diff --git a/f22/andy_lec_notes/lec35_Dec02_Pandas3/lec_35_pandas3_data_transformation_template.ipynb b/f22/andy_lec_notes/lec35_Dec02_Pandas3/lec_35_pandas3_data_transformation_template.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..5dca29134b6cd63dcad697303c9044ff6d79bc2b
--- /dev/null
+++ b/f22/andy_lec_notes/lec35_Dec02_Pandas3/lec_35_pandas3_data_transformation_template.ipynb
@@ -0,0 +1,1210 @@
+{
+ "cells": [
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "metadata": {
+    "id": "CeWtFirwteFY"
+   },
+   "outputs": [],
+   "source": [
+    "# known import statements\n",
+    "import pandas as pd\n",
+    "import sqlite3 as sql # note that we are renaming to sql\n",
+    "import os\n",
+    "\n",
+    "# new import statement\n",
+    "import numpy as np"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "id": "RHvDCo4fhXBx"
+   },
+   "source": [
+    "# Lecture 35 Pandas 3: Data Transformation\n",
+    "* Data transformation is the process of changing the format, structure, or values of data. \n",
+    "* Often needed during data cleaning and sometimes during data analysis\n",
+    "\n",
+    "Possible data transformation: \n",
+    "* Parsing/Extraction\n",
+    "  * Parse CSV to Pandas DataFrame\n",
+    "* Missing Value Manipulations\n",
+    "  * Dropping\n",
+    "  * Imputation: replace missing value with substitute values\n",
+    "* Typecasting, Formating, Renaming\n",
+    "  * Typecasting: covert one column from int to float \n",
+    "  * Formating: format the time column to datatime object \n",
+    "  * Renaming: rename column and index names \n",
+    "* Applying/Mapping \n",
+    "* Filtering, Aggregation, Grouping, and Summarization\n",
+    "  * Covered in Pandas 1 & 2 lectures"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "id": "yoLGptrqhbBo"
+   },
+   "source": [
+    "# Today's Learning Objectives: \n",
+    "\n",
+    "* Identify, drop, or fill missing values with Pandas .isna, .dropna, and .fillna\n",
+    "* Apply a function to Pandas Series and DataFrame rows/columns \n",
+    "* Replace all target values to Pandas Series and DataFrame rows/columns\n",
+    "* Filter, Aggregate, Group, and Summarize information in a DataFrame with .groupby\n",
+    "* Convert .groupby examples to SQL "
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "id": "FgnTeNRIswsm"
+   },
+   "source": [
+    "# The dataset: Spotify songs\n",
+    "Adapted from https://www.kaggle.com/datasets/mrmorj/dataset-of-songs-in-spotify.\n",
+    "\n",
+    "If you are interested in digging deeper in this dataset, here's a [blog post](https://medium.com/@boplantinga/what-do-spotifys-audio-features-tell-us-about-this-year-s-eurovision-song-contest-66ad188e112a) that explain each column in details.  "
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### WARMUP 1: Establish a connection to the spotify.db database"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "metadata": {
+    "colab": {
+     "base_uri": "https://localhost:8080/",
+     "height": 232
+    },
+    "id": "8y9scvgCnTHl",
+    "outputId": "c72388f8-576c-4cf2-ef51-352cd11b6c92"
+   },
+   "outputs": [],
+   "source": [
+    "# open up the spotify database\n",
+    "db_pathname = \"spotify.db\"\n",
+    "assert os.path.exists(db_pathname)\n",
+    "conn = sql.connect(db_pathname)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "def qry(sql):\n",
+    "    return pd.read_sql(sql, conn)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### WARMUP 2: Identify the table name(s) inside the database"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 7,
+   "metadata": {
+    "colab": {
+     "base_uri": "https://localhost:8080/",
+     "height": 112
+    },
+    "id": "ybTqbDSOnR2f",
+    "outputId": "8dcc943b-9382-4abb-ef78-6c6d56ad89eb"
+   },
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<style scoped>\n",
+       "    .dataframe tbody tr th:only-of-type {\n",
+       "        vertical-align: middle;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe tbody tr th {\n",
+       "        vertical-align: top;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe thead th {\n",
+       "        text-align: right;\n",
+       "    }\n",
+       "</style>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>type</th>\n",
