From ab25a19e1bb51d975cd07b7e5eb3d0cdd65fefed Mon Sep 17 00:00:00 2001
From: Anna Meyer <annapmeyer95@gmail.com>
Date: Wed, 5 Jul 2023 08:55:38 -0500
Subject: [PATCH] exam 1 review notebook

---
 .../07_Strings/Exam_1_review.ipynb            |  300 +
 sum23/projects/p7/README.md                   |   38 +
 sum23/projects/p7/images/add_group_member.png |  Bin 0 -> 160694 bytes
 .../projects/p7/images/autograder_success.png |  Bin 0 -> 42243 bytes
 sum23/projects/p7/images/gradescope.png       |  Bin 0 -> 153964 bytes
 sum23/projects/p7/p7.ipynb                    | 2531 +++++++
 sum23/projects/p7/p7_test.py                  | 6205 +++++++++++++++++
 sum23/projects/p7/rubric.md                   |  124 +
 sum23/projects/p7/water_accessibility.csv     |  303 +
 9 files changed, 9501 insertions(+)
 create mode 100644 sum23/lecture_materials/07_Strings/Exam_1_review.ipynb
 create mode 100644 sum23/projects/p7/README.md
 create mode 100644 sum23/projects/p7/images/add_group_member.png
 create mode 100644 sum23/projects/p7/images/autograder_success.png
 create mode 100644 sum23/projects/p7/images/gradescope.png
 create mode 100644 sum23/projects/p7/p7.ipynb
 create mode 100644 sum23/projects/p7/p7_test.py
 create mode 100644 sum23/projects/p7/rubric.md
 create mode 100644 sum23/projects/p7/water_accessibility.csv

diff --git a/sum23/lecture_materials/07_Strings/Exam_1_review.ipynb b/sum23/lecture_materials/07_Strings/Exam_1_review.ipynb
new file mode 100644
index 0000000..3f101d4
--- /dev/null
+++ b/sum23/lecture_materials/07_Strings/Exam_1_review.ipynb
@@ -0,0 +1,300 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "id": "482016d5",
+   "metadata": {},
+   "source": [
+    "# Exam 1 review"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "96330469",
+   "metadata": {},
+   "source": [
+    "## Arguments"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "id": "138a92cc",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "def person(name, age, color='blue', animal='cat'):\n",
+    "    print(name, \" is \", age, \" years old \", end=\"\")\n",
+    "    print(\"their favorite color is \",color, end=\"\")\n",
+    "    print(\" and their favorite animal is \",animal)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "a5f2edbc",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# TODO: what are all the ways we can (or cannot) call person()?"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "6f623b4b",
+   "metadata": {},
+   "source": [
+    "## Function Scope"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "e54320ef",
+   "metadata": {},
+   "source": [
+    "### Example 1 -- basic function scope"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "7e4d570a",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "pi = 3.14\n",
+    "alpha = 4\n",
+    "\n",
+    "def my_func(alpha, beta):\n",
+    "    # TODO: what variables are accessible at line 5? what values do they have?\n",
+    "    delta = alpha + beta\n",
+    "    gamma = delta ** 2\n",
+    "    \n",
+    "    return gamma\n",
+    "\n",
+    "answer = my_func(alpha, pi)\n",
+    "\n",
+    "answer2 = my_func(answer, alpha)\n",
+    "\n",
+    "# TODO what variables are accessible here? What values do they have?"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "33a302bf",
+   "metadata": {},
+   "source": [
+    "### Example 2 -- global vs. local"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "7a5ed848",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "two = 3.14\n",
+    "alpha = 4\n",
+    "\n",
+    "def my_func1(alpha, beta):\n",
+    "    # TODO: what variables are accessible at line 5? what values do they have?\n",
+    "    delta = alpha + beta\n",
+    "    gamma = delta * two\n",
+    "    \n",
+    "    return gamma\n",
+    "\n",
+    "answer = my_func(alpha, two)\n",
+    "\n",
+    "# TODO what variables are accessible here? What values do they have?"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "04428811",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "two = 2\n",
+    "alpha = 14\n",
+    "\n",
+    "def my_func2(alpha, beta):\n",
+    "    # TODO: what variables are accessible at line 5? what values do they have?\n",
+    "    delta = alpha + beta\n",
+    "    two = 7\n",
+    "    gamma = delta * two\n",
+    "    \n",
+    "    return gamma\n",
+    "\n",
+    "answer = my_func(alpha, two)\n",
+    "\n",
+    "# TODO what variables are accessible here? What values do they have?"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "51696c45",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "two = 2\n",
+    "alpha = 14\n",
+    "\n",
+    "def my_func3(alpha, beta):\n",
+    "    # TODO: what variables are accessible at line 5? what values do they have?\n",
+    "    delta = alpha + beta\n",
+    "    \n",
+    "    gamma = delta * two\n",
+    "    two = 7\n",
+    "    return gamma\n",
+    "\n",
+    "answer = my_func(alpha, two)\n",
+    "\n",
+    "# TODO what variables are accessible here? What values do they have?"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "6cdb7a02",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "two = 2\n",
+    "alpha = 14\n",
+    "\n",
+    "def my_func3(alpha, beta):\n",
+    "    # TODO: what variables are accessible at line 5? what values do they have?\n",
+    "    delta = alpha + beta\n",
+    "    \n",
+    "    global two\n",
+    "    gamma = delta * two\n",
+    "    two = 7\n",
+    "    return gamma\n",
+    "\n",
+    "answer = my_func(alpha, two)\n",
+    "\n",
+    "# TODO what variables are accessible here? What values do they have?"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "2ebbfa8b",
+   "metadata": {},
+   "source": [
+    "## Refactoring"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "c61c0d46",
+   "metadata": {},
+   "source": [
+    "### Example 1"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "id": "7e25ba85",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "def some_func():\n",
+    "    if some_cond1:\n",
+    "        if some_cond2:\n",
+    "            if some_cond3:\n",
+    "                return True\n",
+    "    return False"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "d6dc250a",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# TODO how can we rewrite some_func() to only use 1 line of code? \n",
+    "def some_func_short():\n",
+    "    pass"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "b9da2d00",
+   "metadata": {},
+   "source": [
+    "### Example 2"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "id": "678f8ec2",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "def some_func_1(x, y, z): \n",
+    "    if x >= 7:\n",
+    "        return True\n",
+    "    if y < 18:\n",
+    "        return True\n",
+    "    if z == 32:\n",
+    "        return True\n",
+    "    else:\n",
+    "        return False"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "d1bf3938",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# TODO which of these refactoring options is correct?\n",
+    "def some_func_1a(x, y, z):\n",
+    "    return x >= 7 or y < 18 or z == 32\n",
+    "\n",
+    "def some_func_1b(x, y, z):\n",
+    "    return x >= 7 and y < 18 and z == 32"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "063829c0",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# TODO \n",
+    "# Discuss: given two possible versions of a function (where one is correct),\n",
+    "#          what is the general strategy for figuring out which one is correct?"
+   ]
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3 (ipykernel)",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.10.6"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/sum23/projects/p7/README.md b/sum23/projects/p7/README.md
new file mode 100644
index 0000000..4390f91
--- /dev/null
+++ b/sum23/projects/p7/README.md
@@ -0,0 +1,38 @@
+# Project 7 (P7): Drinking Water Accessibility
+
+
+## Corrections and clarifications:
+
+* None yet.
+
+**Find any issues?** Create a post on Piazza
+
+## Instructions:
+
+This project will focus on **utilizing lists** and **managing dictionaries**. To start, download [`p7.ipynb`](https://git.doit.wisc.edu/cdis/cs/courses/cs220/cs220-lecture-material/-/blob/main/sum23/projects/p7/p7.ipynb), [`p7_test.py`](https://git.doit.wisc.edu/cdis/cs/courses/cs220/cs220-lecture-material/-/blob/main/sum23/projects/p7/p7_test.py), and [`water_accessibility.csv`](https://git.doit.wisc.edu/cdis/cs/courses/cs220/cs220-lecture-material/-/blob/main/sum23/projects/p7/water_accessibility.csv).
+
+
+**Note:** Please go through [Lab 7](https://git.doit.wisc.edu/cdis/cs/courses/cs220/cs220-lecture-material/-/tree/main/sum23/labs/lab7) before you start the project. The lab contains some very important information that will be necessary for you to finish the project.
+
+You will work on `p7.ipynb` and hand it in. You should follow the provided directions for each question. Questions have **specific** directions on what **to do** and what **not to do**. 
+
+After you've downloaded the file to your `p7` directory, open a terminal window and use `cd` to navigate to that directory. To make sure you're in the correct directory in the terminal, type `pwd`. To make sure you've downloaded the notebook file, type `ls` to ensure that `p7.ipynb`, `p7_test.py`, and `water_accessibility.csv` are listed. Then run the command `jupyter notebook` to start Jupyter, and get started on the project!
+
+**IMPORTANT**: You should **NOT** terminate/close the session where you run the above command. If you need to use any other Terminal/PowerShell commands, open a new window instead. Keep constantly saving your notebook file, by either clicking the "Save and Checkpoint" button (floppy disk) or using the appropriate keyboard shortcut.
+
+------------------------------
+
+## IMPORTANT Submission instructions:
+- Review the [Grading Rubric](https://git.doit.wisc.edu/cdis/cs/courses/cs220/cs220-lecture-material/-/blob/main/sum23/projects/p7/rubric.md), to ensure that you don't lose points during code review.
+- You must **save your notebook file** before you run the cell containing **export**.
+- Login to [Gradescope](https://www.gradescope.com/) and upload the zip file into the p7 assignment.
+- If you completed the project with a **partner**, make sure to **add their name** by clicking "Add Group Member"
+in Gradescope when uploading the P7 zip file.
+       
+   <img src="images/add_group_member.png" width="400">
+   
+- It is **your responsibility** to make sure that your project clears auto-grader tests on the Gradescope test system. Otter test results should be available in a few minutes after your submission. You should be able to see both PASS / FAIL results for the 20 test cases and your total score, which is accessible via Gradescope Dashboard (as in the image below):
+       
+    <img src="images/gradescope.png" width="400">
+
+- If you feel you have been incorrectly graded on a particular question during manual review, then you can submit a regrade request.
diff --git a/sum23/projects/p7/images/add_group_member.png b/sum23/projects/p7/images/add_group_member.png
new file mode 100644
index 0000000000000000000000000000000000000000..402e5962e3e54ce8349f60ccfe4ce2b60840dd3b
GIT binary patch
literal 160694
zcmd43bx>U0`YxD+;10n9gkS-J2M-V+xVyW%L+}JmaCg_nEx0?425a0M8h2^9JLfy+
zch8-gnyRV!XHu1Px}n&s*=s%T`##dY6y(IwQHW7qym)~wDe+b5#R~+}7cXAjAiV-!
zxlDyL0}n5qmBfW#RE)jd2cEn(7m^iv@uE5k_0bR>c#iBKq3QhM1wQrPzb_?~s7_zJ
zcrK9qDx~sF54sGm@kXBHg+o+cON;cEW@z{E@v$9jaT)ldYw+FQe-ikQ!*th8_s3n2
zz@MPCo2N{lvE}*s<&@<%;~Q7EL^Val2^5M;R3~TW;%a?06`hX^lp?b40<naVC<33D
zIo25wBEr&$MUY@<Ob7b^y!@}PVf7FH^Z550v5Z2_*#7H_?Oor9{`LAl|EwCcq5<FZ
z?^kl{S@eSc^MoSs57+O|P!y{-6w@EJOvhJNR!nLfWn^X7Ye9_~YGT3p|5=ORzt<x3
zKF}AXo>}DYW&in!dnDmW|MLWi;u8J;SlT_prs@CwUL>D@{|_rA{Qu)+%X4%6iA9k(
zr0ndNygj|V;=ui^92`O8xf@2BL`1Rv|NNHjpQi&G2tP5|vE6A?)6gz^-u_tuv(oWs
z%8M7NyQc~H+z&}eX0*6nT^59?&~RQ9jwkbb43#$6&z>y#-t|f<i%?pLm8wlRI$GD;
z)$dQ@v2AVbR4iAI_RS=W;Jm?N;ov0WG%!eVJM!@GkbJL+Ok_^PV{sZ96c!p5W_Y$Y
zHwUL(PqeqMc%fD2uQbo+yHxAJ5Z+TS+}$I|D{XCSn_OCvD=eG$EPctSU9XUblq2>-
z-|$vOPL3unf|8jTGs{$_FghAbQs|$X3G=h+)<z>fY7kV#$HT4l-HqIe-(u|vzS)~B
z05$I29nLx;BdhJ;hdMd&x44ooHDtxMwzf3fESL@#g_9!21$*A(Y-||D#9YfoiacOO
zCne-TW=d4u?2cQa$UjX_Gs?&q3bwjGg7R{jJSSpv;1Gz32=ns`Gn>5W=&0vM1~tBC
zk)OvUR6%4A*o}>eEcat$aWp=EprYcV9avaO-$Eo45Ku7tkX-ircV@+Lr+|-_+dfWK
z^0b(Ilnu!F;o545{`2S0RD$=<f#b&S|Ff4tF>eKUws*E|HL9&HqjP|j%~jj=Y{wPR
zMvzg`ywA-kG_$lq2?&j4+nS!4d><DrmuQPbhm5RjY^;Hz)^0wvlX1w&&CRpy?T`gF
zQR10{$OJ<c7F;Uq*D<_k2WTtxt9NN%!@nL0r=PVkvY>kZeq;fQs{127?!8~of1L~t
zC8D^L%os94937RJj~Eu9l6ph0r)p$JN5?BD#8%?@CGdL#HiL>)8*hX4Dx`bkI^Y3#
z$0|6&=->bQ=fqYd;(OZ(R{7n=OQu~zo$fc36f`8vU>L2ftq9HKc}7MXxVWHvwQ>|x
z6lW)AO}K!w@)u5QY|>`q3Gva~KKn*SPB;mnf1(Who{?bm&=c~%M}5y8JT|`Sc_b|C
z>1ko}DIt*fi>8*{V(;B_?=u4{g^->A8N8;X-LcthWWMRu&A18Ms_&!2e*aa~phRqL
zMQ)A7b^37z@07)-SS9P(Cv@nEzNDOQU$^L^x3>z$9Q%{+6h6~jldti!UYpg?Nmi@;
z+TsQ(KDYOM>*m_i51)IcG`^dKHn02+KeebQS6d{QU=IL!9Vq|C8o%L0hTY}&c}{yS
zR>T}KzB=(YK_tN1ssp#eooJLrB@<KaIJK4@SYO70WhA9xmsh22n*)_(WW-ih4-Iy+
zO6s)EX`Fi3-D7r}#~I>oN5=~}l$u~*^K#69Y+nL5{KJcfjdJ=S%q*UZ?lHHXP}OSW
zGYq*%0HLlPa2+qxR#sq@dZy^5wzkDY|AxOyRAC$=R*hg{SxLQ;#{BTqFCD>hMGQj>
z;bd%=TkUWc<|E;uzre%ec{?*d<SN4@wp8E|H3@@)QZzM}T>UD6lkD>d1I|V~UIHke
z7zUg5&Uzu((HUQD>{|DGT)*SsU|p!-y$Tn!1C3%@!tMHcAu-WMEW)U+MNF2OjmGTH
z?U}rOM`7V}Ff={gG7P_qqJk&cWuMLGY=bX~Oo)u$y;i)$d7~TNiWsO19q&KThZ2i`
z6rE5BrwOe-y4#=Z*4I;0Q=7zwg-Oe(s3?5-4nt3<n}keHDkyv1oWYfLu+zldfv*^3
z>L;dX>D~?v4<8BodS4xv%kDCjK@8FJKUA{V--kawddurWZ^>bVe=9{qmjMejBi(@N
zJw3|Pm)PDyJW>*`>jPDLK|w2G7&<-;&G62scAW+G1B+ij8Y_0pvUsFSD%be%Y|_xe
zs{&IKop#sZ^(orFiw3Y3mM@I3*>rR$>*Y48-Lx^3vFLVv;!eu@?V$S(*f<9kR!S)c
z*%c+c-ko2(#0ONhIr+amL9bfetsCt5T+h0*+hH<j=*2SSTBatZ9uN23vIBAI%(FI&
z&Azjd#~FO`ggl{R5Cq0g?_aT11xKGcn0fGUM4{^}MUwD@rhWnG{Vh@)ViqR(abd%q
zD{bW?BL;za*sgKkJHj5K$fJHm6%|gbW|tOl7;p6QC>J`Qg}6Z*eRt59nNK1`Lf&gZ
z{h+(syMmr)@85AJr;7b+^9V{Rd@+EX<2^Lk65!)BJ6-gr+G+>%^z4qO*V!EF`1-!2
zS0>%l(b*J_<gKyB6l7jqSEijknoCSeLM_!2uov*6HNwbB-znE(wcg)=4MgFwpiuM_
zCOk|23{$Qxg$j5h0dEFTJ}W*kQR!mt&;Df&?0(VZSXh=)r9p6F^;y>bBu!v7m5&$<
zJ~~=VO1<5+@qU0%vc`zzMOaLkH3z{bgg#k5hrnR$!^2ToeC{XUxG6-8Z@0H^`MvPP
zcr~<@YtxX*JVwHa5F6~tCo9PlF8wHhJqcc@W2cq94|5$K18deB2Gsa>-{UbH99&M%
zOgYc&jPkd*>9&1iWoBkhSoj!oppl&XF`Xw)s$^x{$Hrz37h4#q?qeZ4ElR0{0xqbl
zs>2Uo{u#+xgwZN@-r^SwMtK=^XMHrh5*)I6d1i>-4hBz$<BxrjldGg(Sx-q$R@afi
z!M-0bF){PJyH6!1DlRQ?tEx|oN%TG08$76b0efcQ_ynD=D=jTD_g2D5_)nc+T-6Ut
zYD2}Wv~gGCzlAZJ)j0O|m-4#fZ|)WqDlVfCg-<0hSI+(3FAC;ZtoONnOwoeBmu~g;
z5o~F8JDHXQj*qP7e0T3_N}A`aZyp}#S62bTBDl{9s}BFZ#4Fji%+la-b9)X1I1acR
z;#g&+M}L2|+8SRg2}$XIG-oTkJ^Oe3urxyA`i2^R$(Ju*rj2E+XMdYs)_Dx6qzTlF
z{?Tev4Ql+hS)mI6fw9@hcQ76aSFAf5L<a!>rQuok<w(*t@$m0xiJY8akh1F9h7b+~
z9xG)<MQm)my2De$nm69v-1%QT%eSevf4mfvl9GCxk+EB@!{c*iq@<M?J~DE6b1a)F
zxSB6bP_uA^h|y_Ryqn^#^i;Rl;7<DK=SQd8%l+HluU2l$-1vdx&-FHrSC@e<^oVH)
zi5(M-C3;@3XK3R-zI{k}o56*FarIk7Mn+D+<7{IM8TXwa8fB4e09cFC5dbZ+PrlwJ
zGH4vIw%}IXH<4`fyAI)z={zF!64y8hc?YdQ#=O4QHf#ha{k*E6xBmccj^DKX&!p-)
z;(#BiKd|oAqcfjIBO<m-TC~{NIgc%Dk52cM<1X*zcQ<P4t2F8?Ch{lp44ovNpSCi>
zZ7(k+5Z<#hSi>So^9tpoLVpo0Rg#+|vpO1SYR>y<*UO{`c2tlp0hlbW+x*FU=nbEj
zR~nP9K{0j!VowRpXqx-e{nb4=U64)M4V1^{jx9dlIs{{BNktw@hUOxroU!cUez}Fk
z`YD{KN=xGoXnF?5(mghxd<MTb)eMh~E;suL#;<a{Gmucd3qdEuBF1L*yuTD@)|+ld
zib;$SqR)&;;c=T|(ZCX@b$03>&qUv6Ng7fY(cOL)rIMhfrjw-k<=@>cQY7CaaE6LT
zC2kIhr(1HlFBwfEsL&(DCY9YT1%{88;wDRFn)3Q>2Xpm|TOnOTBWN@fX8;=31;6rx
zhrXWcg@WTu3kq6Xp%V2-v}A|nyL#>I4r)4$zPjSdaU(%CK+}<cc)!B$eNXr={LS&x
z#=W^YNlS0-AB#){om&mX4|QrrJUyu|F5DO7D@c}W$+EDfD9jKU=D`;fX1cpajf{LW
zWNT__jQ=VcLPY2?^N0KKu2xwFO~v_V`;&nW46jn(oSo3<@zJ`)jUzV6Jv6c%x*nsY
zz@i~<A6dsyo4euj?Y8vKpGK&Sm?lw#81C+FgPK~Vm7U%pWn$HY^~%aAGRbzqRK)gn
zQF0pU`Dv#b75r<rn`6dvAKG~yQBil;qkx#GDFL2Pj6p?0&G|=Z>Bt0;dWOu*inFt5
zbebHrL@6m;Sy|J-KnaAz#`N^X_I5I4WRJc+1uaDZ0Ux3i*8cwTf`a0=GlPXW?I~yo
zHd^1)v}J{j(yOZrYS<!%CQ;OCu187cLcEujF3QTiEUY^)kUhxWrpG6#tLb5c5i)#`
zX{b`b#?8Yw==s3tgN<`ePxac3MpF>{v2XZqIrPz87Fcc(K`vfW9ZDX_j>c-NEG#6E
zk=E5M6oY@xeJ*`^T3^#^cMZ!6@RRuLx<A=es(yHICD>A50h!Nebm;0C*gcIT-LNrN
z=ZC?H%+2iPn%F;la=F^*1CUh1J~lY^77_l4`y19+g-;rnwWas$19Kd>)nT*$X>(v#
zE`!(p-i1O)$VyE0<Ni{ebwNSF4+;v>#d=d_+PCo;h?ru1{lZUA{9f0G^Kp5`54&z|
zRU-JK>0nmWv7@OZCVtPejlBw8wVfRmD?EgN>fO0&T4wzUjVc3Zl_6BRkCui^z=v24
zPTYKV9;k}b87iL{_`G^T@q+K~%TC^uZUEx~AEYwLEKCnp_2^0=UjFp-BrPR%O~!XU
zF@M*)(&ov_OBFLc);HsNRAZ{k=kgBy&(FrdK%ia7&o6L%OFDVd-c)_&7e-J^PN4D3
zuB|=S7E*6-z8V7HOS=Q?eqy<WV`dse#aY+Rm;;Hcs(5;0XJZGd=*t%O!-E;8ni>@=
zRR=8kmWR`Icy=?i{nacfQDELxH}rds2!O$A|F+0ES{#lKH66LRs-<4OzNJS{;mN7K
zl5TCQjSWc;4{==`&Q>3i=+vQ}K2s{%B04&{&QaSO&<EO&>B=fwI3y2j+_&H3l=U20
zM^xY71*z&@pMEcR&(03^yfiflm6AT{?pAB{Oo+{r=M=BvJcx^@>g<6lRmH}=kd@Q3
zwSFj$6c2oxmuJrJ`$)x7Ro42p-r^%O=C5mPY}714Oetwfk1sNA*SWjnhIv#ZXnm%p
z_B}n%wRNV<aJ9Lwq*~VIYcXSDSdgs)(zo&O^fxxt+I(Rf5B(ffx0m8k22(-Q)CzQ<
z)DMD!&<e)u>%)~+3Pqky*`l<;;hq%+L$;jXe57yXd|;`13fT;d=!YTN1C@@BRSci4
zJ~Jb1XFXif#nU!`kRX^|0a+mf90I;~wdRYFq!;K&-)<l8%+=ND-8tscV}1znNe^d{
zrm9v!pJlbg`Ul3d`08zkR~AsmBIJ%1kdaY%z3){Ht<%!*Yg-@B!U&k`>=q#vN3*rG
z3>pa8R1Qi<3so=s$90-w^%cHM{_2d5*2W~0A>^>?3MYaJ5xt|MsJ2=c2F7zPW@h?*
zFJM$v9*7`Ws?;AfP#$N}Wg-_8$oKP$)U5giHXZ<4Mqd}lA8g9Ss%wX*Tie5T>}E2A
zJh8@frlNhMhY&nALW=cu6(tUuIFG9_QtsCZLLeGo9U6EcO;yg^oQMZ>&y}aAXCAQQ
zjG$k?Qft^Gi$S1oX4VhuQ$?hQv+gI;zxXu}RN~{;Kwt^U<wn0O7<d3U;bMvtjo6gj
zk*M)*z1c$Qa+#mFSaV{ZkmhvtmzHTG$wtXO!YPn~ru&QsJl#*^sQ*pEJc&LFw~p`&
zJVjPA3v%6<k))MUirei^Y~E%IH4KFBmzR?!CnhRtfIiaH=Xl-dEi7!jdd0x&N^EU|
zCQZG&yLx`MpHtxKGY#VRxksCv8fIX+mXpHSSm&AUcrL)EG~h?PziMIi{9RY$WTcmQ
zbmL>@^E144{b*FWs1iE84@qWS^t$qo=!R$y4=!Dwfh#9`V!edBS<TG}HD{VGGOCRY
z!&o}~<3>iDLPO>JU_+iMJ9*!~qahfBe!TSJl%}R0OjLkXX^WPs5iBp0zkdDm>_UV`
zlgIG&5L`hGI;wH`si?!LBLP9<uMA5|5BtY&pf?|#JbHh!iv;h12XCpUZM`2714mvr
zHkoT`c6EvuAr=;TQqe@ReWD8M96E_4L5veMH5C{1iv*9+Fd(wDKlC7eSTSK|k0rWB
zfHsIGCcf(Gq645`Tv>K>`cL$hI3w}?eh0uB7^za2;p@uEN?cxE$r_?QJ<&*l!S&bI
zl!%yi_Lg8WcB6^OKgplXMo175SHHiYFQy;5UYUr=%JN$}U4QlJl?puxZ-#)?=~`r6
zT@)OEo*W!(C9cj@oOsmKRvTV8Mn=sG3p_kLP{XeX0cY1eh__;BBrM<g=LTLe1fDlQ
zAccjc@WFwfy<o&<j=$54Deyuv;97o4m8i+zks$gidBeeBrhf+a^ssyGDL|NHC8Rtr
zH{hWrVZ5nm($Z36$t>#^vz5@7U2HVUa$;giI_arqaHbF?^-5Q9n1Dn5poDZS*OW10
zNDD+6=%N&cX9ngjM;FkuIPJ~R<<c73?(LT+ec@hvSlgQ{tC+c+yi5z0C!AGR;bpTt
zs9@b3EW@Y5JT4~_$ZU4_HCm;}GNM&~KEwAA8{7ZPWu@kJy#*ge-u_KemNM`U`RvA~
zX@ShnX6KjNbQ?Q6-Q~`gNT;VG){77cxyaOtE-pGrZ7G!VFLJTMTIzMGiZN!^YcHH>
z(^7t&pEc1^y-{)3h*Q^jtU3_zE@^6tNW?!xPzlfS^B9Pn6c#pJ<vKQqPh2^@W~u~f
z%rrT>%gU<x@<wn%<_IBJF)4RU@BOLF@bS+l_JQJFX4C58Y3}OEU}_3J;QO=-Oa>Gb
zO0Qn=d0zQz)jD+}nZyxb=M-w!g^mq1AMPSrYs{7}o^sk6giWJ0ZsX!EF1NVz;o;5Q
zlj`e7?mC4H4c+e_$kkODFutN>K`xMG{^(8o<|~dN9Y_m5fOWL{)j{{rhyhFMYI}h?
z{B5AA3I1p*wa%uYQlrQ<D%#`5@l&mcmM3o=%B6Ws=2P9LPamxVg<qF=!fwuP+#Q|s
zVtq;Gq`sM$L^0_eSkl8&+mx4&uB<T9(hdyI&Mu6|=&B~<Pxrzf{2cz%)Odi&$(k}U
zm`rG{J`2>kdjy2;cK@$rWMq+@?<Hg;&oEJd1~@t<HaFJlyRGBzkypnnD*y$=;V!@z
zR^q0?u~_)G;vz@<1ZIi;`BL@y5TKrq>epFKE;a2F5gjHnvRB^ABfa7zO^W_gtjnh+
zZosi`Wo>P3<ypgDgxT`y8u@LdC$HT@+*i@BdoK5f?k963T>x6$@Al;v&EI*(bqRE4
zY3d0q4S9Mz|ColZ%11}Z%ZiDqmIU!juOA<=JFevNMP<3!ShpE3AJ~?v?;q~H<#jci
zNwg)>)KsAf#ImyVrPG5vAE;h;HPkmG!|WV+cw$mg&fmW$wO)d|nA~ssT{lnp6`G8P
z2X}S(4wD0&>ru75RL$jp>dB|)r6mOg^2;C4+}zfKZ<-2PTHbPzh506!jAMw)1+U>B
z_79wvl02!Y0npI=K&M$FdWkeRt0{{fx*iw*Rq3^dM_7u?P2lV67x*eBwzCxnI5;dA
z`)-DYr#D`|tE;slb_m~ld($GI`~PssK;U6VL2a?H(11Xm;OqIoBQoJxt8~1)XAhYR
zIYR-Lm)zH+G8m94-0jT^X}Pfy6vVHlX5Ed6@hbN9^(=Sr@Z#f{)b7yj+*~}{g+C<$
zu~4JU4LSX$Zb$N!==H9P-D&ziS$MeQC+nM2#kSgz9(U-%-hK)pF{f(f^VQGL2;1`V
z@<M>>ofT6O7S>i~=jE)gI`|4d-_(>cKc9MV;Og2pV}XZ<m)YK)S15bPZ`8YWcTvQo
z!Qy?sH3o+Ouq|O<N4ZUQw>ld{<i&T3UTKK-^~Fp~lnf0)bz5hsK2lN9zn=^|i7tn#
zA7AbRWJ4_`qI^c^&(KtU)1jk_-G{lkD)rZ#<vE2k+9x7Y-rm4qjiW%S_Nk;isPB=8
z9dfe7W4}FQUSD5qX(_wX^(;RD`J=&N+@G-6P{gS7?V>B-wzt;|XAsaJF0~7Gw{86%
zqtVjHmlmHlH03CIw6t3?>X{PYX4W>zs|;uLDB;?)&E>~ZKjj1@m=?J~hIhw#s@>I{
ztPU12BmHjdd4-WUw8HH5@zXMN6_j$R=;;*~r&vRCb06zOt-jYJC;O6;ma-2GE#cx+
zczM_YQ}Q~{qKO$&;2!@fU5&s>%+%{PIgpaBT_~)cii^R16yX2BQ5O#m9~xTFs}qh~
zkF2yOibGC&cQo6dmMnpc^cfvx;r5#GqcEhCsV(~*C#`sV)~bxq52+G36)JAVh^(|0
zWm{b%TwovZDk(LIiYn027o$Lx=7|}*zo%DKg-0vU1Yjq{!Np;xq<8==Sw2ioE}vI>
zrS<M)t?N(8j+1wl8EHoPxsw_QyH3a9iLa%(u%Kvmrb=2!uid%DEvv(~{BSv5HW$>$
zP0gW-<h?q9hv+LH;GwB`YgXM}uQ@+2l#>&yDzsY&aN%_}Fi%1rzpbBHamtM?UW2oh
zQ5Cw<lG2MFw+>bjh$@?<o-fJ-p{f9Hpy;hM8K+(;)9f-)|GUh(3OdmP?xSX;%xnDB
z?y?z-dGq{8L@yfb9z_Oh$Vehi=zatVs@aG_*+EE5(Ax}vfF-@Z+WbKHU@%v`c_bdS
zM%>)Ut0z`8WiFfQ@;ph+syGqR;?}jX9D+7q?<ZJxQ2F~bcfumz{?fzc%8G=)t*1!N
zmE?1yZKWOqmo30P{K`}Q3=k^MECXwu>D{jy)38e04>bOij@ROqW^mdEtb@;=X<VQ(
zlS1UiaitgdzDtc)Q#(iYvvx~tM!#)bNiIk(2)e%X|H_Li;@4{*5*CR|t*9|ORgg%+
z##T*=2}<bXrh?Qi>||$0J6;|8psUWPqV70;md!27^Vz)oRoxRDO>+VC(peqNV_Nl-
zW^<tSynz#bH#UCuxGgH2xHzt(<yGffi)63MrJxb$kQcg}CJ)cRxIQt9ol*k@CC!NL
z+TJ-lL~>LFDQ7jiZ(ukyC4s9K#YX;J4KU~K7H{s;TM7w9CaL=ab18?L8>Rj7!sYR@
zt^O*rqa#ZrE!CEv->xK0-ND{M;f|Pd>G2JYvojclC;0ocij%y&@7YXmU&9p?IZIDc
z5||OPU|YX*H8ha5r-C<X*a)d!zy9hsEmH{k{U#K}Z}V_L@Vgowalk7R?^UeeD7i}4
zS>&^GVfdWZtrTStakx1fVc9_=4UL)F^FIB^FvGLJ^q`!c+?a&EzLM}p5dsepk&o^p
zb9=}4%S(GJ3sCvpavdpZMp&uW?wGK@e??{{$3xn)`u5h2UWdE9mXy^qq<opr_5HHe
z#J-EF>Gn(*0p`KfZdeN+c%JH`j7;KaT7%U@?meQkvT}tOzt5e>K}pF}f0Uo0`OOHV
z9&*C*XY!B6XD?3i7%L2i`cnr#FKt{MnKUAj9=pf;>!Y~CS=w-7ytnwAhGXexwPqgo
z_mH~s)ex~fAyLjUjdde)bNA<`n!5}3+S;TFZ7%O~lf|2pvyLHb;l1Y{&EX#(i|LIM
zlj0M)wt{mg#TpKywR^wq?wXUY>FX&9v}xbWbMhOik(ef=EPH*BlxP$UUcB=Rp`v!1
zm|FehtukXpJjBI`pq8fID=|JCkkBX=$OX3YD?J5$cwSrk;o~_2{r>7yrGer*U%j>a
zi9NrAgub}>;(;ovxg07IvgYaP!cUMzEQJ88<@S#4lTcTf+34JFtELx%&kz`*@>Dy_
zT|nn&#X>7T)qA7;CCwJjvZI9@*bm&ItX6N>ZY36QG6c1}Tf+^W9x+Wvv6O(>@Se;5
zQAz1H74@w9p_@B&PF=aM^95z9Yhb_cP%H-NAc{4qhP=WnSL9!D0f^*#i?hOttQ>;R
zpxTRGuba1d#e%fdHnL_1;=3Cg6)mU~7~VEq6@u0Pk<-vDli_LH6ATP+UCT6W`Cs{X
zJk(p<>JXrS9=0Q!=H{?ipGACavoKw5EDn&HnD6;vJ%4iS^&@wL%M5$t>5BLF<@DR9
zq4w>?rx#~n@Q|6Q`RwzwxuT<^lNCKz#+avyf{sjCUA>!`vU@IeQuNyT5x>*vTB^@!
zPvN4L2HNp#RBA<`#!RJ=n=0yP@aFEWx|#wO9(D@1)pR<Y@&P%*)qYR2uq~iix{(Sv
ztQAWqJ(fPOnox)%Ryc-S9u6qxr}o@pQ@*ygrb1$1ou19&_c$M|H7Cs!0KiYP-q&Z;
z7RFjdyS^qz$a6kfZER1@U$Z}HdIc%JmXn*d`3poKJ+c17U^M0U=%14E55#1gBSXz$
z?d{4Ef1nrU4Fb&_cU^5w1mi)}w3we7EQ-pl%L^D8-)~?MR-Nx$9Yv8dwK_Qt#D$FW
z^MhPDMi}fXi^%K}p4WAIzb7m`LZ_)pVdc5To40qj+JLT>Rs3;XaUx2uHI>iwyvC!J
zudbGCu4T5%Hcd28)K1`=ijopa11IxJYmju2@`D@Z{%lb|!Zs9)JIkcotM236Yr<B!
z)LvRp;byUzsHfW!jm9@y+4OL!Y4Mc`9DpS(TLIwF*W24~dzXPrOImOe^P-{!=!Y%{
z_#Nv<8C?c4tn7Te4hG^J9BP*(ptA5hpA?6g9t-SME($Zl_(Z2q{O>S1AqgF74q=td
z3@zp6<0N_Fm=m+ihHOzhd@Zz8ogant^gvGd0Ya(eGjKI$&dxpL%lWOJ>5CCS+)#er
z2%1OOGKWfv;+3G~TNEiNgUZRK#=%+;(79LH*vMf#Jna@v0ebUdwXHUBL}E&U>tlD&
z-kgRNnN><?XqceSU2c9hi~GW-NHyWNJ%e2Ve(sge_sz{uLPCzJ@*EI&xz^LcK?pBz
zcXv0HsIZKTmQrlnco~hNj#6xDW`%YhLyxC~lvF(gf`NhhQ2dO&y}LQ3q8=3*AuA;b
zjOsWaz`crj`33o7x-Dw#R`bz$Q(sQua&z;4n}Km|UCKPc%p991F$sx!+|Fhv$IF7g
zPmk(kZ~n4M+L{&?u}Q|=RUWq=_(l6VZ*Ot!ZBV5{WoM>`lebS`FvD~cxzSM=F<Jk>
zs4*xvHa1RIsb3`~mQ%Ut>3Kw;b9HPsEu3q?Udt92z^JZOYpv}zX&(XJmciknIhSLV
zl!nmo`01*bu*U$AHD3D4?9N5OZ0&*T^O_nHrs$*?Y}|sU0e*hUDdrE2ewAbnBwv-j
zM<x~~rlvlhKoMS3T>AaJ`_sLBK^`8P&Q40_7sXVZteToZGxh_e`o4~iN_v?e$n_Cb
zRU=m)KxJjnlPuNg==iOiDUqouqPp_8lRV9blQD@j{P*Src#4wf2z6=3w)~^rxs7E|
z(V0~^x|c8USgV(E-&Y=}zn&KTp0=nWlmjXoVdZVEAQ}A`j`pD{KRcUjag{bYIxS5>
z`ypu$YBQ&}@%VVIYKX*vjBF^-J~%S6canDWiN!=sK_fXK1EwtEW@ks_)(RWwqo!)~
z^tgg9xSo}1zAX>r4h~{Be>&EC*0#1*x9bKM=N~gQr|as9bocOSXjZRGegNv)bRqim
zs{>&rD|*BT-WEc^i<w|+As<~`b<C*W;b`>5h9j~vD5$7{-uIWY<nA*n>LJXHd9@d9
zwDR02B9W2H4>z)Sa{h2dIVGv-v6CwNHL&-F6cikI3Ag$AxmnNr;z$(JBX@m$c7Bhi
zox|pm^YcN}ed4zIqfOtK-U(os6-!9{LP4@2=Lp7A2rv}mBB2lvu*8m0U(o}0gv&Nw
zq+I5`&GrEtE{*F1`@6$OybjAc*`H}+x{7y#T34_vHA_oNBPWzc4g&0_ihx?kLMjUb
z2O~ch7c)CUOPyQB^FwlaVq$t~v&nM5orqXfFwm{=wKNU%&UomCU<r4CfLm@76zGzl
zKZ%N(1rP7|D3`>NLY|vTJV*7CtxK2O#O#C)t#d2y`-{l0aGIJPhU>sBV0KLK6PO41
z^)@u*^*K<nzkg=9jJMq}zhH-!G~A(iK}-L@z$}tV@y}mpfA)bXYa|qfaKE5jHgDqi
z?!Mo|T$yL?3)$+HNliDImKK|^aHOIlMoisrRkQd+y{q#f2D<&S3b_sak9XA6n2#_X
zDb#K6y%T*6Eh{Q!dA+J^CW;9)QR*VlUUL$`fZltG+G_|zVLCQ8HdUx%ud#7PyMbx7
z@vJD=^l(<c*&_~+>L}N|-JBeM{S2+)<f^PI@^j0d^#cTH?sgR=RX;tTRRJi&x^`x^
zPw%_`O3%43<KMgis>j9JJiE5ngI33y!ZcqL`OWdla-%E>eeuEBmfmvn_VzYF?sY(n
zSW-qF#xs4~Tnh?G#N@;ZGuKFMKxWP?b9f3kbAL9In5}&djT9ZvQ2AO?Pa3CZCy1sS
zPJnj!bL-(_)b{l6-_X@ZU!@oN2LL8xkg~jRqj_shUx&iOJ8omU%FR7}b%9E~^$lIv
z)6DGa73J<*r;Br=&CR|wuIO^~vZ`n-Dw<iyGzLa5iPwX^w}^$W(95zM$axQI5WA+7
z@Wu`QS?FJj2OS+l?ZuVv#_=`lhwn*gEk!xi?@k(?{GExymF<t})jPh#aeQ{Iv{CCg
z>6@w^z|8V_X5wWWRS<Q30I?p1V9=sIg|7ZyD9o)WQBu))gY&dV9=f%=x!Ph0+bkvE
z3Fc9zQRMlfpAeVE_uP?Cxzb)xc<6S#ph^h(r4N_Jeh3NjA>_2|E=Rlx3$<#Rwnu98
zBjR&zZg_SlXz(Ldao+8MyEW<2p8!~-&o1{Cl#~=?nFL*3?%qC{q$#XY((-;V;`Br@
zdyS%5VEi63GHUAUn{92?DDOAe8r&UUCn5qQC8{8--Cc4sg*!jKDrB_=qjz~#4znSc
ztn>2<^uW-?oFPzYt9=d`&cMLnu_?!qN*+OcdQv9;><|?dA~^@ik<Ws(d-SZlM+-e;
zr3Y%9jG{`sN>N(j&KLeRfY2<@AQfM%2GEbAzJ8JPt#^r5mQaBh5mAD=O1gui#~ZB9
zl?iPfxv^mPlg~Ifz_Ah|CRQq*xov9F-Q2AF_RRr0S$TE_?D(G263pyR%A=!oRMZ{4
zeL~e>X?A3dKXf!Zl+5<ls9}JUz+!f9xi}qcvm|Y6h0dD28ghBLI<c@YGM6k>LXr_S
zys*@oUG=96{A=c1LO}sb?gh}w0=Aq%vVaeCbRK5bEf;HDS`R-Hun1;nXGRA{sKVma
zMSmLx0unzFugl)|mx%J2-mqiRhr1U<kFVhV3L~4&MRMEU<l}NOSK=Kv?N&Pc&NoCq
zP$Xzkvojq2DOR@J-&Zp;Q&H;qFgScuSM6~MozEDE;t@6j7Z-a)l3k%AWf#u7Sg!hZ
zgA|LH^jh!MUJfXo{rUxHra#63-xNTq>*=j%#?kf&Xx4dLOsQ7_Ix_5Ze>jOqI&sP4
zau4&<7hEi?<j<bJf5%VXS<lX`+V}DDlDHo=f7?V5x4^-8|2Dhe5R%dA@@wWpB~XL_
z(e*;D?0ejgJf$jb721z%HP#Q;WrhA<R5dmA<c=4XTi#Ye{9*OJyK)`b?_5<?>5KJZ
zH#QW4%Ahtix=xW@D*+dOc`tRl)twK5CSGSd=;`2$#fHjf^m2eO)%smTcFelJUyk=?
zz%9FZRCaU}Z*3cIYZEw0JB0o?#WZr!yF2DZed^4z0<NE_=q8ku!#2^ABQDa^7OB==
zVOCV?&9#+Zb@@-0w9o?-ov23>Xl}0c@nnUS6o(AC*2FY_-CtHhf`zK}{OZ0gHa2=~
zcQZ_0%0EmbQb?leyyJA@nNh?iAP<=G1)ajt0Ajl7`4YU&Zca?fCi0WiXE>2@dT+dC
ze^Vqvbzjrf{f23yMZX!ju+SF__O&U0u@xBPWog}kiYagE#n4gR`WbDyS3VXS2WNBl
zMn)!ZUDTmUT-e`MV~*PW=5%Bv2La*C!{gQG&-``2HDL4NCT6}7VE_wKt)ldv?z`HR
z1#NzasY$1lfvO4h#QZ$&=m;AsD(=NOAd9gRq2-mdH`nFoqex5pC@TpJ^tPfPpUKI1
zzajiKI*iH|&hklSa8#E01Coqv`H1FK#S2GYUw%zZ4aTx9ONBonpbwS3y})q<M1o~p
z9H0-iDIxZkL_!HYJ@@?;7JxQhdhqH2_q<c7D$|sd?_7Q6m6SCVbC$XeG%NL<j+a<%
zkC^=A4XMvW4_s)Bn#P=>Y<Wio6Y}D|lr%$VXt$a{o&2j;0)4$-c1rd10F4+Zd4{w$
zzpD-XX3T)*#@OZekFv6$*vZY#PTC(o%G$8gGcoW0g@e5;Zb%nTlU-fqQeF~SR^E>Y
z=ao2wk8WR7V$ef<HfmzRA&f6qnU;Z+l%6XMuq%~@h@Xv%4_&#q%q^nBT=P-D9gv<j
z@0mOOev|I2SCW<j?Tsy2%`TQ(YhBB{ZuuPVUNF+X$05eXCL~?}NIt@lH%!E`dTNm6
z#fSA;a~1{~ft8+tfr)vKn;1%fq1B!(`(a&{A0OY&$@yqgZQ00zf`sgGw<9a2mRMAI
zQjo?q8Xf^gSwBGOk5g8@A>~6b#}5B?ch}_Msn_g!xHn&`MNC{ZmP&f+?C3~zaCmWc
zrrYj%xPGxqXK7jG`vIIG9tG&IW`<V0j?<v1v9ZwebI8ulG@B}7AGi-*tl4F+Q+KnD
zP=NzZcR9WF^ISz~(QZTRQme<+^%2;(zmwWP$dF>7CjW7shlh47%kSpQSjwuz-r$`k
ziW0)r5nrSID&P;<p`mf8R~}ZueuHIUZAp|B{bKfI8GH`P2`Om<Irr)9_As6CfE+P@
zYEt>WGHkn2T+y*Qqm3VW+Ke9<rt<RT4`7BCCLIkAA6(pcIgR0FV5vC|U<O&$kvaDU
zKv6b3z&ru<4}T<`PRXaF$N#=uyGQi&2QIB%hgVW^EY6D#U)6*K*V`(<+atX*vcKHM
zXAS$JBZJoNK6|npP*UyIJ^FAHmCnO%HdjRfyPxOdb%OFMkwyj#_Y9NZ61X3B!ExhP
zO@wjTfl5Fh2Ekom<%yCRa2P?(<3x3}!({Avk6p*zTGxnVTt5a0!c0B{a1ZZQ@?Jo(
zE0bSyOlT}Pos+t_PF<Ya_|TI$?y{i--QCH~%;5F*E$6+jMMeGk`t`?8pG?1g6^@Oa
zEHM@lVJ!c>wbc_FH*IP%P=A7z7Ne)&s)>}<7A|8V+V?s4ecqH(h;|*`#xAD3oZL_a
zv@<`W-p)_ixiQ}f4a5J9Gx{j!5dF)uv&;#_P#hfHOY}ASJ<5h5gp;dEd?jB|NxSQ%
zu8sv2bS9oHQ`2KXFKki*b6dOqr+2~<-+Cv})3TWm%3VbRgUCC)8ENQqi<Ix;(MDv4
z2e}>BYa$E9$kUGf{a-o2UrpRe57eubJwwB#CA{r!AiaNHF#QgE4R5@;2{@)2IJnID
zr;+{UDWU=!2~!^NB#SjsYGhA68wzLsx~doK?Wy4kd`@l^)upv}#oO+?Iq<x-l9OY>
z`q=nHM7ZQ!hFcc092|}P0Wa-vW>i&}mm1AL_St11iEV(STv~D`7j&_j)zhm#PwYtf
zZbeg+?^0#=psaoll6+KZMT_Ppu*TZi4*EffT?0l&t)+?B+LlB@7MRDSke{I^5s{WE
z2}sq_5)x9fvlF(n!w<-zqHiu!rezoH<62)w|CRI-04@^7@-krZYi(^zf2;8;IIwpE
zgVfW)5)fQN@(T*^-<&!)3Xu(>30_n=>CzSVF6ktrk}%RU28Dh+nJx}%_WUL$rsC!%
z<tv~PT8BqOk<-r0o9pczjgj_q6ioMlPBAGu+0?WS<l}WN_d=t*K3;_YJz{CYXb_?A
zdqg)AX<21QnXx#80qKh=1DUC*hKHP@qNgFnn->tUNKqQyhqAqC<n!7FM`c`slkz;c
z2EVHM+Y((BJv|IQTg4VPTp8KBc6)U34O4~8gbcpYurL7D1I^94+k=+pBz1k_A|g^>
z@8bPpA=f9@)#ahckwKtrDzU1%$v&<+e{OauK0L~GAYW+^kII2PJVXDK`J1k-MkXc1
z#{*^j109bCV1$BZR6zo=qL{e^pRapD%IoSD_x5AHI<i&+Z7vE5O0%b@fX@{@3%7=b
z#<%M&FyI@E#UcplO+8}+3Z;k-EHFPmWIRh;Ox)dOvA(>3x-5MpD5ipx7icg97-)CP
z1A2zJ?EQs>r&Uzc06oKN=nWAaU2Fv0V@fp}`yp_eb&PqqdAgKX9UTD<z&eTX5HJ+P
zfy;=L?hIRzhvvs7CjrM^#T)&(g#|vIE>9a?cfAH1O>0t8F6K&qfB)3snxU-Bl)K|i
zaiFzQR#KKlLw7IJUoEy>OkdKGC?;Zta{wbTgutT`p#ffpxfFq?CmkIfAFu1B$5p@R
zvFe;v0_K22T~+FW%d#@@@vNR0CBp~Npwivz#KfvBig9&J%)u9;K@4V~g+kR*gv(>b
zQ=dHD8m=|0F9kYFOW8`%9Uu@$y}>TJ!+IbR+Qrr>nwLUER99E^Q(nd!cFhRAfTq9Y
zwyHv0tA(_wTeqS?@`_4PJ3=rs1+LDof>sj&Q+5{z|1`l^oRH5$_s`NK0y;l2Ga4Jm
zp7ZTfhRYtrIKXiUW9^{SL+Fl+W8|m<;APD|MOwqc!N@=LcX(5<m^we42wnn4b9s^5
zK4g4aMoHqfAZd5c?P$PlkGpf)e}s58CoU$`O2%^mKIEoA#*B}28G;h(87dV#L?6KT
zQM}=>vriOYRcFJK9H;g<ZNu|LMbYBpZ5IgXe@b_z9%?btndfmxwxV@j<zz-)!_1k<
z1pHF;6%=%oaBvBp*XG0W%*RVhOJuTG@R@Y;OYF#*mRb`sGr=Z_4+sck0?rlDij6kM
zHbj<mb3K60>2{4VezbCaab|92-r;NSw>`G}`1lGH*BDM$w-N2n%;azP`^VEh)W#R!
z(cueZq&a73pr3*RfL9$);zXOK9g&oJiE&BphwA~h57)>1Zqtk7>RMU|6<rdb_}<}9
zGt<n=jqRqZD;MgOTLk#^kO@=WEpt=zRo~0#kB7(GeZvE#IVJs$bP|E0V!>i!m(a<C
zx{n_inB5&=Qc|yGzX5VA(0b3+`>pm6j028+m%6%n@-II)-tstGZB}Fe{$@iiNogtH
z+pVt~rVji~-kYBAJWa{Bfumk-Cwy+7Sb65>ve9+2V`Bw<u9UQ-q;y3Src0k}fw&1C
z{aDG>DB{h<`33sbWn&Y=^K)Hp?)y*gH+t`!wXcucogUOAzP{E`7cm^Hq0%d?%=0=L
zv#qglbE}Um#6NUue(KY2^YJ<X8#fO5TyESIF1L*7w7<q<o#t9=Bo?pBjoD3mQUz?c
z+DAuMCMIr|2dW<Uc?hR6GE3`gf5g<>yejona7xteW}aC+XO|09M3Ph0p2$&`CWnUx
zqu*Ta78DjRE>`8VCCqfEuoqMPHOF$;|I6^}z)AnC=@Txijz&lrA6>PzU`k)CTACRw
zHvE8Tl$dnlcQ(SxjirQtc>u>lU6RVZO@PM}5}fJt3}_)r4#ERtKylpe{n})qBU(`K
z<XF8+x)SFOpImI+>EDck;-H_Apl`5ySYDb9qGxQ|JQIlm4FW8FxZUj23PBPo#tFqm
z*$^1xvGp_1?muJ+a;PYlTi11b5M&y9=tj5NNa`AWc5Z2~e=E>SqtZ^Ptt#m_9WB(>
z>}J|FQPY~+-8XYIl;MRv!P@%yGazxKvpT*#OeE{%e@rQz&FE-$1gOrXm;gk(Wj_ar
z4gpF8jCVvePEK}9fOYUhK|uov6$3hDeHks}uc}M`{Qj@$xrh9B=>0|NDSklz74Ea~
z0yj@nleN1I$y}*C5TgLhyK*|8$=~3xnaw#kvYzE{ZMDdgMUe5@IIQ|cUo6#?3cP&!
z>~c(|+e|+=91<9`;(crIc#4fH77@%WA*{3k+}ibEBuLM2&mr{sDkx*QL^SMS;qo1c
z(apipB7yypoBdqxN}aTW#@s=<cH(%}YLo86A}0A~-#eqZ??1|2T>v*-#cB%!EoF;g
zpA-;f8APVmX)sPJsTn#I3IHhUHW)(|_OFPj#Rk{3;vDQ^?5#K0ILDA`Wi8M9eTJlF
z_k;ALEOSF6dS-^*%f7z(tHY=A#k%R4;o;%KRebSsA2_&*<#rDHd$c)Gmf01s<MWxZ
z2qIeG5k4LPzvt6uc0RA&`zr;`WYih&^Mjxl9pCGkc*@eD@<ep|=nU#H5|{FfWTXUM
z7c07;2|$QGv;0MVpR{SJP+eP5G4AhAlbkFAx-a;G{^P7BE9k7oFIfIdXDc29gjru8
z+ufcX`L6+MR6DMB_z9E4wzW*O=i7Xxaa2+tb#LWLz3cWP{LT!f?#}jZQc_YJ2-0M&
z9w02NQB7v%ao5C<#9mvY_ED#Id_Y}EX=DG;+SE*}((`pF*d&wNkEtX3`$)MC0ZHUH
zA`^_LP+pI9Z$-z6NLP}z3VJr))U-6YZn5uyll2vv##R=uNqC*EW%PVkQmKa}ihcuH
zzCJ%c7a+TkG1s!OXMOfWdxNl}*XXzm3<!&<bwK7NT9B2;5|AkXE!M`|5;^Y529?Gd
zazEXN>hM#tEmm2%wx;G%yP-nsx2lxZLi5q07#cAeA1+N!Y6ALkNds!GkrC(7JipPO
z>>L<F9$2vDHeh!gn(>xrBOIjG(Pp}ng`JU*Fg_veV!6+wJ_~qj06NCU)wNh9@Xs^r
zEgu0k9=soE@%{-bVL0G%2H1kM>2EOjfAWPOim!p9RK0za#>QbKWOU_H*k+icdkuE7
zz*`>cD=0ia;*f1^Z9V$PC|QNp`7<)nO<0P}gSU=`Kz-IO01+V3wXXLB+;&`uBkJAe
zQ6^stDeGq7b-qGza*_%~`6ZbU)o5m7hJb*016_!?LZH=9&{I>ZX*LK<iNU5r8&Qo_
z|1$*%PJ?HYmQaxR`jwl#v_@H2VZ0tGQp>v7FYLU>O>=_j#e<ZxETceiO)*VZyDpF~
zStt-ebhoeUF5yy!K{q(`dqWP+nR|x;n!I6QF{;Vg{ISi;8VaqSUmW*1H(6S4kq__(
zX75?oBl;kFRuLrCYd#VI^S)5P!Cm`QRSl&5GF!i$?Z6)LLeLbI6tb0oLi~5X35w{*
z*c`_f%j>lh3Ybn7^0%z`g1iG0Q*S6`Xr>@fu)Tfd(Pq~l^1zU2rDwaKrSZAN<FKce
zz{CNFJPcMW6VIGT%FD?v*SO0M`1%-p$4;i&f5%5#1ZtEJI@W%(PcTzkPCf)4=5t*4
zZV-aYhA?p2At7VtnN9zAeZp2-3udtJb90<_08EE6Y8tm4V;PI|4C*Q>w*~p$zruhB
zgE|(r=44I}xGP|$BMOT$@X5Xo@V?kjya(bpE0khoOTYJ_Go>bTt>)u^?;k*jhP#eu
zF$^*^zaJp@f6|k}g5bgI(K=;wCNdrfWa%70pI)BY&!wyRih^A7<ABHHs($}$@8GH}
zt-;L9ti9e(e6$puAcKkiJw1&SdbhA}8N(f5hmRu|FUl`ETCF*ns3Y;Q_5AF8{fU<|
zal}@uqlOW%ZvqZYd3_y7rN-UCSevAA{~RCBJ-n)0@*Gx2BX`Ma2NrVxb6|TJl!hd2
z(YU`g{qx;SJe@p^+-H6h335`>m6O%SpTyldif0pn$a5Y<_cxtc<15Q8t1T{;;H4%&
zzywIHCBH{*Z@?@qN62xooxz7I9%01s{7=jWi35XxAj!Y=@%u^}=E)L=+wITUla*?+
z@iNrf)}_(K(kR&|aNd9gsJM&8cMJ5yPwb(c8Xf-zAG_M1e+0vJaR@y4yS65k%O_at
z>R~A;D5!DoGCyA56ZSzGwpgNXrj{7hv04UJ_H;eO@EV!^W3e*5k5GOEny&*KsS*-$
zv2O@=*Viq3H$dx8F;74^3-qJ6ua_o*%;#vDj$C}e!QK5f@N7PgmVtrZX!zfeV_*0<
zaCmqm6Eiby9MH}R`wIhJB2!aSssbjRPsH|9ZPhVFILsW10qNmo#W@o|)L||QPgYjC
zblz54WV)mL-Z6k27UJXZ?VHkh!yi2to3gyx+JfSg?C)Ph@Wms7|2xk3WA66$im#z^
zwW()6EDXq#0yx98(r9L8(tDuU!Sso^yu4t0w^AQ7L*S}!8CDuH0H7=|d<u;|Ndo5`
zh;>}Q<#}9!;D??aZ-%rDMD|lrMK=NH0q1pfeR`(Z;Ik;cJ6=^@t6upQu!oMoG_UMS
zeRFejkIKsA(*@lxp7=HJ-H1OPlB~&(R=n>Vci$SZjD5*j?RX<+DG44s;_EC6{uoJ&
z{$HVIt5*QRA~u{v$Hp)DY@L=BgxRjPrLns%40eeSpHqcMlJr~+tA8EnAJJ}lJTE6H
z3>E{*eeMp7%2%M>W6Jz@!*5=n?Y}2mxVw8tHmgDpM*qSfyU5*TmP}DG#&xmbh{s7n
zMdMpfXu{i*0h?@cyHYY2rV1d98%4$o?W!$e;Hr2&-Jb#|T7dj0o>!fYSA~4kOwEXc
zV+fJ$4CXAqk7~88r3lLt%Ton%eSgEh;L*__dHWNDD??2JWo6~tkMvA5%!2=HQ*=XK
z=iI7L1dboXAOF+tJf{`;1vcg2b4=KL`X{vh|2`=Gz$~(-ZutC9T-*=!S|7qa=SKuQ
zswo$@BXa~R)b`?TiA2EU=Gy=7^Xyi|XrDe6vj!52%4mECLh}@y|C1Q6QyF4&noEJV
z`hC0QLZ(M%^@<{J&H%U;kZA?tk^qqYlWFxiw9?VCGEjN_e`Z=04TS{s?BF%&{*`Hc
z4XhMI=2!U41|;7vOaCWNZzViRuXk;3go`w@S(zSp`<dn+jQ$r;|39Sgb7&M)v|6vO
zRnxA9z3g<FHjiDC^UdB(PyTmsU-rAA4o*VsYf3;yT9-s-k(|V~a{Ql53nS%p(6zkt
z8v~1Q9wzx++AF9ZN2QY%k<G^?WQohpp7x-<<KR0CKdL=LbnABWve)8xzQjfptc;yh
zvT|d0*xHBtu(+eGZj~6Sspq>kp_`2A0m`R==W{r!yLcXFe9ij5KQsWi5<N8!Cx1f7
znC-~}?Rzz#!>Ih+F2~b+lh-l+$BoooF16Zn$wXIl+b8Py$$eW#OmF)^G7YoxXVqT3
ziB+zauvoLT1{TK;U%3DJ=zzUS!^EVHn`?!H#EiK%_44W*nj6;6-My)hfU*UB-5N8O
zBD<rj1(!)KEnbtY1nOtx(=#y|YNfl>mzu1OOiT;2RR&hg3%l>0br3{;W@V*{$wsuB
z4&(ppvkm(C5*StD;{5ixboKPe1csAkC@3iYFX8+J`G#0JL62bKQel1WDB@CCvb;Z#
zsjG~rB5Ms6v|~exuCr=tQ&W~OO})&7tX(1^F*6}KYDqdf-i(ifOalBz=MS^6j|<mq
zbq;8k#%l4}7W<PHpRC+wB4W#v77MkL<lDRt-s~|@GR2I4K$HA=Xl=*XIXoMU234x9
zy%uP-E-Y^Qw#K4IMn+#3%F^*g9v79G&XO>sdz{ZzLsE&Cm&4;~rq+t>oC;{?ZYEo1
z7f<wBPItEX>@kU0S@DQ8)hwev`<zl!Rb^zpOnD95{z{(KeG`L0*<G5=`=JtZJ;7DS
z=l;>C6CCzQZH7{mb4UEx@2V3``>E$Bz7vWWi-czv=dqVifA6{GAEBwB>}b&Uch=5*
z)YJ_E?W-Oq_xrQsdd)4T4$js?bbm^3c<9n<eqYw}&0h02KP+677N+OM|J-xtN|NPb
z&hWcn<KSCVQ6@?B9}#k7{gpx_W<`AUhJ!)yd1Fz%?l`phT5t1lnrB`G*u;M-yZ`f%
z6(Hog>~AUMMTZmSm;nHPg_TGs?{E4-%pjIyn66V@Q%g)+=+}tp&B{QJAg7ht$xD=2
zB}<<9Ol(77{k29Sz-F9<9x=6hm=-U4YE}B)OIbyAcsrq^ZtUd7Im}_QM_*NWqg?u(
z9P)HLV|~C(P)W;;#o?3Z0tp+~TsDsJqp8fm-`*NcD$VNgr^TnR7Kms0CPJ$Ahfj{q
z!wAh%7j$$ITJEJK-g(yy3}+t$Z)`bSrg49X<%xspRyms-8lp(rVl~9je&*(kfnqVc
zkPS&Rs;cka$Q9Uuj4$h4#;d59Zb>wIeH%o*VV?55MwOSs+97zC#_*A8#qlKA-lg}}
zjvrC0PB}5L?dVp3QgB>HIz*K-YY*we7klSnG8!`l!iK7~&c@`W?r!Xi=90m||Hau`
zMpdEpZNG}rCEX<@UDBl@-AFe`Nq2WDCEY3A-Q5k+-3?3Wt~0s!^WN`%zML`6`LaLl
zvE8n<=A8eyuHPkK=diQ8&aN=&JuFC1OIT1dJGzUBEmgC>INOQfI2wE92-V!|I#>uE
z$e9*cN%m2lAMxvF3IDm6p8sKrL=`O_#{S_WnjikxFRGdlLWosKRv85)SivtG;&tcd
z-S&N!uLAmaNm;i)Cl0nhR}MvGA=y?_T~qEyF=~J8+n}>O6MTeB^qY$l{0l?r*|nG$
zpmRLF?6&hz3V%-6-o8pDymofJl1=7quhiNmPw^8S-Df)vD3bgDse_s=%Puy!_<mA#
zi)3Cl`+U-ysK+FR20YhyK8=)ymHv_-z?!aGA<j0gi>hRGBViKrv5)d`zP+&fC_i2?
zAChTquq|rLV2_MUMaJhFG}>Z#kJ<lwx!>G!wc})e-$HR(1&ILJ0dKLOsU}=o%9K?x
z+MrZ^YJMKt<;a~+4|}WOc17lk_Ii6Yu<Ve&GFW8!cH1&W(uuw?u;J}-BrnbY`!A}=
z`6B!YqTE;WPv{#^8~Tg;c)yDlK76BlSJfBzK~571C#)zr6aFw!6r5zN+FU)s;dY+^
z1KV+R8ztj#F$uz2yR4Dh?P8yYmWV&<1m$V-Qlo>`sHk`gt<j+gT;e_qj+`9eySG8!
zhUgSCsv}6yvaY5{O~t4{@~!qTu+-!fKT}SV(zhFb)$cf%XW*ur6y!ixAWb!RQGPue
zk>QCw^UK#)QK3j#LV;D8r-Z*#h>n(4EZ8R)zvwvX?XOdG^xgw?gSL<Cl>Yv92#6Ai
zQ)#>J3TvS-r{QX$7A3|8PJV_RSk1>h_$X^Z8%lEvi{<6Et-3Lw{Oco_!d(s<$-97X
zHVfgfB9)s{YZ77lp(PlM_?pi&-Wp&d7Ug+$6&k<rA=NQ7@8_g_%g7&=-JP4$FDdo|
zaeDs4eh?lPu$i9*D{oJeQLw8u3`wd8YBpg7E*5blnC(ZLC$XN|hDb`XZ_$$28=_%g
zPADmc%Sh8O(qu+?!lZ^se$ggtA_c#i);eEx)BRw?5a-W<9oM_0UY^>XVq{ftszSEP
zy(>X=^RK*^`5bK|Mn~xx&7|hJew)0<`i7@46_YZ&1u4$im94ZYTAg8M?08x6tzZg@
zf$)F*CDB38(0HZJrTY#q_v)a}^%Uj#9zv}AXv7*qNzU2FNmW=~4CxJWqSh85^HceZ
zn^oOi(@Q{>99;U#)>H<YuDDA&F9Z=@5-y~jl#1fBYm=3wL3cOrLEX*TE>Uz6R64dg
zPqC3cL>Y-d8p;dO)hLf~U0*P|mh?stbu4Y5imMj73)1SBPx!z7$Ifx;Mg4p8@<j5e
z1Z^D+kdHk0BqbyTuU(9BwuFe)Y<_GNheCY$D#fJ1Z?EH%hKjH{3`e)?UZqd==g&9J
z&c6zYgAE2~=;5S8RpMhei#$Je$b!dLl#2QX;*Vq7*{db}ZNK!uT$=gB-9Osk^gHUg
zUB|q^!i;)@hAb<k+w-XE_uZRRbf*{e4c{eY$%O;7I>x#P(j$8-7;q0<XN^Pt&G~uw
z7SPjkDL@Q<c4M4>D_32<d(81!N_@6`yMM7N^(C+Q*S%jGY7s^$D^>JGHPy8q49dhW
z{Ykfrt5CS6^O?A5Nqn^EDD=pfcHzxmN>k{%QSlL#Q<e|i+h5dWIKYA7xpwWz%Tqf%
zh{TMDitY*S{z%0CmX_p~fzL%>PR<vM5_MrJYEP6?&hg*H7Y_-LsqHQ4_tmL>uNLz2
zYn5+H^SnsklFsFXoxlnnMfh{k7MKe9Q&W~Z4vlTRGj&GCoG!C4^LR%)kHxgyMqz9y
z2QETdMw)dvs#=r(R+s>pk&Yc5M~I0dy1@j53m%3_!s7c(9X`XSwpia1SB#Y7SLgpW
zJ8gc6Saq`+i;b7@LOIQ=tTnypLSnC(oYrBsettS>M6Z_a&O0c%)<7*4r=fzK%F9Sb
z&(rp_rcMwt-caA`bSU3zP}=CelXHhNHxp@$I=aw;YqH!LMmzlkwCTYbs{P!H@#Ql8
zRp<9VAoqjHw)D+Q&2A(sJXTjwtnIn8+PqBUR06*X`PrK+!SIoz*N9pFtG>J$K`EI9
zFMfWZ(0u=(o*;djv*}{$VF9<AVtBe@R{m~xz-QN_gf99ytS_$TnReqiY5XFNq>7HC
z1wzz10)u6L81fm={(X2}gEz6*^GYe(5c>MS{d2{yU!CKtD&Nz~vRcVvy94cKxAC!K
zA|hq7#&a+Cn%wvDz3ca+IT>|atauB*)K#Q5eNih)Qz{k|k}enX3aM3zFaB$4a=JCN
zdojxdK1XtPYPb0a`95PNg{Z=_<)q-KiM!m9nyGQ#vs*m#AvQkqhkSUuTa=C5N%25p
z5u@_`*|gGRD=nMj3txo`<^m+!iv0e5b0R@@HbGQYO;0PclB_nf(_(dA@*;5^wdqe9
z@mYCZ*dGO2rN2^z9nAeHspFm6>pz2Sl%NeV8ji<^&$hj%P?##dzqfEIo291>g{1Q2
zB}dLX1aX!(6dhSK5hPorbNO9#2E~QX>;<~Ok-g>Q#1Uv|X&ErsOh`)V1j^-#VyRTY
zk$;}y%qLiB=a7$^xBDxHk{8nX6|{UG1*ULs4M8Ed+$qHIGkJLI?5F+dh4Fo?9s1(`
zPv%zUs-<%fBY0gqM~Bp3|Ev7||4Q!4{7<VWy?(wu1a$jTpP!XF;TDVG#H{}5NAb7S
zUoo+W1Uz^IXufUV-vD2cqA8ICFfc>@fI;W&1%!r<K|1G=Z%(k{<Yep*#P^dB*orYS
zGGYk}tLDWf0*zT>VP$}*Fu&Ua&wJL&>}>z!WDO;?2CuO+BN35e^T_dWSeaCPW?c8?
zX5i?Vot}8R?_byU^aBwmK`J-Kzx#H3h!X6@TUunbo5e;-VfMRVQ6Rd8J*^IoXyfBQ
zby|_&QJLuI{P<-hhP097dJP)gTsj_oQpGFr_78y+T2@#bekbaI5F4*Sw-*T*3@YK8
z?(gqsk5;_^#9~=8YaFb+VK4tK&vg3Mz=vOi{0LT0PDVXk)%ozj+u#N0(scOw(po)J
zlhS1JCc)B~>L;EM!taf(ot@6Sx;oB8bHd3&Ev<i$Zwmi2=Xy&2&-}henu?%Qan&Ec
zsPnnwB|DD?UwLKZ32S}P*zll2OnhE$QKU1Nkh~BS6cneSrKL4s*6kjibACMEU$W;B
zxAIR9j(<?xX^de>bRy=jbh3TxCax+5M++vKFq=S<HAyW+iuOUQ+4hb@k+5>y<UN|6
zUOwx<jJk%~->HHPeSPN9;P?(_5`tvlVCjJCFksc2b-7j~wgm%dPEO9^H_C`rr-(pt
zEup)VYqtweE*kaO5&V4_m+C)$(j^rXOwT?%+-o1j!Nv|e2`w((+#T)d?(5<L<E@Mg
z-H#t%#t?G6K7=e}zEaFfb58V<`wfU;c4w!$gedPJZ{MMZI#t)E@p$qPt^!mMn@Xv_
ze~{4IVhl$#OoCoRLxVNde#IWf%vRuL^aKhlbDYswg?BbeiFrRs01FF>wVM9F*D`yi
z5f<py8*bQ6Sa0JPH1fw`=nR-gb($^@mU%IRgn;}ObX!ezPM;Jez}O9EENwZ@%?bDR
z3PSUa^vxT>6dgI;iQKUK?{KjfyRosc9yU&6BV$LphLmKCGC4Erd91UAzkY3i!7R}D
zFD)$rFOnLM)8DmL5AfS4DgA~11|6M<Ktom4WGPqL#pUM0?Fy`FU%!40rfU3Ny`e8#
zTt9L!I9&Yx{vD7~`oCG~cXo9}$EN;)?7%?##o}OMswO2?;4giw1%^1voE&D9rXtC^
zOQ`$%9|HrH+S=u57enz~JbK2R)L|ls@TjuVvYb=1I2c%zAsC5jYQ|;S0SeFhy#dI4
zY|q}LsE7nD5WSTIKyL*Z0^k>L3&STz$3!IXIvfoDz@VEo|Jr51N|x+p%{(O|p@8m4
zR6GKNgGOTSX*sYZraKl~r+uNjV353%XldSE!@TaMqA)2e8XD-|+TLCCx_y1;e$(s%
zW|{}9MK}g12*}bh;xr6&Z0zs-V*y@b+5P&BDUa9f`922Kc}<1SGTeo)Zz3Ln5YN1_
zq`amkQu@Ha000nf6*)TKMbn%=I3YZbX28|-lnZagVp6@3E>$RcGr%^5`)LH-W1Y_w
z;&i)jB}3+CvwnNAc6<zeh=W6e3Iz^X<0cFE_~5)22a1uB(d^GP*x4x;C)ApZ|6(_@
z6m(Toys-Na6Cdw&d+V^hGct+8lvZOt?-Napad@40eX#x#PZv3x9pib#c&}8{`Ia0H
zsrS+kR>g85CN>p$A2gZe{Ye&!x+83H^z)8uA9TgwD57$>+BZf^OYM0)7V2$;?yjgS
z7{HCj_I0zT%IM-~+H7jAL$2xjo(ZR{tfl2&ny<Y;nUMBA!_U0eVqrL$Lt0hr9l%Nr
zeyJIh01tCSLR1{~8_ds?ABFk&&kzv+CP>dtQNcpDh9i}?%Q9#f%##&OYo0gyJmAD)
z=jLvWi@lTDb^LQ_wTzHM88!}9crSRrh)9?M$cNmgDC9y8*Zzocp&%I&!4)~3Hd`%+
zDh^JaI`jD{n@uq@cGZ%Gii*}!Mlj9|{^5fOn0i=eyIr@_ii-UrhB-OFx7iLy=p-VK
zwq<W`LqkV*I8{m%^YZjV5A6A0<Qt$I<M;3&qyF#6>-XxZ-3hC5xp}WYJT?`w=`S_;
z=?WDvu}ldKZB8M~zJC4MT+sRV(Advp863<v{Y>wiH`lDUFaNMoVeEA70#zE*N_}Kx
zB2D|)SWgeu8^Y$hz43(l`oaqjjQ9xa!*wBC;M`FJ?7}Fq<I_`#?;&<}b^s{{=tVXx
zEUKt6TMenpz^?pdVnTO>nUj`k=QxqgO3*z6`z|dcS;I#BM`@h$h%vfDb+rgGv6SoP
z+j*pmb5o<qncsVWhGRZEJsDk1^y+PAr^xMX#P$4i?CUpGc6R(8?iu++#l;z06dGEC
zdILOA?wa;IIAL+IsU86TFvneN4k&gM!STuQyGmGLzyK7GCCfSIszZ=`>EIO73&jmS
z(77s>p&`j4{E>?GL2i8F%03}*7PB@toL!v7%0nqS6LrmXUy%EBbPN}=z5M40JdY^L
zu75bIb@>@u5fUn!FMJLRC{h6`0x=~umziwwEpA>dh7uN`AmY`QyRB9a=3=$V&)_G;
zOhLg-3BBX#;N;|J=NI#Y%_LCabhQ6)7j${FS|y1Sp0<|B%t^x6KQu-%mG=|uL}S%Q
z=Gt|^t`xtp5F8=E0$eHA4@k&2Q8m~CNJ=t8fYC4*i5B@8ILx%#8U{uoh?UI2!RS#@
zy4k>f#m_>o%;BIkt)3iMGcy7FnQ}G0g#yjrYq7EAI{Nqa_6kXL?aj^AMFLYohfx<D
zv9NF!=NI#`b3Qs?7W)2##9(1vI5_B0ka9Usrt#aUl=8V=7B|&#!hiNX4-JJZX#&<2
zU@$~YP`m{-B{_NKEf}yXPF$Uyoe6q9AdpKSAb{&Jn~0EvB)$KNh5Zy_4CIA$wcr2e
zkp<VuE_-#G7vO7vSI4ib^8ht&`qop5l$?RzYvDZ*{o)2Od`f#J*vJ4wClD;@G`Ypw
z50@2Z+e4Nbyw}!%&d~92E|Pu->P8&rQF3?K#@_J}axi%CHEpmXFg9^|^=X>dNx=Pa
zsYs*FrYk7gNP74{`%)AI|9ytjQQ`JGgOl>cRW$K?W`g}qorrX=htq9fx;1bgnaBa}
zweO!xa9dn^zsyErw$w8p9vnV6N>@iCU}P-Sdj%8GI-H+v3QX5mX?!-frvc|tBHx3*
z4=24Jkkd(TVZJ!upJ{Kz0MhI7(W&b9s!zWX+01&ehZ2VA>MT1teD#Yp%RdN<7nJHp
z+zt-*7i%=eWSP|(q1@d8^U3pN%bwY`xGMMw?tQff9xCcj-xN(78yoOCq6(RVJFU(A
zo(qqWn4iaJ?>G2108L_7(PLMOpC4%IULFn%51t;Ma9f`msEfd;mFMTfp+moZt=MKI
zeVG~@9B;M4)zm;k^DdN_r+P+LO&Yvs26T-|$gN^;Q)R%w=@oee`$Bw0#LibiMHP;G
zRz)y`6xrQ402ht<@?;-1DHj(7pQfr<zD1a_?Q2fXI{*6mZ2#AI)l<_d!|6I^<w(F8
zC{4^3SiNvKQ$hYiWP4{@tI+{iT*9_!=xN`!G(0qdY9tzmsWS<b5mY~kwSfL_G)vUF
zJOg`EG*s7$0!}nLqdX!h{}XW+CI;Hgx=_J?hh(4HWQ8^j0Yt0(<*VDvy_55cL+~3x
zHjjm=udnB+vnneD65A+rJR&VkO~~;+M)ZKcQY!Ef-ba#yvtne0bRiV_>+Nd$hj$<J
zZBKzzjX*m}J+}O!s7J;-T}S-mOA$b0RV$;({}Ic;N)>o9N8S|i9qwHwxGei5Q32x-
zAYv3ICM@~g6LjQ$t7{||=TU**XX@cB$x>|?5`l6tv&nMfj4mD`6Dn%4_267Zgcm3X
zL4gc@TNUu|6F^w->lYFX`Fqx=!COQC{=6dQ$HyRHq9J3kI#5hJ;{E&z{H%6MwLOmZ
z#PTLZk?^}+&6O1t6jbHjjQaD{8Y_NOG^ck*fJgXrBaZNYFZ%Q=jE8u30RxdNAX|xs
z!^x`WVxtR5PhTCJia8gu`rXK0M8_x=9}{t{_aU#Q_Hu&Tj`R#jL*D+%DwuLTIX&(d
z6Ymf+QF;+V!I~(Ao>fr8t>H#TC!nnzUZ;UxKF;*_FU1FuN&r4_p6bUY#=5vURKX83
zvalRQdj;6HCT4msDaFMlvnKbm8}Qi6Ds(MA>ghrF54&=Ks0rLA1KIiCzb96(gw6p)
zZnHK<oP)h%_>YjUe^OjO5YJIJg%gSo^~=S?>(p42xlF_n6?=_El7rd`>;*xgyf@jx
zOV>;NmLj{bSW`j$fZ$F0f+m^YM{QfvjJ&JECa_8RpNl1b-1DtA3_cpGAD_0TC(Fr+
zJ&%^Knws}dS%pu(@(aUMU0k>g0KIQ$c<^nai;MGuhWdm_H8>To0|GiKBX%$Du7DYn
zEYSxTc!3!)Y_WRZ?CTdfRp-se2LR1vEy|6GidwpNSH)HqhSErH^}IMfAv1g2gFrCe
zkkY<|G6VFmtgM3hj)kNF1MOCiyMZDV3KVF`8<^KAjrPx5_Bvt#e{lxDIk7vdtgI|@
zI^t=pk08Y#aJ)S=oNxpeO|fb0Dhns;+cC*O2}!e=@h^|E@IY_k`FNkp@1{E`_d?7^
z7RSkH?gs4Cw*nGcnjF5w#LEu#&$&Tx=?D~&QTD)J!ih)#i8mXR7k&r;@q}L3tIG_S
zn!r>Flsl3mMLQ&z)n~uSCeF>LI|H^76wV5X{r*g}0v8%5#LJd`jkyEuC(!RJC8`LY
z|M$xFe~b&fyc#QQZoW?}DM^l>9fU^YY7C=(ctAveJ3c#$jscr2^s$M_aW&xg9=5i(
zX#mZQIgr}KC(D37FUv;hEzw!Lk`pRwNV}^pXed9cs^ac|8?fAIU8i4{kk^Tkg0Fc-
z`$_Ks6wMEy1k^x7Lr)U)XbenRumf(?GVKofnWTn>22o_<r6xBg(~6^yX#ku$&&wUz
z0<af~ikebs#O!RWNoo(hvZ`aC($5%<2ouTr0f#6wFIEfuEWj><g@fT|6Ylw!>@1eo
z3E&j(t`49L^Aml}y~?r*8q8Pt=By$zJ%IrgY_Z2ihWu>i(tmY!-UI~1HpPn&EVMmk
z2zZG7rX{C4yl$`qKQW5re;O)G7{{LPAN_9ak5C+n^V*)kuZqw4kx+z|lk6>2It5Vz
zK0c7f^YAeKZU2FhZN<uE4M9Gn=<a?7&rs1KB!4AB%vYz0sVtWI@L?^eOxq&u@dhB}
z=+aX)+6|O3v1V_~S^qil42XgxOsUC|nx7*ca&r^gA0N?f5AiX8xb;a>UAb2!OUDtN
zDT}HQ+yxqmN#VpiG5%q?YC*E;Y4Zy}{8U6s_mh})3;Z-8OqKpfqn4Ht35l`7d6U3*
z`ICg@le~884jmJaIijQrfbN*jZlfC%4zUDZqZ3lxfxYP3poJ8j7O}_e{?yRal_yN(
z%NKcox{d&atJ@(pO1YT1`#t!&GJgO51oO&MeEUC5I&$*YC#3-Mb$R(Q?KYIKPzpV+
zeD$X^ey|T$oi}a8nc!qTo)}3U+8yy5W@o!M2jbGw>*JfM=nzTZEr*CGAiXOo$Ru+k
z0*gZ@CMI4tx4A?haR3)YV^Wf}x0u)cMH|W4{^6{(N&b%`wdCZnWR9>Y-ws{50`qJN
z3RMSVLF}z}KMNQ?gq)4_4OQBn2E4|%hxvy)Jyp4d!%ER3od3h<70?YlID|cqWmF$;
zoWZiIG~qibyU%})!EZqd>M}VIiI^l4j^~}3&Magh^{syrfjbh$f9{}%qGNR&GDW)o
zm#NP0GTLcQvRCZOQF{M|!aty2GS3UXVST13|M$H!m0;jE__zFm%>RFr<!>pUCscD+
zVn2-xGNRO>{{81>QYo{E^dh88r%W&XdyNhE5GB&xmShJ(`j<okEZ_Birm_be<Na%Z
z=r6~1I{Vf5zj%6Z@{afa`~jnpzNslp0f62FPq>)G8CrY-BQ=A}|4{SKQN_i_l;vY`
zsglB|ntL*AY@!DQ*8tr)HkqT4wg|G?D6JwHLb3B7db+gu|DjG(prtf9POqG7rj2M&
zc6XEdg%r`T`;Ba4P)j3+=~B?~-klW1TM<D(wK%1u$WwE~Y<X=h>;fGX2F!CdSEsJ0
zx3NV*Zr{`r3o1@Peb7{GHa0YbXxH-akjtR?!4~S{OCK;D8%f|QsHx?MRm_>8eG%S+
zwY9yNq!CIa0CfuX5@J3Y4Sv+&g3gbj2D<bA(66;yJeoXr9f7o!4xo>TwVFnf_=L5U
z<0SOKaj*wH5TJ@@ZyE3trD`u*00$}^Ii>K3<uolf<@OB$@0^=~71F`1m+I3?^o>=^
zd0pf>68_t*4MHLu(V6x%A40TCBFlU$X1%F=ps^p{KTooQpQ*?f<@aGYrS;AYcAvh`
z_sM+*lY3(QpKr!AlUaL4F*q2v=_jF!(H(xT%CHXj5162f-Rd<<$;*ISw75RIy14p$
zWs>?E9$podG&&}xFCS>fL6_S4^05hpL_$U!k3%;@KA8iY$Rh!+?A)9Zwc2J`CxXgY
z;D@@tu>(~wWTI7Q7lp|G^=l#l?v{r&X7{y>9=o03AKxRqXO{{l>7_<Uy*?{$0lzF5
zEMA!}bOwh^D?zunI;*LvSv%v#kkL{Zoj|yO1uk=PpF$g(ka(1qFO!0)jFd@s!w~5E
zXBEE~vnIYI>p)H8S5lS(sP|WW$fU(~lWEIXSlfPg7rWc*HdmM61DhBf#E%P5{{SOP
za`XrG5+^?HvT8pwtAq$09|22VUU|OOs3b5+U067vC3>^t3pLoW++IR*vI_9tV4g2L
z@=F0#$KX=-X$+~Te|o$XK+7-j@in+KFhL-?P9I_Bx*A+uAa+FvN<Rn@O@E;X0_pqp
z#qqoqa>~EAw6~NM@IO`_AHn<uvQ*j<667YM)L%vh1_NP83#v&;N%#bk;$q*w!vQF8
z2L%%NxB)?lnlS}vx>~Fu-BAr^z_O4Cas~GNf<{86!&7+)FwvpRbmQVzy>7SW4^@(%
zG(1fDMkD=Tt`6tz#&SpQYRxT5vby@t81(ahWlPQQ8O<H%*zM$G=X&05d>S$PfYrYN
zgqL~YL{5K?$9-DvKHx3!@fXaOs8`^mAt9WePBkl+*w<8(<^Z-+wauonOv=^{7>({e
zmjTBEG@MLUfSnE`jYJDx?Lf}Tn9j%l?Hm`KJ|yfXulo)X=H^D^*ASzzeY43|m+%lg
zy^lTs=6HH~THfCes`%=e2?4jgegN;#bNW~t?RJHT7y@)#0xaA=%%R&$1Bp<!efZ4c
z=xbQn?f~sq+f$%VbLO~9SM9+RIqc;1O*sthJ~g|NUyb^|Z^JM!q*y;#PfLqj>B|+>
zKt#0CSp}eP)0HwCM>~hJQ+!T$|Jp#9SVgRnM3!#~YTx#OW^DNM6u?G-T<;RHP*N6#
zoGL@@0@?zgv=eacmji_Es7}DL&=wY_q2X@Gug9hGszvaHg8I@MHmNx4{P3tHkLD*~
zfr}rOTTqHZ{`{~9<b)3Rv%U^|9j)*Zl=&R4uFO!B)ppk3L&Na}^(owNWhAv8u2&vj
zxn7l;OdmY-q2Aow{HM{V&CSf^a9HB9@)A_3{Y}gZz)b9hu~X;O!w_@Y{oM!sy<mRF
znZ0AR$!FEYo-7<3%3mInjE_N%ePii<g5MMmo;YQ7bmqv${+Ji+ucAJJDIaBOgRRRF
zB(eM(u835sJ7j6Tf6pXA*zk52Owp=Loo-Jl^VuOTtn(C=cD6<g8jTLC#53&D{A<>n
zE-&#Jx#-R3122^MEdphdj;Fg)C4{Hf;5u#mv*7z;Bur(F<G~9iXBP+DGdG9vAQuG~
za6o#*gu;Z3j;4g9WWjtGv>Dvb;ED06DXZlqiNf5{U#9vdn3(wLz{-q)Lx4_fX=o(#
z>FY5kKQ(7O`;<c@=vzA9(PD#xT;O_8j;0iW8Sh=$)7@ie_yq@bTgu3CrB1p_ZWcc{
zm{yXKhU_DiT7OsOA}WOB9~Er|5_CX-0d}Z=U=RTTZuQJK8O`f3k<Fb_bD=(6=C@z<
zLC?uPMeAn+L9*9Ku4eIHR?<}XL|Ng3Xe442`Mtb6;surlJp<j4VUe(<HgWU-MHPO&
z(ePm&l<5eW<MXTf+v@pu_V-V0TqMfoil=9yS|UZuxcmJB=%i87r{0^sxIS~)8Qji{
zrUJz&_T!dAxh3MOY@v;W#7We2f!O6Wjx%;FZ0r@6dt4Y?uofq%f9sR=G=9Uz{y<)P
zdGs@dKN{dqr8!>!Na{iAB6+TiW#JQ!1&VH)#eCiFB;aShj){*2!{2P9>i5>;H>ZD+
zfkQIe*ho&CL1J_82nVy;W_C1G=keq-s0loy!50piS2l8Tuq;rb6#gP4RIf}u`_u+i
zIv5-hOhHNUxhPG<pl@V^fss~SdDP!6%-45NQm)~k_3RH3Q4=z8KfZ2Mw%@Ofx9Bf`
z8=>{?THaNpF}46NwTP8@;yW#<;)jL?I(R~g{Pe*t0Y(;gto6b>LYEa06B{$CM6{=S
z$<<m%NO}agS=h_e!Jw0~^j22%3x>q?(v0It(lo~IFj#f?o3bVjLy2Uj6sNp+s<T|1
zn~whY1`a-sjm`;2Tu->Wva-rzwaw1jmX+nbe$NqD(M%gp!6`EsF=?R3CxC1W7f1zL
z_%U9e!9T~N&TsLPsIf74Vl9by8|s^GV4>yN@aZ_n9)A}^AB#(8k?1kwf?X7s=VMB2
z;!R6PeEMpm-Fm+~F0p3o?M??d7bA|P=4zvrRn}22SktfadiuW<$<JP;BBw(P_taI=
z!4iy#h<QExcFDf+!^Kl9`)5zjM;xasP{RKH?nSMA+0)epNZ^x$N-DBx0(Qr5H2vk-
z)bZ;r9j{J-k-<>=QMUU-^3UE_9q;s2PUf}g#kyiMP0*C)-+<!eX7652OzwAQcZ^8Z
z$r)mGP5C)0Lh<2#TVR%*&B@7`v5_H|lE{ls>t+Er?~<nd+^>iT(rl2m5~T(<ZM#1S
z{q+7+Zc_vp-uXOGyqNNW>|K!v(kJqc4K5K*5U2zIb?jCQrl){s>w)J9@&$7E-v#Mf
z85jpFC00aw)s|p$50E`#0~9mHqlGTw0Okf<BlRAS8$-NKnfDe9^uGYVP?L)U593u8
zc<X^}4p+%y(zK9T$Wq(VQ3eI4#nvejQ~C3-(Vp%c186wYnQbu-zs&%vTKbAtgi^?~
zWZa;{)43UoDNI#Tb`y*88l(<p=*4rr(x&xU5p!u@Eh#Asj|1ruuA#o6gM`AA`1WD#
z@%}O^sE$N{kkkDd*hr8rE*c6SQIXqMB>~mf!fYm-fTeTv@u7!+^D##VpzWUZ!oVrI
zvTV`sMZgh}|GoeB;{)u~AC)t&d-Zo*umI(DZf}o-yim><C5H%tVrKH1MnGw@7Mv*Y
zTv8{6oev|mwSUml(-Xzn9jdeHctc1`OGCE4eW;<>?QMo?$;hJ_1r|*5h>Gm>qa#C`
zzb5xJFSHVmkB?2vOn@~k%JX5qhpHPkDB$4m00ADppdcTBhaM01Wr(#DBjTyGrmD2v
z2UwjBs?S8j8Pe-s^u{x(aups-$1!VrVHIMR2-~Ww>xz{p1qb_cP2+fuJU-4h4d^tP
zbDMjd&Q+A}uuH~+%m;<p0K6Cpd2KyVq)=ZGB?x{sQj`L265=Is0QCe8x<LN``I}a1
zQqqiqTx>KVA}kDPN+raw@7^A8O(8$y<Fg~a&plc!>dhkmnf039pakG<1MIcEqg4>v
zb8P&0ceDDOQ1kl;+6!=U9+A8n7c|uH2&!4wIKcB7CM}j>l(ovl$9g(Ggfp{)ZI>$*
z&{he!xz|HHRtx9A&e`gI*2_uiEn#s3j48lm0_Z$u`JQ)HErH&M@d6zD03n8?BB-c<
zsNy1?v`Bcj^$Gbim?17yd=W8<%Q`bQ*9Y-e`3)e702~Cc>EO28KCP%S)~)xvvIGkG
zkYqDw`|5}Y&`_3E9jZLFe=zk?E&;=`<rY2%V6M*2&d=s)uK`DW{*NeXSJtom>_S)+
zM(wuIk*-%N<;N-tV7RI?rhOS6ZY9W7-Z<|Y*>5shj^@&_4Qx&@m-}{y9S?v(6$QQ&
zF=CVeq~1TUSDWbQw-<YAvvkm05m#SjZ~?wV>tW}?Z9lPwZxOr^4@)y~7hZEfUat@0
zrl6qYMh4BM{w}jmvx8}1L`;el>x(%y$=MPI8;5`s&?UelBI>j`F@d?~Ftl75U7b}j
zKE9d?doH=y=VH-a#;hO|x6|8cSn9l0o3N9nWbX%MK^!LF@bIn8F)Z=R2^#@hGBBJl
ztCfC7%lHUZ{5vgfqB6-Mtf*<sdUrmrKnTG0oD0LJr^cysdr)T3vDpdn^8>4H_{_|)
zQ_)Om-@!phYD<VcYpd%aHg1qC?(Uv3k*Dv9yLCc~d!mvo0j}<ADl-eV*!XnW+kD^H
z&{X!#%PdhOm@Ffb`(g#d-JP^HPmA`s@nZB&CRJUr{@!I?Hxv>W7u}hauc8=Htu5J!
zIWrdWXQut513rR25y-4vNmqpY3RQxh3Nr5qG-2BfJI;GTbW@V9_*IWXnh1(Be@dg`
z?ORz5tdla(u)D9dSBIWEg_B4Yr56}j1V~kW?&(EIXZ?{Kz4Dj${P67N5C{A}Vv{v}
zKTkv9CKH5U=flm*%Pl0q2Gpb%?3+SF(_@S`mgbo~@9(*B%i7EwpE5`RPrSZ;qvX-*
zJ@(v_HD)e-0xX@+D_GIEth-wEp;vB;`yq(jP5qe#7uH}x|4no>%_p|Y)wG1QDLclX
zo{Kzj9ix{lAW0>_!?-htfE$a9Erl9Yr#atv#NgxEU#%kn7j!~wk+`?UT=VI2lZ~Tq
z^NCU>iWR0^U8@{1ixkW4W-M1>a5|Xd-ASm&(h*(O&c43V=RdBoy*O8`)$<5yZPBCQ
z5-C2C<ac<9%pIVbfeQ+cA`UCxl6HVfMN!ogCYq&?qv%I+5sTCnZE^nEcY;NwgYb?x
zyQ@&lXbua+gaoGZDjePp$zCe)w`rLU4pIdMrfX>>?;gT|A;rTgP$Dd~w1AW%V$Ft~
zi;hTk!ns<02J)_+k+2XEg1Nk(rE!-aye2%2+u~@;`SKukn_y;pXBU-#>o_QqN)0a&
zP`F~_;)XSwkJk#Kfwy%`tBJ>|hm}buy{Bq7;_3we8uuarQ+IoN$=xO6YWZWwnK5&F
z|K+Q@MKv|N1C>_IsMLszwe0b);H|Y<YEx0{zShH1#bE|d5OC50bb8rR1HaomdOd|V
zYXmjVkLG4~5--92E_@J?_Ik?X_WB30zzWcZ=n7xKy&JGwoCUdANp-f+=1{avhrc_%
z;EbX|Cgb@U3JQxWLHN$Q-q4&75P4%}_CzdzQ>K-glJu5>0`Bf*B|`!W8^v4q(bJqf
zCM^m)>|*WM^z=HD8G0}`s3gNaed@OME?sWw3MTdqEvC29(YXws@`9c?hGj_JiX0Zq
z8d!+$NbNmzI?83zZno@0sW+keVGT)NoJS@W^gQSc;5=Fl8j_AeaY|4*TEb)ZxV<If
zUArg$0hj3&l~?xD>VtPqK|yvl<~^ZCQqq88iy3fmqz|63tyyWn9@c^in;9jYnURdK
z!?ZUgGPc2WaR#7rL_|ah2&zHai>@tbgNs)w-%>H6SoW_!3Q}{Hwd7z4l02Q*8Q1<@
zRheyq1AB3t$GX#jA)M1n+bw7wYZdp6PM7*bfT#|-Q=M>noGuhhdD*ebbMcyR5gq+a
zv-9R{Aw%-yMB76;D&jpKqh^a~U&kvs8r8gC%}XH8h-x(T0hFOhPaP4-@pVVn6~MyW
zRjf`B?sM-8#Uv=mj)i6S_3KP{VQg(~Tw1t{oQa9!sBE(c{!9TWwV8z_86z#itI!V>
zY9q}*m@F;JHI|zBrj?Y|rH&Diy#1i!c?r>iNPMR|2Z1$TPg6(<t5<K*L8-91daA1r
z*7Wtouc$)do^E>eCYW$2&Qt<~6tL92J}<!79mATw^Obz}=LB(gm%gl-%g+w=0E#`S
zQrEMDDapUh$xfMG(CGppRET^1g~fc8+tEoDbU=zy;7}Pblo>IqA#F!S#rO|{TB&a|
zH2_o9Yh*7fsP1YwCuChwF+#;#>!nU9K-(^PoYou3KwYA`i>`J14Uuz+>ppc+&5gyW
zkG)l0EON3El}?7rdmj@NgV3AV3f`BgC2aSPYoA6gA9&xzf|<+YY?*FqBnt~KD#?-)
z1Q(SP6%&iGiuS3f_*NoA88oRNv4`>6YFfpKQ_F&AjxnVjv^;*B&}MgfTKI5`GC&%^
zWj2p~tzJ-2h`+Zl`dL&qi4(R|b<j)^c@&}kUC^-3692h_Mi(|H)E*ZrU6x0Q3ce{)
z)6mDpFQfkLD%1@qSD(W=A`&c}tB$;<n)>27H<&q@r`o1P6(|D#1AeP6<U;)g*wOpV
zl&qhJ=r_dy+M)krV}F7Pz#AZb#h?s0(r4KU2u)kj-cL-Vl^6v1SSfs#_h4V9Y`*j&
z9)W1Frp<aQA2@_#o3wi^kYq`?UWYWfxs=Y=UR*44S}>GYrndc_&4oQwh)CDb9e{9C
zU;W+P+~l?S3mNr;4VDb%e5$)Wz9cFftl?wH$SUBr{k<m2l-A~Y#rT%zAV`Un#<)~7
zt;YVOId<rX-=#RKz+wM-0O%$vZttNUKl(_{lmzerVp<4^9Y!?B`_XA|nEZ41I1V_b
zzzSU9wdklvmPyBH^}+D}Msz9bjxTj%UiN~~VCu5wtmUHV(bim+q{>`NdAu$o<V}LV
z$6|p;5GTrI#LLPsLcZ6*2#8Va*4{;tHeDiHJG(lK4t^JmGC{I3XUZkIWn%VAvYI~S
zoOEUl(!(YWT6(hw-2sTAqbZqG2OM8Fx`A+GvZ0}DwWVou?IUdsN=uW|YK0}yAp;Uz
z4OfHGh(h!Ks1TJOojVw!feMkq`!TM*+n#&h>SyH>CJ1QR{OtpnJI1I)ESwyHnAh+t
zp1N%z$%`i~ccI8gVjLUi+mc{f&}6eiI52R!H0pRU!vNW*Fg)5}01_xlnisVWYg0eK
zl8-Tg#qRbRKHJM_ZV6=4jOw&;cy{;4BI2B!DYeqTT%N6D1%Y?1GYtc~&35+^{0%)n
zeuS7&<)GtWX*F1%fDAP?hFI20P<rse(|~?qU{$Oh-s_~-65Jfevu4}A0Tk3`8eq(r
zruD!@VSYHeDGJmKVp1~ttIA+)eNd9TZnb{uat1U71L;r0VEr4<=zb4rcH5+)1CbAt
zle6*ftMEDXyM6cB4sYPY!hY&heDljM?+0zc!Bfu2(Aa9dn~Iq8Tx4n!*ii@}%n$xj
ztJ;-LmN|W6-PEeTc?;NnRTEWqw#pXsNaS~Q=7tyJ?S)Ng;V6)MN9?%l)oQ>iPYpux
zw0~@N+^_tRB@%7QalbdKM2iAy0PsUmj)-2Yx5c8%{#5(xU0J!oB?OeQ{Vc(fVybO+
zZc>`}1rM+bd-6{Ys#Sd16hy^~r5d%GU!;*0K*C;|b3F;a9S<uN%&0%;gd#EM+34&x
z|1OuN5lill60keN%_9)@g>YImmsd#+i5csZ0I}V~#o=&hC@I?^I<n(<>t>(A<fLQC
zYJP$C4bQQ<6V*L*P)YG>0|qu<xq})1AJ~BnftN3VgVBILReeki4Df0k?>N5E3;^3A
z{=t3+i?2n;^h&tj9T4zcS<Da83Yx{2s@K1ffq#dUvf>s_1PEjWIR)R`=nf0M_I0Qr
zT~4zt&K^3N2Qe+*@3X1K*An&@K$|UA+vXHYZPS(NHUav09-~$YuR~I1t3dXYI?nIo
zFa66yW<9xK3Q_1_(e2AGYYMBu4Q%eZN^Qi&leiP$rFViXsl7X!)9V_rf}ZNx4;gCx
zDhg_Xl9aXxil``+TKvQ5WQTVkGpKZ>!Q*;(UoAS1K8-&}+u?E6fqsWxhX-J$w$E^)
zCSy~yp5NB9FbDnii@(E^A+z*qJTAkk&wjDJ*_>?SqIZw>qC0IG7%Td}>+1(7KDD8W
z7O{lms*P|MGQ9mh(|>7b&3?19-USS^tp1IS0`=~R_vwPpmSzN)*f6sJukOzG=WFP)
z+e>-?$VC$Z>0DaUy}mz~PSEQTGpdjD9J_Q?0TGN89Aq#5zFJRHD>_IcX)no$O>|Kg
zX#`zKJr3m$=}zkQr}@KKpj!a+2=oR&=yLA*5n^_Oe((r1Kjgz!uEkyVBy$SgUZg8H
zP|Kq08C-7Bv@|Y8h@+UrGZJv<zPS79p@1H>I9qb0yBv2xBEdY-)Fj=O#t)dMc7=Dr
z2w~sLoo-(*`Vtr^Pr=l(J1kvOR?!Jz(SvscT$skYJK$^X&u}nP{_s)Zlm1CDw+IZ3
ztagj8`zk5o0d(Erg=mLvjTBXM2#Vl<;B^O>Lr1>B2m_n<hdPC5xi9k1OAc5%Gv$|H
zNuL=G0-Q($JoIZ)zu6Y-;{hTTh+G2lBcP?9I|HAXA(1o|WzNf%yH4(b3b%Ox32%Kk
z23~$52^ruI1CRGYiw#?`Pxc#P0Ra$pNEM3D?>J{YqrAq<kk09~^c~G0%9~-u^E|^e
zh~D7oNlHwu#TlM6_3`u%0hh0$>GbGQtr3x#ai_Sxr8$(BF+if6npJC>Wh5D+#URLV
z;NDn`qmz4h*wQLn4B<*BsjJ@}-+T%8sIl3W;JOhnSUU%(3XIV9x>v1Vw&-B0GV+1j
zc!F&r<j~XgJsmGE7k%;1Fl6|+mvfBnMB#r{x)2N>-=5BWCCjn~SC|~R@*iEgCJuA&
z+bHwTpY6|=sei7^$q=)}U1+>?*k8!p42DMh10h;74x&JR<$3`GS(Jxzo#Q0Go9YrH
z<t;5y4q0~9DJdvBuTVyXX3Ac3H--P1AM(_1A45rb#c~2-V}+h&3Yj~(0URu52F;<b
zG^Z2s@kY}45~Xr;^W1I~|Dt>o7q5rK1&S4rC<N5X<m5^>@3FlJ5`?RaD)1%TFOE$X
z7TLg<R!)A}PFYGb1*920>tYuQV}E33<~BAa=NV)4N&v4H<KMr&P`+S+LT%x$y2e<i
z^D~VZ3QugWL-5@jPdgA+#0b{qu>qg*CfDQAlCIODexctx%41CHE-a2&&8`c9Hlx+?
zO6HRSy1DvCnKXXq^*_7Gago|~8s!|S)a>$<Y;0Z2i%nk^9gD4zLVz%>E}RJDCq~aV
z{&@{5(PFo2BT4Tzbar`ZX{8#wJCs(Rmp{Z)h<M(EA^7{bvrgaG2QE4BX;Wh9k3NIw
zR5`g314*F62l1+A{5(<U=n7G*w*{1AJ|L6%>R=(P#YVte{BjPK^ra!lSX5gl!xnbA
zxm2D357ky%Jp5eZr`2>ZK0ZEcS2>I@g)@5n*uip<?}Kw0(s_;+dW?N^yntXa=Twkj
zVz^14Pk%@3P4d#Ff}~n8fbV$o#VUSy5mfzf{tdJ_;q^Q`916(dOO+3cPe(w69~$zU
z6+uNY)YkSK5rUUO4pTS#=Av>XEdqxKf9mmc_exO0*LRhuQoRE@Dk38zs1C<1$k2Ne
z5{row9UJFkB@MD1{|T*}f~xthJ)A_PEwX3wZC}NK_O+@?qdGo*6Q{+-b(<3@BUNrm
z=Eq*P%F2T$FBN||$(ZDLSf^xDTG~JKC38m(O0h9Ks%lODj6cQOip$HHL1W;l6w~%o
z^bN@VXjE6HDJZaxR(qx}k-$cq(h6RUentTd)T4^5&E4Tfo2M1GzMp{liO2J;GYf}l
z&TGWeR3n=|COYJ-S&7b=QLB?hv&oH`i=LkDj@lKQe9e=<@?t1)_>`nY2U;R6HX5-n
zWV&<v%0~gH*xE2b;I5*=mm#Ki-m)&-+^jbt0C79PI<am=xZhGr9DoGFjfI6@zTdq?
z(SLt_K^NYI+*NES31~&pX_2ERZ+!*5V+zC4h~4}oK7II*QB#XDJd&T4*QS%5S;zwl
z6ri>iqLP{O)J^ZA&O09t&9(TR6qkmEkCvHLFo4!s3g3z*&oUkm+6f>6)`Ud3aaK!j
zF!2FWc!EN@MQQ;T;2my{6DPZ<Wc_80XUn*2h@6Otxu}{ArHm&3V*KYQu9i@Oqd4e{
z$6L?xRcm<qzRd%GtO@WignAqH&vS3RzWU3Zz2uB$v@G4}?JZmt9bWhR`JTza#%|L@
zYTQJMsw$(ryfhC*90L_SDJVVHmg;Oaxv1Ih-uYo=8D+-eNUIt0G=LWf8(-#ncegO#
zmS?M2Q*L%$yH?7}K+X>Y-IlRtDB!J)fVCVI-wBL<gQKD#CnY8RxIUyb!3K28n+7?C
z6g>qf{cj}Iri(&M`J1@fKL!mWyS%`T$RH-v4DXVL;lkTMN1t1af56LDbciJxeRn;a
z|L0=2EnFt=CxO7m-vCL!yUT}-zpZO+N?I@|36;7lDyUbv!Eb;9md=X~|G30IrKd+Y
zVt#osdGmMs+QEKgYI1T)lCtKJ*;{<E4<B?-is$P_(}L1tfTm?wvoYIabtPoB6dnaJ
z%eH)AbO6jsv#9<fka(=^WydyqlpgkUXJ56}LqppNNBItiIBQ3VpweQUem~viCskNf
zh`@0t3JAx70eqzJbxEMpuihJ9&Jg0g)Ej85iRfEiq|5BRizR@ytO|GyeP}AI)c=m2
zo<0JgR@c{k(y17EQu%XN;eb*uO<*OPlTOIPqy7p89F)U2#=2t93BvoS+G}SQFet<s
zPQW{!r~G{*St8Vy){?)3Ohr#&U}S)afwQ}RsNu!J=i$D#qp72E6@)s%{)42}$xOMv
zh`7&8EO9+UXeaRf-mB~%lYhgKxlrDlS-TmJ9T1%VB+Dr*y3dZxipi!(G`B5(wVqt#
ze3^n%cf`}`+yDZ|H#Rl`ik|EM3~c+F9bg~^SA${P>By)_NZLRac#QvMeR&{==6&2a
zE2lpu&^I-x_Phz^L?v!@J9i$5%0ZKllsifKV-4hK^$pzVsL$Qm8&j$SQ;C_4qy#|P
zK`P~KdAJ8adl4!i3LlX^2*GT0aUtUIND39&Sy^s;IEKdo!C_G;QKw+fmy|DLt%|#U
zcsvV_fKXVF?=LFcLrp0!ZVpbX5cylN*(3Mn=2O;6X1p^ttIs=fii()&F~y|ROji$g
zQb0PoW!T0a0K2I0MfuxWtwB!Cl#&uCPLgZ4;lf1BjKAd+ls=w@S?Dj14}dcYFpfY;
zcm<ibK)ojgLB!-=^#MZ?+*}3OJJL#O(2ihUu!rh~`Udk2X`a5q;7@{Aw1adXc7UQc
z*VJU5;(!LruLH1c{2CO{+vv1=q4G+rv!~WtAHt937e!>Bx^`tlbN8wxMbsr!B<bi`
zquyr~!MdY?Vb}T{0UDM#<pUa+&|1TRx6{p}kMX+acJDrsyqfymJBoM5izNSqIo~cP
zxnNX@^bW11WnO(p1JS$&ziVoVxh;}@3SPwJgMM-rLXpq|;(5WG6@L1v+VA%A;q1vJ
z{LSq$l#s8-E2uzZ+_jSxpDbY*Jg{p)o(D4y#KI<C3Tfxy;I<}8Bi6*?^bl7tCj<II
zY*vKy7Eh(~hfR6wpr_jhUR)of2xJkUodBN<V1-*RF$0C%9W1m0#)U7zHyZdK&G&rD
z>+tm@+a|GJ^R46#Ye|hiZ8-7gg1Q;(Q5x$Tcsy(h=1+3~OgU&o@8DNS0XK-!mepC6
z<SetpOz_sS2dm(EhUdb>CfO=ABRY<&TrhD}g_fOxot!Ns=^9N$o)R!1q?BYWdSNUu
zv9`nq%LpITBVptK`PtwUhh}i7Zf5-E`~tCv`ehvG*N|#CRoWZIMP!*6$RGanp~`vE
z)<}#T<kQk55)dr%a^JjuEhld7iJN>Ut(tR+ijo^ucmo6DetTN8BQzro?I>>)mNxEB
z+q51pEjgAiSUA`IMNHw7f{Ntf*({T%Ps$x%8>t}oMU#pth?fR#7D11PMk6naW9eP4
z);6eCLv~*JXz-p!MGOy*(iR9{h<#DJR-SQxdhxv1kvp5M1m|M=ETP+9KFdfdMfEV2
za0%jZaje?nKzCR%lBU%(n#9*&^s^H#6B~q`yI<eKiwuWJAG-Qv6=Y_{CN=;w!e{&U
z;^Q+@{;~iZsmem6ItH*c!2KXYr3S$A>uf+x+npyyI*=W<zUKJ=M*c5u^g0SdV~>cR
zmlqFtvLKzr%G5v#9a+5&Bz#<f1^_sm23t#toGhQU>rykQe^r2-^aL5M{%VWG4B49P
zsdM!5WGLPsD&IlF+UkC9duS6-AH{t~d)Vu(1R0RS$c;zaT~#w*)>8x9Kx&0SBv9as
z->8-E*mQ}860mH5X+0PmpQ0k@Ltp65g8Wv?g{nKi?es8rZ7<`zLuLK;V-qNi(6EFR
zbUS{Irq}&hjgO0zQGoOG^fU|@#PN&bsqCB8-`D_oUnokt7MQj5Pu(YL<>jsXt`aJ3
zYL)AvI-fK(Wksp!cnKWQxL@Yut%C1B@r(Sxz=%auK8CryT)F_T0m|7b_akv2@3zl8
z+-<aasTqix9fIZHYO~i77zGq>0<rXqX@DNbOQcv^WYPcq26x_L>&+dbFWVN#iEp5b
z>%tZvOn;q&zu-k03gPvfVtV)8y=@K51)M<X0?InMoyOMLw!NaDyQu)gjK9VCoDd99
z%77V{shLScDFHy&85kO{u~wa)p6Nw7RI(pq`T|eP0r@*p=d~^P8KJ>rc<O`8SFjna
z6a=79=6H^tr|#ny4KMFoUb`2x-8nBM4^k6kM^>r2FTdEWt*we@@Uip8^7CWc1v*Jf
z?KJfReD~?q!RC8kAmMOPQwy(qK@RfsR1zQYO&Q?Wzm7EgP>b#v>J}EhyMVZC4kwNj
zDR*$i4#F_LT<5UuC{!xu4FjKvg=T}oZQX^B@0(i<^r&bLD5%iI>Tky1#3`pgBz@_y
z$OEmV?U1Q~?(Z6*K3EVcoyeuvyCH17xb$`I4M^J*^ng+G5BMxKs@=e6G5!hn6Zu<G
zG|M$IW0GWIY9?*m_j-KAFJV-tfvp1O>JMy{s#5|ptHY8%C`R<K?`lChr3!<l*y+6-
z2>}5JrBF5V&U~6<L1STQX>`c4RV-*=z=a7XI9%JRxBtsW`-L3@W3Y$B2M5Ceeje70
z2<sIdyX{U?kNz)xiD~Hy{FjcSgExpcBT2}0t69cU1n)iRUHVr0zkPB2N%**amY0Y@
zZSiQu-Y4W}%UYSb=mdv?n9OWEvvp%fCP?pm4oUpBN!|IF$ExIW=fbVVz3T1VW2VwI
z%4hRPNEiH)8|Zv1zg_*6pUmsT*X0M5-2L9Y%fuebE4Qm$r7QdS<1AD!eGu*f_);u(
z`x_^AMji#56*>SaE6jbfHKnM$wT*KDnQ*v_DX?w~Ph<&$Am@*th7ka^vyu66i9B&c
zOhgL%w@Tn#9u<Pktc<`YoOJ6hKMy^}!=RE&EClG*676O#P9~CYR&K_Kd82+(F4(DQ
zMarj%bg^qo#&khJ4n`DOL|!}z=yZ(T(Lmcz-!g|4TXS<u3kypNVH|?^U)=dX3=*a$
ze&cfJk{*id843$u@2fUhAg0g)x+m4k%E0tbM!mguxiY}T<BeZo3cCt@owi{A_p@Q)
zC;buYC7o7}Nwe;9n=0c^M%NG?lQlnM*|75qf-4eF!fhr4W{@rT@y{Be_Yp5er*eM?
z>$)h6r)hpqp^jEzX71<$)^qjni9r(4RDY)5IkC0$Z*mZ7*YdKOUsKD&3BTLgN<vXB
zr)kHZ!9+Th+P{l^u1ua_{@_%sk(ZtEfeP)@Q)qB-@R&~9=l`rFA|rpPqfWo(`~{Lz
zG0-vX&(5XFTvMdg6->`S1~V}aX0O)L@>-w4P*Tm}OmS>!1-b)PEXZmGD(`w%*Y7`q
zD?J^79QVp{!QEiiQrf{`wf)8OB2teMG<_7PnYq7gbq{N&L*l`|+FlzR9D+TP)@1e&
z7<e`Kn%k*(wcLEgT|k>yRR~1WJ~3$Xc`ew3Nj9x0``pYr5ie)4Dh&fAJU1e402`Ie
zLYpC-o2)T?u82r{c&hg>NHUG!e)s;fiX>v;iyWnxryLR~z$9<@lE>fRX$N$Q&pHYs
zuLzVMPE4A<!Bh8TC?F~pj9eUs;(%tl$<2+Lk{X$a`M5LkD>nOMQxwQ$AZE3niXf{v
zIRP)HLR8dnC9A1+kuqSFm8J0+8X6H35g;D2u$sJLS7-5h=|+$fNa6u+a{@hS+@4OR
ziiOI_i8K{@1mx+5Cf@@5gQh3V7G-@V7?ZdU@7Kve+Xqb9nT&Ge`6_O7W~KPjh3j0P
z6^C<V5AE`#ng-L80?-5wv_mzOs?`0Rl}!&E2Gg1dJV#PU1s%0asZQ;$nJ2H?R~d>A
zZkLT-HwQ5lo3?g#nTp5on{qnu80ZG)x7H|v%8pwZG^E2qg}S=>X%MJ)3p`-gnxsy>
z)3h2pnLa2xa)ABDFquUqz9&LtowYWftNV4k4@*UbPsc~~g9Gr#5-sJS-ZRQ47IxTB
zTa^;Bn8>NS!eD~M*K0>;NJ{1d?EAkB{Yl%LCd;?oD-Xv#K}Y!a)*Z?ja|9}nu!5My
zB$P%j4Rvj8p)vOSTH2(~t=WTK+scRHc@CDWNFyR-`;E?k=hqN!DW7n;MdOQfSoSO^
zMZO-5XMthYuUtB-vE0#Q0iwUr1>gMDS?k06WsiCV=tLtfCqR=>xq3yiO4v=AJ0$+}
z1BZ$O7MPaRn>-c+vid+n{Y5;#V$FTU?YtbYL_7ZQvMVYTObPa{M^E}bDO>0?d4l9;
zMf6V$${;)Uz(V8Z=DM~_YgUnI8%VNVD@;@=VdfP4F!Ec{e-DqZ^5?1HyIl0zcSrW}
z8`aIY+pZ*t%dk4|={sLvOX*a9$D+r;!CI~}9IA9VV^$4(a~lGF;%X1CE0}SSWOYcu
zc~ILo!m0Tjrkh{3x-v01IopJm`u{NYmT^&cYa1vAA|)c-($YB~AR*n|DN0C7H>iL}
zcMYiwF{E_2bV@hU-Q8#5<Fn7+@9%s#d~q0=`LAAgT-SBWk`GS<`nBu%g~Rp$rq7)^
z8#EtO%`pQ+d&f<7psR_WrJT!41%QzkHr*@MK93rw6J&7b+%I6+*|7{j9%W0W!a6h&
z@}T&bjL&Vez7AB&7PMR*s?7L$8cJpeN9u3bG>Y}f3OoHFh4p;u>Q)`pPe;l@!1=V%
z$e2y2`ZPzY#98kJax{`OqOnhsqWlY{=me;qe;d<?Fr=Txq=8$1g$Vzp=>)s_?#**P
z?$ZV)9qkIMZnp{=G@rJx!t*vZa8=6TqqW^&wF6Q?Ov3Rtby)ag?@v2|o|74#{&Pn=
zf=B+K^!DlQ$mLL6q2b6bgHW~~Jsn+<vz>W*77()4`6KRXZUU-oVI;qr-`<sw(_o-y
z7I5C)*fN%x_4?4!+3kakLAE>Nk6|@gLhG|_PW;f%mr=iF<*cft$<UA$nE^nxmXnNS
zfV9#kvKPdf?*2`)+u7OsY<PlN13?~*<}E1FG2Y_+&~goQAdNzi1n4NeMg(OC?XPF`
zPHyA<_p=HO<P1s?q!ELJP@=J<Ydl&mpqoZ!)5=VeL2IpBr)}L`U0s?avA`<jXzK3H
zr7HZe+qo!^E*>5_B{lXN+|b$Qp_0Sj9e0O+0j}V+XZqtZ(QlZTfVmD72cw%t3-2a3
zBRDV56I5yOwEdQu3l>kU+vUnuOgC#m!FTp|3owwMFRLinI$zpG^0(J0{GpuyG@3~S
z?7Kj0ug%?Yv)-j|Iv~CMYrxl~rDYO6=h2~xlRfFh*tb&sJs=CqImoRTS(ssJ_!I}L
zWV6E%oX7xZnZ;~Cb?mnxl#ynx*aUbR^v7*YpKx;Q508LcCO%9Ao@S{i{DKzdetAj4
zZx5w>+c8*~p<QY+{`0Qa0M0`I&{9Kf3YA_Lmf-#XO2f%|4PU<ag9zvDRPk|E^_4_#
zD$I8Y5S`JFkMFiAjTG`eP)G#zzqU{7EblnB=B1$HbrNB~Ko5YL06x*x*|H42S$;l%
zL^D6rn5;4D1_A-(`+mvWco-P?K>5aH@y+haGUDQ)Y0q?>?GV5>$Mq*R*tgICu>YOD
zav0gFdYRn2vC52b*UNL@WI+jt4iCNEF>quYbf?R&FU=oyH{v;0;5j+5vIBIx$W(dM
z%iqA?hYSy+5Cpp`kczY#GFx8Xlw^fdP*RuKY@Xm8;t3&x>rv3NSu`Hiy=Ui|Pu(aa
z!&U}}<=O8SgUN}kFcfHT%q360)`^e*p`WJJKhRhPR)oqYcX@ze1kkp+T6>m(^PrOL
zM3qYnw5=Kc>yVH&kdE62#!_#3?%1ug=`AA=i2!k%7A~J`F_mbIc!(MMjnLg7eX%<@
zkk_l-JMnoC9EQ(1t~mD*hDG%pk&?gKNu{u!1{)I>cpxmn*zEWKZIO|Y!BbVmOu7?3
z2+Hz;Yhnp~_(Q9;iRE;iy(#|b$)TL2tS_chh)!TecI9~Y7*Z@Gf7`GJw$Uzwi1@HA
z1RsDbgnP5K_kt3Mf*bRID1Gr;E8fY;89p_uu{jn-_GjW0@4h!wYODY)iFDgUu9$=z
zQm6HILq2(cSY8O2oUjs3Yk0$g2BF`G2USTGgstV|AA!j`%fuYb@b&BEoIY<;*(6T;
z1u9HT!^kHfevSD{mAhE{;?Y(<ECze&Sf}Dk#Mh3mSD!x*A03_fb~VP9XJ+OdRgA@;
zpgew`18<Sk78k#B;qLY#BeIkfX}y3VD=^dP144W&<3HEF$}_(sB0NIJ{k@uQQfeL(
z7l%iJhf4V<Ux%TSAzV~wbzu+)m@GDZ`v#N+04KsvjU~lAKexO8)C&EF7{u5ZKOi8;
zPdHLE7Myy-rC;?s37`BIf5sdQm<onJJ3!T+{-l=?>2wZeW@gro{wr6O`!s+V2*f)d
zQEKt<@VL5yh~@ZMm-QBqxT~tHM^)+QR^|_)R_CAZD6o|&IzxOU+WHe{$i5AeD%v|l
zWlZ33K5df&6bf>tF-;Ww;Myw>{Q3EO(Pzk28v{CS;^MYa$eYJ+KhFv7BFl7ks-8#@
z;u0i8C5k-LBCJrA8SY7p{~u`m&+hK243T!I-bb})jvyJLqrQxVg|=EK+*SrtE$p)!
z!3NRV=7zEq<T1))p}Lo!jnne-@?fRW&}<!7F;_}`o>oSi9_2OX#{VKJLGeR^`r3!m
z1dPtl2!}>27h@?vF#r0#PcRx9j5;G5_GocsWo3CD<i^{?78l-ojy`oLXk#3)gRDxt
z{BK=Lnzoh}N_u+fHgGR?K8{F?OH5Wd7yafNA0PkqYud->>zye|x}YS6evDsa5>!|m
zdwHqzu?%<|;5>kM7SLAaq<Be9_53-7?u48U@Twvu?_ji;W^{Cb%PNJ8%&w)WIzdK&
z$`}(F`-qYk3Vr)Mraz<DVp`c7(Y-VmPGQiy8X@~%G^*?XAo)}}4C$x@G9+SRhy+N;
zQk}2K$yvW=z^Or{Z3a+O1ok*;J|Y5$L8xib<FMmLu*Hy^bW2K^!8M%b`@y8%L1%2d
zy`#9kR6|uyuLQ+JMMd>84)jt#fvV@7QdF3%-Q6G**HM{Lz#JkD)DNEKZ45C{ah7JE
z>HK8nfk0>kNX0?TjBnvo5#XS?W&)%yqqIzKeHFw>=>N#29m$5E-O;6%02kp`QOs`i
zL)Y_jmf7)UFnB@$uI=jL@>5idPg_ewTGHig3gd|^4OSb_rmOYvBuPqoQ(G5P_62IL
zgt-WiUzAz$<p9fFg|3St{!+BP_2TSOD<0Z4dScQ;wy?UmIbJ}5T_4^AQmUvK6zhib
z^G{OgE2jFIo72ijgTbBzH9($-3-EfMpg+#;Q5})(>AT@~Re9ZBZsq6a`*LHXF+=h~
z5T3xvmTogq>_;f}7$R+})*;AK)rVKe>09ez%s0<Yqmq4oy|=uAgMxaXg7wFhd3-H`
zf)eyo^x=Q3uI>J^$WLz@oUiax!vU~xqD03T$WIuO&mRQZNtmt%_w*E!?f@i<*QZZo
zJ2Pd@4!&0{kDd@tHjr_1V}yuDMMa<^W5~$LI~^Vb2Zn?wNCOBvujjh3*XvI}3A)y7
zNG(Qfy3W&yOaLg4BpYZB{Ho4J5cC#_r7(VXcL#00x$WCu+@ezfan9^vH-MZ3!1{YR
zY2RVPB{CXb0s=tC!*>Y=^ko2^ym4RvV6{y(#tz2{#M|4z@zn!;H3DiBW@7`fgs<U0
zK(YhWDxqENCzzN3b{dcv@H)F9$Sc=rmyc=-_PZiJeujl()uF5=b}2D{*T(?lQlZ)R
z>4wMWe73<o{LdJX4<Ehf)CNTdR%MePE&j5##k0{Bw4JX7oI2T)jZshF5a(3@=wJt9
zBHx_i975Zi*N2x*Cp{tV&h`ffKSf1x`%~Uo>$>}-ivw6u>hALDSYNZSjE|doDJBS8
zt|}z{s?u}E_y5OU0BS<_vQ<I#)Ncz^Sus`Tpe_M9$(^bAOqhp!28djDPP;0P=*8H+
zpH{w&Tp9R@2DGz|a({UKr8+WUm$O(1L#E<h1AVTFs-l1lxE81>EPi*k1^5N55AQFo
z$|uv)QwZZy8No7YoHsy;cp$l-n34d0&H@xP#>%>5D<Bom=V{HP0u~|%K`9s@5COzl
zoSu$`XS@XD?vxt03~>1+PgbnvFp0?BJ?s0|AFP%d>f*6YZ>Tb;f&#uetPj|>e)jWp
zKS~=~H+tRJ+B%}GlciE~0(hq2+y>kpkRM+Z57p*1E%=;7+^JHckFK>rHiVWK|BHUS
zdRpW$<o*?N%U@}!JI!WaLGogDcB+i?uQIZ6QMg(EBuSoL_`~iH4ALrCy^pF|-#_DI
zwl+umwvum>Sln<)kKjT251I7NaesU**Sjs2@E<XyyZ3s#=eAq_m%Pbhp)S|+UsA-t
zh)ix6|M|avv}+;ofBz`GVdQ79x{}iC5DH&HzuK*dsi{O+u249f&I6QexT^pXy+X;%
zmV77W44%A}n*RNTTnL0{2{&B|;4XmDv-Xov{0RdyhdVxv*T}6%Z61NX$R8Ju{Ad%p
zTE^VgJ#bqEwd%U@=s-(tzvHp|U8KEY_G|y!jqLM_!@B>utsZ}~`QKheK*Nk~=4nj+
zXF%47{_DU73HIgPlZ)G$1!F*SBS=X22Xfkpuo!-SUG>SoPY3NFTu~5+l*-M{P7_bO
zpU3oyzU$=LeXg;wxR{+j1|6)#qED~qNcl@4obNdaV*(XrViOZlQ)g#qfj*L~oZNg#
zcBQ7e_!k%_nQg#2ec<5m!+&<)ZTO07zKk^+^kGO)BB4mO@xs@L>mqSeIRcg-8OchQ
zLlaqDVxZ0nVrwAGlnp9J4LvT?{I^Hhes`3xUR?lW@uo2v<=ii3r#S?K5+KngnaDo)
zHLorvCbqgdKKlh89-bvNz&kUt4+3oO$PwBg2zf#(4Fs)u>&zjK%OwBLSI!xjy&ZiB
zB+ObG91b%R<M4tH4-UX-U?tR_a{vB)BWpRdM~llf&Oo6DuvR`vF>sUsl_;R+5m5y&
zYyTf#c9MI29mkfyy)#4E#12RsAmkZB%$c3?hTvmWIFg;PSG=#WA^HzecD(;g`eX8i
z!rB*yaSO)4%mNih9f2T@EfCECb>$hlx}&rN9|E8^BjVzZN16&)CosSh_;<nFNO}Jj
zOK8Am$@Rd=tn&m!&+;#Akv#Uke!kfR=nu{f;eg&xwSx=L*}X#lehBy_U8y#2N6%ce
zq@+4IbaWp1kTX(onvAnHxurJcp)x}3_TFfU*h+N*B?dsE{(nFB_?jssEDq7%F9O#v
zd9rLsS%Wqp1fd(mA*o()a<XzpQ*kMpYfmogRKyk-2wMI64(efAPSl)&N`gRR0#XA9
z?mB?FWZy}dSVsfZ2vC%7(|O1DzDN<?)#)4vwmplC%$`7RQHlhDJUEG5O|-#)U&W|Z
zu~U~$nc(+t$G_bcIg`CnBK9V0<arW0>mEn1CKRYgiHi++8v^+?j^!Cb-Fgz%hKnT=
zEdFkb#_3(&3*0ThPxyQ^>(1hg)LutflLE@7!~MMk`vp$7diwhMc1Sv|lkO)cf579|
zPu@-KUln|UmIsF`si={RXJPm>rD2qk^27}bZOrex+<X0+DXBFWyJly#!h9$b++jC$
zZoQWaK?G5>-JPA=d~Ob>pB}`hsX0_ViGfC75))3Q$bUc-6Vvg!y&hj5;?>rMHNhrC
z1kR}h*lf318WbsY*6nNtWo0@Ng;SQMPzmoN{PR=mKB#0kES@!&$<@{^-PM&nE33Y;
zq7B{F^8js;yHePof~X|));R9YP6Xk(S65zDJ8h3gP`X!FpKMMX)`$g}C?w)0hVLCs
za8xI~gy-c<dT(i3dkL7W-u5QT5XwTgx0lPzj?KAESG`#bcEU|`pozP)#l{`9sRL$z
z8-eg1ePy!DVtr;*vcISH^vqUHE+os}KOh1#c}g8nBLaJ$AY;(tOiqozH+w&T1O*sr
z=cQq~LuS1d+0?$bMQhX5Zh*+dkMx8ymx#=5f3oaQqaZ#JN-E%b(AVP6EH4ivU_1nF
z*Go)mFo<97?>1;yPXj%Y5>^O~Y`u6Ws7kTJZ?^;nF0Q};0|k9#WOQ_J7)bx?mzZIh
zk(*`hCi4MoaY0`njLS|MxUeZL{_q1#C8f-^Hu|nERV#`PM=6d>g`~Bu-$JG%hU^Jk
z>goW;#fFSr5E{A^3OG{SmUGr-<~f-;(lOr%(+V<aXc?w{P=liq7^6Gjdu!9E%GB3q
zTl_oq;uGSDuU1nZ++NvFjK$SDJAuXw4yyL{3O;?0{KQ{GzoeuDZZx$vT4w-xl_JbA
z*6V^K-A%6+y|n)DZa^E6L|@&GX4JoRc>E|`FZb%6N9p8Q6p&NVY&8LkhhW&V(?(Dk
z10JHIr>CtgZ3<xm!g!^5mWsDG%}wkmK26~{sPB{xP*A+4Du5WIS#%byj5f4?)!^iq
z-{Sxl5;HR0FPQqu$<o^EhNZ@Nb$L}~*=D+`<lU}5NT0D}$x}=4=<a~7L@6s{FD++<
zlI?CR!Lrj>t(tv*fp;e*&uN>Q_-?ME=mp;$7}=RA>v$+XQ%hvEvjFlROI#$|+v|+v
z2X=PX?x*toJ+iWL870sGRT*eRc+ypOf!-rP`pA?A3zGjO<JMIS!|*q5fv100(#J44
zqDAA0s;VV5Ao)0OFDF@&AI4QIGBRBYi^evlrlx%GfOn=83WaK^WO=cfMJAU)fb5%$
zY^^8gy;g~&yn=>CnAi0vqYkL~Wq;9(NE#;5#Wy~AGdEp@YSOp0xFg`w_>uZ>6{Lj)
z!h(&8H2Y?%L21zLADS~Yj_Kyzz1@8F`wL4&?^gTcUv~jI`Qelws(VcpiJ)`A{6ljp
z|LC#7VauG&*iQw_RVY;u-WgwU9bqzy`*c69HVffOxd!qHgT13%5dONrUK;<|Goim-
zLlEFfE;gkJYmYKw?GOj0mb22|S-zK~rJ_pV_qH~A^Tyclb=GFH!nOOcw44G9d~+<b
zFn9Bfg$xOWs+y`pX(@XmzA0W*xDaCg!)_8uY3UO?dj<xU{=Uv{b`Q_WSR(F!Zr+u}
zqoiyiwg(WKpdz+1h1&g3f1l1t$w@JN9(D6MzyCx3?&u9Z7MTK>7tb0H4}^{^4HR5^
z?{5^!wVP-pSGgEod_G^w9)ksJdQAWgNCwRYW)41!O|lv(0Ulo0zC01y&{Z7l+E+m>
z6O~pBjy&_dt1EJL(X}Y1p$P(xQz?RyYL04w&*&J(C9jw0Lr628MA#>qd)R4D!X^w*
zQiZLkqKGMIxf~6itMeMy26q~b9-JGc4>7gm7l8HRfl0z|vp$#*go|80ce=|`n8(OW
zM{eA~Al0W`8^2Vj*&qN!rg$rqfQ}>x4FqWvU>8`;ury#}<Kp7t4f*LCO4f^d*`4KE
zo=gozBK<um_r&jlUAI%aMwbm$hX6OsWjRHUFMxwXMD!F}(kVs2JvQpH+8#MkuWYej
z@RWFbuBCN(_4fMZQPihz^ZgCCW_m_j-8KtLN4sPBlsp_X3g`PZyS;L9VaczGw!>yV
zi{0P0vUIkdl+}x#^j$?UC^Dk!JilIL5<zl%b>#i(GO@K{ch2I>Gbu?pS*9xr_M5pa
z>;$*xLQai(JX@rfQ(s5r@UnF-JQC&#i+FH(GIhDh6-kw_G(fbA`co8ait5S9rLxFg
zX7i``=0tbfe@hX<-9P*jNLDa1QToVNe6boUXeiLB@Vs`Lw;I|QX%iQRyqYcIFa<=_
zwh+QHuU3=;x8424qr5hs0c=mb8FU7Xz+v%nYbPg%0F9;PrP8uekO?MwG6FL)GPSSL
zwX<-z&@)^4G(i1#5kZZO-mGmbiI(@b1z(%Ye*U=x1AL8e4}GicA=4%h-ZGF+#>K=T
zAS8VqL%Z+{tME+!*8C)?(6smD2>+<}3bFl`_s3Rlp(SH}hmsxd`9g!+L<N?FySsbH
z_z%0|dBGF;)U$-Z$Y+k#k&)li>mE2NnGaz>-^_GPCoLUqPFOU>m7G}J=I2(mk|AM)
zGYtA0kY_2bMjlYnRR$H{;>t?#z7hUAo}lEnv(uWmbmU5exOq05$I(6EzekgBV*{Xc
z)zs7owso)+KMsqSQ#wXM*Yh%YCMW3`=w|A@Q@fW3wF>vnuYf!SuM(MzwziB2B`u3W
zWRs$b8qTb0OiV_6&*$c55HMBnM?WNdH4Z}49#DXt`c{}Ok~;UXK1E+i3faE}6CPrT
zzWSS%r%qRIh@HcyrFo5!9NZjBP90*szK>+;t!zA=JMjE7#vgHqMn)j)tQ}o_Cib8b
z9*;sQzx|IQ5&@U5>B-kozn^m@?ua($=I7_-1O^0kvoON!He#DMMdSwcS{9e_mL%Fl
zReZ>hRo=Y=#4hs&H87_pa;Y~5?x%G%6c2=_^3L11(;w`j&gKAnp%em9Q&a8e3tC${
z!C<9=gu8Ww0tx<1pb;^FcA!Nj@LthKwr9??@3DW6B>%mpCYiCks>?OZWHkd8Ztept
z;ZT$>B3N|5V@zeCqoZrfJ+qa0IXMX&<Y~Y>s6+?OAFyd0z6-2c&oK7(^y$~Wcom-b
zJS+93w*VzW&~!8?*%;F~|G^i@v5khRHl!~B+>w9BVU)taE_a+5IFV*%>skFNVxnRv
zyE9Y6KYzA%b_(v9DNEC<$?B*Kb<WOT#dOaOWqMp+SC}&Ecl7n*h~j5IG1#oQ;XMgj
zzrA!F@<F%_?2_Jini1R1z{J2r=UJzwp)u4>$T~2>u{%i3MxBv!Jm<u~K<`(mtae;X
z(92y<U{lNT6sxDqVr;M`zv*q!LR2JsadF4x#?tS!>@*>=_ffT1S3zTiB@>oNI#U8W
zJ4^|fb3H#r#l=@vW@?<t_$kPo4<h8G<@k^1yt#L#i?$~nhkqC@wX@R*qzq4Y_sVHY
z2lC43$%S}$uv}h5iWt%Ia~y7j5M|w7D#)k|{p^tZ(%RM2SMPc2WvGN{CTl6&ypD?3
z!M|Z{QNzO*HFSuAlJXFVBcTTnS?vP9R9EK&c8w%*r}BHthpsFwN7#oY^N5(2+c0v;
zLXC#XER1B)c&MqFfYFc~lT3n5=yvuK`9OrvdN})Dox93uUwAYc8Zxr`{%1P6gqTDb
zLLdO6+Oo*Q_i}CQm<7iS+4VlGwx*;6nnQ1P{=nPYoroxh3Z7c4yq)z}Fm{FPvFH6-
z<gA?r#Nw&3G3AP#Yl_`s;Y%;*?3ck}X&h=--g|fRx_1w=zrhh+h)?pl>HRyFgxK!B
z-nzBLp)3guPd)y@1CUB?=uh&xp;+jK50!Ba_k$I~1eAlUlL8~z={#Cbt3Rcr_~etE
zALPQajoyvKc-*6%s~=)#Cw+8w>%7bkZ)zG9mzJLFXlxv4d=6N|9-g5gVGT~3v2)k%
zliJ#P!6B}%Qf`N`xPkTIdNW5!tMIsdmfvm7eDfzY%>{qu?l$D}mI@P9$Fjbt7!Ed`
z>(M3)1Et6+%D0`jinsS-9rqbg)MEPc6Pq;*J3A_0@<QfZHXI^>^^sEi{jJR@sdC}M
zv)<{k8Uxa&&|hsX1g>~mgM$F73T%B~1Ul)}l%IPpAD(O2%m#lAe9NBjP9k*J!tE-Z
z)s6>MWhjN2*?4&wY<c&iBeU@!JQ#IUdnk3x4^2kpOvBpXBx7Uif?OcpLwd8;88xu?
