CS 220 Tuples,
Objects, and References

Department of Computer Sciences
University of Wisconsin-Madison

Test yourself!

Q what is the type of the following? {}
0 -

e dict

G if S is a string and L is a list, which line definitely fails?
G S [_1] — n . "

‘!” L[len(S)] = S

G which type is immutable?

list

dict

Objects and References

stack : heap

note: quotes for strings
not shown (to simplify)

/

thi$ end of/an
arrow is an object

global | instructor

this end of an '
arrow is a reference :

name Mike

age 48
date | 03/12/1975

Classes 220 | 319 | 354

Observations
|. objects have a "life of their own" beyond variables or even function frames
2. here there are dict and list objects (others are possible)
3. references show up two places: as variables and values in data structures

Objects and References

stack : heap

/ / AN N ~

A
Frames: /‘t end of/an list
arrow is an object
global | instructor / Y Y \
this end of an)
arrow is a reference : T Mke"
: name €
age ~ | T 48
date | ™ "03/12/1975"
classes /_\“
| | l
dict '
\ li§t \

. 220 19 354
Observations 3

objects have a "life of their own" beyond variables or even function frames
here there are dict and list objects (others are possible)

references show up two places: as variables and values in data structures
technically ints and strs (and all values) are objects too in Python...

WP —

Objects and References

stack : heap

/ / AN N

Frames: thi

global | instructor

| 4

this end of an

B
A
end of/an list
arrow is an object
) |

) |

|4

arrow is a reference :
' name

rm_id

date

classes

]
_—
| T "03/12/1975"
—

T

Questions

\ li§t

<

220 319

|. why do we need this more complicated model?
2. how can we create new types of objects!?
3. how can we copy objects to create new objects!?

354

Today's Outline ,
let's evolve our

@ mental model of
)
References = state!

e Mental Model for State (v2)
e examples and bugs: accidental argument modification

New Types of Obijects
® tuple
® namedtuple

Motivation for objects and references
* why do we need this new mental model?

Mental Model for State (vl)

Common mental model
Code: ® equivalent for immutable types
® PythonTutor uses for strings, etc

= “hello”

X
Issues
Yy = X

® incorrect for mutable types

— U " .
y t world ® ignores performance

State:

X |hello

y |hello world

note: we're not drawing frame boxes for simplicity since everything is in the global frame

Mental Model for State (v2)

Code:

* x = “hello”
y = X

y += *“ world”

State:

references objects

note: we're still not drawing frame boxes for simplicity since everything is in the global frame

Mental Model for State (v2)

Code:
X = “hello”
* y = x
y += “ world”
State:
references objects
X > “hello”

any box with an arrow is a reference
(variables are one kind of reference)

Mental Model for State (v2)

Code:
X = “hello”
y = X
* y += * world”
State:
references E objects
. : + “hello”

Mental Model for State (v2)

Code:
X = “hello”
y = X
* y += * world”
State:
references E objects
. : + “hello”

I \ 4

|

|

|

: “hello world”
|

|

Mental Model for State (v2)

Code:

X “hello”

y

' y += *“ world”

State:

i
»

1 .
references : objects

1
L %)
X ! > “hello
1

» “hello world”

Revisiting Assignment and Passing Rules for v2

RULE 1 (assignment)
x:
= x # y should reference whatever x references

<

RULE 2 (argument passing)
def f(y):
pass

x:
f(x) # y should reference whatever x references

Imagine a hidden y = x statement

How PythonTutor renders immutable types is configurable...

Frames Objects

Global frame

x "hello"

"hello world"

v | inline primitives but don't nest objects [default] ¥
vl

X
y = x Frames Objects
y

— 14 n
+ world Global frame str
/_’"heuo"
X
V2 y ."”\Stl"
"hello world"
"\

render all objects on the heap (Python) =

Today's Outline

References

e examples and bugs: accidental argument modification

New Types of Obijects
® tuple
® namedtuple

Motivation for objects and references
* why do we need this new mental model?

References and Arguments/Parameters

Python Tutor always illustrates references with an arrow for
mutable types

Thinking carefully about a few examples will prevent many
debugging headaches...

