[220] Conditionals

Department of Computer Sciences
University of Wisconsin-Madison

Part |:Intro to conditionals

Mental Model of Control Flow

Code:
|. do statements in order, one at a time
/ : . .
2. functions: jump in and out of these
three : it : i ip statements
| 3 conditionals: sometimes skip st * TODAY

exceptions , ,

4. loops: sometimes go back to previous

Learning Objectives Today

Write conditional statements
e Conditional execution (if)
e Alternate execution (else)

Chapter 5 of Think Python

(skip "Recursion" sections)

¢ Chained conditionals (elif)

Do PythonTutor Practice!
(posted on schedule)

Determine the output of conditional statements

|dentify nested code blocks
e Count the number of blocks in a segment of code

Today's Outline

Review *

Control Flow Diagrams

Basic syntax for “if”

|dentifying code blocks

Review |: Indentation Example

what does it print?
print (“A")

print (“B"”)
def print letters():

print (“C")
print (“D")

print (“E")
print (“F")

print letters()

Review |: Indentation Example

what does it print?
print (“A")

print (“B") A

def print letters():
print (“C")
print (“D")

B
E
F
print(“E”) C
D

print (“F")

print letters()

Review |: Indentation Example

what does it print?
print (“A")

print (“B") /\

def print letters():

print (“C") ~ indented, so “inside”
print (“D") print_letters function

print (“F")

B
E
F:
print (“E"”) C
D

print letters()

Review |: Indentation Example

what does it print?
print (“A")

print (“B") A

def print letters(): B
print(“C") ~ indented, so “inside” E
print (“D") print_letters function

print (“E") printed last because

print (“F") print_letters is called last

print letters()

Review |: Indentation Example

print (“A")
print(“B")

=

not indented, so

“outside” any function

def print letters():

print (“C")
print (“D")

=

print (“E")
print (“F")

print letters()

indented, so “inside”
print_letters function

what does it print?

Review |: Indentation Example

print (“A")
print(“B")

~ not indented, so
“outside” any function

def print letters():

print (“C") ~ indented, so “inside”
print (“D") print_letters function

print (“E")
print (“F")

also not indented, so

~ ‘“outside” any function.
Runs BEFORE

print_letters is called

print letters()

what does it print?

Review |: Indentation Example

print (“A")
print(“B")

=

def print letters():

print (“C")
print (“D")

=

blank lines are irrelevant

print (“E")
print (“F")

=

print letters()

We use indenting to tell Python which code is inside or outside

of a function (or other things we’ll learn about soon).

Review |: Indentation Example

print (“A")
print (“B")

def print_ letters():

print (“C”) we'll often call the lines
= of code inside something
a “block” of code

print (“D")

print (“E")
print (“F")

print letters()

Review |: Indentation Example

print (“A")
print(“B")

def print letters():

print (“C")
> horizontal spaces
identify blocks (not
print(“D") vertical space)

print (“E")
print (“F")

print letters()

Review 2: Argument Passing

def h(x=1, y=2):
print(x, y) # what is printed?

def g(x, vy):
print(x, y) # what is printed?
h(y)

def £(x, vy):
print(x, y) # what is printed?
g(x=x, y=yt+l)

X 10
Yy 20

f£(y, X)

Today's Outline

Review

Control Flow Diagrams *

Basic syntax for “if”

|dentifying code blocks

4 just

dawe bomesne

J know.

DO YOU REMEMBER
H I ? = ISITAN EX? IS THERE TIME TO FLEE?

A FRIEND'S EX?

COULD YOU PRETEND TO
! GET A CALL ON YOUR CELL?
llollv. Mn

sav hi. AN ENEMY OR FRENEMY?

DO YOU WANT TO 4
REKINDLE AND/OR é _ AREYOUWEARING

GIVE 'EM WHAT FOR? AREYOUINA SUNGLASSES?
CONVERTIBLE

WITH BRAD PITT

AND/OR RIHANNA? @ é

Don't @ v
say hi. Keop walking.

say hi. v Address the person using
0 ARE YOU ROBBING A BANK? an amusing nickname

such as “Sarge.” "Slugger”
I or "Master Blaster.”

ARE YOU IN @ , .
[t s i Aamnoeev Say hi.

