
[220] Strings
Department of Computer Sciences

University of Wisconsin-Madison

Readings:
Chapter 8 (+ 9) of Think Python

Chapter 7 of Python for Everybody

Learning Objectives

Compare strings:
• using <, >, ==, or !=

Explain string methods:
• syntax and purpose (with examples)

Sequence operations (a string is an example of a sequence)
• len
• indexing: extracting single item
• slicing: extracting sub-sequence
• for loop: iterating over a sequence Chapter 8 + 9 of

Think Python

what we've learned
about strings so far

what we'll learn today

https://naturalfiberproducers.com/store-3/suri-silk-yarn/

Today's Outline

Comparison

String Methods

Sequences

Slicing

for loop over sequence

for loop over range

Comparison

1 < 2 True
(because 1 is before 2)

200 < 100 False
(because 200 is NOT before 100)

Comparison

1 < 2 True
(because 1 is before 2)

200 < 100 False
(because 200 is NOT before 100)

“cat” < “dog”

Python can also compare strings

Comparison

1 < 2 True
(because 1 is before 2)

200 < 100 False
(because 200 is NOT before 100)

“cat” < “dog”

Python can also compare strings

True
(because “cat” is before “dog” in the dictionary)

Comparison

“dog” < “doo doo” ???

What about strings that start with the same letter?

Comparison

“dog” < “doo doo” ???

What about strings that start with the same letter?

Look for the first letter that’s different, and compare those.

Comparison

“dog” < “doo doo” True

What about strings that start with the same letter?

Look for the first letter that’s different, and compare those.

Comparison

True

There are three gotchas:

1

2

3

case (upper vs. lower)

digits

prefixes

“dog” < “doo doo”

1. Case rules

“A” < “B” < … < “Y” < “Z”

“a” < “b” < … < “y” < “z”

“C” < “b”
“Z” < “a”

makes sense

makes sense

To learn more, visit
 https://simple.wikipedia.org/wiki/ASCII

In the ASCII table,
upper case is

before lower case.

Any two characters are
compared using their position in the

ASCII table.

https://simple.wikipedia.org/wiki/ASCII

2. Pesky digits

“0” < “1”

“8” < “9”

“11” < “2”
“100” < “15”

makes sense

makes sense

less intuitive

“0” < “1”

“8” < “9”

“11” < “2”
“100” < “15”

makes sense

makes sense

remember to find the FIRST difference,
and base everything on that

2. Pesky digits

“0” < “1”

“8” < “9”

“11” < “2”
“100” < “15”

makes sense

makes sense

2. Pesky digits

remember to find the FIRST difference,
and base everything on that

3. Prefixes

String 1: bat
String 2: batman

3. Prefixes

String 1: bat
String 2: batman

3. Prefixes

String 1: bat
String 2: batman

“” < “m”, so String 1 is first:

“bat” < “batman”

Do problem 1

Today's Outline

Comparison

String Methods

Sequences

Slicing

for loop over sequence

for loop over range

What is a method?

A special function associated variable/value

>>> msg = "hello"

>>>

What is a method?

A special function associated variable/value

>>> msg = "hello"

>>> len(msg)

len is a normal function,
it returns number

of characters in string.

It returns the number of
characters in a string

What is a method?

A special function associated variable/value

>>> msg = "hello"

>>> len(msg)

5

>>>

What is a method?

A special function associated variable/value

>>> msg = "hello"

>>> len(msg)

5

>>> msg.isdigit()

isdigit is a special function,
called a method, that operates

on the string in msg.

It returns a bool, whether the
string is all digits

What is a method?

A special function associated variable/value

>>> msg = "hello"

>>> len(msg)

5

>>> msg.isdigit()

isdigit is a special function,
called a method, that operates

on the string in msg.

It returns a bool, whether the
string is all digits

str.isdigit(msg)
equivalent

typ
e o

f m
sg

meth
od

 in
 st

r

(si
mila

r t
o m

od
)

What is a method?

A special function associated variable/value

>>> msg = "hello"

>>> len(msg)

5

>>> msg.isdigit()

False

>>>

What is a method?

