
CS 220 / CS319
Dictionary Nesting

Department of Computer Sciences
University of Wisconsin-Madison

Learning Objectives Today

More dictionary operations
• len, in, for loop
• d.keys(), d.values()
• defaults for get and pop

Syntax for nesting (dicts inside dicts, etc)
• indexing/lookup
• step-by-step resolution

Understand common use cases for nesting
• binning/bucketing (list in dict)
• a more convenient table representation (dict in list)
• transition probabilities with Markov chains (dict in dict)

we’ll generate random
English-like texts

one of the most common
data analysis tasks

list

dict

dict

dict

Today's Outline

Dictionary Ops

Binning (dict of list)

Table Representation (list of dict)

Probability Tables and Markov Chains (dict of dict) – self-interest
study; not required for quizzes and exams

Creation of Empty Dict - self-review

Non-empty dict:
d = {“a”: “alpha”, “b”: “beta”}

Empty dict (way 1):
d = {}

Empty dict (way 2):
d = dict() # special function called constructor

similar for lists: L = []

similar for sets: s = set() # special function called constructor

similar for lists: L = list() # special function called constructor

len, in, for - self-review

num_words = {0:“zero”, 1:”one”, 2:”two”, 3:”three”}

print(len(num_words))

print(1 in num_words)

print(“one” in num_words)

for x in num_words:

print(x, num_words[x])

4

True

False
(it is only checking keys, not vals)

0 zero
1 one
2 two
3 three

you can iterate over values
by combining a for loop with lookup

Extracting keys and values

num_words = {0:“zero”, 1:”one”, 2:”two”, 3:”three”}

print(type(num_words.keys()))

print(type(num_words.values()))

<class 'dict_keys'>

<class 'dict_values'>

don’t worry about these
new types, because we

can force them to be lists

Extracting keys and values

num_words = {0:“zero”, 1:”one”, 2:”two”, 3:”three”}

print(type(num_words.keys()))

print(type(num_words.values()))

print(list(num_words.keys()))

print(list(num_words.values()))

<class 'dict_keys'>

<class 'dict_values'>

[0, 1, 2, 3]

[“zero”, “one”,
“two”, “three”]

Defaults with get and pop

suffix = {1:“st”, 2:”nd”, 3:”rd”}

suffix.pop(0) # delete fails, because no key 0

suffix[4] # lookup fails because no key 4

Defaults with get and pop

suffix = {1:“st”, 2:”nd”, 3:”rd”}

suffix.pop(0, “th”) # returns “th” because no key 0

suffix[4] # lookup fails because no key 4

suffix.get(4, “th”) # returns “th” because no key 4

specify a default if
key cannot be found

specify a default if
key cannot be found

Defaults with get and pop

suffix = {1:“st”, 2:”nd”, 3:”rd”}

for num in range(6):

print(str(num) + suffix.get(num, “th”))

0th
1st
2nd
3rd
4th
5th

Today's Outline

Dictionary Ops

Binning (dict of list)

Table Representation (list of dict)

Probability Tables and Markov Chains (dict of dict) – self-interest
study; not required for quizzes and exams

LEC001 LEC002 LEC003

all
rows

Bucketizing/Binning

2017 2018 2019

LEC001 | 19 | ...
all

rows
for

loop

LEC001 LEC002 LEC003

Bucketizing/Binning

Bucketizing/Binning

2017 2018 2019

all
rows

for
loop

2017 2018 2019LEC001 LEC002 LEC003

LEC002 | 18 | ...
all

rows
for

loop

2017 2018 2019LEC001 LEC002 LEC003

Bucketizing/Binning

all
rows

for
loop

dict

2017 2018 2019LEC001 LEC002 LEC003

Bucketizing/Binning

Bins with lists and dicts

all data

rows = [
["LEC001”, 19, ”CS”],
[”LEC002”, 18, “Eng”],
[”LEC002”, 21, “Econ”],
[”LEC003”, 25, ”Stat”],
[”LEC002”, , ”DS”],
[”LEC003”, , ”DS”],

]

avg 19

avg 19.5

avg 25

bins = {
”LEC001”: [

["LEC001”, 19, ”CS”],
],
”LEC002”: [

[”LEC002”, 18, “Eng”],
[”LEC002”, 21, “Econ”],
[”LEC002”, , ”DS”],

],
”LEC003”: [

[”LEC003”, 25, ”Stat”],
[”LEC003”, , ”DS”],

]
}

Demo 1: Average Age per Section

Goal: print average age of students in each section

Input:
• CS220 Information survey

Output:
• Average age within each section

Example:

SEC001: 19
SEC002: 19.5
SEC003: 25

Today's Outline

Dictionary Ops

Binning (dict of list)