ARGCAANOCAL"NT L0 @ © X0 5 BvO) THEN O

Control Flow Diagrams (Flowcharts for Code)

X = input(“enter x:”)
X = int(x)

v

S

print(“it’s even”) print(“it’s odd”)

N/

print(“thank you”)

Control Flow Diagrams (Flowcharts for Code)

x = input(“‘enter x:”)

X = int(x)
|

condition
\ v

conditional execution ‘@ alternate execution
Sometimes True False Other times
we do this we do this

print(“it’s even”) print(“it's odd”)

N/

print(“thank you™)

Control Flow Diagrams (Flowcharts for Code)

x = input(“‘enter x:”)

X = int(x)
boolean expressions are mostly
condition used for deciding what to do next
\ v (not for printing ““True” or “False”
as in most of our examples thus far)
conditional execution alternate execution
Sometimes True False Other times
we do this we do this
print(“it’s even”) print(“it’s odd”)

N/

print(“thank you™)

Control Flow Diagrams (Flowcharts for Code)

x = input(“‘enter x:”)

X = int(x
conditional)
boolean expressions are mostly
condition used for deciding what to do next
\ v (not for printing ““True” or “False”
as in most of our examples thus far)
conditional execution alternate execution
Sometimes True False Other times
we do this we do this
print(“it’s even”) print(“it’s odd”)

N/

print(“thank you™)

Branches (aka "Paths of Execution’)

Input/Output:

enter x: 8
it’s even
thank you

x = input(“enter x:”)
X = int(x)

!

S

print(“it’s even”)

print(“it’s odd”)

N/

print(“thank you”)

Branches (aka "Paths of Execution’)

Input/Output:

enter x: 7/
it’s odd
thank you

x = input(“‘enter x: ")
X = int(x)

v

v

print(“it’s even”)

print(“it’s odd”)

A

print(“thank you”)

Today's Outline

Review

Control Flow Diagrams

Basic syntax for “if” *
Demos

|dentifying code blocks

Demos / worksheet

Writing conditions in Python

Code:
x = input(“enter x:”)
X = int(x)

So

print(“it’s even”) print(“it’s odd”)

N/

print(“thank you”)

Writing conditions in Python

Code:

_ x = input(“enter x:)
X = 1nput(“enter x: ") X = int(x)
X = 1nt(X) I

v

So

print(“it’s even”) print(“it’s odd”)

N/

print(“thank you™)

Writing conditions in Python

Code:
X = 1lnput(“enter x:
X = 1int(x)

if x & 2 =

O:

II)

x = input(“enter x:”)
X = int(x)

print(“it’s even”)

N/

print(“it's odd”)

print(“thank you”)

Writing conditions in Python

Code:

X =
X

if x

input(“enter x: ")
int(x)

g 2 ==

print(“it’s even”)

x = input(“enter x:”)
X = int(x)

v

S

True

|

Vse

print(“it’s even”)

print(“it’s odd”)

N

V4

print(“thank you”)

Writing conditions in Python

Code:
X = 1nput(“enter x: ")
X = 1int(x)

if x & 2 ==
print(“it’s even”)
else:
print(“it’s odd”)

colons will almost always be
followed by a tabbed new line

x = input(“‘enter x:)
X = int(x)

v

S

v N\

print(“it’s even”)

N\

print(“it’s odd”)

4

print(“thank you”)

Writing conditions in Python

Code:

_ x = input(“‘enter x:)
X = 1lnput(“enter x: ") X = int(x)
X = 1int(x) I

v

if x & 2 == 0:
print(“it’s even”)
else:

print(“it’s odd”) True / False

print (“thank you”)
print(“it’s even”) print(“it’s odd”)

N/

print(“thank you”)

Writing conditions in Python

Code:

_ x = input(“‘enter x:)
X = 1lnput(“enter x: ") X = int(x)
X = 1int(x) I

if x % 2 == v

print(“it’s even”)
print (“we wanted odd”)

else: True/ Vse
print(“it’s odd") K

print(“good!”) -
print(“it’s even”) P"'f‘t(Its °d<’j’)
print(“we wanted odd”) print(“good!”)

print (“thank you”) \\s‘ ”(
|

print(“thank you”)

Today's Outline

Review

Control Flow Diagrams
Basic syntax for “if”
Demos *
|dentifying code blocks

Demos / worksheet

Today's Outline

Review

Control Flow Diagrams
Basic syntax for “if”
Demos

ldentifying code blocks *

Demos / worksheet

Code Blocks

Code:
X = 1nput(“enter x: ")
X = 1int(x)

if x & 2 ==

print(“it’s even”) block of code
print (“we wanted odd”) inside “if”
else:

print(“good!") inside “else”

print(“it’s odd"”)]> block of code

print (“thank you”)
print(“all done”)

Code Blocks

Code:
X = 1nput(“enter x: ")
X = 1int(x)
if x 8 2 == 0:
print(“it’s even”) block of code
print (“we wanted odd”) inside “if”
else:

print(“good!") inside “else”

print(“it’s odd”)]> block of code

print (“thank you”)
print(“all done”)

What if all this were inside a function?