z!LBP0uA)aw(n&5QB{fx`C*>EGDnMNULKAGp(=QLI;-X?Q7UTe0x)TmxdT;GjpI%oN
zSX>OqDR5SxsP<Y&=!2%Fn%aoz?5qgV6Uz;=j_%F~1Byu~bZHPH^%c1W`SFyd7I0ip
z=N-8^6$$|kB53VBpq3w$NO<Yeh7e$3Kco2iIiM6)US4jsU;K9+9ETAs82{PF$xjxH
zw<W}&JAz)aeo>*Re2ED$W$$-to34?5($ElJU23M1^7CID(;A%P;9yg{d#604>|R+-
z*U{jy1+>?fh>n(Q7i;)<BMX;6Od{;T1EAB8$CNKQ*gR~x)uEJLS1TJFoSR#<#Am1b
z_H&}WGcXZvvlOTkdemg%LWv+3LxwHz-X2&`UY=$8KKp^(Z9{GxcoNddri2)pC?^(+
zPLa_%UK9;#!CM<Ek$ShN^j^*s-nw5dS{$bt`Wj4MksmeWr_)vG?i4&gqWJ#3gVt-m
z))i<LAAM2}RFIymvN3Q4;z@vbK2bt+{rmpclEFdc143;)s3iw2E$u<q$_H=+XA|#7
z#3tCl3Z-cO42!_?h4TvLW1MsmR;qQ@-YG0XOac4(F<_!N*t$(9iO8#uf&)P5^{4(-
zGC_9}U{ck7c~Zs-q4bxOf74O2iitVJZMiYOpzQ3#4_1p#o$dA6uUUJ++s}P&e(j4S
zytW?wO%ME?Zw;-?%B)Tcf|Is-b8oZ0UlmV5SyL0aHLP?M0(mAH^qCK}G}kZ$^NBd#
zE=?0~AYz@PrtiF6%z@~Od>PP^Qyq!^62d~qq*pXg`+#J|7!?mP2@iQ%Ul^;4IGa!|
z0o7t0&1(4q#IIvCRFiIY8_IiK#QJ!h*Pp>Zfh$$y2il+RBBTvr<}sR?TFJ>xL>p+H
ztw|wF>{r<?o_cymT8$Z8-oO8VAvb4--|OeHoz$mmZ!(5w&?+4edytn;(e`A1!FhCW
zy!m;(nVOnfEjk9=oP;4x5EgEh-CYh-Y#baU^fMTG7I)5nt~RGSGB86euU_G!eMt+$
z_e?XEbhT5L^>_tZHMBx%{!gP2o~wgk0-$@WdfkYH&&`C_oWi$fmvc$4F9cChdwV*o
zZqI&2V6|uUrPeI=^VfS--10gdc_(rM`v84ws<1d`<KWoh?tb~a+#Q<4D-~)zS#Q<<
z>6((?Ukh5dl_MS<6XP%Di{$qOrJV7bl-*mbXOey3E~@i?(x-DFCo6n4R$_wMXN8kP
z--L@r)}NbimAQXp7Gl=v`6>SW;*~L=Ga6c(Yb$ET$3`eAs$w5p@wocH9XaM+P%~Mz
z&(?vP*Qg<^=JKJ9%|n%MQO#F>Hy!p0i$#OD>CJ*&RTj%tTznFz&5EpNa-4zF3wCz)
zbHwvF&q5s?Z8!IjwW$&f5aNkSYqXDJF*Y)eSQ<n`4Ms-?`OnMB(=~Imgrvv?_sdam
zvrr}Um|+Pf0-q}{kNA9c>Go)SMgpU7uHN(f0@7qMH3BXD1a;Ul{3zI2<+P~|luYOJ
z>ol0OHr|`g^}L$t?J*DsrWw`Q6=^}i2^W_fBt@XA=)4=+z_P*k6w4~LLH1+sJTcJD
zXQlGpD$&dX5t9&7E?J<v%{!?G&ZzTTjor&jm1~Tdq~wMq-ZJ>NT7(6R!?-^ei-U4}
z0~!M1$i02`?_b&vt6UF@3vJ}&(50lMq#R4iwwG5-W;24o(FcQ3RY{v^X#qV7?>D~>
zJ0xEhDW#-<)n04s!SeB?NbR2$n-(PuUJ#D3?Xyd3i?=l`wyO*dt~r!|!^T7|8Q=_s
zvhMLR{p|j;ka+39i!>z?0v1Y1t9>b{F`GGD2MVm$j{HPi@5BAzW*n6M_job?&tDU>
zU}fj$Gto24OUvPi_5$4+*^rPCRW)k1LO~DBrz{WdzIzP@UVId<%XcAYY=5xNe)rx-
zc@*&CJ$AL*pPt{nRr|$-;O^hMpGJ$X{|w39FaJOP15F@RVfVgJqGAxg|CcYyo#nQ6
zb`*t{Pb73?g1RutcI`s80davzr{s$~=kND6WVo2GX*Y=2j3hmjmBFq`E+~vkO!R*9
zJUJU^>*z{J(NzXi6vpM|dMiFne*fls#c2X6-kPZAHvHtM$%i>K)M25e?6UFG90(!E
z50709CBAan$}#Q+VAM6vVGUj7Vx!{?q?;Ru>iQLL<@y9c@A<6>2jIy4Ufg589kt@w
zU=a6zBPspM9bteF^tKca+%`6%h_<zLwc;3L@}`cy0FGOxQ@%A_JJIvgx9{StHpBk|
z2rHoq2=H-PDyk`cD*>Y;APPP#l+H?ug)l34;O9LYO&35%=Wvk@n!s-V>pST4ufHKK
z7yrA7IPDi?9T;j^e78eEC9DQ8Qoq<<Q2F-G4`|&DHp1Hgy<RO_%ZB!xjOMA|knYv%
zqHQHrQ7enKQpC2_aQjY%WNS1>p5h3S$etG+iPesavlekKWo4?LVj1XJ68ES2n|pC5
z+AMXW!egZ3zJ#HHZtbN|XTr`d&X0l2`jBF~MMrpPPY=M-@}l28@p&6(OpHcwYPIbJ
zqxofXOO%S<^<n_!rDtI&dE|&4j-@=cf3ksc^Wy$m9<EAw#C3zxqJD*IIBh5K{G>{F
ziCwcQ2?Ub!Au-w8gUq&~?=e_eF8x5790K9&sd4x=q$pvaF(zp+2ORu=pSWaf1R~FF
zT2o3>N1sGa7&RB(8ahH)pObU=FdyM+65yv?IQ0f1t7r}mI;aOls8lEFpiEj?933zO
zz(Wh3xA%5wE2)RlqmdDT9r4=})FZ0;y|}o&?8nn8*3s4B5{8cng3+Xy$%uD79B}RE
z?g(C=s7TT~recQnx$zlkGSbmR$s;&C{quQgN%=mO7ax9<Weh#{-LQAw-G4`q{O6NZ
z@9A=LIvB8{>#s0=i?7nibaWAy*!G^cpRRNI^@qvI=zG229k})6^O(U9Onw!ck}5-H
z{t@c4RS~qh=0KvHk|fqgt&vn|ysacSM{hl~ib%5>NeJRm<w~0xJN0hl4LA2Q<@7?U
zjg{+R#c%s|@;^_ls%sdaqr}%+VRe$9O728Yvot`k>YDgIf(=@$5Wn6)5PwW|*E-%Z
z6nQl@NZdqMpMf)_us5LTN~&C57Df5<Ry}N!U>U#E5t60ytkm)ln4>-GOcE>?RFJ|S
zE1BEq&#ckbOm+KUdOU{|)YZKvoFAc~TzghH1A7Fb0#>E&sWtQD2HP{Fr{>{w6IyN`
zFdVCP+vRo)jW1JgeQZu{l@!&@3vwH5FY+)8_?I==Q6*fWJR?<F7Ox!_H$sC}k2pE&
zN%+j#ej83hq12bBx^98DG<YmvuQa;*B;3q(fJF!*+IYWgDv<c@`Xc0?JHNm43WK_^
z&ji;&y?ZGxX6M>`eL<le-EO1a=*V}wq(1gtQRw;13wU0d3?~yCpT+Gl!;BnLsK;T8
zWj`kAOi}|8x7q3REz!nS=Jzy7JaaZD$m(hLDg#f_%pq=+o1_&?Ub!SAWu7!O$XHDc
z)-$vB^gx<W>WQn9vksTZf?&6L$S%K-nEq=$DR^92GCY)7M!M_Q@aL_lq@;yrf0h)5
zHI6skc=rA^l?v;E?^l!j5*y-&@`GGwAg^_w>pw!+m2)wIMb*`TfMW8OM@N8jPkDfW
z1{=ETAlTXMxlHi97xXOY<+YIu54a2TpB(KP8V}7(2Qm+{FS=tWs(6r06%TXAv$?of
znz&iI5hjm36iD@EV2t1L;Q1-zlHvs_F!b+ON1{DSwl2ypEp0rDr%Od+9~((8p`w!P
zHE?mESvC^S%24D1#AE8?Y77!O)}Ip@=X4`RT8wTA!a$VQfxCip<QG`zq<>B$AL#nr
z$b=S1ruBV(#JVYX*HQ-*0>5*Eoh#$%6*BmCiGdgI>Df)AwS0HG2hH4$;933=Iu1}0
zJg{4Hz@q0#$}Uxvc_8A6j?SCwNueAGh)T!9oDXe<%-<EkVvLqWq86kQ$omRB>VIDG
z^PQaOdZZ*Z7I?L&(pQ@kKB(bIt#o(aznQ7;zi%IiYQbiopm}$1&SLZ&%?bZq=s#04
ziw^?#Rk-C-#jI*pn5s+N7ITn?eBA@f2t+==E<d_@#XIv5V47{k2vmyE`8x?U6t$JL
zwW_v$lfEVnpRAugmk~GgLQItFa`-hmQ}a7<-%|iNI7r{^!)`~aIup+iT3-H`oNwfV
zwLB@5+@1nDa!O{WBeyiS)rMP{koGI<50$#r55FSaofiCW>|f#)=(oz=GJVVWz5os#
zt=qd>R4A#ly8|#mkBiIGx%l1<oj5aK{g&D5G|7gGWhFL7MyjhRE{r&7`ZJ*$<20#W
zqgP;B^TXeo2TBhK5O}!kp9%=xTy6H8*J{t+hLTD5^nDNIqUwB8si~Qt$i6tZ5t3DZ
zIp<rSn&k1@dF{k;&<-@{-k%0_^z=Om`Pv8?wDiUz=%3d7PRB`1(C;%ze7`=hP6N)r
zaeRVyW0)x}_JG#*JDa!K3{4su>bO7e`Ekp5id0WCFw)VPas(~E6QI2O7GSGt!U62w
z^1zMg8=qSDBiCnGT9cm<(SIkuzMGo|U~cIDJ%soO%;;iE9V|@<Z`F1S>6urB8(Y5Q
z>g(@$EB1L+9Z^v;b1Zh`Tc}@rQU4<DppFHwsBa|jitX1j!#<!Ft($>~pBmWgY3u0d
z9QNoRL1jB`*I0?gZa0CcTq?Z#zT@lvSVLb?U0YkN6&t#nx<Mwftzq{P%*j$*tg_Vi
z>P(uFA8FS3W=J8FexZNPNDFXAmSt<*dR|{WQ(2>Sxm(i+ym(kvdK@Hm=@p*b$^1K)
zjC&t<M_8OJne%g^-vxNl{g&D@y}jA&lewLJ;#t19Fp+_Do4sHsc#5AxQ79Dm9-2@v
zn`B6tO5NIjwry&MY)5Wa)rxdmiTO-ZSxFuoHd^a(K5Q{dOL*617Oh3sW1mxRR&PIU
z$xfB;_q6a4Ggm-04mkx(784fjoo)CXhT3;sADiugsb(J?-m$WhQ2U;rquyr%w!`Js
z;-z!5$l!sU$LCbpxgxWc^#(Xf1J7Q2diK`{>pE>apS`|6=M5ADY~}$Q5g064-w<_)
zNmx=}ep;Ws>u*|=a)gHF^#rG>eYZQN;S_UHK%b-@pK;sj1Akz_u01OZ-kjL=juKSp
z?w_%{Sqd3=!-q9ghguKB8N^Wi*znO<;z%zW^e20NUd??((z)R$fZ}t*=Ni$6OyP9&
zzx=dYghVV(uUb_E36dfcFE`Is+za*S;n`=l2Y3JiA7xksOHej&4VgV?)m1*9Xg}pn
zy16tosx);zl}qjarL2@;zGiI=sjaze$=<u>_ACwxWJC|{*p}Vmc+SoglM^1T#ckZS
zmg4!VK{k)|AwT)OG%M*%x4|#}Yh7-l+iTXln<bo!UqBtc$8?ZbO_$3_=(yjRd!thk
z@sY(Yt%2F&n!I`--dK_Oh(kLek%5j5k$eB-*v|171LZpwy6n*jaGmc1)3dG1e08PQ
z22u+IO@RezZo^U-8uE%O?_{COqI)#&+X<0fX$3~m*EFnSIZ{5Skz!+2mgb7#$$xCc
z$ATL(NKdX#R#S)Tzpl(#%#U*Am5Y?-l&xfDKJ)Mrwqs8&*iAe?L=;r9ftM|LHvC>J
zdDrqt4F@L@HroWO)nO$}$}eaE3etfA-c>L+k>-3HI4-bR>n!?#h9<^8&c0Z>62ibU
z8^F<AJmip(p|rQJdPN%3@|NAItn4@@CgE#*vp?c~u}ST=3jq#|&gJ##ow*$Q(pBaY
zS{GkXoTu-sR_zw0@14E>_0E6-e#a})C>C<e_>>!;!rgf9n*`_i=Dzl@Qvp|DE2Gq<
za1Xoa=+}i@2=4{i47eL>W$@(C(FY~}vE~pEl3z=-b$_?BU)8JJTil-NFDbDww^*OP
zkQCsN?gGh(SIMXd18%Kv8>~O(1O`^bX(&oQPHg#OK7)lSwB;yU8{EBkje~zyS7_rV
zg`9j$16w-S9J_t|_$k`>LxlG+zDr90$cHqAD|dBXAHL!zE?WCFH1nT(72){_?{j_i
zzU6|$!<wfA6RN4jnIPhx%f_~(tNZ|1fCKE7Pga{pa#Ki2-wNPhn~|CsspS4KeSsr{
zZ*Ft<a4YXKRw|At`HH*r`$v5fgaP`5i3tD?ubZA;E5)Y-w4Xy6S*dUTK5}*vhh<Sl
zlGycROUjKm*_uK50UU_|bf!DtT=us4??s9rv^rSeqNV6|aXhXm&`=k_tn8y8+w;z$
z9^qpw=54}_pHj(9)T1bqp?{2jV2e+ZvgGCz2pnJW)MS2<ufT|F=eu1%gh$CgK;UE|
z=Sir2vNn?_9ViF_#$ZHpChoR6u;Ew0=TIeOf*4+;VdWd;<?wcol;vj9Bo|;Mrry4U
z#K@P*TI<iwW6{=Ym6@-67c0SK(XTP?j{5z3Qk|J^Ao%n5?{W>-;^sFEI1Kut61Tgn
zsTib!eOM*%QIO}tyWVT5&5%i7SXj%8od@RW$?>uK-beW$|DQ`sh4q&px)Lq_fK#aV
zXm?>PJLkKwX#juE1;(GI4Fr_3>9@s&S4PE;Pa?9>nQUwj`J)k-npT*tDLRXY@M;Ku
zZeN{~kv5+nmj}kqOux-YrW_b~ki&$Yw&H;-S!`6)l=IQr&I2U++?+ML?Z(A@`I}3d
z*M{?VDOTCk0{Ay2rr4P|5c*@FXRvUo{g{@f9uh*$jZaEI0CJST&km619BN?wPn)zr
zn_^Y;Q&d$&X|-Eq^*m?NUK1W17#YZGUtHc?>!G1#i#&u!4a?F(9XDs|O7K`t9Bj`W
zw<n7zB~Bb1x5r9Wo$vTjTufZ#^8iucQ04SnT_Y|w2Ea6*kg_&5jjBt?SR6tjAW3b^
zp5TDYrl_TMO!cxd*UvAp#NNfo2*`1JBK&Sywm&p6O;|U;H)A#9GPy?jGh|P_|K<!Z
zqvD(y$UkW`coX<EDZVL!t~<~WGp0*&B-oyxvlV`SwWP~uWtGkyQq%=f&UPEou5rxv
znF^*wnhw@_5B{PdHV6H>;5j+G?(2gF?V-taF8e3fm#;|shsQOa?oGO%eNcR#oe<F3
z<bA`l*Do07={dx~(dn!WK-7^9PTjH1-@gND0B~a?pmM>%UNdF6KPty32P1j;d6}(G
zn|#{kQ%{Z$8JJj1rKNAqx>*411gPtM?g9}Oc=JQ}DoD-)%mlz*4A)n|*XN^XcVBs|
zEi8$$pL^U4nf5!8z5K8+=Uq5m84($4VrWj!LMxFv7mo*aZ@mBsSI=zQ%FSXsDDt?3
zeW7{Hpv(i4nmXMg&v(NlVY2fX_JrL2{2Du5_9<mHR1omxLL43KD7eL(PDpu#<*OX7
zd3ka`o{O3jTLUI6=Xjh&PTu$AiK?F{fE~@5_D9l0xL57&7N(^M%^DBBv3tSB<Jxkv
z4f6vS1aDHFw`L}p0IZRG%xwFT_yC%mEJr;hUa{k4;quDPM>X{91yio7lH2vWDf*>Q
z(z8nj`WKbXyYi-G80W9TQwhUvuDAJgYGtLRbMgRpHLRc3^P;1xYp`m&apgmY0{VF;
z&Xw}UQychXA2kE*>Q1^u3lhf8xB=atcR+^cYLaYa{ujC6oe#S`meK%3#s35?SSQQ6
z$QmVbLj-xWmY0(*IIg>;rI>a`HhY#j4PNreNO37!wY(v~G*H}=eD9zP3DX$={4Lrr
zA|k`s*yrLD?@6o@KH8&mW$A4^9K73Ni?PKl1*DU0zTF@e-Q=W#>B^$R!UkUn3mPig
zDE5DV7SwaAAm!L+P$hiOD=TXvpYT0B!`RSVy3f(p0oH~3DlB+<e>HVvWMqg&HlEi|
zSl)UEtTo#z-HQ*XOE}n9<u<8+==nlHA-0q=wZCC&)BS8oiijb%D%D%Sb!&Y3>dL@r
z*E+KspNIPS3rQ8dnZCBnpoj>qIOcwX+V_S;gmq2a0!6XY5LX!A>2^s)IgQOzso6?<
zQxL!enF)|GmbMOTS>ECIc)323D6b~Dk;-mO4F6FH6NL%eT_!s3$jT|)_Dm&mcK+(y
zNi8vz%6&+w;QDIzmr52m?!w3*(syAhUkuHxM6enE-H2=0llUy%FX+CVZgfaX^*TF~
znVWTnhsXc^&DsmV<3^*ZKelKE8?L&fdG#b<E8^4{uonz;1jy)1mc#j%r-!Jh4GDs&
zgg?$(VNw9n@hmm|Y^@Wk+Sm7CRHyFE@tEp8yVAsbD|0tDoW%Ts%$1cb*#cpw4sxKX
zapB9W%Y1sVJq3WT47e;OYh#5VNW0*A2sTBqz%)Aqa(A{+=NFfh)ARz2>%Z8QCsh=1
zr`}@Y3trwV7Tw>FqGlm|FE2}BVP^>mHDhDkpyla&ows&&cG`p>Fc32P=1?Ke&slEA
zxbrh2?2!!6gmd^&cHK~AkJpnV)rCRI`lj>hJTfw}fAb3rnf_|7*m&tF9V@8axu5E#
zt<fv9)YiEj<u62vSVb{Hb?~*rhaxP9UWAmgD#8Yjd24&8;Dr}|N!mNdw!fF1&U0>I
z(?3B+56&}>8}A#8M}=BmH~XHvxyX2_uXtCSeKd3u!((_%774@DWQeR8LbpvdxX+y-
z71bBOv!K)Aj*M&>yWSh>e7AmHbyRdAnR}wwP<uGoU_{HxEPnQ^dCCT_{}(N1W?(nZ
zhsBM`-djp)iF|{q%MHJ)LFJ2h-=DzVH0V#Iko!I~K;R(T-_wMPD`F5bZHCXzp`kIy
zYV=j|2O~X;jh@dNE!2INS5l9BEFG%Z!0sXMPjz;7;Pi%YMSXDkz{(9lci$J@W7~df
zM1@b(VZ>g8Po#3$+uhSCC8w}El<t3*nr?Z+DyfEkSpyMKkZ9L@U*%&8YM&9{Yiel@
zm?0x8>j0#9ho7{sSC210Dn?;mo<nI#dSqyMIjHjxmLh<2RA(LomOkz*r1RIvXeJiW
zO0KScQeN&LEDWNDViGb8CDv<it-ZY5Ofn_?z^s2p0m}~5qXgM0S`TC}p$BW<-@b#x
zf`etbb#yx0syUneCDg@DuDfDTP5U#4lAoHrszS7*bRfLDdwwqp)n^NYdhL&e<d)fJ
z^RO}r?k;%>f<j&^xh!th>Z3$i{m&*cJ=ry(baFUPl{)A1_#7=yM^N=j9qY-sU3L4t
z`c<CcZe24y&y1Mxm7!-4j(X;%Go>_i^ORE8Jy18ul5*NjS%RpGflmKwY=;A5w_0Z+
z56aq`o>;P5l7)J@E!)urL&;{K7Yqz^AwK*pEu1yLru5}15G6%1Sp21tNkKuqSI5(l
zi=k-I<z=gC_lh*RCic(&0)Rq5#Z`vF>>mKt=dpl{8)R%|5(^4u^&xUfEiY|QB==4F
zfb2CWwLrn^HanQXfyeaBvSD}5KwnF1S~Hc;Jkz^`S+5$OK#4~i3I*c~i~PRumOe{u
z_Uz}R(->@jiP?lnU)I{R_2L+y0gvt>2Q)7%5Rw)qpaArKpp1<3)(pdy><WtkDKI?5
zrV)OVRJv?K{c<f-rYZ?IMC~3<LFE!>Jr$~fqwtke<cF*0$%JW%X^;^Lm#szqsxNZN
zV*A}Mb`*N8HNsvAQFDzHy-zKJH1hC4)<iP%jr(c7oU9Z9#5hor<Ka~EZUbH?=B&E)
z`1450aj3Tnw6HuO72DR`t+!#!>P8B)g`4^%W3V+bh~s13D^eoryP{O6H<IQiUHZOv
z?lEVoprt(MX+^Teh>XmycC0_@M3I<W1b?1J6Re@*KHSg!lH94ak`B!J!PXAfl>N_H
zM46*uPOq9H8*MLAy`30Xk|m9gq1j$FUl54Qc9eCPz;CNRvi=i!JCqLePT;w{w2eaI
zaWr6eYd+C37#lq(*L$g=to6D}b8UkUs;%pKQTgnF9506W)CGlJK)?jnQz6=oYQ&J@
z@|49DaRDO--1BG|$%mO)I%ekO^qMDX{V9|+P8nEom9D$9>$f*LFWt+d>iCmKgxpM4
zSZbW)@cF9^`rX)m-xlZ}W1#6)Ilyy@4*(WXs_%0G2VCUgx%L^DeQ@C2p?54#LhIZ?
z&IEp6b+B*J?PzblpOW(Sm7USABpxo|Lql2`TAP`Y)owZ!a5+jApLhA4c9L5=9`AZz
zi_HclsAPV<YUH4z2KitZA!8RoV)zfweo_)EE6Q&!DzBB4WIe7xdj0Zf?R6xD200*=
zD<lgxn6E3_8BlPawb8~xQ)VY?3g-7uh<UL|@VM>P2CU1=0e129`g$=clGxHxGJ#v5
zEe`PsSqhsgJET+v|C}Tj)bK&MwOtz+Gw`C*1odrR<ZmM26B0^OPqo2!?nSbYzkP|S
zqis?jakEKHsO>lXtIcYv1E~x>xw(To;lFblPs`4^I-Mt}b2Z%ET_X&n9b)m_W%92j
z1*m%6WiUQnq1rXIo3?*JPkwu5ziMukSeG$nX<tUxgYm}w27dn|hLHQssHc1O9TtOJ
zN@4HXs}+`2z~co(VjM3T$s4ZR18YOKukD&Qzt{x@#gfgAwYOOptV%xei3pFWx*C|h
zcM>`mOsWv)5;a^qz3hKdsp+7%!mo6e>md2|D)8N9`{|A#$VH_kK0YVBxm-RhX2f-@
zYOIXk4cpRr*<1r(frzTf?7Wx0ecfEA0D>i!4IfUX*iu12m$K78VxFj<bdJ-rykufi
z$@qES<amRuf|An8Na@AHb6>sC&{;D47lYkBGXp==n%I?T;R*7by}w4)wWQX8g-pTG
ziv^>GIHF>P-w#AV0Xezmd#{xRnAwzcWOC2NXy?AFGIzd#nGWhPOodT1<!5}0h>DZQ
zQTvPQB6`%_A;<4_5#6#36b7S6ns7ncDH8KDquI3(g*<d;J&=%%PP$tEVW{teM6|J4
z!^;CCvqcOf{CO|hP)5|$GGMS`J3G-7<O%EzjNLmMknQKnhf&MPqaF9odkBp+aVe>n
z;1UFPA*)O8LE*^_Zc3!296v7psa-H;R_3Irj`K`3!6d!8>UpMUMivOERq0GTZcovs
ze!<M!Q0nlpF1<s;jKNdH;=$r?-%7ia&3mR|%gZdvQBxi~2gm1LqVaj94q=ZVmGN5Z
z+1dO70Slw8FBp%}MsT7f4d-p9!HD9saHy-P!O0#|+PJoaCw%38(xPfqgr>dcod}RJ
zElB8r!2#!&Jp}WOPt8PxKI{!bEOrFkV0o~m>HMjZAFT5kYoP2WR%9gc_7-&a7Q}EI
zRl@k)4q&ylNnPY|^71lR0m`66u13+su$Qq~%$u%!agfELEQ^Rm4O^C%Qm}DYdk^fJ
zKVkRlPjg;;wH9%EE9>**uQt8O&02B^&0T5%#>Kn=;Df;>TE+?>X5vE}L6E%gJCK)Z
zHUQ8XTg#&uEiWnZJUs8_;{m=h80(Mt-93Hs-91Ny?7qPDZbYI7rL5PR_%YI(FDJ)Y
z4pYWQ8sBdRq-T-M&NmRdoG4c?uLydxX~>AhNOSplw4=!dk148-Y7C{7Y`oL3@5-T<
zV&k1b;E9fo%FoP(<z~v8)={ufzJtMI^fbd6IQ^82w2QH$%)X7CalVcrmOrF?F)=b7
z-0Xo)Z7gT}OYuwb=h{!1CU50U#PnR`<)i{$#jXW&&c7%5S^_Y5oH*FQL=Ve5R*MtD
zwPaQpIn-2!%wFHJzuo(I4@*4k$>S$CPTP|J5C8BXBLCyZXU1a%*X^OeSFHyAN*CJc
z-oWVa)poxi{Jw-jGOxpeuU`TIM7@Y#lW~+4BMi8IspVF8=>POA1?Q{t)$PkuKYwK?
zH2x<oH3^?5RQF<Xdur3`x=i*3{cw0j0>Qb(!A5Ul!_KVSj^A+A>E1lLPQ@b#R~HKn
z`L{~g&ymi6iL_0vQ|p-yi}9ei!^cp3f{3?E1yWXC7^Hb~)iGDS+8P_wv8AP-YdwGt
zrrCM2KSt-&*cFyVr(TevntFLj`OWTznlcVNywq?rg@0X3Yxvg}oJbu3*PB<4(a)Vv
z6Dqhxl<gKzwpF7#qIBzQ7k>?9bu;Kcxqs(j+pgFjW=7Q4gQ|(ij}Sg$C{g>D>|Tf!
zmssq4SHsFeceXXSTCYr(@p{gaA&mLaq@D*QJSWnwIHash4SO@>Mb65|*+apETF1Jv
zNt|@<yps#FR<Ah*wP|q*tt3KgFRg&cq@=*w`^m=uNI#&i#sIQDj4bJPAWeJkR|Lp!
zN!uMWYpC_|uQ<23FK$E#=07KzsCv5h<JSn&gs!!<Ehbz&mU@!TpPD+qAX`;gNlEkM
zzzziHRrKoeny-=;C~^?KR)KlPfA;J_Z_h)9Hz=Gq>=sf#f;-=!u|lj2F(eOO1K+U-
zsI$_#UtZqaT!xbJ+Z`C0X-y=p58?Ht$e~xLf|8xU1*w~v0S>t&%0s^|p~Son`_on1
z#KBVQCZ-ieHy&nmaID)K_p2?fcMp8lv1r--+OoX{voIz)#7=Look3-ap3W%v3w@Oi
zl8}R=q|5VFkk9s4NP6jT<)Z((DH0J?)C7yNQn$eSO<HJdY%-_}Mh*Mx*EKf-YYD)e
zLB1VOBQS0b`$PDgYae0I#HDqQh^33WxdB9Xdw+6JU<ma{{eD2*et}rHj4X*@y+Rl%
z0C9ENKkrT9wI=2X642F{FD|U7IF3RIOBTpaOZ)L=MK*T8JRVqZz;$vetvIc-_vZ|_
znwXjSwO`|hii0ESeF}V#kD7GMbU;ec-qES;dm{n@S@~Js(bwT<OzXNlw6)f?$6{Jl
z0iJ?N*2|*2%W7(_)U8lydUoZ)2ApRgy07oLaeFS*A2MW`56oBP{@);;i=K6BwtaMt
za(pY*#X<)H?%NipZie@|=5@x>hg9%F@MV}QEPF)N5L@S1Qg1igMhHp6n19`um6Fn0
zcXR%h|6N-fEM-dt!lz_bNxP}pIiMWzp^0kB+TgRF-2-6*N4HGKv6x)i+C*Q_A}r=4
zJ5OH-(3!2)d)f=!)+XjNB_Cs+z1-D)xN>RpXywv7ookL}<&st)5<}{6c2K0z<MwU#
zQ19uS)+}DnDaKwzi^uJ@^UeM>{}}T%`#XK-!!d>`%wg4Q5WcrB@u<rri<ubqxJ5TT
zUHwpnkxoHHP4HkVnaV)!sX9pXx?Zza?Hm-Px>gMn3AGih<ng&O=KgrozEwDa9kVvA
zaZ_)9xR-CCW73ljbzq^`61?>XW~8zUWKLB}Eo1Hw;C1xcnN2>QchGk>V4L0`%YU7@
zIwy{pxBwaHSmHAg1--@g&eU${G1Rtwa|>^N?+q#0;ZYX6__2^v7%rA3*rUJrFBFZ1
zlFEv_3CL-g_~AO-6Kxl`$fxWUhChM<cx+R&sW|S?*2ri88988ba?=0aJ%FIBUclR0
z6CzvH1Nayriz1$+wD6~R673j#UqR9zn|eaLP0;Bv0j@>(yVFlk`aZuQAa6DD+L+Z*
z(c*c*^#v+tAS51`0f$lGBhm%;udd?afqaPB$n}({d@Ua7XnJnQb4~FVot<GjzuG&8
zb)Pa)0=PrlDS?pF=Y{WZ;(J=SGCFEZxj)hZDR~P)N}~Elt*oAul!#VBUrvjK94*8p
z3`BD&b<xrNwX~4EgCBMv?JKJeo6;(Hd0$@;`56C6(uc?g)qx)AobFhS*C#_`H(v`O
zK-R}Wkm<cy;EcDNLv+|-0a)Z|=&VD62#xJNokp=mxzhA=>%>FSc6LB^Qf(wj+pBI5
z%ctqb0Qd6{DVC=sXd0dKu;o>=+#ItPb!cyvW3Z{0O{(HYHnGOA0TGwSOuaQ1@%rJC
zCc8Lv(v_NeqSen~lpzDKDbLSow5wss4!92V+ktUxR8%Go;J#RYsbTEs7&2fUCPxmC
z;e-Lz0So{tCiM=)4-Qa(^UUfvxn(va{)A-m{n1{_p6x6IoX@5AOfHZR&RpU*)}+}I
zKH2`F7~<cjmaKNf66!35855%MSvb7zsa;rTE@sDZMKsHN?`p~+BWJw)F<vraz3nZ>
zP&$Y53{#DA$)!Ivt@#T&0&_DJ3A!cWB|8UUNp+>y1U1s>O%(B>20BQj4JTT{Ns^R4
zSnuqm124wM0kgP!aircdto~7TqQeu=8B9hRd$YOvzKf8;y2)pENd>sSyz?`bF(+cq
z_m>yP{?6OHmG-M`YPoJzRZ`_|>cZr=7i%p*N8aNAe{vU-@}C)K6z(6G9ba<N{9q|g
zm`qKs)K|cJxL2@u5zqAPIYZWShC~hR=J~-EB9Ui{t6P(9kQZs{F9_8-=ZWj=eY$hc
ze>MeZJ4F%azbS!#jfuz{RWz;OoBwv&-13ku4*&}41n?j+s<pZXea>z91zyjv{vX!f
zI;_g|Yt+T17$BkoA|V~p4bmbdEiJ7eAgy$xqM(HIq`SL8TBW<Yq*J<ckEyQpt>6B>
zz0Wz<b>=@SE|EFs`@YXJo-yumkN(jS?dmf@<!aKmvzBl3cXi!n$Mjsef?v!b59Hiq
z5%{(oRef)w10;w|j;%1)KTuLDaEoXfGz4f25=ys?Ra9%IF!2k@eWpx&SHHsZ>BdLv
z`vp%09qsK$M>sVZ3mua9xV@vKjN=O7qe8v0V*h}}fn&YrgXCW*Up-~C#SA9$x?dP}
z>r`;Y94@GD^hSrCo$5Bus|(Z=ujsY3HbuMy;}VXNa_?pV<4F0u<K<DNsOWODT4Dj*
z(-=>}jVd0KK_)rfM5^6;i^iLlBd+E$?em3=;ue}eaqm0=2tu#r%{Rt*mB@4c{N;6b
zC?q%2pzp0U(b7JB(4!%)939-u$VjI8y12;I0fY1gRSGSd*Cg?&2~akk=12am0ZydH
zMyL)}9=`0o{p9+rXxoM-C3CIO8qGH(3X+l+Fo~0s6OP8G1WQkxwrm#*@8Nbb@*j96
zQCLk~wV>oKEBDgb)0Ap%msftGq?*PRjrTG8^AcX2F6%;hnc3zJyXj_dP7(!;T*tCC
z|1ZohjwWo08081~i*$=TmjP85GeROUQPYZ7R8-_<KZEgtjvbh_WoP=(V5@fuVjLC~
zRTD*3`W%rkePpC#e&SqG9nlc-@EkUoGp-+R<2?q}t#DmgniMk_W4;ClgL6;bKS0^F
z-$qJXY`#$<mWgmGIx4boZZc>#*qmzK3D>!|Fq1)<<UXUis*JFzvaclC-Ip(aMpP`0
z<_A4h=t(6SBMq&<xidCCW_&&<Ri)|pgzZ+dWMLl+kr%T~D=bn{vg^=#kiSkXr<ceX
za|#9Qk5J47wnniPgtEiRo5SH+7(RW$BC0<xZT1C_FPRn<?>ji<60oO5=9nwGwEw#x
z2)7LJd))4BsPz2$QuOrF(obueV|9)<7c^E%*VHzA-9O>E#0gmOpPs8^6OUF1Mw@>H
z8i$e+CnD@&DkTL4o{zScS!w%`m(p74YhH&_n|WuAM8<axMd5*g+aA8<UmV>d=UUec
zupyGP>#U|m<R-|HnvpXk`AIzXznm4x>K+{5`{?ofD_lEEbS~GUkSHgI_LOs(47(hU
zz^%1I?`E-Vf`<Wm&22<H(~~%Y@~QNMQ`u^6YHdkT^aW+=HaOCTmvwW<XY?-}7M0`S
zpRFz(P8Jy*S61QfuT{l~V;YkmQ+Un>B_>^;_e2Js2O9@hF7phJ>ZQ2B;y^$ylf5>t
zBBz^x&nPzRuzBcwzWCS-heOqhjt9L?`$}W$rLgNB0bX9I$#eIi5$D%m)=P<e*nZT$
z3qQMn5*H1CT<qQ=PG~q$;9YS;8`m;QQB3XkPPTUaP+u>6xQe7ckw4&Uid=(GiejVl
zm!237!r8dL5}zkC$O#({)*jxhii&5~X+8=<F&JKPdOkz~CmT6h$P0sV)i{H7io0I@
zu~%~xujy={T%#15pnrOGrPJ={(cE8ChaC@3NCAGbxD{D@?fNws(j}d$K~5zgK*Pbo
z03}toxDn?_%4Co$%YzHdTD`I=dBBx|IB>oy+4JE9{T3pC>$9wPDQ77n>Va`fa9uDq
z4+Clb@z)FJs)J%&o!7AV8vSsau}#ry&b2AT?XjE>nl0)%A~^#xpERpDNLhG2s2qgR
zQ&<kV-$z?82q49#;aN!oHBk@Prda76cbhTaP`JlaP>WN?1wDhLmm@C9NK(-nuh`3%
z_d`qxkc7QtwYZUqkv#V_IRo3|W1S$`qT6MOzM~~eFHM-D_#-=vS+-;hej*rnxhy!@
zSmFx>M9iw&rvn3jCr*5c1fn`_>p@AMxY;ww!D5M2v(ok_RD3>T5b%hK$8(nMjk~=c
z+1A)(sG?cltZMLMM)~NzcLFoKp6IafToS&W$?{hb>d`Oe_N&tm;=7AWQ*WOkFWg7c
z-<RZv7F3@%cehvO=EYKx>GQg40CvJ_Bj<y-n6dH8XOuGVUpM7|u!Dbo<pq8LayN~m
zt>|<{K)t@PM?zKbnn?dsOV`l&RlX-N_>Bp_u|s1!g?Q*q*dKg(;$GVhvVuE}`5PIw
zw*#azdiCeetn4Lr`2TMXkSGxHZ@dMYoT{Or8Xg`GIsmcwz}8W(O~#a2wF18iD+l8x
zzS&o0J5wpB4PxtG>=9b+q{lT{d<*%;Mu{5FG_NaH%R?q#kZ@EGAj+iK9ka-s%c!q1
zGne#s4=)J<3@ccs`AB6x%-7^S6X{UeUpv<@{3DvPWroWGf+<u_mS$NjZ6K{LBKvwO
zL+?t@*7hR%N6J56+r4kn=djRZ8(w?OW_RX1J7A;5v71{Z1}FHm<b-ml2~b|ypAEt8
z{eTZC$=3&aHZ&>0?1~XB@YKV@UIk2SK)a@DENz#+oAfLYl#PZda?4yBuwnw@XsgLr
zy0p3}`T1p=w}#d!1yxIXLS`2GsSYn>%E@raMvLSwqmPik>nmI9W3e>(?>Ta+Kw1(e
za@FR!m@jsj9*v2X53eI1C3vm>6<J&MYM1s`By{!lmoX_hqVy)ZRh=)++Y43=JIh>S
z^)A37*6iWmiwt+&Y$gZ(8rO`3gom||d9t@TghoP~`Kf}!=af5DSwBTMZ73---h8ZE
z&ANx%F@%S=u5<7cmni0)l%S8-gV*bbrsP6z?*eZ$O$MD#g1FQSMoZFyVZ2DR5%T}1
zJTOy#s<ecx`NzW6#HNpRS<(RF3;($ZEBwQw@8REii(IM%9<kC70K!+&e$*nO;n@-B
z|BU&rd$cC~F2-r1POy?nSJ|$z<pVC^i}z$0$`==V)UxXqwk<p^=a=>C+`x-ZNqejx
zDCPI+=Wt`gnaWV%&O2w?pxfBE*_kQvnHgfK8Z?O{=N;RI7w<(~e()eL^GUcmZ3cR!
z7_MsYv4E50hXu{{Y$cqKHIet6Soh!WqyM?7aeswoSLpc#_fvx!J#vqqZ$!-L`~=Sv
zWkAG<6mx3Wb?@X1fKx9eC5L68p;eBIq<j~naTu02GU6{E$x9+2J~<GBwAlrgfB~_F
zlwET3q(^?{9cA^R0qM=wi1(K&BCzff_r|oM){8ELB5vf_1?#ddW$^$GH*mS(+qKto
ztF(cAPgL?bSgA0`+Y`~=eEIvi;z2%u8yCD=+nzeU>V%?IHRoPyCABRFv%1st;*zJ`
z!EK90K4k^%@QBFFjJUc$V?F_#kcdaxqK~xxDt302&_^u=hJ-66ud*nu63}3c&y+`)
z{%<`}3M!qIMp~twC|Fq*dZXQ|2<u)t8tRWK$Y?Qed><ez!95IAV!81$#P(aP5bCQB
ze?Tp(XQDRIla%C%R5QTANx`kuzJgMR_Gb|qNY6+koG3Pd>^ZWIB!C@4*ipTL+uV^;
z=B*+V#R>Q7X6npm#>2O>!73^PI7WoAoo?7TG0I9^a9nzqMITM~UR8r2GCU_aAt93%
z-&K;SNyBNnDUY~@pzt+@L-c;*-bQep7`YmJ)k%1lm+`IDKL%!1zVp$Pl?Zs2-1?*L
zfub2dLx`h0OQr*dz&AN63$68H+xkU}%qmy){K<VuoYH`L7H*EQlY-ln+}v<%;90@B
z>>dxyor0SDQ*E)iyCx=Vc!BwNOG>xvFn)ioA}G>4{Zh_Z?jRfXgWI(d$}buRr~72w
z-!(w&?}AJrV9GkHIEomzTrJgBxhw`3{Cz^!SY37O{npmrrG`2~{S%jkl=RPQB#mp<
zDlVpsToq}LHI!u#^$CT`aMzojt{0_vEuT}lRRc@ie9F&?zFot+rTWkmTPs2TDa-&@
z$Q74S$s2|!0q$!gxR=HAPx3*|GFurdMQs@`s&c(_YDW-baKJR?(J9eDi{%!a@s@1p
zAd&fd;TKQ<2rN`C>ZW$)Ye3^Rg@k;~s|`DkVtA<oX@+bqhRFiSD+AEwcfmZArBfED
z`9ae4E2DM=C-g8(2i`{R6~s9QZ9e!!o!{!DnXC9ekP7weTE3^8dtve5l&d1ev19>)
z7iFGOfj=Csg2I>SZvNvA0?y?h=PsqM-rMOActU~6icj1;cDFb%YZcBJ-gN3L_wJUK
zr<8k$gT+8$+p1+a1Re})^+(^I2*V(0785F&Nq)CYWQ>+ABs*T(d1P$5es<Q)v?lhx
zXHGpO!POa#8Y+nT7CMHhS7p|BK4Se|`(Y7{`x*R#0PpRPkI%bGj8wll1cDx)J0&#)
zBYKoIg{M4rm*D<w-NLS3;@QQ(z|f$GP+>z*+NPz^GsQ*>HnBg~Uu{8?4XG{%-(hQv
z4yMj~4T8HS8EH?%ul<u9_<oC*hH6`Je<Gr#MJS(zOfj|jaXx#9k|ZrHTI-@v=wHqP
zf~8*`%g9SerMV^`bXpCceUg6ti@ifG^C(5Pf|}{|R6}3^T;lp9Bd1}z*x8owU6j1>
z`uZAU4_&s|V@mZF+OcJ0+2X~q^N1E&e94yPGHx7G&gfl9F(FqY{p65p(qW*+u1ol=
z8=18RJ6lDGK-ZhLSV=~NVyoLYzb{EU@`Ue4R`t+2SfA1}2oal_ogs!VZ1~px&u$Oz
zWTZ(+T-B@jx{vpraPwFuxVlycCym`qh<g(n-*VKqhj+Lxw>~bmWKCE>f!&#)qZpda
zWZF6c^_uUud_t%OsJ<#KkZ9|WPM_TM>6_W-6H%3^t@fsoXfV{b%qUY@m42Ftt~-x|
zi;D;eh)51kXmy0O#F&=uN}b5S#`1@rf6nc+&D~bz{ac5{&evopaq!X|3k%<dJ^USQ
z{CcDR$AdJu3Wmk^2Vx#1kkFNy&A*!%u(eoKYtWTUr=y*_gA03!(v6CU!kL~j9C6H9
z1hyh~aO&&s(pus2@QCo`#XySK&fI5(CM(mLv$WdK*r2bEIbNx*B-?2&hNg*uW{-`-
z@;%$LI^wc~fUocJK)q(>8FQz9-2rz+NnoIoa<Jr$g~ezBP3?B-8?s7<?3TfrpV2b$
zjEpgCY%8#c9GUo}Z@z4$qnTK-l2??dZ!NwOB8(jp8lr+Q$;_zQ<o@ckSu(B9Cm@)e
zRL8}*W@*h{9N-ctytQ;2d8@#ys~H&cHUiFwRr({7!3MT-O?20CKp%8ghcsIk&<7f4
zRaDnE%ML=<akvp}bpjXBTBKlmy;|~hXwlLZM_B>3vwl&H)GrB-n7wO!uv^Dlcu0Bm
zMoN4EvpDZOzfeXve7Je=+)O{DEG986yy^2;wSe(yOJZrRq9J?^hBNCi@1j2L3OD}c
z1u5CXvqc@Z1I<+vJ;4-1!OQOQ3Tn4vqJ}0X<SDG-*9>ZQK0E$Us90)7GWXvP^xYxB
zQv-db0#4354gIdqNhu_Z!&sl?d6)IiyUAr89mlN~KD2CkSH)Z4g?8uj&VamfZstMq
zNl#!;i=-Zd84reTiu;Vd^R-W3cXo)KT^dieJ1fy~Z3SE__nWc)>*V#_;P+RDLX0Bi
z;tpLT%O*1$%(S|rAJ|y%j7(D7!p1s<^8^e~Jx}RLp#!-jE5j0ahRid8`;}%qPJF3p
zA8Bd6H}@qZ6_8Pe5=k~cW4_GufLQyac4*>M!P3f3>u`N=JGH5!Pww*h;jTi46<&OL
z7A-l0jCMLjcV_0#v)oYiMS>W|SDsOU%1`oM>>Pw(rL?qG`sCK@Cv6`%e_Q&?*vo4r
z)un86d-%v0U-hq3Bq<HdwFka>O{dmDJ&7DND+NE7lr*Nzyx-JBOV>q5<j><4wR8CW
z)&#5tz-CLxE*a=n+kNBWuNYB4y+76bX@oZ8j^mLve%*E9F2TH0z;o^RT%#rmKGb3;
zD<O8)%o2Sc(^@-1ljbZ3dy$RFHSbsd(XjVF6V)o-;N{95F96eGy8#uI^?+wudnt^)
z`ol_t+NW1dca@=dkNnV|eVu{-J%EE+8=J%V&)tnrDWmEX|5TAzHT(ZUvHtR}GmwJU
zgww+90@hICkqXOccCOaY)4Y+Cye!k<cz#<kErh+?%Vz15Xi+ugIXm&Q9u;{lj_0&e
z>ejc}Z(g~#Z8WoG?}mEWb$w;@`!hTtNyZx2Q@=MTmW;nUz~C0x@QO&#B_=qAr}gBH
zI04UxgRHjMu~kx8#;b@=**89hhFF!YoSZO<hz;}&^r$h^E^OyE)cIRUU|0iz{p<Dc
z-evcx;qmCk++B1xZr&l!c#p=4Ten}DJzITgEM)lh!03NwiGTkz335ZzjlBRRAm5y8
zU3kf}^Y1C@WR}*EM^oevt5*6jk-nZCE~H*svM$eljFCi?_2)OEY&>Tk>^-;WKiZSl
z7JJTomwepO?8F(7uzKaT7Ma{UY_Nml-@RnrpBk%H(%<Jlbu=|SR=rNb0mC=>WdFgI
zQBZ6kVL&XM=L75GF)4%2hLG{`sG_o#%krU>tqexAIWeQ3-B~@l0yPxI{=Dpo|0lNC
zpi0?EZ+n|KHKpehq8aE@=jl4GOqF)cqL%~H^(LjJkO$BlZPCA?&NzFx9kkG?s-)7h
zq*8AG6W=IxgA=@?dZ}`%%Ei{#_mILXF>3WU&~wh`dg3N{uG#ZC^VYB4Rd@@|Lr`S~
z)Ot)p+VtnUFl;uPU0-1jpTfdXcI&i?c+zM((r+`{>y(tmuS}_dE&RXR(ilEJES5AD
z6MOaYe(AkT2U^<u(vi$>ix4B1_kJEPF7-yco$ey=rTquC@(_RP(H?pi|Nl%2bF+}w
z>e{Ri_`)xy^2KAbIXU=JSLeUbxpe!USMv+TFm9`v3}vv2{d4P~uxI*i7Wf1PZe1SF
zg3g@3yhXK_tS^GA%PXp=DE`U))ZkhPdio?R8IVs^*dCXF$ETNC7SvQo5*YH*rzNjv
zpf=z?TW>PR3G%k^=u-fl1=q*a>J5UV1!B)B9vpbax*lzvpILMSQdaD(Gu<pF<HpCs
z+U_0523(wKG@?CHB5)R%QKs|BbH;-MY-}6`twIkaseUnV)Lv_`7^{Y1=k6^Qq{96C
zczEF_<(yAcuc2Wi-?%kPJF7k`1`UzF`(`|9xzjI1&LSj&&iE|f&pyEv>Vi^+`uW$d
zDdxm+wNR1y>VI=fSUfd;CO8-&CL#)pPPftK9zvY}i#RqoA_5UEkt!$&i57n@?@Ik>
z{ReKD>QZO=MXzkkj5W%hyFdQ?Y&(ki8%%=>kp5P(al9^S`M&fuo59D~t0nbxDn4QC
z5)_JgKLuXBG2hqNMog@9?A}6N?wg?7P*ZW>PCb)8FHlhMcG~4(bJ)V|=uq&@-s)n0
zDprS!&39Y<PGLkNo$0rxy1b^Qo`M3Q(_{22t@p2A7M7Isl70O6|26U2(b}2XGWj1E
z>u1X^V^yA*)IgFpwaVQSoPc6E{u6G;gI5X!G;opZ8)MxR<_x7{q#0$5z2zhmj7>gC
zaz?5ulIxu3vy(%Iz{!&Ih@j!o&V;!+hNo5FUw?qvPEXJ}jGcuLaNQshG}nE>ZZg7d
z=?<ik#`!^F+LtiK3tinW^k0lcMLT`@(zP`3>a}&H^Yr`hPuHSzgsb29MzB)mTQR0e
zMabaGnZK1CG}__RcqFPeJkj70C7W75s$p!VijEG>AaWNMo>O^8z=tZ;W*JuK$AdKb
z)wlfYouAw+jux=@KM8W2nRG+tj#SCLv+8a7-wq+CPO~53`i(;WeZOL=2rKI7_u;}N
z+reUFMlyqz*1FuiGI_t;%H=(Bff6aIa>J`q6<3iouC6$KA|>VVzV6Z$Pa|1bGSb47
zclv^dhjW9m0y_Um=Ss@Rv;&q^6UN@$F%r@IqJffXqT0=EDoc$bH8nF+yvEf8!O%O{
z&FwPv7e{lbd-hKd8CE=-Zv#n>`<3fYS>39Wl4hav{})di2`&_lxWEhsut~JldxLHz
zT2SvY&19}&=Pw9$-u7gy4ACYIRa4Q1IznC>Np0<kZw($DE?Ac1b2@G^7($eGn{&Z5
zvqo1j7bs8>^iLn6J&g$OR?GDtt#Lix13iX32309=V?Bp#h8gJ@J(MVQF#!8V;Nye-
z+PYkkwB5F#l)C2OA~H1xuaC)q2Z&rR$-8T8B=M8$dU$wdro~-W5sIgGLPAS(gz~aJ
z*z?6uxC?RejI;CKyQddViTW>v93{n5dKDm3q4y(w^RM5;X&>ny;FOIwQg#q2k^9hj
zN%#r)G@Q!HLPA0f7XYClOPh-7n+~(8KAayMuLzf(2Rp@*u}LrG1hVdr=qgVbUtI+Q
z0)TL+K}SJ<$@I??-%W!fbB&#akULm8q~FJ2zBwQl44Kf@79u4zz2VuhOyMOZ3G2-l
z9$q+{{^^rPAwlp^X(M#xzs=NW4=en`g(|D59X*XstE`l<Tfb98^HhvEyiHvo764xT
zFa7<XqGn1+Twu_W6wONe31jwJ>FAnO)f7A`181}9y(P}Pc30AyTO$I)qM|~A3hn14
zr$z=&x1>Ns@f?es5HLZvleLPUD}$Y}Eby=!*ZGr14rb*ub0lMy#zbY&rxzv^1diQ<
zwp|61+_;CT8X6KpZ#({4j3P8OLu$r5S)<n|ZU+W!qochi-}-f>h%p6Xi9^HBdeik1
z2Xc3w7F!>b6C>`8%@AW9HstQ1>L;7X5lS?-QXap3%`!VCRyxTTli0$Q@h`er;-ali
zmH%WNMPxnB96EqtcL~~|9{-?3=iv4`v$h6~YijN7M3KOY)#jhh5=l%gjdE&Xpxtyf
zgj3_ltE2V2BzxLxy0F8rx*u5?@=3@|65kzSeo^B1<LkiXRuN<K;Pg)tAiOX!97r9q
z{du%fZZkTVi#x%Yt!-xd0u)d8c&(_Q9b_yGy4tfya`%Y@Wjk9EI!%2*_Tv#kCu&Tt
z!Ntp4F5(h+-NOs!gl1%T2VotKoWPE|Iu<IpjnZWa(IhlzoxOc)UC#Eq!<Mq$yq51*
zk{c!Z-eI}RPRaVasv6Pc)azDD`A3CIGmd+$^t4ZHR=+|+_w0SGoC~mxL3=t-Q>gLs
z_<$RmM+r#1Aeb5m5*T}^EwMRWV;k#WKRDiE(Er{D`o&#h`L(`S7$&mh0>w(?XP6@{
zhmxG0RjGTT6kw7a#jGqY<NJS2{I-;nvRcw3ih}zBM!8zlnf<UT#m#&|muP5PuF7Pd
zTN0fvE_#r%*$LOGpte4aPBP%>W*67c(5Fm>QFm4ZS=|!q3W{!|e_enA6~aSIRvVtk
z_>>IV%5+*fDVA{54<96&n`3Vf%yZc1#aCBn!eAUcwjCSm#chJF!CpFAnyFV0$ch7e
z)iL7mW-ZA*uR{U^tWen3lTF=eIV(VtETnzrtD0mk$jeolmGBPk#3G0V4v!9P64cJw
z3Jc+$d|db|oezXSQeNe%ymejh8Id^d`9|^JOUPpu@{1E{?r1TYRG?qLyr>%y74x8q
z<XmNl&Ch(CBSdFEo29>-lG@7@apc>{QI|7+;(F)|-!v23f}5cE7D?)wl$hL*z{<*q
z`a}u3p(O2!i_rY`A=D2w>9hK@KTrV~0U`*IoH+yi?E7@$I5z{rqKjv~<MEQuoTAs9
z!YJ-9-p2^0`9KZVyEw0>Cm0lJu!Fe!h8cLsakSd%G{I@ukdZ;Vd-1uiN1I6H>$@pr
z-u;1R`u|BE`s4kJJ`^$R7q8AjgoXws78e&o#!f`ik%xo7CO8;7F+YSqa{8qS9UVE0
zk=L5yoSj?1#m4FWWDp(^wqyPJn)4n#C+XXcj3Cm!MBi1z{#Y~yZU&jW2<pv~dhg&O
zc2#O>svrqN4&O0X38SUcM!#nF1j{DhpwZO53p@d`Tq}aed_JTN{lcNQdcJePd2Nbj
ztX~)kwuP>-k6FS=Kgo!FCKB@iN*Y*%-lYL=Nhx$6KfFo1H+rFiCev!m1Z{Wu_&C}4
zNy;beyb`vyejGftqa*m1HJSaW+GO%NhOSj+4I%5Jo3F{0eP8{QFrWIBEDzOLsKCEF
zjE4t*!gZ!ja)StB+LZLTXJaIJ{mxBUlvarFjP#|VI5#{NaGPFB6u)xmid%*4&qF%Z
zzuvtgx^(FT8imgE8tJ8FKuwq0+HYuNFc0I_LF(f+UKJVawzGpY*K(PT<74AXe$Jq!
z3$iFY*Q#>d>7!AIpLD;XvA=qY$S*x7MMYEH@%WqjN~uL?Fv8fx$YuWLJ;FOBuA`g^
zVNs7{HMh4rOV`E|<zC)749DYn6&Dp1)tRlKR3{^(9n-huw9o+|Oxnm9kFB(18Zq&=
znaz^3%_}yoNnhi!sHJ73qrkw5$>lwEmM7%Ss8w^e5I{aVArZ-CK6$n<RVymfR&tr7
z1e(K{4i28MVR~`@u5zIeSMHpQ#mW*9RIhn{GeNi&@0UWt`F&O!3&G%}hVI^XCbXH4
zITjb<Nyw?G+o5Mz=~qtH)TewggOmFp-vQLZe-pE$%(!fH_i#8A1XW-9s6SG<9Mt?v
zxsa`-q)l`a%gF2ny~0H)^^wF#EA!X#FN|3w0ET!Fp)MdN`M9+cN&t6_^(uXwTP{b0
zUsL&t{gU>@K;SdHpl^4d8IOFw$#@utxxF#;#WFdl>eR*U+(q1vh}!`v@9o%Gf|d?M
zs7a+B1-D6X>H;`=nP5;89L?fq8bS64fkjvDLhI{}*;L)-gH0F59ecvNU(VNSPA^_e
z{Y+qJ`Vdo{3cAS6=owthCn~o$NXzatFHKDsfNwJ?IoU6kcYiQnPd-0i$9Zq~y_{fj
zOHDvdNy*@kZ_o<?YDbD@-TV}pu!pRjI%Ss7;RTpH*Y>=T(aR?vXy&!b{Rt>=$rvbp
zf<U+0er+seP4!aQX@Ib2M+6TCCBx4jg6C0uZZVoBhl4tqzhWF7%wKJ;@7~Xbo=<$_
z&Iq{ZxStaEd)o~A(&m$VWuMOnZQVq#rp-xL^<rW%_2(E@drzkB*#owBoeQ3n^`ZHh
zQSJ1LSw~RYQnV~&*ts4N@g^;>Hl7OA1g#<>Qa&s<K8c<$Dkvd~#3C*|JS<4<Tgt+%
znf`$Z@2e~32JsnPj|F3(zayz2Av}HH<M*wege_Kb88dFg;(0K^%a^pRt>VeuiY*T!
zB9xV_W(r4G8F(uRu5VpPw$n(@D0kd#kCb=t6%p3)NY2V$_)^BQ^1bw544+dkpC-z5
zN|Cu%NLRVGm)ZR6tcdn7;pY;>oe*+?9@cH&9gZatx&YphFJ_USOZJeVaMtHSsE%(P
zaT>2Zv{=7}9U4rpRy8u(`m6f#3*g7Nfvy4Fy&dh5g7Y7+f&7CWlo3?o*n0$=X(i8M
z-tXtMXV;5=w3k}9Svb0S;cH_SzuQVRf1j$)jc@*0T)InUX|u1+>`tB;Yp)%p>)3Lz
zr?9pTE7#}<xY4oOxB57kBec?`L6Sx8dEo4-rre*L>X&=z2!J=kj;>o66*0H=$-WOn
z^U-PwKhtd67vF2gU#_3&kJ+!$QO7lWf(VUec^MWe<>&FdIAN=R^2%A4;vi@P77BWH
zb)Q0s4Z5=&Z(|kjwxZ5E9#K%2et8K(1#iK7gW2BP5(SyuE3!nbwDe&!+*@Ob$5S+)
zU>%1RHQAK;NoSspCyEt05sqo|41`nsC3bE+D<M${32>)CeMgZYK5)F9A=FXs=F-7s
z-2~s$)~nn`OA_Pd%>%>?k8iE%4?y-P-LuaFitk05si3&{RTKxDi9vvlpNvEQy#^EA
zMRFdgM~~!H%ylQ_g6HOzcIarzxY^uBS<Sco*j$efr@R*;Q#!*1O_dVAv668xh4ztz
zU6uZ^k-gHrl<qC&GycG3pnwHS83)^~#`!FlKs9pxgc6jQG#YOAUn)6f1V+6pTU!w_
zxMWoO+1oI>t!+>)`mnbs90D3XIay7|S8|#LE9D;fFnu#wdoram%ctPoBUiO+sbbc6
z!a!B}h2F~X@Tkqo!pHcqb$B8rFCQDtcX+zHVsRZ2fOHRWLN%xBFHnlh?(OLctkiV2
zNB$x`pm6tW6UcAA823-%k6*nJs$QvyYD*`&$59L^O9-Y`8lk~7QX}WY>3lu3)9U>|
z7naHsbuxud#qr%>>M=XDypaCfUvVF*Jn&}M)bif1YF^vHl#@tkEk?;LL1>*Gl~XJc
zpMJ0ZE;-dd;=!trm45NE+Z@MH6PKX#)RY8c_h7^G=EZ9(DIN5Bh392Xh02AyR+%Ol
zCfc6czbmj%Sv6%$Il)x~GB2QW)n{$oiT&O}MpjPFE%i?YG{8p6k;`+Tyh&+>xtBb=
zIyYz3&LwK!)qej4z##KU0Kh5D;w*|3V(ZV1Wo0?3jbh~4ow$z8a>UBi?5!^K$Dtf;
zME)1R`GAv}iJYyv6QuwP8&_uTYE!|}kql$C52(t7-Ts9C<~J#znySm%<M_1t%+1{L
zniH0y0-F(Av~pv8ThDk84;4R0u9Ec<ABU)@zQbW(r6vzUl8=_!xAY#>L2RNsE#U6k
zCRE!fDW=mF%L{8ub~)x*sUch$<^01OUPLJh3+p`cL)O!Q0djAA!P+{cOc{b>UCv?Z
zD{ZaZ|JRJ(P=CA3=(!kF04;m6&^RMyYseY{S$g_9=xBh3ODfc+$xdr)>g4L~2?=!=
zj;AN1R1=nHev%oW)+~~jl-!Sv&E4ORQQ=`koB8rS4fVo2yQ##VGLt|<zYYFR-_ToL
z^aFlGL=z<?7@@7EL;$#vfz)b|9_7sdGaJk1&c+u27b=GJUr(U-Q1me4ii@||{PHaj
zGb`THqM>4AW>ing#MXJ2q_YsLtjxJ8rQEtO$T?mk$;__s2BsgxV?BbTf6I_EKE|DI
z6h|XG8wbUmx2HvNh@$RBDk}6fHpEa;)&t~tV#%CR?0ou~R9REDRwxu2Cme-xDt)pZ
z*RVYj)&4f#LdC+%M#<#aks(aG=|q%}neu$HKDdR{Y^s02I5VS}jEF1;<PpekyUg5N
zgO49W<D}R>m}0J3ZBgwq%Fp~)d#k%(xSo0=j{GDnI@MUn-6t-Ze&_m6Um0^xRM6CP
ztJ$pR#W>i9s@DWwm6M2q`cZ$}8};}&oZ%W=q6oFH$!zbkrs)uDGi8o|7!$xTlVZLO
zIp&uEwE3SrrjREGFL{u_z}^DU1iF-LlI2I(<j6~NxWmHA?21X7SEmzpPBiV}zlDj&
zI}9(^V47FG@)$#pR>sZScG+WRr^!z(&Nk3Oc|Qx$NuSFqn|v7x%K46jh>#M}=Q0?x
zRZ!q*uFXKpl*>D#f5CFbFM&+#%WfC6sjz}2Yc+w)MwAkPjo`;tydH4Xgg2o4T~F`1
z%O)8sS7~>6YZ3(|C`KBGhs*Hsb-%M7F#jK1e?QgqB7gOqSr-*g+78`kq14~>!hx^>
zWPIA@=EyT%f&iVB6(wcz56HV{=j1@Yy>-IdPZJY{jGCZU8Gfqv^S5?Swg$DHl2S?~
zcW-YCAG*7vDH|pfOrRHiz<ikOB+ZWa!Nw>g#E!`(zC~_nvpZkCHw~s1TxVxn)1ikp
z{{L82ASa^*ntG?}8s0@EbLzXdSh+YT-8MKmU_FQv0^4E=7RG~-QBP5ku1`l|*YR%0
z24f@55i7?AXD6kn$A#^3xegZT>L_n+{HqfmsSmVJ1Y$O$W*=8o>3W{ss<}B%WPt6t
zXjoyH@)OOSj8DDe^c5<W4=Qq^_Fe9zC8i7vmPA&)4uyU<r(5x#hSh-10YZYRC*OOE
zk9(?u+>PPx+0r7BOIj2Ztz%_R?}dh&r(_O}j^ucM*0#5tj^4N_E7P73pyy#{XUKdP
zOkI;iBjRZ1M{|4^cS9}A;q;YJgGseufN8n9W<0U$Ao&hhdsMYD-(G|8m8vMM7Er+j
zg{1*FP>`e}o(m09+h>?J#=f+?U_E|1TK3dh--;XTL*%^*tG+UW(h)iFJC@UhwWT?y
zE(`Nu>od5Ka^AJ;_vvJ*j|CMkTz;*pSh?@<b_`|RZgKv(`PhqZW>E2^7c8>VT)!|Y
zLVKl728lA-JG&Yf8ND!P-0yeHp{MFq(a_LQ3m+bGj6jJ-x)-B6c)e#`-}9(alv*um
zzD0^L;|d>EW+f&qED)7Dj0<uWl&3UEPQH3On7Tzj49$W$Q4iYN3+QN`v@Up3)M+^$
z9jHArMU7;rf1$pJC%woU=T}_yDp>OAbG6|DVW)EZyDq%8x3~K*JsDeG9_<un6m%hs
z-L=$`MO9Pdl3HQ9g2~pGluAT*pY9YYpaq5I%hI$-qDrs18`mew@0=v1RYpZk50ASj
z2x7LEho24iN7+#O?G~=g&-J*|())}JHXpkJ1vD!H8f73mH(f4Ye{FrM=x|H%oL>O9
zdTWblZo<2Tv`MYPh0%kO5{zOOZQ3O+^1YWMb&f?{gQ?%4cvclQEUASL+baLaItw_z
z?x(37K5^$=XUW_8*4R3skXnei8EZf6x$krt7^XL+7d9dBM@pyoKzraaoI${M=Z-a9
z(h-HM@Gsc9f_^WyGp6Z&+a#-APR2X3Xms5ay?HQ$zQkeC8B`d1VPKf5Z{Ub=*i~*E
zWYG<f2r}!osgV<32wHPdMPYJ2)<9Xe;0-4z2*nlZG2e}S@L)dVj(Bovj~em&)r9XK
z`|9Kfqi)h;8UC{SJyR*o(O0zcdV3Wd!Jy6AwXs>+xl;Ep>Et~T&|Z$Vu8{kQPVWOk
z`1Q)yhOQ(#)rwX*VrAF+Zv9~Ixf0N+ra<p!&eVAK?a(hDoFA+l)vm5cxh8(Z6HSHN
zgm>nbSLr=W-ju{v=j1>;7lbj^_&lH8v&~+L)PZ6eve4hx0it}<@tG2OL(adpeNUJj
z!<=<{iryl*&W9P^W%uTD22V7q?lq*cQgAgZ8~8@Stxa8q*I<C$;)%1fpgnvW5E8IS
z#6tFfKI==;`;K=v-c2Z9a_xj&pi&&7)AMZg$@%8iORyn;#?n;prF1GUw~T(s<igqH
z)xj93zv95nz2OR0N@O&$u_+XnglBq#`aVTnefQ?Y80Jy1DQ!u9K#kXnx5N4M_d26M
zfd?*?Lvn9)Y^9G6c8~=1Lro+XxQ<~k<C=(Rlj8O~Z1?=<x2*Hu?*!!`!7m*c28Z@4
zh>orXv(H_OS<(p`^d}87S}}_=I6ZH2Qk_D6*~sn+<Qo!zHcE7m#%+D{O)xmxCt{g)
zkAk0oZxULm2Uwg5x+=WBBELNVm66Zl50~$zW9@M%I|(WKM|sZ&&P%Tpo?#vE|0>gE
zfB3DY^sS&FuKlGyIv;gcJKsd!GbkwPNZ8K4^YYG`j5Z5FDM%lY&^PfO{K2&F66Tfj
z(Kmm8r6><Ge|-?VVm>m1nLATJ!oILL|JJ#~)b?%QPT^S%#-f(!k3XLS37>78J?AvP
zMcnyczx3Kk3^F=;gFuok6N1K-VaWU9C~<$YZHLJxV)vXp)@X$x{y)DGLif&v-U^g1
zs^8^s_F%~p-=H8Y2TC3N;{P;n3tXKwG@B_w&S6FB6AI(p|MUEH$J+m&lDBXp<Heq`
z3{;fGSO2BzPG01H{e5AZ=@Q>b?SihE*-r%C_85Id&lP;dCo1JDTZiGomC{8;7iV;<
z1q=KHo=m2$Rn_3}$H=ljsh=aPaavK|2uj$pghi`!Z7t}?;Uz6yujdDB)!^I*wm({h
zY6+!f2BZ1*D5$&yNJK=npRa_Xx9#pgtq>U7|83>*cu)=zUvqpxMn-gKhp*-O9F(zf
zE^h*z^w5b^d*E%;ex|<3K-Z_sgg<}Ql97Ra_isCyUuy3z+(9PB!LcD_Wr2YTudpn1
zm{e8I<4AbAzlvC_v*9wrPCBCabIJV*$mN$Vv3H$#CWUj=|2C{aw)X|`W`P)#;C_?}
zo+n}La-0Xm{8sp;P1Q~lGns6QH;wfLpV&<H<qbS{zpPc`5-H2xHLs&H*%r%m5L_Mk
z_0H}MfsOst&t5MNb8}1kkejoo{jk%m&~Ru6IZakphJ}6}5D|g%A2PAj`SOv1v5Dzf
zkLp{+zU-}<>4}Hhe;_RG<APrfjZV2o$ImRy_kh#Onb(R<r8wZnl=lxAePE_i8>R}~
z=-RQ~$Od0+MDf~e{`)K+ZeeknmgXMMmB$jSW<D}-mRPiQIb#VBjOIxpA!lo;DlPFE
ziQe!B^4P^}71X3^+F~gljia_x(zf#5a*Bqu%^cbnKVF1qYvd1&inKBp*yRS+4%^Si
zLU3rFGQU7PX(6DEK*a9<oDvk@Ut}w*xgwzevyRCt8~4`aaO}x#ISgl(W^U0)2+D>}
zy)c&5SGd3{qu<}I(<UFF8pnDKa^gS(6|fCjQKWiQz<ba7{_b93jf$dD0$QcKuI&J(
z_&%PAQEtRRSwsR^^DXO?$Uci7S)|(6FOyTSxXw*pQIQE7860>EJqb6F8^^EL8#~a-
z16Ye6aaYi)>6HtI4Ns{NCV8!iiGz#j>XP+}XmT=YL!-|+@7H{9JZN@$o^HXcx3MwQ
zw)1B3F;Awfyo19l=d6kl3>bP=sO~;C-rhyRS$fn;N}dM%Mh5=WNYL2#>^#FI)I*BY
z%(ns20h{ez&&+K&lrPuaga`lktBVmyjz{xx0y*wJNPlj;ZUO0lYii+ooH^k4jF;;B
z)Y-!4aK86ykjVT_d%K!g`m@5=I+5YKHr>j~iG}K)Iu|DWt_Fo5*1Ab9&FdN@Cnkt3
zFAVf`solPPO$|?)s#i%oRJK$B-tI%`q~d`5#~AcRMt=joOw_jip#iVii=AVF{SmR^
zI4CT?$-b{w7$N8d7xbN+9AwkOKqRaZZJI?NqaJZunrGh0(YJbF!f8fEtzBvB+wm7*
zr0Nhw_P9F{iGA2F&exge&(D0@J%S}JCs<h<n#OfOiPF<*cF#r`HM#T1m8||nPnk?B
zBdv6Edr22toI#7lN2SM{Jl%I~Ik*y;b%Z6<6xFN+Wb{!TF3PmmMYW;X;)K*@W>?|f
z8W?YTr2KXbpDN3v5!#YTazSkKVJ=y8P9GZjEVDwl%hA}nx|9&1ev*mj{5I?ynHlpC
z%{`I$8|rp$8Y1kNnrTeb)mySgr$|YX*2(({4r_t?A5Ect1D=wX&zn{u2FEh!AnZ!@
z^9{j4A~?iFk~a(|cfDU24vvXtQppmmO;;cEz7`KXd1xs~N4MftNpbfRx8dSd1|&kN
zwuI^c$Jzmp2J54c4C6JH8iEM|RlgG>)ZwO%4{tnuKbyU<DuYY_oWl#~yFU_0Nvdnf
zrza&O<YoD^(A;PEBq_Jl-R~iZCX$j&&z)yDG_u}kswu1ua1oTjq=++fA(|U2cw2rs
z`c47`T`mcEsG>q$jw{}eUU_+F-2ePog3Rv&Ey^@9#)8d6_R}&4Rgb4Pg=o2Z)yL0Z
zTRpHEEkRt#b2gu_E+~!Vci{=4;H8jYO@F}#sfKrt9(522m<}YP|N89Z|7t7tL7G<n
z^c5pQQ+sp8bU$0K_m3wepA#j|&jsRN!g_m+u-b;7hu^0AV?K1us&g77WW1Y(gv+_j
zjPZ7KjR-R(rGB!Sb%N}lWKqrqDAAAP%}lFNvu*Dx8lJJ6&0ifP>I}jPB^tvD9WKv#
zPH#kGls>4nJgcuCjDx+^D*1pz6CP-!9UNZKfxq^B7w|G3_dmfd5DtV(2}`t+EO^pD
zyJsL5JF$gwhZ|HfZAe+L2a(hk8P5@bJurnU!7>88fL~naB)@$E%!=h>XIt9TCNvO=
zP+iq~?9U!8>|3X#s1!4_kCpO5>f$ZbWXkU$HwQe#AfZ<ZDL(j!__KXgp~d46FFD<z
zC*=hKu2wN{(URe7X12a+&1dC+B)1)OTy#3v^k~J!yf|#W{>ZHqBR-t>Wa8s%raT&X
zK##}&e7rAQ-*ivV&Z5M)#MRtJ#-@GcRZJ1KqOuTa>6ee~^}*-5Nb5cFa!RO(HS`a2
zvy+iQF}sD7mtwfJ-B<GVc@)1%TI#~mrX|MN9a?%ukb*P!4W<S{d(o)NkFT+#B>~cw
zA6sC;-pv#Wx>WGOQsd7M?@mjY2A2o+K>S~ks~uNz%oGzO92&z%b}YfYQ={Lm7#Ku6
zp6C~pUiQiqs9Xc**b6VH?=wcU-167YFH-I=Kts=XkTCw`3rGKlIsGIF{FWAqa4n^q
zK>-7`JrO*T{!&AcVSy1iu)}2WFd87%5Cber=?=*W=kysgw2**Ko#$XxFZ?@`6ddAu
zS|eFGqVCg(t?|1P!&(Ir=dh?<^-CK3PR&bUbe2J<rYq@{8yma-@s`=jhN#SFEF$2w
z{U9Sp{~Z~2SmcRGse;rRa%e%e-Rnz}PM@2d?Q$E-21H%o_V~C12pzF;g!Z<jCc8eA
zIsAXkHAzMCj9iD3XT&?Q)bjG@gUmAeI2e?3vtv;n49)kOn6k5qdbpB$N%kgGDt#Ik
zQbU3d8tTE<lEPUaXZct_>lc_cA`YjB`tAVyKnaY7oxLrx@Y$OZL;|j3y|wPxacHHI
z@~<~xriNB@G}3o~RF1JX`~x^I(bk8O81WbaN$yHe>TQbDmkUFuI{7g&vmN;Tk}x@H
z6J<+=b}lK2zp~PkhMb<4c~_~rVH<4BbwS*u?y3AyHxw0^Ai%i?&6-f>m;w23_T0)j
zrXo&g@2f5(Wv%T`$3#xov+nccA2hnTHNJ4!U-Bfzb1}nc$c`o1^05Y3AwV+I7b%QU
zCk_YYrc@?o{?jWulPu>aZ0p}YMEeo1yKKE5X%c8AJ)FHy<DQ2M${!v>^p)uGB9MWB
zt@qmiqGccaq@67hoX`IXG3B;VR+ho=J#0lVM8OoGjVUDqM+2&63ePkOxcT3Fh>5St
zZ~mG0W5|acGT8}HS~l}jT2s3$qYt4oA!#AP;_;6tEscwMEA{hRl3sp?<4*!ZR=`j^
z_sYaLP5=J2|H@Hiu5^ffYHfR9xe@^>W2bTBu;F@9*pk;CxwCwN)PBDk@tEV(^)g%@
zsk|0L1zkB4jrQ{MI5NQ3ZOvec^>vR>6FCR9VPURZ;8F&oHw(T(>P#FgxMPlsncY%`
zkU4=i*kvzCdYbMJyh75<fRjqCmuM)NuVqAXF^P)K1&1oehIl|{sUsK7lB;FGhw^g7
zBP;T#3p}W@<Mge=x$~cm2(+}cw$y89Xg*G2iW;dUd-bf?n8BBrm6n-aPf77uLSk-y
zPFYFG=Ppn1Y9V)2??R_emBV(fUZd;z3RA(U%e=I!(6=(F&?Z+HHMFyGHcna(SV-#_
zrPL+v_b?U+<ZJ2qn_uJvDV62xADbcO=V5MTO3O`{G#bWgm-8tgpg5Tl+!tv{v!L`F
zzju#-9}R^>pl;hj>$lQz;)q@v9GNLRN3NZ*r??x;989I}+V`%Z4LK}D<wS@HsY$r;
zieJQ#DSzoAZ$u+Eli>NFj8plIhN8={!^e=f@x}2hA>@s^{GWUUPB%Jgn>GNHPVm}-
zuCa61Ip^o1hkxaE!@>bUT_W@ON)<1YfWuhth>DtQO!JEo{P0V4BGE3^T!ndWYO|{k
zW~X8YnVKILs`$i0%2YPP1^b@7iZVw}HZ_g3)<=H>$$&P<8Flbi$3_Jyf146XqFAf4
zZKgi>RF%K<Jzzp<zm&W*_xzQ$U~H!yr_-Taj92Bmw<&kH=Z*@gl{L*(o==?-s50@p
zj14xp?seVDDtCMOsqOm-od025%*qP`p}99-mcn8Q8U6NEpZ(acu3oZG=a6_4tm%4s
zM10}GENorKZA<+V9OpXRue`vLRu<D9%+<sr#-<oDKRM2Y`J`~}Xs&+to~l>?<^+L+
z-|{{TXz_Q}5fr3#__1CiTAm?q@-pz=R6q9xlpl%u|HqE(t4wCYmp$-D9F3RZi-%>E
zwh_G75XDS>j;;#~6xjXI;nC|hiH5#rZeD!8lB~_hpC*d(B3W(O%j*R>Z=V|Uq46#-
zMh)!;rGkI0^9(v8>Iy54*BrdtceNSKYjfuL>^CdLRS6K*RXN%U(p21YFi>J;>IZh<
z-F>iX17J^|nW4$*c*4XsZ+yQ>lk!cMl1fMbf+|-jaIwE1QPlWo(!a<*Dn$9oLs>QM
z=NTK%I^SnW+u9T-rsG9l-mJa3RyV{sr@1!owEu{eZONLBdu1i}F7v}%!nX0fv<wWC
zx$*JwN(E+6X>X!CY>Cf?c<`fNQJXXQX~TIf@CtQ8x{@u^ICShB?8v;TjP}4yWrLsl
zljw4WVrSzpz;m>DdqIwv?>=igp0WTfCt`Jfr9bm|JKX*UpcN|3)?vC^C~-BG@|m7~
zF&J;zu&|&6MI!sp{r|Y<Uc^KdRNH^2^|HImn$@9zdk!?ot4Cu4;oGoHE{=8h!F<c@
zVJygb!dk7Y{3OXrsI7=gyJ2qAwc3t}<mc}FInG6+7dy3YF3`uj`k_Q${c}=?#-7%<
zkUO5y7kR31g4uZEgxP!x<+y}ihdf4M+Y+KewiMNK=)PK{zbW_=->*5;|H0PkaL|r5
z&$tS*qU3a3hD<8J>+6-ee<!PI&p~7B-n2kZgAgwbb)kA_3dNf{!7;A<oF%8^JQ5fJ
zEG&MC3V&mHD9$?oU<Vyxw$al|c9;$RWip)@m$lQe?SIYX%3@lzrZGyL%4nmWin3~M
zwF4V1lb>v9q%UH?gH(8SSuXDi$r*Cc47}okzS~Q0HZE*~VG)X1X-g-9C?SM5U?44;
zmBJ^k-;<P89K!-FIjB-fWTrUvl>0aL_Chqxh4f(|B9&KC){jfjO*xytYNBhol_3*(
zR^iw`)b#}9n;kBcoTShD8+-*yEk>WJXQWqaCnPBTuq=atcjHzE8|mj~71pOm?r%^y
zJ@rhVk&G8GPXqel{zw>{zf0D<O8LV`MQ<?x&NB8A;|LQsjA+#2AuC(kin9vgQgfVh
zd?Gm^p|>y<Xu7O{6Zvr-9)DVxEdN!1epY0n6#f93Lks8!u3*uVLzR<)lK1p@>zm08
zZ{07C^wVu)i9r<>Mb*g%FPa|kR>%l@mJ{Ijl-<6~CvdK<pwL=t!AG?I{2>Zt&}=|5
z3fd}eO~&XoCD2EgtdAeZ`uQbBk5@8PhjHtBeTtvb*O`nhF>mi^Pe!kzo0S;o>-)$z
zp<?9rt7e6Kd+XZ38FA0eNgxMNa<ujJ4`Sdak)E@<GEp;}!q8yG%a{8|-}Oltr(jtm
zfC$b%7$%fGPF(?f$WvUbrM0<xNtP0#WoW%dWiy14!wPb$gRcBej1g=LjTSXFuPuA}
zy5f+(94|+`+<I75C;uruPiDx7&Y$Bp=-vh!Hp5sP97=EBw%<Jtg>nw+oy>4qLnHyt
z9)uSfOB@s{M+sB2Mn=SFX_X3SAUFa`l2chZRZ>#geL9V>h@LAH6hwRuw~6qEOAR}V
ze0+cq?z3;p$jB%RWjwW69fINB786w(Pn7!lzdw>(p1W_Z&=0oCzWzQmZ!cSrMQvKa
z5Y7tf`WF#4OOJN<X15QasN>{E$ZdPHle{trcYqC);@NflEc`xukGgD-a4)YcsH$ss
z1P7mNhU&ol;hhza!CO$#af{`b%5gnw2?0438XB6%(UGq$CB`*OIY}9qgzmS&te{Ux
z3Bw4}t0Q1UFF}b#DLV%a_RXT$azY~_2TF!92*<(Q>uf$whMLvZo<0?&^c*z$mLX<N
zd;Y1nZsF*|ptzXMKT>O`?@&>q?lbb07lv2Bw2TR`iGzt65FkF6J)bdN2LTKdlJ}Dz
zfy&#q=L3fM+Y_0LJV2lO!&+hU2@g+lP@2&=yF1D6(+I&oa;6sYImGX8upchW%6ikM
z#3PR+ke_$P2wuNS!a#!;5Y+ohyU+vb|J89nV!OIpmW^p8Itm8+i*I|0ad>%!?yd|M
z!q8oAhW08aJK7`#HD#OmX;Bz%C(c{35D=hL>4QB{V4|un=8@_tK1sw+K}ku>@1UTm
z@TkS#g){Q>>!cv~6<DbZo=sN6Y;)kafxkgAHja;@VN@u$^~skH=}W*sWic@5VckBt
zcoCH?F(C7#+N~zb$EP$j)T-1xe{-{xm@iGYP%Anr4Mj!!*C_8$RV5!no+6mM6&xH4
z;1$dcY8k71o|PJx$IMKTlu*z!(2~(Dpf;=h_=26Gp-`odaZQ!4FNrq7KZ+3h_VnzJ
z4T)HRElbN;q58T;(B)G2eWaC+d8%T|S#}Q^0~7=}_@nu5vMDNV@iiwmy8<-sTdp?S
zB)_#hzuGoudCup^PD*1`*A+jD7nljAc}SI%XjLGB5oa)0A!#1w<gP3&OSZ(;I4Ua&
z*FM(K`EnVi_|&+pYxmrRsohP9i0AoDg<ew9*0!(WCIm7znTT^k`rk}cNl=xkDOhpw
zRv6$vlyzSJ?LGK=JR0C|w$v>0T{J%aA%PL=YXW^efuy9*GZV@CN&facJIB+UUvr_P
zRE@tC;hQk6uOz)(T~h-Xc3;-H{Oi|1tsVFEDvF6wQSe21g*FGi_h}2>oH5JJ0uy_M
z-HM958s6EoC?+m0H=JYNix@xUvmkQdU|}!HFL1;s%z`-5%t&H6I5cR*z=T(K@rmBW
ziy)(2H8UmRccEoslKX5~Hs;n5L%Hi#^HN?_N(yS_G_|@P#6{)JW;X4`Wup~>Lv{B0
zRqq%W%q|1lq2=S#p;c{aZY)`!^xnw$B}H<IN0t4Q(}HZ%_Ch~j42-hd80taPwMw?O
zAlyzlj8JU2&1BknF^Lvm8sQP(qnYnzsujXWxn>3^6E#v(bsU~-SMxji?*%Es$V0Fl
z2Q5787t@AiA7&B*F&4$+dV*{+VV%9T`*S#G?5e{Xc@Vi*J>8fKh00PNPO~txWAVec
zuPRqtd<kIffK=`z%xx7KHJ_}>O-g$lA%b(q$XQZd-BsvqW}%g>xw#?+33avI?_(^A
zwF3Oh!$h8WYQww_^<CwQx4->k<6iE!#GHrO0v^|IT|+>Zc(%z+dJ_g-0s<Ku8{+{t
zfUIF6SRh4^fTriSXFET;g>TxBNzhqsOCmYhuoluNLc&XQWiXcU8fIzVV80Cv0|VJI
z^c(P~tB2bJ1hhp(_3i8k@H^h8rBx7@n1e6(l2+~3Kd$95wYHu%X*qFf2!CYJNqsfp
zLO_LplZ92XwT<uf+E}UJ*_XXgogP-!#oG)I@kz$cU}$zyNnF>HZ<WXIA}O;e8Av1F
z#t_*&mXMeCsHZh$W{WOJNPxRSR}$^G-@<GwI4vw1t{Fv8cyOS?c7`hh2FBD~;$&Dx
zU~gIb{8{Ox&-Ch#XXeKEd()`<%2$M^8eq0BV?#rqE89PN+2YfCSWK<CX+N&*QeoXd
z_66h;vx*eE3da2n%`-g}OQWTOCs$fpg62MblED$RM4$w54s^s33%Zos&$Yl@^>(#_
z*`cN0cVSXeklKW0<sA6=<|Vp;TtA;r@tA$}Z;TI}Ys=qy`nEK;(lIiO=i4!HtLC-q
zRP%w_-s=ko1r5#8^x{FyT<gBsWc600#aM-%9E>SCY9!7^3%?c=6ap&M?6fTGx}=eZ
zS~6zKUtasg@Tu+8Vy?Iz)-McXZ>hGjhDC(=;PdQ^&9&;d?T>fz+D+{5TkLEG8Y*kc
zKZjugd}tx{x@r;O$m5-ga<`hy%alKH916<4-@Loxmf(Nm-CYxj#w%1+RRz&8sR<%$
zUoQ>#3T#MPYmVjjrutsL4j5&g!7!^R>W54&^RC8;B#%a3+xhG1&;K|69kUcgO5O2W
zTR0My9~L-YWh)oKN(z&fva+&VgZ2|TTDn*mwM=X;2hi%V%l15R&FMh*#2JhNXmvf=
zlz7G53>AJDs(UgMs#C2|)HKw!G1(egqf^QVeLg&y7diTon-TK$<}>U?;V}sb(&I;g
z*f2(eo2UGF)4$cWMLut1v|+KWIo@v`sBcPpZjqaZ%hac&YzWD{_JM(+u2-u~0nl}^
zlg|ZLU0PE1%zB79_nW&!dycFux<OmlV0Zjycs?Xp@4}9#R6q(@1{#|5tSG`BlmMCd
zvqdFIGcyK<K<nv{90X$a5$y8T<sli%VljcO`O8$;CYVqd-@4h<d+g920l^P6+{7x$
z-V4-aZLhEnXEh(oH5rV!i#J~Bq&h3s#BiVXKIlcSEm)O}eW?>MW61WH;Uegl{yQK-
z;gS3w+3%4veQByfi_Vx2_4S7zKDdmH6EM=z^bS1=Vt_5Q-kt+pLl`XS4IUnFH{J5V
zpui;MX7FvDQ;>iz7+_KqNa(0N{}*X*8J6X`bq%X1N=tW1NlObzNOw2V-AXso(%s$M
zbW0;3(%miH-Tj`rwrj8bJ^Ok7eEhf%j{}73yv~|)j4{XTA)dmMvcAg^q+FdVWV71m
zbgnA6|M@+>wzlHf8ctrG3iKQA>X*9_0KWR7s@N&{{5athRcP%enDlZZBfuxR%R94D
zt<<kGNL&Oo=*$7)#7NlV<27`2&>|s5QE@fU>veop6|>V%dZh6&8Fn-f?10EB)z=rs
zfeQ{qK_X(-Rh2G!G^Gj9GVFiNFwwx172S7Av=+8Ed&}(gGN@1VvK&6V>n(9-ze1v<
zv98x9iA(QcqXJGQ{(3k5r8l0@$;}p{08Yuxr4{S%O*y-v2gHaz@Y4u6Bzrmw+?65c
z%z<OB#6Op!i*ZFotvi7HnM64cm}9M?VU}>%6VdX7{i-NkxsE@kQ4%pUG`tf*KvtKL
z8Cc`k*%618lovGVPBs7$CrNR!;Gp?uHNw&9R!=oFIZ;`LSB!E>O7?wS5fzM#q!dh?
z>W*%GE@6cJV<AR;-MtMUXigChD*$*>)~g+H6c!ei$M4_IBqmP8#xl}iKmwEHR1^fn
zKtuQB=8wcA)Z)tOv;ETv-TIN@i}fB4CL%AqTf2Jtxg4&J0nslv0&qZu*OZhdrslhZ
zXac67egqg!Ey>D0f4JwQq8k_o%^IpevIO*aw*>EM?G7}7GdFrtN@S}0*^dyjuU1J8
zTcD8}87*!9KU$cJ(g}w~=1v?sdI=)~P5S^@f&nN{vR<u^b9IxHl*k{&T`-q$bp`gr
zpppGn{eqXmV^k6nQwy2a?bvLcmb)tomivfz?f%lK;X?MH*b@&H5pK50!$aSk#>7L(
z{@jj-$9f|D{;s&M-`9+&lpGow)N*+Vzpw6Z>oW&O2?FM5_KU>0*oa{TC?5&|7p*dG
z@?UF#m%{gqVKJev%}YI_73eGnuvXc-${P;X^$kH9Z}rMr2XH6q51d(91q+ph#iZWI
zFHsW`<2XI0@_`@6moYtv)oW!;RO2ola_g%lp58*L&a-_UP*c%Tv<gf*ftYn)iFIsJ
zM<*<k1hz*^_-s>AN!5;oG(QP)HK~~;2#PhPW0)a2o8CYrJdt*P)AHHh{)a}cJL43u
zMwEi%QMVqG1{c31t=#9qxLRbK<mjlg<Iu$YET{uzuxH08mQ9?UExZ@>LCJ<13XL8k
zR#d$mle}`?s3dAY9FVo1z`~u`+C7Vkg8^_TIIA|Vf-pf(@{rIVo3d&<8+$~Tqf9c;
zh`Y6VZ>G8k$Z~MeaMXUcE3d5zhW`~@6=h`=Tj-cxzv7tTdGm&f{73hKdlyC8Q$Ii0
znOq|JgY{Jf8HH0KqMx9552cC8{(Qq=Do6E_qXcM{4C)$|H&x`+u6M6&Mxd?X%n^-N
z!--cjE9{!CK!K!4_1GF{!c5cO|F72N#ylq3^#$8iFsLAik**2e-33L0pxXx@f}^<&
zaQ2ie1}#2Z<woX(!=CW-9mB!;IXOBa5z+w?CqK^!T-F5Wb_c^*po3UXL4l}V=dT7&
zuzE25-&AN~8!BxC4al6(vhToI2HL}<g4V`%W&%t{jQF(0xj4L-Zl(VSV_l5$9TV~@
zcVvv%fI@w#I6)ix6aBkgDaS4^oitNOexyFHgub);!UjR=yhOj?wh5I=EGV~GI%N>&
zy3;ap9|x-?r@0k$=QCix^0*@eUTMHrbIBbG@aRz&ch0j@vsj71uVVfMOa&Wj%FqRB
zgqcZUJ_`;F(909l+wDm?ZeHk73=(V`WLOQ&x0$AUpNvjzy3nTrSg-IEVA*IjdQ0yP
zj-c3rN^p9LarK@b!1KR}EU7LiC{$i-#EzL1dCqq%i)&!P)!84Sda-2!JdMkSM`l1z
zjt>oa)6Ol+QIYohvuqnDgALO&BdUiP)W6{?yQ5}Sn?LpiJ8K?qzr_54uiPX#eqZ;8
zkC6vk>>$5w>M1c&;J^HBA@2eh09z$E1?#sDobEF3mE6aDAY&5Tz@E&3{+0P}?Sw!c
zy%k#8;6v|4&-k~`X-0k3EQ}d8JIlJjT|TT^<OaA7X4PA2MFaFo(&*vp(=j}7r>JQ8
zx4S)|`+vIIiy5nB0~Z4H&hxN?d5?*g^uP{Z{X^C5VKX<Yy$zQztnd!6YZccB%^ycw
zj?3_{EN!|<4B)>4I>$<3()>0j?@C9tLp|q#e-R!VJAvL3{;RMEe0@`o{IAaN_v5$8
zx>nJVariN@z@%0(DXt833`Y7AP{qo~I-c=dO;*Gg6vf#D1-+8j8my4?A?v_3HQgyF
z7~WEX4GbEfr^VMkc#TIxQgn(?j1UY|W<AsNc{G#%;az2-JSd^e->##i6ynDRps}3%
z{6VSI+xzRYU*<8u(LfFtR6v@VnOV&@eAT%*&&rc}_LnEQ-G$}xHOL&*5;ueYb;%R@
z{+~4-pKHVr{mpGNO=KaItBRy!WIzZQr=aw4hn|fh^B<m99BQMy{PL=r+*II*f1NEF
zmPO*M&elwY-;gM;q&VI8n#&ppok7b_QDsTnTuLWwY#`s;ZS$I|N574aj2tkGRTcEz
zdR995_)$4%=Z4MCrz>=^&y^Tzqo|}j*{C*JhW!g8%-i`4t{`@kzIX;rO&xm8T~6oI
zuI?z%Hl{L95|`cfb-nywjso90(}Bdp;qKM+G>gM9P>A|9)Y1cEm0>cT@Z=HbCZmFa
zI?&$I(dq-&aUMFrkTIVSuvSZvmDaGbGHHkl3Mwly-$rYOe?9*mp~K_O20G;&a~y>2
z0p&x8P(@%*uP77z7|UkWOEOibXV`Vgk*`|C;<lXXo*5XNlWXLY<|Hbwpx){qPn>C*
zDF-i<&Fti%gKp0XpKxK$Kbh8E8IS?*D5~SkQ8^|ocnihq$ezG9Yv&~aJqrtRenwW3
z6fv(_lY>5wKeo8EIIMH8t?3}1WBhrX=ompP=0oYAM3!)&dgtdr3a)bT_S(AN8tq@J
z^Ct;%S`0x%B4b-|T#P3&fFd(qQ?mh2(H;b)dQR6JXItm(Ok_RK>9zWQ7-bXt^sfQK
zSl~|FU7=#Dlv0n*Bn|AC?yZhDvQz)7ch;FMvh;E$sC?Th7>6s-fOB_VgFI|NadlS%
zQHvqO=;LwoqTlF4Rkla+8{g|*<k!93)ZN`V8*Ge}@4k2=e%bxo@K&svQA(gEs<Nvt
z8~QKy0gQ(u>~BXb{d9ExUwU>GT%2DfIl!jcJek|<zt=**EKMi?UpfY|9a;hQdZR_B
zb|L)RmII8?!+o<AUa7PdcI%s>(inY%u(^8855s|5-)hHM##u^NYyoZd(Uk@g{vo1=
zVQlEbTkF0=(NTv%t#@-BDR{4F7rA!|%bRX)gj;HHhwE7uskS>OL4~D(YEk0|3SykN
zk>}g3_*5A%aV1H!7}C=GF|j2+Vq%fUt3^^XmA}=2U{o)F1GW%Rpv=E%Yn5MSzJJr!
zP9*a9^Mlt2V@k3BU!^%cea>E=y}FjYzBZ&<n*TQ=EvbUtP~jz?Q(8hveOIxe%x5p8
zs^}Y%!C)61u2T-pZcn)RlLoImN|%wx?w}Y_golPp!f2Nmj3zEGn)6G_5lmo9`EBC_
z97tnmF;(0ClBU2BN+=37v(*Kd%RaaGzs+UAKvG`*+gnRXE;cGI%22Uv+O}R2@Q$$+
zuwUyF<!L!CT5>A_{UWWcEv4GU_0d-2l$6xAMr|s10s<-+n1^NDZP<u_VVo28bb+Z9
zZOg(Nxe<6cH>l&+BX9!3s(_y~xpD$BlxzmzJoYs-I1U*e28NBlJ&lX&A&J!@?d!$z
zLK7xv|MGVqP2_FK-@V0uJzym0nS&OEjfF|eIM4mN9wI!;KrwUl0Tnp^8tfJbWhrE<
zv16-p9D%2;U;1zZile^o(y+${XC@mv0TVk1>ZI?xebLt%gCbn+gZ#GR%)1Tok@}wm
zuPVP^rcTs&wZ=yaVSewUrlX^wCSeh05{w(RWvv8W!H8c1&=MkOK_w{%$@qLlVI&?`
zo;q!sR&U&pf?PyI8=B&BKJZt1A_3hlBG@rHVjW%0@;}_DR5!6_aFgZ`;X?aGezl+m
zCcs7n3+S4Jqim!f2TF>8>vWqb@XZIu+3W6}vznT$N}sZLIl$-sF5_wXO#Xkkae-cc
zq%10tt=f)t=h1O7T(&2svg}+9*e31&=7=Zz_tT=I`d5z3L$-^9u_LjhXC%ZXV5{pQ
z+u5BrpyQNJ0=!YtKadDhPnmBw2QyduaWu@sAT?nUkk`svC%L%MnNmT(?@zb>0_f_I
z9_wE<8cvJ6|00^7@FsoSHniv)7|4yZ$SS-!o^(bC%S%7>(|I`1{6!>3Zr1-MFo3(%
z(XD#ib>J{DR`AzxaUotcu^t8C#e=KLhbIKN>ubQmkNf>&PWqHl#nIQVskf{)jMFnj
z1G~#rq;<1^%Io9}<GYrs?EK8zk*LlVEp{yx+2(I%RSh|I?PU>YQ3>%W*b#~EzAeZq
zzK>XaLzV#Sd*vRc{T+ZzzX#OX+Snk@AG3cts3|F!sbEMmp=?Q>+!Zt(DT*tv%XhaA
zWgHoyI);T#RNEj}Y`NbRMUP8TRH=RVF)j``*Xr^#F59Q#Vu6DjQQ6J)LRz4Eu3?v0
zW#*`SceN`&=*u0{TUcP}&waCZTn7|<ly}b&Y(B+BN3R0^uB(gHbsGx!@#;R?v#zZP
zKk_40>^y>n08wcYt)qQzq<N>S#pS@`H9c}QILS~Usv{U@#(Lp2x*6MGq~HFLd%wiP
z;0vTRj;j7cGIIL{7V0u;=Wo|L+PgkRp6pEx)+ebhz{6}CO@;)<QT9?hax`p1%*gc(
z7Cer?J!$OxKDAJAl8{2up?q^jfv^yG$rQFq<4N{I(orZ43$ob8rbFmkJyN4rFK(w-
z@?U7udPtNuFNUQRotYwk20;XKyMTILOOrR6eBdgUiK(0JA}u%Pj{Q{S4YCeA%n!Ul
zWTtoT3{>em`G88{!EM72xJf&2)88b*bd{@s7Um8t%u>C*ZfJMQfXSOGf`{Ys1_g8Q
z_SVS3bHP&5lHL8-%e!Lpkg8|}9`)xef;qyn^sZ@KWO=oT4jL!Z%<3!7DU&77c)Drn
z66Y4Z-vJ}t?=bwe6r_);-kX?EIw2rf%&WD%`pwTKwGU5>WLke0{@vfHck$-eyL&{4
z_4o3Nq|XvO5Cn#~$NVnJQpxKeSsO5IYOAO)@IRlzwo_f^darL-E>&Dqa15$VK>S{k
z_$G#omIDUoi#O87=pWxFLKGIk4j^wK4mi33NY2D_Vs2_Cb~cwUQE*-cy8lwFg1`Jy
z7#_O4vVk*9YX_5n4_HtG55ACaUNa~?VR<+(4y3=unnbzqEX)+=*e_q=s}7W8R&vxu
z&n1WZ)KcDYMX#>@qF&=$;M1Glc>GxoSG^q1fZ{VwIqUV!l0Y2Ql({O#4u4|AUc2|j
zpU3=;DXw<S4;zaNTTuawyx1GLe!q`jAEp1Y(*5=CL!7@K<NyCR{ui-0AS!_E0O$)U
z(%Z*2GMW9GsC`8E^4~Kfcbe)5`ou26!*SaU(gUTYoZN_ryx9x||MfHnkYaD4gun!c
z0H=fIZ#(j;CJDgmqv7<F!7aU+mTA3C74$qq0M#)2=XF@I(chM=5yn_35Du}HH%B(@
z<WH=D?7PCcjrmvV@lfeNp)DKz0QF53BX+I%KzyJ7r3~*;vn(@`L~kKu@mLijt^7)w
z!9?juMb++56-~c7_0bPF!DmlbxxtU?O?w+WXgT_SQqk7HP$)atNH9usT6Ee-aR}{5
zDLrVcZ19`pJx=heuXSU7ATvgau|%?GV!j@TI5g`}L^s8g`doQa7?rDnoe-WwHXgHh
z=cem4Br)X{>3vNU97jARk44Y_g4pLJUw&Gf<8+jQta8IzDHKc{(p<4cr&G<`V~yYt
zsqR61p016iY5M$6Z?og0aWvcg7TrHp)@WceM->+}uADNcm~CZ4)}j3r0$Ax{S)pfU
z6f&E>jAcvTUu(!q?y)~Ck=I`<FYE0a<c8UvIC>1YBCu@5D;uAt;09dqBtFQ!cj~Cu
za^O@~9mL`AQkxJG=5HVG!I<IC!FGJoIzi$wCn|pKV2!`B6r-%<Ot)UbOFF}BHT(wC
z;kC@<)TM{VKGW!=7N=P%Y?9;zpBsY9$$I}74W9_{6VFH7K|w*Hatr`7JDeuPFf%oc
zOm5Dq3C$}keoyw2@7LI!{Z9KA>sK+dl*?4y4A96kM5<O!kGg`RW8{q*nQTfLs*97V
z_Y@X0IJR-1B>FXq%=4}BKLmv}pb%E-_Q30DaEUBPN%qjwyO_BCB;tH-MuNJYy+C{{
zsE>~6=6vZuVG~puTZFg1ysxjrK5X{F{KD}&LV&=s-oba>^8C!=y?3@;=Cw)wNii0R
zZu7qJuaR&Y>PR}pEP4f$wGzrPB<JRCcXBGh`<r||sKv_OHQZ)hmUZ%0I<3KkauVeL
z$?ntS_>h9UqD3roTBBY2;BbeGaGV<I8N*w5?B65&^+8bjy)ik75+<tAzYmMUE0npl
zZ}+ool&h;~1xYIJM+VlB-hoe_O~jF)o{5k~29?XYW^9g&j-FOmiI4|%B(8Is`y_Sd
z)Vf@uuaQP|QPcO*)1Q@<XN}A&$jG{{-8X$oUC?{iwD~5vyksFTJz*T-Y~x^_4C(5M
z<L!=#iI(V>4x{^P8nEWTV*6{w2_N^0^RS=ZjD_*UV^vtL?c*P@t0oBgR(|yp$jys<
zvLt$R$UfaEy$vIP5j1WhO#3RY=q)?FRen&??&AUd{DRV!l*Cn23%yD1WoYzJ!c}=S
zjhN^pNrUP@mv9{eecjwV>6`{iDz2Qy8v9`XxG_r(b(K1`83Ci*$rD^+ll-h5OA9Cj
z@AZf$`K7In|9(|yahfWJ`wN6^Q7gjrPDLp!gB>HzC#{Q!{#p^QWmEESe7zcv<xn-;
zaP>_4TvB--p(ex;v$H+t&f(LjG7QM}n<O$f%^XRA6qObilvc7b%5I486a({x?5vE4
z<jD${CyBPyWIDAw-=x}YTqDv;A}F$iv1puS<cdmjEOM=Q4XTG_<iY==D=B(iT;fNn
zt~%Yh0Ld?4Y{`s9<8?#$(fhA=_<}f_D3$kcv~KiG<;mH2(mHJ-$M=UlY#Vp=lgF!L
z$BxB<(U*KWCU!A785tbHdqT^1SF<$|5Bg9Nl{M~{E>q7uWkdo+k=fYt(ARNywiCBR
z{nL)AdsqqQc-FEmjI0nm2ick*IJhYaM@5tr-ME<BE82S>e`ZzYmzQkH&JCo`eC2Ru
zkb`b#M^FPL68SP9i7)GbH_4mTD*kHA|9zVI<=SmaNSl<Gn-{r`lSW8QeSL}FY1tSJ
zMz4T$i{GS-s+O>|xrD?N&03Y0Yox$`jx9Yn^VVlB*~I<vK<tD<Y-A*cvfDyeIS0<(
zLJpBB%HH+G>OxRP&=0AZddIEYx*+pl$qOy+i|!?;lyjC9INuIMMRMosx%1M2q9qn{
zPNyjm<%5UymZxWZgj~&K6}NYHJd0A|xnf=ZSp}H|Bm0nU&Miv1*a^eyJufq(tb=<O
zw&k2pp4t6U>#_bN{$MjBIbC-$nACXSdxqBg)zmw?J7LENxxxQ)LehiVyvWO^Mki9Q
zVnx5ndD%83yCh&!nV(BjFQ%+>(tNY~`ShSwi(Z4>X7dZDNjGwLfC4eJPE>w<MriSz
zrE6tEyHGR3T3wS>Q;X?LQG{ix%%GX)Xp81`E^A!F!${q>pC$Zrax|8J#P14xq7cu)
zumKToSe+o!&YmIT@zZHydb)+`+dT;X?H22EBtra%NJkdpShOg4{+r80Kb*MUrRebq
z+wmquE{!m1P4ZZgV^h<Cyu62~NIvp-f4r_dF`~cs=)>r`{qfURsKSDZ((<#T6Zh5M
zOiY6Zbir^|TboU(3c!|Cn8=z+NNjpznjBC<5M#M!Y{}4SCL*OOYN-knGcKehE-uVZ
z^0g>Rr)~SP5&C_WuP3r{b<T#e;ivZ+dfrJf2&%B@5Y$HKu#;0Aq22U;rdxm9txbWP
z95IBH+}t*Xk%?jx<NTs5g8FPx(#Vl*DmPjSJq-=2LdD8#)wZ^`qFQ6UM~rW~Bd)Fp
zlX-Y<!gv<m+HKFOf3;t%<NrM({~Q@;`saTSsztAI+V1uTjwV#hK0Nkbb3sP)%G51h
z4VAE9j^;Pa00V?sdfcE6#))C{K!GO_wq!ya^?oxP(>Y`auG}%>x#^jWv7I(GWv{w9
zA>EcrHGUj>%c?0O0D_WPVGVrRAL&0o`iQxGxD5qS(B1b`KK7j_QE6kJfHWZvzd=TG
zG24nkcTSE~GRN64;9P@(k`j|3bLT{av3%ICVb&lY{ygZ5Gk*JALn?E7edoZjk2fe}
zBJ%7s7-soF>Y|DUo$mV8A&o*2Lkh~$F~xia)t;u~<FyKzAu^=fZzq~->(~oxMN+bI
zbLccQmH9^(r)djo-{iSXGUZe3x(6pTXLLT|6j5RuTkP$@THlu92^O`z=Ig82-tMXA
z$XAV_y~B|tbfF-@Pnm^?N-o=HR8_UzMtgnmpun`SGnM!Xjycs#{cK?RKVoUiIwpK7
z)hO{A;{gx5?*8`bHW7zvM>c)6-e#k@#SM2Nr{eGPYOM5aqPo-6lxAp<6m?ftMRfG`
zRfup~>BvFnQ%(EOeO4$$AC1@Ar%eR~r4J|D&k)rOd>SZXIv!m?tIgz$E4pTUSv?f=
zvbyK4S^CPA!!l0lUz?O_&CYEYp3;;8!S42q%>Ffbu*dkht!wwrNATvMG%+HiMwyn2
z5>oN&Y-5>rwhzzAI&{mY=IiH^81yO_HD~J(#8{d54BvVF{7Q}Kvz%L=x<FbBEslHX
zilPM0;ndv~2Quz+HCH@*W9mZ40>1N%h&o%B!|U$Hif4A!jn1fCZjeulGK8%QjZRD~
zh561IhogncrG^F!^hE4A$_m-BaY)rQ>t(Y|QBN}51%^0G^*()K5T*LjSF|?h9HmkO
zq1-8d$jkf{m(1@svHrdwUvS}GuUlzY2MtrJ6loIpLP&tFic>zQ?B+sh0dbI)+T!O4
zf0m`k%>@IKTYF%A;xJSb4MIqIJTP^Os#~jz?}|cZ6Dy#`^=+#hc4*<YBW=mN4S@`X
z*q&@+vC8RGRtCbMT32>DI&PVmzDHC~phaPOe<$2tO1`!>cH{__dy6J4m*ZYVLhAj@
zG(FZ%Rj^rX{Ehb3fJKB!cNVmBtGyiyGi^w4*nGYF{sR7#rL4gkJ?6lz+XaTX?ewY%
z9y)q}z!On8sP>5cy~I|<wd~c6wwi%Xfmj9QNj6r^(59~|X?iBUS8zho@r>WKR8>`{
z#!fqq_|phEjSaNTtqc(h8`P!^(a>+v-N{&ZkSvc%7Q*h%(^f!qv12%BV*not9pfW3
zpTKVW{ShkF5C7}v)E~V*x<|@vmICN#GF$u9C563(5SX&^i0#uaG9I2sjDKyeYs%ob
zGgy9$lt;=Jfiv~$kN^;Egr8_0!g=qd(EShy!Fl`Td+%q@nsXIt!e$XiF5-PY2?ayZ
zh?cCK>y3@)wTQa~VTv|3CkdOJn)ZmK`A<7`CHg6DE=8kBF9_egXz(~tvi7P~W#rT*
z9n+gTM|lLog#I!X2K>Dx$jEhkUUkHgO4xhs4#BvU{niOpv7*T*c}<Mm;j`Dro(0#}
zP|9?DIIJUc={cp?k}2)jY+aolJ>;cDr-ow7F*gh*g3m(NV{td=;y1Z`5Ou+OU5}2H
zI6fkCDJaNf?3tI>62CFDUcPd1&_UOF9v6;@Q8!z)(`e6nEoEXiemlHkr{7HVn2WY3
z6lu8!Y2ucQ@z~bdTAJ$d$Bsc;8<+k;q#L5l`}~?33~oKWh6_3!%7ul6!*0wM62T#&
zQi~DFDwY=S@8JA@Z|kATY^(bTvaeW8UO6;eucuI>R26FXC+BfDXpe2IGb-v!D@rW)
zN_pU`2+9m6=8Pawk{Toj;O<S@+_p$;2+yM8dV#YI=WJUoxVDidF218v2G5I-0fBtA
zw$5k%JAl1E0kNo1t<!gXgXmr^HRqOaS%r8FwRhbvFQ9v`X*yO6LS7AP0o@>HBb*Wg
zU-_kg?yE7;9OOU0;B@haZuyhvH$i0mI!6o&N)MBy7+PNfY^$q|Dr~YVWEQh7FAbL1
z*^T7n(Xmztr#82^4whO`VX3j`d-F}rtH#Ew+1{j&Sih#F=Cr;(weq;LyBvdf45YQV
z9Ha&Y2KquM8!i?IWE3^<kEe}7T!Bd-YRou3U&i6`cp=a3?8Rhvlt&t;!^*iuGq1Lu
z34}`Ph0{f|8xUW)b8{=yKmV?K)XeWM<?Dw?!2G2!S7^=tIi63c$K~T0D3;S@WOwMF
zmj-_w3}^Ch-KSUN6}22P?k)`ihh-<VD^=K{P=pXpSM%S&HI)-YqdhpCjo^BY?)CLS
zXvQvHU-n15rqt-}F*UW!9huj$(k`<b$!3Ro?#}8|(Gr6mQ<zN}D^kMcNMv*=`6?nA
z4sP~z+Nc}`CJXAxg5%YiGA3PBMcL)b=I~(iRc>ZMAk~G!5e{z4Leq`DasK2t&!ILl
zIE*PZ)jON}TZ-8l^tf0#-&7)Chl~*f5x8h&urf8>7Df2$@rixzN$~n;r7UMgqFQ@j
z0G?u=UVBGeyt;N<L5b(Nu;GFF0g}CK?nu70T$zWesM}q{rQ<V#v?{hYmyVz!C?xi>
zi7JU}Y=)z<q9VT}lm`7vN4teZwc4UI@odQKS0n-+f}cAL`~7TOb8|&BH0Ct4cdo9t
z&ykwbqV?1Bj7%0db$}D82MMsono;w-H*h$ZZ$KevJ|0)j3noOOt*WlT;n45;`QAH`
zEV5Nov&R}<5o?^o$F=m7-n;)j7ii?GRAhrKqo|0F|MJb;AQESsXzTsob2HUar1d#z
z$SBJQJ0vSJbFPE>y)0qI&l`p;I9To`XT>4+Lq?3CoQ#4V)PVYeC~TUnJKKx>tyO)-
z(jLQ7LN4dp5Cl<sAST=OSadTov21ppW(@87IkWF}^V4R14B~Qs+5WxD_=>uecQ$f#
zB=qh?T1u0Ers54#5+UC1{_&fi8Y&-dH_G)Wx3*{>lUp4G=yl$gIUMAFew6QnmR|y4
zzrI)mtBx;2MoXIB@%nVh-8}`mMJkQU1;~KysFi1sj4vis)POMJqUHX2y|8rT8K8x~
zy5F4zwYD}FTZxnIrExnQANV5~t*z$g=La8Nq;cx`)pMXL<-zT8+P>ywQ&tz>iNVyu
z+uVkoZTh$dTU!3<F#Wwa2F;K$Ez+K-gs5tzt}jR2EZBne_6R-SFqW_w3uDT?^=+tQ
zX*{KerluSjnVDZPRy1e47nip=uKnb>@?+S@2Q8J&X1#T#^MHb^wJ|JjgZgA6>PMF`
zZ;SUqr@-&k1%QkTy;nXQIob~uE`owzZEPR{)FpvE1v>5ASWH5Ss_Yrr*(<e%DbT%)
zR8;q0Le{F!<h`rk_4Or(5FAZzD=CaM)z)Gf4Z7=7ROC-h_3iF9T<jwdFdN60mS!~H
z`%){rgEtPu!IY@vwH)j@28KccLiOzITRU6tuWsAgEE?<q8#(v_9*@D+*v?`v0S?o2
zdpj8)PvoJZ;`o@}VXwf-IG)?d`g3V%V4&D$jyOudQ`j<&?|wjqMxv*S<M__OXhUkn
zS#f+^=G$VYzd3&RzBz%VB}Q>mh{#Qru5Ke2S7#_zMn;J{H6tSniC$S8CideHv@aoH
zNQWmUCr8~q15zSVQextTrKM@i_C*<<?*$YTz-9Gq;xkdvi#`8HAf}8f)#5oC<Y``5
zkpB_p@X0nfG^ha;AA#1>?ds_3A|v6ucvh$5t_=PRorh$eLChB-BFL=I)3RG|neTVz
z8!`rtvV=l#+2umo>s(iaoRwn3@+c}TX#FRro%#-!!eKb!INuuo<W-qbgj&U$E|&g}
z{Q*xrM)_>TK)IqquD2H=U{+>c*YcoGK>;$n1_(sVKU`J0wL-eBtp}U`9tzIF0;CXB
z!@j+frIX{6(n#>6Trv7z0z-<63)R6Y0yPA{^?CIh6)0WLlT0<&Gcn=O{_LML+us1t
zU}m5JBSq;BU@{Wx>0vEVWpW%MqK1RBLPEl&rq2I9Jb(!MrDOTd<1QyBquhQ?OxVRm
zPWyB9S-Hpkr?N_>-NW1`B>e5q>*_uQ1Z<Rk2&nVWBE{I*-h4AlBi#r;(*h0|x2C4<
zb&25MlDS$PQ*(HPEV#x7U0-E0@$}RkWaRd{Ta5k`xMv^m@J1>taBy*TE@EP0wj5O}
zRp4D<pJ}Q$PR)#r3{2RA>c9a+MCj{lCtu$TOnN%k`>S#ip>G&K(<_XK3(Zn!Q>Slp
zD7tL$pjjK99D6=+yhh@Om@^BVC!{Xkn^E2Hq4USa>RODl!sYd4m+_;bsRQjs_}_3#
zhCA$v!HW#3vjH}v%&e8wnx!TcF)<r1E=(tv!YZ!JO>OPNt!z=b){51NiZITny{n`c
zK`~3>ixX+o)SNDBHwW~pO^K=8H|t44+-WrU+7=dux_s-Nz6l9=4V*DDawDVTEG(>a
z<{`GAA|ubp(AmZDO>etg$b<~?>(ZjWfqr~8Q?$y;_^76)I*5t28cvKMC~(nguwE-L
z=ru1c209}o0?zXVVM2@h<K9NECj~xu>32VZ5gojt5q)MdL5cgPi-c$Jr>ELs?>=aV
z8nGGY)x;`6g;ALEjNq;EGfbsa)THMD_>W^}%h=>o-5d}@y3Z0C<6Bs8BnuZ77Y5aN
zcz}HZ6N1d0nu=&|52o{UJ>CLjf>1N5RWZYl{!Y3w@(LZ64b~74bcL)K4ZHeUziIbo
zi#l5nQ@pAx+N~^9rbdH}eaxCPPZKe8H)&o}%yV<tUi#JCbL%AhC8xT2<RWA{G4a6t
z%3y2O3cNSx_E=g`2xQD_0!zk?pI=!o#51y@VtZ!B%KpIc$9in3dR$_}`&X9ul+@Hn
zN5|JKc02CZ*E=BxjVnBkA3^i(nuC@DrLJJnl-}{l(H*QOI~d@`bXb=#z}WGoRiAJ>
z9R{(;vpwRh0qo5k`ede!^%TxRp39#r^eymBwvguL)S?c7(3q?g{1ZwAME@0iD=jsp
zA7<v+74<|}kN;fBFZrb7yp9;fH8f01##3%@wO)~M`t@<+v6VEmGC~qL4UEjx)s=<)
zlNF}Sfk4xZi!0vN&X!2@n9~#`$b-k4l#I)5z-G{5y6iD`>3n^RmVy9nER?XKT}LDt
zDQjo4rt{LX0s+i)MJYtYvi%WXI9$g@mx}{=xKtE=x4Uq=o#y+~QEd5Kw3uku+i~R<
zf_E=EpJQCX<DAZKq<Ne!xM&g(07vByH^agXnOWUxO(H^2e`l3Gsjt9!vaY6PN`<so
zK^!4+FDkl)#dz|yVq2*Ue%mJzA~5L+Jmt>L20{M<B#j<OX2tP)`}1H*c`tG)5ZN4_
zoogQTP-Eog>O*2<F_a}ike5Wt$v8ABFDpw)MM+%FzMegOZz7*rS68Q(Mu|y5fp4+5
z4f5Q1$+BK>QkStySp^4`=4CN)5dHN2y6C=BJqaXI*6NGcu+cFwOP77Hu-955K<(R3
zr`1Adm#>3a#mvG)@J@R_UFNmKU=Je$tNUuLbyW$@=f8(_TJ;)>zH)eU)PnHE4zoV_
zT11$R>8H2Hr}RvWZ(gKwb5V2N{4Cew%LwnWh)GJ*Qjp7p=V&ZO0e5oQjF94v$S<*G
z2dE*-sI7|bF~zS8p2VO6ertC2A8Va95Y4?-A2sua&)+L%JjDxV!lb`HowW+tBb1Vm
zlrAkSb*QQ&5%uJiQPq%Kf3Id}D5-%TV;qwbCyaFbY@dRBeRb{1*`=~!Ux)%JKf5`@
zQ|vXRiLo&_O`Qo!MQNl4`^+sZ$*(>Vv9K_wXXoFoqyeWMZg1%MprBrTA56XF6(+)W
zhd6I#QdKmS5z<Hgu@D2i4m!tve$<5pVW_Y@ubQA>lgy@`&M?CVvcY%*C`pOjhI)IH
z&Fya^b01>b>m1Lvf%!2mF0PrW8R6<W0lVGy>2&3_vvV&7?JFxa{pLYrz+3<sGPv_f
ziwc%cu1pdV{H0T<UQ;nLF?a%*Yj4-LpX>7tla>q7BBV0VV)r)tcv?gs?LU6Bvj*zf
zn#%HkFM(dJT|OZ{C@2oNJ`%BW%}>rIU7<XB#G=2p>N8*aX=|oBu%JMQn}>quq0bl2
zh+fMc>y5UOOgJ#b7FT6wBqyh1h$t@lpr8gTZY3<p63_t-qSG4&9gVJ{!czbKR{IBT
zkA;DW*di&|Zxl`5_*%6v&$OkXZf_M76@ZwJH9&yp;r^zZ$*4;+J3Eh%-A#>O!)+#8
z^rNf&?InrRqsr_en%e<<;|CD8b{*+h4or+Na#IFyqh(u!o}b&Kx|EF8Ja)qQrYN5!
zc0qXQF7YQ5cI6@G%a^BFKe3&+CZpa-N@7cz;dnKyLNj4gQc`+#RgO)}<m6=_bDx4t
zLjLxxj0t;mY)nd>BLf{nd2Wr8s_Jy#cYSc_>j?*^^D8%8?0FBOi^qnO{)BrfES1*m
zv>_!gAJtU6cl+~ai&W~^<Y-ne8V2Tr)2<4z`&M|{HSadF+Rd{&&q+n34Z_=OUOUPD
z;g*Nczz}p;U$w-<$L{Wx-d<x3j!(+d^EcB@Hddk{9YaDs>cgL&QG^n3r5^e9XOE3R
z35TM^#que(-`!;#&9*$;cl^}Wva(VUo8fUgUR^{Y9O&tmm6gR_I^c2m0q<-h#~B}!
za(7qS(tNdDc&ZMU&Z}s5mWWP0RyQ|lG)SJC9e(xW$B(Ft4CIK2GX#VoENM2jw`hLQ
z&}CxaP+pSHlVf81`EqM}Qv!>N<Kx`h5p7661GVS5Gyz*E9SjG7D?9Gc!Pvw^n~}Mh
ztBlS<u@PR0G^(Cn<fy|cdaSzoJ6BQazjD*T;N~m!xH;WZ*x2Lti0ITz)UPE695#Vs
zwq*bS{<)L|5pZ#h(C*w?@$|lP+r=jtm7hF#2v8eZfPYvz=yOdKvmJVkb_)`|=}k_>
zv$MnxbYths`A0$=9AmnE+kV#wEeB3^ZD>43llXaIcL1KLPH&>ubZQ^$_7$@Y*V3$~
zKDC|mmhhA@Hqky^jz5ZO^b7AS1Idp(GMlL*La9W2+x9Nx?U=)B0(vvF0PaRdhPt9)
zF(wh;zEzmm$835l(iD<%2O&CjFP$UbX!`v=z+`xQk18m#(lcqk?k;^3_7M=>(*GV3
zUliPbqD8Q^FS=IaaId)vN{jD~W7t4CDAH)2cu=-v2?gn}2)4CNp()B2a4}#RPeR=7
zr=v~%$uc$By5=rrICY05S#mugD4rozAcJe%w?8!c;BsXLWw8ea2k1&o4wHg9PvYv@
zkf0m{v~-j`!EAE3<H>_WQ`5mKB(~x478F7odM3B*q|O_gb+amNNjnx|4AcAFoJl}>
zc2nhB$sIaLr1u!&<`*sw^zKY`zz-oA=ElbLqSCAs<QHLajMbbGi}_q*x)PxN39r&R
zT^VhenTtatvdLM{$D_VlC2nrh;&DdIx_>6g^qV}qOOW?A-^;s3R5UDyrKYCq5PE)n
zDRq7nRnQ~T5H+CtnI6TQ^Al-9w&RX?Zz>`8%tGJ0Z+7WvQ9En3`L)jzNS-@eD-v2N
zzls3xTCA_<l86HmMvxsR3uQ~=ZqAXX_by&GYu-Y~TRzne!8C&V`R=*pLNaRqx>`<E
z6{%C4%&d}6@0Otz_Vo^)j&GZo3TBfkPD~)$eLArHX$Roj&7>7G1D1~Ix>0T)+DTRG
zV>o}rVjhS6h*rk@$J?GW{{UiAO=J^HuGVrqxtpC6)fALmj;2+S#DXXsk#rpHmbs@R
zPmW(P$)ypp|1kT^6_b;_s;_g^^Bn?kzOV9;`9(@#g$`qz+z(i$2(c50zKZw|9I^~2
zSSpp6TPnDRtiaOmF!h2hO#IWuF}0fJ+H+3MiP0NNXY2Q7C}*l%fpM+qr#(Mg`5QuQ
zjs!BLT+&26ancFk3t#;S;O=DIowg|a-P5j*o}=<l6wfu0a8poM=6^h&2=6*oC=hV5
z3kkv0%PbC-sCPz@pPR!=MYGb=*EO0srU`ula)mRWw<QJJLx{v>#ODLK_16w^QNEIr
zfPRuQlzp7kujFV0M(|ZW>O-+bw&~COf`2oQ){T4kIG0}er)Yr5l9zTdw4T~^5Dq;p
z4|m^Gb}yqFdvqpa^5;2UoDpvMK0DaIBYwy34i@8#>d6P1Vm89ty^ojZqP<uKDM2pb
z$Z1h5Z5HX}fLIyVl;r0(eV>{FNvLt&K<Ybw`XoMI!07Uo&U=HpjGEAhP&&Z22+OyR
zbiFRjF7sRzvHsrQKZ&voJ<Dl7GhM9u3bMrV#@h^Eabi+we6spoad(8f+UUrT2%u-!
z>HSHI;X^DWBv7p@43xj5mS{Rgss^=R8Q)&2?(b90?-IkT>CmcRnx_8)%l9~Z>XkN-
z;+K$8TDkxT`7z>qtHJn_*+e9wyqcil1fN&K9aF{#p)+rh4oV2zX&?}q;u8CsvPfsF
zN?FoduHCkxVnV53Y~&l8ZTq(hBD97-;d}wg4_Lbop{Fj-*r^Ht?9YOL5MyUY3gB^a
zb{?brAY9Rr|H@H{k4y)l7H;q8cmU^jyhp}1EX?C$;-&?cnX!-3{BR~Grbx4D%Sw)r
zvy?OP@`2Uq=XOKTrR+jbJ3XevcC3b42BoK6ZL0FGqzP>8?L5Z7V^nLK+^c7A)z#!x
z#l+M;oH>znZX4S!u+TJQza?jy?`$>UokZe^RZ?byeTLyTVnsjiu=PRAeSh1eRUMOF
zgVQB7HFv_{A^GyEErGl|o{IQ+O$DP(wnun!T48a?mbRg2j{5i^PEE=?^X$S4j}tAg
z{{H_)PaeNHeXPzlHUU{-QJ9>RSIs}zN^!(qGSodDEm9?vj(^kDS5(++7>*>K0Uzyi
ztU&h%`1HBX_(Mr*7UW@x!;GYy;-j*$rG<r{1SaJo9&O}{UEF3Wj!k@{P`}cN?;h{D
z1{88lQ@!raat><abAWayuXFDDqnl~3FLr&oOn$Dw&d!T_`HDEkSW+mP6!DYo#Huxf
zhAiiQP?u#f0N3_tI+e7bb9l(H8Aq6ZVFx29nVD<9)EMiC-BJ$ZD><@@qe;LHO6wU9
zb>YJ^=+qBYn|Z303k2M*9YY!VUQS(}t}3tw90wl*{zS$Z?t)2$C50KHWCS_snYTi^
z$^IdG>5mZ=VqL4oSqu^Jmn=5E!S|WuL%4W!;rndyxYK%<;y1T26_uD_3H*M%0Ca0b
z^8l~<tc>vUNT8H~Jaght`Oq!bHZZp9E4v~wgH*cyzwnsRVoYO4P6%E?a8M*A+wB?s
ziAhNv){R8ST(nJi^jYPqG-ev}ycBsGA2hn3o`gePDZu=D%iEZ<HmGalSdvpjPfmnh
z;ACcybI~>H+K#b|DYE}!7cH{}WC7zuSqPylDao#w8Dl+!?di1$>1Q5O<A^3()yFk8
zQ^)4H#(s+tWKfhvjTZ3q)mFxJh^;L`wOxg{I7dzPA9^x#B%jCe!ym>2ygIHEz)>hn
z?RK4_L1Yif#KL0<Fk9*~?oC~bVj==cy_sUhpGlT*uuMX4AJ~4r1t>3vdzOxWoVHiQ
zeyXnMNmHLKq(;yvCuU3`<m1WD{QMV!nd-Didi7!*2ShEhukY?9KiSwQeTv`^mK48R
zic0b+@yl(gR9E_>BXv_^BqI&3ZYDSWu*dcaN;`0DcFfGD)f`Tk6x$?!VuoMy`;7g+
z5`^}yJchg8!F|hZ$d*tcvpgG9$Y?T3N_0guc_U(C8+xy_X6tAfi#4=MigK?n%HU=`
zoGq0=iH4Rz0vi2L;Hzrzm$pCA+^T)B$LM|x4&EF3lrx}PwsONY{A8!-?ga6;@n^{J
z`!}(upj6nfMH#oE2R%JKTipbCB-VzZ<JY14><V%8r?p3uV{U;3k%#eiLjEjU6l(4j
zLiJFdW(rIKdk$Hm>GsUrz@q=>>nG>y{Yem2pK!jXUa>75;ENQ3#Z(#FQX>f(bmTUM
z-SIF~+r87UxaAD}y|`1~yPbTctLxZAr<u?@AOpGtT_aOu`-g?@*`+#z90XT)<FP%f
z2X4b$D-~H~Cg=1xgIP{Grzfq_8}}t^M++~KEwg7u9p2;`irP5pHkRa0$ZW*sW5{fL
z+|SOzLu^4wMbpw$mmimTxJXf7ymQH{0DEaj!h=E?BS=w3^?rTdN_w%5rEgqASi`&D
zut9wmXq&j5PfT?Te0g7UxKZ48+ISQ~tXbc+e3MvwRM3<V2_#r==dG~N$Z?;T8`Ox*
zJ>|4!zBQH8l)?{-(@;C!$r<vVq)Xb`DowfbDwh&(q-VHj9f^IZd7SU5X<ATFkCPZH
z^rO>KgU8`ODoaL1LG`NFm&s$XiDjf;?=Kcnj$MoNmTj9=IcD_uhj)#{*d#!<GE&?A
zXm;+<e)Kx~X4FW1E_4yJm@gjtewgjp<wSq!+j=equ6iK^Jb}($6zfVP4J6!+E&NqB
zi7Q#}BpU_A<%&wN!omz_6orxDA^6iH7PdD%G*peLjt{1;=I(+CrCGhg^mGKvn|zv2
zh)hlEqY|?RmL!hP$p)28t?N*m{F&L<w8XzOy~I_NktKLL^>Fv|N=b;ecsb~4i@yfe
z{`!)s0hB1tn4ys=H;^)AlGcIrZ0gSCYb5IT{>bUaB$GTmY5RDcs4uiVEF>j_T^tL_
z)Nw#xns*a=GD4q**J@oRQI}QzrU!eM!WDS|g*SXy$geTyS6Bb*9?%ix`X2OhyJTiY
z?J_tdgiN%<(Z!{mLW}4P11mYZo3N%%UG=jwdc1#S8<GFcHsp7jqyIl--PZTwog4bJ
z#Txy(${3cIGl{nz^v6jpVQ%*$X58nY3K-iiA8-G~qJkBB#_m2~iSuDU<rIzTPJ*Zu
z^RTSkuG}@(>+>MNKgC{y<&4aUn=F^Q=C&qw=rQ9D256W+xVqx^c|L60CI6@X>KYFK
zTzZ=?SQKM?=FF)I)69V3G#2Wbi5XAP*?4k3efv@G%WX=$mcP->PWqjj0^DtIq7YuW
zf4=8?jS@iCzm2#1VPaC};U5nx3j)?bi8A<)3W^LW6ZC)Z(Z8a2|9_rBK12L}q>;aY
ziA~~vjOGRL>C1meet?AV1;AH-|CZk$Tt5Feb%FHm?}hsNXOMLM1<U^H&#IsV_#_Ix
zpv?Y@Zq);7#sA5+>InQ#wPLhlejPXOYZQ%U!jr*yb!@?B;81Cfo!Io$91O$LGdcVs
z|M7aDKhe+6SC1m_duABYojV0fg4(zA!i>7TadgCW4262G0D;Kxo1bwfMsmkCNn|L`
znNH$<Jcq7DR4^>hM}f~6cCaK}crd;fKboH2xp)v*t6^*Rxa4F?%R|BcmdZy4v>WKk
ziU41EJg^U9cwGa1zF0qsPGM4t=DRsO(0;1>z1y#swG9~ezuwT8v`*u0z!J<;^{`vy
zh)82AL+&5#vwVw(QqIRA*^Vlw9`wy<KbNHf?V^=6&lj2rH$t#b-?=htkzQU79V7@o
zE0uJY5>FA2G0w^Cv#%^4UoMb0fesL`-nPHI$jAd>Z0ZRdxEh+Va8s1xd5kVMC&{Jd
zbt)m&#ULP^$ntPTDD&?Z%*`uVd>Cb3)M=lGmJ6E2+S=q$Rgn!i?@C?xuWHk>iFt{h
z-s#I5dXRFv7YX-T5N#(-C9zrM8Y1(-BENWgsQTf9L}VZX6O;EKdASMzJyuWge;@7$
zRGz;N_aUagnevWp>Z~{T4R&{@DM>)UHpgsL9@doAlyH^r=?y9)d@1I``g`z}SY;}M
zWG07`luxL8;v^Bho=EmDo56f~5&^WC@*qVn3X$0C9vS+QHR9w@oPRoIkryU)jB~ry
zrp&d6H&<i<_55c1<cfmCGJXe_BT-#$O$}W^DLJJ1Zg~@?J~7cZ20czU3(CzEC>I#M
zK8wnzL9FI;Szce)qEBf;A#C7w<gS|juX0l#%HlF21`4z68zRLR?y<)&8J7OA(_ogJ
zgMB0=fnhLty)%F;;_vE`X=o^%Zh(jnU0GR9buVUIK}$NAaEWzDMLDcz8%S<Xt;Q_)
zX;b2UNGq*;6d|wD8J-G2G{m5lc0R@tAxDl$)y=gs{w?T)fPk;(&Sm9YQ>UYI`3%9i
z&yUg<iK_E59`_3x0RnBZiYcpHqzv?I)kI-HEcwrkIz|H0)-=3px9v_s33%17))%3d
z$whscZPV)fuSVr{AXG`kAn<w_aLI>EDJ?>ZlFFN2(le~ElWl`7GB8M63^{hN&(f2g
zk5SgNe|Vn@W-P$6;blAs@I@R3iy||VNBqNJj|9ECg2yuGEMdcFFk({WG}SqOw2N;u
zNE^XXD~l&>_MJMrlaQwL6~i-Emr{IR!cujcSP6_{VPgZGnT0xjEQAKWLha*6T$TUV
zmIvqd*h3B`Mq|T;|KaLoge8HQQNK-j)q?Bc*Y+i4QZa=$UpjOpkB`vV*dAP$7LRL&
zrvZ3VRvT}_5Yhf&9$YM<<WT~z0{VO2jE$5Jv4ObK3?<0S5#dlYhf`ij9l-#PmWESk
z4$PA8D_J3($1zHBJ+zdxB?YHA+R{0*D=<&r$Oa7XdJ{&Y?U<P)ZQ;tOS}>1|6@>%`
zQB#8plo(Q4j37*zLlovSC_^~byAs#h5pndhwN<b4{QhdAuB@ypK7O<IEo1AgZ=o_j
zy#}x%VH%ob1MvFWcfm4gUMqi}4PY5@f$I>YLkjI?m!{pv(~q;ja{(Yj`UKaWf|i|~
z-XZd9X^u`WE_$%t83@k&=fke{dVE0(@yp#J!hvLNLfos{!(pqZ+><6Abop18#kfNC
z9G?8Hic_>Jt`SGQ+qk&EC%lE-ZFgr>_@SQQe51PeqLOL8*usvPqb{L7Db|&Zi|nm7
zvkA03ewxFYdr?H_{u||O3n)z8tfV9|u%xGZXgfoKwbo6H2$N!thFjfk=u$Wx_l~<~
z*=q4Zn;`5BZb*zo#we*F&D7>7{dgRFDOo~mHM-?02_3!wI}oaO;S*24pF5T_o_)cF
z<W1+t$1kmH<!*Bf3(I}KT?kYb>kD@`k^pzGbouWo-Tx+y)s3*6fLeIrI-sCT|B7Yn
zpy8{SS%DEe{?Y9hhSM@#IWYQO(}IvHyK#jX^e$TJyY*99D;IxSxH#7e<8J1~jEl<3
zh4~wPj;y@+cW=!V5%p^Cpt&EUOpmdo=?%%J{@3gld-`sMV?@CW^F7n>c;VVn!S)V>
zd0Wq!LK9lKdvRmHt-?ZGO0!qnj*5!P`#FNM&DIE@&8BbmzTVjH-<~xb*qhJ8vi~*M
zx!bikiu=2-4a!)*q84Y%$yBb;=4O4^t6e7dod-Q2Jb3q2`*8}=DDVvsbyBna@QVd}
zEn#3+^J+|*cE_AjBfUP?uzPzv+{aW@=TXom`Qv){1P)dRbv8ub3m`_3NGxxnK39cT
zdE#N$a}B{8!*>&R#9NRgX|E5hB?v$ICPW;Sx(Ow69;yoU-Za+32ndNX^2oBv9_{aN
zS?uMc66;aEzt%yNCc51Iu9b8@wPUbRcCdHW$>w_Nei)>@qNjOx-n$vhTp;6eb}N+n
zc~D6y*Gx%%i3X49lfh8m-GS@j@#VKilb$5=?<V__Z;sl?>|E~&mFZyx_kIXRNxsH_
z!FF@A?iJs@dZ#RoOI4h`YHDzI9?U+gsZnlsGy=2Wtz$Fl>VH?Ji_mwAi;bLi@|lVv
z&F}nSBFfUhH)f4A;5t$BOI+(<Lz>6U-f999SWS3{MgVMIbUUBkp42=!JD->wmABmc
z{sQxBNhsnfFE@=Zqf7<pOA1hS9SsQKmtO&kv+L%R%-C8lwyf+MTGiUap`(>CU9y~Z
zmy5{TJ@uL*1egfeX#oMD=JOHp1p<O2QBegYTxY?2?Cm@~x$~Nu2fTM8RCwqwd21R>
zrx`0Su-MI~a?B<<?zkSQU!=Uz`4Wc-!6xtW>FJik*6zTJrOQb=?axcQ|8$yv%fqhC
z)-9p)>61C%lLQJPm<0V)Iw5aCK#`|e&b<iH_gj6`bO6I<)%Mucr5*Y$rgMG$$JdA{
zZ$EL<1XE4o2+UR+4FcZb+tCVy24vy+NTcfoJND-^q(J0^*J!_G$~Px`qUCP%<D`Z>
z_gZZRpdAOA<v&!E4+^9FPkMUuGZ}#aAd-5+hH&uka*Yemx0fyy9u$*fw{sOUvBRzL
zG-`zHebm&%qPZZ<63X~C(3ecwj=G{j3ovXuQ554svpzhIw%GwsY}hdwd2i@%5(>_+
z-9X&-F}TVuV+M$AsR|MBJb|it%1lq_jyG82%XI+|F(!Ur<_X0M2oCUcqJ|3!TW~qJ
z+DMgGKDh0`c=~ISP<r@LCVX+q;(nDaoIX8#=H=#bzqPki?lQ~TRFh@~-aAm+5S>Wq
z`5{@s9DV;jq>~G1>CM{O0KFeTAn@iShqs@2X9CCtZa<yAjv<Rms$_B<dH-5XNopV!
z>UoXTbQ^q0e=>(1n4Xx;Csij3#+#hIaie6SDuJ{2>|a8)!^FhI*_v+XTqBK@UFGBs
zPq#keX*U<t&vXsFj3iZh@l0eXmSy(aD>JyDauVS-S3`T&?&v4|@hlc<Kmh=Gjsqj<
z3mrx4W%kvwby&UP;}QvOFbI>l>;Og*x~S4_mOhf=nS)FjkXmE!jh`G}PNApK1R_}g
zwUMpa--qQUzbz=ZPE^BRY=P-JMF8r+QP`6Xd`+HsO_fK~GYK`pWEzuQLEXRg%|dih
zlENDN8Zo2aHsrTh%gjPCV#_M8&_|YdQhCFbH4QWKtiEK$oS_1Q8K}&MfB|Fm{a`_*
zcl-6%g$iT*$`1s;(ZM%JEWBJYxT?P(os3RW2C}uG0MyD{$ta$edZxO3nB<R%{2xQT
zo1X`g22P<`V=xb%E1eFzdgGLm2ne7n?Ii<m&Ma?eM8;D5Qai+!Ehaj)XE7tVn^%kQ
z{CcKXedsbjJ|2Qfp_Y)efr$~B0|XF_)+^97UQe32xx@SDsg}Rq>-zP-cj{thV!&Qr
z8!x{|Ks)yECo&!(<!F4tk_L<5oAtaioJJ7r-D^fpc_wsLPDU=l?Oe^wrzTX-F#?j3
zd^2;`4YzPTnq{VrDNV1U+t%_6>>QDJvt)*jGQ`3A(2_04_z|=108Mj>z-7LNVqMWY
z>%diLnU5qL=)hcA#$<7|@ir@8h6n|e)I{Vw{ePsrWmuQrx9%$-ASDV)r<8y+NP{#;
zw{%D&AtBNY((nbOySuwVy1PrdyX#E+#rm&v_Fj8m*LmYBy@cnP&zxi4<Gw$Gxvnrw
zgbd3+mumYm2-x8r{9p2%OM(6qIO@_JU^8B?XT4gz=BzQwlmA@n7pI08x^Iz<x-DD(
zZl%T3T1UqcihX9f;jRN$b>69nFv7P2j6O|)yX1?9BudeI0Kdr4N|@HC&Gp^<qAZaN
z{cGSu#C`b^GzJxF&yL!NH8sI^zsfy{PuLwHrztBteLZq2g2Uv*HlGndq|pGdlr`$K
zkz}k!%lXO40u)l;1F=%3UT7Cj0wx{;C1oZ#xs3={D`+OGi6ddONMlOdZQH6owZ{tA
zQ&m&__L|nKPs8y%5b>EM7QNf*)a(qcTK%Qdr%y^!&;4R)VmYJUJ)Tk5Y$DdwsJOGe
zUx$rhX<%Z}&u%+NmX%HI6^g|~1V-CBXo)XcfFm~!Tc-lD-Lq0vX!>=09xKgfn7L*<
zR^431EGU^J6Aql3JY2<gvpFO(yxma18kQU6918T91TIO0M}=_ug@_^xo3@^i^WK3D
z=B9%xL1di+Wm)y%RoLh9@$r<~`SMjh7`#B+**jqlFu8o@(XGA5?+!X?GLi3<ovU{~
zKuErr{0_)|Nd0ft_6CgnQqI%zuuAjL0~rX+ac}P!yGiXla(Xg_@X_}enYXt$b2S|u
z!Zecom<EFrp;yQT%Gw1RhJ9{0OSvcwHVE747>~h`O$P18_*i5;VV@+!=TZ-?BN?Pj
zwYGsw*I^yo6TS>$mlD#-n8*5D5Cj0k%mG5OH(1z{=JTl|1w|u+bX2Kmd!4<$1~N4o
zaqPBK%q|KanrA{^e9BmHyG{VD`(jzJAG#M7s;a6wKF8DcK{`P~0^BAwkFTSdEpNKQ
zwpFAFI!I#@_xAzht51Z{LQwEhD*8zfF-hs(Y)v?}A1;$qHTe1{w47~u-hCM_)tBSr
zcsv>gM`Yw3KleyPtK6Lo6o}lj;W}T;Hib0Z_HXo~A>6r0RF)q1qC+Rp<bO+GKf5k8
zgD+IC$8$U=OLJ{J-iw;fXcwn|XIH7*nG!O}{t6UZ|2!(3S%)O!JX2)buT40FoEHHh
zyxdMtDs35mcg!~JUh|xm`v%Q>FrashMgYmh(Y&`~kv56M6a{DL@OssF<8$i5<?_x7
zYf%f8#a;c$*xn&~n+OO{dO@?)`+!<^m_W17P{=*2AOXmH*NZMLW|Ng#bUr@wA?_NU
zSM~m-lbI4#7WkL>$)&fE_*(VXd+(#&Nymz{`+gBWA4nqPt=?*0IJtOp5zkwud%-HC
z_&P6hka3*JsGyoGHA-GJH7iFy*)PQKT-Lv{7kIqHLW;xMe1;!5bDw}lkXy`Zd3k#I
zfR?}ei|vpu&h<^d>2{cX)$W^>O+WjK-g;kOv2B)bh{{MOeL`}qgN(V6^NAE%d-CiK
z-{sr_O&qOG3FIp@bUKQ==x@OhK7jf>vs5*V;ke3T+KS|j2X=E$-vDh<cJfUo?Bx|c
z$JaLuLJsL_I85&;P^Incj^jzha&vN2V&qp2JYwXt`15G-c%|St!+jGA_Zt&9yBj~q
zZ_uhh!w0FJzg1^p0bB3RL^F1`&i?aT2Y0PD^v*zH>0F4pjb&r1uI^^1GEHA!JvWzB
z0=qzx4C4YX`%*eJb~i<GMcz*uq{k3TDl1ip%PDNcd}5Z|UO2BqNRBEOWpYu1sn@+c
zxS%v?)>@^<8Gg5FJ(m}eLppv>_g()!`>5~YGtSPonO3dt+37UB>r#(*fyl#;0a5&e
zt-BqygU6czm5h+3f&$kU_*cq`uN4(T@m{}o1Sz*-#C)vq$op}>rbbk5aFD4nom|mr
z*(VU-^ofc{ODewR5ksR&V)?Sl+N-o}WOQ$Huk}f2?%n<O7HSI#`{z_%(BJ~D>*s~6
z*P&-@R1e~T2e3_Dva)wO9g)(ggw?Mwxu;sLqF5JEa2O-XWAb_!hDJOP47yZtOiTzH
zE=O{W%RoP&k<DfEau3(@3;wsF?}pL6ZRT5GUkm)rk11~IY-UD<bjI+`possfMV0sN
zd^Taz=yLeBMa?1x3s)ZLm7J>5dDB5-UTz@)@KfW`HO*~Zcu@jJ;VddI^Lw6Mmz?~3
zWZr8nhh=Z`JLPX8x+UKqv|QI#*9tUh<dio`MC{{!>0aufG)12T_{YY^GLMZfD=pVF
ze-Q83;~U&ts6q|idvt8nJ#ZmGL;&;92{<+&>ALj|4a?{*E@y|cr)+<`7E1zW&$vmJ
zIzsAMAp0zEuJ)DYi{>V}rJx?Io&}YoPyfzjn;Zo7f#3OLD=WPSeGX&)@<^l<V=rN?
