
[220] Creating Functions and
Understanding Function Scope

Department of Computer Sciences
University of Wisconsin-Madison

Readings:

Parts of Chapter 3 of Think Python,

Chapter 5.5 to 5.8 of Python for Everybody
Creating Fruitful Functions

Part 1: Creating Functions

Learning Objectives

Explain the syntax of a function header:
• def, (), :, tabbing, return

Write a function with:
• correct header and indentation
• a return value (fruitful function) or without (void function)
• parameters that have default values

Write a function:
• knowing difference in outcomes of print and return statements

Determine result of function calls with 3 types of arguments:
• positional, keyword, and default

Trace function invocations, to determine control flow

Start with some Jupyter examples

Where do modules come from?

pre-installed (e.g., math)
- sqrt()
- sin(), cos()
- pi, etc.

built in
- input()
- print()
- len()
- etc.

installed (e.g., jupyter)
- pip install jupyter
- pip install ...

custom
- project (lab-p3)

Anaconda did these installations for us

Functions are like “mini programs”, 
as in our robot worksheet problem

how do we write functions
like move code?

Types of functions

Sometimes functions do things
• Like “Move Code”
• May produce output with print
• May change variables

Sometimes functions produce values
• Similar to mathematical functions
• Many might say a function “returns a value”
• Downey calls these functions “fruitful” functions 

(we’ll use this, but don’t expect people to generally be aware of this terminology)

Sometimes functions do both!

Types of functions

Sometimes functions do things
• Like “Move Code”
• May produce output with print
• May change variables

Sometimes functions produce values
• Similar to mathematical functions
• Many might say a function “returns a value”
• Downey calls these functions “fruitful” functions 

(we’ll use this, but don’t expect people to generally be aware of this terminology)

Sometimes functions do both!

Math to Python

f(x) = x2Math:

def f(x):
 return x ** 2

Python:

Math to Python

f(x) = x2Math:

def f(x):
 return x ** 2

Python:

Function name is “f”

Math to Python

f(x) = x2Math:

def f(x):
 return x ** 2

Python:

It takes one parameter, “x”

Math to Python

f(x) = x2Math:

def f(x):
 return x ** 2

Python:

In Python, start a function definition with “def” (short for definition),
and use a colon (“:”) instead of an equal sign (“=”)1

Math to Python

f(x) = x2Math:

def f(x):
 return x ** 2

Python:

In Python, put the “return” keyword before
the expression associated with the function2

Math to Python

f(x) = x2Math:

def f(x):
 return x ** 2

Python:

In Python, indent (tab space) before the statement(s)3

Math to Python

g(r) = πr2Math:

def g(r):
 return 3.14 * r ** 2

Python:

Computing the area from the radius4

Math to Python

g(r) = πr2Math:

def get_area(radius):
 return 3.14 * radius ** 2

Python:

In Python, it’s common to have longer names for functions and arguments5

Math to Python

g(r) = πr2Math:

def get_area(diameter):
 radius = diameter / 2
 return 3.14 * radius ** 2

Python:

It’s also common to have more than one line of code (all indented)6

Let’s implement functions

cube(side)

is_between(lower, num, upper)

jupyter / PythonTutor demos ...

def foo(x, y=-1):

foo(99, 100)

x =

y =

???

???

positional arguments1

Rules for filling parameters...

not actual code, but imagine
parameters as variables that are
automatically initialized for you

function declaration

function invocation

def foo(x, y=-1):

foo(99, 100)

x =

y =

99

100

positional arguments1

Rules for filling parameters...

def foo(x, y=-1):

foo(99, 100)

x =

y =

99

100

def foo(x, y=-1):

foo(y=99, x=100)

x =

y =

100

99

positional arguments1 2 keyword arguments

Rules for filling parameters...

def foo(x, y=-1):

foo(99, 100)

x =

y =

99

100

def foo(x, y=-1):

foo(y=99, x=100)

x =

y =

100

99

def foo(x, y=-1):

foo(99)

x =

y =

99

-1

positional arguments1 2 3keyword arguments default arguments

Rules for filling parameters...

common pitfall: confusing keyword arguments and default arguments

def foo(x, y=-1):

foo(99, 100)

x =

y =

99

100

def foo(x, y=-1):

foo(y=99, x=100)

x =

y =

100

99

def foo(x, y=-1):

foo(99)

x =

y =

99

-1

positional arguments1 2 3keyword arguments default arguments

Rules for filling parameters...

worksheet practice...

