
[220 / 319] Operators
Department of Computer Sciences

University of Wisconsin-Madison

Readings:

Chapter 1 of Think Python,

Chapter 2 of Python for Everybody

Additional readings:

Computer terminology

Learning Objectives
• Run Python code using:

• Command line

• Jupyter Notebook

Evaluate:
• numeric expressions containing mathematical operators (e.g., “+”

and “-“)

• string expressions containing string operators and escape

characters

Differentiate:

• behavior of the /, //, and % operators

Recognize examples of different Python data types:
• int, float, str, bool

Evaluate:

• expressions containing comparison operators (e.g., “==” and “>”)

• Boolean expressions containing the operators “and”, “or”, “not”

•

Today's Outline

Software
•Interpreters

•Notebooks

Demos

Operator Precedence

Demos

Boolean Logic

Demos

What you need to write/run code

An interpreter
• Python 3 (not 2!)

• some extra packages (comes with anaconda installation)

• runs Python code

Jupyter Notebooks
• comes with anaconda installation

• acts like both interpreter and editor (type and save Python code)

Interpreter

A program that runs a program
•Translates something the human likes (nice Python code) to

something the machine likes (ONEs and ZEROs)

Jupyter Notebooks

...

...

notebooks breakup code into

"cells" containing Python code

visuals produced by the

code are interleavedA Notebook is a file that contains code and other things

(e.g., documentation, images, tables, etc.)

Jupyter Notebooks

...

notebooks breakup code into

"cells" containing Python code

visuals produced by the

code are embedded in the Notebook

.ipynb (Interactive Python Notebook) files are not easy to open in a regular text editor

3 ways we'll run Python

1. interactive mode

ty-mac:~$ python
Python 3.9.7 (default, Sep 16 2021, 16:59:28)
[Clang 10.0.0] :: Anaconda, Inc. on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> 1 + 1
2

triple arrows mean Python code runs as you type it

Quick syntax check

3 ways we'll run Python

1. interactive mode

ty-mac:~$ python
Python 3.9.7 (default, Sep 16 2021, 16:59:28)
[Clang 10.0.0] :: Anaconda, Inc. on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> 1 + 1
2

2. script mode

ty-mac:~$ python test.py

triple arrows mean Python code runs as you type it

the interpreter program is named "python"; run it

the name of the file containing your code (called a "script")

is passed as an argument to the python program

Run auto-grader tests

3 ways we'll run Python

1. interactive mode

ty-mac:~$ python
Python 3.9.7 (default, Sep 16 2021, 16:59:28)
[Clang 10.0.0] :: Anaconda, Inc. on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> 1 + 1
2

2. script mode

ty-mac:~$ python test.py

3. notebook "mode"

ty-mac:~$ jupyter notebook

triple arrows mean Python code runs as you type it

the name of the file containing your code (called a "script")

is passed as an argument to the python program

open Jupyter in a web browser

we'll do most work in notebooks this semester

the interpreter program is named "python"; run it

Today's Outline

Software
•Interpreters

•Notebooks

Demos

Operator Precedence

Demos

Boolean Logic

Demos

Today's Outline

Software
•Interpreters

•Notebooks

Demos

Operator Precedence

Demos

Boolean Logic

Demos

Order of Simplification

Python works by simplifying, applying one operator at a time

3 * 3 + 2 * 2 + 16 ** (1/2)

Rules
• First work within parentheses

• Do higher precedence first

• Break ties left to right (exception: exponent ** operator)

Order of Simplification

Python works by simplifying, applying one operator at a time

3 * 3 + 2 * 2 + 16 ** (1/2)

Rules
• First work within parentheses

• Do higher precedence first

• Break ties left to right (exception: exponent ** operator)

Order of Simplification

Python works by simplifying, applying one operator at a time

3 * 3 + 2 * 2 + 16 ** (1/2)

3 * 3 + 2 * 2 + 16 ** (0.5)

Rules
• First work within parentheses

• Do higher precedence first

• Break ties left to right (exception: exponent ** operator)

