'teration /

Department of Computer Sciences
University of Wisconsin-Madison

Learning Objectives Today

Nested loops tracing Chapter 7 of Think Python
Understanding and
® Syntax
* Control flow Chapter 2 of Sweigart
o (great recap so far)
Use cases
e

- THE BORING STUFF

Nested loops tracing WITH PYTHON

® Interaction with break/continue

http://automatetheboringstuff.com/chapter?2/

Today's Outline

Design Patterns
Worksheet
Break

Continue

Nesting

Design Patterns (outside Programming)

Overview |edit]
The five-paragraph essay is a form of essay having five paragraphs:

« one introductory paragraph,
« three body paragraphs with support and development, and
« one concluding paragraph.

Design Patterns (outside Programming)

Overview [edit]
The five-paragraph essay is a form of essay having five paragraphs:

15t e one introductory paragraph,
3rd e three body paragraphs with support and development, and
2nd * one concluding paragraph.

e
somebody familiar with this [wikipedial

structure might skip around

there are many similarities between
reading/writing code and essays

Design Patterns

*izl
30:

while 1 <=

n =1 * 2
print (n)
1 += 1

When you ask a programmer what a piece of code
does, what do they look at and in what order?

Way 1: walk through in order (never a bad option)

Design Patterns Sk

1 =1

*while i <= 30:
.

n = 1
print (n)
1 += 1

When you ask a programmer what a piece of code
does, what do they look at, and in what order?

Way 1: walk through in order (never a bad option)

Design Patterns Sk

1 =1

while 1 <= 30:
n =1 * 2
print (n)
1 += 1

>

When you ask a programmer what a piece of code
does, what do they look at, and in what order?

Way 1: walk through in order (never a bad option)

Design Patterns Sk

1 =1
while 1 <= 30:
n =1 * 2
*print(n)
1 += 1

When you ask a programmer what a piece of code
does, what do they look at, and in what order?

Way 1: walk through in order (never a bad option)

Design Patterns Sk

Output
1 =1 ‘
while 1 <= 30:
n =1 %* 2
print (n)
1 += 1

When you ask a programmer what a piece of code
does, what do they look at, and in what order?

Way 1: walk through in order (never a bad option)

Design Patterns EE

Output
1 =1 ‘
* while i <= 30:
n =1 * 2
print (n)
1 += 1

When you ask a programmer what a piece of code
does, what do they look at, and in what order?

Way 1: walk through in order (never a bad option)

Design Patterns EE

Output
1 =1 ‘
while 1 <= 30:

I"» n =1 %* 2

print (n)
1 += 1

When you ask a programmer what a piece of code
does, what do they look at, and in what order?

Way 1: walk through in order (never a bad option)

Design Patterns EE

Output
1 =1 ‘
while 1 <= 30:

n =1 * 2

* print (n)
io4= 1

When you ask a programmer what a piece of code
does, what do they look at, and in what order?

Way 1: walk through in order (never a bad option)

Design Patterns EE

n 2 4
Output
i=1 ;
while 1 <= 30:

n = x

1
print (n)

."» i += 1

When you ask a programmer what a piece of code
does, what do they look at, and in what order?

Way 1: walk through in order (never a bad option)

Design Patterns R

Output
i=1 j
*while i <= 30:
n =1 * 2
print (n)
1 += 1

When you ask a programmer what a piece of code
does, what do they look at, and in what order?

Way 1: walk through in order (never a bad option)

Design Patterns

1 =1
while 1 <= 30:

n =1 * 2
print (n)
1 += 1

When you ask a programmer what a piece of code
does, what do they look at, and in what order?

Way 2: knowing that certain code is written again
and again, look for common patterns to break it down

DeS|gn Patterns experienced coders will focus in

on everything about “i" first
because thatis in the loop condition

I
|
I_\

When you ask a programmer what a piece of code
does, what do they look at, and in what order?

Observation: loop will run with values of i of: 1 to 30

Design Patterns

When you ask a programmer what a piece of code
does, what do they look at, and in what order?

