
[220 / 319] Iteration 2

Readings:
Chapter 2 of Sweigart book

Chapter 6.4 of Python for Everybody

Department of Computer Sciences

University of Wisconsin-Madison

Learning Objectives Today

Nested loops tracing

Understanding break and continue
• Syntax

• Control flow

• Use cases

Nested loops tracing
• Interaction with break/continue

Chapter 7 of Think Python

Chapter 2 of Sweigart
(great recap so far)

http://automatetheboringstuff.com/chapter2/

http://automatetheboringstuff.com/chapter2/

Today's Outline

Design Patterns

Worksheet

Break

Continue

Nesting

Design Patterns (outside Programming)

[wikipedia]

Design Patterns (outside Programming)

[wikipedia]
somebody familiar with this

structure might skip around

1st

3rd

2nd

there are many similarities between

reading/writing code and essays

Design Patterns

i = 1

while i <= 30:

n = i * 2

print(n)

i += 1

When you ask a programmer what a piece of code

does, what do they look at, and in what order?

Way 1: walk through in order (never a bad option)

Design Patterns

i = 1

while i <= 30:

n = i * 2

print(n)

i += 1

When you ask a programmer what a piece of code

does, what do they look at, and in what order?

Way 1: walk through in order (never a bad option)

1i

Design Patterns

i = 1

while i <= 30:

n = i * 2

print(n)

i += 1

When you ask a programmer what a piece of code

does, what do they look at, and in what order?

Way 1: walk through in order (never a bad option)

1i

Design Patterns

i = 1

while i <= 30:

n = i * 2

print(n)

i += 1

When you ask a programmer what a piece of code

does, what do they look at, and in what order?

Way 1: walk through in order (never a bad option)

1i

2n

Design Patterns

i = 1

while i <= 30:

n = i * 2

print(n)

i += 1

When you ask a programmer what a piece of code

does, what do they look at, and in what order?

Way 1: walk through in order (never a bad option)

Output

2

1i

2n

Design Patterns

i = 1

while i <= 30:

n = i * 2

print(n)

i += 1

When you ask a programmer what a piece of code

does, what do they look at, and in what order?

Way 1: walk through in order (never a bad option)

Output

2

1 2i

2n

Design Patterns

i = 1

while i <= 30:

n = i * 2

print(n)

i += 1

When you ask a programmer what a piece of code

does, what do they look at, and in what order?

Way 1: walk through in order (never a bad option)

Output

2

1 2i

2n

Design Patterns

i = 1

while i <= 30:

n = i * 2

print(n)

i += 1

When you ask a programmer what a piece of code

does, what do they look at, and in what order?

Way 1: walk through in order (never a bad option)

Output

2

1 2i

2 4n

Design Patterns

i = 1

while i <= 30:

n = i * 2

print(n)

i += 1

When you ask a programmer what a piece of code

does, what do they look at, and in what order?

Way 1: walk through in order (never a bad option)

Output

2

4

1 2i

2 4n

Design Patterns

i = 1

while i <= 30:

n = i * 2

print(n)

i += 1

When you ask a programmer what a piece of code

does, what do they look at, and in what order?

Way 1: walk through in order (never a bad option)

Output

2

4

…

1 3i

2 4n

Design Patterns

i = 1

while i <= 30:

n = i * 2

print(n)

i += 1

When you ask a programmer what a piece of code

does, what do they look at, and in what order?

Way 2: knowing that certain code is written again

and again, look for common patterns to break it down

Design Patterns

i = 1

while i <= 30:

n = i * 2

print(n)

i += 1

When you ask a programmer what a piece of code

does, what do they look at, and in what order?

Observation: loop will run with values of i of: 1 to 30

experienced coders will focus in

on everything about “i” first

because that is in the loop condition

Design Patterns

i = 1

while i <= 30:

n = i * 2

print(n)

i += 1

When you ask a programmer what a piece of code

does, what do they look at, and in what order?

Observation: highlighted code runs 30 times, with i values of 1 through 30

Design Patterns

i = 1

while i <= 30:

n = i * 2

print(n)

i += 1

When you ask a programmer what a piece of code

does, what do they look at, and in what order?

