
CS 220  
Lists

Department of Computer Sciences
University of Wisconsin-Madison

Learning Objectives

List creation and sequence operations
• indexing, slicing, for loops
• len, in, concatenation, multiplication

Key differences between strings and lists
• type flexibility
• mutability

Mutating a list using:
• indexing
• methods: append, extend, pop, and sort

split(…) a string into a list

join(…) a list into a string

Today's Outline

From Strings to Lists

More Sequence Capabilities

Difference 1: Flexibility of Types

Difference 2: Mutability

Transforming between Strings and Lists

A string is a sequence of characters

"h
"

"e
"

"l
"

"l
"

"o
"

"
"

"w
"

0 1 2 3

"o
"

"r
"

"l
"

"d
"

"\n
"

4 5 6 7 8 9 10 11

s =

indexing: access one value slicing: extract sub-sequence

for loop: execute for each value

Things we can do with sequences
• indexing
• slicing
• for loop

A string is a sequence of characters

>>> msg = “hi world!”
>>> msg[1]
‘i’
>>> msg[3]
‘w’

Things we can do with sequences
• indexing
• slicing
• for loop

A string is a sequence of characters

>>> msg = “hi world!”
>>> msg[3:]
‘world!’
>>> msg[3:-1]
‘world’

Things we can do with sequences
• indexing
• slicing
• for loop

A string is a sequence of characters

>>> msg = “hi world!”
>>> for c in msg:
... print(c)
...
h
i

w
o
r
l
d
!

Things we can do with sequences
• indexing
• slicing
• for loop

A string is a sequence of characters

>>> msg = “hi world!”

What if we want a sequence, of something 
other than characters?

Use a Python list, with any items we want!

start with
quote

end with
quote

sequence of characters

str syntax

A list is a sequence of anything

>>> msg = “hi world!”
>>> nums = [22, 11, 33]

What if we want a sequence, of something 
other than characters?

Use a Python list, with any items we want!

square bracket
instead of quote

sequence
of values,
comma

separated

square bracket
instead of quote

str syntax
list syntax

>>> nums = [22, 11, 33]
>>> nums[0]
22
>>> nums[-1]
33

Things we can do with sequences
• indexing
• slicing
• for loop

A list is a sequence of anything

>>> nums = [22, 11, 33]
>>> [22, 11, 33][1]
11

Things we can do with sequences
• indexing
• slicing
• for loop

A list is a sequence of anything

seeing brackets for both creating lists and indexing often
confuses new coders!

>>> nums = [22, 11, 33]
>>> nums[1:]
[11, 33]
>>> nums[3:]
[]

Things we can do with sequences
• indexing
• slicing
• for loop

A list is a sequence of anything

>>> nums = [22, 11, 33]
>>> for x in nums:
... print(x)
...
22
11
33

Things we can do with sequences
• indexing
• slicing
• for loop

A list is a sequence of anything

Demo: Finding a Sum

Goal: write a function to add a list of numbers

Input:

• Python list containing floats

Output:

• Sum of the numbers

Example: 
>>> nums = [1, 2, 3.5] 
>>> add_nums(nums) 
6.5 
>>> add_nums([20, 30.1]) 
50.1

Today's Outline

From Strings to Lists

More Sequence Capabilities

Difference 1: Flexibility of Types

Difference 2: Mutability

Transforming between Strings and Lists

Cool stuff we can do with strings and lists

indexing

slicing

for loops

len

concatenation

in

multiply by an int

1

7

2

3

4

5

6

any sequence

4. len(sequence)

string list

>>> msg = “321go”
>>> len(msg)
5

>>> items = [99,11,77,55]
>>> len(items)
4

5. concatenation

string list

>>> msg = “321go”
>>> msg + “!!!”
‘321go!!!’

