
Operators, Variables, and 
Expressions

Department of Computer Sciences
University of Wisconsin-Madison 

Readings: 

Chapters 1 and 2 of Think Python, 

Chapters 2 and 3 of Python for Everybody

Additional readings: 

Computer terminology



What if I have to miss class?

It’s summer, and family obligations/vacation/getting sick happens.
Here’s what you should do:

• Review lecture materials — download the template files and 
worksheets and work through them on your own

• If you have to miss lab, complete it on your own. Try to find a 
project partner who will work with you over Zoom.

• Proactively attend office hours 

• Work on class material consistently — a few hours a day rather 
than cramming over a single day



Part 1: Operators

Part 2: Expressions and Variables



Learning Objectives
• Run Python code using:

• Command line
• Jupyter Notebook

Evaluate:
• numeric expressions containing mathematical operators (e.g., “+” and “-“)
• string expressions containing string operators and escape characters

Differentiate:
• behavior of the /, //, and % operators

Recognize examples of different Python data types:
• int, float, str, bool

Evaluate:
• expressions containing comparison operators (e.g., “==” and “>”)
• Boolean expressions containing the operators “and”, “or”, “not”
• mixed expressions using the correct order of operations (precedence)



Today's Outline

Software
•Interpreters
•Notebooks

Demos

Operator Precedence

Demos

Boolean Logic

Demos



What you need to write/run code

An interpreter
• Python 3 (not 2!)
• some extra packages (comes with anaconda installation)
• runs Python code

Jupyter Notebooks
• comes with anaconda installation
• acts like both interpreter and editor (type and save Python code)



Interpreter

A program that runs a program
•Translates something the human likes (nice Python code) to something 

the machine likes (ONEs and ZEROs)



Jupyter Notebooks

...

...

notebooks breakup code into
"cells" containing Python code

visuals produced by the
code are interleavedA Notebook is a file that contains code and other things

(e.g., documentation, images, tables, etc.)



Jupyter Notebooks

...

notebooks breakup code into
"cells" containing Python code

visuals produced by the
code are embedded in the Notebook

.ipynb (Interactive Python Notebook) files are not easy to open in a regular text editor



3 ways we'll run Python

1. interactive mode

ty-mac:~$ python

Python 3.9.7 (default, Sep 16 2021, 16:59:28)

[Clang 10.0.0 ] :: Anaconda, Inc. on darwin

Type "help", "copyright", "credits" or "license" for more information.

>>> 1 + 1

2

triple arrows mean Python code runs as you type it

Quick syntax check



3 ways we'll run Python

1. interactive mode

ty-mac:~$ python

Python 3.9.7 (default, Sep 16 2021, 16:59:28)

[Clang 10.0.0 ] :: Anaconda, Inc. on darwin

Type "help", "copyright", "credits" or "license" for more information.

>>> 1 + 1

2

2. script mode

ty-mac:~$ python test.py

triple arrows mean Python code runs as you type it

the interpreter program is named "python"; run it

the name of the file containing your code (called a "script")
is passed as an argument to the python program

Run auto-grader tests



3 ways we'll run Python

1. interactive mode

ty-mac:~$ python

Python 3.9.7 (default, Sep 16 2021, 16:59:28)

[Clang 10.0.0 ] :: Anaconda, Inc. on darwin

Type "help", "copyright", "credits" or "license" for more information.

>>> 1 + 1

2

2. script mode

ty-mac:~$ python test.py

3. notebook "mode"

ty-mac:~$ jupyter notebook

triple arrows mean Python code runs as you type it

the name of the file containing your code (called a "script")
is passed as an argument to the python program

open Jupyter in a web browser

we'll do most work in notebooks this semester

the interpreter program is named "python"; run it



Today's Outline

Software
•Interpreters
•Notebooks

Demos

Operator Precedence

Demos

Boolean Logic

Demos



Today's Outline

Software
•Interpreters
•Notebooks

Demos

Operator Precedence

Demos

Boolean Logic

Demos



Order of Simplification

Python works by simplifying, applying one operator at a time

3 * 3 + 2 * 2 + 16 ** (1/2) 

Rules
• First work within parentheses
• Do higher precedence first
• Break ties left to right (exception: exponent ** operator)



Order of Simplification

Python works by simplifying, applying one operator at a time

3 * 3 + 2 * 2 + 16 ** (1/2) 
 

