
Copying

Department of Computer Sciences

University of Wisconsin-Madison

Readings:

P arts of Chapter 4 of S weig art book

Test yourself!

A

C

what do varia bles conta in?

1

2

objects

references to objects

which of the following live ins ide frames?

1

2

objects

variables

B how should we label the

blanks in the hierarchy?

1

2

namedtuple, tuple

tuple, namedtuple

????

Person Hurricane

????

objects

Learning Objectives Today

Pra ctice objects/references !

Levels of copying
• Making a new reference

• S ha llow copy

• Deep copy

Read:

✦ S weig art Ch 4 ("References" to the end)

https ://a utomatetheboring stuff.com/chapter4/

https://www.copymachinesdirect.com/copier-lea s ing .php

Today's Outline

Review

More references

Copying
• reference

• sha llow

• deep

Worksheet

Worksheet Problem 1

What does a ss ignment ACTUALLY do?

x = ["A","B","C"]

y = x

What does a ss ignment ACTUALLY do?

x = ["A","B","C"]

y = x

x

y

"A" "B" "C"

YES
y should reference

whatever x references

What does a ss ignment ACTUALLY do?

x = ["A","B","C"]

y = x

x

y

"A" "B" "C"

YES

x

y

"A" "B" "C"

NO

x

y

"A" "B" "C"

NO

"A" "B" "C"

no code could ever

make this happen

y should reference

whatever x references

different code would

be needed to do this

What does a ss ignment ACTUALLY do?

x = ["A","B","C"]

y = x

x

y

"A" "B" "C"

What does a ss ignment ACTUALLY do?

x = ["A","B","C"]

y = x

def f(y):

pass

x = ["A", "B", "C"]

f(x)

x

y

"A" "B" "C"

x = ["A","B","C"]

y = x

def f(y):

pass

x = ["A", "B", "C"]

f(x)

What does a ss ignment ACTUALLY do?

x

y

"A" "B" "C"g loba l frame

f frame

heapstack

E xample 1

x = {}

y = x

y["WI"] = "Madison"

print(x["WI"])

interactive

exercises

E xample 2

def foo(nums):

nums.append(3)

print(nums)

items = [1,2]

numbers = items

foo(numbers)

print(items)

print(numbers)

interactive

exercises

E xample 3

x = ["aaa", "bbb"]

y = x[:]

x.pop(0)

print(len(y))

interactive

exercises

Worksheet Problems 2-6

Today's Outline

Review

More references

Copying
• reference

• sha llow

• deep

Worksheet

alice = {"name":"Alice", "score":10, "age":30}

bob = {"name":"Bob", "score":8, "age":25}

team = [alice, bob]

players = {"A": alice, "B": bob}

State:

alice

references objects

name

score

age

dict

"Alice"

10

30

alice = {"name":"Alice", "score":10, "age":30}

bob = {"name":"Bob", "score":8, "age":25}

team = [alice, bob]

players = {"A": alice, "B": bob}

State:

alice

references objects

bob

name

score

age

dict

"Alice"

10

30

nam

escor

e
ag

e

"Bob"

8

25
dic

t

alice = {"name":"Alice", "score":10, "age":30}

bob = {"name":"Bob", "score":8, "age":25}

team = [alice, bob]

players = {"A": alice, "B": bob}

State:

alice

references objects

bob

name

score

age

dict

"Alice"

10

30

nam

escor

e
ag

e

"Bob"

8

25

team

what DID NOT happen: team conta ins the alice and bob variables

what DID happen: team conta ins references to the objects referenced by bob and alice

dic

t
list

alice = {"name":"Alice", "score":10, "age":30}

bob = {"name":"Bob", "score":8, "age":25}

team = [alice, bob]

players = {"A": alice, "B": bob}

State:

alice

references objects

bob

name

score

age

dict

"Alice"

10

30

nam

escor

e
ag

e dic

t

"Bob"

8

25

team

A

B

players reference reference

Two kinds of reference:

• variable

• item in list, dict, etc dic

t

list

Today's Outline

Review

More references

Copying
• reference

• sha llow

• deep

Worksheet

Three Levels of Copy

import copy

x = [

{"name":"A", "score":88},

{"name":"B", "score":111},

{"name":"C", "score":100}]

uncomment one of these

#y = x

#y = copy.copy(x)

#y = copy.deepcopy(x)

reference copy [fa stest, most dangerous]

sha llow copy

deep copy [s lowest, sa fest]

When should we

use which one?

S ha llow copy of depth level 2

import copy

x = [

{"name":"A", "score":88},

{"name":"B", "score":111},

{"name":"C", "score":100}]

y = copy.copy(x)

for idx in range(len(x)):

y[idx] = copy.copy(x[idx])

sha llow copy

Using sha llow copy to

copy other depth levels

sha llow copy of depth level 2

E xample: P la yer S cores

players = [

{"name":"A", "score":88},

{"name":"B", "score":111},

{"name":"C", "score":100}

]

players

name A

score 88

name B

score 111

name C

score 100

Depending on the use ca se,

there are three ways we might

"copy" the pla yer’s data

E xample: P la yer S cores

players = [

{"name":"A", "score":88},

{"name":"B", "score":111},

{"name":"C", "score":100}

]

players

name A

score 88

name B

score 111

name C

score 100

Use Case 1

Get max score

(reference copy)

Use Case 2

Get median score

(shallow copy)

Use Case 3

Record historical scores

(deep copy)

E xample: P la yer S cores

players = [

{"name":"A", "score":88},

{"name":"B", "score":111},

{"name":"C", "score":100}

]

players

name A

score 88

name B

score 111

name C

score 100

Use Case 1

Get max score

(reference copy)