zH$#c^O3yZWy8Igr_bv9ESRx`y2K7@**1GjJR2`b^r;uX5C%jERy1IUTJ)JC^w_bX}
z9Iev0;<GBKgp9{a@P4cW+os|<4BQ9DWaKiJ>lZD9$d|rxH6l+`tFHp+8t-ncqkTU@
zW*;_^KneEFLyNL6h!IyH(o`t80~}XiY0IgA<AtE?U)i=4k>%o-KE~_98{3Nx`+(bc
z_3Zq8lE^+>7W4Z}!|jA&aG70Pd^k}XgoQ`3zw{#CmVdRYr6jK$HGb{nUgqgpA}jq+
z{Q*U9$u%3@gghpM*?4z~RnsL#;>6Qar=8Ajzwi5@n`-{s6q!rCg$-3%#j~wSvnD*Y
z<dl@75hS{1O$k(FFT$a?rdvoLqDbUpg4`hlpx)D<p$XWZb1zjkg2a!m()>03`Z<jn
zV`}Q=7I==t;nSX;!kX`vc2?SuX}Hl4e#-hykTNIdRY{zCjWwGn7MuXjRwzP%sDVhS
zV_!Q388$YKutuW<VG>ejNVt=no5A8WqgSv--=mmD+CJ0uz1Z_4VQe*+E^W7I$%Xd~
zS+}6_;w0aK=E-KaJiR6yFWC;RswM{K(D+%{d<y}B3DF?_*w_R{WJGA6h}Absto0r7
zOi&L$`gQ&Ndun>49MSf4%cg+`eY)0obY)*%NlUBgBuXpS#AKrBY{D^5DG291^11G|
z7s3M)LJWicM`0x;ft}^YTFW6yb4S3H)8+On=I7?p!sey{@HC~peUv80LVX!Be5wwp
z5``Q}T58=_>Mpceire7`=yD4>_g~Nz+5M#R%}wTqkYwe@$2-HL%K0g+uEp_%lebV{
zQwF-=Q|#j7p<o}Rt>)&$#70L%{Cv;CBCCSD3N;R#q}kC}M)dQBD4`;ZocL=&<>@Qb
ze2<}*U%!A7#=uO}K+j9QGi@)RZ7ew+^y{*@rBSX3^MkX$#}Ob@^$7E5X=u!s-qBYf
zdO9S(PZ3SGY?9Z&$NwzQHdD)SY@h;kRSJ%4PiY?evw|v3wK9VZx~30t#7%{b_Ye0M
zP0qg088|IlZbNP^EP!?Q`uZA}r(DkaS&QvXQ>Av?owB`D&?@WpZop{!EeZ~8_@+x%
z*Q0hV3TX)G=yY+h2bc(sgb4|@W!BeU+kl2ymJ${hM}nwKPn$j*Jd7|hJv3M@&xgJk
z$to%-Ia)ee0nS!!aILp!e7HXl38r`TZo5rEr%-CVAYjHi&t6dzshc55Ew08ohd$QX
z$}CVrhlIz#BZ3N&N&82XGPuSLn~@xY0ubuK@+rM=MHWL{w2+`MFf5CrSkR5D1-ZyR
zxjnI4zC5DAWrYmrtC)Er7N8)w&vZp!B*5(^*XM=HU+&E+sEQ%nOLEoQ(P^BlvRelt
zqv+I){iX%A;d30e(0u+($jC_A&3V|5XmA>_Cb@hhgfbe;PbSI{A*su&Pkr;Am~WfD
zbst>BKJeV0eAKUKp)~+&C^Q~!W=it>2u0c-(~t8iB=3IHK+c0aic`PXb+C>wrBkHk
zsJ9CX4^Z0U7Mzs_>_&Q(6g3*oc8aKTb62s;JOj1Pw>@AR3j}yx+Mb<h?agGQ72Hki
z6y@b+-&)^0fv^EoV<T;FaD7Jy_3|=*n9+PsWQVY@2yhl^s?S|lEl!y32rA8RxZ&J(
zByfI)+f@a~W9&Vo=fQyvz=e&9$9}w!tEhy5AtUCZvmC`~mz$kE1XIh$*>ts)HHkq-
zFm~^{V!E?^f3a6}`1vk@bz#Xe`y~`7EQ`}cFI_ASPO(;+4~l2f{hKhO8&qB}UlieU
z$L7v9uvIPw`{V2%JoE(6l}>*FJ5O7qGmsM6oSeDm=fL;3RGFSxIRR?)L~ajAF;ek7
zLYjzac3zf&o}i#m!|m??ndowOTg1-);#nN^UV96td{FVrAU`>;AvFFeigW2?W@}3o
zbWPg67&2`KI0qxg$9KNZ*Dx`zQ3?8F6(t9IYMt(`b2G%XT#njx8XH$cf)G{eCR)c%
z4|C+f@wB<rg2JV#YsFa62$3@}$P^{@aH5(Q{>BY(sXgx|Jm=KqunfR(4&d3enuTNS
z?(23xU^<!C6x6r1HPc7{{`XyN?BTJo)s2-C@F0O#v4WWeAU3lkq7S=$P~<5j+{kIv
z%8gn#hr4rfWQbpZ6o<HknEOOy<#z`AX6uz$mi5fcbSfgpkkZn!JW~@uKz?#n{Ho{6
zba9L6(gzd$$BXG>pJmfeej}Tksf97QPgkcn|6r%{sPy1sU!&B41t53MCayzxrKH5;
zSWPFoQfP{PR@*%^R%B$9rIAn~u;C4Cy1C8W-p0<TGNGe`dOP~^`|(n`%-g^pfi~r3
zJC{lyr_Zpkv5<>PK$Is8SY{Q~`CGN==<G0~E+-7Jh$$$^^xZ0KJ5z>Y+kYGQ394Kz
zw=6bT5Kdz{r23l6%FE-f?n_}Blzb`<!7<aK5#``yJG^valwl}unHn0JZS#Bw3yhz@
zYpL*C*72#NqCpwq>MC;uw;W={@a$i|-{UWNO(#RIX<(oWon#Z8xsgnejbb3$e+=rb
z+ecxsRL8R>Cnup`uTq*PhS8<Iw6s))w1@5;fN9&W%-hAh%mya?jKt2o!klGGHj>*r
zfKEs9_fJmzJtFt^U}vx2piHd)7s-zM@qS@p&D9n7pjav@fQ=Yrae$9mU*9l1zP^>8
z4iz=W#GNs&pidV_`0~bN8Bv<wq0YS}inSEX4S}Dmpw4b_q57rj@k}gB6CsZTswNx?
zZC*A#%X=^gjEG&1phm<JD=CiaYKr%v{_6hb;pTi61V`{YDTM#L$;Uq&Dk-t(n3(Bh
zHmrcp8HpoMD-SCh-o%q5CLu*{bZls7a<r_pIGRz1A4I|Ci32R{zFuvwglrMLis89A
z6u>n#{j{xTQIwhriTDY3!f<pXGyZ|KYT_)tyRfrmqOvfBn3ImKDf>sifm&>gN=#fp
zyY3Wzmpe9~w#%W0yC)_FSAGK_ADOqL?0Q;VV~XVgqGHkycZWKr;=L@?N?!RIc^NtO
z>#eXRF;05BF99%w%Y5!a%jN2Rd;GnUQs={!;aw*oZ*bKm$v+G9*_jGrM=!|DbnT3E
zkNzN)*O7r4gJA;iUD(HmRNe)IB0<p<4-yQixrh)vMMZEVK}s3*F#?|Rhlxpxh-6e$
zMU{kwW!2pzY;J;N)s)v$LlF@Tv%QHP0!S7Cm}@`+;|Ywx(Ki=+@W?|GBO~L(CG<>y
z1nnmAsbTamDY)`{h*$uma`q|6WL2yJ#3j7o-kCc4x&=il0yV45!=vks5&al4iuux!
zXz(lh^JmS-c!RLk>rNH+Wd#*y?Rm<MF8==pOuep=KnMYVhrlmPA08VfE2kvP_*zLx
zGx28(0@FDRoK2t_H-saK6WEcDdwRqt3&Xmk+>*4Mo$r8sJ!X(=eRbmm2e+FmpdDv@
zM@?46{$yX{5^s6&%2b_DCB&z;HXx0}FWA1ehL7ya``O+$5@L32ate5OBV0;K{gJ5>
z@VM~Uth{#FB;USTsB>+~An4dMkSOhBJ0;|*&OdWLe>}BfRi|-;N%an1IvH%N4G%LY
zDk@H?I}3PbZ(-Y;(*65w4Uv?vS}aKPe}fNb|DBx++ET|jxZv-?*H+u$SU`LQ->_RB
z>GE4K#`Ql><Vm<<>?~AJR9^HCJUu!sr)MHz_wn%o-^>L%I>=yxpa}44r_6w`taN{u
zTMS6afvL23JoY0~U0s!D>>rbJQeL7Hx>9i9P{nZQK<~nK`zrSI^!{ajU(Lx<c~gT%
z@H|gCj#*4z9^GoHr$>j?d~9O8Kbm8_I$+;QW}&|w76;E^OAh1|tgWrV#JPFL3m10F
zB|fQv)9!E)RKh}V)o{eYMqfEtNdqF15~!s#>TIdk@13LRD5>kft{)l4DkLch@><D{
zfOa5*0+IS-Z?DiBStqMw5V29zRLMyzpcy0(YH#1WUW-aEXa4kbj~x>OF6%qkuR(ZA
zZzo&cV?uVp-|_rQsmf0K94SV4Ubb{j!OE6NuY&~E<G%bX#U=NjxOBT*aTGHD!&mSf
zxVe}bWtP|1SC@}X4-bFPN>Uw?jG3Mmkxs(!7lhH!$dZm7`)YF=%+b*c;v_l*jN(1L
zzTX|oA|n&<@%khrbbqf{EYzUm5*7hRjm>f^(8O%iQLQea!N91GOP5FH0|TV!^eg%@
zm&0e-*@7J%GoMt0@fkeo+abMcndw;q?#X`W<6~o@CBfj9B?9*}IxadrJ!8JwnG-}8
znu>?ohrfcvDe}n~nWAlAR7>9z)14bXzpDKO?}G2ObvIX+zsSfT-?8x;T0G$pyjwYk
zhwb*~J;yNz<0iW-hzAM4rouTj-A+NFRcFt{K^qLXO}dtcKm*-M5K8#hAo1wrdBLBc
zE9OAYtmvRL!OD9-H8r(qWLRa;j)(&0N4U=c>;EFSGnoj358^s@trtuR&w&MIS}^bC
z5PSAM2z`ESZx1EO$-Vj4R5a+o+k3A~U<fNf|Ml<<MHg=i#LXETV8vCuV+EesiiG^u
zU+r#`Pf4L)*<C8Wu9z&Z9c9UEOwj>_Zo0lf>8E@ZKE6R%I9*=yF~WbW8-EgY(sE^j
zXkie5(YfmT{YF$37n_$?w~w@lIKJ{ItQIZiCt4z2(;Fi=Wks{jt<S*GBt&C$5TLwp
z2vYHA_^VM-`-t557ew+zuT*ic8rTe+l;Z|KKkjnqKFAug<rWaJCJ%8$c}8V0t3m*^
zW-n!A4?!q(Xp{4Q<+=E&pzLyS;kU-ewEQd-Zw&tIttK33BHY2FF4Q|>uJ=nw{A@Z#
z<Svf-!ftQRyT7QVu8Md94m~ZEVmB9F68<}+e;h5_S@fFczks!uE`+c)@%!RJpHrZ3
z6=;D*UPe2{Y=L&wLK2f!+D=Iz$OhoL+_d-4eA6F#l*fWcJ83(F=@OX7=RP=8TVjgi
zdeUkVV}-?@c55}6=H_s3@Xi6I)p@2s+QFP?{loBW6k-qc#9i&|bdSTt(95yX_Z&Dl
zg-VqPjX9|2HalUw`{`sioHfBmhdtEP+?dwNL}+HQRYuVPoUgJ?zuY$QUc_we6eX~r
zk`O!p{Jj$OvZtp99M*vJ3yx_J+NgR%0*X;Ew}nlksiOp3AiB0jUGX@TMz1NF2Rk>`
zu1*NCrG&EwTY;hI&(^n{WqDglu|8F>13VK?Q3)ID@2P?7Nebg9dV|kqwkcjnb<3J1
zm)Tye!_uy*(;RptujLJ}b}9pRod45{4}2NX;SQL5Rr$YDrBNUD^~{gPA(3tBb1`v0
zMM;4+-Y1D9lqxXU=2K^1tuhV#*cw0lj*Cm;IIZ%>DkW^rA~{Wqt81<%#SM#obrzx~
zHhr-QP4iyU7TNfk$YVDuS4g%%xcwVgU~@8aXWkj}*zfoxr3It}(^im!mg{m{o1(nq
z-CC5PbX;a?>YG=HbQ*P)<fM9FO$)YnC@Ctlva$+bS3d=bDPs8J#hL1tJs-s0qMEkU
z%E07++tS}f<Y08I@WR=z8z~GWU{XnUR4DnBZ`{}hC=BsUz)LGH$(RAwNkB;$K)1k1
z<V@b#MhU*D!NP6F^w&&amedjt&>M+sd}T-1lp3#xX1}Hn{1*i8zbVwlAyV}e%{8$O
zj5-Exv|T&}8d<@=CXVCKq$1C<#GmJpUQ+}-C%yzp3x3RPYdoKOA|BMLg1G{x$Hr_9
z?(aZ3>&!~3_gBpFdc11E!EluPFSBqmDQF@TpAi3Zo{bf)MMb$-ZC>OMy3#Y~&G*c6
z{<bb<3_t{kD?bTo?~ICipWIqi7&9~4tobs1JTRlp(@A?iAM*2MKSvKGwbVc_?)LA@
zLjhyOf4u*@Ga_?cnc{hQ5UaABe5J3bjQN2QeW$0Orz4b+^=R)sI)wP!vi<LwV_W@+
zG2q@n*l@AX!D0%Bij$r?a>X?AziRhqowj<|UEIG&#N!37$h~}fK&gsDz5m8`>o4fH
z&6SbTv1Y{vd^^B;(07JhUcD^?6KPKOH<OGxyYLZ7wihuP*>gRUd(8m|b+*B$;buR5
zgu(aLZBG+N1UP#I5njMC%ZV}w3@o+6iGc(<#hZL$z))5h(+CBk1p<=&GhJZtMrwI&
z1_l0qFv;{4?7)6=9Nq_lbO7&vW?FPt?tD`j!s`NB{C{*Mdep!A`X@))|17O%XCeT%
zlVzQyW3aK4$J(#PZ2RM3mTCRAavi2CXYEKe;H`1)S2M}J-_``_uUEtHQWF<1)u!w(
z^Ro+5O0ht+0R&1qYHJM~MwYW~{Y(4dFQl(F?|_qM=_Kf&DR{7Zn;D|0sD;{JynAT%
zB)R_)kw=%40~#MtD`4z0_4YQ9Tti8T(OA8O7h{^t#D~^Vn0W8#H^Why;vcGHr@FDM
z|1Y6s{VO<E(jW&n)Z9Ed>lj@`7o$yJMU?cn>+8>%Pn-6ZmzdQsR?DqSzxRox*FPk)
zvAS2Fi`fE2qGJFEa{!(eF|MFIHts{wUNn8uz!4>m8QzMC7?77Mae7*_xA+#cMW?<U
z7l#!tJoLL71AqRBNC;j2J6G3-!KzV64%+c@c5ZfVxueOkl!JdjMn#NE-O|kTX5GU=
z(05~XqA#YSb3*?`Gt*?%>P?<@+5CoYi(+Pbc6-bSF2`7bn*VM9qI}rikFLV3g454>
z@5n@X`>>gtb$UI>)L8~9(S5ZpkHc#oX6siDK7)`LqwCmr0|xScP-go=5lp^8PM>?M
z9Ty#3$IDf~$pNDd--y9>x07LEVqF6)*m>rg9hTbsvf<fc5@Zn(IG4A;F_HbEQq(FR
zIY>z|3IF)_Z;jr?M2=sC7?Otsw`U`fEo~wq>7<&HKgilw$A)+sg%f3I@(Nx)^9I&b
z@&B}Nwi{b>+C$4C2DBgBT3uQ1`2uT3{Yr%*{G{3SPQwH4^15uBY4!@MDmJ$K8bSNt
z&VQS;Y#VA3>i`5z0jr*mR=ppy^WR^qs)FyNMn3@=U8!?}<rxkQa$t2X4R;e`0Ma%N
z?p*$tF1h56Wr;%^u7Ocs>=IM^<&+0Yz|P7pSI9{j9aCTvo~iwlVi^;NV)hf1Q`N`-
zq`&+;as3LDpUmQ)F8%u&|I<P$_ad&paD{c^5GT7_qUYVu#-HcOQ0E5MKC37Yzk;Hy
za@H~<jY6XThyav4{2KuPDhE}bB%hEyO~}R<9U%zFFU{wFL9v}_FXPB4C@f6rFnfg%
zONLsP1!d%u=1qp@e~Y-4_0ArePt!ieFOi4Yr-$De_n&G2?4apH|8|j0s-6AN(g}yH
zbL%VD9dzS8W4s$;*a4nvJU8!ajv#J|=-AhM=l@CpXw=sK?=k?P`R3V8QIQOwwdsNt
zzIo~$tv@~vay~L;RBG2OvH$juV}I@O8-s7161L`EigspuOxvs<O{`3?TU1S1GGl)8
zOLj=}KSpqHRerT<WWJ{J*^!+#_G-V^!DS`vFb~9R`NBWl?z9gDra}WF4e1L+SJb-0
z<a9PR?TExojL6<*ojfcf<0vKNBkwnmHcW)ZtD7mG#q)>>g>byz<_<k;m(d_D4rpwo
z@E;+*WGe5JLJ#OsXfGxM40E@0hWo)a|G#noM)>oDvBVew^98dF*i7WqD-{W|$$CsA
zdL8J`T<Wa&-kRg=Y)N{U7MHsZQs}UllB{&|xB$FoQG4gGdu3_t_Iyef@Mn2C`9kny
z6t$Fl^H_&Rqi`-z&R*{J$Fa(nJtOvhrYd6gj+T~OtUWrW;#S4im7ke~@M!8GTv@Gi
zbbSBTn`M*N6qu$S;yGF87PW+gynD7Afw~-}RA}?nrrfCEo>Qntz23og_s2{1{k8`h
zaP|FucXr@%kDd8az_%wm<$%bnvZC^vtyOC23jyVg*bc5OP+i@7!pkEKr3rSn2PN_}
z<kzd;AM64PR@3EvUEzQ?vXlEGcEHKGABRoS^1biX_4ZB$t`;2Vj>rDfzQEWixq!$j
z%9b!yJYup|_YUVuN8osPnYYiYTnU**S@W~=u(^kNM~0sHuSG`f@!VYGaI#wWe)LMs
zjO#`KnT0nTOwPm6eq}yEUVsd1CIJX}AY#IAevXAohbHrxx=iRddG>?R<#>91JO=??
zUHR&ycnW-x#{1DxEzTR*&j~+W?a-_V-_3)-2#x*N2Rar-MGX{5agvqKRfS1)c3HA-
z-{t1tuC>NA9W3B%t(SZ`W)AlE7kuNM{#WqQ;M6~_N346$+bki(?_Ew|p~V-_3AX6u
z?HoZo!3<2K*Z;xGtoHwdWftyoD1XlT>;||ZWgfyK!%yZsU@cK4G9Db2Xw-hbd~LgY
z`IXhskSZ@Kp2zVUki!9fL!oxjL&FW<eLiL6Zmy8qalqHR1>5)JIlB6jG3YTSOKkz3
zo4`d!JAHMQ3ZQMbvU33SI?@{`g}lw(tstgB4Pd7}6o9B<OIkr>apIwzuIXfKs(an$
z&jM^_LWb$)+}EA%)R-Wg+vMmx4tn9;9}E(XE3E-sb2UOPL=Ie)KyiAra8LC8GCO``
zB;g_P7I@?6%Pe<)5iUAK?W<=_U*AIkV6Nh8s?C>6zwdkF4meal-Px`n=F2I_mKdy`
z0H)cPj4Ae3Q*I*<2TA|pv}A5x6!5hF6e==zHjeRbTy6?`nMA;2d3%mRE%4c(Y`UkX
zm?YLjJ)yD?Rc1qkuCW|srgujmbisrkig42$yP8J>02D0e_G55>ad_OC`Cz!&Z1YHG
z_zvbJzkg0af%o9l)P95bC;zG{R;O0{0Kby@18;lXW5nJ98r6G|Y_-&t-<qFlBR-b9
z&t`#ZwF30n2Otj2;=cc)*>rD=FJ0Y9OGz^ix`T7L@+$L_Ck@~6I+p=}Ad6q1>FQLz
z;k<};+YSuansB;&^q>4`=-pvVW3u&Pk?+`QI7d0&3%R+%z6WiQsw7u)3sZ4@@Y<8o
zr!3|>gZ`w#OMgqloXQx;E`uwfMSN8k$ZdnKxu>?aqUoM~$e}q_#X3V6V`p+3$Nu2p
zVOmhxVsy?MPjQQHNJh);4qR<QhL;;0#SC9C0<;=&I=!j5xXJU!GyVY^9Bm|XT)L%<
zJvXiwu9<<Ut-B+?#TEqUKTQ}uUUpAkg^Dcri;IKB(>FYcNq+54bm?^k>@cAs&%5Q;
zne<mFnINdJ$ygO13@SndD`!hoOKX7BH#`2FH>n;Z<7t_goOqoHO}F7brZJZarhh}J
z$!n+9uS7c|ocvbggE8R%Wdl4SdXy4<hD<t%1HQ)!=B7NxFd7Ac6CY`yPhYwjcZTrF
z)o7$ilSP`tptu>(<Ia6$g`%8b(30w#U<|QV-gMT&MFW<BR=d`xrL@j?qEOlX_TRfT
zL(Ld2e(ctbseCTv5C2+-u)f|kb~GkRyyyPcccQFE0KdNMtmpkyMQB@_AEK^6Dn=-r
zW1^48-TWo+b|ZFddTSZN(WOBQ?=OK*H&%EKYh!!bW$&9C4I3>I_=@PNZ$;Qfu>iTa
zAXp@@JpN0ReRIr>s0C7Eudh`6Ar^y2L|ATt|JN7MoFnL^cH#GLhQh~k-1RyI061?G
z`~QHW^8^`^p;0KiV-imfCub+nMNOsE8la<^0S)E~2{8oo<%Naf<=H`A-wfZ2eQ!q>
zD;VUYMs#uj8hL|1@smcA%YFcFy`f~+qz;<(3-v?+6AMF1o_7J$K_^(w%tgshFv#ZW
zjrGkN?`{sZ)IN@+gT<{kZ^3hS>huZAIxKLaM@Ci!!MlKlMn`Bpn7(sQ_uFFH&3+5_
z-a1_)Q5#o_e=+;|yaDj?DIhTwE0}0$yJ8l7;;X`-Qa@StJuP^rU`56Jii%WxQKd0{
zwHJUVJOxzcRH<y4P?1rPH;J3Ot?OhcrX{a8r)OvGtq+sqXCbX$Xz&o(Y(nY*>Slbt
z%9<i#u~EMlkjosTiNmkBaMb-}*i{h8mSx($0v``sKH5ucvDb2PRPShmB}LtKLb+DR
z9m^{U2Uy%j;X8ffjXph9iy_3T2d2pBkS^e6jHE>k^0H?fMm1<1cB3)ZY)V{htMQS4
z=z8J>U`AEGA_@}7&ip!X5MbI1hu_!J;!hq;gTK;9FwIU9j7ryaB~^!phpL3_#14L6
z;Q>L5hn+I@h1y&AGET|%%rbrpYIy0AsVQ!?cXsRII!vS}k5{YoVW1hAlsNnyib~Z!
zaN+8OArF12*1iN`PlMu8BWz^vU1+E2<sRazrzg>EZ{7l%tp1Adb&CYsdbo#Y_c#(K
zv~NI7oPU_}>C&;=XQ9FuQ*TzAZCjn5VFnYwa%=khXt>1yy5hqVYJoI+l8!kkvD^(-
zIh8wgDPu7SgKLlBm5TB4M+)F$-syC#dGAGyyYG!=wW%(g(o*n6^ZxuQIi9&Qag5fd
zXX4Tc>@aqAr)Io!*=-2~dLz`(*yG>UfHCo~#%Nz1;$_mn&BafrNh<b4&Hd(6v^%Gm
z79rs^T%<Xgvj{w{v(EXK^*7T6k?xwx_xSE{-9T3xQn1?87Ba$`+h97d+Paa>adyA+
zZtxMV{FxdI$Ie*Hp#W{l=UsrbCdB&z9wm*l9tg>0pWb;^e#dq`?J{R<WAG0%d0ZAm
zmf-)x1*ckin_}WV4M}C|e(29OGp+`N>KIl=W<0PU#CU*jgyRh(S|!`ic;vfnECRVF
zHKI$5ZYW`RY?DK(>#&QIRxR|nA6h+tdytfJ1?>$7w?lzA2fP|7NvC-G{XP5lQ1#_>
zG!7f+Iygh9V6<tkFZQsoL#o&Pxt6zEF#N9e-H`~%{KpMHH#TjrH;~r#9}<XtJ$7HZ
zjYqxv^kH3}h>zik8M(%+c4KL+>YK3B9yQA4LCR_Qsh3mz1j0Fbgxoo!@KN0A^m48*
zv|r}$tnW$?z6E=+bBt$Ad$**T1LJpWC|>-m8`v+-#yJ=l*nYGvVbeDgH=g*8R}G5U
zc7L{IECxcX2nP>1^Y77B)|Og5yOY}b<^yY1-CT1-z~_d(Z_wS(j_&~__mYsPZbqu5
zA8QWM!j0t|g0hyuAv}!loi5sr6uoL(@FhWsTFv0wH+v!26DbHDih+VhV+)+6g4hG4
zRaVcOB-_0u1_&i+Cknc*Zk3V1RtlYCnlGj3tWHGzdTxZcoB0J_4XNL)Kma$}2DRCn
zkMPaS1OdnD0O9#>VZo<(uF(hIg}CLi-~mJ;AQYUT8fgMS{_ev3@-b0Retcc%q4?mn
zF&VXTjg`_7r{<+)(dW=w;1{`KFV)#^{_-oBt+Jal#a=YE57x|bZPd=$ZDLx@qZ%(e
z3)7|nblJ)GPQ6QY!XA}}&PCbz=^sy<-(ERvcT1lSlem&)!<t1;B15^3Z@E!Eejv|-
zbGMnmBzxwXIm4|p*g;Y*ZeZfwq+fAwS*UH(SulOcjqDwI(}&M{FY0@)4KZ}0{qS3+
z?^!~GrbWS*D{t>rKXC^UaJSEH*C4UWJv}j}w-3bny7>#iq$G7S?&>l<eQ9fy*!LG=
z43xKKl(Ni|i`7Omn9vqMf-9$dQ7x=vQ3K#**VNG&N*B`$Yppgh0oGy9ve0M<wAcu%
zFSey@w8E#DPzs26DlRFH5cCHdi{wrlgl^&IvR~AqSlRB~%}{-LM*4E(mr-AF+hA_R
z2zA|SQhz%oxUz$bb=JNxClL@hzKgWJWrX48#t48#8R#1TCA^2<t^Jn0`WZvm*VCnE
z&0A@89<BPQhFOy<TYp-NR*wRF_TtWR0`V5?2_Vba7==iL>_)?N1re5AOptI-+<XGm
zylVUmU%k{U;*jlj7)cMG;la9L^gFKDRw^p$<x2%6MU;~>Z_>H(jn}Vic9}*3fWK3O
z0gi|S7->SG>sEGF1RO5FBv}=;PeZ8JXHT~RM6Qh?%jFI(!nJP<UobTfhWyGB{S><2
zcXmljJiWQ`bh)eT=s@W^Y%ql}sneYuz#QQ-$}c&B$>J1)i`Wg7e5cP3<{e4i@SB{n
zVlQ#H8~=`G03HL&x7zn5KIxA5#xzY80%Z8R<Rll|#}=56V&Kqc06FuLY2r(4&<)O&
za;R=bQIvL=Ywo8y$;mb+W`H&bH<~x0Q4u6t{ZJ|HK`DVaw}HNDka)F;7p{1-f!+N?
zM^E$ph?J4E(zi;`UM>njWhd(ERB%jCFs&0`9`82N2aaM(s+bTms{C5BVhWDRk%B3C
z<&B8v^s-w61Q`)J$$8Z3Q^mCkpJdL-PA{9QjFn_w;90XBhbrt|@v#*jywj3;co}-s
zpme!uyK{hi8_8C0SHv|*%)T2G6a<)_hi3ru=qUgtb|o-!s2`DKs#6r|e2OM72Zmur
zFW*af>en6KMgQp<zj@R{wpo{aOeV^Wfi>ynev#<FRWW^a)Ap681?aa5G)2g`tZL%N
z3JRCPTi)1Ru8Kv6&8u2PA=y=0o*<7-?9JAlt>UO8xLEoL6BwmxalYlPtvC&)535sm
zkl3f0t(@+~j3nAqZv^FULtDwQjh(OO6Sb|&XcM|OQ20jaV=ZCme(a3C7E$QCL~{#G
z$Ln!dLPEzOr*s0SBr=v#%f)R_QMFiILcLCt%Y-5!ty%GAJ|@o2PJpHeg|5yNntr0M
z&L8qxUHP!zgG8Da?^^UQ1Ee}ooxPipous$0!UGR%rGpc}wopuSZ2|k^N1zv7LQC3p
zDx~ao*)VB*a#AfirbYQREw5+~A;gDnCFsYqbyI8tLeN`FwB%)%|C@xx4fUA!<reNc
zy4TTNK%w%nsY}k|evR|7$+wWAtBY@lt2T$eds>wd5smxHXe=sk`XcJvv<l0px=NPf
z-we7>C4h}t29i&PTFTKklx8zrpiu!l2<-te0@2=1=P~gbs=%Q7ysGrn--hCOb?;*}
z0O~9~TFnyZ_0A9+p$SOPTwfcq{m0<bnjM=bX~6)<Djr+1(n+|*mnnJ+y&n^muZbeY
z$brk=diq_uc=+)Ww@>d&|2bHS3^zXc(ZVR)?Qiv*L@0FLOOh$=eW@BX%x)LN8>w3-
zE6e;W-<=xjIh!-X&@f@OQ4FS-m@(zu%tw3By)!g0oE#e$vt5ULMd&79QSbF^EL_Fg
zB5W?vV78-mQtSS<EEn_o)vw(~iWSF#!{P8dJGk7SAA#v7Yehf3Iz%yP-l7^pL2N{E
z3Z1f1o>Ss|y3RGY|LS=>TlFR7LScXxld<{nDyrC$A%&VHs!YAI*>dDAbV?|}C|2RS
zt6ep~^7w6r>i%z{&<J+0<Q*NPSqELz@2V>4Q_-HK6bf~=x6I!!YvR~YQd4Z~q2NMy
zhGea<9a8A-obQ1pw&--7!xa|s@XYFyw!!F3h58i%zo7FF&?+W<yy%;F@SC7PaE9&Q
z(JvrO&F&>*r~M}`o^1#6Ou&##u(|y)!!a|rmII8YW_RPRDrh3m{j1p2=E3v7POJCu
zkcEQklM2uyV*g9-J=OcGN4O1}HJHdvh*7Dx+`8aDv$?ZX!_LVhk`NLcFnhETBH(cD
z5nw1`yW{2nO3jOpNj#^oRMb=#e*Ea_8^|0fNQ>i>s#>u3e{95zsR1CBmjhx_r{E^<
zV-gO0$;18ASD^N%SQ$OTIOci`)PT(9c7ZQ<64Ysnz2TLWljgzn2ZHW&w2vQwE%R{r
zv)2&1+u$P^*Bfkr4gd(ss4zK}e|0Dj-Qt)?;q%M9s~)=KHJaz)`Qc_kN^&wc7~C8J
z5}vm#ylj`0&-sLCCqW~WDN8D&ROZ6gfvVfK!v5~M5o4DGDi*}R=%s793L;PZBfs8V
z>@&3RRs!9SJ}`<~49#y9IM)vZq>JJ?NWNbhQ7Mawy+s3>J3E?7L3J*FP#c2fH&@${
zSJY`Dr~+UA=fHYGQxbk`#Q%_2AL{yhq>$6M^Xofa*_yrnL&E!kzKt9~_|gkzE_R+b
z>_>YW>wo|t_T0h$@xcx;!J6|WsTDsl*Uve19Rx&DaMuFg>OQE<^ck8Z&mbVp=z604
zP+>ZlnAo&+fK7fAH!>Mapk6ZXAPWi$pl%TXn<O>a(FT$spuvD{5NK_zG`TF=u8%!I
zA3d{PAH;sY?IN}AKhJ5NMJ`KL3lc})HXWidqI#7w-{69v3~r)Uwe6AIdimFVetBnS
zxethbiv`ms0yIU-LCsqhaQ%AJWxO2K4_Vd^%zo_(Dew8iHl<8TlhTlsBd;xrK~pZh
z5_XiiNk`9EBxFt=h9&`MWmR(MVrbkNe{F2)w39t^c;wM3rK%Rr_|DFpQqoH<(Z8N;
z((vpT$BreoW~M-ml{We#7n_;r9(!@xqZ}Rg{P3SC{kk%`t?uI>{=gBbghBH#F2Pfm
zQM6}}<@)6@63MgnP4zfS<bG($GCCm(v}KyS6G8?gX6X%ECfdb8{+tFWzS6NB$J)6K
z-<5EXnl7!!mMBbgV6m=ORu&&{;Pk<?@a(V73Gtvez(~Pss7zDHp_tkL!t6<O@d&3!
zcgAaV*1~}?`1IR#lgfiQ?~gAFb^tYB)_dlavNB)~Tyk(bm4yQ=)>x&sRcUc5Mim8^
zAswsoeVYB=@d5+&VYCYMQ6b(GdkmD!8MeN%y*kcza|4SubQL582zNdUf^Ri}%Wwc}
z*WK%?nfdvh_$i+FUh`gN;ED`Vbw}quD9*fke}nA~KK2jZt&hFrL@%=~(~?nMld1Xm
z5%%?(^8O;Ai*R?028^FSOE3A4IY^N<3|<N<l4obXE&;tJg+6jz61=~~>{%aG4!WSE
z{En2^^i~5p9M0jEzSK1_X-$}J($o=okZS8c<v7Sa7d_sk1SnO=Md+{kxiJqexhLF0
zf4|i~Vjk5HED7*b?EeHylz^)0wS8*w=Mb8=aO~k5ePUALjyhX%a!<%d{E+?k*eySp
zM5KZQPbP^?U!fsBrw4<hzgPu4eN-z~<SYT6yUJ)L-|X*jf^YAlO5)shU&cg_^Yfgj
zu#X&zoJW!bohHyP3k&|52@RDpg|qx{zBe~LKRjB;L0JwT*e1>zY2VjPYWqT)P)E8u
zHF*46ZA76p&~FGhzP5h;^-L~VO&W8ALLqmM#5#ap44-3tziUwiZNfo+oa!=Nx=KO*
zbsh%2a(W0V5$^VB9Dfn8Y<V)KQ`J`Vk#{#H`bpWL2a}c&fE0@!1p6(r@;mh^%QJ{=
zMlg(Xqc((tGDNV}&z8mGQ&xfVsyXAV04llYkmFNycGxiwrM`?lXD=Aqn>SF14<&yL
z+v5KtDDD%L5!!TYv~&H^YxMbVN155D5yvw#3<R1~U*1QK_e{6;jE|6WFf}ADit1NH
z#U}wk*xJFaaA#sIby5B9y{81Bqeu=p7_AXxbJ0gd*+WT_S-NDGEczlQjAN`_ayhJh
zbxxkbni@uOZwKM41}x$*`lI9{lLTWI7uR(8yY*<rk`UMSig7Msgf+twrUt|fz*s^F
z_-_Z#8@`9lu`+h<JxaKgPta@7$z`de?Jj<*a=4kKBt9CC6~S?6`0c6Z`7XPqTRA*A
zko=6$RGucA0aa3rg7Ga3nf_wQsI*J>l;o3>P=Q?UoYGu>^AKIpDxU1n=`7UD#1J#o
zJ@B%1Ky{j9IsLmGEF~R+)cV#|y2hLRKeAJ?@sw#P-QNk{iI3Ix)-IOxl+w*&DkbI#
zIerKlG$-lJeRE{u+Hgu<8J7F|!Xj;vA11HB{X&LV1u^{gt5*dvG05N*zmZT{Uw6gh
z{zxMu$6<4O32GKGZ_6M)v1@e!$7Fk(gLVK2mP%w7z~GhxW7zQ+stdJ+*!aLPZ}~b*
zNQU>_OuY+t4hHRdJGD}mHCb16y1tYAD!W6svGEXTw7Zklk4o1E?yKhzI&!^_2_IXB
znzexwq8T|NY^J|3bdx5+x7TMs7XiJD&cv?C?fCI~xlC7c1R>(p-UUemM{N%hF&d)=
z(WTSj#aC8{+4}fDTa}h9@bMYLzlJ@A-kkXybXw{hU7tw@6M}}pw+Svx@tuBnS57<^
zp;SRwXE+qg%f;Rz@iW+PQBu^8{$~~C{ii6PwFtsC6T%(sk*_nx#}zPO^0DF~b+R))
zr&xeR1qM_A0}w|rUx&i~6{DdvDLKMb`mCa2c{AhHs_pByg3^B`Q#m8e5w^~+gUxMu
z0v}?jj9hhLnf1~9j5;r`mzoOt_Exo5PMi=M-aYOLgb4r|9f^sFDvvwI!Gm1VL%Npa
zlO`XO^*qq6TMORB_$u+uYHL_sJU8?CDR8q@r;fAQ9K<|#!ikLa0mAqV9Y<YG6;X|N
z+yl&m2!%MKFrSUZFg@OBI_JTXOd`ZXjv@7dUQ&8^Sa1v}cLm&7VD|*PbBGY5dYvs2
z4`zRYI7Egf9@ar9TBq?BI*%6ebC=afB2*);91L<T!XzLrUw>g7Z2h3D{1##I^>lyk
z#3HNB2Mm8c9Y#9T>nE*`m8KzKE*WMw2%l{3palEGi%6f7%?k{XX5$%j5%+)$?a398
z;ViK)9UQ}7r`Q9h=O&V-&ao@h>n9Z6<}~rp*Xq4Q;{=qesovBvAFC)TBGj)|)jrrb
zgoQrt97Ch+pp(a8hhy-qvC(0)UP#{evWffifQ2cKTf8bkQH3aygMv$JvKSy6r-6<u
z0M+SN=#+c{SVNH9>$&Ej3V^D-OirKb_$8<;?%87!9uZY$Fo-Juz9^}I1#m0wYB`(g
zBUC3eb%fZRRIzN1zbR-)O4<ginoqaAPAePPljsYYy%02gg#h}P^rkz$qrB5k(EH+R
z@o8WAWw#?AA5e-2wGZ^wXP4He*ZRNuApOVP<t+Y}&{IYd-Kg2?DiHSlDR$7kcZPV(
ze3S$JG$J6mmsXZ@+5G+m?tPpK2^|z<d}3(OBw&U{@?E6a1FA5uAY77VfcQl~SVJ5L
z)yboW1FfWM_v-}fYYfaza?)mEF!!!qCVE(yk?M-X;!MXF2&#At9Qz-F5%5J#w#L?1
z1Ufw(!s5pv=Q4hkqgjWSHa5?q5opn>U7`hssqx;1)uucCm`(?)t%vuR$eJ|;vRck;
z)k3`+rq!Idd79oeQNqnUjcL}Iu^I<aK0Iuycx{9VYOqs1y;o}#tLqXcNS2l5nP9LK
zaKW4i2agYj1{-!um+d6!odpGf6f9`P14_6rKMcUBEynX~n;jJEFGHj;XkykmPhGxE
zfUj88@bpzUyl+8|tZWLXpHZCdLCT0BQL|5?_+X?a;&yI))T4@4v-aCL7q?`=!9DxY
zi8oW}O$BJ2WdY<(1(zlml@}>2jqun+cNTZiA+}!%Kpurb?;B0KZ8p2wH=A9DhY$Z6
z6`jU-He}opDxeoiXToPHxOBMCaB3;lhlMfM&*-b@;m6e`M1mR?CQ=pMV61mQ{s~+u
z!J>WyKC8^Ag+z0c_dP)zR_x=a>Kl8_lLQFhf(JY?n<>entZl)#&U0YDBJp6Dh1oST
zL)~34(=!qs$QgU0hG=d5jXaEvoc+eSyE^>_dWvp+^oPIwDrRvLQ53VaHs7TwjH`8a
zJ6P&6i$7&Q4Uu9v&di8&Pj$(8lzVsvxcd}7coruvcA+1F_S-4OxB?qer-V8-v-JZf
zVLcZQJ(zJP$~wrxwBb^3DTbf)&^aEE@a<;XU*;X!dlp#)vW&T7hy%~y_=wL(YRVc_
zmB){#Qd#+nM!k*4h4$1Opfd61e}Z9p5ElNm!Ij+8En*^#Qf|9cR$Q8KgX`e`N7hgS
z%W{b}HgLN=-lv=!(qV=_fn$}7OuDu;ETGE_X4iPPqjv7<aX6p9o68yb%q~>%{8)&_
z6jqHQU;%U_ruTYhMj-6@XfcnPuZu~D8{9jU>K6u^6k7x}aoPquKR%OAbl_3tY0-mG
zB%3cbp>8KcB$sW5?u<BuI3}Bi4G8d}yFRF<S1EuOta$C`){9JA2}l!L9Uo4z^$SjC
z;ATCLwtxs~eVDTVD*_jc8oAj@LbsI_eEMz&3uPCBy~)j)uqM5V2@Zo4-Ja+b=*Vr~
zl-DG18DEN;P~nl7%>$-H566}-Eg6~^nBfSVSS3#LQ!4L%`WDQekaQS*9S2tpf!&1L
z1a<in>t2(L2kObz;x)0p`cgEAo(DM#BJ4MVbyDm^tOFC{&%ccPDr-CXQb_9e@S=(N
zQCL`vp7aT3WQF3zLOW9J8&I%}?fms%qeIAg;HrKty4<t((IeTt7DG5Z5jTG@|A=FM
zYT;se2)16TJX6b?YjBdE!hAjEy@f46!Q)Nb*Cl^2w;CUNU!Z~1|CuMI{V8YrZZx@C
zr*FMOS8HG2Y#YfNM#x9I^S5O3og1v2Lj3U>+}}md`Om-06(g|U=ydz3bLkP$Pirrt
z9?Z|4WI^M@A-e^{*bnzy5#@44mG4G>E+T9QUW#>xv%ygyLrn!qISuFG)dy%EY`Hym
zI!>pxZl}&7&CT|JQ`V}<rbiWQDEyZJh^z#$)WcEHuwn$P8R;NUuPaB$s+fKM+w#(=
zV`@n4{Z&B`1U#O;d8zewzNt@Q@q?B)X92y|+?<4dg&5sCx7T|TYQnE_Ojq0W^pUM?
z57_QiMZied?c8{u=e((j&55a+zK;dmBLDA?r_`@9fJcI%P9;nRx-0;(W^b2m>Ef@b
zU(|MnEzsHC3iC7B957Ao|9(xqIcwYap%~QeweQi2lj}rKY;4cY52s4a;>OlFg!pOF
z17ddPy=Ju2Z0JR)I-WAwn2NE!fzY9rmi18xI6k9_XEB=zCUo^`<F`t-GSbZYN;Z`S
zcp#LYyR69pzIp4E%uO#1^dys``1@TG*!Tz;wDonMD8ks)9Z>naZMt5+e+6b%^=&XL
z3l51q>3Rm&EnQ?Q<1{65trr$$8;s2pPg?ip1_Gw|X1-`}IZbaa@kkR136Opt6_X%|
zVe6C$aq8UKk102IhDv&Z_M3Fii=3}*ceaDkGyFG@eO=F%JpBBFGLl3ynne0|Wghnx
zR~<u>%vJ-D%q&sTu~~WqU@MwkvswLopqHLz&B-EW(pU6f69><vgg>lUDU2&9<_N|K
zrzEckM1h%#O{oe3LDb_1$e%WG9j0ag95t%yz(HwVhA{EffsuiZ;SA%oh_GzR2T~g_
ztWg|cYP7b)w}>(MwW8wK5iW`?$CbtBs|$s>IXO2QR{`mle|GEVb3$}#_0jB=%3X#@
zVKUF`)x!pS>+WFc?3j`oJZ1+fEE*A*PD6!lUcuyY*V`Sac0A()eErpL`0wHE=Jf(B
z18(LY?nQX(;a=0ma@zI#5<(P{XMl2YDj-*E)7ud=M793xqXx<d-FUl1hdF;9D6(Sf
z^bopz8RI64D2h5@=wZ%6UxP6}tpWmD6RkAYKz`_^0+p;@1Zz%7c{C@I{NTZ$m>pFq
zO?0}{N4F$G?o(W+*x2Y$Ln=VfNruaYmm<vhDRDaO6{N}Lg7=)f+xPPtuimpV)wjjY
zy%^Uvqn%1ReTX_D29j|dfMG86QBaR`8bbo;J#|%PJLSF_RUaz)0tD|(^wmea0xb|_
zb~jrhQN6pH)i`H55=q7(E<a9%N<nsc>9j?u%U{o0k5U0T>hyL=yYz=!08}HiO~NVJ
zd;y)dMOaCkr3wE;0ZG&vSmoL-x7o6KG|ji`>#tw!PSuY8I6{M)LSiEaAP1t?tz!Wz
zOpg@rkjS)}NWk-5tKKa4;G)X2{ZRrq8Zif*yAfb&o*rQn^-;;>@0CqUHE^Q_^mlNe
z^EC>H1;3IktR;_9Q&J;&fhZ;gMk)KkpPO^qKCKkDdZO_CeqnwJUIoz5x<?~I0R)D%
z%KS%KE)E`jX=>v+;KkZ-OX?m0`jS2dCJ(PwU}Y^wL{r>PE+aS367#wTc<%o~X?P8N
z$^ICZ$1`V3)cx{3%aPDn$lI$6=B9cHFm5w%dT&Eb_CS|mkd|K*>Q5#C7grqOe{_EC
zBVA3x@*hOb`wcjU`la8Cwa#_mvV<S-XMU9f^uIG7d-gPej-HN*@rC11+*Y6s3$>`_
z`G7I3{UrK|6JC7Ui2VD0wcU+X{z!Q_04-I&*x7GiA%{gJl(hPO$a&aBXg316OHkK2
zt1lg~X0U^OGn{E3;8Vlp6vq`_oU`RBg1R2@+Cr;VPFfzx3Pc6aU$UO7v$YwNiBvzw
z`@IQlr-i>d!7Rw{Q&Zmc)zMsg)dwTfU@&3pM3lsrt0JTSGjTBwcbgZmOtw~yfrp+3
z*IZsk_PkpQegx@cufNZ?4&XaX2$B+P$#{f^#>yS8cXK@NfU}NI|H`rH{;7A9!x@UW
z=TB3KL~d_#XXowBhQ8CHs6yuPNs5@w9Bqq*`j|&-rr^-bUTSrK`|6sW!Nl<wuG`4T
zUB`zYnMWU-(k=JUvu={AWbKC(ffeCkn?G*0N5zf+jD7fP<^sl!7?+|!b^-d*wx+C_
z9W@IB7bSt!0+NePal>ePbha!Eyb2=$O@3}s-3#<J{f#99N$%j}|JRtsQGY}ye06@!
zPpjqvD5gU%)l_Oy3)h8pZ!N3bJ2-$-6ohu*XOOWrw&t5H0((Ro@a*WQNP>Eo-zB^%
zcj~b|O$)wSTVqh!`pi|Y@veZlTen2L;0qil8`-)+QixxDTq1yRTnz+n7^2{c2~!6Q
z4%9|P0;1cnjG`&*D}0px4}@CQFlhi~xZ`(G)X@pfw=0fXr_<lRiGyiZ$)2QUW^(3;
zZQ~7)T4)7LbP}yjj{<At@?jo~L?8LpWe<}sj)POND>gs3H}DI|^?~TqE<7@kwE6x_
z83hOJew;M#-W5|IcyKTHkK69`Lr}LqR(@T0WAISAz)zLLYBF~_972FqMOc%RaCLv5
zwCF&~W+b{Xn3_rfmlg^BSz<6ihwR;)NHZ#+!~GSu2)zaBGCU{SqL}3VC1cOM_?s}n
zbkdm3?HdjmI#~X{_Ty*V_<F_Xf!S}PfzssH@)ygMlmawz15*IT`3gKTFv?L`Ro<3_
zfyc7AXlw^|NdDh3pFll7V}dc;CBL}@j_QD4l3>1|9TO#AcyGeUb?p->ByR4<8R^{K
z|BXL*r<x{{oc~MClo!kOVf<Yf^WoLZ_O=2Jx8l^_$l1roa2EmwYR7=_7y1}Tp8C%4
z|6!N~dCmWH^8%*T{|tofzH#aE_^oU5JjJDbq%Sbm@yp*0Jn-ZH=}*aIJ-(YiPyf#!
zsNJ*RCmDOatM%`!jYpeTLhC<M2p@mI|L_00!SHgM^1n~5fB@%e&g}A{Z=xo<t?=RD
zutFh3PS9k8!u5_|bMNL+IL{vt%*^nj=meBas1xAzxRWwr>^2-3ADTPgMufLUqM9dQ
zCIW0Dx{X0Fi1fWU>2rg1x*$|!OZ@CUU0E_LU~2zwVV^p{e5cXI+Wrj(Tb*kH2(&4p
zPb2XVn*JZg-ZG%eY;EIJ0g+Zx8l<E|x&#EIOPW93C7sd@(hW*VNOyO4cXy|B*I77w
zcAR&g_q_9AK8)jxJkPV%y4QVQ*Y8qLl~3tdhGwg6<S+_|4u^v%%cxz=FH*$7_Ls5j
zSYNom_@C70q}P8n-bYE?UU;|2kLnK}l>jzd7>^rmVSeH=kE&o@p6_JQa;3&xo~h#V
zesq5U@Dp&AW-XO>4;p1#XQSrJMNONrR4A+3QuTin+6A)n{{ubNPX7;mqp~#mEH8y5
ztKAf2e}MHm-IMsC<`G^=aJ4F_T+$f13-;{)+<mL~J!(2S9&W6Ye>B{K$cOZbkn3lE
zzmmtd7CO0Kwk8#No6@`tW)zQ5ePI0nKMw}8|2P}CjUa#!4S4EasCt*}r6>?;Fxk!C
zWJ_dyY;CvCr1Ts#jolh7$cH*FGNTU$u<7;fnz9bmHMqV^bpha%Mo6s?hOw-wn!Kv~
z^6r}GujnY?7I_>Te8jB<b7Np2S!@{)GRQFfUaASa1pssz10y+GuN_?7upH7Dx)~kI
ziw%4NBHa9D<Yc-S7!l=w-3e-5@Ui{%#R+C#RWBxRXd7r(n4Kf+<j5K3rPmziqPbC0
zm$DA18Rp~yN(E@10GpWOG&}Np=CqO;Fb%rHwVnMew)yKQa(gNPKEB>??-MLz;HbTs
zD3=-b|Hgi0niyAk#Z(F)_P6!5YtlR#um)VT`_yp7munh?|GwzXg#Yi&UcXmafZwa4
z=F;1uh)+wCo%e1n3WH*E9m&>G=UieprtY}p2896x@%%t~0)Wya^IWB(0al`c;AN3D
zJoa~IBK!Yk0dgD~`L|y23lV;NHTy5|AXOVUiPE3!a6VqS{$ASc|10ISG8=%s?k|pa
zJN7xlAvid0)w<QAX`XsSk3OIMnl06dKMljBNKyNYyb7EiHf5!e`g+5mCn>^F(n=q}
z+qM!D4a}vge?BF<eSZ0dSB*qUF!a6B>Cbc}4Y67AMfV=#w3G~eQ(aY6h_tdAl1K%J
z1FV;ome+F?prmxaM*bV&3|_b}@Bfc|r)<k6p-__X*SGk1z~u|Jwe3GmZ<P{pVE=M{
z`(E$l`q8OlJzrRR(#whR0Yf3GHPeTe;=pcbd`xaLYdwZbm7aroexPlx%0-GPyo!?P
zdf?Vn#goPS`_;A|Z?ehd`fXz{-_!E%yhEfkg}K8ZeSLfgfNhJEXwbOsaMbzrT=2V#
z>FKpfqekJ6MNrT1|BdGz=K22>>|ywMn*d~xw97wckj$MQK>r^IsUbbBmETwnuYl14
zAc^T2oB!#zSpp+4)_%1$T{DL*$Ei%ehb1@;xF6j=voi$y%SWUqhd@xMxeL^j9YCx3
z*H-|ehmHw`d`T7OGNBwLQAD(NhiT8eB~o{MIY4xXT74Y6!SZ*1YA^lYZkt}QosY0?
zyzPx@{f)U$tasU~Cl6JQ(r;0v1=fks0|AFwj!%TLvMxPo(7L=V1!N^C_zD8f7qWxp
zQNg;o6#fcIeEbsECD4C+`GtlEi`2!v6pN0O;=j3!^TmnnU5*-`c;U?lKu<{j{s31V
z`xH)>m*8>#O~=fUh2;BAab9s&XKZZ7j8_C9cj#(O9h2&-L*PUh#+jIy{-Yg{o+}pd
zF}U@|67$!D%)!=gYP+?}2A3$TBg6ipVtT%_?s4#)!YWuf`FUvsHR*uK2pE|zw59-(
z`4ciiqqR)UaD(|D-{Zfqky0o^!1*OBMud9gGjiAaFF0g>znnt+Y0ERE@H+9I1>snc
zkM<L_B#&`G&SM^{3Vy>|nm(WVT!|*;(H9f;AHJ9d0LPB@xu*J$|0i&S0QZ5eW55_S
z2?*5q?ZYkmxw-}?R<z6r9iD^RrW@_WF|{c8Ps`j5xcfAu_~ondN!mGpGz<`74kE`x
z^fB!+FvI%ZQlWqI9>7%4rOY42(vFc=RGb*!Ha5&Dk<ZR!`KJ{oePQN@!uMpEu-${T
z)O^X{y$Mj9h(!UCC}8;p5BMf={Kp?IWJ7^~r6P7U6)b=(aFG0Eh5<w}s-RW{K>K=^
zUy$k)EI&T!@>TPoLRLtVniLi=QBE#?cW`&%Z0txTWq2n%=WeWK9%z@AM?!uLk=D3z
znu2jmFCs6#49$%N_9qbYB&ec>-?JzoM!?k63~=7)L_kfhK3lynK4vO|(fse07ml=M
znJGNDTnH|<)cH{@DxniCcL;J>^tjvsGM8z3KJFT4)Y_A&SY`Ek|D=YoE%U8xoqv`2
z9O^ojmh>W29esJfF6eISC&rwuLhpLBD?&1J=MfIddH<Y2S%us2jkevif`yvJ1Wt6=
z@)#JLvVlc67m^FegS6D9ODFtkW^OkZ^o%a80X1>MQ1vt_oya5ryZEl{lfyK76=YTh
zl5gJh!HsT2d{OgzE@yQ6&lY_H3@q|B{m`Ssk<l?vJoySyHJw%eZ@3_~V(=ZM@yizg
zk!hEF$H{aZ0+4<=+oep^w0Fbj8r&Dn=8XU(PUu7-9JjOmCC3tFzRHS=UXlhg6LZbQ
zZDXu|%^Oht1_@YXAdqSh6gGKQ1c=vtNQf#dbH0CECR{kKXU^ifBDS_JI;-nbPMr7b
zF$&)sHBY@M`ERw<v}8xII#FC)_kKou6azC>V7pa$N&j1_OX^!uV^@N?Ewy^Wn|+>6
za2cEIPues-JJfsjS;TNG@dv*U;(McNvQK|%*Z<`6=PAB6-i5BJQ5>6?7nMMi3h+y~
z@YHy1a$rMGZamh+%M}#sv9YniIBc&;iz){q5(x|$H4`%Jp&IF_NY1S0>a&8F-uac<
z$P67*4i1NMY{bTP>iz<c&#t)4SN98IuYQr2thU+t)%PwCvf>ExQv1HTP85Zwdnq~F
zP1NTF0p6}}jxzPnENiya=T}uq(`(Vu3*sVmRy^eSSxv)pR;zO`Abw+rB=OhU=0;SE
z`0)|hP455eR;Goa0UH~Jg;_m|NVM)>I&2S6<r|>{g(uJ&-`&@mQ=Oi_@kW<bQ9(#9
zE}nM^EJ8OoH@{p%fc`hJ(bvm==4SjWrSHE0*k}agC&u&d&ip(kpeFj_s0W2_?*#s5
z%)MhxQsVAE^QHI(30!FNUzrimL$KF@gJ*(~I4$daZQ0j|i<gKoXT1Nm;eK9h|6kMV
zHU7N}J2L`%{E1*tbz(%DGlhO*jI1(h<c|i;)31;CBZM=u|90v5_L&sKL6ubvO4?+5
z3~pMn4UT*>8ASa+{m*O1&MvU34$2fE8d_Dqrr9k$Y<nDi{^OVbTOvk^fsl=ALK^VH
z+U-yCuctmdVVfsTcIm)+k;SC#-ueu76WC<ruCbqSjvw7fY9J0ChWx?9q;w)Z<`p-*
zFtY@jH#Id`{$J~iZN1baR8-3w{a4M+a)8(5zDvsS&J5@p!5oSTfga4ci5jyE!8}p!
z8WJ8IX?@)H17PD?(J^olM7q4Gmz|ZSz*u=%+a0bT0F0f(L=^toFoY!^AM+WvJ`df-
zDezgXB~_q!`tqJ!yK=6VftKu4cu3+Nu<yj=sn3s_F`)2Ou0(TX$1p{U2iU^Y*zICE
zb3BedkBKC9rsO`_Lp-xrpUPF0!z<<<iV**-IMLDqnC0#59T|ve*G1VVhhCY`d3B7$
zvN0#uW5hS`On;O@AqSEMxo2XrwCX0n|I>qbbUXum55Q-!rNH?YV8*fTsN^{Tifdy;
zc1=Zv2u%inttJ_zCu7Zz?*h1<$Z@h4?DowRHyL;+#|i8f@e(r*Hj51aWL%5;eTzi+
zW!reSk=(~8(c|RQ6b45D7^l;4cs%z&IJd?2?1ZSvzm$Ph1Nb(M@t}Qj$wGU1J+gXZ
zwYGt82<YX6eWVHCsQd%`J@V~?U~L0TY!;K<Kti<xRiGBoqk;ZimBlSv87%i>yzcOi
zq%wtNV+?Le=%^1EI6XmxufiI2&vw3b316Clr=VN;_yAHU#_eoRPtQ(CQAPA@nZ@5j
zb@PM}`0zvLMq<DT10EYt46=NFBp*KBWJM1;ACcG~j~&nnopttS<aZ|<aZ&j)nB!UM
z&j&c)TVJkqANPpnF!60Q!khVWp2rba9)&?&jIh3W<4hqQMnzPvZC_hy1OGb}I2;&x
z*uFRPZ{%d>D^~<zyAj*psF|YwUg&=F{rl4>FkqJX{;p~6)f1R4jO{1zXu5V^2vgQP
zTK&@AX`G*(XOz4K28h%1LnXlE5@`Y64z!JK-meB%$6#p5hZ@o}!@B5=Jz^`y;*$%K
z7yKoJf7Ws%8STT{P%%Y0d?WCeLuE2TjdqRVf<*=ZIFsorX*IQLy)}zdVA(STmXuGi
zOK2O!et2#^D!CTrT<nz4l$2+r<Z`vZsIv_3=ij3pRv*tWP;LVMM@jiXbrWbaJdDoE
zjEc}*UBf8oRg8_Gx`B=dKvSR1d<1T?$5ndzwjP@f4c=$-9pIg>b^v&Sgrt}kX}Nn!
zPR+Hd($q~ns~aHngIRxc;LGb!_Q$c=N{b8Kw&XL`!9c}4cU;Y?*acw8S!=341&*8%
z3>fk*(#mNIdnEf|p^JTzt7Cg}hxFUjH{8imWHVmZkMvc>M>e~l)~<b8+Eu=b{7)`1
zg+kz#BMSujx`xfBr}}FM_pe)$S`cZ-?z|o~8W1exmPdP0y}qVY+UiO=pZ;fdT|T5o
zkIO_F!0Y|K++(!LOAng?mZ&X5K5fw+K>s5`!~ARf41IYOF0cg5D&VaHs;lsq+L1_O
zk~bv4vqIC?*Y)PD8*n7W=<6Fq;yDP*9}5GvE6H+Z$PybaHqOYPEgu5-HuwqudhYPa
z=+Am=W=@a?#$tkTiIag0AdTxi-KuJ2Lcv?r{Jk_-1GEP2_sz+F$m_fN5-r9unzolt
z&rJW$GUgI3Z0}_t_;7i6GKiAQG2XPwD<dG#KHaPZW@zzZv94FcLIC4u55zSfI~O3l
zynX?(Bp?=T&^6wkOchJE8ox*}cwH^O(4dFl(%As~H&tXYnX&M5SFQLAE*cV!7~z}-
zKD?%nCIS`vML0B${WSrOMib@Q7!#~V;RN|f`ojSD97#p06#W`)Z6=AIok!WMc`yL2
zGU<CE<Y(yQl^42==?dQBY@Yxk2vC#d6j0<86k`?TlpsoB!0}<AW#Bf~fX|>MEpN-L
z8^JUD1XG~B&AG-hE$IE56pM1^@^UaZ00`~1q2>@e^<wSilfh8<7hQBTr0azK-pY<&
z(jP#eJGHg-yI6#i&nE%4yU%NCT6lEB2C-hCo8`BRQ#s3g3t6rZikK&u-i*_=%b^(W
zVRKCX@N^NMjpi`cTeMQBL3HT3A>5-`6=X2*z6nnVs-g!J4}X=($2+&j=hrwc2J64^
zBOeaxkKz~9icEJK#0++ERGuM}$d8SiaaZwV=AmzZ++3}B$xILv8-AQ<j1CXF-He+j
z4_*-<wY+M#FZ*~#*%;yk3Ug|^gKy$u%Yo3it`9!daE@{H%%r7Ry@Y;6H%IIc^Se5<
zb9Ceu+(q-o9|=P=;bFf(qA2jBzPupvA{~~UL^xt#Tes-E94}DQTVD?w8=g@AV7@T$
zaA)4ic_2=}Ixsmq3&2;y17_Zh5505^Rd<n6+*eCb56xcD(b4ho@c`EHoVtZhQw9U<
zW<-pfH(-eD;)ICa5YId`%E-W!jtZg^qzv(mO@Xvdl#3aTQ6^EtaA*docdqr5h>B@Z
zw~4+xaaixjjVK}`^8srQ<4eJoH+>k*K-}u+GQ?_V2Zmeg80a6xwv-T&&avzkXGTg!
zDKPc6M9P5_a=yfL)?>bw(<MmmIcnkFgz&?$J7dGw_5h&5(l6&;rw~}4pi<4(rVyZ-
zn^0qzA-PfQ&9EqE2qC~r28ORgJr8rt=<%m`T<oiVTE>pzj~KkDHX!IUGBbPBW)MW7
zH(rfaY9w>ywCFc7SoUO82LkjZ0SIH6DcEOtCgtwE08iD+jNLerd4)V%^EG>nso(r{
zd6gHi$5*;7*plAnG?wC;INlN^gZoOs_4ceJE0P38U_0_g45?9iTIuqYkId{0n|(@l
z12-iR430BMhl=Ck89T-S8F}~mfLFwDlje2f#&Lmyy`z@c3LNRvZdZJ2IwTMnE;X*;
z*k(!|xAh)iNr3m^18h>GND8-dhm%X`G>!!&R2obK*U|!|lC=lms{|S12|=(ZTS~aV
zOWo2xUA=l&lwe<K(I^pmwa%&40vrd%yn{^|`9QI+Ul#I7@;a{hj(ttc)^+>aZ|2t1
zE^eXE?jLeQ4iG@<Px)nWc20phP|yKu$@Vch8Nelj)4C`tmjd%~HxsGMo}aDgeqm=5
z&_-<l17mA1Fb$y9P!b$PPWG8vqJPc|_~fXhuwk&Al))Jk4P12Z9{?OKjQ6>do)Z7#
zX>e9EYt)@gaK-P{3V<OI3HttPeB!!5Y@AEh+vs9C?m3J`{uSjh)3p;JcI*%bS-qA9
z-Cwvn1O%_rwa?@77#4*Ov@T+R`|r~Ns9)q12-L=wAf$S!)=d%+Oh9Mq>YDvTYxIl$
zz@6iEe1HGSerCu=s4S~|@Ff63J#okYa2}Hi@dxkjuF;g!KFWU0HXmw1v+o*cX+X3v
zPrkGLz&H9*C_$Ht>m5j|AVH(;oz)!ITW}czmq#(muJ(8OE}x`U_3RJkIqwH~K)T7!
z&JMMP%Na<@@Cr;;p2!iQDJaM{-LpV3`C@uEd~*OOWlhdnmPZRb4{KV87%2}d*&)h_
zKp?UQ<gAZ*CcJ^bV@oi;OdH0<)Ycm)hfulY?BQ;s<)nKn77%oa^Au(-A+dW&uMe(5
zGJ4BYS16`Xtv9Hy$(5I!=FM`ixf}Qn2YE7Q!#cmB7f^!|FgFdPLX-dx2eAPd{gQ56
zc5RW$YVW>0u0JlK(lRv?5%kG~;&A5XY0P?YoZ<jq`B&itANgl5B;_2Bd~_qrFn|%v
zU-jz)n<IL~GmTWeK&;i-_m2YX26ASei+EX~J@LMYepg<#Xn35rrAlHHFd!HvIJBN5
zu>H*s&2L`T?xjv3KeHtVo+{VtF#U2v{|E#RQO&z_J2-@6XM@1FRpzFo9vK-Rp?20=
z83V)jS;~E1=j@!q&;j8Sdpn&9S=av%El*%FN^6y31t)H4>I2!n1Zon<q#`ghwWeoL
z7X0~=iylO2L`TOavsq_kXN!o*S_6LEd-D@-zU6Y2O76?G$jQk(NU70i&&7fhsOU71
z@v;nE7&AV-5fK*2&MnlaFnoorOvX&I+7eA2wphc$w*}dFulZySju94r_p*;<PN21(
zX-+zll=m8~|1YnG9+&H1GWUwvqjOwkgg+X^>^x+zT6-UFzAiLthP|DQ8+yH=FD_fr
z4yRp5-r`ESTKXIN%dgm6Kg_#ju8KSzBIrCnc(N~2et5CiKmFs%Sd2ZCfSB3adC;Mz
zmfz`nS_(bLe99~@`eNbC2apO5<)9i!p!h{?rLH5R`&itQv;Q3R`e{*K5=wygvWgrO
z^@yE0>19#S!%KxiodY?c%md#ZD>9J0e%+n2nCW`k+!kg_ZGZ4>up10=6ToT1z=aV5
zANQ$(T%VBcYx}3l`PBd*J1+Hl-7GCVJUnD*W`-F^$X(q%*0c%6XLh9oni-Q<t)Zc$
z;lc$JZI<%#es(WBkc#bD#>f4xAJeNbZ=X?8X_ijgWx(Gb_fgZ;J`jy|E=U_+oH3Py
zFe?3M^z|rAei^`c>K%X+<#Tvcm;>s6oA%M-=3s10baOc~z;E#eJuDB>(cEqY(w!4>
zfP257UlVwrfN;ucHjm@DjXL+m<*pSaY|VlV!PCn$KR=}j<b4q?L7~66gKgqE1o#6`
z^bTqLd@S_`>0A9GNr@`2Wz3(r<LUz~;gq*`%Sw!!WLMTQmm5LkoE782ez(etZdwiy
z5Di?GhVOy*`+>vKGm65Ld>?j*^ey=yn&)2;E9Unr2-wB%QSnkVV5Y1e+1bOKgqVU6
zLu0oU#3S8ik39FOH>6qzpvtU|u4ZQ{DK|kFA^091KtQFs4-`#6_gX{!G75r=S|Ymf
zR*s3ytVlrr^{>q?5s$#9=jahdaBRG%oY-qdv<^@tfPw>x??I7p5AWHU8yVs0TFO<`
zQ4X#b;Gf=XH7iEry<}53>?AHcBYQIRBzx#}wN1)LI(6E|>x{N29nDw!1C-_NBS1u&
z7>L`{Hmbi`GWTmO6pqSrZvr{SkAe0&Y7mzZBM|s%XXNjTQ<-ak3tIQqqJjARwA(_Q
zfV=h|@!yi2hKV5=zQ4ky6-2b4k{zE*&doW~5}Os(rzMe}y(gEAR8npILZlOB`|BU0
z0lU4V4P7ltbbki;Y<p~n>1oygZ)|~mbyM#o`1Vyj0G|xMP$nqxA#CoeRqc8(o-9}y
ziBXi>GW-&XPyfty64;|EN{Za6`QM@waJgKAo4gI4gqYZ_52SRAEuo{MV@NEvje!n8
z3`(^&#<CA%JqYS^)63+Hg-NQg7wTN^LMDbUv{GT0{K}UK;`6HXW-AWvFL*XizFWv5
zT@jE7;(-^f9@~ba>%QNze+^{h!VcdheS85C{zH2HAWfet5Vx3Zbj!Tm2I7|LBVXG`
z+Qt+#1RBXpe{?Xay8_VtH+bDea>S73kmK!k2X5$>-!>O}=5%$L$-q7h*#WeT$2$lI
z8jcj9-P8oQ>S`#}pkp@Ed*fY4|AaO|=@ULPm#I>|^mYImau7lNlXSX`#CC6%jKcA@
z7W5EKUs|1p`$axOa!-T(QS?Icr3=ftk?F@Tp+;4oemT}ts?zp#aZ@sUEDpINggch-
zfGc>(piJ1uPfqh!t-EzfbecX>5JG_N6)D^)4y4Zr?7Fts(dE$F5zjTOse&KtUG@J>
zYrN1psag`f9?a9m-6c%fbyjT8Wc<MB6{8`o(E0`JKq(`pI07w;t?&9~u9r`xSel?2
zGtK<$uT4la-hwQ4hT+jot8@}GJPdg#+WkkhVGT!wth7pGLNeo6doZcde;e1RydlQN
zP$&zUGSkxh6d_&{7q^2~J~vV6{7hC2ik~*oI|26ca$dGmW)H7P`R3tz_c~w27;j+K
zyzXhGHECn`;KT3DWZ98X2+hP89NH2Vtu<TeX<i<o>s|EyGB@?xZ?|ipj;p=c_adwU
zG~k1LWj&qoD?{h9yuCeBp4*|W*9YPd2)3(f<7o@RsXMt8zR_AP0;bIcjPXy6J<ZG|
zx?x~(l|TwUN)wcZJUlJWKfn$7D;Bp>ox-BiOxr}<>N=#Z#p+9-<b4UrX;~Ai9xx4p
zJCV&8oGtu)vl{4w@YmHT*t(hA8$7R87MBpe?}dE|9EynlOlQ`^F#cWq54FQ)D8a)>
zRd?ULEVcm5uIqfg(SkM)1r}BAdUFR~m+A*Ina9Dpg3~YNalp&0E-CokOJ;7vEcXCt
zI-!d-6(EZ>#MC@DNL)&-@qwbs^4#7k@x5WubH)6UhTni=G*==s_1H+wE}Bj!m6q42
z)E~Uqc<xKs@8+LNb(b8@DM?rx^Ah%q^Lu5G9Ks0&NefUX=S<IdB+{WeJ8xZZW_LfI
znHjv}ak_YlrFRAU1dpwX^L&BmnJ3X(qHn2H7SF0JP-MJhWEo`{nS1zXZ*+{6m3fs5
z#+W2vESLDCecku!FFtI{H(Ndsekk0e7eIe{<-&8|H^{hfHRoZ^ldQ!#qa^0nY5qba
z=mG&jAuMKL|2idHp|@}!i*TODd4FU9BiB3LlL(1nVQys<azdm6QGp7E+cY}q7@8ex
zzt_v_>1kW*Aj3s`j*NbPaF-b#4kxjW))DlB)jGqXC}?oAlZ?D%=DIv{*zi0}uz4_N
zXXh~MZO*A)hWPg)<14EYT02V*mFwl96rdK*sX5pUMCn>R0>t`mrzgbTHQl($+Yf5L
zhM3MF?^8?Nj!|B?+auV$dkn6qk+L$A<O*e#8~oX>$uIq?s}j$3syL!2fNN7y4;`c7
z;Jy4ygfIE&p5rTP<Qz4)`U7Xzn*C;ql_D{%K!%@SDtK3-PeNMY3oW2m*K%Q~&JR@^
zBBmEt!h1wN;T0rOg!sN~TdY&+e#&U#NUBlkH^7EznRD2z=3On)s6o2*lk1#LqV;z-
zk9WK&L?d5jQVNS<#l#j@v#q<K>}uE16#o2KmWPO{(CQ24sr`X~j_Hl(;3hTITXA~}
z!=qeO0E6nDRIK8Rw{V{PC?zHFi#{tkDsHCxBBnTH`7JJPi39=9eJS&ow)XbI#fH0q
zpe^T3!k6IZ?wDy=>DeAVM1hSK+K*q~y4>Cw#~+NkKqk>)u{WC!IKTuKg)EhB2D0^E
z>Dl6n(em<l7DoqLePw#96oW<h^Ka6J=piE65Ry)%9b9-qvUbfrTt))a6p^F!Pwpa_
zxs-1=qGQIa)V(`in7ODK$^VMT%PUF1(>>`G1=A8ioO&e-#CKW+nJ5Nk^!0J&9^v`n
zB7AoG(gM9Ov1L)Xt@scD7*gsWc{R1(^{p?4GFRkvzP<&)FrUmnW3B3C8yU^jaEOr0
zx-|tpZ3X-*7=hqGw%4GDoI$@uWf|++>r|_CJv}9zy`Qhml!*H@-W;zY=!@7&LqnDG
z3de8C;n>P5r>6%aI+}Fu`9VH~mX?O|%|2|h^YL;=u%GKgB27Q#%jBrC6F<VA=c}|T
z1FChe<HHV*Hk19h31#fprs$`vPEH!njyW7}*`k`@v<SOuOsAg2ciJ!V#_Wlgv85c6
ze)_~7cy{BDmdj$QT<v;iKtSLjmBhqURzD>aufF{>g#|QgI{|*hwczrmbsvtPD6h`>
zL{S5d0CTKl+UfiNOZ^1-H(`?Y9hOGZe2WwtRIJz?zR|&m1z(kdjIr_IXr=`^`|KBP
zV4qHz{G@;9B%3REN_>bi4fI>*4vz5TqK}{WXZxSShS7V<3KGoG2N9mfBlr|`tr2Lk
z!O3+dD^ZxO6t&`#GNLk`>hsRaCPX3zTRB-6#Y$J}{m)>2rq+;WRw+rz^9Kx1rO<GY
zs6iAIgye(A?A+fGr@W<Y&CdNY&n(U_Eg~(*LeCmMxwC5_V}^`3wI0nXeX*@wmsdr}
z{f3M(JMU7PUXCDCh>r^X_&A@W`Or==EK*kPGZAjOkK0pCHwjx?;jyuailiS^j61u#
z%aQbnl75Tw+{te3iw{#j7&AIL2<sp2wXtGbR#pg+3ExqfCFr1h2n?QgJ2iYvFu6L3
z9Z1&rtaLf6;Rd(D`$^RCx>>`GnU($rQ-P(@Sum&lIU##0z`8Y${IcLfj&%Yru-P+d
z&D-KcY-7L&t%anFjac=%)(e)gv=nO~sUGYq2#lqXn}ZtlmQZHVGpl;wjd>+=b6w7w
zYinyCx(99!1WO3BS^mb8%8E4TT;j#)Joxm9P2$Hhd(Pp71s<ZM!cv3o2*Sf(yP>j~
zHf3dVF|<x@%Y0MV1o>I%Z6Bq~*CWVwa&o**&z9d_x;~>_0u37z=UWpBinqmt?8gUz
zSP%7f!KyGo!>-b#`~E|v`GKEx{n;$65O}Ez3@)}vmv)2^=!+}6v>MRIiPtUh-xJH1
zFOnlqtR^`69o<ICVxRXy^OL|VjYOBzO<=z4qNdK)ousN%hDMu0!R}dQ{U9M?Y&oly
z?GKYzLZ7i=V`*uoHlNnf{GD8;A4@f7-AWlHD0kVSL=1jbbwXB5dRkSAhl8ZP%3-qf
zcqgZ6DvK9K`FbZ9?bp*PEOmbVQ9fw8j7mPP)W9Q#5g2jsmz<#wf-sbDRH;%T3KX1S
z7IViJ+{;^EMLhEtlfXyM?YbduXI8L(xNHOG4^aKH7YBvb)+!B#!(iv~E7sv+F&&Xn
z<Z;?Yh1*eUbWxF2bD8x;`pn!hVb_`?&zLEdDS3exEI3=GAKdG7fQ|k7quo{*akBI2
za9lLC)<gGdr@3l94#7EO)NK+$@^U;w;xi0q9%xc7^!<>?G=j$R5o<+iGHt?Gj#=th
zI$t7RR>)4AxyV6zQ8;ks?(R`jGs}I4p3@P6b9QxoMv|Yu%Yjc<Yj;8(-+yo1i`gj>
zxpX`9!Xjs?t&Jij<?{_2jku!9tm(GQR~f5gBtn<;)b#Z9EVh;&QAq_%REwyP7zHz4
zUS+|KH&|HB4(HBSWOJz1@c$U0r8Jm@WrSQksh<tk@@I$0g?|&qs6AI*Qd>TwpM_qu
zJNV>d&S94xr&ep-9Wb4?*UmwYC@aBRED*}_a2SSy;^0Hd5;%=f-17imMcf;OXR0kI
zT6K1|$6@^T`;UT!*Jvkh&kh7K8ZQ-+qT;P@V-`PiLCt22zdz~iEeS+0^?9!2S(4L3
zCw2K%jRSU27=xMX+r#M6x3V#5a{jK8q|Y+_`m9XzD9(ZQ#iexFIqo;h9}bjc2Uip8
zoT$lo?33=kLPV(A6k3<pVxuX$yGGho-p%<hl)UTceL*QA0(XS<#q?tg&3<fRe6M4}
zq4DOhdU50WAU8MlWTD?a2pF2a?q{|1_eanltRQ4Z%}L^R%E-+({b2ZV8f|F%)Y8rl
zTuJf*0_HrQ2?t@b%Loekjs*k+Adih>s3$)82nV<PN*M>I#afKIt2Z|{XJccNzXs$0
z5mdLsm5+_XP|&=il^E<xV6)3RBnv`BWEvk|uE=(#R&#5*z4dHqu}l+crRFon?Np5a
z{$8bhX;w~677Y!HRe$U)I|Py={OOa5>}XrpTdH@+uA9rvy^uVR{c#-oLK2x3il;lN
zWldLiDK#4#+jBVELQ((*CgSh#j<HD*`qw~k<Joq-h`i5jKSD=yx#WfwbMR2$F&G;e
z@#dz?e{#s;X!!16AbDeAd=Q@txj}|o@*7e>=qr<7`_P!ep%r;6d{lIA804fh)Rpyj
zlN(*WPVI)qH#{9|StcM#l$SYOKD|JU(}(S)q*b@nJb;C*CwdC0@oqEj#LhW}PbTE7
zxoG(@`%3CUgZtsf;Gnj4ne9NS$P;P~MhPJS3B_OZL&QYXl+0F#VYSk)PA*(aclY4F
zF1UFSm|Wf+4mQO0!*0=G^Y~AUg@ZJ>UB(ZU4-PjR?8Z|cTSGHAZv6ZTuGc#eP!5`j
zlW*;|Mpi$5wQw3u(Ixz>AP<q2{gt05D(UI?(sXkmQSMmYTS!1}bE5^<CMZ9D?c^<D
zu%M1Ln{;t8IKw|1noOBwaHXb}l;mUxzU+L3iAq3_97Re@Oz+tCErg#6^wUH6_+t8#
zAMRUx9xFlV94ac#N;76=7GG+s-5s-qdR!1BF~0avlANsRbbLyw@k#fxNGp1LocPr%
zS#t5u@(LLPm$wND{C>tpOvt$8)=t4iCB``>V{C25ZT^e**Sisg2ay1gqb;h8^MQOX
zGASAZk6@u0PL`43H<#n-TQ;Rj*MfyAX+W~0pr&@lSYakC3TlTB4N2m*OtoNyUqp%T
zcYTSjYi2A8j`7J!9%LkWSzvNzprWCwv3+n=`s97st>vYNr_NTT;^hGaQfCI$Yiur-
z`M=shu(8QtV2+g|Pr~#)^3u~u%i!>w+823lr%OQ=j|6i$re(MNlT1pS?~CXk_8EdR
zCR39-BV%0WjTjcI0(x*9rbF%%ACG)cxrOc|Cfjx^2C?$Votk>9Md_{YiTg&$$#IK*
zg9{4wjG%po;D`Hq9uWoq3yXNIQH4`#Ue2-L*DRn?$}S+NOmf<A{iq<V1=UE*Kufj+
z`5M^oIHb9(14C+v8oH8p<=l|ykG&mAPC>@i-y<k1LPkb+;o4UUKA&ka0T!?4ZuMOl
zl6(yX6XTOSBHyCZM>CaX!j7Ux#5Z)sc0o9Z)9@?SH+<Hj0hvgZcXN8hlB3>xdmIBA
zPgw=y<KnmKzE|RZ^Y{OO^qS2wOOLshg^7LHZf$gE?Gt(8Z<cnWvs3Jnh_PA9+A6jW
z%tm$9>zbx&T`gQq4!*cJ?YbG@lZ2*drxq4-<FH=XlRj@rDGp2bZmKez^p70Jh{}31
z#{WqKD@D<Edhj5ku&^v@Yy-@tc32wDp>tDL{P_JqY1iJ~j#XPF{+iJ@XowU(FwpJj
zC_6j<ZY?d;rYvi?`kCAP-Nn2gN;C$Bz4JK)#4C-R+7yDw8_jN1Trsh(1r&Hsome_$
zrhx(ElDV3iWY-&{q%Yver+rfbW|IsfBfz346iTS^u<Vy1C@3e8YfZpzhv-@WsV>Pb
zp$|CfC3FL{ta?`4og!lXV+4fdRA2()mypm(HYhH}PcE|b)9F;8Q5W~MgHIdX9tx7%
zsGf9g`j(Z&BbmH#d(`<H3RVWAe-NUe-f+`Nh*ez`cH*VX;`9(sqEAj<iiclnZM`gD
zlkmYIs+>6+!#x&bK<a*?Y4-&!HahAvDFYM3s)>FHQJIJYSaojR(WjTYQ0D$a-@XYE
z6CWabIK7_U>2pyQ5P-Q2da2Blf<P0mj=<u_&tY^<1*vYYQ8vA$ejL|<>QiHqlLsuS
z*XG_?Q-Sna<`7Z!-y1w3CK^R1-ou(XTSy*-tvqVguVW(C%B`Z~S^`DJZ#c|c?k+Z^
zHlr{P)Q-YEnV6lC&Z6E4#=$ZLH-fyT?w;<HfVi&S?tImfPlC!d4Gs5g)z%sZ^SFmg
zyp9SAm!$?mA^5Y!PWFO!cG4o<;5B7KCFSasS|1-1r4Z2#nsA3Nh=GOAfX6m;Fp&>(
zg}O$_NadoVK>$?SCjpFPI=YW6C0*_bc{Flhvx;ctOapN*v|KJ5r`wW|6uX8-(@M$(
zkYc`EBadf?BWP5VZ@&cw0`OT`72%XJY_GD@IIK5|cOxOY+Wv3oP^dypK?Tf&%=Rli
zJze1<L}3w8KF+*{!&Z<})!pCwrC2%ZJv}|WVcE2#<f7BpAbjSX^ShfvD_Pq=YZ?4)
zDA&F47n-j!x_nfpo`H<Of%k36$X4GN96v3+(gdyzy?Vy4Y|2HZYI$87royY!TV2yn
z)fqE;b8~2$11=}6C_H!fPT;<9c6N4HVfUKTt~sxxxWDE2_@p#`MXzRNCc-p$V$Yp4
z@@io$yZzU%%HQ)O^Xq$pL0KSA=H^h#Ye+dCdwN>;$1_^nv!@&!D9Il@T!b<3qLZS>
zwOz!uR#sM8sBz1NuDyvGi#}WMfqGttpMQ$D@TYs!6BfV7r0ML%eMQ%gNJzHK<u{=O
z;WX}PsjI8g{b_QfA4NVYTbLitK#*|HX;@f@*?&a2I}*?V<dP~rL4LZChukxDI>UsL
z3I%4Lv<Mj)XjV#ca&lTSKy6l=G$woXIMDjD<wc6yo(iI{)S})NZS)7L?L!W2Z+Q0@
zYuM(sUNa*jp5?t8&>-*D1#vgvO+E7J@EJa-ONQhare@@DXq_6Gsi~>Ey55~IV+#lf
zfK)af8{0%CvxKT4s;5sDFj)`g1Es{%hYd>;6UH=H2=d!ibv{BM>|j0%5f7@)rko3k
zNPUxV642-da*;?&tgQ>@K`&>~O<rDZiC~GUgn^;*_aX{1ieGIHHO=j2PxSW;i->X`
z7<PletKQc(j%Kd+`!^S2y*-+hZBbFBvG3N`){U~Vo4NC)Uc}a-y?!xhreg$0fsTeY
zO8B1WEfe}c(}sl-28OhyB{zj+8yQ(Ma{lItV?S(ESeQH3TcY=eM!KYPQg-SKix2nl
zaY+Nq7F|#yZEZ`>Ti%c?D}8-amAm`&sYSF0)bsC5NR&Rc!BV2fwJs`$b)AC=4(NC$
zMrH%L@0X^f5_qI?KosNh8W{G2qT3G_4GkmsTY%_bpEpZ)SC6rwA=}|@p;SxDQUZ*C
z0J!4L)!3VZQ+LSFLMIsIT(arvFUQZzoivO4lHdFpRA1=brsJP!u$M<g6+-h6WSIY?
zdU%&dsVD<kc3GXlt1X`JS~xtEA7fSviuL#RAKpG4`u5_I8508oUtfRX%`Gvg2yD7u
zc6LYNcZ4KzSgtU^!p2@K#Dlk$6Ck?#QG{1|c-rkj&zcP+gEInogidyVT^TY(^W8@r
zc!YpJ0JSyJ*6#521^kU=X=(5^`+p1Yw6395Gd9)YEhs3+U=h~fA?N0POG^5VxOrsG
zxyKt0R1lul72jf;ulx`RR3Y+bZ`oew<mBeY_9ezgN0NM>B9MHcC@w6C?0gKQX#<}%
z+$K)9wFZ;mB;V4KF}IAAr04B5uXZ*|CF|?zO(PTjZm=<mU!~UoElOr)q|?(S$tB-a
zG_(}e%csk9felIOAbatL3!>Tm9Sj2a?7N&FEZ7qIJ9+~8^?BeByj)fyBgBJ)73&|k
z_nz1@jEzNgYc};awF<VkQ&LlbV?;(#C4P>guI<pBc=_>y1(HsckZ@xXV(dV%@s{!(
z<&WP>?`MaL1)9nVTLB>H&mwXG2~0Ji5qW#5mdNw3Xh@=TbtzPkC#4lk@pZQX(_i;>
z$FO8@KrMY?miKm)!`i%o)z!a9ACr5Y*q}8|C99*8vw|^x@^yhi@&g<~+OQ#EP0jh3
z_#rsDVBPM{S}zs}S#)2>pPCsJ`#y2>vS@JoYxQ2gO*kMV9?K~3qb2*%$38HC$dTB(
zPVjJZkh-Fsvm$?Z<-8cr3a;Nir|%gVcPlY^y88#Q)U!b(E%D)z4jdd@@B&uOV^sV<
zHUsm~FSaL)^bA&U3<7d;Wkp$A284tqjyju1SI!Td_MqXy&nF>odz8Sw!h|C~nTUgf
zV>Vw~x!XzjaC>vmnUaD6`euvEt%uev-|2Ixru+fK{_lN8!zuskkF2b$(J0C^p&)k~
zLA&#$yBi%eRN-;4V)lepgMoxvo9u=LbwTB8e#Oa3%v@A7G!-U;0X&M#uJ7M99&XXh
z(o#!CT&7DdG9+DCeYyUXikI?k_xe`vnF;bHXd3Xfv=Y;jle4t+^t4Y`d$E59e@d`+
z2Olm7v0J8J(>U21Ao1Tl9r)V@M(A?_knuC8&sX$*CUu_FJ3MYiE-qZU?QLzRHntQ&
z*gD20d09U{3PM0E?HUF;G>^+QDNP=zx3}3|A%W#>X2t>L@`0Z<{%M}Me)}jYpE=cE
z(fgzz88VnHiw%LuHSpVT%scc%Z6hOx{S0`y6aTk?;WObQU+#1Kf^HpR({#k>NCD_N
z(y+vwGJlbf=G6iZQ??^CHYzF|{HEUj@tZ7wE<dT0n(Ey^SC6QKRAF|$PXst^X5!+Y
zU=hP&z-5W()a;*e50BsKOFq+`0`T$P{nLQAllJ(ZHAVx!=J<zw_E$OF@^yN)ZS#bV
z3;A~X;<z(}QB5$E#E1P?`vdesEg>32L7q%94QXU7NsH5Q<UMtbH}rH0S8VbJU3o>i
z#P{s=L~bX9LQ2fzaz0_<UJ{M!x7@OxyzB9+6XRFDT<ln1=^FFAc{69RQLZ$5Z16Fd
zbCh4qU76o2POJW=U{vLcM5`oth|V!I%h=zNGU!iZ$RD#}&-}e`jNtT4imG2%64$KO
zFwZL>0WTXVC=fm%aQeN@Z!to=`bXc&mhE3qLD1&ohF{e)M@k-aLnkcVofAQhtsQWv
z=-smXymG;GIW+Euy|SX?hgdpB7^R|MMaS`mnP+gI&7{*)PbR2hRh1~W%CNUM4WT2*
z?<9R~-Ryq#TXD$my>OkZoz1oMba9(gLv3w2bzvmG(wn(%3V+KALGsmp+L8eHLO)pR
zot>qcwC5-(c8&#gHO8|V3xwiv+$~e2q?B5_M;eKyg261zX*tQV;gPH(BPk61pci4E
za4168m#j-a*I{v38WiPjuskB(J>NTr$Xu@JH<cH(?{;^;o#%kohuesoN-)_G|F3nn
zh2)s<x)S`5lpJb9ZaFc%^;r1qc3ne}@pdM0rJ51z7L)$6A+EPSz>g2Q?ciOJ)|Pi{
zp4=rrA8jYw^F#a<@aYp1Mifv+D4Xa*oz5c09O2;HBOaoNiOjLscY`LrQL9julr?vW
zep*KAvB$$ZT?{Pg8?IP|Fex+)<`LId2&0OVhL*HbGYB!oyKJCJRcfPp&|2Tgx5jFX
zG)rK95UMOkLaK9#9SBdd^kOQbIfYe2a+Pac4omwy_$SrwjNY%lUQ4XM>wB?oHxVxG
z6j;C6HRPYgdbGTlD826#^HgA+3RD{jkiBW9`*j8h&QIJTdLcAfWUzeCO44tc;TDZ|
zN9`=6m#M4<)A7t+o7D=CsGgsYltb%^IPB)UBU1D}2@~{!E+ZxNJ_v{klepyVN_?UI
zVyGq^3cr$|nqG$5nek`+1e68T=V%S3w`>ZRrcb)?BalYq{;&%_E0XCN{BE?7)R53Q
zN$`n4wUK$-u4xiqsXLl?#UL&s^Q_INj6JO*tDE|hLAqs?YED`88-=U8?^*O2`k=WW
zH%#3_N!f6+x80T!v+Ae(Eg&F*k8Ktw6S6)oe=p_b<F~?l?P{|&<njDiW(54(0lhuI
zpa0!}XF>btQ+d)i+UdXQwM%q>8({TP>9GvYP*U#H)gxci4aficA#%Zn5S*PJb6Bnk
zTN!R~OARJEUBIUj$KKt764l*m%1pItiSQ*6UhLKG-t^#PVI>nQ&*hiZ1Ox*Y=QpWo
z)+Z;#NCp;arTP_-XzUX+E!wNG8WrCLY@R0AwN{vd$hfsKf_T;kr+sh~pzD<UV1g?U
zFupjLfnlXlC95K2YaOe$P6-=(W(du8(tOb1rTjHaf`GtN`RkfkLqkfXIX?!I=Y>C-
zIq4SK;gUx|1q&0~hZg@*19SDdtkgU_jM>Yp=L9DZam4EJEk6`nCT5s?*52Wx(ed2n
z>aH))Jj<>>brWlyRz*0+EO&YLZ=<P+pDKFKoOFi3`1ynvO^T@;@O}=fkBkhC#u(${
z*V|lgRtwKDGv<0clj>(d|E`hiBzBcmL;QT|_9z@m8atcPq1xKc$(xkyBW-4bq?E*J
zJQ+3E^1JW7J<AZiBz*><(_f40=kjS;PXF-9V^GnN<;~ia_aSe`Qj`l~t$dj|oRv!6
zq0B)(1JxoEkuz2P*pP(C%Zuwf#?lG3n2N*shvyGynrh~~E4(Bn4pGrSfsjbxlNmv#
zAZ*Hhjv&+$bRiDtnOV-K>L9%81S9-@Op=A471S5xMqeiuR}>K$L2=a^AtP&rhm%^!
z$|xJ_YW^(DgxwD4>Crpc<bU&yJ{)h?=_KP<HTxcl(MRJ0F2_$LYJ!rIW~fcH;O6I@
zK8^Pn(&<eibodEjv+q@bXD6||g-)QF>d((ZNXB`I^Zq14OWt8Dcx*3ArmL&NB>TG#
z!R*gE;@ks&PEC#O>bk*o4+Y2cc5687h4bx{?J{3`#)-lDT9efBrZ&Ut(!@kUXqaE=
znUSbfPYq{vG9{b2nxusJ;j(v>VDn+S#42<~$*bPzE^mT{?&b842`KQrbs-OZK1`x~
zOXEHB`^#T1s5QdMn)~F6?ESl*g)!&RJs7WYTl=K@6O$$Uh8GwY*epYbH|vD9C7eno
z3WBZ<KdO^lcR%ASom{;FS6v1x<$xYJY3n@>Nj*~uSYnDSQR*(msPOU6a;X7Hk=pNV
z<mFDp#Nd<NYMvKEwj~f=F%2+GC?ole9=#B?!)MJbQ-UZ+3KSfjM89V@qBO;b9`l^r
z$v8|%&7)ybbC!&;C__F&e>~(rFX|YX75qx!)#FId&6oHUHx>Mv7nLI}PMkb4otHgu
ze2S#IC*YI%ld%?V($}XP=omOW7^YJdwDN`@h{EHO318vUR*`9?i(YOlgLZn!$?=p4
z3*{?UXc&hp9Y5soEh#yZynvFD<tC4G_$@;t3{VHayKHUad_h1!6<}ayAs-wk$ntT?
z5+Cg^RINcz>e3$}y@WI3<+RW9n)q@T0cVqOru?CW!`^;ye^#sV@5h^K%$A^0sNvg|
z5;}39RMa;-W7pbO?PhlSOq9ylIL^*!Y~zFWC#dAXoa}eGIepaB>@E-I7Y_*pdL|sX
z<7;=&s_*iN+}z{h>VnYa$I?R-4{*<Qi(@lK2TV)tT((d5D;DnxC#+__>00how@1@J
zM7k$dslgp_936dGUo@9W1g<b;+0r>Lx|s+}bYpY#SMM<_bk2X%E#BDSnuJxIvW2NA
z3dtjASy%h4>sct1*RQw4+E~JoVM7#bZH@F+*SA(yu5scVezn7_>*>OddHt!34x+45
zAi0{eYs<XyHd&A9u<6itn0SWV`h7nFv9fn2HGgK>uXMe_&|A;8-fS`QF<5$&n91?t
z!?t1htyJ9rv{{Lj6#+ENw0Iop*BBo&GdVST4jLv?ybmU-+Hd5Cy=}%kp>MsJD4nyB
zl|$=v^W%konwJwiUIeZS*6Q}Q`Vco?*>%j+fTjNpQP#@i4w^k%pFZQfC?}WY*3R&^
zy$0RcjLXhIzLY`Vjq&i!K5Ym@UPYyiN-;dz;2Z0%%LW#vGc()Po&Ts^ZO#7o#y(-$
zo4z}DH3O-Joztt4{z8>L?e<OGnfQ7oC3iNvT}NlT4Mzj4s<{ky1oU)0*BYy%O5DjE
zhY!Y~l0W_Z>5~UH1i?Wh2QEAE^3o1t)_*;x5G%|tU`O9EG>(AF*PPwl78$n{7UAU;
zfMDB^3&F883wKZQa=0~54_se<cma<pz9;ZT&oewd@hK}@rKsLaN^U;a#6XC6BiU3z
z0{8sYTX`(J^Ye3*7gd(a&#LiAy>DVYin_YMmY-apPWxd{*`RFFagB_G|1)RyWW`?(
ztZZ#A!I8i`D~UI-yZVy=(PB1SV>))9lz!j*{?7S+NpuJc35x1f=jvGTxwfGE-V6?M
zJZNK7C4`jp)Ld+QrLp3wbM#6p&rkH9ChcA3sc{jXn6AUc=e65S-`O}Szf2Iv&KP@w
zVG9NU+No)^S{tf`C=*Rctv*Xu11xE-kkVJEiu|6b3?o^093GQHO$A>nGCU&k@NWBP
zX~`jfe^Mb)r>C&IykKYJWS^5-k_c|t`wl|QA%ujybQGvZaPV-%<t=4QOf>!dKDkqP
zl7?TaG(YLWF5F)>A7`Y5kK*CYAW$_UgQA8<t$t>H+_pFnAzh?zH@eJ_>o|fp{)Lo?
z;A#HEV-tFa^JC0($5h8anwT&mD^m$0eJLw`&49yss2O3Weg+UeL{1KU+#e=>p2*#;
zec6_xpw0J`(-OxtW8V;iy?Uq(njya734cPt8)~}OFqA+A0)!EiJzY60F2<fv2Lb{i
zcqUY|Op*S1>0^1}Iy7fUKC50bh#htGtHiJ3(4|D7zuVNrd1|X0iO^=QTP4q3*No(d
zl0hJP)gAADJUNi($WAf)<C}A|4>Kx-_K0X*SV+VR?KX)^y>A*$Gj}HY#Fk=VPgTVV
zo(<T;KzFVMi`Jlc;Qoe=6#9aMZGwl0=ncn=Q4e~=zWWb<|6kSBnX!sk+A?bVe2Nyi
zYXM;|2|~L!EY9z48A-v^0%fq=YI|fQA_9z+BWFTvhaA)Wfv(`K(j@A;(~I`N!_vQ(
z9|umbLU)1QxSZ_OWJYd|aVjSf4SUMU*#IRqC1tzj#DpczWq*ql2nF&gD_iz06${8p
z-2~fU-pU)GgjmmTRTs!BDQo%g1&TywmY!XNQUuQN>||RThIAWI4Ws-GCN%&|QaKj<
zJ>Q4=9ZAJk|NQaH-kR6?nOSMQI{_sW8u263ro5b!od8WqMQN_eqWPu`&Wgr_F^0y7
ztN%7PZhh-DI_euX175A=S9EmXDP?i(u9AFbH3h2?9&?LyJ{z;9Iy?syNuJ~HIXnIg
zvHe<oD3&?)_9f))p{iCg%D)iv7JS{FDW}c^lu8}G$fWA8mY_^?F#ZZ{uc-Jnn8R8O
z)UgiTw@}Z7A1fmuD_zzXme(-)bGDw@Uhm+nFewYmI0uqZUcCu3w+|Oh^=&ocTE@bg
z;2mTjSMwwuwpzJm!D^$SqNB^ti;9hi`B^@<*wZ8|Ao<&p&m=IHVne?Z>_Rw5<fS)&
zNJiD$vy+t*uKesBbZi;}AMlk?O_%rNV>Uyd^ZOoOB1y?cD9`CC8EZeyH3`aQS5r-h
zI>f;_5CW0Xy3#19rgt%*D2oUPfWO3kb!42jqEb{==ACSUEF>Wx9d%0Zr$2sqf%B)K
zQ19iqX`ptDu^RjmBkdXee5P;f)lQU@zI4jw2+H$aL?R!sRU{Xv)?vJ=uy4<KCFmtW
zEZp5Yf7|&A+<sIALwn!7yWJVHydmD`B^OWOLGd`cx)nO2uN_ECU>Y-C-Mh+H9H%KP
zm{~gs^i4fhL{P&%?dU#km5sc(w|1Ovqm*PxgXU*gF0f1H#EyxmvOYSN_VW8E0+p=M
zyDUuqIyE&o{AF@{!^4M~M!j=BSOjW@l9F%o4XfTLcvXX@<u#tDl?7%OSF)H;NJ|Rw
zk|NdjOqYPr9j{MUM2|!BIzlAGCs~~^kABQV)y`i<W3g$Io($)K4o$NBqGeG^7PV2m
zq(x@2X!}KY`dk7&h3lk(!j0XwC`3d==5nyr2{^1TtW->Myh=OI-_Hyra%PkAWr?v#
zM8d9bZbq6+8X6il4LTA?Dc9__-q(r<=mpoAWKR5T1~=dS=Mb!HRw!EJTi|Z)7nl!D
z*9WUj0G4FTGRt~;)ckNi{8{c@wr((E=@8})t-OM~1IdRmzQrLqMX7*h&;UrTal1K=
z^kXM$FUOPARX%>z_%Ogz$NE|Ru5|iDFG(oe8#E~eGBeks(Akv`4OrTHzoVXB?)9B`
z*x$AC!}s*&8h<et`oLwep4>LKN482XQCZ=`4~FwjbO~3#lSes3bDrbGfyGSD;n?lK
z?gqOc(ly{or){4sfLCXg0xsJp2{7am(v1ltsEtLPfgKVN=J)s#5t42ZuiaP<B{fat
zEMao<YIYhaLS1Vdi_2<^gGXspNYL0EB#n+{NMPxB9GH4^za^xj2Mgk+=3cN7|GsUl
zt^P%ZXEwi1;UQG`&>8mAJihW1zqEhCkHJk16a-Ky#c_=^^cx77|Cd$@ZVC;xfdNB$
zdg`$>pSY$8dX$MJgl(>AOaJSZQmNK{dv9A?8xj3XTb^$#vgo(!SFdp561vhy)hNUv
zJUStDWr()o)=c!p5uy`b-?N6nP0}j(q(*dP8_f@bG=Uu^FL(K#dt(52jO!A3<7Q?z
z>3*0P(Qc(+CMW)oR(jvw<2x7XU3ED{%#Wd`OW4tV$%Ev}Z-NNxM5D^0+w`&IVZW=$
z7`d~1CPpwV9F<Q})G;nPI3q$7%%1MP8`!74DG>`Wd5(1N7@m7Zl+y`ObGeK3R;ntd
zjA4<H7}XPI{9(a}goJdFO0p#KuOVefPhdy3_GA)L9p`5WD6<mVPL9)<<*(x2>R2J2
zpI+GZYndN_T~p@A258KpxL&9k=;J+}gss`=VNae|$BBI6l^fb^I{H5Ehgd(?p!wtQ
zYagp;f<yC^e_*Gy>|z6M(yvTs*V{@d{VFy{XnMfs!De?dz8A~|d{tI=*XNkfANKZX
zzhA0;E#`a5;<s9CAmvp4qTB#n9jy!v<7cBsGwGH7fJDZ~)iB1FeLJL3SCr`lr|rR}
z@bglM*+Br8-+21%Sm~d-iH_G3hxMK6%e=2s_R*zEK#0+}w<)y#m*IHl%N8msqtFc5
zy1pOCED&(fAkN+66(1{GX304Y_7a!=e~5d_s37}p-Pb??0a1~X5&@BxZV;4CNoket
z?vfG(Y3Y*gl<pAeMmj}0rJFqwpLe}$@3q$1XN)t(`Qj&s!X5v6&TC%3YX)3s#_5%T
zJ*Z1z%$lvi1D{Yc6CIH_?2$`uSA42g62IAKdA#?lM;fa8%tdCTQWf8v^Kaz{eh<gB
zH}XqaL73*3J+uitd$$?V=KG;eWU_%Xf4}Z;>CkQT?o5s<8azfE>fG`J&D@{-!gLtY
z&`UA1%Rf3`U3{n}uGOej<|=7|Vt+GS!qRLw-*`;rpzRcljK6$((TSiO92JimSokhX
z+0stLY4w4t36z5Z8yjfYLsqGUgbdQo>RkrXRrc4bnZET$WfYi$sg4)@_v@8ElA$iH
zfx&5I<F=oay5NU?Jt7HL)7cLDd!Q72S?i24W*uDdU~Vh4kR#k>y6B!Nyf!+c!{+Bf
zO&~=<Zs8|xt+^q7QxkTNXs)f&s#SiUH=Axh|3oInv2G&!c%UFFgu8s&j4!QZ?`XPC
zp!Ie>vhA2XL4$M8!`?(Zf^nx6s$l+Tkr1fgjkh-MtUf$RP7W2eU+J%L*1BS3!s*)`
z94D=1*qcw;*0$;53-Ov;r!vhs<R>LYzm+vFe*>w&WJVk-j?krJ7;0*hk!7GR-?+H*
z4%^d}tWJ2P1%+=}a$-^6{+#VrtwQoLWkhJyVgPj_qoaNE@I<QSz+GJ4X0TZ|#M|4<
zEQi}YD8dX$eqbD)a%d)`#W+5U_~G<M_S;YwXKYM@Z_Pr|5XIL|!-Ya`xZTACW&lt!
zxD6~D7=}=FSy*`*Ev}8hwE$;gu<|g1^Wbz5UWu`#tu@))U-2blnW9fd=CPol@q48i
z`ULvcoQB3DM1&%wNHj*q%I#^s0PhnAY3RK3cE3j8^f@Gxr*5hsUEVIF1ee<vsR68c
ze;TD1La=<E?)Z>kZ;z+Kl;}P`CWRBqu#t_8dR#?R)I*~ox4Py4@VSaUeh2`c(&|rs
zj?|#hT#-Kt0oz3pGlY82-6}k&#<3qiz3FQ>RByb06bL1DcIhl=k_%ym&S~FNm>RAF
zrZZAQD4Hx<?**^(%?bt3KA|=uD7))ITPCmPht>P4(d{}SE>3cCn(U!VM)e?ui}_5c
zX35uWk1r2rN*ew=@{lNp|L3XxfU4Nh*2)e}w!{V%wS^nB)f)@(#C#1Rbj*WYU1rnI
zf^`^hmJJL>?Cn>FRK9RfvM2~BDVdG3CRWK$argP%eh{f;U0e)zw9Ij;MiFf<2zzl&
zoN>q=oR^#V?s~5sr!z7>gV9*Fg2io!Gbtnok<NLgSfgO~&wNAL_5Fo_Z%aW%r}5RE
z(Me5XVO<i_y7r<Pq=@Wj{`68&mJ@zB_bM*=eag{KwN;tfG57=$5|2Yf=B5z(Y^Ch3
zG1&DnV$;d|kRZr|j_Von=jX=0FMSA}_Vja_|N7ulxCL_BOx@&DS6rCl1rBOnC#H(1
zM`O{ulga-9meR|E%H+fqx)DBV#C^pSm2ah<iZDDvSf0x}2R3J3bf=6LFWe*-m}Q{%
z{SnQQV`+;m9uOKEjp8LOP&n}-pXaer9!8oYNdm2!@!HTv^58Xnl^Ns~W!~)FZEcYR
z=G*w(qlbZ!ul2jW^6;R$yDN9-|Byx9*-`$4=2_|P=z;y@Xy*A=a?eA#*gFh;PoI!_
zw(X1MsG!%WH1Ixr_Oz9NRC%AS@t+%qdvW7T<J_yNpp|-yjm?OGA=5B##^2bOkZ)LB
zJz2Ju`qED>6;o!c^<y{3m!y;*Z<W)BhTiUIHxHIqx>h(?^Sw!UEvH6~?yb0-9nh^3
zXPSH6hC~nv(d3Ir!W&&q&f1+D;8nOo7%$#AXj%-d)?VEFG_?Ohn8nvs(En7DyDAfS
zbYPBf>mJdf%1cjQ_?>>sbCNwQ&zqy2^P7I#=MRf|=kKlr@A8;G;-t$9k^N|m*hl00
z0!?@$89Kt`%wp(D8oP&TRSHe&x~d&-FuHpQ2-@69TS4txS%7{B)YkMz#4wqH!<*}2
zYsu{szH5b>6-9B$sFF{dOnVee6L?>f^NBU^K1sNHmsD(i?B2I`(?MhS0mv-~>WU|)
z8BVnWiMzrb_tg!zc-&sV?DOhn^L%HybkeCRJFeLSeU2BOqsX8?)mo+0WqyXQ#E;X)
z>0l`>knMP*7JLZ<lSm1+pWWgnL51DsF?SaaM3`y?q4tMIZ2NQ{93#hw2z8yq;!#Ci
z6KZw{Q$57beZ)k+#EctXwkQ^*bKMKAkLbPN01L$GSPP8`qStJ__r%R2os7}des$#e
zktIDYD#%M|>}-J+!|we22w5C9xG^)|y-?gsywKL&zSU0qw9j`>9n6I%<HzZhgvk1u
zXTYHkN58wuy>Amb>>LeiLHxs>cnQt*mXSEPH+Wpc3pdwC%dN9s=W@XF$kMENZ}VsB
z-i9@yN)e$JE5v0ZZ@sUzS{sEAxJp1XY5w0=@tm}6VLRiO;jBgZRdhntYV)Lu)c2GI
z-s$O!byu$|(5jyZ>I?{`>&nZ?NoNef2W9{w1I6=#LRGS}Quwtm=amlLJ6+usrkhmn
z(<9hIp)>Je#iA3F6gytatM&2m6;V)C9e*a(J=(x8^75sWkhi>&lC<3Cn5YN17$gzM
z0^;HwZ&rs78Fl-XtYqB(x4~ewgcHws-)vpHGo9-yTfg=WTc(__H2-R;>v_|R#SnY9
zi6!Ej|9Oa(xF%v+Zf#xjMyl(^WIG+zo1P_`@6UN67}SIW{4%kw*`7t8%d><Zx1xsk
z{Q8#D?3zLu6|K*C1Q<!WI90J~S4L&&NkbgyK_ZNi{qM(UAFO<NL@s1-eKrv?HCZ|$
z#KHp~lBMfbyV=2Abdl~^LcuOmrPZ3#($;0?@GmLWE@4JvT#bp1cHD(@<_{m<zrXne
zH#x6%urntd^^h+e<xi~yr_RM_v#|7i_X4j^z=-v_mg7u53_|=dAn4o+3|`^i+Y5bs
zOYk`>UU%3H(~!~G!ocv8wUurF{&RU=a&j{5#3UgMLru!e2e)<i%R{8@%^LZMe~(sy
zAVqa_^!b4wYp?Q+2BwJzB)dZu6^)PEk3B^Cg>a%l!#CnS%lg`RQ76moT2fkU2`Y2Q
zrLu2XK>}(B_4_fL+b&^2_cp0jqbSN9Bcl^iu~zRyhZdaXP4UJuo4OxzvQ=Aa>{M)r
z*K<yucg4bcZdtAhhNFcH+4EA%w8r5A<D2d8V4|H{vIoxT+R-Yd=Q;ES(XgAjw$b|r
zLI35G1V`_Vzx_Wmx$4d{*<G&5k-EycAE9F3B@%r`hj2dFJrKtZ&nIH|OnL8aubec9
zK86L6Xg#Kkuf7}V9Wd7MQj?jFjgwWXO{Ag`&G2*{wnX_w`LrRPRR+qdzF6B=Rp#T7
zkQ)#_7N8c_P)lkmer-ti>U-|&iPhZOyICjRp;@I}YFw=r2j7*pU9D8cdg{h(m++Tx
zS%sgs^Sk!^m=<F04lfbnUa_9l2B(F3nMDc=;$>vEX3=>fSTzNG>qDWg2OqIAOLQA=
zT3Xie?m~P(exbXSiAxO(w_ygJeCyA7dhy4`C(qT6)9|jPEPbQ6uhKG!ez=kR!5Am}
z@zjK@t#Z0o<Ogd0Z5XDe+QFTce9-kZ4Z~a6pU8lil2Y{6jFDlC4&2Z~UbJ}>v?h<8
z)5VsA>uA4#s!3G5A0B!GovquYs_EHvFd2Un7ISRUYKA7U`FBBJikPr?L6LuJn|Mp>
zBhD{zyUM={6Mz2n9m<8ZhV8;)dFloHcD<~$;f@=<Npv-*gQxvcyb}epK&vPikM00?
z;w3=WPy~gz^9V!bU6O~ffiX_AT?8|>q?cxoi%+TN>dyw#?vuHLPV5kF7FVZV&*TIR
zpiPRIAS4z+mTu3;>zD06&}qE|%|l`B#S>o;?Gkp=BNYwyOc7QuKU1~QA<pU;9G1JY
z>>v;HPZK64jEukOGi9cKEC}=exc4sqb28<g?`>{vd3pNCCAAuS<WhPvQo#}qk7Boi
zimIO>o@^#yQt)H4{+z7+M)#B7&P}y|@ZWY-=O?EqzCP2taqP}V`NVYJ_jMNLU8-$2
zelzOc^6^2SV+?P1zK>r8Q`0Gx(v}YGcamvz=H|WqKfHGQDsB527=+pX?H2`oq1(v?
z`IB!UEAteSWBqI6iP*GrE<8JLI{q67@6nh}Tn>edZ4fa&eN&~^uaM(p<V2qRznQ^!
z;PuGA?4+ZiaH^3e{?I9koz{Dkx%0o8!OT^yS@g+_Qc`BzDE}cb!w!X;Ud2HS^^6|D
zG6nq3FlzGVa=wMkh!OHTNhpN>%G^1p6I*S5pk$g94&!`uj*9Ef&d$-E%D#5HoV*;6
zGUtaIwOOntNRyQe3=Al`-8wx>#l^)nr6#}axMckAI3OnLXmz|QL|_q?7D%^6@%@Ca
zrTG<lNee7r%4OnTlAfiC6<MHrx?hK4`DM!K&C4(HWYmM(3qvd6#O8}hyPR0mmPI8K
zPc7Hu@oL`%`$R>hsy!%X55RdyLLV*}0RvnKOlu@s7@PAxlaNps^r1A6Y0lb5b1WQg
z@7G@_QL3!5I<gttI8!t%H-1sbwmbe)G%Pz=Yvp$+XdVW)e6pjKL7A0lFx0cdCo<H2
zDy&dAGH0+-=6Yj1qWZXfzh>el9w{yN?O%gGUjE=8RyBEJj~f#vV#;ogr>4p;A{Yiv
zK;;oT_KLEyn)f>D`sRH0xFc70zW{r1;B?kF{rYxz`<MRM$5L1wN(!<n#~`%=_XYG9
zVKfVkMv>k-fB&MQA~ruA*0<ksjmK7n{5>bYAtcnqa=VA@6B=5lgamO=U`$L%xX>-m
zz^J%0puif1&av>Ittgh|gmf@aadFO8aYHv)^l@?VN=$2=&v`<H(&OJ)vJpD&;d5FW
zELGWH%L!JCvisg}753og=Yb$k%4K~3o1g_3zKupUR`A@L<7)(i{RWg>?<Z@}gkpDp
zkNleHMfcztc7Rv)jss`#c3~1DV~o%+t|9Af0urr=V3bwz77=D&`eH%Bx3^iDq98Sp
z(jhW)RGCdwKp~EJ(uk0$Hh(&+o^L}crey4gar23`VAQDYI^rsa<Cc6{ceu%9b52B)
zPj_n(t7Ad_74y}>T~MxeyJ*eIB`mR?2)Dz@`_q&)_eZTL(Zi?+oUeyQCI(x#FqxU*
zb%x$I1}^fe(9n;qt$|N**m|HpkwI#J)ukd*Fx@-ZJl(f0O7HRk<bbQX3e1XN8?vsy
z2G94=(Gj>0RcXUlpC$FK3i-LmLmC=*@sc-F{z9EI#&bWL3^Ft2tU0F>-`u?$$<8iU
zGgimAWye+DBI|jCw}C-!l${M+ls7Mu+}-6H!qVbB)<`A!Ey7Q9E!mD;&g^3=IgPZs
zYpB4<2Rgmxw$44m!jk;qg(dseq0(l@j$P!xS605YoPBf6_V4rtFYVEaUISgda7Sne
zLF7F;qK_hS1%`%fMo|$F(-s_Ulq-|bvjr`?o6BhagC#bPbwa4U&lmR!E{!O*NhB>M
zv2qh!HCXW>6pf!Bd`Xm?6L=wRWyRVNv$9(sHIZv#MqCyHA9RgDBhPO?0>409qCu_X
zG&58FN_rhq0x1<Ducer;2-crR7}jr#wm&#VR7S&lyr}wp_BTJtBY3QlsIvHuj*|0l
z4BLM%(nsasX5{27{ql|y^Dcc)zpU&_w-=yhM04Y)FtRY=Yip8J)mv*PSC*+Z;puAW
z+1YJOQeZrmw)Z@Wv|e9_Ru;4Y0vSdI)uHUjwO=nd@Fzg+9~h31yR3%2!i|?Ip%{j-
zP%#sea7j#4#jlm)hfki&X%htAy%cSvv0E6%aK;W~kl7=L_=&PwsgA%I<+OHh<jisF
zPUd<um&Z>3XVOC5W*n;{Qr{W)Mt(%Tu?qH*$dV-aU%&V<Fj|a`uA!P&_+(eTzMuS*
zCtl-~dg>FBtkE4;Z?oy@^cHYlr9_GsUJnfY9K~$$DWxXC%t_j(K7v(;i<Cd)r^v@E
zA(D!+(j8PZ8FNf1epmkkJXO_<5Whm6xr|nULnkI72DU8`hRCDq>eRc+YO=CDMJIE2
zG-t8QwcmgvRMf{O-_l$JSsuZZ4L1_}XMs-u8qILdiCp`64}*8IaLz^gPAK+WSgoj1
zYdq#Ul-KBe*3HEw+Sc~40M6DPB+3rdDMS}u^S2ks84@P~kNu-XYz1)QA7<sf?p`b_
zBdD}>-E1XasXgGgqv#$#amtH#Ju{mXOm`=E%_>927Pxv-R8(xN@)n!LDvnWpcfypb
z_t*M8U;>b$5<NIyASFm{RonN2F*VBLdg#XP^u{6d)FQB|b!8}$R?_Hp+LwH3H3`3w
zfuJ}~r0}k2*1;}XPS)_%eyK~jWO41^pwOZRx5FFfzUyeKI$3GtbAR%EpQ*c)5hzJ#
zcjzQR02ll7Ti7zjhIXPeLk<BXe9EI{jU!}!cTwLk<4Y=-2SvFjTFCO|JyK9oeiK*h
zb~j@!A}0BBGD3A!XX;kBNFQzmrGWsof{Q(c{En)CwS=U3L0sm|adNPb`oZzxBZjA;
z1B{q<6SiSJyxk1n?zyN4vpnWGGuP95D=I3>Ex^z3zH<%3KfL}}UbecxRa3&)SeK{Y
zw(eVt-bn=gxq4-o#w#Qxwi({@)3l@vcI^fPJh66gku?4wE&!4fwxJIvq?aB13-3hp
z!qU+p?~cb-54xiId!P4w$~EM>pGvvb$HL%y$(k4shQ4Xb%bl#w%EC<>ZkkKlpJHWU
z;#!^EW~2UuPex6`>DcXd9a%&K%;4Z8@k2%Rk7u`B?ZBNW=!6~J(8MO^WGt0fWdPd<
z{ub;!buSA&`FPp1x3jY|ugabu2a%lD*xe-z#0N?u_NuG$Or8&Tdyu_$Tn4eQl8Nw*
zK)`H>Hy>g)RM(&R0BTyCx;nW(zFX~~+{;?GKRQT4si211^B6%C5g+WcduRtR`%>s@
zKuW5=TIp(3u%=dUD|3*&`+X6dN?KBH#48Y<C(eC4G^YKaB&V*ftVBUaM#E=VUK{Eb
z<P$SK>p6_o?+5E9{y!Onm75<BEGvO|JIF=q?c2AB{8XyX9!N)~B3G>=+>ATl;5~Ss
z`jCz;9jxOI-!Nm&>G;+fq%+stxPU{4R_vcpQgUdHGGUUXz~pdq5Z!L`Avv#WeYR4t
zc&dNc;O3h~P&G*fM~0tJP;S{(fmL2VBg@ff^w(1x>ie|tL640d11o)qjBEy@&xb_=
zeS4!xR8GJu3_9CF8DwNy_5C!1W&8VQs21DE#1NVtOvZHH=m`4XdzYnJ?xLou>a;>0
z&n6kg1fc1z4<>lt(QkvW>DsFpBA8^XUO6~dy+18SM6JYN)DqaSx~j|qC+|ZV63rlA
z6nqr<{Kh!CT2Cq&Z<v8s`nSH$1~1FK2E!(+)%;RhJ-dUuba`Fk7Uw3H`jK?$gX9cN
zo@X02TCd(pV#yCMwGWrqRbuk5Xx32liHqnz{+jOIWY0t9U}v!9?Om1Y#ba{ENAQOk
zo9kqG{oD^J90QTCdCyS;mgpDR-~~!k_AA4{G^eAKxzkAbHk9ahb@n5w4Xyq%Y2wn{
zbrJq?Jq*i?`SYn&BEoCoC?ZB!M4p=eAfr$RUm~NFOpI#P^pEGk9P2CYdRJGtt&`oQ
z9o!9WYt!F%(Lb*Kd?dp0yk@9_=|{XZy}BR}EuviL?$=s^m-dpPzLPTGe1gx)am^`K
z2_36(uqzLK>6iTc{NxuhGBP53ZlCWYD=IIXuFiffJUohsu06`kuENipmc;6aBM1rH
zg!=5vcD*BpMWQx?O34s(pQXr1jAnn#j)t3;?B?t}jEt%eALe=zes-HmNh&B5>t`}w
zK_?STO3~IrdfNxJotbqoRtwb=VR4a2JySY1X*oHo@x@*^+Z$H!P=Oj<y^=$}dH70^
z9T)d;NMuw{y$jFA!*P$d+o0+t*y5dpBqV0X>=yn|jzE215jE<TBt*Pc?##I)uBfc8
zt}65Bl~*d!rF1L3AN2OAf<*j{kGr)5qt5He8m~6%&uOWr&eg8RpZD$3S3dKpACUdg
zLPwS1%p-gDj2Z2@#2OJ@tVV_D5YUy^<GdV?H7q%I8biL73G87Q-$Z-w4EJFwmY3OZ
zKm2OYOrTfZFR|}Z;43^^Z&)HAcRGoGUq@`{zuHYjrL;e3WPO8dn7p<MHTSKiR-YXj
z@$=oCxfJb^v%@iO@9ML%C6sWF1urWFkzViqDaM{2PiI(Hpol+wT+c@*{49)?xM0-$
zeP&g|LbLyRwb{JQxBk=cZrAy35ZR4mw~a;?=n-JM;LBI=j3<#!7;!KTkich@q#!4A
z*`WSG_?5}4^QnGsdVxLLd(4rs@Y`g(T17=AD>pN<m+6Y^L-LIuf{*iFRUHUPNzHUZ
z6~-rL5?FJVT%c(>Rm&@_Xbb+k<osgy#KbKhpHm@!q~-|))5#bpxTE8x)&_W-xvOzy
z)6OjC+D5y1&(EgokNNoA1H+yk6kbKoO*?*TtoD$O3Ppn#3MDo=l?errm*z|3<p6ak
zoi|}moosq+<fzD(l~MCAV$w&7gH%29;Ummy8qVo^+M(m(MY>gpNAKRo%D%eB-SU0D
zFrFyX^xAR613XTNNdCF#Bl(OcR494#<5NW=4se+FI6z5{bl&cDc?#1$?dv=1UDE{O
z)y=&3m^N0drFFDitLbOKZGyaj5oVz3Evwyt{Ib^`xG&|yz!2BYGkjW88J4&Ol^<B4
zRP9cl2`TNS1q{-}Gx_Z}Cw%;v(b6i$7-7*}X#()D2AzXz?Di_`0jb9Bsv~aPK@G@0
zv;v_>%eyDp4oyHC%?mq3`tE33rZ<mrZIkw0HPxRRh_=%frH>i`hdi&@V<cY*N|XpG
zXCzw`WnjqXbH`7i%ro0evWD&ff&BX#k1NBp(m~NoiMOKh(*dX7wZULI_;oT~KUx8H
zJt(c&;V92w-6ipm8qS_?7a1NI*3;LMlT$c~;Zo`=dY76HL}%9783-<YdPTql&>X!9
z(r-_W=#bot2@VT(=k_Z7KB?X<<h=FZLCc9AWQjEJRS&{|(NH1R=&pmu+Nl>x2KOjp
zEwU`R<jJ8o5syZ#%RB!rFDk_nmu(4K>PI@vM#EB5&ilJzG+6WVwnRMRJG(<tqfumN
z04FqRJ%vU93?eP03ZPO$eT=Z8xo2V4&AGpRYPD-HgUQwU$tVyB4ISJ6AR;p2Ra7()
zr?t=h2A*gxE>Ph2#}d4ZO9+u}A-l!j?d@$i=k>h2x4FG9UmhF$K6cS?b#3oo31^PK
z{e$rfWfbGUz>%%DZZt;7T`iffw{5Oq9eIF-?`{TNswg%FW-%U@R{U7A*>y9vlar~o
zAJ452gBLNuz?KumGrJXDIen6h&_hP56Hv%oZI8%~02v?dnHYE794~a1Ved8+H+~^Q
z6}t|+sWWu{>YoJ*SpuE@@?oKzRSwsUv?i|b2X~ppFFU;%EBzG+Ah&!Joo}Q<AY!!N
z@7MKKI_ZdTBC|YG!JD)Jrkdua?Y}@t4ie7em5o~Xp1$j_8tmx_jEg)3f$zN1CANDZ
zps=LGgvZs4CR*Ysyq?^G;mR*&FM$^?zJJSpRfW^#^m~+f#=NQF^ZomfC9{3&ma^yM
z>yUM;=9lIVI?bl*$SfDmOcx}%)h42CH%iJ>XXW*ZK4oKTmS4>(WZ+~~lvRuEEnmO{
zc&)cDYVFrfwRiLI%OsPjTJ!+HAH)O47oK*M?fP)zdJbnAhr%zVMqx>_fOTyt*J*6z
zl^7*ZMg`U==M%6w?0^-zGg&0?J%8p=4n~#NYY)fCa_bdvg=Xd=pE&Yedq#sr|8B=$
zBKqMQ9vxKt%AU@(>;NfW>0Zu_lpI81TShTUOBysZnQNCi`@r#1W;*oFF2Q$(9O&C>
ze7hGAo0>CQsYY@3{LcGa7T|LJp(_V?pE7Vn4LLcSLF1JbMi(9unv<KsZoWPa=aNRb
zOErX3Or31FLRxXY2Z*X0bgEAxZhvZN@9sA7312cW6f223Uy;Ye!qzCW(C#ZUpIu#5
zjfo`!i#HEaj(%nq9^L~UfX4uuq%>G&4UdZy(dLkoRf&!ZCHvqnA}suLaR-u*Dvlgv
z_ye=Xkx{8BP4FvFrvm|~3=IoaLL(3r<&f^4B}++WVqyx+j);gT`Ybmqzq~Ar%wOFD
z6Yu&hCwGabB=?pnR>mh<4SP8p9;M%#RNmMdEV4r>#w{e?M|G4rT$nb#X<FhR;9P2*
zy8Go$rt-PM+slD+I9T~Q@b$w#M-#-2;%M2i-Y;w;{Pscu&m@U5AS87E*2OvTgaUVY
z<@qCG_VV2-&H2<+AX>$XO0nZ!XvoRQNh#WHj~2uH1e+ESaxY0AC6<(cM+4YT!O$9U
z$a9|Uk)EL;<*Lf8sEBJmKAv)&oBNe28H0pfTvCM3W3_mAenwJ2SyuF^$O<rDI0#5d
zo<m*>4dvq!z?|vSt8bD2u5><bpQt?Na>SAppdD}n=4xYa;~dhV5Ce!B3ns~>-U|sR
zMMM@a79cB{+iz6gBsATS;;la<x`{}{?Q&APG6W_w?}(xp&ivw?j*jcKXGgn})i8po
zlb>G7MMQ|e!EJ48k#_u7{{89ukt?Se3M_5~FRiO|s^yPzy$gDQb>EpOai>pC*X^}g
z9~U9h@QR4QiIqh6`!H?BwyAuZk<swCkEpQltB7b$smPyCZB_?9V!+&~!@??t!KLbg
zWE`sblD@cFdtS(n4{sK3e`<Y!oB(HATRV}LCn+hpw}9X+)85~|8{eb4Ro=RVY_3uw
z{yfKg^XYiz<h!fVGOtv*I>uvKUki(faKj$$qt!^C;NXmcf=@*|NMh~5g@tfI5P6-W
zf<m=9oyv~;Qna`r+vGC7fD$KHMnmJAjY&=d5}#Xyg=G7sHFzm$*C!jj&8~w^?yIW$
zJ%A9cd-&%w2rhuhe`0X(J4AGV*4}hCSuS+Nu=r)iT$wJJSwNzq3cj)VPN1m?hMMVF
znGKd?X(<!V2Y38w{-F?G;(Igg-=<S5NZ1Cu@6u$ch1rFdYc*P9=;m%21J=sX+8D;_
znwR(N<*<{gdi(1--iZ$}<!F;SL!Oj~f=w?QqOmq6<+)%zt22soW3PwGp2AWkc<3V7
z21NNDR5tBkCDQ1OE>~Sr@FE!*s2t9aBcm3_1dkd_6Mu@l!toP4?)hPzT+A%*CQbD6
z<x9R4b-d`tmxjvXNs6s)G=o2u!(4w!cZ+tmT-Z&za#YOg2>y(ub0!a!_R(CL?qD{W
zU?Eux43TsOi_hch>fVg)nz0BtKP`Q&ldIUUu<dL*iRyB6zpt^QLz(*8JAfpPaTb@<
z*qtAEXkVy&@UIOt818m3{bzVF9w7D1M9TxGn)6sr7^V^@q-Ivwb;V%$UisH!2=ke+
zYK1CsIk^Ft_x4Jl^yzBpZj99OvJkt;Ro{<pWOteGC>IL{-B>$01@LBh`TDCGNY%2m
z$A@Tz1;o+Kaon3KQu1FWm-9<Yr^!5+<VT+auylj<c}eKXQ25tZa=YzFyeL(e8GSDQ
z%$*a4epfJ_f9%(5$D)4tbpXOb*N*4HlbQptu`q*1S(uraJUzW#cTe~CJ=_nRTr~4n
zPxld-b4otmanP-^UG3T21SBTp`Sa(dQ(ax{W7Vca?>ihA?>+PwLMg$+raeGJ*s*Kr
z7#PM`_Z+`x)O?#jCNMm0c@)u<F@W3gf@JnX{6CaZekAJ=yjK(+t*@PmoDSh8n4ABG
z5(PrO#%$J(2HRI$q@`cNI}spc0~2%5aX6i48oop9`dk2Si<2&BKq|b4TEl_FT0~%D
z)(lHZTG(6L+`rnlN#hIy-xpReE#k=#;7*BYf?%)eFDrM9pfF4}xX>F(jlZO^cGh3b
z<d`DK*#Gb`z?(I?dA^gBOUw98L3jUlaGt4#Q&=hb-?2UMCeWJCVg#dM#-SL^y0Wy)
zUjk4o4aw~AQh)r$_~A@ie1k3H@SyQT1srgulhrCOm5`4i5(g;RDWi!@a1&VFhR0@t
zikYO*x-$w~%E^trekj-#RYm5eSoiO}y@Wan=cotCG^SwG4+2Fpg7uYu{Q!V=dcx#y
zNTtMRs>~d~?Vmr_a+R{uzdUUoIjqZ7y9iq9UjkfgF*YnTBq=dFJNe7AxtCI#|Diyc
z5=A!x@-omnpv4d=_fqPEn0O3_E$tHGQ0r1@OKetFMo^6(>5DR}$to~l0gIy*?{e+$
z50F6X81kFpAtfaMK>25l=mB>2YlmCy^6lYLxV$c(a%hZz=wZoIa|F$jh?`qiGM<)#
zLWIEMj>8Zr<%Dbw1EURzjQ!*ZCNf=b>rvilY76ia6Kta+v046pOK!XVc=J8+>GW$~
zmjh`y!{7>CIMpgJ;F-5~u#aW4`1ZXom~xr*@6i2@13{t_PrT?O&x+*4M0e3@78dWM
z)J#!r2fys`w`w`LbQ*YAxaB>a#s$9ZP-8eeJ#cSR$_CdH`&g@fSP}^Zc!>U<4LLN_
z!pP<$-KHVl&1qSRD5;DqXe|>Jl@+(vYb7?tiX5kSteKgGvF~FA+p4YTZkYc084~uY
z=5;4bwr<wG{oqr~xwo<gQ>bu4#Ise$L(S$$+N5Sak;@E?e1pu^+YN%ZSxy~(AB%sq
zspZRGVMC<Vh+r8XY<n#&EYmPJTMHo|okawv09neVhAPu83{0rFypd|l%uJ3HXB$f_
zxJ_wcAy*s-fnLV0_O4I$kB~G&u7{r=(jDBD?;VHaMnN33RE8WaY;3~4YW&Esh8c_E
zP&q6=+laSsB*FvVWwwoudYqp!HV$_2yWSbW-OXklzu1%MSzo#Xn4W*}*RdiSnw#xM
zo|gy(+)Pl+G7=~G{tz1MROH@mrPn8Qz|sVipI6cArjLDFTVRqu<5GKkIgN6_{{y^k
zkNFwG@K&zZlH`*F042r4VG<G4e1@o`#S7{KUjvg7z~~Nm#7`r}%qEf7mW1>^nI<V<
zR-P$sT)4I|`XG885R^9&p^$53T}vq5YN+|xr^wxjFhDmwL!vO)>O0562u<#d=mf#a
z_$c>#Z+TA+n}3b33TTp>m@6e`WLKSU@j7<JXU>>?Q3#d{zk|)|axAEAOfy2XOZ~?J
zh_cjoZK@CaC|)G=j`$(1@IKu4k2sjD!Ug}5cGS*%*E@Lmz;6WD;+HLn+m4Rtg$3mo
zrpxF$9vB5l%BD)&-wjG1eq~4W;5NSS+;KdM3c9+99ygqI!xBWjNJf8L@75vBAI-ty
z{W-B8HbK9Mx+Mxj2pX2JSC5zqY@TDmJgr@da1@P@K{{4B4QVmUu!s%W=)yE$4H#LM
zlp-xwL7VHVa)*`iCKz3q{yWH8ytoAntp~<zHX<%nTT9?Q7^-=leZd-Xmk?11TkYXD
zaG5+4Tj;PtJgG5hxA4}735a93Ytf*-!fVx?CCAd~lb=kZa#?qOvquK$w+_&!3thm=
z12j)x4URp<Ma83{0vD2<{zJ!+ZV0pFw{z~8#HS`9zyzK|*>3SkWDwfDgqfL!yF}ok
z60_U}=q`xAPtycEuC>lYB_j?GpO7NB2)+<nm|qCF_wKS!TMrD3EkEyLcV_nMw8Rn>
zt#Y$Ihh3Pkc#vF4+4hd?$}3d`1!0Q@uH)a}Q%`?%_bv&|8fFLqhUHhH=4KfI33weE
zf-#K!B!KFIv3&i)wyB_JVYxMtxH;B~@o70AY`#ZCP5C%QsmY*{0lwF1g*g5R3C0LP
z&eG@?q;I-PV2v2uS)<1ikEnKv*IV5u3zhu+0hnot`Usvu4dW4hc_s-}>!nd<;h1u}
zUZ)P6dNG^fvFO#!J+-}UjPaY}+fYxabfkeaDg{l<AlYRT!$+u<5Iv?u6pxjVXgevU
zf*!c817;)T2XtqOSeIw0T8NtJ!CGW3e(mAg!shva0Q?Va!V<0Rv0ukXNGYxwu<u$s
z7(AGwR!VrBC%orM07;tQti4KUaKs<mu8thvT}wpJ`Z*A1gc3pL--u2rOy;hyVb7C#
zE1b#;Gc%i!3m#WoSB`O`C7yZOk(pmb&B91fD1-XmtETsB(Pv;!3a>Bou}$&v=b<bd
z3pw9kx<2f1nedQsc75U4l>|6Qo0x;@stSjy@+PzAv)^K}kLkPNNkaq`;?=b1eC+}=
zQ_r_=EePki7->k|`{+VJ6o(_$F%=GRsIrB#CaNj0A>-^oJHKQdD_kJi6*qDNv=Ji<
zWd@Q6xns@82IVn%Qbcqauh%S(U-3mPZwdrvHf$B1t{Y-%KR{G$h~22Q0`dE(QGX-I
z`L^oWg1S}m5TYT_=noD~+D0FUaCp#8n#htb%++a17Urv;PvU1Tvdb{nj|Ugkeck!o
z9dKS^K3}EZ7~PrdHp%nP0$wQE5@_LAaH)2|y?3F)Xx1|b8IGYbE}WJBMtPEvo}oXQ
z@)Gen`HI~xIGwN@?K#%QSqz85C8tbaU%UZL>4Y1_jqJXLEelPWSgeKY|C1oh?=0{$
zqAks@5|`i$g3)*6gZ~(PD}nk-`O16*mjp37IQyB6NN-nvbDHbvA(%KeEq`?L3Th{p
zjF4w!XWok9R}qP9LkZFr6=5Vrd8NHt@qIx)Tu~-0$hS+lu||UX!bE#ng?ipuPW<mE
zKx|({n>t9cGcfBp#z<SUu^yv$jSNcNi#)zs*%e1R@lBbEnl5k7qUf`V4Jy~az&^I_
z{|4-f?#{;wj|I5NIGryCQgaP5tIxQz9_4NR__;r0;oHpqD-6pOjPY>n4G_jY55E(B
zC+#Kf-MbWzpGzuNlm$0sEXW9?d&7p{e|~m;wa+op5KoBqgHezEgNz))7F{HPhLDo>
zgrg-FRym=1b$##XAY>y1&utP-@YvvT(>~#uH?cw}*03bQq&^VAaJ;L-(Ax{Phg^6<
z;B!-tJI(c9lXi}Gv)rl2Kkh!%)PEcT#-~W;HkThexIFPrHIU9wy(C@M=G{Me+-sae
z9b$hnxVyDXc`@#VY_uP>NDCq#`tK*FptQFStHx~AdjE-fIHCYH8i=UbUzc}dk@;^B
zZ%5Yao+a>nN#PriJ-%;<k=Cm->aP$Kf+8V)C(f$&dSS54S3&=R0oMEeBcL5_L(;<w
zJsB>FyRZ9}z-eKhLRK6THc?i#Yn>t=Dq2|BW?>Q7Nk=8p()vJOi{Aj*+1k%blN`hk
z>BGk!OvR6tUg_S))WX7)7U%}_t_6m4SeP>Q#G$KE29h~p!M9|8HW?XKy}yYcFf#j(
zQSQ&%kod36Syv1#GO`q$j!_QD>*tv7WlA2CQ;<>c<>`FQII#@2dY|i~eAhQrLtPY;
zTk)k@h^%UMTIN;OD<g}athAMs2;`Y%#;!sqCeLnfqBa|K13v%YfCJ<GlGlx#4brsa
zvc%Ny5I^0Pq<;P1pWR0gkZS&bhLoa4ApA)U(l3okk<7x9RBMgQ#I3EqHc@*DePreK
z!vi-a*<ev_MBR7W(zwL-+GLQFtIcjtN%zgAMVhd7MqgCMH_JQaF;;#Xd;$8Kn!v0W
z@BmRWs_2ygMw<$qP@SQkaA$W&GNTr$#;0-8X+9%A3E6E+#wc5Ek8K1llp$$37NT@1
z(P{N*t_wIj`Z-#)^Tp0NYhNgc_*hunFJd2TIKNsas{e%8!p%P)h0H}_no0ir9M#&I
zm>+D40=jjlD7QU@l0=WuE=z!FW)CLo4#dR?e^jxK)<lT907f6GoLitdr*01Xf<RC;
z6zB1W_lw|MI;*nuXwQm&I#Adt&n!QO32=^unD4~|#nlcehMcrOsU!D;{F!1Mno{a7
zJq$*fhMYX|cIj*XHUyF)BYQ}}x^O^Ko8WM>L?Y`A>~z$|#vWxM`h=`Id_KiHcD6&S
z6)Gzr;U4nSRLBdxpS4GE=pFUA2y?VVoEWsEtva9Yha5I{8fwcAtm@=n=Q?OC(_6Sp
zQhYxng>hzNyS)v<hL(OBBi!m8BOQGd>~qHfws&I6Ef*KC<1@?4Q}!Eb&0(z=6stPS
zht`$uK*^nvlu-@{zRvb}Bww|xf#CP|#$&1MY}uB!X+Dz`aCxBsB|KT@g!yk~y5;n~
z-hPcU_~wso*Pw~?-ln#)1X!58y*FqyiRjYAz_GN;yJF+bdVu*{PCQ1`I_;85qsz-B
zG&P|g?_r}SUvUvn4oxuElR5FfkxTOFrtI;@4}Zf{R=!bOl;<VcnQbdmUm=ua*~bT%
z!N_G);m-DIg59DIP0B1TTZJEGzv<IG-o<XApcwsSsnrpfurd`*^5k%D14E>I1X!>n
ziH@6@hJq<+lOJy_3=B2$_%|9uX#)EnN>6@Mt)A4PE9g@(*DMNTZ^1OE4?^FSP)q6Y
zPpC;CtFeqp)?%N5^|=Jia6Rj4YlvqV!FG5bnfi-7u#HSCet^l-!oUwDbcPaUhBtk<
zn^kXGKSue8a)xJ<{w~xkJ&_zQN0zFvVAy4+d_uf8R(l?-^HgWpUm--%bIdU+Sj*Jl
z>~Orv{mc+pwH_Wzp#bmeBFM`W!xua0*QQnWfdo0Y*=544N>r^4O=sKg$_+K|*Wf)%
zUiJj315lkOPpDUYtFLMPoFz$2;$|^@&q}BT%@U9y>RY>OP8*qLsDBHa*U2fTNn_1>
zsn5aCyRXI(9vD&#`L|7)1nLz$sfnLHEfk{L)NbUaq&qQ_>J5!xU=#B8yi_<{O0sSz
zmoQ{}b@TJwuN`J4*)5A3{cieHS%gP=r%*arnSZP$8h6_s_d&%o(K|UF?T*P73KqB$
zanFhj7kBs}pTA6~BHKZ4#f?1-cZ^w^cwXF1YNt`NvBoTxz}L8y{@V}dM_TGr8|oRZ
z=ti>*EDyh@0~)jQ2{o71E)4!o@a~C`i}O_MG2WxTPHAxq6&d+Jq_ECp^G;bjpE8G;
zx0$fINGq6FOS&~ExrQ+aebf|n6HKA4?yf)6MyjS=)fmKuS;jOK>rw$fW<sg|&Vvh7
z#@S2QW??YLm^R3Mc&rj;s)&^cHs#)OzMSL}co0?rp0OofU$;xWHrDgBy#jqnw8Xid
zVdhNRw5>^KKVWKaU%7nrl~6e4^6|xxF`hS8R=LWyN$6G|gB-;&@#Sp<D^QhGOvKtR
z&-%i+xj!i!hoHt&PSwC$1uRIHjm`SV@2?QpE4$D|b~??$ev0)+0+3UbC9%D|!41xZ
zu>Zn#Lcr26Ea%he6ntN5ZVLHOJEb==19A=D=4Z2B<T|BS)`hR(iiOqLS|9ZBfQquf
zyR0-vt?)`K*)LQck@)Gbo2O#SXL;_ic%<Ao{0E{Xmw75`L)mVunDP_IaLK@ECW+7f
zR#RUDa~JQgzpHfVNtSpCjtk?X?EI=vl*_a5CU^|%TA5cgK0Vp_L3L3$45$GB0{p*3
zO~G@U@4;kwJJtl%&h8Jzb{f5*BgrdDd|L{kAXMSBUN7W~s446-z&E*xBve(EuSoLO
zHVN6aiHt)2Z-hSx>88pGIIDuGC02K4d#yQ(>d8xi%U)=Qg*uv7LqMr~TVv>D_oKUE
z(CmKRncO;jF2Z+pk{_A{xf%kqg?}1ike-qm)%5MzxqST<W~*{eG5-E%JkKR^Ty5=a
znty3~MpZSOE9AyK-62@=OL;_o-Y*o-HufoTD?RP9p1AQi1P)6IeEQ$j_Kc9M(zfI9
z|Imr5XV(#6;$<af8?l)^4Bc=A7>D6x5I$8i^3s>A(117C13xh5I3Jn>zI{5Xa_|1%
z4;$wJOU(teMDMbrC*wZJ^VkDKnK`06&jg#)_qI{|K0Jl2k762#1qW9Pv@$x6AIrTA
zaECFD?Z$;pB9$Siqvi1evIoq*A+F=DpA2WnCg0fuGh{*6MD^5d8l$hf&!mNsPCk9`
z@9OL(C;OL{_3naQDlLPKTF2kJ6Iv`hsw{{enNeJiV{Y#?2eXtCBRv)QLKclmy3ga}
zJggDu*OV95X>o#vNIa+bVPsfp;-!+f991{=5#gOO_1h~;1ko&f*Cy@ER{2>=ffl0S
z7ucu@FClz5(fQX6hkW_zfU@Vq)}a&S$2-dx@Hge|=rF#2R3>HU5_6%2uXV9pI;w*=
z*l~@9ON`+a#zDJSKr3DQ1L9F@>ho|C-~N=lMZ80q@A@~2?@t*{_wOYwQUdnB)mY#z
zL1BZx49yl)6Bl)FdO*WP)S__%oFM<IgORFxs(%+QM@1EGSrmpU$_;GW$=&#uE&2|B
zbzd}5fKvCYzzcyJTy}xMab0s38GQ@)G4BiBCgRaQvBM-I%Y@*u+s&Fb*)dI{z`a15
z3r95|eaWIP>B6Fd3f_#BlzsaK7YEEsa!V@Me*`kWHYQv{-BQ;f+8g%vlv4@twt&Dx
zw&Zd!dFg!NKyKEo`7a2P7s+nj=sp35RCT;$ym<);e9vFn@1@f-8m&Qkfk8mY{|_P;
zrJko4A3DUpQ9YKx#>6B$P9ofSJgcor%Q{`}0sd>bp#f=uwRb}<)9<cQVbcx%7)*tL
zJHTuQ>FcpgPX;H*>!Qt|_|T<Q_p}OVZns&VaNMlifCDEzv5Pn$Fg9GM;W??rz|^G6
zpA$=({7uzr&dl~<z)ww^SkBfzFb&qXc8GX*u1I&pi$>qmgKuh*@rc}&obp6pG&sY5
zvQ$j*Nn1<sgtEtTm+ji4Mj!e2QOcz1^G1vYMH#sAr}!~F!cZnNDSo4zGH)QSe(D<B
zWQNyR-_0O%EzV1fk<6CP(!)}QlN&oO%IVww)_yy$OmHZ-*<pP2-8Uw(_{^c7GnN-_
z8lt}=NEf%{LoS#)I}K;@pl`G(imG~KFYYM2-Mv5?_LfQT=7yk9UF3e%`OKXO#bYGz
zibg!VfJmT8=4_{8tF1mFw8IG54-F0Sm9woak7ri$AVN8^GHb<?UK5_XFIX;8eGCjX
zXPb=~u4noah-kz+UBZ`SW`*h0D^AW#q}_DLe3?7i^)NC*P<f?ADnCT}$K?A!o#7&c
zGChwtV7kDbaY;=3AJv_Xi*w}aKdSe{FY~wKxt8Q9i&lNHK9IDOwlT5g`hcO?WR)(9
z*E*K12||Q6wgPID3LCz+yy8=SKbnWBAhA0~j=pvi9XCCf5A)*((A9<`BZ~j4bU3L(
z{2KGY6QYSh7ABB)I1m@o_6)D><Hq3Va<{yC`M!eeU$R<G^=qa7T~qr-Kg7{_3w)SZ
z54j_$cM&tFo*cgCnrCK$Tsd@y>%ST7)PP0Zf!V#Uk1sJ5In_$V>-vO^+Nr&zG;mN9
z6%@(IzXXVh7YuBNi2~rm+8d**$tU1Z6&KG=NSGO{b~JnFa!Y72_S?J}1gJ8@m-g&7
z5CTFeI$CA9N{nNz6zoj*FXk^rNIvx%v+(W$;&u@!E#NFIE&KtJPQq^PwjvWQLtMJY
zmoJ}p01o5$Z`8P+44Jz@**_EUW{ANjp&%Yb`yuJ0kB>hKy=5$0vB#T_FPAd(FG!{w
z{kLkUhTpWcy-3MBz7m<z_q>B{n!c}3oqmL#p7q$=i5l{mvNI{E*?R|viwsG~4xP?A
zKS;Bbu6s~)xqrZmX&ccQz>(cn36lCM_MnjhN*X9GZjv|6F=@Z-c9^ikty%_WSqztJ
zT>G5Q$B*n%u}8JBoDd?b&0_u72yOBXL?MGG<-}lH2aTEe2~37CzKsG0bnpD#yVa^H
zaFoj05A-{kP8Kn-#?Mbbn^SS)ori=hg4NBiCbGwpv7F&M9xCN7&bnuoUY#@d?_*`c
z=)?8B@CUP{DtmyRAr`om=M>@Z7d-X<4Sd6UH!ey}^(B2%o3esTFr~pGN=nK>7cHNm
zo;x^r%+CZQG}0|csNl@lPa=uDcaKEHt1cVu(~mjKc+zj?D=Qg~?go9X!hhg5IM*I3
zFV8Lcfw`BU=O?NaGP3s@1<0i;h#WYVP=0`;@Rc1f9#UV2o|W(I?(sa;W^<y>&eh4u
zznY1ho|=9~<v0~cFS`!Ox*D!$hcMd}1}XM9hC^OfMJyAp)s;RPZ5Wb~FJKEzps5Fe
z9UnfzduO~JsBy7ttK*ZmO(P-ocnJ|v1qv&;cDaUwbrLc^V$DXnyZhT$z6Ft-=6nBB
zP^JD))Q&_1kI|Qzi*qW}H0F!QyY2<@g?Z2@aCwOsT61UR1_z(9x0ZOztHlO}q~zri
zQ&9+DGAlOD)Cp>jHssFEf5xI}Z_8*YJ}G%bPLq<87_1zq(wX}9KFFhvy+Ms=H;dVM
zirl(&f5@RA4k=URWIoBt9FTu$SncjsQh2NAnJU&UyM&OE^}8qsD?x{5@)xG{hE44N
zRnn<fDrjiXk<e5-H2LhMdga0fOkv6QG>n|llm^!{TF1j_zT(ke>yvhz?TQUQQ+Vik
z<TE)ai)=0a)UKqu_7^wGS@o-OD+<!Yx6#(0HtK-5hdC*Ux;jol(;w(qy7Yfg8}BHi
z=I_>tNOG5!1*cqC_DHZpgDRF6h+=I_qKj9=(o9QF0jE=v$1K*M`kz(Df6pxg`AGc8
zw{-xiqRcb+6LnTaMNwh!=g)HaKMNUQ21Taiwi=umn-(B-ezeVA$vsUz&dVhb{RYhr
zOYhd2g75V!N~xcjo)^B8|DJ1zx+y{*;gD(2dRPv-X_SQST9@WFx7%?|x}KeR2?$(N
z(P>hDqJn!xbtJp?5z!lLjv8)&7RwP^^Q}ohN)fw{b$wF8G4%XM5NTH#rmtsLuWn*i
zhwsSo)BQL`?1o78^e0r1<tKe;Q>P*cUU=%(W$<s>BZh^AV~2lU)GJo~m45ygUDy}t
zYWMHzFe7}Un>}&xBQEfbC~bcHLs(LOPWJ}QDae&@a`)soPXw#cwz9&x+OFI$;kRpj
zKndY_@dtUywE@*P_VzU4Nh#wNZ~8UiSJBnYwY72EhMdx8e9H4_RM@VS<~ecANqdV3
zz|hF*y=T7jSME%Zn2Y|ulRG0*v*2-+ACwC(C8B*{Dl{~!4JACWR6Kt}$2YA%9!eA~
zEiJ6BxXv&AhK7dDrV~G{*PT1&EG{;GMS3?wBhCwZS35OaPp5WQ%x=o4sL5K+|7_aS
z?H1lkc`Y>@pS_9<A6^!tDVO6j=U`)WFbqS2aGeJtDT?j7<??{ylxw$xrP%qS0ihdS
zo=DxXT8#RAaQs6uT3`(n-D{qcwExy<V5mP9&S#J5*)+5Bn+|<Mhg)SMUEI@&)<=WY
zvr4fUaC@A1DVW*}8rj|GTYC@{X%ofZ)yBG;CG%2&WwqTGrz-Vg{H63~{56gC4D-z&
z8`9zrvW0mlW1sJ$DvKjLro46--t8Z+rWzp=xW6*m38qH)Ec>yR9@s3k1rX>yUYJuw
zLr%0Y$W2Z(f2$BR?E5t2qyPH*NXu%TS6_jNf+ShCfWI^jLJTP-iQi}*h8-H(DhF+-
ze%sBa=2z$p5I%BofGQ=eDoVu9Y_~3~#ORJi-}cIKVq2?*&wLw0WV5LnU7m}VG<Ioj
zO>T`6PBOjv_gv$GXXFmY;Fg6MF1m*YyDF`Rq-_*ed5C3Lar1Cb&v;RRt|q^Qg`_$m
z#p*K&<Fx=G|C5y!!#6r528UarVquF*ivTE`54Ka)=HIcIwkW?Kq3DhStga4Y?0F{%
zm(&otjLd}pBtt1{;Mt_PwjSBWs#Y5Eo5yp~7))L_EXnJ!9FF&1aaKCV#RbOAEeij+
zN&j?Yj|(bR7qB1P<r{4Fqy+5UOM{`%Y98X?g!kXyjrtD<Wi&BkA>Sh=E>*UlnmTX6
zQsA;WKp}&4Y_zrc4pzt$C=ctbxP1w{1Cdt*v0&R3y>j`9t9TYh0i=P1Hiv}!<Eug$
zRIs><T`}K)^bTaXYl6G&B|Gd5`y}H;@gKY7npcx?KG|!2f1bFzb12TCCc#IaSCkyK
z{fJ4>Y-I)V7DKhPL+5@yjMh*H4h&)LYw;Yo2Pt4E&60A4JOpD8C2~Zt24NLrq`-w(
zylG`2BNHj$_uB`Ha)kLuj4}-wX6iTJ1a=rDSA`3ZO54Jky-)H=k;C`N8F1J(L(jU|
zc_{Ruw#;{S-FyfMwfz4HP?OU?zU139zFN#}3HSnra6uNFdK0-+Yx@?br1)6i&AMrX
z27zW!?U*JW@obJ0ah=FSf8U>AOQKc|>^)-_4lk%4j!w1bemNCuqsaGC!3fafm=y2N
z3~;EtQr24H{;xTaE9p&-ZU#;k=wpyV^oE-zc18Jx!V|k)XdVA=J*awi|6j+d;*BY<
z%0VI@NDUX3tqg0-c>6UYaiQf&Q(IJ2#nI3$yjBrW5z(G3l~|47F2Gi)-WF`Ni@{%^
z%rvy{@!geUPR8*gXiH@53)R-Pmir-WjQB!8Kz{BQ$lfs(VY0hfEv;}0rC?(f)r7<Z
z|MZD^Q1647zQ6dNRuvWxm9HLqAnu>-U>HGG_)P}~14=*5001(^V*I3Dnd@hGdV0o4
zAK*d?XlFD%Kr9|~$no}epFfAHZSAT-{iOE-VPNa<1Xco@R#%O)7`^M9t=xEsG6x%g
z02jEm=XpAl&V9T;R5+3xh>ry8TB=>n4jcXOE)F<=tAv`H>PP<U?VC2aNR7`5?0vQw
z661ysuiTyc_qLi!ryAVM4gjm7qcA>^_iT*!^eUzmT2xDU2uTJ##H&h!ct{mz#r|<f
z9<{BClJV;!PmrtLwB!WmbVd^g^dIH?NNiT+Mcs!)QgBEjY=1`n%T<L!S5U|LJ23eG
zOLk&=rgCE&)^{<AcYjH6J0~spt-=BoEI4i7H-en1C0rB}KqSmamN8&yW*3d|YaujL
zuFx=4g~lBj@~h{5<He<t7MEH5d(@nY;(ogM)6|c0+udT)>g~oOzx{@K0;A%|MRZ$)
zYjDa%TEs-g9z>_kFX%9BINV%7w!_LzNH^k<j;AzGHj|YU6)kHdSiTEJ&6L!X`W4Dn
ztz~qaXPCvofid{;pAqmvHv+RibzF)4ZfEf3<;%`({g%<B#N=-}Ur$Y@at#cxaUE#Y
z8l5@e>gxkx1s<KoQl2MO<_leCBto!1h4)p36(mA>w{u&pzET!^51V!R?6=|5LgepG
zhqE(Z>j&t4yt5NH7-!N0CS9k7dp7d}x@YsBvaJD%GaxUIxU|wJuk0H8PNN+9>Vp`L
zl(ejs5+hvvIE`0}yW8Dnnd!sByppkfy?yRm``EOe3#aST^@+jvmWBU#=l;kbIRA;L
zA$=s%l*^56rwCpH7F<08Kis!2hvu*41S#R=zNRtU&4ctLC-VWT6%IuCQDP=i<~@A;
zI7~%Z9H`Bc#^*d-zc7P`sdb=lKBt;~Pc3Uv^bwb0W^f4Qrd`z1vL8MDIr*l#){(Cm
z`P@8y?Hue9tt-)I?l{>hgjk`mc@O#-)Z_DG-Ld#dug-81BuSrI0!$w9sb?Co%T?%(
z4Vc7`6R@nsDC*OCGCR*)UlDJX1^guMCtn*vdKs~x2b73jxL!B<P(_sH+rvelP56{p
zE=W=yQUZ_J_qFhswl;W1g>OkXkbkl&zqUsr1Ri39dz7N05TxW@bejHBV%KkaA|xan
z8}9GN87wS<?vO-aTf!o7aWQ6H7bL+)Yt0o`6%+HB6!UdhNT~ehaM%0zToBFEI@>J9
z68d}%HW0<6NfLa?F@9?Hr95K^kZKAF3NUC$SnpQ3Un@Im82O60xL9XO@W(xha140B
zH!@PLTgXb=^@tz}!Bzp#`Cx;db#d_wB|yDq)?@-r;9v{%$^suNHYWC%9}Y1wZQSQ5
zhpiL)vY+tOOcxzFI7stoZN7%h1non4zWsWJ6XVm8J62ZThevPIv%I&MaT`oWpFxs{
z*@*(zsQ!{7;oj5)C8gmn?cV{roavvMDqN2D5F8z6X6*h5VyB`TC)vk;j8!(yp|z6k
z8?{Hv%2&JN&W_oheofDh>fA$fcG|3UWx5|KMyWL0L0#m9RY;wcS#_7tAi-2Gb8NWy
zM$J3)!9g_1Pv^(=1Z*X_xo5CrCQobuqT4zNxJ|mAI1anvKgo8Rx`Ts3Mn}WgS4N)+
zv70;OAAjp!-$3{-h^d(0mYD@i>|$CLwpdoyAX{f4GlTvo_Rm;(+!mW#Awo&w?^{Gf
zd-aNlD;xqaenQq@w2E@W%%GafJ-eNw|5ey|$5Y+^|G%p;lS)}-BqU^KhY*q-LT1R0
z$ezgxh0G9=b*z-V3)zl6vy#1KWE`B|^U%0Hzw2{-KmDy+dY|!rzn;&><9_!bz}qQw
zl7V0GYyPS6BxZB-(F+}X9_LC<zwz&wbKF>YK7DK%%A6{_-N~dRyVlK{>lK6N@dIL~
zuBt?szwWzwnG2cC;Z4fh+X84zKIPcLfH{%iC0&o5<j7_uGt1syT><(j^+0S)nSvdO
zH`ajNP-bFqG?6VN8h8wRX0m6$SrN`2#kSJwm|7l&YGRbD+x?`~95F~9Uw?EgVRR*z
zaV>?8p4V;nJB0Efx12RJ)P>&7n}j*f{)#vb^JGm?Rid~r6aqW$&q4Bri=s$MM_&H9
zq)c<e>8m#~GqSEeL)u}2K0%bc&iNPdv886YHxj*MAc5-S<3qQ4QgFu1+~EDMWxt}X
z;lHkl1oDJaq1q%|#0~qHpvIPdxBUq~#^gt+{9r|!^sLw6MIqv1lq18s`r2h1n~7y{
zQnRz1fqI~+Mbc4AzwiFY7`96PQKgxf=TUz8j*j-&1-b^MN3&kk*_wJHG<+O{tdzfZ
zL}X@WqAb6+L@bhtRRfm^3j_+sPDFJWaN(agrM<W5L5lW0e!aS*AOTMxN}4y@^GH<4
z>9p$0_FjIU_6RyVJq5kRS8w0uX^kmz+rKkb6`vA89PNVzDg*DR@tZ<oD#dyF)1XAS
zx;3jTL>b32-zOtefm@fO^)a3<h*E&=met<GS<b+LucBT?g8X=$x)%NIDhhZno^1`(
zOWnC+vsO=i!PfbtC&-pqgn%A`dQ=R-@TmfG_>eX?H9MfU#$nc0mCOT6Jl*M52}vp5
zYu8K=>Bw0AE}&q6&I9U{ijd<1IDLCio3IyALud_%#`@LoiJ^wdT{f$GG8Ny6=zTKL
z)EpeEX;fh=u=oM@iQ^1^J&J#|we`Zhx7{Qk#AtG2TCQ<rWsfLg5MWpv?@mu^i*Iaf
ziXkJH%P->PWH;e53)=DiZ!>kB-C#^$8ou<GpZ^YE&wmiU4fy+5G+(Y;RW2Y?)8Fz=
ze@jBuTcKRCwH{_A$q-kZg$CUMdO2Zv1l``GcN&_=w@3}H(P68oY9l8LwOk6CZB|zi
z-I>6_e@<|+FG~x`yry<?$S&hH1U?OLZ{UK|GSDOAIBFgb@@zQ)fn}jpTOLY=bD#Z1
zK<za>-*>9LqvX+KQ?FH}w6sE6M%m5VcWmOyQ1Da;G&x;0wQ0DWq1?A8Q}PP`OzWSs
z^F-)#CeYO?Z#x{-(D~&0WJGV#feE)?3R6QF>BjO!j=g7MmTsJ9HvaIHp?qALA%_s^
z9{Ecoy!{Qg<nKnlPWB1y?95+ZkM2qnl#9=TN~D2liBT;+i=7?hUV+R4I69CPp<wd0
zVQUA8;z8?=*Gs*<GjeU*@85r5S0*zD&xqA=e+*@`^LCfkTX7HQA++U~Py%vPv0DZ@
zJLca*ftq#9V>*4VXo-7N48YJ>IQUat3nGVk+I7n=rMuA<9J@w0)q&cf+Pz6XJuR6^
z|It{mwASV|LJHJnJa0@ZvtdC&m`dP6UtqyAs|yLZQT_WU64=re#PWLVt+jobqRb@<
z4Q0yAz@Gi6?yY)5ORK#0x_O-1KkG56608Dxy!sfE-+q$RQ-d)TFqefiuwA{%$U^UP
z<IWu-%N&An+?hC#;kb@h`v9Ucmr~FcF`jZ=G5CVHF{v}E@GJe=P-VrqNW*ZpxfRVJ
zY7?f+PLZ(VfX>*?{dSzg1@$sJ6yl?4>)Gi(CvoYTZ>cSJw6{Ovx^9bzuR^4z@GAw+
z>z|XBQC6-rm1t;~F&Sx2onC%kzU#_);|}<lvP=f3gcB5!I=&|Drsh=cfW89b9`f=E
zrVzA;Iyt;j*}f;e+-7V`e-~b$J)j~g-`etdV${5Ee-~xdFY>kO7^nx&Pz9$aBh+=2
ztWi~7^F>y9F{jQ2Klk6ZMDJ4*QaZ0}aZt>=tr|M2g!@F3Yl|J_F=b2-&(8<z?kFCC
zMaOtc!zaC+WNEbaNB8wD>tgZZnI&qE>&^@6*3yl{9_Ym~hp<@BE~=e92NUryQ9eF$
zSocHp8JYnnN(rm5J>=6%9VBF3U2odv|7YNx&E9H(;Ad=w5tb6@rIm%C#%5e@Cm(dS
zme73!eZ=xOWKw$hT7innsC-l~YU5Xxh-YKs_APmmc!!1lL~+Bj^08#(FF%uB;K5C6
zq=A8--_4udy}g|#*N9f;j+FbozN|2^y*&-xig<6Iy`AX<VFm^8y|uY5SG4tJ(J-ss
zmXYR{i-uy1>$jnj^%hxp^-|WRUXb&zD&1;WW{^Mb<9#(w(BVlT4?oS5<zuOml9jwx
zBX|T^Cc@RW;RPGMs+oLRO8_8pN6oW2jt~cuDxBvf%=l_K3KT-mHj#}s5!i{dq}q4|
zR`S|q40fh~F6ogU?0vcwl?Ti1vw?oN>T_b6k6)th^Cu+Q?njn4uwGN22oM26RLV@!