Rules
• First work within parentheses
• Do higher precedence first
• Break ties left to right (exception: exponent ** operator)



Order of Simplification

Python works by simplifying, applying one operator at a time

3 * 3 + 2 * 2 + 16 ** (1/2) 
3 * 3 + 2 * 2 + 16 ** (0.5) 

Rules
• First work within parentheses
• Do higher precedence first
• Break ties left to right (exception: exponent ** operator)



Order of Simplification

Python works by simplifying, applying one operator at a time

3 * 3 + 2 * 2 + 16 ** (1/2) 
3 * 3 + 2 * 2 + 16 ** (0.5) 
 

Rules
• First work within parentheses
• Do higher precedence first
• Break ties left to right (exception: exponent ** operator)



Order of Simplification

Python works by simplifying, applying one operator at a time

3 * 3 + 2 * 2 + 16 ** (1/2) 
3 * 3 + 2 * 2 + 16 ** (0.5) 
3 * 3 + 2 * 2 + 4 

Rules
• First work within parentheses
• Do higher precedence first
• Break ties left to right (exception: exponent ** operator)



Order of Simplification

Python works by simplifying, applying one operator at a time

3 * 3 + 2 * 2 + 16 ** (1/2) 
3 * 3 + 2 * 2 + 16 ** (0.5) 
3 * 3 + 2 * 2 + 4 
 

Rules
• First work within parentheses
• Do higher precedence first
• Break ties left to right (exception: exponent ** operator)



Order of Simplification

Python works by simplifying, applying one operator at a time

3 * 3 + 2 * 2 + 16 ** (1/2) 
3 * 3 + 2 * 2 + 16 ** (0.5) 
3 * 3 + 2 * 2 + 4 
9 + 2 * 2 + 4 

Rules
• First work within parentheses
• Do higher precedence first
• Break ties left to right (exception: exponent ** operator)



Order of Simplification

Python works by simplifying, applying one operator at a time

3 * 3 + 2 * 2 + 16 ** (1/2) 
3 * 3 + 2 * 2 + 16 ** (0.5) 
3 * 3 + 2 * 2 + 4 
9 + 2 * 2 + 4 
 

Rules
• First work within parentheses
• Do higher precedence first
• Break ties left to right (exception: exponent ** operator)



Order of Simplification

Python works by simplifying, applying one operator at a time

3 * 3 + 2 * 2 + 16 ** (1/2) 
3 * 3 + 2 * 2 + 16 ** (0.5) 
3 * 3 + 2 * 2 + 4 
9 + 2 * 2 + 4 
9 + 4 + 4 

Rules
• First work within parentheses
• Do higher precedence first
• Break ties left to right (exception: exponent ** operator)



Order of Simplification

Python works by simplifying, applying one operator at a time

3 * 3 + 2 * 2 + 16 ** (1/2) 
3 * 3 + 2 * 2 + 16 ** (0.5) 
3 * 3 + 2 * 2 + 4 
9 + 2 * 2 + 4 
9 + 4 + 4 
 

Rules
• First work within parentheses
• Do higher precedence first
• Break ties left to right (exception: exponent ** operator)



Order of Simplification

Python works by simplifying, applying one operator at a time

3 * 3 + 2 * 2 + 16 ** (1/2) 
3 * 3 + 2 * 2 + 16 ** (0.5) 
3 * 3 + 2 * 2 + 4 
9 + 2 * 2 + 4 
9 + 4 + 4 
13 + 4 

Rules
• First work within parentheses
• Do higher precedence first
• Break ties left to right (exception: exponent ** operator)



Order of Simplification

Python works by simplifying, applying one operator at a time

3 * 3 + 2 * 2 + 16 ** (1/2) 
3 * 3 + 2 * 2 + 16 ** (0.5) 
3 * 3 + 2 * 2 + 4 
9 + 2 * 2 + 4 
9 + 4 + 4 
13 + 4 

Rules
• First work within parentheses
• Do higher precedence first
• Break ties left to right (exception: exponent ** operator)



Order of Simplification

Python works by simplifying, applying one operator at a time

3 * 3 + 2 * 2 + 16 ** (1/2) 
3 * 3 + 2 * 2 + 16 ** (0.5) 
3 * 3 + 2 * 2 + 4 
9 + 2 * 2 + 4 
9 + 4 + 4 
13 + 4 
17