+       "      <th>name</th>\n",
+       "      <th>tbl_name</th>\n",
+       "      <th>rootpage</th>\n",
+       "      <th>sql</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>0</th>\n",
+       "      <td>table</td>\n",
+       "      <td>spotify</td>\n",
+       "      <td>spotify</td>\n",
+       "      <td>1527</td>\n",
+       "      <td>CREATE TABLE spotify(\\nid TEXT PRIMARY KEY,\\nt...</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>1</th>\n",
+       "      <td>index</td>\n",
+       "      <td>sqlite_autoindex_spotify_1</td>\n",
+       "      <td>spotify</td>\n",
+       "      <td>1528</td>\n",
+       "      <td>None</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "    type                        name tbl_name  rootpage  \\\n",
+       "0  table                     spotify  spotify      1527   \n",
+       "1  index  sqlite_autoindex_spotify_1  spotify      1528   \n",
+       "\n",
+       "                                                 sql  \n",
+       "0  CREATE TABLE spotify(\\nid TEXT PRIMARY KEY,\\nt...  \n",
+       "1                                               None  "
+      ]
+     },
+     "execution_count": 7,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "qry(\"select * from sqlite_master\")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### WARMUP 3: Use pandas lookup expression to identify the column names and the types: use .iloc"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 9,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "CREATE TABLE spotify(\n",
+      "id TEXT PRIMARY KEY,\n",
+      "title BLOB,\n",
+      "song_name BLOB, \n",
+      "genre TEXT,\n",
+      "duration_ms INTEGER, \n",
+      "key INTEGER, \n",
+      "mode INTEGER, \n",
+      "time_signature INTEGER, \n",
+      "tempo REAL,\n",
+      "acousticness REAL, \n",
+      "danceability REAL, \n",
+      "energy REAL, \n",
+      "instrumentalness REAL, \n",
+      "liveness REAL, \n",
+      "loudness REAL, \n",
+      "speechiness REAL, \n",
+      "valence REAL)\n"
+     ]
+    }
+   ],
+   "source": [
+    "print(qry(\"select * from sqlite_master\")[\"sql\"].iloc[0])"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### WARMUP 4: Store the data inside `spotify` table inside a variable called `df`"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 10,
+   "metadata": {
+    "colab": {
+     "base_uri": "https://localhost:8080/",
+     "height": 632
+    },
+    "id": "txAH9OIjnoQv",
+    "outputId": "ac9152ba-32df-4fb2-d4e0-a97f50fe58fb"
+   },
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<style scoped>\n",
+       "    .dataframe tbody tr th:only-of-type {\n",
+       "        vertical-align: middle;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe tbody tr th {\n",
+       "        vertical-align: top;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe thead th {\n",
+       "        text-align: right;\n",
+       "    }\n",
+       "</style>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>id</th>\n",
+       "      <th>title</th>\n",
+       "      <th>song_name</th>\n",
+       "      <th>genre</th>\n",
+       "      <th>duration_ms</th>\n",
+       "      <th>key</th>\n",
+       "      <th>mode</th>\n",
+       "      <th>time_signature</th>\n",
+       "      <th>tempo</th>\n",
+       "      <th>acousticness</th>\n",
+       "      <th>danceability</th>\n",
+       "      <th>energy</th>\n",
+       "      <th>instrumentalness</th>\n",
+       "      <th>liveness</th>\n",
+       "      <th>loudness</th>\n",
+       "      <th>speechiness</th>\n",
+       "      <th>valence</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>0</th>\n",
+       "      <td>7pgJBLVz5VmnL7uGHmRj6p</td>\n",
+       "      <td></td>\n",
+       "      <td>Pathology</td>\n",
+       "      <td>Dark Trap</td>\n",
+       "      <td>224427</td>\n",
+       "      <td>8</td>\n",
+       "      <td>1</td>\n",
+       "      <td>4</td>\n",
+       "      <td>115.080</td>\n",
+       "      <td>0.401000</td>\n",
+       "      <td>0.719</td>\n",
+       "      <td>0.493</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.1180</td>\n",
+       "      <td>-7.230</td>\n",
+       "      <td>0.0794</td>\n",
