Dictionaries

Department of Computer Sciences
University of Wisconsin-Madison

Learning Obijectives

Dictionaries:
® creation using { } or dict()
® lookup, insert, update, delete key-value pairs
® in operator, for loop, len built-in function
® keys() and values() methods

Applications of dictionaries
® easy and fast lookup using keys
® frequency storage

Today's Outline

Data Structures

Mappings

Dictionaries

Mutations: Updates, Deletes, and Inserts

Coding examples

Vocabulary: a list is an
example of a

Data Structures
Definition (from Wikipedia):

a data structure is a :
the among them,

and the functions or

that can be applied to the data
a list can contain a
bunch of values of
varying types

Data Structures
Definition (from Wikipedia):

a data structure is a :
the among them,

and the functions or

that ¢ n be applied to the|data
a list can contain a

bunch of values of
every value has an varying types
iIndex, representing an
order within the list

L.sort(), len(L), L.pop(0), L.append(x),
update, iterate (for loop), etc

Data Structures
Definition (from Wikipedia):

a data structure is a :
the among them,

and the functions or

that can be applied to the data

values relationships operations
list , indexing, pop, len, index,
1S anything ordered (0,1,...) slicing, in, iteration (for), ...
anything . ,
set . no ordering 1n, ==
immutable

dict

Motivation: lots of data

For loops:
® copy/paste is a pain
® don’t know how many times to copy/paste before program runs

For data structures:
® creating many variables is a pain
(imagine your program analyzes ten thousand values)
® don’t know how many values you will have before program runs

Today's Outline

Data Structures

Mappings

Dictionaries

Mutations: Updates, Deletes, and Inserts

Coding examples

Mappings

Common data structure approach:
® store many values
® give each value a label
® use labels to lookup values

Mappings

Common data structure approach:
® store many values
® give each value a label
® use labels to lookup values

List example:

nums = [300, 200, 400, 100]

\ we can have many values

Mappings

Common data structure approach:
® store many values
® give each value a label
® use labels to lookup values

List example:

nums = [300, 200, 400, 100]
0 [2 3

\ the “labels” are indexes, which

are implicitly attached to values

Mappings

Common data structure approach:
® store many values
® give each value a label
® use labels to lookup values

List example:

nums = [300, 200, 400, 100]

x = nums[2] #x =400

K we use the “label” (i.e., the index)

to lookup the value (here 400)

Mappings

Common data structure approach:

® store many values
® give each value a label lists are an inflexible mapping structure,
because we don’t have control over labels

® use labels to lookup values

what if we don’t want consecutive integers

List example:
as labels? E.g., 0, 10, and 20 (but not between)?

nums = [300, 200, 400, 100]

what if we want to use strings as labels?

x = nums[2] # x=400

Today's Outline

Data Structures

Mappings

Dictionaries

Mutations: Updates, Deletes, and Inserts

Coding examples

Why call it a dictionary!?

this key
(the word)

maps to...

this value
(the definition)

break-fast}

<

/'brektast/ 4
-

noun
noun: breakfast; plural noun: breakfasts

1. a meal eaten in the morning, the first of the day.
“| often have toast for my breakfast”

verb
verb: breakfast; 3rd person present: breakfasts; past tense: breakfasted, past participle: breakfasted;

gerund or present participle: breakfasting

1. eat breakfast.
“she breakfasted on French toast and bacon”

N /

Python dicts have insertion-based order (Python version > 3.6)

Dictionary

Dictionaries map labels (called keys, rather than indexes)

to values
® values can be anything we choose (as with lists)
® keys can be nearly anything we choose (must be immutable)

nums list = [900, 700, 800]

nums_list[] =» 700

\ a dictionary would let us give 700 a label other than it's position

Dictionary

Dictionaries map labels (called keys, rather than indexes)
to values

® values can be anything we choose (as with lists)
® keys can be nearly anything we choose (must be immutable)

nums list = [900, 700, 800]

nums_ list[] =» 700

nums dict = {“fi1rst”:900, “third”:700, “second”:3800}

we have the same values

Dictionary

Dictionaries map labels (called keys, rather than indexes)
to values

® values can be anything we choose (as with lists)
® keys can be nearly anything we choose (must be immutable)

1 1

nums list = [900, 700, 800]

nums_ list[] =» 700

nums dict = {“fi1irst”:900, “third”:700, “second”:300}

we use curly braces instead of square brackets

careful! curly braces are for both sets and dicts

Dictionary

Dictionaries map labels (called keys, rather than indexes)
to values

® values can be anything we choose (as with lists)
® keys can be nearly anything we choose (must be immutable)

0 I 2
nums list = [900, 700, 800]

nums_ list[] =» 700

1 1 1

nums dict = {“"first”:900, “third”:700, “second”:800}

we choose the label (called a key) for each value.
Here the keys are the strings “first”, “third”’, and “second”

we put a colon between each key and value

Dictionary

Dictionaries map labels (called keys, rather than indexes)
to values

® values can be anything we choose (as with lists)
® keys can be nearly anything we choose (must be immutable)

nums list = [900, 700, 800]

nums_ list[] =» 700
nums dict = {“first”:900, “third”:700, "“second”:800}

nums_dict[“second”]=p 800

\ lookup for a dict is like indexing for a list (label in brackets).

