Dictionaries

Department of Computer Sciences
University of Wisconsin-Madison



Learning Obijectives

Dictionaries:
® creation using { } or dict()
® lookup, insert, update, delete key-value pairs
® in operator, for loop, len built-in function
® keys() and values() methods

Applications of dictionaries
® easy and fast lookup using keys
® frequency storage
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Vocabulary: a list is an
example of a



Data Structures
Definition (from Wikipedia):

a data structure is a :
the among them,

and the functions or

that can be applied to the data
a list can contain a
bunch of values of
varying types



Data Structures
Definition (from Wikipedia):

a data structure is a :
the among them,
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order within the list

L.sort(), len(L), L.pop(0), L.append(x),
update, iterate (for loop), etc



Data Structures
Definition (from Wikipedia):

a data structure is a :
the among them,

and the functions or

that can be applied to the data

values relationships operations
list , indexing, pop, len, index,
1S anything ordered (0,1,...) slicing, in, iteration (for), ...
anything . ,
set . no ordering 1n, ==
immutable

dict




Motivation: lots of data

For loops:
® copy/paste is a pain
® don’t know how many times to copy/paste before program runs

For data structures:
® creating many variables is a pain
(imagine your program analyzes ten thousand values)
® don’t know how many values you will have before program runs
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Mappings

Common data structure approach:
® store many values
® give each value a label
® use labels to lookup values



Mappings

Common data structure approach:
® store many values
® give each value a label
® use labels to lookup values

List example:

nums = [300, 200, 400, 100]

\ we can have many values



Mappings

Common data structure approach:
® store many values
® give each value a label
® use labels to lookup values

List example:

nums = [300, 200, 400, 100]
0 [ 2 3

\ the “labels” are indexes, which

are implicitly attached to values



Mappings

Common data structure approach:
® store many values
® give each value a label
® use labels to lookup values

List example:

nums = [300, 200, 400, 100]

x = nums[2] #x =400

K we use the “label” (i.e., the index)

to lookup the value (here 400)



Mappings

Common data structure approach:

® store many values
® give each value a label lists are an inflexible mapping structure,
because we don’t have control over labels

® use labels to lookup values

what if we don’t want consecutive integers

List example:
as labels? E.g., 0, 10, and 20 (but not between)?

nums = [300, 200, 400, 100]

what if we want to use strings as labels?

x = nums[2] # x=400
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Why call it a dictionary!?

this key
(the word)

maps to...

this value
(the definition)

break-fast}

<

/'brektast/ 4
-

noun
noun: breakfast; plural noun: breakfasts

1. a meal eaten in the morning, the first of the day.
“| often have toast for my breakfast”

verb
verb: breakfast; 3rd person present: breakfasts; past tense: breakfasted, past participle: breakfasted;

gerund or present participle: breakfasting

1. eat breakfast.
“she breakfasted on French toast and bacon”

N /

Python dicts have insertion-based order (Python version > 3.6)




Dictionary

Dictionaries map labels (called keys, rather than indexes)

to values
® values can be anything we choose (as with lists)
® keys can be nearly anything we choose (must be immutable)

nums list = [900, 700, 800]

nums_list[ ] =» 700

\ a dictionary would let us give 700 a label other than it's position



Dictionary

Dictionaries map labels (called keys, rather than indexes)
to values

® values can be anything we choose (as with lists)
® keys can be nearly anything we choose (must be immutable)

nums list = [900, 700, 800]

nums_ list[ ] =» 700

nums dict = {“fi1rst”:900, “third”:700, “second”:3800}

we have the same values



Dictionary

Dictionaries map labels (called keys, rather than indexes)
to values

® values can be anything we choose (as with lists)
® keys can be nearly anything we choose (must be immutable)

1 1

nums list = [900, 700, 800]

nums_ list[ ] =» 700

nums dict = {“fi1irst”:900, “third”:700, “second”:300}

we use curly braces instead of square brackets

careful! curly braces are for both sets and dicts



Dictionary

Dictionaries map labels (called keys, rather than indexes)
to values

® values can be anything we choose (as with lists)
® keys can be nearly anything we choose (must be immutable)

0 I 2
nums list = [900, 700, 800]

nums_ list[ ] =» 700

1 1 1

nums dict = {“"first”:900, “third”:700, “second”:800}

we choose the label (called a key) for each value.
Here the keys are the strings “first”, “third”’, and “second”

we put a colon between each key and value



Dictionary

Dictionaries map labels (called keys, rather than indexes)
to values

® values can be anything we choose (as with lists)
® keys can be nearly anything we choose (must be immutable)

nums list = [900, 700, 800]

nums_ list[ ] =» 700
nums dict = {“first”:900, “third”:700, "“second”:800}

nums_dict[“second”]=p 800

\ lookup for a dict is like indexing for a list (label in brackets).