zcRq$2paQr2l3@4_9aLqz<<ncVR+tRGXtu0Mt3Di%+)kfck5N|marSV#Jtq#V{LeAH
zm9D(dDx{kwyE@NOS}c6|*|Q+wg+=7}_sd@f%UIPf?wnul*sZRv5ZOCU-GoC(_Wr@J
z0MVKlBIgqvQO^C^*_~V;{Adn5+XamkDF_%ms!x?O41aK#t+BTp20_|i18~!aPeF{m
zMSg#+#Czl5nJ=2S?*8`6gK6(l3tNXNb0^4ov+mi=C3s+NJS1}N(}$CrIPZCbOWt3)
zYxf`Mt-KM1b76?%ISM#;+{7;f@e}PaA(LxgY;kZ1B5Bqw--99~?$w{%{`svPIn|^h
z!u=Ls3CS<&8U>_B!CQaDu~F=xIid-)N(u?pk9Ij|5}0XB&raHb8{tB;Lvqxwe;)cV
z0;N=JVTPR3e1cpv>vbOjJkZ)ITC%F;_`(UxE^9`hNDQGeGBSEW-E_v8l!N?vgiMs!
zB_^K8@Haa0qB`!7LS82K>GLUS|2>lJ&ph+1$e`A<;YiN@kKT@&W?e+vG-|ZuaqTEI
z5j^|`f~*AmDguB9kT?jzZ_8yP0!NNYU|}g6j4upnF^zT!Y?DCP;8zAf&#mns6i-CS
zlAWr(LwopPqVd*ggn=_0(Bo2N$%XWfCv)ZIZ7z&b$A;X<&<Q|}QHVUA8cLA?>m&F^
zLB*Dlv0f@V4v<uOdZ9h2QEGQ3oam-~1yqI9)JLB`Z%!eLKi_2P!k-Pi270~FMeB!^
zKK}@*ue6<wuyQ6Le((Ukozh*=T}JcJ!w{Rt+y~H?lqC+|lt3+Z%624&`)4GJI(u~!
zerL*q2bjCv%=dAa@Fo|^!Tbfpbh>Wny}dUVg%d`>XNKMrmCJm1$$LaPot*q<d6zTi
z`rH{{nAJ5kiClals}Igr$c?|P*x;zSM9b^sSX@>b>cr%t6>CMqNqd0~pqoCl!jLF{
z^G3aV+$En0jh_wQ#l550KHi_&p3TevaOGF~)BE&MZCz?*b)n#Cm$fPQn%miNZh+O$
z?ChL885ee?KO@tX5T!_H(mG*bLBUxV??fgd%R)f@rnub0?AQxIt2f-vzk|#jNgzx7
z#`h{c4J#OE#y&4ZLGc(MtKNO}=TyL+>IUmxXCC$5=%Ujl(=du-iL~_AO&Lc0h%0e?
zX^0vd%;Cx=?alXvi+LEY*kFc_uoyzl>avcc;p7CIgd<)?NK6XeOzVnElLdF*5j<GS
zSK^I7Km<b_?Q{?zQQ=u=LmZPWESR;cH^A@e>D_m3j$FLJOGwQlt5rTcDlLKK1E($=
z`^6Z3Hvw!23;YTSDCVqQMn&OePJf5}1y^qFovto(GxJ14U}F`gP62K*IVHJ47`NgA
z<P+wSeuWf%u(`y-O**CCQv{{6-*24?uo1w<X$GTj_Y`n;*{`SNO({j+WfgI1$atqC
zaNovRbRXoeFz`;tr-8Jxd&QO;4C9;_ysMBmjZ^oQJXnMU^E}&lyW3qy@5jXXN54W`
zDX4$^e){h!wZXFKAgkiYW`4WPNZtOh+zcku%a0+OC1F6RGBI)Mp`MnCqE?G9`Quq4
zqU7Tn#Y+KEG~FJMq}WixTpYMgV1v`FnO>u=tzQsu2(6iX_c(r$(^<>(!2>b*%c?9B
z?k!yCG#YAo7pw1lI2ni%*j}>K2eFcIQOSpfMwM*`)7A-;=1B!5W+a4#g+fd?$-jW(
zo&4z%%+n4>wY;qC0zB}5(`u+=T=?~z?B)BUS90Ec`4P2=6P6mx&O^f?Y#ghUB!>j?
z8vM#H@@-+I{(pw~kagQb26>!?=nWKHQ#tk`I=?qmQiCOr86to@jwfYuzp_uIZCqML
zMmbss?1GXyBxOF8Ua(G&Y>C70iVwNoI|;uZlikAd*eik{Q5|oraI0hXq-$kC;)nEi
z@pN8^nQwdbl_MiQlB^=Yh9lggQJKvq1*lJe#t+cfE-A+)M~6O8jo_^o2QzqEQ9}DS
z6|>cVY{9@YiPCsFQEdtz$STceal|)Hju`>xQK{AlePR8EvXWCsDo=rKSn)#3vu-**
zkudo-7M2p?Gd##9ql}(sBvHzdDFT57pWcl-YG04i3HgX}+jL5*CpR(q0t0<^&Js%U
z^U;y|Ry^U1qES(y@-0aJ##;r{oU(8CX0zJ|yEWY(|9(TS%inHj9rBocT^Un1#eagH
zULdCaIt>FT&keGoeF|*`_x1zSCpQh=LaH~tiCIx1=b5IO1NZue+~-3mLS^zc236qr
zLBYrZk=Vo6scd4)a8Q%rw|(PTu0ra<^M9_X4dI=qd^Ou3mviiUBO#*xAcXbvcgvwK
zD_$Ao^5A!0t2GQpQd9Gvj(8ap8YO64Bz5b~(Qcc$`StE=kUS8R(|Nftn(9ooEa`|F
zcUc(OnToUyzsM?>7ouupZo%|Le)L0B6BDa*WTgHBc0?@_;#mEs$Ybt>L@B*efPex(
zQ9*|7ux&#(REKGI%n|fr*Uha402LmRe<9qR-AbX6K5=8Gp|_!N5J^t@ovP6DI&PSb
z->nIO0N@9Dmm31~;{E85`V%!`5^`xv@%I&-nlqS|=qGp>P%-_@Bw~b+Fjs=^(ebwn
za!6jJ4!gRh!}P338}`UppkiXe{bMIT>h5>QxOk^bO$tAMQOJ4iJYwX>YZ@qnU*gu#
zkd&8Eie@qk(ymX>%AVz$P*G88%}A$8P8k+BZj_vY%+8c)MJBGk;0jEEd5~9(5xIG`
zZ;j`RrhFgmdL$#u-N*>=52k?_D=f0}u97rML$(p`yO*#EJh2EkHr1YRiGzwm;?hyw
zyoU$bFNhK1W8iz|CN%eHJ)I*U>i}GG!L4D33Ct-VuF=GWKe4E$yMGH9z!OFSXcGMc
zs-O42V*384k4ndb<1gU^4+ep^zRl74ro$tgFCS&+Ki&Py%xsktX%v?^-h=WL(pZ?B
z&3`<YrL8OAR<`JX&MX)zq}3>)uU%1=Nq_M@ezmhR)K=0+iKY>-8dUZ5_s9uCBP{Go
zz6dOVN8M<7f3?D@s0!O(Cioak?^Oy;^F(O^P%ZUMLvoSprN3=)a~YZ6<s?R{-P2Ok
zk+i=dbOHlXw|p7%a?I`9ao2&m0#X;^F)9y3i15;>hJZqi4=xToyd@_G2lxjEKMMlI
zTeP>|SIXjpe(T>K_cQ*jL87KElL(P>cGfyY@n$Urm`<l;6q490ADE+Jk0bxJT(VHS
zre<y%b6ne`bWfjzS(u?~#NtYX$5Max{P%(A`8e&bHZbW@42j&HZK@r$)Pg%2LP)^#
z^5r@U;fUCnaxn=xIaqy1NC|;T6aJfH2jSL|Xn(v2sfru_d;kw);_-V7ei|^<xe2Lb
z!_f6>1%vu#-fsjRy--~E8^WLCf7L&$Ndl{L#Gbp%E!)Io7b3K^_>fJKkRyWsXMnb5
z&Hb*=pO5!-D%}Nq4@I!VJ3lq6NBM;XTpY26{JT;`!C)sn5fEH*;D4fH%?WC`Ectob
zu!%hd8-Y-EI&<bM<uJ61oZa3V6=hz~!eyPd;F^o#zCdHmO?Tx#7npCm^Q(<4O$|1A
zyAK)~&TF7`0^T@a@IhJl)LoV@IkW!d#VJg>m(3e#WIR0y2nTqWqjhXNuHEK*TTA~N
zu;m(&wl+H~RW8BL>F8;yF=wWNyyjLUJ!<{uDa6^_FgjFQM>rI2bgQRM^(ZOjQFrEY
zsr{YyCo%tb+MoBhuJ_%prdSOLEIQ`r!0>FIoG~{MJ5N|nO3ZKbKK)vlw3+80xs%tw
z%AGV!2>!MhJYQpYv|MdA*|+r60hgT$uaW{v!j_+LJ0tLnMdz%4=ZRyLLn98t0I%Vs
z2v7Q<Q5Fel(-8BdB8b+|R1XpKWC0930D~aR41s9Gocxo`*tDoV&<a{yWl4Ygs{?O!
z@`YrkVP7sh)wo81B{OAWI*5bYWj5wW9NiyZ6HAT4`GDI2oVorb1JIbsm?=pfqJXiB
zdzaa<KencxpSC7wO-v?0tHf5dJ3u{acl8eZe861H>u>r(swayTAOUyz;2S$iK`n<w
zRtFoe!PnO>&&9GrV*L(8wVr-|1=T~6vSK*UhFG-yGq>z6_-)cBQ}*y}i_o0SGzZ58
zjr4bxyD1ZaH!73tn6QfN?09LblV_g$Peo?;Wu2=_mSMlgg4I6t^p(WqBsB3r=t-0x
zi85zoik+X8GEOE{3y1zkQ)cE-gCuNIli5t(cfRD&@flZ{Gm|nT&G3p(YXvpoHZn7(
z8}>03-8+63?p96Xyw~NV&8)-jr~6}N<#MD>JtgmQJozF~sB`b+2Hzp*ACoB<==USv
zAij-{&(!oVr*T*&M6jjF=|iDI>>oZCi~4BTdVE)hnG5mC{?APCuyIIg(Dspv!I$^_
z`88COx^5c$Y{_^6;b<kCj#)g(Q;xDs;36_S+=w%fNu7d~yPV@X_jZlA4y<8#aV3)A
z`&?vs=<Dhn13>}Zyp7mHcyTV>h2RvaASyH?;NwwC+*YWX#g)4-(~CI7?>U0K$WnV4
ziWeQ1r|uwejJN#!K23@d#bV(Es!u**`ctwo?o*<~YO&p@d-V!^){%`<C?fm`B%a2L
zc75l_`w4k43ftVkK*+s1&Gwxi2pBmKHI7_g&4#17VtZ^>ZTYR4MOsnWL!=dq9_WTk
zBMCBkAb`3m#BzAb8-8|1rLqwYtfJYebzW}Zrh(&P;;P(UhDvzENgTrD)jfsSYzXb*
zWlw)F4t|uQ@N-tf#E5Osv#t@Mjvh=Lo|fP7!J^(>u3p_6<zCs2)1VIPYyWy-wfNu`
zCTG>-kcGvFt*oF*`!Or|$F}VDv7T$ttMn+hb)T)&hT{RDBgxXD2Xe9f6rj&Z1{Cti
zuaW(LHJXRRes|WeF7{2|up|tH*(4*+!*M1<*S&mYW#psiDdFwKb~s=_&m@oc;p-bL
zhn%x+o9*00=bhC~PEGXgVoi;X$I!Y@b5)I)KxXnx&FnJyH96NvC^mfiG;)g28DlC?
z%%n6%G%>rnFU*XbFt(JsKJ2l*Yb-1h=-&aH#K?$n3ju3`wu0x?N3l%F>1U0)q7&mW
zdN{?RC(DC?g@S+)M(l#`fhT1}9#-}KL+(@3r@zjlVxXMphEjy^qjiK{b?$*m0fTV1
zXgi3t=d9rB-oRwq1Fb9nb~b(AcKK8=fb#b2P435nP*hKItG4BDfp+bGufM=v!$@A*
z`q7=&DV0@^#OIPsaezQI<$Mf!RI5$5Z~6bPZVXfh^{4@88}PdPniu0{`Ftd31s0Tk
zpoT>v!$S9a&~t#Mb2?dW6`7^Z?S{=yca2d;TuDP*^yLEEoBwY`g2U>-%t^4cyIGLH
zuMte=B@Nr6|5>9UGpn4b)~$Uf*V;yzm7RHoS%x@~ivElK5f-r-Knr7(2H3iaJ%5x2
zJrOkP0N?;)Z!%671X}jW>>=1s<?#38_E#*7XW`;=qQh}kGDM6Q`t#FqP{*KofH7%4
zxOo$tB>A|TM^^bz*M-0V0QK*$YNm(bY`OuSL+nvQ^YD&O9VTnnonyP5XIbRzrOR=%
z7E$tHq%ypG2<bsFP^mY7n^Y&SV};MZ`1HeB(qMCgfz8T!4d<rmdJmMLZ(!KQE%=(o
z_|w-*A-BJCg{b}9uTwfN8QZ+@@HsYUkS|uOI6zIrQjOPiN-#H<E};#LM9<X}ljTHY
zcHgrz6BjyK4^y+Brw4@9n?DSun482KZa!JLI2=l#K7cnjM0gJiA3uNE?eAbB=L|%!
z3)ux0u#Hn&${5`culNhJRWo*Au<Dk=Xsj@Q35uLjJvRLMm);Txa3{L!_I;XG%NuxF
zz^P<~DOc!_V(zJ!BlIuNI>vnUdwns31(oRbd9yVUk4QFM`IIj}%J#U!NV6=9&V{1|
zXaR+B@!zhtvDjM=K&U0G>dh*m@1g-0hUd8Z80?xAt;2Cm<=T+vJ25<jkPQP`$YEPA
zZIu$Ffo@-CltM=iJA26}yo2v4MA(iZI`^Gh?I)-`*qwym&slrXE^_JXXdVxm{@C)0
zqb!kVEHs&P%TWPT3By;fa@tIfRN#C>wcbz&W}2he68chMrE9N4g?H*@gObOIox_`A
zTz65Of&CaW#)>$1o+8*^(ZO_CH|s~!=)+AaAtqKvasfkJc#KRwfWYj5+`Ebdjz&G)
zFi1*0)ZD66E&~AO=L7P3%5U~GX?)zmlb><v4WljMV~IuB@GxqZ)Qh&<X!B_N8q4E4
z3Wk@J3~lZ9Sdf&Al^P)}7}8)>fpJ~ynOVs8aO1du8|hPg97SbcCfwx#YG-b05^~iE
zC4`HATUvpE9s%`xcxe>b{B$`09u99o#Z999zRb~m8A*XC7=w#VDxHEp&@YUz74@tZ
z4^(!TM#X`1oYopAvr~oH^>Asw{`JUsKKgR-f8_};GwlX=wrgVEBBhkuyjk#X_{KFm
z<2lj*qUT{&mQLx27~8Ct5y-lBs;Wr#RuW<42&3*tRw{N3ut!=uuzNpykwUN9ZFPA4
zmkZtZF<0gYT$zfKd)vC43tGL?>!Ga=s$UV*HKoYVoFTp-b6W>kML(&km3+zT$U`RQ
zh&0(%afGIwRe4rvYHC*bYl}%@;*IN6s-CCksNX-<Na&Igh$=`;e)9&B5D{VGlY>=;
z?A<-xAO^xWg&dr;ap`{_xcXm7XiE#Vx+N4$dWM*I<*VpzXMw2Zl-mi)DvD(Mu3O39
z$5q3_5tqDoihq!}EFJw#kLlAeKta71p1I+j2Q7Oc!V&GV%|&I{V1Z%jHjG)Rfo+!+
z91P)T#=jKF;0w&7@7)Lqn^)PrnW^3#%ds;*OE&>AKZZ&ia#qR+NBm&-?lLA`!43FA
zMy-W!xzL6sI#26!@WSsz^lfJix{Z8QBT(Y7X6iWsQZG0Qdi<!^{V*;Y)iHkSKJZED
zIF=GVm3<h9reIZzX{5MsnCtku=Azs~s9fhN#NK9NCe$t|wh0J}&-mimjNT>PeU@Qj
zxg4O1X}(6^1@-tTlunSWjHiq_bNbcu%j~t)F|0JAswWz+GVM;ad|zCPGR?f=@pvkS
z0nb{+=QPx=!COmaR=7v~Vr8o%+VmqzH?XbMJB{b}$WOh?;BId()$Vcvd7(Wt1{(H%
z6Vxt5HCH%oE-8H6`@zmvT%7FPch`!OCpPYNr2YIzMZ+tyt*fkT3{t8WyN#{+D4>Fc
ziG`S&LUmY0rMIE^wo<g3Qma1Y?nWPcvBX8|QQ7eV8mcKHV=am;IQN5+iXwE!NWtL_
z!6nFzROvs1K{V_%qgrB(O)Wtqh*$i9t#aFFV0RmqG>EsUy!{`zj5+i2B8Z8l2ESAv
z3$=k<OLBPlGsKlU@DgI^P5aBSRyz;d3z5CYfCKFY(+0HqVDNb?E4(|;F!&P0$Jtfj
z{cIe>Qhr2gyn=yh($=dzv^F9qr-++}qvzqS?O&r$g0}WH*Lpm*FS#1eE9FTJG_%ut
zeKXj1qqxGr_~0$qn~D(f*NYJKupWp8Cd(ayDPTH-<g%yBxaB;z5p;dVkhf%{a^vt^
zy@>RAsRi$;YH~TO7pLE)4Pe$lV`CYeBk4aMd;2=tf^mgixHLIezwVact<k`siEeA&
zmRC4xq?Nsnj{`l=pSS(aQ~i+c?u^q9I&m@m#$svO7jj+rt8CXxb!*1d$q9(go=x)i
z7m|K{;`s}512aODqF-YCTAlmj(5}wP-K8=BHmmk^-yjh-1mYp9y|u>t)Q_4z-Q}$X
zE(f(fJcGIrg^3kO>E?$1?V3|*``c-D)Yo8FGB%PV^^2W@NJAcGD0^kWmbPuyOp@`9
ze>9eNY#NkLw+f9RPDyJnSdG0|{&@bbXd9oHs80NPq}hjOe<eFud^wJ{#$oWazjrTV
z#|smq{D=|vJ$=IXGY!uBTXLgayx9wv5k58W=zo2`@$RN+D`8C*Ps?i*suYPm7XyA$
zg{H>TALjIB$y;|Pl>P44s7@eQSAhC@Vo&sd$^*vXT=5g>+fFF9IIb?r6;vrpGi56O
zy}>2z{f>KS8bFPO_R%+9>VW#}OqbBpyuB7=%1?Lt!SnltjJ&A07uVn{c`DsNqECCW
zHw-jljUKGc*C!w;x!i+>`xAukiMWLC`ABVANeTN<!uc9r&~J}9X}dxjX)xNO@2?*D
zqR^w?$D4cK`8;?1{(bdmnc-a{qlOAnz9UTTs|y2>+GVX;#VgCBB5$4ryw$h2S)E}G
zR${lUnsIMYV!v5c;dg3{nfXFfvy_y$WYrZitR%g2&z~x>>%$Mo?mUTApz2|bW2k00
zJwNlMz#c2ad!hby#pC8L<9=mCo$KeqX_#pArc1iw%%h@kq)IQ`PjJ(9HyPa-_j3--
zow!;1WC-s<A9zmBwCUWswt_~ZH3W++gxucJ(#V}C?>u?beQ$rb)Oi+}7F>3g%TVI9
zc3xRqLP5699qQ;K`AhZ72``#Sg*-M3Md&p{a8P;_=bw<BxR%VzFRpdOny<$%N4JTz
zMc+u@ELdT3`rH1GHRIvVk|7GMp2QCIP4A$iJAYwgANkng!ei4K+HeH^NK44yd?%*&
G^#1`nq_8jm

literal 0
HcmV?d00001

diff --git a/sum23/projects/p7/images/autograder_success.png b/sum23/projects/p7/images/autograder_success.png
new file mode 100644
index 0000000000000000000000000000000000000000..7fece5968bff83153462f4aa12302d1bab25702f
GIT binary patch
literal 42243
zcmd?Rby$@B+WifZDy4{Y86cpfgwzm92na|^3Ia-Z!w?E0DIp-z&CuNg(n!NdGjt3w
zbPNphUflcM@$9|tozLFC_xHYkcsRpx;4pa2wa&HH=llk%ypScnMsp1d3yWA@?&(V`
zEbMwLES$%L_`p~0kcA2Ze_=bml$F9N>Ze-=p5U5GDoJ8tl}21Ye~kw`ziKC^<A{ZI
z`~Kx0Z26b>cCfHA<K>@9s=FC%B@utqXm`h$?{~=DXHr?>Cu5Sif#VdXelPI$r`v;a
zl9rT9#kf|b5-LA`?v#Z+vX%cK^Jq8{i<ubP@+RTWI(4?TTQ`U-eV@xIe)exJEAmxf
za_*i&r@%MeIUR!>2cEbdZ#TLI!N&&NkO_RNz5BgWeEYrASr6vZ2$|oL1-YkS<bel5
z*Td+6r>kkDci)pOh(30CPbT#(s3V+A>f`?4_zfvSdj=X2DMIFcX%ksO<~H}Yo0s22
z`d|AdWeAT8-1|reR$QTuh8bcih0j6^Pf9b%+^jJ^&Yf++h@GJfAH{jBi9ws;4}K}9
zp{VIqQ1QhU=t8>jc-HemtuQh0I;DDh)O|!A41%VTl7n!&aNB^~PEFC?tB~USl=Dq<
zl&6BjQepMzBr)x%NRILuPbUAqtKo_ND@<jv{>`R3s{|BU+2^H3k#-ux0n5u=*SLve
z)P_ZCM;HQgfyA6sNpX_C`cN8RAMiO5WFAiQ*vNPC$Pkm|a|kg!b=3_VK{i1I&}UGH
z<LbcWKkhiw2`ais&0LDI+s_ftGJBDjttqzqzGwri-K3Yai<s32X8;vdH628uV8!6A
zPBI5~m7NX}8R8CN8Jo>qRg067*9g;rowSjgQICqYrnJOFz3Y<Iw<hYxBJRJhk!qn8
zq2i|!q^gB)jLOgOI^~ALOD*G`-@AztVV+3Eu!^U#YQWBp@(dl9r9Z0OswfTM2~fr1
zc6j#eS-w^T17ZZcLx2bpaShzgnJ>X5QJV9Wq8e}OG!qv%T&5wQ+)fbIKp(7vw5ngk
zrxxe*e$7G*B*We*mh5@$5`a|7n|AOtgpJ?7IGd1<9*yc`)UpMBNisA`aP+n-LKbvU
zic0KcP-{ijNP|GTTo+P>nAzh4zhI{z;!U@jSxuk)#8(Eo=1Zl=P>gP$ZpDK<(l;M^
z>miUsH22OnKm4NVi$XH`I~>#KV?J6gHIt{thWzNreUF^JyoEwbFHIa#SsWOMe>jEJ
z_%$7eFyF+hU%!Uin!4l30r@f0r%dUlWeSQq<=Ak#yy6=XXHqJjGVYz$1MhFK<5_PS
z^%{*DO&cvW2Z<jr^AFR$IieRzCHQ2;H%W_YXNOHd;{iU%$RDPSv=f`6ohv%o2|}xf
zeG_tjDfSrL^y)meI9K^#Bj;jW!EpFpDS^}8RyFM8Y+DU}vF!@81)u3+g4MYtjLF>R
z(t-|{_Qo?J5UY$QV2m<)V7}GjD<uZi65xX{+L?wFH)dzY#X$rNCLVqhR6bmX{eVur
zWm@r+*&c$PiNGM{18*2GYt)bh0qar2{)7w$!&=@gqcGkk+YX{eu=@rh`m>KqJLn>#
zt`rPzgnlq@B@vMjCrUoPST;lm*Fy^wp^F>IvnjhQ+=lz1TB9wI59rI=@oWc+3n6Mq
zPt4h2+w-^KB)MlA8$a`)9!oczl~(&LcKz{CI$jqBo#A!phxrBSP^%W4yNu^^1hBUH
z?cr0OS<6nGM%cz!qd<sd+oHGxt@h@6#b#d4sP9Ixa@A@rDX8H1gavex`ZFu*_{Y_E
zHyXnAO3pj0tb>(j9Tbd#4<w2w%#EX<Eg(WPYR9bSs%`3_iJJR<*XOn^Q`2CC_t|;8
z(U;;^vDzhW_6v=H_@L|?qCu;>$xNcs-*$+e8BcCb1TXUQ`)odIkmOXYbhcdJtA;0Q
z*T0tjp4fQiN^{z0>l3}B$%eX65OFndU~F(ccQfwy#|sA4p4mLgxw`aWI&z5iA$iWg
zw_RlB-t={@drc?HT&%N)J-ztu;`OEq3u+lM`Y$`?2IpI^4j8dEP`sYoPqvryI-W2m
zpMB11t;3A@3`XSyZ;809@s>)W#ZD`W*UO$Jd~JjA5RIC^qoTT8utcT5P<c#Q2iq1H
zB0C=s)6wtrt1fo38k`PAoX4v-z>F7=m|aF^oy4b=Ag1N$BJ1&8BS#I5g^L6}a^%mk
zGagDwuyk_O!|!PrG`tOtZUyP3-(@cJ^Vgqv{bik)(;~h)zka@M<9u9Z(tGJHB0?Pf
zZY%t>w)#pBzd>ytc&hAKu_%<=vkEa=2?4L(L3+Z^MpN7%ZBXF;IXaRkz-F7egM93;
z6DBwsi1b#5cOshg<O#*<U9}8%G+o8&ocB#Q@gT|t_eAu(D;cA&ksO{ER_DJ(#wHN&
zwXvUmNwj$hs?zL^Zv?MSn8SiXLSU<mZcIDw1!b($_Ccs}5#)i%%Uu?1iy6LwT%BYu
zu#i<eCwU^NCuEs`MOl+x#7PCdzjxh%QD!}!7y;hBuFn{WbJi;5=-g~kT(1QlGxRJ3
zURKkU!T^1M9`8JlKgYJca`cedmdxApSQETaXe8q9adUX`fwl?3U3?S#4E#kiKBq1+
zSfv8xA<h63K5^uuZjqc9>*VR&_q-dhndrG$A{hf(f7H94m4><Txx%_>*Nl1th>`}6
z@*(PR{Yhwug5TNWTrb=Pk+;6LXE7JYmH|gD`uaVy#6(Z@;<*FupjkLb<UI8<lgrjb
z25~c^hbdY1-O%<m(1l55D@Vo%_F0LlumC}g(XkO|E5uNJwnwHu60}0Cl~yaP=e!(?
zpj_?8+djTcqh(<KLD+dEbhi9n8~?T8@fNq1k1g>nxp;n_+MkW=p6KXqbgl%_aDfU&
zOO9^{VEIF)s>gE9cXTBu;`~&fcrAULrEIx6@&zA4zInad4~MRx85@^s`svr;D@R4M
zLQZnTO}jE67Cuflj#ixH{&*t2W$Mibb?%43dy*4XxI%WgGg~|I#SeQf7Pv->!TYp_
zTpXIYA~yApbaEyJv6q8lPru<^KajjlCFX{I?emT5>GWea#-lgrd5+>8!R$7+KmD0^
zeQYcDWDQoIzUpmqyy`<TG{N_h`;Ds6J|pDjxtxA@xyg#x`I7wB_wRloUvME`2Kv5c
zg>9vu?!$g)XdpfSSKkbJVjv%BHCxbhQD~cYe8p^!J5ng&<TFcA?p&bH500Ez%dvcA
zFNB(3U<Z-VuIpS5$huSmC3vx(qF!0;5WTZm4J~Bl0K3DzQ8dQ{?t$Ik8s10~)EGe3
zRnxXpgjB^E?K8yj+^6(i^FI9evMw#SVj&El!x|ZD+M}>OxM<;sXaS!Dq2BB+8lv-2
z$N+*7hKf6x{3?+hBpugfh&qU59?_2-t!IFvd_ng+pmFYO527oTL529>y=Vkvwui*?
zqh0VFua%WVSRC}^nOJl6QbcZhd>e7fCL9jtt=Ds3j?MS3cj@-^o?}bKMjcZcj)Hiu
z>ZS>55!48Q&RD_e$p)3rx4hTyS0316H0uTJH!<bOM0P3o=yN8<R4W$DL`oj`c#_!Z
zl-4%=J;iK+ETe|2azgsC%XMed=W<kd=9^1MqXj`F@&-wkxA>3dWd^8hytZq<p&J#k
zK>@yAzuZ;UTP#R~of}tZVA)Ev^jdm)1s+aY`N!>Z?3Qd7$7`x+&q5HbAm<h~#d-Hb
zy2w($4PwYw!^ieF{jeE0TC3sivc)z^(&V?7sJu99V7j$NS4ynfKQ*TiSG*?~4|qf^
zq#|}c7ciN6{$Z>GbHRvFZQRRXJY~CvQ$f78x1MM-9Q5*HQ3S4fSA3t^I(2@QC9_i1
zuH(f835yx@DD=sL=KDc#ujK`#>9rYAX=i<?j|IjL=X1GU4cGi6s;2r{yCj(}ym}sY
zHLW!WHgQ|D2Fvx8o-2fy1m;zs#dSD>Ib{T{`nhEKxx!?FV<+1@@0u0=k<65RP0d`&
z0^cn-O;rU+7bAx_oz(<-(((!DZR}O<bM4(0SncuQ7+PEE6)B$Srcr@W1<F0}b#Apo
zxp}W7Hi)x>`Suyo^gB8@I&j?cIRU=l`H6^H$rwK6#=dSfB7kMxm-&4NBDDHS8_~p@
zHDKh^GSF@hq*knnwA0RHGb-tjZ=PgX`xyH`lW72Yk}jT?K+@%N-gXtkPBD62GX{QE
z4G#JCu{kV`^qA_!*Zz264Qq4@=>ch{HT72r4v}{Jjn-?|a!hvvj^Nau#&4mjvjHm=
zVN4~glq)Yjd?OSslz(*>_`!iIAdp_Mw8aQp+M%Czv=15=Y=TCMAMtoEVa~b0d5em6
z2&?w5{0OLldwWFfExKt!nz_i;t?HTVu-Uj|ua}tn6tqM%1C2ZWC=~QOgh7!x<f<l7
z^mdajdS9?9?czt|)Ka|p)24$q@-%!AqVpHXXu;{!ro&!7lw2+G-udV1^k&Jcv<1T3
zP5UplEYLX`kOSnPm5RVgBlAVwb29BlsZQ`rg*+yK%X9gjgz`7dw&zb6y%5J>!x=5j
z?4~_fvB92a>&hC|-QzG@ux>ru(5!zm`&F4Lr@_=)$E+`0()$`J9L?ui$SSVV-Ff%v
zjN#C%+LA7&#qf%hC(-Z?Ydmtk^JgjWV;0Hx6#}!E_#li}aVnqK2JyH0<4sjQMmLG#
zhYQ0+*1CsK+r})Py^)ms*U9s($PeO6#B}i=d|(?5C*;a@^xw1Gmd1I+6gshd#>_#G
zush))i_IMb;yc)wu&}*mGGq8PFbk2)NsQpm58D#5pa4b@@WEa0SER@jU;@dQ(LZT9
zi8jR4y}~3Ra|bZXhWWcDod$clf_iW_^q~ic5c7rR0{;$vy)cpnw2h7fqqV$WIZQ5f
zd*Dal5L3l`fV<%^h1S#CUP%HCRTp!Ptv2|Yb4RuaEt(T3`)paFy2SL<84sMQe_%nm
zTA}zm*2)om8X6v$8=j$V46-9U<F`Er7HY(Mu(yRqOh3tEPgg%E*MOtGOzx#%67Jyi
zTm_Gn0uOaku-a1Y^6f`tnB3B?&1iaE^IF1RLcduW%XQz<pmutxaAirkm0vdK*nQyp
znQsbRvx;#nJ`Q2RAPID%`_R;um+$DOuExa4E?Wl)IEVc3f&$qn+gLG<<e%!`gJYV$
zdLSF?Uhux7eVcLe`MkJ6*-d=TU83m$?I!DjEm(Z9Ql!GXKwv2O^D5xZDj<|#_N}TL
zcRAky^SUse$!3Xvvys1=1Gx=U%qbd<|E@IZyRSd^qnf7bxFh?nSuf};1)~bz!zVn?
zh+S(Ca=2In?4kJXZp23PN9cj3&yhq#ctq^b_1OYi4hbi(8clmU92};TkLGV=(esQJ
z0lu&ac3X-dQ6o3zPWV6)1pGMJ#>jVCJJwh;g1SzWw0d62z#yXcTV9yYU^B%S+1%P$
z?tH68fO)0>2-9#O5`ID;YA?6q7|oIgy681OU<|-_p_Wiy3u&Q(&sVkgg3rL{xPHo<
zTb*Il8LT(7{l+^;K9)Am-kQ~4ZZxSC9BQ^8TYe86=RwW~Rettu;qQ(u#c`m*gBU3~
zF;RwM10y<p!(KCUe1wPfRcm5!)^cL<P_yeOHc9^UehxSvn#iQQ`D~G^xM8JGV64cn
zSPXBC^+X!)WcA~me_w^Q(G{HHs~5}Q^HTez5b5V9jjTNc!V6E_o;J-d2OoWue?wVJ
zFD`8PrO1ShQtB1?GlR~4w9M6DVzY6>^WnG(>=bd+PmBtL%=gIGLLS)JVd2|oZ#DwC
z!8@AAF78(da7#%2l`u}Mb0w??%E0CBVmbjPN+gq#^IGfZB^P=f6mVAo&{*#}>)u?|
zZs{jNkNwr6Y9hQlJ1<sj4-79@-;)hLe!ICxMAGYpIbA)xMoJ)y6<)tcMtq@xckak1
zqyeNDnd`qs726a4=M#(nUN-VCy^^x(_f|}@me1MLdtuM*ID{bdG^uU}h$%{e<VS9w
zjmpF|`yvjJ&oOzTb@`Q}2ULPAnogGw6;!x8w!as1p1^?&D01^V4*P#DEK+VcUo7mj
zc#&r*TzOplwZqlWM_z1q^Y|R1F6^C|RJWh~8ZiLklhPl`9*^kz<~o3p>N`P1BaY8}
z^u%~C2GHYn{>e{#5cG#T`8lKJ_(bYpewS|^n6s}Sq}$;tNW)RHaHse?wZ{yx#r)Dh
z9x3=E#)y--&HLM97d2b@4Dq4H9LDP=`wErT7|VRrAZ<Q)AR_<%u~@2bmGvsTFVu><
zK7}5X-J?~kavv?8c6-{f7&S-$%3VxsO>l&&fW%xzp%!lzIYdS`WJw^<ljtdpY7%<1
zc9yt9du%>N*3-Pb3%}HA1e(tXJq1~`2b9BLTHb9yd=q&-mr1)HXuzn}ih{=zRf7>M
zhq3R#S>oVMH|M#v8<kloS)ZPBd;N%Hi^T@07FhQPQ)av-5mdz}KSZ0R8$^PTW<2qw
znO<FF+Z8<89x)CC;=F5NKg=pP*x6s+#V64e0~eQ19+s!%?jsvl;oXewjHpOd^BEjz
zc=^d?<Amgi9U(lN&czP5PaP3sP;_N@tN2(6G&v7sO#=I-V#0Xl?-GG;kDxTKoI0q2
zqAi_&WTa@RC7(o1?nYxYp&|3sftHR7AkNWk@kC7hU}{ro<@1?ZyQVMJOXpAWjb{W$
zOI;D?w<cQquh&Viu9@L9rZOJ9Z;}+wDA-9xB0Y5I3q5sbE?oDWsM8-xescvbzpC1T
z(3wjwqJjCb-*i@#%TpHIuuPpSJ61GGpky{9E~!M%FQb2QSPW~hE!5<=K%W6uH@Yx|
zmycvDSzRsVoZyga%0LAQKYn%CUUoK`2|71%-Wk8a@7=C78Ua7AO({EVa6HmK)WV#<
ze}x$a=Yvk#4iQKeB~`G;$RmrX3r0(7AD@Mql$UH)TQ(lc&<Y>zu>OlpT>6sZTB8}7
z!hKutv55E1GGq36)^XDXN=2nT1q0g3Z(Kn@OrQZ|Qe}Onrkh6?WFn$(lE%4J)^h`g
zrVktPMaNZ9<wv%7?lCSBvj|d!n4v2fHU*JBI*ix4V~%~CCDHr)iH)$Ic$E$vbcgN1
z$9cM7@JG})b2%u#dGgma>c$AyjrklKhAzn7863t@U)<;QwC}9k6UIo&t~%1`rD=V#
zfrs)P0Etzrq8Bh1$~mCpSxg?rZA%vMg;qRIQxPmT!*5kXG6+6g#k}%H1=1egOP9@o
zD{NC3=;&=yH*QqSTb|8x82|D%!lLi~aJN<YkT^&r6n2`0v{7N)#h=*~B(*(C^#~E<
zCPj=4KrL_s&O%EUM>X0RHK#CVogVk2uL{YZeyw(>KaP;e+weTvGofv%FZ~`c)P>)5
zy=bcYu8kVH&Sl?(R+53cB&adCMY)k8OFog*OQmsuU4+Vr&No;=U{;clIbkld^lZwu
z80PuROhT_S!t3dyuc8|IQ(_{J3?`pqeNR}9f}r#HD4Xr!0S8Ec0fUAH!Gb^sX$qll
z6`0(ek>k5j!PruXq~0o(hoJ&K;#eg&o4mXFCO?9=ySX69%@aSDWwV8%z77#UUf6`*
zZSIJOY|_e~^x*J~mQ#el1R0Yd5!2Q8o;`bBOam_hWpJLO{26H@)S$Uq&o01^i1&og
zei-KKaA4Mf7y91#<2Gb5M>)?>Ku@&NV^v8IQas?%rt9pZ?rnJ%lE2A#VZiwIwC5PQ
zNZsY=lW$kHOCm+seTy|L2`y3&syXuT)?V-~dHRS*G*0M^z0w&;ejfqf*~Yyj@nM7e
z=a^SCOCLt^NN3!&dfJ*vT+ds$F~J=vwnkjG+cU@cV9dfxdWO1v8}HQRA8^lCNF15Z
zVV9q%Y~X$Eb&Hs992#gvyhy4@<R%wCEft?UtVQlHgR++;44?|<FX~<Tg8k@wp-)X5
z4>hb|^eHs?*%7sBj9pLc5iwv^@d-Bq=J!wSCul|JzBC(hyDy&TvJpJDdv3qT0U8Bq
z5E^$X8$g$o9nocJl7((Q<-+itWSZS>_!uN!u{kX!s%b3W7Gtz=AK4+_;S6$91)Je4
zeZXN>7O&rpYLJ+ja6L?UOkPr4HJ^o1mz^y-G@+49XgutnN-jdGA;Dk^$M49MUU)zM
zGW~n9DB@p7`tyZpOdh1@EsF6iJ^@@f-34l|GNZZ2hF;tink$ZPa9JZhOgS?c3A%5z
zRJC<hiW)u^$c@l*k2T1PJ*d~j=wUxTNBHOG`)H)poX>BZ!8kzZU=+;OXTzI8MOpMr
z|Bzfc@TwqKCXAl<vHOBb^7>?2M%^h2``x1W$pvYy&y0s#pcB*s1+9WqBRG5ZWBcGk
z98G@SD1`aKm0BY`nYeSm3rFKCd*9(5UZ->54fq6lY3)W~Cz#P)&D&(-HoDc}n?<`a
z+fHJQa50@G^aP1w7{2&k?^;u(Svb9Ci)e3zA&!^@^Hc+#M++|=`-9xPQ*u^|VTqNj
zG_H5V7E`)`Yxkb+;J7<5c!!?K%}h;lZ;HA}G-AAwT428U0a#>&VNR7t0QU>o$qt*j
zPE<bEv{<)ik!B%gUh^;`1*2Gb9J**20hOIOTn8zhzLVB7A(;C~tA-+&Y;IVh4x#jE
zkVQAFXfKlXvd-odZS1OoOht#OMSMp-gBM~c_9pj1wz-dr8}suU2O#2l1q=+X)fYP7
z2|zp8Nk{plVC^s(y?l7-D%dAGY@|P>sVD^<0;-jc^)`FT`)F-8FWO^&N#1*JZ<RHC
zJwWn7x#HzVf8u){_|TV3itwuc#hw3?&D8G(sc_i0Jt&}>%oACuq51<hN#`8ElY5?n
zVZdPeFZX4ycm`}H(owNr5O%+ITo*|{WziGm7Ci+z^4`g>8YiKSH{uTN7hbPu{B&PI
zz4gO&AH};L&2_El^}ckF5R(%>&fTqI*`^bFMW0`!$z?O0E9|m1*O`3<oysa~+H^z5
zsK8(f3XibP1Y#$Pt-a+}DM8uF$0lmQ8Mbthf<zodRtixzzV~c~@=Ro5Y2KcgPq*0P
zVoRf2T((e$h!Me=rOqflRW)5me-fy8WgsB~$UGN2Z%WDiaMYo$r>wHo$_gNWeAr*f
z<0!8A9&x{R;V^(e11j!4y7RhK{jkZ~2~8&D5a`%J;we^Ed{<J>%r1cWF~NlHcac7^
zd!7;94MAi}G8Lx$`UY~g^^?5zA;I5pL|gX`vX$~1((fcF4|*y+@z?X}b4D*DAR0Yk
zgUr(E)tvh312!`iyFc!yuZpSV<kQ!?<PCqm8!eo8c-NFNNAw=Ce+6HjR?L$g24|z3
z;E+clXp%FZ!3$M&w15^|NN&pe6s8qD(D@m*ttGkq`X~LzVajpufuHR^DV?dGk`~iP
zYhJksPLY}`BuAdWzxMBGKyF^Y&Gn*TY%sMLURbO=4RSR5uKR4wl3c`EZz;)J;rW3`
zbE0hcJsU0#g_ZK!{O386ub2jy44RKi&bM5Bod%dNXJ);FDFSjK=DiI{Oyx<+Wa%bq
zJw$V-6OOAa`&UO8m)T8epT;-Y6OKI5*H2i#ucT7Xdv%0|<mJkG&lP05m>Q{GVwnuA
zcrA+9yR}(l$h`MhO0(Q+$48B1$Z#Q&v*1y{18={i;-$N&i7_m9e3<FCbGg@Zy*(s+
zJjL^QY=AcfTBP&wFE~LDF1tvmNfz(hW-RB1Y?%S3#_%-c{2*TQY7LLcK~IMs#g>Sj
z1kz-gw!oo*WZMvLBnJrArUQv5@up+;C@8aIu9~%dNQZWl8oEC_T$|LG5iowwm@&GO
zX!|q8g}U;f$prSZuufkoQFJ0g9`DeoiqAK;TuB?f@)E8aNTLzJ^(rRD6)=N{_%ZWL
z;us>j_yzaRKBgwecN4k213Io&Sg&!R(x&Z+-9L&5nQS&B#Im!q_e|vFCePHL!D$HS
zsj$m4zH6A($y*5$4jYrzJAcRZ26bgcUmr|M(J5znHmj&_t@`o$$iwocM$Zj3t6CS+
zjuscO?=!*J>di)BlC;bB-dVZoR@G!Xt`2s8*ea72``VTV_d<B0dZ}kz{kGC?Q8xHG
z#2XqEK|>m<bj8A(y3|lf?^!jAMvr%jsy7fXCoOKpKfFard8U=AV&5^YzeWATHY>mX
zgq{_i+BzTKK)tDPgD81AU_MdI)n=9`xr-U+nE)|^*|v6j!dW11s!ZSTz9bNtAe#G=
zx_Lhv^&h;(TFSWzo2pvhvtSE|BU!5Tm=Q*+5q-XKXilyHJsqV4F-yXq(dO!v-g&0k
zg*&16#+dE6Wud1>fhf7*uAJf0yDtg21yQ>`irnEzLi0H!1n&H>DM^PAz77%&;eyRM
zf2{cX;tfWUJw*JJMk*2n%@RhopMva7Fc)l4`hY~_==zBKVi>hoozfn6=6(l1yS9DH
z%$vKkM@mmp{b97zsz<(`{2nkCDH0Vum}1hRL}2sIFWKm2_FI45$p4^llY`_8OGbEb
zHk~L^A38BANIn?2L!LS;8BjsXL)i7EXwz!2%DzsRNZ0TQ-G_#eN|OSF5nUE0@K7wq
zwW)#k9^W?}mo;CC2+?#ALQRrrMlY3t(cZvte5<-gZQjva9iO~-sN!?bWWAEtliC^x
zs(T6u801{ML?gU$?5mr#y+;yHudU^Bi|%a#1rO`UWWZvhE4(l~MKr+)9iKB2dE5Rb
z6W<YKqDcJJNb)ihl`?Z^HpfU2Ev^@(4&RXAwHO}F;cSS)te>Ycr+&Vcq62BmLq4AK
z74Mp+%|`xuk{i7gGPm3qILLHwyLS?g>F2QC*z>74m3N)Vnyj>jAOmtyec4T_Mhk4-
zSFCSXU-8CEwGO2f5zs*rYU?L}jj;COZC>DRM#K%of40(9Mcql-x)#f{d@bVoa7aPq
z-M8(EuPC1hWi5aQH~?Gh&R6u}Lc>L3wHfgul$7}%sF|>ZJApu*u={?0!6l**>GW$P
zk~0$zxOBp~p8q=1QE8k!Q}*nT;}L8=JeV9dpCOADDU3jso5Nys%A-)g99#($kDTiY
zuPEPoQYd`M1vriKcp0*Rs&V0(&CsMLMtA1wDjinWh7c;wl^*tsGO$u<0+0ZO(+j6z
zsX?_jlC{t(FqCmh?#yLtbaMGer8ucl%64b=O<A}QlP#4d)%cftGg$J|>1v(f`O;@c
z7ZhyjoE#=Wk~WSSvH7!AkDk0OGN|5;@{6k=;;*bkOrP#sTzq?CF_tXm^N{&{g(x6*
z96)7J%uw<PYo^XgH2|Mzt~v3p0mx0|aAQQ4m{CAc134u-2K)z@3z=`0jG5H21?ZXe
zNgjRKc`<U|0?E^EA2(U{m6I#8THiXMru}I@cJga?j}aCP1J%#HtZR+gbdsFnR4kiH
zk7193%=3@8HKc=xhN450XX@T9#wk1<@XUUpA>y+2GV87^i?hInY!BxPcR3o|cjhmP
zA2`N{A(~&1Q|jJ6qd!8YqBC+))<sSBkyU4VkYbjUh`W%PV*j4j0uiz-u9CCl!jM8P
z1n)-%0}+<O_fP$Heg?aq+bWr#=4%Awg;282TD~0|14<y)?UW~c^M!W~D*JvfTb>|7
zcXN2u%_PPW_@646tC}Y589mbsUl*o{n(rWoczA)D&z8K)YL)!`8WoEpm7CAebZxiS
z_XFA5=M(rhvTf<UJH61-GV_ophuM603Jr*HuPbZzv>zD78OttEJ>;l+BMs-?d2v9!
z-xvvd$k+gnkv@nM%Dis*gXy`U(JII3N1r2piDXG<YF5xoDxvbSR>fXRH;bN3`TQCs
zT9ANP{Q4ukD#dyp+nQ}*kbt<*Qy$03$7ucOv`$Nl1J6q>3$DMFve*$i#6jz*QGsm6
zZj6YvE$P`6t^rdhrWiDiI?@W{0#i#nyCJRp>*onZGI|eCiRU}9TIvx+`Y`LeGABIG
ziJ_-v=y!3d3iVJ(l?`mm0?6fk6xnkL%9F4QzFB`q2*#mi0qn-ZYbZUl!9*tPWoLu<
zU2Ci<BBA&9<e+7xXP=egn<N);Cj|~D(JI?Dfue2nzzuG;_c;XxMY}KsUckYQKVDt*
z02i0-@Z3zfrz=KxF%{>ok&AjwkD_4k7QW;wBI8T^21!us<bW-Fz-Re0vnw$V^5~lV
z>#wFit6goqKRp^N>J=I<lC2Tp@x4Y>!1Ffa+r6+Yn;*BwoVMvE#jWG$5kvQ0pjXu3
zBj){UP1mg`vuft>VsKC#WbW409(3NHa}GqVDi`SGA?NjN$6#3%um{}Xe^uA$C%B#L
zC4yRmmHEaYcb+_tz-krr+@5Zr7X2)Z|H+C*w0FAn6W=khsYKY<tkr<B-9?yRl1Q}a
zotAIwtyo>k_wDK^mtimQx#+vdbAs*jwck8NPdtU$iXXNs%MH2?;j?QM$bF{Zl@uUP
z(C+arsVUpL8NiAp9Hw;tYRZBQdDFm19%{n+;v}zC(m?6ZC31Qpw6ygT35Q4xlP?v&
zW8l~8(m|5g^jJ99dm%r<&}TX4E<`p>YB|cRVS;8m>jK@ak^Qt|xkl}HuF+vu<ATe+
z*EDVIWG8Ug@zcF(czJ5ltpfD)a|yZ*z8`J*C_a9<D$wT)`+h%|BFG!-F8y0uRs60Z
zxD_Jt>RV~cv0`BO#eXMgOcvR#H!+cF9Y?~jX^3aC!4Z@Z>00L!szD!`aR4uA3fk+B
z(+YeO2&gc9$--w@CxVuq*Lwk^h=i{bgQXzsMe}-VvfczkN698CqTUf7!j;qyFN|jc
zbWMNaklqs!Pws5;tI;(oXj<>{!gErmVsJlNo~e(1x7D&cTaVQ2R8CezSS7!Ze$^)L
z+dFP(wQa;A@uDkSvO8HXzDO|!+U1MQfDM24Q}H0|ifL$U#X2I&b#69VAr3(iJuS`s
zLy-vT&RE3dY1>yM{a$gBIynyR|JA))q+~2q{(S?Zwa+lnn7dd{A<mfceaiD}Z>@O_
zvku-KVj0xJn(U}4HHkh9_l3ot65umMtgk$6zHmDYrS7hx$l@BFC{nrlvS_D<sj=(Y
z6MxO#OlQ^iYU~%s4Gsk>F@lSTB|}pJCz67twi7a`J)BT7qG)%C50QEcy_ZTxC{OS^
z1krx-(r3NLD*7*SiT{>4(*(@fO=2~CMcl_ffA%D0$U>xHFhqM8twtva{rR~1;FBTw
z>ypZ!@s=+pFVH?#cekc0)hy$<#!#Y<z3UhgpVN6S`Zm1Qer=>1<%Dz3KI8?xNIuEd
z)a9rN1f=@E-on<f)$sdZ8$b1VccQ+eWmjn?iGU6IQut)ICd)f7L*_55WiBQz8^h0t
zX}Bfmi}Q9(<P`P*_$=QrMf?&k%=dtc*ZB}KKWTkp64b~rqC~yKOYXB*o|5NHK$1&)
zc6@A-{<-mf1Gx=*ck8SPFOnIz_J*~NQXJ**R8f`UwDFx)tbr2I#&^-|#kq1T<Oc?7
z;Y^e%HNJ_6FRgqq&*S_w>A*F4ng6s~lS-Fx+h`NHsLn3;g5|gQw}+4;`5&)sxNdBa
z9}j#>*wMU!qG@nnl3O?`D|-rv9DT2+eWdGx&Jw{=(q0iznF<pRUvbCZz0#CeHaU*O
zT2Gd|IPQy216fDj9*B2OlrR%XVS3uhozU96U%uL}v_hT@>e1*C_{i<ONS5tbSI0Y|
z@HMxJJlljWvv(vGZ#Kj;o1sR)G%Vk6=sqnf(9bn}ARhUl!0dDmolTbxZDZEg*2Pyv
zT@f+tmOUsh#@-{!{~>hx`FnFhEWMerL93b?i_*(>>&cVSIOFXp4cn<~bGM^S9+F?R
zZpJCd7=PWF$eT2X6HENERn!t#$tQ$7-~6LzySrRvH`_3{rxaAfou$Zqm-7}{$>*ep
zBOl1p5kR|oPL&l1_bR`r_>r4+O#jbFT<V)S32#FA$iHjY*3@qa)8k*S;kFW#y#-)p
z$54I}VeTttvL7J5PSN8wWSQ+uE*tN!qI@D1SSeGbLFHyjpBfVCCez6%vvte>#_MO!
zxWiUYXuy`o`+9PmTwj-fU##0#-q)X6`IAI~UT|9dhQPI+?>V6Lmnvrv_6N_BhmrS0
zOC7SBf?ON*wc>^~Gn(I|)zpkb?|k^g*RgFe(B;md;oN}~vTv~{xKG0&{Oubm#;Ewy
z(gU$8MDWd8$9=P%rzF%5%HHj8J9e`7PYcFi^ILpLChh5n&?0czR{Ro->zGZ7!vu=;
z4Z`|2G>+WxZ)hBrSuiP=b|kNKrQhooBUNEHyPq^1_;^lOM7RkBx9#OR&bO$hy>ecp
zyr8k|og1-^3Sv$YEK+UxbbXtJHikko<+p8IV~KY?BYD_pt&*dDrJcNS`)kH#If6;u
z80@kQ!9<kVmC3=$!wrq~RLRLOD%>}`S}p=_r`GCUkE43#A1oym(VJ)xEIvRB79i6a
z_LpOs6XrvKIljPc>Bfv?i9<ZV19@bd2{=7A($Qfux_`JdoW-`?Y32LB>gNcQ9w=&M
z>j+ZK-PqB8)AtnqK&3-lKCy_?onSjn$>`?2W3pae@>bi~pp751y5$>WEqbq?`mHWk
zr<xh;h0_+*zfiujgnqjpy<MkJX*s0{Cr~|1RPxSfZc{_yPTrZsMO~Aaq7rnmDx1Ag
zQpbyF##-W;`9?U-$d$r#ccLo&;F<6g1-oPq#Ul3qb#|_ZVt@0?qkO}6c_gli-*QP9
z#Srj!-lHjEknG;Cv7@V(SiK0Py}aRYox~JGyX+~yUd>$RV}G}*_Ma`LmYah@LvlRL
z#;Mj}(@#7qgw^#64W?^Uoi_(tB9!ow$dhg*@xnho<kl?Sf+ITxhMV+7DqT(;3J0V|
za?VQg+J*#4x<n`slm8-%%qnf2D|bPAz;aw|L4iyDUngHVZ=bvKgZt?!Ee9AtU&y3h
zCI1*6zr21g8qWGf4q3a2iy1|8QHSdpfuywA`Nvxs8$o1IeBbz7#y38D(_hX0L4>o3
zaNZaNCYMWQ6+M2^HG6aR-8S=tr{ap(dnUp3N09YBDUT`GmtbARCAvB4FFAtNF9Dvs
z+sl8}vggLq0(rHq+Khu+wg=LH{}MMXRG@^F>k3+*I|Q$}4~*tnbQbC7J1uo(_M4&Q
zCfeCZ<pY?u6cH4r;bpS)<L?%Xe;7ksn;0v=w=|%AFhP=G7ek*z*wViJo60i{758{&
zg7gDC7kIgI>ESbd{GnFM&dk`z2V}FtyWyC^^@oO)?4?G#3vHgn#3<AZ3e|?@GiPbg
zc;AFC7l1_;aVAGedFkb%mON)g9q!qC>ge#M03yeRj5R0YnyY7ngrP|yx2c!F@K9>h
z2>!d>(1dFFX<jn=);A<L0|Ut-f(gp;7iRQ$f9mE;svu1N2|Gv8J4?3RcxD62UY{dt
z?|nCN;98)LPfV2>J~p~WojJyHAVyb*bwVd-7HTjN4@n0`lQr)GuK<nku@*GM2z7wS
zN}ei_eDqC_%lb5snNyLCy!YevXW(eYroB&yp-M=dbsHf_CU0I4UI5zSwOIG=%rDe+
zuKz0FUIxI$h!!hzEDrO;5>#JSQ#BENK7(P!12$y5YQ`u}@qird10Wn=l)9N|I5Cdy
zVo`*r+F!AzMTPi0aMhD$SRm=A60tSQ`t<43aPlYr8~z*L8R)(~AK0Ej+lB>@g!)dX
z&a?B)+^eF+eaG{0M)<XV6XViwH{ROdK!Hy59b1;|JfYu6DJ9NYQo|gg9#_>r($yQO
zbzEEe?lO_aptLXw_$4v#mC)__W*5~@*9|0|^m1{H!JipS6*9;gF0r9sd?)A7LU_83
zO*uQWS@U00y!|P$<i6Bp4EQHXClJ4$hLf0t1-}v0KQr2x>-783@-tnQtna@bS_Y%d
z&u>ZpbIy+Z_1{&!R04G)7p$vmgm#6g`(}_9V-*PlD#A^rU2dCAIB2=r#BM)H*jxBr
z15bc*wLC+h(`=0l9tUSk@TJc)ed+sadbu|c#6cdw(Ie0W`{3cL=wK{J@@FP*p^>ol
z_a5)$RQZ1@9?*82X|?<_qIdhTUG?KG$^bw2NzxX&ib45aPdiAj$DH4r&d&XDK{D6t
zp)kS5gks<DYpr(&ni@P^c?-paj3f3=x})XCBHV?E-`!xv<~0GA)&?YCJz*BXzwgQW
zx(@KFABp}<=pbHz(23PL<r(mFi{X~{w(TSy&!ftYe{Kpt<<_E7opUdcu+mwg7u0i2
zN`BgPHnhSz;~Zx(R#n(UnvMWeUWVD=mS{xPM*+X4D}w@dQm+v7*bt6=QX&b4k-lJG
z^zI%tUz9b+bHmJX{j{5zdh_;@9-k>3a0}z*H_{1n)X$Ob%i4WxwjHo;Xb;I6o%T%d
zF7x{(0xD)ImVMuA%(ZR6bPFt^MUnh&-E6UfHX5*b*n0m(qU+xZEDJ*EY3|Wv6UE=W
ztksl<>S`Ph-a6;jy=ttn&p?c)1u!OF6J`}=`=xvH?`imFTDO@Vl7M^o3PfLTKF23H
zKt_GZ{A-3T$VM@W@3*tbktmzz|8%*waK$EHmt;U4IRgnKp-!)JUQhRM*~ktv<h&t<
z1h&Ao#w!(oJ*tG!i2_EpdZA_JcVwAK@{Q@esz<pvB1(EzI-9QJ#{owX>4@rDREOl`
z_K)JGuU_Ke1uoEQ?4;$}5;0B9+n!aNRZY1+m^|FJ;wx_6#QUzxI=c(yPg;g(-oO3O
z;G0`<nxr9A*D$39ywdx=`qSW;EyI(jn#O{ML)Dr0sCN`ux<vZSmm8x7R`S`C@Zb4~
z2Do9vm2|8(f3shU?|uCz{ThuX*K1S<v*N0gvuSqR<CpMt!v8?Mrv9rQG1qDZHC{HP
z&^Jd^1a#@~PprRQgva)zV&jbNex(r$I1mnO3X-P8`mLNYG-l?z`~L73TdIZcF}y9I
zH7W;!r@-b#E`xr3{*+AUj!6uS&wd|jgfrvItZTt!oklg}T{P<%PhKiRuM2*OL)BFX
zTo2*-V=xV|`z$1CFPxhHIsHB=v;uoGX^||73Ek7NEi3REg&#)#c52Y@K)QDEtLLc=
zFu3oVY3AqVKFCm0eY->@H}}0{hEDZhb9M&vQ)sQ3FrJ>Gh<8NExLz{ywmbYUBrUtB
z>OtFwcVBeivyF#rReJTji$?Vf^V@A$>;MA)i=-(faJSEY?N5?srL6iva`^UUj?aD`
za-GlI36574@=|Z-O3!N__u322y-AxxA=Dk^b=RB8+O;p?t@X1-5QTRTRiiQ$J-toC
z&r<EwCa#s{OAWF4!i%ooYUo7l)1O`1H}?hd76XcIRS#UMCZJ(m>6;6t<5hVxGWU8V
zT;p4<?E@T((T8G;F=33wB%9L-56Q2tC^F(p_^_)sS|@TAf8ljomq><;6)HT@4@H#+
z=L5}P$jH!I{ac(^4$aK2YY9w=!HN%;#kKWx+=E-9U2)fGo$k>7E}|p~y>2h@=lSFx
zy_+OKbEwVqc&UzM0oAQRY;LkQWv?1a!I&6$cuSuv;$S^<w}VK0hQ*y~*nN?PqM&BZ
zrtCBESvH+Y3xat2fu}^fL=34G3%*v2btL5aAy&fNY<S4;ja$0+BmwuZ-_dPT-_6S|
zD#2Hv0vMk)gx^LUmEdA0^u{I;Pr9tnwOnX$S2Z~ZU31T|?9_(6wu-!<{duf1d%D*X
z*=yG^o`$0-y7zILN&AVS&yJ*+8Xv7NO-aE+vOyId1#6qmO35a-oZl&0WVJh~O{@;7
zXyoRJ8^am?f{kA(DqC=$Vo>$9+tNgwEAmBlB|)brvPqX7<j%W};!)0Fezb5;!fcbv
z45G-y`ld7Wjq;y6w>EF<y1FI$nq$BzdbIzBb1S`4YWmrA+HS_#<0dmwHZjF%Og~?L
zstP6kF&{{2Y4KQ+{}@!_vn0Lz|6UFE@A<ZOn}gg#5~g!c1Afc5RggK|(otFY8@7!$
zkOIHzzPzBs&FZz$(hS64QzQ7<wb&p1<FB#4in$hfIIO=Ev%6zNcK?yGl69f5>qWy?
zV10VB(mdi4DStEoz>+2DXBYbemeOMYW&rxK^l6NgK^=`cP;Ct&Rs&X;hYqC)yQ%xB
zMK%vVdcO3p>E#|j+We{H3<R5of_RsDSNc3gbW@CFpFt{;cIXSt$(^}z%R*XDuR6Z#
zNi*L=W!uTj9uD@XQ{2X}n7du=tVQtby5$|k!`ViQwMgc=b5&A+3%lbn%jcXw2`o{w
z(?8+OE7t+Nbg}P|9%hmgiS~Gwkg=&s;PSO*ylfm<f+W~td<L_1JPZq{n29s==0EkK
z)7kQ&P-ifk@dGf7nPV$`D{s{}$%CCqo_F`}U3*{sqG1tiDf~mL@cBdS2BBR8>3}Am
z>Lzh}OmD(fTZ*(|dqb(qVDge60g}p(O^gKYtjX=3SjnB9_b$!bUr#7+<P!X59~US5
zT=q|ZlCV)%;s1btJ9>F}YcA$|1GNDPGK={#)41OA^k(Ky2_xC-NbNkL-$l<u$lbpq
zctq1p1J>iIxBC+*Up1`*0pLFfnWTl``+0CrQA<qyrsDZU`QfM?4P^a24|hlTS&Ljk
zn2>&Fc)I!V_C<AvB!NuxX0Baqg3Zk-fGVPDvq|EXgp)d~FI|ag|EKFX;o1^?mt5Is
zp~FOFZ{?IH8E2d&`Y{Xslqw|qKYkp#ejamybPiFvKZi#9%5yjW9kpW`^c{-q>-ReV
z62GJ3G6Lam1q}CpU(5xmrJwS;-3cPPHSyRjzSe}oe4Dn%mxf<qfWUOI6M`e+%JSo>
z{}XwC?8ubo>Oj8y1Cm8#ARM_0BqImPJWpjtQ<T(!*3j_$J+3#Ub*e-Ar&~JA<Zt*s
z2WL$agm7?h@wn}UGXd?Pj@iwU=N)G}EkZ5}?^A^7mSF0(1l^ASV_dLSQWkLiiqV%7
zpyy=cQ!iKmP>j6Ge&LjdQvcbd4`Cb;<$jQgW5m?e#_#ca4uw=kJM_2vx(6nIDuII*
z41fe0j5p0h1j`_%vulf9)!ZvxC?Pe<#Mye(gEes(;qhTxzXgD{d|-d9f;EFVy0)xb
za*C5)bR2rE<EIvhEHlz+iz?cfN_HLk+M9GaiL02Xo5(zrUf8JpZp0die{Aa#0plni
ze|eh1*UqN%<)v#l9AY&xWl#8||CP$_r;LFfXl4Cz=Cg0OU7_gq6%w;6OYb+SVm5gN
z^b@G`p5hbj5T0<BnWfv_dSFtJsiYOxfOEVva;qSIiNRmT%=o15?5*t4>{tCD!j)@x
zuZc!be0&trfJ6RR@qZ`4WT4EX)M1t#{FG3^`N{5iJFrV~i9nj^C7nYyef#}jNmPtd
zaz4H{{9p5u=8{DzeABtKaLntezdK>%MLo||z~?pp;`aVK$ByW8tV}%8Rfi70q~DGg
zQl%I77=@0YazUP&N(uZNc>`(?tut57g{Y=XXTK_~(l@~tHFhl#?{IgmLJ9+Z^Z;TN
z+cHd4SXnyzH}cB|`(sDQV-wnU@S>zw^<K3<SJT!<(BtY0YqSJQ#I4tGrlK-wnSynl
z5aX)OZ{f2*z0d>5+a+#Cpunfjsn^x<^{$15C9HOT6?Xo_akNOx^IRL)#&GAf6l5_w
zN`&N({zBmSS3LZ!5L2?~`IITkC980-`U`Jo9|<&cBh%7l$ML<MgpxK-bu~wpKO9s+
z9+Cfs{1LR`y8f@^mrGF*`S2A4Ey25bE-1=k?^LL463w0~+FOSMbX)bviMnxAI%mMz
ze5J|obGciDwn=WCn4eC6dbEQ#+Q!@amlF?W*`*8<yToiwS3BFJlQ(o<rtjnY-U23&
z&IUi0yY9dD{olb+MvD~x0|F=@rlbQ)m?OhG!ot>M2k;@4OALi*c!LU+TqCo4Rf|m%
z=;q$S{ct=OIp9XIi_Uf!_IU9|kGxd@E0yc3eIXi60)O;)lJ#r9&n#DrX-ofO<=iLd
z!KZo_eG`z4iN<<Nq5YuW4Q>&3J=5&OHkSaVNBE_>tcruj0eZr<SoEj_e#@6jeWS43
zA7ZM1*UJ$E{EuEv;CH>;e+;P%y*$CkL*o)v^ie#L3@TUlnfwg|MRj(iDUB#swfw+K
zMZl*)xWv)COz~bkpEniOY2MSrD(kw2S3PrCIPL%!_5$<IMwNdPLivNq!&|$Rm;yGa
zXPay468N3V8&6z#-MsVlU*#<S@q+H%8S}6G+&`aInvqV|MD&ND{l8o}HRk44K4Xp#
zxGfy~rw$KaXZjJhCj7vx>54ErQH1E(-u6s)#nGG_a>f<1$g0eu{|9L!I<|2n;KO#1
zav^$tv^nNvYHW9dn!EY#Tz%Kq;3n17(9$RYef>R>X-~i-G#W>F5}G9h&kG`34^5GU
z6V4xvin!C8_knHMvMv!Dfb|j!jy%rjQ?A?KgaNzT-i!b`BybpZg<N@^{B6iv@-+@D
zYZJg&cYDY-BYMtpa3VXM9Pb!`8@xI~-%NcPrd+qu%Ee{Va?^`6c=LfylEZAc?!k99
z3XG@06HUjSM0@AG;xZgz0!>$AFGA*1Y#GA9ZqZaJIZk^sQ{Y^z_n85|J2FdXtK%Mk
zTViSb*U!=V_uQWOCXiZ!o)}dfN$&R#Wx&!97KaNRVfiLOBtBN`Yv0x~*J4g(0OB%(
zL2<I$GUq3!VbP)cTa*(>AXW&~f$iQ}^1Zq0-a5YA!tEqs7j^o{>f>U$GzT4O5h8~O
z@6#V1C2gs}c2gg3T)Kcq;yX98{<_w2n7B4%uSDsL12q4+ZDy7`dQK8ntjx&oHO{Tk
zXv?S%dLQ|1{#$9QLBx9YV|}w$+a?{bCU7p7z5<n1=`bzO1i56i{{mn-l6L>YTnb~)
zHO@cyJ`abXf3dV%`trXlde`N~fQ0k1rCaE`D|<ff)+MqlI*YSI(x9+6p{J2G!t^Ne
zFMB(`I;Ka-Jo^HEy)NRCAH!es2KlX;4<se_vMPdOATicte;RhW)R+Ayb_vwqXr8#}
zCjqzEoXa+?&iVU$1+zf=|7rf}<v#~qmUudk7RVv81y;QpLrpjY2jZGdE$p2eb3hQ~
z?Q!_>SL+v7<<<IEtRHgu+QN;JKWgE%t;d9;0TcZak-FjqK8|_FN76z0os^HB_lTH{
zK5*{c;2XvVV)W6VNZfTT0T&SP?gig|lb8y;NN4P!ABzmC3E=DKPt?gvPfs6IQynf{
zjf>j|3=h|+wM%=|XftzvJLZ9h3vwH5N#|sQ+Z%pOD`B0bbcRWeqvQ5pYGMs{AMeIg
zef2D;uabk0q-x{F_6wraEBKZ~lMh(sP3ou0+W$7If`j7xD==m}Q6kXZg|fA`w_j4t
z06MDWDbuf;m(S<Zd39ktm^_Y%LGTC(FEH6$mk5d`Pr13N@eh@E9?M*RWHR%stw(+j
ztdR5XJMka}Sn`29mJ7vz;+(`f8dmz-wok^W;3LkSMSgX_(rv&pX*y|7wBTWLD|orJ
z_{UJQn^|&M!IO<uBE>D9#b5oS6pqVK{uY@@+(QHz`0coJ@WsL%XPXf{tw(xM+V*YE
z<r$67sF~_7$wZb^;zE6>K`aSP=FCS)2^L3F^MERSVYd=6MQC9$UAWZj`Xo=s)qlX}
zO%+Mw);zpC6wpUpm&uR_f8`wr*Ktsal?N%A{l~EL4#!_>?`A!ZXApm*zdN%0%l_^y
z!CzfGsJQzJmWk{5;RarE=e4#k&t~mgoyXSyI+z*n_B=&G_i3VpA@*C^#g1^LpCVT@
zwN@CZd_}Vp$+6ECm-)=@O=-q7$(h$n-IuF1{wDGNuL5r~bjI@Rn3dq~gPGwT-2bG@
z<L(kWTISklxfx&v44D?dL2eKMx5D7RPONl{zjkRnJza%WbVq9dIHwbxCOKb@k{ZBF
zIvge8{C30lyX^xOt!mq1Em~q?Vjo4Jvg-G)#?KzOkN<+Nq{1?OkFNyQ)Y$NRcJwvZ
zPM)oh2jKR5`&T`R*<>R_NCU5Wk}Em?n5R}`|9@5I2RPsZ{srt|X7uGrfPxWpL-wj&
zB4=M>*3Pk#+eL<#?_O@z{ZA8k#hHx0?+;6L|FiV_v!%NKPzEYML1zbWBHT|hpq@Rq
zoPiJMsVg6_XE%2R?~ef}pIouYnx|d#6|ZnwzLlG<>wl(#c4+bH*8#7DYz-#&h^6)7
zU$VsCp!{^f0`gj>fMr-}IRk^0Pw2~EhM`H*(c!aj4dB=*7rZe~vcJ2N;7#tW4&a*P
zm0M)lwu3@`RmA9Lpcs)NW>R|s^Ux&0@|VD=pr3QnxrOHJu3f=LMjUTJL~aRdviw=?
zXYYqw3)FrA<AvlbYiE+2NqW8{=-#jVY<p%1ix4Tjc(a7Vtr^`E;~&2YVf5X9N(lc6
zXp_X#cJ{eO(yqu0y1^3rw^>d*bA#AfY^klms<D5E+^i%cC5Zit=Fd;9@xh-If61IO
z693G0!au;U0OTgW<f;TKcJ}q0+J9mHPIKTd_wW93U)Vh|B=GB|f=N0};2-o*)0sPb
z7~G0t=n*kAppK#jf?KENPqGX{^tc>B-K65V<`!nsaoDuS^Z1go?}Bxx_u7q&l8>ah
z2_8A!+-I0(FK2LLn%LbH4K4XQTMBhPy(91BLWHhHQlEwN(f8tZU7ZNf9LNTUoRGh_
zq|j?6dvoruz%1jo9rvVWBLqO}MfK|SRn~{zWEz*Nhu0KEvy|m9(*K|mPI{jG-?e|&
z|C)wVPvvr>&L=BNcur*D6$h|Q9yPlBhc&#gnryCjV!tAsS-<Rozk51)Z_4<h_F))3
zzC6*Fb(+*Cxp&5iYbsTyv%`QpPx2+W$xg|6V8VrmO3O%ZU7_uY>Q|WoBGI4Ae^_4#
zX@dz~qfQ+pdG*V3LWHHT>(8y|r3fHJ?PjV1+U7&xkiR_>wHB;uV1ZRE)p*d$tdGVS
zz#{1)9om4%bM!L$1R_ukpbxz40Q(lpcwK-ovFJGg>CbY^FRSE@gl3bMap>>$QLnq%
z4*{gDu$9%69NP2`lBbNqUfP%2d6!#y8rCxiIIs}80=Py`i$laM%FOk^_q0UJ^yY{S
zjXR%JfH@gBg0&8I*;N5G^vnOJy|awUa$mc>fP^#x(n?4O(h`ESAdR#L2uLXnQqm#a
zT@oq{k`mG-UD90&(y&MY!Slbt+Aeju*V^y9&p6}w(Jwy3@jUl+U)P-TH`%USd7nS6
zY2}TpW2_!;Eid4i#6zX3WWP<bI*@c_29^~>`O023sQX1M1*(@TEHsBe-cP#S<pZ~Q
zY!2r*FqveHbIZgb4HAun<$5*Z!*|H9!KgJ#{4{E}g)1)ksdEUJD3?1?23+&o5PA9R
zL;VD{N1t{Xu*;A|i9Oyo4y-cg=Ssd&HD?bjGzAFTbgCNVz%G*=vq)!kA8wFREjszs
zI>N5oFO%p`L5joC_--1!sMnS)Iw@LCN!6AdlyrE+fxq;grlMc#si~M)E2}k#)%B27
zHWN~D2Ol&`AlV}<7&*eLnqnt6J<#J_aFOojj&BDpu@-7cyzqWUR=r09KtGhdzF;(n
zo43R&eI#o|jQEylfc*~>d5jSC8Q?@L-a-?43!IAOuH%g%2)pgpzJ`S>f{m8OD&C=N
zfmJ(Jx75k$VOtnMUX=-ZlQ1@x<-S}Yhg)T1j=mLynFW~_W$-GqHtEx~J$NT8L9Oh{
z0{Sa)VI?nt0`hT?!<*-!!#?2B0Nx~`s}hO8Lo@O2(GrI|)21hiyiz~djG#0F{Ilva
zV_E5R@?Ff&L^8D5*e)ITAD|Q8d+m7R1x4xH1^cbnI^2b>{;3>rS#tt#2=A5gj=eE{
z^l&dIx`7v&&7?g#*=U}w)XNs;uoZ#s^42s{olZaxN1QfV3&|IYr-Bz1J{63}3W!OM
z@Z_&%X-E-V<g!|heqFw@HP6ZPxJMS!^ngN0wtyhuQm(*X23FFZoNF&JURt1WZ9;(r
zl2xAO5FdM52K>jJ3EWYaS>O5{_Cp>Sx3W+>0e<zT((o@xmJh{A5MPcKz(}WfN;Mjl
zB$nRuD1{`$4*Juh!e{XE&g{n!(}rDvV(Hmh`|P^ewGA<E@gTvfqC~F$z(fi@08a$D
zQ0&2ucRxH=2*IEllV}S_?KNkgBjv*vZBPb!AGdK8Y69^BAK2XkRn=5t6y3d8ig(fS
z_0Q>pTtgl#^Ag(hOEe-mrCaz4v*!^8fs3ZtyH)~mG0ox?^0>7ydY=XeuRHmQ92-(!
zAzz?#eBr#Ad<7OYE+E6SthZ0Lz;hvP;g&mZzz0z$5Rk9EsZ~r#{hsNWqiroL&#gxI
zMtDzj5^+Lat}|-FX4*O^rJ<1R%o!GIP?MkC@~*&`LzDF5?m?;7%E7qC#Lvj-a!7UR
zC(hq`>auK$02g+(w7KT7p)!?a!xJ~l9G=onrp>PFGNt+}lL+jCigYXYz!556x%yt)
zTx%y)x>I3_X=)P2Q^r6dZlyL|xcFyO&JaTwIDQvFXs?YhCD)$~(p+-EBwW?f9X~sP
z8A@jNF6UHpBMh!--T+aX1?TCwS97V%yyji#fa3sfq?uNZhj{Hmk(h}|bDV$<n^lOW
zY3AsC>*a~(y^kv4$V92-^-o{LAthRytF$cB!al!C`LUGLvCKwXWniEmJ`&IE_zpT`
zH@X2|L|N#Re7PM{fuXqFnxv_=v(3SaK8-lC`33aJxz^8@JFVCi_D=Dl2R+OxNUpHv
z7Qs~a;4BbXFdQJ_#i;tjv&yvkM(dzM<XbQD4_zhpCsxeJ5y*-OzFtJNYPeW}$SB!%
zQ(UinM=WQtL+KwM#6xz>yPvTCkFB-O0uj%J?tifh!0UdgnSkPDm17Kw%bK_0^J{><
zEf>X2C9U8Ubbfp7%1mrk^7c*Vo$Oc^!$><&2moN<_rr|*_TCj-vBtm1e9M!KpWxOX
z!?!P)^ojrzxD13si9o^I&yR9L_YL$#k258e;1aR|5%b$ocpN4QfI7Xd&3IOMl19hH
zV4+L~I9GN7210+FSL~=X+dm%lE)?xdtXiM~F?8lf`V)@I5MBR*gvG1ho?ZUaHi?c(
zkQaBqH(&ekRw!Lw&sEF!d4#-1(Tjs=L75|E{nbKX@`2#pZr@^m3lGtm87enuV41OA
z+us8uol3hsW+}K;#%xl<rNtL<$SkK<n1>5SRxhjQBBWs9MK2h%_0d!1jC>m&ht|8X
z!ZnnqG9aA*w6mupcdQ~72U7e9xpcgpFg7}IpMt>N5bvkJ-lCta{JC-yx3L`SLvg}~
z=Vk*eZtQtgQX^+HSptuX5CbqOj6zXFOVJ>Qj$Pn;(M4NSF0Qf$9v2nXe&xj;1Z`w!
zME#Yt2Ru9rfR*w*;9B|1%+??ujD!VMxnpnVG};tbXJ=QH2p3SC>va$XHavLTEf=<g
z?EvuIIQV?mt4oOUrz?9~h~X2W9O^6uRK_{9MGB1Ek$O3NY2sJPV67b+Tlg{q-?%t*
zSnIjl#MyZ-pT$dqel+;xh$9#iXv^$@S4#DZ<<;Vh@mNv~+XTb2&9{nj>le@7#{v%~
zJzcMu=)vy3aIrAtyA<#D4RiZfZ>mt<O|byD>i+I-Od7f#2yZe`$daGCDGV$_A%$Cz
zx22wp5)N^n`H$LmB8GO5l^h)W{c-eS0;&0)9c!M!dC(%^Y!z}GJ^)~YoKdWMKwBo{
z(36y7-@+Xes&H}Ab;pg=&-;+22~DJu?nc717++R4h<M;6>9o+7ukCwzo)e5y8S6ff
z^G*liooJZ==CNxMPIUMEQ{j;a>Rsbqc?N#{1PE$UUx|2?#a!kUyn8QrvWMz=I^<W!
z8Y=6l-BgxiL`s+F%QywcYP|7Q=kp}GL((&6{B;!Rh9Vi^QL5EY&Fe!^h8e<Q5VX@l
z>n*vYEp;4!xTpcZE#1?VkTa95Vc-<PCE_Pd;?1ZmS@2A@Ou^o{6U9<CBMt=DuJ$-<
zzLO>?DJ@{hLcpNow4cPZ*E82!*gHjsSvY|SvK?f)9v%XUt6FC9fTZGwUtyW#1d`(2
z2>fsP55XR{mUizr;I5Iqp5JrhK%>$`UA)>=tB`pcw;oSt{i0Mb7?OHi14%Lze4!fP
zj2f-`FO%pTp&8{i@RNN!O`cQhGR-<pJ2S@(yew5FfmQPrz+4lktDy4=_mR=iD4YaN
zFiDrDCJQ1SLG*)_)<=Py3c;O4h=T-rM=|qfcC!yhYv#%fQb+)x;PTEQo{0=NL1HUZ
z5BG4$YdUC-H3pDm%@(+J%7#?~F3pXjN6nFJ;u-{o(7i{)Ynx}RzO{_9g6yKuR;M~l
zZ~z=_LH=bgp*$5M6T&yxyUQ*wY|m*@T&0nsid!2x6*O|Osa!{B0+l=~!|${z0(VE?
zc)3+<o(*aAK63D|B!w5O&YSUyC~1yM+%0?zqKT{Va*;(=R<5%iq{rTp;)!Ah0pphJ
z#3XB+f0;YfJ>)vKp$|=B8>C)sT{(Q;%y~(Ik+MQjMea^H359o#AhF7`Ew&}JM8rv3
zp~;d-idjQmi47sFqj#f~C*f|16)4;tV_qAend6H@<^iw7V-|l`*tl%tOv|~>!%isR
zo&Twk=D*+<iLbw+R+>Z`d0F;QT*9ixrlCj)kW45u+DNdeGwW{z?b{HVOKJ4jeR7aU
zR6-PzUhfxT#jid*P$A?-4aL9gPME}_iGY^*+ym<80B-F*AgMtT!Ug+F^GWmR^Lcv+
z1<9-mHi74#TRr^DHrXLJ-wqHQIpuG7%-&ix2bCLTj-emSfsRJdFaYSiypFw6K#>FX
z<6bmuII23Z1NGPGwjtMHs-Z8B6yAU$-cZ!Lzi(h45M6t&0pQ6lAQog=u50ofRB!mw
zfs8q1I&n7xdif%FU0sBPCHx*aO+oYdbuCC|gY-7VBC9NCFHFH$uLq5*AmJCrAbK)|
zo}{=QpwKmslyR-3x}gfJ-c(f@ji>x}Gt$9WPRNk&|I=>Nt58Brh4U|)5p@)u!GC@;
zx+eVFW5<|_U0HF#W=h?>mKC77&Xz<)P*%XGH4X0#4}z76+%S5Xf0crfY?&ZgB8{;p
ztru(IkH;}GTuInl($o)dZ0~HG>4n#|0$I710yJ{TNt&mY#Y@OT+XU1f)42lSHrPgE
z&?bx*$qFRY9`AQVR%v+?-{Z68$Q$MCnMxRzHa9L-Z;sBPN0BXPd_7o&o+XhiOuF~#
zB<L*!1-)BGM3|J$MUMv&v5FL#4t53wG=18J6hI}6gogI7W|3v7bAFc!i&@eI><jG`
z({+zV@d3Oe3#0_j`5#f4<vz`k<Z1FJObP7oOI~JO<u*$a-X(b*I2G%>{Q5@NN;?8e
z>;!6dEFv2Il!p4nV=)bcGO0_jy5Dv0UWbMd>jC+G1e(&VgxZZ<w=-dE;**j1hN5k6
zJ_iLvA*)l+{qszgW{lGc8uDt1KpmD0fhW-i#JQG0J3!R30wHfP4y2P{+NlK)u@h}0
z`}f9?3%h&0lw6a*YO#@ve1@{ui-)5t)C{-DOdykD%thEyVIN)tH>Vxw8kwW@f-H;^
z>>s1y`KgeRlOvQ7LQAb5UknNFKDeLr#19UdNKx{MXWQ$Uzf7dI2u6468~Yf`V;OJG
zDJ$vqPievHuMyo<B>8?Ty2ovS;l2c-;i?V5OtLNi@~#K_DRRWcT%!-Re8LpwiyVpj
zcRhk4ct`l8CE^YdJUbfulu<Q;Ys0PxeBO-4<=!Cq1OYBc;pO(?x2G@Yy#V>{B*Zq!
zW{)TCbQ$_3Ci~Qw=4c40i3>_t9FzIj)LT~a+wk)h<}#04ed&;f^GXmSX-K&fYHM`R
z8CaO!jYOOwF;6FrH^j(cZU4af8hcgcpu`n0OvJfc-=;B}*~ijx$0b2u(iqq`aBtX6
zmT%EVp;-pTet^!l&}%MG%IFQlt5^mqoYs@7(3k8>y&|k6Y=uNU=i|#^Nr?~@bhK5_
zy)+Al#;!C{uMWf9|0DaQn2A@qlqt56%Z(J7sHkRxMe^DSg_7Rop-R=XGxmsX^M<f7
z9ak)9_}M2q>=!KSsjjU`9GMI3Tdsu{WIxZ6P~{*uq}mtJS~70K>x*pP4=G?0y7_X5
zWfUA7xEVJ|iXU6tBJYJh_Ck&Q@_x}$hqU{Fs)pUA>F2GX8zU?D0+zTl&0vL7F@1mS
zeIwC+)#3R|8k;Ji7kt<GCRb-8wAs=sR1By;(sDQZqnMn2pm-hW(&fBG*CiY}gWd=k
z(PFbz8_3P!jrQLojsS-V=v?~`&84eJsYD8@D1aaVagH(oek9XkT99u?u3O->>}#z}
zG#xShbO;=|wDH*jvMfBaNaTTf^BxMlSQ$)cX%o<_mv+Q9nt+2*2UE4&sd9fyieoQ7
zquGU4>yy<RUJHo<5$eH#*pLt-5*R)}fd<n3^8l-5uXSLp2*lTfLyd>8aGi`e!4WR^
ztj{AZc~FNG90`l<E98ZdHC^wS;pDiV4l=oi+|V!sL2a4mcj9L}uVZpxDH$WhxWJTv
zUqYs86azr=m^o{~tEeicjVlC`HIo>$8I%_`j1z{7sA;BV(aV=aml}N=S%dIf7F|`0
z-n>BUssy%r1N(l(vTQF9bDIon!!4Qz>44(T>41ImiSSoBaik?#>eZnl3BnJbjmaKq
zt@#KpGLLgF9|X67w@h{jJ4Vt&p|Q!c!)>JEz8~>CSKWqGd_ZzLqU?q1(pd&cxl^`T
zk-vAbV*~b%h<V_2gaa;r7J-CnkaqiiBeJ;g@QhX$sXCWq2yc9XXwbWMhaQ;tBpa@n
zXEmFlGSLh)SpY358VMObM6gl{)s<^<x;Xc4^qUh0=MHxot^d<wU58^iwC<>=re;Mf
z<yIbVwTr!3QB{rNvq0p|eDZ|src!b_2w7L^>)zFP=eJmCPocj+Ll>?BZnjR64$!d<
z+e8~AwxFV!+f4g$nnginEZfAa2H{*v@?iyCrE4{==f-WWbGsQH<=?m<Rm@8C_tv97
z9qe{i4x^V{5Q5O77m`LZw3~2L))R`_qNuqSLENkls8|=rNs*4>S1`%;4zJ0Lb!Mwp
zoLb@M+m8+TrMsjzKt{V%(+qI*)e72!8F!SyYrj9rqWB^_jFk@;uBN70sn{ZC^LQkh
z8SVCBFuQ5_VS_MT!*h@rqYJyPSxz$z%PzoYuh$WaGnmIC8$e+gT_r_ec<e5r*sCJ|
z?yI%u3WZL=r{j-S%F41ilu+e31sUl?A5dPZnX2U{ud*9uAHTn;yZ%=6Bfx1{jRD|e
zHsLi%s%1x^<(OA7DevGUUE1x0Y)$Gt!*L@Q$ZDp*haEe|3?giY3cxjm=F;rCPe;Tz
zA@f=kyr862-I~@;3EHW)8!roYf~(ilUZnG6Y@QN}B~_{4>afffNEC6pSPix}rnWjG
z3F&n$kptl0x63m^H^Z)-C0i{rI;DITy>jYgG+p4zCpD=8RId4@xp}`%dk|o|B_gb(
zCeZ9z$&+^-X7~?O1gZySA+A>kb0p`zh2R&|?9Jk}<`R7p?(yxI!o@9RMp%cp$Y^&b
zbVS5U-8|Hjn3Qz=!_}OK!#X>%4T0;1)Y1OV>T?qUu0CMb{~P<#aK&J_lnoe8#-VTG
z3&>0nLi+oJ-RS+|^_o`4xuk};F(n=0n~hRKgkTE(Fqx1@iwlo`djT(5W>@-B+elei
z&4wW6F&<LYRJAIpSZ5$;JP^~Z^;P6>&Ku50MJlS&$->{C>5c}X?ugs||3lrkhdL2(
zs8dS>RO6ug>Nq9$pMj)L8oHu#R;vff;gEy?qVNr2uMUo2%J?T`AXfdn&5wv9GmwPq
zeLkK~mMIPk|C6H=8rIJQCwEtY4<JT%Bb8!U7vLQs%p-(*%uFpFfM8g2V8Qx~EM6M^
z7@@2--E;@ppB!~2F_0un91(3pTTH?|q7!PBg6PG7Vypltwnrq;I0NCcQexdM5w}vG
zDFh*JSdl-#qtD=d2gd<(49qT`QZU%7N2K5h+;*akRE%vROI6)_yiwXMi*y&yVRNi}
zODP5+H09OdUHI2&8743Pv5sV1;_#a~((fMWH2K^ukz(>*X3|2zYsi*ZM^t0=I6l!a
zz*3ZP&$9*nE$_zJx&(nTQb(AcH&?Hjx^LNbwo{XIpRr2|yNY~`aqrQBTS1vAaNQpB
zAaP{5My=qN_x;116-b(3_F}=(vBtiQIZVkQ4gK1guA{%WP(d_gOnl$0%P6gseUw2*
zaxl_^M&-@Cp@vsKWe<7q2Y`fwK*moXkTIJf#rx68!yH<G=J1*`J1iQ^q>f@x1UAB+
z!CM)cMMJ;5+DTpFhV~>7xpj6_|2mUuDt&)4lkjH#*-TOeA`%pbI^l#UctJC%-E|ao
z8qoW8v}2{y0!aYpv`MAh;bFnE1l|WCfD<CvgXXs0&>FFS{zOFDXm%Vu3`gmXfsBf4
zW@`e0l4J7bwNsXWy{QvJrm>tmHxfaB*B8-;0=szDingXkGVa<{m0zt($2!t5lwm9N
zeC;U--k(!V<r`y<3Cp5YPzJc(9)e;SdP~7)A=$4X2izg7stkHf%p^LE#G@pr7py|>
zQtR$|-2w8{_s+FVwS*jjT-jpjtB42{Hd_JRAf7@_;KFyo^;R)O0tV0Eg1WjS+Fhnn
zAbphxgS6RAK9Huq2S;j=bOb<JyYg3#li-X>?{6(UJIuXP!jLjqlQ$f_?>mjcVjD^&
zI>6+}N@CcZ7IFbdiul~^1x%x%*bdRJ0n^y^{N*>~CY-EEuO;fcl-xZ|wx<StHFubL
z{W8Ud4x8nMGmhgpj_{Tf00`N{LR&C{EXcmR;!26!9H`I46r;-s_aH|-rW?x(x##81
z6j%Le8f>2Fgd%66AvNXaFP?$Uz*lz;>sIaqjIrAyhw8o_vOk9ZD4+-xsj+uoHP{#g
zJWeYRw}+zD*|Phsw>AN4Z=WlBZTh^@0R1!?8NpMVRb&?<;+r7>x>t$aI_^H`#ZN5N
zM@)WIC~!sh0RhpJY~0&9&kBO;O7eJTc2di}PAIo6k9Ix6FIv)*$7UKEfEt`;pBAob
ztgf#4kjy(fW}e97c?rG7O;r}akgY=%n7!L(G-yt|T+wbbWFc<f`JI&Xw`WwHZ^!?u
zViE!y{{#LA7ZLx)u@Rad2uinUxCA3DJr{w0zKG!qaR1K5oGRJoQy#_L$N4XN!0RbA
zNxbN+rqn2nkYBVkm?bl583wL`pQ4wG0@zyMHUgDF9;x?){^m{ZmK=>{%7b6r?-<R6
zeB+Qzm>xwU{6IG{FZo6{Vi^7J>P9&drA%Tle}%LH@UGrLD(l-?z)T5w7{rn6cu^lV
z0c+qH(^G@yp9~FealaZG+_vDsinLyV1_l#rq9uP?YIu~(JIX{R^_xln=ooT&l(cRu
zfLvU^JjX>n(R?E)^9?7dMq&K$)OhN7^74jP8Iwi}M4rvAJMK1c<pC6Et1&A$gL<PL
z{tF`on3RUZjw?%fW!G<?210_$uol%E+Z8t5o@71a(`{r(XE^6wVr>4sH3^tLdv%q*
zp6`BtEdAxGRKvRm!i1p(PjaUcUOET<tB}O;qp7s)A`%2g7lU5*>44XCZQkO?*E=GW
zm!{>3fJywjt_J*Q04Jed`qiSujK%iXi&8&9E}0&-C5vUT(aEM{nnRAIqlBWlu1Sie
z0pK00FF@|uBKbm^0z}6DZc)nS|7KC5{NbWh|F+{FsY&c!pdYGy{{eV6T<QXwk{p1a
zZpo0&5TfGq_C6>7o2!yp*GM&*QBIc9$ZMbk+|6~G-njx8i~`$n^p33XjfjoLAoz5f
zfoPtXZ4Zhfl<Cgj{78$hIzZ#7n+@e_97zUt%`oVeBG)~GQD1Z0!1J@Cr#Cki5Tn=X
z<-fe|FEdsM*E6Hy5}>nrN1i=0ALjheYz?)2$}Zo|BC%nyZ*F-gml;oouwgqs%iAuV
zMKO@jI~-a;B1=~@ido?bbdQhPL;wHl((n2jYSLYc*nVKmBf%lTC1IcB|M?(d|Meh>
z^G(i}C|4#KdMS_b7)ss%XwhsMDSgXt8XTnH@7Dk~Q)hz(suGtM`UNEj)ByoIfFpU|
z29#+%1f+b>U&FQF6i#YFURsOU<EjXvAxz#K%$DGSXLalI1rPTJ7d(T%yx>8%KnUEi
z&(qAU?41C2P5a<eV@w9)jFif9*%^!Sk!`yBZ&kuMT1jRv>?F`6pYN@#ufljK3G7M_
zwgTXK$apr`Cbg^UBiYh5hWAGRaZ#s3K_f$g$e+SYD-@PgmbAiZhUBAauS%7H;@#RA
z(8oqdxV2rrz3p?L-zllEHky_zwfus=#}xE69}br!Uq|Ft$ASFo4}K{yA^vw(rqRRF
zBl}5t(7ckoyOd{&sFbUk#`nhJ)9xg-x~=tNkqKU@0wign10V~iN$3XN4ZR67t%;%P
z>M8~X1|^;{YkK@csi`}{>M?f5gsH3yv0?o&n<;+3Rqm%GwJS$M&w^6N<vsu8zB}mN
zS|}rN-B}sQFxPIps4JvV%hP}|ugrc+>mfp0H8PbXcz6|F9S9!#f~5MSG;!&932L7Q
zAl62PB0$DYZFUPRwBFlzYyXY?&i3xCxFZHB2`a-z#6j`FB|LuTWewOr-}A;=plTR+
zE6Qy*m$K{e$V^PVR5H>7=E3FkL{kcj{ba@y)(1X*O5UoVfJK?g2QU}w;ElfMOb~Ms
zY$b6l1IJEzkqr-s@;(8DwC)HQ(H6vVu69gGE-x9m2q52>&p*rJ-fjScdLH%SOcuyp
z#j|T5$OLY+iQAa#>MEg~S2EkFBHL-7Y46#DQ6kl=BpXVzW=?PALCpcsX=5zV3DYMt
z>x(;b%9}X78sPO0aRQD@Yy5b9s(f}ZF#Lv1HHVBO9bc`(6I>I+z6ef@F@bFJz0E<#
z?m#`2XycYMyzTcc+{xp|h%^^SYoY};8HyHct}<%%@psE)V&T-pc*?DM`CPpXnSx7z
z>QwLWS9_DYA8I@JKNP${Oe^|s#C-{s^`qq0Bm03PV@<#k?g>1{pc-kED_is3;zYE6
z@$DBUL>6cT+Rk;$*A3`VZj1%^pT0o=;@HhAFgat2)Ph<0K>3u;8y8=r%Wcz`M(5(<
z8s9hYaD)6KZl0_0L=@TvaMkruy?pukwpW>9k~W-gUm}gYgMM07BUoC0*p_20r57!3
zy_9jU34WosQogmIIENvx0`oe=#jhI}jbu!xj{*HrTAoQ3`MSkRoaokf=D3Zn&gNZD
zg{Ew;>+aCD;b2@m!mfFAyJ`gGY|$vQ+dOSU2yk!|POLv%58&8xJm8V5nk&4>hcoS5
zHQsjI;!@ZLwYUTm;Ef^8WqM=E-O}ub8@!~{mr9oyY&1Q#20`sHiT-;;#H*5^S1j{x
z%h~?i7Yc|DH`EMg0ZAjYY>e6bDVM`mx^o)VAm||T`c&%D2Le<F%mJctI;!n_QGm}&
z>Qmce;?kq3n|DRX&?x&ylG788tuAobQ-3)5LnpbW+OH3LjGuYIJh#L-fnSxDh%X_4
z?Z$7eO+#j1i1xr9yvLlJQX~GZd%FG@fDb_UnFdQrAJNGkUBP(gKMpV<8Z&M<99UzT
zNanTTW}BN`Spc?o6Wo?Iw4Z%)MU*A0Ubz?464`I9?^Di36Hr<ssjQl6!aNLDuD_^I
zq&>)>$Yr6!l9;sH%5zXfx(|9^cIQGUGFKFpGfdRW(jh4RF6o*YnH~DN|4MHhd&Y*Z
zZ*rA4hi?87Rr89$U~Y1VzU%~zO}O)r{nKDO$zAjV-nT41^3@#xlng8j&4Ug>hv=#U
zNlv;;hJz%)Yc21X!eBgw=BDh8bIJ#H`d7tepY7skuwCPKlp@y=wD_pbgSmAUcq8Nz
ziZ%;#L(mt52bhLk$8Ova9AXuXlGXqYaoY)mpV=awY@bav{r<}5StMIA+9#wFRSIZF
z^p5qISG%3oO*Bi)lWTbj<7Y;U%7dBJRnI-u33!(4NTL)a>c_v~$4bZD-caG0nkpF^
z9#P5GJ`-DziJeoua~mRtx9I1~U3J<>Hn?{WDI9kp7;h&VJXsxND{a;&Sykhp8Rggs
zNKc2+?=|Pp@a8}P$kNix%v}(k8gzR-d3sf`FCv3_Y^=$^KyHU%`pBf^t3UjOG0qQt
z5KGpl^SpS!w}*FW?kU$kY9UN9Ep8$VCHhk8k^yxzFn7QO5C)WI*js(tq7c0_l7DvB
z1LpAm_#XAG;IyI?^kc#4c#nc>Uxh5!`gQa$kQstQ#)%wQ#G})Mz8Ow$ENKDc5VD8k
zKCU$N{_T@q^TOQ|&Q*S0llX-d=j}49OFwo&eDa5DMS2WJKAx)g-<gI-+0u-;bZ^TH
zBLKLyF-{L7AmDi791kVU_mU;PrF)>?>`89iGe)kpjNUYD0$deycrv1$otm@oI!&zj
z(e1Uu2y?(z|AYb^H~GOzt(9ktGnHK(kKsr5JV1!Le*-0o-mh|BxSaj#5_O2#NDs&Z
zpS*d0cOt<T$eu5DC4pzJdB)yCc|rBuiP#kO^_2IW*hIuWZT|1x@>;cgB$vPiG8Jwu
ze`zp>gBxuXyoIJbDxsBVH7wCS{aVqR0+=}TDyKK6h)m}XcI=ZKI`qYyXzD&Xlt-Pg
zoH8Jm6Dcc0DOS587Flv$O(tTFe0I8&GB0S~d^vf{b7H@8jJRmJ&p`!d6l`e$#Usp_
zYbSr{bppfq)IfGJzCIbr@BQa`TF`sVrrk0DZyu@`gPFt{y#3I+Ei#$mE2O@G%~5RW
z$<eY3o9@8nZKzH~lA?!d_}pff?)_yZ(Ytw)gQtM##09t)a{`5+K&r@W;u^&4Rb)_`
z2Lccm4Hqq!QI+fEh1L&0yz0Tf8TsW^FAf=X9FVr58b7=4Y~X5z@<q?@lyu4n+zwT@
z-$~zlFqi(|T~`)J0z<s|SjbQTfMx0t=;yQbKPulb_qbq>g)fB9_2Aq92%{*1W6+WG
z?Q_|d=p?+^5W^l~*=H7;Y_EYj-%Yd5p<xEm)8^Q<Xr967_@(CBO_`vTP_is<{S3ub
zKtFIKLA>UUtMgo+a~d-5*-I8@7jsLDJr}s&0Iydz!eZq&tx~c1Gxy#Y=mSeHR#s1e
zFu+hWc+$P%fya-15+L|h`gej&?#%FE`f{iKf{N&~=y<SI<P$$|9fCoHvP<DZ%T?ho
zmn)S2&T?f)fuD7zy{8fMu<WkXjLWC0vDo|104up7)FTKHfphcaY9};=goKi^MQuQk
z*RHFzp{f%P#Jxp2d-Q=-bN6c8%+9NyTFGUyKLmYe;Ip#*m4Oc$Tplh?G|=_${0#gS
z9Z`1PHTPK!cx)>0WEdti6g2^voQJG*iV6zJTrW)5nsm^)`armDka~}aKZy*Kk`21U
zp%-08+oAfIoey>_4Yr4;>Rt$YmBpkr-z@AUxKq35-!?b!;Nqc50~m=!BnXQh830wq
zTtHo{k~E1yHVt;93;0>Xtcc&5v>|Xt*jb6jm5e*hJjI<E0ATwFF>*jeG=qstO5}mc
zU<`)<5ix{Kax&GQ?YKZD!~tp+@!D0&T=XBr1h{RGQVud1{}AoxZc<!J>Orw}>r9M*
zUePH841}|PaN_z(#~nNRbc@RWQwH;<jC+Ouo-UQcn!TF*><th20vGIa6M&$T9Rgce
zKl!n*PbKJhmOagN`DC7;Y=7VOL+`}C^iTGy)HWvc@4bDVLfQh382{8g5lu9EwvK(x
zoqs=FY9q-3^UuoE$vDG`*FCYC8`Zt3`n7o?+=Jk=d1B~c%v#=Tc>UR!0T3mWLY&YZ
z%vCqFCLEjG?~yoTsu&qQXwroAGz;?vI0bar)xWFdnCRYJ*%jT3?F#*H^U=pWYsOsS
ztgEvfa@>2$!vcD0W)#s`<btAFu8J6HX}4tKavTH;JRVdRg25$dbTXHMdQBuj%;~fl
z1a<n`<;^E<Jt#i)JAA`;OlWuv=}?C=1Sni5F@GMRUt%P-Xz``^SwyWj>c#oRt^`GS
zy$-o!-tHB0<4|Mfk5JV!Aj7v=qOAjuwh&_ffS`FCyTNqDL#Q${Q?0Z+s1nEWrlo@A
zkOQ1b4?!mPji7<DiqAxP`;bxq_J_myOS?IfC20T4fCOBDO(1wHLMMkJgxsQh(6a*d
ztw6miit?&UQ2p~J2uh8kjFx2e)Vgmke{7}80g)<Lccn_xL@45EaSl>6px%vbNCJ(0
zL40e0_$P5)R`uYs4N|8$@C8%B2}PZR+q|yY_e8&{#3dj5iOp}>b^IGvFVqt~o8YK{
z=@`2hX}{Tw)xVRO1@%Pt0m9UleXvaqCJ&-*<IaLqoWet4VL6S4xPl=o?6=lMOUgaX
zg*2w&+^u}eJhGxZsrFuu7c64HRb>t^9g~IZ-WpalIeF0=-mEUzE?Ppr-V&QpB^SjW
zeWl(*4B6!`8#V`^33d*|v(04I5vCe|aut<~rhOu3`8c6>!Ey5)+}^-~qEBCpek36F
zH2sk15;i1YQP0Oq&(W+`yv0sMX<Y;joT0}x(ch<X4S{9uZ?9XCGj8oT*OYm+J@3di
z`_mgaGy4DB=;vOJW3NQDV^x(tQO;oz$qTACE4$7Nnx_7I=XwW~spQAThC4Qb@|G9#
zRTLvwYMVpKk=A-}1X895N*#cjxSq>!R;l`B-!2GwTXDlejd-BJQ>@jq%FW&zuRGT$
zuWkc167+XQ18rSTJDcof6M^=-j%)>4*$@aieWCYCcL;<mLo_};JXwE7g9@!2bi!UL
zNP06>`8An)UjgfzP}C*QL1=ExU#qTAbM~^wu+W)F@I^sL1K)khHq^bR?cbaIQl%0e
zXTKq}QDv{m=*tossaV;;#(R!g0)R=ml4n6}^dpp^(}&9tFHx=jn|!Vk(y?Q~(iW<S
zwnbx(YrZV4L_7@ZjuY7JCmTUpcw3WjV$pciGOZ)3HjLtsGX?ou`+3*pPC%>IgugpL
zR0q0Cle6=fj?aQGdHenLGt}}0iB5&UZ7T!ZVdB$}W4iF)+`5Jpy5GM(b7Z+Z^upw6
z>WO;w!tctLTvV7lYsYK6_+5}G$@lloE_Dk=v$xmufh~ALfGRmRMgE<IqMZ+$hgqfI
z7Z!^B3;v^=xgQ07B3*@GkNnml5Pqlv-M8y>1%*M_*jO-!`=31Mg28uECy;(>LI1OC
zC8`qroosdWa>#wiuVgvJV|_TXt(R7N_?)pae4Q#;?BR;FKWQ1VIY{UYW^*{4cX)&5
zIO!A=p1XIs1w;6KqUr8NYksW!#O0ze=Liy=MtBalm$c-MaL(P@uCemPEm~-$zNpH%
z%MB%O8$ADen8AOvZs{+#!(hV<vRf0D!<3x!9ep7S;HL6knOTanbskR3Dg1n&X4K6&
z0rz^)ifO3+r6jCURL${OFbr+Fu}&D&c=@fzPwOT`!2_H!3G`T~l7Ya8sfG-FH+T;G
z%KCt_&Vs)ct9)l!cJp1k?7PlHWl-}BRXbmSfD{p^#OcsO0pc0vmV=cBDwaaL<r2g0
zKMh_(PtZ#V5ah53(3loH?`hpU`jw#d3O>e%XhYJmQvBlC#m1w<!|2BTDNwhR3CNe3
zo}LJN?8MpV(+FA5vwBTvn=xNB>9iTN`E1!Te7zEy58j<E`_qlEp<{9mgtQb!vvPXE
zg8#=Zgk_IV!f;MaOx?l!Yjw-GqLvM^|84N{hMez$slXTnkqfajp?yx<ta{L*85*u{
zG`wu68c8!ed*TS>V&%jBU*}0=2WYl$0g)kfJo=a@KI%O<w4I#;Vm~7*53N8Wc>H@c
z=ar(xmK2Gw)tlK0I#&1>k0ZU;ds1kJ2KS!YtxYtm>_f$4ywqydF>d=VzsZ((2I^gu
zgLwAu6~qtoix4kkHCUNqLo*Cd72)2EQ=@2K23P?a%<%*hyns#t$y&h0CaN{{H9+O9
z70r})>|&Dy20v<|%l;$au2p1zcU-wTmPHisq?rfG;kkLZ0$*y_esyHPj-{L|VAiuO
zj?EE<H`!?@{=9+FlU(C`m(yOFl#_f1^JY}KJd81-ef5_pl~x#Yc>KcGG4|5qvuQm{
zNH?_c)BYvdNC<<ie;l7Zj!~_ZdxUg$!(6$8f2p0SW0*n-Z~nTT+JjnBN^0H?FwR^)
z06#_$cJlm*9pfXoj&PZrs9dc>6C4c*Dvwp{cx#XwvN;|B4zj3<me$P(dweypHI9;l
zhUoOfR$MyEQQWIHoq=iU;1VIYe(&|+IpY2ZGeKmNjrGM9h))Y;sS-gSbT4OnHw-==
zK9?oU{rB@1&2Vc2Lg=T&7l)t6-7a@>G;)U-?)HH<-vsZRf*ObmM0hH%8<}ZoSbuA*
zeRT#>l)jPmH0M|S=9cJ)>1YlN8Btq`r~UzGf<4uokw%nIGqv7+eL}Kk^Rqh;{ZH;d
z%Yrt9!Ee%4ak>PEKlHEjHXF^kY7PYb&Jxx%&HR7y3Whw#m|k(%sj{7=@o}V@9PD=m
zH)`>r0h*kW1oet}Z~hP8Cc!`X_<!dL`k(oih*OUEs#wf*gw~iyPk}#T!qV4s1U23M
E57v-B>;M1&

literal 0
HcmV?d00001

diff --git a/sum23/projects/p7/images/gradescope.png b/sum23/projects/p7/images/gradescope.png
new file mode 100644
index 0000000000000000000000000000000000000000..a46c44d2a9b9b8d4b76a9721809d2e81754e946a
GIT binary patch
literal 153964
zcmYKF1yCGKv_1|)(BKl>AxLm{4VqxV9fHf^o-C3;a1ZVlTo+l~eQ|eZad%z*y!U?h
z_jT3OR8Ljc^i20T{haeWC+wSwJSG|`8XO!P<`)GSbvQVbUvO{;rKrenPkfgYg5GZM
zZtC)%;VQ?-58gV6)>6t+aB!d)^k-9~xBh!)1wA)7I70gWF8D9%AJ5_7UJJg+NNIW-
zAFsZb)SRV6K34^ss!4wMfFMiHrKV|!X4uWPlKiz|<!fy+*gzj#QUOkN05>Ko78ZU=
z`|4=H+(Z{1{yQ(02^CUW-VPjF`E8nFivQu@sm&`LI4<V4x8i`jC-LfL=W%%Kk03Lv
z>E}mTX{;<|Y+R}TS?2#WFFbT~bU{JE&XEyAHX8F0yV-!Ks3>kPgrOlF=aVJA6Ev-S
zxk~SyNqHCl&X>lcN;$g{msc1N-aq&`%tX7qGYI{{?vs`P7z}oHEsc04>-2#7?5!7P
z#2TGE)=zFP!YwQqY<F^?xNIU;{XRUb<oC**9>h}U$oMVM@q&Nwh2$_Ty$6m{%b-a}
zNa2feqSSZV|JRz`Qd3jAy1LYm14|n9>+8BY$sPopA1*B|tgXucb-&lcRF!*kx&mkZ
zUM}L)!C(2Oj7vK6Sz1~KJ>DF#+$peGSgrZsEUfiW`W9YyV?zCbL?K&{4xL#(O`}<l
zGW6Ghv-m56J$rfm&uJMQB)eX#P;re+#!`MqCMV~TPoD<O&yz#{ukA-OwqK2oj{dH%
zkHYX&r@<v}0D+Ra)_Z$pc6N4(0l(xaeGyH3uLxROTi+&xKkj=Cl8;ME3*H`xDJ#%4
z+JQoc?48KS40QGNhZ;j0O_;kO{b*v@*uR<zggkvH0_u9*JutPb=QXOf*U!<<_ZJWy
z#T`QzsREx@d^{ZbIN_9LRoI}@67*1J*8~aV|C?86XtCAc__(~IW98B)*L&LgGEmLm
zRS8B0<D>z3>;933i{ATz*@E=F^**Y~%E}smO{sBjTU=sd&{DmFX{90l!-D{X0+A3z
zFnLldEsb*g=qE50PyE~#zhgKqW#&$+@7_UnlRhUs^4sk&Eu2e(Dy%eW1duA*+(7;R
zRw^%zMnpu>4@F6zkZ_k%K%gg)MJK`n#%=;C?=})oma*5cPcNl%f%SQOcXVX0inz2}
zoJJoTJ>2eu1S&M8<RwjI?i>bvAlLOk#cU<bk?mZyv+Z-n_+F~r%c1`_K7Oal=>Pw{
z`*T+g>nh@u;&=>HEa`(kJzPr}c?iqYm%-xaw#(W^rR1CPF<bkS&K?K5p_17ZQGDFo
z+;JHh<w<rt{$+1JNHr2&6tF9Dh^NJ<qM}k=UoW*=e`Fb*XmiX<EDE4z&j=mp(h8YT
zZ`SZ2U4(y|klA+mdR$^$K~mDV1121h-zmC?Q6j29F-d!gY`21;S<z-{fr3$0mX;nm
zb}uV?vQ)o$b{4V=xo|pNG)$6}m!%UHCI#LF(~7luH^6NPZS}a0XSLaVnH?M)l(e!6
zZvKDvD5KdnTcv~D2D}SM)<NfWT+vO+l<=pFiz@;-EPEQNeEn<b_19LzL=6T+pz^;=
z1?QkGEG>17jj0%wl9~@hbuEC*X9^%7iy?K^2iuZnceirBIZlD9AjM=nv}Qj-^PBc(
z$Oj>lzj{2@G!}c=sQWGwr`U~Dwj~EOfW6q*SZ=57TGhSped8=M^rh^qtgI6`ztJx*
z9XEc?dDPcgWKtddDa;hDhHgtZi&fZ<=R)>24&lbxml_RbvTXkK>aaT6m^%fc7#~E{
zKAAgjBnR5rKCFP@s!?Hnmx}|%8bw&qlw#q@MM_%pD|*eIM`(MGH&E|-|C1%7ioi}x
zGXBmKu6*1Dfp2VF?B0r;?Ju`a0h0fXeq3Z+Xz_9?@U13^Pfm{5*<pc@$4`a*-?k`z
z1YXDC?yt5qG+V69RV<$mL$nUnZy4V#QTblyX87OC9%vDFRtEi4x%qBo>_Mlcy$4s#
z{v^Q1S3zAlQ5?q-z>hri@Yk>rC#DMlrA)Cu>?HIgQO;i8KBkli1qEecc|K0B^T&@L
zZ~iYjihSa%zFn}M2age)rKxzJU0Vm1*{DPLZfX80xwZ=WeOshs_#ylp%btD!VeL|_
z`k1u2b>ysh*tbyFe|R6oUpDq4@J?Ljk^uL<<tkLbO2A7%S6>$*f1yah_07wJF8YDU
zWK@>rOxsnD{0;#H3u1y0c6@YwjUgyB8<dzxASx!t_5Hg)xv(?pqL2{x{n5dq;anL+
z=>#xeNyAul*bnn?cb17rVw=n{m9{YIFy1v8oB3GV01JGmeeAi3fG!j!;o`0eWo$~^
zei3yyK`<1f3>&6@JyE=-+Kmb^_WAHTYU<){NT&XH&iR0w6hGu4*YwaOqjV-c;Z6eg
zt!YW{Shoh<o-7YPI4pxr52m2H&Gte80sPd*3dF8%ZWHBtJiJb87$?j1ecAq}e?7`t
zXrz&cJkj$)cDD!Uc6_vOj3gt@{*`?-fHpR0wfrIsv+;ih)o%b#|1zw)MNZB(>CKU1
zI<EXWe$>N=Vp96?V43>GI4z2dpVr-}xY;5D6$ZAQmNVk6@H`Rbc1tNG;-ah`j1?%e
z3|<j+@NE2a5?mMPU_^HO^h3gNXEp4-XSB_omC1cWTX6i-S!9-HRLT6p`_WT}Qg-;=
zq}@iJTW;<uP5Y567Ld+FT`dZ$L&f<S2;I(harF}8d(Xxhi$)<Wv#`Dq&>F9!cYm&}
z4C9^7fYNuDk&dTL10jy+hlZ<mY3Fk)*TsoIY|QwMP&~a3TU%T19JYXt&z7DJrjhqK
z_<EgMxmRtl{pp76=704b!&b-ZI`u~SIs&wCqBTE0X!9S1%+GL_(u}lnI;&HQjv;Ly
zMa9|CB+3r|j-PB860(1|^~&Jp{}((DC%RlE#5(3Quu@;}94Ie_ot5OW!0*KtUDns9
z*I6+AU33TK`KBQ3rxn)u^%2smr=v5T1nKa&tm_Ky@hV|>v8Dq-?oHr$egoL+(=^7C
z<K}UoIJUdo)lYCWCxR;v9<J|qGH@_`UY*ybdW=pY9(<1c<RSyIfgeV9$>ANajI{6E
zP{jK&x1j^ukb>{BS;~<CFYnHL`PTU(G0blmLgE0tk=wHxtDc7K<2DVs2)25O+{zKW
zk_}yZ7(N@jzV{}Nsjt;ZzAo6>52pfM{cSFu0=I~*WU}tKemR*?KOOgMn`qH+Yh19+
z4$QD1$J7tb1TD$t8V>Zt#%EvNX)|tga<eXK2=;40ap5<NojHb|wCVBTHwJ_kXsnK6
zbiHc0ou)*NU>p~1Q)~FX!M7pH4+Og8X2d!3ovR!;tF1<x7G*8qnphw44+dc34shu)
zOl|34{YkveVFxj)ksx6_H}ap&@vFH=G(*z0ty=K7U{Jg&_2XLEnzh+7k?Qxoq}X&=
zB#S246X!pZNMOIx`B?Asd{HDwRd$DsEEcu8%H^=cQVjydNo^5yXr3v3Hz>%YeVU(}
z(`L7}vVyQ~C|OFB1vE7Uk)PF-?pwnp?>(J3EJykKvun=X?bHL7X)4|=c6`>W@sy?h
z@emF@R3CC=K);{J^$m@P=!vDlE}`e^dAtEQkBi-HL<y{QAI<`1rVNHBC*eKo0mEE*
zikBP5rh;DQ<k3zgk!NseIm;m@ra*4QF2%}H%g4GS5Rd{^>g`$vj|+z-S(`wo`!p+5
ze>_IV{p+dy@t4mB*UG)`J>}^l3J%D1!7VXlen9g!eRWT*`Gx>oKCXL~Pyrj<Yl1El
zTtvdI@3<c-v1A&?w^GozbR}LozAyxKbT9FBm|hoyYAOX)n>U=ahKI+?YBrqW8I&#0
z1w@Zg+f$!XGkRN@@Q*_6-YJVvdFxxzUNQxCK=UqSm#qi~Looz!N8IIN*hh1Ne|?2c
zt*Q!P9|ouqI@@f9g!HTSn;Wg<a6Npo51Esu>grT+tX7Qbg~j3=zcLbdI%aY@&ji|3
z2#BgcI=DiG%+0<|$ti4&4-Co=@xhr>V*b);GwclsG26>>?%fmWVcAfNe9u&1kn^_R
zwG?~T=uON{?=WD5dy!ayRDHc%s~dSqD<68?PWXsbF^&<vA}nMgju>{}Xsej!TXo<l
zfvj+qvXz#M_Y#*(KUW-L%I{Hsyqsc2NC&r(31j;pV%Kw#uMfRfp`}cW4_`2wcVWfo
zsZ+Vlb7jDboKfbz7w@hd4fIy3TV^1LL-|~NCHYa^L8)HabQkSao^b;N$02AK(=#as
zaZ3PxysQbj#AdIL{#LoImeEorka4+<>r%}e(9xjNon@Kw1iecne<nE1d0L+V7W5N1
zJVo{Y8+htj-nlclb#}6fY5l`QzE)u952+`JOF=5KDy*z1ZT4^F)U>s>7C`?fA7Wnh
zOs>v;`O|p+V&CSP^U+0ZZd~v}?OL$^mbG=f*E&O1Iy?O}G9I#q^#%j;!l$Ai%1&;Z
z{%urI&xHvGct?9XdN6RO$({>n+cu>1wz3a5F^8W0>GSG&<x5H;#5w4AYzqr_0S<qT
zWHU<oUQx_gSkov$Et#4B_xXPNGs$_oR!vQfn&OYTYR-8=VzsI;d|pp&g~;}Lv0qw5
zl;fCvf#ZB?$&MVj=c_k8ju|5E#wunoD|$Kl?xi(Sm8juY=~RQ;@y#^S=h>1<sSPgk
zfe++YsZQg)eG$mET!kxJ#_vjNmhH1WPvTr}nEA_1BFaALKtJxv3QQQY8I;zCo?58v
zPb?8AM0e6mzphc!We9@<%JjHtvB)HxJt+_-v?ca6@I*|m&p{|kNODI{n;>h(?J!v8
zMzqYw<m;YALU>f0a;Z6q^z)Oc@5h+v18bwh)gM1%HIWLqUwP@UyaPQ2RI?8*d<g%b
zh#5;7or%ITvxIeic9Q=rK=PFQ63Rz|;(RTMI``a2DzA}Pf6|;6c=<u&tBA3?NK>b@
z)p8mPMe4@~k$J0<P&C+kH=>GuE0@(jL1tH%NV+7IhJw-J`)ew%-CXjHTkz!%r$AP{
z79-=1C+Rt}i!GeqU7HQRbzg{B&N#ViW6_L)J&Pv=)vwK2D;mGJIQ*EGzC*_Wm$nfp
zXqD>q{wcDuHZT8}N$@DJ+r?d#Gl^AWdDCeDtFvt$&fPI*MMuO>{j`nxSTsjezDb_H
z>KT{pCS>B%`~~Ot-5{_rcu)*KT6$J2_6vd8aa)aL$B?(nl=F4tGS;UsS$0i?u!R;M
z5^d)B+D5P5`g*M<n39Qsmd7j8YkL@0|5jDv{2F<{%cYwQ(ry)&e0ZwZlIN9dTvEaw
z&)5*Q@6saO(X%J3+8NISNdpg-9>m&E5}Tvm?1#km2dFK|n`fR>-k&Z?_W3~4Mvvt0
zA(Pn#tQW&Q%rY=KSZeS%@)UaihPM-9v<if=N_1!KW~YL!uJ78OUhc}==<!!2lC|`X
zu*i8OGwCSeCRg%g%V-xnJdT7*-5P>VA31q=UVO)m98SBVp2=#;Oq*ZSw=|sh=X+f7
zt^|%;mHvu$IEs6f&|7*bzU$-@yD!sN4d~1x+w1H^*=gOsZDQ>*xgcLn>1a@QRGGDS
zMT?I1u!LKfD2O0>gKl&lVf$FSYsOZ1eN+;WX~~M(i7S)2iLM*$8J#rdC@R}Q;+ckV
zF5GzwMEiZV6E!-Fjm8m@y&ZOOG;Zj+7JYPPM`%86He_aQGp=+Qq=Lic+kdXqmfmT}
zd4KFZ6XElaLDm`Kb!hHd7AFFse2&XWg2&uc*ZH9kBb@*fk5KC6*-G~pSxA2t0VizB
z@`c8^`EnzYsS>{C^NEY<TM-Ml9EPalgZ$l?%rIL@M^WYfG^QRKZW{04X;*q)5ZTJv
zf$U|?NBUGvsw{K<;iPG<6O7T)y{cp6UHhlx*3qf2DDY!3UFxL8Q~g{qk0|#Cn=5;N
zVtd;*OyOeuGw%KCEQ$W4)DKEbbI<o;e*BSjNm4#Ck*#2ROXR9{=4OAKu*?p5+P-sn
z<%`WwLVs-$mOBtwri?t>g&V>6Ap&ZnfO!46VNj4TARoe2YqJ|QSMba-dvBeQM}G2O
z^x8~fY`jEOak8j!NnHNu-ZewW_LXYAzBJ4+t1ZDZv?QW~3K^U9W6_1GD3+I(*J8y@
z9G(2m$6Yc3N7ng+!?3;mEDo?oZRusp<{_ke1w#npchnCfIBhPoU)M6ZzkBE7>pRRF
z)@(^rX*-F;r^WH`@Ng-NJ0J1MWA%{s#Z~yyRoSv&B9m2sh3G98QVi62@b~!!HHUlE
z3Fvq%9Zu<_y%+IVV!3R@rnt<}x6`-nS}!F>xIdg_as74$DLjJd;h4h?r#U3NPRlc@
z3@bQqYsb%B{Z$vrKH-&2cBM$r6G+cthge_R@t#~Ydm@Q<&hgkS9&55@bCJRvN&lT@
z1%b_zKOL=d?Tj{D9DkGW7A_$hR+c^fJ)6R1$M0#Uh~^!W9@sQ4_Dxqn2u;NQ1@(Q~
zE*TZVf;o<{KagAQ@t~fM{R4}HF9H?fK}h?%^W%mpGc!rkw(=R7W260;3lrO9db(u|
zX0x+aEaC#4ao=-5%FT-Ny#Q!FnyqLM&*9~OPU(?Z#(-M6^Rjw=Bj%eAr#oN9y8nAR
zk)|GFQF$S(Fh*GKJcmjbUJoT4ROlXO{MHW1`sPU;^ulJ+7D?nUoXf`aMeB4RrDIdX
z`rRY{JU=T7JEDmM53UIndgoDuao=Di1W@`!RKMvK>Hi~jh}z=IHU=S8J~#T%fPm?j
z(6zb9sM%D?m_e~+(2d2ULbfNX`1bZPsX-A10LRs^D<2ctT;UfAIZhy(3G!w_&Dueh
z@&0rldS!h*3cCOc30DjMck@4Mz`{6?b5s;QQ$TWMX2OYw=3xmVt$-MANTAO5Do`Nf
zz^y|-%IMWMp9Kp{eJnq6-?Q+Z{xkE5+lRjcQ!^_(#M=l)xGe|3-a3BYNHn4RfqVJM
zxiy(K!mrDZ0`iwxLH7^8*5<bl8*^`8?YrkYh%m8;3LL36?|-O;t|f0{om25(WjfG-
z{QNk_4vjc2g)f!*V6wy2^STzDy%*f%s=Coy<h5jE0>N}mgEzWKR~q`6c+u&ND$NqV
zC@YL;LL5fNWxB&U&VheeD9H~H{v1TrFYZdUE(~LWmOFZrFeI)|)+kS-A@MT+!15W5
zU>Q~7L|F%00}-<OO>o41o@SE-UBheeC@qfeI?BsCk)B~a5jpk#p!2QexbPT`^mOvT
z4t^(Q;X*5+B^$fQkq>RY?9*+98e46qlG_n+@y*>gN}RjMiIfxWXIB!UJDEW}!+yP$
z0aS%a)~)&)^I)zl;(H~3Z-x*vSUAGZ-wcfRF%(f_9(kaP^!419__{NlriBifCKTpJ
zx)Al4kjEv#oM$5f{rh|h5gqr_S#%20qnP@ihz3a^rDren6m;fC*ARY&9EWvD_bcbA
zwS1wWP|W2hHlW#cbl94U5g}&G@3x7>QRBJsMrSyKxv*dD6ltFCWh8+Df}#A(^Zp~1
z)aB?LKdar%N5TPKqg?gXrDy)DzO!mgRWkr`q14crXLJKE8A4wU=ChZo;_D}Qhd`K^
zekn4%_m*1V9d}9TDU}BAKIf(X{#?#^ZENG-u|)i4331YP!cE;KY8hDZmu$c|Bh6Y(
zOr_zkOa@>b%aLEg%>N*+^jhaG>`RyKc-5f+b{K4bs!w%{3{PrH%<i^o^U9GAx12%(
z_P)+(U4@NH#e#*y@H#&un-k`8&+?>$r{>=mo=8B+xG*)P&Tyd_bSR8mEl4CJw5XuO
zI<h3{eg8|?3;67`_3FGoVd_zGj4=QQJFbo4vYC(+@;u!cibs35{1)8qPiz_sRXH8b
zBy+iJA$ojK^j}%s?4jy@I_qHB^We8%2u(K0Dr6_XbHD{LWj<UHK^)Fj$-)Py=G%jb
zm*+=EmBG;KgYL6X)htmx3v%<x)!L4Z?2&i;bI4Nmukotl@mI|+b2=p3C?X>BI;XfS
z@pn2KGvb58Lp>(wx5e}VWzXht5soRoE{Fgx5o%`{9;nHEX(Z3Wg|Q$;!<OJJ{B^7R
z6Gd9A%Oxs1pQ95ea<wpfH4N4GahYra3ER^nsV@l6#ru(RzZ<c}=x0ZnLivnKgmP^~
zS#+*n!44>WxOBO<^6iZ8p~`m9QiSwhk0Uexc6`=b#U%2)W_oVEA9f5I7724$wWEz)
zzRXI3W*L$-ZMg>AMvxdWR96^n_W6|YI#pusP>PYVQz=e^D`K9jlc>JS73Q1D&!#1E
zaCBVyXL4JuAV&K6h?4TUC&s7DXNM=mkX4D7)gXSqozqI;8^OQT0|}DXz#mCRQ}+qs
zaByI;n)=8AeMHOyFkoMI54Z2{F2?TRy!AiYG~5`V(pK7RoC?6ZC4YEvKE9Z=Do^D?
