Strings

Department of Computer Sciences
University of Wisconsin-Madison

Learning Obijectives

Compare strings:
® using <, >, ==, or!=

Explain string methods:
® syntax and purpose (with examples)

S equence operations (a string is an example of a sequence)

® len

® indexing: extracting single item

® slicing: extracting sub-sequence Chapter 8 + 9 of
® for loop: iterating over a sequence Think Python

what we've learned

about strings so far %
| e |

what we'll learn today

https://naturalfiberproducers.com/s tore-3/suri-silk-yarn/

Today's Outline

Comparison

String Methods

S equences

Slicing

for loop over sequence

for loop over range

Comparison

| <2 » True
(because | is before 2)

False
(because 200 is NOT before 100)

Comparison

‘(Cat” < “dog” #

oA

Python can also compare strings

Comparison

‘¢ 9 ‘c ’9
cat’ < “dog » True
(because “cat” is before “dog” in the dictionary)

oA

X Python can also compare strings

Comparison

«¢ g” < «¢ o dOO” » ???

What about string s that start with the same letter?

Comparison

“do@’ < “dog doo” # 207

What about string s that start with the same letter?

Look for the first letter that's different, and compare those.

Comparison

“do@’ < “dog doo” » True

What about string s that start with the same letter?

Look for the first letter that's different, and compare those.

Comparison

“doa’ < “dog doo” » True

There are three gotchas:

a case (upper vs. lower)

1. Case rules

(‘A” < “B” < . < “Y” < ((Z”

“a” < ‘(b” < . < “y” < “Z”

Any two characters are y In the AS Cll table,
)] o) C” < “b”]
compared using their position in the upper case is
AS Cll table. I < 17 before lower case.

https://simple.wikipedia.org/wiki/AS CII

https://simple.wikipedia.org/wiki/ASCII

2. Pesky digits S'

1Y a %2/ ¢ |
07 <*I

6‘8” < “9”

“I I” < ((2”
(X4 I OO” < €6 I 5”

2. Pesky digits s'

1Y a %2/ ¢ |
07 <*I

(‘8” < “9”

‘JTI I < (El’
(X4 I OO” < €6 I 5”

2. Pesky digits s'

1Y a %2/ ¢ |
07 <*I

(‘8” < “9”

117 <
¢¢ Iﬁb” ¢¢ II”

3. Prefixes

String 1l: bat ¥ 4
String 2: batman

3. Prefixes

String 1l: bat
String 2: batman

3. Prefixes

String 1l: bat
String 2: batman

7 <"m”, so String | is first:

“bat” < “batman”

Do problem |

Today's Outline

String Methods

S equences

Slicing

for loop over sequence

for loop over range

What Is a method?

A special function associated variable/value

>>> msg = "hello"
>>>

What Is a method?

A special function associated variable/value

>>> msg = "hello”
>>> |len(msgQ)

—

len is a normal function,
it returns number
of characters in string.

It returns the number of
characters in a string

What Is a method?

A special function associated variable/value

>>> msg = "hello”
>>> |len(msg)

5
>>>

What Is a method?

A special function associated variable/value

>>> msg = "hello”
>>> |len(msg)

5

>>> msg.isdigit()

—

isdigit is a special function,
called a method, that operates
on the string in msg.

It returns a bool, whether the
string is all digits

What Is a method?

A special function associated variable/value

>>> msg = "hello”
>>> |len(msg)

5

>>> msg.isdigit()

—

str.isdigit(msg)

et
w2
eQ

isdigit is a special function,
called a method, that operates
on the string in msg.

It returns a bool, whether the
string is all digits

What Is a method?

A special function associated variable/value

>>> msg = "hello”
>>> |len(msg)

5

>>> msg.isdigit()
False

>>>

What Is a method?

A special function associated variable/value

>>> msg = "hello"

>>> Ien(m@
5

>>> |msg.is.digit()
False
>>>

Both the regular function (len) and method (isdigit) are answering
a question about the string in msg, but we call them slightly differently

What Is a method?

A special function associated variable/value

>>> msg = "hello”
>>> |len(msg)

5

>>> msg.isdigit()
False

>>> msg.upper()

'HELLO' _
is upper a regular function or a method?

What Is a method?

A special function associated variable/value

>>> msg = "hello"
>>> |len(msg)

5

>>> msg.isdigit()
False

>>> msg.upper()
'HELLO!

methods can be called with literal values as well as with values in variables

What Is a method?