Example |: reassign parameter

def f(x):
X %= 3
print("f:", x)

num = 10
f(num)
print("after:", num)

interactive

exercises

Example 2: modify list via param

def f(items):
items.append("!!!")
print("f:", items)

words = ['hello', 'world']
f(words)
print("after:", words)

interactive

exercises

Example 3: reassign new list to param

def f(items):
items = items + ["!!1I1"]
print("f:", items)

words = ['hello', 'world']
f(words)
print("after:", words)

interactive

exercises

Example 4:in-place sort

def first(items):
return items[0]

def smallest(items):
items.sort()
return items[0]

numbers= [4,5,3,2,1]

print("first:", first(numbers))
print("smallest:", smallest(numbers))
print("first:", first(numbers))

interactive

exercises

Example 5: sorted sort

def first(items):
return items[0]

def smallest(items):
items = sorted(items)
return items[0]

numbers= [4,5,3,2,1]

print("first:", first(numbers))
print("smallest:", smallest(numbers))
print("first:", first(numbers))

interactive

exercises

Today's Outline

References

New Types of Obijects
e tuple
® namedtuple

Motivation for objects and references
* why do we need this new mental model?

Tuple Sequence

nums list = [200, 100, 300]
(200, 100, 300)

\ if you use parentheses (round)

instead of brackets [square]
you get a tuple instead of a list

What is a tuple? A new kind of sequence!

Like a list
e for loop, indexing, slicing, other methods

Unlike a list:
e immutable (like a string)

Tuple Sequence

nums list = [200, 100, 300]

= (200, 100, 300)
X = nums list[2] 300 s
X = nums tuple[2] Ot put 2PR I x

Like a list
e for loop, indexing, slicing, other methods

Unlike a list:
e immutable (like a string)

Tuple Sequence

nums list = [200, 100, 300]
(200, 100, 300)

nums 1ist[0] = 99 — T~

changes list to
x [0] = 99 "\ [99, 100, 300]

Crashes!

Traceback (most recent call last):
File "<stdin>", 1line 1, in <module>
TypeError: 'tuple' object does not support item assignment

Like a list
e for loop, indexing, slicing, other methods

Unlil 1 Why would we ever want immutability?
niike a list: |. avoid certain bugs

* immutable (like a string) 2. some use cases require it (e.g., dict keys)

Example: location -> building mapping

buildings = {

'0,0]: “Comp Sci”,
'0,2]: “Psychology”,
0]: “Noland”,
,8]1: “Van Vleck”

NG

4

-

0
4
1

trying to use x,y coordinates as key

FAILS!

Traceback (most recent call last):
File "test2.py", line 1, in <module>
buildings = {[0,0]: "CS"}
TypeError: unhashable type: 'list'

Example: location -> building mapping

buildings = {

(0,0): “Comp Sci”,
() s “Psychology”,
(4,0): “Noland”,
(1,8): “Van Vleck”

trying to use x,y coordinates as key

Succeeds!
(with tuples)

A note on parenthetical characters

type of parenthesis

parentheses: (and) -

\

list
:::::::::///;;;:ence
Q:::::::::\\\j?quence

dict

brackets:

| and]

» dict

braces: { and }

uses

(1+2) * 3

£()

(1, 2, 3)

tuple of size |

s[-1]
s[l:-2]

d[llonell]

d = {"one":1, "two

{1, 2, 3}

":2}

Today's Outline

References

New Types of Obijects

® namedtuple

Motivation for objects and references
* why do we need this new mental model?

See any bugs!? N

people=|
{"Fname": "Alice", "lname": "Anderson", "age": 30},

u {"fname": "Bob", "lname": "Baker", "age": 31},
]

p = peoplel0]
print("Hello " + p["fname"] + " " + p["lname"])

people=|
("Alice'", "Anderson', 30),

Q ("Bob'", "Baker'", 31),
]

p = peoplel1l]
print("Hello " + pl[1] + " " + pl2])

Vote:Which is Better Code!?

people=|
{"fname": "Alice", "lname": "Anderson'", "age": 30},

u {"fname": "Bob", "lname": "Baker", "age": 31},
]

p = peoplel0]
print("Hello " + p["fname"] + " " + p["lname"])

people=|
("Alice'", "Anderson', 30),

Q ("Bob'", "Baker'", 31),
]

p = peoplel1l]
print("Hello " + pl[@] + " " + pl1])

people=[
{"fname": "Alice", "lname": "Anderson'", "age": 30},

a {"fname": "Bob", "lname": "Baker", "age": 31},
]

p = peoplel0]
print("Hello " + p["fname"] + " " + p["lname"])

people=|
("Alice", "Anderson', 30),

6 ("Bob", "Baker", 31),
]

p = people[1]
print("Hello " + plo] + + pl1l)

from collections import namedtuple
Person = namedtuple('"Person', ["fname", "lname", '"age'"])

people=[
Person("Alice", "Anderson', 30),
Person("Bob'", "Baker", 31),

]

p = people[0]
orint("Hello " + p.fname + " " + p.lname)

from collections import namedtuple

need to import this data struct

name of that type
/ creates a new type!

