
[220] Copying
Department of Computer Sciences

University of Wisconsin-Madison

Readings:
Parts of Chapter 4 of Sweigart book

Objects review - what is printed for each example?

def f(items):

 items.append("!!!")

 print("f:", items)

words = ['hello', 'world']

f(words)

print("after:", words)

def f(items):

 items = items + ["!!!"]

 print("f:", items)

words = ['hello', 'world']

f(words)

print("after:", words)

If you’re not sure, open the Interactive Exercises from Friday and check

Objects review - what is printed for each example?

def f(items):

 items.append("!!!")

 print("f:", items)

words = ['hello', 'world']

f(words)

print("after:", words)

f: [“hello”,”world”,”!!!”]
after: [“hello”,”world”,”!!!”]

Objects review - what is printed for each example?

def f(items):

 items = items + ["!!!"]

 print("f:", items)

words = ['hello', 'world']

f(words)

print("after:", words)

f: [“hello”,”world”,”!!!”]
after: [“hello”,”world”]

Objects review - references

Objects review - references

Stack

Heap

Test yourself!

A

C

what do variables contain?

1

2

objects

references to objects

which of the following live inside frames?

1

2

objects

variables

B how should we label the
blanks in the hierarchy?

1

2

namedtuple, tuple

tuple, namedtuple

????

Person Hurricane

????

objects

Learning Objectives Today

Practice objects/references!

Levels of copying
• Making a new reference
• Shallow copy
• Deep copy

Read:
✦ Sweigart Ch 4 ("References" to the end) 

https://automatetheboringstuff.com/chapter4/

https://www.copymachinesdirect.com/copier-leasing.php

Today's Outline

Review

More references

Copying
• reference
• shallow
• deep

Worksheet

Worksheet Problem 1

What does assignment ACTUALLY do?

x = ["A","B","C"]
y = x

What does assignment ACTUALLY do?

x = ["A","B","C"]
y = x

x

y

"A" "B" "C"

YES y should reference
whatever x references

What does assignment ACTUALLY do?

x = ["A","B","C"]
y = x

x

y

"A" "B" "C"

YES

x

y

"A" "B" "C"

NO

x

y

"A" "B" "C"

NO

"A" "B" "C"

no code could ever
make this happen

y should reference
whatever x references

different code would
be needed to do this

What does assignment ACTUALLY do?

x = ["A","B","C"]
y = x

x

y

"A" "B" "C"

What does assignment ACTUALLY do?

x = ["A","B","C"]
y = x

def f(y):
 pass

x = ["A", "B", "C"]
f(x)

x

y

"A" "B" "C"

x = ["A","B","C"]
y = x

def f(y):
 pass

x = ["A", "B", "C"]
f(x)

What does assignment ACTUALLY do?

x

y

"A" "B" "C"global frame

f frame

heapstack

Example 1

x = {}

y = x
y["WI"] = "Madison"
print(x["WI"])

interactive

exercises

Example 2

def foo(nums):
 nums.append(3)
 print(nums)
items = [1,2]
numbers = items
foo(numbers)
print(items)
print(numbers)

interactive

exercises

Example 3

x = ["aaa", "bbb"]
y = x[:]
x.pop(0)
print(len(y))

interactive

exercises

Worksheet Problems 2-6

Today's Outline

Review

More references

Copying
• reference
• shallow
• deep

Worksheet

alice = {"name":"Alice", "score":10, "age":30}

bob = {"name":"Bob", "score":8, "age":25}

team = [alice, bob]

players = {"A": alice, "B": bob}

State:

alice

references objects

name

score

age

dict

"Alice"

10

30

alice = {"name":"Alice", "score":10, "age":30}

bob = {"name":"Bob", "score":8, "age":25}

team = [alice, bob]

players = {"A": alice, "B": bob}

State:

alice

references objects

bob

name

score

age

dict

"Alice"

10

30

name

score

age

"Bob"

8

25

dict

alice = {"name":"Alice", "score":10, "age":30}

bob = {"name":"Bob", "score":8, "age":25}

team = [alice, bob]

players = {"A": alice, "B": bob}

State:

alice

references objects

bob

name

score

age

dict

"Alice"

10

30

name

score

age

"Bob"