Rules
• First work within parentheses
• Do higher precedence first
• Break ties left to right (exception: exponent ** operator)



Operator Precendence

What is it? Python Operator

exponents **

signs +x, -x

multiply/divide *, /, //, %

add/subtract +, -

comparison  ==, !=, <, <=, >, >=

boolean stuff not

… and

… or

these are the ones you should be learning at this point 
in the semester

(there are a few more not covered now)

simplify first

simplify last*

* one exception is an optimization
  known as "short circuiting"



Operator Precendence

What is it? Python Operator

exponents **

signs +x, -x

multiply/divide *, /, //, %

add/subtract +, -

comparison  ==, !=, <, <=, >, >=

boolean stuff not

… and

… or

simplify first
M

at
he

m
at

ic
al

Lo
gi

c

simplify last*

* one exception is an optimization
  known as "short circuiting"

these are the ones you should be learning at this point 
in the semester

(there are a few more not covered now)



Today's Outline

Software
•Interpreters
•Notebooks

Demos

Operator Precedence

Demos

Boolean Logic

Demos



Today's Outline

Software
•Interpreters
•Notebooks

Demos

Operator Precedence

Demos

Boolean Logic

Demos



Boolean Logic

The logic of truth:
• Named after George Boole
• Two values: True and False
• Three operators: and, or, and not



Boolean Logic

True

True True

False

False True

Fa
ls

e
Tr

ue

False

False True

False

False True

Fa
ls

e
Tr

ue

FalseTrue

False True

AND OR NOT

The logic of truth:
• Named after George Boole
• Two values: True and False
• Three operators: and, or, and not



True

True True

False

False True

Fa
ls

e
Tr

ue

False

False True

False

False True

Fa
ls

e
Tr

ue

FalseTrue

False True

AND OR NOT

It’s a Saturday AND
we’re attending CS 220 lecture



True

True True

False

False True

Fa
ls

e
Tr

ue

False

False True

False

False True

Fa
ls

e
Tr

ue

FalseTrue

False True

AND OR NOT

It’s a Saturday AND
we’re attending CS 220 lecture

FALSE!



True

True True

False

False True

Fa
ls

e
Tr

ue

False

False True

False

False True

Fa
ls

e
Tr

ue

FalseTrue

False True

AND OR NOT

Project 1 is due on Friday
OR I’ll eat my hat



True

True True

False

False True

Fa
ls

e
Tr

ue

False

False True

False

False True

Fa
ls

e
Tr

ue

FalseTrue

False True

AND OR NOT

Project 1 is due on Friday
OR I’ll eat my hat

TRUE!



True

True True

False

False True

Fa
ls

e
Tr

ue

False

False True

False

False True

Fa
ls

e
Tr

ue

FalseTrue

False True

AND OR NOT

Control Flow: Remember that conditionals and loops sometimes do something.
We'll use bool logic a LOT to control when we do/don't.



Today's Outline

Software
•Interpreters
•Notebooks

Demos

Operator Precedence

Demos

Boolean Logic

Demos



Part 1: Operators

Part 2: Expressions and Variables



Learning Objectives

Evaluate expressions by identifying:
• operators and operands
• literal values and variables
• correct order of operations

Write correct Boolean expressions
• containing Boolean operators “or” and “and”

Write assignment statements
• with variables following proper naming rules

Define, give examples of, and identify 3 kinds of errors
• Syntax, runtime, and semantic

