[220] Copying

Department of Computer Sciences
University of Wisconsin-Madison

Objects review - what is printed for each example?

If you're not sure, open the Interactive Exercises from Friday and check

def f(items): def f(items):
items.append("!!t") items = items + ["!!!"]
print("f:", items) print("f:", items)

words = ['hello', 'world'] |words = ['hello', 'world']
f(words) f(words)
print("after:", words) print("after:", words)

Objects review - what is printed for each example?

def f(items):
items.append("!t!")

print("f:", items)
f: [“hello”,’world”, 111"

words = ['hello', 'world'] after: [“hello”,"world”"!!!"]

f(words)
print("after:", words)

Frames Objects
Global frame function
f(items)
f
words list

0
"hello"

1
"world"

2
ll!!!"

f /
items

Objects review - what is printed for each example?

def f(items):
items = items + ["!t1"]
print("f:", items)

f: [“hello”;"world”,"!1""]

99

after: [“hello”,’world”]

words = ['hello', 'world']
f(words)
print("after:", words)

Frames Objects
Global frame function
f(items)
f
words list
0 1
"hello" "world"
f
items ’\”st
0 1 2
"hello" "world" "1

Objects review - references

my_val = 32
my_list = ["anna', my_val, dict()]

y_list[2]['CS'] = 2
my_llst[2][Math'] =
my_list[2][’ Sc1ence'] { Biology': 300, \
'Physics': [200, 210]}

Ooco~NOYULT A WN B

print(my_list)

Frames Objects
dict
Global frame "CS" 220
32
my_val "Math" 200
my_list
"Science" list
0 1
list dict 2007 210
0 1 2 :
"Biology" 300
"anna" | 32 &Y

"Physics"

Objects review - references

my_val = 32

y_list[2]['CS'] =

Ooco~NOYULT A WN B

print(my_list)

my_list = ["anna’,

2

my_llst[2][Math'] =
my_list[2][’ Sc1ence']

my_val, dict()]

{ Biology':
'"Physics’':

300, \
[200, 210]}

Frames

Global frame

rny_val_Ez

my_list \

\Iist
0

"anna"

Objects

32

Stack

dict
" CS "

"Math"

"Science"

220
200

dict
"Biology" 30

"Physics"

Heap

list

200

210

Test yourself!

what do variables contain?

objects

references to objects

how should we label the
blanks in the hierarchy?

namedtuple, tuple

tuple, namedtuple

objects

variables

nn

Person

which of the following live inside frames!?

Hurrlcane

Learning Objectives Today

Practice objects/references!

Levels of copying 3 e~
e Making a new reference “'-f/l = %—’-,, ,
e Shallow copy — f
* Deep copy ' | _J

o

https://www.copymachinesdirect.com/copier-leasing.php

Read:
4+ Sweigart Ch 4 ("References” to the end)

https://automatetheboringstuff.com/chapter4/

Today's Outline

Review
More references

Copying
® reference
¢ shallow
® deep

Worksheet

Worksheet Problem |

What does assignment ACTUALLY do!?

><
[
>

IIBII , llcll]

What does assignment ACTUALLY do!?

»3

X

YES

["A" , IIBII , Ilcll]

/ UV URELU > LB all

/'

y should reference
whatever x references

What does assignment ACTUALLY do!?

<
[
Al
>
o
Q

Y E s y should reference
/ whatever x references

N o different code would

be needed to do this

[] (1] (1] (1] 1] (1]
| 3
\ no code could ever

y \ make this happen

What does assignment ACTUALLY do!?

=
o
g
;U:
e

What does assignment ACTUALLY do!?

X —_ ["A"’"B"’"C"]
y— X
def f(v):

pass

What does assignment ACTUALLY do!?

