Tuples
Objects and References

Department of Computer Sciences
University of Wisconsin-Madison

Test yourself!

e what is the type of the following? {}
o -

a dict

e If Sis astring and L is a list, which line definitely fails?

S[—l] = " n

L{len(S)] = S

G which type is immutable?

Objects and References

stack : heap

note: quotes for strings
not shown (to simplify)

thig'end of an
arrow Is aryobject

global | instructor

thisend ofan
arrow is a reference :

name Ashwin

age 26
date | 11/25/1997

classes 290 319

Observations
1. objects have a "life of their own" beyond variables or even function frames
2. here there are dict and list objects (others are possible)
3. references show up two places: as variables and values in data structures

Objects and References

global

Frames:

stack 5

Instructor

this end of an

arrow is a reference :

Observations

heap

e

name
age
date

classes

/

/

™

arrow Is aryobject

//

7

end ofan

— [T

——

IR

AR

26

"Ashwin"

"11/25/1997"

dict

\.‘

\ list \\

220 319

1. objects have a "life of their own" beyond variables or even function frames

2. here there are dict and list objects (others are possible)

3. references show up two places: as variables and values in data structures
4. technically ints and strs (and all values) are objects too in Python...

Objects and References

stack : heap

global | instructor

™

Frames: /E//

end ofan

/ / AN N
list
arrow Is aryobject
this end of an
e

arrow is a reference : .
- name "Ashwin"
age ~] ™26
date - | T11/25/1997"
classes] \1 \ \
dict \ ”g;\

Questions

220 319

1. why do we need this more complicated model?
2. how can we create new types of objects?
3. how can we copy objects to create new objects?

Today's Outline

let's evolve our mental
model of statel
References -

®* Mental Model for State (v2)
® examples and bugs: accidental argument modification

New Types of Objects
® tuple
®* namedtuple

Motivation for objects and references
®* why do we need this new mental model?

Mental Model for State (v1)

Common mental model
Code: ® equivalent for immutable types
®* PythonTutor uses for strings, etc

— \\h ll 144
= S0 Issues

y = X ® incorrect for mutable types

y += % world” o
! ignores performance

State:

X |hello

y [hello world

note: we're not drawing frame boxes for simplicity since everything is in the global frame

Mental Model for State (v2)

State:

references objects

note: we're still not drawing frame boxes for simplicity since everything is in the global frame

Mental Model for State (v2)

Code:

x = “hello”

*y—x
y += world”

State:

references objects

— “hello”

X

any box with an arrow is a referencp
(variables are one kind of reference)

Mental Model for State (v2)

Code:
X = Yhello”
y = X
* y += % world”
State:
references objects
X — “hello”

Mental Model for State (v2)

Code:
X = Yhello”
y = X
* y += % world”
State:
references objects
X — “hello”

// “hello world”

Mental Model for State (v2)

Code:
X = “hello”
y = X
' y += % world”
State:
references objects
X — “hello”
— “hello world”
y

Revisiting Assignment and Passing Rules for
V2

RULE 1 (assignment)

Yy = X # yv should reference whatever x references

RULE 2 (argument passing)
def f(y):
pass

f(x) # y should reference whatever x references

Imagine a hidden y = x statement

How PythonTutor renders immutable types is configurable...

Frames Objects

Global frame
"hello"
"hello world"

inline primitives but don't nest objects [default] ¥

vl
Code:
X = “hello”
y = X Frames Objects

Global frame str
‘/—)“helln"
X
v2 y | T~y str
"hello world"

render all objects on the heap (Python) —

L)

Today's Outline

References

®* examples and bugs: accidental argument modification

New Types of Objects
® tuple
®* namedtuple

Motivation for objects and references
®* why do we need this new mental model?

References and Arguments/Parameters

Python Tutor always illustrates references with an arrow
for mutable types

Thinking carefully about a few examples will prevent
many debugging headaches...

