
[220] Conditionals
Department of Computer Sciences
University of Wisconsin-Madison

Readings:

Parts of Chapter 5 of Think Python

Chapter 5.5 to 5.8 of Python for Everybody

Due: Quiz2

Part 1: Intro to conditionals

Mental Model of Control Flow

x = 5
y = f(x)
return y+1

1. do statements in order, one at a time

2. functions: jump in and out of these

3. conditionals: sometimes skip statements

4. loops: sometimes go back to previous

three
exceptions

TODAY

...
x = 5
y = f(x)
return y+1
...

Code:

Learning Objectives Today

Write conditional statements
• Conditional execution (if)
• Alternate execution (else)
• Chained conditionals (elif)

Determine the output of conditional statements

Identify nested code blocks
• Count the number of blocks in a segment of code

Chapter 5 of Think Python

(skip "Recursion" sections)

Do PythonTutor Practice!

(posted on schedule)

Today's Outline

Review

Control Flow Diagrams

Basic syntax for “if”

Demos

Identifying code blocks

Demos / worksheet

Review 1: Indentation Example

print(“A”)  

print(“B”)  

 

def print_letters():  

 print(“C”)  

 print(“D”)

print(“E”)  

print(“F”)

print_letters()

what does it print?

Review 1: Indentation Example

print(“A”)  

print(“B”)  

 

def print_letters():  

 print(“C”)  

 print(“D”)

print(“E”)  

print(“F”)

print_letters()

what does it print?

A 
B 
E 
F 
C 
D

Review 1: Indentation Example

print(“A”)  

print(“B”)  

 

def print_letters():  

 print(“C”)  

 print(“D”)

print(“E”)  

print(“F”)

print_letters()

what does it print?

A 
B 
E 
F 
C 
D

indented, so “inside” 
print_letters function

Review 1: Indentation Example

print(“A”)  

print(“B”)  

 

def print_letters():  

 print(“C”)  

 print(“D”)

print(“E”)  

print(“F”)

print_letters()

what does it print?

A 
B 
E 
F 
C 
D

indented, so “inside” 
print_letters function

printed last because 
print_letters is called last

Review 1: Indentation Example

print(“A”)  

print(“B”)  

 

def print_letters():  

 print(“C”)  

 print(“D”)

print(“E”)  

print(“F”)

print_letters()

what does it print?

A 
B 
E 
F 
C 
D

indented, so “inside” 
print_letters function

not indented, so
“outside” any function

Review 1: Indentation Example

print(“A”)  

print(“B”)  

 

def print_letters():  

 print(“C”)  

 print(“D”)

print(“E”)  

print(“F”)

print_letters()

what does it print?

A 
B 
E 
F 
C 
D

indented, so “inside” 
print_letters function

not indented, so
“outside” any function

also not indented, so
“outside” any function.

Runs BEFORE 
print_letters is called

Review 1: Indentation Example

print(“A”)  

print(“B”)  

 

def print_letters():  

 print(“C”)  

 print(“D”)

print(“E”)  

print(“F”)

print_letters()

what does it print?

A 
B 
E 
F 
C 
D

indented, so “inside” 
print_letters function

not indented, so
“outside” any function

also not indented, so
“outside” any function.

Runs BEFORE 
print_letters is called

We use indenting to tell Python which code is inside or outside 
of a function (or other things we’ll learn about soon).

blank lines are irrelevant

Review 1: Indentation Example

print(“A”)  

print(“B”)  

 

def print_letters():  

 print(“C”)  

 print(“D”)

print(“E”)  

print(“F”)

print_letters()

what does it print?

A 
B 
E 
F 
C 
D

we’ll often call the lines 
of code inside something 

a “block” of code

Review 1: Indentation Example

print(“A”)  

print(“B”)  

 

def print_letters():  

 print(“C”)

 

 print(“D”)

print(“E”)  

print(“F”)

print_letters()

what does it print?