Observation: highlighted code runs 30 times, with i values of 1 through 30

Design Patterns

n=1%2
print (n)

n=2=m%2

SRRLLRLLL L LR EE LR ERECEREE LR LR, print (n)

, : =3 % 2
print (n) ;—’;mt(n)

n =30 * 2
print (n)
When you ask a programmer what a piece of code

does, what do they look at, and in what order?

Observation: highlighted code runs 30 times, with i values of 1 through 30

Design Patterns

Output n=11%2
2 print (n)
/

6 n=2=m"2
3 SRRLECLCLLLLEEEEELCERLEEREERELCELE R E print (n)
: : E n=31%x2
. . ——————
56 E prlnt (n) 5 print (n)
58 LussssssssssssssSEssEEEEEREEREEERNEEES =
60
n =30 * 2
print (n)

When you ask a programmer what a piece of code
does, what do they look at, and in what order?

Conclusion: the code prints 2, 4, 6, ..., 58, 60

Design Pattern 1: do N times

1 = 1
while 1 <= N:

Option A

|
|_\

1+

Option B

Design Pattern 1: do N times

1 =1
while 1 <= N:
Option A
i+=1
1 = 0
while 1 < N:
Option B

|
H

1+

Design Pattern 1: do N times

1 =1

while 1 <= N:
Option A

1 += 1
1,2,3, ..., N

1 = 0

while 1 < N:
Option B

|
H

1+
0, 1,2, ..., N-1

Design Pattern 2: do with all data

1 = 0
while 1 < N:

Population
Wi 5.795
CA 39.54

MN 5.0/ 7

Design Pattern 2: do with all data

1 = 0
while 1 < N:

Functions: popuision

count_rows() W] 5 795

get_population(index) f CA 39.54

ndex 0 MN 5.0/ 7

Design Pattern 2: do with all data

1 = 0
while 1 < N:

Functions: popuision

count_rows() W] 5 795

get_population(index) CA 39 54
MN 5.577

index 1

Design Pattern 2: do with all data

1 = 0
while 1 < count rows():
pop = get population (1)

1 4= 1
Functions: Population
count_rows() Wi 5.795

get_population(index) CA 39 54

MN 5.0/ 7

Design Pattern 2: do with all data

1 = 0
while 1 < count rows():
pop = get population (1)

1 4= 1
Functions: Population
count_rows() Wi 5.795

get_population(index) CA 39 54

MN 5.0/ 7

Design Pattern 3: do until the
end

while has more () :
data = get next ()

People creating functions/modules for other programmers
to use will often have functions for checking if there is more
data and for getting the data one piece at a time

Today's Outline

Worksheet

*Problem 1
*Problem 2

Break
Continue

Nesting

Problem 1: counting

countdown = 5

while countdown > 1:
print (countdown)
countdown -= 1

Problem 1: counting

countdown
countdown = 5 5
while countdown > 1: g
print (countdown) 2

countdown -= 1

Problem 1: counting

countdown
countdown = 5 5
while countdown > 1: g
print (countdown) 2
countdown -= 1
output

N W A~ U1

Problem 2: loops inside loops

1 =1
while 1 <= 3:
j =1
while jJ <= 1:
print (1)
j +=1
print('END')
1 +=1

Problem 2: loops inside loops

1 =1
while 1 <= 3:
j =1 i
while j <= 1i:
print (1) 2
j += 1
print('END') 3
1 +=1

Problem 2: loops inside loops

1 =1
while 1 <= 3:
5 =1]
while j <= i: T
print (1) 2 1
j 4= 1 2 ¢
print('END') 31
1 +=1 3 2

Problem 2: loops inside loops

1 =1

while 1 <= 3:
J =1)
while j <= i: T
print (1) 2 1
j 4= 1 2 ¢
print('END') 31
1 +=1 3 2
3 3

Today's Outline

Design Patterns

Worksheet
' Breagk o Don't get too excited,
.................................. Onlythe |OOpS getabreak!
Continue

Nesting

BaS|C COntr()l FIOW at end, always go

back to condition check

while CONDITION:
True

-block of code..
maybe many lines..

False /

code after the loop..

BaS|C COntr()l FIOW at end, always go

back to condition check

_—

while CONDITION:

if CONDITION:

False more code /

code after the loop..

Just like immediately exits a function,
immediately exits a loop

BaS|C COHU‘O| FIOW at end, always go

back to condition check

while CONDITION:

if CONDITION:

False more code /

code after the loop..

