Operators

Department of Computer S ciences
University of Wisconsin-Madison

Learning Objectives

Run Python code using:
® Command line
® Jupyter Notebook

Evaluate:

® numeric expressions containing mathematical operators (e.g., “‘+
and “_“)

® string expressions containing string operators and escape
characters

9

Learning Objectives

Differentiate:
® behavior of the /, //, and % operators

Recognize examples of different Python data types:
® int, float, str, bool

Evaluate:

® expressions containing comparison operators (e.g., ‘=="and “>”
® Boolean expressions containing the operators “and”, “or”, “not”
® mixed expressions using the correct order of operations

(precedence)

Today's Outline

PR

Operator Precedence

S oftware
®Interpreters
*Notebooks

Demos

Demos
Boolean Logic

Demos

What you need to write/run code

An interpreter

® Python 3 (not 2!)

® some extra packages (comes with anaconda installation)
® runs Python code

Jupyter Notebooks
® comes with anaconda installation
® acts like both interpreter and editor (type and save Python code)

Interpreter

A program that runs a program

® Translates something the human likes (nice Python code) to
something the machine likes (ONEs and ZEROs)

Jupyter Notebooks

notebooks breakup code into
"cells" containing Python code

In [35]: #g22
df = pd.read sgl{"""
SELECT continent, count() as num countries
from countries table
group by continent
ORDER BY num countries, continent
"t pconn).set index("continent")

ax = df.sort index().plot.bar()
ax.set ylabel("number of countries")
ax.set xlabel("")

A Notebook is a file that contains code and other things
(e.g., documentation, images, tables, etc.)

Jupyter Notebooks

notebooks breakup code into
"cells" containing Python code

In [35]: | #g22
df = pd.read sqgl|
SELECT continent, count() as num countries
from countries table
group by continent
ORDER BY num countries, continent
"", conn).set index("continent")

ax = df.sort index().plot.bar()
ax.set ylabel("number of countries")
ax.set xlabel("")

Out[35]: Text(0.5, 0, "")

50 |

B num_countries

) L £
o o o

number of countries

=
]

visuals produced by the
code are embedded in the Notebook

=]

Africa

Asia

Australia
entral America
Europe

MNorth America
South America

ipynb (Interactive Python Notebook) files are not easy to open in a regular text editor

3 ways we'll run Python

|. interactive mode Quick syntax check

PS C:\Uses\ashwinmaran\cs220\03_Operators> python
Python 3.11.7 | packaged by Anaconda, Inc. | (main, Dec 15 2023, 18:05:47) [MSC v.1916 64 bit (AMDG64)] on win32

Type "help", "copyright", "credits" or "license" for more information.

>>>1+ 1
<
triple arrows mean Python code runs as you type it

3 ways we'll run Python

|. interactive mode

PS C:\Uses\ashwinmaran\cs220\03_Operators> python
Python 3.11.7 | packaged by Anaconda, Inc. | (main, Dec 15 2023, 18:05:47) [MSC v.1916 64 bit (AMDG64)] on win32

Type "help", "copyright", "credits" or "license" for more information.

>>>1+ 1
< 2
triple arrows mean Python code runs as you type it
the interpreter program

2, S Cl”i Pt m Od e ﬁ is named "python"; run it

PS C:\Uses\ashwinmaran\cs220\03 _Operators> python hello.py
the name of the file containing your
_ code (called a "script")
is passed as an argument to the python
program

3 ways we'll run Python

|. interactive mode

PS C:\Uses\ashwinmaran\cs220\03 _Operators> python
Python 3.11.7 | packaged by Anaconda, Inc. | (main, Dec 15 2023, 18:05:47) [MSC v.1916 64 bit (AMDG64)] on win32

Type "help", "copyright", "credits" or "license" for more information.

>>>1+ 1
< 2
triple arrows mean Python code runs as you type it
the interpreter program

2, S Cl"ipt m Qd e ﬁ is named "python"; run it

PS C:\Uses\ashwinmaran\cs220\03 _Operators> python hello.py
the name of the file containing your
_ code (called a "script")
is passed as an argument to the python

3. notebook "mode” brogram

PS C:\Uses\ashwinmaran\cs220\03 Operators> jupyter notebook

\ open Jupyter in a web browser

we'll do most work in notebooks this semester

Today's Outline

S oftware
®Interpreters
*Notebooks

Demos *

Operator Precedence
Demos
Boolean Logic

Demos

Today's Outline

S oftware
®Interpreters
*Notebooks

Demos

Operator Precedence *

Demos

Boolean Logic

Demos

Order of Simplification

Python works by simplifying, applying one operator at a time

363 4+2%2 4 16 % (1/2)

Rules

® First work within parentheses

® Do higher precedence first

® Break ties left to right (exception: exponent ** operator)

Order of Simplification

Python works by simplifying, applying one operator at a time

363 4+2%2 4 16 % (1/2)

Rules

® First work within parentheses

® Do higher precedence first

® Break ties left to right (exception: exponent ** operator)

Order of Simplification

Python works by simplifying, applying one operator at a time

33 +2%2+ 6% (1/2)
343 +2%2 + 6% (0.5)

Rules

® First work within parentheses

® Do higher precedence first

® Break ties left to right (exception: exponent ** operator)

Order of Simplification

Python works by simplifying, applying one operator at a time

33 +2%2+ 6% (1/2)
3%3+2%2+ 6% (0.5)

Rules

® First work within parentheses

® Do higher precedence first

® Break ties left to right (exception: exponent ** operator)