Write code to perform computations with
• int, float, string, and bool types



Today's Outline

Review
•Operator Precedence

Expressions, Variables, and Assignments

Demos

Bugs

Demos

Naming variables

Demos



What is it? Python Operator simplify first

simplify last

What is it? Python Operator

comparison  ==, !=, <, <=, >, >=

signs +x, -x

AND and

add/subtract +, -

exponents **

NOT not

OR or

multiply/divide *, /, //, %

Unordered Ordered by Precedence



What is it? Python Operator

exponents **

simplify first

simplify last

What is it? Python Operator

comparison  ==, !=, <, <=, >, >=

signs +x, -x

AND and

add/subtract +, -

NOT not

OR or

multiply/divide *, /, //, %

Unordered Ordered by Precedence



What is it? Python Operator

exponents **

signs +x, -x

simplify first

simplify last

What is it? Python Operator

comparison  ==, !=, <, <=, >, >=

AND and

add/subtract +, -

NOT not

OR or

multiply/divide *, /, //, %

Unordered Ordered by Precedence



What is it? Python Operator

exponents **

signs +x, -x

multiply/divide *, /, //, %

simplify first

simplify last

What is it? Python Operator

comparison  ==, !=, <, <=, >, >=

AND and

add/subtract +, -

NOT not

OR or

Unordered Ordered by Precedence



What is it? Python Operator

exponents **

signs +x, -x

multiply/divide *, /, //, %

add/subtract +, -

simplify first

simplify last

What is it? Python Operator

comparison  ==, !=, <, <=, >, >=

AND and

NOT not

OR or

Unordered Ordered by Precedence



What is it? Python Operator

exponents **

signs +x, -x

multiply/divide *, /, //, %

add/subtract +, -

comparison  ==, !=, <, <=, >, >=

simplify first

simplify last

Unordered

What is it? Python Operator

AND and

NOT not

OR or

Ordered by Precedence



What is it? Python Operator

exponents **

signs +x, -x

multiply/divide *, /, //, %

add/subtract +, -

comparison  ==, !=, <, <=, >, >=

NOT not

simplify first

simplify last

Unordered

What is it? Python Operator

AND and

OR or

Ordered by Precedence



What is it? Python Operator

exponents **

signs +x, -x

multiply/divide *, /, //, %

add/subtract +, -

comparison  ==, !=, <, <=, >, >=

NOT not

AND and

simplify first

simplify last

Unordered

What is it? Python Operator

OR or

Ordered by Precedence



What is it? Python Operator

exponents **

signs +x, -x

multiply/divide *, /, //, %

add/subtract +, -

comparison  ==, !=, <, <=, >, >=

NOT not

AND and

OR or

simplify first

simplify last

Unordered

What is it? Python Operator

Ordered by Precedence



What is it? Python Operator

exponents **

signs +x, -x

multiply/divide *, /, //, %

add/subtract +, -

comparison  ==, !=, <, <=, >, >=

NOT not

AND and

OR or

simplify first

simplify last

Unordered

What is it? Python Operator

Ordered by Precedence

10 - -2 // 3



What is it? Python Operator

exponents **

signs +x, -x

multiply/divide *, /, //, %

add/subtract +, -

comparison  ==, !=, <, <=, >, >=

NOT not

AND and

OR or

simplify first

simplify last

Unordered

What is it? Python Operator

Ordered by Precedence

1+1==2 or 3 ** 10000000 > 2 ** 20000000
logical operators
can "short circuit"



Today's Outline

Review

Expressions, Variables, and Assignments

Demos

Bugs

Demos

Naming variables

Demos



Expressions

Expressions are a mix of operators and operands.  For example:

5 + 5

(8/2) ** 2 * 3.14

3 * 3 > 4 + 4

3 % 2 == 0 or 3 % 2 == 1



Expressions

Expressions are a mix of operators and operands.  For example:

5 + 5

(8/2) ** 2 * 3.14

3 * 3 > 4 + 4

3 % 2 == 0 or 3 % 2 == 1

Each of these operands is an example of a literal: a fixed value



Expressions

Expressions are a mix of operators and operands.  For example:

x + y

(diameter/2) ** 2 * pi

value1 * value1 > value2 + value2

num % 2 == 0 or num % 2 == 1

An operand may also be a variable: not fixed



Expressions

Expressions are a mix of operators and operands.  For example:

x + y

(diameter/2) ** 2 * pi

value1 * value1 > value2 + value2

num % 2 == 0 or num % 2 == 1

Quick Test!  Circle the literals (others are variables)


1. 0

2. zero

3. num1

4. True

5. hello

6. "goodbye"

An operand may also be a variable: not fixed



Expressions

Expressions are a mix of operators and operands.  For example:

x + y

(diameter/2) ** 2 * pi

value1 * value1 > value2 + value2

num % 2 == 0 or num % 2 == 1

Quick Test!  Circle the literals (others are variables)


1. 0

2. zero

3. num1

4. True

5. hello

6. "goodbye"

An operand may also be a variable: not fixed



Expressions

Expressions are a mix of operators and operands.  For example:

x + y

(diameter/2) ** 2 * pi

value1 * value1 > value2 + value2

num % 2 == 0 or num % 2 == 1

Quick Test!  Circle the literals (others are variables)


1. 0

2. zero

3. num1

4. True

5. hello

6. "goodbye"

