1220/ 319] Operators

Department of Computer Sciences
University of Wisconsin-Madison

Learning Objectives

®* Run Python code using:
® Command line
® Jupyter Notebook

Evaluate:

®* numeric expressions containing mathematical operators (e.g., “+
and “_“)

® string expressions containing string operators and escape
characters

)

Differentiate:
® behavior of the /, //, and % operators

Recognize examples of different Python data types:
® int, float, str, bool

Evaluate:
® expressions containing comparison operators (e.g., "=="and ">")

-aa ™~ Y L S o C o e« N 19

Today's Outline

PR

Operator Precedence

Software

®Interpreters
*Notebooks

Demos

Demos
Boolean Logic

Demos

What you need to write/run code

An Interpreter
® Python 3 (not 2!)

® some extra packages (comes with anaconda installation)
® runs Python code

Jupyter Notebooks
®* comes with anaconda installation
® acts like both interpreter and editor (type and save Python code)

Interpreter

A program that runs a program
® Translates something the human likes (nice Python code) to
something the machine likes (ONEs and ZEROS)

Jupyter Notebooks

notebooks breakup code into
"cells" containing Python code

In [35]: #g22
df = pd.read sgl("""
SELECT continent, count() as num countries
from countries table
group by continent
ORDER BY num countries, continent
"t ponn).set index("continent")

ax = df.sort index().plot.bar()
ax.set ylabel("number of countries")
ax.set xlabel("")

A Notebook is a file that contains code and other things
(e.g., documentation, images, tables, etc.)

Jupyter Notebooks

notebooks breakup code into
"cells" containing Python code

In [35]: | #g22
df = pd.read sqgl|
SELECT continent, count() as num countries
from countries table
group by continent
ORDER BY num countries, continent
‘""", conn).set index("continent")

ax = df.sort index().plot.bar()
ax.set ylabel("number of countries")
ax.set xlabel("")

Out[35]: Text(0.5, 0, '')

50

B num_countries

+a
=)

L
L]

MJ
L=

TN

visuals produced by the
code are embedded in the Notebook

number of countries

=
=]

o

Africa

Asia

Australia
entral America
Europe

North America
South America

Ipynb (Interactive Python Notebook) files are not easy to open in a regular text editor

3 ways we'll run Python

1. interactive mode Quick syntax check

ty-mac:~S python
Python 3.9.7 (default, Sep 16 2021, 16:59:28)
[Clang 10.0.0] :: Anaconda, Inc. on darwin

Type "help", "copyright", "credits" or "license" for more information.

>>>1+1
< 2
triple arrows mean Python code runs as you type it

3 ways we'll run Python

1. interactive mode

ty-mac:~S python
Python 3.9.7 (default, Sep 16 2021, 16:59:28)
[Clang 10.0.0] :: Anaconda, Inc. on darwin

Type "help", "copyright", "credits" or "license" for more information.

>>>1+1
< 2
triple arrows mean Python code runs as you type it

2. script mode Run auto-grader tests

/-t-he interpreter program is named "python"; run it

ty-mac:~S python test.py

\(-he name of the file containing your code (called a "script")
IS passed as an argument to the python program

3 ways we'll run Python

1. interactive mode

ty-mac:~S python
Python 3.9.7 (default, Sep 16 2021, 16:59:28)
[Clang 10.0.0] :: Anaconda, Inc. on darwin

Type "help", "copyright", "credits" or "license" for more information.