z&AQbKMZ-+;z_xDA8PLei&E9;<{a5D!3*jz~X#8gX;DF#s8LH*@T|()3A7zAnKd~RX
zR=__h86oj!n0&QHNdrAES_!FjV@rwFA7h?smsRp6G3CqmdQLBe-(;8?{sgYY3_hFa
z2SvFt=E&n?s;mBCI+<yAOlo6%Y`^9M`&rnpyhlL{1wZQ2c{X^qs6kwuZ%O{>b+C8I
z)F&m0FtD4HW&~<ik57Q5!SiGI(pIc}mqkj})?c)msm6#w_w@I4pM};SO-dsH{cLa?
z{#Sg)CNL6)M<JU#jvYk2tK&_fV?Lj!!m!&k^7vUSHWbkkihT9>@O^1B@~&^>Q7XYr
zu&20u4mlMZbB{S$$5zkCjy6*+1wOAJuMHbfwWXA5OXwOp_RaOL!221l+StVk_EpM(
z1xY7C%aUz-%1}wOr1(qus6?OeBw<3wkYG-o<%U-oTGxm-fBz1g&s7tFG7?{JzH4{a
zLsBW{PhKDu0v<Ju!+mf5#oN;XIY*v{n!&<gazx7fxRr~u6G0F^pu&<&yTH9j8pl-}
zo!zfzq9`a()R-_jYoDhvUeuU|<_)Y87-w!eVE2ZQSjf>J0ULtoWVeIbdxX2RTKiIL
zH<oM#e|qav)7!UPY*Y<xL!)T&-)(3;32*HP7DM=MoxtQ}t~-((P(5KwAql8h$j=eO
zN%Lbt4EsH_hy>yvVkelYzhti@MG5!e0rmP^WAMb2>*$0o5MUa44<EK?ln>{Ql!Rc3
z*0mllMdUzp%T~B+RRouVtU$5x@1Ds$N-9xaQ8>r>`~-le5Hcv0p<$bpQ$LymkW6CK
z7{gClI55L1O=gZA@g$;7rqoKv*wCVp`kAhtvDW@BO=aj#j*GGqB0?IQ;jPwUNXyt5
z5y8%gOB8wiHQ}#ewDZhtFE?UUUbUMJc@63PX6{;+GfoQt3O6nuIJx)<9n|s}EudrT
zs!!t|ebK<Cy=-8|XWM}u-55;Bi=g|l^F2_P`e6qC#P>ryTEx#vS)K%zyd<8VqPI-V
zLYB0&n!wZTs!w~l)88X0%Kc*w1-o8BQjkoFz?YVUBeqY9O>4rNG|-oBp6`Oe_X}HF
zxF8DXPYv;G(VtiYo$B#KrS~wMX!Q`>C71L}R}Q<X3$e}6FMJ_@Bgse#fSJ-R_u8x0
z&)0;&%$C}kqSR0xu0jpyx&%YYkIwq`OK*CR?m5^#0VtC(ZLvKbqx!)sm@T6hkYaYp
z6aALa-uJ{`tsqV>#m1F<d`$m=w5oO#T3H?#z`sFenTcu@_PsJXg~-w@vzYGia2hFs
zh4h)=^2+JL`_HUYh5q0$%Ztc`bO=^%zEjcH%wGPe5{+QWJ%}`-l7Pb!D?+guo=aY)
zNQAKj?I82JI@;LMGRA;<VcKG5Fx|WM=9|1q)VgrVN^#r~Wo2cSVn&9Z&YEbOh~lb_
zQQ&ElJa~W@x0m2XCRP`*#$$XM$zRsMUCL=y7(|tKVn*c{+^Ujr)b~Nz0kg8mNGI8m
z4ut~|3+`6gB&6O|I6$VwYX6}S`})<EBcMj?Y^ZZH;3v(}MwMTV4)I15@}BgJ@XzJx
zsJo{pN<BZ_k4+|md2^F*uQ>N+@}U^}9&-B7g1@=q!PKnf;<QIWc`Lhai#_;dL<iZ$
zukQzY74s-u*3Fob`+@ppRUpLfjbll<xK;8vnA=~fV97X2zCMv&>>C)^KI?E=-Pq{1
zb`zIc20PTluP{SaDp<q9wuZ|gZ6DTC)Siii=zsXn862*Ry7{|_fuo&}WUBiAiB}z2
z?uU1t&l4{iHt9uK!W9+L@(GY0S&jEbn%r<}4){m$Wy1QG<CAi!8+x|s%NIFG+SBk;
z*3Cj|kkoET`5m+1oMcR)wJ+ysU~7^uh`}8cr|+Y5i<03*U17!}rv+V`;{zMHRcI#D
zFD3K~_i0qes;n~8ziSi8wgAWac&K+NnEPvPUrqT-2dFV@+u@I(0Hlp&qpQhzHgvVJ
zY}ss`n_82bgb5WA?@STWHBXSP1enn{Vf$ZMYVDR24)n%^TmtC`y~fvI^Twl$b5cHV
zAqTV%%e%!!ToqEdcR-VCYt5~0Yuo)k-w?RrM~}#{CW3o3yOme!C!sEFZN5<)WY^+e
z#kgw@vNTgwQg495rkL%0E5&#rH&aGU#%Q<F&>2hKe$UUKNWPZn9xhN>nWs-%y=;pv
z>ki^8SN>#^BXe{m3}jOnm0EMEW|`^6Ks(3UseKc~k_2!6J3-UUf)c&ES^8q|um5s$
z{`hNfm&iCL!r(is+ug6eC-;OZeh}CyAh*smbqcxdSm7-X&NYSN*{q~%G-qUwx?4H<
zG#QbKKyI%dYvv6%qohx+8%z(x$P@Ei^R}_)Xf&LnX!%=HcAW4+8MTIq2XY9jS%(}Y
zxJRNT(y)9HLdldDfA@-P$DbaX9@-{R)d|Bx(6kHAWq1eJb>i?GMI{}7Gw^+_dw{5{
z+ztclA~{li{%MM+u`$FWH6(vI|GN2oy>v(%{=_I>6K8rO>t2!4-o(Ajv@xTK!h3_L
zKAN9IH5eG!@&?eV5!zHwyIYD&%qm}_<p|?Dq#L)b>Z^fz!P1tjwCnC()3r-ME1Bou
z2PD-A2l+)9n&ne7F0npF=RcToEKUtMp!=E|<;3TFVjJFBRqR)vqICUgV^Tv@^AYbX
zCtaoeo&N8?r<l^s+W@MVj&>8HLvOGrL_A9C_S0RXYdQG9DD@Tsh(6Q&xX-{Xksou~
zza|YrHkv5aYqN7g3K;B<l=y+@e-b4bVA?Q^Rs^K#Gxu9^oUM0_!+AvaTPy1DKlJ1X
zW;z>??C>+%-27(+wCbfZ+oM__vHZBKVL}oe0-_}2g*@GSguV!S4kS->T$`T3wak3D
zd1?7~M`M08!)?hfE3~GVxNUTfRl1^)84?rd9|utIa{6@BllWv4a{6`B$O&TKUSoou
z_`=-^!(7s2MY#7|eMKu`k73S^8ylSH*oAmFX-&T5gL9QgI!PIMZw|uO{3w52rs^E~
zHiw^4NmoK1C`vNc?~T^Yp{5!FzVEYLns3t}e|2J%FWa-LKh7+O={#B+=5qVY;r*Ay
zpBN!=8mjzjJ^Hgj$s7(nD)EsgVUM1k-gK#KdUk5LNcC*ZdnXRp6?O?7zTZuEQd}hh
zVULUQyuX<}8}WazBmk2l{$a_}uF!|@M_E;_)E%b58@7PirlzM{ZtOPK+xoeGX=rG;
zJYGv2szYriw;UIU$c&NiH=n2yY}=bPJqx*iVb;3e@C3?AY9&7anA3G|r1W2ojVO8?
z4y=z3r`v)}k*iT}Nv-w{t&!3D!M3{c6K%nM{MFH*M<{fEpBiD#_Mq86mWc0pI>gy(
zU5|X-{@zzgR*Ms%QEl?rprkEk1a)j?HgOo!#dekoRV1$>uVA&X7IlZv0*;80Cxpy|
z^{<v;tZ(_NXexz$2oG`<-BEZ>bzJ!lWMkv-m+|=Bx8ypo&+~w?^}7a=2~tW5vGb#u
zOUrm2TjcX4KESLH+vLsFWWGELFNx!kwxGx12fRe=j&P+<C9)mW#Rsd#>*aWUovtXC
zJ;P!KQgrWr)Ly?G-l)a~E(_O<fLlF5UZBk6MpgB`p6EZSX96?v0SVf!!EUtX7{DtL
z)vpHRP)xrf8%}l5)vWA-!LdmH5V1@4<$#tur|}Fr3=Jev-cO^pUZFKPq8~*dI;;0d
zj_6q{k_y`&w^tNIx~+_)Oh8|cziho3c(N6v>~$}0w&0;c>p3=!4MSr*?<%6XM3?l+
z-n<+>4RDJk4KH}?GBJJnV2`VpHa0rhBW<9mlz1l3dh1vA_A(k>(n=$Ua7`}tJxi}2
zWjN}^;^}d4`x32KVZVikoHdmWH6y9Wd@34@S%yJhjC#BGc59V&m(l!;{ld_|8_XN$
zYiI?oRz&TBAT)1OQMzH4NBH1D4}Ehhk4*rUuVYk9Z>RfK3^n(cre~woZy#-^zS0G{
zAYDcw`V+W5OL3i^NcC{+XHNPyqNeqJ-#eox7fDoX*sM8PO^IE%Ja3pv5z6i9>DfHX
z2-#7H!z~^b^ay@E@A{cKE>}zvJj59Nq3u@7bM)sX2xeTZs8zctvztD6d36{Q#|_cQ
zIM^l#Gcve&TOMRHjxaAFbQ_Eic;?}UPuoJQ|BM+)a2Kp_o^j#JGDEgzg0^Z@NR6LJ
z1S#3j>`k5i?Uj^IqoBP}Kuy!3aT3na1Di&V@&*kQKtTfcha9O8&(XxY0{nYLiF+1{
zKif8uu2J)DK_OixR#1ohFZ64GAf;>of)$pHh&$(!uoaExUZHwm2jS@(NbSK)E8ARX
z>^X-h$v&r|^0__0(T?@f^(>JX8wGEI;xaLQjt+kQZ2#})N${491^HjM%#Agbrpf{2
zZjB$Rb9*x`f^v^SbR1vOwV1i3%{ACIT+f^_9P<4OY;$m>xKK<)Z*AZXtqy9wZO58!
zhl3HQx};?f$(V*OCQ=STQi}Op3w~1PcMMF~2)U38_RIgg*VAkCx9ERtqNn_=d)v6}
z@~;8YMowG$&n=wyEc=!I@_Tqc`6u1V&irLBvsN#8W-5Q67g(u5n;V#)V4o6EHzZ<+
z`gm=5gWX*|KhF{9+F#2HYk9pAyPp5RkzQULrb>3;C3$8GibCFnNPo2(8W=Qu08SUH
zi*Ns@fN)G4R5*!QRPuPTSIQP&a=h(rY@Yp%y27sB@`DiG2)7px-dLkoSWTYjnP9vk
za>J=!6FueOmi7AdMl$Y8f~?Ne-E%!8g@XNEJ%xy8@yw9!c>^;sL$6V5@l#N1QiB&u
zsxpB2o~2S?^KM;WNZz;EVcjd6zk2E47yQ&rz#u1e8J+QbHDH%ThnWy><|G6(A08f_
z)MYRk<esR;PJclczI^)G@Xe^5KO)gy+Zw2*BOEUj(j0TM(-tl)e@B~AdVVrNbf9|v
zCNkuhe{%R?h>5>HKecu$OCgY&$C*#oR+%Kr<YeXBm<v)~6M^^F#jwf{iHCa)k1x5r
zuECcK50?og&@9MOl#69^hBrye>ypu_ZMOH-Bw6dr#Ac7HL4&^g49P?B5n8h_4-dWx
z((H%3E~DF5;*cKhqv_5(!Rgi60y&y%9gnqd>6_jUfe*U1KX^PTM58qrU%M23*cok9
z-hQXp_yki>l$ps6TDAC~ABEU6cvXGtOtfCdPZe!s4eMH@ohHA=c``l2c;IgF?_1kv
z?c~E*KQ)MPD#8kBV4B}PJ7Nf&RNJim`mA2L<M|F4(>p}n)H3k0^e!_}P=;7Uyd{QO
zTePdBo%CZHRTk|pz*)$A#L2uw3X^{w6mBnT3)ING9y7Bw-~T49AS!v!6)chxe)Qw8
zoQ8wSdl5=|xWAcaf(lsKr1hlchuFkQ4RnnXcn-=w|G)>5kcG%VAJT#y1y(U_pM`o@
zvvtXdR;QP|O$WEJ^FkU}c!RSQZXKNo=B>AlmpHm2l(r|DvT7>9_`L`<w74$DLTH%J
zoSsV5!a$oAWq!yAx<i|N9FU<^H@2VeJDksnhKsuqjtWUROFthR!qPGwJuB*wN|JVy
zk6|;mT!S1$ZK(-Ekw0Y1Mpy7Qq`Yq{Xc-r<`+KdYB^9Hw&i)8VL<1f*O5pMKDp=Z1
zP#e}rD1!ZmWf`k)w_x4eQkOYH7^8mzh(QZSPtNhhon|!;|K~MXWQd$t*q3;Q;o}b4
zuJM|T?8^*kUs7wqu%jLIjEg5e8ohKifJ}G6*7zV~YR&mprO*F|VJpmICw%j08sDXB
zV__exF-TE)DK?7|L(r0yJ<!?Gx5hj$vSB&A+`k2Jt~yBYtn@e*o3y?by#BUkZSMIT
zz&G$UeBwWmMPQ2H2nv=?4`_D}r<bgqqd@LEV8ZiQtJ2Ly%n?&Rs_)9LTLt=af@xkF
z+vEknP52ZTFblYY^K>+h$le?8NprTO0swR61==`RND;p)=;&;`F<E+~<*TsYIOTeE
zILliJ{utN9(Wk+5kqdy>W;Ytbsu^(6M*HwoXB!YspH#%tQj}7K!k}xGl>|2=B5S%l
zo-yHs<*see;$;54a-VlyBGlC<4%CjG(Zcjf2y%0uVn0f7W=n5{DQYC%bvz2i0XH+k
z#*cJ+!_SE94QYPf&*^}HWoW0_+-fkDSa>5#VVvI!GU(pO;^Ec<x1XnJab0D#RwW)s
z$Tt>&yjlAthC9}u&)vRAu(Qws6yr0m6jKkrrbjYe{BI~rxYVrmbo8>;223XAoyGNV
z-`;;?-Y7yrVX_m4OZ9*^`Q0qC_tB7(emKtmhP2@$)~k*EiMjf|0<2p$0(P6u3u^BB
zFwRHO%l7|~3V^~Ft_uC_jkSNgNf+DJ^Nx0P66T4_Z^FM=9EW%2)2K1b{m0Fu9Ny}!
z9}Gf9dHMT#q|*~M8XSjA8~+9)@nNhjEfYmQ0eReeQj_GrJed+-SE9OPh931Ll)FRM
z{R#Fd?>(K}nV!Ct&@SsB`dWHcEk#{L$6F5l^UySw|6w!JPVH>?@t0xHe`Me3#1D`6
zuI=3Y@PvB;EEUft{F=6Kx~N#Nd}`F=gGKUezuWhA^ObDL09vl^z738>8yh)o2eRjP
z&rRL<ek=!mQ9Ikya^l*5_G#%j&*42v4pUOK0!@lFNv#(mIQA-gO~b%B$9UV{%j2Uc
zdFHnFAF<Dm>EO>jJtVcwSZO~CY*b6hRkitKt4eh{xq{q1_;6H*!snum06ve>KOzV|
zpD*<uq)?HTiB=IjsyxDxsh;-rkINBR%zDogoRya-Fj;y}sV_golYX2h_AyBJGD6l=
zw8oCQ-xa(FjeD6?mO|y?G6uY1p7%AbQT{<j8U5FSfzh`(RF(yn^ENwD5SieTed51y
ze=9|G?W*F#6@x&z@3*CsHuqwQ|1C7<I%IFATpw?H7e~mO-X^EfCwLgA!vlPT%l!_r
ze{Uc8b@f+!@66o<yiT}y-}>iIjt@{b=1$aI{VuX(pvA<>Fd}oX(zyJcvqdr)EF&-}
z?YrR&g_|QA5^fPXwK*y<<oU9>U`4C|3GEznhPDcWKO1;7M$nG5ZY;_ORk<)mB2)7^
z=y$Dh6R80sP&T)`f@qoL5wNMwX!n+9F8&(6oG-k>LgHRtHcm{jBkB-)Gem#A(8g-W
z=#8l^j+^3Iwys4npA8}u9<mHfajqC-q?x9Du-y@!Q_dB%yf>e|1W$&lpYdsh?dj8V
z4-Sa0QLSlnEj(P^=@L0!V#+j8W=?G8zV|MV;8E`m<n;f7YBoI4SDug^kWaJenqjCT
zps~ugzeB4n<f$g~^(mpbnWcYq038cL812Y|q5Ww-Z2_Dr*6NGVUi>Ad*O=~Z6~+Wj
z1G@*6b#;gh`-v*uEaZFxcUV0zkhi6vFmgy>{P5vsh<Y!x3?UBs$T+OfZ}a|Za}tXW
zoA%~Qm7j`53XEFXwe)_tOCbi)awQwm>JMQ@vbL1eNxik#sf<BNY2haS6us8h&%|Gf
zcbfgqlkyS;3&B8-&T4?$hwNWn&q53u<WN2D*+4}DvS8MvCs(=he>kLI_{$e0^UWka
zH*K78-0=z(6<Im6$-F*SV?=Kro(L2cnN(fI&}Pe%+vf7pQLi4m^Z7zgqidiUjlP#Z
zWt3>k(3g=2Zj_?ng<9(v{Rf5>9Qciz5bMvMKc9DmspjVbq(v_m=!gYvsIe$S{}g5a
zY*xV0eH#H%nZfnwbL({zKy=UqkR&H*gPn|>68{DiX{D(dsL)$tC4cB;XK{0b3QsBu
z^16$$p_8_xKiz_v9QZ3U1H%$>Zn3_teTrr1Ut`N3`FO(hm!#2hat-Bf%{-!a_2}y{
z-cn;3<cJ9yY5N_S3i7I^PK|U2Wzwp6#DCeRBjGs$(!C}KLT9%>J*r`5Kt}+vfF4eV
zeu)CkT~|o(&;@Rx3Q(4<M3|2SLAL-TUl950gbRTq#t!LehVI^eaMfmUjLP@%rbl|a
zXoD(0dx%ufUCUZA-*32VNVzwHLzRomH#%|2uBK%VTkb|?7^QIIXais24^L~zXlL3(
z57f?KD^iS{bVzpE!XyF9nS>!ZoNSksN2OLh;zrLQK;7gSv(&y}@b35SyvxGAc$h8W
zF4^#e_DcH;6AGh=H_Hjn5|UZgZST@z>V2#>6k-R4gftoQcEfvap<hL6Ld`pvcW7x?
zQ6oCCLb4lz>G)SEPcxCtkKyX$T|6Xsn}*)-LX-+uki)R5l;)t_$m=6x`67Opg<x0N
zo=xP<^sDgldkXy)W)${!A>rhL*6yb}3<%jOchUTVV>8kDda+^8IRb{l9sw=IhE@3e
zge5HfuLOy!69()Op>t*+!(&sEZWmP*0)Hmk?{y87PEMg93iDSk@!b$<2izJ?-0N{w
zx#0b=S(T>SdU`aC0Y&Ek|7;a!u85v7S(B|Jr({#hZ#euR<dT{-aZbC#u6_`AtSA<?
z^yAxM*(}tw6l>bK{d(3yg<hR6-|`cH%FG9bfW<H_9~7W8K1F0-M1XVMzcJ+<@5cPe
zQF?->dDaB@I#+89h9bLcbG2Z@Z>u+D&tkb{C*R~({-wrVNJt-o(F4B?DG*9{bK$~`
zLU0-T2@kWq)tjP2N+`+P)$^;}X5Wn%U6b9)F(7!fO>BcE&pBSEs)(VOGRT~65$;$<
z9;Jscj-I{Dw#<738iW!8%9SG5)9iFYs(_wX=9n8pwWVyvDdjbZzvTG-oUIjkAm{*+
zE~DQs_i6PwX5-<tFG6;GO~MgVnjcA@9JD@VyZk3IZ&(U9(Wc?&*G87>TWH_T_HI?6
z{$Kkc60HY;f}EZ_UE76mPw;wS7RLDg)t_G9)qvvSsUf`!eF2q@mZd7|nDg8M@~;CO
zvJUc4Cm)2o<MysIz>`^pM{UPKdoJd2;$%6=*#=ana3isVBVRs-l9<;Ur#<_%Ewa{r
z<s0z=!Bw78IlhOC(FOU%ict2b8i0g|%4G2i7X5M?uqx7M-;df<VZPw<7yJt}U)*SZ
zy!kZ0kGR*Y+(_E2d;?;^x<H2O(!Jvs>b=nMYRr@bGNfF3>bbs2O7x_dOH70JA>i8M
z`7P(jc^hvQzbZ&pCeevG_OolN><ewp3J&E-{V>v!fE+@Pi9XRbYD~W+@HOtY75+&F
zfy|tfr3LIzcYacH9j^M@bYSN!+da#_qN3q#c2Thdf9PX<Sh0xJh>cLyvYb{;HEU0@
zhF2th-hdjEx|wcbP$cpR<1Ej7KdI2#t&t^!k&l+xgi2%hpVX40-%Um+(Yk9(Pg`=F
z3B}J5NkC6zSGI~IR>k4&`)#UPhF<$l>-gZDt6H+1tITEWZruX!AzOz##w-VhVR?<u
z+jxnu!aY}h+uQ%{*Vhg8&_DLVD%d7KUV&Ahja#?&bIoYAxh6WhIS(eYK1IQ%uB!4b
zXECjIs>GaL7i5kBIxhL9DpI~rgJb**59+k8rttIq40cTdzsu-j;}UdnsvEQD*@=OZ
z%V2nG!SvIUe;=9@LQ%WYsC2fAUEc%J8a^wkm7k&*u6|vKF}u{j0a6nyCIwMz|7ed-
zb}gULY6c-}$56>l(j`arUj3)EwEsHe7nT)QYy=a~vf3o7D$2yOfGT|)gf5^Vj?YS(
zIzR;h=;6*a^RV1_>yM7xi;cN8uP&jy7pvY<6YC32+-_6I&sSFogvCmf99;yJdA~2>
zE?W<#kqwoY4xaZD3ZlmfybaZ&ljWLJA}Kk>)6cqFT@7Wr37}mdnl$a*^&O;{qe2;m
zQ@-3@w+fpH<>*bI*s}mDOspmWL-I|1K^_U_cUfriLAoW4-ZauyS)wkORFaf#KGNaX
z)*@T3BXB9)nsFdPmfXfAs~TBe=o%U{86Z`3nNp8qUAql(rNoXG<0t+a)d&0kiTWVo
zKf>Z^KRwZ}VMig2k_xh%K^O!DcpqUUYNzO+%zJdLhjbmfw_u;+=4y;Wne3B4wZ%ue
zT#RJ3A;&FP6NTd?3^)5tF!l`C)UDll6M1`QS2gPPMm!Df19S1ynm=Vzk$?mNJ17JN
zzWr~BO59Z}9_u!P*!L?15giz}?1txo{{xQyQ@7ngpw?Nbk?eL}6SK10{Y#yxsBq}M
zKkxeGseGA=*4paKiH`ck=4LCDW_MdQ$sn-$eKX$sGP*fFr`6hj-iE0=%&(zDTu3jh
z8|XxlDBoqZt5T3L$a9iDkP6!1_}%-73qN}Pjep~yf+>BECj(B1@kxFx?HuV4;BF9f
zO@`q!ei+(+xflpS8h)#K>0V#2QlQpB)JMT2Wtu-=HMp(C=ssQ16J)Pn2rkx1?Zu|)
zJ=$+*`1jJdmj$f0owlm~_uPA9TCzg5^^*(wR<Na3Bt?;8ptXkmsggY`VaTN2>G1;v
zhnFPLVwCGvobw0lAeNi#X>`fDJE`wF*3j-bvWUAo)Qq8O*;-tq>wwy58-X0X$t>^;
zC@?dfz;WEg-kO&O?;}6qF<Z&YYWTX`Y}#89mfd_+6pIV=)$)lA9S)t357m$&utQie
znKkkE_lrVax498+q~Buc0t1ZMeze(iSx+aeXES_S^7$oyoqC+&Em6@_HDRu{LAhtD
zOpihT1`tOmKceKY2>?U#q^c>Yl!H6E&SMk<uvnbzf8FKWae)-h7b)=9sW8sW{1w>-
z)~5A-837}W94E9bZ3nFt&rbwBKu6RVT*t~jKvujyfuJ9HOVsngF2Ri4jByqG>Sv+p
zrzThtjtrE!3g@2R3h)}tIs-s9CW1dM$6w%{ceXe3y7qQJ{#mT}*HtMw27ryJ?y`S3
zKHH6nO1LLElYJpI`G|J5m-Ky7<S>Bi&07eR%(x)uJM*ePY}8)Kon@UC4ycK?QQ?++
zt=Ddw=s7>r=V83}x(hb)o4jB)=Lp-ji`f;I&HlbOjk!jDw`<dhg%y00IRBNPYg*I@
zjvKAWEP<j<?UpX*o@xyX0`Qzb%HzXwu2$dk;I5?BvS;FGpw6!<AQs_dB$e;Mz&1pS
zc6#G}sLkWSWXhBDwT5d%5ecCu$R21#&JTeL7Jr7J2z@+tiUeUA)(OEP4>|H=fgN_o
ziQJR)r8U?^;Yfd1CTEm|mXpoSW5PP#$J5DZXCjHdyxY*<;ebPLM7bXtDc$j>MSDkF
z7?VudBUulCYvvPZJcPW#0dK4bmQC+ZcfUl9XFsE<$cDY;yvGm{fQkmXo!w$^Fyq6|
zLHo`20?DbzK@iufM88Tg5%6zmW8TlwX6RYwf7>{O1*WNmME@<sAV5Y&;2nT<I+Ybl
zGQr7HR2_|eK)b5-`_LXFiDp3pl8U<7_YMdc(G3fpzhY__h|~^=h(Bw3f8=IO@2P6(
zdWy=#7H;?!ZKwV*x=gCXl_KWvPy25+#}P4J>2ZH)s~$v8s`x*ELW!zQ7RVhUc*n6E
zTEN^dbSTi5S_7g$pkxyV@>-ewM@B5%fv=4XEQ*P1uWAb%5`&TcDuNydXim@_Mk)cn
zV?`aIJJlbJ?r48H?xEQ<(6-q-cIZXGC1n*GR|VcFRoy-Yl{}R4J?1Ci{E4Oevo~)|
zFVK{#igv!;C>^d&i(O}Xuk3nU@IU$YvaH3sj>kiHlAT$kZ%DXIc>jg+ZaWGo&B(+O
zunRi^#M{d$Sm5;~^rKSxBRAy_i$5d!gwy#k(FvB#mAM9WHZ)W$8Xk|1jiC9L!wg%@
zbh}zrr~W9iB?<eRyO;4;9FNN48BK?YxitkZXOCk*zDnlO{b|VAn;26z^;5G0$<#P)
zd*aXQeKv%qvyNAGm27dEB7O&bB8w4m*gfJ%cE>klSC1pv9Ib>f58*r*nNw>}%c-5_
zx3l{B!cX&Mw=G6S$WNnqBm=YyWq>O7qxl8D(9U{qUn2%LSzQAFuyxvqqu)@_58i6m
z%4XvrFG(}l?H=$Gbu5SE=V46#GJ&9|F9qz;sG{(!8~0e@g1KBIkHnd~HwS&M3>B!l
z=orl7gAQIMxi?BE(fSCz(aDqwUK4D;GwYb-`h_0QR+GhEZJ+mYGVMH~yUY?7ScV`h
zdd$Me<zGt*wx=FH>wvrw-1?cqPwVz3NKl4mx;YOPasq-V9pfx!geb4PL-OZYT=>;9
zzkBVm2$TEJU#C?5_KCxfGMs)3fj#FNfzs#!9cI7onLJoGOOrA(B3oP4JLK4E1*}@j
z#u7)LYS+~Fn17>wg*~PnH*>LEAl{xv%W3xjC%WeGZ{rwaH>S}}C(9=5#*Ys1|5K6n
zZ0h|}l3$#YIsvQaOM?VN32rMA1Y&m~mju>=B1L9rKnhN~xZ<Peu;KYl4+&_@?{XQL
zPxI!z1VC@E%b+4(UfL~#u4Otjmh_t*fa`L&F$CaW(F(q7kkdB%fJGq~CSxFQ|5z8&
z62Ar>;OLqZc=^>x_cc@SpWPv#;i!CN;D6}udjFh8iF!nU@kL;5(3E&vbC&p8=P4F(
z@u_i44FC4>X4b@x70tz;8k0%eYA-+t*2$`=Q*P_&aW3&q;AxB%l=#o50XR@7#3KZl
zRhc=uxn4q$ags2PmKpUspODbclxeK%D^!S9A&WGkC!_}_y`-+GZOTd~YHGJ7kv}5b
zFQx5=xE!<pp4<yJuCMVtGN8;;;`4=63rKbVs10`0UQ{t{aSxY}-xeW{Zx*388+~Wb
z2E!~#N@Zz|p~NzQHV?It#tiz?#>M9TjxR$I9qG30Pup3-G!Kd32y=_W^LmGC{TE&y
z+k5Q<o~VVj*U==H?{VAIu9ef>hgvk@h#u<Gs4juvIodi2mSQ%mYVK;2A_tEeMQq!7
zB>x(?&=uMEue_>uu$p4cd%w@v`D>)q%mMMoy@f6)rIWWnwd~ggJJz|VGQeI`Za%Q9
zN3Kac-pu(hL46)V!gh8WP-bqm=}CsT5f%rba!;nkB}om%P-Nt78$hRoz=)0m`-$jY
z=Lv2Z{d%4q3b8V{mcY%~>(NaBMO6{Imz;g%=6x5YF%q$UiE!{O!{Mi=mkC`cU!O~K
zj8w)Tzf(?zh=BD%Dv1!s=NCtBGk2iwpQ`?6ib8+TL1{*O+)2V+C}1d5j4I?FK-vi8
z)rl^01({$DK<E$eI}0c|{#QqvZkynSAC^CmFkgO#RHdyl*zy;p=qLEANQdT9i6+|{
zU8P8&F`)eFJ#@rPLRiCAIrzw^-(;UCFj7qb@u2tX%(1zmHa>=GFNpgdHYae;>MRF3
zKesZ;i0n2*gZB1UlNF-mW&XLESg|}UcH>iy{Txtaav~#OLs5}4QAM}N5c>6U0k-*9
z2e^Vyo;s^nAFprD=7;!FmicIx706mrGh2v6NBpW<YR7=`;YYo;s0)qD@5FpUOm@uY
z`sc#11&itnD$}bjJ1coU*+OQ7wsTziQP+_~S}y}|ylAkjIjkkO_rnWE6YdZ$Kt(J0
ziV48F^Ra4;(}79IOR*s_<RV(F@(!`FJHI6T5@uE24&$rv?HF>MFqSuC-Rvn#Hchtw
z`VbugJY&50R`%if=EW{wVkzz{zT)@2Mw}r1-4FuX8Ll~qdHw+pDy&0R++@w!kMdJ8
zzN*#H8!?ajcw@02<;~y6PU$Wd(VnRtKFt;Uf7HEYR9wy0E(*beLvRa_KoVSnOGuCq
zEQH{0!QI`01q%tT0fI~8(hW53!GbsLPUDTAmA&8nChtDq8RLxm<Bogl2fe5Pt82}w
zHKpb=pK|XIhP0i%``8F_q!C@3o595+4LM+3YfN~&GBnbB03(|KZC^oqHgu^0`w&;9
z>aI^BJOt#s`rw+Xu|uT9=jGpoeV1=zL4~_=IUi`v=UZq=1*Je(SpX*1MmX*!GOC><
z*2h*-`XqCT(y$~Gn|Pz>#Zr?d{9<W4sMbwb;%m{l;CE1Drh`=c#J>=++DfQCQgC&%
zk!-pOGmtAe6eerJN_GGK%tJa1eD(|lp{3sZv4&JLTU%si=0p6oA}-fia>0SD^1rI3
z)A(~?!*wGiE_N=x^~d=@1=eKUc<!e{)nd}!UF+D`i~tsO$wb2!03!nC4DbfwhVRZF
zZ1{!Z(Fheh*2?q|!r0ofNaAvmZmoO>_MULt9Htk<gSWP0jD5*Q$EWu0=kd2giv>!J
zE2;RbSvT1)6&dz%wbz7X)ys%gI%;@#gXrtYJqky=(%3j+HbUCSWS(*A+5IrGunBLm
zz;Eg6ddF_2-{0EhX3M@j>mZ52Yd(TxrGKTs_7tL>f?Q&pgyqfBl~nqSMhKy{1Jq&N
zt5*_#E{pCgW#Bebta1ngKTo<C#EDcEyJk}G)cRn|p?gN$^^`8GjuFA4VS%F}Zaa99
zROx1=kpVU(sv^kAND4lUEqpPjw#j8paCr%S_}H1A2{&qZM-RjrXVU~G@LG9ixG;<F
z6N;7{<aEDwfHIt>le^f6%WsT)0Ks;@&^{zz|6z#8B6i}~+W|jU%xJ2s1kbCTO`eyN
zYD$Q6x{vh8drN^&c6E4(LA@=N%O`}?pA>`h480n}UtM0c&WWfM^3be|FM<fJ+BHN@
z`d;qx7VKE0`afxU6qgP<YkyV6_mF`L`>gaHr)1$|P7}60JL<9i7=FrjMEkQf4eCBe
zW!UunL67h-gpC@Ie0(_A+Vd3H36FRmCG3qd#s|yoyW}9nsw7pfxpLs?6Bsn`6>)uf
zej-g+U+Wa?mXCCT2@k3ZMK3(`q<P<U7yMY<w#|3#veI@H<<1`oaaG^S&O;=e$nhTP
zJo%L*+@<&x!PhkG(5~#}${#bmQw^SM4E-*K-Mt(aQsoUcWFxhT@XG!dCO!9A$L}hI
z81L<nf?5;_lU(2KxWWTfZl!h?5ZZ=sFD!W(I>iLMa;hrvMX$A5Ny6Wx>)$_XEzEiM
zL5(-3VdmYL*N>N`(0F5$rQNJFs3P38n1zQRDub+5Re0UGawLElyEF7Utdk1=;aQ64
zY?JqJLpqsG{1wAl3lr<a)o9bnN_?;im3qIEvEHN{t=mFgUum5KMJ>7Og?7lXN}f<&
z*h-BzakO5~$Mn=Qp)(uHfC&12c-89-5WDlasfGx*_1INq1pcgb_2jK*yTN<G^qE51
zpbzPBD;sE6R17wt6R*;N^N?J}AH2u@p(DLCgW1@cqON^4R*hxcbE=5qwUSkqo}xJd
zy}j$WGqi6`#UbSo()_fm%unc`kHz7yYaIi%Sxo8T!MA;<JJtzL&dq#d4az<TtXOp-
z+GAgHx`oK>C~nSbIr~@_H9IO`6t0lKtYXwR)CPMZg#Dw$w*#S`eU2h;_9~EH3sQwo
zy~j;+xq39e!toT;;B6E8LVu$7VaY6E(5lFqOJ~KqeL_e-y+#B3JBtP^P3H2W4Fa7J
z^8@8O*S;&SB1h{W0G^^+0wDWuhJ;f?W_EOD)oW*V8WA4sF>ip)^CyM}2S-iN#pm%p
z7W;7#2>2et!*ImvWdZm~rrbXWQn8~g+#slaV&~>y$KLL_*2Fm};br4$Ya12k_p-c0
z1FrsL#f%z==#^cV1DhB&i&bd21GI~#p+ea#i<(vQotNKmfoigB`OGCJ+pf}q+tb6t
z*oDy4l#l%t7;DC|>={iLOY^p~^#QZ9Ish9)%d8H}1%%mRi^-i4&H}d2INqYB=mAo1
z>er3;Vni;(wC>4!Z_6hCD2CDidvH1xxW<xmDdg8AINkS~zlQC!b#-Zh+&EV{Y99D)
zGwfT=VNyc+qAK2A2=F;R!Mwe1G~b|EQSqREpl{+$#w0f3+R!bDtsHuJG&`~Te4|~3
ztHMRj<haD~`j1r%85i8!ZDNY%uT0`>F<!Eg{(2@@3)>~T*ViJ+Xsq+)&*Xqg;PHkp
z>B4Sm=@7J#AKkY@_ZGd4=u`00N=e`KzUfK30XZB5hvR!Nx=fyHc+`7~KStO&$z+DN
zFQ!*gEtCma3u(M8qI7NqfN@nfsf;cQN*Y93w}i=7V)In0h4P|&!!(iS_`h~cR3m+v
z%E_tRv-I8~)Tp@KKMx!=x$aS_m1tOSGip|AI%C)v8#7h~N!cSlgb#Fr0jh{Hemq;#
zpF>FOKO*bQmS1ZKT#8l<uL`tmsjpNR-U^tQ=|i_1{MlGp4U9`;n_Tspif#tm-jmu}
zS{6|+oF|e%3m(saIhwACJWrkoA!U$*G^tqG2hd3*mh*4<D>V2=muqB1g|?&dks`{H
zAg-s~pXq~*;h(ribgMU0G@+19;ozK{Ao&T1>y4139M-+b<AP8Oz5S@4klWV7AGzlS
z8q-P0C6E7Et^LUi=?cdjWvJ{&g@-F=*{$|1m%p7AQj#q`A?E&QC*6-!ei^5s50$&i
zopNE((Oq<{+IAj`>iSxqlw~Y_)?+5OPHqMl25ud;lo9(wYDZJ$&q+~QgeoH@nKsJT
zU<(d?8X-6o8_$u3&a8eFG?iCOO*Ooi#}(46yqcR>4@2yES>M>*;aXB3L_GsgpA|VH
z6d2_uvgWN*Gw*}oxAeav#?*)RirBPk>q`M})y$as=Qw9gbUz-s3%!YnE@||Do$=zB
z81a!axCc*3{N8w>t_(nMvWA5eanPOLcygb5r(qe`cP7KW7qNJ-AYu3LaM@#Z)g*`e
zD5-<1R8{Wk##=9guZNl21s7sJ!QAzY#Q27iig@aC0ZUisb17#Ew#qQ8dtCcv^jvE2
zACawIkg#2S^~sQ)A*k}UPa%N5Ei<30q_6dU5LtpV!ZKUhj$}{IwGT2&Tz3?+RN{TN
z%#!fgNVi)H{cGnG6hgMEEY}~34Di()#Vh?VS;LR+8@N}dIEyjVnjM1<?1tQD={|3_
zf{c^AzmM)8UU1Dii^BOK37>j2D$?rBU+gdDyZh0{6>B?{1q?%6k1GAr)3)0ON)oi*
zJ)fyPm4Lb0jOUJaX2i5-h<e4Lr?ghNaPXQJ?Y%^dPWyxjHPh6`#&ku^5t671zGD9L
zi}t2Qz7On}%h|3Jxg~54f8kPS8CI5Q_9HEqUD@SbU0II&YX3lENaJ;-DY77MwG4F2
z$6@`TN&rl+!<H+o3Zb_d0cbGznju(Qi7W}#y#Ps*@D{~ZeL`{}`&^dTOr%NxURYGj
ztKD#c@7Z{>K8;IrvlNsj^p>Ypn>qZp?C~MU1`OOka$)8oW4zdh;o<cJnUSnO<Y2ju
z%%Se}P@E!Eor(e){}+RcEtR&m@YM8lq1?Cv+u9xfC$~e^Pw}CBgSwTq6D@7C)ZyWY
zvGJ+`^#eyF{Yz`(FLjG_jC9OKPI*+tCnhEe^r5tlPR9<SJ76s>zVqm9)}RnSwyB_g
zGmc`Q#=_yySvryV+LY7p?h^_?Nu#Q}aVbgi9#+Q3%7%^6*UU&G5E%9zcUE*Jr@LH&
zoSPM?Sz$MpgyvIxl{6<pPV#;DyFnR7u_5HLA3lq81pc(T-ixXW_poBKG>#dApnuKa
zczAB`W9woYxH>1%HHoCdV+_CG-CgR7CxO0~3lR}Wr9Gpi)<&r~w`xku*OSE?k3dzs
zX-94=-X=EWqeP>N{AXfg4uv!O<G@tO?_YJzvJ4qdfjMicjgpY%$48^6F6uo`-xLO=
z68}<X|7s)Y63!kvb!A_7@1@)iUokSyk<hahBO)e_O-(H>d+H;<Souayt{s122*hQ4
zJHbmzN^0-wnlP8G56OtSzW&rHZB1hhZy6JF6kCPq)+fBH<@&gFR^?JH(Xx6K3u?r_
zKHTEdk!xyjGV`6(-RBwi$hLfSjcj0Q$_8mHC|p7QJ(L^uq~zo*+d1%2>?fjyfC!T(
zEG%+UGgA!0!c-m}Gf0bv#@!VT?b2gqy7_IoFC$78`1Slyvb<i66BQ|zl$5-MHoMC2
zT1{4c*6(ugi|Xy|>kJNa=RFw3p-oTeDf<S>PXMu4fKRu<<5K70x~A6F-Ri=zv1wUl
zg#sUtRBD*e1(XyTv{uQK{+bTp!+E2;y!>NO6Ux8<fSwD-MAEXdep@_&tJB~}0+5Ss
zQ<h3c>2TQ(znG;Xcx%b25qW%N_BsrQR=>XGu%d`XTU#4o+=-tP(}(!p<N+nQyW7)Q
z-K$rI+LNRh>U3Su?pxK#w=PcVsgPj{6O8Z7d5o(N-JaLri$zci66YM@yLT#|OZkz+
z{xe;G5%QyqLO(mh+a`+dnw`Z_OGv2H-UMiS7#~0GG!Kl!M2CRE*@`qkd<WJ}NRPh8
zu&^i$i-|ECu1g_axtW2%+Pk_aJv=UY`bg)*)D_|C-J>%^y3B|i!~PJ&IRcG(!I_#u
z{nKrMzbzf%ce|gU=ae3h<>kVNsU`ys$I5EsKy`F<|E=hUqw^qLXh`JA$s0f7M}S8D
zcgya34EC(8stSsVVhg=sVRqQ<FtISCM`_#I+IlS~$FWJ8vaiEXZfB=2Gf%|;PyL!2
zbbU>wN_tLEK@u~lu*mZbw`8yMUy7tglxTXga-7n+SaVuqDPx{(<U|i&N3J2-7)tkx
zO)UOa3{Wa_${o0$V`HPOCI##T{}z+7i;0bK(2Q%1DLmX(nk^}HGO+7S4z*lQMF2>D
z=w04UPj6wPyhM=}18j0;Mk|@uu~DCJqkpjXrEMAJ&|C^ZI<TRyb#~Gw+N9Ms(1s(+
zC0p+<gp8HXLI0dyp;St>vpGPNvf5rE2%`ITD2MjQ@z}xg>S@{xVR&O&(S;!fN{h2h
zpQ_kwnQp(NnrrmYhu+BF%yikXLNzuX4T};3D;pGSIk}p+XWh8Tf|gnG3`tMqY-eBC
z+GY&gA5^V+UFb=m30q%h@X{7EBV9)m|41Nlm6oQn+Mm?5cj55Sg~p2a*y>q#dg+0(
zQo`DYHHPCidAqbijDjeFlNT$2sgEnYI}!b^inT{0ZGA5j^u<y?*24wT=E#C}EGA7g
zRSl7n_T87&l{7Uqd-_T2()dkYB+W_wekWCNr==X&cqpbS%d7q4<N2y$i!u<mu-O3}
zFFeU_%7c?ewJy&Y0*@=TH>f<gfAVnXQ&kn%ZuE4uqDT2qwO7QVSku_V^^)@SnOKzK
zs=e!6(;4clDNgQr@H1Xsr|EOxv5b)e+uFpbZ9fv{-?R7YLK)XEPwW?>{&yRpi3Uu<
zpDmj*@c&Uy_QZ;kh{vmR=09)7kS$Ek<Nr4!*uU(GWtbNKgY9cSEj?ecFJHbaF7K8k
z{Nn2QcN<B6!X~Pc&d9(}q-VRjQRJi=O40ILdHlM1j*9aC@t*OwZ{L0vQg_8c`aSKx
z9#54A;M?&CYWd&#8ABu%j!*+AkeL1<y&@)gG_QV2)DK8Wf0^Wee-uzYVe8ROc*yzR
zf~eEf<nfj(R^JJEnSQ4P5c|lydq<>`mOf7O`@Ue}++4FFCqR(n{ZZFCE@j)CDF1c)
z5QG2z!v9x$3S3@g4c_Iit!*$qeTv0CIB1FW*XjU1=E6rudBz0+cXfMB+PBOb2OIlq
zOnjj(#Pull|9>mxe^|?srBwG_ZpGO+#OY*ZW$hhY)#QFp{-$DFLPp`>93>es5vO0T
z($uXP=DX2Rd%I9P@=-e^Pv^bB$Hi((Fe&Wu6e$Htab*0H&G5+&KU$_@W3v4+#Q^I{
z7iYu7#I(F-mf0Sy3xRiC9TZt1X;V?Hxd<5{7U?%j8Z#Oi1OY3_b<^ZV0QQ4w6%Q|i
zpaD5SIo_qUrLe`^{LB!5aTBa|rDfP1V|YZoayW06$-w>Wjjl>h|4-s7vw^@+2;>*1
z>6#0pxVl(KaBy#TAK+sMU-aPop>4A7ziD<vtJ?659<Z9^+_=FnH<_>7bj_qoxC7rO
zjEyDd@fLU)$j9J*N{O>Isjq0H2PBHt9NeltXq?UAPgSsEF8J_a=(#OKZ5<4@eNknJ
zO-#(6xW^Pp%UA~z_wcHDKY6cs;wFRydZV@~C=^8rUJf0Cejd75&rvc-c7M>HJ=>(r
zs3{G+31t6xlSrIz7X+>w-0;!G2r%_CYt4W5QRRfhw76yZuqWDBTQ3>d;d_}@R+oSN
zm2fxG^#HsqfbbE|g@$HrN94IHwVuz?V^-}NA`Cn_H7jH_H8sbp%dfe)xnNTJGIf0H
zgzNXfco@D;H7n9wP-_d@Ty^AVkgget0xH7pAId@Xv)s+4`6L*3{_dK``?UQWan*wS
zJuf$_Hl4<DyeM~~h|=gvcfU!!`F8*2>hssHIb~0$I~-z+4Gi?XtIX*KGlcUKhzOMx
zTDkmHseixcMUa9i4e!biXhzE%i|<BF0dx5($CKUNZh&W-h{D*oG$1_+o&A*Bz{Vyw
zK~1U76KBzHFs=1VJj<#;Q#Ok^mzdpxUen?3S7OuJGJ8=L>`b4V_%t%(OD!v2M=|LJ
zP(Q$4;EvnQ<$hYnau32Io}s%<-m+YyweXY3uJNuJ#{hb9#G*k{trv}ay_9O#Z>=xE
zDt@@jbJW1lBQGh*f1nnLJb+aG>9;K^+P^)&V8(<HVE519Sz@UsoJ>_=YM0CFGN=%J
z`DuSM^PIQ29{}`a*t#HT$e1ijrwazL3D>Pmp6(nXjC0_tn_S!~b&bddhv}z{!PuWu
zQnZYaG)$<5E)k6NeAZ#zbRG}v{7&e#YT#{2gpA{qS`1Ha4mu;G^mc|vI2%uwFv!JB
zo|Kt>Sax513Pg-yMN_4iNLAS8|52^k!jc1>eiYZau)fYhJZ_L_vD_no7I$SiSB{`T
z%_wcotFe)D>yUYv`5Oj1^J98QoNY4A-kvf@Pc%)CEU2+jq~^gd_R)ch<6#Z$_Spf1
z`o;3|^IaG-N(~LHhJ}2iuA0l=rGvba;RRb4ie8mNkQNZAx(T8CTYVl|w1DqU5oRcr
zyiC)QuA7MEh+nxgtp~rSc|^bIk*lx_<`lYMgjZN3kx_?_wL#eqL=2tceLRpQu(rAX
ztzDIIJ8d%yg?bt@atC9}&F;h^JujbnpRADykdub|92r4)>}l<)_Q9?YFN{?k-KH4?
zV8z;QB^t*pq#y(ZVZLJTp7+sdqQJ$F#YywsZQ!DfuWvIBj(&qDNw=b84|}%w<+4*G
z_1VK~VV49KRKhq#Sp_z33Mx7c6Q=WnIqhhSH1D-fe?L;>qmS3kDCISQ#}%fSVp*i>
zvGwW4<@OtBF5yK@(LV_qZJ6<>6rpTgam{L&K7J4Gbq}=1!hZ57j>}?qZy%^Fy-ooG
zE9u|ueJ}XxVx?)zt_NwG#jYtJmN=v3_7%qAHa180&<(OB+fPXX*VoWnceBeK0ryo-
zY4Mx5+31F3K{3Arl<HI4(uuL?=d2Uw)I#J+P!Y7)yXzqQg_HoS9O?cN{q*4e1O@|m
z3xkT}>QfgR<%tPCcgxuo%*|0%HhRDXqUlCbn>#c{>Mm>h+P<DWo~Ykqc=m{O^Nj6f
zo@=1%gYZ6PZrxC0!t9K5Wx3Y{zTHwLNEk-<=U;9nzA`x4ZZ4-)q4glkniG?TUx{YX
zEUn-%aQkP9L<pufw;0?knGsE_B;N`Xm}@Bh`(d3!EzeiY$6W1-*p*F}$y-d_5bnI*
z+WhK?MftGj=zvqGY$1To89yDqXo_iZ^5}9Nh81A!^SR#f`OC5*mhd+}%`rbTj}V9V
zxjdjQ23Sddw-K8BH}_hSy`b&Yb@K&Nylxmo<9lx@OzBz@9+MGp)^cbiqu4gd7znr;
zobtJj$eWri<YC_<j4qh6uKD=ejD>~m^Qsad4Zc=*xja7hNnymyUUM!wE6u7CqmcQb
z%ZBAZ|8DqF6O{!vwU-h6HOoiV=|EzS83tpbAU%Jx?goKub}B|N@7XoCjxNz07E3>k
zun~gD)S=g1kR#8dt8(o4i~S>W_B?S?Oz|4MmiDilPQA#F5=f2Zg^R226hw~g@%OBp
z@jJfSalCpR>B>2oy*H{1%TLJ9(2K#(q=-ghyh@_1!swsR_)g7Z1L-*HmQRoPW-M!o
zOB`7(C&Gbnroc#6h>(Q4*)8|p-p*{e?FKBVh<9!K<muP-c)ZJ?<JE@Q=5$|w&@iW~
z<gTjbxqLQkOMiMoI*=-KKVU9`c4LvaD_UJ({i#a^)-%J@Y`KkSj)zYqbor#5vDoxL
zcM!}jTKO$d^X>6Y#C6Me?>)dH{<{_37Cl1R-5j}pE-=&Ha8Kpy+1|Ghu87yyD~uvM
zd$`_rZcmZHcWKy|x270rGI%onIa;VJ2wZofQg+ssgrNB3ADZ|92L~NXHo_GK-zx=<
zumQ1Q*;GHjuQL^p%!tBu0jYvhpJOH1yxX?XiW*{em6%8%Tb%TxRFg?HhXu1GiCGI|
z=zKw42-kn8A#y%>0GB6wh&T=9@=>u!{$U|d;Vu&5=Ri8&cO1m0@Pfq!_o#a3UiaXu
zj~fJy%?~wd#aAJT1m-SCbYfhXDuMFW3zCq$ld_o4$w6GEYntB+RHJ0)gvpH2Bill|
zQw$Lp{e(r0wwoaR#a_Nb%oNJ7rGwoUI#|e8al{eu)t-hhtLIpmca)JMY-1$xk64}&
zwf4<z%-2V2Wvh<3cH5+cw8r>+#5^ZVYLN6wdzI)NIAX(YJpD6(oW~6Ro!rzy>gb2c
zvzcoT%6lVNbhjl<iulk4kOB27Y)0&FnF9{zvv<GzYET#Z@&U)j;+0?7(__ARyRl-#
zg3oDn@iW=~1T-bs_;d7%tZj=GJDeu61WXSk1%t6QZaNI)?clU{L;Ki(XOh{&dg_(`
zRE^G?aBrOZ6~j+g0aE&H54sx3{`U=W6ww~W-NqIxb>){|>Fs&c`(2K{5D0BpL{2XT
zqe&cWp_P$L_c_tAY&8I~US;$~T#<fs<@ff9MWzmWYIw?d9p8ztFOSV6dSu-iN7l}D
zU2Fm8am13k6QK=oqBLw(%+<Yg80M~Kxtw(4T1uq}^QuQU^a}Ce=VWT2pY!{6rWs1l
z#JeILXC!@0Zz40C{wX$G&>46pLi6IdMZE$}!wAx4I89n)`{*n9{UJg#(sOX#fICnv
zI#D+qo5a>Fqq2#1h4AnlK{MB3qbbya)4Sxh`PtA`fyl<5fj7@o#|;~>KYs9HF^_|D
zN{WqGvg_ch8CQ4t?E9PhH8KCz6PssNzqQz#7}1DwwEnTj&w7_uM&LGcI=V#}{~ZVv
z@0RJsLrGvYUt?6iAnROEE;pOyFZ#K`o*YlY&yQk~uvkqQPtMT<M$DgFe?s*Omd5n{
z&RlLo5@<Z0t-adO=f=fsh`Qcr#-L%LhwrO0-|n0UEcH926JhFT?34&WE?v%>=PE;`
zL262kQCQN;gJ_q~sN^o7wm?pQK+{qL!NN<&OPN!F#+*HVPgQef+<Vn4X<A#CefeJC
zI_t~X_RPgs#;wv>ip=u2&Xm-o15%$yj-Nl^F^l6zXrp^fhhb|6<7awn37Y989j$K$
zE*>b<2yd}6aQhGpkDMG!FAOePy4cbETOE(E9re`nmwR<Vr1I-N81#Q%avzp0b;j;-
z72$cWTcr5~zoeDSPO+th9-rQzhtVB=ab9us!eT``UZKMcf2k%azKRW4-9>_cE=hCR
z=J&pyph{8;uvpIy>Vk|sHzuf0Di$WF=B7e6z9MyXDCutQwwJHPm4P>pg5}HPV=-^`
zShYmCP<?AHW4YG#$VF<giPZNymI5=reYJO27l6YtQMb*kNR81jZb}Sa)w;aFn~i@U
zS*k+Usej1?bMeGZpgnGjlL5!gvd8$6&kIvacnuYyU6vTw<PNHJ%)4QC8M1TF?Zo&q
zZ!mmc`l@jWKyhvJ&l&iC?t8K=?GQ$*LTL&z=ANjZpZ#T^=H5&WE$(RAWfiBb8*UH&
zeC>49TE!Te9i+9U=CzmXR$;0`=CXws??&P`l<toqjvM?F#m=a=?>VMs6Tw2HLwmCl
zv*D~;_uJ&4x?i{4dM}HFupGcjYfSmnabJET`eUm}{X6u4%<k9IF{ON%jS~-5j-iii
zVb4mWm2eJh7$QcBh%cjUK7M|zZNIFB)<C4VRPJ~WWyZY_El;q{IznwKikQn1`BrLH
z?_s%Wf6<RddBBJy{)}76LzjSH7!8ayV2Y*Zsc||x?Y$9kdB8l3l|gG6AnUR?H;<jQ
zWENYL@ID3beOS9%#uZY<x=^*hU6jWVg55X*HzGqbCG4;AW^DF@u`;0;3s8N3yG48X
z%%=OThGwxEx}Nie`~R^bV4Gz^uoqf}cm^g58HdQbcO2I5vk?p8T~<rJNj!Hdkz4Z*
z6er$f#nb2rN42LlaAZTZZA^|sw*Uv@JsPlJtj+ZC2cyqOQd9U}`M3yoecxROV+)`0
z2!&u|!~9%&zBax_<-iI(?pc!R9)3Rj%%1n&zf4cv+4;u_(rtNJ>YY{^vd=CoLAGSI
z2AAc^Nf&h_A@aJ>1cW%amlQlQHImCp9E-`F7|PGn*IC=`+jq4YRa%&1UubE?+E%ax
z$D^M`yWD3^%t+$)LVf3VMOv&B=WH`837NYxx*R0{^b&Hj+7hOxoyawq#f2^-#G^H~
zPW-qQT=yUK!uJUp7vikZ@@8-8N6m^oYpPJrx71BG4v_#eZSzU2vQiAA*riK=VxJ{c
zBxVjI79dkCSCpl}w}R{KkO|g!5eJP3I1QMg^@+C;jhT!aC92b>(Y>Q8PLR&NDhOS&
z0wruY?S;gmq-NKa<%7qn5I0q1@I`wY{*jgWYphUQ==V>sXpRiJ2#gSsj~HEz(Yc{z
zq<45v+k0FEzR&^;seX#_sQxxLnO)rn&H5Evof)68nx(&A-_U$ujrpuADLgAmZ6^Yw
z8FcG;(iP9Pv*^iMkMyW44b?8lKquB>svA>+Z~dk==cww9oV~8FuS;(k6Fq6vx2J{0
zn{VQyhSv@ZYF5k#wBfYU7@n;P=#o2G9*}18n_C9&DJBv^%e}tm_pncR?B!DC56q5e
z3*;&9WD%Tj{Q(a<+UO*lwgnT&kJ822B90Ix5B!B|FtM^%PzC%VAq-*i03BL^=1?cx
zqcsPU`O7Cwt)Hlouvul$_BOL$Al8@#p%IV-^82O)9kTE(#}u=>+apXwSh}&!TH{*0
zmSR00RE?inu}^lku<H(Mm9Qtekc;lHSvTT*@3xkh)YLa}&9%KF6(kFXR{4xTRAg6@
z3d`u)+sN{bzupLVSG{*8zM+}lwI{U`KNhOp3T#ooZS&&z(Y?jTv78@o1@FG@g-2bZ
zAK0i*VjBq$HH8xEeXV$5YexS8zqhrm_rQ3Pqy`Vr05{CDTuUnGey6$gyyhfC@#2WU
zNVH{~ykRBj77y4n)b1iB&>MEPB^V~AAZa0KQr@0XJ&P8JGnY5n>~+8*asD%L6g8n>
zMwTi<0ZY`GR7@e5+ip1Rws%&lRbp-NPR{GbqQn60(f1o4(688HgfNpXX{DK2+cB`)
zBKEZ7t6@d7DQ<KzcD_FNzOZ?TVXm4+aKZ1_7)?j}yfbp5?8PP8HH99T$_(GDvt%~%
z8(1cSXZ^ln=6tB2cxhK=VOc#?oo9`Loj@O3r@kDYYW(y#aY$m}fPcB(^(%j2QJp?o
z+1f)|+_ys-XP|&p8<z6wTY*O55wfz%RCAeGQR`>(jR!bldc`-63}UP5)>h96>9)2t
z0AO?lKl}rKgVvjcDs&iFzI`k}&vQ;eJe;3Swq;a&x%yWsaZ^0Y@@2tcmIma6nYFm*
zq}yV(AoZy;A;z5vysl+j6cZ0UM4TJ7^p{|nHrPcuXZfh*g5>b~NL3Q#=NTFa1o|+T
zNkKB^vbw?>QViz3wAGX_vSu`gc2D@;KFT$imR^0FA*V9--STB$p4H?t)Wj+A>TuWR
z2LW6*3>D6M0nhGRFQ9g3xUbi+hiM<NlZH?@qv^))xmu&Tt+`93ahTCbt~JxL6lDLc
zABi>j+p8=m`;4@1-jY@Khz05Mv35#Vza*Av>2)%1_1rr_y%az$Q_QB@v_U*&r9Fiy
zbVV1cl$+1yBrPxCl+Bc?2Nuoyl9X4xpK-&IHQoHeu`d6}8{+COpT};1v2e8yOq9SQ
z7P;QU<waN)uBDYa>G0+a?VWQ6R|iH@v_F0J)kfRa2;B-?X;t%k@oB-4?oeObRi@7;
z1?{?`$9Y@ZAvB=tfuR20Uc|-Zcu(J;bS<|H?36jf_u_Fi{$})TOk_*`f_GHXR8cR{
zrD3m<>CD}yz8^n2i(H^f-m|4WjsVy0v8pWj^TSO%>nT417z?+}RPYlQ;b6+_$uWMo
zHK?2XTD8MQJ9vCE+}~@b;BjvG_Qz&ps-=!Er<mgrhZZ~{ZV$&e;moFtmy`U5GeRyS
zNpgu%t}J_en^N))n!!))%J}DlZS{y=ZZwAD6JHwjY0#OE8MT()J(9PrM&ViDI-TW}
z1bGwl)D`xxjS}t2Xwkc0Jo~Ckn@=ko*1p{+W&=4}Y@a4EPxMg1$>63<$<%K-Szs>+
zmVUI`+V;4U$DugI>8_5e3KCoP%`R`w0)z7)N=hI$kDaRLJ}e;J9Cab#bc`tLsTSJ3
zR+#H6nsrFQchRKdE}fi>d=s-+bMhq6+pE9AQp<v!3dCC7c+x3M+L~mfYk&u_6wwL5
zon31_Q`bmoa%_{!3&-@GW~FXq9q>nRv7GQOFGXT_iUxElos?BSv{AK#jy^wZ^HB?}
z*n6?1iE}BTqf!~^<74*1I={C(d8*!7_Hb+M>JwT_;fDr?74+Mw3K}3yUS3_^0+QIN
z@Yqpnylj)3g1QL%UV74|?Tojl9zeATP)TEcE+hxXjcE(I8%%H24ZWPs_f%BGoT)_f
z@Sv`X3M&9Y={Gf1RiU{;`nHOvi{A!G4JQa_LN0GMf}jjeeD1P<FGheGXNXCdu6Fxs
z<e3vmpzF3&W6F8w*EtU3!DA(3#bIPg=I`{+msq1wIoeOU(G8KA3@+O(bx{VRy!{tX
zHE3Ls3oDj1&QkRf3QF;r{4Tie4M8K8g7jM27U9`2S{_W}z*M8bqw`M(K{m|t7wc@O
zAE6QcEwa)XSDd6tN^SDQd(V<dt}`z1RLXJMF?MXOw$ak2YG|<+$YZuJkojv|3Ex06
zF1#tP@lq@&4ZKl)?u}L_M+WOhzgXS~B7_fgYn0y2T-6#(!&V4~{n(AD#yE%wpwGAI
z;qmHRQ?J#BNo?ypd;~VwIv0_1IBy`Qn1We4%<4ZslM|QeK!GrQBN5qnq22tDap|7R
zBEL89%z+Qt*L?O@<(Fyo#9jm^YmZRH+>m@#^ge>LAoA2ySq*z=CHfF43pb+dc&EpZ
zmwzmkB5EBx{O$?3PZEhYCYRa|IHI22(*6{6`6qJzWmGKt&I85n6{Ct%=f;w??e}D_
z#e&4$>^i8#eZrezLr78DhG{y*<&_dXE^3aItdnjJb8VsEie`MqE_cJpBYlS{4Qn<=
zB0sue*XJAC>%r|1{9gHmmlOim=L_YQ>r6aBx^r{(h~Ww&&Bn_B!-{mLP$kCRLA;v1
zQ>F@Q^(8y2Ej;>4znFB9@GBu#Ni9zy*Mo&nWqk3-yeO*n(NUto(;eek#+YTukeCcH
zf6juxnwQvosl(Z9!?S)PCWa!}qDN_#usy+R__(?T;7d$!^1iEk)oHq?9fL+z!r35`
ze}r~l`?MuVtz}!EFUOz*|5%#*dfw6d*xrZwVjm6l>;QS8JI}C{)&M?h;Ek|XS!s0-
zhLxX}FD~)2`Z#iW%P4d%JyICK8I~61ax&#y7oB^cEUwULUa@!EemHt<KP8Spdl@9&
zW#Cp*Mt@F^fY*&{aMl9BvpVb){u3c>p}vR#O_(Zs7ruD%<zd6#Fh|COtrwg)scKKZ
zKI-b;g2)IVyQS)@lyyeVjq~Nbl&U@MdmqpZ2YbH2Ob_lD5}plZde}XC={$5GO8!+`
zGp0bAk<%`<k{!;cdlMC6&?l#B-|=fvS=QO8;AFCOWzyce0yyU27HdLVb11&}P=B<m
zxMPGYr<%Av@0Ip&wHF~a)QfOFdFOCR<1p=oyt|#~a-&|yb}mO7C_t;Cq(o?m!qh7R
zGOs*SYQ2+){UW2%kHq?~SWY?0&67q9U+H7KjNQPdvij5d!0FJzhjSGqALJ>c9ZFNO
zf@N4Dsm?@5@9c2$!UVp+UU(ltdo}nf`Dv|}?yJY(B{?cFjtw^BQP4I6UM-K=EPn}#
zkU&ElXb13Yhl|E`by<pq%tv}Ke1sA!Z!G&<T6hP}usY+yK?Yl8Rj-@N9(*u+D8`DJ
zDRM5<Jm-Yo>*23*Aj7qOq~vaOYuM2*q<%QmcYb)b@Pl)&m2budO(b%jd3{AyH+{ze
zK$j7FUnT0W_3nMYi>wo$kMtvQ^lzkoBxBpfJOqugp<dfg=o=d9KGXFx8u*@XdfuN+
zwGPFn`LZT7JuRqF=RqtT=|_zmguYnivCz{}I@tLUb=tIQ6RcU{cm5N|)jS<B8_KRN
zWlP&8b!GAu5&~<~mLMcvlxo$OxczAFifl`ufe~`Lf79U`7p>7?2D?uPdfkfT{YVR7
zzq!Y?bg@x>2RBR(C{b!Go2tF#8U``zy=qi5dH-Pk5`GhCLnBN`KS^bksWJzKo6nNV
zL<jc^NlKb%v900OZ3-Xzz0WvWN{x#{B{MUt`B((v{n$8yqQs~1v0%ezjQg)0qU;pV
z+}9jsSQBu<*D)={IeLbTJF>oCH954v^o6d-6?Eh9^$p8Z{iWQ17;e2Qb@Vx;<|Vcl
zwkD%64`FCqt--dMjrfSKPuF6y>yJf4?fToHbUCh_MH16O3Z`g^Pcow0ZGG~ZiIg$o
zcW*l8P_!OCMffzr>t>>72sbaITtzDJf|ypmx|Y4U(Mc1l$2_h=c{Am^_WG}llia?q
z)U^~Wem5jgI>;wyjkez0$01Q3M2rwf*0=KwAUyH8)nUCB#_OF<FdxmM({uNw_CDny
zS*~4)i1BMX*x*L;;)wKcplrmKZ+TW{$K~}+i))3o_C|p2_$9-dYg$TmYmdW_fk~*N
z^J5M4&={HaIu|FGLeDpH{9NcdBm@CJhnjEi@A=I9N<#`zP=tfX*jliaMA>-kIUX}D
z)-CvTmm{ORh3ffe@^d}KVhq8N>OR|Z5ER79^gboIL_PUD1oge4Y}TtMNRM|(_wk8M
z{~AGJ<=Yt?LB@5{NoHtclha(8fcSJ5n&~Uq<ar8*e`|Hrj7+>*!(Yf*n`0xGDkcNZ
zdC^hU*S8Fma5BrAjQT>|3H7`V9}7&u$acH^TV7OKmEIf%JPZUm9FoDurX1c-EgznR
z(q%(3#Y3K5F<ui^5=SI(v{w-`^_@i=%p{g-g|8N?!#9KQbM)rG_4ZrY);Uw%{_MJ@
zNQfpSafz6+IZhoxyc(;?u7o`p{Jb^D-D{hdqJYmjlc3R97%w!`xNp_$Tg9_icR*-8
zJ`CjJFUUzrfkX6EAg+6>j3_P7(ESe{CVRmR7sv?C-*7fl3~*`vg{Rnr=2W7zye}vM
zPO%_FX_2Bp_m?7Y+R%r<N5A(v%Io=n!8e}gA$Hn(i6?C!s=&`cb_J*M{_>TjQ<Fhy
z5BSFRkfHH*G%nDfAlf!n_vYFj>PM!@R2dbMDH2da#m``JuK!wAF37Dv!Tq){f27dI
zD;Z5E76}ekfc6h8lii*3mW&~lup{mHCZ^8%5kAtZx2Dj0yFE2o$hd<!!o`I!{Q+{f
zIO6H!%O<Gy;K>s`_ip9-1jwAu=K@XdeRL|2B_09Jp`(tlUd3PVhD<p;WB{woenNu#
z`AF&(*&eY!+`MVPd_K;mphp?aniLVd8L>1+asBu|o3h#4xw=+%6lva;eRA9yPXiMe
z>WhX3W_8kkR*v^?lOT`3GBm7&ndqJmB@z)Cs1+w@<rJ`*!tV6I8jl`6<M!!HYT(iL
z!G%qt8IEVuE$xjH0g1|}9K!B#t+hn^3vM74_zXZ-GbHKAacKA)jy^7#t4BU(u_2oi
z-^mN5ql*A?q7rZ3d@5l^nf1Ifv9iLZ3i5BDm%)(H(9~eyIi5g6goo`*;s8jvoL*QE
zSG%;~rP~gn<MO?CpuE4mEv^9a+hUSD?+d<r&+0ZP|MPGF9+wGho*}X%J8-qCG97$8
z@tL5J&+0?CF=AWTX`i||<qn0GRs<EwrW>8#B^upR;P+X%^;<rWyx+H-z!|zbuy8hq
zk%q?5s!qnmV9GD_a8P$oJs_MV)fKhVYoMf;po);!AH3bn^I96{?UyP8(txoRz*tX>
z<}m~8K+>DcuMFs#?$e2hk~cSbwbb1`X*~N$YYv7+EiNP)I|@f1y!dx)5BwaD+4R*!
zmFpC!&1P9s&+s5UuQpd+Z?OXK%UYhE**iYI1v{Hz=!1jxP&xIf>6xPEpNNc?_?%r^
zPj_ZmSAg7ST6lQu-Z1mM)(JJrsl-ti$2XQmLixF{=$;dj70gTlnsA`tN0W&hJwz&D
ze>|@EwSrQjW-nOQ8G|i4++0Q~H`fC8K|gd(oR~2FBLMqNNIRej*ve#;ftLk^2|dYc
z!o0oE9`FWpq>$lJN&G$V_ocg2H)PG%x56E|2!L&0P=JgqlsGoFU}N?B#1qZ*85jF!
z&+cF0(ZmI)5q=i6UoG#&F_2?np?K1q_MJxkpz+AlZs-<C{~AtXbQi@k)pe-=W#ks3
zOo!Dao_=IC)s_B$KFY&w@^HGd6V2;<@9QZ@9~$xlIG=9~yf8NNnc_!&eC<u8E8DxD
zqpJ_9O?hgq7xE^MW)HyFKw2L^(~lp&TPZybL|>T+)#KEsO+6a6%lsVcfs4B>++R!d
zuNnITWTg6~?0h~{I*QWp5^|93l&R;w6LdZTQlfLVo>VMVuKb{ove*!=WZ26A{nq_i
z0&xxVu(xwg1fGd2!PY4zPk`h!21kHjHREo4H)hG;z~6$$Y;hjLb7dqyBW~qj(D%xQ
z*VQR;$ZB)>o?9J+^E$ly@J30z&tPZR_h!xbF1Gz}pxUCmva%zL{*|dumhvn0#=|2P
z?sAx2N4xu0)a264H~P!7{hW#6TC)>4p}YIAfw!0)?Y@eh-*#l(NVx=xhjm|Hxz8j>
zUuG=X+*DuGK(|k$RZ{ZKrN%bwmIBk`;^Ot2H{h*9jKAWxu&|;x5N4U2S}zrs@MkKX
zyP6-_H1gP$W%1}@LhN?dfg>m567(t#9S`1<v3IRR96%H26oe;1po9rl1{fk}Xv5$n
zjL>}Uh_)s!Y;(|wQC~RPLqj9UyF`9(jE;)yH)sOb%D|gw$wd~Kog?&Rc*$1ip_n0t
zOBIElK}-7!qLkeBC*W>`M&21BvKWA2&&i6DJXuzl`y4nCmc1=H*to|ZxxBVkSuQ-R
z=fN)|!QXA)e&4OZaJy=#bs}#a?KM!u!0E6n@GJieK;)EV$^XQMf!oK6RIxvNcz({}
zS7B#F7amsN{0DYqj-GO&7&J&YC&o8H>GF%hyom9S@7gC&(4nH|XOz-q0G|T*2?I0W
z$lqV}E^7a0>{#~p<7a%Nnb()tM(no{a<Ylz?}~7uwi_0kxP}VkOd?Bb&};eB><c$A
zt*lsTssYnK^nT;l7bj9(G#qiUvdW98<+<+7^va<7tNt-m!f~8mzbU)8u-t0_K+}JV
z<JU#OKcQy@UmoS=8jVaSATG~crhHGzcYVG9^P*<-Ct|JO%dVIMPXEhV!@YT34e&Ak
z_YWTmtbm)@;{G9murMHHr<Wn5&b7of0=Rjq1BeS5la1Aa+{eOjrAK)j$uT>EnwGK-
zriD%`UAWgy^mqp)8iBr5das7~^9(v<cn*I?8|d`&-88}!P+?Nq;<}Jg^DdXRaTfBc
z3u_TEH@>p(`GvXhAlB|AV2J+!)fG?@AWsdeFfT5@B^x;;Bk&Sb)>S!mJU)W=>kA+D
zWdn3Q>(QC|z9^|?z8_;U-6<==v68O$bkdrfl}mL+X(B&$bh5~9zsm|5$tQFZl+Xn-
zIT!y}A4TXyDrH7@TVIoA{Wwz~d~LUWiiK81^I~f*{JZ#_-7(_9v2&i^Z1;qQHMH8=
zbLsWG5L^S^yI8yq7T+eyd>dye+gk_mWQ+%aO3GwS%_)Zyf)qaU0$?SMd$04501(a;
zgy}fo+Zg0~zxWfu$s!D~)@5EOskWMgZ^wu)uGBz#Y`=7Vr>j=z9cU?<qet6G2(j+e
zRXiOj$tnhHvN&U#Df$lMoL8$_PHPv6UyfDrM0suHJ1eBENzhU;E_7*5Rj%TC$fiCc
z9Zg19_?q~R<K9elaBzcE^7baN#HbyAX^`D9srxq{=CLAGIo%x74<DE^K`dmt>~?~U
zbQk=#i{qKiGQ=Ap^~HKVI*JONlT?1~UO*9UcqOzO;CH9xcbkG)Lfy!8ANk!}**Ru9
z+Ysn-D`{V&H10cwme!EWYc-QoV#`_M3WxD0uzlHses-oPrSxi%J`mUxrtre+-74Ii
zD8jw{Bv53%fRR8tvlqdKN+%W;kbZ4)KH=jd%mN$fNotu_A#^wHy*Hh=fFIJ<H%gRI
z=GJ>NUen*%s+>{h=BpVf9=BI*Gedo-&c0G=8gbYe@?3zz4X{2dOtl{Lg0k$BpcQ}3
zH#b9*psw2TSLSc)*k^Zy$*7?$TU&h>n%b)Z9{jd}LVUH3P5T0ZGZP80-rgUrqWcP~
zLJUR7w&su`sC&hcm#X>H+bd(T4}aoQRbSZZv6p>_^O2vvzV`lZl2<Gz6@KV@E|u}o
zuYZCY0RzjbX!>5yYF<1E6Uqc#k!%og7|#FXFq%7YGckaNvQdpwnid;xzVUp<uGerM
zno#-)%}-(4XE_O{(O3M!wAyYx{CoBL#u{(JT^pN<<#_&z{iyS}BgkRj@`1y;QR8Jv
z<%Q{_;`E1+vjZk238QV*0nNIiu?iQT6wkh!uxoxb_J~9Ox=@-x&}ehlAbX`ev-zD~
z$t4RakBn#lTa{SXZ1~W!22fQ{?-PN8hrN875NzGvetT|wlX}oPd2B0k*RDS0v@9Uz
zdHwYIWVzVUdr6mYsj}Jr*_p_#i0^}gNKb0$5P~2FIJelCIHDpQ%^~f>bt8F3SyZ{@
z3=GqANA%=$?@_n+#KF;3$A!}rp)cxz$Qdg7+zto;*~R1j14LM-IglG6kZ4axb71>4
zk!H`bzh!M9U$N&!-otH4{cAE14%Jf#?}UbCR=;TJ;Xq54W7FFNp^!4Ojh5LG(p_FY
z%W%H_x(zCoPx9IFGA7vK^Ti+>gjQ1O%8;=kw;bYdKA>`sA?&8y&y9k5zTD4F;%yCU
z*U2s;jCE$dV;XG;*Zb{szI)m&zhbGO4r9Kj`DAqi&gCcLgt!z29!Ia5oo~CD4O-as
zDY5KTe)_b0_kK`;+xpsGdf57ikO&au$6aEngZezx))U;-1Z}g0ZDW^MxFecU-Jk4v
zz1UyTJxv?QljZq!i27yQ9ALJN{OQdXHy>plzqpFtgk|yY(amtc9)V}hY<B|;edkQN
zKsCAOqBGSpN_6@kpLD;Kac&YVyfa7^wYK<Np&<F5@}Ii-1uAmB_%-=F9Z!}4<?x}H
z3)|a;c|A?>B7?cz3gVG`9~l=L;K=tm4-uSFD*kxgr#rI;bEMrvnVnGC#5Kph8u@yG
ziQuZBAf1U3eA|TFXnHFaxz)9W7t#~YYfv{Aw)9Gp#pD!O@|v+0*4==^>vwr4xZx~e
zXPJPCbq!{{mm*|z<D*w<e`v{F=~y*BI!aMH-Z_G-prb>O37lL`Zf2_|hwjxrDBWLH
zjW3-kJvUQhdOmu|o}c%SdtZb$QyB8v|0-5#UN!n$Q0L7^bM)qYaKe$e&w6&r$43_J
zrwjlpr+?@%)5Dd^=V|Y2p+}(f&C~UMDLpS=xO7?*dCcyt&V`7!6)r2Ad?pV=_7~v1
z`M>>E$@j<%^&4vw<i2c8*i5l5#m2=I(%lg42PHeZE=sKepvw-8*3g{0*1T6&!yBdQ
z_X7i!{H_ECnVAfRdRHp-^n4BT3ZI%58W-5wc=49(gaNkbKDUe1!#cnqI69VBv5>1w
zk~>gKE>;N<wCYuGcqvL7bdS8+oURQTke*-;1P|gxBWy?I&?NQ)4bEBYvU9b^BkPKV
z6&WF?PtL$bo)(+!<?n;G0W4?GZxAPdqJh1RJWfqd4eI1*)M9;txc-K*Hq}Bg32N^x
zi>7ws<9aORlb7H-T*vBy6OOdiQzlw*tfA40Xt)H9Jb$PTN;Nj_AcurzE0Iy;tBY(L
z^bnhGZlXp7$Fo9GVgu4<+icbr>gl_sC(NcMJ{CU}Nc@bX&dglX!CS$>unB?3C^(8N
z;{DJnu(}`qt=9bqw))rmfwM+L6mxiekH8<xo{apc^0k{}_~xr2$X>QguA$Yt;{1%A
zlysd`N>97d*2ap8;t>-ASo2T+g>a4uIP-go(iL+LP*scHeBZv6&%Rpx7*{OdLyt#`
zOPTG_4uNmkv6v?IYfevdw}2O87RF1n<Xs}S?CZ#+U2$8i#BUx#o-}{S2w}~&VKy3C
z`e7OYI0b|@@q8(ceyOh9^;avk27+C-AJj<I_UFT2Dd%$)R6%j9g`Qq9)_SeV$L(%w
zR38AQ_JMOlNtJWATJkCD3_Doy)^bHlP|Yp^GCM~3m{?-r@(d4<z$Ln_A-1B+wgJ3J
z7d{?RGv%?1S!Qb1>l$vGM0Qgli=NA}o$0p{XWS&4!Ba6O9!=em@ak#=^vaAvgS7i8
z&yG+t<|PT)7mj|P2i+^<bkM}<c}dCmfPc*No6*@CLSD5QYjqij5ckijM-1i9xczUm
zJ*j@&T5oEQx$%RsVeNRWK#jC3@oYx}GLs)a*(-5xZ80~Up%*oL2BsF8mNdo#ag(&3
z`s&_C9Y4b&BRY*Un__%<^g9PK$#Qh7)-|r%cpL2U#)^$&++?C;EI%;O-kgZy_}nRc
z>`rS<!}>Z5_!uROfj@Kh526Hj)C?Dee;)okV<U&<;Op#=MtiY}j5c8?c4d6E@$;Og
z7JvyG^$inBb&;`$V_v#~VRF$J)<ss^t?4(1eL*n>9zA?GNzZAF#qS8FJv`hC`frXj
z-oKYS?}8s&2G;?e0Zg~nsrX2UaYWf7=3(^DT?eJs`3XGY=F0~t^FA~SHhM7_H;{fh
zBmzR!5G{UZn#;THa9fK1V<AkAaQLQ}=ftPS?!zDm&LR=vxFr9P)0**L0m=-3bsG3H
zD)@!yq5p>;_^+NRwCYc~FMbD#<2e8Fvx|zgN6?&W@Q^svUA-?xa<++v^CVEb$Lc`f
z_YHsErHJC!Z`s?QjQ?~QfCRa6GS{D43D8gPU;RT*{i|oz0eMkwYs*o`;O38L=a+lG
zKZazlp%MFEy+z7Mh;cS;xR$+rt22|JrtYiXitpEzsj|(zmTq?4mx#^?G!;+RT5!m(
zoBeKm%h5ak6-b0d8vhw10DoH$Qor`EaaBUh<~k~T|2c?f-E8<sb`hW2inVJW$S)i$
zfXaSVN&jxysmi}%CFtXX&|t$qg~xGuck)#$`?)YDK{vY|tD4(;h^srBfCk&h46kjP
zkh;UaW7xomsw%B_qNW?`45E9Kj*iE`j%E(vNBpO$va!g?X=o+oxYAew`$+}4<0@L7
zc|ri7;(gO>&rp1fp`qbX1vlV;D~fR=m4H?5we+e3FxEjWAQ<>h1G_jn9(|5a$IS=3
zjD6V-|Mh|vmDx%mArjn>75JH%`IUYZTm99*HM_gKJ%c~g6Mu<E$Os96*KV8nw_G+|
z`<C3|0Qrwo{=?M)dj5w(mJUFEkg>8TK3vKN@;}njOd5QXlPtA0DN0%TPWwB6fBLh%
z_}|N3it?wh6Gy%^=YW6zq4SOgP*->GWR7ZFU9Kp<`b7R$Y+K;j5Sz&Y;6K_{jZFb!
z?{seyvf<zV^y}(>7~ua+9ohd-jq`swto;eCx-GW>pt|5>cY=l|uj&4kkc)|jyfv#{
z>T?uh8L>~dK9@b*>2wL#A3HiEMMRv*KX@a=7;>`5o(DIIh;n&#vGO`NwQp^jUst-~
zp3#VXL`0A|0F^%O?mcgvp+ic7;%eJG{yUnQnA10j)<2tHg)YvN(*x-Gu1!M5rKNqn
zVWyi&Vi)w2{h$#>x&WYdlU|4kUB#?1_~gWSz~c_3+SVfmj6PNE!ZPoEr|W`MUQ?kw
zGe+2sfiGc}YqP$-{#sU{^W=P9V)ORKvh-yH^cFoDFWS^LBDw%#KmBfZ`n*nu6m$V>
zv~Nx|`?NX`Tp_H6J$DgSiM_@yOGYAUCAtxFSze|$6X(@!-<o~61ULx*aC~L7fXo8B
z){_mFj@qsm${@wQo%DzZmI+@8xA~4kCWg`fZ8Cph*8kH+6y7Mvwd-eP*%xV(G2aPB
z9p7~oTJ?1Sr99X03o=ZsnJ_!COUZ<AnF`iE04GY==!9{5K8jslS=}KFYKk^p_+Pxe
zcT`hr_bwU)#RgbGK)|vA0Rg4=A_CHpDqW=s0V2JIfT$=^RC*0XdXrv405<|k?*RgY
zA_NjTga9GQUGA-Wf4}dZbMLt0jB(dLFp{jb-a6ko=kv@t$sumUgSpfL#h-A~>>&ZX
z?QdFU-5v;szSw|S-bTF($PPB~VYW`9utmdV`0%G7ND<@aj)YP0=2WcS6Eyt#zCVFK
zS&aM5)ye@f={etZ<%CzS!n;MFzLH=b8{5vtYeB?`tA5i^$-EZXGg>C4_W?hH`I)3U
z0g*w1<nQR>+{W77+T}M&YmpON-(CuB1=v7$D}s6tv=V1A`+gJ6YY58MABDm<`J`DP
z&ATGO6d=8)@A4a>!oihp)Db`0d;i&$jO4?Jsk*{`1z~*T6_HEIsgitaFcu(jQ9*eD
z!~O|Ds#&exh$q;K#R0Y@-IpetKX%Kd#q9!CC(ZOmwnfzcIH^;;mMqWy8O_yJjm_wk
z_pNKS2_!O~u}t{d)1&QhR(2fSHr8kI_lRB;;(dC68@(d_^p8Aw>M@yGF#Se?;9cka
zlT8O*Mn?qSTRulM7AF)XA?OIekGj8E%IbkE;KlW)?Xe{UldL{u7T0u`H>=S)I_|EG
zY9$9Oj2Fg=piR$BAhN<4=PSZF6DHbjEbMuBR9fcWoOE+^3~!8%{uzO#7sU~7YU6jR
z+obesXj}NG`HiqC&E^D(9T1LPCWsW2;nhw5vj%T=WnU>XNFE5=+7?&6R__$c^QOh?
zq5qoka=si4aEX1P&IG#0B(iiUN}N{gBQcT#_U@@U@FY+V1%lAEZL;N;$Ief*Z0N#N
z))xS0E=!t<D3GIE?iu<v4#=*V6{kwsiLn%3o-9xO>VJ_HkTP}uQy5Ar)16W!cC4A#
zh1%rzEiYlik@SqS27hwbbo9#l%)jgrX~wi@Rb*zLT%JK?-DG^tq5Ra~0!6{^oP48C
z+jK^TGlSrk-1)c?V*sx(ct97eI<`G{@%-j<$XRwU*i5KVTp@7%>iWjy<!SPf`^vWc
zOZBUXc<uA(4UY}vw%_VZ3lreR#-&u=9cAVi%=OT9W1OLELMP;_PBuB(TdBLs$~IVE
zEe3F_^W#;f0Gaam*3@eTwpq(n|3xVdC3pzuaVvSepO{-@nI?(ps=~{W5u=*w_siBK
zAPmY<M?=}xR}%1)792hX?JM&5qY=v@1hbss0;cA6uEBQ2o-U!Yif>&71;Ow|H5{)?
z=PC-`zN73o`XbeEh{Bvc)6R7Y7yBP4wK83RYAdST(~<S@+A3b4n~1k>nJL+SNjLro
z9C2LiI2a6O9cfBR3K97Jz5e6JV^M0fo}!|xB|+3Gy+MV{z%PHi$dh?`Wc_dny%2ns
zL;kb`8yHB3loXT>00uvU_=2E810`?6SNryxqticwH)dX}=joj9_x13)KSscRGetx)
z0|hYZRJ3pS6&o5@?7lra<(uEah&sWrC;|7|W8LMTd|ur)uP**%n|t%v1mMc$>(tFj
zxO9QWg@~B?;jXQr6>EQ^l?%Y1UEns4xo(>`pVgD6yzJQ<8?3RBl;8g0H(@1yez3Fy
z0Jc8LcQ9ND7v>t)$+^>pVb>YDc?XYRP2w={Z_yN}i~J+4m!`6^oA~aIp>tiZK18v7
zgd^;01kW@>7uS7t`h&Qx_;Zn{e1&(Yy6Fzv-)Tzj-#6Bz3uv!L^rnb?u;Q^Wf0V7d
zvvkh(*t-%d!~09mO-vFRjYLdYSSHpgPIj?f2<_Q%uXwh+`l3-+w*WtTtxlk}yrS~Y
zGkSU-ZHFT6y0ky4J^Wf<gATS3Mu;&l9M^+6on}KcbbD8@2z|Rfk&xlreR~FsDhFUy
z-<!Lw!S~z0egiU8`9$2djH(gu8Hrq|jHGcX5<I*gQmcaY*`IHlI5~YGvfTz2=0>6H
zuXnarvaf!Oj@J!4Bs>AzhT%2kRp#qeJJaGj2eWiJ%<|Z2{pMI~{;YYTA}34HkP~~Z
z|G~v2nnwHn=yBRss)oeov(Zx=lXxCQxjQZw6#VcSa`uT~45_Gj{RzraL6DC6EXh})
zgUG}}amG1365ky|>)ovhDSk9J@Mq=}J5X?DS@j?7z~}~$AvtsgwjliY&z=77w+HDt
zgU^8_-QIs0j?LF=8=T=J;6`H?=&*~6h5d9QA|mHJDNScTMz~CWtacjJbYOWGX-RfH
z$*ZS6|J+XskcUi;i{9(_@$;#55S8(Y=d8CcTipbAeyT~doxojO7#k}FGQyJfRMIM$
zV5{Roh{w!^%M@rO3ERH}y-C#47IlE#LL>`0McQsn$&>cJuUg;T`|Orx^Wj6WqFPxJ
zQ1)43j9KMIx8&Bgy|i#6gxN}`Wq;R>^%FAbxdx}e2k6xjIn14tw?#aJts7tRtVh{P
z0MKE2du4LJfcJg<mRJb=xPa>=FI!NZv2`(QL*cI|O!1N!K(&A9{RMRAa-~zavK2e%
z;JlRAJwXJAi_0kMZv_!B0d(m6R5N|MJ~`fjttTEIX5k8Y<G`t7-)a*1<iFwp=N>=0
zqHu7im3D*`3&6l&ACwC2W+N6JwuRds6vglFcMJd6Y4=Gew|+%bAm4ZB*;^emJ`qGB
ztlvbq0@1L@0wOV#Hi_JBc~#!$ECUe5Udrq|Q_Tki<-W-jOm!C$VoZ#Ut#HI(u57l_
z?ypz%zgtCz(b8XLU64{#v^i0w%Dh`~@qFdGm6+!Jt2e{tPf~T$?Kza`Y*k-ZQ|w%V
z9=FvlUo0n}H(G4>FD`8U#IaBpNp*IMr@z{0hCtA@+mE6+@7_D{#W6^X9l-9|zJGh*
zf15`S%9`ry5}sZvs3w1Ohmnh+4PA8x?=oI_90J`}z{yHKc|fIUKelrtQ})hh;W8kj
zhakF+<<twC{zhv%%-0y&vtb0_)Oc~A{Yr)k=LuHzTALIfFAV!?YFg-&T;OWq)k@l~
z_i<n`xlc=DwXW`Y6X6_tz{JdfJlUznF;HygD*f7R1LFGyX|;7Y=}iUjxuCflT0-;7
zV{K9+tt=N)a_3|0ZRXeF!FRARrQ<Mu#yx<d{Lqvda|L<m%I^H`e&Tmg>{CSY9)Xan
z3h5N?Zf*-~DeGjhkbKhlCH8X>ip{!jQDa(sJLS;h<MUg~7CmMZQ3uzVm)?lI>k7FN
z<^eOu*~7S;?cvkW_FC_1^Ak#0)}8)1HlDcI$y@$pb!=EF|91MjnOCZs>Ccd4{)2;m
zcH3x7LqqaW^iY;Afx;+&`1m?WAnN3^GD{-6SVBUQ)VllBbO|e)xXUe|GV#>=_emjE
zfc}`b0_Bj&22S#E=E{pUy;K^+-fF@Eu6cXavy$EJeEn!c()$oXs>G9LRGMeYLrMv6
z3BB?uf41x(rP$oBcAJ#{`O(JYny?~M3~=VhFb1Aui`qljo`23vxPNXZCSCRievKk~
zDMKf9t~W8CA1~7lTC7!6u~WlO_ojBcrLfma*`j9j|FF?fvvw0QDYXg5!hvLsW4Jvn
z?Hj{{#2WDIV132eHxVw6K5QMu4rR=8$o@FQ!VkGl9N&u%bsgj&0L-Tw&vqP+>gTaH
zVyQ@C*WE}h=XcBNW{DaC(P0G(V+H3a2769lhPcPiH68bMMt$+T$eRsi=Q2~jiWVZy
z@QRke%n#nVq)M4w?1*g7q(5elxNq7wO(wgW6z+6S+Ef5^h2&|udK*PK(cq?@*~^R^
z^8Ec88|y>?(jIJYomQcXe|ljbJ|mk&|MrBw(#iHwQ1%Tr7Vd&GxUx3_pK<d-Ps`RP
zmFUoAY#%PWoWK0#HN$<eh=N=9bC1(qx=;J^g61>jd)Pkd9o;<cWDW7wjX=c>ho!W-
zH2-ctMY$ch{D|Il@ld>^6{@)y?-$Q+TDt&)jNNYOchIz_e(|2hkMX@dpr=Xu9F2fU
zef%(Iqnart<_;}qU5v(>D9&B73(k#QIeZF<>lTK0ecbJp9jSj}g|+&Uoax$Pw-Sm_
zTQTq*8SBq_)sM@rGsWQqxCW_&g7l5U_2#?)%GMLyV+#WU&PpR-F7nEBT7`k4m~;7=
zzUYs^I-{n=!*L$<jc(2Ek#4KA2QbETf-K|k5&P3A9Ujopez?KZE%~8NGIjil#gbfJ
zYOJJYP4>vfDx<RnI41Z}Lbe^MYH%UO7r#C;<GqvEeOJEH3L1kr3@$DWUVA#SxGOVR
zw-ks(I27+mtmLz}#TXj)#~_0<@+_<$3_6Hrl--p<Xyye!iY?L`-Yc4DfT3Q}xK{7v
z8|B*H9xmp})#NA}isAqln+#v6aWdeGTtmy!9|Qe$bwzi@3rxatB3;G?ocK~J_tt!^
zX+Zk5R~3D}Qh-{}HL!Pv+L5w*s;8dqj~BO}F>Rzsj7^kI@339coMaqr*?J;>Hz?^a
z9aeETy$=hR&tUiVj3Nijr4ws-h)&nH_jbghG-e7MI3Oc<A{Fk|%&*I`+n`3>Z=vE|
z?LV>_5Sp5W1n+^j@I3qIdrVVXZ`PZ)*sKDA)5<tyG>6xh^W9jvoO=SnY2LZw?+mN6
z%_BLH-QpSD!X_nPIY}ni{f#O2c*@jwI*33aB^g@)Mm$Ik!ld-djyJq^-IOd@qxrj|
zAW+DQo1h>~nd~sL!1zUkUEWHuDcA5#Cxh@ZQ~aNnm0@jTb0UOyr*F|1;;)hqVq8CA
z4B`wj4_+~Ww<P(@A2uW1nwPGQZX;|33RezLw<HoZ`;OO2n?a8LARwOB3o%UD#7c2n
z4&D=B?i)Uhne|?rEMk2GZJcP2a9wL+%q>9E{%#3~<|GLIQG_t=NyJrFD0JKE;btyR
zIHR`$<lS`wjeW*$>&EAxaRw;ND67RZ!xN3+6fqQBB2T*#k^6^TF1hHExPB^687lOP
zJ1UzeUtn*%TvN-p9JBOiaHAMFgCZS}W}P0JEuKom>(hv&zH5~K=gsfgkG1B1nrz(K
zW*46mR_N~a#m9zc3|*A`dctmkIp;*wXcqxnENC&c(N<{_UTFp6Hx>AhSq;=$7v+7B
zml1UR+MRVX>!kckYomR)iHAG_`=O+bF{D*7m>>zk=jBs!->o;OFf}9fWtn90Kl1;x
z*A3Tz@h{3VS?jCt99p_vYEfWv%3<6**`lV8fPImtGriGfF#R>yKD#x1ih(=ZK-{oW
zCb8A8)kFDHAhg)zOuID!7GT$7m_i*0OY!lR<j{s1OEydCWk|U<NBl=0&xL^QY@0TJ
z+_^FSB}YBYbWR#z*eiIGUD2N^5Z7-%biTNFSjA(kc-5;e?xp#|e1S2$eUoQ+t}9HB
z%tzfNP8#Kgnx_XMDgMf|YuXkCmybuyGJ6O9GlZ?LfX5rRJXAqZ-A0+5^6pp0^uqCk
zIBl#>$YuEQa4(H_WEC?mDhBmn^yy`EpVJvFZtpeLV#ZDr+^aek{%%Od6xm!73l*GM
zY!ZxcV8QD>915@EIUY03jZZWx70oT+uvq$ICCWH3-PhVIut#&$So*Uy;UTs>r}aM;
z(UXEZ9qs;5P1)e1`pT**;~X`H{9KpG)EXP{VxXesWy`(to!t)Mp;z)k1FUmFBQomV
zyWREyJDnTV&>d@z-a`#O&zZrn@2t41RvPc>Mjy6lAqqZNNvm`#SY)^7!^>)IkY$C%
z61dq=EAyR2QovT2u=s+K_jC{$<Lz#%XHroWydcCjS@;&QQfIS!@Iu^R_ju#}ZpwP?
z369ayBM)TrEEq|ej+v|z)gnm<4wm@ZjD~fiaL)*3jRRF~4;rox7iE8A>^0g#2**o7
z%7QJy9l`qe#GcX4Dw|Q574|VC-E*WWm+vyt29Iqi9{dhpUf6(*tZNhf6w>8&s1`MP
zj$Ry@EgfP8$E(n6^fg;MssX|`RigM;$LhL$3a!uqlULUF{+>A{R)eg2{v=48w{tR#
zR{+7taawm91j^KwTJQ7e`S$HIAn9Ux*2h^`Tff=Fd+wqvNGtu`mEy2=Y@_d(TxsEy
zmEM$R-Jy8-a>=DkHAz6+!BDxzLxiOgB4Iots>}I8j{57E!6=T?MCuiZHP1Th76Ly*
z0m2wAw69O(={M|}V{RnnsqZSmU&O`rsn=YY_QQmw3?N@sOB=`ZrsdJM=!`ZxS2X&5
z4QoWG(>k`}aL?P?4mTUEBTDBv`txO-!AeIbe~JkIi+*T44*c{|;Ik+&489z`HZf_M
z`5&TgGhWusz$PoFGn!9S)G+GCjkJVHKIjgkxZ5L?KmD(zoSW~l7_o=Bbu%@&aG|TL
z1WIE#8Gn~lRYmw_sK=ijOiNyXNEY9FHHD{fSf9)d&+xOf>7%N_xI~O3nVJVzJ}_RD
zD`1LM9PEiv9E;#GEi|_KbV#l!r;G?&dpnPMjClxrYYdI36a-xx-?CL-#Q=6bsZOf>
z>(}uXJJ4@ws2?!~8PDYIPQ*8PQqGxdN)Ck5P6Xg4Gy?wE(qNAhAIr_h!-VC^@5abG
z*AZ_0dg3fm1$5<CKSB(iMtBHWCln2*NTOCs&815z+K&l}dNKXt``}u*ykqnXWfm&#
zI&{BZ;UJE=muvt*?pDgAjrO_ibRagCmj`o>n@j3HtUV4oYCidI!!&`@aCnF-SU)kT
z&-qbH^Du7l6eW0Xkp(x&r-t=fU)`-=n?RVtVe$a+xO)^f)L_+EaPMH-*|UT75D%xi
zpj!?kR98|ZS)NTRsZKD1Hc2-?XMZ(XiSNLhER$Qd|K)^Fcf0_$I$*Ta%EGb6wfIcn
z?#OuH`k<5GjdadBK~~m7AT0{1Q3c@>Op-zx$C<-}8%+?0qP1><1Ah<iEK&782IKke
z_}$zfD)OmJTIsM}H}a?|`QrYeBEvu%F~)!#@P+kHdM2)+y&mnFsA!XE8SiwHx|Gr4
zV%@dLJwl%q;&ioJX12>2&_47$=)|waW?o8qys{lHFmkY3WnAo_lP~^gu`AvfX)ccC
z0D+GG$5h-)Ax}8sf}WJ8Eza@62SUT>)2(4GpK@0cz45D4%?<G|M)i2j_{)Qtp@J<<
zf&FgzqplbV*=OB4Cm0#<znq3Y8MzcnAk8Eb*z%-tevQjYHM8X~kIsmU%w)55g>!r~
zm!g{udrO(taDNNMxm!ZgX{ufce}ccO78HVEp?UnP51`Y98{CP{RuXqS5=fK{UE@-N
z_7%cpMuSSXNr`@4QlBdShRf0na{tJBkAUAm7H=fnuJAllez3@b-0onnMPmIcB3#Bw
zl<=JL0Y-+HU@b|EJ0kc|O{Eh07^sW+SnKZ>#eL>Nl?*~iu;GcdNm;>Hwwmh1wPAIX
zrGI>_o!#;V)i=D6(5#PQL}~~GTju_pZ#Y#<=`z33t${{hxq!#=znj;46)M0b`%k=V
zn`Q>|F{3LB^Gyo5$=jDFCMJp==DZ#@kXY-TEC*&zX5-h3Gk1*&^k*pS_UY!M=?Rr9
z16gf-#g$)rPRWtOh@&O$7u&6ZD)>!GmUn+_d>hQsJfH-Ynpc?vEBPswQ3CkF4kPI{
z@&MtpF<8ri9_1G?khCN^GH}Ug6L2FHc-FZxiyCKRQ>xqAOqF`r3G1At-jvJBQlOAK
z9EuK9J3G7ami9uREbktqVWIgIN$*LXm#Tw99-HcYDM5R~!zB*qsn2CQjK5l|skhj5
zd9CH4ngn>cI!?!ov?p5*0^PER=8}C%&CAQ1Y-#7?=^(3I*Hro~DnOuCjTfLhzsDH_
zO8evA?fU=vW%iUi3zopQwp?Kg6zeg{d2<ptE;TVtZT`o9Juz3H(o6+7A(kL!2{n+G
zoztL@%EkSPn|lx-wKLfw?dj8}t2W14qc8G-EXSyDfnT@r3jdt@OV&<wA$&9p|F(|z
z)W2&21bY7Q+CQ5g_|5;pmv0SDfw*SsOi4s$cj@KT-x39Q==)-iPOCH&w{2i0C#S3y
zIKA%G*!<}zs&5)j3i1v;XxkZ=oLs1O{=BZ%L|n6f_>EL?ubE#8veJsoc}kQB7!!=W
z3<BAA|F^{EhSLP~99W#=pk%*gQcSCgY$yozdL;A1E9a9S>XX~_rD@lu1Q|izh&54&
zZxlKbc{@hYP*go>Yq~5MoyMd7Z3~i`h4wf^I2mlgBxf(#ZZw=1t)BMZsPKA$=j_e}
z1j*l5oU6Sj<7_Wq0HlK?-8}_As4*$j;3!{q^BjHZ#gsqy^}=~-^_Y<Pry7m0w1mh0
z$D1^JYawwZ4>hmK*?h-1$V9na@5B_e@T5>wW8-JVE+;YEpr?nw)6v-A`uz@&KmP&f
z`SdMs7c-0V-e*2v?H<_{2YV!N5sin;*0POI6Wp3z9y%#kbK_KRUdC5v?z>Wb%0}|@
z=K~oGw$mWrKHs0X%#mAZb?Ki+((xZihv=Ql@4MQXcl12%0<#n(YCR`TB&)?Hv(xT-
zM|9NCuIkOv38ypReC(+s{ARXdV>RR;G_$0P*~JC+ag=f=lZ?;i{)LasPW6IjZkmQn
zA3SCdNs)_BPIEd6t*!U};EZkI)J!8+&$BmRlKbyGk08~|DF(NRb|@cLP|R?ZWORqV
zb`bTlz%)ecNc%)LDVRoE_Nm_D5v|*h;+BO#51?v+tA*<*p_!eHlgs@Lujkek&mLHZ
zwJy-js3<R-tk<O>E8Cu_fj0Me`)dd~FpYLJtHdo=AHv&O1E;8zZYt}Y)8kwnq6t{v
z*2XMz+3cL*zwOA`j;pPIZGj#d%Waxj<j!tS!HT(MQbP#T$XQ;0L4DW28w+)p6+hOh
zJIfp3p{w6{!hdPEPk!I<8|X8`)WPxN^2&X)3upo=AWUx$*+iy9FoX8K;YHaG2>$-Z
zp1nE=LhpRYd*UNY4E{*^ap9`qThQlljJW%x+^YL<6O9J%mB|^;w4++WNyqdcx|xd<
zORUSEk`WwpE1vN1cxmOSb6D=pol9P%_fu%zLppC-c<!2Lr@&&<2Wf2H<9?+A3J{w9
z9M+7Xp$qwIM<@yXlr8#xx#vMb2Nwn=CMILmH;GM(iY0HE!mT?jN0h>e4tPmN*-Iaj
z1IOqDwPZ3EQgy~}X|9ReuuCGWu^vZ#s3?P}7Y&+Q>B2r;mV(~a6rp3C7e9s0^CtQG
zow;)4eRmNaOHcHv1!s;c$afjBF6Zv#@w@FlgUr@GgfXz+=I*mt7rXMslZ7SKRWwd4
zH~hi|kx4C}p%1FNiCQjrgxddzas?L2K@6%JO5r8Z`N}%aF3*DBqxR-BA8em!xj7%s
zuk57hyI%Ol4+7jW1%8ju&>B|5A}`}uzZENvh?<yV{;`l}eGP%h3tF9MQUk*nktG=a
z@rh%qmC}N!?WXoV$jm@ATl2T?dDWfpqR{C^zR9Zn_{n&gm`9&h!k}ZUcXN!wa?Wq*
z3D{T14WL9jw%V^m_8E1h9Ylafr~Ef$th)<lXE7T*hAZIQ9~JI1_yzMIt-Glqn_nk#
z{(yV)T*fjPt;%1>eE<hJU5ial!S1h;CCpA4zW%X`kr-w#nW=Yc{xR&xOs$+ffY|u;
z#aufZ`)buQsKsMaC@Uj0h@>KKn@jjdjDUhAxw$}PCKkQ8F_Zg3-O=_NU>to`q8UE-
z&6~-hxz!821r84*s&)!fR?RT&Ek>VDJ#RqA#uvCpr0Z9^^t=#Je%wFql37~+VnBi<
za;?=l3}zT_aAZb#HK6oia9!FRiRv&55>?YVH$I#p_TX)s8>%NrH1AC7%*`2>iEBW4
z3Rx4)v^5U&?iXDfMq&)3OUuQQJ-R}RYTR{(jI=7(zIjuM)W+Hwdy5p4qHuFDQAh&V
z0OS5~L)s_3O$q3d9H}j+<Ig8>T9H@3=SXTUE(lcbQ{u)({7kVJSxgwekV+-SogcP1
zrSL_KIQ6M{B8I!<p<cT;Fh@`5y{2h2%9or6t;`#MVwPgbaWoULbI%>8U-R#*I?%pW
z?vX3v39<OR`q(0PJg$@RWM4AK;h`2I%NxT4**cNFysPfp;}vuCUaqZol@v%!-)C;_
z#Bb`aD-+k)hb*c1*z0LB3fE|*LO9-;e)UIQmb8DcPct2|cE)xkb-@yatb5v<<a+0k
zGiFE>yW^qLMdV}*I&tjyZg@b)=}nHuON>HmXM=vrWPPv2XoOU`R>#aG<k9|Z@^X`4
zHM8k6?NcX0V>o5=0H9br;u~~nu<{0A$fyEZLzBSEk*%4JRXkUu|In$3%}J9E)Ojqb
zd+N;8w6%Pklx)-4dl$vn3cerMF)n#Trb&nG;63-FF?KS2(FO(>F@~z0t=EddvVCc-
zS#_9}={pl~p`PS`=vWJznV#lYb8hg{Cf<GQXShZgbUJhQ+(N&=W5-ILu)S2SmYpk~
zp-S)%?|;N?^_BOV29uch_GJR<n3g@KxrRwSqpjX5)5Nrche}FjTbZ`lI$bF=7Tmz&
z&7OT9n{F=>4b7mZf|na>HIVUgx8Z@~8>}ZsAuk_w5+{><S~ft!q}wG7Q<8s;jMCjB
zc6+{WlXVz><L$lG>Eb|6w&J*r7GLvEGBwUC^Jj!cFefktJW*5BI|tp3-i`Rshm&;>
z_yw-u`y738-L>rWjGQB+Duod=S5vw7%8K)4*23n*jzT!tX{g@)8-*pWsmPJH<;Q9-
zenaIoZc?E9G#lKJBtRWEJ<kwUZf{Kz?NJa$7Syc=Z_<=nBgUM(!R#ERot%CH-Y~IY
zM;mCN({MhxJ*If1TH_)?p(T;xrK(tHDLpOfqdidj+A+|xZ=2KvdVWJTc=ZiAHN`w`
zJE!5@TX%XFO$AVsxEYh8nAR7Y#Zc$sM7-jCE4&N@x@vvcY~8n<OP%2|eH!}4kOy?N
z^+e9nF3&gGOJ{sRj~b4*|Ggu0FVKaM{g1V-O;(RGpe&1Ts>e8w;^1QbIHMYu!F$BW
ztA+f=Mb4AEb%fRKSYtqco!-T^EFXrV3V?L*dzd^M=z=%&u-%e@!z;{O%r#Gk)na!>
zy~;}$E7Ta=s-y!YmCBLm5zz-j)rIDjw~dM1M{s9U(ORT-k!4{vBZtDgWHV-uy2OTY
zMnFx*6rzwMPStdul&V)2K6}B4=`UgQ;@?lvF>#5E5TuL7p>ES3oM>Br+5$rB-l1!f
zJ=nsB$i|P@zEM$NjIX1Zh9(?qh5`LsoK)3sX<M9o9)_3*cDR`G=wKnHaSh|^G!Nr6
zB~|rRqEmM+;&x05^uI{o0Hyh9-UL~0b7!`hXfRmRKJ>!RE><7Lr+NS0UAF@HP0LDT
zYQV+H$N(8?(<5@BO_NDE*^CwKJATc*YhLxR8-C*1fH=yT;)`+a>`V8NjXmG=%&h1s
zBHgyiuHPAL0u`#)e{0J%L?|OvRaNb*5$ROA5tNkKa@H`%LX%z#!(q{8ApUD|t#jHF
z&NfzF{=Hmp6hb1?E;-0nxw)bY3ZJSXl2D<f67yW=zKYdDVEt}>xM|)Plq>^>)(YXF
z6}>od?7|lqrc~CAjBp+)c!Cneo0iYbBp%==6sG#mfWBFLrw=JMHcbB<{jre9GnJ2C
zKV#hy^Z_VWT3q<LisyHK?MDF%SJ1NYes8LTA-U1pwPB%}fcIAJ&%j+qTUq$74gmJ-
zYU5~;iLsYa+)Tz+=sN7j6R4bHG+?8Rhm@M#Bd{c#GO{_(lE1+$IP`kgE5ByBsJ_Ea
zBtoZS1IiRNEX&nbZJ(wyJ7!0GZD0Ur0qJsc+Z;Qjb1zB=`DHkVyvU@hZkbvFNle21
z^C<H3J~dHprCa@q`AD-s?+p%We#B+|abgR3FIAAqs>WG-?R(ddtf;~OqDrCqi*Alq
zr!Jd6zElQbMS4%3>!G<iJm)ekx38ApDd^qK)VRV`x3cKSGf7c$SO=`_10Y2%jJls+
zWK#IlCN;z@*b|g09i*sDxj(GvXQN0xEM5ac4_AETSoW5kwB*_SITS~*$3reo@R=NA
z`!#MM7h{vl_qvm-R<}pPxmHHs_D?>xKV0fP^clRD&N^)#&ctQ17fLHr<qgigePj(r
zl~$q03XQwn6!8Q}aZ+!cH-<W0n2zwlHJI8AuFD7B+hfQ2tQ92>TlceunYmq&8rWOp
z_QdL{iapEZk3XGgCX4Gs97PlVG}HsEFH!beoL4Y5Km9Wbfg7~)l-WnANYasjFqqsC
z)i>sU2D@_%w5|59x8sHgjV`9)xz2Z6!w}I$(uT_cmX}v&<kgnx_+n@$XN`S!i}mML
zll-Z)3RR$Ho58{M;wT`c7?xSe*{L2tC7_wo5~$gAQk1?Yh`wv8Myu*$>}5|Mb#cg8
zkCR~1&#8l>dmv4UvS^3H6#v(~SDWiF+rGJw$xkIE$p2M~E<8S#wbMc}Nwf(l%n01(
zLrMkT>+>L7CRab6yC-O|6}BF@d_Ag(YTbK)(;`>8rIW#$*L+=2*6Pum-F1rDS%Kzl
zw(2pHBExxq)Hr_c+e`RUg2s5*;YG0n>0yk5OQ)lVtIllg9l-fE>)V7hGn;G(tOGI+
z!5R;u(F9-_JnI#1dG^H@<Ag&)R+`+f1*%m`ePa!x3x5wDps6!1{r2pH3?$Kx!%qb*
ziFdAJcbbQm)wv$dtHg|7=xuJcXnJ&th$%);r2ll7YbMQULt`sj`^wRPUw}**H-+I?
zAl=tfYmW}wl4-|%qn}nmF<J{=xnQpI3_HyUuhMDj)oPp%XBQ??@P|i=<fE$I`88;;
zFaw)kR65uA&2s4w6{s~x>O(xxBDxTcUuri9bWQC4Uvv8Z$V%U=bA9cGAJZA^^Fa4#
z=P!Ky3|(52wvAbru+~c7tK|Nl7BIafT%%A|R{z0X2K!wVbUKk!i?@Eg!gBJrdZ#o2
ztZfAm@tv%Oh*abQFiS(iM9!xQcV46ScW+Rfh~u#*qy@ihpZ1GSamCy+%ZZcnYyQ|m
zVEP<>6_!Iud3MO6WAb9y=&{6`t5<`BB)E~VzxQ=!B&*^A2ccQ`3uHwUr#mgOr6G8*
z=*XcMJY^;-*Wxl!!VV7@q4f5Lw$Xd{$FUG*Uij~kvu>*I!hJCV^^!KjS#9C27Rqar
ziMcJ&u-nT!`$DGja{NEW|E!_TD(fVZ3WsVPqy#}B*?^0ai{X;uoKw4`$BYE7{7G2u
zSO4zx6PLo*Fn#fdyGB9f%9<HF46F&a5ZO7G=9=jKYN8UQF>TNsGUeSegTyK$ni8JJ
z^tpMzR?|r@fuN3-ON=Y|<AlrAym3WN$V2{(0IMtB&Lbnkl2lQwr<}A`y|Za~*+bOy
z`{BLqZ!mndT2#7V#M11XN(v(At<UQ8LNy2!0mS|Dbs7ebJMwk7JTjCRi;LP5v|qJR
zlbPLD?quYIOVau`@Ejn0H8?iRd7BLSGw!xWrwa>S$sbR%-FGaW9IBIsHpG9~i>$cA
zohKSE;@CV{=W<Q_-Csr?U#Yg4-obM7LR`s#=5lJMV>NaJ%@Rk$IRN)$Xq$#z*+!no
zSnx||4ZQVPaZ~2_E`5~X$lienv7iAyMJ#gUqG0cAax(QK^lkiQWzVx#^{WV(SL5cI
z{<g7|r1*_X3S`8c3#@z1eVok8L*1HpJ-orwCZa8=kScGjlv5zg2sVa|*|&k;q+qt1
zS^L0a(I~%>=s8kmVzp>VHLY?cq}4WxJ2MARK_MU2LHlt}k14uqzR6e>5?wVnP{UsQ
zF(IL%Vfg8#HAnjE%|BwI3|G@;G=aRS_MbXsXv$_6^kO*kAHhMRL#HTY2UgAnFXj*V
zO_k)HY4wIqM;6Ff)u{_W&;z>e0pQZ8mwgw;M{Roi{%NnH^N6AQbXd1i;uXDvXDIQv
zhD_W6nov@(+Qli3grzmlQiMm6UdSMwI+WB4xJ+cV#L~#&U+7>v%_qtNmvx-9buo6_
zx3A>i1uXf+lo8*wNnZatE5x%;GO|dYqhNCE=!|zuKv?VbTBdiWf?GZ@_hBW87V~!?
z=ln@Ms81v$39c|+Ls6Miq&*=1G(Yx#8Hyn{3M~si_9+NzTKG8dlV-Ezv}A>k{A&ae
zE?vST5#@zMh4j+kh4s<goQ<It8>lk7?+^IHr(F+I+fifFvV?Kja(oQajH{L*6U?V6
z_z@Kxs%1zoVtdzC#8$LB31u_5lrEcQT^G+jw7S*fPOBKkXGP9e=NfpuRz_~x4(gMZ
z^4KkK2$Hlx9XUn{O1mn+hVr@iNc!LD2We*QltBAN^K@MKF(-L5Qwx)sq6|HV57{0K
zfJ#o4Ezup%8L{4}89btjHe7Al@y>Zs^*Fyr@V<lV-P6hOU`_kfSu<tYu=VZ!?_q(m
zXmNcPIH!Hl+1(+3!^@HZUT;KZxvx~$D#|QpeI=!nc;DcsVm8<C|GE_xjccd=aw};6
z?N-nqsl=YrnBls7|0|R6i=nvnDZ}$yH<4IWu4lP&S)h;(dpgmi!0}r7PhU!C^Dnop
zzL9zi$MB?Js!^SqpmEuw?@kPQds!+0UWe>OW~C`SG5d)f)HN;{ul+X{tW!SOh}KGh
zU+wKI=^SErF0R%tgfpVpeP_zg$aoFemO)wU6hpNK4!O$6waz2=%V*r{tk}j1i$4hK
z_Dnzyqt^oV*HEKn_5v0c&?UpQW@qHdbAgjJ5cpw+XBiKMA}n5x8AwQy$j#R|h3iig
z9E@xDeu&N`i;>sw9`@Tn1`k~=2un>3GA3U$#X)JO0ia$}BA;)<KUtAiYk)37E_CX}
zW~yX$&g(#tOKV&C&YAgQrDiS-kIVaRYO8(fmr-5>YbAWYpvx)<-)?`!x0A-=dw{Js
z=}jk=E!0GwW~7kaMB<yr(!Zp8LM^*n`E=`^R0g@4)cK}oUKmt;vhm@T>LJ|&+JgiZ
zCN?+{!z1vd>wQ`<=0ZO^sy8v{uxH-pm^5|mO#i|8mrp9+L!-ImU5bY1m;rB29pKGj
z-t+yX$VGJ7RrFca8rhT|DYJM-K8z|dPS4mRBOy&?^3)ruBZb92AM%}636h2WVQPoB
zy&pcBK!itM9YkY-vc`IEcw<LVMXv7>d~6)x{nVSvj$*D$C1!U>Oq?SYHn6f#dEt@L
zL_*bKS+9o$hSFH=DVaI}et}^{_!N1xpKheQc;`9B>Y-sHAJledwAjqhSirbqF;Bqg
z7DP)s6_rOvh*`mV2P2{zKY5yp7Z{_1_vo$Q<k#<nYRI6Fqw^rOa~4m>=wN3)%%up6
zVoQ61k-6aMcaj!EcW8us11m3x>sDNhNQg4i&oCHts0gi{KYb6q+8qKaW}xU8Yr3C!
zc&0S;Mow=1;CE@bqT^QY6+&Eqgx1hCZpJfdZM7#?<>z}77(U8aSJ*C^S_d3H&KC|R
zsngeDPMHM081b=2f1xbKuFVrw!kg-Z<6NE03pt&iP+?BKZ=DV@Y*Er@F98EyrP$+m
z`|6(bHN(G=$ZIZ`Qp!VU=aj7$b835>Y{nhD6<KiI!)j(t&argUxY*K62RG(B(*PJ9
zI`Vza<s;QL)f-B+!zp!EW@hF!PmqV?>n5YcM(*a*&L*WxP5ku)v}m=HV_u)DXF}Hj
zon0@Ub4})!EBJL~B@w^NqhnmEX{>X!Oe<(Ze8=#BJzl`18n!dEP{Me))XB9w$pUvW
zT=GdJfRDBG$esnwT?Ym6zg;P%gFnvs{%N;A*sG2~jN8wV#d8z&*>gsBwDmJ><9f&^
zQ_q@Zx24GEA|g6G_DXwpQd4GiSzU67iI6AfVz0X%t3Te&Si2ZbUgGo-<_R$y`Pg=R
zK5ntEG_s0MJuOYt(esMSFLzNg%Y?74r43s0Qv(IXt0Ltcq;%prNS3+$%}#)TTi5$d
z+C~~QOUIC;4j*AALfp3Y%i}_*R)1PYw>TdrP->I)<fQ>F9P60{+19q6cFRfD{l8Z?
zZ>5l9^%%SFbh+<_|A5fOw5-VnMpoA}16B2iHc<yJslWGyR-#Sn(#1b!Hq7hp9n3SN
zt#>PAmLhysmK-yBPWc5UpfjM8eY9x}zU93$&>yd}oJZ>mGg7vq52KK#4hoM&g`WpE
z*0>d`(^GX=5hCLAuc#~A6~yJ1jb^8AHCoU;z^rZUWCXY173oOH2;?QNk>{xuD}4%4
z>BAO$%@g5hhi8!tCwhr|p)LvYU7KQ_SRMiQQrIbL$ouaX9}$FTQPBpPy3E;N(sdrC
z6}y2wo#D?DIYGzXE1+eQYt{|wX%=Ew3jxonVon|A1kxon@GS?salOcR!=1(Og~Q#m
zlZolHV|^=Z0Y@|2oq(G@V51@7xPakmGgFZ02hUpH^wb)ShcqZmevc>4uf@mEx*pjd
zROfcEs`v+%^R8K`LgyBc9Zu2wEl=ypO6qE(LJsuBZs=mX71n8S*=_@<F?<Ri-{-$`
zTY3S21d`-X?YC*gCsLoR%22ML{E%efLRAA!;%CRe7RPImj(=brZ-4zQd`<({YDAG?
z&THIgiG3oVa3nnFz$K(7OB73_K~ryIaAn>)=jx?KOH7QT@T0@AD&bhVCTL=!I>jPi
z+}Q;sj(s}t3c9<!Mjh)RaT&mMt;E(#3lHtzIrddQ=83KMu3~P)<M5Uw_F_{jG^dQm
zBPw)*fkR6B4h`rYpD&Q==U4=~0y%l)S~;VsI~XI&g#SETqB-hi65j2#7BVAKT8nV%
zkGSLtIbXcoxK8A5?@@pM7c$m<9w#8ZlInX4KmxH=gA-?!F4FPmUE_W3Y*D5${rZ7M
zUlZ!r8qAufNOpaE{}U)I@`{9SMc1xR<kC~*#{0mjEEjj19J}5%QYV#h<G8c=#()}H
znAf8-X4vLdMPpbsQ{W_wp9zIM3?I%;tFeR&$XeuBt(CHgkG%;t#m|0F3D}I{li_VF
zEnA=IF0<`;8o8?2nqV1xgp^!MLlUh-zm=b@{?5plf3}*nJ3SUYiY!~}cbXonO(sWW
z?0uAh530ddyek;S1Cl&?m(rbNz4ku?e9d{^w4M@V<4vcJ6#sT(9~ffKzF|gh#5ECt
zVRvwe7ceqf)Qn#ZTtJT&?@o1!diI?Mr4>YTc_y~$=?Hcm#s1~B<JDB8^>d7{=JbZI
z2ij&NkWRp&+9nR&S4eCNIM~v=sL7-6FfY_jIldGkng(Ere_v8}#fvOV8JtlSp6D`k
zLY5#xgmBo@@A_DD;6sl3?zk*uxwO1xU{4-V!w*F=P~5tv@`7Q@>nvWq?~=j9lnj;?
zZ0}0IJhHAjVBrKpxT@bGL!(FXjHDvZd%4WcS3r$%VZsj*1l|Ai7~)K@c_B<eQrYHc
zmeKk40l|?Wb+djZof=OraqzdDv9xGz)Q~40bu4)r-LkQ6v2z(aTtlz!TOWGWt_K}R
zBNVG_b|!47IM4LKPYupSh0b-fpdY1Pw5=8&37BweR1<Q&F1|=?&>w4)WkCtZS+8%b
z>jRr>>=ETU_nfx^se@21*IlM_zme<bFN%yy8!7Jou(jzH8<h-7xf^T_R%G1};TA)U
zt$J-*(-rUC->L|<@u_{Sy<e`@ydTMLT2$~gtIazgHm}b-tHy22l8Uf@Iqma9D|Q#l
z%Q<8!kg(#0YCcm5SHjk~=D)3r9@s09_Ys-}Q)NxcgDGz*9&_!Dn=Za5Cb=fla$$Q2
zb9kQ65X0LTTt`0VaAT>3*kL34rHKKn*h*aj8xCfzhm?_=@K)d%SK91Nw8|<QbQKHk
z@L~vZiKLLbcASUh45;<<{4FJqK}zeI6?9&&6{!7fDUE|<p~Gw#E?NLx5b*e9fNf<)
z${nrls&t~zU?L`;Bm|ys5@5}DKK1O^O1O3MC#0|M$7_6QxeWu$tV^4Pq_0y)pr+Uh
zN8S_7H;fez>0rN2V&JAZzFg4e6G5A%A*;TIpup+p-t1^LyY}LSM5vIS#&0?k@WYe2
zahgiygBH|7xWe6JWV+i(cUxmaDlLa>37K?k7$#6?(Cb`e^k<gyKcoVsXK{eHE^|{i
z8^HKvR=;}VM_gxvKcsHQ8v)*-klY_(Ex(!#{CO^ND|f)TJ?-Y&MEXkbf3)zHN$w?3
zw2@cbjz=$Bsr*vYZ{`ee)1_2{(;$>dXPK+f_og1*K?}IU_?VnMWMnD55B%@5l^$uj
z`b^{G=e^u@i1->VZrs6f|F{=32m^>bg=?C)?`f`m?l<KLxb069XPU?HkQ}hOW!AI6
zuP#th$Cc?L{f`PZpC5oF9h}J#m!Jv<Po^bs($LE3ny%*f09V}<GuD6Kc<%LIY=PXT
zRN)PL@>@^B!jt^#O!?j|#?;1IWKp8Qo5TO+N~nD3W&4+J;+1}qs+Rn}V@hC#x<Nih
ziVOT?yrQjF=fOi~2j1g*rbs8=X|eeyQ3swY$NyuJXYKTHtgRGA{N{`cirQ#gWMUET
zaq4v936a0y*q?r(pa0%!iWQ+9x8XJ}va%RWUnHKU{9-Z#{c8Ola-;j-{{1f)7n@aH
z_as$)cg%Qh`v&NqMLW){i&D1Can*@}$tlu*MsE1@PA!Q^-;0K!&rT-{V{~F8TIA$(
z@BZVj*+X1Q^!fb?{o3=O*YLiZ%uZ`J`bB<1m1+9Q9dGvYr)~AvepJ(S3(Oij*Ftmb
zq73F|4>Tzf!%kjjq$z4-@j*}5w7g?g%0FgjJuCQD$iL+T=$al~$cLC;h@Iktx7ibv
zHOoRhy>=qorytUo_dq%!0U6EneOkZU@cb#js_oi}<JvRZ?s_erTy!Sj)_T(kU6p5f
zE~~DhqGV0hRH8M_-`s*G)^FY7-#3t2I6sukTztS@B%jY}kkc2b_NA+BiWcIZ&(>1+
z8TzlBF?=dx$mh9K4AnwOyE5n2ANPzmFi)<`*dBy-@|o?#4@k!JKkF~76TU?&m#K(l
zdySyp`4Px)tm`rTv`Q#B6vdaR_{=4%wm-2!y_fu>*;JmisTdwg^m|<E72F^4u$6MI
zKMBg|F_>-4^pkG#_a*h=97rKIsZ}rSLN>1~cLocez1QRSoxD<i+57UP`)azTNgq2q
z_<VFBxk<J?oZL|yc)I!*F^cj5X-}cYjI?<7iK+H}k;7*9Gq$_-M18pyIpJ1K@Ikt_
z^ksxKi%)O2=IC2hDwPS!5#sQ|pD-zt5Utfyxy2kS)E~M(LBquUXD<+KLru^!Z&Svd
zQ+HBk3m`3KJiES*Z(mnY?<CDaW>Br(Oh~?{?<=V#FOM&X@$kMuSjMhG@zXwQ*&lGL
zyOUcaf}Tkrii~487Cx?Un`fW=(Oe3SnS#7+Yf}EPCTbJAPF#l_K1Llfy`rA|f%&Q8
zVr74i0x0d<PpdO+c47BC;DwnI(?6oqd(3Ah$m46c`*Km&CQ19bIPa}1xqB()QK?qt
zp3=csyxMWcFS^MVZ+a%5UJ?;Nc}AaRyW*7y)8(8(Pn3l|CGFlaw9icJOD(D&%t0zs
zfhFkjIZmpd$a(8aCZU#9Gi6BSEm4-JcMjFSHHSt$tSH;!E=T`p^4;MoPb3}b?VU>U
z8EGB-g1T0|))qgz)AshwewL<w%20YB|Bc{Jm>7N;BHNEf>`?WfKjc-wiESJcA@bFK
zpz*qPbRl}&sl#!rO=tCJ+nHF6HbY7<O<5e`K_6nXp2a8{)5_;MrQf#2-1X*sB60&d
zc8cG|qEb8IdDpXpIAI~}WNcG?w_<0F^LmpnN4dSx^UV$4*uveK^|R|~0F~f`u6rXx
z>>{|T5s9aZe<O4{Fy=m=2)x7-vpui8P(?)Baci@F9Nw^)_g`o{C?idv0VctPZ@-uX
zk*ybo+wx>M+<p@Yj#GZ~)Bvg$+p*S@rGatgQo`@P_V^bor>w_i5QHf9c{(B8v7u=I
zV?glP36JysnyRVoCnh5VPP$eJ(;h34*q1csYiGSLSbZWQGGShg7aK%LYnQYgF~m*W
z)(DG}y8WCHed9CnjiiOd1Ds!bbi9rK%1T&z^VM}Oj`3jLM{B1H(EhIUq(r^icf7XK
zU4f)~6A5|oxGd)09`^r7Qxu4HxX4H|Yp9_O;ohfX*Wm$<f7{H(6fu{g`NQ3woU0I;
z328{a^W$+ED_^Cd;s$fCL=!i_;#&)<ru<KefZWa>EVpIH6S($L1ILj`|IH8Z=u7K;
z@|mU+^wX|z1j5gx-J!0S_e+O1@UwFxTQsb#G^>xAZuH?x>-kjvWLiGqVsk|ca~0dT
zj=T)+a0&ZjKuXAvj+*X&G;<6dszgK1%BVONM4!}<q$NxH54q}+Rl|Z%AKq~C9|~Lh
z1>Ehs|0wF$KSdK0(!{@fyY3W`es!^D0@#s_3=gvrD9r~RU6SG7>7q_JdnhD_@%XXj
zzdYV&anrGH_UQ0x^MYh@bX88=h@?*2YEV;y3xuFQ??OHM;Qxdb;K}s^g%xNahhGZf
zK%(h)8`fi1pi9oPjaln~eMh&hWtR92RP0#rrmgK<J~}%QX$!}Gp|UlWxf(#YnYyu@
zdx0nJ5!kPfZ6PJ{rZ;3;yA{rWX^DRm3-!-Z)yz)+cbJZ#=E2}p``3C}2>?jR*9J+2
zFsSve=)9-D#k>yse0sm_)L+6S<l?EHblB770K)Q9>-l|!#M1rz{P!iLp?_@hzferC
zbqPn8LG}$~KE#0enN>g|K%dqn3n8?(+}(@JYf`MRulUOO0Z=kvmoivnh^TcH?K$*S
z+z(mj^bgNA&&d1DS_nW|2Rmf{<R*`TQMlZ~awh<8p4{_9_zZ^xZ^<B_fjWK^Y2?nF
zHkxyJj-)oxVmK3^5+lEvX|Ad^Nt}x&hfQ!fP016Bz`Pqrju{n9&3pa0!0+6;#pq^C
z@US|Z2jI`bodG(+YH&H%9VKM{MlKNJBnzf#Eqrxh;CCnE+_e&NakYr`kug`a7fMlW
znSiw!5hs_A^u#!VcWq<%JW)c9y_-LI0nKUB-4G|to;Le)=xl|$i^#C29uE#iJt&{7
zbt`4DNzGo9^;zDtpt_;brPsXE(KW@G-~b|Sadldtr2-@BmWCOxv$K14<k`>XN)E{9
z22yNr40)C}mHcGSXNJ-e9ER)&8)(yu)<Mb}J!#iHhC!J>&iw}IK$-9N9PFJYWj6}6
z@~;2{12=C)qGkGMZE0^Nhi^Z0veLWQp@;I#B<uFc*z4fRm(WDbcz&l*Jw-lJtFo25
zQ(B)J%GyfCXQ(#}QXM)wY*Ay-%O<|sSOXq4IXHd!XwR@l^RnZHTUJN2EmpUs!nE9^
z*Wrv_FtjKb4TmMvNUv{RS0VgFXv>K0&g>knol^^GisPW|FDl__;xwT4sDDYhuc{TG
zVa-<6`iYi)4|N;tVoU@rim(k>XCRoktE<by{9Q+!t3uF^&uWT?&vi9c!swaCTOrD?