+       "      <td>0.1240</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>1</th>\n",
+       "      <td>0vSWgAlfpye0WCGeNmuNhy</td>\n",
+       "      <td></td>\n",
+       "      <td>Symbiote</td>\n",
+       "      <td>Dark Trap</td>\n",
+       "      <td>98821</td>\n",
+       "      <td>5</td>\n",
+       "      <td>1</td>\n",
+       "      <td>4</td>\n",
+       "      <td>218.050</td>\n",
+       "      <td>0.013800</td>\n",
+       "      <td>0.850</td>\n",
+       "      <td>0.893</td>\n",
+       "      <td>0.000004</td>\n",
+       "      <td>0.3720</td>\n",
+       "      <td>-4.783</td>\n",
+       "      <td>0.0623</td>\n",
+       "      <td>0.0391</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2</th>\n",
+       "      <td>7EL7ifncK2PWFYThJjzR25</td>\n",
+       "      <td></td>\n",
+       "      <td>BRAINFOOD</td>\n",
+       "      <td>Dark Trap</td>\n",
+       "      <td>101172</td>\n",
+       "      <td>8</td>\n",
+       "      <td>1</td>\n",
+       "      <td>4</td>\n",
+       "      <td>189.938</td>\n",
+       "      <td>0.187000</td>\n",
+       "      <td>0.864</td>\n",
+       "      <td>0.365</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.1160</td>\n",
+       "      <td>-10.219</td>\n",
+       "      <td>0.0655</td>\n",
+       "      <td>0.0478</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>3</th>\n",
+       "      <td>1umsRbM7L4ju7rn9aU8Ju6</td>\n",
+       "      <td></td>\n",
+       "      <td>Sacrifice</td>\n",
+       "      <td>Dark Trap</td>\n",
+       "      <td>96062</td>\n",
+       "      <td>10</td>\n",
+       "      <td>0</td>\n",
+       "      <td>4</td>\n",
+       "      <td>139.990</td>\n",
+       "      <td>0.145000</td>\n",
+       "      <td>0.767</td>\n",
+       "      <td>0.576</td>\n",
+       "      <td>0.000003</td>\n",
+       "      <td>0.0968</td>\n",
+       "      <td>-9.683</td>\n",
+       "      <td>0.2560</td>\n",
+       "      <td>0.1870</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>4</th>\n",
+       "      <td>4SKqOHKYU5pgHr5UiVKiQN</td>\n",
+       "      <td></td>\n",
+       "      <td>Backpack</td>\n",
+       "      <td>Dark Trap</td>\n",
+       "      <td>135079</td>\n",
+       "      <td>5</td>\n",
+       "      <td>1</td>\n",
+       "      <td>4</td>\n",
+       "      <td>128.014</td>\n",
+       "      <td>0.007700</td>\n",
+       "      <td>0.765</td>\n",
+       "      <td>0.726</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.6190</td>\n",
+       "      <td>-5.580</td>\n",
+       "      <td>0.1910</td>\n",
+       "      <td>0.2700</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>...</th>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>35872</th>\n",
+       "      <td>46bXU7Sgj7104ZoXxzz9tM</td>\n",
+       "      <td>Euphoric Hardstyle</td>\n",
+       "      <td></td>\n",
+       "      <td>hardstyle</td>\n",
+       "      <td>269208</td>\n",
+       "      <td>4</td>\n",
+       "      <td>1</td>\n",
+       "      <td>4</td>\n",
+       "      <td>150.013</td>\n",
+       "      <td>0.031500</td>\n",
+       "      <td>0.528</td>\n",
+       "      <td>0.693</td>\n",
+       "      <td>0.000345</td>\n",
+       "      <td>0.1210</td>\n",
+       "      <td>-5.148</td>\n",
+       "      <td>0.0304</td>\n",
+       "      <td>0.3940</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>35873</th>\n",
+       "      <td>0he2ViGMUO3ajKTxLOfWVT</td>\n",
+       "      <td>Greatest Hardstyle Playlist</td>\n",
+       "      <td></td>\n",
+       "      <td>hardstyle</td>\n",
+       "      <td>210112</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "      <td>4</td>\n",
+       "      <td>149.928</td>\n",
+       "      <td>0.022500</td>\n",
+       "      <td>0.517</td>\n",
+       "      <td>0.768</td>\n",
+       "      <td>0.000018</td>\n",
+       "      <td>0.2050</td>\n",
+       "      <td>-7.922</td>\n",
+       "      <td>0.0479</td>\n",
+       "      <td>0.3830</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>35874</th>\n",
+       "      <td>72DAt9Lbpy9EUS29OzQLob</td>\n",
+       "      <td>Best of Hardstyle 2020</td>\n",
+       "      <td></td>\n",
+       "      <td>hardstyle</td>\n",
+       "      <td>234823</td>\n",
+       "      <td>8</td>\n",