A 
B 
E 
F 
C 
D

horizontal spaces

identify blocks (not
vertical space)

Review 2: Argument Passing

def h(x=1, y=2):  
 print(x, y) # what is printed?  
 
def g(x, y):  
 print(x, y) # what is printed?  
 h(y)

def f(x, y):  
 print(x, y) # what is printed?  
 g(x=x, y=y+1)

x = 10  
y = 20  
f(y, x)

Today's Outline

Review

Control Flow Diagrams

Basic syntax for “if”

Demos

Identifying code blocks

Demos / worksheet

Control Flow Diagrams (Flowcharts for Code)

 x = input(“enter x: ”)
 x = int(x)

x % 2 == 0

print(“it’s even”) print(“it’s odd”)

print(“thank you”)

FalseTrue

Control Flow Diagrams (Flowcharts for Code)

Sometimes 
we do this

Other times 
we do this

condition

conditional execution alternate execution

 x = input(“enter x: ”)
 x = int(x)

x % 2 == 0

print(“it’s even”) print(“it’s odd”)

print(“thank you”)

FalseTrue

Control Flow Diagrams (Flowcharts for Code)

Sometimes 
we do this

Other times 
we do this

boolean expressions are mostly 
used for deciding what to do next 
(not for printing “True” or “False” 

as in most of our examples thus far)

condition

conditional execution alternate execution

 x = input(“enter x: ”)
 x = int(x)

x % 2 == 0

print(“it’s even”) print(“it’s odd”)

print(“thank you”)

FalseTrue

Control Flow Diagrams (Flowcharts for Code)

Sometimes 
we do this

Other times 
we do this

boolean expressions are mostly 
used for deciding what to do next 
(not for printing “True” or “False” 

as in most of our examples thus far)

condition

conditional

conditional execution alternate execution

 x = input(“enter x: ”)
 x = int(x)

x % 2 == 0

print(“it’s even”) print(“it’s odd”)

print(“thank you”)

FalseTrue

Branches (aka "Paths of Execution”)

enter x: 8
it’s even
thank you

Input/Output:
 x = input(“enter x: ”)
 x = int(x)

x % 2 == 0

print(“it’s even”) print(“it’s odd”)

print(“thank you”)

FalseTrue

Branches (aka "Paths of Execution”)

enter x: 7
it’s odd
thank you

Input/Output:
 x = input(“enter x: ”)
 x = int(x)

x % 2 == 0

print(“it’s even”) print(“it’s odd”)

print(“thank you”)

FalseTrue

Today's Outline

Review

Control Flow Diagrams

Basic syntax for “if”

Demos

Identifying code blocks

Demos / worksheet

Writing conditions in Python

Code:

 x = input(“enter x: ”)
 x = int(x)

x % 2 == 0

print(“it’s even”) print(“it’s odd”)

print(“thank you”)

FalseTrue

Writing conditions in Python

 x = input(“enter x: ”)
 x = int(x)

x % 2 == 0

print(“it’s even”) print(“it’s odd”)

print(“thank you”)

FalseTrue

Code:

x = input(“enter x: ”)
x = int(x)

Writing conditions in Python

 x = input(“enter x: ”)
 x = int(x)

x % 2 == 0

print(“it’s even”) print(“it’s odd”)

print(“thank you”)

FalseTrue

Code:

x = input(“enter x: ”)
x = int(x)

if x % 2 == 0:

Writing conditions in Python

 x = input(“enter x: ”)
 x = int(x)

x % 2 == 0

print(“it’s even”) print(“it’s odd”)

print(“thank you”)

FalseTrue

Code:

x = input(“enter x: ”)
x = int(x)

if x % 2 == 0:
 print(“it’s even”)

Writing conditions in Python

 x = input(“enter x: ”)
 x = int(x)

x % 2 == 0

print(“it’s even”) print(“it’s odd”)

print(“thank you”)

