] SON

Department of Computer Sciences
University of Wisconsin-Madison

Worksheet practice with nesting

Learning Objectives

JSON:

® interpret data format

® differences with Python syntax

® deserialize data from | SON files to use in Python program (read)
® serialize data into | SON files for long term storage (write)

Read: Sweigart Ch 16
https://automatetheboringstuff.com/2e/chapter16/

“JSON and APIs” to the end

https://automatetheboringstuff.com/2e/chapter16/

Python Data S tructures and File Formats

Python File
[
[\\nameII, \\XII, \\yll] , name,x, y
[Malice”, 100, 1507, ﬁ alice, 100,150
[“bob”, -10, 80] bob,-10, 80
]

CSV file
list of lists

We can use CSY files to store
data we would want in lists of lists

Python Data S tructures and File Formats

Python File
[
[\\nameII, \\XII, \\yll] , name,X, y
[Malice”, 100, 1507, ﬁ alice, 100,150
[“bob”, -10, 80] bob,-10, 80
]

CSYV file
list of lists

“alice”: {

\

age”: 40,
“scores”: [10,20,19]},
“bob”) 7

dict of dicts

Python Data S tructures and File Formats

[

Python

[\\name,,, \\XII, \\yll] ,
[Yalice”, 100, 1507,
[“bob”, -10, 80]
]
list of lists
“alice”: |
“age”: 40,
“scores”: [10,20,19]},
“bob”:

dict of dicts

)

File

name, x,Vy
alice, 100,150
bob,-10, 80

CSYV file

{

)

“alice”: |
“age”: 40,

“scores”: [10,20,19]1},
“bob”: |

“Yage”: 45,

“scores”: [15,23,17,15]}

JSON file

Python Data S tructures and File Formats

JSON files look almost
identical to Python code
for data structures!

dicts use curly braces

[]

“alice”: |

“age”: 40,

“scores”: [10,20,19]1},
“bob”: {

“Yage”: 45,

“scores”: [15,23,17,15]}

JSON file

Python Data S tructures and File Formats

JSON files look almost
identical to Python code
for data structures!

keys are separated from

values with a colon {

“alice”: |

|“age”:
[10,20,19]},

“scores”:
“bob”: |
“Yage”: 45,
“scores”: [15,23,17,15]}

JSON file

Python Data S tructures and File Formats

JSON files look almost
identical to Python code
for data structures!

lists use square brackets

{

“alice”: |

“age”: 40,

“Scores”:O,ZO, 1911,
“bob”: {

“Yage”: 45,

“scores”: [15,23,17,15]}

JSON file

Python Data S tructures and File Formats

JSON files look almost
identical to Python code
for data structures!

strings are in quotes

{
“alice”: |
“age”t 40,
“scores”: [10,20,19]},
“bob”: {
“Yage”: 45,
“scores”: [15,23,17,15]}

JSON file

Python Data S tructures and File Formats

JSON files look almost
identical to Python code
for data structures!

integers look like integers

{
“alice”:
“Yage”: ,
“scores”: [10,20,19]1},
“bob”: {
“Yage”: 45,
“scores”: [15,23,17,15]}

JSON file

] SON

S tands for JavaScript Object Notation
® JavaScript is a language for web development

® JSON was developed for | avaS cript programs to store/share data
® JSON looks like Python code because] avaS cript is similar to Python

Minor] avaS cript vs. Python differences:

Python

J SON

Booleans

True, False

Any type: {3: “three”}

remember these!

true, false

..

Str only: {“3”: “three”}

Reading | SON Files

JSON file saved somewhere

Python Program

Analysis Code

data[“cindy”]—|§

dict

T

{“alice”:10, “bob”:12,
“cindy” :15}

Parsing Code

~

What does this look like?

{

}

“alice”: 10,
“bob”: 12,
“cindy”: 15

Reading | SON Files

import json
def read json(path):

with open (path, encoding="utf-8") as f:
return json.load(f) # dict, list, etc

() +

don't need to understand .
this snippet yet Parsing Code

what about writing new files?
What does this look like?

Data S tructures and Files

serialization
Data Structures Files
[lists, dicts, etc] [CS Vs,] SONs, etc]
parsing

why not just have data structures?

because our data needs to live somewhere when our programs aren't running

why not just have files?

slow, and Python doesn't understand structure until it is parsed

Writing] SON Files Python Program

Code

data[“cindy”] = 15

3

{“cindy”: 15}

dict

F’ S erialization Code

What does this look like?
JSON file saved somewhere

{
}

“cindy”: 15

Writing | SON Files

import json

def write json(path, data):
with open (path, 'w', encoding="utf-8") as f:
Json.dump (data, £, 1ndent=2)

)

don't need to understand
this snippet yet S erialization Code

What does this look like?

Example: S um of numbers (simple | SON)

Goal: count the numbers in a list saved as a] SON file

Input:
® Location of the] SON file

Output:

® The sum

fileA.json

Example: tput 6
Xamp o outpu

Example: S core Tracker

Goal: record scores (save across runs) and print average

Input:
® A name and a score to record

Output:

® Running average for that person

Example:

"Enter player name and score": alice 10

Alice Avg: |10
"Enter player name and score": alice 20
Alice Avg: |5

"Enter player name and score": bob 13
Bob Avg: |3

Example — Exploring kiva.json

Goal: explore a real-world | SON file

kiva.json

{
"data": {
"lend": {
"loans": {
"values": [

{

"name": "Polikseni",
"description": "Polikseni is 70 years old and married. She and her husband are both retired and their main income is a retirement

pension of $106 a month for Polikseni and disability income for her husband of $289 a month.

Polikseni's husband, even
though disabled, works in a very small shop as a watchmaker on short hours, just to provide additional income for his family and to feel
useful. Polikseni's husband needs constant medical treatment due to his health problems. S he requested another loan, which she will use
to continue paying for the therapy her husband needs. With a part of the loan, she is going to pay the remainder of the previous loan.",

"loanAmount": "1325.00",
"geocode": {
"city": "Korce",
"country": {
"name": "Albania",
"region": "Eastern Europe”,
"fundsLentlnCountry": 9051250

Challenge - Demo 4: Prime Cache

Goal: find number of primes less than N, cache previous return vals

Input:
® Aninteger N

Output:

® How many primes are less than that number

Challenge - Demo 5: Upper Autocomplete

Goal: record scores (save across runs) and print average

Input:
® A complete phrase Example:
® A partial phrase ending with a *
msg; hi
HI
Output: msg: hello
® The upper case version of it HELLO
® Options to autocomplete msg: h*
| hi
2: hello
select: |

HI

