
J SON
Department of Computer Sciences

University of Wisconsin-Madison

Reading s :

Chapter 16 of S weigart book

Worksheet practice with nesting

Learning Objectives

J SON:
• interpret data format

• differences with Python syntax

• deserialize data from J SON files to use in Python program (read)

• serialize data into J SON files for long term storage (write)

Read: Sweigart Ch 16

https://automatetheboringstuff.com/2e/chapter16/

“JSON and APIs” to the end

https://automatetheboringstuff.com/2e/chapter16/

Python Data S tructures and File Formats

Python File

[

[“name”, “x”, “y”],

[“alice”, 100, 150],

[“bob”, -10, 80]

]

name,x,y

alice,100,150

bob,-10,80

list of lists
CSV file

We can use CSV files to store

data we would want in lists of lists

Python Data S tructures and File Formats

Python File

[

[“name”, “x”, “y”],

[“alice”, 100, 150],

[“bob”, -10, 80]

]

name,x,y

alice,100,150

bob,-10,80

list of lists
CSV file

{

“alice”: {

“age”: 40,

“scores”: [10,20,19]},

“bob”: {

“age”: 45,

“scores”: [15,23,17,15]}

}

dict of dicts

?

Python Data S tructures and File Formats

Python File

[

[“name”, “x”, “y”],

[“alice”, 100, 150],

[“bob”, -10, 80]

]

name,x,y

alice,100,150

bob,-10,80

list of lists
CSV file

{

“alice”: {

“age”: 40,

“scores”: [10,20,19]},

“bob”: {

“age”: 45,

“scores”: [15,23,17,15]}

}

{

“alice”: {

“age”: 40,

“scores”: [10,20,19]},

“bob”: {

“age”: 45,

“scores”: [15,23,17,15]}

}

dict of dicts JSON file

Python Data S tructures and File Formats

Python File

[

[“name”, “x”, “y”],

[“alice”, 100, 150],

[“bob”, -10, 80]

]

name,x,y

alice,100,150

bob,-10,80

list of lists
CSV file

{

“alice”: {

“age”: 40,

“scores”: [10,20,19]},

“bob”: {

“age”: 45,

“scores”: [15,23,17,15]}

}

dict of dicts

{

“alice”: {

“age”: 40,

“scores”: [10,20,19]},

“bob”: {

“age”: 45,

“scores”: [15,23,17,15]}

}

JSON file

JSON files look almost

identical to Python code

for data structures!

dicts use curly braces

Python Data S tructures and File Formats

Python File

[

[“name”, “x”, “y”],

[“alice”, 100, 150],

[“bob”, -10, 80]

]

name,x,y

alice,100,150

bob,-10,80

list of lists
CSV file

{

“alice”: {

“age”: 40,

“scores”: [10,20,19]},

“bob”: {

“age”: 45,

“scores”: [15,23,17,15]}

}

dict of dicts

{

“alice”: {

“age”: 40,

“scores”: [10,20,19]},

“bob”: {

“age”: 45,

“scores”: [15,23,17,15]}

}

JSON file

JSON files look almost

identical to Python code

for data structures!

keys are separated from

values with a colon

Python Data S tructures and File Formats

Python File

[

[“name”, “x”, “y”],

[“alice”, 100, 150],

[“bob”, -10, 80]

]

name,x,y

alice,100,150

bob,-10,80

list of lists
CSV file

{

“alice”: {

“age”: 40,

“scores”: [10,20,19]},

“bob”: {

“age”: 45,

“scores”: [15,23,17,15]}

}

dict of dicts

{

“alice”: {

“age”: 40,

“scores”: [10,20,19]},

“bob”: {

“age”: 45,

“scores”: [15,23,17,15]}

}

JSON file

JSON files look almost

identical to Python code

for data structures!

lists use square brackets

Python Data S tructures and File Formats

Python File

[

[“name”, “x”, “y”],

[“alice”, 100, 150],

[“bob”, -10, 80]

]

name,x,y

alice,100,150

bob,-10,80

list of lists
CSV file

{

“alice”: {

“age”: 40,

“scores”: [10,20,19]},

“bob”: {

“age”: 45,

“scores”: [15,23,17,15]}

}

dict of dicts

{

“alice”: {

“age”: 40,

“scores”: [10,20,19]},

“bob”: {

“age”: 45,

“scores”: [15,23,17,15]}

}

JSON file

JSON files look almost

identical to Python code

for data structures!

strings are in quotes

Python Data S tructures and File Formats

Python File

[

[“name”, “x”, “y”],

[“alice”, 100, 150],

[“bob”, -10, 80]

