1220 / 319] Dictionaries

Department of Computer Sciences
University of Wisconsin-Madison

Learning Objectives

Dictionaries:
® creation using { } or dict()
® lookup, insert, update, delete key-value pairs
® In operator, for loop, len built-in function
®* keys() and values() methods

Applications of dictionaries
® easy and fast lookup using keys
® frequency storage

Today's Outline

Data Structures

Mappings

Dictionaries

Mutations: Updates, Deletes, and Inserts

Coding examples

Vocabulary: a list Is an
example of a

Data Structures
Definition (from Wikipedia):

a data structure Is a ,
the among them,

and the functions or
that can be applied to the data

a list can contain a
bunch of values of
varying types

Data Structures
Definition (from Wikipedia):

a data structure Is a ,
the among them,

and th'e functions or
that ¢ 'n be applied to the data

a list can contain a
bunch of values of
every value has an varying types
Index, representing an
order within the list

L.sort(), len(L), L.pop(0), L.append(x),
update, iterate (for loop), etc

Data Structures

Definition (from Wikipedia):

a data structure Is a
the among them,

and the functions or

that can be applied to the data

values relationships operations
_ _ iIndexing, pop, len, index,
list anything ordered (0,1,...) slicing, in, iteration (for), ...
set no ordering in, ==

dict

Motivation: lots of data

For loops:
® copy/paste Is a pain
®* don’t know how many times to copy/paste before program runs

For data structures:
® creating many variables is a pain
(imagine your program analyzes ten thousand values)
®* don’t know how many values you will have before program runs

Today's Outline

Data Structures

Mappings

Dictionaries

Mutations: Updates, Deletes, and Inserts

Coding examples

Mappings

Common data structure approach:
® store many values
® give each value a label
® use labels to lookup values

Mappings

Common data structure approach:
® store many values
® give each value a label
® use labels to lookup values

List example:

nums = [300, 200, 400, 100]

\ we can have many values

Mappings

Common data structure approach:
® store many values
® give each value a label
® use labels to lookup values

List example:

nums = [300, 200, 400, 100]
o 1 2 3

\ the “labels” are indexes, which

are implicitly attached to values

Mappings

Common data structure approach:
® store many values
® give each value a label
® use labels to lookup values

List example:
nums = [300, 200, 400, 100]

X =nums[2] # x =400

\ we use the “label” (i.e., the index)

to lookup the value (here 400)

Mappings

Common data structure approach:

® store many values

® give each value a label lists are an inflexible mapping structure,

* use labels to lookup values because we don’t have control over labels
LiSt examp|e: what if we don’t want consecutive integers

as labels? E.g., 0, 10, and 20 (but not between)?

nums = [300, 200, 400, 100]

what if we want to use strings as labels?

X = nums|2] # x=400

Today's Outline

Data Structures

Mappings

Dictionaries

Mutations: Updates, Deletes, and Inserts

Coding examples

Why call it a dictionary?

this key

(the word) < break-fast]

/'brektast/ 4

.

noun
noun: breakfast; plural noun: breakfasts

maps to...
1. a meal eaten in the morning, the first of the day.
"| often have toast for my breakfast”

verb

th| S Va|ue < verb: breakfast; 3rd person present: breakfasts; past tense: breakfasted; past participle: breakfasted;

gerund or present participle: breakfasting

(the definition)

1. eat breakfast.
“she breakfasted on French toast and bacon”

-

Python dicts have insertion-based order (Python version > 3.6)

Dictionary

Dictionaries map labels (called keys, rather than indexes)

to values
® values can be anything we choose (as with lists)
® keys can be nearly anything we choose (must be immutable)

nums list = [900, 700, 800]

nums_list[1]=p 700

\ a dictionary would let us give 700 a label other than it's position

Dictionary

Dictionaries map labels (called keys, rather than indexes)

to values
® values can be anything we choose (as with lists)
® keys can be nearly anything we choose (must be immutable)

nums list = [900, 700, 800]
nums_list[1]=p 700

nums dict = {“first”:900, “third”:700, “second”:800}

we have the same values

Dictionary

Dictionaries map labels (called keys, rather than indexes)

to values
® values can be anything we choose (as with lists)
® keys can be nearly anything we choose (must be immutable)

1 1

nums list = [900, 700, 800]
nums_list[1]=p 700

nums dict = {“fi1rst”:900, “third”:700, “second”:300}

we use curly braces instead of square brackets

careful! curly braces are for both sets and dicts

Dictionary

Dictionaries map labels (called keys, rather than indexes)

to values
® values can be anything we choose (as with lists)
®* keys can be nearly anything we choose (must be immutable)

0 1 2
nums list = [900, 700, 800]

nums_list[1]=p 700

1 1 1

nums dict = {“"first”:900, “third”:700, “second”:800}

we choose the label (called a key) for each value.

) 13

Here the keys are the strings “first”, “third”, and “second”

we put a colon between each key and value

Dictionary

Dictionaries map labels (called keys, rather than indexes)

to values
® values can be anything we choose (as with lists)
®* keys can be nearly anything we choose (must be immutable)

nums list = [900, 700, 800]
nums_list[1]=p 700

nums dict = {“first”:900, “third”:700, "“second”:800}

nums_dict[‘second”l=p 800

\ lookup for a dict is like indexing for a list (label in brackets).