Generating grid for game like
Battleship

get_grid(width, height, symb = ‘#’, title = ‘Grid:’)

Jupyter / PythonTutor demo...

Grid:
##########
##########
##########
##########
##########
##########
##########
##########

10 x 8 grid

Print vs. Return

Some Code

A Function

call

arguments

parameters

return

Print vs. Return

Some Code

A Function

Program Output

(e.g., Terminal)call

arguments

parameters

return

print

print

we could call print from multiple places

Print vs. Return

Some Code

A Function

Program Output

(e.g., Terminal)call

arguments

parameters

return

print

print

1, 3, 2, 4

Print vs. Return

Some Code

A Function

Program Output

(e.g., Terminal)call

arguments

parameters

return

print

print

1, 3, 2, 4

returning, instead of printing, gives callers different options for how to use the result

Print vs. Return

Some Code

A Function

Program Output

(e.g., Terminal)call

arguments

parameters

return

print

print

1, 3, 2, 4

returning, instead of printing, gives callers different options for how to use the result

Program Output

(e.g., Terminal)

Print vs. Return

Some Code

A Function

call

arguments

parameters

return: you only get to answer once, then function stops

print: a function can print as much as it likes

returning, instead of printing, gives callers different options for how to use the result

https://memegenerator.net/instance/56355449/millionaire-regis-is-that-your-final-answer

bad_add3
example...

Interactive Examples with PythonTutor

def func_c():

	 print("C")

def func_b():

	 print("B1")

	 func_c()

	 print("B2")

def func_a():

	 print("A1")

	 func_b()

	 print("A2")

func_a()

Let’s trace this example.
(Problem 21 from the

worksheet)

Part 2: Understanding Function Scope

Learning Objectives

Explain rules of scope of local variables in a function
• When are they created?
• When are they destroyed?
• What parts of a program have access to them? (frames)

Understand global variables
• How can they be used and modified within a function?(global keyword)
• Where are they stored? (global frame)
• What parts of a program have access to them?
• How can they be mis-represented as local variables?

Explain argument passing
• “pass by value”

33

don't memorize the examples,
learn the rules of Python

sample question: why did Python
do this thing I didn't expect
at this specific line (ask us!)

Today's Outline

Context
•Examples

Frames
Demos: Local Variables

Demos: Global Variables

Demos: Argument Passing

34

Context

Often (in life and programming), the same name can mean
different things in different contexts

• Examples?
• Human name: Anna (are we talking about CS220 or Frozen?)
• Street address: 534 State Street (what city are we in?)
• Files: test.py (which directory are we in?)

35

Context

Often (in life and programming), the same name can mean
different things in different contexts

• Examples?
• Human name: Anna (are we talking about CS220 or Frozen?)
• Street address: 534 State Street (what city are we in?)
• Files: test.py (which directory are we in?)

Our code often have different variables with the same name
• How do we keep variable names organized?
• How do we know what a variable name is referring to?

36

Context

Often (in life and programming), the same name can mean
different things in different contexts

• Examples?
• Human name: Anna (are we talking about CS220 or Frozen?)
• Street address: 534 State Street (what city are we in?)
• Files: test.py (which directory are we in?)

Our code often have different variables with the same name
• How do we keep variable names organized?
• How do we know what a variable name is referring to?

with groups called “frames”

we’ll learn some
rules for this

37

Today's Outline

Context

Frames

Demos: Local Variables

Demos: Global Variables

Demos: Argument Passing

38

Frames

Every time a function is invoked (i.e., called), the invocation gets a
new “frame” for holding variables

•The parameters also exist in a frame

Global frame
•There is always one global frame that all functions can access

When a variable name is used, Python looks two places:

the function invocation’s frame

the global frame

1

2

39

Understanding scope: example

40

Understanding scope: example

41

cs220 and cs319 will be in the global frame

Understanding scope: example

42

cs220 and cs319 will be in the global frame

two frames will exist during
the time we’re executing

in print_twice

Understanding scope: example

43

cs220 and cs319 will be in the global frame

two frames will exist during
the time we’re executing

in print_twice

you don’t generally see or interact
with frames when programming,

but it’s an important mental model

Understanding scope: example

44

this code can access: line1, line2

can access: cs220, cs319, text1, text2,
combined_text

can access: cs220, cs319, text

we call the variables that can currently be
accessed “in scope” and variables that

cannot be “out of scope”