Example 1: reassign parameter

def f(X):
X*=3
print("f:", x)

num = 10
f(num)
print("after:", num)

Interactive

exercises

Example 2: modify list via param

def f(items):
items.append("!!")
print("f:", items)

words = ['hello’, 'world']
f(words)
print("after:", words)

Interactive

exercises

Example 3: reassign new list to param

def f(items):
items = items + ["I11"]
print("f:", items)

words = ['hello’, 'world']
f(words)
print("after:", words)

Interactive

exercises

Example 4: in-place sort

def first(items):
return items|O]

def smallest(items):
items.sort()
return items]0]

numbers =[4,5,3,2,1]

orint("first:", first(hnumbers))
orint("smallest:", smallest(numbers))
orint("first:"”, first(numbers))

Interactive

exercises

Example 5: sorted sort

def first(items):
return items|O]

def smallest(items):

items = sorted(items)

return items]0]

numbers =[4,5,3,2,1]

orint("first:"”, first(num
orint("smallest:”, sma
orint("first:", first(hum

ners))
lest(numbers))

ners))

Interactive

exercises

Today's Outline

References

New Types of Objects
® tuple
®* namedtuple

Motivation for objects and references
®* why do we need this new mental model?

Tuple Sequence

nums list = [200, 100, 300]
= (200, 100, 300)

\ If you use parentheses (round)

Instead of brackets [square]
you get a tuple instead of a list

What is a tuple? A new kind of sequence!

Like a list
® for loop, indexing, slicing, other methods

Unlike a list:
®* immutable (like a string)

Tuple Sequence

nums list = [200, 100, 300]
= (200, 100, 300)

X
|

= nums list[2] o |
v = nums_tuple[Z] oth put 300 In x

Like a list
® for loop, indexing, slicing, other methods

Unlike a list:
®* immutable (like a string)

Tuple Sequence

nums list = [200, 100, 300]
= (200, 100, 300)

nums list[0] = 99 — I

changes list to

x (0] = 99 "\ [99, 100, 300]

Crashes!

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: 'tuple’ object does not support item assignment

Like a list
® for loop, indexing, slicing, other methods

_ _ Why would we ever want immutability?
Unlike a list: 1. avoid certain bugs

®* Iimmutable (like a string) 2. sSome use cases require it (e.qg., dict keys

Example: location -> building mapping

buildings = {

0,0]: “Comp Sci”,
0,2]: “Psychology”,
O] : “Noland”,

, 8 “Van Vleck”

hd

FAILS!

Traceback (most recent call last):
File "test2.py", line 1, in <module>
buildings = {[0,0]: "CS"}
TypeError: unhashable type: 'list'

4

=

0
4
1

trying to use X,y coordinates as key

Example: location -> building mapping

buildings = {
(0,0): “Comp Sci1”,

(0,2): “Psychology”,
(4,0): “Noland”,
(1, 8) “Van Vleck”

trying to use X,y coordinates as key

Succeeds!
(with tuples)

A note on parenthetical characters

type of parenthesis uses
o 142) 3
parentheses: (and) - £ ()
T (1, 2, 3)

tuple of size 1

list s = [1, 2, 3]

Ance s[-1]

\ s[1l:-2]

brackets: | and |

sequence
dICt d[nonen]
- dict d = {"one":1, "two":2}

braces: { and }

Today's Outline

References

New Types of Objects

®* namedtuple

Motivation for objects and references
®* why do we need this new mental model?

See any bugs? PR

people=|
{"Fname™ "Alice”, "Iname™: "Anderson”, "age™: 30},

G {"fname”: "Bob", "Iname": "Baker", "age": 31},
]

p = people|0]
orint("Hello " + p[*'fname”] + " " + p['Iname"])

people=|
("Alice", "Anderson", 30),

e ("Bob", "Baker", 31),
]

p = people[1]
print("Hello " + p[1] + " " + p[2])

Vote: Which I1s Better Code?

people=|
{"fname": "Alice", "Iname": "Anderson", "age": 30},

G {"fname”: "Bob", "Iname": "Baker", "age": 31},
]

p = people|0]
orint("Hello " + p[*'fname”] + " " + p['Iname"])

people=|
("Alice", "Anderson", 30),

e ("Bob", "Baker", 31),
]

p = people[1]
print("Hello " + p[0] + " " + p[1])

people=]|
{"fname": "Alice", "Iname": "Anderson", "age": 30},

0 {"fname": "Bob", "Iname": "Baker", "age": 31},

) = people[0]
orint("Hello ™ + p["fname”] + " " + p[‘lname”])
people=]