zME724F$1CV$lB832}k@oTHSf8(mo)tgI*?Jx4^ak-Ki_7?QM3)H>QvlfO2U3YWpQG
zDD%@M!<k<*s&w6Tx<UnrUNEjHg87s_EVGnWm4IXcw4pVh7X@<xKHFLVFI~8$oi0%4
zby;$Foznu3PkJiFJynQZN~ynPyOQzhH=kNYJt<pEjbqH-K3#e5Q47l2KmH>?km+we
z9CBjlrF(}-Cu9X5`9~dEJ`e46I01?~`!C7&lEK1j2G<09C@p<Dvu_^0>G)2~Mjd9i
zyHRYk*iijvOhiCfGC{}8(Z;`*#^qQQ&q>m5P7L2-tR3>G=YBc{iAaa|uA?wg7U8^g
z6@f{W{S8sbd#_G6?sW-xt4`UcNI)Bdy-P240lfOPtL^2@3OYC4npM*$eV+$_K-{7K
zF%4ekc3SDEwX0AdUO}3*KDE|m@Lf4F&s|ThOt|^LoCEEvzcyJjn(ZWN?=oFfimpQw
z<c1_&jR4Y$aiP(K)AvBe$DWbEx*qq|o>)p^bOiq>ZS!_Rm358Rj@E_?0L^oGpob!A
zB`l{2S*?vjlNT6~!S4YxH#__y+$#zeJAARH=jPEsY>dFcj&#5e%3uVdppM}wEl88`
zUuko?(5KWKAliTg%@T?RW90LWW1#u8^o-*ntNAuP#<3ky;@6s6(sybtv?G5qO7b&O
zKb5!W48{N@$kUk|amg$;`Wx0Pw~CAf9Lv{BX5|Bkhl2Egmzu-{{S+!WU4XTLsw$S4
z7se}+Kk-43S%MaIg<AQ#ePeUqT~{5nxq`Rfs>vUI<^WTh6R|Qj5P%jwy^TsW%GJDV
zp(Zo1wb1GM9S1wY>$;BDYvfP~kQzn&?X}*n%I*r=&i`Kgssp)(kvs~Nmu!;GpE}{m
znJrV>lF&N8iZUe5*>$o>Rq?34tIY959zcH9bF7XS%2|L{;(L?iEnu8?^lw5MRE>-M
zu=7wS9Juig<#Y>>f-G?KGTDpxO}08{RCD?ecIqd}AMbXo#CO`bV5qAhioC|kb&C=M
zB`g;_bk;A=sB-u$#38!^Z*!})|3u3n=k<V#n-@%&tdY={{{g3dJGkl_6Q~cc?WMuT
zKoJ%V3rmhtpLbZ3-tPCpLb@w~u-HozC0YNn^igj&A#s0^^MhdyoU?4eLf*Rqdd%^k
z@uAw0WUUkb(DJ!IIYhDjwBK_h{#}p%AG!MfH<tfRrf%^<3&3<^FVEHOe*2izgSN7j
zSP<&A?H}nm?+{c6UXsZFe%|8<?XX;%MsZ7t!&TG1visk2%mFj2IQQb~TNQy!?a~{1
zmjL1_cr9DiJXP$Q)2Rg0*5VNtlG=B++^=7D;*VVOhL@Q=j-n31*()|;W~X!wLnp3z
zJl|{>kK3jE;|6%o3+RcpuCG7logLaG1<L+k)V+6DlWD)MjfyaiB4Za2&~ZQ%DbkC8
z9i>W_j?#n>dO%77ii(PYiqb<70ci;>lu#7~X^GSTAp}JT5JC${fDqU><2d7b-&yaw
z_F8*?$G7=!4vz64Pm<@k@B4RN=fx*sK&(efGA47E>>^&ArU=QMGzz$=ef(X}x5qKK
zaT)9Yt76sEg+|RNd!>T>^$ee`389_=x8pyVC^5?u6A@XDJ3`RmqrA>vcw+F@<NdaA
zgXn3Wzu&&~#?^I9Za-B2S-|nSj-KlYXIv=8Yv7FgzuLdOY4<-9hEv=TxPJX3OYm0o
zsO9F_jE1!aDmZvoD8EXiv<+pBBNkp<4V3wJ^J(yMj_n5N(!G0@9-5q6bP7zoPIxY-
zcKBoLO44ox9mg+1DtuexPb(P|`vpsWIONEbaGSn%tYKg1>SX8WUh1B7E48=v<dcn#
zDY#!3URac;Rk0;lOVbM*xI5w0*)O*taQ1$;8@q59e=%7LdVBao629k6&KE3i{B7w|
zU}uVg?9KsrJhIJI;VtR9+ps19D;c@WeNf-Kr-FQP&q{Uag~oxfgL-qyvyc&N<nW88
zuZ#NT@9y{r#_oA<i@E}D&V@e@Bx0g21&6geG|dvUENQl^eC3}G-C!3bjIeawKZhdx
z>cw`_d7f3^L-n!b>h;M8TdLOHHTkDuVQ*YdKA!!)y5RCY2g1fDeD1__Yy0~PZUza7
z>n1N{-*21P7x&lT)~A#TlWv|3CA}Fr*?-(``!h@H$LCzel)#2>&uPh<4xen-RDnI+
zwVLM<tvgfi<!w7Pue>jpVsP6YB&W|5y*2()GiDHBbmuG;n!S39Uu-yypfRDwIvUDW
zJJF|D_Z60$!tz`jW%#D8w`gwajuuo=TN3<=fmiN+UZZv5!2{7e?yTdas+?cHXb0ob
zx)i$z8<tIylG<$HRs0#djg|P*AK>r{fEO?=QPpq3wGDZsEkEDQx#M{6tFqTkZ9bNh
z#Neo5?-@fktI~eow{}SFgvXcDV0T&xaVKNNQsk^O$D+2IjH}9kQ8eh9QJ=MKh6wCC
zw8|zqoq!jrN2pU)D&uaOq<A(uEe{rW&Z?aidlmI=_^8pN#cfY{7NlfE6f{HX!JGBs
zh$^Q}EL9nmEVI0r_@SQLca3-;m45W6qebr*i*gMjt-<)2yfJ=$@WXrY<tW#VNOhIT
z1BXg)A3c_!ka1JsSzIFBJVJqVT!U&`Gw}TWpX|3(wBv#B9Mdw(e<HtA&i0&xq<_45
z+|%C|N5OBP-x^t|9nUw=@6D7Vsm&oVw@RHOUPoI@Ut4||pQ_nE+4gy@^ENH;PH*aA
z43ZE~6t?VCeM_#d@UNj_XM2rLd_vs6M!vzR$jkSO=64K>I-QJzOGP!DpTPI4$LH_S
zI}v^6DUu$L$8%r!6O8w_+NAu8fo@|w$BuU6w5e$t0y_iypl{^xo=Oe}-?wMF|KAwh
zHCLfRygnqIB03cH)MdFEI0g<dYPM=_xxIM>0Qt)Z-X(dzQ}F>jn%}=064>959dpY5
zOsD#$1(g+CCf9sBUHth7tft~?!L~~~ub51Km6%Pbt<wv~cqQH6=YX>Q26S^j)}K=V
zpm$2eC0xqeWrk{Kv)7$&u#bBo-(*u>5iH?T9>()p*wtX<6LFU8nZR{xgu*&>tfH<a
z5q=D#)A#<C;T-<DR;&#hdv@|jQ<_Bs&WXlDQ`SOIPC2l{HIE)?IX;TCPeZRVMUCfR
zi=LvNC|Ip*R$~5b>V532Y6yNMejiBdAgFgs;dOx8uQ;OPKWr&J+D{3ZtG|zeB==ai
zG%i#{a#C+!<y?9I3q?P1!-Fa2-|ysJq6(%xYUAY$TXgpyceKa`^iKLjc86jSW$ToW
z3$Gc<w8fInDh8lct^B$ql3bVhN>I5NDyjT>@-_fW-ax#r=DZ0l-Swy!Oi~mXQTWBr
z@Ah(7=!%KQ+2wcb`U7ZfUBXxPz=&fOlPP^rWZye=@1=B+P{&8Oho1TQ)hw_o$3M46
z^xdaf_f`;t@@$F$*{u31$3>5j(Wt#Rt7Xdq6QVQelk%FTKtc>_xp+WDYEAFfd~+{k
zk;yCnq8M7use^>|C4!aeTAqD<YN>hAJ5P&W*tX;krO&mxt8CS%WpU38AOk+D{kz!8
ziWrG8ZNCG1MtAoA!WEDrw`qh+>7Zhc@>!AeYn59XTBRhu9lvZG;igoJ_O0hdl2fyj
z%<`wu2kf&;e>LpRI2ws@=>55No?(Nz`RQ^ds`@OSdv8Fw1iWgiJ^|YHNxpQro4kI@
z`F2FnJ=pY;5B%u@MjU?H1e0gpz32QIqKh}2Y%OcJoq+1w5++iR_cE_P;XR;1z;+`6
z^sUPYac^mTQ~+l$PV1s4@LN#kPV}L)j(fUs?yc6{FvN7w6db`%Bc~NAli6oNY>Ck|
z3@`Wo!>spt8!sIAV>-jq5SO-~r*ou*+lEaeL5?V!TjBec;9?PsWx$~zm3zUoKFObY
znc)#w&bO#kNH`NV<#Rig!xkP4n+tEk-)iO&Y<q70Bx&N|kw#sqC5UgAODOwEHe6Ag
zgL??GGSt}D8c)!Nuf4hM6TfHmVq$DLA|lTWo!#`r*HE~92xB7ea*X;ewOFvfK8<g%
z{IN&I=SELsOrF^yuHABDZ&g}ualPXFTeCkBrt1?<uCDo@-~(g?%akGYQ$2YzHIi6P
zzE-Dh{Ux`4QM~EE+Si7M4*C1*WY0gUx1>}`PJDY=DgKYxWC`7O8RsLB7Gn5S;zAi(
zlhD*ItTUl?2IIG^JT7RKpLenGQZTIzznAp7%IcCr`Rx&-Zo9r=GNN?gorriTV>UL`
zn9j2c^&#1<)~8uX<1{=;By3i{mifVT#ktJ|<2HN_lNW@(cbsy1oMFM}X%AHBg%#`*
z>YFUs|18h8_I}5iTE7Lq!P0f*jw`kWGKgz=8|ct@yB_J;;$yXPwet)}ZwdR<SfZ9C
z_NpT};gzdqu>I`GrB<Gz4i!nWH#Z6M!t2i*wHYHqGov`G$}^Ze3xa@tQZ5J#1lZaS
zMDCm{&5H7eqQMy1Xb-&Bw@R88Y5<%TrH-?98uC=Qh5|f~?~qpjk}5%1qZD4t)+$q#
zq?}G{|KerNNoU)Kv_!KxUiIZ!ad;1r$pcOun*LYOh*S?<`}&3DW6aYSH^E%7`n7^_
zhS0bT|DK}t0LBSqpo=<t_#+jYD7q=(R1(CA=~fOIc=L=JYW9ho2G>ce!YzvvDs$k=
zRn#Q2QsQ{|dIXA2$5Ig+K-A)Nvpl2o)n2o_YeqTBo_RmxTxAKvHu9zX^dN1+<N`{p
z>i`@B8PH+4_mxo-;Z<6cHl3BlOdHl#ZaK1B8hrjG?j|hhm0^sp6-UZ;Eg}wWmAh$v
zKF@?`-J9+^)~fa;cznOKz8NK2*tC&B8qF^v2K}a=m?zd2m!CuxNLu=$tK@eJ>}>mI
z3(TKMO~au&T827F1=Cx2%T!>A`$Oxm+B&KYglGlL8~{6Y$>7<>n8nEh_U^11(j(1L
zf1*WRv}kD<aHCC=zx2F*sIGFBXYRN(Kw=BCR^_kisktxx+N$+!ijtzk6#i)LJ}5I4
zd<g<TCu$iFq`TnWpi)#%mpwsE>a+C{-JLVKyiLiP)vG>Ju6v$Pe5p>wsNTh+nEHCQ
z9~DVPka)Q4bt{`u-F>k39Ia5pY9`Hu?1$_9N?do|l9Iib0l-ren0w`xdv$t;$Epl9
zd!o|XyGDk6k`Sze8Udr^>4WX_a-~c)2)4F*1k$mJxV^^6p-%gRlvCea5$*VdPgYWc
zEalr}JzAU1gX|^t2`#qAs1C!?Vs0Jd{u<sS2YvlY0t`i*$f(G^Nlhi;tY+Lq?DbN!
z);ognaU)8j2&Xx6*-e_e#v-#Pr5!?NJ*&u>j1?n8oa#3PkD`pQQ#GkNs}5Lm=ru3G
z@i%G8UR_$YgywdNI%2}R)`!ATs$A<|RJIw#mr#Nyvf#ZRU@<j51P;^cYg2pYX=Wi|
zak=D!PUV7NZ3sRBtAPj~2E8m#{4gP!5!W|Qt_QLBginWF+v6piyA9=-u&j9uv6xDV
z+4dz-^iaEXmEH!VFhfP<qq^g@Uc1lm>yp$r`4&T1BGAF-89Qk>f2%tnOk~bC)oTKz
z1mvJXt4r9_d*=tA7k9YLpO_A)GhbbbbwQ*QP}lr1BG_3^#v={GwD!b&x7iv<#7DUF
zL>7DZr93;NnxH@J3`xWHF1S-=1#LI>;8M|?G1gF9(IhE(Jdi7gc0Z2M>^ntZHMiXV
zYeRa^X>;}fFTX^|^$REgw1}Ccg?Vf+qb!KBv;K^ogm?n0kB|m&z;B09ojD$sZlyzg
z74_1zp$->j(uivl3JIQ(cTn{sUs7QAZMrP@$+GP(cawr#six?RpZB%qyYx;mVaqm6
z)xq67@Ko$I*3KHcc>fu9UCRnDfh?bh`<0s1U2v@bv(jwqm;hmad^i>AJ$Q(|vYq|L
zv%_jI*7h`AHmqV?n-ee+PW9W-8w4c|%-bC5zQ|wIWI{MbT#4^UUL1R5`eeCHznok^
zkX}$w_lz~GouDWN)QWa@Z$K1HcHl@}qm-=ec__PEP_dl4_il?Uf}JeWgSC7;Q?p`)
zfp&JS{W3C0m+7LfU-rf*S5UB4S*=QKMbVJ<ajUQ5W6dvDg6Nkt<|y@pr+WR6+9u|q
zLk#7CQ{Y3;427f1nol*$r!ks_;|Dz^BO>`H0lKmx=2*ItMm*|jPbpJ1d3ZjO+Lhpm
z6A5?753_?r<bXFk(CUt`da&M08<zjQg|~@c$6Dj#mlfZE<6A$gnxCtY=s2k)D${x`
zTi#lmxVy{3ZrFlg3(qnRyOvSLCuE9o-`AUG+ctx~#Bk3W4YnO-tPo(--p}pwu+PgH
zW@Lt~N4e-S%UU5lOp6#+a^%n0{TTraBILdjt-YrTid)z&n@kX2N-9@8Z#lr;pe*vt
zv+~3di?`#@><>KRPg=L0gkrzOW6BjuTYh8qzA>;Bx@@yT#h2eL(T>G3RyVhd!<K7C
zN4DPBOl<2$7*V=2ZJW`QGOSr3yzj(5N!8icvxv1T&-jFn=M}FHd5A9sql7Ee>A@dX
z6x7K+Bf(}T%*wK`+ube9<2nw_up+M|lcvE3#~qjdsomAKl6fpy?9jmnN`y?4eECJv
zlql2%ZB*#%EY!mo6Ec-Q>*7~Cyc&$sv|21Irwu?W6mO$qPxasXa($d^Tj%>yt=!AP
zrR^>OW!A<M1V{E}WAds}$%{{tL1rGQ4(rM5g($$AB9$5koH$9Y88_VG!=%Mdk9}XD
zfK;<}AGe+UHWx#0Tx0u{Y6Q`oh#2{F#Cdu!OB_bc*ZI(j6U?A(P<1GpCu01{@9Ban
z+CUEUk`M4`D8(|K3Ej^#8_f=OZ&II9X4>%qKpJ_V@~|9h#s{9-ns@bx$|Fd0F_b0E
zw$y3-oEb?=`2ZF(tnCO&)8mj%d_HVBg2j!@iKm37#0Ek8{ATe3MGy40dCP10dI~(*
z`gys)3>xq{Y@&&K9s=-xVapH?7q7|{PDb?_C#Qabt*GTTad-X1S_XTuE2oq;)Sv=O
zDCmF28bVvoRCY^`W8B*G$5F^ZaNIjs9vxuiYf*PDNLVxUG60rgRyEPdzO5)qzKb+H
z<3K?5RlRbrD&H{-nE_9XmlnqNLBTT0W!ykxt=?7P3z;>z93D73F9QiH`OEWg=1Ag6
ze8L;~=|fdS=CrRBNpJbf-FWe-QE;1PWIwU0RkgLvB;MWOvI0oxJV8Q!&audy74%9T
zX_=VSK!c_?Ek6nSUl*+nW!Edx*CKmzOb$E=f#e|uN(PvbnP+Kgt(v#MAG^X^$|o=C
zm5F6|s8YMG*4b<|%QyYt(#*p{*plcIGTz@oJDvEvPkhd^B$UMVQ#$#pA4gxQWZUKg
z7qfnT=~2G0N$3zgEvCoGZx+x=e30JbpJI6Rl*+5fBCBoowyeg+;PE&j#)Bji{JA^k
zPW0_q3#U?-;JMVW$>LL)(>Lsr%ZCcCF=CUHp|65rR28YJjeuyoZFQMne4vPD3{0rY
ztjgFK7<fMZerwN27?}qLtEMDyDG$(VLoS)V@D%pVY|>hIDzd~vs)6Z%-7SWqu*xq8
z%e6gQe>g2};ogTjjgEwCfCVI{L=q42i{r7q^-w%?DRm}<b`hppivcl`rb(FmSu^{Y
zWov%*+1K5_CcO#b@L0X9Gk`&Q%Ff#1jhh+6+<f}`7dApIN_pBZ0etm#;1sx}KM$B`
z^R+rp^}STq=hgNpkB^$NU)ki`5&+_Q1{eZ)W;pmx;ujY=`)Z6Eq)nL@Twr{6RUy7d
zJeCjnax5^q-IxfAb~nrSM4KrSg2fMe>bSDO>v_YZ?B<rcZDFViJ?dQ>jB(GkZR?&M
z`sh;UVqZr%x;K^)Vz8KKwa|uFf(*r1iHLiLcv`Q^jbu!(LDM?UDYplVM{cei3@jV?
zBtCjDhsWegCGhnG*x8pR5UO5kXntLpS^3<Y){}dl{ggG32z_N%>kfn0I~9{-<l9$k
zk8eLPur@UQi!^wwGO?-i4dJvH2%_(8MC9JyDTN%dey{qfROhr=%7goS`$7zqX@j*y
z+$iG5TjwqXl(qf3h&Qrsefb!Px!S$r(#x+@lw2H=(@|Dno?8+vtd7zO;GD;uE_R9T
z>lRY(b<K@ZSa04J052s)c-6V+s)Zylco!?LdWCVaQbX6Fg~Yh)1lzf89S*%}+sc<n
z)9T^p_F;WR+hVAsWqY?alwNhsDKF63qLC+VaOMLyOfP*t{&9y@J>2^0+`vs@O_p@@
zWS(}mVYjR90U~Ta+BVb3<QTDGHVav;3W?h(&nj*itewTgdvFatcAZ(s3LartVAvJp
z6wK>xkP1aJkv5~DS7xOWa%dp|M8COcYG{ISzW@s4`ky^>KM<6339OCrCh`3oDI0n$
zl_SX<T2X7m*tI5^F$EJDdWVCjlTAFtD<ZcU+jrA{<xIPW{DCKiOjp#covSz<n-B|!
zj+-csl`7BlXDB8sjVE;;3Na4>G~YS?x_KR(E64qV+><0`3D}s}lC0S4w+?H$q>iuG
zu<wg_Lm^GI5c@b1C6X-j3G6`jNyHw^xnD>OoEW(s@kp&OtNXd~p4T+8vVlD!_6DVg
z^ei!#Z&FC{_@uLQHFH;(WlAlDHQmv5-tf1<0Q%9F-W6^5`%jV=7wIxnIcbDJn%2_I
z^5M|gEgw=yXQh&rE2s(6fpmBUqVZDo8WV|{ZDb7-97m5$us`UQfpKUxr#TId5`Q9;
zdkHf~p=ug^w-U(^feE`;;sSKO>(4FYA4pSp7wp$np|OnfS!tyHN>7as;HECMb#=T(
zX1b<SG*sQ*I&iiNRvVnJA9Z<Sk2kfOWX^!}l@L>gUnlYz*PW*9fzOdb%}&~%J-@PQ
zlneGnU^}JTA*4`7#oRoYK_|jK9RMWchp(1Nn(LC#{yMV=Y3v0`#q7;3!W}l$q_Nr;
zXhxT-DC9o1A3SlpggLzZ;c3^0ldI%nHIobRanfbCKM9)U4IUodDtyDV-dyTsAS2nh
z6$a_+Q6Sv1_bsd*$=NqWDlXkvse33D`h4v-s<x%C@Ilji8r%6(YMe62OZ1W;*X%mG
zDx3HK&1MmGWpOT%5SI`Fg_LbEE>6T-WZe+st9^}*TP+c%sJIMe4;2gG%Va1wOQ@@1
zWfSUVh1V>Pj-tUl@~7&0kO{^zK}{Ji|CAYFO)ouw;Kla$8`?Km=2uOoJoJb9Elunq
z1gE*LDBBN)PZ#M*SKNk^8SO(KYt{UF_^DyNbQG0d4k5t@2C$>8o7{<~yX-_uaTWPt
zJ#A@WuQX7jNQz*@wgRDXj1h=rGfwA6FspH&^Zm3s^V5zIRa4f7s5e6FO>@8Q987XR
z%_`DmDSn^vT9a}F_)WP~$5&Rw^Z@Wg1siXJxU51L1DRi6$&9z=kuZST=Y-}bp(u5J
z&85h=RYgeGg~DHtGRBnYiu71RD34dvc*kOe5XvHgXGRp6P++siyU-kygnjQ{_Lk&b
z-q!ZqxeYq*nYJBAu$~Qbs36zC@}+6;jFt6yIWu2)vq1Ldch8P$zgS(ifmh!uwkp3l
zGngGO7dT_QFeI}$pHdZI?^^z_4`yMXC8(&gT<_LQ66=?jTMhF!K9p36LmSQ9^3;-7
z-I{2B9W?mm8Qo=TZFV*TZmLHfaqD3Uf6Q{yU#EO08}p`R6D!3fySc}K=qz5rIgg|6
zF?X2Fx&T{Es4fU~&#S(3-sjQ7hs9xkxu4E#lcz84Ufs&|g6FT{@IM-$()HxC(hL_D
z@L9ko`F+*(zdt5hJ&F9J-$`1HC%U+()jE@zi52X}aA0DhIqPP-M9Yp=+sap{>PJ5v
zB`ck;7+VbNer=i~Eb&_i{z*ax4Hv@CwtcGmCwnGA{E6%6<)I0uLfbM4*TjS5hRNgX
zU%#XU#HhPH?cRM79d403z<lytQRiU<MRM7CeI)qfyz&(KArq_jx4~2J!oEJ_lD*nm
z9;R+F)on6g%X2&kr|fj?)%2ri<Gb|T-(PvkK>)q^o*s*Y$K7bZujuTk-*S^|+_Wb4
zdP}sZ|MbXwP}?CH!f*8~>D*CU>RpSe0r~9yVtUrr(Y?ujJJvmV8|3=miWO-%p459d
zsh8CbQtVPfmpfkVt#CjY>qwgPnP_5x1qo8Odu4oHfTqe|Zhe`!^9Ko1xLp5P)>VhF
z5!lZY{DRhRXmsZpBR{RGSu?!mD*pP2hDd@Gk}U7Aw@B-~yh~c7P1()fztmw|2ETzx
z-f{7{JvnzLT2#l7CYN}5g8-{Iw&(QE9Uh|UITgn3r(9y5H$}rX+q`W~6VWgz)@;7^
z??+ybs<_MlMT!!K8<S5OnJH56N`sJIHim9~EUp5A-*MYGB+FNyr?qy7FD0`Sy-DZ2
zbR2zwul4#{l_xFRzDN^Z*NygQwp7ywH>6aPm{Arrt$>MQ_X=_EEQVjxn`4V%yfy2q
z$h#whB0dsb>%>X3r1izOD2C|I>jEF^H^OGa-}4?^Tq-`hz>q@aZS&+&H8sAsYB6&>
zFZ-l*%wMf;DZ75^ZEs4t!;3*koswrjEpBWHi5A+IvQ^#L^N1WI%IIUk5YMAD2b|%*
z$SN9~8RCXT^2P0@NCgT$-o3*L$i!YB*LZQO-fx}T2g%-52N&K)6|`T#>f=I`*XM()
z@as-#;cnV|hlE4<76vtK{>#C|gFno?-e3B2<~0X6%%?VYOfr@_ga(Zo0aWpbxn!dF
zDc06wzqNFK8+UpRKhrYj7lDr#ub134xzv^u>T|vIH01*r;-Sp^D7DmEQkg#^5W0HV
zT?8Jd@aq4=1Fzfle?r6!55Yml0tS9QiJo^bLDfs~a<`w{V~vgY+?>l1b%BrnA4KO`
zu2n1y*Ig~oa?1*Sb5Wk&WP8J^j?xd?xn+Y6o#v+tY>$NR1ntCs+yF-Io(GqD_cxDG
z?3Kwh&Ory_jwe2h<|lO-4O!8C&XgMDKP!#O=$$LBhW8thFrmEm(qz7aJg4YylDItI
zmPA08uh&;alA^Xb?8kidzOCY1<tI7n(YosxrG4NKkC69{r}(w=zT+2}$UTI3Ht#k~
zfp@v1TjavG^cUZ{m_o4jF}Z(N^b=oyoorm4Dh@^pk?easz!Q<hl+y4Mlp(who&DV4
zdid%YF!?RuB5!h$9`C|6{24~LXfab6MPGRl0BoGUKWQ$^$j8L(`_G9*$mV1poogdA
zabS8C@K%mj|I^KMaZ0S}!CO1x|JGeJUQ)YnRdrg$Z*$}@Vm+YI$%F^TpsE^p!h_`5
z2JSBl9?qwZq%|VMtC+BeuJezz(Ba6ILB2sR#466Qfw>8O>D+UZCiQwv`(>Ke>k;Y%
zNi!V}3)7pGx7b49gOUBlwKr{Y{tyw3B&&V)NJE3zHT1!5WMEv23NuJ#6`esH6la((
z6ot-Q2MI9K`dv4K$q>guPTiK8>Cz%4Z}PWy_5<KYvJU^FR`Ase(GFW67I!$$)$h~F
z4KBJvPs%WNQ233{JGmq)(p7%{pa0N3-m?(g<nU)=1N`QnG>{UTXews9-$jvU&RzvV
zlkj($f6ZG!e8A&R!vy#jMt(c{r$hw&=Y~e;PmbgN&@aP(9R$)5LxZF@`JR<_NSWy@
zp*2MQhG}L4H0yh6m#~m`f1PRo9I^yAAM5y36!kuz(bOYRk2K5X>7(AKI89R+2m^hJ
z|4p;#==5{%b-2|WDX?|0!jNBU`2vcV<jizU8~AXj?NIm8p<-6;jG&ZV+*Da*P?IN9
z=q5W_c!eA#(@$$htglvNB(1I}0K1HD9~ajP?!Q(gd*42H&c)JD>KGVNiNuK670g*a
z0MlQWRHTm%2y*%zffJ?8Qa<!NFDYHd6}MnLSfSC)V<UQNdY9s(2cQ0dgS@c?RY6_}
zte$CiLsN%Pwj5@6wS|o9tljbxPO8u7YEzxq(etBeAqH+#g1S_Y`mKql!+@vTFcU@2
z)Eb(kg`5q0G>Z;&!F{SmZRNV^yP@Fw_H*@eNNI@z4H?)25UZwPcm*~s1cd`qq74Xj
zbf(JCy4<rDlwD1N$O>-%=To=4f$NAZ^%AW3^U@H;%-a#zFI_4~5~>#KKm9tHmwa=}
z+nfsbtRzMEei($1SGch6#1bvX{pAVVFzMVAI1nHq9MN`#NgexBS656q<ze;EHr;&$
zA1@A7A3N3r&O=iNu$T>yHT#KRKB6`lX9b)JXa4+Dg`cxZt2+x?$lmBm*IYKsH}|t5
zSz$bKQz@zWAKK!N=O?s^R6Kgz^Z96`;!0;E)Y8Rd|H=r6t<G6r{rnjI`T2)I>WhLI
zf93#|&3tB6<B=$}3%)pEL`+TF!plEc(nFH2yPPQ+av=g;Z7?6t>6`@X%^%;{u0CP)
zGA(s$v-}lTf*|nqnmEz-1M_LmOn6Y(`5?eUBIvB7-*L#9%8(he?k4?dHD%7IlC6?=
zcxu>~bG>Rv<1So(AZ=h&+0~0+a0(1}^Is^8nZcR8@dl7#J@KOBx*8OY0JaH(6rgvB
z#;Mo-!zBR5*9@sAp(71vb1tg+Pdpu$N<hQwIobAoS-IfkKF=gSu3M<Rz^he_-3r<1
zuqQ$BY=4d@T<>_=Z&YA5np&M9F@}Ks=if7tv7+*JvB;rxI}O`D_6;Q5Tpd`w4g^Gl
ztXj*D2Xe^$1I84Xx^^0T`Jw^OOtzHu;ui?oZD>ynHOi~byqPHsx)h<9n}d1+))nql
zCM`fCW>H`0C9>8Y>>dNG7E-tLA94g=t^i?^@`3hz^@YCAY84O*XAhz~vGFCbUqk72
z4wWsY>u(T`3Ye~I_ldOAy4;&*-r4xj5ZhGWGC5xnOtW&P5h*nwxiQ2O7bC1O6&y6=
z#?7@?`G+s2G0h6&&k5hOAsqv6v)=YPwgK<XLq(eg4C@o}!6qDXCN#_pq!&pyZuAr(
z;2Mmf-{2hRBZN(@)oiGW3BG3OPB065#s~<pLtw63XTfd8OZC=V`tbV1QNEhVOB(A_
zk}KDHbqZG}kLd?d`Je+>eOon{FF;^D9hDtd=3)&MraB{O*VwGup=gb(|3F5fNYxCz
zuI<?M&yl{G)E<Dl=5M9<V*FgqU{GEz2>}4uMd@`M>I9pU6z6vj<wYC8)+D6)cS|hI
zIf}A6{7+ukyzZTQpVv|@wLe|=GRVr>W5c>8P5bus|EcePNLGH3kyz>KA^2Zk-G^w4
z(L#5cSuA#wj?R8sFq4E)*Tp8r)jcg%n)C(X1ly^ex`<NPlCKb(D6e^SRg^u|X_V<P
zIbP#G*?(pIP(Z2FQQ<dsBrLXB5%+Pw6nOcsvUL4tg|}h9-r0`C01`K2$Y<*0we0D;
zi4VxDyp<<)zr!s$;oD@H!pEK%^u1r=F&Nz@0jqfxd8PZn6I0immPYQH8<a)!*1Kyf
zwy1K|X8tQaoue;?PQ=ht@JpoMF%#piU-@EulHNI^=WRZ8Agtz}q?CU#?P6;ew^D;-
zH;vqeXmb$wZ+xLdsm>}{BI;~k9S4_BPD|viyu_FakhbCC`opojKP=83JcDmu;E`QD
z38(+|(^{O*-w}(uz*ctSN8%N@TmG`KuRQ@czm)I=oJ-4bI@ad6$wubv9dDR^-^h=V
zvlFL;PHTE4I>s^tuQL0cTJKx_!>-M^y?haBU_bItnKRFC%;N5=JlOZQTD4iiIZhoG
z=g6luGc|IC>(b@AH*r)6vO}E6BV@>kYP9RNn#j%UEohT7VW0ZXLDOXXVv^V`aC9*9
zbJ)%;v-1tcBg-0FE^T6;Kkdj2`gk$QTqDKe+Xo9Q1umTXON3K^iP}FP=3Hj@)D>7c
zPv|^LhHnXdOYgb={In9z*0}EvY|&Np`xb6fUe=yfc8BrE?&hEe55fj#@QCr5%%RcJ
zs0!2KZM%sjz!?<vNLeVDsH|frd%1XAUU4e7a%KZ6eS0VKUf+hN82=S3?lYC~exNG!
zl6A0J2a#eGI3}CMmANf?g_-=p<X06S!#R?(Sme5nAXd+0C}*8gg~z@ua!6_V%Iy=s
zAq{m;`$`HZ^b&x|BkI>$+-I@&wP#0uAx3`SuD3S^;;&@3luv^4gBtiaq>D4mF%+G)
zTF;nEyS=($O+E5m)dE&l+hVxpa^G*$G!X6Vbo<z0%9lbQ9#i>EY*ES~JO96gF8U$<
zRrbt}^@9^ClRKi1=px~!^E<m(Q;PD_dRKwYykR@4Ygf?{G&`<kC&OA!o8BW!dviN8
z0)5tw7%6$Ag`IilKc>%yJ|aW-d`W(8gA+9s=QOqiF@WOd-O3LUE;;alecs`w6JR&q
zp{4S5rya0_I0%fa{>ROn?6K;8%s&H+(>p;9;aY+mKFB9NEc%~pwj_ZeRYEgnN6Hs}
zA@MeX3oL}N?ZhtIy-bmZ#;*;-6`pzp&8N=~u%RWpvv;&ivZUr~d`O`!Irx)nVo&Mh
zy15k5vj=aBWk>46)P}%czs&rbzkaS{06VOA5iR20*&bxM*9B+2$0493s`kI;MA;|X
zV0S}MLeA=u5Hf|n?6;r%*vK%~we&YW<1a;b;<w>rYqfo=d4+$M)*{BTa`*#Qd@IBJ
z9oR?*%(2T*3PyO^UUNV?^)XBm7;8VonX^uxpV{5LpwW!-J1Eg3|I{@s0e?+p+V4#E
zpNCn;4sBfYgki)$jd-k_Ec;YnyY@=9a(@|oTvum$*t&S@4w11|T#&limd2eE*e%cP
zI(lDKm-$A-K69gFGVrMY+N3I(Cb}vM$?mu@Zlt(r=#DclaiJ06$6tM5Ps2&~md~4g
zT74<zO#?5E8sHL3Rd*<j96X%HiTv6gHLZROh5j#TYDq!&J-$h5bLRh))JmtwgRu4b
z;*|?$O@9~Go<s27O8j@Jv?}~*EA!W0!x<l4_>h73o~jL7`}T1kjeLDP!1qNU&Q56P
zvB|s5?4~eHvTQ<n=NWz6F+W*{^-H)@3;*P%1^c_+^AAfo@`q{vf7|0l)NL91e{het
zuc=Z6ZRqB5;_Jq^;*C+G+wo+k3(aDqFX8)9)>W**-LTBl{u4#O>f!9{O6@>XrhxP%
z>!Bz--OawksMRpvwAOte@JL++jSb#?tMF;9TUWi>lk*3AAwbQRR1O`xudp%e9#o1k
z1xyLl+O5Ah5G{^hz6PKfn8tcbWU%X7i@_=x-5h1N>?yN6;Jcb__#7dqNOPufXv)Za
zK}p?K3fsf%3fXqLU0a3Ka;?Vh#2nXhp0whsO4J-Z4;_A<A^*xs6)>1KG{9ggoN_DK
znB&0ZTv2^qLvQ2_)b)Gw%>4R(Ht(nXe50OPy~K&pH1C+|HLEZX&cW<ZMYONAeDA!`
zpSJ%qWDlP48?<G;2L0~FG^3H-1X&?DE=~ytQolqap|VT%=$drk5Wx-B#{k~LZDv7i
zusATL``6w#R{FqSV&0LLb)aWGh%U|-rew4s7G$G^3xK8P>iRNO%Bu9ZEz2Oth{&1_
z=sO+s@+D-`S8)hgGpo=VEl(^9u(~5<m6Yddk1(U*PMh$P0xQ-OzlgTB4(7afO(R6N
z>$w&>+#{h5?-Wscoz)h0b$rIwpe;A@uk-W2#VQ4R@(QyVf)j?I2&puz{ydOaeOeNj
z?bquqd2N;{9(?1YH?p%VvD<iIijbEjB>kv+RGIV&m!q8zM0*=!z!~AC1J1(zUJ(;H
zugIg|J-A|Bf3`Qz!esQ)E`zB0c3X8t$AA*)X@UIP9Cq&Y2p)HVfpd+Kq}N~&Jb_Fs
z^#|KFS19_OXXKqs?y`tKLx{f!iluWB!>m)8y_CU(s`J}8yl(=e*PCoI-OVsJ`!A#6
z%Zaa&6)f5wGzG<-9LC7#hNUgONK$^_Eyag4cN>j{2H#py&{!Kz4yHxnJ(wQJ<5H&i
zNi3^`-R~Uj!psaiLbXk7o2`nkBXRD#+}d{3S2(23q^zber`PrUj1N$wMB@g#nv&(^
zVcK2t8=@Ma1jUVUt6`jUPrq{ZL}JWv#aN;~7x8ha@x4a@!sK~T)c{ley3d+31^2d_
z<_E)oA0-i_D_seEPCBQP<(kLZ*pxSB1=r5Dbs;)CGn@T~6KN@Z4gi{*>cz)08mQ=r
zmw2t>v{L=<%TmD0V(m_3g(ewy<J*Jn`SpQW*>;6$mF!F`Dz7+MP<3C@hJs_so1#pw
z^xBNt)C6FpsSCW;n+H?q4SvpF%})$E9j;4Tz(CT_69X}>Q<)c!=b0A2GVmHQm9I;-
zFCe^=)skKU_#^?|Cri-`0_YPAoX3Gw%n6DOB`}8TevpVJ`->#9b4uZ2ng}o^%MW1M
zEDC$Vmu~ff`Y1QhGKeZTsvUjvbC)S>rvI$s=9&C=o|I=`4itCN+Ee$UVd%V=^|{~;
zvXS!I%xSx|OPKkBYtjn^%K_e<H+`n$q?QmF*e3rHy#2<2YWl0i;xO>)cFWZD%#f=0
z!J8(_(WXX!>32&Y<l7!u*_>A>*D~`9NUQ;*NU6i>4Yc&KQ20rSJr1kQ^gSN;-yD~O
z#@$CbJ_+@Ch3M$NLAXLLw&kzqU<WZCS%lp)#ndvGFnyAr+>L^>dsr!cip$Kf0j|k6
zRL@U;kc*U5hV$m*c=$qw-KtX@4=cJft3b4R-Ya0o_^sQ{1!UVfj0>Xv%=$_<j9IBc
zg!R0Rahae1!=K{23Mfm2Q{o&8=v`l{JBbbSqh5yH$8_rm9}!y?n`|@vdxJDyF1__H
z94s2PY=e@@cW~(Ua$pl5uWPVb&w@vBY?vpp)E}QO<Ni4*4GiNiqVNGMNtrxL4v)?X
z1<4%p7*5P})eI$DW;(R5);W@c^-K3>-@H(-HQ<-vJ*LR4wbYri3axdo67NXO6|$uo
zu<P0Ww&>wt_%KCD*5fW#o69ktsyb9Ac3yZ8Ia$VST^mp+*pr{L!njjUx57N`0pv%S
zm}7GH7qfm^XyMZQv5r+0O9E%o-TEBXVmc^5<nw<IGc0zT37>Ac`_~=mp3@!wKRClw
z0raKb)|b7n?KGgnRheg;)AeQN3(;DHhSUR7eQhfPC0#C6g<fH{gH_2L(~6d<|H`Ik
zgq%_|1%+nn%>_ZWn(_0f;j*)7InsT#ThIhCWc8qNAI<ub+fe!u6h8PunzZfLg2}#2
zTV9g<NU%_fQghAPJIy@n(m1BmY+&C{F{&}*Pi^W#w<5d8Pv$80$4pKFT*l53E&3|T
z5!*kHB$OjXs(ca*AU*w-y3CXsdWXfMhmZP5Th?wgyKY`2Aj6({avW=hQ`fUJDk67^
z_7z+t=UGHXt5Os3*Kv%enqmG-bJ^oss2+T>^5F6ljj@J~gU5z_tH0oBMmGqrY@H;Z
ztkL<(Q_7bMESgi%rG`;mO0FV3S6M$f6s!dm@}(-hu^_u`3z(ibWtL}Zxz7d<N%s{e
zu2z<TfNjctaBrpLJ4cOUIdS!q?R}l)cNbsAvwFc8IJZaCTmst2V^(N&5#vrMVdopw
zCQVh^CGS|WClp#l%Hw<PQCOyMLSXR#;w#y!GklG6CvR8EjvtO5FBOtgGxXKvVV=pQ
ztDD=$G2800p&eJvnF!?Y>)brE+`Ns&!59_M35>bZ!7sO88}x6HfxxUX#g%k>EHc$#
z&|mx}(OSga?IOScNZ)RkL>Qw-M^IW{q;PI_Rw$`62U8E^-7}n|o{{X!8Bq1j6s&Gb
z2{z3&?Ti~__7}Uxbd)P)0lnWGzfxlQTpggMp?K-!Wo!UFJDt(K+)<bkC?P&q<4rSU
z24CcDAG6N#9ZN6%nv+g=$NfOxd!W%K?q|*0g<r7R-V1W{S!w$!9bsZc>DY_5SA!V$
zfx~EY>0p_;B7vS(=M&q#yTC6e+6oi=Bpbi<$wei(z<$qC;jQPx>wg`ROZ>Lyll)ml
z6FUO899-D1*1jH^57qLXcq$h_GX`{|S=J3_*C(Ht&Z3{p2?5Gl^w+`U_>qbs=5)7G
zri$OJozQB?KS=i)(}cY!p;8apYeQ_(a!O8^{uKQs$uYshm~QzfN>$l@^=aM#&BUxV
z3iE2cmOpE|Kd;=V{Mn9B^I|<WPkD=(T9fB@aKyB<gE_rI$~W1m8miQ>xM$Z6M#hMg
z`?0aj2X8z*vX_OCK!tE0+aJ46eIb<%YZDF}{7|C=t!e>5iE11CMPgs4f$mJJg#@}0
z(5w^1nFdh=9}|NCSX*EF81LSDB<a1eG;5Si5G@dHKc1!ATnZx=CBI0lGKpEA6?n45
zstwQ_A%(2!=BAze;S+ROG2h%ouSX!j&OFv=idwCxb>ef@!<AbtEUQ|#Omi;-3&Mob
z)}MFu{bj_Xl0rmwSlNjz&!%)W11`TSeLH(%jJRHy$kKYPiNxL<vNmC~#dVZx9RgA{
zBj(%lYQa5P3D5*pSE1fQ*EY)oye7<`l~wd2nKj(gAaY>BE8b2-?tGuqa?(j+__dH<
z{A}|qa@{F_4y;Mcilt)B3T>`{GtO4U!)6Cxo-i#DL-O|@w&)z+C-o3wbcpqn!O3SG
zNt16w*0P$L9+yM~K?i+HZ}b|1#_Wevy@jJ?Ur|v1GPyun7if_~?nnPg{p~&-A9%fD
z`v>lr7*Vb4Db#FRO~Ncm{?#jg>Qf=bwP%rw4fV4d=irQY`RK`p+jDITX%atPJn=W)
zV?i3zR5yDBDne5rk%CdxjgYRnutzi0kX6fkg-sc@vc=sTUBo7yNkxCdkQ;I8lVuOY
z-R<gcn`fa-NP>z`E_`W^Pp$IXOM4U){RWae%=t|`m+q80npWKqqYcH6mEG?fdwjEy
z9G77x)Tb)t36RacihPUQQmVXZ{<J*;BikM%2TI!UTAdq~zNV<rcPC<o3K@w?*W7gM
zzhQoCZXckd9TkL>)!EZy!TN6|aJW54fr5LX8U4oA0%~2>V<8zg5MCx@Vx@ky95Pfd
zyqN0R7^o4u{G9+?QFM&zo^sLj8#%RLGDLV)IkPL}n%=`vFwY<c!8>l)QOuc3PpNCG
z-+@0ZW7SgqvOJ4I)NK4oW`3x{_^iHV<wqt(Dbo9T1s$U-DJkK=9!*Mv&5aznh*9fs
z+r}h%v1zW04{r8fEvEQ)gR@-P>6v56KReo_5ONg!GMzUfKu3(*bi0QOIN+2X`wxNe
z$elr3-ekRXN-p;tw(&x6?v0<cE&z27`S<fXUTjtpOApht_o7$}2fNv;hZPzXpSzgl
z?9mB;z@CD$=aUBjR;{=~))u{KGQQJxC^sspdQcL$t-%IrVmU^ujOJn+YnhZ(ZoVEw
z;WNuOzG(C$+5PiiZ~0L1Heydc0Gd~Z*TyA7R`YL!44#>P+ZaikpQ>uIXk!dJ)h6wJ
zC%zPPHu4~$5|WGP7*sl_;_O)h_5hh!Maba1*8G~al1V^+R(w8|nxJh%Orj+byxx@l
zT6^|DY5iBR?Tknz*MWIT6Su7BEzUmmNSdvMeZFTW6xviU(05W?+DS9e6KE|n(z=vy
zuB^)Rrn?CD<{F)sB;>fgD`34WhedTXDUF`;+ocSE$?m!pn>K`Pel|m>pNnoN)XjJd
zA$6$BLwSl4DP=A%^MYYBIZFM5B}R_w=oxDiM0K=!t1s<RJfP(G%FOewou!A_Ob#~l
zfY{SJ6br=q^f_PT)$Q=X`cu7xRz9i%<nv~bae>Tkm8Z;{_o{cH2rG_C;vm-(!i#*s
z+I!mm=$zm^znGC8jH+Y4aXk8y*a2IIutQJNrh4;o<EWM?^FAd^PPzS)qk`_*;|8^-
zY5JUUEo)`Fz$a2;HLhN9sY~Pw$(BQt(>wFbGF`3_$DCVA##WXI3WYYcm-vJd&dmFO
zNlX03xS%)7L>nm@l8Ph{xPvKS6;~DWEGpVSQjY<mW-GUFlmOI-dvBgQr%69)zOxy{
zQMk(T!@itJX>KO<Zju9()<-~TDfr-H>}D#x9&q-$tVJaLLt)*R#-{H{(igAyd?rhj
zGPk;V#@+vq2}-^T7nB}<dP!lFy&bV6=S*}8dG!H+a*z>7Bjy}<4tg)z;`&D#FACrA
zH=ADGh)DVW5sst<H#G?pJ-lyC%4iX*?saH_rLoC$A`M#9U6!?4*2S|utfl`35#X96
zo^5!K&aRopyIb@c7Qpr+Pv^rUY)FH>2hViBvVHFa)w6w@LGsC7Lz4rOPh_+R*+_K{
z@4<F_2<IN$SI&U{kmeg+5I^&KMVy+N0fN_Jz<SPHPCBT7u-{-(U2W3DWah&rP|rBL
zDzjjnP2B(nn*!<3!x*|ip<<b#eeLRU^V!jXjnjoNC2RYF%NT)5@q@vnt+lW#IVez2
z^W3&MC4Qe!*W&baqE%^7<`khIx8CMcGmqCslqlyu$wfYrPu_m!E<c%oM==EZP)JJf
z_%-=@dxtH(E;~|T>;MgdNQDae-YG<rIukt`w7uri=b@u2unwIyy^Sr7!#cu1cdcDx
zb#zKGm>nSi^dO|QhF2U*SI{KH&PQ;91BCZ*t&z9O<RM7Gf&ruHDIr=t0YO)i<a#l+
zJ)=W@zU64U+9c_^^mu6>sh7wGjOrz@RZ^hF8k%L?*vf}>30F&j#cd>kX7|gK4>Y)t
zq>;Ejvv_+H7UoW*>HJeu;qPS<w#Lnp!TqL`C+KgLdE4y*YI~q*LDe^!ae>2p-@5pM
zECQU|#~-MOo%~4?eWba5qsu|vpan;~`}(5b3?lCKxnkB35a1_%vIpT5-DCdU4VcV3
zf3!9H#C0Hg+t<W~tmE1{xFl5ea4FsA6LDHkeFK_!+7C6%Jrc+T!-Qp-E8|BV8GqgO
z%c>#(>6ik6GkOh@!S8oK1Bc_WKa@Ch_zRNGMb{gJ>6Z~)N_GQ1p#0gdo*P~ZP@E_E
zry}s!;n=ZDa|gJt3IbA36i5q$fDwRvm8bNkq0N7o-6WG`e&M^jTlgYV=KG}M*g<e0
zd&mS)nf$7H`DBoDV|JZO+umj*p~3B^ju%gAp)T3#ZG8jvL9_e3SJNGNW4w$FcvgM&
z7eZ!lw3=_IH*mz&TTM>7CuP2OA|&BQLPFQ)g;G!553~tO)Jc@Lr&(ihZlw|*q!RL9
zbhW;~Bvzq(K#J!tX&`<!ROo+me&aE@nz|`7oO2}glvj&Sn3NU68`RW)`<Y|^1yar(
z|G<s-^5Pc_)tvW!trIm7r*$d%FM0T-=7#E99Kna}QPO{=4a}+>uVnnCo%n)`Byc~Z
z)#QNjjlwC-Rjyl?vsdYN{>~eS!%<V(T+8TZa)Q`4RMesIJq`+QjX<FF*7yTHS0L5^
z{ea-y3CJWqC3hvH)V1hblQnSky;BL4CbKFS!v)XkzCaP@|IXxQEBl8ThX{CgcOP3)
zfnU(hIU@SUT*dA{6ZZDM6$VypbQ1n;SwPvgmF6cRG`<x;d48|**cjWSvS$#KwQXPi
zd%B4g&YM?%(;0B~$3fIXFo<&UOL~rs&o~M9OL@Ni83(fbJA0?`2YP3c)OWJnrpSV_
zOZ;e;D>8inBi81$E$4BZ;qsSvFM@DU)vJCs`Qx|{!o1a`t-R|9<wPBODsBW<rHOJL
z*_%U@wX9RhCsrF=eK_%|h;{kJuk@<f(6%VvC-`Bn*q5@-mksK@9#WoA$8|N~F7q<C
zQ`VXHD62oc`|0GV|DfGB5C6e7apPC6#|}!{O>`#A+AZ&ZK@DG*f6ih-;Jk~jpm@WW
zr=j^PV6Z&bS#oN7tI3JMlS-e=ZO-0Ih70`SfO%V=t8*N8*gZq>s#DosWi?d_opQ2H
zAT!k%?{Y=(_516${rdOcuGOv?C^-vmZ~+CYt-4^Aw>aj#KGDEbf9r1ebPxwo@2?Ln
zu{|w7H6JD(Xf0PLH08(KbQ!MH)oWuNs>WSU2YQcG&UH=4&qer6iSNGO9#XtFypuPA
zCEp(FzbSW|Qz}aGNF18URQTjN+<D{r-|~0=qEZka#6S|kis}D=A^v_x_AHnexwI=C
zJc;p|Ozgf@B|a9y&->jnaUH>X@PEeNAxjC|X6$Ga_HQ{Jewz~i7|nd*HXMCX)DQ&u
z+Afe{pVk<-D&FlA@Z$MOwp#)+Mme5V2p%r9v`uc!iF;HQnd}N7@nkt~ls(?Zm)e#*
z5NMq5r2m-3y?%%(--1C4y%4#v8nks<ug~)nf<783vZb7VLVovY)_DZHZh;tf`7NQd
z8q^9>*Aj+ZQ9LN2sX9sun^4j2^IaE+`DQhw<KzUIHSrPaivG65*TXs@ad?es){eVV
z%I6A3L!f#gBZ1+Kf3KR@1iGXTeRDVc8)@M3mY;wBV1)14v=PAi???lI?ckpFpW0{e
zubt`tYg_j>6yN`AzdYLD3yyR2J5}3gNmU(_YMVU3`U2nI49V@bE8kdH4B??a)E@td
zw|okq)HZi*Lxr6D2bVDao>k#r#iY6hFU|l4;l-zl0v_Xti|@5)A|YLebHuLMZ9*HD
z(uBkyFLv|dEfy*g4Kl6&;O_^&^Y=D)ZgZXwYkmJxb1hupI%r4iDl^vTd6h^X7JKFV
zg8uUdXLf~OmZru&GUVxVO6d9fVy&nNiHj;S-yW(@>pMUV;@8&?u~YY{z02?Hu%Blu
zrhsW|qT#lOE8iq=J-RQ|&-A3$h9LJ>fKExQXa6r7UG~gGSi9!t1KnN)AlkhyNDmKQ
zJ%y77HDWm%UbhXK2G}Ni#THt+gfSCs+l$*zX}l8-AyZMEU!2#Rw`n*kvpd>AG?1~P
z-c76XW3O_Bf4K<gjM3v-)1|jct_v{;ML@{)i4a>`WfOZ}-)v|@msP_Taa<?_^l#N0
zH;va?G|WfH`9w5Rr2M9(4QUok6<7@fIVbl*!|{=@y1kXGL9uG{9Nrw0<>j}sx!LO$
z811)D{O6H@HXF*{aworB<x!sy`FWbZ=C9gh4fmO2>&8?6PL*{=;=e7Q?2-8O99|>w
z%{qrt?@q*G>_VZB%4hpCh+dp(+raTM!iJ*{!JZ`L$Cn18SDO&{N*{zH`T4VqdAvpr
zs6a%<&8@Cd(MgPf9MA+h33{<~b^}xFqiw72j~@vxF?{H{e%O$*3v^h&*i+*dACbBd
z0^u`U=vVoGn=IVx_jsd_%n`|DF*l#19b-~p816pFy^bi|5#ys4_0hy`;1B+#t^1MJ
zSG(qK=4Htx3O@e-R*GRb=kYQ~G1O`~$o|(-4F2@YsK|F=JPWfMlH%{C-!pHgJ6gNS
z0*8&_4NeJ$ut-ygnJTq>&<9jKE%&6Fq6q*wGkKS=*T7q(YJE2cXfHNIr)1+?W3j@O
z$z#r<DsLpEpL7q<2J=C2BQ|L6iPA5j!TIKSmYMf$D*_4!PuOSNAtOLN<CkfYR8N24
z^w6X-6YRqWJU)MG%48ACuj=iex1O!fi3(0d190@C8=$Rz`*C5H(D9tXz4V;txX(4^
zi-y-`7Vo!kTln3%W8{ur9;_T-sKt*4)_IzG@1K5Ab?;+=)TJY(zCsd+JKIwCDacMp
zucw@@tSGhJ@_{*Nl-+tp2I(qSr%mC0PqO@M{N*$`B>e{@XLd;ItPKTm*UMh}1GXu?
z#xs^a+!0n|H$&GNIOZ^Dv_+fOKBA_a-{RbJmiE?N^XFftD`cs&OfRfno?V7b{&U&%
z{-*C^_MctgD?IS(n;Cqb=7m-rpi;KCBr7;I1hrqrKD(gcWDe%0-hSG@WMe)4j*UHF
zvJx~?gNC{+fDK~Cqn9UCH2{)&;m;I@4Kz99lp`f1!s66X=r7ky?0%Lo61wxdhkEEQ
z4RyzjwyhzFJHBr8TK@|T_4u`&JN_qqPJtx+ux9B}{25#r`<)+x`#N`Af{0S@r1y5l
zj<3WGEBJSTcKBu@)-jR^PUYOq)~Bs9fr{pl$M89DI5KG45agAHTzyVnt#vu|)-E<f
zeI_-ex6EfxHBNuMQa_&WP&&mvXuu0M?0r|BX&b`48Dltyh2$Kx4H+}jNm|I$WKZel
zC<aa@D@}Fq4-@Ry6wdHb34vCdxWs_hwZ_By4d|x!8y0d&wW2sb8-V|?oGsshf&RXn
zEl&rrm#@e7LH7&Yltdja>!{oDQ_<iE*)(gf>o1s3e?uPipPX+{^@#ehEc@ScM;lGq
z<EJgYfk)%o`!{W{Ud+hl$M+gFd7Xa##){wVsl0yPT5!4Hc7#Ec|HP*w9oDk;Yy?}s
zzChQcRt;vFV=k4WoM1_Q0b{--9BL4kh1@AJ)LKa}*1Xc!hS%#^CRJ0bEbRJ*(DgpQ
z!>}w_=QKZ|kb6Jx^QXPEn0i#%rT|^>=S*20Q{L!Srq0&o2SAB=F#j^p&kWI`6lZF`
z#K=fGF=auq#D82<mxw~^!-B|JUP;q$SLNjzUH)cOEs%zc>C+04J2X>3yy~1v@@SBK
zkf`0u?Y%ut*rSb~-JvmUr^i+LMl5ps`{Qj$YXMi2Xcbjg+_>yl=9b%`Ows4^G9|Mq
zm38G_vg`QQcuvCKmvlF3p8r>&mXke!;r#Lk{M=kezFpXq2L@3dxpXWt6JNLb>#;3?
z-EmUE^B97{%)@5J2W9(wNA}J<+v@U-8s*1@))-jzdObElZ(w?wlV_Y;(*2xusA2qI
z_Un@CtxC=QD%MB6gi*lzY}Qm>Sgv7H^@QYjJ{VhPUvh!sKk42)({?Cuf)Qa_=)O-Q
zW$86!b<LzqK!8|&oDn$|utwIjU=Tpd>jW@JPgZ}3f>9=nbjZ`k69Ibcxsk*ZRveN?
zdsTQo+Nfhf3`C;V!WZhc<Ro~!yMu=%tIG#^mh2|1#E&p|5>MYYo0apXNo0L>I)W`1
zy|MWPZfRqM52+dEdW~lqxD;0J^*nRmz5TMj=xI==RQgvRQ`RJ6Amg5ED}OU%QlLym
zowoqlt+=>UI~Efu(a9M0liF^c-47RCa`~0w;njxFUQQ8WJ>Mg%FFZ@|Y~5bLN}TPJ
z+Q8L@j*92^QdClDN55!Gc5<s|z+-I*u7E<-EUNim<h^B7TwB*Qhy_T103o;rg1b9}
zU`YrN+}%C6dvFWx65QS0-JQZI+}$bq-22?z=RW;*fBp5_WArzA^!~xAIs<AP>g==k
znrqIvR^<U-2|?;%>ct$jPRk^>RT{aG+pk*G=$*y{gA58+)=&+=9)ed^_e@^%X%I|w
zZGHkkfwR!fhfu%Y3dj#aGo=a=bEr5O<U_LT_Z5BBYfUG1YwghZKc6l`8cZkaE8x3t
zl>C6^xbzggaUVVQ8$RFPFTQ=Mcd1#q`<|QTeD>lBXjh%7T4Qs)Kl+M8rK)uZ=xluj
z5hpfTljPjL1DgG!7Acx;Neh|`s#zHi&06eF7DQLsJK5kj;Z6mlyJh~_yB5@TvgL5-
zjVCIy8`rjy4YcN-XPNZIV>i$DTosUI3{U@Ar4H2VwdX2Ih1}JtnF~T?=*RF{8tMel
z8|iH8Fg;Ju3{7&LeABPmctFh>fnpQN(0yeClUMtvIVomy*!5p!(!al<Irhw=d--SK
z+Am|<q4X}`mYYk-L6{N=={oPxYooM+7(XQY2l~4Fo4b}n7YbH~{mVM`n*(Q1RHV+_
zf#ZTfa70K|VhzQ(>zJ@!?D^A;gS%Gl(nVs);_i@D>uf+e1+9HU)0?FRji$YOZ`hd}
zJxVoF(CJ~HKH@6SqInUh$bHC)&*X9FjW9#QGFiLD;jqe#%lOrKW>n~L_bJPQqf)06
zDcudyK;&|6y&V5N?_Sd;$YM;w@&U?AZsbf){BU)8I&)Ysu_*z^@w*RHxi1tGw06es
zUnt2dnizV`hxr0(E?<+Mk_iclt0q<qD&cQ&5me02zt!3-Kvj6tzbo{<g~M$J+R_mH
z@$>iaDo2NcKYc!2eyOZ5141}$%S0rlAq{+m7(^D#74yqb3{TW=CiXmTA>IbRdbl1X
zNjO(=MJ>{W@C!Op4PD7waoGuZ5hP6Ow2v<^g+xRRzTaP~8l~U0bCb|?K0Btna~qYk
zjA^>^@JF0DuZoKNW5mM2w*TWT@bdqYXGCg}UtQV9Iz08FY;JD0FONuC6eLVar}`;H
z`|tCT{vMgU2b#B>gUu33(@KttnjQiklAyp_!h!zb5g`;_-dlFdV4w+Xmg|8-d6|lw
z#>H{Hta4yakmuUFXQ*3_^Pd*3(%I`^;?}MNY)vr)Ex`qcrl9g}NGLd=$$|Ykh0DJ)
zla#Gk4O@DJ_{WaxrB9YSy}jh(ll?78ZrLr0mN>GX1ffw)&Ecz3tc_@5J?l0tTE4lG
zJdmn~0|9?1#)1(VXiI2*F5f%TZ0_`GQk1IE1%()r^{mmR6o^Hy;eS79yRZ`(FoUIc
z&Mn}CD9ET1JX~yk=f1O=%dY8^%ZSJJU1p9&Y4+#~IQU$nna=~I(P2N(a7EM9tjGGI
zm;H{DoLm$_FYWE^ea^`06%_dQu$(vsdx8PRtUI@*0Ot*!zbIMn`h%nR+JsklLaXje
zfm=%~n{$RjvsFSrrI4RL8)1zYHNUArQ6h-n)^mO&3;>x99od7oC5KnbvB=sY#QL`B
z(O3`Nol7-QUv^ar)@dL5G_d^CTp;AN#an!Rq%_)Rf45TVVqZU36w%9o@=e28(vEXW
zqwz<zUf)Ec0a8tm`uXVF;gkn{pvr$(P?p%5ua4C_#*;Uhh8`hR+}!)B+k=f7CV|AU
zhhLY&QZ5=yC1$#;&{-mbaWxv-rJKG=DlDF$ELflH_N^GOI20aXO1$3i4?1h{t*5K`
zY+(PWBEc*_xB7y0@VW1ud{4it<-DwZ(MgSil)^DH($Vi{LjQR9&h~a}!*6#bm(Z}8
znE<$)fFfHBHV5k-!A8N*M61>iTE7<w&2|;TbS0nMmiSM%GTs@l)CYlVTouX`Q6lUQ
zLlcGl!98gagSPKSXR^FgnfCAE4a82@<#6{w3IT{vZJ>vjB0u=3SxJMAbF0CWYs!o0
zVN3K%BO?R+0Xekbi6U{d&If@o|I*Ua>+|lPflBMU-;hGUao~IVkqCU`SbJU?et53|
zFGR@e&XtNYuBen^y0btY7DQq2;0`vnqmSDB+mZP!gnat#U?ityW|d_02<AY%guvU9
z-ksU~+vNw{#%2!YK>6e^lJJouzGGY44xR$&e+`)zq=ShJ3rSQ}99p{*L%MsKbuL$D
zhQ?a&iTQtQb_M7sBf>?5riN+Nna7;e*f4IbKT}9Yk%yreq>OY1td4c+>8-{O)dNpW
zfvwSuCW_3cbN}$bF8?-vL%6b*Ic4C}Blsf1npEvB<)k(C0qudu<^HYa-M#Id(gEn|
zK)JykUlX#=3KtRFJ%u6g@$!WBr&czqCVse<zM$F7!=q=f&Q-YJmNT_f);-F2wzo5`
zwUM~^bZwo|stSd`oSmmc9r*?b<su`pp92eb0R(p1o|*`hywxy7z<bk29xhFgcio)I
zX9hXhAoXIz67JCuw-!Jti@#PiE<35llqf%1^Y{^tU$8hkxf5c>2kBGhI~zcBZr-Tx
z0hkvp>$1QxzJg*iCj#OgF?@s65OCVX!<Pld(Eu(-iCRmsiJ78(Jdq?L^SQK^Q>&TE
zdD%^b*MuFhKD165az^q+ijo#D_PMy<?LruCALgxb57`xFkE%2Ec7_a|e|6z-?zK6Q
zox6*K6NO-!&1QabFBRR}K?hT;sarC%rs9W0f(1p7{gCP%j_?#qG$`jhpO$Y<uLFqJ
z14P?M+A=;^DlITUeRZLJ8Q2LW@}r>;r4$jL4eAWMqcHvz<SKVP3zy-D`r}G|^awOE
zT%H{~G=`1os%ZDuikaDTA}b^yI~ks7dx6C=u9gxf$v06LgzW%v7qO^FMLcb}I+9N;
zp&k4ZlJl#wY`rQEd@?*`lX_XTaC^B!JU+XKa6u|QXs=5BkWzW5w5i$nWBj3sbUPJw
zyjn;&bnlrZxA_|Akv0>#i1(&r)k=}E>u_d>nTbmz&M572ux%5k8}fBX`MJ^nV*|3}
zg9@3@I<6C6gc??^cpD%MO6#G8sp+e#IxVSOg-YKZWOgdz-;Rp44!yPHNMidgdbxNq
z0Oqo1K$wbq$}Rn64Qvm?;acI(^v{^jH@o0-E&=>o#`nbBfkA>}a|XI0ZRt<VAK*&@
z1eZ|-TLt0A1m<C7B(QW=gTOYalV5o1QM(MEq|**|>sI6EKB_lKWA$zn+IaLNAP8aw
zOAYd0fFH89YAQBQ3!(?P(<!vZ+-$i#+^pD$%xADp#-0?@Y=w;&Qu-(b-B7h|dT%Xn
z5#7!=o(Hs_m)MIo8_<MWobhM1!7Ca#SC3GSEaw=_&*q-y^Qk^RmP4U_Y98MqaXIr~
z9D!;T)rJZAY~V^67>w6+A*nmyBfrcdQLa>zG;+n+Bjlq6Pbll6jfrRCv4J;}{Juop
z`!z3>%Wtu9H;<maONRy%ypDIdVp{Y29*QG?e3g<~VJ-1y17ntqZj;$fz~QaG81hF$
zMXb0|Wk38uR#{;FsBak$q2kl|FO)C4trxV$B;At2nS82aPL_)a!^G|K&j}4<4V1jL
ziVHFm5O7b_lXN!Cs_dhVj<q+Zy(%V@8^0CN9)g40yVgl5p^;eKzyI3DXxyh9_hyRw
zlWH=er<Kx3!*Z0@d;GB@`sl=l!Fpjz5~83$WcqEKE$*3{#MnfRy*UkGHNjPQa!uGH
zkLr*;etnRYOX}DAkzPZKhc`j4@=MaaIn!ZdzxMboljt=jSxI6lR|i=s(h-pO+#8F^
ze(!Yo?@6_jw3MOB{4K?BEpiDCkJi^WNLhJmI>gn~sp-0<lV{&Gi!(N#-A+~NS1SAa
zU-#${HuWFMpsx)L^CLXqIXLa<NU9iAAn#)YOKXLDNu=_8&sRaZGUe?UEp1FWQEJB8
zN{}SvbA~yPtp#VD#*gRe8L6Z#tS(|>z$43sU*UPICKi_#Ote_=h92HTA%72cZ=EjU
z+@G`V^?Rh<$LqmRsT}j*fo~Ci#uqkp3)4J;W#0CS-%_SWPb?gYuFEuPf(qTe$+S%0
zXhz<D`q3EIJ0V9|p(FjOx8=5wj*&h*t3-*_nSc~YDLJS`ke~2jGD7cB!q@H~h~&Vi
zOe7=Gm8?O^B=9Z-yI9MYveB*wZ41x2sbPq@73=(MZtHbz%8pWsYhTiJzDgGSJ~y`t
z-^w5H$i?=R@ys+n@ujN}QPHh;$56y&hgk$aHSCEB{6#VkFPC<<%}8}0+BArGjBlQh
zJDy=<|Eh?pS@B0!V%~V2nWM8C!ytQOn}L}K3XxAAOjCaP$80wQ0s&Iryix{~X)IgL
z($x==TST=*mYSu_NeNx|6yNvG4QfQoiWhOuug!xUHJ`Cn>rSJ|v(uef-ae(f!c#Zh
zkQ{Zt<l>t4vDGlTbC#+hl#zC(r(p{`+;AvS%bFABAOCR2fVGI~d0~Hf@L-pd;+PD*
zMk5O6@eyqgJ1fpfN^DZumm~uDlT<sYulD4qA8CRT&ly-4t(pVpvo0}h9~8K+2%6#I
ziSazyi^LadX0)L9Nf-A`zQYQsg|mV4@N%zlFJ(M6qU~HUnNRn+IPyajvqn6+#%qzg
z9eP-__u&IA2p=00<Gougs<*OY&EEJN2dbK^<A{FeB$ZsvD{kWKBx$Ge$?|{FO#~@L
zlba6hEPjCV3~7TO<gZ4<$vX%U%C;E`pL$^}$4q7i^O$wDNc5Q~JlwR50FWynKgK>N
z5X040wn&Pcy1wR{0b}2&$^Q@tOd;e%#VL7y6orkwq69&ZW0tIraI4M<Km3ktFh|c0
zzoziT`<Bu#;=D-cF++Eg<c$t$ex$7*%VH)l<JP_pCjZ3mAP<lB;sK9+Q%miL%LQ&^
ziC>?h;vIVZTkoz^Pht+57e_LyJybvGG?f?yUR#R5Det^~{${unj_fHDM+V{WXh1Gh
zBV|d9NZ|<zShQzKqEt!=X_S)M=MA$6Ky5Gj#p{OeoKKHOdJ9q@3ZTGn9Xn&=ey-R9
ziuBETMf>{Rk2>ITtFY|eJLNru^-^u$+E>>R%-6o>WRx}}xp{qP{+0x*4^*RopGbXo
zgDZJm_f4(g`bu)td)*#A{axv5r{qiJ$Yx9x?9riOZS>p1&<;i#eCB7%{S|k_Q!AvV
zS3KDE8b(IAo9xrM21r~qV`eVBpMlu3?=|$i<0%>tbW^aVh|ZSP-<ZXm^PX#V<TcXB
z_(p{IzsN_S5P@QJfyyMkT=4!Z08E=Nr1gbJukJgEgZj~?#Fghg`yhim$%Y-h6fy6r
zY6(<E2JJ=X<<a?QEwsPMLAX7%%NtW^eOw&Nz8PdVTBbz&tkAQEwzifQL59oZ$Sp+a
zv_Muhq8GI@cN7UzJRxQsY#=tA$MzyIa69V@ZJQ43E6U@3W`>8Jg8C7`-Ui=eVO7*`
z{1owOsS}=Tk|bn>-n<_2NW*hYkg;TI!bB6OcZ5q-x(Z@7JmU5Gy&Qg#gu4@2Q;5;#
zNQqbYnG;qu+JEhnNvglS-I?V9J6$Mq&R6Hpu!X%ATDfdC)f#nCi^m{rBo&F<!;Q^2
zSUfhSNrap(7It<u+2iE$D2{f~6YT6QLAJB;V$11J$H<7N2lD|<C2vD{(3i{cDs{hq
z>}aBvzqgqQ&GS&IW7hX!nmshgW>M)C5}hGx(wn|_gQ9|W1D~ocI2?~?G$?A7rQwWF
zbaU!N)XRK2N#*4rj<nT%G%!uMBFX(!g0Xsh2-WP;g5v;60*gL6??S;#KQVSvgh$!J
zB##DtjScA!CKRx#PPtK}+o&<F5*coz-5#=->6EspC~nlS2h93E4zRXYTB!%AY3te&
z=H}#8>Z-)_9~6re36)}Y%D7TtKzhdAMg0TZ0gMn%lrDisL{`1lt~;b&gCklbc(0-;
zIg{BcXV`!P7T6w^ZZ&f-5~HtItb*8uKfHF}Edl!X=!f)(@9gz-*eVRlWniXAbd&OM
zl{?U)g#Js)Fh8NYjmj8jhVa}++dyf#tCmVZE3J#QRgGxhOR^+n%jGMXxKrgCH8jCD
zKUJ3R?T5dJtiE!Nh;eJfjl<@|Pj6n;MZ@L&G-su}!3|a>)gGtB0>9}ex6*Rhk061Y
zdNYN7G4mS5Z0tkO(`*{ES}W}D`<^eq&&5SLUe}O9#(Ch=`o66EXxu|&G%;L(7t-Ak
zjmzakLzw!cnwc#-k-N{ulMxw$)QZO^GP-Em7>KNDQJ^a`>-eE;CE;N-AP}D)y@l7V
z^GEvjknB*cO^F)nou6pE$1+y}ec+wv@<CJo8u)1KaF<GOvAnwC9l}FWzCu-Q&srq4
zH35j*fj*T}W<wQjLo}|;FkIcfOYMEB(g>adRilT31vS34R?vqsM403^7Nm%)-8H{J
zy7-akbjO0sg5Q^RrJ0Ye9Lo>pWrpwF{rC{%xt-Zfe5A!Zygq|_`$e0vEaDCq9HAuf
zUE6a!_-lG96+Jxq2S$1tmM%;~Rw^*|%F9e5dWp85$F*jUiqSj3$(&XhwdaqR;%+A#
zH&;FQzM37IV-y=;)YYyTGbQGO2WKj(@)o-179VJBn#g`cKL))ktbw~92-=ZCUMf|)
zRpc+w*Cwm`$X;Qfv0cqpGD}FP(Wug~j4Nsi87I1%ywQ&BXuJDFGe%;X*w8tIiinF}
z#_O@Ho4{O1e?^Ct$ZW|Ia716uv12!=4;L07<Gd#dJ0n0i67gEU4X=0>zF@1l7B*~%
za!53}f&sJ5JyAbLhq19s4ss(er;F#mqs$$UTg(rzON+Om3m*j#hTl^B706e9fy3-p
zFY5F`IS8$!CN^JyhjqE?m^NtBoo-&(wbMefGhLBAnn4p%5C-u5Hzy$1YQDYgor|Jg
z!T6Lg9ET~Sc_b_C%=iT_<f|&PU}-<zOre2QM8G0KXRDZGN>fZ;t?FDs197;Kf$nOM
zo@t0b6)qi%EiX;qw<Ou#ToI1T`(<A1&1&a@*(z+ter`L_p9^p58m}e>r|>-w7Yr0B
zRAV|grfWpaQr<31I6I5&e5JFGwcS2cR?}=^7<3{1!0^QcztQE0r&Jm7l}59TsFJ1{
zlg8N84B_#Wdb#DCR2FkERFTe}xtV%O>cngl?rg3(XA-MwN}C13&CrJhcc4s6NiDbM
zUDWUw?Cy#X;@6j#s6Q9Rb<?y9Q$&KmK;_&)XZIdbO*I-<^=voCqZLmmLeQPsQ{<O}
zIFJ0JZ}^_a^9(1S>6tyPCbb4CS0@QN4VFj8MYj?;Q09*X?Qs13L{G0wa%&Ts+*F($
zP+HTM@i;`rpEQ2DLYh<hS}Jv*>S<mgi)9Oy%jnDE842P=+g9|(=`|>G?;N@PSR@#q
zfqQ?I)LDgJe)A(Kl6ohLeKf7wkK$lfHPHwKmx+yRTLu$)Y0>~;=)6nJ7S#+3y}fxR
zsw*cmZmU+lS0#old~RgH92WOGn@s19TFz*QITvN=FLRaBUJ_w0gUZkF<uAFh`0EgS
z(ckd)Uwf4fTpPUGnK;G@C1EziMTUQDsj<b&(-jN4Dc@t&9?S+d3dP_PsI$k_J!H4v
zaL`o&z}TlcZIIiGQ)uKThgTdYi}bKfi92Hh?df`wu1odS7}9ngP&H;IK6$!Qis<cX
z(NUq@Pp+Hyx&T}njV4d6>Artzyy*l=@UH=V8ha~>zcw7l!MdJZbIMhC)NK>HIy}1L
zpv$$jGXi-xJIio&kEH|>-=9RLA4K8oMH;|BF!`O2cZlwmuG(}zOdOUMTqTNBZn)#n
zFnUcEz+~tViu@=rTM^P|xDa?@O+rTaoW_b#1&#;*;CXF*h~b$OFq^hwC}czbki>o_
zACFLBEloo~4-ra3vQC+3D{FT=2sK+>o~wW9a_{)9mmi_cav|^#X=kf3B=&;ri=Gip
znIDIyrt!fHvL1G~w#MLV?zpzsgx^*?DFs)*;TyDM3qNeKV;lrI|L9{3jZIuuB@MaD
z5x>_~IOiBvZjdKRpFg47QVtloPe-;v()Cb?+)J^(rhA<_%=F6trS9?ejw_#!FQxQa
zTZrc*;la(zvxE`?E2o=)5R@1-QlGKsyDf3IX6;e}$KxD6+;Oez9W1sRW7)#WO?mFr
z0fCTCpO3d37m8}Zls?t&!ouY`woxf^H|A2WrLv8*#V*x1Y17fKodTQt7}bZnx*4<d
zn{Fe6OBQ1{MS4Gfy>sAr4aDPhT9vxwSdd0I@1w<zrh;6UqJ9VLRmVPQ{r;<}G3wQT
zHi-Y{=sdtZ#`~RtQ^~T;bcDx=%_boFd`XdGCWbNAhQ|E66~^<#fQ;o^N6sPE2*tO1
zd83_0pZ5lNa6Ts%Gjh}VMEXvmy#*JIF3`dxzYAQ-+>1+$%0Y$<W-xyNjp`HoSdOkm
z-OKxfu@l2--O&k?{1Lf{%lwXV{)nDapbK7F7Fi+Rhb_K{lr-U)D{~NxyAP%m-~~|<
zO?6dw2*&bJP^Dk7OqPVU)qAD(gV-OIqHt2hqmLx-fAkyIggSn9_y2P5Ry16e<>4AF
zumw?`=7nDGgEu?oKFflNuG}zuU@#$6t7Vj-F|@<|L3Nd?e@=j_CA<X^Lm(5#{NXyk
zi(5X+sI1a=3JP?{I)UQ9qa$E`GXMRc*Z^r}UXqh2YmVJi(n=-If9083+Lc>e?48){
zx>!-K+x=+cD;~$*yFmucjE{c}EDg8Vy{y`Z*I6zlWZ6CY)bxQ5{}N5$$(hJs;EwLt
zYT`>Nr9O~Sdsd|D7|jYWz{<M~_3n6wXnMrxOPEQ&*RI)3(G51<Hd(-0vn3`aa+QTw
zc!B;}`C93XVQH{1U=L@?Tn%9<a(L`KVXl3qHC|Dc!%~C`^OXMF8-YJNK&L80(O@-q
z>{Os+rEy)>|K(}3PkHHN?$wz60resry0ROmOXI>VN|5#87*}`#d(lsqL#u{1fBS=t
zfd}7Hw+KygL!1zco0Lyo!?D&}b~Lak`_mmEs5ky<E%z)LkM`Z)61QjrZKLX~I1NiQ
z86t%BMG<PuLxkLk0*r*81aU&vc70IHD(uuqUzKT!0tsZMdPl15QZ)lRH_|586@T_y
zaubYFT0I6!ej$C#v3vK1W=$XEn<L8fi6bSrY)S|lvFlXCFY#oD+wxVxv!g<TN-L*T
zkMlB;O4}^3(qQ`q(DZh^GKg{o8AX`aN=qXymr78;y~j$dk0G%AMoawl2H5j;j35`6
z>lrDQ<(F^AV}jNV86VOv@{UjZv14o*Mo|<jhQM<qS`CaqLbjwf=Bq#-0_yq>xkO}Q
zEIlpyZJkLNcG_MDJPMnj6dLr}^GH${{FMgU*&x&%*=x00S}D6jHv`uU*SQD##kta>
zKyl*ZAb~;MvXwqv;<J|r6>e82<wZIH&|^2kO&k_zbu>hawN~*9?YhfSgdp$&WxB|d
zi~W{^<KPH>5)BMBb)BrobY=So$##EeZH3sEP{}_#@@qPf&(UI$B%yHPd^Ucgy+2qT
z12Uf!(s8OUs2J!ndqGg;Xw2horai6$sfbWjaBRQRz3Au@78I3BIFIC{nY`Z6+JDXH
ze;qQv_>gBPDAfGp*JVt~|9B^}Q1OqGe}33P=zsm||9_vUB*A2DwDZ=AADAzw-Q6Ow
zOxTr+*O7=Uxn4r51g}g)EN`4Cz=3QZUvE@SQ<N0v;1uF}Vh?|kS*$6(!iZHI)Zfx%
z@l^bSqo{B_yrca0y(xT!14W_7G9L{!R<S$-ug9C`Pcq2}FCG;gOHL${;FVEOU~1K~
zgT*1rdc6y68p4hHzBSpqq<AE-4@U&$tH|RlL5<AT3ii}iLxfN^NWWXPjb0yZ;p1t;
zlCg(&``SOI2fECi9#jHywyszxV^mZC*(VF;sG7GE70c)|f*&lti_T|2e>hB8#Gxy8
zsjQ=bYH=kg-ht{aTOLN1D6D^UThDEM|L^P04E6@nF@4!Ts+8>(N}+LBYOE@t3DFZm
zPk^|@u|~*EaoBCkij+mlM70>*Krf(o3nx|=>*T69Hi3h<O(0r+%IMNLr{8cUoZ8rp
zwA=v3$L@h?MKi8-<|;8<YdpMyjy%`)XEg^pWTo^2hSm@B&mSgJUzM5-i3do1Xtt3g
z6As}POC&EnVIA6J-<#7CwlFyp3Y1+D6~!r*8>BmbQ|A2{*SyNLzk2nOC-E{_L(6P2
z{!<F9wV=tEpCPkAK<-Wb-jmwD(v2T$n<nnU(8lVyrHO|WV18pQ;JACN3swIG-J7`U
z&FH`<n%rsIifUX>7DOzcP@%KHefUFu9XvRC&Bt3bxDphxD4ecA=Jwk&Q?DU6w~$8)
zl75m82I@YlRmd;pd95OA`KtLSf2W<~d{;<65qNZ$GvZElsk5hU3B`D>us{iIBrLg-
zWGDNvjMs(Kx>egqejF#1p`|CtLOd4B-g}6#zY)WM!|8F?nP<dWj(7#bBvNZKC?_t4
zU(EV7S-~<DQ3}fwCC1hG9h1~t-l5qLT<G5!D3qI2J_5oSO>U1Y2+l3-O_2bixq)kP
z;MzTbQ{m31B`X>9dlDOmB|hzH$OSfv{A{}M1M4@NHu|xIfjjzN>OB8mYS0z<kfD^w
zO}|^qQ2SWK^?zL$XA{AJi_`BdED`yxfdAI+#;=XTcfRwM=bBhA?FD}FH~(RfjXpc=
z9Hx$(=xK4aw-Eb~%l~mE1)VJ%2T{a=ZFsFEOz42F2KjDxgJmYxR&cnS5lU$Ab|WHH
ze$@;oLP^>dqK6EV3ynx@=7AEtxS|+2aZij{?}sAxe)4DOikziR*VT^FM8yu&R+@yc
z|Gj4AHS*gzt1DayQQ4rK_<!7I8lHcp1Ok<`;#3Yv;0W=}(U$mvLg~-_jzYIlX7v3A
zy^;x5-F}!!j0KCvk<A`(ebpDiE7tqvc69W<@<()UX9k~*${-)MIFKRg&MUarTu84g
zb3Q#O9T2)lmxQl7zNeCKDhAO9(&;A7lxX!8i(Hocya{A%Muy4GMIH)C4wGK70;s%W
zJ&QJ-pq)^?pmQS5CCxavIcn#JN>-{YOI2M^He6MWQAW3i*_g5--gP14KZxMnm2N1e
zh2f(PZAp_g2s~~#i*|M#U8{obsM=N)mWjmJK9+lJHVKS+(zTO_4vfziZqLJ#$+%#w
z5ajAuB{Wq-qa-+GgHtPks6p01Rm0NLbJ&l)y$9i1bvTBxW)h!6$p1*0nJ4=$P@EG@
z7!4(TP7KXBW1<miG0p(xWzmb4(3zI2;%CQQfL^mPq|;$%HB^MGwtn4YohD3^?8cW2
zGQmmHLn2Qo`3KIeQ<nTYqXpcJL1Nf;h0oedq$oZ?q;iv7O%t!|rBt8Xvbh73xjHiR
z&*-Dl1&P-=5bW5YKl6{cx;JP^GL=-Tj3pJTnHi+9>$i`GCKxHeeV2$QqyvbL5&mKo
z5vU7AiP!PLs&R|5xJEMJT$-FlRVe!H6Y_FS4zytA#AV;!O6hFsXRDv@Qdkz=!_NQU
zQ{=xR3z!$GMX-~sWeiD0igm44WAf=vm_b%||7^cS#4!NHVR(<6z_M3&9hx}GOTXh*
z+w94#becNa{*Set^q_EAKEJG}`he4tgpv~B*b>uqd+1WmXniL8*L^86GAs}2JQo#;
z5OeE(N;BzqT%S)>QKQS~HL}U?j4Q+Y<LE@OG7$0nva&7cLWMYuzJGS7kr7bBzQhC*
zg@%rEpT>aewr<%rx$M1#-P^32NGho%ckXA7`((Awx{bsiy7gQV2HXbElY~6tjF^R7
zBV%c6X&Lg%j_MLWuZ<bIA_;Z;4yi*+qci1iBJb>{BgV3&8w9bgq(0PBsWAww+O@r^
zvXz_UsWsQilpo$@L6q6&9oU=?EBj@0A_|1mABP+0kIBu(ylOl;26@E#@|U`Ru%CYC
zk)t(!tLl6AWz}DkG@qt^%QLGP_MAaOMhjR;6zDju)T2G+WCz<G&9pNpNV=fP3xS%(
zlKt9KAZ>W-z+=S!425nG;l1d2W1aB?A@{T#lolNomv+@=Q&`f15U$RTAJ^8_sOAze
zANXaj4|{jA`Z9r1la-Qa2NAcMdZ9QF2Dg@Eoz3pEPxlwnHA+^;)q9BMb3_Oc1RW`N
z7eDJQip)<y4M_L=g#OnMNW%RQr*bo$RBiIT-89Y}=XD-2^B!1w4ZKCZy2x`)POGHd
z*&i|9;0qzHtJWjF?G!`@<wbxBD{MyaLhtQ-?xjvfgnZ9H?Ml;*A|eVy|0PnRpRb^O
zA-w8|YE)Ty3Q_Ai?W(Ifb6Yh+t1~6<l}h@NvZM|OP*8|YSvb1sIaMFkYT}^hA}HM{
zq7z&1XkI-(jCoEJiXsiCVTT-68J&&dTMgQSu^zojQ+e^-rM{1)?dKiDvRy}FP~e0;
z*%?w$cwV4Ph7&8P6`NVFx+gr3&@JP1pW8UqgCs;m>R|svOJrcj%!rDF#VD5d+8aku
z7p~F%D43%}bpRRkl1zO4GLcoe(Z;X%qYB>j^)-vc{PzNtDvE1DF0V(Qk9=3kh@iSF
z@jS2BEXj&+J|`DvLWGo*4VD@^jro>FMwi^LfhIobr8*XeMq{b0c&--W;)(PG7hP`Z
zt-5M)_E-Be>)GL-o49yp6<vb@cOA5$>Vs{Ol6}bNp1;}!z-fPC84|?!Ya3Fa=$n$(
zHapkaojO3*Xwau8wz9h11z|4AIlg0Ll(uML&ol>+gA()gg|t0+4iXZQ{#sqNIqriN
zZ!LJEC#14O_~9DoZ1lVNY7LSgqlVAHT-nfdRG{`%@a>F~$N2Lvy|T31n}mr^yw)F&
zfT()$KcebP79QJcy3);^u8t0_CdGWk61?Ul7gFFk-<csPEHUgIj)a!$5`}XW^)F2b
zsIw+RZ5S=GLg@joKb;;q+RA+US!QX0uhyI9x(>sD16S7b*v80rL6@o5)|Vv6kzW!Q
zG*+UCVtlyn4VV^?h7(yZm13Bs?hGkLV}H?cprbDU(BU8P7>nt2`7gRK^>5$uYoSC%
zMd$0u(c>AkdMETuz85H=0&MY&rme1fB(+(7J-3&rwj!KPo}0kS&qZKnN01%gbP0az
zoh8E?4hzM)+OV7ov!KecxL)9v1z@K+!%O?|g}(^FTDLMt-GCFE#%LQ+^V&&s!3$ej
z(l6Lk(!8aFfEr*arPF2SNJ%r#d!d;A9V*D+vR|C{`f42aC7~SH<JJSe)qCiC!L&Za
zSnhE_0e4#`yxeHNzEJ;?Wh|v5@zA^>P4RvJd2>fgs3hsyRN~AQD#Tqsou76N-5?ou
zv8L~o(?7#(XS9EqhiuWpz~oSsa&qbnXrWo(CTGO$AgtTwtAz(89-w;5wohyDNI65K
zmnl-s#ULDCrtU9y1j^S@61I5vU$1h;-l13G>0YO=^lfM=+e@`t3t=H4Z{&VRs{k}n
z7~U@}WvzLIvTz1(Z(|@*ZiN`ab67}rLVOV_oKy&MN7DS((onnR`oy2)B^6KoLa@W)
zIy*l;*6P0K)N+5Z>hVnIaIzTEg7BIISWK+%zhd#&?`8lKKtc~&Pqo&Cz1Iy=Kw!2y
zPPsKN+0fLme)a5%Sz|gAWspse-f<GY>LyH-b*qkUoJRP--{`OhW5vj5PftopV}%U$
z`+)$y^JN$rkkdW3R%T=qZ)*YvCSxmv(R{I$kdg0!Kq`$VZ2944;7VlN?y+CS_!t~A
zM(IgEr`Bjg4q0F%=+g2ed|h*Cdp4RVh}zPb#-e&nEbzl9-35=#zb$0i-Sw=ujqD86
zbV9-pe&5^rEWmSHCs$XSnp5%IZ1=J=4Y6lOueW`sM^s}<9asRIcsJNp#6VF*8ciF{
zTLgi6Z_^*HI9Vt1=E$5*N_1F|5&{D)BTP9l_YY_!hmA-mHn5+eOZ)!^;=f*lfD;O4
z)N(|J;09oI2((<Or+CiI&hBs9qGn?H1~GvD$F!TUknI}?>d+!3ZOj57*1w+=;8o%K
z|K(?pWSO%huy5@XLsLydn9ZIrl^m9M2kU$0Y0qzM(Kx?`o)C5$6iBN6p?2ehFeF4~
z)|#mtP|}pd3=FpDLy8Ym3YYY{;z-rprGKXifFmZblIwqkcYU+QUE2iG?o{=B0YJwW
z0GhOZ@8Sj0m4XjCG1R6tW8Gkemx0AVZ(|p?kZ-u@v15j8;)oPViWOfieuR&thf5y{
z+eUyxmioukLXQ;$v}zw{47+bhshzoerm^&9?+f_!tt6pbZayfFK?iCzCE~`(Ti@Mv
zO1gjk-(8hLcx`ieN9K?NO8d_OcL~H@<%2q@m@q=Tcs==GmF78C+;kO+(!1NM#Ox%2
ztT9?qjv|MzLSPJUdJMGe#elQx%FB|{F}p_}hfo7*=2YM8nxNAghZlgLMPC9Y%2JJ@
z^rgk!?)b|<aZ=Jhq2Y^vK*PP$-_VeiU7=K`=)VCD6Uu7wE-o85i=fc{y|gJf03e8(
z^c2JAQyY#XuD-$NMx>k+a9;q4u?169H;!UBbZ>+btok-sZIcsP2p+mHRW9tIhvogZ
zqh?Xi`S^K?9ex&Wx_U0jutrrl;+p_s=0l0zOC}{rBWJX&^g84ZKe;Gwh!FP-e<5EU
zWzrLus7IsOiBEq)>Z9^$LN~b=Fj#IuhldtJCtyFs4mlQwg~lOWWZNnr%R-sO#Uhz2
z_xoP~2kZP0OHF-!j$2Q~fdl|`8GUG(-ZS&IN_oXg1Hf7(u2^NGfzF`-H}(Y|XFA3+
zoEWFrawj-rWtmnUcQ+M(hfM!aS>uB`To@TVj0`>stCN-9IFA{1rd|`7shxG=?mzi-
zslpTX(Ekyk{>J2!(g}54`TG4u(eAvhm(5ttJ7IT56<7G+gSz|B9MXdB3m^vidted*
z7-XP;t-FZvgeJ>bm|f);%Nj)=C-FLHvPw5{EAWcvH3n`Z{DCr+mMd=%-FkKf6IFzI
z9LreGM2zR_Gn2wrrR$v|Gor^PGn=0tBGDZsO#*{&h>9GLNJEqj?GNUdY0=$jH~BXJ
z!WpW7y6b$y5FCA@hD@r5uy>Cl!DmDu0f&6wO)BAY5Yz0wP$1}o_Eq9*a*THEHFC^6
zAO;!w(xrJt{(Bb2Y65cTR_VaL5G{}3HJL~!^TP)m7F(9tla-*%BBhy{<1|`7KR`A~
zXkx@NgQa~E#CDl{$?T9rD5G}V4CwuKpL^h(M<G0J-z?|}E0&)n(|#;TIGYZYP}i#l
zMpjgv9mIv1O5B00FPY-ZmqP(X(WdL!jbPhj;7g<(g+Nz7<B3TF<thm3RcZsk!|JYj
z`~DU`HeW#yhePjP?~HC0nkfSkw?F00j~7u~1cH&JwetMPP;x!*wwrsP=qBURX6WzD
zKMTRtvmKoUcEZ8M+Cb*ja_BMXv2cxP%Sft+N7-JM53a4cy^jUVQN!x%TL?cw!{!Lv
zESZOC=HjBTBrc&uMCUmWsw6l0GsoiCqgil;z&i3iE)ySWq{Y>ORaK_7YdAj9167%g
z)df@-#B8;&0V=jX!_3i%1Ko;^JXgmloc_=6`R$?=nAH&Jj$rA?6z2ET!0i8jF11dz
zKf1SnJnd6eZ*jo9W;ZJ=iCwK=&8q-N{H1zljn=v%O@J5O&#I7sl~>ZlSeA5-XLxrs
zZ(VJ<@X>-fzL^y$SmY5=TcW17k&k|>J+Ib3)bt}iadpF7>MTgkV7Zj-RY-6-t39X9
zXuQ_9JIyYu$inwbIFaxjB9YW4Da%gr1Kd_SWJ}v#r4%FudCp~wH$^XVV>u2~qV3H}
zhO7LMagxw4ii4pn_bPo2?sT#m0@y<kwO4?e(Xui_Hfl6rx<T~5gKhI#Z)C0{(^q4b
z27DCun)+Sb)+h$)pX4B`e{+`3#V(ep@MP~DejY(<L>~?5?tI)LI{K5fWQUzwRpZU8
zut81Mhr(xdhyR**spi`Ibtg5>RzPi~ErIq{%4qHP-lHIIG@9P!iNz>#!*Rp}4qM*^
zlql+{2bmQiw2+A>onf~N4L||dzL^tZU}z$`0Y3I-L_iU`=w%UJ4_|Ed<g6v;{xSD4
z%^%=7Yijn<q1TjL1-%1*Qp$9VN?DLM@=k`Qd+Aw-v)R<~sc1_bbJJ<yMriW;psn1P
zu-V!B)x}f#i!{FiB1&a~I)b?}Gmj<h{NhEKJ%uJ}o06AvR!bkGq+TyA(_9b7|BEdX
zzS6+OfwvPWxBiCbqw6-q?JT;+0vD;qw(Rl;y4OckJy2SW`v4c#i7xkXJHyX?cN>|Z
zK$?7TXWyq)SKT)fod+Q;hoFrhkKud%38y8t2uIGIdK>6Td7n1z_Ru)p=_~3K{ImT3
zB(ndgzYI!|H1#070<-SP9Y=_^V4!)Jmv3K4-V`zMa*~(m4PBFe=?P`<MayZ8{u;h~
zi$`;#X~(odHi`D`<iB8h!ouaYG&ij91P=g({5cd})ID0oIDS~kq1`W9lzzl`D8AkL
zwA6;J)q2mfbkLN~-wOzj;fO~<dh<`?^}Uqgd<5^9v2Gq}I&GI-3eAM#m^?ULcz)Am
z7B5&v4c9$s<Ft1sy3XC}W+6^TXL*1^9HJU%GdiV2*YisbH(#>^kB7s`yDr@gJ`H8r
zfEsKvc&)l(d3?*GOEtQ+rSlhC)<{y`KlsE?jw@)X91y)T+Bwhx?cU_jC(+{4HPITU
z-uL~HKFLLQdyuPP72bYd`&;_AA9l^eGcn9D?+-eiLuE$?<ZcjtrPeX7gd_$<q!DY|
zE#-FKtz;48twS{TXT;NPtdx2N^lS>ibaO4gij#k{WLcI+ASZ@=O3mE~q?*I4j_t?H
zk970pSb(ZM^K@Uqc}3IpkXocnMaRxv1WF5Mr7r!E_N^mfM4Et~N*m*x2IEl;8t&Z2
zeOmvl(L!@hb%+JMJA~R`Y2u7F($1K;RI|w+5Oo83{scZP&;{)^dFlG6trec1)*lV!
z)0^x*mp(vjpVk-qg-a<bNq1=b8uS+p)fuQhbT!(aZFIGugBr|Y2U~Naf{e@|V<8jO
z6$n1A0@<~A5=+;V9xAm2C#`qz%}IFAPVaTV6vdi#L?<mz6ifJc&j;2jbyLCNGu_0E
zg7cVyPxtsNRh2SLwPZx@^_2HiAuZ?Xj1gMC21QrT!K>{(FNm8juu@V}$_=}SZ5rI}
zg4H?mC5-qUE~CH8w}OwelR4RPR{!s1fx@=7v?8}s)i|#@%k$D{Id-XGEVH&pB86t_
z(p_rhp|zRYj`9S@gg@mWoDTaY75)G!YX1mxb<mllEn63e=(QnQMvb+$GXqC>+D*Y(
zD3V)sK|(QZsobCl%w|LkEg5=;Lpn10(mv#E)2|;Y<C`Srg~7Cw-ad@%8z{$D5(<Az
z7ou##8g$@JXguV+OH4-z{kbp#I!o^#{J3a1ayr@7B2#22Ne6mFn59|txZB4!-rFOu
zs}N~QXKmPF+V_k9er_Hv3B3jg5ZddB+r+;e)Z(0eB5oKXSHq}qKCzrG*2zPH3h}&%
zfVjVyJpzT#33sB+FQFQZ?rbD0Sm!G(em<W1Wk~N#kPfN-z%AW(wheaQatV+&(AMn4
z)8Etw$FB8#A%v0wr0*Em!3XwjHZ3mw)<Mk2TrP;|tpxA-njg#F;}Up0H(-Ao8~7aF
zb9sT9&Qq|&S~W5HAb{+4$;>rl(_VPwxe*X{aJr45!$QRv2vwd?rVO`FtaKc?<`v%G
z>ID6)21%|A<L_-_!wJ8>PN*`>p_73C4wGux<2kay9mZQddZLp@uch!$T=A|%Rjug(
zLa_JP_<><6r?65+X&tAWS^;tv;PW$2VqX7(s?4+fkY|wqhhBEJp~loWM5q%$5g*3S
zH_mx!&1SylGon_fv)ntfJN=6v2zm(SN;Sk49XJe!6GJG8J&~a;7CRflF*wYnM3(lQ
z_%6D^h~ESRCGJL5?jG>iWCRZGj2>1dCJ!7*p@!d#|K8PsqrrQa#5=zir>47#y1hld
zE&P1y>iS}Nh<Kp=FFNl$K-I6;`CZn-`qJYJa(Y<Usu_t6=0y#!gSCwekGbdP%DW^`
z1q;>0^*4gOvH(>%OFI=zx`V^amRs9KP5&DX`_s*rxQ|a%kK~to^D6MJPc81uI_)G|
z%4O>}sRR2-c*~2mUHu-61G1C4>7)|%9)w2f{fyj*j6Ug~A8vHDzXuW|(+8Jo_MC5)
z>@F}sk=?iCFXnME`nm}ID$TLJoc?S+AMIn!*cuFoY6if7!sRPb0AeL2vB3Me#q_jr
z_q{%5NRCkB)gN|-^p-c?hR0!>JUNl^=@Bmu=GKB3G?+yi#7L)9L(gh{<}qE>)NS##
zZ7hY@%(0tIkH7Gg#MEf=Pv<NXFUnoH%~(Y`S6+^>(DDGRJg$eI?_j;?qVFUF`~`fm
ziCjcVDZ>@u%EmOCsdhXV{-q$-A6F(wM~qrstz^%HNA1w_)|i$ik!^*2P3#S<!Qbso
zG63b3^%J})%}u$6{e{iej0nlqe^)^6(*(?<@V^w~`ikZAnsAv9SMH6nqfI0Kk(7F2
z&&P{FIkuHyHpC$YZFr^%r!_UIKS-w^`QlJ{2pZUAg!U`4SiGnJSKqs5kZIopneq0q
zckPM*Ady2<4{l!{Z9^T38c-#=(g=ka*s#Ca0Iy8~%8)bnk9_y`CokJ%hxt=n_o9YX
z-Rm_FvYc&t8uAY|vs<U;9d4nT@fr^XiOqu6%#@r7#5W)K`=<1_tNs*E|HQ4yiH(f*
zOOe1n`>maxi5sgGwbUfKPUQ+;@lFkc>E2Losx|cm%p<oC!zMMDEL}=!_o_oo{S*Si
z>TQ0>Z^}uXi|E?uUv&q!D;Xer$SefjIm+D}3wwF0%`1!pSHi<PL{j#PgI=wlWpodh
zat6zmkQYvSwL@6B+74GLZL~WKpL4TCD=TI-^5&Jmj6w=vMI+F;Gs@(B4<#I>0!jRf
zJj-W67ZN~s!X!_SG*W+SJ5DqPWaW^8gY{n;M%<%(EAsb%sF?j*hy3w0|5KL1?l3h=
z7T3;(Xkx?t!jSL!R6cX7W+RSt#51C>p;X)jOuX1=57OY-eAnnGUoh?UyGp5^ikMg~
z><|tsujs5SIuoF$P<4UCi#x#Qsm<&<9>W#B*@bYnNl7*`y0}zRWS2Ov%a5Ky-^26;
z5Ty#~pchg<H(`SGN=la0{!$>@Dq2*GOrhF!1w1>UdlK<@b;v!3lm}%o?cBuLSZWtG
zizptRMrNJeH=PXpsYu=2OcMqSTgLw>Lgp+jqIco6TJoxYI!Jh=5~ezEm<=>v1?qJI
zPR>WnJh>09$YD;H+}t~-J<qv1^8v&<hQp3rp6i*7Vq2a6F(q+ltiOw7SlMz*Tg|=z
zM>PX(OYzN=J>?p(Gyz|tw{PC$#6lVQ7mUkd@UE8_1H-N9DcT=yqbh^rQ&jt$U{Uy8
zFU=O_n^aVEP8U)a$K4+<1xMm-yFr6Bmi(L8SnK!pVC~wU(T?cHR~q`K6~&`ktv^N{
z9EKX)((%erM<HgQcox>%u9Mat00h1tVoSCuFQeWWt9i@ELLQzacY$?#_B4StmP}<$
z4|7I3q!csG5wskiSg)x&x|(^QG!s{eeiMs$8B9`6Jwf4fDyc5PiCxz}igmL}$p}fe
z@pKC|DQol9=nL1KJ)zy?&KMjh`i$Ymat`|yk5i1{51qIESSzeCXdaf~>Y#u=uIBtg
zSjw_Ag>ioRZ_V$qX^7?@Qg65jtCePN(BOp<!CA}V(j2xGvdfET!Q{XQz@(*ArV)EV
zi2Zh6GwxZl<3GRTpo~sdREPL7Y;$F!7|A>BAr74JBGg=l2TUM>5X*Z|&5*l@GcEH+
zEX11}o-0Hp;;_B=Fa=*aAMb(uhYp^k%%LE!8Jj#z6st0USV=$3bf&Vduj>d_M=OhB
zR0S~?D^Jc=kYH@EyA`8v8Vf~+#p$5KeK(&#*yIat@*BOhbI_t8v<muKsag|9@1>{8
zb;#A%hMAHG#k7@My)g#vo62`G@QdH(uu80D^~HC#a8p?;rWJrTJ$e?-M~zemK~N1;
zITpM7H3#*&@2Kp~1~E09EjsM@rIj4(=WII~HFyEP1x&GjPF0DuwS$=2iJ@|G<+Aap
zaimZS;E2SfYATb_tC`^-y=ADJd|`dK5dh2o1gp<+IirTGEZ0N+g<!5oO=<Li7V8Wo
zy8tHLYBIZl!0wKZuI@+3tJYl#TLge^ZTlRYrA>qGT%#dh;-2ER(HIUK{26G*s!iG*
z0QVym9i2~^G;2-I($>&mmD%aj;cWRkpW_psrHh>{zT;Sw{~(;|GGw0MZ_BkjADwTZ
z{5^O@4eNv3Ew}G%Sx$G9r-(Q$m%1@hi9Z~vCao1DL@U6Z&St+SvwkLOXq`Wf_Pfyk
zY(!t-(RSQ&dXbBAyI+@XO-CzN+O*ZK+59vjU%Z-1I=6Usqa*V538w8m#CxiN+vd(%
z&j<OVOFlFv`ZW4hc!XhE=h-1$)mqhfVF4!*%3<gj7JYkC>f#p9Vgx~F!W}cq>4S0~
z!+w$hS>-p;aS$C9EllO$^FG&f+>`&sE3<{U;-I`nzQ8b7S!R<n)N}Pfa3~PDwW?v4
z0Xwu7m|}NtRS5Tn;IR?-0LGN~0|v#>2&%Buf@Um`lk+dY_7$pu=4(&QyLlFTxLJYJ
z8l7&HA6BV3`OE!0Dd?)3uM>>jJ2-4f4;W;dFFz3%e_8RzrH$YCVUyP5VbsIeSFZBh
zwGe{6=>iB-Wu$n)hbja-i8^nQF}jyV#%`S85Tw)EJ+Ys&c@>!*&&{`-x|#&(swynV
z|Dj8*>o3QGelqa16taz=$f1#tik(V4tfHc$`eDUtRg>dH`e~7q4Gy1!a)8@@Y<qJ}
z#0B0^WK6X699JhIpx^bevxo2NBg>cC5aNRQMvc!>`YGKpRz~3Vbuya=a#}^*^)d;x
z`BuW_WRBQ_z!TIncgIH&e|5o!lympn1FHl!XBx;-E9{Pq?bdbCY_YF6nWIWnYh?v~
z-Zw2JlZ_#EK|x|EgM4}qN{!(rAD7XZ8Gu>+Jsf8Ni*AglsG~q~g^W8kcU}qASkrf~
z3-{PzR7nt*tpN6uD|}W?9`<&LmamjY$#_P1)zY>=1O-bzr{j?+-9lU--pmnG{td>b
zy9XvB;{|xhnKx|!tUUd;=%CzYgl*Wz*q7NY_?`3t8J=$v0rd`{|3d&30$rR|G>6V;
zl7e#Kp<0ZDN1c@*?ixn7E3=Z}Wm2qi)deH&tzF?339BiwC3YbE=xBcFWys{f)xmTJ
zj6t()j6L9q@&#h)+ncJfp+l8*P}qS@Q!WbLV0(TXl_WtMm@(^Y@gv-O&(%b_h`j8h
zKfJMCC+^DWNj?n+ir|Q4>RnJFy-O`pdw5pBX}t}KNQNpw0F@(MZ=H6RYB$xKp6EFT
z*K~Q`Y57i!?G}Y#nZE`KT#aSOW9LU)^(T`lmrc#qKXN0T1GWodeLFekwpaJ;1}&>w
ze7&TI1QR=-ad$aYr5iL+Y4kwllrO3j8Rd?BN4^&;AQAK3zyNXb7LTsLRtccg*Q?Js
zJP|TLCLL!8obyr6YqD8(1ZpE#0lHZ04KZgAK^F-5rSYPsrlU{_Z<krV{l5BZAnEua
z4I}c5U>9H=qOv@-!tVyT7h)Ym_6~xvT?I^;$zlrQBtNUkh&vzi!dEM)eVOg<f)&uz
zoG<4_w=VLG$8AoNOkUGsY=cu$8i|k+Q7lEQ=i%YXl+*S?J_c24SUVhkiA`*3A@)EN
ze5w_(^xPlD<-=M+a!+?6V2?fF5|aP$hXH$Ij$9k)S$cYHUT8jr!M$UHo?cE=G)vJx
zX1Y9y3iuVVq@)~g+e|pw$>&&E!#wq6iTGkJXyuzs?yI6`zC6C7{ZrkM#P}3U^E9pE
z#7?cD;rTb?lzDE$_=s<?LJqcR$Mo*+##BilMH3eh$-xHd>OsPAxIREyl$M)+QIn-d
zWfrV`OM`)h-O`Hl`Uhv#IMU76f(&_sK9Sn~&+QDzzQ~aO#|8(SQ83QDylByc+)3#`
z0UX;uMt+p`|GQ`CJ^@)JjkUQy3OUg8{J~{io5cOH<~HqXdB=N9xI9l!q~-V1w_Zor
z?SzCu!eWwz`<YdC+JWBeNhBwhMWrErI6XF1F4ooj&ms^1kUQn;0{=?rfVMOYU!Q{#
zJ~E)m)P?z|NCEy-Sy@Z~8;aVH=M!qFBgdu}K?DGdXrYZJ-1$LJs8guWbh}8m75mHb
zrvEeE3;zF#_bNq9=6RuWysviC8u*7&?W+QQ{(p}MvoiZ24p^}bvQQ+L@#7;o{-;<l
zSzPlYoFQ3V9)!<k80#lTuh`B+`{Ur=FV}um#{ivA{K7zs5E1dmvJGXCP+v8Q8!($J
zYx4(9ZUFhc=8#|}Wh2u)50P&h>`c_Y77nP1*U6fc(H>O?W`7v6ZAp$Pj~d45dUwVz
zi8xz4C0yWt$X=`UJ8<%}0j4xXy)=QiLb!jBU=z!|P~T%oVFcd=UWQD>2r0(B56MZh
zi1|ZW`aypTs-}bEZ(A;MW$2|7d%J-^tEdMCnm$?vh<m19i%uA3W>hVk9+iIVa~*Ti
z*??&J72R)3F8{E?lnT**cyd*!V1XKVL*le^@8OowbLg)uoI*+K@gs9j<Yt%gb<nim
zcF1&jRP1`lqj|lnl$1;3VF78U>eQ|ZlX9s%vVS}N<=6hdad*~nQSIyg2SGqVLZllM
zkPhjVQaVJsySt=8x~03M8>G9Np}V`g^S99L-tM!{x#ymH&$)m6<`3t!mcuZ!W-;sg
zJkRIz{xB;il@wAU(}<z9inav|JUL*Ru{|=g`rxp75qPD!P&iX~g<ll0YfR|AZMl%0
zNMzo?&%fc(Ica|EI(P+AeIp_7lDZ4x?z$~!*CbxA_-wKH^I8Ple>eoJ_Yql5ZT#sl
z<tWt9=Ex-Y_0#B|qZq-+-E*gslWVANLVW_HyA5HNw<lZz>`{%3-eS-h_Joe+DM^wk
z{+E+6a_vT79;R@&k<6AVfEJZq5Pz-i<pd5R)sE(}^Yuz4t+He__83nSk>(lqh1{{B
zS*|vSDD9Ms%nTMQ;N4dO<+{w7X0L5fVX7twyqhD+3+}W|>$}5ri$2ot>vItGkEZUA
z&aTyi%rkQcv9P|D!2mS{=4C{>*0;ghl-N88470H1xL`BmP5I(Zi`Gv#-o63vJgh0g
z3+od2BF%>6(8C3(gk#p1^t!pcFW$(^lV2a7F(BN{GO)bkO6^)0Q^wPN5-d~mIFz5F
zwEA>AI>M(O<p}rCGm6J`BwXFzy!5c^ni49s*u(19>s2Cs(5pvKP8y-FnyiK9>UT!)
zcwjPKWrzyVC^|q1?EpGF?R53Rt1rKN+wF-0<E8Ab=cR-fie7Nz&wW`;2{>gbIdT<G
zCcn7DnCVX~BY8f7AzQsEt`Pdg?w9b7?S3)^l&>fwH^6=Tij3iP;yNApk|+&{wdvg3
zTe2WeQ{4=bg34c%m1H#;7>6hTMCpM_#}cIg=M9OQGi^eTg4xAMzS_a?Xs<<<atZgz
zDS8Q`hCom><%*>Q)hOgIFFlK$7C3<*AMC)<q;#(WOR@69EEoKq7nAp}T#$GE^AQfl
z5TUDL^^Tgn^Mu}>dLQAV=n4gk$`2zYGm+iQ{uZr=)huzw_z*!EfNxC^Blvv++N7D7
z67M9*Q20GlC!$!4(HC%|x45~9(;iJQzBpPA+~Zo;B@<N=;Zg_!A?T&CZrl6$3Bz(#
z-lBA_fiavA86sEt9GV%&Vm&NLl>4f^D2|!*2fut@cUJ#UdhA{WVs&<Pxz#APC0^2f
zzgX&L)ssWCxCX&6!VB?A1QfE86qbK0%}^AFbj-wu6Q&)};Fj5~An=g*eO^NQ$GoJS
zw4DJRBgJyzb%*Zi1zbCIM>Z_>)-~WS5{?;|x(%liR&ccWCeEJWt?%JNX5WX;)l(Xs
zT-Vu+GL3>ZGJZDQ`|?2dTb*aJn$|ak_L{GpyaMCz2}(?i`-vGEg02o@PF|mPq|QBo
z;bN3KzRb9miB5?7GFGg8{XAVmAPSHb%)ck@FmZeq;Xuubeu$*+6LS8gOt(>?K}{Pc
zP4mOvVnn?U{OF#lI47*22vDB>xaGJj-hKBO4WXQ(0N3y~iyx4u^qZarC@6zRbZ}s~
zIU-;apWztupXnfaZv+iMx~jh>75nW=#wz&xg*<C#j}I*RRq`*#8F+rOCs4l<qQ38m
zbp0qZ`fJlOz3KawcE_(fAD&%{{;xm%AK7CvnB6;kVbE^HetjgoF_BB6;(Yw<22c_`
zeR?#?;3{7{uh|K`zu4U7Z{Xh!NIg%2(LaZC)MzKk2|9Xh5?*<F2nH>9nB%2gBNJHo
zVskuwP;AYm3tyb%Qd63cM@ATqb@J~B?@0HI6?>n#;7;471H6K%Vt-KC%kvw1k>Eti
ziqRnJ^ZL3<`{RsiC?uo^ra!$=lcpf$*XUPw4$NT@p6BzJUU>Bhf$P_t9+fiWv^GO8
zS60??45v&ET%(E!OsWQ#=5xy6DxKLk=_>*GR$O7~LBstGTE4=!#vS|OPEH5Z{o2C}
zB_@+5gpH}H(!q7e^POzxYL)kzcr5DfgA?MqIvPhz^Z2_L=4I(x8q<fWH)!5LxNRG@
z_kr@N;yml{I3d|P{($NU?@zC?dqYD77nMRKKn&**t#d1k)%FyMu|iq%a4=WUA9~Hl
z1@o0DChAxY4h|!^isO2JU$bdvyg*Ke=$I6Y0Dz6UthZUm`K{U5(m>`}GQzi3&kQxW
z9QNV|Ck)wGyNwp3@z$1)BFIbfU&ehYC*4+V&+2sP0iBu7Vp4l@1#{Nn@&NL+kuo2j
ztXf(yk>5^S;O>LKZ?a9gtj&dmta5`3JBKvE@q&rOYFK-FdxP!#!^5NI-*lVW@;Z{J
z)kQ_zP|m_Vk;V6Anru`#uX5SGnFb^6!*!e~*J$}}Jm@xUgr7czEw;UP1}5dtyVz`(
zE_v=rdW7#CdiCU+WB<-k>zypE{E~zK4ZXahz@t_5iQ$wFnBw-w^<EqH^+vM@9H0Ar
z*KY284#i9PTk&S#+D@4#r6#D(3>*#4eLR5;a>-LSk>6_PT<#c19U4`Vlnm{~SE;k1
zgui!sp(+~f!y=ur<VV-uMW0Ee$U?%$XXOCUoqjziftZZp>7lSspN^u69#}3%@+nn2
zVh9GOH>Im^j9A)ybm;Rv<(JpxZR-Q4cvMOV!?t?-{+$9&aMf_ea*E09L7%N<Xpw$t
zb(t|mpt5kdQ~4VkHa51}gI;<&vK4a*xo<Eo<lAzDLgGwD17IAuaLwEI=Q(i1{!+vD
zQbC45^}}p`6<$sJm%oDUte7Y!+#L(9F(bLco<<J)t2a8JIPWK_&Tgl1OazS$I9p@+
zu%LF)5c@T_el6Xe({Don;)Cn{slg~vvH2xI$n6ka@5omLkxpYz6mWPo&_XJ+*$U{4
zVN9Bk3u}(Eh9(Aa+3qynCb0GtV?DpdxfuduW*uqHlvI7a%$0q%;d|-DkFhx%lNoAz
zSu*wXg>oISN59P|Mj}38werQYU&K2f1gsMh4y78LAJo;FB%;lc#?ulK68I1$4Ta*a
zf@uO9Xk)Ta>@|>3-FXv*4KZ$_ieW|f3p^AmsNVXex&)Q$EeEHEl3X%jD2|Iu{AuY$
zMTiaga&8B*s!bL1F5a`(XBzu%5I(n?g7KVTo?<wxS&Gx`LlbS$k@+ftv`H>x9aBsv
z@BNz;Y?+v1CKYo(Qa&gkz1`i-Hihab#3|cji}Z;y_(5;a3lO>&=mEVZ?!QyMsjSmy
z(D!c>Z^jH7`c`D3apEvM1tx7R(|FFV)S2SE5>eN*QWy;|oXALnyOO&ZZ=ICWeJ|l!
z`EHiD8d2o0vP%yPh9sP9YXGAeaDi+FqY!$a-sBcp8lZjd$T9uwM$1e`!R;h{sNGTL
zk$mX8#df@$i*A9)L;*-7s)-C%Uwp30?Rz^W1@|n$)$Y_-%ZknmGRGA1M@@*~j8t@^
zY^DYGCF6|0?QZNhPg?4cjqY9G(b$S|b!vU}bt`+LSeaqZUuB{a$S*XYXfTkQ5~-dX
zU{5O>(~OzR(FMIUj6&yYhi?uzYTz=(swjFLTP%nmq1fw-Up!xwPLt@l4F5~<*e8i4
zv*$#s?65aVOf+_7OyJ(BJjbIHc~w8-i-&GimAQxYv-(dh$yr`$T>#e9vyyONVQwFK
zeGd7hj?5slDPI`^@|ngtWMUqn>Q|GB$gXo7h+~#uOXDW>4sLpchBuBex4)j;O%FUT
zpQC1=o^Dec)UJV2d#B%B<tH*qIg50ZoC}mVq*!cks072bbN5vLfugd6?<DdG%+PL&
zor5`?*EJJvLo&{?*3Jh-qo^N}%8&i}zq##<ds-O?KoN8%@^4v@LQ~qX(|VtepT}q)
z#hz>zrVt;Gi$|hCrxL=A#l(`07s>dJb30&9wVmM7?K0Jg5#Q>Jk58SwdcMv*BR*xB
zA|LP_@b&3F@&pbheWxO1*Tl-1Xe~Fto!yB-_6h#a!v(0vYy5xZJei3JNYSPz`s*UH
zKTQC;*9&7YFh=C!gyb>w2z}XJWC2IxT#LCthc{2y@C1eqMq)SKV1_#KD0cayBCbMW
zn2F|_<uLy{bp8;zeutdx2XW;z#KOm}<SQ^pUrmdBw-6K5Zti(1pla@Bc;XiAGSN)i
zeW^Bl;?!O3Km_+FfRNeXPewccOJD2la1C7j*_qNQ;|Tu0=e6UVtGF@_M(;N!Z#Nym
zgK$}O9))(xH!?*=Qc8jlKgIUFrX+id$JZYe2OTixa+m7XeT8i70wuIpv5G;@((o!=
z_!kpVs-HLbLJr?EDk?JmqP}?Y<_rS};lqP~O{uLNQ4FO~sK>KTi@|(a@lq;^=&Bue
zn!TlJn#kQD@`^!uI;#dCNqq>9*dx#(gvaQv64FSGgC`k8o#nFQ=K!2sgsYl!{#I^$
zgS15sGc1oWd0`}+X&lKk|DF%B{kJqN^<a>%m;JeHq?`)X*;P3DE`w=dqM`5|^DY@k
zO&k>YF>lP8DUE0dL%pm{6D?q|Oit4Lf;gZ_&y_IgMjqC|$(7EzAUU!xLhKEHT<iEg
z3_esh@j|?{S0#>>ghm6dL(p1*f8(;tk#G0X-21n=?1Va5nJB1D7&+}5+VJUYLJH=K
zS}og)`Bt6B&VBiRbJ<C|KoUepMl-%{G6D+XVt}L(8R1p8CH%+PNm$JUEM_VS;;7k2
zqbm4%?ft>!zCM(c0X-uAU{Q<^EC4~~!xY>K(9ZZzDi<~XxpGm80sPn3je`zWAoR!s
zNgq+<Ma-A>$-wjoKMbT}q@fzY%W(e)%ej8R%06&qQEn;mV-?jsS!5A%<FV2|C?;tM
zBvn?EO(i!)gEK9${E#%JWh-XcS=v>U5$33?KFijYjMLmu*rE)cx)pS|VXV|8i}96S
ze|6UViDOc1nPL%a1N&=5c^rTOI>DgP9s-oE^a-{K{g+1e_ZkHYYzc0^D&5CqYO)^&
z1OF5CUB-{fP0<r@zd4o$@(qw;)4tMzS3vjp!LCSkETGyTZ|C@}t~A}f7^!&5BBs0`
zF>g9U<zpl?T;*JLT|6SoemFVEc^HkG@$4>pg~8*70;J)7Mo2DeB&#H$I&DfH)|fPS
zhU)HKeVzO-6qYeuycz#TC8cCHp4iV;p3KYdOOc4#zcs7<-6k{8c78sPlcVqmSX=*g
z%X%aCu$8s*{qE=9hkK(x8G?R1-}3>oUt8QIL9deiqX0<?Fi;_M7Nn!Iw3KM+hj$K)
zBdqOc*_f-w*)bgZFkZ`6@B&rCd<oC4lMAdqkX>tf4q5-=!h4?vAT16yjf<Dhnp8y{
z9hjV0#dr2gDF)oG->Y=oQYvKc8=V6}=8Nr49>*Jy8$f;(Hl}3TW%lO0G>U1L{^Dmr
z>El<bw@EirsEFo-YcFR^OWf>#jey$>5{@LKCs%Zyzx*8%p)^v~8)02DRGI3C_8@gD
zNMKEksfe0VF#nEJ_}M=j<WM_5Y&a~`SJfDv`vCXkSxYL?^1*El(SaVfponTQB%UJ^
zEQ>wbXxV;Hb1wh8ce8E)V=0Rg;O7xJ&S0ek@fw${_G8@0kvd~s`c4itRa60@0hz&q
z$Dt{;!cieMJIo3dMk(dd!gDe1F_sO2(_{Ix<|8nUG&__ltIBUjdQHt4Nd%R9l;kVO
z1DjI`e<3daIz<?yWVXD+zALpOsIJiW#xR8w3@+bY+)_ddR8~3+-b2t_i`!okQU@od
zRt|8__1yZ1;t^Z}U61_+vJZ<1P?2K;$Vs#8WutOHE0a<nSvJ#W$fHHNd+~&M%!ZH1
zwnxU&(gLKu*=={Sh4lHLUOX)&m%O%)o%ZFD%)>%|sdBZ_`L?>c92o4U4VC^F_z|wM
zKMefD#0-Q1cgp_LEtcbPuHUaAR<<*+_X6@CtYn<5uYFw<RSr5>wN~Q!wdS3(3>W94
z6R@!tCI@hi8S~td1f}h27{0hI(88`QEv@$GEsu&QOH12a^kJx`W#`6~YzQ0c0(6#4
zf7AtkRWyycD+XqOW30e<`nfa>5S%`5UUt5~Rqdc`chpvO5X0uh5~m)?-+kFb)PQ#U
zj7q60pzQT@vGchY`%D3Z*y_r{?1nzffqoD$>^rh7P;LksWxH>_z|*8PZZnmuT}8lX
zL|x9)&wSF48FUYf`z}@l`<$ch%O3Za8KzYUB0q423k-9TvtSO{?%w8Rs0ehJ<YINR
z%-5PS34r2=I!J;t0j3)j+RE}s750h2JUGLMd19R%(s1Oxm#_cYa*cIv@$o(pT~E3C
z?57gd9<#c~E_pKjJ@OZ19Yy9KD)xbrz*^L$__##!#ljY7S_74D>`6gqu|va4*d`L?
zIBYHjlPpT*#{PZdZ<#~PABCabyHdMc%d0rFZ0EdkRw_DO;9TW2%&HN0o~z{%bJ^VA
z_1GF^xO9CrOT_1XA*Kj80p6VJLp5AG0>c8r8b<4Rl@nN4-nwe*(T|ODbGQ$+gesf#
z0Btf(yvSZ|iAg334jUeuO?va-AkwfdsHs^s3SWI#=d$+F&c3<7Uo6r&5ediR#{H3z
z_@pPL%bjPx8;(S&z_V78ypG=J{e$filnbX@sCX_HT<5<1FelrQKCB~g9i5CD#YA@Y
zH?LM>!2eWfM?F0X{bKVXA+Ev|0NfblR{dZjN5OGNM#9k4KY)=5$o?&0WVi5N!N?{5
z9E_}!W%xqeaSVW0ADny+Mr0>@PVI7v@%(&06g=w-h4dMTd;IKFd5inGfO>O}N0GX%
zADkT~Yh;9Pg{~;iU|DYT<(k>e#hjj%@hB8gLsB51FO?V{3gCq_Lr4(n=(vT}a9$DY
zJ~i_7<!W2%^*r8EC?8I2xqrQWmsE$_CXN>nag4doVUArIetc!O4sBG8`gW+v>Eb*-
z=0JZ$&USZpd#q!7xPg%sN`1KgL$4f$w`}-!`NDkKK!Yxg^F*Z>l-Fa!bC^&7o%RS2
zk@3}(=L5<zz+~-~>ko@r8SS!uY3Go#VSps28w)yA{x6xwe0%?hdHe+q%-fUQ3)B(R
zJmACA+1uSbgpzBv>_v>P81pw>6~c+AAI#u3o!Y1HXJ-dy=1l<2Tv!I`>c5nBQh<7A
zEQ<=&y`ylQKUDN5bEaIJtin`|WJ7qzmPr(rBk%0w^swl(ZEvBrI{^C5JmJZp;AYjg
zNkIwPuMJ&*oM3dCcPwLu7f!k*)fock<-0T`^TKq@lxLSxg>zY|9T;dwg}{exs(r-x
z#$4YuS{<*G+hlyqSbMA(h7@i6W>wgtCJJvejSWv@o+#pwb8ZvdnzGZf#O@dm=H#@+
z$C<j@n$NZVo;P?Qkfiy*atX@b#M9XOY}tax&7uHmx#^?vDlHf0#1rHQ%>q@goRlfc
z3!VlS!f%$cRrBR4eOmZVoncOrHIW{o<Al^)c(7xIP0|REi=x`SQ`=W!6I?50_xhIZ
zd+49bRXEYFK~byqt(-})pI~<5E(wJbphu@T-oC_UcjSW-SB}svWqv>a_r;zS<(g!c
zZ^$4|t}(d@M^OXXIDoYmQlTqddwkU}Q0<vSL2%m}ma=g_L;r5F4qBf?tg$HtHGZ45
z2V|ME>+`AGFckd$ym(n}yqe(?#|Xr;@O_QqTR<i(*ibLNO}9dh{HNw8S=RDo46{8I
zw6bD3?Nb{6al(sO8)9VpOIfodK~3f{i^dZaVE}hU>Q|r~wjE)^Ig2A0oE%f*-TRzj
zMWwJFE@<!On&!y=ghw#=ib|kK_^|rZp}ARhy)=#^Bh91Ixhtl`?J;R6a()^qNGskN
ztF|p1moCkc6)O{Xsx?(c;L~ZaHr(z}PpUKH(NXjt>Sovp@DL>=b<9o%lSi}APG)A<
zC1ssk&%{piulDkS85zrwly=f(Gly4vbNb<ISjl+sfvH*Wxtx;DqGSb~|Ggob2UrAi
zqTr)P=7em*cgftskOln7s>1QOExX;@xGCMjy$x~Iws?<jrn@b=Q6ztX;Ic9U&fKq4
z8U>o(U^{GfF#eHLVHo{{+p>_(h98Emlm6@%f8NB5^Z|L*T2vSf$g&C6O$go9n49jM
zQL-B`byZ;48D+?;30HNc@3tuvy%vgm&#2_pA5RG3`oND}nAfF7h)j2H_(ip8Ss(eg
zs?GOp#WPQlDvgJdQ{=mh%&GW&*Lp2kx}7PaR8ZH`l8azQ!|x;b!q-qO_nco~8QaX=
zU9Li6_cFWfz@nL*Udgba6~cr^hBql=E@2yRiW`#>ndbr8KJU5&d&H^i$g~}D(ap7^
zYQc>;!V(SdVC=y0c_;DjLc*6M=hzkz>!~uZTmU|F%VyO4)Bp+Sfftl-%)VF+k8o%R
z^4z&BG0_d|Jj?%>&ssnV5;13e{H<faM>aIf5?=Mj6w}M;A~YW1;^y&k$yvnXKPlF<
zKXf!n>U{EJvEVPyAdpmGw&=IYn>r+cPwZ`MlHT0d887+Z*3KFPueY+~UI?h3sfoB~
z71!YJ5&LGax~!GAm^J?jVO`$XlrEV^EwJ7uXefdiFN_1Vkgs)H7w!}G$j?&(TxD*6
zu3Guppe>SH2`#jVd~Kr4YOZyNr^;kBce1Hihcf1gk@23oVuTgEFt3t>c^?0GAs`Nl
zf<4w&)fZ-p>fm^Lj#@}8deGI0K%+l{Uga~M+V_Ry8a`QH6QOdXFtc24tQ&;DQdPwq
zWq8LMs7W%Ut~!hx$T2gDTK90MU~uPa?IFq{bTgQj94e{`sprs7o&pi-NO&$6xPTwU
zPktW6%j34IeYubFr?zH9C=40<v6}7WrzS6J(l?z!PDR>Sa2uo0(owg5lE*q}!%ma~
z+4jO^vb>No&rnn--!3vZH5SIiLB}$hwbh?!mROa*Ea*pl>UN-Y$?J@#to|gUQ}-v~
zrE<5lV*d8X3_?dKUGaV^Z5cli;NCIfs6@bt&@}tTMAe|6ppnOAI_GM%O8?CFGW>p`
z6c$*%3TUoIQy$tFe#LfB#!zB{oA4XAhw7LwQsIyvy9Dt<FYL%oZ`Ar8llCW&I#EPY
zQ7U#>3}%2k4jU4zkdMnksy>T}%pFT?8CiD8rNs2?Hdn1HcwJ)z3#c*WBR{q5DbsQ1
zzv>^p8hNp*RM{h9pcpa!@G(d(RRVYt3l-I3pYh0UT(sBcXM4BM11Sj&qj=fhOg6oz
z;L8A}!L9%(CAxuWvruc&R3Cm3_z-|;Pon%^G?ua}v<6iSMn1{cHTb}6izV1WTa!sF
zrM_UOH83(M2_cj2YvlZUwBv&0#8PKmh~N7Hscf4MxjLzY#{pf_@3rE}^`>6HGUazn
zDNheJR#C-=GfFDRg}crrIV<&7uwE2PyfMw|s?AlGg#auu#l){LM3u0}w%OD=26->$
z{a!K0SfU2oY<$iTa_GZkkf<m}u2(J-DfhSLr=fYZ3v*X`A;>(I^LQTMPLGFrl*|;v
zOjk0q^>ELF;_gGPT^O^x;a>QIeVs`1r{mOJts`wA>t^v!-fr1_6k*Pm#*<J@hmIbH
zh#<TEDN8jo2>U*&;r8WvQJ~$<`;m`l_M(#?jmCj=if@NQ(8{grZTlCn2;Yo|I!t{p
zZuZCW+lTUfk7j&}wN=@J0qrEA`8;kd(iGbH>kcj7PR@GsW2m(}`B%Y%rRuyGe8G})
z{)awbh0*k~kPKL(rmnyux}~5YxYM-+CLFKxUB|c8hDBfj9s^F{vt6cdnp0~-*diY<
zjkJ@Pq2y1G*1sHjhBIoY?hPPRBS6e<k)j-{N}WA-Ld`d)hAY;eYKI}{m<u?(kCB}P
zl}Si2%s3OBpzd$A3E-2u8zCqadaj$M$`IETPXs#(8|_zBjw~$0UM1<0?=z7t<2=8D
za~#<*rBzvM8Z%y1Z92i6v<Q|MwI(};lae}51`#3j;6aCfEl(qg-)2_d%&`MTNsj|(
zFqe$_S$dU=5TgoLmLu*!JyQK>RBMYp_o7iTZ8%dE9;HVV6F)R_ZHo=VMdu3yZ>&(<
zmf{{(*A$AkY^>HWjl4Vv0B)B*naO-w)htI@k&1u3K*M~-B2S@4tRH1(W5abBgQVE1
zjcnCYX>j+B%GRb|bCpe`v$r?gr6<hW+xw;mtjO=zE73MOSa}{G+Wc(wiMyZeLABYd
zT=P`8oOr4CQt4zLBOo$SCAz}-8S7=)TMyQLi@0m{*ayCB$==`SHj5;|MoUw$a1Ey6
zx6gN)cP>`t!Y`o3w33=!1+N~Gpkne#9<^v(GU$iF1^F%HzyO+@3cOhIYouQVo8L|i
zpfVNU1$YFJ*f&RNJ>hPsB-+^o<!yW1IAGv6d|bG$YvBZ7E1rX)Htj9I<4Bs7!2tHM
zmmW>zUn)`)!;l5M8c6AFg@;PAqu?B=-cRKjVFd%`1f;RDI3u?7cyS~!RB#(}_PQzC
zaPS?|h~u*syzQcMJIut&2J$P;0a3IAB=FtjvAb@TzGmAehez1Jk^$M{`g3=3?U`Kb
z<+1Sy4A%Kx<hX5`#SLK^8xXlsmB<K|$Kj1j^^Ask(YBRz+t2be#Koa@>e?J5zI;^y
zMy0z9O}hnI%64ITv<LBg9d$&yppS&QUc+k6_zBqb!^u<jTAzH2^!#IoD}Y?-inX(A
z?C607#J+?kr~7ms<E8q@H`}XG3uGRpA@Wr&CiCEe(1KP^;X*+1l+!4Jkgoh|Ci~ua
z&EgG|q0>pMmQcZu&)?3I;0lVaI-~M|T~C!6`lv>^=1*6&OqXVth>EYo_wYM5f67yc
z!{-v#!ajG|lV@g`UA)hjbptaii}PX`lZn1)`|#aZJ2MjL_xih3q`2-Y#Lw;ulB9h#
z+Fc+Wz-oOz=f@qsi-M7sicJd)FjW9p=OvTI0@&rbiuJKq#tTOwAwQrP{I09)|Fsyj
zit{~c`CV5jAM!nes<7u_AksStm`=iQ&V%T5X!rcs&#+scAul^Xo68%7eFR2Rqk#>u
zI?;E`tqNR{`spGc_g)?AYOjA-#l<RrF}daN`!_5A8$tgQ;jza?4Cix}$t+T8eS>VJ
zr)X2?iWasnRXw{a-1GUq#*bq<t(tJDP{f4JhCx$V7W@928aG`J5l;aCF~bv%P!WbR
z3ac*|8a@6OeJG)#?-1zx)8#swC%76N@HS}c-vLuM{Ia&xymX%+99RA{k5MQx@jp$O
zbi7{4C^^?>O_XN*v|0nlRt7NT%d$)zHADGRO*4S;W}KBhACN3hVg^UQren>aOeg4W
zhY#$bC2OOY+l~nUQ6P^y-du@Di6#xMM-axzuw?)vy~dwICi$z6<GQTQJZ$YH;nDp(
zLsNVg4mFQN9g#|2fxoYyL>~WK?r60E*-G@+2~)Yz1wP;F{a+_cjbGu)Cw~u+DJU%4
z6@J<8R+;o|{cS0F67R6X%*h?)CI+I=q$$Dl?8c3N9`PvC>ZY_s1lTVhNHrVK3YX$r
zAb|{Zrj4cR?Ea#aK2jPJZtv5I9sp}8gC#`m><HsN21WEfKz$Wm?dHFsSk!*nJj1Z<
zgKvI;)Kae{(%@;SF7U7L9Qn;gic~48@lYVue2j*}GlK#c<#gp-m0D2$nPl-c7^C&y
zEm_16ZVT|a^ugAm6rOmB^v`BY)r3YlFo_Y2G+D3jvAJmEX8Tci>S|=O=myxB`UN{D
zimP2KVK4<B!Z9#)4(8gEts_af<{rjOHPHWOP)B~78Eig`#~t0BdUFz@AG2;mSn4lf
z#v>C^{3!(U#?7NUecs4*yan<d-v7vVuwVIa<vYl?(&Z{P1j+kuC=%==soG&cz7ze2
z5fAdul`>a$d&F*$KCAtAXpZlY<KH|D>S_$d6d_y1E<gnojI?0>-_muh{W%q-5W%TL
z9oSQ8z<E}S_oW8@^C(BHfigDsI3K3i=fgDY9jM=>mwvkyhZv=vj_}<|e?mE$pgjOJ
z8`bzQA(8nrzM9);zW=5j_zaarHV=3+!Q3J7$2OeJ#_$^kkG_10J-@POh*eY2FHK~S
zuNdoQH|%sx!Jq}@z$`>kvB^c^F~&N`mHL3K<ws&up_EZnq|^1MVw=~R^y^@Cx~64k
z9PE5-*OXf4XN*T4mpJo%vwHuG?z1#8K$nOM>Bw0>Q=@sS0X>O3z%W@)VMFy{Z_uO(
z=DFradb8UHc)nqG0os3b<}~!yE16UVE7r?Ls@Iy_U0~7YHG!IuI$Sl2hwzqk7p=ZW
zy~fNB>Vw5iIbPBq+y}6klZ$_8)D${sfU*DO3Jyb=#Iv)y>{1YNZCsLz^H);(e}n0G
z9S`tv@=jqtj?uCTtm3L{`s=}hs{SGKfgBjy`>n188XlPn30+3HJcAp7)ItaQC=&x#
z^aR650jn1ueh??+30RAiMEq}qp$**cz6Ht2Szj<3VeVh9Ko1w8=YOgnzwe;{&(F#E
zRqH6^@qMcsm>m6C0NJVY*Ps6Xb<d~?*~qxe)F~EINLUyIAUi5c*AU{eMpY5T%-R3#
zPy=^+c@B&7q{k2F%~_UAI`QQWRhPE4uawM@i9t5TQ%jp2c!F~8V6d^VS6NFn8U(u&
zXD=L2<N&RpZ21$7Tcjk%0Hl_A&q7=JfOuxy_bzwYXIp&<j5uz)Q_BmXMA7svxX&w$
zBX$907f(ZG%fQ?`o^-=4lz&uPmyL8%5GK)m``rl<vD3{H$J*Kz2gQzht<|R@=$A;W
zwlLww?lwCRsuv`0uTLZuPj@x)GUl+~pcg)K<aZL}`%pGhYc6^x`u=^WOOLc#^4fI_
zMxz!FK=<E#)Ib$hENwhE#Uk?!i<)=YVr0&b8nBgk6vyGIw*6`==~nPdfm(O=+O+j3
zb50!+ipiT1ZgWI~Q}i=B<p9pEhnu8Kxu)z>uljr3el6|A+X}BmZ@|8GSr5WD85MdU
z0s@VZt=Mub_62PtA4QXI7ZnDS5V?5bS0cppPRBAY?#`3$Q)T>7qdBNiCv`zf2~2b0
z+wGJW;J`6qyoz5)<QNqnC)eL0A`zj%yx!~;5xHB#`ijF<Q2qi0_+WdlKKYr<Yg{gc
z9cJxr_`u)oK4>Q&2$;XvTzWkN0y}^O<18Iui`dP+m}$<?YscZ>Hl`)<Xtkv;iYUW4
zMEA&Y^YxiGc&=m%EFO<)JMg89=``}^QR#e)2riUN-f+>Vnf*SsCG+sNx0frjqXmk)
z)(a$}fqX;RZ~CJ`Is;<pEKf55BI8g5xfV+IP*Fuilzg+7a9=D#@qQ!t3fhaM?2fks
z_4!<^kF7!`zY+d(-6;RTM=jWn8ydW*!ti))<IJ6!g3?lx`Lb{)Q(>_OLZo0^B<1MO
zcl|4<JcW(g!SK;Q4RrG-c<!4&0xxUyex{uc?%J~7LY5QXdjiVS!3g28qr)?S-~#1h
z4r{cdqoa{AMWSv-RRFrA$#wrhR_bpgr2wyBn)MG&>A~^PtA~-KQAJzmw}!)xNIrRD
z1xPOdNO}f@!E_HsqA~uYp6?q!+wdtVPSyIR{#s}G`4I6kJ)oQV$At5_Z*b-IPyW~b
zogAf>k3gbg7~O=<d5C_)rZwFrQ%(I?Idv#A^pf*XB5a?ABfRLo`S5kcS6yyW?FLUH
z+q7dWT2*6)wM}Wq-`B&bIV-;kVN(>!3=RyoeB<M><7GXv%40F;p>Z5e-ze}E$!cx*
z+1p_;9ffSyUX4kx<IW+>J2Rm@etfw#R$i>VQ-wyg;LdZP(0hN~Ob;StJ#)yr)byBA
zphF^^E3&7Ly}rPAT}|@!F<}E11}~5<p74BC4JdH5lzIZFyO6m!zqT%fGH6^Umo>e6
zt|`X?h0dk&%q%9@G;|&k5@Sbm{ll_zG2CFUu2avq)s$71O-2EF&MFa}=o%dyq?hnq
z8WXbpuZsA8jqdxiO{i?BnbvQ?gfF&UT;A67Gmonzq~Npbw$y7$9x$&?Mp65%PCXB6
zug9GXMg;C*ZK@EfxC$@<!>6yWr|7_!t$1cW^ui>7xwJTuAP5SU$p+15aY5a6-{v4Z
zQk<M4CamOyPTXR7{tq+!dgyg5oP|lFek%C+xYN9zY3r}JyT2`aOiD)9+)n9RX>~~#
zge&X;U@@{}-;U+VsfJrKewe{-B%~pCFOud=`uuhDFq+Mn6?bdw*}NkY+LJiO-0uR^
zGQLS&03@28plY{<!H#moj7p*Kxgo+j59t_{#AwQgGZ->W-2=*i9FQSWJve%P1Gi_e
z!Vg171ib`;uiBf401|u-Bk9H-tjkNn<?y4azYlM3yL|m$=HUIA-u_U2?gnKIwrS^(
zuRBMptAe?QAGYDKW!I0>;1(vX-E^Qsia;Q8j@@9ssHn>){2v*WVhq++0j!&Hsd^n1
z#QDnRa5RT0F0td~<1y2@m!&G(zY3JG?)_E&jd<Di`#YU?kYDcK&A??&iFMakcY*;_
ztXY-cZBrC@Kya@X0kd}CpIuWn#d2CK0HnfI<;{Rv0-YBA{L|1^@o!L}RzrKF)~c8R
z%^m@#=;(R(U9FR_i?eAQ_E$XGE-=|2v2y>3vZIqxgL69S>a^v-_Q0n9yxeHo%iaAE
zM#!y`(<63FhPMqx^+f=mPWcgpHq_4ed~ah${`(1+1AJ6!|CVo)rHC`f>K9iRSxGrv
zPwUMNQwOEw<b38o=5b%-7A{QhH?-_IITW8ag0})I0kNd6x0&!bBl*Uf`a2pTJs%6(
zqd`C{;4aqHSL~YCz&fV(&ZRK*W4=O3fR%Z_RzlNNU)<rlU|hYGxp&47EM{MDH9$2>
zk{5Me6cc@n3Q_bfN<B~c!P&(LE8oXW^&fY2t+i7*U(<#1jPD&75zgreiL@MGE0TU!
z4wlci>-M4^u~d5gK@W_058$+;@7kjDR`!CZGeq0`3-4ipkeCiw5T|!orkLjWos$Iz
z(i<Euix<F`<<fDNYR_q8fs(Jw8EnVFxT-fV<*ib!<r;{$uqZPi^41$+aWXTp-Dh#1
z5Kvgu9`3)ZJ=<e@2V(Xu-fswo*N#>lADVDcsfJV+|GacetGTeXlv<!)Ak7V3i*p!D
zL1f(37spi0z=8o_k=t8l9pvC%A_EB_%N52l&(Q%RpIT~X_?vzcigX~%B-03w?rc>m
zinaV*zdhT(8Ni=?Oo-L*YxwTi1JVO-F}#Zyqmg)}c&my7Js{-oGx%LhcjMc;IUX!(
zz5hfi_#u?xP%pp*0mE;8jk2--85XVS8q)*wo8rO-6?gM6q#AW$aWClHtKKsL)@3aJ
z9AL0($!qh3e@Z-@r`Ar|B<$w!$3I*SK5IX@cXVr&IkfPNy~vJ7n<%O+IkQy3y6~Gy
z1=#Nhr~(~8$5hz3nBAs@_Q{fE>$)#!^!c?zs;wyt)L~Ty-@T<cN1$p$lJ^?aWZ#4T
z1E2>wyYpJ$x&s&6OV~U=ihpE=gHiIrxA4zUEM!al=m*C$>}*_fH3mhf_aZ3zIUO|R
z-y{QIeNP7X#_UXayd1JT@)-W~wtd&VGviIdwrmZauu~gy63#Ai@TU6ILXwaQeJALM
zf>@8b#G=in?eS^ZEhGJt8w_Jp0#bC0{K!M9Y*5IcwUkeuVqEF_J|J?-k=UvGwm8f7
zQFHLKF~|B%XB3_FjIY*4ll6Sr(SzEEsUx;ux{9%YysbHZcmYQ~Ov051bLo%7tqt@D
z2fK9YRNk`d@i0&`(lF?^7G`SBLganm5qxKj6~7ZdU=b?*ZO#As{;1H+E!GtdqA`aI
z8H|y@L)6d%qm`hV=nc4<+*7}wRpTttcc3#_4I2`e&J(>~ntecJDg=Z+{_URsufmX;
zP2wL+7_+tZ$d{LwW)>Dwiewr7_OcS7s`9I#-;2PF{)c{fN!CWr)mDFZ52ypk*uB`N
z=28dpg5>}t=}Vl6hq2>B!287HWVYcP4v_A8xZDm2$lV~LSgpTnEg#Ub3Jj<2-og-*
zHkt8%2+xRg`h@b{iM<5|e`cy_?b@ue4*`4=rwwU>(>C9k>y$MBSJuw5eOzyAD}&<M
z=-83^rh?D)ddt2J0TBrn&c2}=fKBSMNv%-_h_cMqtjK*%P5@<^u%P^Yfj}fU=s_8#
zb~*)#4eI1R*6CZ=*vKl-F36jXXh&I<zcOwk8_8D2I^7<XRwNIJV_He-?G?GKV7Irk
z>ul)#l>lDNUlV*E=puUkJnk$*<DDKlY9PAz{ydJGAOvf-+5z-@-&?Uce(T+uv;zaA
z=fKotrw!Hsc41`!2Jc)TYuQZK<4RCGsabJejE6@Oi5LObT~)x@y;C=_!*3=3-9(+V
za_&)y6{W#gR#5vhOaN}fhUG&-7h${kd?*M<a66I`h|KO{lcurUJJ*}8W*`p2bVKl}
z^Q^5E_KCfu>|a~SGK?YLwn>-FaxDDMNH$Hl%;8hV^SC8)%P%%AqXvL5Pb%y9!{j5C
z_}mWGxxxbZGUkyyPlWqJarRqo#8Q{d0wFf%M?qycgPpUY#<Y=P4)DUV?P;>X_@B?6
zFrO(aFYd1T5+D^e52m1^c2IVlZjX<aopx8_MBoZ@=l&`P?qrR0WhA~cwr|4Q4hgkH
z4RyLsDe!dBw6QRA)#bJAoi2iM#uZ)M9eW4G(?JpK?;k~-7AQ+^-M7>O|2H~KI*)Q~
zX>n$@twK-Ib@n~){X^>+jb7Qavh`NlZ-*yew7vN4SI#x+n;ruD7`53RkjOxmbz^os
zb}bgiGjPtn!Ny5>=l-(o@#0VGs_6Hc6dCy!&-^QH2p}dj;u%JVy1kYgY?fI$FC|Oo
zS6z(VEO)2$_6EOB;IAzXlN7(yr+;90R*n`HmK%I1RGBq6IQFvWXWE|*96Vm@JoH`G
z2jm|;k1v_6si1**-#~;bBL)5KZ1w2G<vCK!;Y?A1xx8G<Dc|Ovboc3rOpy9=qOx7G
zHkLhQD+?2cY_qC20ub}6XU~bVYuLqT4$nk79hAT|zJpCQUEa1-hUjg)nfOmNn&5y$
z-nF43n7yzWP`=R~u3whiUw@uoWt`jFGb@x$;?e!mYC9Es>XKX~PJc1Go?DKIJXw}~
zeU_>!hrTtMpIiP22>N)yq})x#xCepnE@+trKh>TUBWJbYeBi63r)Gi@iG<$)g$6|u
z6CSm=Jgc+)4Q8)T5RWqtczNbdb0pXO+x15Hl3GV#<o5uCZlF?hn;$oAygXiC9KYe5
zv=#hQ2%Th`bv8cUYkk4NDtp+<QF?eCOoPc*<osB>E-)>9U$AB1PcLG!IyLW`946T{
zCZ_}IT|YbJ_<JrOM9Jk2+_=t(hT7t*Qf5R6=yi`X|6aN<OkD%H#@r=$KR<iMeNQyN
z;L2M68sjh)0`t|e^b>|op-K=C$ygG8`c?MsRR{i=u0s1&6lL7Qtkm%!_|Bq%V+u;G
z-7lTlk&ainWriRf)HJ8E=h8LSXLrZ7{8Om;(PW;uL*k2e_Z?qIsUkoQI+!CBv9m{H
z+z|@}7w7FLp*uXwdrewxgF-)#9fUWJ6<ClzrM7ZjdN`f}v852w@$ylnw^;h}@*M;%
z*Ada`r}Ea;Bn|VmW_xSOX?@V*eYoX4NF{hF6QO;H>;9beERi`#9vH{h9z!rH!xC&R
zaNaodi(I@h$g4Tqv)*1l-BiWG@hH+)CDX|ZXd&;mRy^33+?c0F=Q2_v@u+o&VHUs9
z=ZxRMq1n!N={X)GDWcDyR3&t2<bJu5*x(wLNk3R%YzR=inur8}^`ko!)!Mv0=bQ>@
zwZiA&82RrgHu`V6_u#GheuDQd>?FeP&fz{u^b^&p9a7Wz%v>)fqNA{2Q=M+9H^MHW
z(>kJWv9M__N4~@WgNL<;OA5yEOhNJpiHYz`C;zzE{!Em+oDN{tP)OVn4W`51REv16
z#-IYmK#`N&o{<k_bxS=#4uV{J8o~P}!-?~@h`LuCQDrZ9t(W)RF<u+gME>5}TLX3X
zXLoZj8oe$VJ^!g1mx+KmTSY?!vg;LnF~SKKHW!x&>1l+e|EE$=q8`}s++9evnk|cZ
z)x+v)&qG{x`$yYS<;!UYQ3IKpy7Jvq^V4X^P;gQ~r<l(3F?j{qgLTGi0Xyek;Kcl$
z>PK>!w#LodJ#WajFxU8e$EV7$4@QTQ%oQ*yU|jvU3t%?Hl+SYE4*V$igdbRa5na;<
zM?_9m>%2P-U+LyL*f^34(sy`SNc@@Z-MCe`0yfT5l>{L-uDMQN=IjXJxJXPw);~_z
z=y6e@y&zpTD5Bt{47wa_6pPNnw!EeL@N6`(1>x!zIVGW{`?mblfEZ$vH*tqNcsA1T
zCmb{z+WjDdPG{HJiDU=wXzKnO3y&?_TSaO-z*x~^p{kJtdd%_ptj{qtz2D>0S@YwV
zSCj>zXO8T-dGx!1>IZK+88dTs7Z!==?6$U~Zj?s;A`|UicGx`9F5@rEo5nagGxD=l
zxkpo|I0$?7HOZdt1%O_HdR=plzuWqRnR&$BQd#%XUaSm9Qrw=BZsDHO276bbLZHz5
zQ?lEUGDSJw-P-oX__@Bam!md-R>TNvN`$lv+AUy=4gqgRY&{QpXr1-}-qYQ@ADvU|
zzu!5fTdZ<W6^UBsfC@DTLo&QA4;i2MYoKDNbw??^`H>QQb-9t|3pLb2{sV?x5#pnx
z!UX^^Y?im`x=9|1e>x%gLb--`yp&p7fB2{P^d;j<AxI!K6+nm*HN3;KI?3ACcv1VJ
zFc%FEdYr|IjJF@$2z>;#Fv+P1+Ic$GXGeq1RD6AHLE}!l^qAmGv7)>lyBtVCF*1}?
