
Function Scope
Department of Computer Sciences

University of Wisconsin-Madison 

Readings: 

Parts of Chapter 3 of Think Python



Learning Objectives Today

Explain rules of scope of local variables in a function
• When are they created?

• When are they destroyed?

• What parts of a program have access to them? (frames)

Understand global variables
• How can they be used and modified within a function?(global 

keyword)

• Where are they stored? (global frame)

• What parts of a program have access to them?

• How can they be mis-represented as local variables?

Explain argument passing
• “pass by value” 

2

don't memorize the examples,

learn the rules of Python

sample question: why did Python

do this thing I didn't expect

at this specific line (ask us!)



Today's Outline

Context
•Examples

Frames

Demos: Local Variables

Demos: Global Variables

Demos: Argument Passing

3



Context

Often (in life and programming), the same name can mean 

different things in different contexts
• Examples?

• Human name: Ashwin (who is in the room?)

• Street address: 1210 West Dayton Street (what city are we in?)

• Files: public_tests.py (which directory are we in?)

4



Context

Often (in life and programming), the same name can mean 

different things in different contexts
• Examples?

• Human name: Ashwin (who is in the room?)

• Street address: 1210 West Dayton Street (what city are we in?)

• Files: public_tests.py (which directory are we in?)

Our code often have different variables with the same name
• How do we keep variable names organized?

• How do we know what a variable name is referring to?

5



Context

Often (in life and programming), the same name can mean 

different things in different contexts
• Examples?

• Human name: Ashwin (who is in the room?)

• Street address: 1210 West Dayton Street (what city are we in?)

• Files: public_tests.py (which directory are we in?)

Our code often have different variables with the same name
• How do we keep variable names organized?

• How do we know what a variable name is referring to?
with groups called “frames”

we’ll learn some

rules for this

6



Today's Outline

Context

Frames

Demos: Local Variables

Demos: Global Variables

Demos: Argument Passing

7



Frames

Every time a function is invoked (i.e., called), the invocation 

gets a new “frame” for holding variables
•The parameters also exist in a frame

Global frame
•There is always one global frame that all functions can access

When a variable name is used, Python looks two places:

the function invocation’s frame

the global frame

1

2

8



Understanding scope: example

9



Understanding scope: example

10

cs220 and cs319 will be in the global frame



Understanding scope: example

11

cs220 and cs319 will be in the global frame

two frames will exist during

the time we’re executing

in print_twice



Understanding scope: example

12

cs220 and cs319 will be in the global frame

two frames will exist during

the time we’re executing

in print_twice

you don’t generally see or interact

with frames when programming,

but it’s an important mental model



Understanding scope: example

13

this code can access: line1, line2

can access: cs220, cs319, 

text1, text2, combined_text

can access: cs220, cs319, text

we call the variables that can currently be

accessed “in scope” and variables that

cannot be “out of scope”



Understanding scope: example

1414

Arguments are copied to parameters:

this is called “pass by value”



Understanding scope: example (PythonTutor)

15



Understanding scope: example

1616

def print_twice(text):

print(text)

print(text)

def concatenate_str(text1, text2):

combined_text = text1 + text2 # 

concatenation

print_twice(combined_text)

cs220 = "Hello CS220"

cs319 = " / CS319"

concatenate_str(cs220, cs319)

Try this example yourself using PythonTutor



Today's Outline

Context

Frames

Demos: Local Variables

Demos: Global Variables

Demos: Argument Passing

17

Let's do some examples in PythonTutor



Lessons about Local Variables

def set_x():

x = 100

print(x)

Lesson 1: functions don't execute unless they're called

18



Lessons about Local Variables

def set_x():

x = 100

set_x()

print(x)

Lesson 2: variables created in a function die after function returns

19



Lessons about Local Variables

def count():

x = 1

x += 1

print(x)

count()

count()

count()

Lesson 3: variables start fresh every time a function is called again

20



Lessons about Local Variables

def display_x():

print(x)

def main():

x = 100

display_x()

main()

Lesson 4: you can't see the variables of other function invocations, even those that 

call you

21



Today's Outline

Context

Frames

Demos: Local Variables

Demos: Global Variables

Demos: Argument Passing

22



Lessons about Global Variables

msg = 'hello' # global, outside any func

def greeting():

print(msg)

print('before: ' + msg)

greeting()

print('after: ' + msg)

Lesson 5: you can generally just use global variables inside a function

23



Lessons about Global Variables

msg = 'hello'

def greeting():

msg = 'welcome!'

print('greeting: ' + msg)

print('before: ' + msg)

greeting()

print('after: ' + msg)

Lesson 6: if you do an assignment to a variable in a function, Python assumes you 

want it local

24



Lessons about Global Variables

msg = 'hello'

def greeting():

print('greeting: ' + msg)

msg = 'welcome!'

print('before: ' + msg)

greeting()

print('after: ' + msg)

Lesson 7: assignment to a variable should be before its use in a function, even if 

there's

a global variable with the same name

25



Lessons about Global Variables

msg = 'hello'

def greeting():

global msg

print('greeting: ' + msg)

msg = 'welcome!'

print('before: ' + msg)

greeting()

print('after: ' + msg)

Lesson 8: use a global declaration to prevent Python from creating a

local variable when you want a global variable

26



Today's Outline

Context

Frames

Demos: Local Variables

Demos: Global Variables

Demos: Argument Passing

27



Lessons about Argument Passing

def f(x):

x = 'B'

print('inside: ' + x)

val = 'A'

print('before: ' + val)

f(val)

print('after: ' + val)

Lesson 9: in Python, arguments are "passed by value", meaning 

reassignments to a parameter don't change the argument outside

28



Lessons about Argument Passing

x = 'A'

def f(x):

x = 'B'

print('inside: ' + x)

print('before: ' + x)

f(x)

print('after: ' + x)

Lesson 10: it's irrelevant whether the argument (outside) and

parameter (inside) have the same variable name

29



Lesson Summary

Lesson 1: functions don't execute unless they're called

Lesson 2: variables created in a function die after function returns

Lesson 3: variables start fresh every time a function is called again

Lesson 4: you can't see the variables of other function invocations, even those that call you

Lesson 5: you can generally just use global variables inside a function 

Lesson 6: if you do an assignment to a variable in a function, Python assumes you want it local

Lesson 7: assignment to a variable should be before its use in a function, even if there's a a 

global variable with the same name 

Lesson 8: use a global declaration to prevent Python from creating a local variable when you 

want a global variable 

Lesson 9: in Python, arguments are "passed by value", meaning reassignments to a parameter 

don't change the argument outside

Lesson 10: it's irrelevant whether the argument (outside) and parameter (inside) have the same 

variable name

30

L
o

c
a
l

G
lo

b
a
l

P
a
ra

m
e
te

rs