Order of Simplification

Python works by simplifying, applying one operator at a time

3 * 3 + 2 * 2 + 16 ** (1/2)

3 * 3 + 2 * 2 + 16 ** (0.5)

Rules
• First work within parentheses

• Do higher precedence first

• Break ties left to right (exception: exponent ** operator)

Order of Simplification

Python works by simplifying, applying one operator at a time

3 * 3 + 2 * 2 + 16 ** (1/2)

3 * 3 + 2 * 2 + 16 ** (0.5)

3 * 3 + 2 * 2 + 4

Rules
• First work within parentheses

• Do higher precedence first

• Break ties left to right (exception: exponent ** operator)

Order of Simplification

Python works by simplifying, applying one operator at a time

3 * 3 + 2 * 2 + 16 ** (1/2)

3 * 3 + 2 * 2 + 16 ** (0.5)

3 * 3 + 2 * 2 + 4

Rules
• First work within parentheses

• Do higher precedence first

• Break ties left to right (exception: exponent ** operator)

Order of Simplification

Python works by simplifying, applying one operator at a time

3 * 3 + 2 * 2 + 16 ** (1/2)

3 * 3 + 2 * 2 + 16 ** (0.5)

3 * 3 + 2 * 2 + 4

9 + 2 * 2 + 4

Rules
• First work within parentheses

• Do higher precedence first

• Break ties left to right (exception: exponent ** operator)

Order of Simplification

Python works by simplifying, applying one operator at a time

3 * 3 + 2 * 2 + 16 ** (1/2)

3 * 3 + 2 * 2 + 16 ** (0.5)

3 * 3 + 2 * 2 + 4

9 + 2 * 2 + 4

Rules
• First work within parentheses

• Do higher precedence first

• Break ties left to right (exception: exponent ** operator)

Order of Simplification

Python works by simplifying, applying one operator at a time

3 * 3 + 2 * 2 + 16 ** (1/2)

3 * 3 + 2 * 2 + 16 ** (0.5)

3 * 3 + 2 * 2 + 4

9 + 2 * 2 + 4

9 + 4 + 4

Rules
• First work within parentheses

• Do higher precedence first

• Break ties left to right (exception: exponent ** operator)

Order of Simplification

Python works by simplifying, applying one operator at a time

3 * 3 + 2 * 2 + 16 ** (1/2)

3 * 3 + 2 * 2 + 16 ** (0.5)

3 * 3 + 2 * 2 + 4

9 + 2 * 2 + 4

9 + 4 + 4

Rules
• First work within parentheses

• Do higher precedence first

• Break ties left to right (exception: exponent ** operator)

Order of Simplification

Python works by simplifying, applying one operator at a time

3 * 3 + 2 * 2 + 16 ** (1/2)

3 * 3 + 2 * 2 + 16 ** (0.5)

3 * 3 + 2 * 2 + 4

9 + 2 * 2 + 4

9 + 4 + 4

13 + 4

Rules
• First work within parentheses

• Do higher precedence first

• Break ties left to right (exception: exponent ** operator)

Order of Simplification

Python works by simplifying, applying one operator at a time

3 * 3 + 2 * 2 + 16 ** (1/2)

3 * 3 + 2 * 2 + 16 ** (0.5)

3 * 3 + 2 * 2 + 4

9 + 2 * 2 + 4

9 + 4 + 4

13 + 4

Rules
• First work within parentheses

• Do higher precedence first

• Break ties left to right (exception: exponent ** operator)

Order of Simplification

Python works by simplifying, applying one operator at a time

3 * 3 + 2 * 2 + 16 ** (1/2)

3 * 3 + 2 * 2 + 16 ** (0.5)

3 * 3 + 2 * 2 + 4

9 + 2 * 2 + 4

9 + 4 + 4

13 + 4

17

Rules
• First work within parentheses

• Do higher precedence first

• Break ties left to right (exception: exponent ** operator)

