
CS 220 Dictionaries
Department of Computer Sciences

University of Wisconsin-Madison

Readings:
Chapter 11 of Think Python

Chapter 10 of Python for Everybody

Learning Objectives, part 1

Dictionaries:
• creation using { } or dict()
• lookup, insert, update, delete key-value pairs
• in operator, for loop, len built-in function
• keys() and values() methods

Applications of dictionaries
• easy and fast lookup using keys
• frequency storage

Learning Objectives, part 2

More dictionary operations
• len, in, for loop
• d.keys(), d.values()
• defaults for get and pop

Syntax for nesting (dicts inside dicts, etc)
• indexing/lookup
• step-by-step resolution

Understand common use cases for nesting
• binning/bucketing (list in dict)
• a more convenient table representation (dict in list)
• transition probabilities with Markov chains (dict in dict)

we’ll generate random
English-like texts

one of the most common
data analysis tasks

list

dict

dict

dict

Today's Outline

Data Structures

Mappings

Dictionaries

Mutations: Updates, Deletes, and Inserts

Coding examples

Dictionary Ops

Binning (dict of list)

Table Representation (list of dict)

Vocabulary: a list is an example of
a data structure

Data Structures

Definition (from Wikipedia):

a data structure is a collection of data values, 
the relationships among them, 
and the functions or operations 
that can be applied to the data

a list can contain a
bunch of values of

varying types

Data Structures

Definition (from Wikipedia):

a data structure is a collection of data values, 
the relationships among them, 
and the functions or operations 
that can be applied to the data

a list can contain a
bunch of values of

varying typesevery value has an
index, representing an
order within the list

L.sort(), len(L), L.pop(0), L.append(x),

update, iterate (for loop), etc

Data Structures

Definition (from Wikipedia):

a data structure is a collection of data values, 
the relationships among them, 
and the functions or operations 
that can be applied to the data

list

set

dict

...

suggested
note-taking

values relationships operations

anything ordered (0,1,...)

no ordering

indexing, pop, len, index,
slicing, in, iteration (for), ...

in, ==????

Motivation: lots of data

For loops:
• copy/paste is a pain
• don’t know how many times to copy/paste before program runs

For data structures:
• creating many variables is a pain 

(imagine your program analyzes ten thousand values)
• don’t know how many values you will have before program runs

Today's Outline

Data Structures

Mappings

Dictionaries

Mutations: Updates, Deletes, and Inserts

Coding examples

Dictionary Ops

Binning (dict of list)

Table Representation (list of dict)

Mappings

Common data structure approach:
• store many values
• give each value a label
• use labels to lookup values

Mappings

Common data structure approach:
• store many values
• give each value a label
• use labels to lookup values

List example:

nums = [300, 200, 400, 100]

we can have many values

Mappings

Common data structure approach:
• store many values
• give each value a label
• use labels to lookup values

List example:

nums = [300, 200, 400, 100]
0 1 2 3

the “labels” are indexes, which 
are implicitly attached to values

Mappings

Common data structure approach:
• store many values
• give each value a label
• use labels to lookup values

List example:

nums = [300, 200, 400, 100]

x = nums[2] # x = 400

we use the “label” (i.e., the index) 
to lookup the value (here 400)

Mappings

Common data structure approach:
• store many values
• give each value a label
• use labels to lookup values

List example:

nums = [300, 200, 400, 100]

x = nums[2] # x=400

lists are an inflexible mapping structure,
because we don’t have control over labels

what if we don’t want consecutive integers
as labels? E.g., 0, 10, and 20 (but not between)?

what if we want to use strings as labels?

Today's Outline

Data Structures

Mappings

Dictionaries

Mutations: Updates, Deletes, and Inserts

Coding examples

Dictionary Ops

Binning (dict of list)

Table Representation (list of dict)

Why call it a dictionary?

this key
(the word)

maps to…

this value
(the definition)

Python dicts have insertion-based order (Python version > 3.6)

nums_list = [900, 700, 800]  
 
nums_list[1] 700

Dictionary

Dictionaries map labels (called keys, rather than indexes) 
to values
• values can be anything we choose (as with lists)
• keys can be nearly anything we choose (must be immutable)

a dictionary would let us give 700 a label other than it’s position

Dictionary

Dictionaries map labels (called keys, rather than indexes) 
to values
• values can be anything we choose (as with lists)
• keys can be nearly anything we choose (must be immutable)

nums_list = [900, 700, 800]  
 
nums_list[1] 700

nums_dict = {“first”:900, “third”:700, “second”:800}  

we have the same values

Dictionary

Dictionaries map labels (called keys, rather than indexes) 
to values
• values can be anything we choose (as with lists)
• keys can be nearly anything we choose (must be immutable)

nums_list = [900, 700, 800]  
 
nums_list[1] 700

nums_dict = {“first”:900, “third”:700, “second”:800}  

we use curly braces instead of square brackets

careful! curly braces are for both sets and dicts

Dictionary

Dictionaries map labels (called keys, rather than indexes) 
to values
• values can be anything we choose (as with lists)
• keys can be nearly anything we choose (must be immutable)