("Alice", "Anderson", 30),

e ("Bob", "Baker", 31),
]

p = people[1]
print("Hello " + p[0] + " " + p[1])

from collections import namedtuple
Person = namedtuple("Person”, ['fname”, "Iname", "age"])

people=]
Person("Alice", "Anderson”, 30),
Person("Bob", "Baker", 31),

D= people[0]
orint("Hello " + p.fname + " " + p.Iname)

from collections import namedtuple\

need to import this data struct

name of that type creates a new type!
/- name of that type

Person = namedtuple("Person”, ["fname”, "Iname”, "age"])
0 = Person("Alice", "Anderson”, 30)

orint("Hello " + p.fname + " " + p.Iname)

from collections import namedtuple\

need to import this data struct

name of that type creates a new type!
/- name of that type

Person = namedtuple("Person”, ["fname”, "Iname”, "age"])

VRN /N /LN
C o0

p = Person("Alice”, "Anderson”, 30)

orint("Hello " + p.fname + " " + p.Iname)

from collections import namedtuple\

need to import this data struct

name of that type creates a new type!
/- name of that type

Person = namedtuple("Person”, ['fname”, "Iname", "age"])

VR /N /LN

p= Perso@ze", "Anderson”, 30)
reates a object of type Person (sub type of namedtuple)

(like str (3) creates a new string or 1ist () creates a new list)

orint("Hello " + p.fname + " " + p.Iname)

from collections import namedtuple

Person = namedtuple("Person”, ["fname”, "Iname”, "age"])

p = Person("Alice”, "Anderson”, 30)

can use either positional or keyword arguments to create a Person

orint("Hello " + p.fname + " " + p.Iname)

from collections import namedtuple

Person = namedtuple("Person”, ["fname”, "Iname”, "age"])

0 = Person(age=30, fname="Alice", Iname="Anderson")

can use either positional or keyword arguments to create a Person

orint("Hello " + p.fname + " " + p.Iname)

from collections import namedtuple

Person = namedtuple("Person”, ['fname”, "Iname”, "age"])

0 = Person(age=30, Fname="Alice", Iname="Anderson")
crashes

iImmediately
(good!)

orint("Hello " + p.fname + " " + p.Iname)

from collections import namedtuple

Person = namedtuple("Person”, ['fname”, "Iname”, "age"])

0 = Person(age=30, fname="Alice", Iname="Anderson")

orint("Hello " + p.fname + " " + p.Iname)

Today's Outline

References
® motivation
®* bugs: accidental argument modification

Today's Outline

References

New Types of Objects

Motivation for objects and references
®* why do we need this new mental model?

Why does Python have the complexity of
separate and ?

Why not follow the original organization we
saw for everything (i.e., boxes of data with
labels)?

Reason 1: Performance

Code:
X = “this string 1s millions of characters..”
* y = x # this is fast!
State:
references objects
X — “this string is millions of ...”

Reason 1: Performance

Code:

X = “this string 1s millions of characters..”
l y = x # this is fast!
State:

references objects

X — “this string is millions of ...”

———

Reason 2: Centralized Updates

-)

alice = {"name":"Alice", "score":10, "age":30}
bob = {"name":"Bob", "score":8, "age":25}
winner = alice

alice['age"] +=1
orint("Winner age:", winner['age"])

State:
references objects
alice name | ©— | "Alice”
core | —|
bob 10
age | | 30
winner

nam> —+—,
sc®r

_—
e S

Reason 2: Centralized Updates

alice = {"name":"Alice", "score":10, "age":30}
bob = {"name":"Bob", "score":8, "age":25}
winner = alice

* alice["age"] += 1
orint("Winner age:", winner['age"])

State:
references objects
alice name | ©— | "Alice”
core | —|
bob 20
age /
winner

nam> —+—,
sc®r

_—
e S

Reason 2: Centralized Updates

alice = {"name":"Alice", "score":10, "age":30}
bob = {"name":"Bob", "score":8, "age":25}
winner = alice

alice['age"] +=1
print("Winner age:", winner["age"])

prints 31, even though we
didn’t directly modify winner

State:
references objects
alice name | = "Alice"

core | —/ ~10

bob
o [)

winner dict
n;m] T "Bob’
scor [| — ‘
g [+— 2
e S

Conclusion

New Types of Objects
. Immutable equivalent as list
. make your own immutable types!
- choose names, don't need to remember positions

References
. faster and allows centralized update
. mutating a parameter affects arguments