>>>1+1
< 2
triple arrows mean Python code runs as you type it

2. script mode

/-t-he interpreter program is named "python"; run it

ty-mac:~S python test.py

\-— the name of the file containing your code (called a "script")
IS passed as an argument to the python program

3. notebook "mode"

ty-mac:~S jupyter notebook

\ open Jupyter in a web browser

we'll do most work in notebooks this semester

Today's Outline

Software

®Interpreters
*Notebooks

Demos *
Operator Precedence
Demos

Boolean Logic

Demos

Today's Outline

Software

®Interpreters
*Notebooks

Demos

Operator Precedence *

Demos

Boolean Logic

Demos

Order of Simplification

Python works by simplifying, applying one operator at a time

3*3+2%2+ 16 * (1/2)

Rules

® First work within parentheses

® Do higher precedence first

® Break ties left to right (exception: exponent ** operator)

Order of Simplification

Python works by simplifying, applying one operator at a time

3*3+2%2+ 16 * (1/2)

Rules

® First work within parentheses

® Do higher precedence first

® Break ties left to right (exception: exponent ** operator)

Order of Simplification

Python works by simplifying, applying one operator at a time

3*3+2%2+ 16 * (1/2)
3*3+2*%2+ 16 * (0.5)

Rules

® First work within parentheses

® Do higher precedence first

® Break ties left to right (exception: exponent ** operator)

Order of Simplification

Python works by simplifying, applying one operator at a time

3*3+2%2+ 16 * (1/2)
3*3+2*2+ 16 * (0.5)

Rules

® First work within parentheses

® Do higher precedence first

® Break ties left to right (exception: exponent ** operator)

Order of Simplification

Python works by simplifying, applying one operator at a time

3*3+2%2+ 16 * (1/2)
3*3+2*2+ 16 * (0.5)
3*¥3+2%2+4

Rules

® First work within parentheses

® Do higher precedence first

® Break ties left to right (exception: exponent ** operator)

Order of Simplification

Python works by simplifying, applying one operator at a time

3*3+2%2+ 16 * (1/2)
3*3+2*2+ 16 * (0.5)
3*¥3+2%2+4

Rules

® First work within parentheses

® Do higher precedence first

® Break ties left to right (exception: exponent ** operator)

Order of Simplification

Python works by simplifying, applying one operator at a time

3*3+2%2+ 16 * (1/2)
3*3+2*2+ 16 * (0.5)
3¥3+2%2+4
0+2*2+4

Rules

® First work within parentheses

® Do higher precedence first

® Break ties left to right (exception: exponent ** operator)

Order of Simplification

Python works by simplifying, applying one operator at a time

3*3+2%2+ 16 * (1/2)
3*3+2*2+ 16 * (0.5)
3¥3+2%2+4
Q+2*2+4

Rules

® First work within parentheses

® Do higher precedence first

® Break ties left to right (exception: exponent ** operator)

Order of Simplification

Python works by simplifying, applying one operator at a time

3*3+2%2+ 16 * (1/2)
3*3+2*2+ 16 * (0.5)
3¥3+2%2+4
Q+2*2+4

9+ 4 +4

Rules

® First work within parentheses

® Do higher precedence first

® Break ties left to right (exception: exponent ** operator)

Order of Simplification

Python works by simplifying, applying one operator at a time

3*3+2%2+ 16 * (1/2)
3*3+2*2+ 16 * (0.5)
3¥3+2%2+4
Q+2*2+4

9+ 4+4

Rules

® First work within parentheses

® Do higher precedence first

® Break ties left to right (exception: exponent ** operator)

Order of Simplification

Python works by simplifying, applying one operator at a time

3*3+2%2+ 16 * (1/2)
3*3+2*2+ 16 * (0.5)
3¥3+2%2+4
Q+2*2+4

9+ 4+4

13 + 4

Rules

® First work within parentheses

® Do higher precedence first

® Break ties left to right (exception: exponent ** operator)

Order of Simplification

Python works by simplifying, applying one operator at a time

3*3+2%2+ 16 * (1/2)
3*3+2*2+ 16 * (0.5)
3¥3+2%2+4
Q+2*2+4

9+ 4+4

13+ 4

Rules

® First work within parentheses

® Do higher precedence first

® Break ties left to right (exception: exponent ** operator)

Order of Simplification

Python works by simplifying, applying one operator at a time

3*3+2%2+ 16 * (1/2)
3*3+2*2+ 16 * (0.5)
3¥3+2%2+4
Q+2*2+4

9+ 4+4

13+ 4

17

Rules

® First work within parentheses

® Do higher precedence first

® Break ties left to right (exception: exponent ** operator)

