Function Scope

Department of Computer Sciences
University of Wisconsin-Madison

Learning Objectives Today

Explain rules of scope of local variables in a function
®* When are they created?

®* When are they destroyed?

®* What parts of a program have access to them? (frames)

Understand global variables
®* How can they be used and modified within a function?(global

keyword)
: 3("P d
* Where are they stored? (global frame) EE‘“" Downey Ch 3 {*Parameters an
rguments" to end)

®* What parts of a program have access to them? | Link to Siides
®* How can they be mis-represented as local varial neractive Exercises *

Explain argument passing
® “pass by value”

Today's Outline

PR

Demos: Local Variables

Context
*Examples

Frames

Demos: Global Variables

Demos: Argument Passing

Context

Often (in life and programming), the same name can mean

different things in different contexts

Examples?

Human name: Ashwin (who is in the room?)

Street address: 1210 West Dayton Street (what city are we in?)
Files: public_tests.py (which directory are we in?)

Context

Often (in life and programming), the same name can mean

different things in different contexts

Examples?

Human name: Ashwin (who is in the room?)

Street address: 1210 West Dayton Street (what city are we in?)
Files: public_tests.py (which directory are we in?)

Our code often have different variables with the same name
®* How do we keep variable names organized?
®* How do we know what a variable name is referring to?

Context

Often (in life and programming), the same name can mean

different things in different contexts

Examples?

Human name: Ashwin (who is in the room?)

Street address: 1210 West Dayton Street (what city are we in?)
Files: public_tests.py (which directory are we in?)

Our code often have different variables with the same name

®* How do we keep variable names organized? with groups called “frames”

®* How do we know what a variable name is referring to? we’'ll learn some
rules for this

Today's Outline

Context

Frames *

Demos: Local Variables
Demos: Global Variables

Demos: Argument Passing

Frames

Every time a function is invoked (i.e., called), the invocation

gets a new “frame” for holding variables
®* The parameters also exist in a frame

Global frame
®* There Is always one global frame that all functions can access

When a variable name iIs used, Python looks two places:

0 the function invocation’s frame

e the global frame

Understanding scope: example

def print_twice(text):
print(text)
print(text)

def concatenate_str(textl, text2):
combined_text = textl + textZ2 # concatenation
print_twice(combined_text)

cs220 = "Hello CS220"
cs319 = " / (S319"
concatenate_str(cs220, cs319)

Understanding scope: example

def print_twice(text):
print(text)
print(text)

def concatenate_str(textl, text2):
combined_text = textl + textZ2 # concatenation
print_twice(combined_text)

cs220 = "Hello (S5220" ¢s220 and cs319 will be in the global frame
cs319 = 7 / (CS319°
concatenate_str(cs220, cs319)

10

Understanding scope: example

def print_twice(text):
Er‘int(text)() \ two frames will exist during
: the time we’re executing
print(text)

/ In print_twice
def concatenate_str(textl, text2):

combined_text = textl + textZ2 # concatenation
print_twice(combined_text)

cs220 = "Hello C5220" ¢s220 and cs319 will be in the global frame
cs319 = " / (CS319°

concatenate_str(cs220, cs319)

11

Understanding scope: example

— def print_twice(text):
Er‘int(text)() \ two frames will exist during
: the time we’re executing
print(text)

/ In print_twice
def concatenate_str(textl, text2):

combined_text = textl + textZ2 # concatenation
print_twice(combined_text)

cs220 = "Hello C5220" ¢s220 and cs319 will be in the global frame
cs319 = " / (CS319°

concatenate_str(cs220, cs319)

you don’t generally see or interact
with frames when programming,
but it's an important mental model

12

Understanding scope: example

def print_twice(text):
print(text) can access: cs220, c¢s319, text
print(text)
can access:. ¢cs220, c¢s319,
def concatenate_str(textl, text2): textl, text2, combined text
combined_text = textl + textZ # concatenation
print_twice(combined_text)

cs220 = "Hello (5220"
cs319 = " / (53197

this code can access: 1inel, line2
concatenate_str(cs220, cs319) 11E 1ne

we call the variables that can currently be
accessed “in scope” and variables that
cannot be “out of scope”

13

Understanding scope: example

def print_twice(text):
print(text)
print(text)

def concatenate_str(textl, text2):
combined_text = textl + te¢xt2 # concatenation
print_twice(combined_tex