Usage: Commonly used when we're searching through many things.

Allows us to stop as soon as we find what we want.

Demo: Prime Search Program

Goal: answer whether a range of numbers contains a prime

Input:
®* Startof range
®* Endofrange

10 11 12 13 14 15 16 17
Output:

® Yes orno
Examples:

14 to16 => NO (because 14, 15, and 16 are all not prime)
1T0to12 => YES (because 11 is prime)

Problem 3: can we have a break, please?

num = 0
while num < 500:
num += 100
print(str(num) + "?2")
1f num == 300:
break
print('YES')

Problem 3: can we have a break, please?

num = 0
while num < 500: gum
num += 100 100
print(str(num) + "?2") 200
1f num == 300: 288
break

print('YES')

Problem 3: can we have a break, please?

num = 0 inside
while num < 500: num sandwich
_ 0 100
nu@ += 100 100 500
print(str(num) + "?") 200 300
if num == 300: 300 400
400 500
break

print('YES')

Problem 3: can we have a break, please?

num = (inside
while num < 500: num sandwich
_ 0 100
nl.ll"['l += 100 100 500
print(str(num) + "?") 200 300
if num == 300: 288 ggg
break
print('YES')
output
1007
YES
2007
YES

3007

Today's Outline

Continue

Nesting

BaS|C COntr()l FIOW at end, always go

back to condition check

while CONDITION:
True

-block of code..
maybe many lines..

False /

code after the loop..

BaS|C COntr()l FIOW at end, always go

back to condition check

while CONDITION:

if CONDITION:

False more code /

code after the loop..

immediately stops current iteration and

goes back to the condition, without executing the "more code part,
potentially to start another iteration

BaS|C COﬂtrO| FIOW at end, always go

back to condition check

while CONDITION:Ki7

if CONDITION:
continue

False more code //

code after the loop..

Usage: commonly used to skip over values we want to ignore

Demo: Average Score

Goal: keep a running average of user-provided scores

Input:
* "qg" for quit (keep running until this)
® ascoreinthe 0to 100 range

Output:

®* Recompute average and print after each new number

Example:

enter a score (or g for exit): 50

avg is 50 | Twist: use “continue” to skip over
enter a score (or g for exit): 110 inputs not in the 0 to 100 range
bad input, skipping!

enter a score (or g for exit): g
exiting

Today's Outline

Design Patterns
Worksheet
Break

Continue

Nesting

Problem 4: we must continue practicing loops!

num = 0
while num < 500:
num += 100
print(str(num) + "?")
1f num == 300:
continue
print('YES")

Problem 4: we must continue practicing loops!

num = 0
while num < 500:
num += 100 num
print(str(num) + "?") 0
. 100
1f num == 300: 200
continue 300

print('YES"') 400

Problem 4: we must continue practicing loops!

num = 0
while num < 500: inside
num += 100 num sandwich
print(str(num) + "?2") 0 100
: ¢ —— 300 100 200
1Lonum == ; 200 300
continue 300 400

print('YES') 400 500

Problem 4: we must continue practicing loops!

num = 0
while num < 500: inside
num += 100 num sandwich
print(str(num) + "?") 0 100
1f num == 300: 100 200
* _ 200 300
continue 300 400
print('YES') 400 500
output
1007
YES
2007
YES
3007
4007
YES
5007

YES

Nested loops

while CONDITION A:

while CONDITION B: how many blocks are there?

1f CONDITION C:
continue

Nested loops

while CONDITION A:

while CONDITION B:

1f CONDITION_C:
continue

Nested loops

while CONDITION A:

while CONDITION B:

where does this
jump back to?

1f CONDITIOU
continue

Nested loops

while CONDITION A:

while CONDITION B:

continue and break
always apply to the

if CONDITION C- inner loop in Python
continue —

https://www.python.org/dev/peps/pep-3136

https://www.python.org/dev/peps/pep-3136/

Nested loops

while CONDITION A:

while CONDITION B:

1f CONDITION_C:
break

https://www.python.org/dev/peps/pep-3136

https://www.python.org/dev/peps/pep-3136/

Worksheet Problems

