNkqMCatu2LQBbtmzJdm7Lli0EBATQpEmTK74+c52ijq0w9y6K9y/JZ5OXjP9qq1GjRpHfO7OSeD4pKSn069ePNWvWMHv2bB555JEiu3dRcudnk5ey/N3JSUpKCpcuXcJutxf5vQvDnZ9PXlzx/XHlszlw4ACGYfDiiy8SGhrqeD377LMAjBkzhtDQUHbu3Fnge7tcicyRK8VOnjxp+Pn55bpmxPDhwx1lR44cMf7880/jzJkzTve46aabDH9/f+Off/5xlCUmJhq1a9c2rr322lzXdcjPdPUrvXdRcOdnY7fbc5yuGh0dbXh7extNmzYtyEe9Iq5+PufPnzd69+5tWCwWY/bs2ZeNrzx9dwrybMrjd+fo0aM5xvHSSy8ZgDFlypQrvndxcOfnU9LfH1c+myNHjhhffvllttfo0aMNwHj66aeNL7/80rDb7QW+t6spOboC06ZNc6w2+v777xuvvPKKUbVqVaNGjRrGoUOHHPWGDh1qAMaGDRucrt+2bZvh6+tr1K1b13j77beNmTNnGs2aNTM8PT2NyMjIbO/38ssvGy+//LIxYcIEAzBatmzpKPv6668Lde+i5q7P5ssvvzSuuuoq4/HHHzemTp1qvPfee8bIkSONChUqGH5+fsaWLVuK7Zlk5srnc++99xqAceutt+a4Mu8vv/xyxfcuDu76bMrjd6dq1apG3759jcmTJxtz5841Xn/9daN79+4GYNxwww1GUlLSFd+7uLjr83GH74+r/13OKrd1jori3sVFydEV+vTTT42WLVsavr6+RpUqVYwBAwYYe/fudaqT2xfNMMwl03v06GEEBgYafn5+RpcuXXKsZxiGAeT6yqmlpCD3Lg7u+Gz++OMPo3///sa1115rBAQEGN7e3kbdunWN4cOHG1artQg//eW56vnUrVs3z+czadKkK753cXHHZ1MevzuTJ082OnbsaFx11VWGl5eXERgYaLRp08Z47bXXjOTk5BxjK+nvjmG45/Nxl++PK/9dziqv5Kiw9y4uFsPIZQdKERERkXJIA7JFREREMlFyJCIiIpKJkiMRERGRTJQciYiIiGSi5EhEREQkEyVHIiIiIpkoORIRERHJRMmRiIiISCZKjkREREQyUXIkIlKODRs2DIvF4lT20ksvYbFY2L9/f8kEJVLClByJCBs3bsRisfD666+XdChuLSUlhRkzZtChQweCg4Px9fWlQYMGjBo1ir1795Z0eCJSRJQciYjkw/HjxwkLC+PJJ58kICCAl156iVmzZnHbbbfx6aef0qxZM1auXFnSYYpIEfAq6QBERAoqOTmZgIAAl72fYRj079+fnTt3MmfOHEaOHOl0fty4cXTt2pWBAwcSHR1N06ZNXRZbhkuXLpGSkkLFihVd/t4iZY1ajkQkR/v378disfDSSy/x1Vdf0bp1a3x9fbn66qt59tlnuXjxoqPugAED8Pb25sSJE9nuY7PZsFgsPPHEE07lS5cupVOnTgQGBuLn50e7du1Yvnx5tustFgvDhg3jhx9+oFOnTgQEBHDnnXcCYLfbeeqpp7j22mvx9fWlcuXK3Hjjjbz66qvZ7pPf98vJqlWr+Omnn7j//vuzJUYA9evXZ86cOZw7d45JkyYBkJCQgK+vL3369MnxnhMnTsRisRATE+MoS0xM5N///jcNGjTAx8eHatWqMXDgwGxddgsWLMBisbBu3Tpefvllrr32Wnx8fFi6dCkAa9asYcCAAdSvX5+KFSsSHBxMz549+fHHH/P1eUXKOyVHIpKn1atXM3LkSO644w6mTp1K8+bNeeutt3jzzTcddYYOHcrFixf57LPPsl2/cOFCR50ML774Ig888ACBgYG8/PLLvPHGG/j7+9O/f3/efffdbPeIiYmhX79+3HTTTUydOpVBgwYB0L9/f2bOnMltt93GzJkzmTx5Ml26dGHjxo1O1xf0/bLKSKIeeeSRXOvcdttt1K5dm2+//ZaUlBSCg4Pp06cP33//PSdPnnSqaxgGn376Kddffz1t2rQBzMSoQ4cOvPfee9xxxx3MnDmTJ554gg0bNtCuXTsOHDiQ7T2feeYZli5dyiOPPML06dNp3LgxYCZPCQkJPPTQQ8ycOZNx48bx559/0r17d3766afLfl6Rcs8QkXJvw4YNBmBEREQ4yvbt22cAhp+fn7Fv3z5H+aVLl4ymTZsaNWrUcJRdvHjRqFGjhtGyZUun+166dMmoX7++cd111znKYmJiDMAYP358tjj69u1rBAYGGklJSY4ywACMH374waluQkKCARj/+te/8vxsBX2/nLRq1coAjPj4+Dzr3XnnnQZg/Prrr4ZhGMaqVasMwJg+fbpTvY0bNxqA8cYbbzjKRo8ebfj6+hq7du1yqrt//34jMDDQGDp0qKNs/vz5BmA0btzYOHv2bLY4kpOTs5UdO3bMqFq1qnHbbbc5lQ8dOtTI+lMwadIkA3D6/7tIeaKWIxHJ09133029evUcxxaLhVtuuYVjx46RnJwMgKenJ4MGDWLnzp389ttvjrqbN29m7969Tq1GGa1LQ4YMIS4uzunVp08fTp8+zdatW51iaNGiBd26dXMqq1ixIr6+vmzbti3PKedX8n5ZJSUlARAUFJRnvYzziYmJAPTq1Yvq1as7Ws8yLFy4EA8PDx588EHAbEn67LPP6NixI7Vq1XKK0d/fn/bt27NmzZps7zdq1Kgcxxj5+/s7/k5OTiY+Ph5PT0/atWvH9u3b8/wMIqIB2SJyGfXr189WVrVqVQDi4+MdA6OHDh3K22+/zcKFCx1dblmTAIA///wTgOuvvz7X9zx+/LjTccOGDbPVqVChAtOnT2fMmDGEhoZy3XXX0a1bN/r27UuPHj0K9X5ZVapUCTCTnipVquRaLyMpykiSvLy8CA8PZ+rUqfzxxx9cf/31nDt3juXLl9OjRw9q1qwJwMmTJ4mPj+eHH36gWrVqOd7bwyP7f8vm9FzAHOf1wgsvEBkZSUJCgtO5rGsaiUh2So5EJE+enp65njMMw/H3DTfcQIsWLVi0aBGvv/46Fy5c4PPPP6d79+7UqlUr2zWrV6/G29s7x/tmne3l5+eXY72RI0fSp08fvv32WzZt2sSXX37Ju+++y913382KFSvw8PC4ovfLqlmzZuzYsYMdO3Zw66235ljHMAx27tyJj4+PU9IydOhQpk6dysKFC3n99df56quvSEpKYsiQIU7XAtxyyy08//zzecaSWU7P5fTp03Tu3JmzZ88yduxYbrjhBgIDA/Hw8CAiIoL169fn+/4i5ZWSIxEpMkOHDmXcuHGsW7eOU6dOkZiY6NSlBtCoUSO+//57ateuzQ033FDo96xRowYjRoxgxIgRXLp0iUceeYSPPvqIH3/8kVtuuaVI3u+ee+5h4cKFfPDBB7kmR6tXr+bw4cPcc889+Pj4OMqbN29O8+bNWbRoEa+99hoLFy6kUqVK9OvXz1GnWrVqBAcHk5iYmOv982v9+vUcPXqUjz76iIceesjp3Isvvlioe4uUFxpzJCJFJjw8HC8vLxYuXMjChQsJDAx0SgIARxfb888/77QcQIaclgPIydmzZzl79qxTmYeHBy1atADMaf5F9X59+vShY8eOfP7553z44YfZzu/du5dRo0bh6+vL5MmTs50fOnQohw4d4rPPPmPt2rX079/faayQh4cHgwYNYseOHSxZsiTHGPL7XDJa+jK36oE5vV/jjUTyRy1HIlJkrrrqKm677Ta+/PJLLly4wJAhQ7J1/bRt25bJkyczadIkWrRowf3330/NmjU5evQosbGxrF69mgsXLlz2vaxWK127dqVfv340bdqUqlWrsnv3bmbPnk3NmjUdLTBF8X4Wi4XPP/+c2267jZEjR7J8+XLuuOMO/P39+eWXX5g/fz5paWksXryYZs2aZbt+0KBBPPfcczz++OOkpaVla00DePXVV/n5558JDw/nyy+/JCwsjAoVKnDgwAFWr15N69atWbBgwWWfS6dOnahRowZPP/00+/fvp3bt2uzatYtPPvmEG264gV9//fWy9xAp75QciUiRGjp0KN988w2A07iazP7zn//QunVrZsyYwbRp0zhz5gxXXXUVzZo1Y/r06fl6nzp16jB8+HA2bNjAypUrOX/+PDVr1mTIkCGMHz/eaWZZUbzf1VdfzbZt23j//fdZsmQJEydOJCUlhZo1azJo0CCeffZZrr322hyvveqqq+jduzerVq0iNDSUTp06ZasTFBTEzz//zNtvv82yZcv4+uuv8fLyonbt2nTq1ImHH344X3EGBwcTGRnJc889x8yZM7l48SKtW7dm9erVzJs3T8mRSD5YjKxtryIiIiLlmMYciYiIiGSi5EhEREQkEyVHIiIiIpkoORIRERHJRMmRiIiISCZKjkREREQyUXIkIiIikomSIxEREZFMlByJiIiIZKLkSERERCQTJUciIiIimSg5EhEREcnk/wEy80tzaa/bogAAAABJRU5ErkJggg=="
    }
   },
   "cell_type": "markdown",
   "id": "28288ac7",
   "metadata": {
    "deletable": true,
    "editable": true
   },
   "source": [
    "<div><img src=\"attachment:q18.jpg\" style=\"height: 300px;\"/></div>\n",
    "\n",
    "<center> <b>Delete</b> this cell before you submit the notebook to reduce the size of your file.</center>"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "5364ddef",
   "metadata": {
    "deletable": true,
    "editable": true,
    "execution": {
     "iopub.execute_input": "2023-12-07T02:12:26.239032Z",
     "iopub.status.busy": "2023-12-07T02:12:26.239032Z",
     "iopub.status.idle": "2023-12-07T02:12:26.532616Z",
     "shell.execute_reply": "2023-12-07T02:12:26.532616Z"
    },
    "tags": []
   },
   "outputs": [],
   "source": [
    "# create the scatter plot and the regression line using the DataFrame 'inverse_overall_rank'\n",
    "# with the x-axis labelled \"Inverse Overall\" and the y-axis labelled \"Rank\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "b4fb9c82",
   "metadata": {
    "deletable": false,
    "editable": false
   },
   "source": [
    "This seems to be much better! Let us now use this **regression line** to **estimate** the `Rank` of an institution given its `Overall`."
   ]
  },
  {
   "cell_type": "markdown",
   "id": "52a2bc98",
   "metadata": {
    "deletable": false,
    "editable": false
   },
   "source": [
    "**Question 19:** Use the regression line to **estimate** the `Rank` of an institution with an `Overall` of *72*.\n",
    "\n",
    "Your output **must** be an **int**. If your **estimate** is a **float**, *round it up* using `math.ceil`.\n",
    "\n",
    "\n",
    "**Hints:**\n",
    "1. Call the `get_regression_coeff` function to get the coefficients `m` and `b`.\n",
    "2. Recall that the equation of a line is `y = m * x + b`. What are `x` and `y` here?"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "93dcf736",
   "metadata": {
    "deletable": true,
    "editable": true,
    "execution": {
     "iopub.execute_input": "2023-12-07T02:12:26.537626Z",
     "iopub.status.busy": "2023-12-07T02:12:26.537626Z",
     "iopub.status.idle": "2023-12-07T02:12:26.546237Z",
     "shell.execute_reply": "2023-12-07T02:12:26.546237Z"
    },
    "tags": []
   },
   "outputs": [],
   "source": [
    "# compute and store the answer in the variable 'rank_score_72', then display it\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "cd3d9edd",
   "metadata": {
    "deletable": true,
    "editable": true
   },
   "outputs": [],
   "source": [
    "grader.check(\"q19\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "8fe92766",
   "metadata": {
    "deletable": false,
    "editable": false
   },
   "source": [
    "**Food for thought:** Can you find out the `Overall` of the university with this `Rank` in the `Year` *2022*? Does it match your prediction?"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "d6aa6864",
   "metadata": {
    "deletable": true,
    "editable": true,
    "execution": {
     "iopub.execute_input": "2023-12-07T02:12:26.917794Z",
     "iopub.status.busy": "2023-12-07T02:12:26.917794Z",
     "iopub.status.idle": "2023-12-07T02:12:26.924622Z",
     "shell.execute_reply": "2023-12-07T02:12:26.922609Z"
    }
   },
   "outputs": [],
   "source": [
    "# Food for thought is an entirely OPTIONAL exercise\n",
    "# you may leave your thoughts here as a comment if you wish to\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "34b82ce3",
   "metadata": {
    "deletable": false,
    "editable": false
   },
   "source": [
    "**Question 20:** Using the data from Question 5, create a **pie plot** representing the number of institutions from each country.\n",
    "\n",
    "You **have** already computed a **DataFrame** `num_institutions` (in Question 5) containing the **Country**, and the **Number of Insititutions** data. Run the following cell just to confirm that the variable has not changed its values since you defined it in Question 5."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "7ae77097",
   "metadata": {
    "deletable": true,
    "editable": true
   },
   "outputs": [],
   "source": [
    "grader.check(\"q20\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "26a5305a",
   "metadata": {
    "deletable": false,
    "editable": false
   },
   "source": [
    "Now, **plot** `num_institutions` as **pie plot** with the **title** *Number of Institutions*.\n",
    "\n",
    "You **must** use the `pie_plot` function to create the **pie plot**. The **colors** do **not** matter, but the plot **must** be titled `Number of Institutions`, and **must** be labelled as in the sample output below.\n",
    "\n",
    "**Important Warning:** `public_tests.py` can check that the **DataFrame** is correct, but it **cannot** check if your plot appears on the screen, or whether the axes are correctly labelled. If your plot is not visible, or if it is not properly labelled, the Gradescope autograder will **deduct points**.\n",
    "\n",
    "Your plot should look like this:"
   ]
  },
  {
   "attachments": {
    "q20.jpg": {
     "image/jpeg": "iVBORw0KGgoAAAANSUhEUgAAAj0AAAGdCAYAAAD5ZcJyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACcoElEQVR4nOzdd3wT5R8H8M8lHenee9BFkbL3nrJkbyh7y/qByBZEUFkqgiIIAjIFZAjIBoUioKxSoEBpGd1775Xk+f1RGwlJd5pLm+/bV1/Su+ee+961Tb65Z3GMMQZCCCGEkFpOwHcAhBBCCCHqQEkPIYQQQrQCJT2EEEII0QqU9BBCCCFEK1DSQwghhBCtQEkPIYQQQrQCJT2EEEII0QqU9BBCCCFEK1DSQwghhBCtQEkPqZXc3NzAcRw4jsNff/1VYrniMllZWWqMrmKKryUsLIzvUKpNeHg4Ro0aBTs7OwiFQnAchy1btpR5XPHPTxPvTVhYGDiOg5ubG9+hyPj5+YHjOHTt2pXvUAjhBSU9pNb75JNP+A6BlIIxhmHDhuHYsWOwtbWFr68vJk6cCB8fH75DK9WkSZPAcRz27dtXoeOqMxnq2rUrOI6Dn5+fyusmpDbQ4TsAQqqToaEhbt++jfPnz6Nfv358h0OUCAsLg7+/P+rUqYNHjx5BKBTyHZJKODk5ISgoCLq6unyHItO6dWsEBQXB0NCQ71AI4QU96SG12ty5cwEAK1euBK2tq5kiIyMBFDXj1ZaEBwB0dXXx3nvvwdPTk+9QZAwNDfHee+/B1dWV71AI4QUlPaRWGzt2LBo0aIBHjx7h2LFj5T6uuK9IRfe/vX3Hjh1o2rQpDA0N4ejoiP/973+yvkMpKSmYN28eXF1dIRKJ4OPjU65mkmPHjqFt27YwNjaGubk5BgwYgICAgBLLJyQkYOnSpfDx8YGhoSFMTEzQtm1b7N69W2kS+HbzyB9//IFevXrB0tISHMfh0aNHZcZXfM6FCxfC29sbIpEI5ubm6Ny5Mw4cOCB3zuJmni5dugAAbty4Ibt/VW36efs67t+/j379+sHS0hIGBgZo1aoVTp48qfS46OhoLFy4ED4+PjA1NYWJiQk8PT0xZMgQuWM4jsP+/fsBAJMnT5bF/XZzl7JmrNWrV8Pd3R1AUT+mt497u1xZzVTv7i8+140bNwAA3bp1k6u7uFxZfXpu3ryJwYMHw9bWFnp6enBycsK4cePw9OlTpeXf/n0/cuQIWrduDSMjI5ibm6Nfv354/Pix0uP8/f3h6+sLT09PiEQiWFpawsfHB1OmTMHDhw+VHkOISjBCaqE6deowACwwMJD99ttvDADz9vZmYrFYrhwABoBlZmYq3V6SkvYXb//444+Zvr4+69OnDxs0aBCztLRkAFjPnj1ZUlISq1u3LrOzs2MDBw5knTt3ZhzHMQBs//79JV7L/PnzGQDWvn175uvryxo0aMAAMJFIxP7880+F4x4+fMjs7OwYAFanTh02aNAg1rNnT2ZiYsIAsDFjxigc06VLFwaAffjhh4zjONa0aVPm6+vLOnbsyB4/flzi/SgWHBzMHB0dGQDm7OzMRo4cyfr06cP09fVl55RKpYwxxhITE9nEiRNZ7969GQBmZ2fHJk6cyCZOnMgWLlxY5rnevt+hoaFKr2PJkiVMV1eXvffee2zYsGGsZcuWsmOOHj0qd0x0dDSzsbFhAJinpycbMmQIGzFiBGvXrh0zNDRkvXv3lpWdOHEi8/T0ZABYhw4dZHFPnDiR3bx5kzHGWGhoqOzeFzt16hQbNmwYA8CMjIzkjnv7movjv379utLrfnd/8b0s/nn37t1bru6goCDGGGPXr19nAFiXLl0U6vz+++9lv4ft2rVjvr6+rEmTJgwA09fXZ2fOnCnx/q9YsYIJhULWunVrNmzYMObu7s4AMBMTE/by5Uu5Yy5evMiEQiEDwFq2bMlGjhzJBg4cyJo2bcoEAgFbv3690msmRBUo6SG10ttJD2OMtWrVigFgu3fvlitXXUmPvb09Cw4Olm2PioqSvaE2aNCADR8+nGVnZ8v2//TTTwwAc3d3L/FaBAIB++233+T2ffnllwwAc3R0ZDk5ObLtWVlZzNXVlQFg3377LZNIJHKxNG/enAFgP//8s1x9xW+mANjevXtLvP6SFCcVEydOZPn5+bLtL168kCVD27dvlzumtDfispSV9HAcx3bu3Cm3b/369bLE5m2rV69mANjcuXMVzpOZmcn+/vtvuW0TJ04s9T4pS3pK264s/vImPeU9rqR7HRAQwIRCIdPV1WVnz56V27d161YGgJmamrK4uDi5fcX339raWu7+5OfnswEDBjAAbMqUKXLHdO3alQFgx48fV4gvOjqaPXv2TGnshKgCJT2kVno36bl69SoDwFxdXVleXp6sXHUlPbt27VLY99FHH8nePJKTk+X2icViZm1tzQCwsLAwpdcyYsQIhTqlUinz8fFhANiBAwdk27///nsGgE2YMEFp/A8ePGAAWPPmzeW2F79pvv1Uo7xu3LjBADALCwuWkZGhsP/nn39WmmxUZ9IzatQohWMKCgqYubm5wr2ePXs2A6CQWJakNiU9kydPZgDYtGnTSj3fF198Ibe9+P7/+OOPCsfcu3ePAWBubm5y24t/X1NSUpSei5DqRH16iFbo0aMHunXrhoiICOzYsaPaz9erVy+FbV5eXgCAFi1awNLSUm6fUCiU9emIiYlRWufYsWMVtnEchzFjxgCA3HxEly5dAgCMGDFCaV0tWrSAsbExHj16hLy8PIX9Q4YMUXpcaYrPP2TIEJiYmCjsHz9+PHR1dfH69WtER0dXuP7K+OCDDxS26erqwsPDA4D8vW7ZsiUAYNmyZfjtt980eu4mVSv+2U2YMEHp/smTJwOArM/Qu5Td5/feew+A4u9z8X0eM2YMbt26BbFYXLmgCakESnqI1li3bp3s/9X9hubs7KywzcjIqMR9b+/Pz89Xur+kzr3F26OiomTbiifrGzBggFyH1re/srKyIJVKkZycrFBnZUb3FCcyxQnFu3R0dGT1qivpcXFxUbq9OCl7+15PnDgREydOREhICIYNGwZzc3O0aNECixYtKncn7pqqrJ9d8Qi0kn5uyu5z8T0uKCiQ275hwwa0bt0aly5dQqdOnWBmZobu3btj/fr1JSb8hKgKzdNDtEbbtm0xYMAAnD17Flu2bMHKlSsrVY9UKi2zjEBQ8ueJ0vaVpqTRZOzfEVFv7y+OceDAgbCwsCi1Xn19fYVtBgYGFY6vOI6qllGlitxrgUCAffv2YcmSJTh37hyuX7+Ov//+Gw8fPsSmTZvw6aef4vPPP6/GaMuvPL+DqlTWz60i99nBwQH//PMPbt26hYsXL+Kvv/7CrVu3cP36dXzxxRc4fvw4zalFqg0lPUSrrF27FufOncM333yDOXPmlFhOV1cXhYWFyMzMVGiqiYiIqO4wlQoLC0Pjxo0VtoeHhwMomgyvmIuLC168eIF58+bh/fffV0t8xU+w3rx5o3S/WCyWzcnzdqyaxsfHBz4+PliyZAnEYjFOnDiBSZMm4csvv4Svry/q169f7THo6ekBADIzM5XuV/XvoJOTE16/fo03b94o/dmEhobKyqmCQCBA586d0blzZwBARkYG1q9fjw0bNmDatGmIjY1VyXkIeRc1bxGt0qhRI4wePRrp6enYuHFjieWKX9yDg4MV9l2+fLna4ivN4cOHFbYxxnD06FEAkL2BAP/1sShpPprqUHz+U6dOKX2z/uWXX1BYWAhPT0+NTnrepqOjg9GjR6Nz585gjMnNV1OcmFS0T0p5jivt9y8oKEiWPFambmWKf3YHDhxQun/v3r0AIJtTSdVMTU2xbt066OvrIy4uDomJidVyHkIo6SFa5/PPP4eOjg62bt1aYpnu3bvLyr7dJ+Hu3bv49NNPqz1GZU6cOIEzZ87Ibdu4cSOePn0KR0dHDB8+XLZ9+vTpcHFxwY4dO7Bhwwal/YTu3r2L48ePqyy+zp07o0WLFkhNTcW8efNQWFgo2/fy5UusWLECALBw4UKVnVOVDhw4oHSix6ioKFmfnrf7OhUnJkFBQRU6j42NDfT09BAfH4/U1FSlZYp//7Zt24a4uDjZ9tjYWEyePLnE5q3KxjRv3jwIhULs378fFy5ckNv3448/ws/PD6amppg2bVqF6lVm06ZNcv3Pil25cgX5+fkwNTWFubl5lc9DiFJ8Dh0jpLq8O2T9XdOnT5cNt4WSIesvX76UTeLn4eHBhg8fztq2bcuEQiH75JNPyhyyrszevXtlc9goU9Jw4+JrmTdvnmwyPF9fX9awYUPZxHHKJid88uQJc3FxYQCYjY0Ne//999moUaNY586dZXPmvDuku6whz2V5e3JCFxcXNmrUKPbBBx/IJif09fWVTU5YrDqHrFdkyPegQYNkcffv35+NHTuW9ezZk4lEIgaAjRw5Uq6OgIAAJhAImEAgYL169WJTpkxhU6dOZbdv32aMlT40fciQIbJ9Y8aMYVOnTmVLly6V7c/Pz5dNDGhpackGDhzI3n//fWZiYsK6du3K2rdvr/T6zpw5I/udGDBgAJs6dSqbOnUqe/HiBWOs/JMTtm/fno0ZM4Y1bdpUVt/p06dLvP8lUbbfzMyMcRzHGjRowIYNG8Z8fX1Z27ZtZefetm1bifURUlWU9JBaqaykJzIyUvZmpizpYYyxR48esb59+zJTU1NmYGDAWrRoIZsLh4+kJzQ0lB0+fJi1atWKGRoaMlNTU9avXz/m7+9f4n1ITU1lX3zxBWvZsiUzMTFh+vr6zNXVlXXu3JmtW7eOvXr1qlwxVER8fDxbsGAB8/LyYnp6eszExIR17NiR7du3TyHhYUxzkp4bN26wefPmsZYtWzJbW1ump6fHnJ2d2fvvv8+OHDmiMJs3Y4wdP36ctWnThhkbGytM6lha0pOUlMSmTp3KnJ2dmY6OjtJyiYmJbPr06cze3p7p6ekxT09PtmrVKpaXl1fq9W3fvp01adKEGRgYyGIqLlfWvb5x4wYbOHAgs7a2Zrq6uszBwYGNGTOGPXnyRGn5yiQ9Bw8eZBMmTGA+Pj7M3NycGRgYME9PTzZq1ChZwkhIdeEYo1UYCSGEEFL7UZ8eQgghhGgFSnoIIYQQohUo6SGEEEKIVqCkhxBCCCFagZIeQgghhGgFSnoIIYQQohUo6SGEEEKIVqCkhxBCCCFagZIeQgghhGgFSnoIIYQQohUo6SGEEEKIVqCkhxBCCCFagZIeQgghhGgFSnoIIYQQohUo6SGEEEKIVqCkhxBCCCFagZIeQgghhGgFSnoIIYQQohUo6SGEEEKIVqCkhxBCCCFagZIeQgghhGgFSnoIIYQQohUo6SGEEEKIVqCkhxBCNMCkSZPAcZzaz+vm5oauXbuqvN59+/aB4zj4+fmpvO6Kqq5rJDUPJT2EEFKG4jfwffv2Kd0fFhYGjuMwadIklZ7Xz88Pq1evRlpamkrrrYzia5w5c6bCvuDgYLi6usLIyAiXLl3iITpCyoeSHkII0QC7du1Cbm6u3DY/Pz+sWbNGI5KekgQEBKBTp07IzMzElStX0KdPHwDA+PHjkZubi86dO/McISH/oaSHEEI0gK6uLkQiEd9hVMhff/2Frl27QigU4saNG+jQoYNsn1AohEgkgkBAbzNEc9BvIyGEVIPi5qDVq1fj9OnTaNGiBUQiERwcHLB48WKIxWK58u/26enatSvWrFkDAHB3dwfHcQpNbLGxsZg1axZcXV2hp6cHR0dHzJgxAwkJCQrxBAUFoV+/fjA2Noa5uTkGDRqEN2/eVPr6zp8/jz59+sDKygq3bt1C48aN5fYr69NTvO3atWvYuHEjPDw8oK+vD29vb+zfv1/hHFKpFBs2bJArt3Xr1hL7C1X0Gvfu3YuWLVvC0NAQJiYm6NatG65cuaJQrrhP0KNHj9CjRw8YGxvD1tYWCxcuhFgsRl5eHhYtWgQnJyeIRCJ06tQJz549q9gNJWqhw3cAhBBSm124cAHbt2/HzJkzMW3aNJw5cwbffPMNLCws8Mknn5R43IoVK2BpaYlTp05h8+bNsLa2BgC0b98eABAREYF27dqhoKAAU6dOhaenJ16/fo3t27fj+vXrePDgAczMzAAAoaGh6NixI3JycjB79mx4eHjgzz//RLdu3ZCTk1Phazp8+DAmTpyIevXq4cqVK3B0dKzQ8cuXL0deXh5mzpwJPT097NixA5MmTYKXl5fc06L58+fjhx9+QMeOHTF//nykp6dj48aNsLe3V6izotf4ySefYP369WjRogW++OIL5OXlYc+ePejTpw8OHjyIsWPHypWPiopCr1694Ovri+HDh+Pq1av49ttvIRQKERQUhNzcXCxbtgxJSUn45ptvMHjwYLx48QJCobBC94ZUM0YIIaRUe/fuZQDY3r17le4PDQ1lANjEiRMVthkaGrLQ0FDZdqlUyho0aMDs7e3l6pg4cSJ79yX5s88+YwDkji82YMAAZm1tzSIjI+W2379/nwmFQvbZZ5/Jtvn6+jIA7OLFi3Jl58yZwwCwLl26lHjt716Pm5sbEwgErE2bNiw5ObnE8sX37Pr16wrbmjZtyvLz82Xbo6KimJ6eHhs9erRs2/PnzxkA1q1bNyYWi+XKGhsbK9RdkWsMDg5mHMexNm3asLy8PNn2pKQkZm9vzywsLFhWVpZse506dRgAdvLkSbm6W7RowTiOY4MHD2ZSqVS2/bvvvlMaC+EfNW8RjZeXl4ft27eje/fusLGxga6uLszNzdGqVSssWbIEL1684DtEQko0ePBguLm5yb7nOA7dunVDXFwcsrKyKlVnWloazp8/j/79+0MkEiEpKUn25ebmBi8vL1kzjVQqxdmzZ9GkSRNZJ+NipT1pKkl8fDykUimcnZ1hampaqfhnz54NPT092fdOTk7w9vbGy5cvZdt+//13AMCCBQvknpY4OTlh3LhxcvVV9BrPnDkDxhiWLFkCfX192XYrKyvMnj0bqampuH79utwxzs7OGDp0qNy2Dh06gDGGuXPnyjVNdurUCQDw6tWr0m8EUTtq3iIa7c2bN+jfvz+CgoLQpUsXLFiwAA4ODsjKysKjR4+wd+9ebNq0CREREXBycuI7XKLllM2z4+HhobDNysoKAJCcnAxjY+MKnyckJARSqRT79u0rcRh98XkTEhKQlZWF+vXrK5RxdHSUNYGV17hx41BQUID9+/dj1KhROHr0KHR1dStUR0n3JDw8XPZ9aGgoAKBevXoKZd977z257yt6jcX9fBo0aKBQvlGjRnJlir2duBazsLBQuq94e3JyssIxhF+U9BCNlZubi379+uH169f47bffMGTIEIUyeXl52Lx5s8ondcvOzoaRkZFK6yQ1l4GBAQAoDCkvVtxnpLjc20rr08EYq1Q8xcf5+vpiypQpSsu8G4uq/kYEAgF+/vlnCAQC7N27FyNHjsSxY8cqlPiUdE/evh+l3ZuS9pX3GitTd2k/x/JcD9EM1LxFNNbu3bvx4sULLF68WGnCAwAikQjLly9X6EiZn5+PdevWoUGDBhCJRDA3N8eAAQMQEBAgV87Pz082Imbbtm3w8fGBvr4+vv76a7nRN8eOHUPTpk1hYGAALy8v7N27F0BRZ9Lhw4fD0tISJiYmGDNmDNLT0+XO8eLFC8yePRsNGjSAiYkJDA0N0aJFC+zatUvhelavXg2O4/DixQssWbIETk5O0NfXR5MmTXDhwgVZufj4eOjp6Sl0tiw2b948cByHkJCQsm80KZO7uzsA4Pnz50r3F28vLqcqJb2Je3l5geM45Ofno0ePHkq/ijsE29rawtjYWGnsMTExCr+v5SEQCLB7925MmTIFp0+fxvDhw1FQUFDhekpT/DRIWfN1cHCw3PcVvUZPT08AUDrCqnhbcRlSu1DSQzTWiRMnAADTpk2r0HGFhYXo06cP1qxZg3bt2mHz5s1YtmwZgoKC0KFDBzx48EDhmC1btmDjxo3w9fXF1q1b0aZNG9m+c+fOYf78+Rg6dCi+/vprmJqaYsqUKTh06BA6d+4MMzMzrFu3DiNHjsSRI0ewYMECubr9/Pxw69YtDB48GN988w2++OIL6OrqYsaMGVi/fr3Sa5g4cSLu3LmDxYsX44svvkBiYiIGDx6MsLAwAICdnR0GDRqE3377DampqXLH5ufn45dffkHnzp3h7e1doXtHlGvevDlcXFxw9OhRxMTEyO0rKCjADz/8AI7jMHDgQJWet7jp692fsZWVFfr27YszZ87g9u3bCscxxpCYmAigKEEZOHAgHj9+rDBb8rp16yodW3HiM23aNPz+++8YNmyYShOfAQMGACj625RIJLLt0dHROHTokEIsFbnGwYMHg+M4fPPNN3Ixp6SkYPv27bCwsKBlK2ornjpQE1ImS0tLZmpqqrBdLBazxMREua+cnBzZ/k2bNikdOZGens5cXFzkRnFcv36dAWCWlpYsMTFRrnzxaBUjIyMWEREh256YmMhEIhHjOI5t2bJF7pghQ4YwHR0dlpmZKduWnZ2tcA0SiYR16dKFmZqasoKCAtn24tE6/fr1kxsNcu/ePQaALVu2TLbtypUrDADbunWrXN1Hjx5lANiBAwcUzksq79y5c0xXV5dZWlqyJUuWsJ07d7LPP/+cNWjQgAFgy5cvlytf/Pvz9iiqYspGZSkbvXXz5k0GgPXu3Zvt27ePHTlyhL1584YxxlhERARzdXVlurq6bMqUKeyHH35g33//Pfvoo4+Yu7u73HnfvHnDLC0tmUgkYgsXLmTbtm1jQ4cOZa6ursza2rpCo7c+/PBDue1SqZTNmDFD9ntbPBqqtNFbb28r1qVLF1anTh25bbNnz2YAWMeOHdmWLVvY559/zpycnFjLli0ZAObn51fpa1y+fDkDwFq2bMk2bdrE1q5dyzw8PBjHcezgwYNyZevUqaP0HpU0uq60nz3hFyU9RGPp6OgwZ2dnhe2BgYEMgNzX+vXrZfubN2/O6tatq5AYJSYmsilTpjChUChLkoqTno8++kjhPMUvXGPHjlXY17hxYyYUCuWGuzLG2LfffssAsMDAQKXXlJuby5KSklhiYiJbu3YtA8CePHki21/8InrlyhWFY01MTNiwYcNk30ulUubh4cGaNm0qV65nz57MzMxMLhEkqnHv3j02fPhwZmdnx3R0dJiZmRnr2rUr+/XXXxXKqiLpYYyxtWvXMldXVyYUChWGzScmJrJFixaxunXrMn19fWZmZsYaNmzI5s2bx549eyZXz/Pnz1nfvn2ZkZERMzU1ZQMHDmSvX78u8Q29pOt5N+lhrOh3cebMmQwA++CDD1heXp5Kkh6JRMLWrl3L6tSpw/T09Ji3tzfbvn07+/777xkAdvfu3Spd4549e1jz5s2ZSCRiRkZGrEuXLuzSpUsK5SjpqT0o6SEaq6QnPVlZWezq1avs6tWr7JtvvlFIegwMDBSSone/ip/cFCc927ZtUzhP8QvXypUrFfZ16dJFaUJW/KL+9ifQzMxMtnDhQubi4qI0lhs3bsjKFr+Ivnr1SqHuOnXqsK5du8ptW79+PQPA/P39GWOMhYWFMYFAwGbPnq1wPCG1RfHcO7GxsXyHQmoYGr1FNFaDBg1w8+ZNhIaGynUQNTIyQo8ePQAAOjqKv8KMMfj4+OC7774rsW4bGxu57w0NDUssW9LIjPKOyvH19cX58+cxY8YMdO7cGZaWltDR0cGFCxewefNmSKXSctfN3hkNMnnyZKxatQq7d+/G9u3bsXfvXkil0gr3gyJEE+Xm5iqMQouKisKBAwfQqFEjpTMzE1IaSnqIxho2bBhu3ryJ3bt3Y+3ateU+ztvbG7GxsejevTvvix0WTyI3fvx47NixQ27fH3/8UeX67ezsMHDgQBw+fBhff/019u3bh+bNm6NZs2ZVrpsQvu3fvx8HDx5E3759YWtri9evX2PXrl3IycnBV199xXd4pAai0VtEY02fPh3e3t74+uuvcerUKaVl3n3yAQDjx49HYmIivv76a6XHxMfHqzTO0hQ/sXk3ztjYWOzevVsl55gxYwbS09Mxc+ZMhIeH01MeUms0b94cJiYm2Lp1K+bMmYMdO3agZcuW+PPPPxVmXiakPOhJD9FYhoaGsqn2hw4diq5du6JXr16wt7dHRkYGXrx4gV9//RVCoRCurq6y4+bPn4+rV69i2bJl8PPzw/vvvw9TU1NERETgzz//hEgkUphivrqYmJigV69eOHToEAwMDNCqVSuEh4dj586dcHd3V8mMrT179oSHh4fsHGPGjFFB5ITwr3Xr1gpD0AmpCkp6iEbz8vJCQEAAdu/ejZMnT2LTpk1IT0+HkZERvLy8MG3aNEyZMkVuWnpdXV2cP38e27dvx8GDB/HZZ58BKJqOvnXr1pg4caJar+HQoUNYtmwZzp49i/3796Nu3bpYu3YtdHV1MXny5CrXz3Ecpk2bhk8++QQjRoyo8LIChBCiLTimrH2AEFKjfPPNN1i8eDH++usv2WKHNYJEDOSlA3lpQH7Gv/9OB/Le+nd+BpCfCTAGCISAQOetr3e/1wEEAkDfFDC2BYzt/vu/Hi0rQoi2o6SHkBpOLBajXr16EIlESqfV51NWQRYy08LgkBAMpEX895UaDmTGAgWVW2W8UnSNFBMhY1vA1BGwqgvYeAMGFuqLhxCidtS8RUgNFRoain/++QdnzpzBmzdvcPjwYd5iic+Ox+u01wjNCEVo+n9fibmJaG3mjT2Pqj5SrcoKs4HU0KKvkhjZANbeRV+2PoB9Q8CuISAyVV+chJBqQ0kPITXUjRs3MHnyZFhbW2PVqlXw9fVV27nfpL/Bw/iH8I/3x8P4h4jJjimxbERBaon7NE52YtFX+DvrWZm7AvaNi77qtAOcWwO6In5iJIRUGjVvEUJKJWVSvEh58V+Sk/AQKXkp5T6eA4f7kfHQF+dVY5RqJtQHnFsBbh0B905F/9bR5zsqQkgZKOkhhMgpkBTgadJT+Mf7wz/BH48THiOrsGp9b85k68Mj4aWKItRAOqJ/k6BORUmQU0tAR4/vqAgh76CkhxCChJwEXA2/iusR1/Eo8RHyJfkqrX+r0AVdX90uu2BtoWMAuLYF6vcH6g8CjG3KPoYQUu0o6SFES8Vlx+FK2BVcDb+Kx4mPwVB9LwVLjH0wPlBLJ5njhIBbB6DBEKD+QMDImu+ICNFalPQQokUScxJxIfQCLoddxtOkp9Wa6LxttHkjrAg4r5ZzaTROWNQPqMEQwGcQYGjJd0SEaBVKegip5XIKc/BnxJ849+Yc7sbehYRJ1B5DB/P3sCPgitrPq9EEOkV9gBoMAeoPoASIEDWgpIeQWkjKpLgbexfn3pzDH+F/IEecw2s8roYOOP/sLq8xaDQdEdBwGNB6BuDYlO9oCKm1KOkhpBbJl+TjzKszOPD8AMIzwvkOR0ZHoIP7oRHQkYr5DkXzObcuSn4aDAaEunxHQ0itQkkPIbVAen46jr44isMvDldoDh11upDBwSVZcxIxjWdsB7SYBLScApjY8x0NIbUCJT2E1GAxWTE48PwAfnv5G3LFuXyHU6qdcED7UGriqjCBbtHQ99YfFs0GTQipNFqGgpAa6EXKC/z89GdcDbsKMasZTUYRRmZoz3cQNZG0EHh2qujLvhHQcQHQYCjAcXxHRkiNI+A7AEKqavXq1eA4DmFhYbJt+/btA8dx8PPz4y2u6vB3zN+YcWUGRpwdgYuhF2tMwgMAkbo0Q3GVxQUCJ6YA29sBT38D6EE9IRVCSY+WSE9Ph6GhITiOw759+9RyzrS0NKxevbrWJR7qJpFKcP7NeYw8OxIfXv0Q/8T+w3dIlRKBQr5DqD0Sg4ATk4Ef24M9Ow3qpUBI+VDSoyUOHz6MvLw8eHp6Ys+ePWo5Z1paGtasWcNL0jN+/Hjk5uaic+fOaj+3Kt2IvIEhvw/BspvLEJQSxHc4VRIpzuQ7hNon4Tmi/zmG/ltvwS84ge9oCNF4lPRoiT179qBz585YuHAhbt26heDgYL5DUio7O1sl9QiFQohEIggENfNXPDglGNOvTMfca3MRmh7KdzgqEZWbCAbqh6JKTKCDZSn98SwmA5P23sfon/7Bw4hUvsMiRGPVzHcEUiFPnjyBv78/Jk2aBF9fX+jr6+Pnn3+WKxMWFgaO47B69WqF45X1mYmMjMTUqVNRp04d6Ovrw8rKCq1atcKuXbsAFPWpcXd3BwCsWbMGHMeB4zh07doVAODn5ydratu2bRt8fHygr6+Pr7/+GgBw7949TJo0Cd7e3jA0NISJiQk6dOiAU6dOleualfXpyczMxMqVK9GmTRtYW1tDX18fXl5eWLZsGXJy+J28r1hiTiJW3V6FkedG4k7sHb7DUal8ST7izRz4DqNWCXUcgFspZrLv77xJwdDtf2PWIX9Ep2n2aD5C+ECjt7TA7t27YWRkhOHDh8PY2BgDBw7EgQMHsHbtWujoVPxXQCwWo2fPnoiOjsasWbNQr149ZGRk4OnTp/jrr78wffp0dO7cGZs3b8aCBQswZMgQDB06FABgZ2cnV9eWLVuQkpKC6dOnw87ODi4uLgCAU6dOISQkBL6+vnB2dkZycjL279+PoUOH4pdffsGYMWMqHHd0dDT27NmDESNGYOzYsRAKhbhx4wa++uorBAQE4PLlyxWuU1WkBQUI+uM4pqR+z/vsydUp0twR9ukxfIdRKzChHhYl9lG67+LTOPgFJ+J/73theicP6Arp8y0hACU9tV5+fj5++eUXDBs2DMbGxgCASZMm4fjx47hw4QIGDhxY4TqfP3+O4OBgfPXVV1i8eLHSMh4eHhg8eDAWLFiAxo0bY9y4cUrLRUZGIjg4GNbW8itPr1y5EuvXr5fbNm/ePDRr1gxffvllpZIeDw8PREZGyiV6c+bMwaeffoovv/wS9+7dQ+vWrStcb1Vl3byJuC+/hCAqGs3mueK2qBYnPUZmaMV3ELVEsOMQPHxpUuL+3EIJvroUjN8eRuOLQQ3RztNKjdERopko/a/lTp06hZSUFEyaNEm2rXfv3nBwcKh0h2Yzs6LH6deuXUN8fHyV4pswYYJCwgMARkZGsn/n5OQgOTkZOTk56N69O4KCgpCRkVHhc+np6ckSHrFYjNTUVCQlJaFHjx4AgLt31TtxXmF0NCLnzkXk9BkoDI8AJBLM8ROpNQZ1i9Cv3denLkzHAAtie5ar7KuELPjuuoP5RwOQkJlXzZERotko6anl9uzZAxsbGzg7O+PVq1d49eoVQkND0bNnT1y4cAFxcXEVrrNOnTpYtWoVrly5AkdHRzRv3hyLFy/GnTsV74NSt25dpdsTEhIwY8YM2NnZwcjICNbW1rCxscGOHTsAFI0Mq4zt27ejcePG0NfXh6WlJWxsbGT9jFJT1dMBlEkkSPppF173H4CsP/6U26cTEIRpyQ3VEgcfIjkp3yHUCk8chiMoy7BCx5x5FIP3N93AvtuhkEhpiDvRTpT01