X — ["A"’"B"’"C"]
y— %
def f(y):

pass

X . ["A", "B", "C"]
£(x)
stack : heap

gIObaI fl"ame X _________l--——“'—'> uAu uBu uCu

f frame y | —~

Example |

x = {}
y = X
y["WI"] = "Madison"

print(x["WI"])

interactive

exercises

Example 2

def foo(nums):
nums .append(3)
print (nums)

items = [1,2]

numbers = i1tems

foo(numbers)

print (items)

print (numbers)

interactive

exercises

Example 3

w = [uaaau’ "bbb"]
y = x[:]

Xx.pop(0)
print(len(vy))

interactive

exercises

Worksheet Problems 2-6

Today's Outline

Review
More references

Copying
® reference
¢ shallow
® deep

Worksheet

-)

alice = {"name":"Alice", '"score":10, "age":30}
bob = {"name":"Bob", '"score":8, "age":25}

team = [alice, bobl]

players = {"A": alice, "B": bob}

State:
references objects
i g A 1) . n
alice name | © Alice

score | /| 10

age | | *30

dict

players = {"A":

State:

references

alice, "B": bob}

alice

bob

bob = {"name":"Bob", '"score":8, "age":25}
team = [alice, bobl]

I alice = {"name":"Alice", '"score":10, "age":30}

objects
name> T T*rAlice”
score | — | |0
age | ©— | ™30
dict
name‘ ~ 1 ™ "Bob"
score | — | >3
age ~T 25

dict

alice = {"name":"Alice", '"score":10, "age":30}

bob = {"name":"Bob", '"score":8, "age":25}
*team = [alice, bob]
players = {"A": alice, "B": bob}

State:
references objects
alice name | © *"Alice"
score] S
bob 10
age/| | *30
dict
/ ~A uBObu
~ ™ > 8
age \ - *25
\Elict
team \ | ,
> list

what DID NOT happen: team contains the alice and bob variables

what DID happen: team contains references to the objects referenced by bob and alice

alice = {"name":"Alice", '"score":10, "age":30}

bob = {"name":"Bob", '"score":8, "age":25}

*team = [alice, bobl]
players = {"A": alice, "B": bob}

State:
references objects
alice I /’\‘"Allce"
.
bob 10
*30
—\A uBObu
T 8
*25
team | |
> list
players reference \ reference
M N
Two kinds of reference: A
® variable B

® jtem in list, dict, etc

Today's Outline

Review
More references

Copying
e reference
¢ shallow
® deep

Worksheet

Three Levels of Copy

import copy
X = [

{"name":"A", "score":88},

interactive
exercises

When should we
use which one!

{"name":"B", "score":111},
{"name":"C", "score":100}]

uncomment one of these

#y = x *

#y = copy.copy(x) *

<

#y = copy.deepcopy(Xx)

reference copy [fastest, most dangerous]
shallow copy
deep copy [slowest, safest]

Shallow copy of depth level 2

Using shallow copy to

import copy copy other depth levels
X = [
{"name":"A", "score":88},

4
{"name":"B", "score":111},
{"name":"C", "score":100}]

Y = COpPY.COpPY(X) < shallow copy

for idx in range(len(x)):* shallow copy of depth level 2
y[1dx] = copy.copy(x[1dx])

Example: Player Scores

players =
{"name":"A", "score":88},
{"name":"B", "score":111},
{"name":"C", "score":100}
] Depending on the use case,

there are three ways we might
players j/\ s

"copy" the player’s data

name A name B name C

score 88 score| |11 score | 100

Example: Player Scores

Use Case 2 Use Case 3

Record historical scores
(deep copy)

Get median score
(shallow copy)

Example: Player Scores

Use Case 2 Use Case 3

Record historical scores
(deep copy)

Get median score
(shallow copy)

def max score(people):
highest = None
for p in people:
1f highest == None or p['"score"] > highest:
highest = p["score"]
return highest

players = ..

m = max score(players)

def max score(people):
highest = None
for p in people:
1f highest == None or p['"score"] > highest:
highest = p["score"]
return highest

players = ..
m = max score(players)

players ZI/—\/ =

name A name B name C

score 88 score 111 score 100

def max score(people):
highest = None

for p in people:
1f highest == None or p['"score"] > highest:
highest = p["score"]
return highest

players = ..
m = max score(players)

people

There is no risk of max_score
> accidentally corrupting players
players — L] T : ot PHNs pray
since it only reads people
/

name A name B name C

score 88 score 111 score 100

def max score(people):
highest = None

for p in people:

. 1f highest == None or p['"score"] > highest:
o highest = p["score"]

return highest

players = ..
m = max score(players)

people

There is no risk of max_score
> accidentally corrupting players
players — L] T : ot PHNs pray
since it only reads people
/

name A name B name C

score 88 score 111 score 100

def max score(people):
highest = None
for p in people:
1f highest == None or p['"score"] > highest:
highest = p["score"]