A special function associated variable/value

>>> msg = "hello"

>>> len(msg)

5

>>> msg.isdigit()

False

>>>

Both the regular function (len) and method (isdigit) are answering
a question about the string in msg, but we call them slightly differently

What is a method?

A special function associated variable/value

>>> msg = "hello"

>>> len(msg)

5

>>> msg.isdigit()

False

>>> msg.upper()

'HELLO'

is upper a regular function or a method?

What is a method?

A special function associated variable/value

>>> msg = "hello"

>>> len(msg)

5

>>> msg.isdigit()

False

>>> msg.upper()

'HELLO'

methods can be called with literal values as well as with values in variables

What is a method?

A special function associated variable/value

>>> msg = "hello"

>>> len(msg)

5

>>> msg.isdigit()

False

>>> msg.upper()

'HELLO'

methods can be called with literal values as well as with values in variables

What is a method?

A special function associated variable/value

>>> msg = "hello"

>>> len(“220”)

3

>>> “220”.isdigit()

True

>>> “Hello World”.upper()

‘HELLO WORLD’

methods can be called with literal values as well as with values in variables

String Method Purpose

s.upper() change string to all upper case

s.lower() opposite of upper()

s.strip() remove whitespace (space, tab, etc) before and after

s.lstrip() remove whitespace from left side

s.rstrip() remove whitespace from right side

s.format(args…) replace instances of “{}” in string with args

s.find(needle) find index of needle in s

s.startswith(prefix) does s begin with the given prefix?

s.endswith(suffix) does s end with the given suffix?

s.replace(a, b) replace all instances of a in s with b

Quick demos…

Do problem 2

Today's Outline

Comparison

String Methods

Sequences

Slicing

for loop over sequence

for loop over range

Python Sequences

va
l

va
l

va
l

va
l

va
l

va
l

va
l

0 1 2 3

va
l

va
l

va
l

va
l

va
l

4 5 6 7 8 9 10 11

Definition: a sequence is a collection of numbered/ordered values

types of sequences

strings
lists

tuples

things you can do with sequences

len
indexing

for loop
slicing

Python Sequences

"h
"

"e
"

"l
"

"l
"

"o
"

"
"

"w
"

0 1 2 3

"o
"

"r
"

"l
"

"d
"

"\n
"

4 5 6 7 8 9 10 11

Definition: a string is a sequence of one-character strings

types of sequences

strings
lists

tuples
[today]

things you can do with sequences

len
indexing

for loop
slicing

s =

Python Sequences

"h
"

"e
"

"l
"

"l
"

"o
"

"
"

"w
"

0 1 2 3

"o
"

"r
"

"l
"

"d
"

"\n
"

4 5 6 7 8 9 10 11

Definition: a string is a sequence of one-character strings

types of sequences

strings
lists

tuples
[today]

things you can do with sequences

len
indexing

for loop
slicing

s =

12

len(s)

Python Sequences

"h
"

"e
"

"l
"

"l
"

"o
"

"
"

"w
"

0 1 2 3

"o
"

"r
"

"l
"

"d
"

"\n
"

4 5 6 7 8 9 10 11

Definition: a string is a sequence of one-character strings

types of sequences

strings
lists

tuples
[today]

things you can do with sequences

len
indexing

for loop
slicing

s =

12

len(s)

indexing: access one value

Python Sequences

"h
"

"e
"

"l
"

"l
"

"o
"

"
"

"w
"

0 1 2 3

"o
"

"r
"

"l
"

"d
"

"\n
"

4 5 6 7 8 9 10 11

Definition: a string is a sequence of one-character strings

types of sequences

strings
lists

tuples
[today]

things you can do with sequences

len
indexing

for loop
slicing

s =

12

len(s)

indexing: access one value slicing: extract sub-sequence

Python Sequences

"h
"

"e
"

"l
"

"l
"

"o
"

"
"

"w
"

0 1 2 3

"o
"

"r
"

"l
"

"d
"

"\n
"