GJhYWH4888/kZiYCG9vb9StW1f2deDAAYjFYuzfvx8AwJUyu6tYrDgB3po1a/Dq1St8//338Pb2xt69e9GuXTvMmzevQjEaGiq+cEulUvTs2RP79+/HhAkT8Ouvv+LSpUu4evWqrFlLKq34m+emTZswZ84cODg4YOfOnTh//jyuXr0qm7eoMnVWVEF4OMLHjEXit9+C5SrvaNr7XByMWe2cyC9SnMV3CDUe0zPG/KhulTo2M0+M1WefY+APt/A0Ol3FkRGi+ahPTy22d+9eMMawc+dOWFpaKuz//PPP8fPPP2Pp0qWy/SkpiotVvnnzRmn97u7umDNnDubMmYP8/HwMGjQIW7duxYIFC+Du7l5qIlWawMBAPHnyBKtWrcKaNWvk9u3evbtSdQLAoUOH4ObmhosXL8oNZb906VKl66yI1GPHEL9hI1gZI8VYTBxWvG6N5V4P1RKXOkXmJfEdQo13z240wl5WrZnwWUwGhm7/Gwt6euPDzh4QCGgqAaIdKOmppaRSKfbt2wcfHx/MmDFDaZnXr19j2bJluHXrFjp27Ah7e3tcu3YNjDFZwvLmzRucPn1a7rji2Z11dXVl2/T19dGgQQNcvnwZKSkpcHd3l3WcrmizkVAoBACFWWafPn1a7iHrJdXLcZxcvWKxGBs2bKh0neUhTk5G7MpPkXX9ermP8Tr3BO/NscYL3dqVJGQVZiPFyAqW2cl8h1IjSUXm+Ciyo0rqKpBIsfHSC/gFJ+DbUU3hZG6gknoJ0WSU9NRSV69eRUREBFatWlVimWHDhmHZsmXYs2cPOnbsiLlz52LlypX44IMPMHjwYMTExGDHjh1o2LAh7t+/Lzvu+vXrmDFjBoYNGwZvb2+YmJjg0aNH2LlzJxo3boymTZsCAKysrODp6YmjR4/Cy8sLNjY2sLW1Rffu3UuNvX79+mjQoAG++uor5OTkoF69eggJCcHOnTvRsGFDPHxYuScgw4cPx/Lly/HBBx9g6NChyMjIwOHDh+WSN1XLvHYdsZ9+Cklyxd7kWW4eltx3wJT2tSvpAYAIS2dKeirppo0vYl+qtunzbmgKPtjyF74Y3BCDmjqptG5CNA0lPbVU8cis4cOHl1jGy8sLjRs3xvHjx/H9999j6dKlSE9Px8GDB+Hn5wcfHx/s2bMH/v7+cklPkyZNMHToUNy4cQO//PILJBIJXFxcsGjRIixevFj2pAYADh48iAULFmDJkiXIy8tDly5dykx6hEIhzp8/j0WLFmH//v3Izs5Gw4YNsX//fjx+/LjSSc/ixYvBGMOePXswf/582NvbY9SoUZg8eTJ8fHwqVWdJpDk5iF+/HmnHT1S6DuMbARjYqD5+N3mpwsj4F2lshaZ8B1EDSQ1t8HF422qpOyNPjPlHH+HaiwR8MbghTEXV90GAED5xjFaqI0Slch89QvSSpSiMiKh6ZXXd4Ts8ChLUnj/TWaYNMfvxBb7DqHEuOc/HzFdtqv08TuYG+HZkE7TxoHl9SO1Do7cIURHGGBJ/2IawseNUk/AAwMtQLIpuqpq6NESEsOwyRJ7E2BELw1qq5VzRabnw3XUH314NodXbSa1DSQ8hKiDJykLUrNlI+uEHQCJRad0tz76ErdSo7II1RKSE1oSqqN/NxiBbrL5sUcqA7/98iekH/JGVrzhlBSE1FSU9hFRR/ptQhI0Yiay3FjdVJZaahlVPvaulbj7QsPWKKTStg0/CmvBy7j+C4jFk222EJWXzcn5CVI2SHkKqIPP6dYSNHImC0NBqPY/t5QC0z3Op1nOoS2pBOrJEpnyHUWMcNxqDXAl/bYIvE7IwaNtt3HyZyFsMhKgKJT2EVFLSzp8QNXsOpFlqmGVYLMbcG7VnHpUIC2e+Q6gRCizq4tOwBnyHgfTcQkzaex+7byqfqJSQmoKSHkIqiBUUIGb5J0jcvBlQY0dPnYfPMTWldqzLFWFiw3cINcIB/TGQMM14mZZIGb48H4SPjz1Cvli1/dYIURfN+GsipIaQpKUhYuo0pFdhZuiq6HO2dqzLFWVQezpmV5dcqwZYG655fbl+exiNkTvvICGDVmwnNQ8lPYSUU0FYGMJGjUbOWxM1qhuLicMnr2v+054IIa31VJafhL5gTDPv0+PINAzf8Q8ikktfR44QTUNJDyHlkPv0GcJG+6IgPJzvUFD33BPUK7TmO4wqiZTSU4LSZNk0w+YID77DKFVESg5G7PwbIfGZfIdCSLlR0kNIGXIfPULE5MmQpKXxHQqAonW5lt534DuMKonIr9gitNrmezaK7xDKJT4jHyN3/oNHkWl8h0JIuVDSQ0gpcvz9ETF1GqSZmvVp1vhGAAZm1eU7jEpLzEtGnm7tGY2mSul2bfFTlCvfYZRbWk4hxu66g79f0fxLRPNR0kNICbLv3kPE9BmQZmvmxGzjLudBCM3s81EWBoYoy5rzxq5OGwtG8B1ChWUXSDBp331cfhbHdyiElIqSHkKUyLp9G5EffgiWo8EdNUNC8XE0PzP1qkKEKQ1bf1eyQxccjq2ZTZcFYilm//IQJ/2j+A6FkBJR0kPIO7Ju3EDUrNlgeZrf2bb12Vc1dl2uSANjvkPQKAwcPs8ZwncYVSKRMiw68RgH/gnjOxRClKKkh5C3ZP75J6Lm/g+soIDvUMqFpabh0xq6LlekDi23/rZ4xx44E2/LdxhVxhjw2e/PcOxBJN+hEKKAkh5C/pVx6TKiPloAVljIdygVYnc5AO3yat6yDhGsZiSW6sA4AVakD+I7DJVhDFj+WyAuPY3lOxRC5FDSQwiAjAsXEL1wIVDDEh4ARety/WXIdxQVFlmQzncIGiPSqS/+TLbkOwyVkkgZ5h15RAuVEo1CSQ/Relm3byN66TJAUnPXE9L1f44pyTVrpubY3EQUCnT5DoN3TKCDpcn9+A6jWhRIpPjwoD/8w2leJqIZKOkhWi3v+XNEz5tfM5/wvOOD8/EwlNacJELCJIixrHnNcqr22mkQ/kk14zuMapNTIMGUffcRFJvBdyiEUNJDtFdBVBQiZnyosfPwVBSLjsWK0EZ8h1EhkWb2fIfAKybUx6L43nyHUe3Scwsxfs89hCXVjr81UnNR0kO0kjg1FZFTp0GSVLtmkfU+G4i6Yiu+wyi3CAMTvkPgVZDjUDzK0I6h+0lZ+Ri7+y5i03P5DoVoMUp6iNYRF0pw/XAIciR6fIeiciw3F8vuO/IdRrlF6ta+n0F5MV1DfBTTg+8w1Co6LRdT9j1AbkHN7T9HajZKeojWuXbgBUICs/Gg2SLkN+rEdzgqZ+IXgP5ZXnyHUS6RqPl9qSrrkf0IhGRr3/pjQbEZWHT8Md9hEC1FSQ/RKvfOvsHL+/EAgJxMMe45jkF2p5q31lFZxl8pqBHrckUUamfnVqZvgvlRXfgOgzfnA2Pxw7WXfIdBtBAlPURrhNyLw/3zYXLbCvOluK/bDan95/ETVDXhgt/g41jNX5crOjcRUk77Xobu2I5GRK6I7zB4telqCK4+j+c7DKJlqv3VpmvXrnBzcytXWT8/P3Ach3379lVrTOXVrl07jBkzhpdzq+JeVOTeV6dJkyaB4+SfOvTv3x89e/ZUWwxxb9Jx7cALpfukUoaArHqIHfUFGKf5T0fKq/WZV7CVaHYn2QJpAeLNak4fJFWQiiywIKID32HwjjFgwa+P8DI+k+9QiBapVNKTl5eHrVu3okuXLrCysoKuri5sbW3Ru3dv7Nq1C/n5+aqOU+2OHDmC+/fvY9WqVXLb3dzcwHEcrKysSrzOQYMGgeM4cByHsLAwNURb83z++ef4448/cO7cuWo/V152IS7vegqJWFpquaB4S4T6bgHTqx2fwFlqGj59XpfvMMoUaV4zVxWvrBs2YxCXr70duN+WlS/G9AMPkJ5T8/t2Kftwpw5ubm7o2rWr2s9bU1U46QkLC0OLFi0wb9486OjoYOnSpfjpp5+wZMkS6OrqYubMmfjf//5XqWA6d+6M3NxcjB8/vlLHq9Lnn3+OPn364L333lPYJxKJkJKSgt9//11hX3x8PC5cuACRqGpvnJp0L6pD8+bN0aVLF6xZs6baz3XtQBCyUsuXiIfF6OD50C2QWNpVc1TqYXcpAG3ynfgOo1QRRrV3Yr53SQ1t8HFYG77D0ChhyTmYe+QhJFJWbefYt29fqU/Ow8LCwHEcJk2apNLz+vn5YfXq1UhLS1NpvZWVmZmJdevWoVmzZjA3N4exsTHc3d0xePBg7N69W67s6dOnsXr16iqfU9PuQYWSnry8PPTv3x/BwcE4duwY/vzzTyxZsgSTJ0/GokWLcO7cOTx+/FhpolCuYAQCiEQiCIX8rr58/fp1vHjxAhMmTFC6v06dOmjWrBn27t2rsO/AgQMAgAEDBlQpBk25F9Vp/PjxePDgAR48eFBt53h8LRKhjys2F098nASPun6BQrcG1RSVGonFmPeXZjdxRejp8x2C2ly2HIvUQh2+w9A4N18mYf2FIL7DqJJdu3YhN1d+DiI/Pz+sWbNGI97wMzMz0apVK3z22WeoX78+Pv/8c3zzzTcYMWIEwsPD8d1338mVP336tEo+lGrSPQAqmPTs2bMHz549w8cff4wRI5SPeGnYsCE+/vhjhe1RUVEYOXIkLCwsYGRkhN69eyMkJESujLJ+LG9v2717N3x8fKCvr486dergq6++UjjPlStXMGrUKHh4eMDAwADm5ubo1asXbty4Ue7rPHbsGDiOQ58+fUosM3nyZFy5cgXR0dFy2/ft24d+/frB1tZW4ZiYmBgsXLgQTZs2hYWFBUQiEXx8fLBx40ZI3ln3SRX3Qpl79+5h0qRJ8Pb2hqGhIUxMTNChQwecOnVKoWzx49rU1FRMnz4dtra2EIlE6NChA+7evatQPi0tDbNmzYKtrS0MDQ3Rtm1b/PHHHyXG0q9f0XpDv/76a7lir6jEiEz889vrSh2bnlKIBw3mIa9pdxVHpX66D55hUooP32GUKIorvdmxthCbOGFRWAu+w9BYu2+F4tqLmtuxWVdXt8pP+KvTrl27EBwcjG+//RaHDx/GvHnzMHPmTHz11VcICAjAxYsX+Q5RLSqU9Bw/fhwA8OGHH1boJNnZ2ejSpQv09PSwbt06zJkzB35+fhg0aJDCm31JfvzxR6xduxZjx47Fpk2b4ODggKVLl+Lw4cNy5fbt24e0tDRMnjwZW7duxYIFCxAUFIT3338fN2/eLNe5bty4gfr168PU1LTEMmPHjoVQKJQ92QGAO3fu4Pnz55gyZYrSY548eYLTp0+jZ8+eWLt2LTZs2AAXFxcsW7YMs2fPLldsQPnvhTKnTp1CSEgIfH198d1332HFihVISUnB0KFDSzy+T58+iIuLw2effYbly5fj6dOn6Nu3LzIz/+uAWFhYiN69e2PHjh14//338c0336BNmzYYNGgQHj58qLRee3t7uLm54fr16+W+9vIqyBPj8u6y+/GUJjdbjHu2I5DZfZwKI+NHv3OJGrsuV4RYOzqy/m46Btni2vvkVhWWnHiCpCzN6BNa3OS1evVqnD59Gi1atIBIJIKDgwMWL14MsVgsV/7dPj1du3aVPSlxd3eX9fN8+4NsbGwsZs2aBVdXV+jp6cHR0REzZsxAQkKCQjxBQUHo168fjI2NYW5ujkGDBuHNmzflvp7ihwzdunVTut/Z+b918Nzc3LB//34AkMXNcRz8/PwAlP/DsyrvQUpKCj7++GN4enpCJBLBwsICjRs3xtq1a8t9DwCgQs9ZAwMDYWJiAk9PzwqdJCkpCYsXL8aSJUtk22xsbLBkyRL88ccf6N277LVnIiMj8fz5c5ibmwMApkyZgjp16mDr1q1yI6x27doFIyMjuWNnzpyJBg0aYP369ejUqfTJ6CQSCYKDg2VPIUpiaWmJgQMHYu/evVi+fDkA4Oeff4adnR369u2LK1euKBzTpUsXvHr1Su4P46OPPsL48eOxe/durF69Gg4OZXfqLO+9UGblypVYv3693LZ58+ahWbNm+PLLL5Ue36JFC2zfvl32vY+PD0aOHInDhw/LEuC9e/fi3r17WLp0KTZs2CAr26lTpxKfCgKAp6cnbt++XeY1V9SNI8FIT6j6dPfiAikecO3QeLADrE5/rYLI+MGiY7EirDVWeChPQPkUmVu7lgJRptDMDctDNX8KAb4lZRVgyYkn+HlSK75Dkblw4QK2b9+OmTNnYtq0aThz5gy++eYbWFhY4JNPPinxuBUrVsDS0hKnTp3C5s2bYW1tDQBo3749ACAiIgLt2rVDQUEBpk6dCk9PT7x+/Rrbt2/H9evX8eDBA5iZFfV3Cw0NRceOHZGTk4PZs2fDw8MDf/75J7p164acnJxyXYeHhweAotfqjRs3Qken5Lf/LVu24Ntvv8XNmzdx8OBB2fb69esDkP/w7OzsjOTkZOzfvx9Dhw7FL7/8InsfUeU9GDFiBP766y98+OGHaNKkCXJzcxESEgI/Pz+sWLGiXPcAqGDSk5GRATu7infwFAgEmDdPfh6U7t2Lmg1evnxZrqRn8uTJsjd5ALLmk3/++Ueu3NsJT1ZWFvLz8yEUCtGmTRvcuXOnzPMkJydDKpXC0tKyzLJTpkxB3759cfv2bTRv3hy//vorPvzwwxJ/mQwM/pt9taCgAFlZWZBKpejduzcOHTqEBw8elKsvUHnvhTJv35+cnBzk5uaCMYbu3btjx44dyMjIUHjCtWDBArnv3/7ZFTtz5gw4jpNLbAFg+PDh8Pb2VmjKLGZlZYW8vDxkZmbCxEQ16zC9+CcWIXdV95icMeBxmhvq+W6A468rwElr5hT63mefou5sK7zUTeY7FDk54hwkGdvCOkvx021t8avRWOTHa998RJVx7UUCDt4Jx/i2dfgOBQDw7NkzPHv2TDb9x8yZM9GoUSNs3bq11KSnZ8+euH37Nk6dOoXBgwcrTB8yd+5cFBQUICAgQO4py/Dhw9G2bVts3rxZ1pG4+In8xYsXZd0u5syZg7lz52Lbtm3luo7p06fjhx9+wLfffotDhw6hU6dOaN26NTp06IB27dpBIPjv93Pw4ME4ffo0bt68iXHjFJ90l/fDs6ruQXp6Oq5du4bZs2fjhx9+KNf1lqRCf4WmpqZyTRrl5ejoqNDWaWVVtChicnL5XoCLs9R363j3+NevX2P06NGwsLCAiYkJrK2tYWNjgwsXLiA1NbXM8xQ/hWGs7JEEvXr1gqOjI/bu3YsTJ04gIyMDkydPLrG8WCzGl19+CW9vb4hEIlhZWcHGxkY2Qqs88QHlvxfKJCQkYMaMGbCzs4ORkZHs/uzYsQMAlHY2e/d8yn52r1+/hp2dndJksfjTgTLF91lVQz1T47Jx46jyBKuqgmNN8Gr0d5AaaHbH4JKwnBws9dfMkVyRFpoZlyrkW3jjs9CS/waIorXnn+NVQhbfYQCAwps1x3Ho1q0b4uLikJVVuRjT0tJw/vx59O/fHyKRCElJSbIvNzc3eHl5yVoLpFIpzp49iyZNmij0My0t6XqXhYUF/P39sXTpUpiYmODkyZNYunQpOnbsKHe+8nj3w3NycjJycnLQvXt3BAUFISOj7JnWK3IPDAwMIBKJcOfOnSpPA1OhpKdRo0bIyMjA69cV6xxa2gik8iQXZdVRLDMzE506dcKlS5cwf/58nDhxApcvX8bVq1fRvXv3cp3LysoKAoGgXAmIUCjEhAkTcOzYMWzfvh1t27Yt9Q1+wYIF+PTTT9G8eXPs3bsXFy5cwNWrV7Fx40YARb/c5VHZEV1SqRQ9e/bE/v37MWHCBPz666+4dOkSrl69KsvMlcVQ0vnevZ+VSVxSUlIgEolgbFz1REJcKMHl3c8gzq++JzGRMRyeDdgEiY1z2YU1kKlfAPpp4LpckcZlP1mtqfbrj4GE0VOeisgrlOKjXwNQKFFvJ3dlr2ElfcgEyv+h/V0hISGQSqXYt28fbGxsFL6Cg4MRH1/0tDohIQFZWVlK31scHR1lzT/lYWNjgw0bNuDVq1dITEzEhQsXMGHCBISFhWHIkCF49epVueqpzIfnqtwDPT09fPfdd3j27Bnc3d3h4+ODuXPn4urVq+W+9mIVat4aPnw4bty4gV27dsn129AU165dQ2xsLH7++WeFJy4rV64sVx0CgQD169cv9w9/8uTJ2LBhA+7cuYOffvqp1LKHDh1C586dcfToUbnt5T1XVQUGBuLJkydYtWqVwlDEd+doqChPT09cvHgRKSkpCk97goJKHor66tUrNGzYsErnLvbPqddIjqr+T4eJCWI87LAKTZ/+CN1XAdV+PpViDBOuFODSUA4SVN+8KBUVoa+5o16qIte6IdaHa/4EkZroaXQGNl0JwbIPKjcFytuKuxa8O6S8WHG/mLe7IBRTxYf2ko7z9fUtceDLu7GoeuJDa2trfPDBB/jggw/g5OSE9evX4+jRo2W+VxZ/eH7x4gXmzZuHVq1awczMDEKhEHv37sXhw4fL9QG+ovdgxowZGDhwIM6fP4+//voLp06dwrZt2zB48GCcPHlSrnmuNBVKeqZOnYrt27dj06ZNaN26NYYOHapQJjAwEFeuXMHChQsrUrVKFP9yvvuLeOXKFaVDrEvStWtXbN++XWn/lnd5e3vju+++Q0pKCkaNGlVmfO/Glp2djc2bN5c7tqoo6f48ffpU6ZD1ihg8eDAuXLiAr776Si4hPnHiRIn9eeLi4hAeHo7hw4dX6dxA0TITgdejqlxPeWWmFeKe94dobvk7DO5dUNt5VYELfoMFsS3xjcMjvkORiRBoTgKmSjsEo8FY7VnaRN1++us1utazQVsPqyrV4+7uDgB4/vy50v3F24vLqUpJiYqXlxc4jkN+fj569OhRah22trYwNjZWGntMTAzS09OrHGe7du0AQG4KlpJir+iHZ1Xcg2L29vaYOnUqpk6dCqlUiunTp+Pnn3/GjRs3ShyV9q4KPXM1MDDAuXPn4OXlhWHDhqFnz574+uuvsXfvXnzzzTcYMGAAmjZtKtfBVZ06duwIe3t7LFy4EKtWrcJPP/2E2bNnY9iwYWjUqFG56xkxYgQYY7h06VK5ys+bNw+rV68uM0EaPnw4bt68iVGjRmHXrl348ssv0ahRozKPU5X69eujQYMG+Oqrr7Bo0SLs2rULixcvRvv27av8tGXSpElo3bo1Nm7cCF9fX/z444+YP38+Jk6cWOK9P3/+PABg5MiRVTq3RCLF9UMvUMkPXZWWnyPBPdP+yOil/FOKJmvz+2uNWpcrSlK+ESg1SZZtC3wXodg0QspPyoDFJx4jr7BqTdbNmzeHi4sLjh49ipiYGLl9BQUF+OGHH8BxHAYOHFil87yruNn+3e4SVlZW6Nu3L86cOaN09CpjDImJiQCKWh8GDhyIx48fK7wnrVu3rtyx/PPPPyU2O505cwZA0cjcsmKv6IdnVdyDnJwchVFqAoEATZs2BVDUTaK8Kjw1qIeHB/z9/bFr1y6cOHEC69evR2ZmJiwsLNC8eXPs2rVLaW9vdTA3N8fly5exZMkSbN26FWKxGC1atMCFCxewZ88eBAYGlqueLl26wMfHBwcPHqzyG/Lbvv32W5iYmODYsWM4c+YMXFxcMGPGDLRq1arcmW5VCIVCnD9/HosWLcL+/fuRnZ2Nhg0bYv/+/Xj8+HGJ8+mUh66uLi5fvoxly5bh5MmTOH36NJo0aYIzZ87g0KFDSu/9wYMH0bx5c7Ru3boql4WAy+FIicmuUh2VJREzPOBaoNEwe9icLP8LEN9YSipWPm+FeY00o3kuIq/2DVvfLFHda4c2i0zJxZY/XlapmUtHRwc//vgjhgwZgkaNGmHatGnw9PREfHw8fv31Vzx79gzLly9HvXr1VBg50KZN0ZIjy5cvh6+vL/T19dGmTRu4u7vjxx9/RMeOHdGtWzeMHz8ezZs3h1QqxZs3b3DmzBlMmDBBNnrryy+/xKVLlzBkyBDMmTNHNmT9wYMHsmHgZfnll1+wd+9e9O3bF23atJENfrlw4QKuX78OHx8fuWamNm3a4IcffsCcOXPwwQcfQFdXF927d5f78JyTk4N69eohJCQEO3fuRMOGDRXeR1RxD0JCQtClSxcMGTIEDRo0gJWVFV68eIEff/wRjo6OFXr/5FhlGyVruaNHj2LcuHF49uyZyv8QCBAQEIAWLVrgzJkzVVqyIzUuG79+eb9KkxCqipdDLlyOLQMnEZddWBPo6OCbeU64px9ddlk1uB2XDtPcqj+q1wRp9u3QNKxyaxASRToCDufmdcR79lV7Kn7//n189dVXuHnzJpKTk2FkZIRmzZph1qxZCh9ww8LC4O7ujs8++0xhDarVq1djzZo1CA0NlY3smjRpEvbv36/wBGTdunXYuXMnoqOjIZFIsHfvXtkaX0lJSdi4cSPOnDmDiIgIiEQiuLi4oHv37vjwww/lnrwEBQVh0aJFuHHjBoRCIbp27YrNmzeje/fucHNzk00cWJKnT5/i6NGjuH79OkJDQ5GUlAR9fX14eXlh0KBB+Pjjj+VaHSQSCRYtWoSjR48iISEBUqkU169fR9euXREeHo5FixbBz89P9uF5+fLlePz4scJ9UcU9SE5Oxpdffonr168jPDwceXl5cHR0RJ8+fbBs2TK4uLiU/cP/FyU9pWjXrh3c3d3LNdMxqZgBAwYgNze31GUqyuPUpoeIeZmmmqBUwMmBQ92zn0CQlcZ3KOVS0KoBxvUI5jsMAMDRfFM0iHnKdxgqsdTiW/waa893GLVKc1dznJzVnpeVzEntQUkPqbGC78bhj73KOybyycpGBw1vbYAwNpTvUMrl/Mwm2G/xjO8w8JWeBz4I9uM7jCpLcuiKlqEz+A6jVlo/tBF8W7vyHQapwWjyCFIjFeSJ8fdv6hnqX1HJiWI8aLUMBfXb8h1KufTXkHW5IkWGfIdQZQwcVmcpjmolqvHVpRdIyyngOwxSg1HSQ2qke2dDkZOuuS9+2Rli3KszCTntB/MdSplYVAw+CSv/6MbqElEL1uKMc+qFc4nl61hKKi41pxDfXNGM5lhSM1HSQ2qc5Ogstc7JU1kFeRLcM+iFtL6z+A6lTPXOPkXdwqrNhVJVkdI8Xs9fVYwTYEWaaoc8E0WH70bgWUzt6PBO1I+SHlLj3Pw1BFJpzeiKJpUwPMxpiLgRq/kOpVQsJwdLH/K7/lVkfvnn2tBEEU79cS3Zgu8waj0pAz47w38fNFIzUdJDapTwZ8mIDknjO4wKe55og9AxmyHV0+c7lBKZXg/AB9mevJ0/MS8FuXo1s18PE+hgSVJfvsPQGg/CU3H1eTzfYZAaiJIeUqPc+/0N3yFUWmiMHoKHbYHUTEP7fDCGSVfE4Hh8iBZpUTNH5rxyGoy7aeqZWZ0U+fZqSKXXviLai5IeUmOEPklCQngm32FUSWysFI97rEWhq2ZOeMm9eI2P45rydv5IUxvezl1ZTKiPhfG9+A5D6wTFZuDck1i+wyA1DCU9pEZgjOHe2Zr7lOdtqcli+Df5GPmNO/MdilJtz76BtdSIl3NHGPBz3qp47jgMTzI0Zx0zbbL