+       "      <td>1</td>\n",
+       "      <td>4</td>\n",
+       "      <td>154.935</td>\n",
+       "      <td>0.026000</td>\n",
+       "      <td>0.361</td>\n",
+       "      <td>0.821</td>\n",
+       "      <td>0.000242</td>\n",
+       "      <td>0.3850</td>\n",
+       "      <td>-3.102</td>\n",
+       "      <td>0.0505</td>\n",
+       "      <td>0.1240</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>35875</th>\n",
+       "      <td>6HXgExFVuE1c3cq9QjFCcU</td>\n",
+       "      <td>Euphoric Hardstyle</td>\n",
+       "      <td></td>\n",
+       "      <td>hardstyle</td>\n",
+       "      <td>323200</td>\n",
+       "      <td>6</td>\n",
+       "      <td>0</td>\n",
+       "      <td>4</td>\n",
+       "      <td>150.042</td>\n",
+       "      <td>0.000551</td>\n",
+       "      <td>0.477</td>\n",
+       "      <td>0.921</td>\n",
+       "      <td>0.029600</td>\n",
+       "      <td>0.0575</td>\n",
+       "      <td>-4.777</td>\n",
+       "      <td>0.0392</td>\n",
+       "      <td>0.4880</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>35876</th>\n",
+       "      <td>6MAAMZImxcvYhRnxDLTufD</td>\n",
+       "      <td>Best of Hardstyle 2020</td>\n",
+       "      <td></td>\n",
+       "      <td>hardstyle</td>\n",
+       "      <td>162161</td>\n",
+       "      <td>9</td>\n",
+       "      <td>1</td>\n",
+       "      <td>4</td>\n",
+       "      <td>155.047</td>\n",
+       "      <td>0.001890</td>\n",
+       "      <td>0.529</td>\n",
+       "      <td>0.945</td>\n",
+       "      <td>0.000055</td>\n",
+       "      <td>0.4140</td>\n",
+       "      <td>-5.862</td>\n",
+       "      <td>0.0615</td>\n",
+       "      <td>0.1340</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "<p>35877 rows × 17 columns</p>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "                           id                        title  song_name  \\\n",
+       "0      7pgJBLVz5VmnL7uGHmRj6p                               Pathology   \n",
+       "1      0vSWgAlfpye0WCGeNmuNhy                                Symbiote   \n",
+       "2      7EL7ifncK2PWFYThJjzR25                               BRAINFOOD   \n",
+       "3      1umsRbM7L4ju7rn9aU8Ju6                               Sacrifice   \n",
+       "4      4SKqOHKYU5pgHr5UiVKiQN                                Backpack   \n",
+       "...                       ...                          ...        ...   \n",
+       "35872  46bXU7Sgj7104ZoXxzz9tM           Euphoric Hardstyle              \n",
+       "35873  0he2ViGMUO3ajKTxLOfWVT  Greatest Hardstyle Playlist              \n",
+       "35874  72DAt9Lbpy9EUS29OzQLob       Best of Hardstyle 2020              \n",
+       "35875  6HXgExFVuE1c3cq9QjFCcU           Euphoric Hardstyle              \n",
+       "35876  6MAAMZImxcvYhRnxDLTufD       Best of Hardstyle 2020              \n",
+       "\n",
+       "           genre  duration_ms  key  mode  time_signature    tempo  \\\n",
+       "0      Dark Trap       224427    8     1               4  115.080   \n",
+       "1      Dark Trap        98821    5     1               4  218.050   \n",
+       "2      Dark Trap       101172    8     1               4  189.938   \n",
+       "3      Dark Trap        96062   10     0               4  139.990   \n",
+       "4      Dark Trap       135079    5     1               4  128.014   \n",
+       "...          ...          ...  ...   ...             ...      ...   \n",
+       "35872  hardstyle       269208    4     1               4  150.013   \n",
+       "35873  hardstyle       210112    0     0               4  149.928   \n",
+       "35874  hardstyle       234823    8     1               4  154.935   \n",
+       "35875  hardstyle       323200    6     0               4  150.042   \n",
+       "35876  hardstyle       162161    9     1               4  155.047   \n",
+       "\n",
+       "       acousticness  danceability  energy  instrumentalness  liveness  \\\n",
+       "0          0.401000         0.719   0.493          0.000000    0.1180   \n",
+       "1          0.013800         0.850   0.893          0.000004    0.3720   \n",
+       "2          0.187000         0.864   0.365          0.000000    0.1160   \n",
+       "3          0.145000         0.767   0.576          0.000003    0.0968   \n",
