
CS 220 - Fall 2024
Instructors: Mike Doescher and Louis Oliphant

Exam 2 — 10%

(Last) Surname: (First) Given name:

NetID (email): @wisc.edu

Fill in these fields (left to right) on the scantron form (use #2 pencil):

1. LAST NAME (surname) and FIRST NAME (given name), fill in bubbles
2. IDENTIFICATION NUMBER is your Campus ID number, fill in bubbles
3. Under ABC of SPECIAL CODES, write your lecture number, fill in bubbles:

001 - MWF 08:50 AM (Mike)
002 - MWF 11:00 AM (Mike)
003 - MWF 09:55 AM (Louis)
004 - MWF 01:20 PM (Louis)

4. Under F of SPECIAL CODES, write C and fill in bubble 8

If you miss step 4 above (or do it wrong), the system may not
grade you against the correct answer key, and your grade will be
no better than if you were to randomly guess on each question. So
don’t forget!

You may only reference your note sheet. You cannot use books, your neighbors, calculators,
or other electronic devices during this exam. Please place your student ID face up on your
desk. Turn off and put away portable electronics (including smart watches) now.

Use a #2 pencil to mark all answers. When you’re done, please hand in the exam, note
sheet, and filled-in scantron form. The note sheet will not be returned.

Page 1 of 21

Steam Games

The following functions are the same as in P5.

• project.get name(idx: int): The name of the game at row idx

• project.get publisher(idx: int): The publisher of the game in row idx

• project.get release date(idx: int): The release date of the game in row idx in
mm/dd/yyyy format

• project.get avg playtime(idx: int): The average playtime (in hours) of the
game at row idx

• project.get price(idx: int): The price of the game at row idx, like $19.99

• project.get positive reviews(idx: int): The number of positive reviews for the
game at row idx, like 2.81K

• project.get negative reviews(idx: int): The number of negative reviews for
the game at row idx, like 1.13K

As in P5, the dataset has the columns name, publisher, release date, avg playtime,
price, positive reviews, and negative reviews.

1. What should the ??? be replaced with to accurately find the the highest average playtime
of any game in the dataset?

highest_avg_playtime = 0

for idx in range(project.count()):

if ??? > highest_avg_playtime:

highest_avg_playtime = project.get_avg_playtime(idx)

A. project.count()

B. highest avg playtime

C. project.get avg playtime(idx)

D. project.get avg playtime(project.count())

E. None of the above

Page 2 of 21

Use the following function definitions and dataset to answer the next two questions.

def get_year(date):

return int(date[6:])

def get_year_total(year): # line 1

games_released = 0 # line 2

for idx in range(project.count()): # line 3

if get_year(project.get_release_date(idx)) == year: # line 4

games_released += 1 # line 5

return games_released # line 6

Name Release Date Avg Playtime Price Pos. Reviews Neg. Reviews
DOOM Eternal 03/19/2020 456 $39.99 165.67K 16.43K
The Sims 4 06/18/2020 257 $0 106.14K 15.12K

Monster Hunter: World 08/08/2018 3671 $29.99 351.26K 53.27K
Bloons TD 6 12/17/2018 1551 $13.99 281.79K 7.5K

Team Fortress 2 10/10/2007 422 $0 954.93K 61.62K

2. What does get year total(2020) return when run on the mini dataset above?

A. ["DOOM Eternal", "The Sims 4"]

B. 1

C. 2

D. 713

E. None of the above

3. If the == is changed to >= on line 4 of the above code, what will get year total(2018)

return when run on the mini dataset above?