Table Representation (list of dict)

Probability Tables and Markov Chains (dict of dict)

Table Representation

name x y

Alice 30 20

Bob 5 11

Cindy -2 50

header = [“name”, “x”, “y”]

rows = [

[“Alice”, 30, 20],

[“Bob”, 5, 11],

[“Cindy”, -2, 50],

]

list of list representation list of dict representation

[

{“name”:“Alice”, “x”:30, “y”:20},

{“name”:“Bob”, “x”:5, “y”:11},

{“name”:“Cindy”, “x”:-2, “y”:50},

]

rows[2][header.index(“y”)] rows[2][“y”]

2

2

"y"
2

Demo 2: Table Transform

Goal: create function that transforms list of lists table
to a list of dicts table

Input:
• List of lists (from a CSV)

Output:
• List of dicts

Example:

>>> header = [“x”,”y”]
>>> rows = [[1,2], [3,4]]
>>> transform(header, rows)
[{“x”:1, “y”:2}, {“x”:3, “y”:4}]

Today's Outline

Dictionary Ops

Binning (dict of list)

Table Representation (list of dict)

Probability Tables and Markov Chains (dict of dict) – self-interest
study; not required for quizzes and exams

Challenge: Letter Frequency

53‡‡†305))6*;4826)4‡.)4‡);806*;48†8

¶60))85;;]8*;:‡*8†83(88)5*†;46(;88*96

?;8)‡(;485);5*†2:*‡(;4956*2(5*—4)8

¶8*;4069285);)6†8)4‡‡;1(‡9;48081;8:8‡

1;48†85;4)485†528806*81(‡9;48;(88;4

(‡?34;48)4‡;161;:188;‡?;

https://en.wikipedia.org/wiki/The_Gold-Bug

can you guess what 8 represents?

Challenge: Letter Frequency

letters symbols

how to compute these?

https://en.wikipedia.org/wiki/The_Gold-Bug

Challenge: Letter Frequency

Goal: if we randomly pick a word in a text, what is the probability
that it will be a given letter?

Input:
• Plaintext of book (from Project Gutenberg)

Output:
• The portion of letters in the text that are that letter

Example:

text: AAAAABBCCC
A: 50%
B: 20%
C: 30%

https://en.wikipedia.org/wiki/The_Gold-Bug

Sequence Data

Consider this sequence: “the quick tiger is quiet”

What letter likely comes after “t” in this text?

What letter likely comes after “q” in this text?

dict for “t”:
{“h”: 0.5, “i”: 0.5}

Next Letter Probability

h 50%

i 50%

a 0%

… 0%

Next Letter Probability

u 100%

… 0%

dict for “q”:
{“u”: 1.0}

Sequence Data

dict for “t”:
{“h”: 0.5, “i”: 0.5}

dict for “q”:
{“u”: 1.0}

Imagine a next-letter probability
dictionary for every letter

dict for “u”:
{“i”: 1.0}

dict for “i”:
{“c”: 0.25, “g”: 0.25,

“s”: 0.25, “e”: 0.25}

…

Organize all the dicts with a dict:

probs = {

“u”: {“i”: 1.0},

}

Sequence Data

dict for “t”:
{“h”: 0.5, “i”: 0.5}

dict for “q”:
{“u”: 1.0}

Imagine a next-letter probability
dictionary for every letter

dict for “u”:
{“i”: 1.0}

dict for “i”:
{“c”: 0.25, “g”: 0.25,

“s”: 0.25, “e”: 0.25}

…

Organize all the dicts with a dict:

probs = {

“u”: {“i”: 1.0},

“t”: {“h”: 0.5, “i”: 0.5}

“i”: {“c”: 0.25, “g”: 0.25,

“s”: 0.25, “e”: 0.25},

“q”: {“u”: 1.0},

…

}

probs[“i”]

Sequence Data

dict for “t”:
{“h”: 0.5, “i”: 0.5}

dict for “q”:
{“u”: 1.0}

Imagine a next-letter probability
dictionary for every letter

dict for “u”:
{“i”: 1.0}

dict for “i”:
{“c”: 0.25, “g”: 0.25,

“s”: 0.25, “e”: 0.25}

…

Organize all the dicts with a dict:

probs = {

“u”: {“i”: 1.0},

“t”: {“h”: 0.5, “i”: 0.5}

“i”: {“c”: 0.25, “g”: 0.25,

“s”: 0.25, “e”: 0.25},

“q”: {“u”: 1.0},

…

}

probs[“i”][“e”] 0.25

There is a 25% probability that
the letter following an “i” is an “e”

Vocabulary

probs = {

“u”: {“i”: 1.0},

“t”: {“h”: 0.5, “i”: 0.5}

“i”: {“c”: 0.25, “g”: 0.25,

“s”: 0.25, “e”: 0.25},

“q”: {“u”: 1.0},

…

}

The collection of transition
probabilities like this is
sometimes called a
“stochastic matrix”

Processes that make probabilistic transitions
like this (e.g., from one letter to the next) are
called “Markov chains”

Random Text Generation

Examples from A Mind at Play, by Soni and Goodman

which looks
closest to
English?