FalseTrue

Code:

x = input(“enter x: ”)
x = int(x)

if x % 2 == 0:
 print(“it’s even”)
else:
 print(“it’s odd”)  
 

colons will almost always be
followed by a tabbed new line

Writing conditions in Python

 x = input(“enter x: ”)
 x = int(x)

x % 2 == 0

print(“it’s even”) print(“it’s odd”)

print(“thank you”)

FalseTrue

Code:

x = input(“enter x: ”)
x = int(x)

if x % 2 == 0:
 print(“it’s even”)
else:
 print(“it’s odd”)  
 
print(“thank you”)

Writing conditions in Python

 x = input(“enter x: ”)
 x = int(x)

x % 2 == 0

print(“it’s even”)
print(“we wanted odd”)

print(“it’s odd”)
print(“good!”)

print(“thank you”)

FalseTrue

Code:

x = input(“enter x: ”)
x = int(x)

if x % 2 == 0:
 print(“it’s even”)  
 print(“we wanted odd”)
else:
 print(“it’s odd”)
 print(“good!”)  
 
print(“thank you”)

Today's Outline

Review

Control Flow Diagrams

Basic syntax for “if”

Demos

Identifying code blocks

Demos / worksheet

Today's Outline

Review

Control Flow Diagrams

Basic syntax for “if”

Demos

Identifying code blocks

Demos / worksheet

Code Blocks

Code:

x = input(“enter x: ”)
x = int(x)

if x % 2 == 0:
 print(“it’s even”)  
 print(“we wanted odd”)
else:
 print(“it’s odd”)
 print(“good!”)  
 
print(“thank you”)
print(“all done”)

block of code
inside “if”

block of code
inside “else”

Code Blocks

block of code
inside “if”

block of code
inside “else”

What if all this were inside a function?

Code:

x = input(“enter x: ”)
x = int(x)

if x % 2 == 0:
 print(“it’s even”)  
 print(“we wanted odd”)
else:
 print(“it’s odd”)
 print(“good!”)  
 
print(“thank you”)
print(“all done”)

Code:

def check_oddness():
x = input(“enter x: ”)
x = int(x)

if x % 2 == 0:
 print(“it’s even”)  
 print(“we wanted odd”)
else:
 print(“it’s odd”)
 print(“good!”)  
 
print(“thank you”)
print(“all done”)

check_oddness()

Code Blocks

block of code
inside “if”

block of code
inside “else”

You need to get good at “seeing” code blocks in Python code. 
Even blocks inside blocks inside blocks…

block of code in 
check_oddness

Code:

def check_oddness():
x = input(“enter x: ”)
x = int(x)

if x % 2 == 0:
 print(“it’s even”)  
 print(“we wanted odd”)
else:
 print(“it’s odd”)
 print(“good!”)  
 
print(“thank you”)
print(“all done”)

check_oddness()

Identifying Code Blocks

Step 1: look for a colon at 
end of a line

Identifying Code Blocks

Step 2: start drawing a line 
on next code line, indented in

Code:

def check_oddness():
x = input(“enter x: ”)
x = int(x)

if x % 2 == 0:
 print(“it’s even”)  
 print(“we wanted odd”)
else:
 print(“it’s odd”)
 print(“good!”)  
 
print(“thank you”)
print(“all done”)

check_oddness()

Identifying Code Blocks

Step 3: continue down until you hit 
code that is less indented

Code:

def check_oddness():
x = input(“enter x: ”)
x = int(x)

if x % 2 == 0:
 print(“it’s even”)  
 print(“we wanted odd”)
else:
 print(“it’s odd”)
 print(“good!”)  
 
print(“thank you”)
print(“all done”)

check_oddness()

Identifying Code Blocks

Step 4: box off the code

Code:

def check_oddness():
x = input(“enter x: ”)
x = int(x)

if x % 2 == 0:
 print(“it’s even”)  
 print(“we wanted odd”)
else:
 print(“it’s odd”)
 print(“good!”)  
 
print(“thank you”)
print(“all done”)

check_oddness()