zsPalMFM1E@NsaOXfBS6#+>6W%9R7~$n{Z7l$?*Y1w<!e%gPeUMl74mnjKpr|SU{x)
zNC`(G2Fm#b#3HfNNcD|%5tE;H9KYkn7t_-1!h50T+gJv3V(2@pS*bkiRZwzs@n#hl
z31fC@p%@*xhbs)<IX?7X7og5;9)WCOfOrxhN>jrzG@Koq$G|^30hR<zbD0+CW*es*
zMb<HZZ_Gldb3o%e@9OBtNwux6!!rFIbs#D8%H5psfJ}%cPAA{*H_7T_e*VthK2O10
zs4STl73G#{;mgO&X-4N$-wL&2v|7HSM!}*j4^!dpoX(Ea<jF3!)BO)mE`n*a*0flt
z&Gc84YLl^pId*n>A>1|a2;)9r_v9nGy$Us-%5_SXT#&5Y8>xLorBe0TzfB9#|5#E&
z?z2Jny%3?0r9X=;mtP<wo9X?H#Upr~c<wV#*ve10ITV2ukJ49BAW_yOj_nP2F?==a
zfcW#B-CmCYu`+D!B+`9jawP0KVBMv~ZNE1qW4AUuSh8cYbjQ)AqcmJ6uGI#Q$AVed
zaGj{sYB;F#9w5@Mkb(GfQJoF^wMTbzmbXR;l^WDl3T`t<GxKJyttqrXQPymReC4J9
zalxG5UdM0vbux#SK&@YVyyeA`%P`GOOYn+g<2p5ZR9PVfpnk9r>1OihkJ`m_C6K<3
zL>zd}FJ)x=nO*K|q42whxFhRDsa>Hi9cQVC((&Oo{d)!{fh1W!qmR4M?(HOx6p8WQ
zRUj<yYHunkCv9Fl{*^|RAHPgo4>S42_3Lz`ui;xoPFAZ&OQAlU0~$e+I=<W2y>#}X
zSEu6=iVBX1so}PgNKo71B>{H6<Nva_qgPfj(EjR$^sAo{f?0mq%L}CR9Q*?5onvoa
z3c(8Y#{|i+-L*D_VKCc~;UwHDM3N22bqs<BDk&X|E)ZO3uaM~U%q-%i#yAjF6$s<#
z0-{tb%lS)0^E8rFTW_)GgJDN(4kw|r>E_=Vs>iO$(d6TG_5KvPPUMbQ_6yCcJ)P_>
zVt`@Hy{7H4o#AMnTP(wlne>PsrCTKxp@(d5vEgQ|Z@P!YY>sTHhi0Dw9dc!@d-AJ<
zmLbG(6>P)7(_91pxz%RJNs?}dD6cdp%9GtG9Qrxzpa?wi=7kUm5#MY6x!eyd_6+*&
z;sVaD@0Z&<zcXofCT+n)u^bxHojCxR^G9dr&aS?;Dy3tQ+yA9__xDsA<;%6NOF|rq
zUjQTQf#>+^7BJOK;l~}p2s{H*YA=0hA6RR6h0b1=7pRw_+#x)!20uFWe<$#?!IUqA
z`Nl_G)#6fz*Z&Bl2!;O+JIn#$vsI}C)RoO(Wbns=_b>neAl*~*MboU$8>gg_y*U^U
zur!z;%rk%f^E7ubxKQKRqmj@-;G{_nsQkYOx6yZh3S!T?v>khlHI_1f&vw=nX-tzW
zi^o#9n`K`*xLJ=%*D@Lc&|=AI6+Sl`Ub(8$Ga<Y&Uho63+Y<BHL2yR~KXuD*ss2UX
zG9pi_;^O!OGN4m#-)H->iruZSbQ*c<pcOJ%W};j+8cnLcBb8YICx;1T)V9s;v1}?=
zm`JgGvz`KBW|L<OsKf1Ftc!(rpbAGt=4(~y4TIHhmLVQRY?HeedhtCm;hnOK{&Ztn
z#-AopB_La9C}cU^JUpr#nLbzK5Ctb;=zIK)lYyTFZBK8g@vO?B&BjX;<vfryeRsGM
zBGcj|{cE-b(yO5D*PyWIaaoF`vh<P;{_eUuhkI}<y>-)5L9%?stCVtH<C`kYnn6p_
zwSCbma``jGSl&wDYF`~4rHfiL>#{-f6xM%XdsxJn*7ouU#Xdm6<QW#>#vN5Bhl@)8
zvdZL7mRiLd-F?T;rf_4AgTJ&t3QbAxwL)o<F_svZMZ0^)=XC)d>v?Fs!`03X%gC4l
z7gM&{Y4EWC@XPxhOHVZ>XWUrcG^$y%$wHp)sibss@6Ryf5omU7Jz65v!=^>_nbM1H
za`?v{cpatldAr(Azk<~yX3om}0><vM8h`b`7jQNF9S?joaZkg=A2~yjZ*u0r@Xoe_
zxe)Lg2TU{7j_YUXipc4d_!s(%GdN6UDt$><xm>5p-ZV)|2A$Un1Oj4f`N##7ZU0?P
zd1moQtFh<X=i76zT&7d5h0fO)KxwgBtq8x<Ha#!Wb~PKj6M*A_C(t@VeIUGqXOXB>
zd{arw19i(j;_3&p<ulYONH4x<XA>!ZAg?z%f)xy9)2{1}s@B)PYmu-k2(R9IgN||G
zl&6Vi-B*I#aq>1;?WUd{V?IwM1FO)Ea_X+|e3|Z@p|2jo?hwlHSmB^CdH?&7FZ^;5
zwW7+x^yj;!JP2KldmXTA8md?3D=OV#`+}f2k4qq+gAitGWx-Was0PNuUsLSetZy*j
z9ayJU{W$(;W_vtpvQA@OBS~W(C{VmjKelBX>gj<N0dTEP#B@d1WkB1Vpd%L+{YQ!j
z%it*s%6J@{!yzK4q8rf5-VbL4XC!O4C>><&=gqvqTYDsmJ{BvcBKMf3%TYZbq-BL_
zV_5j4Uhd=eNcy+gTg+ijsGg5K4~*CH%U_5?>R)?#skN-VWXar{#9o~f0W}6}RCUU7
z673u!%5UBNOK@A3rZ#$;e+IW@ehpI4ZUHlsu^@YPxYbia509(wE_)oR^+99o>7R0^
zs&_QB|C&3cE;^w2psKW|3Ia}TpWroEA+x{m^)6k`_8>TO$aa@6lIDb6Kcmu|kSWu;
zy21cSvj={#&3+Tgd^X1ZuI_o&WMr_YeBr6dq*4*2?$0DP-$8HUyxn;9?L3j*_Df9H
z%b3rEpXbk=_USD5sw_dq$XxbE?3v4Ywq@!iKE@wyHIiPwN(Fh>33g|Fc#4AW*yB%v
zkyJM?kaNDV_hj2inB8>xjo^{IE~?^lcAoC(%%p2UL;*G5P1onW*&GnB3&eLZO6Bjs
zzTe&j8y3FKMZmp}GRgbMyYI-skE3eOa}Mt;Ka6%`01=yDYG6X|c0W@#Jo}chNU_54
zRUNZQcs1Nz@LGXF%G@qn4j;jNjtA3+oE&w8^O3n0=v}2o+k0DA0VghA7sF4b34-I5
z^%^L*X}dUAHeHWu=1olNQ$=fRb5t`OWO97gnM#NiD{r3#zA^Y1kciI7w{7$CwlA&g
zsZ*tlBF8{Zpa9!#uX!!ao~E*F$`_UGyP^c>i?@{p8rpT{_e3@UI(c)4^<%dLaV!a6
z%Ey@`08=1??W%>fvs1`b5XL69i?+4VMC<ONx_c}y-lt|AAgE=fruumG4)bPo-9VzO
znswGLY+Cp%8ftc$7ezRH$bVUI+OSw{7V~!dtVZS=H%~>>lg_oV<%+WL6wQv2+ueKC
z^#hmg1P<>+J=@IbmKF#2zEkw`mh-bu9LI;(IUlbuIX2?Qdt>OmttbQZ)~Bu$GjZ=7
zM2iLCC$F27!oHCz=2c$J%*q=AOUNWk&^ERHSqcBAs{)4)L^<)(u(G-7J+c#UQ;r0Y
zD21{$k+@ZbaUTm*^4Fp3Qt#n0avU#@a?XhmvfnMPkY{GtvK1Ockmnlrpkm&y^3~jm
zA3MwBuJu`g5-La_gOAsHGTWb-44iY_eP!~hOB0Q&$g=EUlgWPjIPl)!OClD{yB2|f
z580hxw#GJ1w7EbfXHjV)>yDOrg&J#xMH-r#C`ius>vhJn#p3BgpH+sMf+^?80aKF*
zLld215R2NL>NIC^fT}9!COyN-SmR9NpnPTWs00(EcBPQAp+=J9ZGZgfYh6Pw&@pF*
zy@<wpwd<JD5jrzRo_<eRi}jb$pDn5gPDCRVotfoA=E8-~sI86r9c*8}uaPy_mJXR=
zv5a2EL0YwRmJXAkV?9W$I?yb2-=RKr=$9Uv3}{oi7CrY?`NFDpJ@S~vra|*4PjwKq
zj-6>%NbCgl=y6`fwa_94tc|nu4A=LQy%IBFe4ms$v_<en_(%m_gm~}pB8<@o2JBr8
zQX0n-X^v`@Noll1w(ZxC8??GSdy|i|WO|St@gXh@q;g|a%L_<4x8r7`F{Q<9gFXd|
zQ@GUFc6(#aB*&zBJYF8^2Ih4ialAh(s8kdQMcAq;B%b@OI!8@jDh$V-?sQd)0-0Ze
zS|5s7!bJ!Av}7|V*(M_K&f**<N=4pDX<QOo_E<oZFB<`wUoU$nvE83*j|@4*WPK&X
z`g$BaV;}0Y-g;VQ+as{<;zaj3sum>#9J>+MF!cZ{HhXnrFGZIU+9(Ovzk}^O>m0*^
z-Yhrb3~D05ff*lSLUn;2kyOpe03^3iJIr{2<#<nA<eW`^0RH`;6lf8Xhc8frEl2?m
zwUz-w!s@|skd1cgB?pOmDlzg*$`_PCTYS%)=*S?hF8bH8++UQ^=HqL=n-CP*Rx%OD
zAlWc%cWNjvJJTWcws6F?iGSkO(t3KgD-eYr6FPSbsTjq6JjqjP=tM_D6!v7Q!iruX
z40g+5+?xXbV7<aABw6jPmxa)_<E1i*;CT3+FZcUG&83S+V=U(#pVvx92IEGtDpdu)
zScXX@NtBC+lC;<sUH3m_wz)Ulm~kMAeVyUWWXM#ei(hssK<0E4G+5=`K$V8XQ{uH-
zYL-$m|NUJyqIklofi<eS!7Yr~)4M(at0{;DGjshG&IV;x?;h?7_2c|#Mg)Tb!@ng3
zfA)R*`#&%k;A($tb>fqP?^Y`ab3^>t$E_go2oucpBn|S-9}mLUf^_|Ha3A*Jd*Fk?
z{qdg|kbizY7_i@-3U~-N6b~5s9}lI2dDQsFRtV3-tNVF#g>wg^`MCiGriJ*Q`jrBR
zJttyypU71ADJg9f^In;<7-w*p*}s)Ot8}8WbjW01q~CL0t}$vg5CUoSZzpzr>Rq2{
zC~Y-97c%Au`G3s4c{H1A+xM@nvb9xhRTV{d6*adMMMGyZt$Eg(XDWsgv+7`M&2!9Z
z9)lPXs;DV32O+dd5HUprF}zpz-o5Yrd+z&ve$Vr~@A|D@{<D^>T-SM?*LfYs@%?;{
zQ*RrtxmPO8^?k|`#P3)^<@$BWCS1SKv_l!U`?Rc(Z(KrSj9O{~+KwMtKVr3g%$5+o
z?g5_)tA}81r`jg2ZkV%;Pm&@mM)X6QP|x}*s$6n~a$4R@fEBb_ruh_#%9z3!ubKB{
zA@EFRe$)8JaGJcL4f<x8f@3p$Lb|l2Rf~<SHc)4i(G#IgmrS~xM$O>NZI$~uicIH3
z!&7!ovn4k8C5Yv^QFwn{W5eBZG>GL_y{D<d3=`#&TZ<pIv*|q&BcH9o8AmtYe0F)b
ztTr*;Rq$mm!9r?{`DCP+GM~%P2ER?L@7S)t8GE&1i)A?1O~q8Xr-KaC^%-0uLfwG%
zPC&a{=T>}j^k{PmSf{KOtf3nJtQTH$drd0=vz-{@0(yEYH5XSFC({|EHLEP{b3!$Y
z-{hgI{l+T$N;Ah)dm;LRb)DiTt!BDo)|GKn4}%FODzsbou4ANOL~ScnFdW*9|6H>J
zZEuC#T|ZP`V!JuiAg@%{G_y;*HReoaWn;-x`E`plJH6*=5XH%@nyO?`1@Y|Hq~_=O
znGb7s3ahj*)KSr>d8j2_t<F}TO{#6@x~I8)D~)t(f`=b-50g%<W{|_ixg)ZTPi<n;
z=3SrOhgk4XR)wvfmyg`H%jzE*=6q*7Pv0&zT|Bm~ld_2hH{F=LqWy>m=5#La%vQ&D
z5pJSMT%yCLHgkHJC(KjCs#`BJhP@v%L1}UsqW8+BRX=mHj11(~^=oG~QhtNVgB-`X
zvTwF^|ELHCGesqtDH-5b99QqPd^q>Tw7}blNk?+VUu-cUxy_|>tv(>HScc+gaqdn6
z@u5Wsfm?70q__~kF~xK1U9)%3<)z&(Xz0M`(vj98`d$y=p-<;=l<TSap<j<}>-<}q
z_0cbkq8dsMD@6<;e2!lh->^>!a6+v^N^n`vAF=5UUvb8MYd$NEn9SJY>kr`s32~;t
zSf3Uf!ox;g-Z5n6OWs@rTpGi$lqS;`kELB-872fv-9Jh^*yE);;F&B@)VE*PM6flp
z-m)XMtYvD7YER2hK>nD~r?nD@WOeK`h3jxm{fEpEkN@!k$&o7aA;%9>+u6&YYa21A
zK4YgVaFd_PRzWPd@}wDV-4U0m4me)QA&rVtA+jmC_!pzc#rst^_K*KH)j_?S$7V~q
zqocxKnrBvY%+U+-aZVr;XPUD!OP_MM)y#2}MB|2PY^vtpF^{g=i(m8KqZKfR+)5Gt
z=5z2vn@a{{of$VLa5N=eoJYk?m@kPdhXw|w7&x1*b<b)v$fJf{);3MvH2fk}B3Gpu
zdtngYj^nY`5e%cE>YHE1ZcI>}^L%4gGb?fRUr2T8;OkINn=0Nm=DcSAJ$NAP3);lw
zvp3q(CnY|7-y6xS0&&1T`!oDnrsZn1K_9)OPHQhu?;N+fKotk$iX-@5siOIW-%rH8
zVQ}-Aw7hL_f+eGK*AksnuTyL2ltp}SGTYh9=3dY!-BG6lF6>NBf$@t3K{410Yn<CY
zLxigyygt6x@QKIZELV1a+m#EDnCmvZd{sY09y5I~XIN%1o%UpC&i|Cr!Keob9q}^5
zmLJZ?5x+}Idu?J1BN!W{bgURio!S;g2>cx-hJ}&LU@Oeqoyf4y^7O1ZslP6rrXlM$
z8gq3ANo`l?^PKMZEwsy-D3Lg9R)y?dpPcXgaT(XHV#}|`Of~O`f5iJ+z|A#pij*0m
zGfS}}J$E7FK`$=YWa=`vsvCP%QkwTr&W@LuTkp=qw%dPCoIk7AIT6njt(;sVLn}3V
z`M(@3(0iPy(_~6hp8;Z*{^aR1Qx5qpV0Jl*+daBUWUKAfr>#Hdpw*|4n2v6vxGtPR
zjIizex}&R}DJYpKj6O`l7A+_xrFZ^Y5~VN6*n360=)&VE@1<Fefm>~zs~jw#>PR{M
z3I>xpoi%vo=zDgDb&SiKECEfdZ&q=XTd!2%M+SD!k*^oU=|dxbe}S5fAA?VA_=F&A
zrYMfa1SS^yF7D48@Rd8v$KSpu9AFva)Y<M}D!dii#(2?w+wVSIW^}|e9>P~7;|@x{
zT7_)$31OU)OrFj($y*%@RzMO%X-`5RYj5Mnb~l?e&c=CixJ%g&5t8p9f;>?Nx3YJI
zJ*Pa7c+v?9LCM`kYni!cTfnHmd)X87oRY!fwsMFWfK#5_)>ey&T7I#X56th#7)R08
zhTIc8*I{GiliKZ7g^&K1#^?j2{ur7D_H+smUIw=-M#C#aGdP>P9Hzd!-?PS<I8Qd}
zj+W@?V)e>K%B@xB`%-$h+2noW6NQf+iYd%!p4`OOJHJ^vT8TIyJ5})O7HmoSuI3+0
zrBK&aCm(S$auyhkR*a^S3FL3%w^B*iin^A7Y2U^YXE{^jveY-tN12FZ*^WAT_L0Jh
z1Me-{xh<6=Ru<jjcz^EYaejZ0=?N&cetAr7KMd-<V!DP<EHkckGX{O1o0BBqp<5mC
z0!9rU@26)(q$RZr<yLhJ+Cp5!Xc`*R<sg%XO+Y9tc4SnNh^GP`6GAZq4Si)>K}!E`
z-)WLw^V5`i93DIQ$Njg?2hq4`0i7@gTQTO^VZiBf-^RwI8sGtQPyD6qb5t%0mD^@6
z=6`<i!u}MEewl$X<#1-&g(+qV?ru*lH?4DRne-glEJ*WM-m>pEZ#F=ppcRNC-=4#0
zDv(aedhC3lV+?4g1Ghlqcofg}?=A5oY1~vSnZ!&Uq2-`UoYW>Bg<7ce>;ztCA=Pok
zw%{Vo;Y!JSue5T?zWSgi!5)j^lyc*ozmm)5m^lTX&ZKc8H(WgST;*3VNAp4B?OE<I
zesjNUSxHCx)*5v2{e!(?t)kfeEY2MhZsJsnaU3$!CGNw}HOTggl+sF*Rd1rYkbcG3
z1~dQYLSkZLorC0P(KBr(FJi$_%bs~cRJa!Iu8-5q{_ds_I8itN8YiK6mNE>|;-Df9
zs0W=c#|QX~U;QYw^xQJ&xxcMls9{ft=5&}`d~!gHmRrHs+4;t~Aj_h>Wbi)*vLCu=
z(zJ#>`A3Wx<T2Uo84+N5bB0d3Wj?kgM<q!wcaIEno6zEv_ZxQxDeyT`MwYafDVtfZ
zBfrP-YmT?N8ik2(??znWqjhvNgOp|Z=OkScH7!Q-YgVUpcHe4SUQkc9+bvGmTO8Je
zS&$vnBLE+No;u{wYjnCFP0;CZnsr^#=4q^v=C1ARg`#Xl)~APTf6V_?o{1J$Xf$B6
zNS8UNag0(+5iio|R+2lI4ZdyDoI2DEOOx6*R;$EV4W;_LieMG7p-xeDEFDHSL|cwF
z6lGt2Z)ozgd%y;nY73QJWNwxs9pR?Gc|~0YsmvVggksrEqKZdHs2{tWkfKZqpAce9
zLn8eyV;Rm^K~<a2%rtIQ>x`%W+NAEuvWRGXNqi#z@_QckT1QtGp%4!C__6rx0B)cA
z`P9Xy!G60_Fy)lPg3_7_YSUB+cYzwoxLCK?=|m0RZ`AGH3OiinW&hhA$u3R<_tyOP
zKiVAZM*x=>5;ff$?|)WmTiCFAaTUO73#^6w#b1O--SH2R@m@{0u<0L~^?tilMTLx4
z1#Ev)G(x!N<9v?}Zqt_>qsiv^M=Een)>ON=*5#9T27>y+>%mhn6_v5~yzerj-+^TR
z;k@nWCp}Yu+0eJzxZrh&orX{*1I&!;U57X3y5f0^z3O>)WrF(Uw^y;Y)a2@ZSh0DD
z8E`b_o+rTplQ~@n(gAj0m^DG~0AcsByhIxlJ)JbMc979@Lmzd8{q_!{?LKx|^1Vi9
zm*e0NZ{x-rJ4xs9uP)kECNk4ry&^`9`%J`1f(#w7+!X(|+<Ks5P}v#JBu1}o$UIB`
z0Z}^R&dbkqR>%yHYDf5`QB&e1HnxlGFsk+OLD<#;WNi^|j<+98mE5yfzQ}m+ydhQ6
zB}e?(v(-Z1>JTO_*&p@kcYU<X)uH9l6whI5uKXCckp4K_Q!!9VL(Y5cSw^blblF27
z8?{l>w(YB&Pwh9r)+0ph;0y28-9TFuYCNzL7(bEyz@W!^>a=zrQw@0(Gfc#%T4vs~
zuI?8^#mUuUft8Vc{vWB+?A?(fL)CUOi0NaVYg>~8zwcomGA-7Jo%W;<z3r&c8GDwa
zDp)kFI{jUY;(Sie;(R@>_JA+&0JaJ*$@K+oeQ;k;N{^tlS6PnKnsOkmM;l>{E$YS~
zEJ0bs82*6isHUFFZ<E1!y3X_<(^o~ZMAy6itZ8LcpuA7)<n*MG7=>5@?13)myycNk
zMS)wd1`<D>wF>E^c&_G95633Ba(7L@eGB7M1ycIw)2v>Q<20hRYIwEZ1IBmH^gY^N
zpkJSNB1HQO>gK$op8adRi<Sv}^Nt7l@_@|`$bENP`LLsX)2C@#;WdRsq-vsY)sdMJ
zpjcKP#UA^Wi?%+FmDc16LDB@NhW~$)O8z&p*T}1hOBudo9R$wUXr=D@W;sbz)2@fh
zdz9t*T0FmBC)di3D1BAxkVFc&$+nt{By+ST{1V%uWz3W}8e5+Z5m>6Je)SF<LryPk
zS%v&HNHlIfKq?+6H7=q0@qoRN5uvtT-*np|cuZ_vn6#(dVr*U>Jd*br+d^ccz7us(
z)sj-$*Qcx7-p{#A9-S=*UnDt}Vi&{hDqd_)#pt-!cWXKj9=-_u$|_O0w##!oWcb(b
z(6DkHd%j~(;Qb_Vu=!-mMPl8~M9njyk*6Pdrzp|uL)KIJ4NtcZWmO$;N<?<=XMKI<
zUn{@Nm-w-THHrN*1qlYW+Ad?Waa-lDUS-*eZ)-K>vzQ0XK#izpYh$>T0c+pFE(6$#
zcLmUfqe#Nqk~{4JK|g$=S@Yse#PyU0<t}Kl^0FbG;$#2Sh8!*6+j_-*_1<ItmG(f0
z@t)KR)7c%ywadeCY@8)N68KL>OP{sgi#y18CoY)Qs!h@0HV4b-1)nU)@`EF#RPVkt
zja9=1k>6tmjOCk~=;YSuDC<iSRw=~u#TP5?-(y?3PI)@J*GjlpDc?<2ccxxU0Y6{m
zUxTj;AL4JWb1^jsYWvbf-Y#c~C9Zl0WZ2$K{`%>;?yu|wsLezHciTZ5U{vhA`%#`Z
zefZLsqUqsyP0=|zdeD5<TbR&FIiq@CP-1xIgc_;uGGbMT@$xKPLu|C`gWcfpZHA{J
zT;Gv6;g~UZ{Y-vWA3KN!`xZG8E$Uig`noWN;exlxT9YWT3wlla(8q=KahhegU0xz%
zNPI8?=oOip;W(tlD7izp+GQ8g1d`$_2k(_Heq(-qyY1Nw*+zLMH-z1Hq|T>Do3bsy
zi$K^iVtFp|-AUP(bX(2d7&^^BNcZpO{KR@8qyZ?G5Q2*rn$}LXTsR79i=1&iP|^jj
zV!m8;6U4s#LW@z*$%91q9Y{4OTAcG)i@!BQdJk1-+aK&u%~m)eP{B0McKQxdAYPUJ
zkL47EZ10M394WngKqTLH7%QxIS)#;q`BOyt4=t;{Yi77Z4m_hX?iLN!AVxc<o2D+=
zcO*tN5)uxL8eg_x-CuTa%9J9J<ZzHew+IPS_7d{8lbT{bEy~M`Kg`2F3Cv<H)Myl8
zjg~oDkWD6hlXP6V=IOPXRz^KOEE$CCeBG^0o?hXe_Eyf2^VR@Dox#%;`}$0j0F@X8
zaw(2;w`zMW1`MH1!V!nQCzDL~ck=`$o2^T*?&RNT{3Kt7MlcVZb2@ERW7TpDao+T<
zVY+=EuC`6r_36!=$YT5GI-;8yJ)1dE!#~cZEjp8oLCK^$=()Uraae@d+B2T<?NR9R
za9(iHHyG^aFw?WnVm-1FM^Jfbzkm$C4b4LR)`BB0*Wx4$d7em*%;MvEb-Ypjnlqk~
z7m1N#Hp5<&7U0lXW*^j%5;Vx3(Q_qfi~V}N|0mxVrTyHHbuUUuy_7=<L^G_Oknk#i
z6UO2FaupsmxqztGg3!epLzgA$)JR%)k$*nfN+|9$>BZpe3Id*`cgv38mAbxinw|Wk
zrV;+cnK4aXSu^miN!42>c*_wxzh;NySoPyc@5L<awfXK8)o14)CrI16)X#qx{J>v<
z3s~pg+k~^m2|JfZ=!ISQh|(G&X5304xt52*xy%-tP3BDArcYGEMOw}A>mPY08|-TY
z^-E{#uEU;hTxg*V-q0;GF%%>F=xI{?Ox`ka56*heU=ZU!ENPdfMMZwT*f**bE<$EM
zpG>H@O&e6fCnqJ?>7ODB;Uk0{178T$hxz(cpHK|Eto44LHh}cTxB7u|Yk#zBsjROm
zI<+H_N5e||1HT7(i8;@Y*kM)u8c&YX^!c$B@1qf2xDW3A^yR3b3M@=dcXTLTHQ9)Z
zYs+x+PtX6iGF7~0(CrVdJ{#BPYA9GGGS@WdMT_fuymQ*Z9SZonY|VJ=EQ1zK{$NTW
z<mPczHTwAH8bA%>B~Y?X&cJj0IrjE2YHL8tUdJoRQZ3W9yHl!B#bza+cQ;F38N8UD
zsC<v}|Dnt&=kvf-{qTE^ReWa5r*{^<E!12={pQ!eV_=PnS3c>Ee`bL53+OExE`(Xl
zK^=UZMOgacFhqayCu2m;;V|s&=hGKGjDwJ<&VJ)~A#YKZsNXULFLKnI$04Ji4L=!N
z9!HdgUlc7J%D+aoi=oB~*`D>kWu1yjmzmqvh{q8>c+m!(m*u$Y@JVUr=<H3>NTV1!
z?VwaNbyftFR(ah<mA&o^%sFQ8Iirq;k;Dgd+<&W7;gtBw4t(?N7aY&~iE3qGAJxGV
zKlDR<ALx6V9(NURuzeXiin|KSz|@rl?pihN^hagvZ!cMdmgDd}|F%kjf2RKD*j~-O
zIj_clAgh=nVLLV*l`07N0G!J=0?G4)i0pvNE|nTPV%4sW$6uDpf8)=qk9vhgfP8I6
z+>G@mg~j~#s=QWa@a5#2^Xcl{OAG!-*3{%f8@cusJSvIm*lUId%LmM?wyzM-8FC}U
z{v;yO3@|$nVonDRx47<iC0e=2t<SJ;5Is0!G|!k(qi3uXAQWm~1tN<rBA_16D}peu
zGvNQOIeyhwWt&qr?<hdVtRAsbYT8FQP>gPHJP30~p=9T78)9*ml1C^**pzA7R}-c+
z84^pWPVH`JkUnB(BpRL040h?0kzKt4U2;Sr;b#|olNC<g4Dm;FTinji>6ekTlsMAZ
zBeNpizvBq?zSv7msI86F;rfw!ctKoXTHLx}Te-mVWLxj0O_pN4B8!1F2}|-MS=Q@&
za(RWeeu}uYyK#QA&*qK2M&C)`co@cQI+ZmqGoB|gu-;-A;ev`1B>({}2$a^|K#?re
zB6c;<h?`HTbKkcP6?4f`LHEPuUOg?;gpNr|AnOmfeK*bbx+IRq3YifjKz6y}#l{HK
z@081ImWj-2w^L#dC!&ffvD74r>0O)^Q$hMiHgP#T(ZKVJOcsGbiEp!6Q<y?vD9D#2
zOvHJn8Ku}Vaokk<+*jjpyurTrY~B3Zg9WZ_VZI<A1n=A7FCx91rI9rPidW)p+Jb)z
zISjt1{8&l}e+y2!Mn%0RI98Cj8#Y_G|5bPTvywzTBWYJ)Ct)LfqTa}UExi*3y7J-J
zir6~aZ$LNzvlVv3*~{U<>j!D@5HU|W`9D@&>-^%^_j6KUm<#-rfQ_r3@cAMYUKRU|
zH??S(V@PNWQsIjYA+>tQM&SEO35LGC_60@*+ttS@w@A{|g?YqxZUvyWi+-$-h(*jS
z-ap<Mnd_VLKwla0o@RMAqd}Pz?<-hwyUKjS&$Uy>|E6VXqm-k)sv&ZScubD22H7e;
zW{x^A)DD1_6t1mUQLvvJ7+WO#tH+#~TFSo#=PGWsbE|rQ`x^yyukUtu_aUf}Y}qim
zy5hjXa&|0r2IW)nDM_BAY?_{_q2=xa8QV@B+m%p0zZ^Q<5<*-cd9W4Igst*B>}7I^
zsWq&(Y&!h5B7Hbw-{N_c%TB4lkLLNRw}`(;uUm^4Map^A;b%<f!5}WD(Xr_vXbShM
zR$I%hgQ2ixpih_6`xXAl>HG}^^w_<^Y3W(NyYglg0Wuo=ni)ftZz1;Yz|QJB{^MKk
z8AxXWkscqPpu-1G)Yrl=Tcb#Yyncw6<GyB%)440_;c{+IvEHj%<l=<s#JsUm^9mpj
z5xkhVB_~$w0W>C#!Jtf)PcSS^qcEGgC6e=LmpvOvXN?~;zT9F=y#-E`-~F!2@xvLH
zSGBjbnqPVR<jDMLv~QihCd=0(O@;o9!eqmm(eil_U${9pXe_tMi#U<nJ&YWjsIi^a
zMBf3*pt=r=&(@k-$jbu0HWK}$UePT&(H3jhmVApAwsh3?v3Y;FXsL<U_E3V<9SLuj
zNV*D&SX<g<E0rry@1+Jr#llIHZR*oZ%EQM2AVB-^48S&}zz)0c#iOdsji?O)QhEc9
zuEi<M_C43rC(QfR4~Jc`1u_m3&Cg=d)!^1fa3f!$^lEt<3bF><O8i~J+28Ii<-IGP
z`{(Vt6>l~uc+T*`@dCc*i^DEGr}arGYh&$j6q;(rZ>#)pU<Sv-S2Aj=fZG6~g~B$z
z)+JNvA-Md3U&vPQd_o4PHpg7;dpgpEfxxorLlR}^f=+J#zG=o<<1zB}%Na}CBe6Sk
z>LzPb?L6sV>w0k@z|b;=PD(7mr5Mn!nCwHq@}dTbe=61Y=&X(xbZKT*2CL3Q*4>k-
zvDL4tyqOl9nkYWN7etvr&y-l^7We{;#Lq1_2If*>?0~6Z`(%sC94&7+=*g6fkd=nZ
zWNT6`l}Rq*xK8z^>C4p2SLP?xSamz$sgf1yG7I+r1YwY(dTH{Wb;P8nvjD*%zt`@0
z(kiMdbF4mswE+ZT*DEW>uP!^CD6@fPq)F+wHSc<?@7$_aTuyW{ajmg&EjAPC0PkQY
zb!C0OzXq#O2yaw$iQ_Kix{6{lmO{z=F<7B3u+4F_x!8_61vhdn8!8ixPq%c{#rsl*
zAFu}Q)yf}P*9peo$Pb);SuglFu`ckU8zoA5>7WZz;`ctbCrPLt^fNGZ{2-@z*4r_V
zq*pf3$cY^}%0yx<C9SK~y|!9W6#MzHeuk7EW-+kU=M>9reb|WP^4Q9yG!bHk?W=^E
z{wQ6?>n7U6_{aE~)t05iEXuKRGsm&A`nKWEFT$o0^H7;GB~BC7LaGbGE~+_dDH6T=
zCqIA8Rh&+I1UwA-OJ8Gszh~3yz#sSk4@0|i+2~UAS)<J^cju|<$1>oBr-=RC75sd6
zhU&?5Ou>WDZqafxcy%gnTq!Jl&7#J?LXm68l!%=qv#A$=?aSIf+)ojsj*lBWer^8l
zDXyc&vr9ff@YxrC??b0cl?=4zSy%aj;)RFh$c?HzQ$7`cCWPhpSogf+S=+zyWYcq_
zlLRKHKi<7?@b*73J(yL6O^x5>+;U{@BFt9hE(gZg;;LD@qQ*Sug?63s2hCkBO{N&#
zPkFjnDaY2GLH2QYQxB`y()Q*}!W)f@y!)nW_0XgJ@sEOrpDHIuU9);VVs1djN?kN#
zTG3K!4Bw8;DHfR*x_EKT-l{<ke<nLRe~{EfrPsw^=x+_zy5PN9cIuJ6U(P&a3v^Jc
ztefHImZkQT$#cr_8@rD|4y&!Zi*cN?dndz(At<lT4nCl~@*ZDdZdsAQkeL?w{lzeH
zC=J9_(`Fzx6F{FqEvLL)TjX|jt-p``K}!{$soRH>#w{f?8*}5TcW4XMKI|qiKqnn7
zQK8*7+bscR!PI1=7tAc<js}q+tyRMg(`kNs{y0+Ub01R9VvE1{Sy^#TMFqZ&&${R4
znu6O?5ckT96XgiCbK6Akw<VTuy&Mc?j+g|7nlh3maEpVZfy<AyS9g&Q-z+Dlr4}2`
zaX5G5j}V}d-O{>Z?e@5<Ft;Uf|IJ-i)JxMsI+Rwk-52vqJ0S1v+5_+ISW=3)c!Lq_
zZrj^P)}db&kJ$^|sk{;H^Iz>%Z_+Oqrwla~^p)Eyoae4Eefd&QukwStRsZU?()7nU
z{#xwBYFoDJINaDjsSD?iwYk{EC2Lh9djwtsj=VN9an(3{;7q@dMV)Y5IH?ga{*XRn
zuDe{=FqV!UC<k77SJUO5T{?jnHLNRYXN-zvJY+9KrB}Csna`*TsE+?ePEQHo*XR_A
zBL%XC2+#+t{CJ-=5oP}kG?p%<J){t68M3zv#*ZP|={+|+7BSgoVJg0G!U+`UatYAA
zz7R`y*A}lSHQ)BJDy7w-0-sq=!liaJOF6eC?|Q4R*J_1b#B=E^2&Z^1>olX%L34H2
zWxcmc`*^Gu$c#XMtYum4FJawNYKfA_NSBo?AGHLnYCEk2v}_}@mv{S+<khb+p0inj
zhSbQv@eNDy(zc?bg4!q>lU13^_&VR@*p3#3D+R8X4qQUh9le}%r#D%&8K3X<qzM&<
zzX@B4qH@DXt#qQ?WZx&4M;BrK>IJq*1^whfX0%-oNvz1HUzUAm!XRy)qxkdg>BXJy
zR~a&KwXZ&<gi7Z;PZqKD|NRS8Hs2nJ*3ORwGP53MMp1Bqa8H8B+kRS&vP%0;cwxo5
z(w;=g2-E}{7!8H9y5qmvhqmH*j1!&e?rt$~+#o^IMyzPKWxdoMZ?Y&2b6-e?ls|Z{
zl=f_Y9(>|<4_xuPCUhu}KU!5=+1<oPCE-RkD->c>(L8_=U4Yr2w%P3&6*O#4{(S0^
zn{h~q4x-s&?t85QDsa`=ayYT9CsU*;oRyTuF$BbzMYr1Kz<88kJ!yr%>+Xs9p7_D`
z>87Q!qvpIr^uB6gy6y9wPq$=WUYi4*05U=MZ$z9%df>&@$9fNAM6>oK{s_nJJ+TNm
z#pz;aXCAoOPLW-T<Agly5L_Or4SS=O@k!oN{%J-vi%y}*WAC!J48?om;JVDa{yqNu
zrp#u2iJoR~&$v?y-HxHnxcndzj`o!LrD}$P)H6C2S0-vox?!+*kfRh)!F}9W-892}
z9_E7<Et{(DcHS5VuLlK~)@Z>pEWajzcA8=KFnfw<zj?h;zr&cim#B$Y+^$iD1+NIM
zQeHU=)PgVdc=fDM1j#r;rAz21w9Dg%dadNCblxYZVe`F(#rYLgr0Z!zV+g+rbqBSv
zHDC*L9E1{_=-^^t=R}u1ZL*NA^3T~gNP~RorQJ-!6qjUBEuCAr+4S}B69OL;kQo?^
z@Xsl@xHdHtSZY+3I$DzN>#AFBU<L;-jIBjn+5^ei9O8UPtmEXig>xEfUWl`t^6A%~
zH#rbxGdx!3#GhdrM3gx}zI|M|`ma7-3rCb^em{GqlGI=eWa7W-dv}-~pT0CC;q5uJ
zM$jWvQD(-(gpMkMr%ma%v1d>w6V-&332-B9mCO*VAyMHpk<&q*jy;)L;{YeR)<ItG
zUpCGh@7+R{ywLVPBr*BUm7rnvXi*@(TV~nof;_xUWkO$xjgTtUj`_V}saHl}67JkD
zzFKG~>%R~g4nM}iJaVh8L&2Lku+RdDrG-YR@Tw9Pj6BIu2Iyi_$7yG734XVkDjw%q
zO5$WU`gH0gz8wk3?uE1>h<{j*i(}8SeyIf>L6lf{$Pp=JnFe#J+6$Cbp^xVBgoFj4
z)Z7|8TlTzga}*mj7`|_d^R9ge!f-u}IH#NQ0e>a+Dsrj5Lnd&|PohI+Mq$FMown$x
zVo=?v-m=6Dx|1^Igw1K8XIiX*+7hy}Lz%^^`X%r9?Kjk|V&}G|7g&?Y;pJNWHY<ob
zt8=d{4_@wSkq>_GjJ^{r@nzXR`f!!kHUqNW?ur~k%KM@-Pmm0S>RrYP6#^>UJ5&TU
zqkq)!y(EvfctbTZ?-Yq+;=PPxZ9{5_#`Pmi$i88q<^>ZQ^Wm#=8J6RbA9{(Gn1neL
z{S<s=v)g@_$Zd7gQ}}F`q*xJb9f3$u7+Cfs5VzwB0?U9zt!NB3s@s@nE9xqNgzX}*
z&DLo|q&Je}e`iCeWpnJ@0mAKLhQzqjQNQ<0iNWA+^W6!(E=eD)eA>Pt5XC9nQe7Eh
zQ+Jm>i3A96%KE9D+?@CNlVPKwY0dZK-H#TRm$$!1v=B17sU|`&ag}(~b#&X9yMO;l
zTtG(dH2wFHqL&i7k;2v|qC9)_wX&OcSEQ^X5-Qui#Mqz)@@5upI4%e;<M#DLCMq>B
z`lUIsVG-j2A0L1Av>aVdZSgCTf0t6g01g;QY-t*uFSyiLWyHv_c;nlaWbYRr1w#88
zV$jNVMyA?&IF7icC1b1b#>aJ`=gP)3X3u5APgle<it#X|)go>grgOtw-r8#nBcOl(
zBxzxkAN5MXV-IE8V$$z0GN#~qq%e;r?sD!e)!43h{Y=_e@Ze^(M5n%--GDi!&c2lW
z!$<)K(=|GdamFx)l_&b;HlY>V=<uqpR31mE>6skZr31KBKfdpiL3Mo2wQz@_X7jBL
z$}OWxmna~Jd5-nEgDF^oNhV0D>dp5iU^8a~km$ih!x@Le$x*3SCfTo)kpVWDKRQPp
z7i0Q4wh%Ql=)m3kiqYJdIL_5->+=2p^-G&?OyzFhwP}=E#T5~RbO+mV6`iF#gz#MA
z!P`!THO0>omSq>x(a&mZ?BXS)B%mZvlxrPDDcUJ>6a7;0EY(z@f|F{=ERT-QFE=bm
zC(3ooxGvQ6Nddc%Zj7;uHtx*j{Rfi=ch~giJu|73lI5PpT6#GKw;m@5=5q(6<O)b2
zU~J7Fc~uvKA#x>dFVNg-$)zUDZv6=oNy{U}FG8ELos!ZYt0qnKO)sdsjM$p1S7X=4
zTa4>(I~H%(*J(+4bG_6)_HAovID9uCF~GFpX+DptEcUkE%Hf@kzSJ^T8&ow^7jEI>
z**NDl-wl2rSdc-A_nLt@CLK^72ri_X^9;+(Tp<AG-3XQb8MER#KGd&{7i#gw9szwO
z|NO8HC#=i${7F7=^D$Fi?JILA(bD8izZ<k9B0-H_fB;p5$^bbZnO1+%j+%W?tlKL=
z&&!+jYd388+LvBK8+eQ+>G=Pik8CJS8A9s=y_Z$P{(qoYo&O@<qFs^MgMp|<0GR^L
zb5-0b1sh;JE;s-FOBFo`(R;tNVC(iA<R>esZUz)yZ$U{%s0;PeLNM|@BN3locv7sq
zP{i9i6a#ekBmwbf!5<jVB>Lm6>$ahwnu`+^+1S}$+Q25q$H>cN=9R667PnvddxNBS
z$4movPrFj;Y*%<1fw#@SQj*8;QvU);(lf}L-^^6FcJ<Cb2v@gn=V{)=So_*qvGp4d
zs1CYBKzVC!8<>vdn!c#duAKB-%Sk?FDLSk+DKz{Gn6$)Cq4vYhsG1;plAbkCFZ{I#
zXnsPS=AO;-Vg8A)oiOaa9!k{s6S9mwH-`M}6K>=t0>IkuHW8`SReYA?^%rXb>0Y+(
z#9Dpl;|#RmE3(a)!RP;;HY!)Jcnq8e2VkyBrX!;B685!c@SJqBrJCmZC4>Gn8O2c*
z*6nocPhc{~`a9kF--*d5X}p;YqRM=(t$SY_7e%;nrlA?$p^%*|WlMpL|A9;eiS#r+
zc>LsK$v<w9=FkBMp#=HXhqYRIV?0#vhz&Gn<!8pdI1zh7vW-8v_Ej^(rGo!coysNn
z4X@QBbDDyE(v)bpRM*8pB@qr<ffN2!uX+{bFnReuS*rWdgS6fdCp8oNmg!(Sf2&<c
zE`rb>yRLXra_f^bDZX$O^tn(I&0eQ?L(NTm*Kv00;aooJg)teb`|8AhP^xsWrjA|z
zcd5z#7>0Avi{F#rGGaZnr-#4N>bKl)dnaC8AOjq$<-=*^2a}V5awngZ^Bprcc9$J3
zo%-w`{e>1i#C~}zJ}`P|vTwS)GAB*CxwPk=*r9!?(KaFJ+&O8=qnPrax{t&wF^d6T
zv{lsQ>8GL4{{cNIZ@Bf1=*ydFu1M@OO^3MT*1^}x0LbgdSm9oz$Z+#TwAin8-7p0}
zvZ*WM$qP=?*B!_zU$5Nm&CTz(O?)N*4bm;%UtlC#g-r&fan2ZcZY2W67ZJtuPhOgF
z=a+{0m3Aj1x~&+{1b*n|*Cn7rbwzU*pZJV-nu0o1Nm6Ftr}lnvAoyz1d4DFqOpMN*
z9(}XRb1ZE%W1L_4{UYhb+Q;}c>6y*%%AK}r^&gi(jgZg2GZ)ZUss4|CV<{bpw3;6_
zx0mpT=U<;Uu#nB71v{Ycg%h+Po!d?$r~bw=i=U_I^tr{Bt@70Xr0FI94bUW*pKt#k
z<C9LEe`pfdVKRkD&H0PRHihnkvP+sogX=HCY8u)cTt7^r9I>NFziQL{g-(qCsz=p*
z%$soG7r0j{YQ2;z^a6h{pDTOkpjA)D@mE_$X@8A+>*I$se>g9EskF@M1$lv9mXqV~
z2Z~Td<)wRGC~Vd8W%qj+<_~H=e4qxa7-lt9$FUlIf)q>~%_a3b`E`ozD6QLYBBxU?
z6SW_-VyH$#@>4xq_}(~C&VbEUJNgda3)I57@gU2r*l?#0C`)(z<LwM)3<f8{k#R)s
zK4-S6caP4E22%R|v#VV}Vs6u0t^vkzdC<z;Nyb!x$;gTR)-t_Gxxy+i6TKA;^|aql
z&k10zI-Tx4iQ2v5ceJpJ{2MlDbrAqC8fPQ)3&3Y7WL+ZA3^Y6{O83#uJcu+u#!1yF
zesrE<D!W7Hp;lQ%eeyU)cn;O=csxmD6jE;Mne&EyAJ%>DjDf2-@9^b)*nP|VTGJ1=
zuJ^H}56LD8K-11`NzNh6u||QPzCNGRoCV2K%G#Nyyk>SvDX!9LQr5F3$X{j*o*awY
zr5VyY_-c&WcFi@wl#y0yQe*0V-+yiI!%5o1{W_)#7gs=^MdmVwWX%IG-5(18pu$t_
zig~Ln{xEsKFHzQ|afY-TO!d4jBP~E?u%=!V`B|=V{148It|#P5iWaaS9SBi6dpn%D
zV5UIRCp<<F3iPY|X~GGGKeas*MikXMKB@H^PuG+_4ULHz5GW84jjw+D)22bg;gmWN
zdG)ND@~h*mr!HOm^EKJ<;7_xL=wq7X3j@E_3=Pe{*d#6tl$XH%Vb91r`7`EFQurtI
z2YmIxKao1%um5PfxJh3bA@eJ3yXx6@?8;QMshp(C_eTffuH{nB)5XiW#l_AgdJdTC
zeD{SuYw8(pkcw*JQFan^t?>9R2`kmU6}a7T=v#-06VwI_Vw548e(Hg@w{uR+o3q+w
z%NU3LJ@TI0%H{rDqCVCP=>nP_t;;Ac(^G$l3)D1M%do(nU|b%?9Lnw0y!6dKiU=3f
z?LjbkuEZfS%Y)Ge#-4!G?EL2MY^O&0-J+sf61V5mTx<PCRjBX`IWL_EKJ^4%)l2oP
zG$y9WCw@6if_kTN@>RFSwU35YL6EJHIS_e?%Ds35bWw_TMd%^*&7L`#q+=yKDBf^=
z1+|ogdYuxT2|5!ha+5o)Zwto}N=E7*m8h@?E{5L9g?Z1&gErQA>ek{l<#i7lJrCpy
z4d*&n3;9*-SI~@C7Nxf{n!J|ED7fLy{<P`DA1QeyXhiC#82N)oKms-fG)5*O0nu!z
zzQ#6U>NZUSunc}#I{u4%=7}8pk06Lw8t;F`XWE=-v(C+l2M{Q%bRc5CC!IH92LGe)
zWBY+e%t$A~^(X*Yg-0dy+MJHr_b3H=#me;VEe_@yHCVlOX@SFkLYaaIVy-pu+)Dw-
z0zZjqfC8TV{!gpVJy~a5<71>~a>XTeSCtz{D=fN=wd_Fus<7U~<@ImvE`;4%)@hm<
z^7#Q`Oe!}7{5O9vaO|j;JnfVZ9DKkj>+!X2w0YYIM13SCV$!Gs)y&M3utkk;KUbTD
z+r4TyG=M)S87m(w(k`s^$Di#_Q!o#7nauO2Zo@&xXjs|*8AK1+QxN{LUi%I13tQ-N
zNpb6*JS|=x77mV*6E5c@b=IQypZ){PT>S5VnZ`Z4P27QQ#&O~kofMpZz59G$K7>0!
z2~*!-c*H6G$XX?7%na|BewSr!o0i7J?w_R(rNW%Y;p0PJ`8Co#jPrJOULD-_j*h+p
zDprto)-eb^F8DzV+9V|~JQMG^od7iD<-6$^Qt67^4`1kiH>mjV?NTQl;}))q+kOm<
zY%qSyH$L8?Hi3U`iH_xsSX~{s?`%{z#LvuU7dp%@1Ef1k{r8UsW3&sg9nI0ghC_A0
zv|@=TX&MIpzOpd!f@K`briE(($r&GloBZ(_{x@wR=@5shHb<K^4mu^}`@1Be>Q@ZJ
z$rj@#$|~%jxz1&#V6H1hK(TJcMRgNQljgtT*~_2yKcz7bQ5kZDH2_l|i171zAEQtN
zT|nvXid*XlU;F$om&;c<v0L6$YqxZP{J$eH0Xd_uSidAO{Gwo<^bF9==}1<yWUO?M
zRlCq`k-mMj^d)n``*3%K(Kr^r^?~1!^FO-d_8j&+Jew=haNOjo40G>}<x%#7i8}!J
ztmx@5=23rEy|OCpmU_mmhyLbVR$Y?_va{Dp@U_qF<bjzr?dU5qPHaohr2x$he<blW
zpqz~`z@#t|xn}!wcl4T}35p2)XWoX-*6254-<~80vY*e!yg55K!{vJqDPr=e$rbq!
z>%B6<U7|M`z-K2r3zrvU)qNs{Bo`2+cL^1qXj9HnLiXF0X1E!5G-qxBadJnbWUOqI
z=sdYRVW#OY(Zk}q18pJC#%bCS>WIsf5$$5bvc@LQ#gM22Qg__Q>e!es+|``r>}fEB
zPq*-i`ay12XkDbo%>oaPq6@rRLusz#RjcE0?T2PQy6Wt=Jph7G^bNpZGSdA&8B7#Y
z-?de_zg|8KwdJp8o^i>$_xY1C5+oXYcLo;q7lb*j&k7tz{MSFym|XWE{rG+7G)+U^
zKbPQN_P@hzwJ}Tba#3^B-JeO`H<l6s5HlueO~w#1EvX;UqMfO91=3PqJO04@-3Seh
z;Zx;D_jR0+&9BfK%&FB~&YPzi<o`VjY5D^Fr@9DShW-g4!#rOiAl9$dTfu5~aNKsc
zvEp`CzWKSA8y^yvO#||54?-?8j@^6AWVle?vj5YIC$W9r6cEdtKI~MSaU$+MzO`J^
zW{SVDfC-}Udjw&u!3X5|HmL__8FQcFcy#uHAL4o966fEc$ddpRd85?pAx^L9H;VHk
z2zgPE@vxh5eKn=@d@hHBTOoTUr67<ZI<&|nW>LAmTtmSaYLT8eU>YJUYz`m1;T1KX
z@4YegPg{^E6OfC^9^*~#zhF^U!l2f98=w$egU0>FzE+`-;9BRmg}jmlPNf1uMC0%Y
zWS@rvZ$VtN!mYTG8q^wT=tKW9r}kEm%+OSDxW@R~qwTsa=g*DtJywN<Upz_|`qOhA
z@=vSs_I#S3GEDU@3L*T7M0UapT8sfGvhKRu_r~if&BqAL71{ixdcT%m20cyony=db
zEqmTq(wcVwB-!?E(brFJR)u~o6gL?FqSL(<%sq1fb^3ON`KkNqAig>M<>~RX4Z^z3
z{=`)SRc8WMZX07Bi}CT$tnLW50j)uaH2X}pP!S1GE2A4P=gjNP6D&mLtWB}|L_@B!
z`SQD(xXpp>^xKOBHmK=^nw-Bm^<JQRPPfGeW?~-?E+k)LFR~83YMmu^$#vHbpIWQ)
zka0WlI0f_{yn1jkKTMjn5=2_H_6--zIdgNQMR8|qX$c&Y|CyFQ4oQas-8S?6{Y6Gi
z1^fj0!Gm+&DL8x3(@{T4OIDIYlOu8GU@S&Q5+9&`=6GSXzml5U!NbRm_^(s0p^)oz
zA1NAaJRs=KE_0*of%&NeHYFeb8)$>pUG;1e*<Zudun!nDQybbk7=AyAwUC_84-U5<
z(C0jHyi`iNj{JnY&LBJyIr=nZwpjYc<!4Vuo7ukH@6>P7p2;(;%(czuso6fRA}NH4
zAChXTsimWv7ABPUPZ3WEHTtyo7N6Pr4(%+qMh0{zG1QA%3``zAd+?Ak0LP(o_D4E3
z6G3peG0A4$S3q2a08KpkHq(zj${!nMUmh1*l2me`J|%N~+)+IFjkv1s>O7)H$vowX
z5!%?7b&y{DJ_Y80_4~W#Z=bndFF$JQl(LZjD&SW|taUybupnA>J?Ur=(_XM)NWJ&$
z!FGY8hxcRG#u@$wxG8pFk~N!@COs0z;&8&n%g=Ij(AalOxbDi!oJo-SlRQo6)p<uT
zzBt~y6;Qt(p2EUDu>0M4sPU5oj~O|tkSU-2`kEMXNf`meHpPJHGL((>(&yld7`O4{
z-&WSTw&ynv$%|CkrBynyo5-puE)PLQ>A2$Mx63Ia8_mwcS0FJ|7gyB~ekC937D*u2
zrG~&v;Wh}70le59<RXwIM9LxTZ?&P6-)MLkj312A2A&W%Xm_<+5MZ3@<_{gGi=2w>
z!1wm~5d6kyU6&?a^WHKZx_L}g6B0@1n3XepCvatVGcjB$g0a^0)79F3)S2HZCue62
z`kOx7AMp?>)tb*wJg~SBt?*)_Uyza*E7ki>lzob)RwntO#oEU&z<Gg*|8I%u;kj$O
z#NiJ4hm0(SpPM)0lM~lu&T9Q}Clln~<t?)-(f8R^ynltEL8_s^%;f1wkhdB5Qq`1?
zR-R}YD{3F#CS0A5n3l0;#`AdgKH`rTme<@S{j0gJwiN&9Z|*+6(8>Q+nyTW?w1;i7
z&Ltt`**>e{PJN|0`#eVS;{ngx!D+zBK=(%*fHW;a|3&A{6`NVUL>=$dZ$W3C2L_|>
zWd;45m|&6yRt6fnHq*!A_m4gR!0TsOJOkWNQQ-hkB)U#crPn@-t)+<lS?UdMSQ~1S
z&awpTFVcd(R&40>=7KG!fuJIW-yjmSE%VvLQ<`;F?A0{t1D|rWCi!MbQLkk}wT<wb
za&!`_R9G4LZFub*Q+3Nc<nJv4hSZk6SpHTg>a$Rz_^89qpeblKp7@8I@9KR>yVZOu
zG2|qf@!w^o!4#v^)!aPHt(Shs2<cSI2PDH~yPm`}G?RM_|9_g4zD)sRr&NJXC`Dz`
zT1#`@ktoo<CtFk{IDk6SyKQK|y)*I0zB23JhC}8y(*hmh77)j2W;fkeSL`XH9S>>7
zJx6JSPK-Yv?z5qN8KeqWkMt_D?)>qkR+c|x>m_f2<E`;QzvO=!nt!qD#|L?tmi?pr
zeO2Vfv5e-Qp!fG?=*1elV6To2LB~X4LG$K3St*B{Hwh&|kUA$9G_tcQj-T9-&h2Rl
zV;9t}O?Eb}vd-NL+^gEd`Byk33b<lL!{#>l$-80-*V9XWim$#)H>NSo3B`}hasfvc
z9P|+UeMA}P;!;~KWUlOe+is;U6S_+nvm4*4*s_V~x|k>p#rnQ5(ZC%4&F1ruBEe(@
zq|wyK7v~Mz&k;cQIEs(sbHrq}Y*WjP5_%e&9zs|IFD`7W2)1DJJ8t2dUK#cMZ0=H5
zE@0Z@+~W7MJ;I-#AfeX(EA+HP8yW!bN{W!^(Sv?h7=C$L(YNT{>Rn%lAJjchqF}vk
zrzhOx^wnfQjj)?5=r1;@3c<#XgmkEGtt#f~z}&4{M(~E9Y0^u;BljqD#^0Q3VL5H4
zobTOKdxwp?qNDfl=}PdO`uXLD|8zc)D*wy$@n@T2GYvqGS|YE;6q{^ZaOv&%Nt239
zR%-Yku9;1nlthE{ZLVm}3@Vcab%ttZ@Dnts(S?eJOZRSaNV`5OpMvY$zV>Q#YP{hf
zb>A~GRVrMsYui~j&+SEmC`*wdWUA0a2D}&{Fzm6=$5!v1v*q%(ws$k6-QQnVLIB?t
z!>ylr*JmoRcR0JfOXn(g;K5(})@;SgKjg#1c<S<Z38eAikFGVCh!@ni9;vz;x*shA
zAU)y27qV|D_!Vw;s1yT2JI8OU)NVytplfDvd}Ak3;HQ~D5$B`Ld-|=MsznjenYwK^
z@LF?g^2-Lh1Xb<;4t^_`7^#CWd5`%Ve=gwL@H1a<4=X!i#c?-Lz4(Hm3c!{Oet|12
zne)sHw^=Gmg1aC5^f9FBR1|SmRr$Jqc?xK_g%5V`T1RU_Wpddf@Q$qwgY2>gLjJcX
ziX5#{bA5@tCB!+o!(m(WV#mwO1C2BV{atsw9^8UAR%EVO!UY*%+VY^@)H}2Wz3);I
zF9Ws_*#l=pcXeT_Qidwqk~ar)5iwQsu?mL)Z$PN<4%LY)_wEOe_ffVt@ckz3^C&n8
zM5kRYryqUAs39QAXcP{>T=+`fY=8iL(Pe{!q=4mox9c5rV2u(s=-pe#Rw@<_R{R#a
zd?{%Hsfg#9)z<yR)sG{96WYLs)s7#BK*ujH`0TiB#|W}|M)f3#%+>8lOu%~e$_D_u
zT+zM5FSd68H>s@uUhRUIS<a+nv5;n~e*%u!{3MdA1d#Rw^vg}yx7*&bE4+;T=|c3^
z$WeJL7(vQ-p`w74u*i#s-pLMAO>|gYBk9)bsZ;lV>U!Ra0j2M?3klc>g~it36N2XD
zrKUeU90WwetFQks!(GjYPQO#m%W<SL?ap%1EGr9}s?%}dW3f(7{3Ta|wYt|RS}yLu
zz<2%UB(3xNwZ2T~S1`S?Z!gcNLy!4GB>!^~calzt>eZ<4s<6Yv@-+_QLg=N{!lm8P
z<?c%^DDO9#-0Z9HfV4)pt%y}dl9RxJWAQWi<s~_}i36!(qlas1&{9uqJscEUe8q6m
zuzZkyMgxO*n2DC4X27jJ1{m(XoiyQg#?zkdq?J1&?eeEqEqaq3AW5B|QT_Uv0i{rW
z^?@Fdv}rT0>~v|%;Ni827=@?rAB0JM=RT^&+jJcoFlOu}V0oO?-V=^NqXuhtNh3AH
zjO{DitLuT=Ery51jvpt1xqC@})`5yLEjEKy1KS8-!q&YbtQPh;HUR%PK{S6ydt(yr
z7=w+y(SqGILO8$*{Frk!ym2p7m87E)_a$slLx7*yKJ;sU+HE~3uH~X$R#4;A^fUDK
za?$bK&80#($%&@HwAXmc9Y7UI6}^d*HHvYCfw?udVgdKIwf=4xO}RR~5y!7ntn{jy
zt>Ou4WkOe2SWRwwO;wxCj#+Jg1-~|0^-LQyRa_<_<eb=LRF4sX5hhlK0iV8u{#1Z9
zI`wfz+En^LAtYjq-NThBY`(uFeZqZQ#_JC%G+DAjf}U+Hm1w+m5F57V-Gy>^)>JNn
zHYxL9V_X@UmKht~^V&FGU#Qq#JW8H2&2auOx>5rkUJy){hMwh8SlCt)^p3u=>`iGY
zHqWkJ<=!-(ChgsuK7=CnT$YZv;113|)-PV(R&y8~D>H(7*3fyZW<HhQqbocLY$Ojz
zo_{=TmJO}n(Js90+*aXW(()#=h2YB2^`dSGz!fONLpHc#761@Q%S1LgK9F&f=zPHh
z%Jw3299m<p!639Z$4ZS|Lkq*&Pr*f$GeBUyiE3;8#6IPkEeUIsa7G+ZU|O!b4)9V4
z6~)96W+qTp4@(dB!Vss6W0{7x$3Uz?qT^hmNDt7uYjYlLt01PiY9ct>EH!#k%4xE6
z8R)aM6cwfObyrjhOY!~j`}8QH%oIBK&!#-H;xL~zQRf-%l0BA^os-G^j?C-W21wFb
zZiRyCj&LFU=yY}||JX$5J?)J`O>Dr#u)(AUz$SUBKf0C1yDXG*?>@&DljgQ~JB>5X
zS%oeyur}YWkl^R0*Q^Y{c=@-iONX)E$O5{Y4FEi=-RM|<D$MCwIO#}qrg;$c(YV0w
zR(%H#fTh)q)aif1_gf*#XR1KT-S)#`1~O|S$yuBG<Pu^)FMZ#<V|8krkRxYb7~&G^
zGS~f1>xCK9I*WXu$mP&0U>?1R@3jqWMilFmW|^Q!NKY)_HZGc!bhMjKg{9u~DeiZZ
zGDPyNr%8t5j{a8E<7Xa_xG$+~hUv>#B9xK>NPrLd;E`W55X%%9v_0tgDEZ1~?s@bT
zh3sjR7t>k)hy8n7+s0fFigVhtE0Dzx{bvu*Efk?*yO%98yQg8C>#m@^Rbwv{ruH4k
zV?ZWzr6-ox{vu|@5*>U8B8+d3HxGC@Wd|!aHgD%XN;(|du`#Y2k2jZ^k5UX!Xs6Q(
zy*1YxD^uh5J^g-|FHViYRie<PGV;sT9nXdM3@k>XQ->}k{ItJ_=m;o8D55)@NS-43
zE_Me_{J}GR=_Kj{M)YEx>}Ko*lfQ^YQhMe~;|m!Q=yGuH0^=tAMZjw%$%mEJF6fh8
zxJ&6S(w;K{jm^n-bgp6?k2s1m(EzAP?*{;l0_1-SG}4Juu0(>3K>@~1Dt{4;<&xNX
z`~K*%Vq=6w>hVw?@Vw4o<xQa7UGATLF@S00%iekk7?}V#4=(TfolV{6kXN$8P!Z5m
zN))_TD+v#u-3dI#slZktVY?qX@g@Z<^(WORpXg*@+k0<DC%4YL(_t_q%*khAW~_81
z+p?{<HC5Q0`O4XMF#hw)KD{ZRG<U1sOSi8ka7|QO)$nEj?i<W*zmV^(@{X_uMK@~!
z-JI8EeyjE^n-9#Jk}(A$$@4<`B~}|2r-Tezof*otb~nSLB8CqeP5?x;x^bN#q;5sf
zO!%|2@*fmvNEaTJq3eQ&Yew(lMDz<HxmI!Nt_OHta^Qlwtmj_*n;7<7X8s3ay@C0E
zuc@bGJ$TE(K8b<uueX@*e&-O>dzMrna@%V85t)q?yc}PaB|9(J=m=7~ipF$nZ^-)W
z#ZxsJ`I`S%b?+V3<hq6XVqX?yD*`IbWdQ}T&^vaN-a@3SNDG7(I)vC8O{JHBNKb%B
z?*T<RBvL{QB!nIaB|r!PLg0L?=01Dud&anToIB3F`6FXM+V_6#edm0h`I`wkf>Qah
zR!VsfQfn2T&}<GUGxWc7KmI+r%1vJp9e+WIJU(Cv*yfX0#8qa?vkMKXmIi8_;?3Pj
z<K+RfDgoE(3oY^na979M=j}oj3iMnoqJ4u`14aXQ`L9q;R8SqwB*9WuwlCWi@4M(I
zbAS<qN3QMmx}o7QvUU(<^4Nu28Ip&@lj1KN5p8`;PAUpcoSg^Ei<HNkwqR^A;AFx%
zs&Zu6cZM}hywfpFFROuleDz%9!Ew9?jinG4D4IX(RSQFG7D37&=9oCTc%Iq684^L7
zSD0*Ea(zP~pW<uJpbDn%)WXQw9fKfO;`Df1K<wM<X6QZoRJZ-g@w#te$BdVKS;zc`
zpCDT_GTO#dhRrq&Cg~4CzkF|QmO8CYhE}Q1k%E7$@jdx2{ud{b$MZs>Tict3n3Bd#
z$m^)Hykr|Ugxk=k>uHG3wJI<=L#e_f)`WO|bNND-MU{2h#ud{RgH$u14hLmSaHYs(
z@;%C)t~qyb`BqJhnM!dfau+*Vyq=h*R^j@iPQ%CMrA~R;{*^lQ5mU;PTQE37V%z!O
z??y!#I^z3~yuxUUh=FoEK;JNGd8Oa?3F2Er*<LY_LDI`~s<>I+=@C`W<u{vaBWe(1
zj_Pf|E7lS;+<JufxRwrA)wcvTlf*L-ESF8^oIA*Jo;i#%#XeJ<8_F8N-7j%y`z)kJ
zb<*9RrtI4j=Y=f{Ik#=8r=%V6AODgna#b&i;urjFb=RCmz%_VtNNx!YCy^q}@5UXC
z7e_KjX4&N{5IZWr8Q<d-wW$)rQpljAMh~hE;4)%()%>S=(;R^XlPFM+5cgv7h4)bS
znk#tbrB_A@%mifP4tdB}oMs{jhSHl~U{hGq*i~WWA+Z`F;EWtNwOQ9?`STOAZ;g4Z
zWWgU)Bca1(Ory4EY*&pbX3;>o2hgOA)GS5?Dk9`Z2dB$t%T7@3yku@vX?wB;s^PDj
z;a82L$Xoss9mzzf{?NwlFopG!{nc03_bSvBrALaY6#|CE>Gv>kcF^h$feY66_wkAL
zZ@of%y0NFRFT+a6!9TUYs9YBZn7GP92oQnG=6Zlc2e2I;u1^rD%Ur|yT-$;q`VzvQ
zq;*9lVCuasJUF)yZKLapT(Pc#L6(+J3>3j~EGcBYiH^ALRCv+)2Kt_q(WfWdSj*xx
zCx_>y%KrUwTPsbsfT%j_*JN^mBfYcXRhu(XnIYM9(ejgxS5bS4N(nE@w=(?$Qpj(B
z!CdyP*aw($y#}@Bfdd_th+@QFD!v|;j3V~Tbt^%B(Ck0%HqyVci0GAcSxlRmC4ZZg
z+pYn7{yICn*d@6l=;d~yR9cPSK>0~y2f|p~pqnS@$_Nktmk?kf56o8R?d6B!u70H{
z=Y)o_3SB{GG9T5Ivk5PsE#BYi=RTnR``B^_u$jE8xHV(y#SMMVVbNkzE<sm&8ar8F
zc5W%@nB2djTGC3dv)byriuRk9b%1_wyR2q181?sLQ~Pkq4{;q!GQzBRqG_pLi=se#
zG8p07V?DCxz`&_GB_6l+E??Z@k7+y7+DlzQsn7eY%8Fo%msVlW8$3U+kg(guYk*Vp
zOAGicB9xOT!Q=Mq0ivnww+XSY1XmyoR}CF~p<3=SQ=ZvLZv3~<T`>duD|C0{>^{iz
zy4c2BkLM@Jns>%7{tJAbT;&6cZib9p96D7<((cSBB`J<sIkY7;?R|v?=Y76F{k~1i
zfGU2Ow#u0-tLByuntizzT0_aY!Lxew^goP~6ODEPJO*#~k0&-{wcXgmlZo8VBm9>c
za9g+kM^)#kY}Jbs{%QwUT(A8TbOUJv+23@o)%?OSo@ku7znxEb{_leSllQ;i9{(lL
z^6Q-9`TskL@qdv{`adwr|Ac^zxc?2`8P@SxZN17SWR=(x4I+}2jq5v;(fU>usGwLB
zWDpfQQ0A7Gq5>mnHfl%pe4Ic`P0%<%9K2E9b%mP-FRD+SV`a9-VDI4T<gYP9w<tEr
zQyJ-vX6W@Y%aYJKO%b&_K(3BZPQ+Ll`j<g-T+yK3_iSn}plkkIx%Pa0xoj(P(=Ekz
zdh7FNo!DZ=O;JuJCdYLcwq;HMmdwc`qQS%(hVhJ`47vZ7RXLQ<;ZdK}`lyM8Z`n#u
zQSqMo-WHuS749`F#P2gZWlSMw=7~)W=r^4{O)lU$H3rnPlmZEq-+%chm|p-HR%4~F
zzBCvwrojp@gs*SzTd!Xc1>6@H0wWfDOjwAva)`pUnJ4g>X0OQ*q(J36h?|&=774jJ
zcJl)+gRq4%d3gZf|2WT4Dhv(PH{Q&tO+*`l>fLSX@h<(9MV#rkCMP+tUHjG};Iu-U
zpqV;$sTb3+;+#Wj5%#kk4e$SlkX|R}{UW<__0Cqv^3^)l63{nlqtX`6Deyr`@?10d
zb(Y-Cx%rxJCi*hg2$@tSKTL8Wd<unw09=#fkHaB_QGWA71#NbQ6`=FIe~_+pfBLt@
z$@~E#9+Nacb;-#1LJ1I*X-2l#>_FGvXB~HLU+_p(FZb9CS&LQC6|Bc!B~@VmhFqnp
zfiES?s4w*vsRmt~xaivJ@k1Cx8ukgxR;nuKNfTCr0B&!^G4^D$zS|w9mRLZ;{0uD+
zMzQ62!u$n9{WsW^%72GlWxFwf%Kkpa#P$8>vJ6wzAMUDm5orHOyKI?z^Yvj;c@ohU
z?UXi^^-?#U4#>dU>9avGy~WQ>+fb=xql$X;HEf7Gy40&fPynC_RmnO~1oMo(UICrA
zG6%dCgtpay3IU$?w*S5xDV!D3(PkCcx)bpvPy!CH!ae}5F2W9_Hz!d*4kmX%Uzj5!
z@zYh-r%Sz7q5-o0e+zk)6hj&cR{&qyYFJAB370a<eGjm!Jgr0ws23CEW@Z5@8i1S{
z1OUdDcQ*W$X64B=?LK|m&1IZl65x8I2D&4X)U>rD#RzH1iUSXFJOtfN{qj|Of&4%9
zRmhw^Ak@9d<v<^(e651{A+jHrsc7;vto{Da&Hq0DS9|AIkZP>230F_9uDd32JMchR
zUiA_Uk7*q}SL(`kpBt(nt}uaBOL8O-FN=_hYh>E+JKR=^06)=SOAJ&IHnkG8YD~ab
zfooP~%jeP$DEeV!tSad2+hIO7$ZEe?Y-cEgLB3t(J^AC)R}bYe>U`lno5Y^1GObGn
z2zT;u`CSg*cNfYlUX)4EXK&>eULIwwe?OD}qb-kV<L?3hvFPk}=_Jme2f!qI!P^?D
z7996ZKn7JaP*wr-U?8BfPQN@b-Nhd2#@FL|Q3|fhO??+mu7CAZa3$Yz`23k{$a=g-
zT-~SDLnUx26Pu)IBg&Y`W^2RqwSc7GI|3S5g?SBB1xL~Q@~7QJlOEVB*(a&mzgowt
zw?>x1X9j0~?z;Wr^-Ov_HAh6n`=@MAI_f^Qb{ifg9xj%}K&*Gim2Fb@iT{LCj#C-{
zZ-}z^uYoA@0alHkFGO2#_nY796n)-ouKd`w4js8cfpbI$u=Y8d_se=#<gWMbz_X02
za%F?o3Y4JrZFY!);CXtkEuThaipo*iC>OA!DL{$M9u{Tp1@0cb=J=H$lkKEs<JN4!
zzO;}VRuxcieNL)L7lZ&Xx`f<j0gKY(=cWG@ZxwstcgomMA%sXbuUo`jVFk@w)Ntht
zmvy}Cc%J-lP;CjP$0gb|=zaGH{m1N8X#ERk73fWKbhqMp;`^5bv-cnLvCut$ulL&~
zz{mm=m%lH8|KbAt<vaO*6PEnHXNLYy8Lp8c_}9o9Vy6~9*w3SNXBHO6lKyRN3{;l_
z6}@?p5lOiZC+I+RVDcan<25^e4}O)VO}St2s{NRZ<Dj`4DR(n1G#?9;9wj-n50>kW
z0EHTG08)^oiAddMYpAQhP;l-mI=QsU+W|kaqLcg<hUnQ~xdIi}h3$zl@U#)>`PPRT
zDvuJxYUcd5q5ObYw7W)da&ubEFB4_QpT)5%HP6;dbW>XZCjiN!1Cw}+ppt@@)kfmN
zC~&Q?)-u}$%A7D<EZRJ)7;tOZzC7@<s_r9@mviyz42;We3dvdbh0G-NWRd$jS^$9A
z|LmPf$<b2u__6Dz9T6`bH{IPoCqF_GlBc&h`NARww)1PLn*o)N_{6<~w-gLg-x2d2
z!b%xGu2<Y{kCuxEWEm+B92t;goSvm!hAWzzBGS;WErW0bGy-wALlOFA&Jlh`Xx8#^
zN0LR;K>-sWM?w|^gp<|QBT#awMXa>Br`1QxF9C0dxXv*s^TPc2b#-)3ux4T7>nP`i
z8iuQ#TmGPQ-m-hVpyb$CSpZ4=oyNat<<{_DJ|9mpKk=U!aQ$)2D-dc1`8qfch>$_b
zcA)}%()nt_irqC)>Us8(hEu={JoP=VL%Q;WfUzFNA7M7}F5c7Xk|zJzE&JZRyi;Tw
zB_hfm4<eWlx6AewXZ!%gft(5!iZ0veM6z?|Sly4eMlY9nF$E{uk-E3fJOg({L=0lu
z>{@bNGMs(gsOGm12$@ftd<ZISfw#xXy~ZZU>O0|5yn-cxqj9(9;$>w3^QsW-9lEjV
zHPIH`0{z>YVEuM<%n*Q_YBFmk3_~|;2OqKX{5dr-TCI!({lKx-(??D+8~vs1@-uZ_
z3za<`#-@d2-qeml>EyYRQ&Wo@qiUJiI)aD&<4yz9EtD$8o3!xOHd)!$-Vu=lWU!2y
zK7Ifa09Rqe7}$Rok%}fhY$+^hh^qUU$;Dsno7ECT-(w{W91%uKY99hc<a$fRTu$Sr
z^g7|3n@879UU4sdWw51V*U9bP`=v`6i1{I$)yS=7l3b8iic@{>Bp!q%R{_!F+sDrn
zfJn}UR06dB>W(<7iEmAmsp$$w)<9m$M5JiAj;h)@Az_;x?OMwl34C*_or}kK5B7HR
zx0Kl<@{??>Of4vQz<~1FfTMF+|2R6TJ}tdTxPLI5c6#mLPnIo~tGVWt4YOUz3x^%j
zlCeY0NShZCzojr6U=E#j6?fpx;a_OIR@i}*M)4FVCxUyvO(kW0ko*aFPvHahcRJK+
zxm_rY&cbL`5Qo^+L5W(IR(-p4XqwU=J<}474mz%PK(aDoR7xbpJzF;6LDS44KW?rC
zbpWcPed|1sVt$7E(&<0oUxF~J%5^ovx}B&Xq_qL`RqvPc5TXG<qV>1RnkALY02O0N
z^#N}o#N0x4O?K{w|Aihkw5>-0kiqh0rrMc1^wqcgfJ-)Sa#PdJ*Og$VNaLJ!?02hE
zTe8<rQMIAsHm~nHEMm0g?J!rZOD9{fo0@L^x}Q(`jDPo%A+6@n<ItZLcJ86{XG+Dr
zG0Qrd<;Ejhp!Z~Pk^TCon~f=ey||qMXRSX-P@Elb;kZ#Mz|S?e%s{%@E_w`_Tbd3|
zlbWh(?4=!<%kpI@EWOPE6&oF4&H4O6-r6Q`QTpTeXVxm&qcjt)>f0ojl};quO|Lu=
zeNM7_aAM{%Z8IOJ7bNuh`xSGbW@WF25;ZMm$~|DgXF=-u@8yOxR0EdZ430kBY4|Ep
zYptQXam5#~50>utR?M}uN!vh2?HwAl(b_2bzE>R%9VpS=I=)%HUGiNMwcJyQ(7>$6
zqNb{h#hrm-MEA=id)Xc2f2Yf^@_*4~ZqPJdZ^3X}4SkP(Cqs70xk9iTDSreP2nDg%
z-xt2T>d~dc1ui!MP-(!ovZz)&BR<~XUdHk8H1MTfH9JFNC0aFn39m`-t4!47P6rE*
zE9f<lVt(SHHF92QZ5jq^TK1vP>Aeyptp_~emAm$p!D*L37)uiL-nK7YN<=XG#>0E{
zOn@$HvXK`sM=opmBa0g%V^?NrihXOGqsI7hE>l>W`ssw6(=-rNlwKd7)IW(fWY`{%
zHo9grKcDLq%rXOztINIQKt&$%e`Ul7X`Kqr`xVNcLh5~CthVt3{2leCL+vSmli~jT
zgsuiX-4o7o;`2^g2n;aW(MQaoPz#q5_5SKQ_dFZC<4V#+yp0zpR>M`$*WDX-BW+&B
zay!Kc*cvc0m#t6vi#fD?B;nYuwoZp-hk#W3)OJdc5s4&x_Or1{t+Je!Emvnw%jK}<
zM)v>!j8_28r>aJEaJZD@M9c01UGdNqRS)f)`(Vb^0XaOX+e%h!i^D5ErEZ%yX8Gh4
zrYovc1L-jaXQP|o!&67#b;C-OVAHS{%!e!76uBXD-$MW3w$$j$p=-uv?J>j>e{R>x
z)g9{wN<*2iJ)k*w+Q$1U#03vm@buJMeq2?xoszP>T#K8IY5lke?5mF%FDtb%hf%Fv
zFw<YbQ8-tqe~Q~ZI3VpGnew~ML70JNA{Pnhq6OM1SA#J#{B!fA#LW^r$8#djjmykp
z)+sOy0D`57b}P{bT-%+a)cEMw=lh^>rB!!^m|iu#PE(B<0@KmZNc3Qm?+kRI)bsul
z%sA~IG0lP;cPmk^yownjt`gMu=V=fdc`;8C@b1P+$5folR3rCWBIl<*okLtCHp^JW
z$T=OJ=t#qd+5*UBvxY#Z?6A`Rg_;Jv@harbjepWVPdfT0>uO5jh<u>Zd{pRxB1V6~
zcWmB9HDn{9T~NBvTE!dkbNQZS`LtnEnkJNU4tz&NC2Z3g<9hlXN$-(e_N_1bBQFho
zF=!d%e;(O%;MLlm%Uv^_Z7pAA_%AYo{e|Y#e2mz&D<9oMH`A*97fwy!kycRv&1B_(
zyOVYPVNtE5@sI>=(p;V1m)^%#$vy2BC9C_A^^8_q-|`Q@uHg2*i-&FiIlVal$g7<|
zi=mxmD#ea4>PuWo<AHN$klYxUl{z4zOoEqG6@Up6Aa{T4w+Pv3HW}cKGS;<PnJ+>Z
z4Lj^4O8j6r7(_Ar&V?N-pJ;il%6`)}wX!#=E8+asp~lYo8n-4L00vBmGsTKb;N$Uo
z1A##O{&gVC>Fb9M0w5;{F+V-lwI2eQbrc&(kGV+=9{svDn`=k^Jr+xRkg~rv>1gNB
z(Pmr6!U2E^HMqjRxHupnl=EoM!3)~`v+hxSqAH;`YLIhcBI~b`SkrSA>HuC?k>@y|
z&GBw>X+s=n-msD+BE5XqW`Q;p-hn%qB3ShLuxd-RjYaWU-rtho32r8^i?oi%0`*(>
zJ@jYT#S)vrPp|<ix63fpAEDU&F_WEQ>I)ED%iHM1_VEon9X%I!Iof=^cGO+(q4_}g
zr@!j{>3xZ&<?_Y*V{CIz<*K|+#lwVq+C*mZdYxi4bbDYQB(*Qq;9}T^WA`84;%uo7
zK3US1t2cgq9X~Uqw3(rTj+3nN|KOF7|I-$)fq9*}5pUD!+AFB%Mh<OK!Qak0FhPkM
zmUU{&H_aLKot!;Uajsj%)PPjQX6|iEHQWYjkgz~7-+z^sc+UWNl1MKSV_#78tGDG)
zjaVU*R6ot(UHiBl15U?&g<W@Z03C#+XBchlQmg<^?D_Uz<-CahCg=T$C}~`pH2p7(
zl5J0ojrhA?m=gI@&XesC=Z`yfSlFGff{hz}RS$%o(%9^~u<dg>9d^ts@?8C3qg|w%
zMXZdgAX2XEk?DiNu(n|Z*z8_4568S|>x$0A;`88g5k>yh8+)#ss=ju4SXighzbbdH
z<Ds}lAh}R(qOSKectu3<$0qJf-Lmf%*ay+k9~9gkzhZm48K_j-U$;u`4Vrj~^}CAE
zx4O~+E;Mf&Z8~QD<q05`W-Uz!2n*$Kz3$Okhe{pL#ZDcCqfMuQTgM-AX+X$4*<!*k
zHE}$FLGgBIpBkB`EcYX9O}3mivrKagUH*iXEEjKp5B!ShGNboP`BbK-!?|sI)R{~}
zzgb=Zbgpi%;7M8E&+Fl9*L>T}jgZ~~lrk}iT>8v-UI0=Zd3>Sfm-a`xmbZT?D1Ij{
zSPqe|6aXo<t@D12FO(qmo2=xMO1D}cRw(%Tw#O1DHEK$|J0vQa?D1cBtplqof?wp<
z-A4fE($=gRqM*pLQB~%C#T^-ljnl5iuL(z+C6wKE#$k6@G1tG~7lkeuHN^RD!sj5{
z)B#3qBGVa%ybuMA3lfkfd3QhEvC-iAP{h9wvmd)Id#(~5h#x8L5+)1s$yF@o$))y?
z)8AYadDvmHwa{WB{Aop&X@Iva|E?l*M9TR5a#e7bAJ$%h9dRK`6jYkv_gy0H<DKS5
zIwC@?X;j>ds~}VLK4~m~HneF^fDrO+We8d(dDca>-n7mFs*ubw(5-BvjyZYx%gpnx
z-&2O>LIB2u^1TK>!ho-8pscOK=Rz;5kE%h-2^x1W3#V@%gWG5{i7G#!dEuRlYll7U
z><FC^e%sN&J#C1}UqR{c(h>1AdHbbDvZQPQow&Z$G$+@|o|nK1ynaa;nqB(k!j3w~
zjH8+)gIiH*UNxH9S(9&33>hm#uDiGGj6HAteLBq)xN)Pm^wTouiZ}puPgQEV)Ttv0
zv~3sTQ1!~@vN8MjULsWj+`Fp=Ro>%9iJzMk5Zsei^FLoezb#Fad>sbZ4c+rwD^qtA
zjofy=cSJnItuCoB^iP<Z;?`OwbOGL;j1zgy?7T;)@D(u)={ql(0!CkJ1Ls!lw&-$J
zNmVT}6{O)=7bmL{8^8@_mSy(nM^lI`0Hde|+SjRVKG1u=LAcy97%K6`WpX5?#Jg%J
zY2zh52K}jC!NomF?RYdiWQA-2U!^Fm9M>=Zvj20G&rtGW0uSbbm)lP2HtIzZz>j1J
z_oD;SzbOt^1r3_>B3EMlW~0hZG`y;^)xz9&#30)|6={9DYr3qfYWT!{=o9<>Ft-J}
zEXuyEh0CDs%l6=2s{3xLM<BUKQ4h2#ad5bjEfR@j6)e%(?04ak+4KDfq`fWRktxI&
zk%su562I-vfaCL2sE*t>3Dc^>WZkT9jR4MyFNLk8G6pa8-FLf+M0Kof=8Z)UAR-!E
zA5VsD(q1zl^)T!<3$@u(hpJ2*mdwG6^17Q9neFsw{pmM5P;jmz4&9`$KP&z|^Q?cN
zb$h&0lmvo5<BWDxo^!yFxiAVQO7jFJqa_k;m9tfnl>)Hd^NCwZosNRU+Vbip75t6!
zgXf&OdmJn)9%h*5TcA(B?BWI)YzGIXP9bQZ{lZl9l<+M3?fzxl8Wg)Uj)MxpFbIIP
zicMUrLrN=y3sVMap*0eQTg_`J-yohgb-HS_BBrQck%KBt_)-14MDc{8qM~=6*lT|W
zt>8kS@td6N<=Fq(XFG8179bzfJ#U^7K9st`QLiJ<T?gWP@`}>e+L5cKEN;(j#Z^yJ
zmSwfZ`W@c&knq0~A9GG_gB2}%Ukhzj;czl;ni;MoaqkMP^%LbBilIz%%$KKw0A8mQ
zs_?me;0bi16-c`2DL3rCNaZ@d19)F3C&qg6H>ObElf{fajA_M-;nKEaT%bo{1ZN}|
zO0CE5&Cw?f<MfjyA8(~9`<h&i6fT%)2lt5bo*Yy>^Jfy~{>R0A1OBbMq4oW<6S{8K
zD(~Na$hFImfY?-Ei=7T?Zeik8`c<U2ek`2mon6&?!u)Cuo!$6)5V+Vj**;}V%E_mk
zt8g_1mux|Wnf1ArinI^pvMVqtzQpxd-f_XUH0oZo{uS2q1ec(a7JEe=XadanS*bXj
zt^WgdeAcp0%IeaTioy=s5x|>Qte+Y_IxrzMC0^lc^!USflPZY-_hkqoo=g0#_Kss3
zx*S^m)thNC#F=6MzFiVs2y*zbb>eou2hbF9?K$P{y6v;vQpW<#G<gdk$6JPYU|gW%
zK%u199S}HB0@veNMKo#|r9XQ}?=A>~Pu?J1QUMA@eaqud_Sau}$RSt3rY9vL2;VG<
zYo5B6L;*BP1!!|c`$vVa>J2Jj;LCcqZO)?#UMeLuWP2c!i1d{~chj#szv|-bF4AzX
zZ1<n418R={N!46yUI6cTV)|(3GYR{?m@|9-KcHW>`rx)PK}eNg^X;?yH$H!>zmuNe
z&wt=ocz7ynxBIrhW6dhuDP(Y-umU88BXvRc?+Rw%{lk~zOpJ(N2=||%0{?7qI8`?6
ze*XHSUvn-Gk7wfDORd6?S66=3lL9{wzI$)*O@J)-YxM(sr|cN-diJ?h*T<@~?Rf%#
zzoGx&#k{VO`D+uONO%8diT5un>i;3>_H=K7I3ffGc&F81%ek^NT*0<U{_iaYHr&(U
zm(mCP`Jct%zwCeiI|uM#x<5)wllI4v4l+xG(Y7<H<iE1O!&06&=FD|Y{k-dNaqNZY
zqoL1((?jDs<es4S;Q2fQtAE2w?06vb_Yt%9#UXp!ZtnAWJhK-W5#=xZw8Lt0mK0lI
zW--xfx3GaQ#sQx^^v5SZ;j^Ffd<pwISzahb!>Mc`3^?G6=5ZobvzNu5N<ZB%k5mb?
zeu*NiY-lRg)%Q-EXaK#T?W<I``Qp^uB+~Hb!EON2$)pn1V5w9)^4Pma^I#Y?iNg+A
zJTwexWbU#~y)<6p^3T32ywOQ~Bc0lI&Brc#AD*WWqOR32F|D4a|BtNI0BVn6>@GAD
z8r=kbkMQn~-^-=_)40M@VN{6S`Wud>ISITR`NzvoX#Wgkdz=2VMPjA=j^S?~Af`D_
zQ{BD8Hi_8hLrNV5N;A__0}xZx`@z4_M!-isHDxL5i!DNVM!~iU1t3Fz^EYNyWD9cn
z;}p$8E&u%9_=AEouN&P5&-qPG89U&RRzURN{nwTGBz)$NJ+WT8a@j6d<mESt`Ea|Z
z_m-^y$`+hh;t0y_obG^){xhmKPQ5duk9p!zIq{6yPdTo((Z@G5{O@Q-iT3sHn)hC)
zj7(k3H|e*Q0$0CEbw}jbVhi)%RdxNj+qa*e{IFR#H0-V5(fuT;Nnlc<r&*kYCb<gE
zluW3Vb@Yzs+%JMu*EsG`kg~iMNQREC<o~duUi=Y)AJlyYbjkeVVXfaf^es00(4AA<
zfY2u$y$;Dctn=4pg0kX-H#A_kV4-QK!*-zs718@QPuBPq{1^mkD!tY{)<>?@LJx-J
zX6Fp{6Ma`i|NOG;=TpZlq<p3po^jSUVj!QC+$-<g*1NklZV(ZfnC)L7!p=X~v<Ocs
zag2@>x|BiRQw*5iPgiS>mP)w&objuy#35C)^hm`Y{_0-x1l?E#Q+z(Nnu=^sl8zb-
z_z;te+4QFrAclO9Nyp*^3x^8N%u68zSOGL#5Ef)gF_%a?>|uxDby*cSQz+&XDQ;T$
z=BVOLDN22BT@3ySIK7zOS6Wp~nY!4`B4k@y#CE{+lFOUVG4*(ah6Fep_Z?WP+$egi
zc~=T8_rpMpI(ol!dG*W_>A^jLiZ(*$cPX2|3o)Ne9IL6T$dgyORuNIG{ChEAeN2r7
z!@pKLT9ul?P9~c6hRmaOYs-7}6HnH4MDI_@xy4&&O~CH{b5D8RMxlxGE*XMZjb`T&
zl_;Wf)^(XivhU^q8CIhj%Lh&;2MU0&>8Y;N?>4)vr@#5M%xNf$6>*kVSqjH&RIQDV
zjG&H#K>nqbhWx41d7DHbf6mUkwqBs~A58%avu|9Al<kY9-fLHc&hl8#t`9&Gh_&yC
zJzA5H(T9VxwCYz~1T-X5X98C^Yf*wWYl8$;gG|eOh?1(G-(Kw~UCs<d+9*g<bCb&d
zI<^h5IWg}BsiHv+ptp}CW-=-V$mHu>4@T|~Z@VfZlm2o;RVw(Fg|D}rWX>o{RAH%2
zGl^x5@So1Oz(>w-7oZ%DN4^T;BtBiA5Elgzq5J!?nR4q{2=O}j^Fhz6WY085_5QE$
z=V9o|YTsb9I@cG{n6-$FBIN=~sR>oaD(|J*sLyzQZ=9U9jQd>Shl=cwF+oiHa;W%V
zRqSU9D?MPP=pe!aRL{DuADH<Z$2L?PAXBVN=j&P#tKHZfM<3TI>^(ZEWiP}n7(b&c
zD`tHol|lVZYbogrSnBQ=<GXT+#P;470iVPk3&kcuL^Kr6Er<{fZnju`O@vWQ@zsn=
zF$bA?{e(}FsojGS<cbr0dw%1IC!8^UseYO5@nf*#xd19R-N1NH3<Vy4imd?Q_xVf}
z2nuG|lGKMontZhb0R{h$$MCxnklL<Lhk#X|{ShIP#u|gUg_eD}59Lm2t+i<MyzK?L
zrLFE#V`Xqu^RD<-(@xa++b6`~#qu04*H2wyOd+hi={U8t?oX=j#15QG6HNwfP)4o@
zrK9c@)qdQ6;PlNm?o?ySXKz)Ef%Dw6{q)s=2fpG828}|O39Hl336P(=^~t{9EYeH`
zFdiA#+nSz84`uu=qw7M$GtLe%7={Fl$_xr|U`Lnk!!@Nw!aU{P1$9h%;tJ_OnJ^5S
z<~@?>ppL9&-TO^s%)1;+mDs3VxTxXeVZ10T?o&v0;KbjIH%btztj`!2w?@aq@!cuP
zAP+B0s?3}pC(Js5@#ZC+xq=P??&Z+EzMDISy&cRn;{(0!pvyP1ZOX42*-muPv4`Gk
z+%x-WPyFa>38ArDvrrQ#(w`mpfV%dCqiXV+lS%~|ewK@ilBKX{X7vMJko@8maneB$
zsJHhZi;~K3P~WRs?2+}#&;}LaK7a4is0^d~`G;Wnjf|0#wU2WKA>XHK5~BL%xg#g5
zTcOpn-(5xo^W5i7S?EQ~pbGsU1x|75){9BGRs_#vkun%*w{IG@v#MH*;$EZ8wUUon
zx!gO<mUJG_WbXUdLx{JjaPkrHT=%Zg_KG<rmIa^(DyKkShptA>C#$wVd1P~s3e1Tg
zD$D&~s6v*IhFz+tL(wIe%+m_4@p`?D;$3ELO_4$sOWy>(uAMmMWzEDUr3bo)6|Jzn
z=xdwD>qa+bzs3Ik*E$Aysp%vo@597W(B!5lyFj9PZWA><5lqi>{P=)zqQFwte9M}S
z<^54g+M1p=smdH1T&CjdiG1#yCeJ_TE>5i^=r0|+a5oJAij#nD8HlwT6X$)3CXMpZ
z#7)xmZj~tK-f|gB|5g{((;#Ofka6na%}D4Ee^*1@M8oqQUrnkNW%WqxPGcI|>Fn+<
z^>);j);vLB=5;PdN%QNM@q~|<Jw!;76iUCScYTH6FaOg;al*&0CJ&`k*(SZ%QtmvU
zB<?b0i4Vs69V9?v3_ZJIrt*bz%o`<CJoMgnR1a)%4Qyccw{K6#i~Cp>sR=?B&TrYJ
zN-nvTz`hv}>LjhT4hL!9q$o(N5;^Iq?}n7L)!K>iB_@U&bPLnkAYqn=v8lkE=Eq1v
z3`+(Zn&)j+n3qeoh~>JagodBU&}t`V)PoPP&rZ$Sp)?r=OW_@2Ek}5%#?}aoh=f%L
zXZE2?ijsjLcN|u(E8qQT(8I_lROyj8BV<0xe)+S~Z;1;kBe+m+NZ0JwAcz%zU4PLB
zy6V^$1GT}<71HER<thZ`00@Kbv?!4>om`$!vH9rqX(D5N;?*cFa1h03D^_UiUh+_f
zS4l(m%;F}>7n5Cz$-OavcDa1GTROG>7BrY1UmVODP4HTGuOAd_Wo$0XPS`fe&k>^J
zhXS1#v1JFd+I@Wss;;K=3e`KM53PDzexqeGLYL;1^kje&b?eGGOqXiC)9EbV$g_Cs
z+Zsa!5d$%;H1p#c1)^vtdLAYeR?i=j`t_9n=vz2JCG{t-905j7dBWfYf1wS$uDV31
zV1eS>aKiQ2CPD#IqdLcD_<rV)VW|maV^SSyzVU(g<oe2SVd?#IY7&bzE{p3aD7(j5
zNh;L9(34uZClto|XbAps>nf&Sle(5Ba9gOazFjRTdxAqWG^sH(QN20OW}vU9Ue>0l
z1<#b7c15PC^pb-mvpAUiy&7IoOPg`48Zu=)tyl#CwKb4NStnGg@6H+V^XY+@!{CQ(
zQW)mGDN&W0H)*SY9|{xKJGdlrB9F4QLrb`mCOVksk;6xPz|as}J+Yz|k|RY<Q5sSE
zY6q|5nn_Ps$y!tD53cVH%p9TFzm&kqJ@88<1r8~3KWnCKoX0PaHJK}@8<b+HhmpUB
zhBd<#v{l^QCe-<Hh+WG1+U1>nH|@zZl7Br8pEHi=Kg+HS!XdelR#Qwl#XcvN&uz-+
zM#Wq1;c$N}T2gIG<AY}*p87ICu@2|qs{LF&)ilRm`y;Tll9mtcy>58VNqljil5>dc
zSG%#-Ty6Ei@lF}k-%TsQ3B>{e4xiO6m{L+GRM(GpmnJv;6i&Q6tzlu?oz*xSl1Dly
z$R~?&<^`QUmQ$9#8(|Z828~*McNH?R7ojoX6Xr@$x_MN`8e1uw?Cuf_aIY_fU9|Sa
zXykik><!eUaq}!wE3oU-WSx6MymAU2c9nE8T`uPlY4Y8rVldNju;<NNDZd}CO7TCI
z7)N!thLmV8lE|C6Vur_E4Q#9w<FO)gcMDQj$atiAv=zfN+P;1&9gKwTjp(hNRUphs
zRMZ&f=DVw`JQwrUDq$`cNQK&i>n3INZF19x=I?`(v{WC~cV!oX7A5#3R<3r^L=yA-
zFo*k1>vf|lpr~9K{-fp78(o$Hs6HbCWgZ-@c3PdN6pG(lKkQ+otLU7Ox4R%jO6=l6
zFWil;4r^nsc;FrT8sENMzUnZi93%{5cDOgnu9`jjY2>7kohjbeZGss%U71!3Decxm
zi4$`eHSErgGYa#!yvnLHV}0*cW;vG`X+Z6q0ukAY+KNQi(5xVe(+^SC5`WtHav!+H
z{eByGdTFf<<p7irw%<MxWyb{fX?&=k&a1HNTab|~b*bu|-;21(ja=lq2f43ULcLRS
zhC->=AJT2ID*f`)0<S--2c!6~-jP~A4`mjv!Vj{%-+iU_$ynE#7VT-Iq^aal5W>ri
zsl8IB*{|lHWf#$>TQYMYnowe_dEZl+^#<&sdN30kM1Wyb@!j9ZI9T7$!bAUR=h}hm
zJfzUbp)}s-ucjjORS4M*qasY?{9LZuk~=|o$Z0-9{Fqf%j85fD^t%37JOlK0Zxp1N
zALq|4&_9L@p_v7wb{UITaYBh}Yxlq8+19uC?+wW@OcXu2kWJ$_FBJYpfjPkh>=eER
zN^~m1O3xHy#rT%gb5=_vNHl^w{jv<6UcDcOSIxnH5+byy5G&+sLukKgF?c-ltW$Xw
zy7~9b)!!RO=jRMkGlViSvu2c>U1qOCHNM#CZdvE7(F%>z3`F~Ks%akZk8iXJOed*&
z7BMY<&;ON=ZjGC1va`TL&w3`|^T|BgD<Z~`8}q`Ll(lD02h)`E_2+dnx{w+Q6KVLf
zm+;HP)<JS?<e42=F!9Qw&!s_0w$`aX6&W=nNkN}V=W8#>e8{Lv;&g|95AWo5ERQNl
z`zjYFiFqbJ3+o-$4+hraf!{9E2XDoLMnt9Ml~2`_ST*XX7Q0oxS`YW7J@X23xM`qJ
zMN;eMU$<X;@xp61T&-~RrttEu@QU#TORm>&>C$>CmFv3f`7OvPd4hj=l5UE!s;Gk7
zv9s5uitInGZ_G#UDffFNW_v70$6dT51n2+uf{}zLVzt$lja(z22pWxcv7E=&CnX%x
zI<r}-luI?jXprnmQfDw$J<G56Msi`xeaVfic8u_`<eL2X+Br@AsX=Xf4-BTX%bHG>
zX12JD9%dK7_JyBhh4l-f==_iGwQ$E{<<P|~X+I`kZ~}59LRUV(#8obvS_<X5NmGs%
zfyeFymh2JbAZY>Xdna-S%qZmSO#HAORQ03o%hP1`^>LZ*zAer-Cl`8%_8te5Bk+2E
zy|p=Gd-;H5j^?#o>eW!HJ|}0o#pdC=74BhKpbMF2PN-g^c<tl6IPTU981ng^r}_&O
z_$x}n+z>bA!swwimEXw-YJsQN=c5XQZzbk@w<dcdZ@c;w-z|H=VC_5ISn3k3l%cjj
zlEZ(1X{~RF8a;bIzx6VRj<^{zU!)9Y69ng4kzj$@V49qcxc@xzyAx@s!d~(G!{4rV
zawbJ7N|0Ar-%xXHkOzt=c0AX@ket(k-Y4v=^K2_b{RD_eqh<8A(2nPbdSP8xF6wVo
z*{9NOR>df_GE+wJN%HC#mmqU^s2FaLzKloq!@Q?c{CSiWkS7T+?3EJf;FX=#g&`J%
zi!tEaOhKbAZ=kh(Dee5HS7q)dQ4L#1{|*2h)cn5HOAWuRORAXr(vREHcZFu#e_rKE
zD{MqH4pcov`z7TW)pgc>o!8ac@pQz+?yzx<lCA!IO^WZp=B85RI?8sc)X$ANj5S>T
zid7c4{IT5A@~E(%a|@~V-O}5U-2x>yT$yno$z**iu>QNmL#5(#s9P*h&Rttje!RR9
zK}#w=hV?DZ)}~U!U@@=}y72k-t%L*da|w^@P3bSBJtm*rOM%xeac|_A8+HX0=M2q|
z?@*+&FB>YHx$ob}zuGmEVv4u;iJq7N(_09*;*dnF4K3K8W{RDir1rkkauj~{GtY%;
z_=BH;MVar~H}jT3)DakTzFYBXx^wT!x^eR13DXf*as_RSeQ!Mg?8QP9MoFl9rma)0
zmAu^hWBT`?CR0jo27h!k@c22ZZuby1AN@GdT-$GBm<=DP+3;+bJLXJ3qz_9CH%tX?
z^^6*DoiIr6_l49=MuKrz#d&SBn`K_qWUWJOMbL-z6XW3Lr>+kl6x>i~pENn_@#9Ji
z$AhF(U|g9rz*wI|C2JWl9k+5PoWf=fdsux?mPzxl%`tw%Ml?0Eoo7wC3S)Ur@?&Wl
zgspYARDovRCeWx)O8?n9UehvIuL$qv<4RTR%IA~tEBAU2-<pbCVbe*>jm6_j_?CZV
z0yo8R8te2HyTNX1V^_lk+$n1-qCop7*3Y4RbmKMnnpNBllm!XS`)7D~%KpBh!B)~n
zMz)MqHban`yQt=Uq56)E#*gCcVhl1b9VSFqbE14F$;r<dd1(xlr(2p`ER2>$^xZ1y
zDyGW&kYAj78U;u$T6zNT4oSNYDX@~;D65*ceU*iU5!6qMx@1tO!BmvW^=BXquSttn
zeHHvt<j=Ck=y`U;b;!zB`3miSx#r|?TrbnH7)MAd44G6qS9pP)>hWZ$z0{LpOB$~@
z?ZB#xIFnDv&EsDl1*bYJkiUPrNm&s9b#F9lY8rIZF<)n&H#kT$Fp5todw1Db=JyAy
z#IW8~pm`mA;={>WAM`Pj(Q~n>>AjIAmi|>%=&#}l!H8#?_l0ssLGHx&i0rb*A-~0S
zc7I##f!KHKR5DI(HMLY`NXY=A#`B@z%$(-+OVCF7A>N(IYcNjuV4l_d!6{}#-8?f+
z(brW7JhCeo=`m>})AtQtWme>8K~t;E*Acltwo&`8*S}`mr6xV*bL8xg$`|46gZXaS
zywz99ahKd#184}VdAH0VKJXEL)*gG>v{<1F=NqVEa?cyG?fDCv`Bk^@GY+%0yBZK;
z%ne?<RP~o;o!BK~oQrOtPSozE10a~)+WGf`rt2!32`S=#woK>YDZJtu-`OWE@zeK9
z{`~nFgFW#oIiDf&#4%p_z*;DyGB0-i&4FnB(9RTs1^DJ#ToMmSK7x8Ie|CB=uU!q;
zn4p%)jIXM9>DJ7<)z)D5`1SPSn=5nVcq30aczc}D+fMD$3or7~E=<Mq<@Xipfc3>;
z#{J`uBMs&H^QBCi{c+#Ja@_CHR7FUxEsK;?Wr4`Mh+#ikcI-)3*KuFO*goh*V`9!@
z2I%{4rrUy~Ubl=Y>b5uAwdrtBakXS}@K*NYVhw3?vr<kEKD}3U8mm_?@va?lzbKhf
zA@tp#iv!QL6;ZgwF6csKvu0}M?&!=|OZ!2bhTded^_zO6qE-4%t=;~Dcpkdpkd(SU
z41(8UUJUF;&T~Sr_9=`CmKW-NR>V81**)WZ{g41vS!KCr1`6oBpj(xnL*jGS>4;#>
z2t)=Z30`grRjn`y>)8R<G3(<6k@@z6(qGXnHRCt$t9F_Cp8n49*hms>2j{;MJ1>+i
znyj8a_A;zORj9sDEZ6J?r<{Ad_T6pB4boOw6KJDBFs-LaO#!-o_*`f4!i>RO>&a{#
zmv^K%kWbSCgtb6UV-CCnmT7u2RP&WoQ<_4aCPrwje&6N|nkY}IUqe?J-pa^-cbpgQ
zLlaXRI^CCXcLzRfOk1AFJn-kW+#oQuD3#T-Q1k5y2$Q_zk?-Fe-n#%j610HbN2rPO
zcvD<CUs;#4DHdp%>|djQJv^!8hGa*DF(OTcSO3X;+=kWigd1C_SJFT__-oJG>lH^?
z3RBfR-i<#CJryc3phpidM!c;0GL*NQWiB5%`xx{}qHYsN=@Di!kS+Y6FC|O$7(s_o
zws6lyy8D)g)}%;qCP!1_0H`Ne#`Wy(fG{v4S5n%k_uEUkInK)xM6dYT4CHRh`rGRd
zXsbb5eWn<K7gf^O9Ir|ow@7m}sSR?8HImJ$m8<0qy6Tv&h>R;1@|us>7lcAQFV>`$
z<g1p!jZ9VhK{5BTRm-oZMIMZsv(Twa_UZeCAZHjDYkoZe)3A&IVWHCM?7^bmcX;vi
zeIfHLEe!OrD^Y$1Ho+8)>Wmkh{uBBY?h$5QTROaT|GJ(iJm1}l>w@d32@#REy{8w7
z>Mmdoj;jmX%^&DRQj*Tbxyy{JKbPsC|7aI~wy*8-=W3j95C&?KR@C>SY){sieH3=2
zNFvhJ^n9l+^*z@9V-Yi1z|!i=XIr#bp+1`Y<m}P$2)A6~`U)|>Wgz$7?}mbpYLyfd
zBTqRrSwfeG;9a0^RW#c*0`w4TljHkbaiTD@d~Ga+p;rNIyiwqbJvb<+Qs|4=%{i0(
zuNTEz5y53z9{X7<Yu!dgUM~#yE*yf_oQqE))0r)jlWHSF#W;U&S$ZE4CW;K^nx_R*
zjEffGxJBib${%(9mz(e{$Fep`Bw}cUnUGXM2Wc(-iEW)WB1!f~;(<Kdx$pc?r23dv
zi?$9f)yuAOi2&ATTQdggjce4m+e$y#@?dP*Co40QBN4M_W3tl)9-its_q^LL$$2lN
z<Wlc7*Xl)S%MX^H-8vK_UixOn_Mh%fKRgk29%1%G;`YuWch{P@NXP48t5-)1uKg}2
z-F33z!_l4S@YdsRuSlPJ+U(*CX{jl}Cmy_aB@#KX$T^4f_K(7A4&sTD6eTJR*n(^A
z7y5VkTcM5HJ0faX>PKPcNisp}NLvBT@;my%t~Yd9C%Ll+#p*WJ1wpSp#-qO1845=R
zEMJ?3HMaDJI9z+ZQeS8@GNQ^S7B@B)7*sUihUtG=ytY(}xPGM9@Z_Zq-=HLOuq9@z
zQ%AtomkvH7v3REkU5)U~%i)yL?+8ousT1qV@4cL8qz#xA8EHtapbH0s^ezUe`koIi
z+FZCXr7}|w{v_SPhTIG|4uN62f^x_uak-is)mnC+RcJ_*Ynd1<+Mv#>ebpeYP*jt+
z-jhgImhCYba{0EgxjBEh3##Fp9e1g~EF-a2Rx{ZiZ%&Wr6Kd^z$QwG|zoK=Ld)cRt
zx7v)|?m94}VWYMFb&KO>O3={=VI`yvuDMS=oIA{23yEw`y*e17SyO#W&cOH8q`at~
zO%Ay(X!%}-#;Uq2=mWIYZ|v#n*^^XQo&xNtZGJJ%YwV<k>XZou=-xNz{^<LvaIo*)
z+XI53_4VhCZP^dch)H0j@GSRa^)=~b&O+63z#M<@HHZ^s#OW>(@@)wjtI4xOv#7Fu
zx0u3ms0?o(Cztt{gWmV?QNlmv6walLoLp}8s_j^XVhbb3E>*SY>2>uLFZesl42p3+
zsxxZymzv|=9Dh^3B^rx%LV4FBkKF4rn5$aO^M*GEHl=8VkFo}ZOY>|j%>^M^3mZWN
zY5h4^BiA2=$cTY4nIFuN1hjl8f4D2|HkvC@z>AVCRDv^4uU8kjNw<Gw79a;iLbWQq
z;Q9A$M1#c6I3B2z892sbd0n)(b9EQMq+Kn%uWwu4BdXS%(xh}!>mv7UsH*gt<Bu_l
zB0XZR^)VTs4lq5BRIy6c+)@yA8^|d*qT#;wk>N@aV#Ms!@Sde$;!g*=?Of$>9Pqff
zF2|CUKkw5#(clNpcW-K@1*uwBpHY%ub{oCe(=TM6>x?Qp5y59;xiJXuzf&wr1%FVt
zDt9R<+s8i^o!ZeZbMd2woT*~4o38=C@UB<EVXT>nFtd+ZHYy)-LMYM|gLz%SRx#Dj
zBTf&QgUx3aqfVM>KJpF;F*z3+7l#3NZM=EM&Ry&4wnpbr%N3s<I}-KtP?+w{`+Lp>
z&8fkj!Fbqqs(DU)sbY3b^IR&3`#B`>A!U$|FRp~-oijXjwBgUqzbna~ydl-!&l`n4
zKR6KHyzi3Crs)0$;TO;GHyl}-#DPaBCWh=2u8|K;eXEsRc3i6qV#LOmYV6>iA&l)y
z$RADQ5u<iLv@uY*^a?^}ByrzEgd*%m-<~*FIz5v<j?r9nX21O|3G{9G<8js`%&+P)
zwb{qZwrU{KQn+D!Oa*brqau2vDdHU~*;fIA3NU&;_nQCX#-8_LqozAVVlcjjG0tlm
zCz`A6Y-mX!SU$5{>Zuc=>OO(Gftr`o4nKSdD9EkPoz%;f>CXL&Ty;%#O&wKn0~D3m
z-#=9=UOtnSVPN!|(bwO?_bu)^n-gHp({go(Tf)jG2v|K+ySVG@7x^hxYxh7tc#BJN
zN%N4EF+>Xrq8|-uRCjdN@7>$izpezGt!(o0y0!B!Ec*0|WcFQ$vtOS4Jfd~Y`<>Iy
zfDmnJE~6B3SiZySoP0t@Op1EJx?kc-EXHh3Nia9_lv1UZ^Bt@X);xcpM^-_zO3#qu
zbPll((?*glYP0)u2W>wm92&LSp?*>OT+}i2=w^sOLZgcInPFnq78awWkQP&dA5ePw
zYoO^t2lK)Y+&Sg<o$r0h$BLZ+31A$*wi)4zm9UKy!O!;^Hxzxrqye)Tg~^+<t|`Z|
zvin6gLO$02`oSwF&gSk6kXNx(_K(YUS|xD4BKqQPwb@GjWeIt2kUMlkD&yIaH=^5n
z?^rI6SOgeKQ=3qaxBj0uTtfLT0rrnCzkBTO(`@_CEBD_2!xaPOntRW7|5c>-KGLmx
zSUlJ~?$zFX&u6YlUE!cf9?$bbMfe}_xV%~2@zIq0sP~aHrRdCqf*b_|qJEY{YIaiH
z<P-RF2zULSUc0s<&5#(3aUM3QcomXnDRa%c#L00QM_Nl#g}-u3OuS0%J-7FL<Qwr*
zDoxUgjdyvh?*3Isc&Z>liP6=>Ail@vH2g5~-0?B7%bo9%A9FI`&Yh`H_k6a`+Z~xF
iM)%z{@QUa<HH{$hCdzxA4gW&|xp&*(R^g2Y&;AF}k2Gum

literal 0
HcmV?d00001

diff --git a/sum23/projects/p7/p7.ipynb b/sum23/projects/p7/p7.ipynb
new file mode 100644
index 0000000..51fae31
--- /dev/null
+++ b/sum23/projects/p7/p7.ipynb
@@ -0,0 +1,2531 @@
+{
+ "cells": [
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "aa4b9e67",
+   "metadata": {
+    "cell_type": "code",
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "# import and initialize otter\n",
+    "import otter\n",
+    "grader = otter.Notebook(\"p7.ipynb\")"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "e68a05ee",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "import p7_test"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "0bda81e5",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# PLEASE FILL IN THE DETAILS\n",
+    "# Enter none if you don't have a project partner\n",
+    "\n",
+    "# project: p7\n",
+    "# submitter: NETID1\n",
+    "# partner: NETID2"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "2bd52538",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "# Project 7: Drinking Water Accessibility"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "6de27486",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "## Learning Objectives:\n",
+    "\n",
+    "In this project you will demonstrate how to:\n",
+    "\n",
+    "- Write programs to interpret data present in csv files,\n",
+    "- Use lists and dictionaries effectively to manage data,\n",
+    "- **Develop good coding styling habits (points may be deducted for bad coding styles)**"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "1da5578b",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "## Testing your code:\n",
+    "\n",
+    "Along with this notebook, you must have downloaded the file `p7_test.py`. If you are curious about how we test your code, you can explore this file, and specifically the value of the variable `expected_json`, to understand the expected answers to the questions. You can have a look at [P2](https://git.doit.wisc.edu/cdis/cs/courses/cs220/cs220-lecture-material/-/tree/main/sum23/projects/p2) if you have forgotten how to read the outputs of the `grader.check` function calls."
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "07e92321",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "**Please go through [Lab 7](https://git.doit.wisc.edu/cdis/cs/courses/cs220/cs220-lecture-material/-/tree/main/sum23/labs/lab7) before starting this project.** The lab introduces some useful techniques necessary for this project."
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "f49d4b3d",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "## Reminder\n",
+    "\n",
+    "Under any circumstances, **no more than two students are allowed to work together on a project** as mentioned in the course policies. If your code is flagged by our code similarity detection tools, **both partners will be responsible** for sharing/copying the code, even if the code is shared/copied by one of the partners with/from other non-partner student(s). Note that each case of plagiarism will be reported to the Dean of Students with a zero grade on the project. **If you think that someone cannot be your project partner then don’t make that student your lab partner.**"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "d1d2a7eb",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "## Project Description:\n",
+    "\n",
+    "Universal access to safe drinking water is a fundamental need and human right. Securing access for all would go a long way in reducing illness and death, especially among children. \"Safely managed\" drinking water services represent an ambitious new rung on the ladder used to track progress on drinking water. Since 2000, 2 billion people have gained access to safely managed services (i.e., accessible on-premises, available when needed, and free from contamination). In 2020, 5.8 billion people used safely managed services and a further 2 billion people used basic services. However, 771 million people still lacked even a basic level of service, including 282 million who used a “limited” water service (source from which water collection time exceeds 30 minutes), 367 million who used unimproved sources and 122 million who still collected drinking water directly from rivers, lakes, and other surface water sources. The data reveal pronounced disparities, with the poorest and those living in rural areas least likely to use a basic service. In most countries, the burden of water collection continues to fall mainly to women and girls.\n",
+    "\n",
+    "[The Unicef website](https://data.unicef.org/) states that \"consistent, credible data about children’s situations are critical to the improvement of their lives – and indispensable to realizing the rights of every child.\" Data Scientists will play an important role in reaching this goal.\n",
+    "\n",
+    "For this project, you'll be analyzing data drawn from multiple sources. Our data is primarily drawn from the report titled [\"Progress on Household Drinking Water, Sanitation and Hygiene\"](https://washdata.org/sites/default/files/2021-07/jmp-2021-wash-households.pdf) data published by the Unicef/WHO Joint Monitoring Programme for Water Supply, Sanitation and Hygiene (2021). The original dataset can be found [here](https://data.unicef.org/topic/water-and-sanitation/drinking-water/) if you are interested in exploring the dataset yourself. Our dataset is further augmented by data from The World Bank on the [income levels of each country](https://datatopics.worldbank.org/world-development-indicators/the-world-by-income-and-region.html)."
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "90f93012",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "## Dataset:\n",
+    "\n",
+    "The JMP report defines *people who have access to an [improved source of water](https://www.cdc.gov/healthywater/global/assessing.html#ImprovedDrinking) within 30 minutes round trip collection time* as having [at least basic access](https://www.cdc.gov/healthywater/global/assessing.html#DrinkingWaterSources) to water. For this project, we will focus on the **percentage of population** of each country who had **at least basic** water supply in the years **2015** and **2020**. Open `water_accessibility.csv` with Microsoft Excel or some other Spreadsheet viewer and look at the list of countries in the dataset. Data for each country appears twice, one row for the year *2015* and the other row for year *2020*. Countries which had incomplete data have been **omitted** from the dataset, and we will **ignore** those countries in this project. You do **not** have to deal with any **missing data** in the dataset.\n",
+    "\n",
+    "The data shows:\n",
+    "- `country_code` : the unique country code that consists of three alphabet letters\n",
+    "- `country_name` : the name of the country\n",
+    "- `region` : the geographical location of the country (does not equal to its corresponding continents, but follows the administrative groupings from [The World Bank](https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-lending-groups))\n",
+    "- `year` : the year in which it was subject to data collection\n",
+    "- `income_level` : the classification of income level based on GNI per capita in US dollars ([The World Bank Atlas Method](https://datahelpdesk.worldbank.org/knowledgebase/articles/378834-how-does-the-world-bank-classify-countries))\n",
+    "- `pop` : population of the country in a specific year (in thousands)\n",
+    "- `urban_percent` : the percentage of population in a given country that is urban\n",
+    "- `national_alb` : the percentage of a country's population that has access to at least basic water supply\n",
+    "- `urban_alb` : the percentage of a country's urban population that has access to at least basic water supply"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "afd5622a",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "## Project Requirements:\n",
+    "\n",
+    "You **may not** hardcode indices in your code, unless the question explicitly says so. If you open your `.csv` file with Excel, manually count through the rows and use this number to loop through the dataset, this is also considered as hardcoding. We'll **manually deduct** points from your autograder score on Gradescope during code review. You are **allowed** to assume that the dataset is ordered in such a way that the *even indices* (0, 2 .. etc;) corresponds to the rows with information for the year 2015, and the *odd indices* (1, 3 .. etc;) correspond to the rows with information for year 2020. Using this fact about the dataset will **not** be considered hardcoding.\n",
+    "\n",
+    "**Store** your final answer for each question in the **variable specified for each question**. This step is important because Otter grades your work by comparing the value of this variable against the correct answer.\n",
+    "\n",
+    "For some of the questions, we'll ask you to write (then use) a function to compute the answer. If you compute the answer **without** creating the function we ask you to write, we'll **manually deduct** points from your autograder score on Gradescope, even if the way you did it produced the correct answer. \n",
+    "\n",
+    "Required Functions:\n",
+    "- `cell`\n",
+    "- `get_col_dict`\n",
+    "\n",
+    "In this project, you will also be required to define certain **data structures**. If you do not create these data structures exactly as specified, we'll **manually deduct** points from your autograder score on Gradescope, even if the way you did it produced the correct answer.\n",
+    "\n",
+    "Required Data Structures:\n",
+    "- `dict_2015`\n",
+    "- `dict_2020`\n",
+    "- `rural_non_alb_bin_2015_dict`\n",
+    "- `rural_non_alb_bin_2020_dict`\n",
+    "    \n",
+    "Students are only allowed to use Python commands and concepts that have been taught in the course prior to the release of p7. Therefore, **you should not use the pandas module**.  We will **manually deduct** points from your autograder score on Gradescope otherwise.\n",
+    "\n",
+    "For more details on what will cause you to lose points during code review and specific requirements, please take a look at the [Grading rubric](https://git.doit.wisc.edu/cdis/cs/courses/cs220/cs220-lecture-material/-/blob/main/sum23/projects/p7/rubric.md)."
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "91284e1c",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "## Incremental Coding and Testing:\n",
+    "\n",
+    "You should always strive to do incremental coding. **Incremental coding enables you to avoid challenging bugs.** Always write a few lines of code and then test those lines of code, before proceeding to write further code. You can call the `print` function to test intermediate step outputs.\n",
+    "\n",
+    "We also recommend you do incremental testing: make sure to run the local tests as soon as you are done with a question. This will ensure that you haven't made a big mistake that might potentially impact the rest of your project solution. Please refrain from making multiple submissions on Gradescope for testing individual questions' answers. Instead use the local tests, to test your solution on your laptop.\n",
+    "\n",
+    "That said, it is **important** that you check the Gradescope test results as soon as you submit your project on Gradescope. Test results on Gradescope are typically available somewhere between 2 to 10 minutes after the submission.\n",
+    "\n",
+    "Also, remember to check with the [P7 rubric](https://git.doit.wisc.edu/cdis/cs/courses/cs220/cs220-lecture-material/-/blob/main/sum23/projects/p7/rubric.md) to verify that you will not be losing any points during manual review."
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "c13abf13",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "## Project Questions and Functions:"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "38aa88e9",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# it is considered a good coding practice to place all import statements at the top of the notebook\n",
+    "# please place all your import statements in this cell if you need to import any more modules for this project\n"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "b40c6dce",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "First, read the data stored in `water_accessibility.csv`. You **must** read the csv file and then get the header and rows (and store them into `csv_header` and `csv_rows` variables). You will **lose points** if you use any other names to store these variables."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "316f9f5c",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# read the data stored in water_accessibility.csv\n",
+    "\n",
+    "# read the data in \"water_accessibility.csv\"\n",
+    "csv_data = ... \n",
+    "\n",
+    "# split the header and other rows into appropriate variables\n",
+    "csv_header = ...\n",
+    "csv_rows = ...\n",
+    "\n",
+    "print(csv_header)\n",
+    "print(csv_rows[0:2])"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "70c06cd9",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "### Function 1: `cell(row_idx, col_name)` \n",
+    "\n",
+    "This function must take in a row index, `row_idx` and a column name, `col_name` as its inputs, and return the value in `water_accessibility.csv` stored there. There is **no missing data** in this dataset.\n",
+    "\n",
+    "You **must** define the variables `csv_header` and `csv_rows` as in Lab-P7, and you **must** copy/paste your `cell` function from Lab-P7.\n",
+    "\n",
+    "**Important:** You **must** only use the `cell` function to extract data from the dataset. If you extract any data without explicitly using this function, you will **lose points** during manual review. Moreover, your `cell` function **must** handle typecasting all columns and multiplying the population (`pop`) by *1000*. You will **lose points** if you perform these steps outside the `cell` function."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "ca41db56",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# define the cell function here\n"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "1eb3deba",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "After you define the function `cell`, run the following two cells to test whether it works."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "2d72e97b",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "cell_test1 = cell(0, 'country_name')\n",
+    "cell_test2 = cell(1, 'year')\n",
+    "cell_test3 = cell(2, 'urban_percent')\n",
+    "cell_test4 = cell(3, 'urban_alb')\n",
+    "cell_test5 = cell(4, 'income_level')\n",
+    "cell_test6 = cell(5, 'pop')"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "bb74a9e7",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"cell_test\")"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "f8d0b16f",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "You are all set! You are now ready to start solving the questions."
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "9d0efb5b",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "**Question 1:** Which country had the highest population (`pop`) in *2020*?"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "47987a22",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# compute and store the answer in the variable 'highest_pop_country', then display it\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "8552a500",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q1\")"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "dee1647d",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "**Question 2:** Which country had the highest population (`pop`) **increase** between *2015* and *2020*?\n",
+    "\n",
+    "There is a **unique** country in this dataset whose population increased the most. You **do not** have to worry about ties.\n",
+    "\n",
+    "**Hint:** Recall how to loop through the dataset and extract data from each year from [Lab 7](https://git.doit.wisc.edu/cdis/cs/courses/cs220/cs220-lecture-material/-/tree/main/sum23/labs/lab7)."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "6cb9dd7a",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# compute and store the answer in the variable 'highest_pop_inc_country', then display it\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "9c1c6497",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q2\")"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "b50acbc5",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "**Question 3:** Which country had the highest **increase** in at least basic (`national_alb`) water supply between the years of *2015* and *2020*? \n",
+    "\n",
+    "There is a **unique** country in this dataset whose `national_alb` value increased the most. You **do not** have to worry about ties.\n",
+    "\n",
+    "**Hint:** Take a look at q7 in Lab-P7 to see how to compute the change in `national_alb` between *2015* and *2020* for each country."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "7f2ef785",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# compute and store the answer in the variable 'highest_nat_alb_inc_country', then display it\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "e36ddb30",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q3\")"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "4bba9ee3",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "**Question 4:** What was the `income_level` in *2020* of the country with the highest increase in at least basic (`national_alb`) water supply between *2015* and *2020*?\n",
+    "\n",
+    "You **must** not repeat your computation here. Instead modify your code for q3 to extract the correct index, and use that to answer this question."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "abe5a4ed",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# compute and store the answer in the variable 'highest_alb_inc_income_level', then display it\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "2d6efed9",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q4\")"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "deca9ecc",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "**Question 5:** What is the **total** population (`pop`) of **all** the countries (in the dataset) in the `year` *2015*?\n",
+    "\n",
+    "The `pop` column stores the population in thousands. Your `cell` function already multiplies the value in this column by *1000*, so you can directly use the value returned by `cell` as the population of the country."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "38e85879",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# compute and store the answer in the variable 'total_pop_2015', then display it\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "b1e8600b",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q5\")"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "c496f364",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "**Question 6:** What was the global **percentage** of urban population (`urban_percent`) across **all** countries (in the dataset) in the `year` *2015*?\n",
+    "\n",
+    "You need to find the **total** urban population by *multiplying* the `pop` and `urban_percent` columns of each country and *adding* this up (the urban population). Then you need to *divide* by the **total** population to get the percentage of urban population across all the countries.\n",
+    "\n",
+    "Your output **must** be an **int**. You **must** use the `round` function to round your answer to the nearest integer."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "1c6623f6",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# compute and store the answer in the variable 'urban_pop_percent_2015', then display it\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "344323a3",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q6\")"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "72e81551",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "**Question 7:** What was the **total** population (`pop`) of countries that were in the *High income* group (`income_level`) in the `year` *2020*?\n",
+    "\n",
+    "Your output **must** be an **int**."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "fd0a5d9d",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# compute and store the answer in the variable 'high_income_pop', then display it\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "dbe51f29",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q7\")"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "a5b16acd",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "**Question 8:** Which *income group* (`income_level`) had the **least** population (`pop`) in the `year` *2015*?\n",
+    "\n",
+    "You must find the **total** population (`pop`) for each `income_level`, and find the `income_level` which has the **least** total population.\n",
+    "\n",
+    "**Hint:** There are several ways to solve this problem efficiently (including using `dicts`). You can try to solve this problem using dicts if you want to. However, another approach that you might already be familiar with from p6 is to first create a *list* of all the **unique** income levels, and then loop through the entire dataset for **each** income level to find the total population of that income level, before comparing these numbers to find the income level with the least population."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "90350b24",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# compute and store the answer in the variable 'least_pop_income_group', then display it\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "bd8df15c",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q8\")"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "2374c56e",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "**Question 9:** Create a **list** of the names (`country_name`) of all countries in the *North America* `region` that **tied** for the **maximum** `national_alb` in *2015* (in *North America*).\n",
+    "\n",
+    "You need to first find the **maximum** value of `national_alb` among all countries in the `region` *North America*, and then make a `list` of **all** the countries in this region having this `national_alb` value. **Multiple** countries from *North America* have the same maximum `national_alb` value, so your output **must** be a `list` of **all** those countries."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "960caebf",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# compute and store the answer in the variable 'na_max_alb_countries', then display it\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "7348bbdc",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q9\")"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "0010cb5e",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "### Function 2: `get_col_dict(col_name, year)` \n",
+    "\n",
+    "This function should take in a column `col_name` and a `year` (*2015* or *2020*) as its inputs, and return a `dict` where each key is a `country_code` and the corresponding value is the value under the given `col_name` for the country with the said `country_code` in the given `year`.\n",
+    "\n",
+    "For example, the value returned by `get_col_dict('country_name', 2015)` should be something like the following:\n",
+    "```python\n",
+    "{'AFG': 'Afghanistan',\n",
+    " 'ALB': 'Albania',\n",
+    " 'DZA': 'Algeria',\n",
+    " 'AND': 'Andorra',\n",
+    " 'AGO': 'Angola',\n",
+    " 'ARM': 'Armenia',\n",
+    " 'AUS': 'Australia',\n",
+    " 'AUT': 'Austria',\n",
+    " 'AZE': 'Azerbaijan',\n",
+    " 'BGD': 'Bangladesh',\n",
+    " ...\n",
+    "}\n",
+    "```\n",
+    "\n",
+    "and the value returned by `get_col_dict('pop', 2020)` should be something like the following:\n",
+    "```python\n",
+    "{'AFG': 38928000,\n",
+    " 'ALB': 2878000,\n",
+    " 'DZA': 43851000,\n",
+    " 'AND': 77000,\n",
+    " 'AGO': 32866000,\n",
+    " 'ARM': 2963000,\n",
+    " 'AUS': 25500000,\n",
+    " 'AUT': 9006000,\n",
+    " 'AZE': 10139000,\n",
+    " 'BGD': 164689000,\n",
+    " ...\n",
+    "}\n",
+    "```\n",
+    "\n",
+    "Start with the following code snippet and complete the function."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "b1d53dae",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# replace the ... with your code\n",
+    "\n",
+    "def get_col_dict(col_name, year):\n",
+    "    col_dict = {}\n",
+    "    if year == 2015:\n",
+    "        for idx in range (0, len(csv_rows), 2):\n",
+    "            col_dict[...] = ... \n",
+    "    elif year == 2020:\n",
+    "        for idx in range (1, len(csv_rows), 2):\n",
+    "            col_dict[...] = ... \n",
+    "    return col_dict"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "2e90ac41",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "After you define the function `get_col_dict`, run the following two cells to test whether it works."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "b7ae6fb4",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "get_col_dict_test1 = get_col_dict('region', 2020)\n",
+    "get_col_dict_test2 = get_col_dict('national_alb', 2015)\n",
+    "get_col_dict_test3 = get_col_dict('pop', 2020)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "79dcec3e",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"get_col_dict\")"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "d171f93a",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "### Data Structures 1: `dict_2015`\n",
+    "\n",
+    "You must now create a data structure named `dict_2015`. This data structure must be a **dict**. Each key must be a `country_code`, and the corresponding value must be another **dict**. As for the inner dictionary, the keys must be the various column names, and the values must be the values under the column name for `country_code` in the `year` *2015*.\n",
+    "\n",
+    "The keys for each of the *inner* dictionary are the column names:\n",
+    "- `'country_name'`\n",
+    "- `'region'`\n",
+    "- `'income_level'`\n",
+    "- `'year'`\n",
+    "- `'pop'`\n",
+    "- `'urban_percent'`\n",
+    "- `'national_alb'`\n",
+    "- `'urban_alb'`\n",
+    "\n",
+    "You are **allowed** to *hardcode* the **names** of all these columns (i.e., the keys of the *inner* dictionaries).\n",
+    "\n",
+    "The data structure `dict_2015` should look something like this:\n",
+    "```python\n",
+    "{'AFG': {'country_name': 'Afghanistan',\n",
+    "  'region': 'South Asia',\n",
+    "  'income_level': 'Low income',\n",
+    "  'year': 2015,\n",
+    "  'pop': 34414000,\n",
+    "  'urban_percent': 25,\n",
+    "  'national_alb': 61,\n",
+    "  'urban_alb': 87},\n",
+    " 'ALB': {'country_name': 'Albania',\n",
+    "  'region': 'Europe & Central Asia',\n",
+    "  'income_level': 'Upper middle income',\n",
+    "  'year': 2015,\n",
+    "  'pop': 2891000,\n",
+    "  'urban_percent': 57,\n",
+    "  'national_alb': 93,\n",
+    "  'urban_alb': 95},\n",
+    "  ...\n",
+    "}\n",
+    "```"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "bed68d29",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# define the variable 'dict_2015' here as described above\n",
+    "# you may display the variable for testing purposes while you define it,\n",
+    "# BUT you MUST remove the line displaying 'dict_2015' before submission as the output will be too large to display\n",
+    "\n",
+    "# initialize as an empty dictionary\n",
+    "dict_2015 = ...\n",
+    "\n",
+    "country_dict = get_col_dict('country_name', 2015)\n",
+    "region_dict = get_col_dict(..., ...)\n",
+    "# call get_col_dict for other columns\n",
+    "...\n",
+    "\n",
+    "# add data from all these dicts to dict_2015"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "d3c2492b",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "After you define the data structure `dict_2015`, run the following cell to test whether you have defined it properly."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "58713866",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"dict_2015\")"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "07e3a798",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "### Data Structures 2: `dict_2020`\n",
+    "\n",
+    "You must now create a data structure named `dict_2020`. This data structure must be a **dict**. Each key must be a `country_code`, and the corresponding value must be another **dict**. As for the inner dictionary, the keys must be the various column names, and the values must be the values under the column name for `country_code` in the `year` *2020*.\n",
+    "\n",
+    "The keys for each of the *inner* dictionary are the column names:\n",
+    "- `'country_name'`\n",
+    "- `'region'`\n",
+    "- `'income_level'`\n",
+    "- `'year'`\n",
+    "- `'pop'`\n",
+    "- `'urban_percent'`\n",
+    "- `'national_alb'`\n",
+    "- `'urban_alb'`\n",
+    "\n",
+    "You are **allowed** to *hardcode* the **names** of all these columns (i.e., the keys of the *inner* dictionaries)."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "7ca9c02f",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# define the variable 'dict_2020' here as described above\n",
+    "# you may display the variable for testing purposes while you define it,\n",
+    "# BUT you MUST remove the line displaying 'dict_2020' before submission as the output will be too large to display\n"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "60a3c5d3",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "After you define the data structure `dict_2020`, run the following cell to test whether you have defined it properly."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "1e68e7dd",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"dict_2020\")"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "422e0f61",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "#### From this point onwards, you are only allowed to access data from `water_accessibility.csv` by querying from the **dicts** `dict_2015` and `dict_2020`. You will **lose points** during manual review if you access the data through any other means (inlcuding calling the `cell` function)."