4 5 6 7 8 9 10 11

Definition: a string is a sequence of one-character strings

types of sequences

strings
lists

tuples
[today]

things you can do with sequences

len
indexing

for loop
slicing

s =

12

len(s)

indexing: access one value slicing: extract sub-sequence

for loop: execute for each value

Python Sequences

"h
"

"e
"

"l
"

"l
"

"o
"

"
"

"w
"

0 1 2 3

"o
"

"r
"

"l
"

"d
"

"\n
"

4 5 6 7 8 9 10 11

Definition: a string is a sequence of one-character strings

types of sequences

lists
tuples

s =

12

len(s)

indexing: access one value slicing: extract sub-sequence

for loop: execute for each value

things you can do with sequences

len
indexing

for loop
slicing

strings
[today]

demos

Do problem 3

Python Sequences

"h
"

"e
"

"l
"

"l
"

"o
"

"
"

"w
"

0 1 2 3

"o
"

"r
"

"l
"

"d
"

"\n
"

4 5 6 7 8 9 10 11

Definition: a string is a sequence of one-character strings

types of sequences

lists
tuples

s =

12

len(s)

indexing: access one value slicing: extract sub-sequence

for loop: execute for each value

things you can do with sequences

len
indexing

for loop
slicing

strings
[today]

Today's Outline

Comparison

String Methods

Sequences

Slicing

for loop over sequence

for loop over range

Indexing

S: P I Z Z A
0 1 2 3 4

Code:
S = “PIZZA”

Indexing

S: P I Z Z A
0 1 2 3 4

-5 -4 -3 -2 -1

Indexing

S: P I Z Z A
0 1 2 3 4

-5 -4 -3 -2 -1

S[0] “P”

Indexing

S: P I Z Z A
0 1 2 3 4

-5 -4 -3 -2 -1

S[1] “I”

Indexing

S: P I Z Z A
0 1 2 3 4

-5 -4 -3 -2 -1

S[-1] “A”

Slicing

S: P I Z Z A
0 1 2 3 4

-5 -4 -3 -2 -1

S[???] “IZZ”

what to put if we want multiple letters,
like “IZZ”?

Slicing

S: P I Z Z A
0 1 2 3 4

-5 -4 -3 -2 -1

S[1:4] “IZZ”

Slicing

S: P I Z Z A
0 1 2 3 4

-5 -4 -3 -2 -1

S[1:4] “IZZ”

Slicing

S: P I Z Z A
0 1 2 3 4

-5 -4 -3 -2 -1

S[1:4] “IZZ”

start is “inclusive”
end is “exclusive”

Slicing

S: P I Z Z A
0 1 2 3 4

-5 -4 -3 -2 -1

S[1:4] “IZZ”

Many different slices give the same result:
S[1:4] == S[1:-1] == S[-4:4] == S[-4:-1]

Slicing

S: P I Z Z A
0 1 2 3 4

-5 -4 -3 -2 -1

S[1:100] “IZZA”

Slices don’t complain about out-of-range numbers.
You just don’t get data for that part

Slicing

S: P I Z Z A
0 1 2 3 4

-5 -4 -3 -2 -1

S[50:100] “”

Slices don’t complain about out-of-range numbers.
You just don’t get data for that part

Slicing

S: P I Z Z A
0 1 2 3 4

-5 -4 -3 -2 -1

S[: 2] “PI”

Feel free to leave out one of the numbers in the slice

Slicing

S: P I Z Z A
0 1 2 3 4

-5 -4 -3 -2 -1

S[2 :] “ZZA”

Feel free to leave out one of the numbers in the slice

Slicing

S: P I Z Z A
0 1 2 3 4

-5 -4 -3 -2 -1

S[2 :] “ZZA”

Inclusive start and exclusive end makes it easier to split and inject things

Slicing

S: P I Z Z A
0 1 2 3 4

-5 -4 -3 -2 -1

S[:3] + “…” + S[3:] “PIZ...ZA”

Inclusive start and exclusive end makes it easier to split and inject things

let’s inject “…” here

Do problem 4

Python Sequences

"h
"

"e
"

"l
"

"l
"

"o
"

"
"

"w
"

0 1 2 3

"o
"

"r
"

"l
"

"d
"

"\n
"

4 5 6 7 8 9 10 11

Definition: a string is a sequence of one-character strings

types of sequences

lists
tuples

s =

12

len(s)

indexing: access one value slicing: extract sub-sequence

for loop: execute for each value

things you can do with sequences

len
indexing

for loop
slicing

strings
[today]

Today's Outline

Comparison

String Methods

Sequences

Slicing

for loop over sequence

for loop over range

msg = "hello"

let’s say we want to print

each letter on its own line

Motivation

msg = "hello"

i = ???

while i < ???:

 ???

 i += ???