A. ["DOOM Eternal", "The Sims 4", "Monster Hunter: World", "Bloons TD

6"]

B. ["Team Fortress 2"]

C. 5

D. 4

E. None of the above

Page 3 of 21

4. What should the ??? be replaced with to find the game with the most positive reviews
that is published within the range of year1 and year2 (both inclusive)? Use the included
definition of format num reviews.

def format_num_reviews(num_reviews):

last_char = num_reviews[-1]

if last_char == "M":

review_num = float(num_reviews[:-1]) * 1e6

elif last_char == "K":

review_num = float(num_reviews[:-1]) * 1e3

else:

review_num = float(num_reviews)

return round(review_num)

def best_in_range(year1, year2):

best_idx = None

best_num_reviews = None

for idx in range(num_games):

release_year = get_year(project.get_release_date(idx))

if year1 <= release_year <= year2:

num_reviews = format_num_reviews(project.get_positive_reviews(idx))

if ??? or best_num_reviews < num_reviews:

best_idx = idx

best_num_reviews = num_reviews

return best_idx

A. best num reviews == num reviews

B. release year >= year1

C. best idx != best num reviews

D. best idx == None

E. None of the above

Page 4 of 21

Employees

Below is the data that will be used in the following questions.

employees = [

{

"Name": "John",

"Age": 45,

"Salary": 85000,

"Departments": ["HR", "Finance"]

},

{

"Name": "Mia",

"Age": 34,

"Salary": 92000,

"Departments": ["IT", "Operations"]

},

{

"Name": "Raj",

"Age": 29,

"Salary": 64000,

"Departments": ["Sales"]

},

{

"Name": "Esther",

"Age": 40,

"Salary": 105000,

"Departments": ["Management", "IT"]

},

{

"Name": "Ahmed",

"Age": 38,

"Salary": 78000,

"Departments": ["Operations", "Sales"]

},

{

"Name": "Olivia",

"Age": 31,

"Salary": 67000,

"Departments": ["Sales", "HR"]

}

]

Page 5 of 21

5. Which of the following would create a list of names of employees who have more than one
department?

A. [employee for employee in employees if len(employee["Departments"])

> 1]

B. [employee["Name"] if len(employee["Departments"]) > 1 for employee

in employees]

C. [employee["Name"] for employee in employees if

len(employee["Departments"]) > 1]

D. [for employee in employees if len(employee["Departments"]) == 2

append employee["Name"]]

6. What will be printed when the following code is run?

age_groups = {}

for item in employees:

age_bin = (item["Age"] // 10) * 10

if age_bin not in age_groups:

age_groups[age_bin] = 0

age_groups[age_bin] += 1

print(len(age_groups), age_groups[30])

A. 3 1

B. 4 2

C. 3 3

D. 2 1

7. Fill in the ... to complete a function that recursively counts the total number of department
entries across all employees:

def count_departments(employees):

if len(employees) == 0:

return 0

else:

return len(employees[0]["Departments"]) + count_departments(...)

A. employees[1:]

B. employees

C. employees["Departments"]

D. employees[0]

Page 6 of 21

8. Consider the recursive function designed to calculate the average age of employees by break-
ing down the list into smaller chunks. Which option correctly completes the function to
calculate the weighted average of two halves of the employee list?

def recursive_average_age(employees):

if len(employees) == 1:

return employees[0]["Age"]

else:

mid = len(employees) // 2

left_avg = recursive_average_age(employees[:mid])

right_avg = recursive_average_age(employees[mid:])

Complete the following line

return ...

A. (left avg + right avg) / 2

B. (left avg * mid + right avg * (len(employees) - mid)) /

len(employees)

C. (left avg * len(employees) + right avg * len(employees)) / 2

D. (left avg * (len(employees) - mid) + right avg * mid) /

len(employees)

Page 7 of 21

General

Use the following code to answer the next two questions.

s1 = "abc"

s2 = s1

s1 = s1 + s2 + "xy"

9. What is the output of the following code?

print(s1)

A. abcabc

B. abcabcxy

C. abcxy

D. Runtime error

E. None of the above

10. What is the output of the following code?

print(s2)

A. abc

B. abcabcxy

C. abcxy

D. Runtime error

E. None of the above

Page 8 of 21

11. What is the output of the following code?

data = [["Name", "Age", "State"],

["Andrew", 25, "WI"],

["Brielle", 21, "MN"],

["Cindy", 22, "OH"]]

header = data[0]

data = data[1:]

print(data[-1][header.index("Age")])

A. 21

B. 22

C. "Age"

D. Syntax error

E. None of the above

Use the following code to answer the next two questions.

