
Iteration 2

Readings:

Chapter 2 of S weigart book

Chapter 6.4 of Python for E verybody

Department of Computer S ciences

Univers ity of Wiscons in-Madison

Learning Objectives Today

Nested loops tracing

Understanding break and continue
• S yntax

• Control flow

• Use cases

Nested loops tracing
• Interaction with break/continue

Chapter 7 of Think Python

Chapter 2 of Sweigart

(great recap so far)

http://automatetheborings tuff.com/chapter2/

Today's Outline

Des ign Patterns

Worksheet

Break

Continue

Nesting

Design Patterns (outside Programming)

[wikipedia]

Design Patterns (outside Programming)

[wikipedia]
somebody familiar with this

structure might skip around

1 s t

3rd

2nd

there are many similarities between

reading/writing code and essays

Design Patterns

i = 1

while i <= 30:

n = i * 2

print(n)

i += 1

When you ask a programmer what a piece of code
does , what do they look at, and in what order?

Way 1 : walk through in order (never a bad option)

Design Patterns

i = 1

while i <= 30:

n = i * 2

print(n)

i += 1

When you ask a programmer what a piece of code

does , what do they look at, and in what order?

Way 1 : walk through in order (never a bad option)

1i

Design Patterns

i = 1

while i <= 30:

n = i * 2

print(n)

i += 1

When you ask a programmer what a piece of code

does , what do they look at, and in what order?

Way 1 : walk through in order (never a bad option)

1i

Design Patterns

i = 1

while i <= 30:

n = i * 2

print(n)

i += 1

When you ask a programmer what a piece of code

does , what do they look at, and in what order?

Way 1 : walk through in order (never a bad option)

1i

2n

Design Patterns

i = 1

while i <= 30:

n = i * 2

print(n)

i += 1

When you ask a programmer what a piece of code

does , what do they look at, and in what order?

Way 1 : walk through in order (never a bad option)

Output

2

1i

2n

Design Patterns

i = 1

while i <= 30:

n = i * 2

print(n)

i += 1

When you ask a programmer what a piece of code

does , what do they look at, and in what order?

Way 1 : walk through in order (never a bad option)

Output

2

1 2i

2n

Design Patterns

i = 1

while i <= 30:

n = i * 2

print(n)

i += 1

When you ask a programmer what a piece of code

does , what do they look at, and in what order?

Way 1 : walk through in order (never a bad option)

Output

2

1 2i

2n

Design Patterns

i = 1

while i <= 30:

n = i * 2

print(n)

i += 1

When you ask a programmer what a piece of code

does , what do they look at, and in what order?

Way 1 : walk through in order (never a bad option)

Output

2

1 2i

2 4n

Design Patterns

i = 1

while i <= 30:

n = i * 2

print(n)

i += 1

When you ask a programmer what a piece of code

does , what do they look at, and in what order?

Way 1 : walk through in order (never a bad option)

Output

2

4

1 2i

2 4n

Design Patterns

i = 1

while i <= 30:

n = i * 2

print(n)

i += 1

When you ask a programmer what a piece of code

does , what do they look at, and in what order?

Way 1 : walk through in order (never a bad option)

Output

2

4

…

1 3i

2 4n

Design Patterns

i = 1

while i <= 30:

n = i * 2

print(n)

i += 1

When you ask a programmer what a piece of code

does , what do they look at, and in what order?

Way 2: knowing that certain code is written again

and again, look for common patterns to break it down

Design Patterns

i = 1

while i <= 30:

n = i * 2

print(n)

i += 1

When you ask a programmer what a piece of code

does , what do they look at, and in what order?

Obs ervation: loop will run with values of i of: 1 to 30

experienced coders will focus in

on everything about “i” firs t

because that is in the loop condition

Design Patterns

i = 1

while i <= 30:

n = i * 2

print(n)

i += 1

When you ask a programmer what a piece of code

does , what do they look at, and in what order?

Obs ervation: highlighted code runs 30 times , with i values of 1 through 30

Design Patterns

i = 1

while i <= 30:

n = i * 2

print(n)

i += 1

When you ask a programmer what a piece of code

does , what do they look at, and in what order?

Obs ervation: highlighted code runs 30 times , with i values of 1 through 30

n = 1 * 2

print(n)

n = 2 * 2

print(n)

n = 3 * 2

print(n)

...

n = 30 * 2

print(n)

Design Patterns

i = 1

while i <= 30:

n = i * 2

print(n)

i += 1

When you ask a programmer what a piece of code

does , what do they look at, and in what order?

Conc lus ion: the code prints 2, 4, 6, … , 58, 60

n = 1 * 2

print(n)

n = 2 * 2

print(n)

n = 3 * 2

print(n)

...

n = 30 * 2

print(n)

Output

2

4

6

8

…

56

58

60

Design Pattern 1: do something N times

i = 1

while i <= N:

i += 1

fill in with specifics here
Option A

Option B

Design Pattern 1: do something N times

i = 1

while i <= N:

i += 1

fill in with specifics here

i = 0

while i < N:

i += 1

fill in with specifics here

Option A

Option B

Design Pattern 1: do something N times

i = 1

while i <= N:

i += 1

fill in with specifics here

i = 0

while i < N:

i += 1

fill in with specifics here

Option A

Option B

1 , 2, 3, … , N

0, 1 , 2, … , N-1

Design Pattern 2: do something with all data

i = 0

while i < N:

i += 1

fill in with specifics here

State Population Area

WI 5.795 …

CA 39.54 …

MN 5.577 …

… … …

Design Pattern 2: do something with all data

i = 0

while i < N:

i += 1

fill in with specifics here

Functions :

count_rows()

get_population(index)