5jxBIakj/PqIZKOkhNcKbR4lIisziOwyVyckU4669L7K7jOY7FAUsOQWfBvHzJCpSp2aNW2e6RlgQ8z7fYWitN4nZ+O2h5o/kJJqDkh6i8RhjuH+uZsxuXBHiAinuCTshZeBHfIeiwOHCQ7TKd1T7eSOk+Wo/Z1UEOIxASLYB32Fote/+fIkCDVh7j9QMlPQQjffKPwHJ0fysol7dmBR4lFEXMaPXgmnSmkJiMebfVH/H3KjCmjP/CtM3xbyILnyHofWiUnPx6/0IvsMgNQQlPUSjMWntfMrzrhdx5njj+x2YvuY8NdC7/xQTUhuo9ZxxuUkoFOqp9ZyV9Y/taETlae4UBNrkh+uvkFco4TsMUgNQ0kM0Wsj9eKTG5fAdhlqExwjxbPBmSKwc+A5FZsD5RIiYjtrOJ2ESRFm6qO18lSU1sMRHER34DoP8Kz4jH4fuhPMdBqkBKOkhGksqZbh/vvY/5XlbQrwEj7qsQaFHY75DAQCwyBisUPO6XJGmdmo9X2X4WY9BQj7/i7SS//x8KxRiCfXtIaWjpIdorJB7cUhPyOU7DLVLTynE/fpzkNe8J9+hAADe+/0ZPMWWajtfpIGJ2s5VGRIjWywIa813GOQdMel5uPQsju8wiIajpIdorMd/RvIdAm/yssW4ZzUUme9P4DsUsJwcLH/orLbzReiqrzmtMi5ZjEV6oWbHqK323g7jOwSi4SjpIRop9lVarZqXpzLEhVI8kLZB0pAlfIcC02sB6KOmdbkiIVbLeSpDbOKEJaEt+A6DlMA/PBVPotL4DoNoMEp6iEZ64kcTjgEAY8CT1DqI8t0IJuBx4j7GMPmqRC3rckVq8LD10ybjkC2hl01NRk97SGnor5donOy0fLx5mMh3GBolJNYYL0d/D6kRf4tackGv8FFck2o/T3RuIqSc5r00FZp5qL1TN6m4809ikZCRx3cYRENp3isL0XpP/4qGlNbTURAVAzzt9zXEdnV4i6H92dBqX5erUFqIWHP19SEqryOGY5AvpZdMTVcgkdLwdVIi+gsmGkUiFuPV3R2wdXkDPZHm9u3gS1KCGA/brkCBd0tezs+SU7BSDetyRZjbV/s5KiLfsh7WhL3HdxiknA7fi0C+mCYrJIoo6SEa5fWDO4h79RwRT04jJ3knrB3uwswmk++wNEpWeiHue05Dbpv+vJzf8cJDtKzmdbkiDc2qtf6K2qvrCwmjl8uaIimrAL8/iuE7DKKB6K+YaJQnf16W/VtckI+o57cRH7ILhkanYeMSBaEOfXoDgPxcCe4a90V6nxnqP7lYjI9uVW/fokg9zVmKIse6ETaEe/MdBqmgo/e1d8oLUjJKeggAYN++feA4Dn5+frzFkBYfh/DAR0r3pUS9QeSTYxDn7IGN0yMYm2vfpIXvkkoY/PObIGH4p2o/t969pxif5lNt9UdympPc/siN5jsEUgn+4amITNGOJWxI+VHSowZ+fn7gOE7uy9jYGM2bN8fmzZshFlPfFQAIunW9aIx2KfKzsxD59BqSQn+EqfklWDvFgVPHOGpNxYCnSfYIH7MJUh31Ph0ZeC652tbliijUjCbNTNuW2BrpzncYpJJ+f0xNXEQeJT1qNGrUKBw8eBAHDhzAZ599hsLCQnz88ceYPXs236Fh/PjxyM3NRefOnXmL4cXtvypUPiH0OaKeHgYn2Qdbl+cwMMmvpsg03+sYEUJGbIHURH3LRbDIaHwSVj1rhEXlasaUBZvEI/kOgVTB6YBovkMgGoaSHjVq2rQpxo0bh/Hjx2Px4sW4c+cOXFxcsHv3biQm8vsiLxQKIRKJIBDw8yuREPYGKdGVa4PPSU9FxJNLSIv6ERbW12HlkAwG7Xv6ExPL8KT3eoidvNR2zvpnn8FDbKHyenMleUg05XcEV6p9B+yL0byh86T8XiZk4VmM5k52SdSPkh4eGRkZoU2bNmCM4fXr1wCArl27ws3NTaFsWFgYOI7D6tWrZdsYY9iyZQsaN24MExMTGBsbw9PTE5MmTUJu7n99Xv7++2/07dsX9vb20NfXh729PXr27ImbN2/Kyijr05OZmYmVK1eiTZs2sLa2hr6+Pry8vLBs2TLk5Ki2rfzF7RtVroNJpYh9GYDo5/uhr3MEti6vtG7Ye0qSGP4tFiO/QXu1nI9lZ2P5Q5dqqTvCvHpHiJVlXd4wXs9PVOMMjeIib6FV83hWnOxYWVlV+Ngvv/wSq1atwoABAzBz5kwIhUKEh4fj7NmzyM7OhoGBAYKDg9GzZ0/Y29tj3rx5sLe3R0JCAv755x8EBASgU6dOJdYfHR2NPXv2YMSIERg7diyEQiFu3LiBr776CgEBAbh8+XKJx1YEYwwv/q5Y01ZZMhLjkJH4O4S6erD3ag6JtAHSEjRrGHR1yc4Q477LBDSzcIDRrZPVfj6zawHo3aAuLhu9UWm9EcYW4GuVq0TH7jj+RrPmCiKV8/ujGCzr8x4EAo7vUIgGoKRHjXJycpCUlATGGOLi4rBjxw4EBASgVatWqFu3boXrO3XqFHx8fPD777/LbV+3bp3s35cvX0ZOTg6OHj2KVq1aVah+Dw8PREZGQkfnv1+TOXPm4NNPP8WXX36Je/fuoXXr1hWO+13Rwc+RmVQ9zXuSwgJEB90BcAcWjnVgYt0SKXHOEBfyuI6VGhTkSXBf73006WcPi/PbqvdkjGHKVSmuDAKYCt9XIvVEqqusAhg4fJY5mJdzE9WLy8jDndBktPe05jsUogGoeUuNvvjiC9jY2MDW1haNGzfG9u3bMXjwYIWkpbzMzc0RFRWFW7dulVoGAE6fPo28vIqtR6OnpydLeMRiMVJTU5GUlIQePXoAAO7evVupuN9V0Q7MlZUaE46IJydRkLkLNo7+MLHMVst5+SKVMgRk+yBu5OfVfi4u6BXmx6t2Xa5IgVSl9ZVXrFNvXEikN8ja5EwANXGRIpT0qNHUqVNx9epVXLx4EV9//TWsrKwQHx8PAwODStW3fv16GBoaolOnTnB0dMSYMWNw6NAh5Of/N4pp9OjR6N27N9atWwcLCwt069YN69evR2hoaLnOsX37djRu3Bj6+vqwtLSEjY0NunbtCgBITU2tVNxvY4zh5d3bVa6nIgpycxD57AYSX++Eiel52DjHghPy8warDs8TrPBmzHdg1fzkpOPZUFhJDVVWX6RE/XOsME6IT1IHqP28pHpdfBoLsaT2/o2T8qOkR428vLzQo0cP9OnTB4sWLcK5c+dw9+5dzJo1S1aG45S3Dyiby6dNmzZ49eoVfvvtNwwfPhyBgYEYP348GjVqhPj4eABFT2suXbqE+/fvY+XKldDT08OaNWtQv359HDlypNR4N23ahDlz5sDBwQE7d+7E+fPncfXqVezbtw8AIJVW/UUk7lUIctLTqlxPZSWGByMy8AiQvxe2zoEwNK2dqzOHxejg+dDNkFjaVds5pEkp+PSF6taniuBh2Hq4U3/4pah+NBrhV0aeGP7hVf+QRmo+Snp41LZtW4wbNw5HjhzBnTt3AACWlpZISUlRKPvmjfJOokZGRhgyZAi+//57BAYGYu/evXj58iW2b98uV65ly5ZYsWIFLl++jNDQUFhaWmLZsmWlxnfo0CG4ubnh4sWLmDZtGvr27YsePXrAzk51b5yv/e+prK6qyM1MR0TgVaRG7IC51R+wdkwEatmw9/g4KR53+wLiOtU3k7LjhQC0KHBQSV2ZhVlIM1RfAsIEuliS9IHazkfU60aIZsz9RPhFSQ/PPv30UwiFQnz6adFSAt7e3sjMzMS9e/8lA1KpFJs3b1Y4NikpSWFbixZF412KEydlZRwcHODg4KA0uXqbUCgEx3Fgb82SLBaLsWHDhnJcWfm88VdNvyBVYUyKuFdPEPXsIHS4Q7B1CYa+YQHfYalMWnIh7jeaj7ym3arnBIWF+OiWucqqi7SsnuHwyrx0Gox7adW7phjhDyU9BKDRW7zz8vLC6NGj8csvv+DmzZuYMWMGNm3ahCFDhmD+/PnQ09PDiRMnlDZv1a9fH23btkXr1q3h5OSE+Ph47Nq1Czo6Ohg7diyAomHtV65cQf/+/eHuXjSd/sWLF/Hw4UPMmTOn1NiGDx+O5cuX44MPPsDQoUORkZGBw4cPQ1dXVyXXnpmchMSIMJXUVR2yUhKRlXIeQh0d2Hs1hxQNkRpvzndYVZabJcY925Fo3s0Rxtd/UXn9+ncDMa55Yxwyf17luiKMLdFIBTGVhemIsDCulxrORPjyPDYDSVn5sDbW5zsUwiNKejTAihUrcOTIEaxatQrXr1/H6dOn8cknn+DTTz+FlZUVxo8fjylTpuC99+T7SyxcuBAXLlzA1q1bkZaWBltbW7Ru3RqHDx9G27ZtAQCDBw9GbGwsjh07hvj4eIhEInh5eWH79u2YMaP0FboXL14Mxhj27NmD+fPnw97eHqNGjcLkyZPh41P1JpLQR/5VrkMdJGIxol/cA3AP5vbOMLVthdR4FxQW1Nw/H3GBFPe59mg8yB5WZzapvP5B55NxfIwQ+VVcODRSX3Udo0vz1GEYAl8aqeVchB+MAX+FJGJoc5plW5txjJWxwiMh1eTst+sRouaRW6qiqy+CnWdLFBTWR0aSCd/hVEk9+ww4/voJOBW/FAT5tsZnbg+rVMdAi4ZY+/CCiiJSjukaoYfke7zOqdwoSlJzDGrqiO9GN+M7DMIj6tNDeCGVShD+9BHfYVRaYX4eop7fQsLLXTAyPgNb5ygIdGrmkNjgOFO89v0eUpFqn3T4nH0GN7F5leqIkOSWXaiK/B1GUcKjJW6+TIJUSp/ztRklPYQXiWGhyM+uHZMDJke+RkTgMUhydsPG6TGMzKr/jVrVImIEeDZoEyTWTiqrk2Vl45OHrlWqIzK/9M72VcX0zTA/ouSlWEjtkpJdgKe0AKlWo6SH8CI6uOqdXDVNfnYWIp/+ieTwHTCzuAJrpwSAqzmfKhPjJQjo9BkKPZuqrE7zawHoneNR6eOT81ORo2+ssnjeddt2NKLzqGOrNrkRTKO4tBklPYQX0S9qX9Ijwxji3zxF1NNDEEr3w9YlCAZG+WUfpwEyUgtxv95M5LbsrZoKGcPkq9Iq5X4RFlV7WlQSqYEVFoSrZzV6ojn+eZPMdwiER5T0EF7E1MInPcpkp6Ug4slFpMfugIXNDVjap4Bp+KSHeTkS3LMYjIyek1VSn+D5K8xLqPy6XJGm1bMO1jUrXyQWqGb6BVJzBEalg8bvaC9KeojapSfEISu1evtqaBqpRILYEH/EBO2DSPcobF1eQ0+kOPeSppAUSvFA3BKJQ5erpL5Ov4fBQlq5zsIRKu5gDQASIzssDG+t8nqJ5svMF+N1Yu3oT0gqjpIeona1ummrHNITYhHx5AxyknfAyv4OzGwy+A5JOQYEpjgjcszXYMKqzUkkTUrGqkquyxWpo/qXqQvmY5FeWHPnWSJV8yQqje8QCE8o6SFqp+1JTzFxQQGig/5GfMhuGBqegq1LBIS6VZvMrzq8jDFEyKjvIDU2q1I9ThceVWpdrkipavtDiU2csSysuUrrJDXL48g0vkMgPKGkh6hdzMsXfIegcVKiQxHx5AQKM3fBxukhjC1y+A5JTnQMEPjBV5A4uFe+ksJCfHTbvMKHRRSodnXs30zGIltCL33a7HEUDVvXVvSXT9RKXFCAlOhIvsPQWAW5OYh86oekNztgYnYBNs6x4ASaMelhcqIY/q2XoaB+m0rXoX8nEGPS61fomIS8ZBQIVTOsvMDcAyvCGqukLlJzPY/NQKFEM/6uiHpR0kPUKjkqAlKJ5jXhaKLEsBeIDDwCFO6DrfMzGJjk8R0SstLFuFdnMnLaD650HUPOp0KfCctdXsqkiLJSzWrrhw3GolDKqaQuUnMViKV4EZvJdxiEB5T0ELVKCHvDdwg1Tm5GGiICLyMtagfMra/ByiEJ4HHYe0GeBPcMeiH9g5mVOp6FR2F5eMWGsEea2lXqXG/Ls3wPa8Iq15ma1D6PqTOzVqKkh6iVdYEDerf/EC0a94O9fV2Ao0/d5cWkUsS9fITo5wegK/gFtq4h0Dcs5CUWqYTBP7cR4kd8VqnjG1RwXa4Ig6ov6rpH1xeM0e8bKUIjuLQTjdkkaqUTDZjHmsMc5vAyaAjOWwBmJkCeXi7SC5KQkB6GyJjnyMxM4jtUjZaZnIDM5HMQ6ujA3qsFpKwBUhPM1R7Hs0Rb5I75Fq4nlkNQUP5RViwrG588eg8zWqaVq3yETvmbw5TJsW6Cr8PrVqkOUrsEx1HzljaipIeolTheflQSK5ACiVKIoAsRHGAHBzSybgfOTQcSYymyBZlIzY1FbNIrRMUEQSwu4ClyzSQRixH94i6Au7BwcIWJTSukxDtDXFC1JKEi3sToI3fYFtQ7vxKCjPJP8W/+x0P08PHCH4ahZZaNRNWeaP2AUVU6ntQ+4SmaNUKSqAfHaD5uoibSPDFiVv9T+QqEHDgzHRSI8pEpTUViZiSi44KRmBSmshhrA12RCPaerZGfXx8ZyaqfzbgkFlY6aHTvW+hEBpf7GGmDuvAdEIqyWp1cDR1w/tndSsWVYdsKjSMWVOpYUrs9XtULZoa0FIk2oaSHqE1BZCYStj1Seb2cSAhmyiFXNxtp+QmITw1FZMwz5ORo6EzHamTtWhcG5s2RHOMAqRrmpjE00UGzsEPQD7xZ7mNuTWmB7+0el1pGR6CD+6ER0JFWfOmOzyy/xv4YpwofR2q/3+d2QGNnc77DIGpESQ9Rm2z/eKQeD1HPyTiAM9GB2EiCbKQjOScWsYkhiI4NhlSqfUPmRcamsHFvjZzMushOr9waWOWlqy9As9zrMP7rWLnKC6ytMH1qAVIFuaWWu5DBwSU5vEKxpNh3RPOw2RU6hmiPrb7NMKCJI99hEDWiPj1aaPXq1VizZg1CQ0Ph5uamtvOKE9TYhs4AliGGMAMw/fc/d716gOdAwEyIAlE+MsTJSMyIQGTMc6SmxaovNh7kZWUgMvAPgPsTdh4NoSNqguRYG5TZrlQJhflSPNDpiiYDHGBx9rsyy0uTkvFpcGt8XP9hqeUiTe0rnPSszR1WofJEu0RQvx6tQ0lPOeXl5WHXrl04ceIEnj59ioyMDFhYWKBZs2YYPnw4JkyYAH191cwaW1sVJpb+SV4txAxIFkMPQljDFtawRX2LluCchJCaADnCLKTmxyM++TUiop+joKCWvSgyhvjXgQACYWRhDSuXNshIcUdetp5KTyOVMgRkeuO9UV/C4din4Mp4oOxy4RGaeTogQK/k5DPSqGJrfyU4vo+Tb6o+vw+pvcKSaLV1bUNJTzmEhYWhX79+eP78Obp3746lS5fCxsYGycnJ8PPzw8yZM3H//n389NNPfIeq0STpql04UpVYjgRcDmAEAxjBDc5wQwvn98GZ6aLQsBBZLA1JWVGITghBXPwroBa0CmenJiE79TwEQh3YezUFBA2REmep0nO8iLdAru8WeJxcBi6/5KSXFRTg49vmGN+t5KQnQrf8HU4ZOKzKHFyRUIkWohFc2oeSnjLk5eWhf//+CA4OxrFjxzBixAi5/YsWLcLTp09x5coVniKsOaSZNWy4OQNYWiF00gBz1N65haQSMWKCHwB4ADM7R5jZtUZaoisK8lTz8hAeo4O8IZtR/8pqCFLiSiynfycQvs0b4YhZkNL9ESh/J+Zo5w9w6ZVVhWMl2iUimZIebUMzMpdhz549ePbsGT7++GOFhKdYw4YN8fHHH8u+v3fvHiZNmgRvb28YGhrCxMQEHTp0wKlTpxSOnTRpEjiOQ2pqKqZPnw5bW1uIRCJ06NABd+/KD9GVSqVYu3YtOnfuDHt7e+jp6cHV1RWzZs1CcrLi/Cj5+flYvnw5nJ2dIRKJ0KRJExw9elTpNbx48QKzZ89GgwYNYGJiAkNDQ7Ro0QK7du2qyO0qEWMMkmx+Zg9WtaK5hcQQRevCLtEBjQraoa/1VIxutAIj2i1H3w5z0a75MLi5NoGOjmqbjapbenwMIp6cRk7yTlg73IWZtWomcIuPkyCg6+codG9YarmhF0pelytKnFWuczFOiE9S+lc4RqJ94jPzkFeofQMbtBk96SnD8ePHAQAffvhhuY85deoUQkJC4OvrC2dnZyQnJ2P//v0YOnQofvnlF4wZM0bhmD59+sDW1hafffYZkpKS8O2336Jv374ICwuDiUnRFPwFBQX45ptvMGLECAwZMgSGhoa4d+8e9uzZg1u3bsHf3x96ev+9yfr6+uLUqVPo06cP+vXrh+joaMyYMQN16yrOTOvn54dbt25h8ODBcHV1RVZWFo4fP44ZM2YgKSkJy5cvr+itkyPNEQOSmt8kVBqWJYYgCzCBEUzgBVehF9q4fVAj5xYSF+Qj6vltALdh5ewBQ8uWSIl1gERc+UkP01MK8cDnf2hmcRyih38oLcPCorAsohXW1AlQ2BeVmwAGDlwZ646FOQ3AX6/MKx0n0R6MAfEZeahjpb75rAi/aMh6GaysrFBYWIiMjPLP+ZKdnQ0jI/k/opycHDRr1gxCoRDPnz+XbZ80aRL279+PWbNmYfv27bLtx48fx8iRI7Fjxw5ZwsUYQ15eHgwM5Icc79mzB9OmTcOvv/6KkSNHAgCuXLmC3r17Y/To0Thy5Iis7L1799C2bVswxuRGb+Xk5MDQ0FCuXqlUiu7duyMgIABJSUnQrUCfincVxmcjfnPpo3O0SU2cW0jfyBi27q2Rm10PWWmVH/auoytAM8ltmFw7pHQ/Z2KMRTNFCNdJU9j3R4oYdukxJdbNhHoYobMVD9KrvlYX0Q40V492oeatMmRkZMDU1LRCx7yd8OTk5CA5ORk5OTno3r07goKClCZQCxbIzxjbvXt3AMDLly9l2ziOkyU8EokEaWlpSEpKkpV9uznszJkzAIClS5fK1du6dWv06NFD4fxvJzx5eXlITk5GSkoKevXqhYyMDLx48aJ8F18CSWbtaNpSFZYnARLEMIjWh0OSC5pKOmOA/SyMbrICw9svwwftZ6F108FwcfKBQKC+JSVKk5+dhcin15AU+iNMzS/B2ikOHFfxz0ziQikesHZIGrxY6X6WmYUVj+oo3Rdh7lBq3SGOgynhIRWSlkOvTdqEmrfKYGpqiszMivVrSEhIwMqVK3HmzBkkJCQo7E9LS1NIpDw8POS+t7Iq6oT5bl+dY8eOYdOmTQgICEBhofwfa2pqquzfr1+/BsdxeO+99xTO7+Pjg6tXr8pty8rKwurVq3Hs2DFERkYqHPN23ZUhzaphnZj5UIPmFkoIfQ7gOQzNLGBTpw0y0zyRm1n+KRsYA56kucHbdwOcfl0B7p0JI83/DMD7DTzwp0GY3PZII3O0KqlOHQN8HNezYhdCtF5aLiU92oSSnjI0atQIN27cwOvXr+Hp6VlmealUip49e+LFixeYN28eWrVqBTMzMwiFQuzduxeHDx+GVCpVOE4oVP5p/u3Wx5MnT2LUqFFo3bo1vvvuO7i4uEAkEkEikaBPnz5K6y0vX19fnD9/HjNmzEDnzp1haWkJHR0dXLhwAZs3b65S3QBqTSdmXpQ5t1A2UvPjEJ/8BhHRz9Q6t1BOeioinlwCJxDA3rMJON3GSI61BIfyTXoYEmuC3NHfwfPUMghy3+qoLJVi+h8C/DlAvnykvqjEugIdhuHZS+qbQSomnZIerUJJTxmGDx+OGzduYNeuXdiwYUOZ5QMDA/HkyROsWrUKa9askdu3e/fuKsVy6NAhiEQiXL9+Xa45SlnTk6enJxhjePHiBZo2bSq37+0+RUDRk6fz589j/Pjx2LFjh9y+P/5Q3uG0olgejZBQtf/mFhK9NbdQd7m5hZL/nVsotprnFmJSKWJfBgAIgKmNPcwdWiMt0a1cw94jYzjkDtiEBn5rIUyIkG0XPA3B/9o0x1bbJ7JtEZzy5JvpGWFBdLcqXwfRPuk59BRam1CfnjJMnToV9evXx6ZNm/Dbb78pLRMYGIhNmzYB+O+Jzbv9w58+fap0yHpFCIVCcBwn99SFMYYvv/xSoezgwYMBABs3bpTbfu/ePYVEpqSYY2Njq5yoFZPmVXyhSFIJxXMLxQDmsebwzGyIzgZDMdp7GUa1XoFBHT9GtzYT4FOvM0xMrKslhIzEOEQ8+R3ZSTtgZf83zG3TyzwmKUGMh+1XoqBuc7ntnX+PgIX0v07TkWLlM+g+sBuF1znVu6YYqZ3oSY92oSc9ZTAwMMC5c+fQr18/DBs2DD169ECvXr1gbW2N5ORk3LhxAxcuXMD06dMBAPXr10eDBg3w1VdfIScnB/Xq1UNISAh27tyJhg0b4uHDyo9gGj58OE6ePInu3btjwoQJKCwsxOnTp5GTo9ic0bNnTwwZMgRHjx5Feno6+vXrh6ioKGzbtg1NmzZFQMB/Q4JNTEzQq1cvHDp0CAYGBmjVqhXCw8Oxc+dOuLu7K50DqKLoSQ+/iuYWkkIEXYjgAFs4oJF1O3BuOpAYS5EtyERqbixik14hKiYIYnHVP/1KCgsQHXQHwB1YONaBiXVLpMQ5Q1yovCk3M60Q9+vOQHOL32Fw70JR3IlJWBnSGgvfK/q7icpTnACS6Zvho8hOVY6XaCfqyKxdKOkpBw8PD/j7+8vW3lq/fj0yMzNhYWGB5s2bY9euXRg3bhyAoqcm58+fx6JFi7B//35kZ2ejYcOG2L9/Px4/flylpGf06NHIzMzE5s2bsWjRIlhYWGDAgAHYsGGDrOPz244cOYLPPvsMBw8exLVr1+Dt7Y2dO3ciODhYLukBiprOli1bhrNnz2L//v2oW7cu1q5dC11dXUyePLnSMRejJz2aSV1zC6XGhCM1Jhx6Boaw82iFvLz3kJmi2P8mP0eCe6b90ayXA0yv7AEAuJ5/hKYe9nikF4fMwiykGFnBMvu/RPyWrS+iX9K6d6RyqCOzdqF5eohaJO4JRP7LNL7DIFWg6rmFbOrUg8i0OZJi7cAk77S0c0BDyxjYnlwLAMhr1wgTuhYtT3FIbIEmkY8BAFIDa7TJ3oTEgsrPIUW0W2t3Sxz7sB3fYRA1oSc9RC2oeavmY3kSIA8wgD4M4AIHuKCpfWdwJjoQG0mQjXQk58QiNjEE0bHBkEpL/5knhgcDCIaBiRls3VojK6MucjL+HZ3FgKfJjvAcswkux5ZD9E8gRjdriKNmLxBhZIkm/9bxh9UYJKZSwkMqL6eAnkJrE0p6iFpI8ynpqZVUMLdQbmY6IgKvguP+hJ1nQ+joN0FSjDUADq9jRMgbsQV1z36CYRfS8dtoISL1/52g09gBC8NaqvmCSW0jqdpsHKSGoaSHEKJ6lZhbiDEp4l49AfAExpY2sHRujfRkd0TH6iH3g41oeHsjlkU0xsOmRX0wzpmNQWYSvYSRqpFKqYeHNqFXDKIe5ZurjtRyFZlbKCLwAoRCIey9mkOKhvBvuRRNg4/gXr1UiE1dsSysKd+XQ2oBKXVr1SqU9BC14DjKekgJiucWSgPM//3P06AhOG8BmJkAeXq5yChMQobJK0TbdMH70RE4YdwUuQmasSYZqdkklPRoFUp6iHpQzlOrMI5BIgSYDoNUAEh1GCQCgAmLvpcIGJiQQcIV/x+QCqSQcAxSMEgFDBJIIeX+/T+k//7/3+9Z0fcSJoGUSQGRFDY2uZCaSvBPQivciebgacP3XSC1gb1ZyUubkNqHkh6iHgLKeiqiKKlgYEKuKGkQAlIhIC1OJgT/JhuCon8z7t9t3L+JBfdvQsG9lUjgrQTj36RCyv79N/s3wZBKIZYWJRoSqeTfLykkEjEkEinEEjEkEon87N1SACqeyd/YmIObuwS2VmnQ1YtAhNAV56RD8fKhDoIiy57hmZDyoqfQ2oWSHqIeGvi6IhEySIX/Pp34N6GQ6hQ/pQAkAimYAEWJQ3GCwUkh5fBfUvHW04qifxclELLEovjf0v8SC4m0KKEoTjCK/i2BWCKB5N8vuQVepf9+1eI51BwcODg758PULAEc9wb5+RFgAEKMJuAcJkIYK0SIfxyyaRQgUTEd+kCmVSjpIWpRYMCQayYtSiyERU0dUiHeav5gkHJFzR7SfxML2VMK7u2Egv3XFCJrAvk3iWD//Vvy9pMKyX+JhuStxEKGASieqoPWHqx2OjqAmxtgZ58FQ8MYiMUhEItTAQAFBYCEM0Cg2SKcLmyH5Ayg7pscBLxO4TdoUmsJ6EmPVqGkh6jFH4LHCM8P5zsMwgNTUw513CSwskqFrm448vNfgrGi7DIv779y+UI73DVZgFM59ZCQIUXLXCDLPwGPsykTJdVHSE96tAolPUQtdHVp1lztwODoKICzcz5MTBPA4RXyCyIBABJJ0de7MvUawM9wLs5m2SE7ncFYKkWHqAL4ByWqOXaijSjp0S6U9BC10NPT4zsEUg10df9tqrLLgoFh9L9NVWkAipqqSpNg8D4u603EH5lGEKcDAEPjfAHSAxLhn55X+sGEqIiBLk19oE0o6SFqQU96agczMw513MSwskyFjqypqqiHdV4585RQk/E4iwG4myUE/j1GxIBWcWI8CIwHTZtC1MnSiD6QaRNKeohaUNJTEzE4OQng5JwHU5MEMLxCQUEUAEAsKfoqLwknwjPTOThd2AHBWfJZjbeYAx6n4H5SjiqDJ6RcKOnRLpT0ELWg5i3Np6dX3FSVCZFBNMSFwRBLMgAA+ZXsS1wgtMU9k49wKrc+4jKkKBoqV0SHMbRLYQh4GAcxrX9EeGJBSY9WoaSHqAU96dE85uYc3NzEsLBI+bep6lWFm6pKkqlXH38Z/g+/Z9kjK52haKKh/9SRcDB9noH7MZlVOxEhVWRFSY9WoaSHqIVIRFO984njACdnDk5OuTAxLm6qigZQ8aaq0iQadMMVvUm4kmks65wsFwdjaJ8BPPOPRXyhVGkdhKgTPenRLpT0ELUwMTHhOwStoq/Pwc2NwdYuAyJRNAoLgyGRFD1VqWxTVWlCTcbiPAbinywdWefkd9lLOTiFZMM/PE31ARBSSfSkR7tQ0kPUwtTUlO8QajVLSw516ohhbpEMHWEY8gteg7Giaaar2lRVEgknwnPTWThd2Akvskrvk9M2m8PrB3F4licutRwh6mZhSEmPNqGkR438/PzQrVs3rF+/HsuWLeM7HLWipEd1OA5wduHg5JgLY5N4MPYSBQWxAACxuOirOuULrPHAdAFO5fog9p3Oye+yYEC90Dw8eplcvUERUklWxpT0aBNKeohamJiYgOM4+dW5SbmIRBzc3KSwtc2Evijq36aqLABAfr764sjSq/dv52QnZKYXr4JasuZ5HOL9E/Aoi5aRIJqLnvRoF0p6iFoIhUIYGRkhKyuL71A0npUVB9c6hbAwT4ZQGIb8/NdgkICh+pqqSpNk2AVXdCfjSqYpCpWMxHqXIQOaRRfC/1mCegIkpJJM9HWgpyPgOwyiRvTT5tn27dvRq1cvODk5QU9PDw4ODhg3bhzCwsIUynIch0mTJuGPP/5A27ZtYWhoCDs7O8ybN08hmYiJicHChQvRtGlTWFhYQCQSwcfHBxs3bpRfYRzAvn37wHEcrl27ho0bN8LDwwP6+vrw9vbG/v37VXat1MSliOMY6tTh0LZdLnr0DMP771+FT4MDMDY+gkLxFeTlh4BBRUOrKijc2BfbTH7F/Nx5OJ9hgsJyPKVrUCCA/f0USnhIjWBJTVtah5708GzTpk1o3749evbsCXNzczx9+hS7d+/GtWvXEBgYCCsrK7nyDx8+xIkTJzB9+nRMmDAB169fx9atW/HkyRNcu3YNAkFRHvvkyROcPn0aQ4cOhbu7OwoKCnDx4kUsW7YMb968wc6dOxViWb58OfLy8jBz5kzo6elhx44dmDRpEry8vNChQ4cqX6upqSliYmKqXE9NJhIB7u4MNjYZ0BdForAgGBJp0UzE6myqKomU08Nz01k4I+6M59nlP06fAa0TxPB/HA+aZ5DUFK6WhnyHQNSMkh6ePXnyBEZGRnLbBg4ciB49emDPnj1YsmSJ3L7AwECcOnUKgwcPBgDMnj0b8+fPx/fff48jR45g7NixAIAuXbrg1atX4Lj/VhD+6KOPMH78eOzevRurV6+Gg4ODXN0FBQW4f/++bPbkESNGwMPDAz/88INKkh4LC4sq11HTWFtzcHUthLlFEoSCUOTlvwEg5a2pqiQFAms8MJ2P07kNEZ1RsflzvMQcdAJTcT+hAlkSIRrA08aY7xCImlHSw7PihEcqlSIzMxOFhYVo0qQJzMzMcPfuXYXy9erVkyU8xZYtW4bvv/8ep06dkiU9BgYGsv0FBQXIysqCVCpF7969cejQITx48AADBgyQq2f27Nlyy0U4OTnB29sbL1++VMm1vvvUqrYRCABXVw4OjjkwMoqFVPoShYVFzTyFhUAhz/Epk63rjb+M/oezWc5IL0fn5LcJwdA+heHRwzgUSujxDql5vGwp6dE2lPTw7Nq1a/j8889x9+5d5L3z0T81NVWhfP369RW2OTg4wNzcHK9fv5ZtE4vF2LBhAw4cOIBXr14pjJpSVreHh4fCNisrK4SHh5f7ekpjaWmpkno0haEhB3d3Kays06CvH4WCghBINaipqjRJBp3wh94UXM40Q0E5Oie/y1nKwep5Ju5HZ1RPgISoASU92oeSHh7du3cPvXr1gpeXFzZs2AB3d3cYGBiA4ziMHj0aUqniG9HbzVVvY4zJ7VuwYAF++OEHjBo1CitWrICtrS10dXXx8OFDLF26VGndQqGwxLpVoaYnPTY2HFxdC2BmngSBIBT5+aEApGBMs5qqShNuPBIXBUNxM1P335mTK/6zbZ8BBPnHIqmAnw7WhKgKJT3ah5IeHh05cgQSiQQXL16Eu7u7bHt2drbSJzEA8Pz5c4VtsbGxSE9Pl3tSc+jQIXTu3BlHjx6VK/vq1SsVRV9xZmZm0NHRgbi6Z89TAYEAqFOHg4NDNgxlTVWJAIqaqmoSxungucks/C7piqdV6HZjIwXcXuXgYajy301CahJzQ11YG+vzHQZRM0p6eFT8ZOXdJynr1q1T+iQGAIKDg3H69Gm5fj0bN24EAAwZMkSu7nfrzc7OxubNm1UReqVwHAcLCwskJibyFkNJjIw4uLlLYW2VBj39yH+bqnIBaH5TVUkKBZZ4YDofp3IbIzqzaot7ts7hEP4gHoG5NSzjI6QEXtSJWStR0sOjIUOGYPPmzejbty9mzJgBPT09XL16FU+ePIG1tbXSYxo1aoRx48Zh+vTpqFu3Lq5fv44TJ06gS5cu8PX1lZUbPnw4du7ciVGjRqFHjx6Ij4/Hzz//zHtnYktLS41IeuzsOLi4FMDMLBGcrKmKQVqDmqpKkq3rhVtG83Am26XCnZPfZcY4+ITnISA4SXUBEqIBqGlLO1HSo0bFT16Kn/B06NABJ0+exBdffIFPP/0UBgYG6NGjB27cuIHOnTsrraN58+b49ttvsWLFCuzYsQOmpqaYO3cu1q1bJ5ujBwC+/fZbmJiY4NixYzhz5gxcXFwwY8YMtGrVCj169Kj+iy2BnZ0dgoOD1XpOHZ2ipio7+ywYGcZCIg1BYWHRWlAFtejBRbKoPf4UTcPFDPNKdU5+V9M8AZIDEhCQUUMfdRFSCkp6tBPHaDEktTlz5gwGDx6Mn376CdOnT6/w8RzHYeLEidi3b5/qg1OT4OBgHDlypFrPYWxc1FRlZZUKPb2If5uqau8bd4TxcFwUDMPNTL1KdEtWJGJAy9hCPAikWZVJ7bV3cit0q2fLdxhEzehJjxrduXMHQFETlbZycnJSeZ329hycXfJhZpoITvAG+fnhABik0prfVFUSxukgyORD/C7pjkAVzglYv5BD4aMUPEjJUV2lhGgg6tOjnSjpUYMjR47gwYMH2Lp1Kxo3bow2bdrwHRJvjI2NYWZmhvT09Eodr6MDuLlxsLPLhKFhLMSSEIjFKQBqV1NVSQoFFvA3nY/TeU0QWcXOyW/TZUDbRAkePo6HhNaRILWcib4OnC0Myi5Iah1KetRg9uzZ4DgOgwcPxrffflviXDvawsnJqdxJj4kpBzc3CawsU6GrF4H8/BAwVgAAyKu9LVYKcnTdcdtoPk5n10FaFTsnv8tdIoBBYCrux2eVXZiQWqB5HQutfx3WVpT0qEFJc+5UVG3pfuXk5KR0viEAcHQUwMk5F6amieC44qYqQCIFJLW0qao0KaK2+FM0HRczLJCvgs7JbxMwhvZpwJOH0SgQq65eQjRda/eaPVEqqTxKeojaFffr0dEB3N052NplwtAwBmJxMMTiNABAQQGPAWqAKKOhuCgcjhuZ+mD5QGVmTi6No5SD3YssPIisXDMjITVZWw9KerQVJT1E7RwdHdGr9xPk5T0HY0UdcWprh+OKkEKIENMZOCPpgSfV2I+4XSYQ4h+LoHxaRoJoH5GuAI2dzfkOg/CEkh6idnp6etDVFSCXZvcFABRyZnhkNh+/5TVDhAo7J7/LUsqh7pscBLxOqbZzEKLpmrlYQFcoKLsgqZUo6SG8sLBog4yMAL7D4FWOjhv+Np6P09luSFVx5+R3tcrlEOWfgMfZWt5uSLQe9efRbpT0EF5YmLdGePgOvsPgRaqoFf4UfYiLmZbIU3Hn5HcZS4HGUQV4GMT/0h+EaII2lPRoNUp6CC/MzFqC43TAmOavuK4q0UaDcFE4Cjcy9SGths7J72qczyE9IAkP06nDFCEAoCvk0LyOBd9hEB5R0kN4oaNjBBOTBsjIeMx3KNVKCiFemk7DWWlPBGSrZ14QEQNaxYnxIDAetWSWA0JUopGTGUS6Qr7DIDyipIfwxsK8Ta1NesScyb+dk1sgvBo7J7/LW8wBj1NwP4mWkSDkXW08rPgOgfCMkh7CGwuLtgiP+InvMFQqV8cVfxvPx5kcDyRXc+fkt+kwhnbJDAEBcRDTMhKEKEX9eQglPYQ3FhZtIRQaQyKp+csfpOm3wDWDmTifaVXtnZPfVUfCweRZBu7HZqrtnITUNMb6OmhLT3q0HiU9hDcCgT6srboiPuEc36FUWoxRf1wS+uJ6pgjSAqC6Oye/jWMM7dOBZw9jEV9Iy0gQUppu79lSfx5CSQ/hl41t7xqX9EghxCvTKfhd2lttnZPfZS/l4BSSDf/wNF7OT0hN07ehPd8hEA1A01JW0b59+8BxHPz8/PgOpUaytuoKgUCf7zDKRcwZ44HZJ1hlcAJrMvvwlvC0zQIkN+PwjBIeQsrFUE+Ibu/Z8h0G0QAan/QkJCRgyZIlaNiwIUxMTGBmZoa6deti9OjR+O2339QSQ1hYGFavXo1Hjx5VW/0cx2HmzJkK+4KDg+Hq6gojIyNcunSpWs7PJ6HQEJaWnfgOo1R5Os64Zv4NFuoexOaMFgjN46cpyYIBbd/k4dHtaGTmac/8RoRUVbd61LRFimh081ZkZCRatWqFzMxMjB07FrNmzQIAvHr1CufPn0dWVhaGDh1a7XGEhYVhzZo1cHNzQ9OmTav9fMUCAgLQu3dvFBYW4sqVK+jQoYPazq1Otja9kJT0B99hKEjXb4ZrBrNwPtMauWrunPyu5nkc4v0T8CiLlpEgpKI+aERNW6SIRic9X3/9NeLj4/H7779jwIABcvs2b96MqKgoniKrfn/99RcGDBgAQ0ND/PHHH2jcuLHK6s7OzoaRkZHK6qsqa+se4Dhd2YrrfIsz+gCXdMbizwwDtXdOfpchA5pFF8L/WQJvMRBSk4l0BehOTVvkXxrdvBUSEgIA6Natm9L9zs7OCtvOnj2LTp06wcTEBEZGRmjdujWOHDmiUM7NzQ1du3ZV2O7n5weO47Bv3z4AwOrVq2Xnnzx5MjiOA8dxmDRpktxxUqkUGzduhIeHB/T19eHt7Y39+/dX4Gr/c/78efTp0wdWVla4deuWQsKTnJyMefPmwdXVFXp6enB0dMS0adMQGxtb4rVs27YNPj4+0NfXx9dffy0r8+uvv6Jjx44wMTGBoaEh2rRpgxMnTijE9Ouvv2LgwIFwdXWFvr4+rK2tMXjwYDx58qRS1/g2XV0zWFl1rnI9VcHA4aXpVHxrfBwLc6bhaoYBj891ijQs4GB3L4USHkKqoIu3DQz1NPrzPVEjjf5N8PDwAADs2rULH330ETiu9I6jP/30Ez788EPUrVsXy5cvh56eHg4dOoQxY8YgNDQUn3zySYVjGDp0KAoLC7Fu3TrMmDEDnToV9T/x9PSUK7d8+XLk5eVh5syZ0NPTw44dOzBp0iR4eXlVqFnq8OHDmDhxIurVq4crV67A0dFRbn9GRgY6duyI4OBgTJw4Ea1bt8bTp0+xc+dOXLlyBffv34ednZ3cMVu2bEFKSgqmT58OOzs7uLi4AABWrlyJtWvXok+fPvjiiy8gFApx6tQpjBgxAj/88APmzJkjq2Pbtm2wsbHBrFmzYGNjg9evX+Onn35Chw4d8PDhQ9StW7dC9/Vd9nYDkZT0Z5XqqAwJZ4jHpvNwuqANXqtx5uTS6DOgdYIE/o/jQPMMElI1fRs58B0C0SAcY5q7Os+bN2/QrFkzZGRkwMXFBZ06dUKrVq3QqVMntGjRQq5sWloanJ2dYWNjg0ePHsHMzAwAkJOTg3bt2uH58+d4/fo1XF1dARQ96XFzc1MYdeXn54du3bph7969sqc5yrYV27dvHyZPnoymTZvi7t270NPTAwBER0fDw8MDQ4cOVfqk6W1hYWFwd3eHm5sbIiIi0KpVK1y4cAGWloqzhxYnKlu2bMH8+fNl23/55ReMGzcO06dPx08//SQXt6WlJYKDg2FtbS0r7+/vj5YtW2LZsmVYv3693DkGDx6Ma9euITo6GiYmJgCUN4kFBQWhadOmmDp1KrZv317qNZZFIsnDzVtt1DZRYZ7QCXdM5uN0Tl0katAcN15iDjqBqQhLyOY7FEJqPD0dAR5+2hPG+hr9+Z6okUY3b3l4eODx48eYPXs2pFIpDh8+jAULFqBly5Zo3Lgx/P39ZWWvXr2K7Oxs/O9//5MlPABgaGiIRYsWQSwW4/fff6+2WGfPni1LeADAyckJ3t7eePnyZbnriI+Ph1QqhbOzM0xNTZWWOXXqFCwtLTF79my57WPGjIGXlxdOnTqlcMyECRPkEh6g6IlS8b6kpCS5r4EDByIzMxP//POPrHxxwsMYQ0ZGBpKSkmBjY4N69erh7t275b7GkgiFItja9KpyPWVJ12+C38134H/Yil3pnhqT8AjB0ClFini/aEp4CFGRznWtKeEhcjQ66QGKnshs27YNUVFRiImJwcmTJzFw4EAEBgaif//+SElJAVD0VAgAGjRooFBHo0aN5MpUh+KmuLdZWVkhOTm53HWMGzcOEydOxMmTJzFq1CgUFip27H3z5g28vb2hq6srt53jODRo0ABJSUnIyMiQ26es6SkoKAgA4OPjAxsbG7mvqVOnAihKwoo9fPgQ/fv3l00bUFw2MDAQqamp5b7G0tjbD1ZJPcrEGfbGfrOD+F/BKvyaboMcDWo3cpZyaPg0C/fvx6JQojlxEVLTjWzpwncIRMPUqBTYwcEBQ4cOxdChQzFmzBgcOXIEFy5cwLhx41BaK52yfSX1DxKLKzf/iVCofA6IirQeCgQC/PzzzxAIBNi7dy9GjhyJY8eOKSQ4JSnpXIaGhiWWvXDhQon1FyeQERER6Ny5M8zMzPDpp5+iXr16MDIyAsdx+Oijj5CVpZomKQuLdtDTs0VBgWo67jJweG0yCedYX9zPFgC5KqlWpdpnAEH+sUgqkPAdCiG1ipO5AXrUtyu7INEqNSrpeVu7du1w5MgRREdHA/ivY/GzZ8/Qu3dvubLPnj2TKwMAlpaWsqdEb1P2NKisDtSqJBAIsHv3bnAch59//hnDhw/H8ePHZU1nHh4eCAkJQWFhoUKy8vz5c1hbW5fYNPY2b29vXLp0Cc7OzrInYSU5deoUsrOzcfbsWYWRdMnJydDXV82MyhwngL3dAERE7qlSPRLOEE9M/4fThW3wKkszn5zYSIE6r3LwMFQ1T8kIIfLGtnWFQMDPrOlEc2l089b169eRm6v48VwqleLs2bMAippnAKBnz54wMjLCDz/8INe8k5eXh02bNkFHR0durh9vb2+8ePFCljQBQH5+PrZt26ZwPmNjYwBQWTNOWYoTn2nTpuH333/HsGHDUFBQNCndkCFDkJKSgp07d8odc/ToUbx69arckzWOGzcOAPDJJ58ofbqVkPDf05bip1jvPknatWsX4uLiyn9h5eDkNBaV/bXMF9rhL/ONWKj7C77JaI1XuZqZ8LTO4SC4lYCnlPAQUi30dAQY3cqV7zCIBtLoJz2bNm3C7du30b9/f7Ro0QJmZmaIi4vDyZMn4e/vj27duqFfv34AAHNzc2zatAkzZ85Eq1atMHnyZOjq6uLQoUN49OgR1q5dKxu5BQBz587F0aNH0aNHD8ycORMFBQU4ePCg0qYgHx8fGBsbY/v27TAyMoKpqSnc3d3Rpk2bart2juPw008/QSAQ4KeffsLQoUNx8uRJLFmyBCdOnMC8efMQEBCAVq1ayYasOzs74/PPPy9X/a1atcKaNWvw2WefoWnTphg5ciQcHR0RGxsLf39/XLhwQZZoffDBBzA0NMT48eMxd+5cWFhY4Pbt27hw4QI8PT0r3SSojKFhHVhbd6/QDM0Z+g1xw2AOzmbZIZvnmZNLY8Y4+ITnISA4ie9QCKnV+jdygKWRXtkFidbR6KRn5cqVOH78OP766y9cuXIFKSkpMDIyQv369bFp0ybMmTMHAsF/TwU+/PBDODg44KuvvsIXX3wBxhgaNmyIX375BWPGjJGru0OHDti3bx/WrVuHxYsXw8nJCbNmzULLli3x/vvvy5U1MDDA4cOHsXLlSvzvf/9DQUEBJk6cWK1JD1CU+OzYsQMCgQA7duzAkCFDcOrUKdy+fRurV6/G6dOncfDgQVhZWWHixIn4/PPPFeboKc2qVavQokULfP/999iyZQuys7Nha2uLhg0b4rvvvpOV8/T0xMWLF/HJJ59g3bp1EAqF6NChA27cuIG5c+ciLCxMpdft4jyxXElPgmEPXNadgKsZRpDwPHNyWZrlc0jyT0RAZj7foRBS641vV4fvEIiG0uh5eoj2unu3L7KygxW2M3B4YzIe59Efd7M0fwFBEQNaxhbiQSDNqkyIOjRyMsPZ/3XkOwyioTT6SQ/RXi4ukxD0YrnsewlngKemc3CqsD1eamjn5HfVL+RQ+CgFD1Jy+A6FEK1BT3lIaehJD9FIEkk+bv/dEdlSHdw1WYBTue8hvkAz++q8S5cBbRMlePg4HhINmg+IkNrO3FAXd5a/D5Gu5j8FJvygJz1EIwmF+kivswMLwnSQpcGdk9/lLhHAIDAV9+PVs5wGIeQ/o1q6UMJDSqXRQ9aJdmtv3wQSVjPm2RAwho6pDMl+0XhDCQ8haicUcBjXlpq2SOko6SEay0pPB2MdFRdd1TSOUg5NgrLx4F4MCsQ144kUIbXNkGZOcLFUnHKEkLdR0kM02iwXW+iqcUbsimqXCeT/FYugyHS+QyFEa+kKOcx/X3GNQULeRUkP0WhOIj0MtbPgOwwFllIObV7lIuDvaGTn07pZhPBpREsXespDyoWSHqLx5rraatQvaqtcDvp/J+Dxa8W12wgh6qWvI8C87vSUh5SPJr2XEKJUXSMRBtia8x0GTBjQIaIAgX9FITW7gO9wCCEAxrRxhb2ZiO8wSA1BSQ+pEZZ7OPDat6dxPgfLu8nwD0rkLQZCiDxDPSFmd/XiOwxSg1DSQ2oENwN9THC0Uvt5RQzoFCvGyxtRiE/PU/v5CSElm9DODTYm+nyHQWoQmpGZ1BjJBWK0vfMcmRL1DAuvV8iBPUlBRBItI0GIpjHR18HNpd1gbkirqZPyoyc9pMaw0tPBXNfyryJfWTqMoVOSFNF+0ZTwEKKhJnd0p4SHVBglPUQl3Nzc0LVr12o/zwwXGzjo61Zb/XUkHN4LzMR9/1iIad0sQjSSuaEupnVy5zsMUgNR0qNF/Pz8wHEcNmzYINu2evVqnD59mr+gKshAKMAKDweV18sxho7pDOk3YvAqNlPl9RNCVOej9+vCVFR9H35I7UVJj5Zbs2ZNjUp6AGCYnQVamRqprD57KYfmwTl4cCcGeYW0jAQhmqyxsxkmtHPjOwxSQ1HSQ2ocjuPwpbeTSn5522YBkptxeBaepoLaCCHVSSjgsG5IIwgEmrs0DdFslPRoqeKmLgDYv38/OI4Dx3Fwc3OTldm+fTt69eoFJycn6OnpwcHBAePGjUNYWFiZ9Tdp0gSurq6QShWfnPz222/gOA67du2qdPxNTAzh61D5xUgtGND2TR4e3Y5GZp640vUQQtRnfNs6aOhkxncYpAajpEdL1a9fHwcPHgQAdOrUCQcPHsTBgwexZcsWWZlNmzbBzs4OH330EbZt24aRI0fi1KlTaN++PZKTk0utf8aMGYiMjMSVK1cU9v38888wMjLC6NGjq3QNyz0cYapT8V/h5nkcDP9OxKOXpV8DIURz2JuKsKh3Pb7DIDWcDt8BEH7Y2dlh3LhxGD9+PDw8PDBu3DiFMk+ePIGRkXzfmYEDB6JHjx7Ys2cPlixZUmL948aNw5IlS7B792706dNHtj0mJgaXLl3CxIkTYWJiUqVrsNbTwRJ3B6x8GV2u8kYMaBpVAP/nNKsyITXNqgE+MNantyxSNfSkh5SoOOGR/r+9Ow+Osk7QOP50OvdN7nAlgQAhxKCAEEQgCHJKQSKwwoiiEpzSwV1QZ8ZyFGVGCsGDOMXu6nKkBFZHF1AYYZbMijKOnLs4oA5XAqhAyCFJmoRA6Lz7B5ABAUmkk7e73++nqit05+1+n6Q65Mn7/t7fr6FBVVVVKi8vV8+ePRUREaHt27f/6HMjIiI0adIkrVu3TmVl/ygZBQUFcjqdmj59uksyPtwupkmDmjPO2RS343sKD+CBhnSL1ehbXH/VJqyH0oPr+vjjj5Wdna2QkBBFRkYqNjZWsbGxqqqq0qlTp274/EcffVT19fWNp9EMw9CyZcuUnp6u/v37uySjj82mRd07KOg6AxsDDGngSaeKP/lOJyrPuGSfAFpPkJ9dc8dlmB0DXoLSg2vasWOHhg8frpKSEs2fP18ffvihNm3apMLCQkVHR19zgPIPZWVlKTMzU0uXLpUkffrppyoqKnLZUZ5LOgcH6lcpV/8V2OW8j1J2V2rnFyVinkHAM80cmqoOUcFmx4CX4AQprumdd96R0+nUxo0blZLyj5lPa2pqmnSU55K8vDzNnDlTW7du1dKlS+Xv76+pU6e6PO+MDrH6qKxKO6trZJehOyoMfbH7uOqdtB3AU3WND1XewE5mx4AX4UiPxYWGhl6zxNjtdkkXTkldbt68eU06ynPJ1KlTFRwcrFdffVWrV6/W+PHjFRMTc3Ohr+HSaa5Uw66ML09r564TFB7Ag/nZbXplYk/52fk1BdfhSI/F9evXT3/+85+1cOFCdejQQSEhIRo7dqxycnL0+uuva/To0ZoxY4b8/f1VWFioPXv2NKu0XBrQXFBQIEkuP7V1uc7BgZoeEKoXjn3TYvsA0Dpm3d1Vme0jzY4BL0OFtrjFixcrKytLc+fO1eTJkzVz5kxJ0oABA7R69WqFhIToueee0wsvvKCgoCB9+umnV13GfiMzZsyQdGFR0mHDhrn8a7jctAEpGtw1tkX3AaBl9e8UrZ8P6mx2DHghm/HD8xeAi+3atUu333675s6dq+eee67F91fqqNOoRX9RRc25Ft8XANeKDPbTn/55kBIiAs2OAi/EkR60uDfeeEO+vr565JFHWmV/cWGBevnezFbZFwDXmp97C4UHLYYxPWgRNTU1Wr9+vb766iutXLlSeXl5atu2bavtf1h6vH7Wr6NWbWd8D+ApHuifpJEZTEKIlsPpLbSII0eOKCUlRaGhoRo1apSWLFmi8PDwVs1QV+/UP721TX/7trJV9wug+TLbR+i/fn6H/H/CenpAU1F64NVOVtdp7O8/U6njrNlRAFxHeKCvPnpiIJMQosVRqeHV4sMD9e9Te/PXI+DGXpnYk8KDVsFvAni9Xh3b6KXxrN0DuKNHB3XS8B4JZseARVB6YAkT+3TQtDuSzY4B4DIjesTrVyPTzI4BC6H0wDJ+M6a7BqRGmx0DgKSeHSKVf99t8vGxmR0FFkLpgWX42n20eEovdWTsAGCqDlFBWvpgHwX62c2OAouh9MBSIoP99R8P9FGIP//ZAmaICPLT8ml9FRMaYHYUWBClB5bTLSFMr066VTaOqgOtyt/uozen9lZqXKjZUWBRlB5Y0siMBD1/T7rZMQDLsNmkhRMzldWJcXUwD6UHlvXQgBQ9PaKb2TEAS5g9rKvG3drO7BiwOEoPLO3xIal6fEhns2MAXm1Sn/aaObSL2TEASg/w9Ig0PTQg2ewYgFca0i1W83JuMTsGIInSA0iS5oztocl9O5gdA/AqQ9Pi9ObUPvK186sG7oF3InDRS+Nv0fhb25odA/AKw9Pj9W/3s+4d3AvvRuAiHx+bXpnYUyN6xJsdBfBoozIStPhnvSg8cDu8I4HL+Np99PvJvTS4a6zZUQCPdE9mon4/+Tb5cUoLboh3JfAD/r4XJlAb2CXG7CiARxl3a1vl33cbY3jgtmyGYRhmhwDcUb2zQU+//zd98MVxs6MAbi+3Vzu9MqEnC4jCrVF6gB9hGIbmb9ynN7cUmx0FcFsTe7fXy/dmUnjg9ig9QBMs/+th/faPX6uBnxbgCj/r11G/G58hG4vZwQNQeoAm+mjPCc167wudO99gdhTAdD426dej0jRjEDOaw3NQeoBm2FZcoby3d8lRd97sKIBpQvztyr/vNg1LZ3oHeBZKD9BM+0scenDZDpVU15kdBWh17SKDtOTBPuqeGG52FKDZKD3AT3C88oweXLZDB0tPmx0FaDW9Okbqzal9FBsWYHYU4Ceh9AA/UVVtvf7lD7u1eX+Z2VGAFjf+1rZ6eUKmAnztZkcBfjJKD3ATDMPQv35SpNcKD8jJpV3wQjab9OTdXfWLu7qYHQW4aZQewAW2FlXoiXd3q8xx1uwogMsE+dn16qSeGn1LotlRAJeg9AAuUuqo0xPv7Na24u/NjgLctNS4UL1x321Kb8uAZXgPSg/gQs4GQ68XHtDiTw6Jnyx4qvuzOuo3Y9IV6Mf4HXgXSg/QAjbvL9XsP3yhU7X1ZkcBmiw6xF8LJmRqaHfm34F3ovQALeR45Rk9/p//p93fVJodBbihwV1j9crEnlyODq9G6QFaUL2zQa8XHtBbW4p1nqu74Ib8fX30zKg0TbsjmfWz4PUoPUAr+Op4lX69eq/2HqsyOwrQqFt8mPIn36q0BAYrwxooPUArcTYYWvpZsV4rPKC6ehYthXlsNunB/sn69ag0BivDUig9QCs7WlGjZ9bs1edFFWZHgQV1TwzXb8f1UJ/kKLOjAK2O0gOY5L2d3+p3H32talZsRysIC/TVk3d31dT+ybL7MHYH1kTpAUxU6qjTC+u+0oa9JWZHgZey2aTc29rrmdFpignlyixYG6UHcAP//VWJ5q7/Wscqz5gdBV4kPTFcvx3fQ72TOJUFSJQewG2cPe/Uiq1HtXjzISY1xE0JD/TVk8O76f6sJE5lAZeh9ABuxlFXr7e2FGvpZ4dVe85pdhx4EE5lAT+O0gO4qVJHnd74n4N6d8e3TGyIH2WzSSN7JOiJoV3UPZE5d4DrofQAbu5IeY1e2bRfH+09wSKmuILNJo3OSNTMoalMMAg0AaUH8BB7v6vSy3/ap88OlZsdBSbzsUmjb0nUE0O7qGt8mNlxAI9B6QE8zLbiCi35y2F9vO+kOOtlLT426Z7MtnpiaKpS4yg7QHNRegAPdbSiRsv/ekTv7/pWNQx49mp2H5vGZibqF3d1UWpcqNlxAI9F6QE8XHVdvd7b+a0KPj+i704xz483iQrx14Te7TWlb0clx4SYHQfweJQewEs4GwwVfl2iZZ8d0Y4j35sdBzchq1OUpvRL0sgeCfL39TE7DuA1KD2AF9r7XZWW/fWwPtpzQuecrOjuCdoE+2lC7/aa3LejOsVyCgtoCZQewItV1p7TH/ec0Ae7j+l/vznFJe9uqF9KlKb066iRGQkK8LWbHQfwapQewCK+/b5WH+w+prVfHFNxWY3ZcSytXWSQxmQmalKfDgxMBloRpQewoK+PV2vD3hPa8OUJClArSYkJ0ciMBI3KSFBm+0iz4wCWROkBLG5fSbU27DmhTV+f1P6TDk6BuYjNJmW2i9BdafEa3iOe5SEAN0DpAdCo/PRZbS2q0OdF5fq8qEJHK2rNjuRRQvzturNLjIamxWtIWpxiw1j0E3AnlB4A13Ws8ow+P3ShAG0tqlBJdZ3ZkdxKfHiAeie1Ua+ObdQrqY0y2kZwiTngxig9AJqsqOy0Pi+q0LaiCn15vErffF9rmdNhvj42dU8Mv1Byktqod1IbtYsMMjsWgGag9AD4yWrPndeBk6e1v6Ra+0oc2n/xVlFzzuxoNyXY366OUcFKiQlRRrsI9U5qo57tIxXkzyXlgCej9ABwuTLHWe0vcWhfSbX2lzhUXF6jUkedyhxnVVfvHpMlBvr5KDk65MItJkTJ0cFKjglRSkyI4sMDzY4HoAVQegC0KkddvcocZ1XqOKuyi7fGf58+q9LqOp2pd+q805CzwdD5BkPOhoaLH43Gj87Llpj3t/soPMhX4UF+Cg/0u/jxwv2Ixsd8FR7op5jQgIvFJkA2m83E74TrffLJJxoyZIiWL1+uadOmmR0HcDu+ZgcAYC1hgX4KC/RzyVIL550NajDk0YOHq6urlZ+fr7Vr1+rgwYNyOp1KTk7WmDFj9NRTTyk+Pv6K7SsrK7Vo0SJlZ2crOzvbnNCAh6L0APBYvnbPLTuSdODAAY0YMUJHjx5Vbm6uHnnkEfn5+Wnbtm3Kz8/X8uXLtX79evXv37/xOZWVlXrxxRclidIDNBOlBwBMUFtbq7Fjx+rYsWNav369xowZ0/i5GTNm6LHHHtOwYcM0btw47d2796ojPu7g9OnTCg1lGQ14Ds/+MwkAPNTSpUt14MABzZo164rCc0mfPn00b948lZWVaeHChZKkgoICpaSkSJJefPFF2Ww22Wy2ax7xWbJkidLT0xUQEKCkpCQtWLDgmjl27dqlnJwcxcTEKCAgQN26ddNLL72k8+fPX7Fddna2kpOTVVxcrAkTJigqKkphYWE3+V0AWhcDmQHABIMHD9aWLVt08OBBpaamXnOb2tpaRUZGql27djp8+LCKi4u1bt06zZo1Szk5OcrNzZUkxcfH6+67724cyNy3b1+VlpZq+vTpioiI0MqVK7V9+3atWrVKU6ZMaXz9DRs2KCcnR6mpqbr//vsVFRWlrVu3asWKFcrNzdX777/fuG12dra+/PJLBQUF6c4779SgQYNUWlqqOXPmtOw3CnAlAwDQ6qKiooywsLAbbpeRkWFIMhwOh2EYhnH48GFDkjFnzpyrtt28ebMhyUhMTDROnTrV+HhNTY0RExNjZGVlNT525swZIy4uzhg4cKBRX19/xeu89tprhiRj8+bNjY8NHjzYkGQ8//zzzftCATfC6S0AMEF1dbUiIiJuuN2lbaqqqpr82g899JAiIyMb7wcHBysrK0sHDx5sfKywsFClpaV64IEHVFlZqfLy8sbb6NGjJUmbNm266rVnz57d5ByAu2EgMwCYIDw8vElF5tI2TSlIl3Tq1Omqx6Kjo1VRUdF4/+9//7skKS8vT3l5edd8nZMnT15xPzY2tlk5AHdD6QEAE2RkZGjLli06dOjQdcf01NTUaP/+/UpOTm7WVVJ2+42XyzAuDuecP3++evfufc1t2rZte8X94ODgJmcA3BGlBwBMkJubqy1btuitt9667pVVBQUFqq+vbxywLMlls0h37dpV0oUiM2zYMJe8JuDuGNMDACaYPn26UlNTtWjRIm3YsOGqz+/atUvPPvusYmNj9fTTTzc+fumIz6lTp25q/yNGjFBcXJwWLFig8vLyqz5/5swZORyOm9oH4G440gMAJggJCdG6des0cuRI3XPPPbr33ns1ZMgQ+fr6avv27Vq5cqVCQ0P1wQcfKCEhofF50dHR6ty5s959912lpqYqNjZWcXFxuuuuu5q1/+DgYL399tsaP3680tLS9PDDD6tLly6qrKzUvn37tGbNGq1du5ZZn+FVKD0AYJLu3btrz549ys/P15o1a7Rx40Y5nU4lJSVp5syZeuqpp64oPJesWLFCs2bN0i9/+UvV1dVp8ODBzS490oWjPTt37tT8+fO1atUqlZWVqU2bNurcubNmz56tzMxMV3yZgNtgckIAAGAJjOkBAACWQOkBAACWQOkBAACWQOkBAACWQOkBAACWQOkBAACWQOkBAACWQOkBAACWQOkBAACWQOkBAACWQOkBAACWQOkBAACWQOkBAACWQOkBAACWQOkBAACWQOkBAACWQOkBAACWQOkBAACWQOkBAACWQOkBAACWQOkBAACWQOkBAACWQOkBAACWQOkBAACWQOkBAACWQOkBAACWQOkBAACWQOkBAACWQOkBAACWQOkBAACWQOkBAACWQOkBAACWQOkBAACW8P9un2dF4APxzwAAAABJRU5ErkJggg=="
    }
   },
   "cell_type": "markdown",
   "id": "a8adbf55",
   "metadata": {
    "deletable": true,
    "editable": true
   },
   "source": [
    "<div><img src=\"attachment:q20.jpg\" style=\"height: 300px;\"/></div>\n",
    "\n",
    "<center> <b>Delete</b> this cell before you submit the notebook to reduce the size of your file.</center>"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "6d4b0a8e",
   "metadata": {
    "deletable": true,
    "editable": true,
    "execution": {
     "iopub.execute_input": "2023-12-07T02:12:27.484428Z",
     "iopub.status.busy": "2023-12-07T02:12:27.484428Z",
     "iopub.status.idle": "2023-12-07T02:12:27.708462Z",
     "shell.execute_reply": "2023-12-07T02:12:27.706431Z"
    },
    "tags": []
   },
   "outputs": [],
   "source": [
    "# create the pie plot using the DataFrame 'num_institutions' titled \"Number of Institutions\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "aefcc1c3",
   "metadata": {
    "deletable": false,
    "editable": false
   },
   "source": [
    "**Food for thought:** It seems that we'll run out of colors! How can we make it so that **no two neighbors share a color**? You'll probably have to look online."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "aaf28097",
   "metadata": {
    "deletable": true,
    "editable": true,
    "execution": {
     "iopub.execute_input": "2023-12-07T02:12:27.712457Z",
     "iopub.status.busy": "2023-12-07T02:12:27.712457Z",
     "iopub.status.idle": "2023-12-07T02:12:27.717422Z",
     "shell.execute_reply": "2023-12-07T02:12:27.716413Z"
    }
   },
   "outputs": [],
   "source": [
    "# Food for thought is an entirely OPTIONAL exercise\n",
    "# you may leave your thoughts here as a comment if you wish to\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "10423208",
   "metadata": {
    "deletable": false,
    "editable": false
   },
   "source": [
    "### Closing the database connection:\n",
    "\n",
    "Now, before you **submit** your notebook, you **must** **close** your connection `conn`. Not doing this might make **Gradescope fail**. Additionally, **delete** the example images provided with plot questions to save space, if your notebook file is too large for submission. You can **delete** any cell by selecting the cell, hitting the `Esc` key once, and then hitting the `d` key **twice**."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "01d7cf09",
   "metadata": {
    "deletable": true,
    "editable": true,
    "execution": {
     "iopub.execute_input": "2023-12-07T02:12:27.721421Z",
     "iopub.status.busy": "2023-12-07T02:12:27.721421Z",
     "iopub.status.idle": "2023-12-07T02:12:27.725543Z",
     "shell.execute_reply": "2023-12-07T02:12:27.725543Z"
    },
    "tags": []
   },
   "outputs": [],
   "source": [
    "# close your connection here\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "56864cae",
   "metadata": {
    "deletable": true,
    "editable": true
   },
   "outputs": [],
   "source": [
    "grader.check(\"general_deductions\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "9749e162",
   "metadata": {
    "deletable": true,
    "editable": true
   },
   "outputs": [],
   "source": [
    "grader.check(\"summary\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "d3e8f2ff",
   "metadata": {
    "deletable": false,
    "editable": false
   },
   "source": [
    "## Submission\n",
    "It is recommended that at this stage, you Restart and Run all Cells in your notebook.\n",
    "That will automatically save your work and generate a zip file for you to submit.\n",
    "\n",
    "**SUBMISSION INSTRUCTIONS**:\n",
    "1. **Upload** the zipfile to Gradescope.\n",
    "2. If you completed the project with a **partner**, make sure to **add their name** by clicking \"Add Group Member\"\n",
    "in Gradescope when uploading the zip file.\n",
    "3. Check **Gradescope** results as soon as the auto-grader execution gets completed.\n",
    "4. Your **final score** for this project is the score that you see on **Gradescope**.\n",
    "5. You are **allowed** to resubmit on Gradescope as many times as you want to.\n",
    "6. **Contact** a TA/PM if you lose any points on Gradescope for any **unclear reasons**."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "543cfb4a",
   "metadata": {
    "cell_type": "code",
    "deletable": false,
    "editable": false
   },
   "outputs": [],
   "source": [
    "# running this cell will create a new save checkpoint for your notebook\n",
    "from IPython.display import display, Javascript\n",
    "display(Javascript('IPython.notebook.save_checkpoint();'))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "182271b2",
   "metadata": {
    "cell_type": "code",
    "deletable": false,
    "editable": false
   },
   "outputs": [],
   "source": [
    "!jupytext --to py p13.ipynb"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "a1856374",
   "metadata": {
    "cell_type": "code",
    "deletable": false,
    "editable": false
   },
   "outputs": [],
   "source": [
    "public_tests.check_file_size(\"p13.ipynb\")\n",
    "grader.export(pdf=False, run_tests=False, files=[\"p13.py\"])"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "1ff826ca",
   "metadata": {
    "deletable": false,
    "editable": false
   },
   "source": [
    " "
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.4"
  },
  "otter": {
   "OK_FORMAT": true,
   "tests": {
    "bar_plot": {
     "name": "bar_plot",
     "points": 0,
     "suites": [
      {
       "cases": [
        {
         "code": ">>> \n>>> public_tests.rubric_check('bar_plot: data is not plotted correctly')\nAll test cases passed!\n",
         "hidden": false,
         "locked": false,
         "success_message": "Note that the Gradescope autograder will deduct points if your code fails the following rubric point - 'data is not plotted correctly (-1)'.The public tests cannot determine if your code satisfies these requirements. Verify your code manually."
