
Lists
Department of Computer Sciences
University of Wisconsin-Madison

Learning Objectives

List creation and sequence operations
• indexing, slicing, for loops

• len, in, concatenation, multiplication

Key differences between strings and lists
• type flexibility

• mutability

Mutating a list using:
• indexing

• methods: append, extend, pop, and sort

split(…) a string into a list

join(…) a list into a string

Today's Outline

From Strings to Lists

More Sequence Capabilities

Difference 1: Flexibility of Types

Difference 2: Mutability

Transforming between Strings and Lists

A string is a sequence of characters

"h" "e" "l" "l" "o" " " "w"

0 1 2 3

"o" "r" "l" "d" "\n"

4 5 6 7 8 9 10 11

s =

indexing: access one value slicing: extract sub-sequence

for loop: execute for each value

Things we can do with sequences
• indexing

• slicing

• for loop

A string is a sequence of characters

>>> msg = “hi world!”

>>> msg[1]

‘i’

>>> msg[3]

‘w’

Things we can do with sequences
• indexing

• slicing

• for loop

A string is a sequence of characters

>>> msg = “hi world!”

>>> msg[3:]

‘world!’

>>> msg[3:-1]

‘world’

Things we can do with sequences
• indexing

• slicing

• for loop

A string is a sequence of characters

>>> msg = “hi world!”

>>> for c in msg:

... print(c)

...

h

i

w

o

r

l

d

!

Things we can do with sequences
• indexing

• slicing

• for loop

A string is a sequence of characters

>>> msg = “hi world!”

What if we want a sequence, of something

other than characters?

Use a Python list, with any items we want!

start with

quote

end with

quote

sequence of characters

str syntax

A list is a sequence of anything

>>> msg = “hi world!”

>>> nums = [22, 11, 33]

What if we want a sequence, of something

other than characters?

Use a Python list, with any items we want!

square bracket

instead of quote

sequence

of values,

comma

separated

square bracket

instead of quote

str syntax

list syntax

>>> nums = [22, 11, 33]

>>> nums[0]

22

>>> nums[-1]

33

Things we can do with sequences
• indexing

• slicing

• for loop

A list is a sequence of anything

>>> nums = [22, 11, 33]

>>> [22, 11, 33][1]

11

Things we can do with sequences
• indexing

• slicing

• for loop

A list is a sequence of anything

seeing brackets for both creating lists and

indexing often confuses new coders!

>>> nums = [22, 11, 33]

>>> nums[1:]

[11, 33]

>>> nums[3:]

[]

Things we can do with sequences
• indexing

• slicing

• for loop

A list is a sequence of anything

>>> nums = [22, 11, 33]

>>> for x in nums:

... print(x)

...

22

11

33

Things we can do with sequences
• indexing

• slicing

• for loop

A list is a sequence of anything

Demo: Finding a Sum

Goal: write a function to add a list of numbers

Input:
• Python list containing floats

Output:
• Sum of the numbers

Example:
>>> nums = [1, 2, 3.5]
>>> add_nums(nums)
6.5
>>> add_nums([20, 30.1])
50.1

Today's Outline

From Strings to Lists

More Sequence Capabilities

Difference 1: Flexibility of Types

Difference 2: Mutability

Transforming between Strings and Lists

Cool stuff we can do with strings and lists

indexing

slicing

for loops

len

concatenation

in

multiply by an int

1

7

2

3

4

5

6

any sequence

4. len(sequence)

string list

>>> msg = “321go”

>>> len(msg)

5

>>> items = [99,11,77,55]

>>> len(items)

4

5. concatenation

string list

>>> msg = “321go”

>>> msg + “!!!”

‘321go!!!’