…

index 0

State Population Area

WI 5.795 …

CA 39.54 …

MN 5.577 …

… … …

Design Pattern 2: do something with all data

i = 0

while i < N:

i += 1

fill in with specifics here

Functions :

count_rows()

get_population(index)

…

index 1

State Population Area

WI 5.795 …

CA 39.54 …

MN 5.577 …

… … …

Design Pattern 2: do something with all data

i = 0

while i < count_rows():

pop = get_population(i)

i += 1

fill in with specifics here

Functions :

count_rows()

get_population(index)

…

State Population Area

WI 5.795 …

CA 39.54 …

MN 5.577 …

… … …

Design Pattern 2: do something with all data

i = 0

while i < count_rows():

pop = get_population(i)

i += 1

fill in with specifics here

Functions :

count_rows()

get_population(index)

…

as s umes we

us e 0 for firs t row

State Population Area

WI 5.795 …

CA 39.54 …

MN 5.577 …

… … …

Design Pattern 3: do something until the

end

while has_more():

data = get_next()

fill in with specifics here

People creating functions/modules for other programmers

to use will often have functions for checking if there is more

data and for getting the data one piece at a time

Today's Outline

Des ign Patterns

Worksheet
•Problem 1

•Problem 2

Break

Continue

Nesting

countdown

5

4

3

2

countdown

5

4

3

2

output

5

4

3

2

i

1

2

3

i j

1 1

2 1

2 2

3 1

3 2

3 3

i j

1 1

2 1

2 2

3 1

3 2

3 3

Output

1

END

2

2

END

3

3

3

END

Today's Outline

Des ign Patterns

Worksheet

Break

Continue

Nesting

Don’t get too excited,

only the loops get a break!

Basic Control Flow

while CONDITION:

code after the loop…

block of code…

maybe many lines…

at end, always go

back to condition check

True

False

Basic Control Flow

while CONDITION:

code after the loop…

code

…

if CONDITION:

break

…

more code

at end, always go

back to condition check

True

False

Just like return immediately exits a function,

break immediately exits a loop

Basic Control Flow

while CONDITION:

code after the loop…

code

…

if CONDITION:

break

…

more code

at end, always go

back to condition check

True

False

Usage: Commonly used when we’re searching through many things .

Allows us to stop as soon as we find what we want.

Demo: Prime Search Program

Goal: answer whether a range of numbers contains a prime

Input:
• S tart of range

• E nd of range

Output:
• Yes or no

Examples :

1 4 to 1 6 => NO (because 1 4, 1 5, and 1 6 are all not prime)

1 0 to 1 2 => YE S (because 11 is prime)

1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7

num

0

1 00

200

300

400

num

0

1 00

200

300

400

ins ide

s andwich

1 00

200

300

400

500

num

0

1 00

200

300

400

ins ide

s andwich

1 00

200

300

400

500

output

1 00?

YES

200?

YES

300?

Today's Outline

Des ign Patterns

Worksheet

Break

Continue

Nesting

Basic Control Flow

while CONDITION:

code after the loop…

block of code…

maybe many lines…

at end, always go

back to condition check

True

False

Basic Control Flow

while CONDITION:

code after the loop…

code

…

if CONDITION:

continue

…

more code

at end, always go

back to condition check

True

False

continue immediately stops current iteration and

goes back to the condition, without executing the "more code part,

potentially to start another iteration

Basic Control Flow

while CONDITION:

code after the loop…

code

…

if CONDITION:

continue

…

more code

at end, always go

back to condition check

True

False

Usage: commonly used to skip over values we want to ignore

Demo: Average Score

Goal: keep a running average of user-provided scores

Input:
• “q” for quit (keep running until this)

• a score in the 0 to 1 00 range

Output:
• Recompute average and print after each new number

Example:
enter a score (or q for exit): 50

avg is 50

enter a score (or q for exit): 1 1 0

bad input, skipping!

enter a score (or q for exit): q

exiting

Twist: use “continue” to skip over

inputs not in the 0 to 100 range

Today's Outline

Des ign Patterns

Worksheet

Break

Continue

Nesting

num

0

1 00

200

300

400

num

0

1 00

200

300

400

ins ide

s andwich

1 00

200

300

400

500

num

0

1 00

200

300

400

ins ide

s andwich

1 00

200

300

400

500

output

1 00?

YES

200?

YES

300?

400?

YES

500?

YES

Nested loops

while CONDITION_A:

more code

while CONDITION_B:

more code

if CONDITION_C:

continue

more code

more code

code outside any loop

how many blocks are there?

Nested loops

while CONDITION_A:

more code

while CONDITION_B:

more code

if CONDITION_C:

continue

more code

more code

code outside any loop

Nested loops

where does this

jump back to?

while CONDITION_A:

more code

while CONDITION_B:

more code

if CONDITION_C:

continue

more code

more code

code outside any loop

Nested loops

continue and break

always apply to the

inner loop in Python

while CONDITION_A:

more code

while CONDITION_B:

more code

if CONDITION_C:

continue

more code

more code

code outside any loop

https://www.python.org/dev/peps/pep-31 36/

https://www.python.org/dev/peps/pep-3136/

Nested loops

while CONDITION_A:

more code

while CONDITION_B:

more code

if CONDITION_C:

break

more code

more code

code outside any loop

https://www.python.org/dev/peps/pep-31 36/

https://www.python.org/dev/peps/pep-3136/

Worksheet Problems