nums_list = [900, 700, 800]  
 
nums_list[1] 700

nums_dict = {“first”:900, “third”:700, “second”:800}  

0 1 2

we choose the label (called a key) for each value.
Here the keys are the strings “first”, “third”, and “second”

we put a colon between each key and value

Dictionary

Dictionaries map labels (called keys, rather than indexes) 
to values
• values can be anything we choose (as with lists)
• keys can be nearly anything we choose (must be immutable)

nums_list = [900, 700, 800]  
 
nums_list[1] 700

nums_dict = {“first”:900, “third”:700, “second”:800}

nums_dict[“second”] 800

lookup for a dict is like indexing for a list (label in brackets).
Just use a key (that we chose) instead of an index.

Dictionary

Dictionaries map labels (called keys, rather than indexes) 
to values
• values can be anything we choose (as with lists)
• keys can be nearly anything we choose (must be immutable)

nums_list = [900, 700, 800]  
 
nums_list[1] 700

nums_dict = {“first”:900, “third”:700, “second”:800}

nums_dict[“first”] 900

lookup for a dict is like indexing for a list (label in brackets).
Just use a key (that we chose) instead of an index.

Dictionary

Dictionaries map labels (called keys, rather than indexes) 
to values
• values can be anything we choose (as with lists)
• keys can be nearly anything we choose (must be immutable)

nums_list = [900, 700, 800]  
 
nums_list[1] 700

nums_dict = {“first”:900, “third”:700, “second”:800}

nums_dict[“third”] 700

lookup for a dict is like indexing for a list (label in brackets).
Just use a key (that we chose) instead of an index.

Dictionary

Dictionaries map labels (called keys, rather than indexes) 
to values
• values can be anything we choose (as with lists)
• keys can be nearly anything we choose (must be immutable)

nums_list = [900, 700, 800]  
 
nums_list[1] 700

nums_dict = {“first”:900, “third”:700, “second”:800}

nums_dict[“third”] 700

900

700

800

700

800

900

"third"
"second"

"first"

0

1

2

ordered

insertion order
(Python >

 3.6)

labels values

valueslabels
key

index

A note on parenthetical characters

parentheses: (and)

brackets: [and]

braces: { and }

common structures uses

specifying order:

function invocation
or function definition:

sequence indexing:

sequence slicing:

dict lookup:

list creation:

dict creation:

set creation:

(1+2) * 3

f()

l[-1]

l[1:-2]

d["one"]

l = [1, 2, 3]

d = {"one": 1, "two": 2}

{1, 2, 3}

Empty set, list, and dict

braces: { and }
dict creation:

set creation:

d = {}

 or

d = dict()

s = set()

brackets: [and] list creation:

l = list()

 or

l = []

Today's Outline

Data Structures

Mappings

Dictionaries

Mutations: Updates, Deletes, and Inserts

Coding examples

Dictionary Ops

Binning (dict of list)

Table Representation (list of dict)

Dictionary Updates

>>> lst = ["zero", "ten", "not set"]

>>> lst[2] = "twenty"

>>> lst

['zero', 'ten', 'twenty']

>>> d = {0: "zero", 10: "ten", 20: "not set"}

>>> d[20] = "twenty"

>>> d

{0: 'zero', 10: 'ten’, 20: 'twenty'}

dictionary updates look like list updates

Dictionary Deletes

>>> lst = ["zero", "ten", "twenty"]

>>> lst.pop(-1)

'twenty'

>>> lst

['zero', 'ten']

>>> d = {0: "zero", 10: "ten", 20: "twenty"}

>>> d.pop(20)

'twenty'

>>> d

{0: 'zero', 10: 'ten'}

dictionary deletes look like list deletes

“twenty” isn’t in the dict

“twenty” isn’t in the list

Dictionary Inserts

>>> lst = ["zero", "ten"]

>>> lst.append("twenty") # doesn't work: lst[2] = ...

>>> lst

['zero', 'ten', 'twenty']

>>> d = {0: "zero", 10: "ten"}

>>> d[20] = "twenty"

>>> d

{0: 'zero', 10: 'ten’, 20: 'twenty'}

with a dict, if you try to set a value at a key,
it automatically creates it (doesn't work w/ lists)

Today's Outline

Data Structures

Mappings

Dictionaries

Mutations: Updates, Deletes, and Inserts

Coding examples

Dictionary Ops

Binning (dict of list)

Table Representation (list of dict)

Example: Print Major Count

Goal: given a CSV of CS220 survey data, 
 print each major’s frequency

Input:
• A CSV

Output:
• count per major

Example (not actual count): 
 
Computer Science: 40 
Engineering: 50 
Business: 20

https://en.wikipedia.org/wiki/Tornado

Example output (not
actual count): 
 
Computer Science: 40 
Engineering: 50 
Business: 20 https://guide.wisc.edu/

https://guide.wisc.edu/

Challenge: Wizard of Oz

Goal: count how often each word appears in the Wizard of Oz

Input:
• Plaintext of book (from Project Gutenberg)