A special function associated variable/value

>>> msg = "hello"

>>> len(msg)
5

>>> msg.isdigit()
False

>>> msg.upper()
'HELLO'

methods can be called with literal values as well as with values in variables

What Is a method?

A special function associated variable/value

>>> msg = "hello”

>>> len(“220”)

3

>>> “220”.isdigit()

True

>>> “Hello World”.upper()
‘HELLO WORLD’

methods can be called with literal values as well as with values in variables

String Method Purpose

s.upper() change string to all upper case
s.lower() opposite of upper()
s.strip() remove whitespace (space, tab, etc) before and after
s.Istrip() remove whitespace from left side
s.rstrip() remove whitespace from right side
s.format(args...) replace instances of “{}” in string with args
s.find(needle) find index of needle in s
s.startswith(prefix) does s begin with the given prefix?
s.ends with(suffix) does s end with the given suffix?
s.replace(a, b) replace all instances of ain s with b

Quick demos...

Do problem 2

Today's Outline

Sequences
Slicing
for loop over sequence

for loop over range

Python Sequences

[valIvalIvalIvalIvalIvaIIvaIIvalIvalIvalIvalIval]
0 I 2 3 4 5 6 7 8 9 10 |1

Definition: a sequence is a collection of numbered/ordered values

(types of sequences) (things you can do with sequences)
strings ¥ tuples len ¥ ¥ for loop

lists indexing slicing

Python Sequences

- T T

Definition: a string is a sequence of one-character strings

(types of sequences) (things you can do with sequences)
strings len ' ' for loop

[today] indexing slicing

Python Sequences

- T T

12
f
len (s)
Definition: a string is a sequence of one-character strings
(types of sequences) (things you can do with sequences)

strings

for loop
[today] indexing slicing

Python Sequences

indexing: access one value

|
- R

12
f
len (s)
Definition: a string is a sequence of one-character strings
(types of sequences) (things you can do with sequences)

/ 2 I RN

strings len . ' for loop
[today] slicing

Python Sequences

indexing: access one value slicing: extract sub-sequence
S —_— ["h"["eﬂlﬂl"I"1"1"0"1" "I"w"I"o"I"r"I"l"I"d"l"\nll]
0 I 2 3 4 5 6 7 8 9 10 Il 12
f
len (s)

Definition: a string is a sequence of one-character strings

(types of sequences) (things you can do with sequences)

/ 2 I RN

strings len ' . for loop
[today] indexing

Python Sequences

indexing: access one value slicing: extract sub-sequence

| |
- R EEEEE

N NN U N U N U N LS !

len (s)

for loop: execute for each value

Definition: a string is a sequence of one-character strings

(types of sequences) (things you can do with sequences)
strings len ¥ ¥ for loop

[today] indexing slicing

Python Sequences

(things you can do with sequences)

N\

for loop

strings v v
[today] slicing

Do problem 3

Python Sequences

(things you can do with sequences)

2 I RN

string s len ¥ M for loop
[today] Indexing

Today's Outline

Comparison

String Methods

S equences

Slicing

for loop over sequence

for loop over range

Indexing
0 1 2 3 4
S: P I Z Z A

Code:
S = “PIZZA”

Indexing

P I Z2 Z2 A

S:

Indexing

@' L 23 g
S: |P| I Z Z A
-5 -4 -3 2 -1

Indexing

S:

0

P

-3

¢

-4

o DN

o DN v

Indexing

“Q”

<
V)

Slicing

0 1 2 3 4
S: P|I Z Z| A
-5 |-4 -3 -2| -1

S[?27] # ‘122"
_

what to put if we want multiple letters,
like “1ZZ?

Slicing

0 1 2 3 4
S: P|I Z Z| A
-5 |-4 -3 -2| -1

S[1:4] # ‘122"

Slicing

S: ;@; 2?

-5 -4 -3 -2 -1

S[1:4] # ‘122"

startis “inclusive”

S“Clng / end is “exclusive”

yoxmmlo

S: P 2 2| A
-4 -3 -2

-1

-3

S[1:4] # ‘1ZZ"

Slicing

0 @ 2 3 @
S: P Z Z| A
-5 -3 -2 @

S[1:4] # ‘122"

Many different slices give the same result:
S[1:4] == S[I:-1] == S[-4:4] == S[-4:-1]

Slicing

0@2 3 4
S: P Z Z A
-4

-3 -2 -1

-3

S[1:100] # “|ZZA

S lices don’t complain about out-of-range numbers.
You just don’t get data for that part