dino = "velociraptor"

d = {}

for c in dino:

if c not in d:

d[c] = 1

else:

d[c] += 1

12. What is the output of the following code?

print(d["o"])

A. 1

B. 2

C. 3

D. Syntax error

E. None of the above

Page 9 of 21

13. What is the output of the following code?

print(d["c"] + d["r"])

A. 1

B. 2

C. 3

D. Syntax error

E. None of the above

Use the following code to answer the next two questions.

fantasy_characters = {

"Elandor": {

"species": "Elf",

"age": 120,

"skills": ["Archery", "Magic", "Healing"]

},

"Thrain": {

"species": "Dwarf",

"age": 150,

"skills": ["Blacksmithing", "Mining", "Brawling"]

},

"Lyra": {

"species": "Human",

"age": 25,

"skills": ["Diplomacy", "Swordsmanship", "Stealth"]

},

"Zephyr": {

"species": "Dragon",

"age": 500,

"skills": ["Flight", "Fire Breathing", "Intimidation"]

}

}

14. How can I find out how old Zephyr is?

A. fantasy characters["Zephyr"]

B. fantasy characters["Zephyr"]["age"]

C. fantasy characters["age"]["Zephyr"]

D. fantasy characters.age of("Zephyr")

E. None of the above

Page 10 of 21

15. How can I find Elandor’s species?

A. fantasy characters.get("Elandor").get("species")

B. fantasy characters["species"]["Elandor"]

C. fantasy characters.get("species").get("Elandor")

D. fantasy characters["Elandor"]["species"]

E. A and D

Use the following code to answer the next two questions.

animals = ["Tiger", "Wolf", "Zebra", "Ostrich", "Panda", "Narwhal"]

16. What is the output of the following code?

new_list = [animal for animal in animals if "a" in animal]

print(new_list)

A. ["Zebra", "Panda", "Narwhal"]

B. ["Tiger", "Wolf", "Zebra", "Ostrich", "Panda", "Narwhal"]

C. []

D. ["Zebra"]

E. None of the above

17. What is the output of the following code?

another_new_list = [len(animal) for animal in animals]

print(another_new_list)

A. ["Tiger", "Wolf", "Zebra", "Ostrich", "Panda", "Narwhal"]

B. [7, 7, 7, 7, 7, 7]

C. [5, 5, 5, 5, 5, 5]

D. [5, 4, 5, 7, 5, 7]

E. [5, 5, 7]

Page 11 of 21

18. After executing the following code, what will be the content of complex structure?

import copy

complex_structure = {

"key1": ["item1", {"subkey": "subitem"}],

"key2": (42, [28, "deep"])

}

copied_structure = copy.copy(complex_structure)

copied_structure["key1"][1]["subkey"] = "modified"

copied_structure["key3"] = [18,[19,"deep too"]]

A. {"key1": ["item1", {"subkey": "modified"}], "key2": (42, [28,

"deep"])}
B. {"key1": ["item1", {"subkey": "modified"}], "key2": (42, [28,

"deep"]), "key3": [18, [19, "deep too"]]}
C. {"key1": ["item1", {"subkey": "subitem"}], "key2": (42, [28,

"deep"])}
D. Syntax error

E. None of the above

19. Given a sorted array of integers arr = [2, 4, 4, 6, 6, 6, 7] and a search function de-
fined as follows:

def search(arr, low, high, target):

if high < low:

return -1 # Element is not present in the array

mid = low + (high - low) // 2

if target == arr[mid]:

if mid == len(arr) - 1 or arr[mid + 1] != target:

return mid

else:

return search(arr, mid + 1, high, target)

elif target < arr[mid]:

return search(arr, low, mid - 1, target)

else:

return search(arr, mid + 1, high, target)

What is the result of the function call search(arr, 0, len(arr) - 1, 6)?

A. 0

B. 5

C. 3

D. -1

Page 12 of 21

20. Which of the following statements best describes the necessary components for a well-defined
recursive function in programming?

A. A recursive function must include at least two recursive calls within its body to
ensure comprehensive exploration of all possible outcomes.