+       "4          0.007700         0.765   0.726          0.000000    0.6190   \n",
+       "...             ...           ...     ...               ...       ...   \n",
+       "35872      0.031500         0.528   0.693          0.000345    0.1210   \n",
+       "35873      0.022500         0.517   0.768          0.000018    0.2050   \n",
+       "35874      0.026000         0.361   0.821          0.000242    0.3850   \n",
+       "35875      0.000551         0.477   0.921          0.029600    0.0575   \n",
+       "35876      0.001890         0.529   0.945          0.000055    0.4140   \n",
+       "\n",
+       "       loudness  speechiness  valence  \n",
+       "0        -7.230       0.0794   0.1240  \n",
+       "1        -4.783       0.0623   0.0391  \n",
+       "2       -10.219       0.0655   0.0478  \n",
+       "3        -9.683       0.2560   0.1870  \n",
+       "4        -5.580       0.1910   0.2700  \n",
+       "...         ...          ...      ...  \n",
+       "35872    -5.148       0.0304   0.3940  \n",
+       "35873    -7.922       0.0479   0.3830  \n",
+       "35874    -3.102       0.0505   0.1240  \n",
+       "35875    -4.777       0.0392   0.4880  \n",
+       "35876    -5.862       0.0615   0.1340  \n",
+       "\n",
+       "[35877 rows x 17 columns]"
+      ]
+     },
+     "execution_count": 10,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "df = qry(\"select * from spotify\")\n",
+    "df"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Setting a column as row indices for the `DataFrame`\n",
+    "\n",
+    "- Syntax: `df.set_index(\"<COLUMN>\")`\n",
+    "- Returns a new DataFrame object instance reference.\n",
+    "- WARNING: executing this twice will result in `KeyError` being thrown. Once you set a column as row index, it will no longer be a column within the `DataFrame`. If you tried this, go back and execute the above cell and update `df` once more and then execute the below cell exactly once."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# Set the id column as row indices\n",
+    "df = \n",
+    "df"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Not a Number\n",
+    "\n",
+    "- `np.NaN` is the floating point representation of Not a Number\n",
+    "- You do not need to know / learn the details about the `numpy` package \n",
+    "\n",
+    "### Replacing / modifying values within the `DataFrame`\n",
+    "\n",
+    "Syntax: `df.replace(<TARGET>, <REPLACE>)`\n",
+    "- Your target can be `str`, `int`, `float`, `None` (there are other possiblities, but those are too advanced for this course)\n",
+    "- Returns a new DataFrame object instance reference.\n",
+    "\n",
+    "Let's now replace the missing values (empty strings) with `np.NAN`"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "df = \n",
+    "df.head(10) # title is the album name"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Checking for missing values\n",
+    "\n",
+    "Syntax: `Series.isna()`\n",
+    "- Returns a boolean Series\n",
+    "\n",
+    "Let's check if any of the \"song_name\"(s) are missing"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {
+    "colab": {
+     "base_uri": "https://localhost:8080/"
+    },
+    "id": "JqzSwG5PEZRq",
+    "outputId": "05529a3d-4a5c-4654-fe05-d04b2c10ae6c"
+   },
+   "outputs": [],
+   "source": [
+    "df[\"song_name\"]"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Review: `Pandas.Series.value_counts()`\n",
+    "- Returns a new `Series` with unique values from the original `Series` as keys and the count of those unique values as values. \n",
+    "- Return value `Series` is ordered using descending order of counts"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {
+    "colab": {
+     "base_uri": "https://localhost:8080/"
+    },
+    "id": "uCLDr8EIGMeJ",
+    "outputId": "241d6181-d525-4019-a8f2-689939b2ab33"
+   },
+   "outputs": [],
+   "source": [
+    "# count the number of missing values for song name\n",
+    "df[\"song_name\"]"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Missing value manipulation\n",
+    "Syntax: `df.fillna(<REPLACE>)`\n",
+    "- Returns a new DataFrame object instance reference."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {
+    "colab": {
+     "base_uri": "https://localhost:8080/"
+    },
+    "id": "pJ2CIqq9HWvN",
+    "outputId": "2895e862-18e5-4742-9750-31b130aae668"
+   },
+   "outputs": [],
+   "source": [
+    "# use .fillna to replace missing values\n",
+    "df[\"song_name\"]\n",
+    "\n",
+    "# to replace the original DataFrame's column, you need to explicitly update that object instance\n",
+    "# TODO: uncomment the below lines and update the code\n",
+    "#df[\"song_name\"] = ???\n",
+    "#df"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Dropping missing values\n",
+    "Syntax: `df.dropna()`\n",
+    "- Returns a new DataFrame object instance reference."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {
+    "colab": {
+     "base_uri": "https://localhost:8080/",
+     "height": 145
+    },
+    "id": "O_1ZeHG8N-rB",
+    "outputId": "3b112da2-2b3c-4fb8-c7ae-dc2f2127856d"
+   },
+   "outputs": [],
+   "source": [
+    "# .dropna will drop all rows that contain NaN in them\n",
+    "df.dropna()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "id": "ggttXEqUbI_E"
+   },
+   "source": [
+    "### Review: `Pandas.Series.apply(...)`\n",
+    "Syntax: `Series.apply(<FUNCTION OBJECT REFERENCE>)`\n",
+    "- applies input function to every element of the Series.\n",
+    "- Returns a new `Series` object instance reference.\n",
+    "\n",
+    "Let's apply transformation function to `mode` column `Series`:\n",
+    "- mode = 1 means major modality (sounds happy)\n",
+    "- mode = 0 means minor modality (sounds sad)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "def replace_mode(m): \n",
+    "    if m == 1: \n",
+    "        return \"major\"\n",
+    "    else: \n",
+    "        return \"minor\""
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "df[\"mode\"]"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### `lambda` recap\n",
+    "\n",
+    "Let's write a `lambda` function instead of the `replace_mode` function"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {
+    "colab": {
+     "base_uri": "https://localhost:8080/"
+    },
+    "id": "9AJ3p-_TarnN",
+    "outputId": "a087df5d-2002-417c-e99c-5e6fc8ea9809"
+   },
+   "outputs": [],
+   "source": [
+    "df[\"mode\"].apply(???)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Typically transformed columns are added as new columns within the DataFrame.\n",
+    "Let's add a new `modified_mode` column."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "df[\"modified_mode\"] = df[\"mode\"].apply(lambda m: \"major\" if m == 1 else \"minor\")\n",
+    "df"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "#### Let's go back to the original table from the SQL database"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {
+    "id": "ZoiyUleiyhMg"
+   },
+   "outputs": [],
+   "source": [
+    "df = qry(\"SELECT * FROM spotify\")\n",
+    "df"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Extract just the \"genre\" and \"duration_ms\" columns from `df`."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "df[???]"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### `Pandas.DataFrame.groupby(...)`\n",
+    "\n",
+    "Syntax: `DataFrame.groupby(<COLUMN>)`\n",
+    "- Returns a `groupby` object instance reference\n",
+    "- Need to apply aggregation methods to use the return value of `groupby`"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {
+    "colab": {
+     "base_uri": "https://localhost:8080/",
+     "height": 551
+    },
+    "id": "trRMgGMysdkb",
+    "outputId": "d02098c3-7722-4505-c599-5897bb8ace19"
+   },
+   "outputs": [],
+   "source": [
+    "df[[\"genre\", \"duration_ms\"]]"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### What is the average duration for each genre ordered based on decreasing order of averages?\n",
+    "#### v1: using `df` (`pandas`) to answer the question"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "df[[\"genre\", \"duration_ms\"]]"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "df[[\"genre\", \"duration_ms\"]]"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "One way to check whether `groupby` works would be to use `value_counts` on the same column `Series`."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "df[\"genre\"].value_counts()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### What is the average duration for each genre ordered based on decreasing order of averages?\n",