Identifying Code Blocks

Step 4: box off the code

Code:

def check_oddness():
x = input(“enter x: ”)
x = int(x)

if x % 2 == 0:
 print(“it’s even”)  
 print(“we wanted odd”)
else:
 print(“it’s odd”)
 print(“good!”)  
 
print(“thank you”)
print(“all done”)

check_oddness()

Identifying Code Blocks

to find more boxes, 
look for the next colon 

and repeat

Code:

def check_oddness():
x = input(“enter x: ”)
x = int(x)

if x % 2 == 0:
 print(“it’s even”)  
 print(“we wanted odd”)
else:
 print(“it’s odd”)
 print(“good!”)  
 
print(“thank you”)
print(“all done”)

check_oddness()

Identifying Code Blocks

to find more boxes, 
look for the next colon 

and repeat

Code:

def check_oddness():
x = input(“enter x: ”)
x = int(x)

if x % 2 == 0:
 print(“it’s even”)  
 print(“we wanted odd”)
else:
 print(“it’s odd”)
 print(“good!”)  
 
print(“thank you”)
print(“all done”)

check_oddness()

Identifying Code Blocks

to find more boxes, 
look for the next colon 

and repeat

Code:

def check_oddness():
x = input(“enter x: ”)
x = int(x)

if x % 2 == 0:
 print(“it’s even”)  
 print(“we wanted odd”)
else:
 print(“it’s odd”)
 print(“good!”)  
 
print(“thank you”)
print(“all done”)

check_oddness()

Identifying Code Blocks

to find more boxes, 
look for the next colon 

and repeat

Code:

def check_oddness():
x = input(“enter x: ”)
x = int(x)

if x % 2 == 0:
 print(“it’s even”)  
 print(“we wanted odd”)
else:
 print(“it’s odd”)
 print(“good!”)  
 
print(“thank you”)
print(“all done”)

check_oddness()

Today's Outline

Review

Control Flow Diagrams

Basic syntax for “if”

Demos

Identifying code blocks

Demos / worksheet

Practice Problems

Example: Classifying Children by Age

What are all the different ways to classify children?
If you are 3 years old you are a ……
If you are 15 years old you are a ……

def categorize_age(age):  
if age <= …..

return ‘baby’

Write a function that is given an int and returns a string

Example: Date Printer

please enter a year: (YYYY): 2022
please enter a month (1-12): 2
please enter a day (1-31): 11
the date is: Feb 11th of ‘22

e.g., 1st, 2nd, 3rd, etc

convert month num to name ’2-digit year

Part 2: nesting and refactoring
conditionals

Learning Objectives

Write nested conditional statements

Refactor code with Boolean operators into equivalent code with
nested conditional statements

Refactor code with nested conditional statements into equivalent
code with Boolean operators

Identify code blocks
•Count the number of blocks in nested code

51

Today's Outline

Nested Conditionals

Refactoring Conditionals

52

https://www.drphysics.com/prayer/flowchart.html

in programming:
• questions are phrased as boolean expressions
• actions are code/statements

conditional execution alternate execution

nested
conditional

chained would be
if we had more than

two possibilities

Nested Conditionals Example

def fix(moves, should): 
 if moves: 
 if should: 
 return "good" 
 else: 
 return "duct tape" 
 else: 
 if should: 
 return "WD-40" 
 else: 
 return "good"

54

RED

Example: Stoplight

YELLOW

GREEN

feet

color

what should the driver do?

RED

Example: Stoplight

YELLOW

GREEN

feet

color

smile

feet < 30

continue at same speed

stop

feet < 15

hit the gas

stop abruptly

Today's Outline

Nested Conditionals

Refactoring Conditionals

57

How to use these slides

58

There are more examples here than we can cover in lecture.

However, you can walk through these examples along with the
interactive exercises. You should do the following:

1. Think about what the answer is
2. Mentally step through the code using the example call when

applicable
3. Step through the code with the Python Tutor examples we've

setup for you. For the refactor examples, step through all three
versions, and see which alternative (A or B) matches the output
of the original version.

