
Opera tors
Department of Computer S ciences

Univers ity of Wiscons in-Madison

Readings :

Chapter 1 of Think Python,

Chapter 2 of Python for Everybody

Additiona l readings :

Computer terminology

Learning Objectives

Run Python code us ing:

• Command line

• Jupyter Notebook

Eva luate:
• numeric express ions conta ining mathematica l operators (e.g., “+”

and “-“)

• string express ions conta ining string operators and escape

chara cters

Learning Objectives

Differentiate :

• behavior of the /, //, and % operators

Recognize examples of different Python data types :
• int, float, str, bool

Eva luate :

• express ions conta ining comparison operators (e.g., “==” and “>”)

• Boolean express ions conta ining the operators “and”, “or”, “not”

• mixed express ions us ing the correct order of operations

(precedence)

Today's Outline

S oftware
•Interpreters

•Notebooks

Demos

Operator Precedence

Demos

Boolean Logic

Demos

What you need to write/run code

An interpreter
• Python 3 (not 2!)

• some extra pa ckages (comes with anaconda insta llation)

• runs Python code

Jupyter Notebooks
• comes with anaconda insta llation

• acts like both interpreter and editor (type and sa ve Python code)

Interpreter

A program that runs a program
•Trans lates something the human likes (nice Python code) to

something the machine likes (ONEs and ZEROs)

Jupyter Notebooks

...

...

notebooks breakup code into

"cells " conta ining Python code

visua ls produced by the

code are interlea vedA Notebook is a file that conta ins code and other things

(e.g., documentation, images , tables , etc.)

Jupyter Notebooks

...

notebooks breakup code into

"cells " conta ining Python code

visua ls produced by the

code are embedded in the Notebook

.ipynb (Interactive Python Notebook) files are not ea sy to open in a regular text editor

3 ways we'll run Python

1. interactive mode

PS C:\Uses\ashwinmaran\cs220\03_Operators> python

Python 3.11.7 | packaged by Anaconda, Inc. | (main, Dec 15 2023, 18:05:47) [MSC v.1916 64 bit (AMD64)] on win32

Type "help", "copyright", "credits" or "license" for more information.

>>> 1 + 1

2

triple arrows mean Python code runs as you type it

Quick syntax check

3 ways we'll run Python

1. interactive mode

PS C:\Uses\ashwinmaran\cs220\03_Operators> python

Python 3.11.7 | packaged by Anaconda, Inc. | (main, Dec 15 2023, 18:05:47) [MSC v.1916 64 bit (AMD64)] on win32

Type "help", "copyright", "credits" or "license" for more information.

>>> 1 + 1

2

2. script mode

PS C:\Uses\ashwinmaran\cs220\03_Operators> python hello.py

triple arrows mean Python code runs as you type it

the name of the file containing your

code (called a "script")

is passed as an argument to the python

program

the interpreter program

is named "python"; run it

3 ways we'll run Python

1. interactive mode

PS C:\Uses\ashwinmaran\cs220\03_Operators> python

Python 3.11.7 | packaged by Anaconda, Inc. | (main, Dec 15 2023, 18:05:47) [MSC v.1916 64 bit (AMD64)] on win32

Type "help", "copyright", "credits" or "license" for more information.

>>> 1 + 1

2

2. script mode

PS C:\Uses\ashwinmaran\cs220\03_Operators> python hello.py

3. notebook "mode"

PS C:\Uses\ashwinmaran\cs220\03_Operators> jupyter notebook

triple arrows mean Python code runs as you type it

the name of the file containing your

code (called a "script")

is passed as an argument to the python

program

open Jupyter in a web browser

we'll do most work in notebooks this semester

the interpreter program

is named "python"; run it

Today's Outline

S oftware
•Interpreters

•Notebooks

Demos

Operator Precedence

Demos

Boolean Logic

Demos

Today's Outline

S oftware
•Interpreters

•Notebooks

Demos

Operator Precedence

Demos

Boolean Logic

Demos

Order of S implification

Python works by s implifying, applying one operator at a time

3 * 3 + 2 * 2 + 16 ** (1/2)