Just use a key (that we chose) instead of an index.



Dictionary

Dictionaries map labels (called keys, rather than indexes)
to values

® values can be anything we choose (as with lists)
® keys can be nearly anything we choose (must be immutable)

nums list = [900, 700, 800]

nums_ list[ ] =» 700
nums dict = {“first”:900, “third”:700, "“second”:800}

nums_dict[“first”] = 900

\ lookup for a dict is like indexing for a list (label in brackets).

Just use a key (that we chose) instead of an index.



Dictionary

Dictionaries map labels (called keys, rather than indexes)
to values

® values can be anything we choose (as with lists)
® keys can be nearly anything we choose (must be immutable)

nums list = [900, 700, 800]

nums_ list[ ] =» 700
nums dict = {“first”:900, “third”:700, "“second”:800}

nums__dict[“third”] =p 700

\ lookup for a dict is like indexing for a list (label in brackets).

Just use a key (that we chose) instead of an index.



Dictionary

Dictionaries map labels (called keys, rather than indexes)

to values
® values can be anything we choose (as with lists)

® keys can be nearly anything we choose (must be immutable)

“first"
"third"

"second"

900

700

800

900

700

800




A note on parenthetical characters

common structures uses
neses: (and)
parentheses: an —

list
//vsequence

X

sequence

brackets: [ and ]

dict

- dict

braces: { and }

(1+2) * 3
£()

1 =11, 2,
1[-1]
1[1:-2]
d["one"]

d = {"one":
{1, 2, 3}

1,

"two":

2}



Empty set, list, and dict

d = {}
_ — dict or

braces: {and}

d = dict ()
set s = set ()
1 = 1list()
) list
brackets: [ and | ' or
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Dictionary Updates

>>> |st = ["zero", "ten", "not set"]
>>> [st[2] = "twenty"

>>> |st

['zero', 'ten’, 'twenty']

>>>d = {0: "zero", 10: "ten", 20: "not set"}
>>> d[20] = "twenty"

>>>
{0: 'zero', 10: 'ten’, 20: 'twenty'}

dictionary updates look like list updates



Dictionary Deletes

>>> [st = ["zero", "ten"”, "twenty"]
>>> |st.pop(-1)

twenty’ “twenty” isn’t in the list
>>> |st

['zero', 'ten’]

>>>d = {0: "zero", 10: "ten", 20: "twenty"}
>>> d.pop(20)

twenty’

>>>

{0: 'zero', 10: 'ten'}

\

“twenty” isn’t in the dict

dictionary deletes look like list deletes



Dictionary Inserts

>>> |st = ["zero", "ten"]
>>> |st.append(“twenty") # doesn't work: Ist[2] = ...
>>> |st

['zero'

>>> (
>>> (

>>> (

, 'ten’, 'twenty']

= {0: "zero", 10: "ten"}
[20] = "twenty"

{0: 'zero', 10: 'ten’, 20: 'twenty'}

with a dict, if you try to set a value at a key,
it automatically creates it (doesn't work w/ lists)



Today's Outline

Data Structures

Mappings

Dictionaries

Mutations: Updates, Deletes, and Inserts

Coding examples



Example: Print Major Count

Goal: given a CSV of CS5220 survey data,
print each major’s frequency

Input: Example output (not actual
* ACSV count):
. Computer Science: 40
O.UtPUt , Engineering: 50
count per major

Business: 20 https://guide.wisc.edul
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https://guide.wisc.edu/

Challenge: Wizard of Oz

Goal: count how often each word appears in the Wizard of Oz

Input:
® Plaintext of book (from Project Gutenberg)

Output:

® The count of each word

https://en.wikipedia.org/wiki/The_Wizard_of Oz_(1939_film)