4. If you got something different than Python Tutor, tweak your
mental model (talk to us if you don't understand something)

def or2(cond1, cond2):  
 return cond1 or cond2

59

def or2(cond1, cond2):  
 rv = False  
 rv = rv or cond1  
 rv = rv or cond2  
 return rv

which refactor

is correct?

hint: or2(False, True)

def or2(cond1, cond2):  
 if cond1:  
 return cond2  
 else:  
 return False

A B

Refactor Exercise 1

60

Refactor Exercise 1

return b1 or b2 or b3 or ... or bN

rv = False  
rv = rv or b1  
rv = rv or b2  
rv = rv or b3  
...  
rv = rv or bN

Lesson: with "or", it only takes one to flip the whole thing True!

equivalent

def and2(cond1, cond2):  
 return cond1 and cond2

61

def and2(cond1, cond2):  
 rv = False  
 rv = rv and cond1  
 rv = rv and cond2  
 return rv

which refactor

is correct?

hint: and2(True, True)

def and2(cond1, cond2):  
 if cond1:  
 return cond2  
 else:  
 return False

A B

Refactor Exercise 2

62

Refactor Exercise 2

return b1 and b2 and b3 and ... and bN

if b1:  
 return b2 and b3 and ... and bN  
else:  
 return False

Lesson: with "and", the first one can make the whole thing False!

equivalent

def fix(moves, should):  
 if moves:  
 if should:  
 return "good"  
 else:  
 return "duct tape"  
 else:  
 if should:  
 return "WD-40"  
 else:  
 return "good"

63

def fix(moves, should):  
 if moves and not should:  
 return "duct tape"  
 elif not moves and should:  
 return "WD-40"  
 elif moves and should:  
 return "good"  
 elif not moves and not should:  
 return "good"

which refactor

is correct?

hint: fix(False, False)

def fix(moves, should):  
 if should:  
 if moves:  
 return "duct tape"  
 else:  
 return "good"  
 else:  
 if moves:  
 return "good"  
 else:  
 return "duct tape"

A B

Refactor Exercise 3

64

Refactor Exercise 3

Lesson: when handling combinations of booleans, you can 
either do either (a) nesting or (b) chaining with and

T F

T F

A

B
T F

B

case 1 case 2 case 3 case 4

A, B

case 1 case 2 case 3 case 4

T,T
T,F F,T

F,F

Option 1: Nesting

Option 2: Chaining

equivalent

def is_220(a, b, c):  
 return a==2 and b==2 and c==0

65

def is_220(a, b, c):  
 if a==2:  
 if c==0:  
 if b==2:  
 return True  
 return False

def is_220(a, b, c):  
 if a==2 or b==2 or c==0:  
 return False  
 return True

which refactor

is correct?

A B

hint: is_220(2, 2, 0)

Refactor Exercise 4

66

Refactor Exercise 4

return b1 and b2 and b3 and ... and bN

if b1:  
 if b2:  
 if b3:  
 ...  
 if bN:  
 return True  
return False  

Lesson: nesting a lot of if's inside each other is equivalent to and'ing all the conditions

equivalent

def is_220(a, b, c):  
 return a==2 and b==2 and c==0

67

def is_220(a, b, c):  
 if a==2:  
 return True  
 if b==2:  
 return True  
 if c==0:  
 return True  
 return False

def is_220(a, b, c):  
 if a!=2:  
 return False  
 if b!=2:  
 return False  
 if c!=0:  
 return False  
 return True

which refactor

is correct?

A B

hint: is_220(2, 2, 1)

Refactor Exercise 5

68

Refactor Exercise 5
return b1 and b2 and b3 and ... and bN

if not b1:  
 return False  
if not b2:  
 return False  
if not b3:  
 return False  
...  
if not bN:  
 return False  
return True

Lesson: checking if everything is True can be translated 
to seeing if we can find anything False

equivalent