Motivation

msg = "hello"

i = 0

while i < ???:

 ???

 i += ???

Motivation

indexing starts at 0, so msg[0] is ‘h’,
so we want to start i at 0

msg = "hello"

i = 0

while i < ???:

 ???

 i += 1

Motivation

indexing starts at 0, so msg[0] is ‘h’,
so we want to start i at 0

we don’t want to skip any letters

msg = "hello"

i = 0

while i < len(msg):

 ???

 i += 1

Motivation

indexing starts at 0, so msg[0] is ‘h’,
so we want to start i at 0

we don’t want to skip any letters

last letter (o) has index 4,
or len(msg)-1

msg = "hello"

i = 0

while i < len(msg):

 ???

 i += 1

Motivation

msg = "hello"

i = 0

while i < len(msg):

 letter = msg[i]

 ???

 i += 1

Motivation

get the letter for the current index

msg = "hello"

i = 0

while i < len(msg):

 letter = msg[i]

 print(letter)

 i += 1

Motivation

this is the only interesting part
(we just want to print each letter!)

msg = "hello"

i = 0

while i < len(msg):

 letter = msg[i]

 print(letter)

 i += 1

Motivation

this is the only interesting part
(we just want to print each letter!)

Code like this for sequences is so common
that Python provides an easier way, with the for loop

msg = "hello"

i = 0

while i < len(msg):

 letter = msg[i]

 print(letter)

 i += 1

while vs. for

while
loop

msg = "hello"

i = 0

while i < len(msg):

 letter = msg[i]

 print(letter)

 i += 1

for letter in msg:

 print(letter)

while vs. for

while
loop

for
loop

they do the same thing!

msg = "hello"

i = 0

while i < len(msg):

 letter = msg[i]

 print(letter)

 i += 1

for letter in msg:

 print(letter)

while vs. for

while
loop

for
loop

they do the same thing!

this happens automatically now

for letter in msg:

 print(letter)

for syntax

for
loop

basic syntax always used

for letter in msg:

 print(letter)

for syntax

for
loop

specify a variable name to use inside the loop,
and the sequence you want to loop over

the sequence
(e.g., “hello”)

automatically initialized to a 
different item on each iteration

(“h” on 1st, “e” on 2nd, etc)

for letter in msg:

 print(letter)

for syntax

for
loop

specify a variable name to use inside the loop,
and the sequence you want to loop over

the sequence
(e.g., “hello”)

automatically initialized to a 
different item on each iteration

(“h” on 1st, “e” on 2nd, etc)

do PythonTutor example

Do problem 5

Today's Outline

Comparison

String Methods

Sequences

Slicing

for loop over sequence

for loop over range

msg = “01234”

for item in msg:

 print(item * 3)

for with range

Output:
000
111
222
333
444

msg = “01234”

for item in msg:

 print(item * 3)

for with range

Output:
000
111
222
333
444

what if we want to iterate over the integers
0 to 4 (instead of string digits “0” to “4”)?

msg = “01234”

for item in msg:

 print(item * 3)

for with range

Output:

what if we want to iterate over the integers
0 to 4 (instead of string digits “0” to “4”)?

for item in range(5):

 print(item * 3)

for with range

Output:
0
3
6
9
12

what if we want to iterate over the integers
0 to 4 (instead of string digits “0” to “4”)?

for item in range(5):

 print(item * 3)

for with range

Output:
0
3
6
9
12

using range(N) with a for loop will
iterate with these values for item:

0, 1, 2, …, N-2, N-1

Do problem 6