        },
        {
         "code": ">>> \n>>> public_tests.rubric_check('bar_plot: legend is not deleted or axes are not properly labeled')\nAll test cases passed!\n",
         "hidden": false,
         "locked": false,
         "success_message": "Note that the Gradescope autograder will deduct points if your code fails the following rubric point - 'legend is not deleted or axes are not properly labeled (-1)'.The public tests cannot determine if your code satisfies these requirements. Verify your code manually."
        }
       ],
       "scored": true,
       "setup": "",
       "teardown": "",
       "type": "doctest"
      }
     ]
    },
    "conn": {
     "name": "conn",
     "points": 0,
     "suites": [
      {
       "cases": [
        {
         "code": ">>> \n>>> public_tests.rubric_check('conn: data structure is defined more than once')\nAll test cases passed!\n",
         "hidden": false,
         "locked": false,
         "success_message": "Note that the Gradescope autograder will deduct points if your code fails the following rubric point - 'data structure is defined more than once (-1)'.The public tests cannot determine if your code satisfies these requirements. Verify your code manually."
        },
        {
         "code": ">>> \n>>> public_tests.rubric_check('conn: did not close the connection to `conn` at the end')\nAll test cases passed!\n",
         "hidden": false,
         "locked": false,
         "success_message": "Note that the Gradescope autograder will deduct points if your code fails the following rubric point - 'did not close the connection to `conn` at the end (-2)'.The public tests cannot determine if your code satisfies these requirements. Verify your code manually."
        }
       ],
       "scored": true,
       "setup": "",
       "teardown": "",
       "type": "doctest"
      }
     ]
    },
    "general_deductions": {
     "name": "general_deductions",
     "points": 0,
     "suites": [
      {
       "cases": [
        {
         "code": ">>> \n>>> public_tests.rubric_check('general_deductions: Outputs not visible/did not save the notebook file prior to running the cell containing \"export\". We cannot see your output if you do not save before generating the zip file.')\nAll test cases passed!\n",
         "hidden": false,
         "locked": false,
         "success_message": "Note that the Gradescope autograder will deduct points if your code fails the following rubric point - 'Outputs not visible/did not save the notebook file prior to running the cell containing \"export\". We cannot see your output if you do not save before generating the zip file. (-3)'.The public tests cannot determine if your code satisfies these requirements. Verify your code manually."
        },
        {
         "code": ">>> \n>>> public_tests.rubric_check('general_deductions: Import statements are not mentioned in the required cell at the top of the notebook.')\nAll test cases passed!\n",
         "hidden": false,
         "locked": false,
         "success_message": "Note that the Gradescope autograder will deduct points if your code fails the following rubric point - 'Import statements are not mentioned in the required cell at the top of the notebook. (-3)'.The public tests cannot determine if your code satisfies these requirements. Verify your code manually."
        }
       ],
       "scored": true,
       "setup": "",
       "teardown": "",
       "type": "doctest"
      }
     ]
    },
    "get_regression_coeff": {
     "name": "get_regression_coeff",
     "points": 0,
     "suites": [
      {
       "cases": [
        {
         "code": ">>> \n>>> public_tests.rubric_check('get_regression_coeff: function logic is incorrect')\nAll test cases passed!\n",
         "hidden": false,
         "locked": false,
         "success_message": "Note that the Gradescope autograder will deduct points if your code fails the following rubric point - 'function logic is incorrect (-1)'.The public tests cannot determine if your code satisfies these requirements. Verify your code manually."
        }
       ],
       "scored": true,
       "setup": "",
       "teardown": "",
       "type": "doctest"
      }
     ]
    },
    "get_regression_line": {
     "name": "get_regression_line",
     "points": 0,
     "suites": [
      {
       "cases": [
        {
         "code": ">>> \n>>> public_tests.rubric_check('get_regression_line: function logic is incorrect')\nAll test cases passed!\n",
         "hidden": false,
         "locked": false,
         "success_message": "Note that the Gradescope autograder will deduct points if your code fails the following rubric point - 'function logic is incorrect (-1)'.The public tests cannot determine if your code satisfies these requirements. Verify your code manually."
        }
       ],
       "scored": true,
       "setup": "",
       "teardown": "",
       "type": "doctest"
      }
     ]
    },
    "horizontal_bar_plot": {
     "name": "horizontal_bar_plot",
     "points": 0,
     "suites": [
      {
       "cases": [
        {
         "code": ">>> \n>>> public_tests.rubric_check('horizontal_bar_plot: data is not plotted correctly')\nAll test cases passed!\n",
         "hidden": false,
         "locked": false,
         "success_message": "Note that the Gradescope autograder will deduct points if your code fails the following rubric point - 'data is not plotted correctly (-1)'.The public tests cannot determine if your code satisfies these requirements. Verify your code manually."
        }
       ],
       "scored": true,
       "setup": "",
       "teardown": "",
       "type": "doctest"
      }
     ]
    },
    "pie_plot": {
     "name": "pie_plot",
     "points": 0,
     "suites": [
      {
       "cases": [
        {
         "code": ">>> \n>>> public_tests.rubric_check('pie_plot: data is not plotted correctly')\nAll test cases passed!\n",
         "hidden": false,
         "locked": false,
         "success_message": "Note that the Gradescope autograder will deduct points if your code fails the following rubric point - 'data is not plotted correctly (-1)'.The public tests cannot determine if your code satisfies these requirements. Verify your code manually."
        }
       ],
       "scored": true,
       "setup": "",
       "teardown": "",
       "type": "doctest"
      }
     ]
    },
    "q1": {
     "name": "q1",
     "points": 0,
     "suites": [
      {
       "cases": [
        {
         "code": ">>> public_tests.check('q1', uw_stats.reset_index(drop=True))\nAll test cases passed!\n",
         "hidden": false,
         "locked": false
        },
        {
         "code": ">>> \n>>> public_tests.rubric_check('q1: did not use SQL to answer')\nAll test cases passed!\n",
         "hidden": false,
         "locked": false,
         "success_message": "Note that the Gradescope autograder will deduct points if your code fails the following rubric point - 'did not use SQL to answer (-2)'.The public tests cannot determine if your code satisfies these requirements. Verify your code manually."
        },
        {
         "code": ">>> \n>>> public_tests.rubric_check('q1: incorrect logic is used to answer')\nAll test cases passed!\n",
         "hidden": false,
         "locked": false,
         "success_message": "Note that the Gradescope autograder will deduct points if your code fails the following rubric point - 'incorrect logic is used to answer (-1)'.The public tests cannot determine if your code satisfies these requirements. Verify your code manually."
        }
       ],
       "scored": true,
       "setup": "",
       "teardown": "",
       "type": "doctest"
      }
     ]
    },
    "q10": {
     "name": "q10",
     "points": 0,
     "suites": [
      {
       "cases": [
        {
         "code": ">>> public_tests.check('q10', top_ranked_inter_faculty.sort_values(by=[\"Faculty Student\", \"International Students\"], ascending=[False, False])[[\"Faculty Student\", \"International Students\"]].reset_index(drop=True))\nAll test cases passed!\n",
         "hidden": false,
         "locked": false
        },
        {
         "code": ">>> \n>>> public_tests.rubric_check('q10: did not use SQL to answer')\nAll test cases passed!\n",
         "hidden": false,
         "locked": false,
         "success_message": "Note that the Gradescope autograder will deduct points if your code fails the following rubric point - 'did not use SQL to answer (-2)'.The public tests cannot determine if your code satisfies these requirements. Verify your code manually."
        },
        {
         "code": ">>> \n>>> public_tests.rubric_check('q10: incorrect logic is used to answer')\nAll test cases passed!\n",
         "hidden": false,
         "locked": false,
         "success_message": "Note that the Gradescope autograder will deduct points if your code fails the following rubric point - 'incorrect logic is used to answer (-2)'.The public tests cannot determine if your code satisfies these requirements. Verify your code manually."
        },
        {
         "code": ">>> \n>>> public_tests.rubric_check('q10: `scatter_plot` function is not used to plot', False)\nAll test cases passed!\n",
         "hidden": false,
         "locked": false,
         "success_message": "Note that the Gradescope autograder will deduct points if your code fails the following rubric point - '`scatter_plot` function is not used to plot (-1)'.The public tests cannot determine if your code satisfies these requirements. Verify your code manually."
        },
        {
         "code": ">>> \n>>> public_tests.rubric_check('q10: plot is not properly labeled')\nAll test cases passed!\n",
         "hidden": false,
         "locked": false,
         "success_message": "Note that the Gradescope autograder will deduct points if your code fails the following rubric point - 'plot is not properly labeled (-1)'.The public tests cannot determine if your code satisfies these requirements. Verify your code manually."
        }
       ],
       "scored": true,
       "setup": "",
       "teardown": "",
       "type": "doctest"
      }
     ]
    },
    "q11": {
     "name": "q11",
     "points": 0,
     "suites": [
      {
       "cases": [
        {
         "code": ">>> public_tests.check('q11', uk_inter_score_corr)\nAll test cases passed!\n",
         "hidden": false,
         "locked": false
        },
        {
         "code": ">>> \n>>> public_tests.rubric_check('q11: did not use SQL to answer')\nAll test cases passed!\n",
         "hidden": false,
         "locked": false,
         "success_message": "Note that the Gradescope autograder will deduct points if your code fails the following rubric point - 'did not use SQL to answer (-2)'.The public tests cannot determine if your code satisfies these requirements. Verify your code manually."
        },
        {
         "code": ">>> \n>>> public_tests.rubric_check('q11: incorrect logic is used to answer')\nAll test cases passed!\n",
         "hidden": false,
         "locked": false,
         "success_message": "Note that the Gradescope autograder will deduct points if your code fails the following rubric point - 'incorrect logic is used to answer (-1)'.The public tests cannot determine if your code satisfies these requirements. Verify your code manually."
        }
       ],
       "scored": true,
       "setup": "",
       "teardown": "",
       "type": "doctest"
      }
     ]
    },
    "q12": {
     "name": "q12",
     "points": 0,
     "suites": [
      {
       "cases": [
        {
         "code": ">>> public_tests.check('q12', cit_per_inter_score_corr)\nAll test cases passed!\n",
         "hidden": false,
         "locked": false
        },
        {
         "code": ">>> \n>>> public_tests.rubric_check('q12: did not use SQL to answer')\nAll test cases passed!\n",
         "hidden": false,
         "locked": false,
         "success_message": "Note that the Gradescope autograder will deduct points if your code fails the following rubric point - 'did not use SQL to answer (-2)'.The public tests cannot determine if your code satisfies these requirements. Verify your code manually."
        },
        {
         "code": ">>> \n>>> public_tests.rubric_check('q12: incorrect logic is used to answer')\nAll test cases passed!\n",
         "hidden": false,
         "locked": false,
         "success_message": "Note that the Gradescope autograder will deduct points if your code fails the following rubric point - 'incorrect logic is used to answer (-1)'.The public tests cannot determine if your code satisfies these requirements. Verify your code manually."
        }
       ],
       "scored": true,
       "setup": "",
       "teardown": "",
       "type": "doctest"
      }
     ]
    },
    "q13": {
     "name": "q13",
     "points": 0,
     "suites": [
      {
       "cases": [
        {
         "code": ">>> public_tests.check('q13', top_cit_per_inter.reset_index(drop=True))\nAll test cases passed!\n",
         "hidden": false,
         "locked": false
        },
        {
         "code": ">>> \n>>> public_tests.rubric_check('q13: did not use SQL to answer')\nAll test cases passed!\n",
         "hidden": false,
         "locked": false,
         "success_message": "Note that the Gradescope autograder will deduct points if your code fails the following rubric point - 'did not use SQL to answer (-2)'.The public tests cannot determine if your code satisfies these requirements. Verify your code manually."
        },
        {
         "code": ">>> \n>>> public_tests.rubric_check('q13: incorrect logic is used to answer')\nAll test cases passed!\n",
         "hidden": false,
         "locked": false,
         "success_message": "Note that the Gradescope autograder will deduct points if your code fails the following rubric point - 'incorrect logic is used to answer (-2)'.The public tests cannot determine if your code satisfies these requirements. Verify your code manually."
        }
       ],
       "scored": true,
       "setup": "",
       "teardown": "",
       "type": "doctest"
      }
     ]
    },
    "q14": {
     "name": "q14",
     "points": 0,
     "suites": [
      {
       "cases": [
        {
         "code": ">>> public_tests.check('q14', avg_cit_per_inter.reset_index(drop=True))\nAll test cases passed!\n",
         "hidden": false,
         "locked": false
        },
        {
         "code": ">>> \n>>> public_tests.rubric_check('q14: did not use SQL to answer')\nAll test cases passed!\n",
         "hidden": false,
         "locked": false,
         "success_message": "Note that the Gradescope autograder will deduct points if your code fails the following rubric point - 'did not use SQL to answer (-2)'.The public tests cannot determine if your code satisfies these requirements. Verify your code manually."
        },
        {
         "code": ">>> \n>>> public_tests.rubric_check('q14: incorrect logic is used to answer')\nAll test cases passed!\n",
         "hidden": false,
         "locked": false,
         "success_message": "Note that the Gradescope autograder will deduct points if your code fails the following rubric point - 'incorrect logic is used to answer (-2)'.The public tests cannot determine if your code satisfies these requirements. Verify your code manually."
        }
       ],
       "scored": true,
       "setup": "",
       "teardown": "",
       "type": "doctest"
      }
     ]
    },
    "q15": {
     "name": "q15",
     "points": 0,
     "suites": [
      {
       "cases": [
        {
         "code": ">>> public_tests.check('q15', max_cit_per_inter.reset_index(drop=True))\nAll test cases passed!\n",
         "hidden": false,
         "locked": false
        },
        {
         "code": ">>> \n>>> public_tests.rubric_check('q15: did not use SQL to answer')\nAll test cases passed!\n",
         "hidden": false,
         "locked": false,
         "success_message": "Note that the Gradescope autograder will deduct points if your code fails the following rubric point - 'did not use SQL to answer (-2)'.The public tests cannot determine if your code satisfies these requirements. Verify your code manually."
        },
        {
         "code": ">>> \n>>> public_tests.rubric_check('q15: incorrect logic is used to answer')\nAll test cases passed!\n",
         "hidden": false,
         "locked": false,
         "success_message": "Note that the Gradescope autograder will deduct points if your code fails the following rubric point - 'incorrect logic is used to answer (-2)'.The public tests cannot determine if your code satisfies these requirements. Verify your code manually."
        }
       ],
       "scored": true,
       "setup": "",
       "teardown": "",
       "type": "doctest"
      }
     ]
    },
    "q16": {
     "name": "q16",
     "points": 0,
     "suites": [
      {
       "cases": [
        {
         "code": ">>> public_tests.check('q16', country_citations_inter.reset_index(drop=True))\nAll test cases passed!\n",
         "hidden": false,
         "locked": false
        },
        {
         "code": ">>> \n>>> public_tests.rubric_check('q16: did not use SQL to answer')\nAll test cases passed!\n",
         "hidden": false,
         "locked": false,
         "success_message": "Note that the Gradescope autograder will deduct points if your code fails the following rubric point - 'did not use SQL to answer (-2)'.The public tests cannot determine if your code satisfies these requirements. Verify your code manually."
        },
        {
         "code": ">>> \n>>> public_tests.rubric_check('q16: incorrect logic is used to answer')\nAll test cases passed!\n",
         "hidden": false,
         "locked": false,
         "success_message": "Note that the Gradescope autograder will deduct points if your code fails the following rubric point - 'incorrect logic is used to answer (-2)'.The public tests cannot determine if your code satisfies these requirements. Verify your code manually."
        },
        {
         "code": ">>> \n>>> public_tests.rubric_check('q16: `horizontal_bar_plot` function is not used to plot', False)\nAll test cases passed!\n",
         "hidden": false,
         "locked": false,
         "success_message": "Note that the Gradescope autograder will deduct points if your code fails the following rubric point - '`horizontal_bar_plot` function is not used to plot (-1)'.The public tests cannot determine if your code satisfies these requirements. Verify your code manually."
