
Conditionals 2

1

Department of Computer Sciences

University of Wisconsin-Madison

Learning Objectives

Write nested conditional statements

Refactor code with Boolean operators into equivalent code with

nested conditional statements

Refactor code with nested conditional statements into equivalent

code with Boolean operators

Identify code blocks

• Count the number of blocks in nested code

2

Today's Outline

Nested Conditionals

Refactoring Conditionals

3

https://www.drphysics.com/prayer/flowchart.html

in programming:

• questions are phrased as boolean expressions

• actions are code/statements

conditional execution alternate execution

nested

conditional

chained would be

if we had more than

two possibilities

Nested Conditionals Example

def fix(moves, should):

if moves:

if should:

return "good"

else:

return "duct tape"

else:

if should:

return "WD-40"

else:

return "good"

5

RED

Example: Stoplight

YELLOW

GREEN

feet

color

what should the driver do?

RED

Example: Stoplight

YELLOW

GREEN

feet

color

smile

feet < 30

continue at same speed

stop

feet < 15

hit the gas

stop abruptly

Today's Outline

Nested Conditionals

Refactoring Conditionals

8

How to use these slides

9

There are more examples here than we can cover in lecture.

However, you can walk through these examples along with

the interactive exercises. You should do the following:

1. Think about what the answer is

2. Mentally step through the code using the example call

when applicable

3. Step through the code with the Python Tutor examples

we've setup for you. For the refactor examples, step

through all three versions, and see which alternative (A or

B) matches the output of the original version.

4. If you got something different than Python Tutor, tweak

your mental model (talk to us if you don't understand

something)

def or2(cond1, cond2):

return cond1 or cond2

10

def or2(cond1, cond2):

rv = False

rv = rv or cond1

rv = rv or cond2

return rv

which refactor

is correct?

hint: or2(False, True)

def or2(cond1, cond2):

if cond1:

return cond2

else:

return False

A B

Refactor Exercise 1

11

Refactor Exercise 1

return b1 or b2 or b3 or ... or bN

rv = False

rv = rv or b1

rv = rv or b2

rv = rv or b3

...

rv = rv or bN

Lesson: with "or", it only takes one to flip the whole thing True!

equivalent

def and2(cond1, cond2):

return cond1 and cond2

12

def and2(cond1, cond2):

rv = False

rv = rv and cond1

rv = rv and cond2

return rv

which refactor

is correct?

hint: and2(True, True)

def and2(cond1, cond2):

if cond1:

return cond2

else:

return False

A B

Refactor Exercise 2

13

Refactor Exercise 2

return b1 and b2 and b3 and ... and bN

if b1:

return b2 and b3 and ... and bN

else:

return False

Lesson: with "and", the first one can make the whole thing False!

equivalent

def fix(moves, should):

if moves:

if should:

return "good"

else:

return "duct tape"

else:

if should:

return "WD-40"

else:

return "good"

14

def fix(moves, should):

if moves and not should:

return "duct tape"

elif not moves and should:

return "WD-40"

elif moves and should:

return "good"

elif not moves and not should:

return "good"

which refactor

is correct?

hint: fix(False, False)

def fix(moves, should):

if should:

if moves:

return "duct tape"

else:

return "good"

else:

if moves:

return "good"

else:

return "duct tape"

A
B

Refactor Exercise 3

15

Refactor Exercise 3

Lesson: when handling combinations of booleans, you can
either do either (a) nesting or (b) chaining with and

T F

T F

A

B

T F

B

case 1 case 2 case 3 case 4

A, B

case 1 case 2 case 3 case 4

T,T
T,F F,T

F,F

Option 1: Nesting

Option 2: Chaining

equivalent

def is_220(a, b, c):

return a==2 and b==2 and c==0

16

def is_220(a, b, c):

if a==2:

if c==0:

if b==2:

return True

return False

def is_220(a, b, c):

if a==2 or b==2 or c==0:

return False

return True

which refactor

is correct?

A B

hint: is_220(2, 2, 0)

Refactor Exercise 4

17

Refactor Exercise 4

return b1 and b2 and b3 and ... and bN

if b1:

if b2:

if b3:

...

if bN:

return True

return False

Lesson: nesting a lot of if's inside each other is equivalent to and'ing all the conditions

equivalent

def is_220(a, b, c):

return a==2 and b==2 and c==0

18

def is_220(a, b, c):

if a==2:

return True

if b==2:

return True

if c==0:

return True

return False

def is_220(a, b, c):

if a!=2:

return False

if b!=2:

return False

if c!=0:

return False

return True

which refactor

is correct?

A B

hint: is_220(2, 2, 1)

Refactor Exercise 5

19

Refactor Exercise 5

return b1 and b2 and b3 and ... and bN

if not b1:

return False

if not b2:

return False

if not b3:

return False

...

if not bN:

return False

return True

Lesson: checking if everything is True can be translated

to seeing if we can find anything False

equivalent