Operator Precendence

What is it? Python Operator

exponents e simplify first
""""""""" sens e
""""" mutiply/divide | L%
"""""" addfsubtract -
 comparson |- <
 boolesnstff | ont
--- and simplify last*
___ Or

these are the ones you should be
learning at this point in the semester

(there are a few more not covered * one exception is an optimization
now) known as "short circuiting"

Operator Precendence

Mathematical

Logic

exponents

add/subtract
comparison

boolean stuff

these are the ones you should be

learning at this point in the semester

(there are a few more not covered

now)

simplify first

simplify last*

* one exception is an optimization
known as "short circuiting”

Today's Outline

Software

®Interpreters
*Notebooks

Demos

Operator Precedence

Demos *

Boolean Logic

Demos

Today's Outline

Software

®Interpreters
*Notebooks

Demos
Operator Precedence
Demos

Boolean Logic *

Demos

Boolean Logic

The logic of truth:

®* Named after George Boole

® Two values: True and False

® Three operators: and, or, and not

Boolean Logic

The logic of truth:

®* Named after George Boole

® Two values: True and False

® Three operators: and, or, and not

False True False True False True
% (D]
s | False | False < | False | True True | False
LL
(D) (D)
> | False | True 2| True | True
~ —

It’s a Saturday AND
we’re attending CS 220 lecture

AND OR NOT

False True False True False True
Q O
< | False | False < | False | True True | False
LL LL
(¢D) (¢D]
S | False | True S |1 True | True
= ~

FALSE!

It’s a Saturday AND

(we’re attending CS 220 lecture)

False

True

AND
False

False

o
False

False

True

False

True

OR

NOT

False True

False True
False | True
True | True

True

False

Project 1is due on Wednesday
OR I'll eat my hat

AND OR NOT

False True False True False True
Q O
< | False | False < | False | True True | False
LL LL
(¢D) (¢D]
S | False | True S |1 True | True
= ~

TRUE!

(Project 1 is due on Wednesday)
ORPll eat my hat)

AND OR NOT

False True (False: True False True
% (D)
s | False | False < | False | True True | False
(¢D) (¢D]
S | False | True S 1 True | True
= ~

Control Flow: Remember that conditionals and loops sometimes do something.
We'll use bool logic a LOT to control when we do/don't.

False True True False True
% (D]
s | False | False < | False | True True | False
LL
(D) (D)
> | False | True 2| True | True
= =

Today's Outline

Software

®Interpreters
*Notebooks

Demos
Operator Precedence
Demos

Boolean Logic

Demos *

	Slide 1: [220 / 319] Operators
	Slide 2: Learning Objectives
	Slide 3: Today's Outline
	Slide 4: What you need to write/run code
	Slide 5: Interpreter
	Slide 6: Jupyter Notebooks
	Slide 7: Jupyter Notebooks
	Slide 8: 3 ways we'll run Python
	Slide 9: 3 ways we'll run Python
	Slide 10: 3 ways we'll run Python
	Slide 11: Today's Outline
	Slide 12: Today's Outline
	Slide 13: Order of Simplification
	Slide 14: Order of Simplification
	Slide 15: Order of Simplification
	Slide 16: Order of Simplification
	Slide 17: Order of Simplification
	Slide 18: Order of Simplification
	Slide 19: Order of Simplification
	Slide 20: Order of Simplification
	Slide 21: Order of Simplification
	Slide 22: Order of Simplification
	Slide 23: Order of Simplification
	Slide 24: Order of Simplification
	Slide 25: Order of Simplification
	Slide 26: Operator Precendence
	Slide 27: Operator Precendence
	Slide 28: Today's Outline
	Slide 29: Today's Outline
	Slide 30: Boolean Logic
	Slide 31: Boolean Logic
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37: Today's Outline