Rules
• First work within parentheses

• Do higher precedence first

• Break ties left to right (exception: exponent ** operator)

Order of S implification

Python works by s implifying, applying one operator at a time

3 * 3 + 2 * 2 + 16 ** (1/2)

Rules
• First work within parentheses

• Do higher precedence first

• Break ties left to right (exception: exponent ** operator)

Order of S implification

Python works by s implifying, applying one operator at a time

3 * 3 + 2 * 2 + 16 ** (1/2)

3 * 3 + 2 * 2 + 16 ** (0.5)

Rules
• First work within parentheses

• Do higher precedence first

• Break ties left to right (exception: exponent ** operator)

Order of S implification

Python works by s implifying, applying one operator at a time

3 * 3 + 2 * 2 + 16 ** (1/2)

3 * 3 + 2 * 2 + 16 ** (0.5)

Rules
• First work within parentheses

• Do higher precedence first

• Break ties left to right (exception: exponent ** operator)

Order of S implification

Python works by s implifying, applying one operator at a time

3 * 3 + 2 * 2 + 16 ** (1/2)

3 * 3 + 2 * 2 + 16 ** (0.5)

3 * 3 + 2 * 2 + 4

Rules
• First work within parentheses

• Do higher precedence first

• Break ties left to right (exception: exponent ** operator)

Order of S implification

Python works by s implifying, applying one operator at a time

3 * 3 + 2 * 2 + 16 ** (1/2)

3 * 3 + 2 * 2 + 16 ** (0.5)

3 * 3 + 2 * 2 + 4

Rules
• First work within parentheses

• Do higher precedence first

• Break ties left to right (exception: exponent ** operator)

Order of S implification

Python works by s implifying, applying one operator at a time

3 * 3 + 2 * 2 + 16 ** (1/2)

3 * 3 + 2 * 2 + 16 ** (0.5)

3 * 3 + 2 * 2 + 4

9 + 2 * 2 + 4

Rules
• First work within parentheses

• Do higher precedence first

• Break ties left to right (exception: exponent ** operator)

Order of S implification

Python works by s implifying, applying one operator at a time

3 * 3 + 2 * 2 + 16 ** (1/2)

3 * 3 + 2 * 2 + 16 ** (0.5)

3 * 3 + 2 * 2 + 4

9 + 2 * 2 + 4

Rules
• First work within parentheses

• Do higher precedence first

• Break ties left to right (exception: exponent ** operator)

Order of S implification

Python works by s implifying, applying one operator at a time

3 * 3 + 2 * 2 + 16 ** (1/2)

3 * 3 + 2 * 2 + 16 ** (0.5)

3 * 3 + 2 * 2 + 4

9 + 2 * 2 + 4

9 + 4 + 4

Rules
• First work within parentheses

• Do higher precedence first

• Break ties left to right (exception: exponent ** operator)

Order of S implification

Python works by s implifying, applying one operator at a time

3 * 3 + 2 * 2 + 16 ** (1/2)

3 * 3 + 2 * 2 + 16 ** (0.5)

3 * 3 + 2 * 2 + 4

9 + 2 * 2 + 4

9 + 4 + 4

Rules
• First work within parentheses

• Do higher precedence first

• Break ties left to right (exception: exponent ** operator)

Order of S implification

Python works by s implifying, applying one operator at a time

3 * 3 + 2 * 2 + 16 ** (1/2)

3 * 3 + 2 * 2 + 16 ** (0.5)

3 * 3 + 2 * 2 + 4

9 + 2 * 2 + 4

9 + 4 + 4

13 + 4

Rules
• First work within parentheses

• Do higher precedence first

• Break ties left to right (exception: exponent ** operator)