>>> items = [99,11,77,55]
>>> items + [1,2,3]
[99,11,77,55,1,2,3]

6. in

string list

>>> msg = “321go”
>>> ‘g’ in msg
True
>>> ‘z’ in msg
False

>>> items = [99,11,77,55]
>>> 11 in items
True
>>> 10 in items
False

7. multiply by int

string list

>>> msg = “321go”
>>> msg * 2
‘321go321go’

>>> items = [99,11,77,55]
>>> items * 2
[99,11,77,55,99,11,77,55]

strings lists

sequence stuff

indexing
slicing

for loops
len

concatenation
in

multiply by an int

flexible types

mutation

str methods
find

replace
upper/lower

format
etc.

now

Today's Outline

From Strings to Lists

More Sequence Capabilities

Difference 1: Flexibility of Types

Difference 2: Mutability

Transforming between Strings and Lists

 l = [True, False, 3, "hey", [1, 2]]
 for item in l:
 print(type(l))

Items can be any types

string, bool, int, float

even other lists!

coding demo:

bonus: how to extract the last item of the last item?

Example game map with list of lists

[

[".", ".", ".", ".", ".", "S"],

[".", "S", "S", "S", ".", "S"],

[".", ".", ".", ".", ".", "S"],

[".", ".", ".", ".", ".", "."],

[".", ".", ".", ".", "S", "."],

[".", ".", ".", ".", "S", "."]

]

.....S

.SSS.S

.....S

......

....S.

....S.

rows and columns
of data are useful for
more than games...

Today's Outline

From Strings to Lists

More Sequence Capabilities

Difference 1: Flexibility of Types

Difference 2: Mutability

Transforming between Strings and Lists

Mutability

Definition
• a type is mutable if values can be changed
• a type is immutable if values cannot be changed

set variable to new value change existing value

list
(mutable)

str
(immutable)

nums = [2,2,9]

nums[2] = 0

s = "229"

s[2] = "0"

nums = [1,2]

nums = [3,4]

s = "AB"
s = "CD"
s += "E"

careful! this is is about values, not variables 
(variables can ALWAYS be changed)

Ways to mutate a list

Common Modifications
• L[index] = new_value

• L.append(new_value)

• L.extend(another_list)

• L.pop(index)

• L.sort() 

Example code:

L = [3,2,1]  
L.append(0)  
L.extend([9, 8])  
L[1] = -1  
L.sort()  
L.pop(0)

Today's Outline

From Strings to Lists

More Sequence Capabilities

Difference 1: Flexibility of Types

Difference 2: Mutability

Transforming between Strings and Lists

split method

S = "a quick brown fox"
L = S.split(" ")

"a quick brown fox" ["a", "quick", "brown", "fox"]

separator

join method

L = ["M", "SS", "SS", "PP", ""]
S = "I".join(L)

["M", "SS", "SS", "PP", ""]

separator

MISSISSIPPI

http://www.city-data.com/picfilesc/picc25424.php

http://www.city-data.com/picfilesc/picc25424.php

join method

L = ["M", "SS", "SS", "PP", ""]
S = "I".join(L)

["M", "SS", "SS", "PP", ""] MISSISSIPPI

what if removed?

separator

http://www.city-data.com/picfilesc/picc25424.php

http://www.city-data.com/picfilesc/picc25424.php

join method

L = ["M", "SS", "SS", "PP"]
S = "I".join(L)

["M", "SS", "SS", "PP", ""] MISSISSIPP

separator

http://www.city-data.com/picfilesc/picc25424.php

http://www.city-data.com/picfilesc/picc25424.php

Demo: Censoring Profanity

Goal: write a function to replace curse words with stars

Input:
• A profane string

Output:
• A sanitized string

Example: 
 
>>> censor(“OMG this class is so fun”) 
‘*** this class is so fun’ 
>>> censor(“the midterm was darn tough”) 
‘the ******* was **** tough’

replaces offensive words like “darn”
and “midterm” with stars

Demo: Finding a Median – Next lecture…

Goal: write a function to find the median of a list of numbers

Input:

• Python list containing floats

Output:

• The median

Example: 
>>> nums = [1,5,2,9,8] 
>>> median(nums) 
5 
>>> median([1, 20, 30, 100]) 
25

Challenge

1. Command line arguments, as a list

import sys 
arg1 = sys.argv[1] 
arg2 = sys.argv[2]

2. Random values, from a list 
 
import random 
random.choice(["rock", "paper", "scissors"])

