
Dictionaries
Department of Computer Sciences

University of Wisconsin-Madison

Readings:

Chapter 11 of Think Python

Chapter 10 of Python for Everybody

Learning Objectives

Dictionaries :
• creation using { } or dict()

• lookup, insert, update, delete key-va lue pa irs

• in operator, for loop, len built-in function

• keys() and va lues () methods

Applications of dictionaries
• ea sy and fast lookup using keys

• frequency storage

Today's Outline

Data Structures

Mappings

Dictionaries

Mutations : Updates , Deletes , and Inserts

Coding examples

Vocabulary: a list is an

example of a data structure

Data Structures

Definition (from Wikipedia):

a data structure is a collection of data values,

the relationships among them,

and the functions or operations

that can be applied to the data
a list can contain a

bunch of values of

varying types

Data Structures

Definition (from Wikipedia):

a data structure is a collection of data values,

the relationships among them,

and the functions or operations

that can be applied to the data
a list can contain a

bunch of values of

varying typesevery value has an

index, representing an

order within the list

L.sort(), len(L), L.pop(0), L.append(x),

update, iterate (for loop), etc

Data Structures

Definition (from Wikipedia):

a data structure is a collection of data values,

the relationships among them,

and the functions or operations

that can be applied to the data

list

set

dict

...

suggested

note-taking

values relationships operations

anything ordered (0,1,...)

no ordering

indexing, pop, len, index,

s licing, in, iteration (for), ...

in, ==
anything

immutable

Motivation: lots of data

For loops:
• copy/pa ste is a pa in

• don’t know how many times to copy/pa ste before program runs

For data structures :
• creating many variables is a pa in

(imagine your program ana lyzes ten thousand va lues)

• don’t know how many va lues you will have before program runs

Today's Outline

Data Structures

Mappings

Dictionaries

Mutations : Updates , Deletes , and Inserts

Coding examples

Mappings

Common data structure approach:
• store many va lues

• give ea ch va lue a label

• use labels to lookup va lues

Mappings

Common data structure approach:
• store many values

• give ea ch va lue a label

• use labels to lookup va lues

List example:

nums = [300, 200, 400, 100]

we can have many va lues

Mappings

Common data structure approach:
• store many va lues

• give each value a label

• use labels to lookup va lues

List example:

nums = [300, 200, 400, 100]
0 1 2 3

the “labels” are indexes , which

are implicitly attached to va lues

Mappings

Common data structure approach:
• store many va lues

• give ea ch va lue a label

• use labels to lookup values

List example:

nums = [300, 200, 400, 100]

x = nums[2] # x = 400

we use the “label” (i.e., the index)

to lookup the va lue (here 400)

Mappings

Common data structure approach:
• store many va lues

• give ea ch va lue a label

• use labels to lookup va lues

List example:

nums = [300, 200, 400, 100]

x = nums[2] # x=400

lists are an inflexible mapping structure,

because we don’t have control over labels

what if we don’t want consecutive integers

as labels ? E.g., 0, 10, and 20 (but not between)?

what if we want to use strings as labels ?

Today's Outline

Data Structures

Mappings

Dictionaries

Mutations : Updates , Deletes , and Inserts

Coding examples

Why ca ll it a dictionary?

this key

(the word)

maps to…

this va lue

(the definition)

Python dicts have insertion-ba sed order (Python version > 3.6)

nums_list = [900, 700, 800]

nums_list[1] 700

Dictionary

Dictionaries map labels (ca lled keys , rather than indexes)

to va lues
• va lues can be anything we choose (as with lists)

• keys can be nearly anything we choose (must be immutable)

a dictionary would let us give 700 a label other than it’s pos ition

Dictionary

Dictionaries map labels (ca lled keys , rather than indexes)

to va lues
• va lues can be anything we choose (as with lists)

• keys can be nearly anything we choose (must be immutable)

nums_list = [900, 700, 800]

nums_list[1] 700

nums_dict = {“first”:900, “third”:700, “second”:800}

we have the same va lues

Dictionary

Dictionaries map labels (ca lled keys , rather than indexes)

to va lues
• va lues can be anything we choose (as with lists)

• keys can be nearly anything we choose (must be immutable)

nums_list = [900, 700, 800]

nums_list[1] 700

nums_dict = {“first”:900, “third”:700, “second”:800}

we use curly braces instead of square brackets

careful! curly braces are for both sets and dicts

Dictionary

Dictionaries map labels (ca lled keys , rather than indexes)

to va lues
• va lues can be anything we choose (as with lists)

• keys can be nearly anything we choose (must be immutable)

nums_list = [900, 700, 800]

nums_list[1] 700

nums_dict = {“first”:900, “third”:700, “second”:800}

0 1 2

we choose the label (ca lled a key) for each value.