Use Case 3

Record historical scores

(deep copy)

Use Case 2

Get median score

(shallow copy)

def max_score(people):

highest = None

for p in people:

if highest == None or p["score"] > highest:

highest = p["score"]

return highest

players = …

m = max_score(players)

def max_score(people):

highest = None

for p in people:

if highest == None or p["score"] > highest:

highest = p["score"]

return highest

players = …

m = max_score(players)

players

name A

score 88

name B

score 111

name C

score 100

def max_score(people):

highest = None

for p in people:

if highest == None or p["score"] > highest:

highest = p["score"]

return highest

players = …

m = max_score(players)

players

name A

score 88

name B

score 111

name C

score 100

people

There is no risk of max_score

accidenta lly corrupting pla yers

s ince it only reads people

def max_score(people):

highest = None

for p in people:

if highest == None or p["score"] > highest:

highest = p["score"]

return highest

players = …

m = max_score(players)

players

name A

score 88

name B

score 111

name C

score 100

people

There is no risk of max_score

accidenta lly corrupting pla yers

s ince it only reads people

.

.

.

def max_score(people):

highest = None

for p in people:

if highest == None or p["score"] > highest:

highest = p["score"]

return highest

players = …

m = max_score(players)

players

name A

score 88

name B

score 111

name C

score 100

people

highest 111

def max_score(people):

highest = None

for p in people:

if highest == None or p["score"] > highest:

highest = p["score"]

return highest

players = …

m = max_score(players)

players

name A

score 88

name B

score 111

name C

score 100

people

highest 111

m 111

E xample: P la yer S cores

players = [

{"name":"A", "score":88},

{"name":"B", "score":111},

{"name":"C", "score":100}

]

players

name A

score 88

name B

score 111

name C

score 100

Use Case 1

Get max score

(reference copy)

Use Case 3

Record historical scores

(deep copy)

Use Case 2

Get median score

(shallow copy)

def median_score(people):

people = copy.copy(people)

people.sort(...)

TODO: return score for middle of people

players = …

m = median_score(players)

def median_score(people):

people = copy.copy(people)

people.sort(...)

TODO: return score for middle of people

players = …

m = median_score(players)

players

name A

score 88

name B

score 111

name C

score 100

def median_score(people):

people = copy.copy(people)

people.sort(...)

TODO: return score for middle of people

players = …

m = median_score(players)

players

name A

score 88

name B

score 111

name C

score 100

people

Need to make a new list

so we don’t corrupt pla yers

def median_score(people):

people = copy.copy(people)

people.sort(...)

TODO: return score for middle of people

players = …

m = median_score(players)

players

name A

score 88

name B

score 111

name C

score 100

people

Need to make a new list

so we don’t corrupt pla yers

def median_score(people):

people = copy.copy(people)

people.sort(...)

TODO: return score for middle of people

players = …

m = median_score(players)

players

name A

score 88

name B

score 111

name C

score 100

people

copy makes a new list…

def median_score(people):

people = copy.copy(people)

people.sort(...)

TODO: return score for middle of people

players = …

m = median_score(players)

players

name A

score 88

name B

score 111

name C

score 100

people

copy makes a new list…

…that refers to the same items

end of pla yers

end of people

def median_score(people):

people = copy.copy(people)

people.sort(...)

TODO: return score for middle of people

players = …

m = median_score(players)

players

name A

score 88

name B

score 111

name C

score 100

people

copy makes a new list…

…that refers to the same items

end of pla yers

middle of people

def median_score(people):

people = copy.copy(people)

people.sort(...)

TODO: return score for middle of people

players = …

m = median_score(players)

players

name A

score 88

name B

score 111

name C

score 100

people

copy makes a new list…

…that refers to the same items

middle

E xample: P la yer S cores

players = [

{"name":"A", "score":88},

{"name":"B", "score":111},

{"name":"C", "score":100}

]

players

name A

score 88

name B

score 111

name C

score 100

Use Case 1

Get max score

(reference copy)

Use Case 3

Record historical scores

(deep copy)

Use Case 2

Get median score

(shallow copy)

players = …

players_before = copy.deepcopy(players)

make changes to players

players[0]["score"] += 10

print("score change:",

players[0]["score"] - players_before[0]["score"])

players = …

players_before = copy.deepcopy(players)

make changes to players

players[0]["score"] += 10

print("score change:",

players[0]["score"] - players_before[0]["score"])

players

name A

score 88

name B

score 111

name C

score 100

players = …

players_before = copy.deepcopy(players)

make changes to players

players[0]["score"] += 10

print("score change:",

players[0]["score"] - players_before[0]["score"])

players

name A

score 88

name B

score 111

name C

score 100
players_before

deepcopy makes

a new list

players = …

players_before = copy.deepcopy(players)

make changes to players

players[0]["score"] += 10

print("score change:",

players[0]["score"] - players_before[0]["score"])

players

name A

score 88

name B

score 111

name C

score 100
players_before

name A

score 88

name B

score 111

name C

score 100

AND new

dictionaries

players = …

players_before = copy.deepcopy(players)

make changes to players

players[0]["score"] += 10

print("score change:",

players[0]["score"] - players_before[0]["score"])

players

name A

score 98

name B

score 111

name C

score 100
players_before

name A

score 88

name B

score 111

name C

score 100

players = …

players_before = copy.deepcopy(players)

make changes to players

players[0]["score"] += 10

print("score change:",

players[0]["score"] - players_before[0]["score"])

players

name A

score 98

name B

score 111

name C

score 100
players_before

name A

score 88

name B

score 111

name C

score 100

prints 10

Today's Outline

Review

More references

Copying
• reference

• sha llow

• deep

Worksheet

Worksheet Problems 7-11