Observation: highlighted code runs 30 times, with i values of 1 through 30

n = 1 * 2

print(n)

n = 2 * 2

print(n)

n = 3 * 2

print(n)

...

n = 30 * 2

print(n)

Design Patterns

i = 1

while i <= 30:

n = i * 2

print(n)

i += 1

When you ask a programmer what a piece of code

does, what do they look at, and in what order?

Conclusion: the code prints 2, 4, 6, …, 58, 60

n = 1 * 2

print(n)

n = 2 * 2

print(n)

n = 3 * 2

print(n)

...

n = 30 * 2

print(n)

Output

2

4

6

8

…

56

58

60

Design Pattern 1: do something N times

i = 1

while i <= N:

i += 1

fill in with specifics here
Option A

Option B

Design Pattern 1: do something N times

i = 1

while i <= N:

i += 1

fill in with specifics here

i = 0

while i < N:

i += 1

fill in with specifics here

Option A

Option B

Design Pattern 1: do something N times

i = 1

while i <= N:

i += 1

fill in with specifics here

i = 0

while i < N:

i += 1

fill in with specifics here

Option A

Option B

1, 2, 3, …, N

0, 1, 2, …, N-1

Design Pattern 2: do something with all data

i = 0

while i < N:

i += 1

fill in with specifics here

State Population Area

WI 5.795 …

CA 39.54 …

MN 5.577 …

… … …

Design Pattern 2: do something with all data

i = 0

while i < N:

i += 1

fill in with specifics here

Functions:

count_rows()

get_population(index)

…

index 0

State Population Area

WI 5.795 …

CA 39.54 …

MN 5.577 …

… … …

Design Pattern 2: do something with all data

i = 0

while i < N:

i += 1

fill in with specifics here

Functions:

count_rows()

get_population(index)

…

index 1

State Population Area

WI 5.795 …

CA 39.54 …

MN 5.577 …

… … …

Design Pattern 2: do something with all data

i = 0

while i < count_rows():

pop = get_population(i)

i += 1

fill in with specifics here

Functions:

count_rows()

get_population(index)

…

State Population Area

WI 5.795 …

CA 39.54 …

MN 5.577 …

… … …

Design Pattern 2: do something with all data

i = 0

while i < count_rows():

pop = get_population(i)

i += 1

fill in with specifics here

Functions:

count_rows()

get_population(index)

…

assumes we

use 0 for first row

State Population Area

WI 5.795 …

CA 39.54 …

MN 5.577 …

… … …

Design Pattern 3: do something until the end

while has_more():

data = get_next()

fill in with specifics here

People creating functions/modules for other programmers

to use will often have functions for checking if there is more

data and for getting the data one piece at a time

Today's Outline

Design Patterns

Worksheet
•Problem 1

•Problem 2

Break

Continue

Nesting

countdown

5

4

3

2

countdown

5

4

3

2

output

5

4

3

2

i

1

2

3

i j

1 1

2 1

2 2

3 1

3 2

3 3

i j

1 1

2 1

2 2

3 1

3 2

3 3

Output

1

END

2

2

END

3

3

3

END

Today's Outline

Design Patterns

Worksheet

Break

Continue

Nesting

Don’t get too excited,

only the loops get a break!

Basic Control Flow

while CONDITION:

code after the loop…

block of code…

maybe many lines…

at end, always go

back to condition check

True

False

Basic Control Flow

while CONDITION:

code after the loop…

code

…

if CONDITION:

break

…

more code

at end, always go

back to condition check

True

False

Just like return immediately exits a function,

break immediately exits a loop

Basic Control Flow

while CONDITION:

code after the loop…

code

…

if CONDITION:

break

…

more code

at end, always go

back to condition check

True

False

Usage: Commonly used when we’re searching through many things.

Allows us to stop as soon as we find what we want.

Demo: Prime Search Program

Goal: answer whether a range of numbers contains a prime

Input:
• Start of range

• End of range

Output:
• Yes or no

Examples:

14 to 16 => NO (because 14, 15, and 16 are all not prime)

10 to 12 => YES (because 11 is prime)

10 11 12 13 14 15 16 17

num

0

100

200

300

400

num

0

100

200

300

400

inside

sandwich

100

200

300

400

500

num

0

100

200

300

400

inside

sandwich

100

200

300

400

500

output

100?

YES

200?

YES

300?