+    "#### v2: using SQL query to answer the question"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {
+    "colab": {
+     "base_uri": "https://localhost:8080/",
+     "height": 551
+    },
+    "id": "89hMTXCKxWG8",
+    "outputId": "5737da11-aa8a-4ed0-9b05-cd379b28904b"
+   },
+   "outputs": [],
+   "source": [
+    "# SQL equivalent query of the above Pandas query\n",
+    "avg_duration_per_genre = qry(\"\"\"\n",
+    "\n",
+    "\"\"\")\n",
+    "\n",
+    "# How can we get make the SQL query output to be exactly same as df.groupby?\n",
+    "avg_duration_per_genre = avg_duration_per_genre.set_index(\"genre\")\n",
+    "avg_duration_per_genre"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "id": "12ZdqYoIy_8U"
+   },
+   "source": [
+    "### What is the average speechiness for each mode, time signature pair?\n",
+    "#### v1: pandas"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {
+    "colab": {
+     "base_uri": "https://localhost:8080/",
+     "height": 332
+    },
+    "id": "fVejD2KPyveX",
+    "outputId": "fe5c8fda-29a2-4f1a-8ff4-de9ad2a3cde0"
+   },
+   "outputs": [],
+   "source": [
+    "# use a list to indicate all the columns you want to groupby \n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {
+    "colab": {
+     "base_uri": "https://localhost:8080/",
+     "height": 300
+    },
+    "id": "ImYEuOMox-ps",
+    "outputId": "2674dabd-3ff7-4099-fdc3-54e5ba0e2628"
+   },
+   "outputs": [],
+   "source": [
+    "# SQL equivalent query of the above Pandas query\n",
+    "qry(\"\"\"\n",
+    "\n",
+    "\"\"\")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "id": "sEDc5zGu0bc9"
+   },
+   "source": [
+    "### Self-practice"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Which songs have a tempo greater than 150 and what are their genre?"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# v1: pandas\n",
+    "fast_songs = "
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# v2: SQL\n",
+    "\n",
+    "qry(\"\"\"\n",
+    "\n",
+    "\"\"\")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### What is the sum of danceability and liveness for \"Hiphop\" genre songs?"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# v1: pandas\n",
+    "hiphop_songs = "
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# v2: SQL\n",
+    "hiphop_songs = qry(\"\"\"\n",
+    "\n",
+    "\"\"\")\n",
+    "hiphop_songs"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Find all song_name ordered by ascending order of duration_ms. Eliminate songs which don't have a song_name"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# v1: pandas\n",
+    "songs_by_duration = "
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# v2\n",
+    "songs_by_duration = qry(\"\"\"\n",
+    "\n",
+    "\"\"\")\n",
+    "songs_by_duration"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### How many distinct \"genre\"s are there in the dataset?"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# v1: pandas\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# v2: SQL\n",
+    "genres = qry(\"\"\"\n",
+    "\n",
+    "\"\"\")\n"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Considering only songs with energy greater than 0.5, what is the maximum energy for each \"genre\" with song count greater than 2000?"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "genre_groups = "
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# v1: pandas\n",
+    "high_energy_songs = ???\n",
+    "genre_groups = ???\n",
+    "max_energy = ???\n",
+    "max_energy[\"energy\"]"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "genre_counts = ???\n",
+    "genre_counts[\"energy_max\"] = max_energy[\"energy\"]\n",
+    "filtered_genre_counts = ???\n",
+    "filtered_genre_counts"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# v2: SQL\n",
+    "qry(\"\"\"\n",
+    "\n",
+    "\"\"\")"
+   ]
+  }
+ ],
+ "metadata": {
+  "colab": {
+   "provenance": []
+  },
+  "kernelspec": {
+   "display_name": "Python 3 (ipykernel)",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.9.12"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 1
+}