Order of Simplification

Python works by simplifying, applying one operator at a time

363+ 2%2 4 16 % (1/2)
3%3 +2%2 + |6 (0.5)
3%3+2%2 +4

Rules

® First work within parentheses

® Do higher precedence first

® Break ties left to right (exception: exponent ** operator)

Order of Simplification

Python works by simplifying, applying one operator at a time

363+ 2%2 4 16 % (1/2)
3%3 +2%2 + |6 (0.5)
3%3+2%2 +4

Rules

® First work within parentheses

® Do higher precedence first

® Break ties left to right (exception: exponent ** operator)

Order of Simplification

Python works by simplifying, applying one operator at a time

363+ 2%2 4 16 % (1/2)
3%3 +2%2 + |6 (0.5)
3%3+2%2 + 4
9+2%2 +4

Rules

® First work within parentheses

® Do higher precedence first

® Break ties left to right (exception: exponent ** operator)

Order of Simplification

Python works by simplifying, applying one operator at a time

363+ 2%2 4 16 % (1/2)
3%3 +2%2 + |6 (0.5)
3%3+2%2 + 4

9 +2%2 + 4

Rules

® First work within parentheses

® Do higher precedence first

® Break ties left to right (exception: exponent ** operator)

Order of Simplification

Python works by simplifying, applying one operator at a time

363+ 2%2 4 16 % (1/2)
3%3+2%2+ 6% (0.5)
3%3+2%2 + 4
9+2%2 +4

9+ 4+ 4

Rules

® First work within parentheses

® Do higher precedence first

® Break ties left to right (exception: exponent ** operator)

Order of Simplification

Python works by simplifying, applying one operator at a time

363+ 2%2 4 16 % (1/2)
3%3+2%2+ 6% (0.5)
3%3+2%2 + 4
9+2%2 +4

9+ 4+ 4

Rules

® First work within parentheses

® Do higher precedence first

® Break ties left to right (exception: exponent ** operator)

Order of Simplification

Python works by simplifying, applying one operator at a time

3%3+2%2+ 16 (1/2)
3%3+2%2+ 16 % (0.5)
3%3+2%2+4
9+2%2 +4

9+ 4 + 4

13 + 4

Rules

® First work within parentheses

® Do higher precedence first

® Break ties left to right (exception: exponent ** operator)

Order of Simplification

Python works by simplifying, applying one operator at a time

3%3+2%2+ 16 (1/2)
3%3+2%2+ 16 % (0.5)
3%3+2%2+4
9+2%2 +4

9+ 4 + 4

13 + 4

Rules

® First work within parentheses

® Do higher precedence first

® Break ties left to right (exception: exponent ** operator)

Order of Simplification

Python works by simplifying, applying one operator at a time

33+ 2%+ 6% (1/2)
3%3+2%2+ 6% (0.5)
3%3+2%2 +4

9 +2%2 + 4

9+ 4 + 4

13 + 4

17

Rules

® First work within parentheses

® Do higher precedence first

® Break ties left to right (exception: exponent ** operator)

Operator Precendence

What is it? Python Operator

exponents wx simplify first
"""""""" sgns | wx
""""" nutplyidvide | L%
"""""" addisbtiact | h-
"""""" comparison | == 1= < <= 3,52
"""""" pooleanstufi | not
--- and simplify last™
___ Or

these are the ones you should be
learning at this point in the semester

(there are a few more not covered * one exception is an optimization
now) known as "short circuiting”

Operator Precendence

TS exponents ** simplify first
w S O e]
«
& signs +X, -X
R
£
« multiply/divide * 1, 1, %
D

add/subtract +, -

comparison ==, 1=, <, <=, >, >=

boolean stuff not
2
0 and simplify last™
]

or

these are the ones you should be
learning at this point in the semester
(there are a few more not covered * one exception is an optimization

now) known as "short circuiting”

Today's Outline

S oftware
®Interpreters
*Notebooks

Demos
Operator Precedence

Demos *

Boolean Logic

Demos

Today's Outline

S oftware
®Interpreters
*Notebooks

Demos
Operator Precedence
Demos

Boolean Logic *

Demos

Boolean Logic

The logic of truth:

® Named after George Boole

® Two values: True and False

® Three operators: and, or, and not

Boolean Logic

The logic of truth:

® Named after George Boole

® Two values: True and False

® Three operators: and, or, and not

AND OR NOT

False True False True False True
))
(7]
— | False | False = | False | True True | False
L L
0 o)
It False | True Ig True | True

It’s a Saturday AND
we’re attending CS 220 lecture

AND OR NOT

False True False True False True
))
(7]
— | False | False = | False | True True | False
L L
0 o)
It False | True Ig True | True

FALSE!

It’s a Saturday AND

(we’re attending CS 220 lecture)

False

True

AND

False

True

False

False

False

True

False

True

OR

NOT

False

True

False True
False | True
True | True

True

False

Project | is due on Wednesday
OR Pll eat my hat

AND OR NOT

False True False True False True
))
(7]
— | False | False = | False | True True | False
L L
0 o)
It False | True Ig True | True

False

True

AND

TRUE!

(Project | is due on Wednesday)

False True
False | False
False | True

OR(PIl eat my hat)

OR

(False :

NOT

False

True

True
()
(7]
< | False | True
)
E True | True

True

False

Control Flow: Remember that conditionals and loops sometimes do something.
We'll use bool logic a LOT to control when we do/don't.

AND OR NOT

False True (False : True False True
Q ()
(7]
— | False | False = | False | True True | False
L L
g (()]
It False | True Ig True | True

Today's Outline

S oftware
®Interpreters
*Notebooks

Demos
Operator Precedence
Demos

Boolean Logic

Demos *