Slicing

1%L

S[50:100]

S lices don’t complain about out-of-range numbers.
You just don’t get data for that part

Slicing

S: |P I|Z Z A

S[: 2] # “p”

Feel free to leave out one of the numbers in the slice

Slicing

S[2:] # “ZZN’

Feel free to leave out one of the numbers in the slice

Slicing

S[2:] “ZZN’

Inclusive start and exclusive end makes it easier to split and inject things

S“Clng /— let’s inject “..."” here
[©

0 1 2 4
S: |P I Z|| Z
-5 -4 =3[-2 -1

S[:3] + “..." + S[3] # “P|Z..ZA”

Inclusive start and exclusive end makes it easier to split and inject things

Do problem 4

Python Sequences

(things you can do with sequences)

/

string s len ¥ ¥ for loop
[today] indexing slicing

Today's Outline

Comparison

String Methods

S equences

Slicing

for loop over sequence

for loop over range

Motivation

msg = "hello"

let's say we want to print
each letter on its own line

Motivation

msg = "hello"

| = 777
while | < ?277:
7?7
| += 777

Motivation

msg = "hello"
/— indexing starts at 0, so msg[0] is ‘h’,
i= 0 so we want to starti at 0

while | < ?77:
7?7
| += 777

Motivation

msg = "hello"
/— indexing starts at 0, so msg[0] is ‘h’,
i= 0 so we want to starti at 0
while | < ?77?;
297
| +=1

\ we don’t want to skip any letters

Motivation

msg = "hello"
/— indexing starts at 0, so msg[0] is ‘h’,
i= 0 so we want to starti at 0

while | < len(msQ):

| += 1 last letter (o) has index 4,
\ or len(msg)-|
we don’t want to skip any letters

Motivation

msg = "hello"

1=0
while | < len(msQ):
27?7

| += 1

Motivation

msg = "hello"

1= 0

while | < len(msQ):

letter = msq]i]
?77?

| += 1

\ get the letter for the current index

Motivation

msg = "hello"

1= 0

while | < len(msQ):

letter = msq]i]
print(letter)
| +=1

~

this is the only interesting part
(we just want to print each letter!)

Motivation

msg = "hello"

1=0
while | < len(msQ):
letter = msq]i]

print(letter)
| +=1 .\

this is the only interesting part
(we just want to print each letter!)

Code like this for sequences is so common
that Python provides an easier way, with the for loop

while vs. for

while
loop

msg = "hello"

1=0
while i < len(msg):
letter = msq|i]
print(letter)
| +=1

while vs. for

msg = "hello"
. 1=0
while while 1 < len(msg):

loop - msgll

print(letter)

| +=1

for for INn MsQ:

|OOP print(letter)

they do the same thing!

while vs. for

msg = "hello"
. i=0
while e Clenimso)
IOOP = msgli] «—— this happens automatically now
print(letter)
i +=1
for for in msg:
|00p print(letter)

they do the same thing!

for syntax

for for letter in msg:
lo op print(letter)

basic syntax always used

for syntax

automatically initialized to a
different item on each iteration
(“h” on Ist, “e” on 2nd, etc)

the sequence
(e.g., “hello”)

for for letter In msg:
lo op print(letter)

specify a variable name to use inside the loop,
and the sequence you want to loop over

for syntax

do PythonTutor example

automatically initialized to a
different item on each iteration
(“h” on Ist, “e” on 2nd, etc)

the sequence
(e.g., “hello”)

for for letter In msg:
lo op print(letter)

specify a variable name to use inside the loop,
and the sequence you want to loop over

Do problem 5

Today's Outline

Comparison

String Methods

S equences

S licing

for loop over sequence

for loop over range

for with range

msg = “01234” Output:
000
111
for item In msg: 222
print(item * 3) 333

444

for with range

msg = “01234” Output:
000
1]
for item In msaq: 222
rint(item * 3 333
print() "

what if we want to iterate over the integers
0 to 4 (instead of string digits “0” to “4”)?

for with range

msg—01234- Output:

for item In ms¢g-:
print(item * 3)

what if we want to iterate over the integers
0 to 4 (instead of string digits “0” to “4”)?

for with range

Output:
0
. . 3
for item in range(5): 6
print(item * 3) ?2

what if we want to iterate over the integers
0 to 4 (instead of string digits “0” to “4”)?

for with range

for item in range(5):
print(item * 3)

using range(N) with a for loop will
iterate with these values for item:
0, 1,2, ..., N-2, N-I

Do problem 6