Just use a key (that we chose) instead of an index.

Dictionary

Dictionaries map labels (called keys, rather than indexes)
to values

® values can be anything we choose (as with lists)
® keys can be nearly anything we choose (must be immutable)

nums list = [900, 700, 800]

nums_ list[] =» 700
nums dict = {“first”:900, “third”:700, "“second”:800}

nums_dict[“first”] = 900

\ lookup for a dict is like indexing for a list (label in brackets).

Just use a key (that we chose) instead of an index.

Dictionary

Dictionaries map labels (called keys, rather than indexes)
to values

® values can be anything we choose (as with lists)
® keys can be nearly anything we choose (must be immutable)

nums list = [900, 700, 800]

nums_ list[] =» 700
nums dict = {“first”:900, “third”:700, "“second”:800}

nums__dict[“third”] =p 700

\ lookup for a dict is like indexing for a list (label in brackets).

Just use a key (that we chose) instead of an index.

Dictionary

Dictionaries map labels (called keys, rather than indexes)

to values
® values can be anything we choose (as with lists)

® keys can be nearly anything we choose (must be immutable)

“first"
"third"

"second"

900

700

800

900

700

800

A note on parenthetical characters

common structures uses
neses: (and)
parentheses: an —

list
//vsequence

X

sequence

brackets: [and]

dict

- dict

braces: { and }

(1+2) * 3
£()

1 =11, 2,
1[-1]
1[1:-2]
d["one"]

d = {"one":
{1, 2, 3}

1,

"two":

2}

Empty set, list, and dict

d = {}
_ — dict or

braces: {and}

d = dict ()
set s = set ()
1 = 1list()
) list
brackets: [and | ' or

Today's Outline

Data Structures

Mappings

Dictionaries

Mutations: Updates, Deletes, and Inserts

Coding examples

Dictionary Updates

>>> |st = ["zero", "ten", "not set"]
>>> [st[2] = "twenty"

>>> |st

['zero', 'ten’, 'twenty']

>>>d = {0: "zero", 10: "ten", 20: "not set"}
>>> d[20] = "twenty"

>>>
{0: 'zero', 10: 'ten’, 20: 'twenty'}

dictionary updates look like list updates

Dictionary Deletes

>>> [st = ["zero", "ten"”, "twenty"]
>>> |st.pop(-1)

twenty’ “twenty” isn’t in the list
>>> |st

['zero', 'ten’]

>>>d = {0: "zero", 10: "ten", 20: "twenty"}
>>> d.pop(20)

twenty’

>>>

{0: 'zero', 10: 'ten'}

\

“twenty” isn’t in the dict

dictionary deletes look like list deletes

Dictionary Inserts

>>> |st = ["zero", "ten"]
>>> |st.append(“twenty") # doesn't work: Ist[2] = ...
>>> |st

['zero'

>>> (
>>> (

>>> (

, 'ten’, 'twenty']

= {0: "zero", 10: "ten"}
[20] = "twenty"

{0: 'zero', 10: 'ten’, 20: 'twenty'}

with a dict, if you try to set a value at a key,
it automatically creates it (doesn't work w/ lists)

Today's Outline

Data Structures

Mappings

Dictionaries

Mutations: Updates, Deletes, and Inserts

Coding examples

Example: Print Major Count

Goal: given a CSV of CS5220 survey data,
print each major’s frequency

Input: Example output (not actual
* ACSV count):
. Computer Science: 40
O.UtPUt , Engineering: 50
count per major

Business: 20 https://guide.wisc.edul

- ‘

% ”‘. . "“\.‘. :
" “ N
}"'"v J

-

2 - ' -
> ’ ,‘

.‘.
| -

e

R o Qo > F]
{ :

...ﬁ "‘ / »

https://guide.wisc.edu/

Challenge: Wizard of Oz

Goal: count how often each word appears in the Wizard of Oz

Input:
® Plaintext of book (from Project Gutenberg)

Output:

® The count of each word

https://en.wikipedia.org/wiki/The_Wizard_of Oz_(1939_film)