Just use a key (that we chose) instead of an index.

Dictionary

Dictionaries map labels (called keys, rather than indexes)

to values
® values can be anything we choose (as with lists)
®* keys can be nearly anything we choose (must be immutable)

nums list = [900, 700, 800]
nums_list[1]=p 700

nums dict = {“first”:900, “third”:700, "“second”:800}

nums_dict[“first”] = 900

\ lookup for a dict is like indexing for a list (label in brackets).

Just use a key (that we chose) instead of an index.

Dictionary

Dictionaries map labels (called keys, rather than indexes)

to values
® values can be anything we choose (as with lists)
®* keys can be nearly anything we choose (must be immutable)

nums list = [900, 700, 800]
nums_list[1]=p 700

nums dict = {“first”:900, “third”:700, "“second”:800}

nums_dict[“third”] =p 700

\ lookup for a dict is like indexing for a list (label in brackets).

Just use a key (that we chose) instead of an index.

Dictionary

Dictionaries map labels (called keys, rather than indexes)

to values
® values can be anything we choose (as with lists)
® keys can be nearly anything we choose (must be immutable)

900

1 700

=> 2 800
-

"first" 900

"third" 700

"'second" 800

A note on parenthetical characters

common structures uses
neses: (and)
arentheses: an
p \

list
Ance

X

seguence

brackets: [and |

dict

- dict

braces: { and }

(1+2) * 3
£()

1 =11, 2,
1[-1]
1[1:=-2]
d["Ol’le"]

d = {"one":
{1, 2, 3}

1,

"two":

2}

Empty set, list, and dict

braces:

brackets:

{and }

[and |

N

— dict

set

d = {}
or
d = dict ()
s = set ()
1 = 1list ()
list
or

Today's Outline

Data Structures

Mappings

Dictionaries

Mutations: Updates, Deletes, and Inserts

Coding examples

Dictionary Updates

>>> |st = ["zero", "ten", "not set"]
>>> [st[2] = "twenty"

>>> |st

['zero’, 'ten’, 'twenty']

>>>d ={0: "zero", 10: "ten", 20: "not set"}
>>> d[20] = "twenty"

>>> d

{0: 'zero', 10: 'ten’, 20: 'twenty'}

dictionary updates look like list updates

Dictionary Deletes

>>> [st = ["zero", "ten", "twenty"]
>>> |st.pop(-1)

twenty’ “twenty” isn’t in the list
>>> |st

['zero’', 'ten']

>>>d ={0: "zero", 10: "ten", 20: "twenty"}
>>> d.pop(20)

'twenty'

>>> d

{0: 'zero', 10: 'ten'}

\

“twenty” isn’t in the dict

dictionary deletes look like list deletes

Dictionary Inserts

>>> |st = ["zero", "ten"]

>>> |st.append("twenty") # doesn't work: Ist[2] = ...
>>> |st

['zero’, 'ten’, 'twenty']

>>>d = {0: "zero", 10: "ten"}
>>> d[20] = "twenty"

>>> d

{0: 'zero’, 10: 'ten’, 20: 'twenty'}

with a dict, if you try to set a value at a key,
It automatically creates it (doesn't work w/ lists)

Today's Outline

Data Structures

Mappings

Dictionaries

Mutations: Updates, Deletes, and Inserts

Coding examples

Example: Print Major Count

Goal: given a CSV of CS220 survey data,
print each major’s frequency

Input: Example output (not actual
* ACSV count):
Output: Computer Science: 40

Engineering: 50
Business: 20

® count per major

https://qguide.wisc.edu/

Ll
e

4 -
g \%
L]

L

. ‘ - F & 4.
? ' I / j Fdus

. ALL COURSES: ALL DEGREES. ALL

-

https://guide.wisc.edu/

Challenge: Wizard of Oz

Goal: count how often each word appears in the Wizard of Oz

Input:
® Plaintext of book (from Project Gutenberg)

Output:
® The count of each word

https://en.wikipedia.org/wiki/The_Wizard_of Oz_(1939_film)

	Slide 1: [220 / 319] Dictionaries
	Slide 2: Learning Objectives
	Slide 3: Today's Outline
	Slide 4
	Slide 5: Data Structures
	Slide 6: Data Structures
	Slide 7: Data Structures
	Slide 8: Motivation: lots of data
	Slide 9: Today's Outline
	Slide 10: Mappings
	Slide 11: Mappings
	Slide 12: Mappings
	Slide 13: Mappings
	Slide 14: Mappings
	Slide 15: Today's Outline
	Slide 16: Why call it a dictionary?
	Slide 17: Dictionary
	Slide 18: Dictionary
	Slide 19: Dictionary
	Slide 20: Dictionary
	Slide 21: Dictionary
	Slide 22: Dictionary
	Slide 23: Dictionary
	Slide 24: Dictionary
	Slide 25: A note on parenthetical characters
	Slide 26: Empty set, list, and dict
	Slide 27: Today's Outline
	Slide 28: Dictionary Updates
	Slide 29: Dictionary Deletes
	Slide 30: Dictionary Inserts
	Slide 31: Today's Outline
	Slide 32: Example: Print Major Count
	Slide 33: Challenge: Wizard of Oz