Code Blocks

You need to get good at “seeing”’ code blocks in Python code.
Even blocks inside blocks inside blocks...

Code:

def check oddness():

\.

p
X

X

if x

input(“enter x: ")
int (x)

% 2 == 0:

print(“it’'s even”)

print(“we wanted odd”)

block of code
inside “if”’

else:

print(“it’s odd”)
print(“good!”)

~

print (“thank you”)
print(“all done”)

block of code
inside “else”

check oddness|()

block of code in
check oddness

ldentifying Code Blocks

Code:

def check oddness(
X = 1lnput(“enter x: ")
X = 1nt(x)

if x & 2 ==
print(“it’'s even”)
print (“we wanted odd”)
else:

print(“it’s odd”)
print(“good!”)

print (“thank you”)
print(“all done”)

check oddness|()

Step |:look for a colon at
end of a line

ldentifying Code Blocks

Code:

def check oddness():

|x = 1nput(“enter x: ")
2 .
l,f X = 1nt(X)

if x & 2 ==

4
print(“it’'s even”)
print(“we wanted odd”)

else:

print(“it’s odd”)
print(“good!”)

print (“thank you”)
print(“all done”)

check oddness|()

Step 2:start drawing a line
on next code line, indented in

ldentifying Code Blocks

Code:

def check oddness():
X = input(“enter x: ")
X = 1nt(x)

if x & 2 ==
print(“it’'s even”)
print(“we wanted odd”)
else:

print(“it’s odd”)
print(“good!”)

print (“thank you”)
print(“all done”)

i

4

"’heck_oddness()

4

Step 3: continue down until you hit
code that is less indented

ldentifying Code Blocks

Code:

def check oddness():
X = input(“enter x: ")
X = 1nt(x)

1if x & 2 ==

print(“it’'s even”)

print (“we wanted odd”) Step 4: box off the code
else:

print(“it’s odd”)

print(“good!”)

print (“thank you”)
print(“all done”)

check oddness() "'

ldentifying Code Blocks

Code:

def check oddness():
X = input(“enter x: ")
X = 1nt(x)

1if x & 2 ==
print(“it’'s even”)
print (“we wanted odd”) Step 4: box off the code
else:
print(“it’s odd”)
print(“good!”)

print (“thank you”)
print(“all done”)

check oddness|()

ldentifying Code Blocks

Code:

def check oddness():
X = input(“enter x: ")
X = 1nt(x)

if xX % == O()
t’s

print(“1 even')

print (“we wanted odd”) to find more boxes,
else: look for the next colon

print(“it’s odd") and repeat

print (“good!”)

print (“thank you”)
print(“all done”)

check oddness|()

ldentifying Code Blocks

Code:

def check oddness():
X = input(“enter x: ")

X = 1nt(Xx)
1if x 8 2 == 0:
print(“it’s even”)
print(“we wanted odd”) to find more boxes,
else: look for the next colon
print(“it’s odd") and repeat

print (“good!”)

print (“thank you”)
print(“all done”)

check oddness|()

ldentifying Code Blocks

Code:

def check oddness():
X = input(“enter x: ")

X = 1nt(Xx)
1if x 8 2 == 0:
print(“it’s even”)
print(“we wanted odd”) to find more boxes,
els look for the next colon
rint(“it’s odd”) and repeat

print (“good!”)

print (“thank you”)
print(“all done”)

check oddness|()

ldentifying Code Blocks

Code:

def check oddness():
X = input(“enter x: ")

X = 1nt(Xx)
if x $ 2 == 0:
print(“it’s even”)
print (“we wanted odd”) to find more boxes,
elses look for the next colon
print(“it’s odd") and repeat
print(“good!”)

print (“thank you”)
print(“all done”)

check oddness|()

Today's Outline

Review

Control Flow Diagrams
Basic syntax for “if”
Demos

|dentifying code blocks

Demos / worksheet *

Practice Problems

Example: Classifying Children by Age

What are all the different ways to classify children?
If you are 3 years old you area
If you are |5 years old youarea

Write a function that is given an int and returns a string

def categorize age(age):
if age <=
return ‘baby’

Example: Date Printer

please enter a year: (YYYY): 2022
please enter a month (1-12): 2
please enter a day (1-31): 11

the date is: Feb 11th of 22

convert month num to name 2-digit year

e.g., Ist, 2nd, 3rd, etc

Part 2: nesting and refactoring
conditionals

Learning Objectives

Write nested conditional statements

Refactor code with Boolean operators into equivalent code with
nested conditional statements