]

name,x,y

alice,100,150

bob,-10,80

list of lists
CSV file

{

“alice”: {

“age”: 40,

“scores”: [10,20,19]},

“bob”: {

“age”: 45,

“scores”: [15,23,17,15]}

}

dict of dicts

{

“alice”: {

“age”: 40,

“scores”: [10,20,19]},

“bob”: {

“age”: 45,

“scores”: [15,23,17,15]}

}

JSON file

JSON files look almost

identical to Python code

for data structures!

integers look like integers

J SON

S tands for JavaScript Object Notation
• J avaS cript is a language for web development

• J SON was developed for J avaS cript programs to store/share data

• J SON looks like Python code because J avaS cript is similar to Python

Minor J avaS cript vs. Python differences:

Python J SON

Booleans True, False true, false

No va lue None null

Quotes S ingle (‘) or double (“) Only double (“)

Commas Extra allowed: [1,2,] No extra: [1,2]

Keys Any type: {3: “three”} S tr only: {“3”: “three”}

remember these!

{

“alice”: 10,

“bob”: 12,

“cindy”: 15

}

JSON file saved somewhere

Python Program

{“alice”:10, “bob”:12,

“cindy”:15}

Ana lys is Code

d
ic

t

data[“cindy”] 15

Reading J SON Files

Pars ing Code

What does this look like?

{

“alice”: 10,

“bob”: 12,

“cindy”: 15

}

JSON file saved somewhere

Python Program

{“alice”:10, “bob”:12,

“cindy”:15}

Ana lys is Code

d
ic

t

data[“cindy”] 15

Reading J SON Files

Pars ing Code

What does this look like?

import json

def read_json(path):

with open(path, encoding="utf-8") as f:

return json.load(f) # dict, list, etc

what about writing new files?

CTRL C+

don't need to understand

this snippet yet

Data S tructures and Files

Data Structures

[lists , dicts , etc]

F iles

[CS Vs , J S ONs, etc]

parsing

serialization

why not just have data structures?

because our data needs to live somewhere when our programs aren't running

why not just have files?

slow, and Python doesn't understand structure until it is parsed

{

“cindy”: 15

}

JSON file saved somewhere

Python Program

{“cindy”: 15}

Code

d
ic

t

data[“cindy”] = 15

What does this look like?

S eria lization Code

Writing J SON Files

{

“cindy”: 15

}

JSON file saved somewhere

Python Program

{“cindy”: 15}

Code

d
ic

t

data[“cindy”] = 15

What does this look like?

S eria lization Code

Writing J SON Files

import json

data is a dict, list, etc

def write_json(path, data):

with open(path, 'w', encoding="utf-8") as f:

json.dump(data, f, indent=2)

CTRL C+

don't need to understand

this snippet yet

Example: S um of numbers (simple J SON)

Goal: count the numbers in a list saved as a J SON file

Input:
• Location of the J SON file

Output:
• The sum

Example: output 6
[1,2,3]

fileA.json

Example: S core Tracker

Goal: record scores (save across runs) and print average

Input:
• A name and a score to record

Output:
• Running average for that person

Example:

"Enter player name and score": alice 10

Alice Avg: 10

"Enter player name and score": alice 20

Alice Avg: 15

"Enter player name and score": bob 13

Bob Avg: 13

Example – Exploring kiva.json

Goal: explore a real-world J SON file

{

"data": {

"lend": {

"loans": {

"values": [

{

"name": "Polikseni",

"description": "Polikseni is 70 years old and married. S he and her husband are both retired and their main income is a retirement

pension of $106 a month for Polikseni and disability income for her husband of $289 a month.

Polikseni's husband, even

though disabled, works in a very small shop as a watchmaker on short hours, just to provide additional income for his family and to feel

useful. Polikseni's husband needs constant medical treatment due to his health problems. S he requested another loan, which she will use

to continue paying for the therapy her husband needs. With a part of the loan, she is going to pay the remainder of the previous loan.",

"loanAmount": "1325.00",

"geocode": {

"city": "Korce",

"country": {

"name": "Albania",

"region": "Eastern Europe",

"fundsLentInCountry": 9051250

}

}

}, …

}

kiva.json

Challenge - Demo 4: Prime Cache

Goal: find number of primes less than N, cache previous return vals

Input:
• An integer N

Output:
• How many primes are less than that number

Challenge - Demo 5: Upper Autocomplete

Goal: record scores (save across runs) and print average

Input:
• A complete phrase

• A partial phrase ending with a *

Output:
• The upper case version of it

• Options to autocomplete

Example:

msg: hi

HI

msg: hello

HELLO

msg: h*

1: hi

2: hello

select: 1

HI
autocomplete must work

across multiple runs