An operand may also be a variable: not fixed



Expressions

Expressions are a mix of operators and operands.  For example:

x + y

(diameter/2) ** 2 * pi

value1 * value1 > value2 + value2

num % 2 == 0 or num % 2 == 1

Quick Test!  Circle the literals (others are variables)


1. 0

2. zero

3. num1

4. True

5. hello

6. "goodbye"

An operand may also be a variable: not fixed



Expressions

Expressions are a mix of operators and operands.  For example:

x + y

(diameter/2) ** 2 * pi

value1 * value1 > value2 + value2

num % 2 == 0 or num % 2 == 1

Quick Test!  Circle the literals (others are variables)


1. 0

2. zero

3. num1

4. True

5. hello

6. "goodbye"

How do we put a value in a variable?

An operand may also be a variable: not fixed



Assignment

An assignment computes an expression (maybe a simple one) and 
puts the result in a variable:

x + y

(diameter/2) ** 2 * pi

value1 * value1 > value2 + value2

num % 2 == 0 or num % 2 == 1



Assignment

An assignment computes an expression (maybe a simple one) and 
puts the result in a variable:

total = x + y

area = (diameter/2) ** 2 * pi

is_bigger = value1 * value1 > value2 + value2

is_even_or_odd = num % 2 == 0 or num % 2 == 1



Assignment

An assignment computes an expression (maybe a simple one) and 
puts the result in a variable:

total = x + y

area = (diameter/2) ** 2 * pi

is_bigger = value1 * value1 > value2 + value2

is_even_or_odd = num % 2 == 0 or num % 2 == 1



Assignment

An assignment computes an expression (maybe a simple one) and 
puts the result in a variable:

total = x + y

area = (diameter/2) ** 2 * pi

is_bigger = value1 * value1 > value2 + value2

is_even_or_odd = num % 2 == 0 or num % 2 == 1



Assignment

An assignment computes an expression (maybe a simple one) and 
puts the result in a variable:

total = x + y

area = (diameter/2) ** 2 * pi

is_bigger = value1 * value1 > value2 + value2

is_even_or_odd = num % 2 == 0 or num % 2 == 1

Expression



Assignment

An assignment computes an expression (maybe a simple one) and 
puts the result in a variable:

total = x + y

area = (diameter/2) ** 2 * pi

is_bigger = value1 * value1 > value2 + value2

is_even_or_odd = num % 2 == 0 or num % 2 == 1

Assignment Operator

Expression



Assignment

An assignment computes an expression (maybe a simple one) and 
puts the result in a variable:

total = x + y

area = (diameter/2) ** 2 * pi

is_bigger = value1 * value1 > value2 + value2

is_even_or_odd = num % 2 == 0 or num % 2 == 1

Variable

Assignment Operator

Expression



Today's Outline

Review

Expressions, Variables, and Assignments

Demos

Bugs

Demos

Naming variables

Demos



Today's Outline

Review

Expressions, Variables, and Assignments

Demos

Bugs

Demos

Naming variables

Demos



Categories of Errors

1

2

3

dog cat the of chase any 
[word soup, not grammatically sensible]



Categories of Errors

Syntax Error
• It never makes sense in any context; Python doesn't even run
•5 = x

1

2

3



Categories of Errors

Syntax Error
• It never makes sense in any context; Python doesn't even run
•5 = x

1

2

3

this sentence is false 
[grammatical, but my head explodes if I think about it]



Categories of Errors

Syntax Error
• It never makes sense in any context; Python doesn't even run
•5 = x

Runtime Error
• Need to run to find out whether it will crash
• Appears with different names (TypeError, ZeroDivisionError, etc)
•x = 5 / 0

1

2

3



Categories of Errors

Syntax Error
• It never makes sense in any context; Python doesn't even run
•5 = x

Runtime Error
• Need to run to find out whether it will crash
• Appears with different names (TypeError, ZeroDivisionError, etc)
•x = 5 / 0

1

2

3 one week is 10 days long
[grammatical, coherent, but incorrect]



Categories of Errors

Syntax Error
• It never makes sense in any context; Python doesn't even run
•5 = x

Runtime Error
• Need to run to find out whether it will crash
• Appears with different names (TypeError, ZeroDivisionError, etc)
•x = 5 / 0

Semantic Error
• It runs with no error, but you get the wrong answer
•square_area = square_side * 2

1

2

3



Syntax Error
• It never makes sense in any context; Python doesn't even run
•5 = x

Runtime Error
• Need to run to find out whether it will crash
• Appears with different names (TypeError, ZeroDivisionError, etc)
•x = 5 / 0

Semantic Error
• It runs with no error, but you get the wrong answer
•square_area = square_side * 2

Categories of Errors

1

2

3

what kind of error is the worst?