. Arguments are copied to parameters:
cs220 = "Hello (5220 this is called “pass by value”

cs319 = " / (CS319"
concatenate_str(cs220, cs319)

14

Understanding scope: example (PythonTutor)

Global frame

Frames

print_twice

concatenate_str

cs220 |"Hello CS220"
cs319 " / CS319"

concatenate_str

textl
text2

combined_text

print_twice

text

Return
value

"Hello (C5220"
"/ CS319"
"Hello CS5220 / CS319"

"Hello CS5220 / CS319"

None

15

Objects

function
print_twice(text)

function

concatenate_str(textl, text2)

Understanding scope: example

def print_twice(text):
print(text)
print(text)

def concatenate_str(textl, text2):
combined_text = textl + text2 #

concatenation
print_twice(combined_text)

cs220 = "Hello CS220"
cs319 ="/ CS319"
concatenate_str(cs220, cs319)

Try this example yourself using PythonTutor

16

Today's Outline

Context

Frames

Demos: Local Variables *
Demos: Global Variables

Demos: Argument Passing

Let's do some examples in PythonTutor

17

Lessons about Local Variables

def set x():
x = 100

print (x)

Lesson 1: functions don't execute unless they're called

18

Lessons about Local Variables

def set x():
x = 100

set x ()
print (x)

Lesson 2: variables created in a function die after function returns

19

Lessons about Local Variables

def count|() :
x = 1
X += 1
print (x)

count ()
count ()
count ()

Lesson 3: variables start fresh every time a function is called again

20

Lessons about Local Variables

def display x():
print (x)

def main () :
x = 100
display x()

malin ()

Lesson 4: you can't see the variables of other function invocations, even those that
call you

21

Today's Outline

Context
Frames
Demos: Local Variables

Demos: Global Variables *

Demos: Argument Passing

22

Lessons about Global Variables

msg = 'hello' # global, outside any func

def greeting():
print (msqg)

print ('before: ' + msqg)
greeting ()
print ('after: ' + msqg)

Lesson 5: you can generally just use global variables inside a function

23

Lessons about Global Variables

msg = 'hello'

def greeting():
msg = 'welcome!'
print ('greeting: ' + msqg)

print ('before: ' + msqg)

greeting ()
print ('after: ' + msqg)

Lesson 6: if you do an assignment to a variable in a function, Python assumes you
want it local

24

Lessons about Global Variables

msg = 'hello'

def greeting():
print ('greeting: ' + msqg)
msg = 'welcome!'

print ('before: ' + msqg)
greeting ()
print ('after: ' + msqg)

Lesson 7: assignment to a variable should be before its use in a function, even If
there's
a global variable with the same name

25

Lessons about Global Variables

msg = 'hello'

def greeting():

global msg
print ('greeting: ' + msqg)
msg = 'welcome!'
print ('before: ' + msqg)
greeting ()
print ('after: ' + msqg)

Lesson 8: use a global declaration to prevent Python from creating a
local variable when you want a global variable

26

Today's Outline

Context
Frames
Demos: Local Variables

Demos: Global Variables

Demos: Argument Passing *

27

Lessons about Argument Passing

def f (x):

x = 'B'

print ('inside: ' + X)
val = 'A'
print ('before: ' + wval)
f(val)
print ('after: ' + wval)

Lesson 9: in Python, arguments are "passed by value", meaning
reassignments to a parameter don't change the argument outside

28

Lessons about Argument Passing

x = "A'"
def f(x):

x = 'R

print ('inside: ' + X)
print ('before: ' + x)
f(x)
print ('after: ' + Xx)

Lesson 10: it's irrelevant whether the argument (outside) and
parameter (inside) have the same variable name

29

Global Local

Parameters

Lesson Summary

Lesson 1: functions don't execute unless they're called

Lesson 2: variables created in a function die after function returns

Lesson 3: variables start fresh every time a function is called again

Lesson 4: you can't see the variables of other function invocations, even those that call you
Lesson 5: you can generally just use global variables inside a function

Lesson 6: if you do an assignment to a variable in a function, Python assumes you want it local

Lesson 7: assignment to a variable should be before its use in a function, even if there's a a
global variable with the same name

Lesson 8: use a global declaration to prevent Python from creating a local variable when you
want a global variable

Lesson 9: in Python, arguments are "passed by value", meaning reassignments to a parameter
don't change the argument outside

Lesson 10: it's irrelevant whether the argument (outside) and parameter (inside) have the same
variable name

30