/ o~ name of that type
Person = namedtuple("Person", ["fname", "lname", "age"])

p = Person("Alice", "Anderson', 30)

print("Hello " + p.fname + " " + p.1lname)

from collections import namedtuple

need to import this data struct

name of that type
/ creates a new type!

o~ name of that type
Person = namedtuple("Person", ["fname", "lname", "age"])

namedtuple number sequence

/ \ / /TN
m Cor I s R vt

= Person("Alice", "Anderson", 30)

print("Hello " + p.fname + " " + p.1lname)

from collections import namedtuple

need to import this data struct

name of that type
/ creates a new type!

o~ name of that type
Person = namedtuple("Person", ["fname", "lname", "age"])

namedtuple number sequence

/1 \ / /1 \
 person Jl Hurricane Jll 77 I int

p = Person("Alice", "Anderson', 30)

\ creates a object of type Person (sub type of namedtuple)

(like str (3) creates a new string or 1ist () creates a new list)

print("Hello " + p.fname + " " + p.1lname)

from collections import namedtuple

Person = namedtuple("Person', ["fname", "lname", "age"])

v

v

p = Person("Alice&™, "Anderson', 30)

can use either positional or keyword arguments to create a Person

print("Hello " + p.fname + " " + p.1lname)

from collections import namedtuple

Person = namedtuple("Person', ["fname", "lname", "age"])

v v
«

0 = Person(age=30, fname='""Alice", lname="Anderson")

can use either positional or keyword arguments to create a Person

print("Hello " + p.fname + " " + p.1lname)

from collections import namedtuple

Person = namedtuple("Person', ["fname", "lname", "age"])

p = Person(age=30, Fname="Alice", lname="Anderson")

crashes

immediately
(good!)

print("Hello " + p.fname + " " + p.lname)

from collections import namedtuple

Person = namedtuple("Person', ["fname", "lname", "age"])

p = Person(age=30, fname="Alice", lname="Anderson")

<

print("Hello 'V + p.fname/+ " " + p.lname)

Today's Outline

References
® motivation
® bugs:accidental argument modification

Today's Outline

References

New Types of Obijects

Motivation for objects and references
* why do we need this new mental model?

Why does Python have the complexity of
separate and 4

Why not follow the original organization we saw
for everything (i.e., boxes of data with labels)?

Reason |: Performance

Code:

X = *“this string 1is millions of characters..”

* y = x # this is fast!

State:
references objects
X > “this string is millions of ...”

Reason |: Performance

Code:
X = *“this string 1is millions of characters..”
l y = X # this is fast!
State:
references objects
X > “this string is millions of ...”

——

Reason 2: Centralized Updates

)

alice = {"name":"Alice", '"score":10, "age":30}
bob = {"name":"Bob", '"score'":8, "age":25}
winner = alice

alice["age"] += 1
print(“"Winner age:", winner["age"])

State:
references objects
i g ~A 1y . n
alice name - Alice
score 7 S
bob 10
age | *30
winner

name | ©
score | — > g
/

age

Reason 2: Centralized Updates

alice = {"name":"Alice", '"score":10, "age":30}
bob = {"name":"Bob", '"score'":8, "age":25}
winner = alice

*alice["age"] += 1
print(“"Winner age:", winner["age"])

State:
references objects
i g ~A 1y . n
alice name - Alice
score 7 S
bob 10
winner

name | ©
score | — > g
/

age

Reason 2: Centralized Updates

alice = {"name":"Alice", '"score":10, "age":30}
bob = {"name":"Bob", '"score'":8, "age":25}
winner = alice

alice["age"] += 1

orint ("Winner age:", winner["age"]) prints 31, even thf)ugh.we didn’t
directly modify winner

State:
references objects
i g ~A 1y . n
alice hame -~ Alice
score 7 ~
bob 10
« [T0)
winner dict
™ A 0 n
name | = Bob

score | — = g

age | | *25

dict

Conclusion

New Types of Obijects
:immutable equivalent as list
: make your own immutable types!
- choose names, don’t need to remember positions

References
: faster and allows centralized update
: mutating a parameter affects arguments