>>> items = [99,11,77,55]

>>> items + [1,2,3]

[99,11,77,55,1,2,3]

6. in

string list

>>> msg = “321go”

>>> ‘g’ in msg

True

>>> ‘z’ in msg

False

>>> items = [99,11,77,55]

>>> 11 in items

True

>>> 10 in items

False

7. multiply by int

string list

>>> msg = “321go”

>>> msg * 2

‘321go321go’

>>> items = [99,11,77,55]

>>> items * 2

[99,11,77,55,99,11,77,55]

strings lists

sequence stuff

indexing

slicing

for loops

len

concatenation

in

multiply by an int

flexible types

mutation

str methods

find

replace

upper/lower

format

etc.

now

Today's Outline

From Strings to Lists

More Sequence Capabilities

Difference 1: Flexibility of Types

Difference 2: Mutability

Transforming between Strings and Lists

l = [True, False, 3, "hey", [1, 2]]

for item in l:

print(type(l))

Items can be any types

string, bool, int, float

even other lists!

coding demo:

bonus: how to extract the last item of the last item?

Example game map with list of lists

[

[".", ".", ".", ".", ".", "S"],

[".", "S", "S", "S", ".", "S"],

[".", ".", ".", ".", ".", "S"],

[".", ".", ".", ".", ".", "."],

[".", ".", ".", ".", "S", "."],

[".", ".", ".", ".", "S", "."]

]

.....S

.SSS.S

.....S

......

....S.

....S.

rows and columns

of data are useful for

more than games...

Today's Outline

From Strings to Lists

More Sequence Capabilities

Difference 1: Flexibility of Types

Difference 2: Mutability

Transforming between Strings and Lists

Mutability

Definition
• a type is mutable if values can be changed

• a type is immutable if values cannot be changed

set variable to new value change existing value

list

(mutable)

str

(immutable)

nums = [2,2,9]

nums[2] = 0

s = "229"

s[2] = "0"

nums = [1,2]

nums = [3,4]

s = "AB"

s = "CD"

s += "E"

careful! this is is about values, not variables

(variables can ALWAYS be changed)

Ways to mutate a list

Common Modifications
• L[index] = new_value
• L.append(new_value)
• L.extend(another_list)
• L.pop(index)
• L.sort()

Example code:

L = [3,2,1]

L.append(0)

L.extend([9, 8])

L[1] = -1

L.sort()

L.pop(0)

Today's Outline

From Strings to Lists

More Sequence Capabilities

Difference 1: Flexibility of Types

Difference 2: Mutability

Transforming between Strings and Lists

split method

S = "a quick brown fox"

L = S.split(" ")

"a quick brown fox" ["a", "quick", "brown", "fox"]

separator

join method

L = ["M", "SS", "SS", "PP", ""]

S = "I".join(L)

["M", "SS", "SS", "PP", ""]

separator

MISSISSIPPI

http://www.city-data.com/picfilesc/picc25424.php

http://www.city-data.com/picfilesc/picc25424.php

join method

L = ["M", "SS", "SS", "PP", ""]

S = "I".join(L)

["M", "SS", "SS", "PP", ""] MISSISSIPPI

what if removed?

separator

http://www.city-data.com/picfilesc/picc25424.php

http://www.city-data.com/picfilesc/picc25424.php

join method

L = ["M", "SS", "SS", "PP"]

S = "I".join(L)

["M", "SS", "SS", "PP", ""] MISSISSIPP

separator

http://www.city-data.com/picfilesc/picc25424.php

http://www.city-data.com/picfilesc/picc25424.php

Demo: Censoring Profanity

Goal: write a function to replace curse words with stars

Input:
• A profane string

Output:
• A sanitized string

Example:

>>> censor(“OMG this class is so fun”)

‘*** this class is so fun’

>>> censor(“the midterm was darn tough”)

‘the ******* was **** tough’

replaces offensive words like “darn”

and “midterm” with stars

Demo: Finding a Median – Next lecture…

Goal: write a function to find the median of a list of numbers

Input:
• Python list containing floats

Output:
• The median

Example:
>>> nums = [1,5,2,9,8]
>>> median(nums)
5
>>> median([1, 20, 30, 100])
25

Challenge

1. Command line arguments, as a list

import sys

arg1 = sys.argv[1]

arg2 = sys.argv[2]

2. Random values, from a list

import random

random.choice(["rock", "paper", "scissors"])