B. A recursive function must always have a base case that stops the recur-
sion and a recursive case that continues the recursion.

C. A recursive function should only return a single value or result to be considered
valid and efficient.

D. A recursive function requires external variables to track the depth of recursion to
prevent stack overflow errors.

21. How can we sort the following list of dictionaries by the number of keys in ascending order?
For dictionaries that have the same number of keys, we want to sort them by the total of
their values (again, in ascending order).

d_list = [{"abc": 3}, {"a": 1, "b": 2, "cde": 0}, {"ab": 4}]

A. sorted(d list, key=lambda x: (len(list(x.keys())),

list(x.values())))

B. sorted(d list, key=lambda x: (sum(len(k) for k in x),

sum(x.values())))

C. sorted(d list, key=lambda x: (len(x), x.values()))

D. sorted(d list, key=lambda x: (len(x), sum(x.values())))

Page 13 of 21

22. Given the following code:

fruits = "apple,banana,melon"

my_list = fruits.split(",")

my_list[-1] = "kiwi"

new_list = my_list[:2]

my_list.append("grape")

for fruit in my_list:

if "a" in fruit:

print(fruit, end=" ")

result = " | ".join(new_list)

print(",", result)

What will be the output of this code?

A. apple banana grape , banana | kiwi

B. apple banana kiwi grape , apple | banana

C. apple banana grape , apple | banana

D. apple banana grape , apple | banana | kiwi | grape

Page 14 of 21

23. Given the initial contents of the JSON file "score history.json":

{"Bob": [20.0, 10.0],

"Alice": [30.0, 20.0],

"Mike": [100.0, 10.0]}

When the following Python code is executed in the same directory as this JSON file, what
would be the output that is printed?

def read_json(path):

with open(path, encoding="utf-8") as f:

return json.load(f)

def write_json(path, data):

with open(path, "w", encoding="utf-8") as f:

json.dump(data, f, indent=2)

scores_dict = read_json("score_history.json")

scores_dict["Louis"] = [50.0, 20.0]

write_json("score_history2.json", scores_dict)

print(scores_dict)

A. {"Bob": [20.0, 10.0], "Alice": [30.0, 20.0], "Mike": [100.0,

10.0], "Louis": [50.0, 20.0]}
B. {"Bob": [20.0, 10.0], "Alice": [30.0, 20.0], "Mike": [100.0,

10.0]}
C. {"Bob": [20.0, 10.0], "Alice": [30.0, 20.0], "Mike": [100.0,

10.0], "Louis": [50.0, 25.0]}
D. {"Bob": [10.0, 20.0], "Alice": [20.0, 30.0], "Mike": [10.0,

100.0], "Louis": [20.0, 50.0]}

Page 15 of 21

24. Consider the following code and its behavior:

x = [1, 2, 3]

y = x

z = x[:]

w = z

x.append(4)

z.append(4)

Which of the following statements is correct regarding the relationships and values of x, y,
z, and w?

A. x == y, z == w, but x is not y and z is w, with y and w holding different
values.

B. x is y, z is w, but x is not z and w is not y.

C. x == z, y is x, but z != w, and x, y, z, and w all hold the same values.

D. y is x, z == x, and w holds a reference to a new list, with values different from
x and z.

25. Suppose you have the following code:

Person = namedtuple("Person", ["name", "age"])

john = Person(name="John Doe", age=25)

jane = Person(name="Jane Smith", age=30)

??? - Replace with a line of code that causes an AttributeError

print(jane)

Which line, if added at line ???, would result in an AttributeError due to immutability?