8

25

team

what DID NOT happen: team contains the alice and bob variables

what DID happen: team contains references to the objects referenced by bob and alice

dict

list

alice = {"name":"Alice", "score":10, "age":30}

bob = {"name":"Bob", "score":8, "age":25}

team = [alice, bob]

players = {"A": alice, "B": bob}

State:

alice

references objects

bob

name

score

age

dict

"Alice"

10

30

name

score

age
dict

"Bob"

8

25

team

A

B

players reference reference

Two kinds of reference:
• variable
• item in list, dict, etc dict

list

Today's Outline

Review

More references

Copying
• reference
• shallow
• deep

Worksheet

Three Levels of Copy

import copy
x = [
 {"name":"A", "score":88},
 {"name":"B", "score":111},
 {"name":"C", "score":100}]

uncomment one of these
#y = x
#y = copy.copy(x)
#y = copy.deepcopy(x)

reference copy [fastest, most dangerous]
shallow copy
deep copy [slowest, safest]

When should we
use which one?

Shallow copy of depth level 2

import copy
x = [
 {"name":"A", "score":88},
 {"name":"B", "score":111},
 {"name":"C", "score":100}]

y = copy.copy(x)

for idx in range(len(x)):
 y[idx] = copy.copy(x[idx])

shallow copy

Using shallow copy to
copy other depth levels

shallow copy of depth level 2

Example: Player Scores

players = [ 
 {"name":"A", "score":88},  
 {"name":"B", "score":111},  
 {"name":"C", "score":100}  
]

players

name A

score 88

name B

score 111

name C

score 100

Depending on the use case,
there are three ways we might

"copy" the player’s data

Example: Player Scores

players = [ 
 {"name":"A", "score":88},  
 {"name":"B", "score":111},  
 {"name":"C", "score":100}  
]

players

name A

score 88

name B

score 111

name C

score 100

Use Case 1

Get max score

(reference copy)

Use Case 2

Get median score 
(shallow copy)

Use Case 3

Record historical scores
(deep copy)

Example: Player Scores

players = [ 
 {"name":"A", "score":88},  
 {"name":"B", "score":111},  
 {"name":"C", "score":100}  
]

players

name A

score 88

name B

score 111

name C

score 100

Use Case 1

Get max score

(reference copy)

Use Case 3

Record historical scores
(deep copy)

Use Case 2

Get median score 
(shallow copy)

def max_score(people):  
 highest = None  
 for p in people:  
 if highest == None or p["score"] > highest:  
 highest = p["score"]  
 return highest

players = …  
m = max_score(players)

def max_score(people):  
 highest = None  
 for p in people:  
 if highest == None or p["score"] > highest:  
 highest = p["score"]  
 return highest

players = …  
m = max_score(players)

players

name A

score 88

name B

score 111

name C

score 100

def max_score(people):  
 highest = None  
 for p in people:  
 if highest == None or p["score"] > highest:  
 highest = p["score"]  
 return highest

players = …  
m = max_score(players)

players

name A

score 88

name B

score 111

name C

score 100

people

There is no risk of max_score
accidentally corrupting players

since it only reads people

def max_score(people):  
 highest = None  
 for p in people:  
 if highest == None or p["score"] > highest:  
 highest = p["score"]  
 return highest

players = …  
m = max_score(players)

players

name A

score 88

name B

score 111

name C

score 100

people

There is no risk of max_score
accidentally corrupting players

since it only reads people

.

.

.

def max_score(people):  
 highest = None  
 for p in people:  
 if highest == None or p["score"] > highest:  
 highest = p["score"]  
 return highest

players = …  
m = max_score(players)

players

name A

score 88

name B

score 111

name C

score 100

people

highest 111

def max_score(people):  
 highest = None  
 for p in people:  
 if highest == None or p["score"] > highest:  
 highest = p["score"]  
 return highest

players = …  
m = max_score(players)

players

name A

score 88

name B

score 111

name C

score 100

people

highest 111

m 111

Example: Player Scores

players = [ 
 {"name":"A", "score":88},  
 {"name":"B", "score":111},  
 {"name":"C", "score":100}  
]

players

name A

score 88

name B

score 111

name C

score 100

Use Case 1

Get max score

(reference copy)