Today's Outline

Design Patterns

Worksheet

Break

Continue

Nesting

Basic Control Flow

while CONDITION:

code after the loop…

block of code…

maybe many lines…

at end, always go

back to condition check

True

False

Basic Control Flow

while CONDITION:

code after the loop…

code

…

if CONDITION:

continue

…

more code

at end, always go

back to condition check

True

False

continue immediately stops current iteration and

goes back to the condition, without executing the "more code part,

potentially to start another iteration

Basic Control Flow

while CONDITION:

code after the loop…

code

…

if CONDITION:

continue

…

more code

at end, always go

back to condition check

True

False

Usage: commonly used to skip over values we want to ignore

Demo: Average Score

Goal: keep a running average of user-provided scores

Input:
• “q” for quit (keep running until this)

• a score in the 0 to 100 range

Output:
• Recompute average and print after each new number

Example:
enter a score (or q for exit): 50

avg is 50

enter a score (or q for exit): 110

bad input, skipping!

enter a score (or q for exit): q

exiting

Twist: use “continue” to skip over inputs
not in the 0 to 100 range

Today's Outline

Design Patterns

Worksheet

Break

Continue

Nesting

num

0

100

200

300

400

num

0

100

200

300

400

inside

sandwich

100

200

300

400

500

num

0

100

200

300

400

inside

sandwich

100

200

300

400

500

output

100?

YES

200?

YES

300?

400?

YES

500?

YES

Nested loops

while CONDITION_A:

more code

while CONDITION_B:

more code

if CONDITION_C:

continue

more code

more code

code outside any loop

how many blocks are there?

Nested loops

while CONDITION_A:

more code

while CONDITION_B:

more code

if CONDITION_C:

continue

more code

more code

code outside any loop

Nested loops

where does this

jump back to?

while CONDITION_A:

more code

while CONDITION_B:

more code

if CONDITION_C:

continue

more code

more code

code outside any loop

Nested loops

continue and break

always apply to the

inner loop in Python

while CONDITION_A:

more code

while CONDITION_B:

more code

if CONDITION_C:

continue

more code

more code

code outside any loop

https://www.python.org/dev/peps/pep-3136/

https://www.python.org/dev/peps/pep-3136/

Nested loops

while CONDITION_A:

more code

while CONDITION_B:

more code

if CONDITION_C:

break

more code

more code

code outside any loop

https://www.python.org/dev/peps/pep-3136/

https://www.python.org/dev/peps/pep-3136/

Worksheet Problems

	Slide 1: [220 / 319] Iteration 2
	Slide 2: Learning Objectives Today
	Slide 3: Today's Outline
	Slide 4: Design Patterns (outside Programming)
	Slide 5: Design Patterns (outside Programming)
	Slide 6: Design Patterns
	Slide 7: Design Patterns
	Slide 8: Design Patterns
	Slide 9: Design Patterns
	Slide 10: Design Patterns
	Slide 11: Design Patterns
	Slide 12: Design Patterns
	Slide 13: Design Patterns
	Slide 14: Design Patterns
	Slide 15: Design Patterns
	Slide 16: Design Patterns
	Slide 17: Design Patterns
	Slide 18: Design Patterns
	Slide 19: Design Patterns
	Slide 20: Design Patterns
	Slide 21: Design Pattern 1: do something N times
	Slide 22: Design Pattern 1: do something N times
	Slide 23: Design Pattern 1: do something N times
	Slide 24: Design Pattern 2: do something with all data
	Slide 25: Design Pattern 2: do something with all data
	Slide 26: Design Pattern 2: do something with all data
	Slide 27: Design Pattern 2: do something with all data
	Slide 28: Design Pattern 2: do something with all data
	Slide 29: Design Pattern 3: do something until the end
	Slide 30: Today's Outline
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38: Today's Outline
	Slide 39: Basic Control Flow
	Slide 40: Basic Control Flow
	Slide 41: Basic Control Flow
	Slide 42: Demo: Prime Search Program
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47: Today's Outline
	Slide 48: Basic Control Flow
	Slide 49: Basic Control Flow
	Slide 50: Basic Control Flow
	Slide 51: Demo: Average Score
	Slide 52: Today's Outline
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57: Nested loops
	Slide 58: Nested loops
	Slide 59: Nested loops
	Slide 60: Nested loops
	Slide 61: Nested loops
	Slide 62: Worksheet Problems