Understanding scope: example

4514

Arguments are copied to parameters:
this is called “pass by value”

Understanding scope: example (PythonTutor)

46

Understanding scope: example

4716

def print_twice(text):

 print(text)

 print(text)

def concatenate_str(text1, text2):

 combined_text = text1 + text2 #
concatenation

 print_twice(combined_text)

cs220 = "Hello CS220"

cs319 = " / CS319"

concatenate_str(cs220, cs319)

Try this example yourself using PythonTutor

Today's Outline

Context

Frames

Demos: Local Variables

Demos: Global Variables

Demos: Argument Passing

48

Let's do some examples in PythonTutor

Lessons about Local Variables

def set_x():
 x = 100

print(x)

Lesson 1: functions don't execute unless they're called

49

Lessons about Local Variables

def set_x():
 x = 100

set_x()
print(x)

Lesson 2: variables created in a function die after function returns

50

Lessons about Local Variables

def count():
 x = 1
 x += 1
 print(x)

count()
count()
count()

Lesson 3: variables start fresh every time a function is called again

51

Lessons about Local Variables

def display_x():
 print(x)

def main():
 x = 100
 display_x()

main()

Lesson 4: you can't see the variables of other function invocations, even those that call you

52

Today's Outline

Context

Frames

Demos: Local Variables

Demos: Global Variables

Demos: Argument Passing

53

Lessons about Global Variables

msg = 'hello' # global, outside any func

def greeting():
 print(msg)

print('before: ' + msg)
greeting()
print('after: ' + msg)

Lesson 5: you can generally just use global variables inside a function

54

Lessons about Global Variables

msg = 'hello'

def greeting():
 msg = 'welcome!'
 print('greeting: ' + msg)

print('before: ' + msg)
greeting()
print('after: ' + msg)

Lesson 6: if you do an assignment to a variable in a function, Python assumes you want it local

55

Lessons about Global Variables

msg = 'hello'

def greeting():
 print('greeting: ' + msg)
 msg = 'welcome!'

print('before: ' + msg)
greeting()
print('after: ' + msg)

Lesson 7: assignment to a variable should be before its use in a function, even if there's
 a global variable with the same name

56

Lessons about Global Variables

msg = 'hello'

def greeting():
 global msg
 print('greeting: ' + msg)
 msg = 'welcome!'

print('before: ' + msg)
greeting()
print('after: ' + msg)

Lesson 8: use a global declaration to prevent Python from creating a 
 local variable when you want a global variable

57

Today's Outline

Context

Frames

Demos: Local Variables

Demos: Global Variables

Demos: Argument Passing

58

Lessons about Argument Passing

def f(x):
 x = 'B'
 print('inside: ' + x)

val = 'A'
print('before: ' + val)
f(val)
print('after: ' + val)

Lesson 9: in Python, arguments are "passed by value", meaning
 reassignments to a parameter don't change the argument outside

59

Lessons about Argument Passing

x = 'A'

def f(x):
 x = 'B'
 print('inside: ' + x)

print('before: ' + x)
f(x)
print('after: ' + x)

Lesson 10: it's irrelevant whether the argument (outside) and 
 parameter (inside) have the same variable name

60

Lesson Summary
Lesson 1: functions don't execute unless they're called

Lesson 2: variables created in a function die after function returns

Lesson 3: variables start fresh every time a function is called again

Lesson 4: you can't see the variables of other function invocations, even those that call you

Lesson 5: you can generally just use global variables inside a function

Lesson 6: if you do an assignment to a variable in a function, Python assumes you want it local

Lesson 7: assignment to a variable should be before its use in a function, even if there's a a global variable
with the same name

Lesson 8: use a global declaration to prevent Python from creating a local variable when you want a global
variable

Lesson 9: in Python, arguments are "passed by value", meaning reassignments to a parameter don't change
the argument outside

Lesson 10: it's irrelevant whether the argument (outside) and parameter (inside) have the same variable
name

61

Lo
ca

l
G

lo
ba

l
Pa

ra
m

et
er

s