* return highest

players = ..
m = max score(players)

players ZI//—\/ A
/

people

highest| |11

name A name B name C

score 88 score 111 score 100

def max score(people):
highest = None
for p in people:
1f highest == None or p['"score"] > highest:
highest = p["score"]
return highest

players = ..
' m = max score(players)

players ZI/_\/ =

name A name B name C

score 88 score 111 score 100

Example: Player Scores

Use Case 2 Use Case 3

Record historical scores
(deep copy)

Get median score
(shallow copy)

def median score(people):

people = copy.copy(people)
people.sort()

players = ..

m = median score(players)

def median score(people):

people = copy.copy(people)
people.sort()

players = ..
* m = median score(players)

players j/—\ /

\\

name name name C

score 88 score| |11 score | 100

* def median score(people):
people = copy.copy(people)
people.sort()

players = ..
m = median score(players)

layers j/\: — Need to make a new list
Py / [so we don’t corrupt players
7] /

people

name name name C

score 88 score| |11 score | 100

def median score(people):

people = copy.copy(people)
people.sort()

players = ..
m = median score(players)

layers j/\: — Need to make a new list
Py / [so we don’t corrupt players
7] /

people

name name name C

score 88 score| |11 score | 100

def median score(people):

people = copy.copy(people)
people.sort()

players = ..
m = median score(players)

players j/—\ /

\ \

name name name C

copy makes a new list...
PY score 88 score| |11 score | 100

def median score(people):
people = copy.copy(people)

* people.sort()

players = ..
m = median score(players)

players R

people \\

end of players
end of people

name A name B name C

copy makes a new list...

: score 88 score| |11 score | 100
...that refers to the same items

def median score(people):
people = copy.copy(people)

I people.sort()

players = ..
m = median score(players)

players R

people \\

end of players
middle of people

name A name B name C

copy makes a new list...

: score 88 score| |11 score | 100
...that refers to the same items

def median score(people):

people = copy.copy(people)

I people.sort()

players = ..

m = median score(players)

Playersj/\
people \\ middle

copy makes a new list...
...that refers to the same items

name

score

88

name

score

name

score

100

Example: Player Scores

Use Case 2 Use Case 3

Get median score Record historical scores
(shallow copy) (deep copy)

players = ..

players before = copy.deepcopy(players)

make changes to players
players[0]["score"] += 10

print("score change:",
players[0]["score"] - players before[0]["score"])

players = ..
players before = copy.deepcopy(players)

make changes to players
players[0]["score"] += 10

print("score change:",
players[0]["score"] - players before[0]["score"])

A _—
Playersj/—\ NE\Es \A

name C

score | 100

name B
score 111
name A
score 88

players = ..
players before = copy.deepcopy(players)

make changes to players
players[0]["score"] += 10

print("score change:",

players[0]["score"] - players before[0]["score"])
players /—\ NN S \
name| C
players_before| 7| "\

score | 100

deepcopy makes name| B

a new list score | 111

name | A

score | 88

players = ..
players before = copy.deepcopy(players)

make changes to players

players[0]["score"] += 10

print("score change:",

players[0]["score"] - players before[0]["score"])
/—\A -
players N\ \
name C
players_before| 7| "\
score | 100
AND new
dictionaries name B
score | |11
name A name B name C name A
score 88 score| |11 score | 100 score 88

players = ..

players before = copy.deepcopy(players)

make changes to players
players[0]["score"] += 10

print("score change:",

players[0]["score"] - players before[0]["score"])
Players/—\ N[N T \
name| C
players_before| 7| "\
score | 100
hame B
score | |11
name | A name B name | C name | A
score score | |11 score | 100 score

players = ..
players before = copy.deepcopy(players)
make changes to players
players[0]["score"] += 10

. | | prints |10
print(score change: ",

players[0]["score"] - players before[0]["score"])

layers T *\\\\\\
pilay \| \ .
Pz N name C
players_before .
score | 100
A
name B
score | |11
4 v \ 4 T
name A name B name C name A
score score | |11 score | 100 score

Today's Outline

Review
More references

Copying
® reference
¢ shallow
® deep

Worksheet

Worksheet Problems 7-1 |