Here the keys are the strings “first”, “third”, and “second”

we put a colon between ea ch key and va lue

Dictionary

Dictionaries map labels (ca lled keys , rather than indexes)

to va lues
• va lues can be anything we choose (as with lists)

• keys can be nearly anything we choose (must be immutable)

nums_list = [900, 700, 800]

nums_list[1] 700

nums_dict = {“first”:900, “third”:700, “second”:800}

nums_dict[“second”] 800

lookup for a dict is like indexing for a list (label in brackets).

Just use a key (that we chose) instead of an index.

Dictionary

Dictionaries map labels (ca lled keys , rather than indexes)

to va lues
• va lues can be anything we choose (as with lists)

• keys can be nearly anything we choose (must be immutable)

nums_list = [900, 700, 800]

nums_list[1] 700

nums_dict = {“first”:900, “third”:700, “second”:800}

nums_dict[“first”] 900

lookup for a dict is like indexing for a list (label in brackets).

Just use a key (that we chose) instead of an index.

Dictionary

Dictionaries map labels (ca lled keys , rather than indexes)

to va lues
• va lues can be anything we choose (as with lists)

• keys can be nearly anything we choose (must be immutable)

nums_list = [900, 700, 800]

nums_list[1] 700

nums_dict = {“first”:900, “third”:700, “second”:800}

nums_dict[“third”] 700

lookup for a dict is like indexing for a list (label in brackets).

Just use a key (that we chose) instead of an index.

Dictionary

Dictionaries map labels (ca lled keys , rather than indexes)

to va lues
• va lues can be anything we choose (as with lists)

• keys can be nearly anything we choose (must be immutable)

nums_list = [900, 700, 800]

nums_list[1] 700

nums_dict = {“first”:900, “third”:700, “second”:800}

nums_dict[“third”] 700

900

700

800

700

800

900

"third"

"second"

"first"

0

1

2

o
rd

e
re

d

in
s
e
rtio

n
o
rd

e
r

(P
yth

o
n
 >

 3
.6

)

labels values

valueslabels

key

index

A note on parenthetica l chara cters

parentheses: (and)

brackets: [and]

braces: { and }

common structures uses

specifying order:

function invocation

or function definition:

sequence indexing:

sequence slicing:

dict lookup:

list creation:

dict creation:

set creation:

(1+2) * 3

f()

l[-1]

l[1:-2]

d["one"]

l = [1, 2, 3]

d = {"one": 1, "two": 2}

{1, 2, 3}

Empty set, list, and dict

braces: { and }
dict creation:

set creation:

d = {}

or

d = dict()

s = set()

brackets: [and]
list

creation:

l = list()

or

l = []

Today's Outline

Data Structures

Mappings

Dictionaries

Mutations : Updates , Deletes , and Inserts

Coding examples

Dictionary Updates

>>> lst = ["zero", "ten", "not set"]

>>> lst[2] = "twenty"

>>> lst

['zero', 'ten', 'twenty']

>>> d = {0: "zero", 10: "ten", 20: "not set"}

>>> d[20] = "twenty"

>>> d

{0: 'zero', 10: 'ten’, 20: 'twenty'}

dictionary updates look like list updates

Dictionary Deletes

>>> lst = ["zero", "ten", "twenty"]

>>> lst.pop(-1)

'twenty'

>>> lst

['zero', 'ten']

>>> d = {0: "zero", 10: "ten", 20: "twenty"}

>>> d.pop(20)

'twenty'

>>> d

{0: 'zero', 10: 'ten'}

dictionary deletes look like list deletes

“twenty” isn’t in the dict

“twenty” isn’t in the list

Dictionary Inserts

>>> lst = ["zero", "ten"]

>>> lst.append("twenty") # doesn't work: lst[2] = ...

>>> lst

['zero', 'ten', 'twenty']

>>> d = {0: "zero", 10: "ten"}

>>> d[20] = "twenty"

>>> d

{0: 'zero', 10: 'ten’, 20: 'twenty'}

with a dict, if you try to set a va lue at a key,

it automatica lly creates it (doesn't work w/ lists)

Today's Outline

Data Structures

Mappings

Dictionaries

Mutations : Updates , Deletes , and Inserts

Coding examples

Example: Print Ma jor Count

Goal: given a CSV of CS220 survey data ,

print each major’s frequency

Input:
• A CSV

Output:
• count per ma jor

Example (not actual count):

Computer Science: 40

Engineering: 50

Business: 20

https://en.wikipedia .org/wiki/Tornado

Example output (not actual

count):

Computer Science: 40

Engineering: 50

Business : 20
https://guide.wisc.edu/

https://guide.wisc.edu/

Cha llenge: Wizard of Oz

Goal: count how often each word appears in the Wizard of Oz

Input:
• Pla intext of book (from Project Gutenberg)

Output:
• The count of ea ch word

https://en.wikipedia .org/wiki/The_Wizard_of_Oz_(1939_film)