Order of S implification

Python works by s implifying, applying one operator at a time

3 * 3 + 2 * 2 + 16 ** (1/2)

3 * 3 + 2 * 2 + 16 ** (0.5)

3 * 3 + 2 * 2 + 4

9 + 2 * 2 + 4

9 + 4 + 4

13 + 4

Rules
• First work within parentheses

• Do higher precedence first

• Break ties left to right (exception: exponent ** operator)

Order of S implification

Python works by s implifying, applying one operator at a time

3 * 3 + 2 * 2 + 16 ** (1/2)

3 * 3 + 2 * 2 + 16 ** (0.5)

3 * 3 + 2 * 2 + 4

9 + 2 * 2 + 4

9 + 4 + 4

13 + 4

17

Rules
• First work within parentheses

• Do higher precedence first

• Break ties left to right (exception: exponent ** operator)

Operator Precendence

What is it? Python Operator

exponents **

signs +x, -x

multiply/divide *, /, //, %

add/subtract +, -

comparison ==, !=, <, <=, >, >=

boolean stuff not

… and

… or

these are the ones you should be

learning at this point in the semester

(there are a few more not covered

now)

simplify first

simplify last*

* one exception is an optimization

known as "short circuiting"

Operator Precendence

What is it? Python Operator

exponents **

signs +x, -x

multiply/divide *, /, //, %

add/subtract +, -

comparison ==, !=, <, <=, >, >=

boolean stuff not

… and

… or

simplify first
M

a
th

e
m

a
ti

c
a
l

L
o

g
ic

simplify last*

* one exception is an optimization

known as "short circuiting"

these are the ones you should be

learning at this point in the semester

(there are a few more not covered

now)

Today's Outline

S oftware
•Interpreters

•Notebooks

Demos

Operator Precedence

Demos

Boolean Logic

Demos

Today's Outline

S oftware
•Interpreters

•Notebooks

Demos

Operator Precedence

Demos

Boolean Logic

Demos

Boolean Logic

The logic of truth:
• Named a fter George Boole

• Two va lues : True and Fa lse

• Three operators: and, or, and not

Boolean Logic

True

True True

False

False True

F
a
ls

e
T

ru
e

False

False True

False

False True

F
a
ls

e
T

ru
e

FalseTrue

False True

AND OR NOT

The logic of truth:
• Named a fter George Boole

• Two va lues : True and Fa lse

• Three operators: and, or, and not

True

True True

False

False True

F
a
ls

e
T

ru
e

False

False True

False

False True

F
a
ls

e
T

ru
e

FalseTrue

False True

AND OR NOT

It’s a Saturday AND

we’re attending CS 220 lecture

True

True True

False

False True

F
a
ls

e
T

ru
e

False

False True

False

False True

F
a
ls

e
T

ru
e

FalseTrue

False True

AND OR NOT

It’s a Saturday AND

we’re attending CS 220 lecture

FALSE!

True

True True

False

False True

F
a
ls

e
T

ru
e

False

False True

False

False True

F
a
ls

e
T

ru
e

FalseTrue

False True

AND OR NOT

Project 1 is due on Wednesday

OR I’ll eat my hat

True

True True

False

False True

F
a
ls

e
T

ru
e

False

False True

False

False True

F
a
ls

e
T

ru
e

FalseTrue

False True

AND OR NOT

Project 1 is due on Wednesday

OR I’ll eat my hat

TRUE!

True

True True

False

False True

F
a
ls

e
T

ru
e

False

False True

False

False True

F
a
ls

e
T

ru
e

FalseTrue

False True

AND OR NOT

Control Flow: Remember that conditiona ls and loops sometimes do something.

We'll use bool logic a LOT to control when we do/don't.

Today's Outline

S oftware
•Interpreters

•Notebooks

Demos

Operator Precedence

Demos

Boolean Logic

Demos