A. jane.age = 31

B. print(jane.age + 1)

C. john = Person("John Smith", john.age + 1)

D. print(jane.name)

Page 16 of 21

Power Generators

The next two questions will use function find entities with phrase(phrase), which re-
turns a list of unique entity names containing a specific phrase, ignoring case-sensitivity:

def find_entities_with_phrase(phrase):

entity_names = []

for i in range(len(csv_rows)):

if phrase.lower() in cell(i, "entity_name").lower():

entity_names.append(cell(i, "entity_name"))

return list(set(entity_names))

26. Assume you want to identify all entities containing both ”River” and ”Power” in their names.
Which of the following code snippets will fill in ??? to accurately find and return this list?

def find_river_power_entities():

river_entities = find_entities_with_phrase("River")

power_entities = find_entities_with_phrase("Power")

???

return sorted(river_power_entities)

A. river power entities = []
for entity in river entities:

if entity in power entities:
river power entities.append(entity)

B. river power entities = list(set(river entities + power entities))

C. river power entities = river entities + power entities

D. river power entities = sorted(river entities + power entities)

27. Which of the following statements about the behavior of function
find entities with phrase(phrase) is FALSE?

A. It returns a list of unique entity names containing the given phrase, ignoring case.

B. If the given phrase is an empty string "", it returns a list of all unique entity names
in the dataset.

C. The order of the returned list is guaranteed to match the order of entities
in the dataset.

D. The function uses case-insensitive comparison to match the phrase within entity
names.

Page 17 of 21

Movies

Each entry in the movie database is a dictionary with the following keys and example values:

movies = [

{

"title": "Inception",

"year": 2010,

"duration": 148,

"genres": ["Action", "Sci-Fi"],

"rating": 8.8,

"directors": ["nm0634240"],

"cast": ["nm0000138", "nm0330687"]

},

{

"title": "The Matrix",

"year": 1999,

"duration": 136,

"genres": ["Action", "Sci-Fi"],

"rating": 8.7,

"directors": ["nm0905152", "nm0905154"],

"cast": ["nm0000206", "nm0005251"]

},

{

"title": "Interstellar",

"year": 2014,

"duration": 169,

"genres": ["Adventure", "Drama", "Sci-Fi"],

"rating": 8.6,

"directors": ["nm0634240"],

"cast": ["nm0000138", "nm0614165"]

},

{

"title": "Parasite",

"year": 2019,

"duration": 132,

"genres": ["Comedy", "Drama", "Thriller"],

"rating": 8.6,

"directors": ["nm10014057"],

"cast": ["nm0437287", "nm3600677"]

}

]

Page 18 of 21

28. Which of the following code snippets correctly creates a list of the titles of Action movies
with a rating higher than 7.5?

A. action high rated = [movie["title"] for movie in movies if "Action"

in movie["genres"] and movie["rating"] > 7.5]

B. action high rated = [movie["title"] for movie in movies if "Action"

in genres and movie["rating"] > 7.5]

C. action high rated = [movie["title"] for movie in movies if

movie["genres"] == "Action" and movie["rating"] > 7.5]

D. action high rated = [movie for movie in movies if "Action" in

movie["genres"] and movie["rating"] > 7.5]

29. Which of the following code snippets is equivalent to the function below?

def find_sci_fi_movies(movies):

sci_fi_movies = []

for movie in movies:

if "Sci-Fi" in movie["genres"]:

sci_fi_movies.append(movie["title"])

return sci_fi_movies

A. [movie["title"] for movie in movies if "Sci-Fi" in movie["genres"]]

B. [movie for movie in movies if "Sci-Fi" in movie["genres"]]

C. {"Sci-Fi": movie["title"] for movie in movies }
D. for movie in movies: if "Sci-Fi" in movie["genres"]:

print(movie["title"])

Page 19 of 21

30. What does this function primarily achieve?

def X(movies):

result = {}

for movie in movies:

for genre in movie["genres"]:

if genre not in result:

result[genre] = {"total_rating": 0, "movies_count": 0}

result[genre]["total_rating"] += movie["rating"]

result[genre]["movies_count"] += 1

for genre, data in result.items():

if data["movies_count"] > 0:

data["average_rating"] = data["total_rating"] / data["movies_count"]

else:

data["average_rating"] = None

return result

A. It removes all genres from the movies that have below average ratings.

B. It calculates the average rating for each genre and records the number
of movies in each genre.

C. It normalizes the ratings of movies across different genres.

D. It distributes movies into genres without evaluating their performance.

E. It bucketizes the movies by genre.

Page 20 of 21

Blank Page: this page is intentionally blank

Page 21 of 21