Today's Outline

Review

Expressions, Variables, and Assignments

Demos

Bugs

Demos

Naming variables

Demos



Today's Outline

Review

Expressions, Variables, and Assignments

Demos

Bugs

Demos

Naming variables

Demos



What Variable Names are Allowed?

1st_score = 100 [bad variable]                                   score_1 = 100 [good variable]               

firstScore = 100 [not a recommended variable]                                   first_score 
= 100 [recommended variable]               

current rules are quite complex: 
https://www.python.org/dev/peps/pep-3131

please don’t use camel case: 
https://www.python.org/dev/peps/pep-0008/ 

Python 3 has become friendlier to non-English programmers

quero_café = True this is allowed, and
different than "e"

https://www.python.org/dev/peps/pep-3131
https://www.python.org/dev/peps/pep-0008/


Rules for naming variables

1

2

3

Only use letters a-z (upper and lower), numbers, and underscores

Don’t start with a number

Don’t use Python keywords (e.g., and, False, etc)

For 220, you may use only variables containing English alphabets



Rules for naming variables

1

2

3

Only use letters a-z (upper and lower), numbers, and underscores

Don’t start with a number

Don’t use Python keywords (e.g., and, False, etc)

GOOD:
cs220
CS220
cs_220
_cs220

BAD:
220class

and
pi3.14

x!

what rules are violated?



Rules for naming variables

1

2

3

Only use letters a-z (upper and lower), numbers, and underscores

Don’t start with a number

Don’t use Python keywords (e.g., and, False, etc)

GOOD:
cs220
CS220
cs_220
_cs220

BAD:
220class

and
pi3.14

x!

2



Rules for naming variables

1

2

3

Only use letters a-z (upper and lower), numbers, and underscores

Don’t start with a number

Don’t use Python keywords (e.g., and, False, etc)

GOOD:
cs220
CS220
cs_220
_cs220

BAD:
220class

and
pi3.14

x!

2
3



Rules for naming variables

1

2

3

Only use letters a-z (upper and lower), numbers, and underscores

Don’t start with a number

Don’t use Python keywords (e.g., and, False, etc)

GOOD:
cs220
CS220
cs_220
_cs220

BAD:
220class

and
pi3.14

x!

2
3

1
1



Rules for naming variables

1

2

3

Only use letters a-z (upper and lower), numbers, and underscores

Don’t start with a number

Don’t use Python keywords (e.g., and, False, etc)

GOOD:
cs220
CS220
cs_220
_cs220

BAD:
220class

and
pi3.14

x!

2
3

1
1



Identifying keywords

3 Don’t use Python keywords (e.g., and, False, etc)

GOOD: BAD:

How to figure out if something is a Python keyword?

• Python keywords turn green in color in jupyter notebook
• If used as a variable, that keyword will no longer work as intended!

Pay attention to green colorization within jupyter notebook



Today's Outline

Review

Expressions, Variables, and Assignments

Demos

Bugs

Demos

Naming variables

Demos



Practice Problems



Practice: Sphere Volume

https://www.google.com/search?q=sphere%20calc%3A%20find%20V&oq=area+of+a+sphere&aqs=chrome.0.0l6.2671j0j7&sourceid=chrome&ie=UTF-8&skip=s

extension: find radius given a volume



Practice: Character Art - Block

write some code to draw the following:

##########
##########
##########
##########
##########
##########

width

he
ig

ht



Practice: Quadratic Formula

https://en.wikipedia.org/wiki/Quadratic_formula

what values of x satisfy the above?



Challenge*: Checkers

write some code to draw the following:

# # # # #
 # # # # #
# # # # #
 # # # # #
# # # # #
 # # # # #

width

he
ig

ht

* Challenge =  beyond what you would be asked to do on an exam



Challenge: Border

write some code to draw the following:

##########
#        #
#        #
#        #
#        #
##########

width

he
ig

ht



Challenge: Snake

write some code to draw the following:

##########
#
##########
         #
##########
#
##########
         #

width

he
ig

ht