Output:
• The count of each word

https://en.wikipedia.org/wiki/The_Wizard_of_Oz_(1939_film)

End of material that will be on Quiz 5

Today's Outline

Data Structures

Mappings

Dictionaries

Mutations: Updates, Deletes, and Inserts

Coding examples

Dictionary Ops

Binning (dict of list)

Table Representation (list of dict)

Extracting keys and values

num_words = {0:“zero”, 1:”one”, 2:”two”, 3:”three”}

 
print(type(num_words.keys()))

 
print(type(num_words.values()))

<class 'dict_keys'>

<class 'dict_values'>

don’t worry about these
new types, because we

can force them to be lists

Extracting keys and values

num_words = {0:“zero”, 1:”one”, 2:”two”, 3:”three”}

 
print(type(num_words.keys()))

 
print(type(num_words.values()))

print(list(num_words.keys()))

 
print(list(num_words.values()))

<class 'dict_keys'>

<class 'dict_values'>

[0, 1, 2, 3]

[“zero”, “one”,
“two”, “three”]

Defaults with get and pop

suffix = {1:“st”, 2:”nd”, 3:”rd”}

suffix.pop(0) # delete fails, because no key 0

suffix[4] # lookup fails because no key 4

Defaults with get and pop

suffix = {1:“st”, 2:”nd”, 3:”rd”}

suffix.pop(0, “th”) # returns “th” because no key 0

suffix[4] # lookup fails because no key 4

suffix.get(4, “th”) # returns “th” because no key 4

specify a default if
key cannot be found

specify a default if
key cannot be found

Defaults with get and pop

suffix = {1:“st”, 2:”nd”, 3:”rd”}

for num in range(6):  
 print(str(num) + suffix.get(num, “th”))

0th
1st
2nd
3rd
4th
5th

Today's Outline

Data Structures

Mappings

Dictionaries

Mutations: Updates, Deletes, and Inserts

Coding examples

Dictionary Ops

Binning (dict of list)

Table Representation (list of dict)

LEC001 LEC002 LEC003

all
rows

Bucketizing/Binning

2017 2018 2019

LEC001 | 19 | ...
all

rows
for

loop

LEC001 LEC002 LEC003

Bucketizing/Binning

LE
C00

1 |
 19

 | .
..

Bucketizing/Binning

2017 2018 2019

all
rows

for

loop

2017 2018 2019LEC001 LEC002 LEC003

LEC002 | 18 | ...
all

rows
for

loop

2017 2018 2019LEC001 LEC002 LEC003

Bucketizing/Binning

all
rows

for

loop

dict

LE
C00

2 |
 18

 |
...

2017 2018 2019LEC001 LEC002 LEC003

Bucketizing/Binning

Bins with lists and dicts

all data

rows = [
 ["LEC001”, 19, ”CS”],
 [”LEC002”, 18, “Eng”],
 [”LEC002”, 21, “Econ”],
 [”LEC003”, 25, ”Stat”],
 [”LEC002”, , ”DS”],
 [”LEC003”, , ”DS”],
]

avg 19

avg 19.5

avg 25

bins = {
 ”LEC001”: [
 ["LEC001”, 19, ”CS”],
],
 ”LEC002”: [
 [”LEC002”, 18, “Eng”],
 [”LEC002”, 21, “Econ”],
 [”LEC002”, , ”DS”],
],
 ”LEC003”: [
 [”LEC003”, 25, ”Stat”],
 [”LEC003”, , ”DS”],
]
}

Demo 1: Average Age per Section

Goal: print average age of students in each section

Input:
• CS220 Information survey

Output:
• Average age within each section

Example: 
 
SEC001: 19 
SEC002: 19.5 
SEC003: 25

Today's Outline

Data Structures

Mappings

Dictionaries

Mutations: Updates, Deletes, and Inserts

Coding examples

Dictionary Ops

Binning (dict of list)

Table Representation (list of dict)

Table Representation

name x y

Alice 30 20

Bob 5 11

Cindy -2 50

header = [“name”, “x”, “y”]
rows = [
 [“Alice”, 30, 20],
 [“Bob”, 5, 11],
 [“Cindy”, -2, 50],
]

list of list representation list of dict representation

[
 {“name”:“Alice”, “x”:30, “y”:20},
 {“name”:“Bob”, “x”:5, “y”:11},
 {“name”:“Cindy”, “x”:-2, “y”:50},
]

rows[2][header.index(“y”)] rows[2][“y”]

2
2

"y"
2

Demo 2: Table Transform

Goal: create function that transforms list of lists table 
 to a list of dicts table

Input:
• List of lists (from a CSV)

Output:
• List of dicts

Example: 
 
>>> header = [“x”,”y”] 
>>> rows = [[1,2], [3,4]] 
>>> transform(header, rows) 
[{“x”:1, “y”:2}, {“x”:3, “y”:4}]