        },
        {
         "code": ">>> \n>>> public_tests.rubric_check('q16: plot is not properly labeled')\nAll test cases passed!\n",
         "hidden": false,
         "locked": false,
         "success_message": "Note that the Gradescope autograder will deduct points if your code fails the following rubric point - 'plot is not properly labeled (-1)'.The public tests cannot determine if your code satisfies these requirements. Verify your code manually."
        }
       ],
       "scored": true,
       "setup": "",
       "teardown": "",
       "type": "doctest"
      }
     ]
    },
    "q17": {
     "name": "q17",
     "points": 0,
     "suites": [
      {
       "cases": [
        {
         "code": ">>> public_tests.check('q17', overall_rank.sort_values(by=[\"Rank\", \"Overall\", \"fit\"], ascending=(True, False, False))[[\"Rank\", \"Overall\", \"fit\"]].reset_index(drop=True))\nAll test cases passed!\n",
         "hidden": false,
         "locked": false
        },
        {
         "code": ">>> \n>>> public_tests.rubric_check('q17: did not use SQL to answer')\nAll test cases passed!\n",
         "hidden": false,
         "locked": false,
         "success_message": "Note that the Gradescope autograder will deduct points if your code fails the following rubric point - 'did not use SQL to answer (-2)'.The public tests cannot determine if your code satisfies these requirements. Verify your code manually."
        },
        {
         "code": ">>> \n>>> public_tests.rubric_check('q17: incorrect logic is used to answer')\nAll test cases passed!\n",
         "hidden": false,
         "locked": false,
         "success_message": "Note that the Gradescope autograder will deduct points if your code fails the following rubric point - 'incorrect logic is used to answer (-2)'.The public tests cannot determine if your code satisfies these requirements. Verify your code manually."
        },
        {
         "code": ">>> \n>>> public_tests.rubric_check('q17: `regression_line_plot` function is not used to plot', False)\nAll test cases passed!\n",
         "hidden": false,
         "locked": false,
         "success_message": "Note that the Gradescope autograder will deduct points if your code fails the following rubric point - '`regression_line_plot` function is not used to plot (-1)'.The public tests cannot determine if your code satisfies these requirements. Verify your code manually."
        },
        {
         "code": ">>> \n>>> public_tests.rubric_check('q17: plot is not properly labeled')\nAll test cases passed!\n",
         "hidden": false,
         "locked": false,
         "success_message": "Note that the Gradescope autograder will deduct points if your code fails the following rubric point - 'plot is not properly labeled (-1)'.The public tests cannot determine if your code satisfies these requirements. Verify your code manually."
        }
       ],
       "scored": true,
       "setup": "",
       "teardown": "",
       "type": "doctest"
      }
     ]
    },
    "q18": {
     "name": "q18",
     "points": 0,
     "suites": [
      {
       "cases": [
        {
         "code": ">>> public_tests.check('q18', inverse_overall_rank.sort_values(by=[\"Rank\", \"Inverse Overall\", \"fit\"], ascending=(True, False, False))[[\"Rank\", \"Inverse Overall\", \"fit\"]].reset_index(drop=True))\nAll test cases passed!\n",
         "hidden": false,
         "locked": false
        },
        {
         "code": ">>> \n>>> public_tests.rubric_check('q18: incorrect logic is used to answer')\nAll test cases passed!\n",
         "hidden": false,
         "locked": false,
         "success_message": "Note that the Gradescope autograder will deduct points if your code fails the following rubric point - 'incorrect logic is used to answer (-2)'.The public tests cannot determine if your code satisfies these requirements. Verify your code manually."
        },
        {
         "code": ">>> \n>>> public_tests.rubric_check('q18: `get_regression_line` function is not used to answer', False)\nAll test cases passed!\n",
         "hidden": false,
         "locked": false,
         "success_message": "Note that the Gradescope autograder will deduct points if your code fails the following rubric point - '`get_regression_line` function is not used to answer (-1)'.The public tests cannot determine if your code satisfies these requirements. Verify your code manually."
        },
        {
         "code": ">>> \n>>> public_tests.rubric_check('q18: `regression_line_plot` function is not used to plot', False)\nAll test cases passed!\n",
         "hidden": false,
         "locked": false,
         "success_message": "Note that the Gradescope autograder will deduct points if your code fails the following rubric point - '`regression_line_plot` function is not used to plot (-1)'.The public tests cannot determine if your code satisfies these requirements. Verify your code manually."
        },
        {
         "code": ">>> \n>>> public_tests.rubric_check('q18: plot is not properly labeled')\nAll test cases passed!\n",
         "hidden": false,
         "locked": false,
         "success_message": "Note that the Gradescope autograder will deduct points if your code fails the following rubric point - 'plot is not properly labeled (-1)'.The public tests cannot determine if your code satisfies these requirements. Verify your code manually."
        }
       ],
       "scored": true,
       "setup": "",
       "teardown": "",
       "type": "doctest"
      }
     ]
    },
    "q19": {
     "name": "q19",
     "points": 0,
     "suites": [
      {
       "cases": [
        {
         "code": ">>> public_tests.check('q19', rank_score_72)\nAll test cases passed!\n",
         "hidden": false,
         "locked": false
        },
        {
         "code": ">>> \n>>> public_tests.rubric_check('q19: incorrect logic is used to answer')\nAll test cases passed!\n",
         "hidden": false,
         "locked": false,
         "success_message": "Note that the Gradescope autograder will deduct points if your code fails the following rubric point - 'incorrect logic is used to answer (-1)'.The public tests cannot determine if your code satisfies these requirements. Verify your code manually."
        },
        {
         "code": ">>> \n>>> public_tests.rubric_check('q19: `get_regression_coeff` function is not used to answer', False)\nAll test cases passed!\n",
         "hidden": false,
         "locked": false,
         "success_message": "Note that the Gradescope autograder will deduct points if your code fails the following rubric point - '`get_regression_coeff` function is not used to answer (-1)'.The public tests cannot determine if your code satisfies these requirements. Verify your code manually."
        }
       ],
       "scored": true,
       "setup": "",
       "teardown": "",
       "type": "doctest"
      }
     ]
    },
    "q2": {
     "name": "q2",
     "points": 0,
     "suites": [
      {
       "cases": [
        {
         "code": ">>> public_tests.check('q2', japan_top_10_inter.reset_index(drop=True))\nAll test cases passed!\n",
         "hidden": false,
         "locked": false
        },
        {
         "code": ">>> \n>>> public_tests.rubric_check('q2: did not use SQL to answer')\nAll test cases passed!\n",
         "hidden": false,
         "locked": false,
         "success_message": "Note that the Gradescope autograder will deduct points if your code fails the following rubric point - 'did not use SQL to answer (-2)'.The public tests cannot determine if your code satisfies these requirements. Verify your code manually."
        },
        {
         "code": ">>> \n>>> public_tests.rubric_check('q2: incorrect logic is used to answer')\nAll test cases passed!\n",
         "hidden": false,
         "locked": false,
         "success_message": "Note that the Gradescope autograder will deduct points if your code fails the following rubric point - 'incorrect logic is used to answer (-2)'.The public tests cannot determine if your code satisfies these requirements. Verify your code manually."
        }
       ],
       "scored": true,
       "setup": "",
       "teardown": "",
       "type": "doctest"
      }
     ]
    },
    "q20": {
     "name": "q20",
     "points": 0,
     "suites": [
      {
       "cases": [
        {
         "code": ">>> public_tests.check('q20', num_institutions.reset_index(drop=True))\nAll test cases passed!\n",
         "hidden": false,
         "locked": false
        },
        {
         "code": ">>> \n>>> public_tests.rubric_check('q20: `pie_plot` function is not used to plot', False)\nAll test cases passed!\n",
         "hidden": false,
         "locked": false,
         "success_message": "Note that the Gradescope autograder will deduct points if your code fails the following rubric point - '`pie_plot` function is not used to plot (-1)'.The public tests cannot determine if your code satisfies these requirements. Verify your code manually."
        },
        {
         "code": ">>> \n>>> public_tests.rubric_check('q20: plot is not properly labeled')\nAll test cases passed!\n",
         "hidden": false,
         "locked": false,
         "success_message": "Note that the Gradescope autograder will deduct points if your code fails the following rubric point - 'plot is not properly labeled (-1)'.The public tests cannot determine if your code satisfies these requirements. Verify your code manually."
        },
        {
         "code": ">>> public_tests.rubric_check('q20: public tests')\nAll test cases passed!\n",
         "hidden": false,
         "locked": false
        }
       ],
       "scored": true,
       "setup": "",
       "teardown": "",
       "type": "doctest"
      }
     ]
    },
    "q3": {
     "name": "q3",
     "points": 0,
     "suites": [
      {
       "cases": [
        {
         "code": ">>> public_tests.check('q3', us_top_10_rep.reset_index(drop=True))\nAll test cases passed!\n",
         "hidden": false,
         "locked": false
        },
        {
         "code": ">>> \n>>> public_tests.rubric_check('q3: did not use SQL to answer')\nAll test cases passed!\n",
         "hidden": false,
         "locked": false,
         "success_message": "Note that the Gradescope autograder will deduct points if your code fails the following rubric point - 'did not use SQL to answer (-2)'.The public tests cannot determine if your code satisfies these requirements. Verify your code manually."
        },
        {
         "code": ">>> \n>>> public_tests.rubric_check('q3: incorrect logic is used to answer')\nAll test cases passed!\n",
         "hidden": false,
         "locked": false,
         "success_message": "Note that the Gradescope autograder will deduct points if your code fails the following rubric point - 'incorrect logic is used to answer (-2)'.The public tests cannot determine if your code satisfies these requirements. Verify your code manually."
        }
       ],
       "scored": true,
       "setup": "",
       "teardown": "",
       "type": "doctest"
      }
     ]
    },
    "q4": {
     "name": "q4",
     "points": 0,
     "suites": [
      {
       "cases": [
        {
         "code": ">>> public_tests.check('q4', top_10_countries.reset_index(drop=True))\nAll test cases passed!\n",
         "hidden": false,
         "locked": false
        },
        {
         "code": ">>> \n>>> public_tests.rubric_check('q4: did not use SQL to answer')\nAll test cases passed!\n",
         "hidden": false,
         "locked": false,
         "success_message": "Note that the Gradescope autograder will deduct points if your code fails the following rubric point - 'did not use SQL to answer (-2)'.The public tests cannot determine if your code satisfies these requirements. Verify your code manually."
        },
        {
         "code": ">>> \n>>> public_tests.rubric_check('q4: incorrect logic is used to answer')\nAll test cases passed!\n",
         "hidden": false,
         "locked": false,
         "success_message": "Note that the Gradescope autograder will deduct points if your code fails the following rubric point - 'incorrect logic is used to answer (-2)'.The public tests cannot determine if your code satisfies these requirements. Verify your code manually."
        }
       ],
       "scored": true,
       "setup": "",
       "teardown": "",
       "type": "doctest"
      }
     ]
    },
    "q5": {
     "name": "q5",
     "points": 0,
     "suites": [
      {
       "cases": [
        {
         "code": ">>> public_tests.check('q5', num_institutions.reset_index(drop=True))\nAll test cases passed!\n",
         "hidden": false,
         "locked": false
        },
        {
         "code": ">>> \n>>> public_tests.rubric_check('q5: incorrect logic is used to answer')\nAll test cases passed!\n",
         "hidden": false,
         "locked": false,
         "success_message": "Note that the Gradescope autograder will deduct points if your code fails the following rubric point - 'incorrect logic is used to answer (-2)'.The public tests cannot determine if your code satisfies these requirements. Verify your code manually."
        },
        {
         "code": ">>> \n>>> public_tests.rubric_check('q5: `bar_plot` function is not used to plot', False)\nAll test cases passed!\n",
         "hidden": false,
         "locked": false,
         "success_message": "Note that the Gradescope autograder will deduct points if your code fails the following rubric point - '`bar_plot` function is not used to plot (-1)'.The public tests cannot determine if your code satisfies these requirements. Verify your code manually."
        },
        {
         "code": ">>> \n>>> public_tests.rubric_check('q5: plot is not properly labeled')\nAll test cases passed!\n",
         "hidden": false,
         "locked": false,
         "success_message": "Note that the Gradescope autograder will deduct points if your code fails the following rubric point - 'plot is not properly labeled (-1)'.The public tests cannot determine if your code satisfies these requirements. Verify your code manually."
        },
        {
         "code": ">>> public_tests.rubric_check('q5: public tests')\nAll test cases passed!\n",
         "hidden": false,
         "locked": false
        }
       ],
       "scored": true,
       "setup": "",
       "teardown": "",
       "type": "doctest"
      }
     ]
    },
    "q6": {
     "name": "q6",
     "points": 0,
     "suites": [
      {
       "cases": [
        {
         "code": ">>> public_tests.check('q6', top_10_total_score.reset_index(drop=True))\nAll test cases passed!\n",
         "hidden": false,
         "locked": false
        },
        {
         "code": ">>> \n>>> public_tests.rubric_check('q6: did not use SQL to answer')\nAll test cases passed!\n",
         "hidden": false,
         "locked": false,
         "success_message": "Note that the Gradescope autograder will deduct points if your code fails the following rubric point - 'did not use SQL to answer (-2)'.The public tests cannot determine if your code satisfies these requirements. Verify your code manually."
        },
        {
         "code": ">>> \n>>> public_tests.rubric_check('q6: incorrect logic is used to answer')\nAll test cases passed!\n",
         "hidden": false,
         "locked": false,
         "success_message": "Note that the Gradescope autograder will deduct points if your code fails the following rubric point - 'incorrect logic is used to answer (-2)'.The public tests cannot determine if your code satisfies these requirements. Verify your code manually."
        },
        {
         "code": ">>> \n>>> public_tests.rubric_check('q6: `bar_plot` function is not used to plot', False)\nAll test cases passed!\n",
         "hidden": false,
         "locked": false,
         "success_message": "Note that the Gradescope autograder will deduct points if your code fails the following rubric point - '`bar_plot` function is not used to plot (-1)'.The public tests cannot determine if your code satisfies these requirements. Verify your code manually."
        },
        {
         "code": ">>> \n>>> public_tests.rubric_check('q6: plot is not properly labeled')\nAll test cases passed!\n",
         "hidden": false,
         "locked": false,
         "success_message": "Note that the Gradescope autograder will deduct points if your code fails the following rubric point - 'plot is not properly labeled (-1)'.The public tests cannot determine if your code satisfies these requirements. Verify your code manually."
        }
       ],
       "scored": true,
       "setup": "",
       "teardown": "",
       "type": "doctest"
      }
     ]
    },
    "q7": {
     "name": "q7",
     "points": 0,
     "suites": [
      {
       "cases": [
        {
         "code": ">>> public_tests.check('q7', top_10_inter_score.reset_index(drop=True))\nAll test cases passed!\n",
         "hidden": false,
         "locked": false
        },
        {
         "code": ">>> \n>>> public_tests.rubric_check('q7: did not use SQL to answer')\nAll test cases passed!\n",
         "hidden": false,
         "locked": false,
         "success_message": "Note that the Gradescope autograder will deduct points if your code fails the following rubric point - 'did not use SQL to answer (-2)'.The public tests cannot determine if your code satisfies these requirements. Verify your code manually."
        },
        {
         "code": ">>> \n>>> public_tests.rubric_check('q7: incorrect logic is used to answer')\nAll test cases passed!\n",
         "hidden": false,
         "locked": false,
         "success_message": "Note that the Gradescope autograder will deduct points if your code fails the following rubric point - 'incorrect logic is used to answer (-2)'.The public tests cannot determine if your code satisfies these requirements. Verify your code manually."
        }
       ],
       "scored": true,
       "setup": "",
       "teardown": "",
       "type": "doctest"
      }
     ]
    },
    "q8": {
     "name": "q8",
     "points": 0,
     "suites": [
      {
       "cases": [
        {
         "code": ">>> public_tests.check('q8', citations_overall.sort_values(by=['Citations per Faculty', 'Overall'], ascending=[False, False]).reset_index(drop=True))\nAll test cases passed!\n",
         "hidden": false,
         "locked": false
        },
        {
         "code": ">>> \n>>> public_tests.rubric_check('q8: did not use SQL to answer')\nAll test cases passed!\n",
         "hidden": false,
         "locked": false,
         "success_message": "Note that the Gradescope autograder will deduct points if your code fails the following rubric point - 'did not use SQL to answer (-2)'.The public tests cannot determine if your code satisfies these requirements. Verify your code manually."
        },
        {
         "code": ">>> \n>>> public_tests.rubric_check('q8: incorrect logic is used to answer')\nAll test cases passed!\n",
         "hidden": false,
         "locked": false,
         "success_message": "Note that the Gradescope autograder will deduct points if your code fails the following rubric point - 'incorrect logic is used to answer (-2)'.The public tests cannot determine if your code satisfies these requirements. Verify your code manually."
        },
        {
         "code": ">>> \n>>> public_tests.rubric_check('q8: `scatter_plot` function is not used to plot', False)\nAll test cases passed!\n",
         "hidden": false,
         "locked": false,
         "success_message": "Note that the Gradescope autograder will deduct points if your code fails the following rubric point - '`scatter_plot` function is not used to plot (-1)'.The public tests cannot determine if your code satisfies these requirements. Verify your code manually."
        },
        {
         "code": ">>> \n>>> public_tests.rubric_check('q8: plot is not properly labeled')\nAll test cases passed!\n",
         "hidden": false,
         "locked": false,
         "success_message": "Note that the Gradescope autograder will deduct points if your code fails the following rubric point - 'plot is not properly labeled (-1)'.The public tests cannot determine if your code satisfies these requirements. Verify your code manually."
        }
       ],
       "scored": true,
       "setup": "",
       "teardown": "",
       "type": "doctest"
      }
     ]
    },
    "q9": {
     "name": "q9",
     "points": 0,
     "suites": [
      {
       "cases": [
        {
         "code": ">>> public_tests.check('q9', reputations_usa.sort_values(by=['Academic Reputation', 'Employer Reputation'], ascending=[False, False]).reset_index(drop=True))\nAll test cases passed!\n",
         "hidden": false,
         "locked": false
        },
        {
         "code": ">>> \n>>> public_tests.rubric_check('q9: did not use SQL to answer')\nAll test cases passed!\n",
         "hidden": false,
         "locked": false,
         "success_message": "Note that the Gradescope autograder will deduct points if your code fails the following rubric point - 'did not use SQL to answer (-2)'.The public tests cannot determine if your code satisfies these requirements. Verify your code manually."
        },
        {
         "code": ">>> \n>>> public_tests.rubric_check('q9: incorrect logic is used to answer')\nAll test cases passed!\n",
         "hidden": false,
         "locked": false,
         "success_message": "Note that the Gradescope autograder will deduct points if your code fails the following rubric point - 'incorrect logic is used to answer (-2)'.The public tests cannot determine if your code satisfies these requirements. Verify your code manually."
        },
        {
         "code": ">>> \n>>> public_tests.rubric_check('q9: `scatter_plot` function is not used to plot', False)\nAll test cases passed!\n",
         "hidden": false,
         "locked": false,
         "success_message": "Note that the Gradescope autograder will deduct points if your code fails the following rubric point - '`scatter_plot` function is not used to plot (-1)'.The public tests cannot determine if your code satisfies these requirements. Verify your code manually."
        },
        {
         "code": ">>> \n>>> public_tests.rubric_check('q9: plot is not properly labeled')\nAll test cases passed!\n",
         "hidden": false,
         "locked": false,
         "success_message": "Note that the Gradescope autograder will deduct points if your code fails the following rubric point - 'plot is not properly labeled (-1)'.The public tests cannot determine if your code satisfies these requirements. Verify your code manually."
        }
       ],
       "scored": true,
       "setup": "",
       "teardown": "",
       "type": "doctest"
      }
     ]
    },
    "regression_line_plot": {
     "name": "regression_line_plot",
     "points": 0,
     "suites": [
      {
       "cases": [
        {
         "code": ">>> \n>>> public_tests.rubric_check('regression_line_plot: `get_regression_line` function is not used to answer', False)\nAll test cases passed!\n",
         "hidden": false,
         "locked": false,
         "success_message": "Note that the Gradescope autograder will deduct points if your code fails the following rubric point - '`get_regression_line` function is not used to answer (-1)'.The public tests cannot determine if your code satisfies these requirements. Verify your code manually."
        },
        {
         "code": ">>> \n>>> public_tests.rubric_check('regression_line_plot: function does not create correct scatter plot or the correct line plot using `df[\"fit\"]`')\nAll test cases passed!\n",
         "hidden": false,
         "locked": false,
         "success_message": "Note that the Gradescope autograder will deduct points if your code fails the following rubric point - 'function does not create correct scatter plot or the correct line plot using `df[\"fit\"]` (-1)'.The public tests cannot determine if your code satisfies these requirements. Verify your code manually."
        }
       ],
       "scored": true,
       "setup": "",
       "teardown": "",
       "type": "doctest"
      }
     ]
    },
    "scatter_plot": {
     "name": "scatter_plot",
     "points": 0,
     "suites": [
      {
       "cases": [
        {
         "code": ">>> \n>>> public_tests.rubric_check('scatter_plot: data is not plotted correctly')\nAll test cases passed!\n",
         "hidden": false,
         "locked": false,
         "success_message": "Note that the Gradescope autograder will deduct points if your code fails the following rubric point - 'data is not plotted correctly (-1)'.The public tests cannot determine if your code satisfies these requirements. Verify your code manually."
        },
        {
         "code": ">>> \n>>> public_tests.rubric_check('scatter_plot: legend is not deleted or axes are not properly labeled')\nAll test cases passed!\n",
         "hidden": false,
         "locked": false,
         "success_message": "Note that the Gradescope autograder will deduct points if your code fails the following rubric point - 'legend is not deleted or axes are not properly labeled (-1)'.The public tests cannot determine if your code satisfies these requirements. Verify your code manually."
        }
       ],
       "scored": true,
       "setup": "",
       "teardown": "",
       "type": "doctest"
      }
     ]
    },
    "summary": {
     "name": "summary",
     "points": 127,
     "suites": [
      {
       "cases": [
        {
         "code": ">>> public_tests.get_summary()\nTotal Score: 100/100\n",
         "hidden": false,
         "locked": false
        }
       ],
       "scored": true,
       "setup": "",
       "teardown": "",
       "type": "doctest"
      }
     ]
    }
   }
  },
  "vscode": {
   "interpreter": {
    "hash": "aee8b7b246df8f9039afb4144a1f6fd8d2ca17a180786b69acc140d282b71a49"
   }
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}