1

2

3

Random Text Generation

Examples from A Mind at Play, by Soni and Goodman

all letters equally likely

weighted random, based
on frequency in a text
(implement with dict)

probability of each letter
based on previous letter

(implement with dict of dicts)

Hypothetical Use Case

GATACAGATACAGATACA

GCTATAGCTATAGCGCGC

AAAATTTTAAAATTTTAAAA

DNA sequences

stochastic model

CATCATC?TC?TCATC?TCAT

synthetic sequences,
filling in gaps

CATCATCATCATCATCATCAT

Challenge: Conditional Letter Frequency

Goal: if we look at given letter, what is the next letter likely to be?

Input:
• Plaintext of book (from Project Gutenberg)

Output:
• Transition probabilities
• Randomly generated text, based on probabilities

Weighted Random

transitions = {

“up”: 0.2,

“down”: 0.1,

“flat”: 0.7

}

x = random.random()

assume 0.5

up

d
o

w
n

flat

probabilities

0 10.2 0.4 0.6 0.8

flat “wins”

Weighted Random

transitions = {

“up”: 0.2,

“down”: 0.1,

“flat”: 0.7

}

x = random.random()

assume 0.25

0 1

up

d
o

w
n

flat

probabilities

0.2 0.4 0.6 0.8

down “wins”

Weighted Random

transitions = {

“up”: 0.2,

“down”: 0.1,

“flat”: 0.7

}

x = random.random()

assume 0.25

end = 0

keys = [“up”, “down”, “flat”]

winner = None

for key in keys:

end += transitions[key]

if end >= x:

winner = key

break

0 1

up

d
o

w
n

flat

probabilities

0.2 0.4 0.6 0.8

x

Weighted Random

transitions = {

“up”: 0.2,

“down”: 0.1,

“flat”: 0.7

}

x = random.random()

assume 0.25

end = 0

keys = [“up”, “down”, “flat”]

winner = None

for key in keys:

end += transitions[key]

if end >= x:

winner = key

break

0 1

up

d
o

w
n

flat

probabilities

0.2 0.4 0.6 0.8

upkey

0end

x

end

Weighted Random

transitions = {

“up”: 0.2,

“down”: 0.1,

“flat”: 0.7

}

x = random.random()

assume 0.25

end = 0

keys = [“up”, “down”, “flat”]

winner = None

for key in keys:

end += transitions[key]

if end >= x:

winner = key

break

0 1

up

d
o

w
n

flat

probabilities

0.2 0.4 0.6 0.8

upkey

0.2end

x

end

Weighted Random

transitions = {

“up”: 0.2,

“down”: 0.1,

“flat”: 0.7

}

x = random.random()

assume 0.25

end = 0

keys = [“up”, “down”, “flat”]

winner = None

for key in keys:

end += transitions[key]

if end >= x:

winner = key

break

0 1

up

d
o

w
n

flat

probabilities

0.2 0.4 0.6 0.8

upkey

0.2end

x

end

Weighted Random

transitions = {

“up”: 0.2,

“down”: 0.1,

“flat”: 0.7

}

x = random.random()

assume 0.25

end = 0

keys = [“up”, “down”, “flat”]

winner = None

for key in keys:

end += transitions[key]

if end >= x:

winner = key

break

0 1

up

d
o

w
n

flat

probabilities

0.2 0.4 0.6 0.8

downkey

0.2end

x

end

Weighted Random

transitions = {

“up”: 0.2,

“down”: 0.1,

“flat”: 0.7

}

x = random.random()

assume 0.25

end = 0

keys = [“up”, “down”, “flat”]

winner = None

for key in keys:

end += transitions[key]

if end >= x:

winner = key

break

0 1

up

d
o

w
n

flat

probabilities

0.2 0.4 0.6 0.8

downkey

0.3end

x

end

Weighted Random

transitions = {

“up”: 0.2,

“down”: 0.1,

“flat”: 0.7

}

x = random.random()

assume 0.25

end = 0

keys = [“up”, “down”, “flat”]

winner = None

for key in keys:

end += transitions[key]

if end >= x:

winner = key

break

0 1

up

d
o

w
n

flat

probabilities

0.2 0.4 0.6 0.8

downkey

0.3end

we randomly chose “down”

x

end