Refactor code with nested conditional statements into equivalent
code with Boolean operators

|dentify code blocks
e Count the number of blocks in nested code

51

Today's Outline

Nested Conditionals *

Refactoring Conditionals

52

Laboratory Troubleshooting Flowchart

conditional execution alternate execution
Yes Does it No
move?
nested

conditional

chained would be
if we had more than
two possibilities

No

No
roblem

Yes No

)
&4

in programming:
are phrased as boolean expressions
® actions are code/statements

https://www.drphysics.com/prayer/flowchart.html

Nested Conditionals Example

def fix(moves, should):

1f moves:
1if should:
return "good"
else:
return "duct tape"
else:
if should:
return "WD-40"
else:

return "good"

54

Example: Stoplight

color

rowia:

what should the driver do!?

feet

Example: Stoplight

color

rowia:

feet

hit the gas

‘ feet < |5 /v
N\

stop abruptly

continue at same speed

‘ feet < 30 /v
N\

> smile

stop

Today's Outline

Nested Conditionals

Refactoring Conditionals *

o7

How to use these slides

There are more examples here than we can cover in lecture.

However, you can walk through these examples along with the
interactive exercises. You should do the following:

|. Think about what the answer is

2. Mentally step through the code using the example call when
applicable

3. Step through the code with the Python Tutor examples we've
setup for you. For the refactor examples, step through all three
versions, and see which alternative (A or B) matches the output
of the original version.

4. If you got something different than Python Tutor, tweak your
mental model (talk to us if you don't understand something)

58

Refactor Exercise 1

def or2(condl, cond2):
return condl or cond2

def or2(condl, cond2):

rv = False
¥v = rv or condl
Y¥v = rv or cond2

return rv

59

which refactor
IS correct?

hint: or2 (False, True)

def or2(condl, cond2):
if condl:
return cond2
else:
return False

return bl or b2 or b3 or

rv
rv
rv
rv

rv

Refactor Exercise 1

or DbN

equivalent

False
rv Or
rv or
rv Or

v oOor

bl
b2
b3

bN

Lesson: with "or", it only takes one to flip the whole thing True!

60

Refactor Exercise 2

def and2(condl, cond2): which refactor
return condl and cond2 is correct?

hint: and2 (True, True)

def and2(condl, cond2): def and2(condl, cond2):
rv = False if condl:
rv = rv and condl return cond2
= else:

rv rv and cond?2

return rv return False

61

Refactor Exercise 2

return bl and b2 and b3 and ... and bN

equivalent

if bl:

return b2 and b3 and ... and DbN
else:

return False

Lesson: with "and", the first one can make the whole thing False!

62

def fix(moves, should): .
T Refactor Exercise 3

1f should:
return "good"
else: which refactor
return "duct tape” IS correct?

else:
1f should:
return "WD-40"
else:
return "good"

hint: fix(False, False)

def fix(moves, should):

if should:
def fix(moves, should):)
, 1f moves:
1f moves and not should: " ;
" i return "duct tape
return "duct tape else:

elif not moves and should:

return "good"
return "WD-40" g

) else:
elif moves and should: .
| | 1f moves:
return "good return "aood"
elif not moves and not should: clse: g

" d "
return "goo return "duct tape”

63

Refactor Exercise 3

T/ c \F T/ c \F

Option 1: Nesting

Option 2: Chaining

equivalent

FF

T

T,F ET

case 1 case 2 case 3 case 4

Lesson: when handling combinations of booleans, you can
either do either (a) nesting or (b) chaining with and

64

def is 220(a, b, c):

return a==2 and b==2 and c==

Refactor Exercise 4

which refactor

def is 220(a, b, c):
1f a==2:
1f c==0:
1f b==2:
return True
return False

65

IS correct?

hint: is 220(2, 2, 0)

def is 220(a, b, c):
i1f a==2 or b==2 or c==0:
return False
return True

B

Refactor Exercise 4

return bl and b2 and b3 and ... and bN

equivalent

i1f bl:
1f b2:
1f b3:
1f DbN:
return True
return False

Lesson: nesting a lot of if's inside each other is equivalent to and'ing all the conditions

66

def is 220(a, b, c):
return a==2 and b==2 and c==

Refactor Exercise 5

which refactor
IS correct?

hint: is 220(2, 2, 1)

def 1s 220(a, b, c): def 1s 220(a, b, c):
if a==2: if al=2:
return True return False
1f b==2: 1f b!=2:
return True return False
1f c==0: 1f c!=0:
return True return False
return False return True

B

6/

Refactor Exercise 5

return bl and b2 and b3 and ... and bN

equivalent

1f not bl:
return False
1f not b2:
return False
1f not Db3:
return False
1f not DbN:
return False
return True

Lesson: checking if everything is True can be translated

to seeing if we can find anything False
68