Use Case 3

Record historical scores
(deep copy)

Use Case 2

Get median score 
(shallow copy)

def median_score(people):  
 people = copy.copy(people)  
 people.sort(...)  
 # TODO: return score for middle of people

players = …  
m = median_score(players)

def median_score(people):  
 people = copy.copy(people)  
 people.sort(...)  
 # TODO: return score for middle of people

players = …  
m = median_score(players)

players

name A

score 88

name B

score 111

name C

score 100

def median_score(people):  
 people = copy.copy(people)  
 people.sort(...)  
 # TODO: return score for middle of people

players = …  
m = median_score(players)

players

name A

score 88

name B

score 111

name C

score 100

people

Need to make a new list
so we don’t corrupt players

def median_score(people):  
 people = copy.copy(people)  
 people.sort(...)  
 # TODO: return score for middle of people

players = …  
m = median_score(players)

players

name A

score 88

name B

score 111

name C

score 100

people

Need to make a new list
so we don’t corrupt players

def median_score(people):  
 people = copy.copy(people)  
 people.sort(...)  
 # TODO: return score for middle of people

players = …  
m = median_score(players)

players

name A

score 88

name B

score 111

name C

score 100

people

copy makes a new list…

def median_score(people):  
 people = copy.copy(people)  
 people.sort(...)  
 # TODO: return score for middle of people

players = …  
m = median_score(players)

players

name A

score 88

name B

score 111

name C

score 100

people

copy makes a new list…
…that refers to the same items

end of players
end of people

def median_score(people):  
 people = copy.copy(people)  
 people.sort(...)  
 # TODO: return score for middle of people

players = …  
m = median_score(players)

players

name A

score 88

name B

score 111

name C

score 100

people

copy makes a new list…
…that refers to the same items

end of players
middle of people

def median_score(people):  
 people = copy.copy(people)  
 people.sort(...)  
 # TODO: return score for middle of people

players = …  
m = median_score(players)

players

name A

score 88

name B

score 111

name C

score 100

people

copy makes a new list…
…that refers to the same items

middle

Example: Player Scores

players = [ 
 {"name":"A", "score":88},  
 {"name":"B", "score":111},  
 {"name":"C", "score":100}  
]

players

name A

score 88

name B

score 111

name C

score 100

Use Case 1

Get max score

(reference copy)

Use Case 3

Record historical scores
(deep copy)

Use Case 2

Get median score 
(shallow copy)

players = …  
players_before = copy.deepcopy(players)  
 
make changes to players  
players[0]["score"] += 10

print("score change:",  
 players[0]["score"] - players_before[0]["score"])

players = …  
players_before = copy.deepcopy(players)  
 
make changes to players  
players[0]["score"] += 10

print("score change:",  
 players[0]["score"] - players_before[0]["score"])

players

name A

score 88

name B

score 111

name C

score 100

players = …  
players_before = copy.deepcopy(players)  
 
make changes to players  
players[0]["score"] += 10

print("score change:",  
 players[0]["score"] - players_before[0]["score"])

players

name A

score 88

name B

score 111

name C

score 100
players_before

deepcopy makes
a new list

players = …  
players_before = copy.deepcopy(players)  
 
make changes to players  
players[0]["score"] += 10

print("score change:",  
 players[0]["score"] - players_before[0]["score"])

players

name A

score 88

name B

score 111

name C

score 100
players_before

name A

score 88

name B

score 111

name C

score 100

AND new
dictionaries

players = …  
players_before = copy.deepcopy(players)  
 
make changes to players  
players[0]["score"] += 10

print("score change:",  
 players[0]["score"] - players_before[0]["score"])

players

name A

score 98

name B

score 111

name C

score 100
players_before

name A

score 88

name B

score 111

name C

score 100

players = …  
players_before = copy.deepcopy(players)  
 
make changes to players  
players[0]["score"] += 10

print("score change:",  
 players[0]["score"] - players_before[0]["score"])

players

name A

score 98

name B

score 111

name C

score 100
players_before

name A

score 88

name B

score 111

name C

score 100

prints 10

Today's Outline

Review

More references

Copying
• reference
• shallow
• deep

Worksheet

Worksheet Problems 7-11