Operator Precendence

What is it? Python Operator

exponents **

signs +x, -x

multiply/divide *, /, //, %

add/subtract +, -

comparison ==, !=, <, <=, >, >=

boolean stuff not

… and

… or

these are the ones you should be

learning at this point in the semester

(there are a few more not covered

now)

simplify first

simplify last*

* one exception is an optimization

known as "short circuiting"

Operator Precendence

What is it? Python Operator

exponents **

signs +x, -x

multiply/divide *, /, //, %

add/subtract +, -

comparison ==, !=, <, <=, >, >=

boolean stuff not

… and

… or

simplify first
M

a
th

e
m

a
ti

c
a
l

L
o

g
ic

simplify last*

* one exception is an optimization

known as "short circuiting"

these are the ones you should be

learning at this point in the semester

(there are a few more not covered

now)

Today's Outline

Software
•Interpreters

•Notebooks

Demos

Operator Precedence

Demos

Boolean Logic

Demos

Today's Outline

Software
•Interpreters

•Notebooks

Demos

Operator Precedence

Demos

Boolean Logic

Demos

Boolean Logic

The logic of truth:
• Named after George Boole

• Two values: True and False

• Three operators: and, or, and not

Boolean Logic

True

True True

False

False True

F
a
ls

e
T
ru

e

False

False True

False

False True

F
a
ls

e
T
ru

e

FalseTrue

False True

AND OR NOT

The logic of truth:
• Named after George Boole

• Two values: True and False

• Three operators: and, or, and not

True

True True

False

False True

F
a
ls

e
T
ru

e

False

False True

False

False True

F
a
ls

e
T
ru

e

FalseTrue

False True

AND OR NOT

It’s a Saturday AND

we’re attending CS 220 lecture

True

True True

False

False True

F
a
ls

e
T
ru

e

False

False True

False

False True

F
a
ls

e
T
ru

e

FalseTrue

False True

AND OR NOT

It’s a Saturday AND

we’re attending CS 220 lecture

FALSE!

True

True True

False

False True

F
a
ls

e
T
ru

e

False

False True

False

False True

F
a
ls

e
T
ru

e

FalseTrue

False True

AND OR NOT

Project 1 is due on Wednesday

OR I’ll eat my hat

True

True True

False

False True

F
a
ls

e
T
ru

e

False

False True

False

False True

F
a
ls

e
T
ru

e

FalseTrue

False True

AND OR NOT

Project 1 is due on Wednesday

OR I’ll eat my hat

TRUE!

True

True True

False

False True

F
a
ls

e
T
ru

e

False

False True

False

False True

F
a
ls

e
T
ru

e

FalseTrue

False True

AND OR NOT

Control Flow: Remember that conditionals and loops sometimes do something.

We'll use bool logic a LOT to control when we do/don't.

Today's Outline

Software
•Interpreters

•Notebooks

Demos

Operator Precedence

Demos

Boolean Logic

Demos

	Slide 1: [220 / 319] Operators
	Slide 2: Learning Objectives
	Slide 3: Today's Outline
	Slide 4: What you need to write/run code
	Slide 5: Interpreter
	Slide 6: Jupyter Notebooks
	Slide 7: Jupyter Notebooks
	Slide 8: 3 ways we'll run Python
	Slide 9: 3 ways we'll run Python
	Slide 10: 3 ways we'll run Python
	Slide 11: Today's Outline
	Slide 12: Today's Outline
	Slide 13: Order of Simplification
	Slide 14: Order of Simplification
	Slide 15: Order of Simplification
	Slide 16: Order of Simplification
	Slide 17: Order of Simplification
	Slide 18: Order of Simplification
	Slide 19: Order of Simplification
	Slide 20: Order of Simplification
	Slide 21: Order of Simplification
	Slide 22: Order of Simplification
	Slide 23: Order of Simplification
	Slide 24: Order of Simplification
	Slide 25: Order of Simplification
	Slide 26: Operator Precendence
	Slide 27: Operator Precendence
	Slide 28: Today's Outline
	Slide 29: Today's Outline
	Slide 30: Boolean Logic
	Slide 31: Boolean Logic
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37: Today's Outline