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "b666a840",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "**Question 10:** Output the data from *China* (`country_code`: *CHN*) for the `year` *2020*.\n",
+    "\n",
+    "Your output **must** be a **dict** mapping each column name to the value for the country *CHN* in the year *2020*. You **must** answer this by querying data from `dict_2020`.\n",
+    "\n",
+    "The expected output is:\n",
+    "```python\n",
+    "{'country_name': 'China',\n",
+    " 'region': 'East Asia & Pacific',\n",
+    " 'income_level': 'Upper middle income',\n",
+    " 'year': 2020,\n",
+    " 'pop': 1463141000,\n",
+    " 'urban_percent': 62,\n",
+    " 'national_alb': 94,\n",
+    " 'urban_alb': 97}\n",
+    "```"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "4f9095c3",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# compute and store the answer in the variable 'chn_2020_dict', then display it\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "e9c1feb6",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q10\")"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "7912771d",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "**Question 11:** What is the national at least basic (`national_alb`) water supply for *Nepal* (`country_code`: *NPL*) in the `year` *2015*?"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "01badb20",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# compute and store the answer in the variable 'npl_national_alb_2015', then display it\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "a8b8b903",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q11\")"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "ef819bad",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "**Question 12:** How much did the population (`pop`) of *Finland* **increase** (`country_code`: *FIN*) from the `year` *2015* to *2020*?"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "2cafae07",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# compute and store the answer in the variable 'population_change_fin', then display it\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "a11231ab",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q12\")"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "3c38b8c1",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "**Question 13:** For each `income_level`, find the **total** population (`pop`) of all countries within that `income_level` in *2020*.\n",
+    "\n",
+    "Your output **must** be a **dict** where each key is a `income_level`, and the corresponding value is the **sum** of populations (`pop`) of all the countries from that `income_level` in the `year` *2020*."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "b68d867e",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# compute and store the answer in the variable 'income_level_pops', then display it\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "f1fb4c8c",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q13\")"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "ca853253",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "**Question 14:** For each `income_level`, find the **total** population (`pop`) of all countries who have access to at least basic water supply within that `income_level` in *2020*.\n",
+    "\n",
+    "Your output **must** be a **dict** where each key is a `income_level`, and the corresponding value is the **sum** of populations (`pop`) which have access to at least basic water supply of all the countries from that `income_level` in the `year` *2020*.\n",
+    "\n",
+    "You **must** round the population of **each** country with access to at least basic water supply to the **nearest** integer **before** adding them up.\n",
+    "\n",
+    "**Hint:** For each country, the population with at least basic water supply is `pop * national_alb / 100`. "
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "f3612c98",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# compute and store the answer in the variable 'income_level_alb_pops', then display it\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "2c66e6d4",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q14\")"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "a045c086",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "**Question 15:** For each `income_level`, find the **percentage** of population (`pop`) of all countries within that `income_level` with at least basic water supply in *2020*.\n",
+    "\n",
+    "Your output **must** be a **dict** where each key is a `income_level`, and the corresponding value is the **percentage** of the population (`pop`) which have access to at least basic water supply of all the countries from that `income_level` in the `year` *2020*. The percentages **must** be represented as **int**s between *0* and *100*. You **must** round each of the percentages to the **nearest** integer.\n",
+    "\n",
+    "**Hint:** You need to loop through the dictionary you found in Q13 (or Q14), and for each key, you need to divide the corresponding value in the Q14 dictionary by the value of the same key in the Q13 dictionary and multiply by 100. Take another look at Task 3.6 from Lab-P7, if you are not sure how to proceed here."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "3ed16adc",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# compute and store the answer in the variable 'income_level_alb_percent', then display it\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "bb057833",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q15\")"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "83143982",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "### Data Structure 3: Adding `rural_alb`  to `dict_2015` and `dict_2020`\n",
+    "\n",
+    "Our dataset has data on the percentage of **national** and **urban** populations with at least basic water supply. However, it is usually **rural** populations which have the greatest difficulty in getting access to water.\n",
+    "\n",
+    "Luckily, we are able to calculate **rural_alb** from the given data using the formula:\n",
+    "\n",
+    "$$\n",
+    "rural_{alb} = \\frac{national_{alb} - \\left(urban_{alb} \\times \\frac{urban\\_percent}{100}\\right)}{\\left(1 - \\frac{urban\\_percent}{100}\\right)}\n",
+    "$$\n",
+    "\n",
+    "*If a country has `urban_percent` equal to `100`, then the country has a negligible rural population, and the formula above is not valid. For such countries, we will assume that `rural_alb` is the **same** as `urban_alb`.*\n",
+    "\n",
+    "You **must** loop through each country in `dict_2015` and `dict_2020`, and add an **additional** key value pair for each country. The new key should be the string: `\"rural_alb\"`, and the corresponding value should be the `rural_alb` value for that country as given by the formula above. You **must** round each number to the **nearest** integer."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "2c158007",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# add the additional key-value pair to both dicts 'dict_2015' and 'dict_2020' here\n",
+    "# you may display the variable for testing purposes while you define it,\n",
+    "# BUT you MUST remove the line displaying the dicts before submission as the output will be too large to display\n"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "1b0697ec",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "Run the following cell to test whether you have correctly updated the two data structures."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "3756f06e",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"ds3\")"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "224bada8",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "**Question 16:** What's the percentage of rural population with at least basic (`rural_alb`) water supply in *Zimbabwe* (`country_code`: *ZWE*) in *2020*? \n",
+    "\n",
+    "You **must** answer this question by querying data from the dict `dict_2020`."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "5f1e4c0b",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# compute and store the answer in the variable 'zimbabwe_rural_alb_2020', then display it\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "c5c37780",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q16\")"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "bcbed813",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "### Data Structure 4: `rural_non_alb` bins\n",
+    "\n",
+    "We have now managed to extract the percentage of rural population with access to atleast basic water supply for each of the countries in the dataset. We can now use this information to find out the countries whose rural populations do **not** have access to at least basic water supply.\n",
+    "\n",
+    "You **must** create two **dict**s (one for the `year` *2015* and one for *2020*) where the keys are the integers *0*, *10*, *20*, ..., *100*. The value corresponding to the integer *0* **must** be a **list** containing the names of all the countries for which their rural population **without** access to at least basic (which we can represent as `rural_non_alb`) water supply is `0 <= rural_non_alb < 10`. Similarly, the value corresponding to the key *10* must be a **list** of all countries for which `10 <= rural_non_alb < 20`, and so on.\n",
+    "\n",
+    "**Hints:**\n",
+    "1. You can find `rural_non_alb` as `rural_non_alb = 100 - rural_alb`.\n",
+    "2. You can find the bin which any country falls into by using the formula:\n",
+    "```python\n",
+    "rural_non_alb_bin = ((100 - rural_alb)//10) * 10\n",
+    "```\n",
+    "3. Even if a particular bin has no countries in it, you **must** still create a bin for it in your dict (with the value being an empty list). The starter code below will help you accomplish this."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "7809dc36",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# compute and store the answer in the variable 'rural_non_alb_bin_2015_dict'\n",
+    "\n",
+    "# initialize as an empty dictionary\n",
+    "rural_non_alb_bin_2015_dict = ...\n",
+    "\n",
+    "# loop through the keys we want for the dictionary - 0, 10, 20, ..., 100 (inclusive of 100)\n",
+    "# and add them to the dictionary as keys with the value as an empty list\n",
+    "for rural_non_alb_bin in range(...):\n",
+    "    rural_non_alb_bin_2015_dict[rural_non_alb_bin] = []\n",
+    "\n",
+    "# loop through each country and add to the correct bin of rural_non_alb_bin_2015_dict"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "20737850",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# compute and store the answer in the variable 'rural_non_alb_bin_2020_dict'\n"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "47274c60",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "After you define the data structures `rural_non_alb_bin_2015_dict` and `rural_non_alb_bin_2020_dict`, run the following cell to test whether you have defined them properly."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "9b1d43d7",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"rural_non_alb_bins\")"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "ba0832bb",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "**Question 17:** List all the countries which had `rural_non_alb` value between *20* and *29* (both inclusive) in the `year` *2015*.\n",
+    "\n",
+    "You **must** answer this question by querying the the **dict** `rural_non_alb_bin_2015_dict`."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "d7cd2af1",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# compute and store the answer in the variable 'bin_20_countries', then display it\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "6a13bfc3",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q17\")"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "79ca0068",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "**Question 18:** What are the countries in the **last** non-empty bin in the `year` *2020*?\n",
+    "\n",
+    "Your output **must** be a **list** of the countries in the bin with the **highest** percentage of rural population without at least basic access to water.\n",
+    "\n",
+    "**Hint:** You must first find the largest key of the **dict** `rural_non_alb_bin_2020_dict` with a non-empty bin, and then find the value of that key."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "5f0a7e59",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# compute and store the answer in the variable 'last_non_empty_bin_2020', then display it\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "fa5d6c6c",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q18\")"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "c4911079",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "**Question 19:** What countries have **regressed** by moving to a **higher** bin from *2015* to *2020*?\n",
+    "\n",
+    "Your answer **must** be a **list** of countries which have regressed by having their percentage of rural population without at least basic access to water move to a bin with a **higher** key.\n",
+    "\n",
+    "**Hint:** There are many ways of solving this question. Here are a few:\n",
+    "1. You could create a new dictionary by swapping the keys and values of `rural_non_alb_bin_2015_dict` (and similarly `rural_non_alb_bin_2020_dict`), and use these dictionaries to determine the countries that have regressed.\n",
+    "2. You could create a nested loop to go through all possible combinations of keys in both the dictionaries `rural_non_alb_bin_2015_dict` and `rural_non_alb_bin_2020_dict`.\n",
+    "3. You could loop through all the countries and directly query from `dict_2015` and `dict_2020` to determine which of them have regressed."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "9467d41d",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# compute and store the answer in the variable 'countries_regressed', then display it\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "b8d4d3b4",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q19\")"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "99fb75f2",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "**Question 20:** What countries have **improved** by moving to a **lower** bin from *2015* to *2020*?\n",
+    "\n",
+    "Your answer **must** be a **list** of countries which have improved by having their percentage of rural population without at least basic access to water move to a bin with a **lower** key."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "4954b362",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# compute and store the answer in the variable 'countries_improved', then display it\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "786d8ab1",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q20\")"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "2a5eeeb8",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "## Submission\n",
+    "It is recommended that at this stage, you Restart and Run all Cells in your notebook.\n",
+    "That will automatically save your work and generate a zip file for you to submit.\n",
+    "\n",
+    "**SUBMISSION INSTRUCTIONS**:\n",
+    "1. **Upload** the zipfile to Gradescope.\n",
+    "2. Check **Gradescope otter** results as soon as the auto-grader execution gets completed. Don't worry about the score showing up as -/100.0. You only need to check that the test cases passed."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "6fa71adc",
+   "metadata": {
+    "cell_type": "code"
+   },
+   "outputs": [],
+   "source": [
+    "# running this cell will create a new save checkpoint for your notebook\n",
+    "from IPython.display import display, Javascript\n",
+    "display(Javascript('IPython.notebook.save_checkpoint();'))"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "cf92c956",
+   "metadata": {
+    "cell_type": "code",
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "!jupytext --to py p7.ipynb"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "da0a9c58",
+   "metadata": {
+    "cell_type": "code",
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "p7_test.check_file_size(\"p7.ipynb\")\n",
+    "grader.export(pdf=False, run_tests=True, files=[\"p7.py\"])"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "bd82abcc",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    " "
+   ]
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3 (ipykernel)",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.9.13"
+  },
+  "otter": {
+   "OK_FORMAT": true,
+   "tests": {
+    "cell_test": {
+     "name": "cell_test",
+     "points": 0,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> p7_test.check(\"qcell_test1\", cell_test1)\nTrue",
+         "hidden": false,
+         "locked": false
+        },
+        {
+         "code": ">>> p7_test.check(\"qcell_test2\", cell_test2)\nTrue",
+         "hidden": false,
+         "locked": false
+        },
+        {
+         "code": ">>> p7_test.check(\"qcell_test3\", cell_test3)\nTrue",
+         "hidden": false,
+         "locked": false
+        },
+        {
+         "code": ">>> p7_test.check(\"qcell_test4\", cell_test4)\nTrue",
+         "hidden": false,
+         "locked": false
+        },
+        {
+         "code": ">>> p7_test.check(\"qcell_test5\", cell_test5)\nTrue",
+         "hidden": false,
+         "locked": false
+        },
+        {
+         "code": ">>> p7_test.check(\"qcell_test6\", cell_test6)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "dict_2015": {
+     "name": "dict_2015",
+     "points": 0,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> p7_test.check(\"qdict_2015_test\", dict_2015)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "dict_2020": {
+     "name": "dict_2020",
+     "points": 0,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> p7_test.check(\"qdict_2020_test\", dict_2020)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "ds3": {
+     "name": "ds3",
+     "points": 0,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> p7_test.check(\"qdict_2015_rural_alb_test\", dict_2015)\nTrue",
+         "hidden": false,
+         "locked": false
+        },
+        {
+         "code": ">>> p7_test.check(\"qdict_2020_rural_alb_test\", dict_2020)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "get_col_dict": {
+     "name": "get_col_dict",
+     "points": 0,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> p7_test.check(\"qget_col_dict_test1\", get_col_dict_test1)\nTrue",
+         "hidden": false,
+         "locked": false
+        },
+        {
+         "code": ">>> p7_test.check(\"qget_col_dict_test2\", get_col_dict_test2)\nTrue",
+         "hidden": false,
+         "locked": false
+        },
+        {
+         "code": ">>> p7_test.check(\"qget_col_dict_test3\", get_col_dict_test3)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "import": {
+     "name": "import",
+     "points": 0,
+     "suites": [
+      {
+       "cases": [],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q1": {
+     "name": "q1",
+     "points": 0,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> p7_test.check(\"q1\", highest_pop_country)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q10": {
+     "name": "q10",
+     "points": 0,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> p7_test.check(\"q10\", chn_2020_dict)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q11": {
+     "name": "q11",
+     "points": 0,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> p7_test.check(\"q11\", npl_national_alb_2015)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q12": {
+     "name": "q12",
+     "points": 0,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> p7_test.check(\"q12\", population_change_fin)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q13": {
+     "name": "q13",
+     "points": 0,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> p7_test.check(\"q13\", income_level_pops)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q14": {
+     "name": "q14",
+     "points": 0,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> p7_test.check(\"q14\", income_level_alb_pops)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q15": {
+     "name": "q15",
+     "points": 0,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> p7_test.check(\"q15\", income_level_alb_percent)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q16": {
+     "name": "q16",
+     "points": 0,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> p7_test.check(\"q16\", zimbabwe_rural_alb_2020)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q17": {
+     "name": "q17",
+     "points": 0,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> p7_test.check(\"q17\", bin_20_countries)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q18": {
+     "name": "q18",
+     "points": 0,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> p7_test.check(\"q18\", last_non_empty_bin_2020)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q19": {
+     "name": "q19",
+     "points": 0,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> p7_test.check(\"q19\", countries_regressed)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q2": {
+     "name": "q2",
+     "points": 0,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> p7_test.check(\"q2\", highest_pop_inc_country)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q20": {
+     "name": "q20",
+     "points": 0,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> p7_test.check(\"q20\", countries_improved)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q3": {
+     "name": "q3",
+     "points": 0,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> p7_test.check(\"q3\", highest_nat_alb_inc_country)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q4": {
+     "name": "q4",
+     "points": 0,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> p7_test.check(\"q4\", highest_alb_inc_income_level)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q5": {
+     "name": "q5",
+     "points": 0,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> p7_test.check(\"q5\", total_pop_2015)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q6": {
+     "name": "q6",
+     "points": 0,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> p7_test.check(\"q6\", urban_pop_percent_2015)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q7": {
+     "name": "q7",
+     "points": 0,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> p7_test.check(\"q7\", high_income_pop)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q8": {
+     "name": "q8",
+     "points": 0,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> p7_test.check(\"q8\", least_pop_income_group)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q9": {
+     "name": "q9",
+     "points": 0,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> p7_test.check(\"q9\", na_max_alb_countries)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "rubric-f1": {
+     "name": "rubric-f1",
+     "points": 3,
+     "suites": [
+      {
+       "cases": [],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "rubric-f2": {
+     "name": "rubric-f2",
+     "points": 3,
+     "suites": [
+      {
+       "cases": [],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "rubric-q1": {
+     "name": "rubric-q1",
+     "points": 4,
+     "suites": [
+      {
+       "cases": [],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "rubric-q10": {
+     "name": "rubric-q10",
+     "points": 2,
+     "suites": [
+      {
+       "cases": [],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "rubric-q11": {
+     "name": "rubric-q11",
+     "points": 2,
+     "suites": [
+      {
+       "cases": [],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "rubric-q12": {
+     "name": "rubric-q12",
+     "points": 3,
+     "suites": [
+      {
+       "cases": [],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "rubric-q13": {
+     "name": "rubric-q13",
+     "points": 4,
+     "suites": [
+      {
+       "cases": [],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "rubric-q14": {
+     "name": "rubric-q14",
+     "points": 4,
+     "suites": [
+      {
+       "cases": [],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "rubric-q15": {
+     "name": "rubric-q15",
+     "points": 4,
+     "suites": [
+      {
+       "cases": [],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "rubric-q16": {
+     "name": "rubric-q16",
+     "points": 2,
+     "suites": [
+      {
+       "cases": [],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "rubric-q17": {
+     "name": "rubric-q17",
+     "points": 2,
+     "suites": [
+      {
+       "cases": [],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "rubric-q18": {
+     "name": "rubric-q18",
+     "points": 4,
+     "suites": [
+      {
+       "cases": [],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "rubric-q19": {
+     "name": "rubric-q19",
+     "points": 5,
+     "suites": [
+      {
+       "cases": [],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "rubric-q2": {
+     "name": "rubric-q2",
+     "points": 4,
+     "suites": [
+      {
+       "cases": [],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "rubric-q20": {
+     "name": "rubric-q20",
+     "points": 5,
+     "suites": [
+      {
+       "cases": [],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "rubric-q3": {
+     "name": "rubric-q3",
+     "points": 4,
+     "suites": [
+      {
+       "cases": [],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "rubric-q4": {
+     "name": "rubric-q4",
+     "points": 4,
+     "suites": [
+      {
+       "cases": [],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "rubric-q5": {
+     "name": "rubric-q5",
+     "points": 4,
+     "suites": [
+      {
+       "cases": [],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "rubric-q6": {
+     "name": "rubric-q6",
+     "points": 4,
+     "suites": [
+      {
+       "cases": [],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "rubric-q7": {
+     "name": "rubric-q7",
+     "points": 4,
+     "suites": [
+      {
+       "cases": [],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "rubric-q8": {
+     "name": "rubric-q8",
+     "points": 5,
+     "suites": [
+      {
+       "cases": [],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "rubric-q9": {
+     "name": "rubric-q9",
+     "points": 4,
+     "suites": [
+      {
+       "cases": [],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "rural_non_alb_bins": {
+     "name": "rural_non_alb_bins",
+     "points": 0,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> p7_test.check(\"qrural_non_alb_bin_2015\", rural_non_alb_bin_2015_dict)\nTrue",
+         "hidden": false,
+         "locked": false
+        },
+        {
+         "code": ">>> p7_test.check(\"qrural_non_alb_bin_2020\", rural_non_alb_bin_2020_dict)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    }
+   }
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/sum23/projects/p7/p7_test.py b/sum23/projects/p7/p7_test.py
new file mode 100644
index 0000000..f362038
--- /dev/null
+++ b/sum23/projects/p7/p7_test.py
@@ -0,0 +1,6205 @@
+#!/usr/bin/python
+
+import os, json, math
+
+MAX_FILE_SIZE = 500 # units - KB
+REL_TOL = 6e-04  # relative tolerance for floats
+ABS_TOL = 15e-03  # absolute tolerance for floats
+
+PASS = "PASS"
+
+TEXT_FORMAT = "text"  # question type when expected answer is a str, int, float, or bool
+TEXT_FORMAT_NAMEDTUPLE = "text namedtuple"  # question type when expected answer is a namedtuple
+TEXT_FORMAT_UNORDERED_LIST = "text list_unordered"  # question type when the expected answer is a list where the order does *not* matter
+TEXT_FORMAT_ORDERED_LIST = "text list_ordered"  # question type when the expected answer is a list where the order does matter
+TEXT_FORMAT_ORDERED_LIST_NAMEDTUPLE = "text list_ordered namedtuple"  # question type when the expected answer is a list of namedtuples where the order does matter
+TEXT_FORMAT_SPECIAL_ORDERED_LIST = "text list_special_ordered"  # question type when the expected answer is a list where order does matter, but with possible ties. Elements are ordered according to values in special_ordered_json (with ties allowed)
+TEXT_FORMAT_DICT = "text dict"  # question type when the expected answer is a dictionary
+TEXT_FORMAT_LIST_DICTS_ORDERED = "text list_dicts_ordered"  # question type when the expected answer is a list of dicts where the order does matter
+
+
+expected_json = {"cell_test1": (TEXT_FORMAT, 'Afghanistan'),
+                 "cell_test2": (TEXT_FORMAT, 2020),
+                 "cell_test3": (TEXT_FORMAT, 57),
+                 "cell_test4": (TEXT_FORMAT, 96),
+                 "cell_test5": (TEXT_FORMAT, 'Upper middle income'),
+                 "cell_test6": (TEXT_FORMAT, 43851000),
+                 "1": (TEXT_FORMAT, "China"),
+                 "2": (TEXT_FORMAT, "India"),
+                 "3": (TEXT_FORMAT, "Afghanistan"),
+                 "4": (TEXT_FORMAT, "Low income"),
+                 "5": (TEXT_FORMAT, 6501786000),
+                 "6": (TEXT_FORMAT, 52),
+                 "7": (TEXT_FORMAT, 871268000),
+                 "8": (TEXT_FORMAT, "Low income"),
+                 "9": (TEXT_FORMAT_UNORDERED_LIST, ['Bermuda', 'Canada', 'United States of America']),
+                 "get_col_dict_test1": (TEXT_FORMAT_DICT, {'AFG': 'South Asia',
+                                         'ALB': 'Europe & Central Asia',
+                                         'DZA': 'Middle East & North Africa',
+                                         'AND': 'Europe & Central Asia',
+                                         'AGO': 'Sub-Saharan Africa',
+                                         'ARM': 'Europe & Central Asia',
+                                         'AUS': 'East Asia & Pacific',
+                                         'AUT': 'Europe & Central Asia',
+                                         'AZE': 'Europe & Central Asia',
+                                         'BGD': 'South Asia',
+                                         'BLR': 'Europe & Central Asia',
+                                         'BEL': 'Europe & Central Asia',
+                                         'BLZ': 'Latin America & Caribbean',
+                                         'BEN': 'Sub-Saharan Africa',
+                                         'BMU': 'North America',
+                                         'BTN': 'South Asia',
+                                         'BIH': 'Europe & Central Asia',
+                                         'BWA': 'Sub-Saharan Africa',
+                                         'BRA': 'Latin America & Caribbean',
+                                         'BRN': 'East Asia & Pacific',
+                                         'BGR': 'Europe & Central Asia',
+                                         'BFA': 'Sub-Saharan Africa',
+                                         'BDI': 'Sub-Saharan Africa',
+                                         'CPV': 'Sub-Saharan Africa',
+                                         'KHM': 'East Asia & Pacific',
+                                         'CMR': 'Sub-Saharan Africa',
+                                         'CAN': 'North America',
+                                         'CAF': 'Sub-Saharan Africa',
+                                         'TCD': 'Sub-Saharan Africa',
+                                         'CHL': 'Latin America & Caribbean',
+                                         'CHN': 'East Asia & Pacific',
+                                         'COL': 'Latin America & Caribbean',
+                                         'CRI': 'Latin America & Caribbean',
+                                         'CIV': 'Sub-Saharan Africa',
+                                         'CUB': 'Latin America & Caribbean',
+                                         'CYP': 'Europe & Central Asia',
+                                         'CZE': 'Europe & Central Asia',
+                                         'DNK': 'Europe & Central Asia',
+                                         'DJI': 'Middle East & North Africa',
+                                         'DOM': 'Latin America & Caribbean',
+                                         'ECU': 'Latin America & Caribbean',
+                                         'SLV': 'Latin America & Caribbean',
+                                         'EST': 'Europe & Central Asia',
+                                         'SWZ': 'Sub-Saharan Africa',
+                                         'ETH': 'Sub-Saharan Africa',
+                                         'FJI': 'East Asia & Pacific',
+                                         'FIN': 'Europe & Central Asia',
+                                         'FRA': 'Europe & Central Asia',
+                                         'GAB': 'Sub-Saharan Africa',
+                                         'GEO': 'Europe & Central Asia',
+                                         'DEU': 'Europe & Central Asia',
+                                         'GHA': 'Sub-Saharan Africa',
+                                         'GIB': 'Europe & Central Asia',
+                                         'GRC': 'Europe & Central Asia',
+                                         'GRL': 'Europe & Central Asia',
+                                         'GTM': 'Latin America & Caribbean',
+                                         'GIN': 'Sub-Saharan Africa',
+                                         'GNB': 'Sub-Saharan Africa',
+                                         'GUY': 'Latin America & Caribbean',
+                                         'HTI': 'Latin America & Caribbean',
+                                         'HND': 'Latin America & Caribbean',
+                                         'HUN': 'Europe & Central Asia',
+                                         'ISL': 'Europe & Central Asia',
+                                         'IND': 'South Asia',
+                                         'IDN': 'East Asia & Pacific',
+                                         'IRQ': 'Middle East & North Africa',
+                                         'IRL': 'Europe & Central Asia',
+                                         'ISR': 'Middle East & North Africa',
+                                         'JAM': 'Latin America & Caribbean',
+                                         'JOR': 'Middle East & North Africa',
+                                         'KAZ': 'Europe & Central Asia',
+                                         'KEN': 'Sub-Saharan Africa',
+                                         'KIR': 'East Asia & Pacific',
+                                         'LVA': 'Europe & Central Asia',
+                                         'LSO': 'Sub-Saharan Africa',
+                                         'LBR': 'Sub-Saharan Africa',
+                                         'LTU': 'Europe & Central Asia',
+                                         'LUX': 'Europe & Central Asia',
+                                         'MDG': 'Sub-Saharan Africa',
+                                         'MWI': 'Sub-Saharan Africa',
+                                         'MYS': 'East Asia & Pacific',
+                                         'MDV': 'South Asia',
+                                         'MLI': 'Sub-Saharan Africa',
+                                         'MLT': 'Middle East & North Africa',
+                                         'MHL': 'East Asia & Pacific',
+                                         'MRT': 'Sub-Saharan Africa',
+                                         'MUS': 'Sub-Saharan Africa',
+                                         'MEX': 'Latin America & Caribbean',
+                                         'MCO': 'Europe & Central Asia',
+                                         'MNG': 'East Asia & Pacific',
+                                         'MNE': 'Europe & Central Asia',
+                                         'MAR': 'Middle East & North Africa',
+                                         'MOZ': 'Sub-Saharan Africa',
+                                         'MMR': 'East Asia & Pacific',
+                                         'NAM': 'Sub-Saharan Africa',
+                                         'NRU': 'East Asia & Pacific',
+                                         'NPL': 'South Asia',
+                                         'NLD': 'Europe & Central Asia',
+                                         'NZL': 'East Asia & Pacific',
+                                         'NIC': 'Latin America & Caribbean',
+                                         'NER': 'Sub-Saharan Africa',
+                                         'NGA': 'Sub-Saharan Africa',
+                                         'MKD': 'Europe & Central Asia',
+                                         'NOR': 'Europe & Central Asia',
+                                         'OMN': 'Middle East & North Africa',
+                                         'PAK': 'South Asia',
+                                         'PLW': 'East Asia & Pacific',
+                                         'PAN': 'Latin America & Caribbean',
+                                         'PNG': 'East Asia & Pacific',
+                                         'PRY': 'Latin America & Caribbean',
+                                         'PER': 'Latin America & Caribbean',
+                                         'PHL': 'East Asia & Pacific',
+                                         'POL': 'Europe & Central Asia',
+                                         'PRT': 'Europe & Central Asia',
+                                         'ROU': 'Europe & Central Asia',
+                                         'RUS': 'Europe & Central Asia',
+                                         'RWA': 'Sub-Saharan Africa',
+                                         'WSM': 'East Asia & Pacific',
+                                         'SEN': 'Sub-Saharan Africa',
+                                         'SRB': 'Europe & Central Asia',
+                                         'SLE': 'Sub-Saharan Africa',
+                                         'SGP': 'East Asia & Pacific',
+                                         'SLB': 'East Asia & Pacific',
+                                         'SOM': 'Sub-Saharan Africa',
+                                         'ZAF': 'Sub-Saharan Africa',
+                                         'SSD': 'Sub-Saharan Africa',
+                                         'ESP': 'Europe & Central Asia',
+                                         'LKA': 'South Asia',
+                                         'SDN': 'Sub-Saharan Africa',
+                                         'SUR': 'Latin America & Caribbean',
+                                         'SWE': 'Europe & Central Asia',
+                                         'CHE': 'Europe & Central Asia',
+                                         'SYR': 'Middle East & North Africa',
+                                         'TJK': 'Europe & Central Asia',
+                                         'THA': 'East Asia & Pacific',
+                                         'TLS': 'East Asia & Pacific',
+                                         'TGO': 'Sub-Saharan Africa',
+                                         'TON': 'East Asia & Pacific',
+                                         'TUN': 'Middle East & North Africa',
+                                         'TKM': 'Europe & Central Asia',
+                                         'TUV': 'East Asia & Pacific',
+                                         'UGA': 'Sub-Saharan Africa',
+                                         'UKR': 'Europe & Central Asia',
+                                         'GBR': 'Europe & Central Asia',
+                                         'USA': 'North America',
+                                         'URY': 'Latin America & Caribbean',
+                                         'UZB': 'Europe & Central Asia',
+                                         'VUT': 'East Asia & Pacific',
+                                         'VNM': 'East Asia & Pacific',
+                                         'ZMB': 'Sub-Saharan Africa',
+                                         'ZWE': 'Sub-Saharan Africa'}),
+                 "get_col_dict_test2": (TEXT_FORMAT_DICT, {'AFG': 61,
+                                        'ALB': 93,
+                                        'DZA': 93,
+                                        'AND': 100,
+                                        'AGO': 54,
+                                        'ARM': 100,
+                                        'AUS': 100,
+                                        'AUT': 100,
+                                        'AZE': 92,
+                                        'BGD': 97,
+                                        'BLR': 96,
+                                        'BEL': 100,
+                                        'BLZ': 97,
+                                        'BEN': 65,
+                                        'BMU': 100,
+                                        'BTN': 96,
+                                        'BIH': 96,
+                                        'BWA': 88,
+                                        'BRA': 98,
+                                        'BRN': 100,
+                                        'BGR': 100,
+                                        'BFA': 50,
+                                        'BDI': 60,
+                                        'CPV': 85,
+                                        'KHM': 68,
+                                        'CMR': 64,
+                                        'CAN': 100,
+                                        'CAF': 42,
+                                        'TCD': 44,
+                                        'CHL': 100,
+                                        'CHN': 92,
+                                        'COL': 96,
+                                        'CRI': 100,
+                                        'CIV': 71,
+                                        'CUB': 96,
+                                        'CYP': 100,
+                                        'CZE': 100,
+                                        'DNK': 100,
+                                        'DJI': 76,
+                                        'DOM': 96,
+                                        'ECU': 93,
+                                        'SLV': 96,
+                                        'EST': 100,
+                                        'SWZ': 67,
+                                        'ETH': 42,
+                                        'FJI': 94,
+                                        'FIN': 100,
+                                        'FRA': 100,
+                                        'GAB': 84,
+                                        'GEO': 96,
+                                        'DEU': 100,
+                                        'GHA': 80,
+                                        'GIB': 100,
+                                        'GRC': 100,
+                                        'GRL': 100,
+                                        'GTM': 92,
+                                        'GIN': 64,
+                                        'GNB': 59,
+                                        'GUY': 95,
+                                        'HTI': 65,
+                                        'HND': 93,
+                                        'HUN': 100,
+                                        'ISL': 100,
+                                        'IND': 88,
+                                        'IDN': 89,
+                                        'IRQ': 94,
+                                        'IRL': 97,
+                                        'ISR': 100,
+                                        'JAM': 90,
+                                        'JOR': 100,
+                                        'KAZ': 95,
+                                        'KEN': 58,
+                                        'KIR': 74,
+                                        'LVA': 99,
+                                        'LSO': 71,
+                                        'LBR': 73,
+                                        'LTU': 97,
+                                        'LUX': 100,
+                                        'MDG': 49,
+                                        'MWI': 66,
+                                        'MYS': 97,
+                                        'MDV': 99,
+                                        'MLI': 74,
+                                        'MLT': 100,
+                                        'MHL': 88,
+                                        'MRT': 67,
+                                        'MUS': 100,
+                                        'MEX': 98,
+                                        'MCO': 100,
+                                        'MNG': 81,
+                                        'MNE': 97,
+                                        'MAR': 84,
+                                        'MOZ': 51,
+                                        'MMR': 74,
+                                        'NAM': 83,
+                                        'NRU': 100,
+                                        'NPL': 88,
+                                        'NLD': 100,
+                                        'NZL': 100,
+                                        'NIC': 81,
+                                        'NER': 45,
+                                        'NGA': 69,
+                                        'MKD': 97,
+                                        'NOR': 100,
+                                        'OMN': 90,
+                                        'PAK': 89,
+                                        'PLW': 100,
+                                        'PAN': 93,
+                                        'PNG': 41,
+                                        'PRY': 97,
+                                        'PER': 90,
+                                        'PHL': 92,
+                                        'POL': 100,
+                                        'PRT': 100,
+                                        'ROU': 100,
+                                        'RUS': 97,
+                                        'RWA': 57,
+                                        'WSM': 91,
+                                        'SEN': 79,
+                                        'SRB': 93,
+                                        'SLE': 58,
+                                        'SGP': 100,
+                                        'SLB': 69,
+                                        'SOM': 49,
+                                        'ZAF': 92,
+                                        'SSD': 41,
+                                        'ESP': 100,
+                                        'LKA': 90,
+                                        'SDN': 59,
+                                        'SUR': 96,
+                                        'SWE': 100,
+                                        'CHE': 100,
+                                        'SYR': 94,
+                                        'TJK': 76,
+                                        'THA': 100,
+                                        'TLS': 75,
+                                        'TGO': 64,
+                                        'TON': 99,
+                                        'TUN': 95,
+                                        'TKM': 98,
+                                        'TUV': 100,
+                                        'UGA': 48,
+                                        'UKR': 94,
+                                        'GBR': 100,
+                                        'USA': 100,
+                                        'URY': 100,
+                                        'UZB': 98,
+                                        'VUT': 90,
+                                        'VNM': 93,
+                                        'ZMB': 61,
+                                        'ZWE': 65}),
+                 "get_col_dict_test3": (TEXT_FORMAT_DICT, {'AFG': 38928000,
+                                         'ALB': 2878000,
+                                         'DZA': 43851000,
+                                         'AND': 77000,
+                                         'AGO': 32866000,
+                                         'ARM': 2963000,
+                                         'AUS': 25500000,
+                                         'AUT': 9006000,
+                                         'AZE': 10139000,
+                                         'BGD': 164689000,
+                                         'BLR': 9449000,
+                                         'BEL': 11590000,
+                                         'BLZ': 398000,
+                                         'BEN': 12123000,
+                                         'BMU': 62000,
+                                         'BTN': 772000,
+                                         'BIH': 3281000,
+                                         'BWA': 2352000,
+                                         'BRA': 212559000,
+                                         'BRN': 437000,
+                                         'BGR': 6948000,
+                                         'BFA': 20903000,
+                                         'BDI': 11891000,
+                                         'CPV': 556000,
+                                         'KHM': 16719000,
+                                         'CMR': 26546000,
+                                         'CAN': 37742000,
+                                         'CAF': 4830000,
+                                         'TCD': 16426000,
+                                         'CHL': 19116000,
+                                         'CHN': 1463141000,
+                                         'COL': 50883000,
+                                         'CRI': 5094000,
+                                         'CIV': 26378000,
+                                         'CUB': 11327000,
+                                         'CYP': 1207000,
+                                         'CZE': 10709000,
+                                         'DNK': 5792000,
+                                         'DJI': 988000,
+                                         'DOM': 10848000,
+                                         'ECU': 17643000,
+                                         'SLV': 6486000,
+                                         'EST': 1327000,
+                                         'SWZ': 1160000,
+                                         'ETH': 114964000,
+                                         'FJI': 896000,
+                                         'FIN': 5541000,
+                                         'FRA': 65274000,
+                                         'GAB': 2226000,
+                                         'GEO': 3989000,
+                                         'DEU': 83784000,
+                                         'GHA': 31073000,
+                                         'GIB': 34000,
+                                         'GRC': 10423000,
+                                         'GRL': 57000,
+                                         'GTM': 17916000,
+                                         'GIN': 13133000,
+                                         'GNB': 1968000,
+                                         'GUY': 787000,
+                                         'HTI': 11403000,
+                                         'HND': 9905000,
+                                         'HUN': 9660000,
+                                         'ISL': 341000,
+                                         'IND': 1380004000,
+                                         'IDN': 273524000,
+                                         'IRQ': 40223000,
+                                         'IRL': 4938000,
+                                         'ISR': 8656000,
+                                         'JAM': 2961000,
+                                         'JOR': 10203000,
+                                         'KAZ': 18777000,
+                                         'KEN': 53771000,
+                                         'KIR': 119000,
+                                         'LVA': 1886000,
+                                         'LSO': 2142000,
+                                         'LBR': 5058000,
+                                         'LTU': 2722000,
+                                         'LUX': 626000,
+                                         'MDG': 27691000,
+                                         'MWI': 19130000,
+                                         'MYS': 32366000,
+                                         'MDV': 541000,
+                                         'MLI': 20251000,
+                                         'MLT': 442000,
+                                         'MHL': 59000,
+                                         'MRT': 4650000,
+                                         'MUS': 1272000,
+                                         'MEX': 128933000,
+                                         'MCO': 39000,
+                                         'MNG': 3278000,
+                                         'MNE': 628000,
+                                         'MAR': 36911000,
+                                         'MOZ': 31255000,
+                                         'MMR': 54410000,
+                                         'NAM': 2541000,
+                                         'NRU': 11000,
+                                         'NPL': 29137000,
+                                         'NLD': 17135000,
+                                         'NZL': 4822000,
+                                         'NIC': 6625000,
+                                         'NER': 24207000,
+                                         'NGA': 206140000,
+                                         'MKD': 2083000,
+                                         'NOR': 5421000,
+                                         'OMN': 5107000,
+                                         'PAK': 220892000,
+                                         'PLW': 18000,
+                                         'PAN': 4315000,
+                                         'PNG': 8947000,
+                                         'PRY': 7133000,
+                                         'PER': 32972000,
+                                         'PHL': 109581000,
+                                         'POL': 37847000,
+                                         'PRT': 10197000,
+                                         'ROU': 19238000,
+                                         'RUS': 145934000,
+                                         'RWA': 12952000,
+                                         'WSM': 198000,
+                                         'SEN': 16744000,
+                                         'SRB': 8737000,
+                                         'SLE': 7977000,
+                                         'SGP': 5850000,
+                                         'SLB': 687000,
+                                         'SOM': 15893000,
+                                         'ZAF': 59309000,
+                                         'SSD': 11194000,
+                                         'ESP': 46755000,
+                                         'LKA': 21413000,
+                                         'SDN': 43849000,
+                                         'SUR': 587000,
+                                         'SWE': 10099000,
+                                         'CHE': 8655000,
+                                         'SYR': 17501000,
+                                         'TJK': 9538000,
+                                         'THA': 69800000,
+                                         'TLS': 1318000,
+                                         'TGO': 8279000,
+                                         'TON': 106000,
+                                         'TUN': 11819000,
+                                         'TKM': 6031000,
+                                         'TUV': 12000,
+                                         'UGA': 45741000,
+                                         'UKR': 43734000,
+                                         'GBR': 67886000,
+                                         'USA': 331003000,
+                                         'URY': 3474000,
+                                         'UZB': 33469000,
+                                         'VUT': 307000,
+                                         'VNM': 97339000,
+                                         'ZMB': 18384000,
+                                         'ZWE': 14863000}),
+                 "dict_2015_test": (TEXT_FORMAT_DICT, {'AFG': {'country_name': 'Afghanistan',
+                                      'region': 'South Asia',
+                                      'income_level': 'Low income',
+                                      'year': 2015,
+                                      'pop': 34414000,
+                                      'urban_percent': 25,
+                                      'national_alb': 61,
+                                      'urban_alb': 87},
+                                         'ALB': {'country_name': 'Albania',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 2891000,
+                                          'urban_percent': 57,
+                                          'national_alb': 93,
+                                          'urban_alb': 95},
+                                         'DZA': {'country_name': 'Algeria',
+                                          'region': 'Middle East & North Africa',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 39728000,
+                                          'urban_percent': 71,
+                                          'national_alb': 93,
+                                          'urban_alb': 95},
+                                         'AND': {'country_name': 'Andorra',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 78000,
+                                          'urban_percent': 88,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'AGO': {'country_name': 'Angola',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 27884000,
+                                          'urban_percent': 63,
+                                          'national_alb': 54,
+                                          'urban_alb': 70},
+                                         'ARM': {'country_name': 'Armenia',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 2926000,
+                                          'urban_percent': 63,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'AUS': {'country_name': 'Australia',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 23932000,
+                                          'urban_percent': 86,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'AUT': {'country_name': 'Austria',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 8679000,
+                                          'urban_percent': 58,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'AZE': {'country_name': 'Azerbaijan',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 9623000,
+                                          'urban_percent': 55,
+                                          'national_alb': 92,
+                                          'urban_alb': 100},
+                                         'BGD': {'country_name': 'Bangladesh',
+                                          'region': 'South Asia',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 156256000,
+                                          'urban_percent': 34,
+                                          'national_alb': 97,
+                                          'urban_alb': 98},
+                                         'BLR': {'country_name': 'Belarus',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 9439000,
+                                          'urban_percent': 77,
+                                          'national_alb': 96,
+                                          'urban_alb': 96},
+                                         'BEL': {'country_name': 'Belgium',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 11288000,
+                                          'urban_percent': 98,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'BLZ': {'country_name': 'Belize',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 361000,
+                                          'urban_percent': 45,
+                                          'national_alb': 97,
+                                          'urban_alb': 100},
+                                         'BEN': {'country_name': 'Benin',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2015,
+                                          'pop': 10576000,
+                                          'urban_percent': 46,
+                                          'national_alb': 65,
+                                          'urban_alb': 74},
+                                         'BMU': {'country_name': 'Bermuda',
+                                          'region': 'North America',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 64000,
+                                          'urban_percent': 100,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'BTN': {'country_name': 'Bhutan',
+                                          'region': 'South Asia',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 728000,
+                                          'urban_percent': 39,
+                                          'national_alb': 96,
+                                          'urban_alb': 98},
+                                         'BIH': {'country_name': 'Bosnia and Herzegovina',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 3429000,
+                                          'urban_percent': 47,
+                                          'national_alb': 96,
+                                          'urban_alb': 95},
+                                         'BWA': {'country_name': 'Botswana',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 2121000,
+                                          'urban_percent': 67,
+                                          'national_alb': 88,
+                                          'urban_alb': 97},
+                                         'BRA': {'country_name': 'Brazil',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 204472000,
+                                          'urban_percent': 86,
+                                          'national_alb': 98,
+                                          'urban_alb': 100},
+                                         'BRN': {'country_name': 'Brunei Darussalam',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 415000,
+                                          'urban_percent': 77,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'BGR': {'country_name': 'Bulgaria',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 7200000,
+                                          'urban_percent': 74,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'BFA': {'country_name': 'Burkina Faso',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2015,
+                                          'pop': 18111000,
+                                          'urban_percent': 28,
+                                          'national_alb': 50,
+                                          'urban_alb': 80},
+                                         'BDI': {'country_name': 'Burundi',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2015,
+                                          'pop': 10160000,
+                                          'urban_percent': 12,
+                                          'national_alb': 60,
+                                          'urban_alb': 89},
+                                         'CPV': {'country_name': 'Cabo Verde',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 525000,
+                                          'urban_percent': 64,
+                                          'national_alb': 85,
+                                          'urban_alb': 92},
+                                         'KHM': {'country_name': 'Cambodia',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 15521000,
+                                          'urban_percent': 22,
+                                          'national_alb': 68,
+                                          'urban_alb': 89},
+                                         'CMR': {'country_name': 'Cameroon',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 23298000,
+                                          'urban_percent': 55,
+                                          'national_alb': 64,
+                                          'urban_alb': 82},
+                                         'CAN': {'country_name': 'Canada',
+                                          'region': 'North America',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 36027000,
+                                          'urban_percent': 81,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'CAF': {'country_name': 'Central African Republic',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2015,
+                                          'pop': 4493000,
+                                          'urban_percent': 40,
+                                          'national_alb': 42,
+                                          'urban_alb': 58},
+                                         'TCD': {'country_name': 'Chad',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2015,
+                                          'pop': 14111000,
+                                          'urban_percent': 23,
+                                          'national_alb': 44,
+                                          'urban_alb': 75},
+                                         'CHL': {'country_name': 'Chile',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 17969000,
+                                          'urban_percent': 87,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'CHN': {'country_name': 'China',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 1430405000,
+                                          'urban_percent': 56,
+                                          'national_alb': 92,
+                                          'urban_alb': 98},
+                                         'COL': {'country_name': 'Colombia',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 47521000,
+                                          'urban_percent': 80,
+                                          'national_alb': 96,
+                                          'urban_alb': 100},
+                                         'CRI': {'country_name': 'Costa Rica',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 4848000,
+                                          'urban_percent': 77,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'CIV': {'country_name': "Côte d'Ivoire",
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 23226000,
+                                          'urban_percent': 49,
+                                          'national_alb': 71,
+                                          'urban_alb': 87},
+                                         'CUB': {'country_name': 'Cuba',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 11325000,
+                                          'urban_percent': 77,
+                                          'national_alb': 96,
+                                          'urban_alb': 98},
+                                         'CYP': {'country_name': 'Cyprus',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 1161000,
+                                          'urban_percent': 67,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'CZE': {'country_name': 'Czech Republic',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 10601000,
+                                          'urban_percent': 73,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'DNK': {'country_name': 'Denmark',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 5689000,
+                                          'urban_percent': 88,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'DJI': {'country_name': 'Djibouti',
+                                          'region': 'Middle East & North Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 914000,
+                                          'urban_percent': 77,
+                                          'national_alb': 76,
+                                          'urban_alb': 84},
+                                         'DOM': {'country_name': 'Dominican Republic',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 10282000,
+                                          'urban_percent': 79,
+                                          'national_alb': 96,
+                                          'urban_alb': 98},
+                                         'ECU': {'country_name': 'Ecuador',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 16212000,
+                                          'urban_percent': 63,
+                                          'national_alb': 93,
+                                          'urban_alb': 100},
+                                         'SLV': {'country_name': 'El Salvador',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 6325000,
+                                          'urban_percent': 70,
+                                          'national_alb': 96,
+                                          'urban_alb': 99},
+                                         'EST': {'country_name': 'Estonia',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 1315000,
+                                          'urban_percent': 68,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'SWZ': {'country_name': 'Eswatini',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 1104000,
+                                          'urban_percent': 23,
+                                          'national_alb': 67,
+                                          'urban_alb': 95},
+                                         'ETH': {'country_name': 'Ethiopia',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2015,
+                                          'pop': 100835000,
+                                          'urban_percent': 19,
+                                          'national_alb': 42,
+                                          'urban_alb': 82},
+                                         'FJI': {'country_name': 'Fiji',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 869000,
+                                          'urban_percent': 55,
+                                          'national_alb': 94,
+                                          'urban_alb': 98},
+                                         'FIN': {'country_name': 'Finland',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 5481000,
+                                          'urban_percent': 85,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'FRA': {'country_name': 'France',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 64453000,
+                                          'urban_percent': 80,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'GAB': {'country_name': 'Gabon',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 1948000,
+                                          'urban_percent': 88,
+                                          'national_alb': 84,
+                                          'urban_alb': 89},
+                                         'GEO': {'country_name': 'Georgia',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 4024000,
+                                          'urban_percent': 57,
+                                          'national_alb': 96,
+                                          'urban_alb': 100},
+                                         'DEU': {'country_name': 'Germany',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 81787000,
+                                          'urban_percent': 77,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'GHA': {'country_name': 'Ghana',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 27849000,
+                                          'urban_percent': 54,
+                                          'national_alb': 80,
+                                          'urban_alb': 91},
+                                         'GIB': {'country_name': 'Gibraltar',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 34000,
+                                          'urban_percent': 100,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'GRC': {'country_name': 'Greece',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 10660000,
+                                          'urban_percent': 78,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'GRL': {'country_name': 'Greenland',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 56000,
+                                          'urban_percent': 86,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'GTM': {'country_name': 'Guatemala',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 16252000,
+                                          'urban_percent': 50,
+                                          'national_alb': 92,
+                                          'urban_alb': 97},
+                                         'GIN': {'country_name': 'Guinea',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2015,
+                                          'pop': 11432000,
+                                          'urban_percent': 35,
+                                          'national_alb': 64,
+                                          'urban_alb': 85},
+                                         'GNB': {'country_name': 'Guinea-Bissau',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2015,
+                                          'pop': 1737000,
+                                          'urban_percent': 42,
+                                          'national_alb': 59,
+                                          'urban_alb': 73},
+                                         'GUY': {'country_name': 'Guyana',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 767000,
+                                          'urban_percent': 26,
+                                          'national_alb': 95,
+                                          'urban_alb': 100},
+                                         'HTI': {'country_name': 'Haiti',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Low income',
+                                          'year': 2015,
+                                          'pop': 10696000,
+                                          'urban_percent': 52,
+                                          'national_alb': 65,
+                                          'urban_alb': 85},
+                                         'HND': {'country_name': 'Honduras',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 9113000,
+                                          'urban_percent': 55,
+                                          'national_alb': 93,
+                                          'urban_alb': 99},
+                                         'HUN': {'country_name': 'Hungary',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 9778000,
+                                          'urban_percent': 71,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'ISL': {'country_name': 'Iceland',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 330000,
+                                          'urban_percent': 94,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'IND': {'country_name': 'India',
+                                          'region': 'South Asia',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 1310152000,
+                                          'urban_percent': 33,
+                                          'national_alb': 88,
+                                          'urban_alb': 93},
+                                         'IDN': {'country_name': 'Indonesia',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 258383000,
+                                          'urban_percent': 53,
+                                          'national_alb': 89,
+                                          'urban_alb': 95},
+                                         'IRQ': {'country_name': 'Iraq',
+                                          'region': 'Middle East & North Africa',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 35572000,
+                                          'urban_percent': 70,
+                                          'national_alb': 94,
+                                          'urban_alb': 98},
+                                         'IRL': {'country_name': 'Ireland',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 4652000,
+                                          'urban_percent': 63,
+                                          'national_alb': 97,
+                                          'urban_alb': 97},
+                                         'ISR': {'country_name': 'Israel',
+                                          'region': 'Middle East & North Africa',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 7978000,
+                                          'urban_percent': 92,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'JAM': {'country_name': 'Jamaica',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 2891000,
+                                          'urban_percent': 55,
+                                          'national_alb': 90,
+                                          'urban_alb': 95},
+                                         'JOR': {'country_name': 'Jordan',
+                                          'region': 'Middle East & North Africa',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 9267000,
+                                          'urban_percent': 90,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'KAZ': {'country_name': 'Kazakhstan',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 17572000,
+                                          'urban_percent': 57,
+                                          'national_alb': 95,
+                                          'urban_alb': 98},
+                                         'KEN': {'country_name': 'Kenya',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 47878000,
+                                          'urban_percent': 26,
+                                          'national_alb': 58,
+                                          'urban_alb': 87},
+                                         'KIR': {'country_name': 'Kiribati',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 111000,
+                                          'urban_percent': 52,
+                                          'national_alb': 74,
+                                          'urban_alb': 89},
+                                         'LVA': {'country_name': 'Latvia',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 1998000,
+                                          'urban_percent': 68,
+                                          'national_alb': 99,
+                                          'urban_alb': 99},
+                                         'LSO': {'country_name': 'Lesotho',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 2059000,
+                                          'urban_percent': 27,
+                                          'national_alb': 71,
+                                          'urban_alb': 90},
+                                         'LBR': {'country_name': 'Liberia',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2015,
+                                          'pop': 4472000,
+                                          'urban_percent': 50,
+                                          'national_alb': 73,
+                                          'urban_alb': 84},
+                                         'LTU': {'country_name': 'Lithuania',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 2932000,
+                                          'urban_percent': 67,
+                                          'national_alb': 97,
+                                          'urban_alb': 100},
+                                         'LUX': {'country_name': 'Luxembourg',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 567000,
+                                          'urban_percent': 90,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'MDG': {'country_name': 'Madagascar',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2015,
+                                          'pop': 24234000,
+                                          'urban_percent': 35,
+                                          'national_alb': 49,
+                                          'urban_alb': 78},
+                                         'MWI': {'country_name': 'Malawi',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2015,
+                                          'pop': 16745000,
+                                          'urban_percent': 16,
+                                          'national_alb': 66,
+                                          'urban_alb': 86},
+                                         'MYS': {'country_name': 'Malaysia',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 30271000,
+                                          'urban_percent': 74,
+                                          'national_alb': 97,
+                                          'urban_alb': 100},
+                                         'MDV': {'country_name': 'Maldives',
+                                          'region': 'South Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 455000,
+                                          'urban_percent': 39,
+                                          'national_alb': 99,
+                                          'urban_alb': 99},
+                                         'MLI': {'country_name': 'Mali',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2015,
+                                          'pop': 17439000,
+                                          'urban_percent': 40,
+                                          'national_alb': 74,
+                                          'urban_alb': 91},
+                                         'MLT': {'country_name': 'Malta',
+                                          'region': 'Middle East & North Africa',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 434000,
+                                          'urban_percent': 94,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'MHL': {'country_name': 'Marshall Islands',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 57000,
+                                          'urban_percent': 76,
+                                          'national_alb': 88,
+                                          'urban_alb': 86},
+                                         'MRT': {'country_name': 'Mauritania',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 4046000,
+                                          'urban_percent': 51,
+                                          'national_alb': 67,
+                                          'urban_alb': 86},
+                                         'MUS': {'country_name': 'Mauritius',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 1259000,
+                                          'urban_percent': 41,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'MEX': {'country_name': 'Mexico',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 121858000,
+                                          'urban_percent': 79,
+                                          'national_alb': 98,
+                                          'urban_alb': 100},
+                                         'MCO': {'country_name': 'Monaco',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 38000,
+                                          'urban_percent': 100,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'MNG': {'country_name': 'Mongolia',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 2998000,
+                                          'urban_percent': 68,
+                                          'national_alb': 81,
+                                          'urban_alb': 94},
+                                         'MNE': {'country_name': 'Montenegro',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 627000,
+                                          'urban_percent': 66,
+                                          'national_alb': 97,
+                                          'urban_alb': 98},
+                                         'MAR': {'country_name': 'Morocco',
+                                          'region': 'Middle East & North Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 34664000,
+                                          'urban_percent': 61,
+                                          'national_alb': 84,
+                                          'urban_alb': 96},
+                                         'MOZ': {'country_name': 'Mozambique',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2015,
+                                          'pop': 27042000,
+                                          'urban_percent': 34,
+                                          'national_alb': 51,
+                                          'urban_alb': 80},
+                                         'MMR': {'country_name': 'Myanmar',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 52681000,
+                                          'urban_percent': 30,
+                                          'national_alb': 74,
+                                          'urban_alb': 88},
+                                         'NAM': {'country_name': 'Namibia',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 2315000,
+                                          'urban_percent': 47,
+                                          'national_alb': 83,
+                                          'urban_alb': 97},
+                                         'NRU': {'country_name': 'Nauru',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 10000,
+                                          'urban_percent': 100,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'NPL': {'country_name': 'Nepal',
+                                          'region': 'South Asia',
+                                          'income_level': 'Low income',
+                                          'year': 2015,
+                                          'pop': 27015000,
+                                          'urban_percent': 19,
+                                          'national_alb': 88,
+                                          'urban_alb': 90},
+                                         'NLD': {'country_name': 'Netherlands',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 16938000,
+                                          'urban_percent': 90,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'NZL': {'country_name': 'New Zealand',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 4615000,
+                                          'urban_percent': 86,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'NIC': {'country_name': 'Nicaragua',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 6223000,
+                                          'urban_percent': 58,
+                                          'national_alb': 81,
+                                          'urban_alb': 97},
+                                         'NER': {'country_name': 'Niger',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2015,
+                                          'pop': 20002000,
+                                          'urban_percent': 16,
+                                          'national_alb': 45,
+                                          'urban_alb': 88},
+                                         'NGA': {'country_name': 'Nigeria',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 181137000,
+                                          'urban_percent': 48,
+                                          'national_alb': 69,
+                                          'urban_alb': 85},
+                                         'MKD': {'country_name': 'North Macedonia',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 2079000,
+                                          'urban_percent': 57,
+                                          'national_alb': 97,
+                                          'urban_alb': 97},
+                                         'NOR': {'country_name': 'Norway',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 5200000,
+                                          'urban_percent': 81,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'OMN': {'country_name': 'Oman',
+                                          'region': 'Middle East & North Africa',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 4267000,
+                                          'urban_percent': 81,
+                                          'national_alb': 90,
+                                          'urban_alb': 94},
+                                         'PAK': {'country_name': 'Pakistan',
+                                          'region': 'South Asia',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 199427000,
+                                          'urban_percent': 36,
+                                          'national_alb': 89,
+                                          'urban_alb': 94},
+                                         'PLW': {'country_name': 'Palau',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 18000,
+                                          'urban_percent': 78,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'PAN': {'country_name': 'Panama',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 3968000,
+                                          'urban_percent': 67,
+                                          'national_alb': 93,
+                                          'urban_alb': 98},
+                                         'PNG': {'country_name': 'Papua New Guinea',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 8108000,
+                                          'urban_percent': 13,
+                                          'national_alb': 41,
+                                          'urban_alb': 85},
+                                         'PRY': {'country_name': 'Paraguay',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 6689000,
+                                          'urban_percent': 61,
+                                          'national_alb': 97,
+                                          'urban_alb': 100},
+                                         'PER': {'country_name': 'Peru',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 30471000,
+                                          'urban_percent': 77,
+                                          'national_alb': 90,
+                                          'urban_alb': 95},
+                                         'PHL': {'country_name': 'Philippines',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 102113000,
+                                          'urban_percent': 46,
+                                          'national_alb': 92,
+                                          'urban_alb': 96},
+                                         'POL': {'country_name': 'Poland',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 38034000,
+                                          'urban_percent': 60,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'PRT': {'country_name': 'Portugal',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 10368000,
+                                          'urban_percent': 64,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'ROU': {'country_name': 'Romania',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 19925000,
+                                          'urban_percent': 54,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'RUS': {'country_name': 'Russian Federation',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 144985000,
+                                          'urban_percent': 74,
+                                          'national_alb': 97,
+                                          'urban_alb': 99},
+                                         'RWA': {'country_name': 'Rwanda',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2015,
+                                          'pop': 11369000,
+                                          'urban_percent': 17,
+                                          'national_alb': 57,
+                                          'urban_alb': 80},
+                                         'WSM': {'country_name': 'Samoa',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 194000,
+                                          'urban_percent': 19,
+                                          'national_alb': 91,
+                                          'urban_alb': 91},
+                                         'SEN': {'country_name': 'Senegal',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2015,
+                                          'pop': 14578000,
+                                          'urban_percent': 46,
+                                          'national_alb': 79,
+                                          'urban_alb': 94},
+                                         'SRB': {'country_name': 'Serbia',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 8877000,
+                                          'urban_percent': 56,
+                                          'national_alb': 93,
+                                          'urban_alb': 92},
+                                         'SLE': {'country_name': 'Sierra Leone',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2015,
+                                          'pop': 7172000,
+                                          'urban_percent': 41,
+                                          'national_alb': 58,
+                                          'urban_alb': 76},
+                                         'SGP': {'country_name': 'Singapore',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 5592000,
+                                          'urban_percent': 100,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'SLB': {'country_name': 'Solomon Islands',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 603000,
+                                          'urban_percent': 22,
+                                          'national_alb': 69,
+                                          'urban_alb': 91},
+                                         'SOM': {'country_name': 'Somalia',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2015,
+                                          'pop': 13797000,
+                                          'urban_percent': 43,
+                                          'national_alb': 49,
+                                          'urban_alb': 74},
+                                         'ZAF': {'country_name': 'South Africa',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 55386000,
+                                          'urban_percent': 65,
+                                          'national_alb': 92,
+                                          'urban_alb': 99},
+                                         'SSD': {'country_name': 'South Sudan',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2015,
+                                          'pop': 10716000,
+                                          'urban_percent': 19,
+                                          'national_alb': 41,
+                                          'urban_alb': 61},
+                                         'ESP': {'country_name': 'Spain',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 46672000,
+                                          'urban_percent': 80,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'LKA': {'country_name': 'Sri Lanka',
+                                          'region': 'South Asia',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 20908000,
+                                          'urban_percent': 18,
+                                          'national_alb': 90,
+                                          'urban_alb': 98},
+                                         'SDN': {'country_name': 'Sudan',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 38903000,
+                                          'urban_percent': 34,
+                                          'national_alb': 59,
+                                          'urban_alb': 73},
+                                         'SUR': {'country_name': 'Suriname',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 559000,
+                                          'urban_percent': 66,
+                                          'national_alb': 96,
+                                          'urban_alb': 98},
+                                         'SWE': {'country_name': 'Sweden',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 9765000,
+                                          'urban_percent': 87,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'CHE': {'country_name': 'Switzerland',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 8297000,
+                                          'urban_percent': 74,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'SYR': {'country_name': 'Syrian Arab Republic',
+                                          'region': 'Middle East & North Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 17997000,
+                                          'urban_percent': 52,
+                                          'national_alb': 94,
+                                          'urban_alb': 95},
+                                         'TJK': {'country_name': 'Tajikistan',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 8454000,
+                                          'urban_percent': 27,
+                                          'national_alb': 76,
+                                          'urban_alb': 95},
+                                         'THA': {'country_name': 'Thailand',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 68715000,
+                                          'urban_percent': 48,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'TLS': {'country_name': 'Timor-Leste',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 1196000,
+                                          'urban_percent': 29,
+                                          'national_alb': 75,
+                                          'urban_alb': 90},
+                                         'TGO': {'country_name': 'Togo',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2015,
+                                          'pop': 7323000,
+                                          'urban_percent': 40,
+                                          'national_alb': 64,
+                                          'urban_alb': 88},
+                                         'TON': {'country_name': 'Tonga',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 101000,
+                                          'urban_percent': 23,
+                                          'national_alb': 99,
+                                          'urban_alb': 100},
+                                         'TUN': {'country_name': 'Tunisia',
+                                          'region': 'Middle East & North Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 11180000,
+                                          'urban_percent': 68,
+                                          'national_alb': 95,
+                                          'urban_alb': 100},
+                                         'TKM': {'country_name': 'Turkmenistan',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 5565000,
+                                          'urban_percent': 50,
+                                          'national_alb': 98,
+                                          'urban_alb': 100},
+                                         'TUV': {'country_name': 'Tuvalu',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 11000,
+                                          'urban_percent': 60,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'UGA': {'country_name': 'Uganda',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2015,
+                                          'pop': 38225000,
+                                          'urban_percent': 22,
+                                          'national_alb': 48,
+                                          'urban_alb': 77},
+                                         'UKR': {'country_name': 'Ukraine',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 44922000,
+                                          'urban_percent': 69,
+                                          'national_alb': 94,
+                                          'urban_alb': 92},
+                                         'GBR': {'country_name': 'United Kingdom',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 65860000,
+                                          'urban_percent': 83,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'USA': {'country_name': 'United States of America',
+                                          'region': 'North America',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 320878000,
+                                          'urban_percent': 82,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'URY': {'country_name': 'Uruguay',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 3412000,
+                                          'urban_percent': 95,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'UZB': {'country_name': 'Uzbekistan',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 30930000,
+                                          'urban_percent': 51,
+                                          'national_alb': 98,
+                                          'urban_alb': 100},
+                                         'VUT': {'country_name': 'Vanuatu',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 271000,
+                                          'urban_percent': 25,
+                                          'national_alb': 90,
+                                          'urban_alb': 100},
+                                         'VNM': {'country_name': 'Vietnam',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 92677000,
+                                          'urban_percent': 34,
+                                          'national_alb': 93,
+                                          'urban_alb': 98},
+                                         'ZMB': {'country_name': 'Zambia',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 15879000,
+                                          'urban_percent': 42,
+                                          'national_alb': 61,
+                                          'urban_alb': 86},
+                                         'ZWE': {'country_name': 'Zimbabwe',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2015,
+                                          'pop': 13815000,
+                                          'urban_percent': 32,
+                                          'national_alb': 65,
+                                          'urban_alb': 94}}),
+                 "dict_2020_test": (TEXT_FORMAT_DICT, {'AFG': {'country_name': 'Afghanistan',
+                                          'region': 'South Asia',
+                                          'income_level': 'Low income',
+                                          'year': 2020,
+                                          'pop': 38928000,
+                                          'urban_percent': 26,
+                                          'national_alb': 75,
+                                          'urban_alb': 100},
+                                         'ALB': {'country_name': 'Albania',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 2878000,
+                                          'urban_percent': 62,
+                                          'national_alb': 95,
+                                          'urban_alb': 96},
+                                         'DZA': {'country_name': 'Algeria',
+                                          'region': 'Middle East & North Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 43851000,
+                                          'urban_percent': 74,
+                                          'national_alb': 94,
+                                          'urban_alb': 96},
+                                         'AND': {'country_name': 'Andorra',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 77000,
+                                          'urban_percent': 88,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'AGO': {'country_name': 'Angola',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 32866000,
+                                          'urban_percent': 67,
+                                          'national_alb': 57,
+                                          'urban_alb': 72},
+                                         'ARM': {'country_name': 'Armenia',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 2963000,
+                                          'urban_percent': 63,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'AUS': {'country_name': 'Australia',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 25500000,
+                                          'urban_percent': 86,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'AUT': {'country_name': 'Austria',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 9006000,
+                                          'urban_percent': 59,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'AZE': {'country_name': 'Azerbaijan',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 10139000,
+                                          'urban_percent': 56,
+                                          'national_alb': 96,
+                                          'urban_alb': 100},
+                                         'BGD': {'country_name': 'Bangladesh',
+                                          'region': 'South Asia',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 164689000,
+                                          'urban_percent': 38,
+                                          'national_alb': 98,
+                                          'urban_alb': 97},
+                                         'BLR': {'country_name': 'Belarus',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 9449000,
+                                          'urban_percent': 79,
+                                          'national_alb': 96,
+                                          'urban_alb': 96},
+                                         'BEL': {'country_name': 'Belgium',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 11590000,
+                                          'urban_percent': 98,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'BLZ': {'country_name': 'Belize',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 398000,
+                                          'urban_percent': 46,
+                                          'national_alb': 98,
+                                          'urban_alb': 99},
+                                         'BEN': {'country_name': 'Benin',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 12123000,
+                                          'urban_percent': 48,
+                                          'national_alb': 65,
+                                          'urban_alb': 73},
+                                         'BMU': {'country_name': 'Bermuda',
+                                          'region': 'North America',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 62000,
+                                          'urban_percent': 100,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'BTN': {'country_name': 'Bhutan',
+                                          'region': 'South Asia',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 772000,
+                                          'urban_percent': 42,
+                                          'national_alb': 97,
+                                          'urban_alb': 98},
+                                         'BIH': {'country_name': 'Bosnia and Herzegovina',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 3281000,
+                                          'urban_percent': 49,
+                                          'national_alb': 96,
+                                          'urban_alb': 95},
+                                         'BWA': {'country_name': 'Botswana',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 2352000,
+                                          'urban_percent': 71,
+                                          'national_alb': 92,
+                                          'urban_alb': 98},
+                                         'BRA': {'country_name': 'Brazil',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 212559000,
+                                          'urban_percent': 87,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'BRN': {'country_name': 'Brunei Darussalam',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 437000,
+                                          'urban_percent': 78,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'BGR': {'country_name': 'Bulgaria',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 6948000,
+                                          'urban_percent': 76,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'BFA': {'country_name': 'Burkina Faso',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2020,
+                                          'pop': 20903000,
+                                          'urban_percent': 31,
+                                          'national_alb': 47,
+                                          'urban_alb': 80},
+                                         'BDI': {'country_name': 'Burundi',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2020,
+                                          'pop': 11891000,
+                                          'urban_percent': 14,
+                                          'national_alb': 62,
+                                          'urban_alb': 91},
+                                         'CPV': {'country_name': 'Cabo Verde',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 556000,
+                                          'urban_percent': 67,
+                                          'national_alb': 89,
+                                          'urban_alb': 93},
+                                         'KHM': {'country_name': 'Cambodia',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 16719000,
+                                          'urban_percent': 24,
+                                          'national_alb': 71,
+                                          'urban_alb': 90},
+                                         'CMR': {'country_name': 'Cameroon',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 26546000,
+                                          'urban_percent': 58,
+                                          'national_alb': 66,
+                                          'urban_alb': 82},
+                                         'CAN': {'country_name': 'Canada',
+                                          'region': 'North America',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 37742000,
+                                          'urban_percent': 82,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'CAF': {'country_name': 'Central African Republic',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2020,
+                                          'pop': 4830000,
+                                          'urban_percent': 42,
+                                          'national_alb': 37,
+                                          'urban_alb': 50},
+                                         'TCD': {'country_name': 'Chad',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2020,
+                                          'pop': 16426000,
+                                          'urban_percent': 24,
+                                          'national_alb': 46,
+                                          'urban_alb': 74},
+                                         'CHL': {'country_name': 'Chile',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 19116000,
+                                          'urban_percent': 88,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'CHN': {'country_name': 'China',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 1463141000,
+                                          'urban_percent': 62,
+                                          'national_alb': 94,
+                                          'urban_alb': 97},
+                                         'COL': {'country_name': 'Colombia',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 50883000,
+                                          'urban_percent': 81,
+                                          'national_alb': 97,
+                                          'urban_alb': 100},
+                                         'CRI': {'country_name': 'Costa Rica',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 5094000,
+                                          'urban_percent': 81,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'CIV': {'country_name': "Côte d'Ivoire",
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 26378000,
+                                          'urban_percent': 52,
+                                          'national_alb': 71,
+                                          'urban_alb': 85},
+                                         'CUB': {'country_name': 'Cuba',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 11327000,
+                                          'urban_percent': 77,
+                                          'national_alb': 97,
+                                          'urban_alb': 98},
+                                         'CYP': {'country_name': 'Cyprus',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 1207000,
+                                          'urban_percent': 67,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'CZE': {'country_name': 'Czech Republic',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 10709000,
+                                          'urban_percent': 74,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'DNK': {'country_name': 'Denmark',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 5792000,
+                                          'urban_percent': 88,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'DJI': {'country_name': 'Djibouti',
+                                          'region': 'Middle East & North Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 988000,
+                                          'urban_percent': 78,
+                                          'national_alb': 76,
+                                          'urban_alb': 84},
+                                         'DOM': {'country_name': 'Dominican Republic',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 10848000,
+                                          'urban_percent': 83,
+                                          'national_alb': 97,
+                                          'urban_alb': 98},
+                                         'ECU': {'country_name': 'Ecuador',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 17643000,
+                                          'urban_percent': 64,
+                                          'national_alb': 95,
+                                          'urban_alb': 100},
+                                         'SLV': {'country_name': 'El Salvador',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 6486000,
+                                          'urban_percent': 73,
+                                          'national_alb': 98,
+                                          'urban_alb': 100},
+                                         'EST': {'country_name': 'Estonia',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 1327000,
+                                          'urban_percent': 69,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'SWZ': {'country_name': 'Eswatini',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 1160000,
+                                          'urban_percent': 24,
+                                          'national_alb': 71,
+                                          'urban_alb': 97},
+                                         'ETH': {'country_name': 'Ethiopia',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2020,
+                                          'pop': 114964000,
+                                          'urban_percent': 22,
+                                          'national_alb': 50,
+                                          'urban_alb': 84},
+                                         'FJI': {'country_name': 'Fiji',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 896000,
+                                          'urban_percent': 57,
+                                          'national_alb': 94,
+                                          'urban_alb': 98},
+                                         'FIN': {'country_name': 'Finland',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 5541000,
+                                          'urban_percent': 86,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'FRA': {'country_name': 'France',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 65274000,
+                                          'urban_percent': 81,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'GAB': {'country_name': 'Gabon',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 2226000,
+                                          'urban_percent': 90,
+                                          'national_alb': 85,
+                                          'urban_alb': 90},
+                                         'GEO': {'country_name': 'Georgia',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 3989000,
+                                          'urban_percent': 59,
+                                          'national_alb': 97,
+                                          'urban_alb': 100},
+                                         'DEU': {'country_name': 'Germany',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 83784000,
+                                          'urban_percent': 77,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'GHA': {'country_name': 'Ghana',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 31073000,
+                                          'urban_percent': 57,
+                                          'national_alb': 86,
+                                          'urban_alb': 96},
+                                         'GIB': {'country_name': 'Gibraltar',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 34000,
+                                          'urban_percent': 100,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'GRC': {'country_name': 'Greece',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 10423000,
+                                          'urban_percent': 80,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'GRL': {'country_name': 'Greenland',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 57000,
+                                          'urban_percent': 87,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'GTM': {'country_name': 'Guatemala',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 17916000,
+                                          'urban_percent': 52,
+                                          'national_alb': 94,
+                                          'urban_alb': 98},
+                                         'GIN': {'country_name': 'Guinea',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2020,
+                                          'pop': 13133000,
+                                          'urban_percent': 37,
+                                          'national_alb': 64,
+                                          'urban_alb': 87},
+                                         'GNB': {'country_name': 'Guinea-Bissau',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2020,
+                                          'pop': 1968000,
+                                          'urban_percent': 44,
+                                          'national_alb': 59,
+                                          'urban_alb': 71},
+                                         'GUY': {'country_name': 'Guyana',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 787000,
+                                          'urban_percent': 27,
+                                          'national_alb': 96,
+                                          'urban_alb': 100},
+                                         'HTI': {'country_name': 'Haiti',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 11403000,
+                                          'urban_percent': 57,
+                                          'national_alb': 67,
+                                          'urban_alb': 85},
+                                         'HND': {'country_name': 'Honduras',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 9905000,
+                                          'urban_percent': 58,
+                                          'national_alb': 96,
+                                          'urban_alb': 100},
+                                         'HUN': {'country_name': 'Hungary',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 9660000,
+                                          'urban_percent': 72,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'ISL': {'country_name': 'Iceland',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 341000,
+                                          'urban_percent': 94,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'IND': {'country_name': 'India',
+                                          'region': 'South Asia',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 1380004000,
+                                          'urban_percent': 35,
+                                          'national_alb': 90,
+                                          'urban_alb': 94},
+                                         'IDN': {'country_name': 'Indonesia',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 273524000,
+                                          'urban_percent': 57,
+                                          'national_alb': 92,
+                                          'urban_alb': 98},
+                                         'IRQ': {'country_name': 'Iraq',
+                                          'region': 'Middle East & North Africa',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 40223000,
+                                          'urban_percent': 71,
+                                          'national_alb': 98,
+                                          'urban_alb': 100},
+                                         'IRL': {'country_name': 'Ireland',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 4938000,
+                                          'urban_percent': 64,
+                                          'national_alb': 97,
+                                          'urban_alb': 97},
+                                         'ISR': {'country_name': 'Israel',
+                                          'region': 'Middle East & North Africa',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 8656000,
+                                          'urban_percent': 93,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'JAM': {'country_name': 'Jamaica',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 2961000,
+                                          'urban_percent': 56,
+                                          'national_alb': 91,
+                                          'urban_alb': 95},
+                                         'JOR': {'country_name': 'Jordan',
+                                          'region': 'Middle East & North Africa',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 10203000,
+                                          'urban_percent': 91,
+                                          'national_alb': 99,
+                                          'urban_alb': 100},
+                                         'KAZ': {'country_name': 'Kazakhstan',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 18777000,
+                                          'urban_percent': 58,
+                                          'national_alb': 95,
+                                          'urban_alb': 98},
+                                         'KEN': {'country_name': 'Kenya',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 53771000,
+                                          'urban_percent': 28,
+                                          'national_alb': 62,
+                                          'urban_alb': 87},
+                                         'KIR': {'country_name': 'Kiribati',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 119000,
+                                          'urban_percent': 56,
+                                          'national_alb': 78,
+                                          'urban_alb': 92},
+                                         'LVA': {'country_name': 'Latvia',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 1886000,
+                                          'urban_percent': 68,
+                                          'national_alb': 99,
+                                          'urban_alb': 99},
+                                         'LSO': {'country_name': 'Lesotho',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 2142000,
+                                          'urban_percent': 29,
+                                          'national_alb': 72,
+                                          'urban_alb': 93},
+                                         'LBR': {'country_name': 'Liberia',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2020,
+                                          'pop': 5058000,
+                                          'urban_percent': 52,
+                                          'national_alb': 75,
+                                          'urban_alb': 86},
+                                         'LTU': {'country_name': 'Lithuania',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 2722000,
+                                          'urban_percent': 68,
+                                          'national_alb': 98,
+                                          'urban_alb': 100},
+                                         'LUX': {'country_name': 'Luxembourg',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 626000,
+                                          'urban_percent': 91,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'MDG': {'country_name': 'Madagascar',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2020,
+                                          'pop': 27691000,
+                                          'urban_percent': 39,
+                                          'national_alb': 53,
+                                          'urban_alb': 80},
+                                         'MWI': {'country_name': 'Malawi',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2020,
+                                          'pop': 19130000,
+                                          'urban_percent': 17,
+                                          'national_alb': 70,
+                                          'urban_alb': 86},
+                                         'MYS': {'country_name': 'Malaysia',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 32366000,
+                                          'urban_percent': 77,
+                                          'national_alb': 97,
+                                          'urban_alb': 100},
+                                         'MDV': {'country_name': 'Maldives',
+                                          'region': 'South Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 541000,
+                                          'urban_percent': 41,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'MLI': {'country_name': 'Mali',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2020,
+                                          'pop': 20251000,
+                                          'urban_percent': 44,
+                                          'national_alb': 83,
+                                          'urban_alb': 96},
+                                         'MLT': {'country_name': 'Malta',
+                                          'region': 'Middle East & North Africa',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 442000,
+                                          'urban_percent': 95,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'MHL': {'country_name': 'Marshall Islands',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 59000,
+                                          'urban_percent': 78,
+                                          'national_alb': 89,
+                                          'urban_alb': 87},
+                                         'MRT': {'country_name': 'Mauritania',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 4650000,
+                                          'urban_percent': 55,
+                                          'national_alb': 72,
+                                          'urban_alb': 89},
+                                         'MUS': {'country_name': 'Mauritius',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 1272000,
+                                          'urban_percent': 41,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'MEX': {'country_name': 'Mexico',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 128933000,
+                                          'urban_percent': 81,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'MCO': {'country_name': 'Monaco',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 39000,
+                                          'urban_percent': 100,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'MNG': {'country_name': 'Mongolia',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 3278000,
+                                          'urban_percent': 69,
+                                          'national_alb': 85,
+                                          'urban_alb': 97},
+                                         'MNE': {'country_name': 'Montenegro',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 628000,
+                                          'urban_percent': 67,
+                                          'national_alb': 99,
+                                          'urban_alb': 100},
+                                         'MAR': {'country_name': 'Morocco',
+                                          'region': 'Middle East & North Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 36911000,
+                                          'urban_percent': 64,
+                                          'national_alb': 90,
+                                          'urban_alb': 98},
+                                         'MOZ': {'country_name': 'Mozambique',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2020,
+                                          'pop': 31255000,
+                                          'urban_percent': 37,
+                                          'national_alb': 63,
+                                          'urban_alb': 88},
+                                         'MMR': {'country_name': 'Myanmar',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 54410000,
+                                          'urban_percent': 31,
+                                          'national_alb': 84,
+                                          'urban_alb': 95},
+                                         'NAM': {'country_name': 'Namibia',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 2541000,
+                                          'urban_percent': 52,
+                                          'national_alb': 84,
+                                          'urban_alb': 96},
+                                         'NRU': {'country_name': 'Nauru',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 11000,
+                                          'urban_percent': 100,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'NPL': {'country_name': 'Nepal',
+                                          'region': 'South Asia',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 29137000,
+                                          'urban_percent': 21,
+                                          'national_alb': 90,
+                                          'urban_alb': 90},
+                                         'NLD': {'country_name': 'Netherlands',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 17135000,
+                                          'urban_percent': 92,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'NZL': {'country_name': 'New Zealand',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 4822000,
+                                          'urban_percent': 87,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'NIC': {'country_name': 'Nicaragua',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 6625000,
+                                          'urban_percent': 59,
+                                          'national_alb': 82,
+                                          'urban_alb': 97},
+                                         'NER': {'country_name': 'Niger',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2020,
+                                          'pop': 24207000,
+                                          'urban_percent': 17,
+                                          'national_alb': 47,
+                                          'urban_alb': 86},
+                                         'NGA': {'country_name': 'Nigeria',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 206140000,
+                                          'urban_percent': 52,
+                                          'national_alb': 78,
+                                          'urban_alb': 92},
+                                         'MKD': {'country_name': 'North Macedonia',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 2083000,
+                                          'urban_percent': 58,
+                                          'national_alb': 98,
+                                          'urban_alb': 98},
+                                         'NOR': {'country_name': 'Norway',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 5421000,
+                                          'urban_percent': 83,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'OMN': {'country_name': 'Oman',
+                                          'region': 'Middle East & North Africa',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 5107000,
+                                          'urban_percent': 86,
+                                          'national_alb': 92,
+                                          'urban_alb': 95},
+                                         'PAK': {'country_name': 'Pakistan',
+                                          'region': 'South Asia',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 220892000,
+                                          'urban_percent': 37,
+                                          'national_alb': 90,
+                                          'urban_alb': 93},
+                                         'PLW': {'country_name': 'Palau',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 18000,
+                                          'urban_percent': 81,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'PAN': {'country_name': 'Panama',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 4315000,
+                                          'urban_percent': 68,
+                                          'national_alb': 94,
+                                          'urban_alb': 98},
+                                         'PNG': {'country_name': 'Papua New Guinea',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 8947000,
+                                          'urban_percent': 13,
+                                          'national_alb': 45,
+                                          'urban_alb': 86},
+                                         'PRY': {'country_name': 'Paraguay',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 7133000,
+                                          'urban_percent': 62,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'PER': {'country_name': 'Peru',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 32972000,
+                                          'urban_percent': 78,
+                                          'national_alb': 93,
+                                          'urban_alb': 97},
+                                         'PHL': {'country_name': 'Philippines',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 109581000,
+                                          'urban_percent': 47,
+                                          'national_alb': 94,
+                                          'urban_alb': 97},
+                                         'POL': {'country_name': 'Poland',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 37847000,
+                                          'urban_percent': 60,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'PRT': {'country_name': 'Portugal',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 10197000,
+                                          'urban_percent': 66,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'ROU': {'country_name': 'Romania',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 19238000,
+                                          'urban_percent': 54,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'RUS': {'country_name': 'Russian Federation',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 145934000,
+                                          'urban_percent': 75,
+                                          'national_alb': 97,
+                                          'urban_alb': 99},
+                                         'RWA': {'country_name': 'Rwanda',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2020,
+                                          'pop': 12952000,
+                                          'urban_percent': 17,
+                                          'national_alb': 60,
+                                          'urban_alb': 83},
+                                         'WSM': {'country_name': 'Samoa',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 198000,
+                                          'urban_percent': 18,
+                                          'national_alb': 92,
+                                          'urban_alb': 92},
+                                         'SEN': {'country_name': 'Senegal',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 16744000,
+                                          'urban_percent': 48,
+                                          'national_alb': 85,
+                                          'urban_alb': 95},
+                                         'SRB': {'country_name': 'Serbia',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 8737000,
+                                          'urban_percent': 56,
+                                          'national_alb': 95,
+                                          'urban_alb': 95},
+                                         'SLE': {'country_name': 'Sierra Leone',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2020,
+                                          'pop': 7977000,
+                                          'urban_percent': 43,
+                                          'national_alb': 64,
+                                          'urban_alb': 78},
+                                         'SGP': {'country_name': 'Singapore',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 5850000,
+                                          'urban_percent': 100,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'SLB': {'country_name': 'Solomon Islands',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 687000,
+                                          'urban_percent': 25,
+                                          'national_alb': 67,
+                                          'urban_alb': 91},
+                                         'SOM': {'country_name': 'Somalia',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2020,
+                                          'pop': 15893000,
+                                          'urban_percent': 46,
+                                          'national_alb': 56,
+                                          'urban_alb': 79},
+                                         'ZAF': {'country_name': 'South Africa',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 59309000,
+                                          'urban_percent': 67,
+                                          'national_alb': 94,
+                                          'urban_alb': 100},
+                                         'SSD': {'country_name': 'South Sudan',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2020,
+                                          'pop': 11194000,
+                                          'urban_percent': 20,
+                                          'national_alb': 41,
+                                          'urban_alb': 70},
+                                         'ESP': {'country_name': 'Spain',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 46755000,
+                                          'urban_percent': 81,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'LKA': {'country_name': 'Sri Lanka',
+                                          'region': 'South Asia',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 21413000,
+                                          'urban_percent': 19,
+                                          'national_alb': 92,
+                                          'urban_alb': 100},
+                                         'SDN': {'country_name': 'Sudan',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2020,
+                                          'pop': 43849000,
+                                          'urban_percent': 35,
+                                          'national_alb': 60,
+                                          'urban_alb': 74},
+                                         'SUR': {'country_name': 'Suriname',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 587000,
+                                          'urban_percent': 66,
+                                          'national_alb': 98,
+                                          'urban_alb': 99},
+                                         'SWE': {'country_name': 'Sweden',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 10099000,
+                                          'urban_percent': 88,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'CHE': {'country_name': 'Switzerland',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 8655000,
+                                          'urban_percent': 74,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'SYR': {'country_name': 'Syrian Arab Republic',
+                                          'region': 'Middle East & North Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2020,
+                                          'pop': 17501000,
+                                          'urban_percent': 55,
+                                          'national_alb': 94,
+                                          'urban_alb': 95},
+                                         'TJK': {'country_name': 'Tajikistan',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 9538000,
+                                          'urban_percent': 28,
+                                          'national_alb': 82,
+                                          'urban_alb': 96},
+                                         'THA': {'country_name': 'Thailand',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 69800000,
+                                          'urban_percent': 51,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'TLS': {'country_name': 'Timor-Leste',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 1318000,
+                                          'urban_percent': 31,
+                                          'national_alb': 85,
+                                          'urban_alb': 96},
+                                         'TGO': {'country_name': 'Togo',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2020,
+                                          'pop': 8279000,
+                                          'urban_percent': 43,
+                                          'national_alb': 69,
+                                          'urban_alb': 91},
+                                         'TON': {'country_name': 'Tonga',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 106000,
+                                          'urban_percent': 23,
+                                          'national_alb': 99,
+                                          'urban_alb': 100},
+                                         'TUN': {'country_name': 'Tunisia',
+                                          'region': 'Middle East & North Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 11819000,
+                                          'urban_percent': 70,
+                                          'national_alb': 98,
+                                          'urban_alb': 100},
+                                         'TKM': {'country_name': 'Turkmenistan',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 6031000,
+                                          'urban_percent': 53,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'TUV': {'country_name': 'Tuvalu',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 12000,
+                                          'urban_percent': 64,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'UGA': {'country_name': 'Uganda',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2020,
+                                          'pop': 45741000,
+                                          'urban_percent': 25,
+                                          'national_alb': 56,
+                                          'urban_alb': 79},
+                                         'UKR': {'country_name': 'Ukraine',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 43734000,
+                                          'urban_percent': 69,
+                                          'national_alb': 94,
+                                          'urban_alb': 92},
+                                         'GBR': {'country_name': 'United Kingdom',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 67886000,
+                                          'urban_percent': 84,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'USA': {'country_name': 'United States of America',
+                                          'region': 'North America',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 331003000,
+                                          'urban_percent': 83,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'URY': {'country_name': 'Uruguay',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 3474000,
+                                          'urban_percent': 96,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'UZB': {'country_name': 'Uzbekistan',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 33469000,
+                                          'urban_percent': 50,
+                                          'national_alb': 98,
+                                          'urban_alb': 100},
+                                         'VUT': {'country_name': 'Vanuatu',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 307000,
+                                          'urban_percent': 26,
+                                          'national_alb': 91,
+                                          'urban_alb': 100},
+                                         'VNM': {'country_name': 'Vietnam',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 97339000,
+                                          'urban_percent': 37,
+                                          'national_alb': 97,
+                                          'urban_alb': 100},
+                                         'ZMB': {'country_name': 'Zambia',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 18384000,
+                                          'urban_percent': 45,
+                                          'national_alb': 65,
+                                          'urban_alb': 87},
+                                         'ZWE': {'country_name': 'Zimbabwe',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 14863000,
+                                          'urban_percent': 32,
+                                          'national_alb': 63,
+                                          'urban_alb': 93}}),
+                 "10": (TEXT_FORMAT_DICT, {'country_name': 'China',
+                                         'region': 'East Asia & Pacific',
+                                         'income_level': 'Upper middle income',
+                                         'year': 2020,
+                                         'pop': 1463141000,
+                                         'urban_percent': 62,
+                                         'national_alb': 94,
+                                         'urban_alb': 97}),
+                 "11": (TEXT_FORMAT, 88),
+                 "12": (TEXT_FORMAT, 60000),
+                 "13": (TEXT_FORMAT_DICT, {'Low income': 514021000,
+                                         'Upper middle income': 2430080000,
+                                         'Lower middle income': 3045857000,
+                                         'High income': 871268000}),
+                 "14": (TEXT_FORMAT_DICT, {'Low income': 302975040,
+                                         'Upper middle income': 2321860110,
+                                         'Lower middle income': 2687761440,
+                                         'High income': 870638000}),
+                 "15": (TEXT_FORMAT_DICT, {'Low income': 59,
+                                         'Upper middle income': 96,
+                                         'Lower middle income': 88,
+                                         'High income': 100}),
+                 "dict_2015_rural_alb_test": (TEXT_FORMAT_DICT, {'AFG': {'country_name': 'Afghanistan',
+                                          'region': 'South Asia',
+                                          'income_level': 'Low income',
+                                          'year': 2015,
+                                          'pop': 34414000,
+                                          'urban_percent': 25,
+                                          'national_alb': 61,
+                                          'urban_alb': 87,
+                                          'rural_alb': 52},
+                                         'ALB': {'country_name': 'Albania',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 2891000,
+                                          'urban_percent': 57,
+                                          'national_alb': 93,
+                                          'urban_alb': 95,
+                                          'rural_alb': 90},
+                                         'DZA': {'country_name': 'Algeria',
+                                          'region': 'Middle East & North Africa',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 39728000,
+                                          'urban_percent': 71,
+                                          'national_alb': 93,
+                                          'urban_alb': 95,
+                                          'rural_alb': 88},
+                                         'AND': {'country_name': 'Andorra',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 78000,
+                                          'urban_percent': 88,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'AGO': {'country_name': 'Angola',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 27884000,
+                                          'urban_percent': 63,
+                                          'national_alb': 54,
+                                          'urban_alb': 70,
+                                          'rural_alb': 27},
+                                         'ARM': {'country_name': 'Armenia',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 2926000,
+                                          'urban_percent': 63,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'AUS': {'country_name': 'Australia',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 23932000,
+                                          'urban_percent': 86,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'AUT': {'country_name': 'Austria',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 8679000,
+                                          'urban_percent': 58,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'AZE': {'country_name': 'Azerbaijan',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 9623000,
+                                          'urban_percent': 55,
+                                          'national_alb': 92,
+                                          'urban_alb': 100,
+                                          'rural_alb': 82},
+                                         'BGD': {'country_name': 'Bangladesh',
+                                          'region': 'South Asia',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 156256000,
+                                          'urban_percent': 34,
+                                          'national_alb': 97,
+                                          'urban_alb': 98,
+                                          'rural_alb': 96},
+                                         'BLR': {'country_name': 'Belarus',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 9439000,
+                                          'urban_percent': 77,
+                                          'national_alb': 96,
+                                          'urban_alb': 96,
+                                          'rural_alb': 96},
+                                         'BEL': {'country_name': 'Belgium',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 11288000,
+                                          'urban_percent': 98,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'BLZ': {'country_name': 'Belize',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 361000,
+                                          'urban_percent': 45,
+                                          'national_alb': 97,
+                                          'urban_alb': 100,
+                                          'rural_alb': 95},
+                                         'BEN': {'country_name': 'Benin',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2015,
+                                          'pop': 10576000,
+                                          'urban_percent': 46,
+                                          'national_alb': 65,
+                                          'urban_alb': 74,
+                                          'rural_alb': 57},
+                                         'BMU': {'country_name': 'Bermuda',
+                                          'region': 'North America',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 64000,
+                                          'urban_percent': 100,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'BTN': {'country_name': 'Bhutan',
+                                          'region': 'South Asia',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 728000,
+                                          'urban_percent': 39,
+                                          'national_alb': 96,
+                                          'urban_alb': 98,
+                                          'rural_alb': 95},
+                                         'BIH': {'country_name': 'Bosnia and Herzegovina',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 3429000,
+                                          'urban_percent': 47,
+                                          'national_alb': 96,
+                                          'urban_alb': 95,
+                                          'rural_alb': 97},
+                                         'BWA': {'country_name': 'Botswana',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 2121000,
+                                          'urban_percent': 67,
+                                          'national_alb': 88,
+                                          'urban_alb': 97,
+                                          'rural_alb': 70},
+                                         'BRA': {'country_name': 'Brazil',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 204472000,
+                                          'urban_percent': 86,
+                                          'national_alb': 98,
+                                          'urban_alb': 100,
+                                          'rural_alb': 86},
+                                         'BRN': {'country_name': 'Brunei Darussalam',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 415000,
+                                          'urban_percent': 77,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'BGR': {'country_name': 'Bulgaria',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 7200000,
+                                          'urban_percent': 74,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'BFA': {'country_name': 'Burkina Faso',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2015,
+                                          'pop': 18111000,
+                                          'urban_percent': 28,
+                                          'national_alb': 50,
+                                          'urban_alb': 80,
+                                          'rural_alb': 38},
+                                         'BDI': {'country_name': 'Burundi',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2015,
+                                          'pop': 10160000,
+                                          'urban_percent': 12,
+                                          'national_alb': 60,
+                                          'urban_alb': 89,
+                                          'rural_alb': 56},
+                                         'CPV': {'country_name': 'Cabo Verde',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 525000,
+                                          'urban_percent': 64,
+                                          'national_alb': 85,
+                                          'urban_alb': 92,
+                                          'rural_alb': 73},
+                                         'KHM': {'country_name': 'Cambodia',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 15521000,
+                                          'urban_percent': 22,
+                                          'national_alb': 68,
+                                          'urban_alb': 89,
+                                          'rural_alb': 62},
+                                         'CMR': {'country_name': 'Cameroon',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 23298000,
+                                          'urban_percent': 55,
+                                          'national_alb': 64,
+                                          'urban_alb': 82,
+                                          'rural_alb': 42},
+                                         'CAN': {'country_name': 'Canada',
+                                          'region': 'North America',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 36027000,
+                                          'urban_percent': 81,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'CAF': {'country_name': 'Central African Republic',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2015,
+                                          'pop': 4493000,
+                                          'urban_percent': 40,
+                                          'national_alb': 42,
+                                          'urban_alb': 58,
+                                          'rural_alb': 31},
+                                         'TCD': {'country_name': 'Chad',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2015,
+                                          'pop': 14111000,
+                                          'urban_percent': 23,
+                                          'national_alb': 44,
+                                          'urban_alb': 75,
+                                          'rural_alb': 35},
+                                         'CHL': {'country_name': 'Chile',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 17969000,
+                                          'urban_percent': 87,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'CHN': {'country_name': 'China',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 1430405000,
+                                          'urban_percent': 56,
+                                          'national_alb': 92,
+                                          'urban_alb': 98,
+                                          'rural_alb': 84},
+                                         'COL': {'country_name': 'Colombia',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 47521000,
+                                          'urban_percent': 80,
+                                          'national_alb': 96,
+                                          'urban_alb': 100,
+                                          'rural_alb': 80},
+                                         'CRI': {'country_name': 'Costa Rica',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 4848000,
+                                          'urban_percent': 77,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'CIV': {'country_name': "Côte d'Ivoire",
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 23226000,
+                                          'urban_percent': 49,
+                                          'national_alb': 71,
+                                          'urban_alb': 87,
+                                          'rural_alb': 56},
+                                         'CUB': {'country_name': 'Cuba',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 11325000,
+                                          'urban_percent': 77,
+                                          'national_alb': 96,
+                                          'urban_alb': 98,
+                                          'rural_alb': 89},
+                                         'CYP': {'country_name': 'Cyprus',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 1161000,
+                                          'urban_percent': 67,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'CZE': {'country_name': 'Czech Republic',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 10601000,
+                                          'urban_percent': 73,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'DNK': {'country_name': 'Denmark',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 5689000,
+                                          'urban_percent': 88,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'DJI': {'country_name': 'Djibouti',
+                                          'region': 'Middle East & North Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 914000,
+                                          'urban_percent': 77,
+                                          'national_alb': 76,
+                                          'urban_alb': 84,
+                                          'rural_alb': 49},
+                                         'DOM': {'country_name': 'Dominican Republic',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 10282000,
+                                          'urban_percent': 79,
+                                          'national_alb': 96,
+                                          'urban_alb': 98,
+                                          'rural_alb': 88},
+                                         'ECU': {'country_name': 'Ecuador',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 16212000,
+                                          'urban_percent': 63,
+                                          'national_alb': 93,
+                                          'urban_alb': 100,
+                                          'rural_alb': 81},
+                                         'SLV': {'country_name': 'El Salvador',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 6325000,
+                                          'urban_percent': 70,
+                                          'national_alb': 96,
+                                          'urban_alb': 99,
+                                          'rural_alb': 89},
+                                         'EST': {'country_name': 'Estonia',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 1315000,
+                                          'urban_percent': 68,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'SWZ': {'country_name': 'Eswatini',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 1104000,
+                                          'urban_percent': 23,
+                                          'national_alb': 67,
+                                          'urban_alb': 95,
+                                          'rural_alb': 59},
+                                         'ETH': {'country_name': 'Ethiopia',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2015,
+                                          'pop': 100835000,
+                                          'urban_percent': 19,
+                                          'national_alb': 42,
+                                          'urban_alb': 82,
+                                          'rural_alb': 33},
+                                         'FJI': {'country_name': 'Fiji',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 869000,
+                                          'urban_percent': 55,
+                                          'national_alb': 94,
+                                          'urban_alb': 98,
+                                          'rural_alb': 89},
+                                         'FIN': {'country_name': 'Finland',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 5481000,
+                                          'urban_percent': 85,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'FRA': {'country_name': 'France',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 64453000,
+                                          'urban_percent': 80,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'GAB': {'country_name': 'Gabon',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 1948000,
+                                          'urban_percent': 88,
+                                          'national_alb': 84,
+                                          'urban_alb': 89,
+                                          'rural_alb': 47},
+                                         'GEO': {'country_name': 'Georgia',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 4024000,
+                                          'urban_percent': 57,
+                                          'national_alb': 96,
+                                          'urban_alb': 100,
+                                          'rural_alb': 91},
+                                         'DEU': {'country_name': 'Germany',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 81787000,
+                                          'urban_percent': 77,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'GHA': {'country_name': 'Ghana',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 27849000,
+                                          'urban_percent': 54,
+                                          'national_alb': 80,
+                                          'urban_alb': 91,
+                                          'rural_alb': 67},
+                                         'GIB': {'country_name': 'Gibraltar',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 34000,
+                                          'urban_percent': 100,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'GRC': {'country_name': 'Greece',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 10660000,
+                                          'urban_percent': 78,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'GRL': {'country_name': 'Greenland',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 56000,
+                                          'urban_percent': 86,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'GTM': {'country_name': 'Guatemala',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 16252000,
+                                          'urban_percent': 50,
+                                          'national_alb': 92,
+                                          'urban_alb': 97,
+                                          'rural_alb': 87},
+                                         'GIN': {'country_name': 'Guinea',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2015,
+                                          'pop': 11432000,
+                                          'urban_percent': 35,
+                                          'national_alb': 64,
+                                          'urban_alb': 85,
+                                          'rural_alb': 53},
+                                         'GNB': {'country_name': 'Guinea-Bissau',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2015,
+                                          'pop': 1737000,
+                                          'urban_percent': 42,
+                                          'national_alb': 59,
+                                          'urban_alb': 73,
+                                          'rural_alb': 49},
+                                         'GUY': {'country_name': 'Guyana',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 767000,
+                                          'urban_percent': 26,
+                                          'national_alb': 95,
+                                          'urban_alb': 100,
+                                          'rural_alb': 93},
+                                         'HTI': {'country_name': 'Haiti',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Low income',
+                                          'year': 2015,
+                                          'pop': 10696000,
+                                          'urban_percent': 52,
+                                          'national_alb': 65,
+                                          'urban_alb': 85,
+                                          'rural_alb': 43},
+                                         'HND': {'country_name': 'Honduras',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 9113000,
+                                          'urban_percent': 55,
+                                          'national_alb': 93,
+                                          'urban_alb': 99,
+                                          'rural_alb': 86},
+                                         'HUN': {'country_name': 'Hungary',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 9778000,
+                                          'urban_percent': 71,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'ISL': {'country_name': 'Iceland',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 330000,
+                                          'urban_percent': 94,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'IND': {'country_name': 'India',
+                                          'region': 'South Asia',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 1310152000,
+                                          'urban_percent': 33,
+                                          'national_alb': 88,
+                                          'urban_alb': 93,
+                                          'rural_alb': 86},
+                                         'IDN': {'country_name': 'Indonesia',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 258383000,
+                                          'urban_percent': 53,
+                                          'national_alb': 89,
+                                          'urban_alb': 95,
+                                          'rural_alb': 82},
+                                         'IRQ': {'country_name': 'Iraq',
+                                          'region': 'Middle East & North Africa',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 35572000,
+                                          'urban_percent': 70,
+                                          'national_alb': 94,
+                                          'urban_alb': 98,
+                                          'rural_alb': 85},
+                                         'IRL': {'country_name': 'Ireland',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 4652000,
+                                          'urban_percent': 63,
+                                          'national_alb': 97,
+                                          'urban_alb': 97,
+                                          'rural_alb': 97},
+                                         'ISR': {'country_name': 'Israel',
+                                          'region': 'Middle East & North Africa',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 7978000,
+                                          'urban_percent': 92,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'JAM': {'country_name': 'Jamaica',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 2891000,
+                                          'urban_percent': 55,
+                                          'national_alb': 90,
+                                          'urban_alb': 95,
+                                          'rural_alb': 84},
+                                         'JOR': {'country_name': 'Jordan',
+                                          'region': 'Middle East & North Africa',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 9267000,
+                                          'urban_percent': 90,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'KAZ': {'country_name': 'Kazakhstan',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 17572000,
+                                          'urban_percent': 57,
+                                          'national_alb': 95,
+                                          'urban_alb': 98,
+                                          'rural_alb': 91},
+                                         'KEN': {'country_name': 'Kenya',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 47878000,
+                                          'urban_percent': 26,
+                                          'national_alb': 58,
+                                          'urban_alb': 87,
+                                          'rural_alb': 48},
+                                         'KIR': {'country_name': 'Kiribati',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 111000,
+                                          'urban_percent': 52,
+                                          'national_alb': 74,
+                                          'urban_alb': 89,
+                                          'rural_alb': 58},
+                                         'LVA': {'country_name': 'Latvia',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 1998000,
+                                          'urban_percent': 68,
+                                          'national_alb': 99,
+                                          'urban_alb': 99,
+                                          'rural_alb': 99},
+                                         'LSO': {'country_name': 'Lesotho',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 2059000,
+                                          'urban_percent': 27,
+                                          'national_alb': 71,
+                                          'urban_alb': 90,
+                                          'rural_alb': 64},
+                                         'LBR': {'country_name': 'Liberia',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2015,
+                                          'pop': 4472000,
+                                          'urban_percent': 50,
+                                          'national_alb': 73,
+                                          'urban_alb': 84,
+                                          'rural_alb': 62},
+                                         'LTU': {'country_name': 'Lithuania',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 2932000,
+                                          'urban_percent': 67,
+                                          'national_alb': 97,
+                                          'urban_alb': 100,
+                                          'rural_alb': 91},
+                                         'LUX': {'country_name': 'Luxembourg',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 567000,
+                                          'urban_percent': 90,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'MDG': {'country_name': 'Madagascar',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2015,
+                                          'pop': 24234000,
+                                          'urban_percent': 35,
+                                          'national_alb': 49,
+                                          'urban_alb': 78,
+                                          'rural_alb': 33},
+                                         'MWI': {'country_name': 'Malawi',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2015,
+                                          'pop': 16745000,
+                                          'urban_percent': 16,
+                                          'national_alb': 66,
+                                          'urban_alb': 86,
+                                          'rural_alb': 62},
+                                         'MYS': {'country_name': 'Malaysia',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 30271000,
+                                          'urban_percent': 74,
+                                          'national_alb': 97,
+                                          'urban_alb': 100,
+                                          'rural_alb': 88},
+                                         'MDV': {'country_name': 'Maldives',
+                                          'region': 'South Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 455000,
+                                          'urban_percent': 39,
+                                          'national_alb': 99,
+                                          'urban_alb': 99,
+                                          'rural_alb': 99},
+                                         'MLI': {'country_name': 'Mali',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2015,
+                                          'pop': 17439000,
+                                          'urban_percent': 40,
+                                          'national_alb': 74,
+                                          'urban_alb': 91,
+                                          'rural_alb': 63},
+                                         'MLT': {'country_name': 'Malta',
+                                          'region': 'Middle East & North Africa',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 434000,
+                                          'urban_percent': 94,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'MHL': {'country_name': 'Marshall Islands',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 57000,
+                                          'urban_percent': 76,
+                                          'national_alb': 88,
+                                          'urban_alb': 86,
+                                          'rural_alb': 94},
+                                         'MRT': {'country_name': 'Mauritania',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 4046000,
+                                          'urban_percent': 51,
+                                          'national_alb': 67,
+                                          'urban_alb': 86,
+                                          'rural_alb': 47},
+                                         'MUS': {'country_name': 'Mauritius',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 1259000,
+                                          'urban_percent': 41,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'MEX': {'country_name': 'Mexico',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 121858000,
+                                          'urban_percent': 79,
+                                          'national_alb': 98,
+                                          'urban_alb': 100,
+                                          'rural_alb': 90},
+                                         'MCO': {'country_name': 'Monaco',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 38000,
+                                          'urban_percent': 100,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'MNG': {'country_name': 'Mongolia',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 2998000,
+                                          'urban_percent': 68,
+                                          'national_alb': 81,
+                                          'urban_alb': 94,
+                                          'rural_alb': 53},
+                                         'MNE': {'country_name': 'Montenegro',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 627000,
+                                          'urban_percent': 66,
+                                          'national_alb': 97,
+                                          'urban_alb': 98,
+                                          'rural_alb': 95},
+                                         'MAR': {'country_name': 'Morocco',
+                                          'region': 'Middle East & North Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 34664000,
+                                          'urban_percent': 61,
+                                          'national_alb': 84,
+                                          'urban_alb': 96,
+                                          'rural_alb': 65},
+                                         'MOZ': {'country_name': 'Mozambique',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2015,
+                                          'pop': 27042000,
+                                          'urban_percent': 34,
+                                          'national_alb': 51,
+                                          'urban_alb': 80,
+                                          'rural_alb': 36},
+                                         'MMR': {'country_name': 'Myanmar',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 52681000,
+                                          'urban_percent': 30,
+                                          'national_alb': 74,
+                                          'urban_alb': 88,
+                                          'rural_alb': 68},
+                                         'NAM': {'country_name': 'Namibia',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 2315000,
+                                          'urban_percent': 47,
+                                          'national_alb': 83,
+                                          'urban_alb': 97,
+                                          'rural_alb': 71},
+                                         'NRU': {'country_name': 'Nauru',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 10000,
+                                          'urban_percent': 100,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'NPL': {'country_name': 'Nepal',
+                                          'region': 'South Asia',
+                                          'income_level': 'Low income',
+                                          'year': 2015,
+                                          'pop': 27015000,
+                                          'urban_percent': 19,
+                                          'national_alb': 88,
+                                          'urban_alb': 90,
+                                          'rural_alb': 88},
+                                         'NLD': {'country_name': 'Netherlands',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 16938000,
+                                          'urban_percent': 90,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'NZL': {'country_name': 'New Zealand',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 4615000,
+                                          'urban_percent': 86,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'NIC': {'country_name': 'Nicaragua',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 6223000,
+                                          'urban_percent': 58,
+                                          'national_alb': 81,
+                                          'urban_alb': 97,
+                                          'rural_alb': 59},
+                                         'NER': {'country_name': 'Niger',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2015,
+                                          'pop': 20002000,
+                                          'urban_percent': 16,
+                                          'national_alb': 45,
+                                          'urban_alb': 88,
+                                          'rural_alb': 37},
+                                         'NGA': {'country_name': 'Nigeria',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 181137000,
+                                          'urban_percent': 48,
+                                          'national_alb': 69,
+                                          'urban_alb': 85,
+                                          'rural_alb': 54},
+                                         'MKD': {'country_name': 'North Macedonia',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 2079000,
+                                          'urban_percent': 57,
+                                          'national_alb': 97,
+                                          'urban_alb': 97,
+                                          'rural_alb': 97},
+                                         'NOR': {'country_name': 'Norway',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 5200000,
+                                          'urban_percent': 81,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'OMN': {'country_name': 'Oman',
+                                          'region': 'Middle East & North Africa',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 4267000,
+                                          'urban_percent': 81,
+                                          'national_alb': 90,
+                                          'urban_alb': 94,
+                                          'rural_alb': 73},
+                                         'PAK': {'country_name': 'Pakistan',
+                                          'region': 'South Asia',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 199427000,
+                                          'urban_percent': 36,
+                                          'national_alb': 89,
+                                          'urban_alb': 94,
+                                          'rural_alb': 86},
+                                         'PLW': {'country_name': 'Palau',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 18000,
+                                          'urban_percent': 78,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'PAN': {'country_name': 'Panama',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 3968000,
+                                          'urban_percent': 67,
+                                          'national_alb': 93,
+                                          'urban_alb': 98,
+                                          'rural_alb': 83},
+                                         'PNG': {'country_name': 'Papua New Guinea',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 8108000,
+                                          'urban_percent': 13,
+                                          'national_alb': 41,
+                                          'urban_alb': 85,
+                                          'rural_alb': 34},
+                                         'PRY': {'country_name': 'Paraguay',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 6689000,
+                                          'urban_percent': 61,
+                                          'national_alb': 97,
+                                          'urban_alb': 100,
+                                          'rural_alb': 92},
+                                         'PER': {'country_name': 'Peru',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 30471000,
+                                          'urban_percent': 77,
+                                          'national_alb': 90,
+                                          'urban_alb': 95,
+                                          'rural_alb': 73},
+                                         'PHL': {'country_name': 'Philippines',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 102113000,
+                                          'urban_percent': 46,
+                                          'national_alb': 92,
+                                          'urban_alb': 96,
+                                          'rural_alb': 89},
+                                         'POL': {'country_name': 'Poland',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 38034000,
+                                          'urban_percent': 60,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'PRT': {'country_name': 'Portugal',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 10368000,
+                                          'urban_percent': 64,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'ROU': {'country_name': 'Romania',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 19925000,
+                                          'urban_percent': 54,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'RUS': {'country_name': 'Russian Federation',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 144985000,
+                                          'urban_percent': 74,
+                                          'national_alb': 97,
+                                          'urban_alb': 99,
+                                          'rural_alb': 91},
+                                         'RWA': {'country_name': 'Rwanda',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2015,
+                                          'pop': 11369000,
+                                          'urban_percent': 17,
+                                          'national_alb': 57,
+                                          'urban_alb': 80,
+                                          'rural_alb': 52},
+                                         'WSM': {'country_name': 'Samoa',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 194000,
+                                          'urban_percent': 19,
+                                          'national_alb': 91,
+                                          'urban_alb': 91,
+                                          'rural_alb': 91},
+                                         'SEN': {'country_name': 'Senegal',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2015,
+                                          'pop': 14578000,
+                                          'urban_percent': 46,
+                                          'national_alb': 79,
+                                          'urban_alb': 94,
+                                          'rural_alb': 66},
+                                         'SRB': {'country_name': 'Serbia',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 8877000,
+                                          'urban_percent': 56,
+                                          'national_alb': 93,
+                                          'urban_alb': 92,
+                                          'rural_alb': 94},
+                                         'SLE': {'country_name': 'Sierra Leone',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2015,
+                                          'pop': 7172000,
+                                          'urban_percent': 41,
+                                          'national_alb': 58,
+                                          'urban_alb': 76,
+                                          'rural_alb': 45},
+                                         'SGP': {'country_name': 'Singapore',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 5592000,
+                                          'urban_percent': 100,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'SLB': {'country_name': 'Solomon Islands',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 603000,
+                                          'urban_percent': 22,
+                                          'national_alb': 69,
+                                          'urban_alb': 91,
+                                          'rural_alb': 63},
+                                         'SOM': {'country_name': 'Somalia',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2015,
+                                          'pop': 13797000,
+                                          'urban_percent': 43,
+                                          'national_alb': 49,
+                                          'urban_alb': 74,
+                                          'rural_alb': 30},
+                                         'ZAF': {'country_name': 'South Africa',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 55386000,
+                                          'urban_percent': 65,
+                                          'national_alb': 92,
+                                          'urban_alb': 99,
+                                          'rural_alb': 79},
+                                         'SSD': {'country_name': 'South Sudan',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2015,
+                                          'pop': 10716000,
+                                          'urban_percent': 19,
+                                          'national_alb': 41,
+                                          'urban_alb': 61,
+                                          'rural_alb': 36},
+                                         'ESP': {'country_name': 'Spain',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 46672000,
+                                          'urban_percent': 80,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'LKA': {'country_name': 'Sri Lanka',
+                                          'region': 'South Asia',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 20908000,
+                                          'urban_percent': 18,
+                                          'national_alb': 90,
+                                          'urban_alb': 98,
+                                          'rural_alb': 88},
+                                         'SDN': {'country_name': 'Sudan',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 38903000,
+                                          'urban_percent': 34,
+                                          'national_alb': 59,
+                                          'urban_alb': 73,
+                                          'rural_alb': 52},
+                                         'SUR': {'country_name': 'Suriname',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 559000,
+                                          'urban_percent': 66,
+                                          'national_alb': 96,
+                                          'urban_alb': 98,
+                                          'rural_alb': 92},
+                                         'SWE': {'country_name': 'Sweden',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 9765000,
+                                          'urban_percent': 87,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'CHE': {'country_name': 'Switzerland',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 8297000,
+                                          'urban_percent': 74,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'SYR': {'country_name': 'Syrian Arab Republic',
+                                          'region': 'Middle East & North Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 17997000,
+                                          'urban_percent': 52,
+                                          'national_alb': 94,
+                                          'urban_alb': 95,
+                                          'rural_alb': 93},
+                                         'TJK': {'country_name': 'Tajikistan',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 8454000,
+                                          'urban_percent': 27,
+                                          'national_alb': 76,
+                                          'urban_alb': 95,
+                                          'rural_alb': 69},
+                                         'THA': {'country_name': 'Thailand',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 68715000,
+                                          'urban_percent': 48,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'TLS': {'country_name': 'Timor-Leste',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 1196000,
+                                          'urban_percent': 29,
+                                          'national_alb': 75,
+                                          'urban_alb': 90,
+                                          'rural_alb': 69},
+                                         'TGO': {'country_name': 'Togo',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2015,
+                                          'pop': 7323000,
+                                          'urban_percent': 40,
+                                          'national_alb': 64,
+                                          'urban_alb': 88,
+                                          'rural_alb': 48},
+                                         'TON': {'country_name': 'Tonga',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 101000,
+                                          'urban_percent': 23,
+                                          'national_alb': 99,
+                                          'urban_alb': 100,
+                                          'rural_alb': 99},
+                                         'TUN': {'country_name': 'Tunisia',
+                                          'region': 'Middle East & North Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 11180000,
+                                          'urban_percent': 68,
+                                          'national_alb': 95,
+                                          'urban_alb': 100,
+                                          'rural_alb': 84},
+                                         'TKM': {'country_name': 'Turkmenistan',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 5565000,
+                                          'urban_percent': 50,
+                                          'national_alb': 98,
+                                          'urban_alb': 100,
+                                          'rural_alb': 96},
+                                         'TUV': {'country_name': 'Tuvalu',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 11000,
+                                          'urban_percent': 60,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'UGA': {'country_name': 'Uganda',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2015,
+                                          'pop': 38225000,
+                                          'urban_percent': 22,
+                                          'national_alb': 48,
+                                          'urban_alb': 77,
+                                          'rural_alb': 40},
+                                         'UKR': {'country_name': 'Ukraine',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 44922000,
+                                          'urban_percent': 69,
+                                          'national_alb': 94,
+                                          'urban_alb': 92,
+                                          'rural_alb': 98},
+                                         'GBR': {'country_name': 'United Kingdom',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 65860000,
+                                          'urban_percent': 83,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'USA': {'country_name': 'United States of America',
+                                          'region': 'North America',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 320878000,
+                                          'urban_percent': 82,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'URY': {'country_name': 'Uruguay',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 3412000,
+                                          'urban_percent': 95,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'UZB': {'country_name': 'Uzbekistan',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 30930000,
+                                          'urban_percent': 51,
+                                          'national_alb': 98,
+                                          'urban_alb': 100,
+                                          'rural_alb': 96},
+                                         'VUT': {'country_name': 'Vanuatu',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 271000,
+                                          'urban_percent': 25,
+                                          'national_alb': 90,
+                                          'urban_alb': 100,
+                                          'rural_alb': 87},
+                                         'VNM': {'country_name': 'Vietnam',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 92677000,
+                                          'urban_percent': 34,
+                                          'national_alb': 93,
+                                          'urban_alb': 98,
+                                          'rural_alb': 90},
+                                         'ZMB': {'country_name': 'Zambia',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 15879000,
+                                          'urban_percent': 42,
+                                          'national_alb': 61,
+                                          'urban_alb': 86,
+                                          'rural_alb': 43},
+                                         'ZWE': {'country_name': 'Zimbabwe',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2015,
+                                          'pop': 13815000,
+                                          'urban_percent': 32,
+                                          'national_alb': 65,
+                                          'urban_alb': 94,
+                                          'rural_alb': 51}}),
+"dict_2020_rural_alb_test": (TEXT_FORMAT_DICT, {'AFG': {'country_name': 'Afghanistan',
+                                          'region': 'South Asia',
+                                          'income_level': 'Low income',
+                                          'year': 2020,
+                                          'pop': 38928000,
+                                          'urban_percent': 26,
+                                          'national_alb': 75,
+                                          'urban_alb': 100,
+                                          'rural_alb': 66},
+                                         'ALB': {'country_name': 'Albania',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 2878000,
+                                          'urban_percent': 62,
+                                          'national_alb': 95,
+                                          'urban_alb': 96,
+                                          'rural_alb': 93},
+                                         'DZA': {'country_name': 'Algeria',
+                                          'region': 'Middle East & North Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 43851000,
+                                          'urban_percent': 74,
+                                          'national_alb': 94,
+                                          'urban_alb': 96,
+                                          'rural_alb': 88},
+                                         'AND': {'country_name': 'Andorra',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 77000,
+                                          'urban_percent': 88,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'AGO': {'country_name': 'Angola',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 32866000,
+                                          'urban_percent': 67,
+                                          'national_alb': 57,
+                                          'urban_alb': 72,
+                                          'rural_alb': 27},
+                                         'ARM': {'country_name': 'Armenia',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 2963000,
+                                          'urban_percent': 63,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'AUS': {'country_name': 'Australia',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 25500000,
+                                          'urban_percent': 86,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'AUT': {'country_name': 'Austria',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 9006000,
+                                          'urban_percent': 59,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'AZE': {'country_name': 'Azerbaijan',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 10139000,
+                                          'urban_percent': 56,
+                                          'national_alb': 96,
+                                          'urban_alb': 100,
+                                          'rural_alb': 91},
+                                         'BGD': {'country_name': 'Bangladesh',
+                                          'region': 'South Asia',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 164689000,
+                                          'urban_percent': 38,
+                                          'national_alb': 98,
+                                          'urban_alb': 97,
+                                          'rural_alb': 99},
+                                         'BLR': {'country_name': 'Belarus',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 9449000,
+                                          'urban_percent': 79,
+                                          'national_alb': 96,
+                                          'urban_alb': 96,
+                                          'rural_alb': 96},
+                                         'BEL': {'country_name': 'Belgium',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 11590000,
+                                          'urban_percent': 98,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'BLZ': {'country_name': 'Belize',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 398000,
+                                          'urban_percent': 46,
+                                          'national_alb': 98,
+                                          'urban_alb': 99,
+                                          'rural_alb': 97},
+                                         'BEN': {'country_name': 'Benin',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 12123000,
+                                          'urban_percent': 48,
+                                          'national_alb': 65,
+                                          'urban_alb': 73,
+                                          'rural_alb': 58},
+                                         'BMU': {'country_name': 'Bermuda',
+                                          'region': 'North America',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 62000,
+                                          'urban_percent': 100,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'BTN': {'country_name': 'Bhutan',
+                                          'region': 'South Asia',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 772000,
+                                          'urban_percent': 42,
+                                          'national_alb': 97,
+                                          'urban_alb': 98,
+                                          'rural_alb': 96},
+                                         'BIH': {'country_name': 'Bosnia and Herzegovina',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 3281000,
+                                          'urban_percent': 49,
+                                          'national_alb': 96,
+                                          'urban_alb': 95,
+                                          'rural_alb': 97},
+                                         'BWA': {'country_name': 'Botswana',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 2352000,
+                                          'urban_percent': 71,
+                                          'national_alb': 92,
+                                          'urban_alb': 98,
+                                          'rural_alb': 77},
+                                         'BRA': {'country_name': 'Brazil',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 212559000,
+                                          'urban_percent': 87,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'BRN': {'country_name': 'Brunei Darussalam',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 437000,
+                                          'urban_percent': 78,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'BGR': {'country_name': 'Bulgaria',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 6948000,
+                                          'urban_percent': 76,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'BFA': {'country_name': 'Burkina Faso',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2020,
+                                          'pop': 20903000,
+                                          'urban_percent': 31,
+                                          'national_alb': 47,
+                                          'urban_alb': 80,
+                                          'rural_alb': 32},
+                                         'BDI': {'country_name': 'Burundi',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2020,
+                                          'pop': 11891000,
+                                          'urban_percent': 14,
+                                          'national_alb': 62,
+                                          'urban_alb': 91,
+                                          'rural_alb': 57},
+                                         'CPV': {'country_name': 'Cabo Verde',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 556000,
+                                          'urban_percent': 67,
+                                          'national_alb': 89,
+                                          'urban_alb': 93,
+                                          'rural_alb': 81},
+                                         'KHM': {'country_name': 'Cambodia',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 16719000,
+                                          'urban_percent': 24,
+                                          'national_alb': 71,
+                                          'urban_alb': 90,
+                                          'rural_alb': 65},
+                                         'CMR': {'country_name': 'Cameroon',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 26546000,
+                                          'urban_percent': 58,
+                                          'national_alb': 66,
+                                          'urban_alb': 82,
+                                          'rural_alb': 44},
+                                         'CAN': {'country_name': 'Canada',
+                                          'region': 'North America',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 37742000,
+                                          'urban_percent': 82,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'CAF': {'country_name': 'Central African Republic',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2020,
+                                          'pop': 4830000,
+                                          'urban_percent': 42,
+                                          'national_alb': 37,
+                                          'urban_alb': 50,
+                                          'rural_alb': 28},
+                                         'TCD': {'country_name': 'Chad',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2020,
+                                          'pop': 16426000,
+                                          'urban_percent': 24,
+                                          'national_alb': 46,
+                                          'urban_alb': 74,
+                                          'rural_alb': 37},
+                                         'CHL': {'country_name': 'Chile',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 19116000,
+                                          'urban_percent': 88,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'CHN': {'country_name': 'China',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 1463141000,
+                                          'urban_percent': 62,
+                                          'national_alb': 94,
+                                          'urban_alb': 97,
+                                          'rural_alb': 89},
+                                         'COL': {'country_name': 'Colombia',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 50883000,
+                                          'urban_percent': 81,
+                                          'national_alb': 97,
+                                          'urban_alb': 100,
+                                          'rural_alb': 84},
+                                         'CRI': {'country_name': 'Costa Rica',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 5094000,
+                                          'urban_percent': 81,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'CIV': {'country_name': "Côte d'Ivoire",
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 26378000,
+                                          'urban_percent': 52,
+                                          'national_alb': 71,
+                                          'urban_alb': 85,
+                                          'rural_alb': 56},
+                                         'CUB': {'country_name': 'Cuba',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 11327000,
+                                          'urban_percent': 77,
+                                          'national_alb': 97,
+                                          'urban_alb': 98,
+                                          'rural_alb': 94},
+                                         'CYP': {'country_name': 'Cyprus',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 1207000,
+                                          'urban_percent': 67,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'CZE': {'country_name': 'Czech Republic',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 10709000,
+                                          'urban_percent': 74,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'DNK': {'country_name': 'Denmark',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 5792000,
+                                          'urban_percent': 88,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'DJI': {'country_name': 'Djibouti',
+                                          'region': 'Middle East & North Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 988000,
+                                          'urban_percent': 78,
+                                          'national_alb': 76,
+                                          'urban_alb': 84,
+                                          'rural_alb': 48},
+                                         'DOM': {'country_name': 'Dominican Republic',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 10848000,
+                                          'urban_percent': 83,
+                                          'national_alb': 97,
+                                          'urban_alb': 98,
+                                          'rural_alb': 92},
+                                         'ECU': {'country_name': 'Ecuador',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 17643000,
+                                          'urban_percent': 64,
+                                          'national_alb': 95,
+                                          'urban_alb': 100,
+                                          'rural_alb': 86},
+                                         'SLV': {'country_name': 'El Salvador',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 6486000,
+                                          'urban_percent': 73,
+                                          'national_alb': 98,
+                                          'urban_alb': 100,
+                                          'rural_alb': 93},
+                                         'EST': {'country_name': 'Estonia',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 1327000,
+                                          'urban_percent': 69,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'SWZ': {'country_name': 'Eswatini',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 1160000,
+                                          'urban_percent': 24,
+                                          'national_alb': 71,
+                                          'urban_alb': 97,
+                                          'rural_alb': 63},
+                                         'ETH': {'country_name': 'Ethiopia',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2020,
+                                          'pop': 114964000,
+                                          'urban_percent': 22,
+                                          'national_alb': 50,
+                                          'urban_alb': 84,
+                                          'rural_alb': 40},
+                                         'FJI': {'country_name': 'Fiji',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 896000,
+                                          'urban_percent': 57,
+                                          'national_alb': 94,
+                                          'urban_alb': 98,
+                                          'rural_alb': 89},
+                                         'FIN': {'country_name': 'Finland',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 5541000,
+                                          'urban_percent': 86,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'FRA': {'country_name': 'France',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 65274000,
+                                          'urban_percent': 81,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'GAB': {'country_name': 'Gabon',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 2226000,
+                                          'urban_percent': 90,
+                                          'national_alb': 85,
+                                          'urban_alb': 90,
+                                          'rural_alb': 40},
+                                         'GEO': {'country_name': 'Georgia',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 3989000,
+                                          'urban_percent': 59,
+                                          'national_alb': 97,
+                                          'urban_alb': 100,
+                                          'rural_alb': 93},
+                                         'DEU': {'country_name': 'Germany',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 83784000,
+                                          'urban_percent': 77,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'GHA': {'country_name': 'Ghana',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 31073000,
+                                          'urban_percent': 57,
+                                          'national_alb': 86,
+                                          'urban_alb': 96,
+                                          'rural_alb': 73},
+                                         'GIB': {'country_name': 'Gibraltar',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 34000,
+                                          'urban_percent': 100,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'GRC': {'country_name': 'Greece',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 10423000,
+                                          'urban_percent': 80,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'GRL': {'country_name': 'Greenland',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 57000,
+                                          'urban_percent': 87,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'GTM': {'country_name': 'Guatemala',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 17916000,
+                                          'urban_percent': 52,
+                                          'national_alb': 94,
+                                          'urban_alb': 98,
+                                          'rural_alb': 90},
+                                         'GIN': {'country_name': 'Guinea',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2020,
+                                          'pop': 13133000,
+                                          'urban_percent': 37,
+                                          'national_alb': 64,
+                                          'urban_alb': 87,
+                                          'rural_alb': 50},
+                                         'GNB': {'country_name': 'Guinea-Bissau',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2020,
+                                          'pop': 1968000,
+                                          'urban_percent': 44,
+                                          'national_alb': 59,
+                                          'urban_alb': 71,
+                                          'rural_alb': 50},
+                                         'GUY': {'country_name': 'Guyana',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 787000,
+                                          'urban_percent': 27,
+                                          'national_alb': 96,
+                                          'urban_alb': 100,
+                                          'rural_alb': 95},
+                                         'HTI': {'country_name': 'Haiti',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 11403000,
+                                          'urban_percent': 57,
+                                          'national_alb': 67,
+                                          'urban_alb': 85,
+                                          'rural_alb': 43},
+                                         'HND': {'country_name': 'Honduras',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 9905000,
+                                          'urban_percent': 58,
+                                          'national_alb': 96,
+                                          'urban_alb': 100,
+                                          'rural_alb': 90},
+                                         'HUN': {'country_name': 'Hungary',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 9660000,
+                                          'urban_percent': 72,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'ISL': {'country_name': 'Iceland',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 341000,
+                                          'urban_percent': 94,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'IND': {'country_name': 'India',
+                                          'region': 'South Asia',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 1380004000,
+                                          'urban_percent': 35,
+                                          'national_alb': 90,
+                                          'urban_alb': 94,
+                                          'rural_alb': 88},
+                                         'IDN': {'country_name': 'Indonesia',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 273524000,
+                                          'urban_percent': 57,
+                                          'national_alb': 92,
+                                          'urban_alb': 98,
+                                          'rural_alb': 84},
+                                         'IRQ': {'country_name': 'Iraq',
+                                          'region': 'Middle East & North Africa',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 40223000,
+                                          'urban_percent': 71,
+                                          'national_alb': 98,
+                                          'urban_alb': 100,
+                                          'rural_alb': 93},
+                                         'IRL': {'country_name': 'Ireland',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 4938000,
+                                          'urban_percent': 64,
+                                          'national_alb': 97,
+                                          'urban_alb': 97,
+                                          'rural_alb': 97},
+                                         'ISR': {'country_name': 'Israel',
+                                          'region': 'Middle East & North Africa',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 8656000,
+                                          'urban_percent': 93,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'JAM': {'country_name': 'Jamaica',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 2961000,
+                                          'urban_percent': 56,
+                                          'national_alb': 91,
+                                          'urban_alb': 95,
+                                          'rural_alb': 86},
+                                         'JOR': {'country_name': 'Jordan',
+                                          'region': 'Middle East & North Africa',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 10203000,
+                                          'urban_percent': 91,
+                                          'national_alb': 99,
+                                          'urban_alb': 100,
+                                          'rural_alb': 89},
+                                         'KAZ': {'country_name': 'Kazakhstan',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 18777000,
+                                          'urban_percent': 58,
+                                          'national_alb': 95,
+                                          'urban_alb': 98,
+                                          'rural_alb': 91},
+                                         'KEN': {'country_name': 'Kenya',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 53771000,
+                                          'urban_percent': 28,
+                                          'national_alb': 62,
+                                          'urban_alb': 87,
+                                          'rural_alb': 52},
+                                         'KIR': {'country_name': 'Kiribati',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 119000,
+                                          'urban_percent': 56,
+                                          'national_alb': 78,
+                                          'urban_alb': 92,
+                                          'rural_alb': 60},
+                                         'LVA': {'country_name': 'Latvia',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 1886000,
+                                          'urban_percent': 68,
+                                          'national_alb': 99,
+                                          'urban_alb': 99,
+                                          'rural_alb': 99},
+                                         'LSO': {'country_name': 'Lesotho',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 2142000,
+                                          'urban_percent': 29,
+                                          'national_alb': 72,
+                                          'urban_alb': 93,
+                                          'rural_alb': 63},
+                                         'LBR': {'country_name': 'Liberia',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2020,
+                                          'pop': 5058000,
+                                          'urban_percent': 52,
+                                          'national_alb': 75,
+                                          'urban_alb': 86,
+                                          'rural_alb': 63},
+                                         'LTU': {'country_name': 'Lithuania',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 2722000,
+                                          'urban_percent': 68,
+                                          'national_alb': 98,
+                                          'urban_alb': 100,
+                                          'rural_alb': 94},
+                                         'LUX': {'country_name': 'Luxembourg',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 626000,
+                                          'urban_percent': 91,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'MDG': {'country_name': 'Madagascar',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2020,
+                                          'pop': 27691000,
+                                          'urban_percent': 39,
+                                          'national_alb': 53,
+                                          'urban_alb': 80,
+                                          'rural_alb': 36},
+                                         'MWI': {'country_name': 'Malawi',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2020,
+                                          'pop': 19130000,
+                                          'urban_percent': 17,
+                                          'national_alb': 70,
+                                          'urban_alb': 86,
+                                          'rural_alb': 67},
+                                         'MYS': {'country_name': 'Malaysia',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 32366000,
+                                          'urban_percent': 77,
+                                          'national_alb': 97,
+                                          'urban_alb': 100,
+                                          'rural_alb': 87},
+                                         'MDV': {'country_name': 'Maldives',
+                                          'region': 'South Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 541000,
+                                          'urban_percent': 41,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'MLI': {'country_name': 'Mali',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2020,
+                                          'pop': 20251000,
+                                          'urban_percent': 44,
+                                          'national_alb': 83,
+                                          'urban_alb': 96,
+                                          'rural_alb': 73},
+                                         'MLT': {'country_name': 'Malta',
+                                          'region': 'Middle East & North Africa',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 442000,
+                                          'urban_percent': 95,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'MHL': {'country_name': 'Marshall Islands',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 59000,
+                                          'urban_percent': 78,
+                                          'national_alb': 89,
+                                          'urban_alb': 87,
+                                          'rural_alb': 96},
+                                         'MRT': {'country_name': 'Mauritania',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 4650000,
+                                          'urban_percent': 55,
+                                          'national_alb': 72,
+                                          'urban_alb': 89,
+                                          'rural_alb': 51},
+                                         'MUS': {'country_name': 'Mauritius',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 1272000,
+                                          'urban_percent': 41,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'MEX': {'country_name': 'Mexico',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 128933000,
+                                          'urban_percent': 81,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'MCO': {'country_name': 'Monaco',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 39000,
+                                          'urban_percent': 100,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'MNG': {'country_name': 'Mongolia',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 3278000,
+                                          'urban_percent': 69,
+                                          'national_alb': 85,
+                                          'urban_alb': 97,
+                                          'rural_alb': 58},
+                                         'MNE': {'country_name': 'Montenegro',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 628000,
+                                          'urban_percent': 67,
+                                          'national_alb': 99,
+                                          'urban_alb': 100,
+                                          'rural_alb': 97},
+                                         'MAR': {'country_name': 'Morocco',
+                                          'region': 'Middle East & North Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 36911000,
+                                          'urban_percent': 64,
+                                          'national_alb': 90,
+                                          'urban_alb': 98,
+                                          'rural_alb': 76},
+                                         'MOZ': {'country_name': 'Mozambique',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2020,
+                                          'pop': 31255000,
+                                          'urban_percent': 37,
+                                          'national_alb': 63,
+                                          'urban_alb': 88,
+                                          'rural_alb': 48},
+                                         'MMR': {'country_name': 'Myanmar',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 54410000,
+                                          'urban_percent': 31,
+                                          'national_alb': 84,
+                                          'urban_alb': 95,
+                                          'rural_alb': 79},
+                                         'NAM': {'country_name': 'Namibia',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 2541000,
+                                          'urban_percent': 52,
+                                          'national_alb': 84,
+                                          'urban_alb': 96,
+                                          'rural_alb': 71},
+                                         'NRU': {'country_name': 'Nauru',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 11000,
+                                          'urban_percent': 100,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'NPL': {'country_name': 'Nepal',
+                                          'region': 'South Asia',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 29137000,
+                                          'urban_percent': 21,
+                                          'national_alb': 90,
+                                          'urban_alb': 90,
+                                          'rural_alb': 90},
+                                         'NLD': {'country_name': 'Netherlands',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 17135000,
+                                          'urban_percent': 92,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'NZL': {'country_name': 'New Zealand',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 4822000,
+                                          'urban_percent': 87,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'NIC': {'country_name': 'Nicaragua',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 6625000,
+                                          'urban_percent': 59,
+                                          'national_alb': 82,
+                                          'urban_alb': 97,
+                                          'rural_alb': 60},
+                                         'NER': {'country_name': 'Niger',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2020,
+                                          'pop': 24207000,
+                                          'urban_percent': 17,
+                                          'national_alb': 47,
+                                          'urban_alb': 86,
+                                          'rural_alb': 39},
+                                         'NGA': {'country_name': 'Nigeria',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 206140000,
+                                          'urban_percent': 52,
+                                          'national_alb': 78,
+                                          'urban_alb': 92,
+                                          'rural_alb': 63},
+                                         'MKD': {'country_name': 'North Macedonia',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 2083000,
+                                          'urban_percent': 58,
+                                          'national_alb': 98,
+                                          'urban_alb': 98,
+                                          'rural_alb': 98},
+                                         'NOR': {'country_name': 'Norway',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 5421000,
+                                          'urban_percent': 83,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'OMN': {'country_name': 'Oman',
+                                          'region': 'Middle East & North Africa',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 5107000,
+                                          'urban_percent': 86,
+                                          'national_alb': 92,
+                                          'urban_alb': 95,
+                                          'rural_alb': 74},
+                                         'PAK': {'country_name': 'Pakistan',
+                                          'region': 'South Asia',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 220892000,
+                                          'urban_percent': 37,
+                                          'national_alb': 90,
+                                          'urban_alb': 93,
+                                          'rural_alb': 88},
+                                         'PLW': {'country_name': 'Palau',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 18000,
+                                          'urban_percent': 81,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'PAN': {'country_name': 'Panama',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 4315000,
+                                          'urban_percent': 68,
+                                          'national_alb': 94,
+                                          'urban_alb': 98,
+                                          'rural_alb': 86},
+                                         'PNG': {'country_name': 'Papua New Guinea',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 8947000,
+                                          'urban_percent': 13,
+                                          'national_alb': 45,
+                                          'urban_alb': 86,
+                                          'rural_alb': 39},
+                                         'PRY': {'country_name': 'Paraguay',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 7133000,
+                                          'urban_percent': 62,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'PER': {'country_name': 'Peru',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 32972000,
+                                          'urban_percent': 78,
+                                          'national_alb': 93,
+                                          'urban_alb': 97,
+                                          'rural_alb': 79},
+                                         'PHL': {'country_name': 'Philippines',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 109581000,
+                                          'urban_percent': 47,
+                                          'national_alb': 94,
+                                          'urban_alb': 97,
+                                          'rural_alb': 91},
+                                         'POL': {'country_name': 'Poland',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 37847000,
+                                          'urban_percent': 60,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'PRT': {'country_name': 'Portugal',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 10197000,
+                                          'urban_percent': 66,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'ROU': {'country_name': 'Romania',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 19238000,
+                                          'urban_percent': 54,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'RUS': {'country_name': 'Russian Federation',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 145934000,
+                                          'urban_percent': 75,
+                                          'national_alb': 97,
+                                          'urban_alb': 99,
+                                          'rural_alb': 91},
+                                         'RWA': {'country_name': 'Rwanda',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2020,
+                                          'pop': 12952000,
+                                          'urban_percent': 17,
+                                          'national_alb': 60,
+                                          'urban_alb': 83,
+                                          'rural_alb': 55},
+                                         'WSM': {'country_name': 'Samoa',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 198000,
+                                          'urban_percent': 18,
+                                          'national_alb': 92,
+                                          'urban_alb': 92,
+                                          'rural_alb': 92},
+                                         'SEN': {'country_name': 'Senegal',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 16744000,
+                                          'urban_percent': 48,
+                                          'national_alb': 85,
+                                          'urban_alb': 95,
+                                          'rural_alb': 76},
+                                         'SRB': {'country_name': 'Serbia',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 8737000,
+                                          'urban_percent': 56,
+                                          'national_alb': 95,
+                                          'urban_alb': 95,
+                                          'rural_alb': 95},
+                                         'SLE': {'country_name': 'Sierra Leone',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2020,
+                                          'pop': 7977000,
+                                          'urban_percent': 43,
+                                          'national_alb': 64,
+                                          'urban_alb': 78,
+                                          'rural_alb': 53},
+                                         'SGP': {'country_name': 'Singapore',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 5850000,
+                                          'urban_percent': 100,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'SLB': {'country_name': 'Solomon Islands',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 687000,
+                                          'urban_percent': 25,
+                                          'national_alb': 67,
+                                          'urban_alb': 91,
+                                          'rural_alb': 59},
+                                         'SOM': {'country_name': 'Somalia',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2020,
+                                          'pop': 15893000,
+                                          'urban_percent': 46,
+                                          'national_alb': 56,
+                                          'urban_alb': 79,
+                                          'rural_alb': 36},
+                                         'ZAF': {'country_name': 'South Africa',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 59309000,
+                                          'urban_percent': 67,
+                                          'national_alb': 94,
+                                          'urban_alb': 100,
+                                          'rural_alb': 82},
+                                         'SSD': {'country_name': 'South Sudan',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2020,
+                                          'pop': 11194000,
+                                          'urban_percent': 20,
+                                          'national_alb': 41,
+                                          'urban_alb': 70,
+                                          'rural_alb': 34},
+                                         'ESP': {'country_name': 'Spain',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 46755000,
+                                          'urban_percent': 81,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'LKA': {'country_name': 'Sri Lanka',
+                                          'region': 'South Asia',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 21413000,
+                                          'urban_percent': 19,
+                                          'national_alb': 92,
+                                          'urban_alb': 100,
+                                          'rural_alb': 90},
+                                         'SDN': {'country_name': 'Sudan',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2020,
+                                          'pop': 43849000,
+                                          'urban_percent': 35,
+                                          'national_alb': 60,
+                                          'urban_alb': 74,
+                                          'rural_alb': 52},
+                                         'SUR': {'country_name': 'Suriname',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 587000,
+                                          'urban_percent': 66,
+                                          'national_alb': 98,
+                                          'urban_alb': 99,
+                                          'rural_alb': 96},
+                                         'SWE': {'country_name': 'Sweden',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 10099000,
+                                          'urban_percent': 88,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'CHE': {'country_name': 'Switzerland',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 8655000,
+                                          'urban_percent': 74,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'SYR': {'country_name': 'Syrian Arab Republic',
+                                          'region': 'Middle East & North Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2020,
+                                          'pop': 17501000,
+                                          'urban_percent': 55,
+                                          'national_alb': 94,
+                                          'urban_alb': 95,
+                                          'rural_alb': 93},
+                                         'TJK': {'country_name': 'Tajikistan',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 9538000,
+                                          'urban_percent': 28,
+                                          'national_alb': 82,
+                                          'urban_alb': 96,
+                                          'rural_alb': 77},
+                                         'THA': {'country_name': 'Thailand',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 69800000,
+                                          'urban_percent': 51,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'TLS': {'country_name': 'Timor-Leste',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 1318000,
+                                          'urban_percent': 31,
+                                          'national_alb': 85,
+                                          'urban_alb': 96,
+                                          'rural_alb': 80},
+                                         'TGO': {'country_name': 'Togo',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2020,
+                                          'pop': 8279000,
+                                          'urban_percent': 43,
+                                          'national_alb': 69,
+                                          'urban_alb': 91,
+                                          'rural_alb': 52},
+                                         'TON': {'country_name': 'Tonga',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 106000,
+                                          'urban_percent': 23,
+                                          'national_alb': 99,
+                                          'urban_alb': 100,
+                                          'rural_alb': 99},
+                                         'TUN': {'country_name': 'Tunisia',
+                                          'region': 'Middle East & North Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 11819000,
+                                          'urban_percent': 70,
+                                          'national_alb': 98,
+                                          'urban_alb': 100,
+                                          'rural_alb': 93},
+                                         'TKM': {'country_name': 'Turkmenistan',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 6031000,
+                                          'urban_percent': 53,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'TUV': {'country_name': 'Tuvalu',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 12000,
+                                          'urban_percent': 64,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'UGA': {'country_name': 'Uganda',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2020,
+                                          'pop': 45741000,
+                                          'urban_percent': 25,
+                                          'national_alb': 56,
+                                          'urban_alb': 79,
+                                          'rural_alb': 48},
+                                         'UKR': {'country_name': 'Ukraine',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 43734000,
+                                          'urban_percent': 69,
+                                          'national_alb': 94,
+                                          'urban_alb': 92,
+                                          'rural_alb': 98},
+                                         'GBR': {'country_name': 'United Kingdom',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 67886000,
+                                          'urban_percent': 84,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'USA': {'country_name': 'United States of America',
+                                          'region': 'North America',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 331003000,
+                                          'urban_percent': 83,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'URY': {'country_name': 'Uruguay',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 3474000,
+                                          'urban_percent': 96,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'UZB': {'country_name': 'Uzbekistan',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 33469000,
+                                          'urban_percent': 50,
+                                          'national_alb': 98,
+                                          'urban_alb': 100,
+                                          'rural_alb': 96},
+                                         'VUT': {'country_name': 'Vanuatu',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 307000,
+                                          'urban_percent': 26,
+                                          'national_alb': 91,
+                                          'urban_alb': 100,
+                                          'rural_alb': 88},
+                                         'VNM': {'country_name': 'Vietnam',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 97339000,
+                                          'urban_percent': 37,
+                                          'national_alb': 97,
+                                          'urban_alb': 100,
+                                          'rural_alb': 95},
+                                         'ZMB': {'country_name': 'Zambia',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 18384000,
+                                          'urban_percent': 45,
+                                          'national_alb': 65,
+                                          'urban_alb': 87,
+                                          'rural_alb': 47},
+                                         'ZWE': {'country_name': 'Zimbabwe',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 14863000,
+                                          'urban_percent': 32,
+                                          'national_alb': 63,
+                                          'urban_alb': 93,
+                                          'rural_alb': 49}}),
+                 "16": (TEXT_FORMAT, 49),
+                 "rural_non_alb_bin_2015": (TEXT_FORMAT_DICT, {0: ['Andorra',
+                                          'Armenia',
+                                          'Australia',
+                                          'Austria',
+                                          'Bangladesh',
+                                          'Belarus',
+                                          'Belgium',
+                                          'Belize',
+                                          'Bermuda',
+                                          'Bhutan',
+                                          'Bosnia and Herzegovina',
+                                          'Brunei Darussalam',
+                                          'Bulgaria',
+                                          'Canada',
+                                          'Chile',
+                                          'Costa Rica',
+                                          'Cyprus',
+                                          'Czech Republic',
+                                          'Denmark',
+                                          'Estonia',
+                                          'Finland',
+                                          'France',
+                                          'Georgia',
+                                          'Germany',
+                                          'Gibraltar',
+                                          'Greece',
+                                          'Greenland',
+                                          'Guyana',
+                                          'Hungary',
+                                          'Iceland',
+                                          'Ireland',
+                                          'Israel',
+                                          'Jordan',
+                                          'Kazakhstan',
+                                          'Latvia',
+                                          'Lithuania',
+                                          'Luxembourg',
+                                          'Maldives',
+                                          'Malta',
+                                          'Marshall Islands',
+                                          'Mauritius',
+                                          'Monaco',
+                                          'Montenegro',
+                                          'Nauru',
+                                          'Netherlands',
+                                          'New Zealand',
+                                          'North Macedonia',
+                                          'Norway',
+                                          'Palau',
+                                          'Paraguay',
+                                          'Poland',
+                                          'Portugal',
+                                          'Romania',
+                                          'Russian Federation',
+                                          'Samoa',
+                                          'Serbia',
+                                          'Singapore',
+                                          'Spain',
+                                          'Suriname',
+                                          'Sweden',
+                                          'Switzerland',
+                                          'Syrian Arab Republic',
+                                          'Thailand',
+                                          'Tonga',
+                                          'Turkmenistan',
+                                          'Tuvalu',
+                                          'Ukraine',
+                                          'United Kingdom',
+                                          'United States of America',
+                                          'Uruguay',
+                                          'Uzbekistan'],
+                                         10: ['Albania',
+                                          'Algeria',
+                                          'Azerbaijan',
+                                          'Brazil',
+                                          'China',
+                                          'Cuba',
+                                          'Dominican Republic',
+                                          'Ecuador',
+                                          'El Salvador',
+                                          'Fiji',
+                                          'Guatemala',
+                                          'Honduras',
+                                          'India',
+                                          'Indonesia',
+                                          'Iraq',
+                                          'Jamaica',
+                                          'Malaysia',
+                                          'Mexico',
+                                          'Nepal',
+                                          'Pakistan',
+                                          'Panama',
+                                          'Philippines',
+                                          'Sri Lanka',
+                                          'Tunisia',
+                                          'Vanuatu',
+                                          'Vietnam'],
+                                         20: ['Cabo Verde', 'Colombia', 'Namibia', 'Oman', 'Peru', 'South Africa'],
+                                         30: ['Botswana',
+                                          'Cambodia',
+                                          'Ghana',
+                                          'Lesotho',
+                                          'Liberia',
+                                          'Malawi',
+                                          'Mali',
+                                          'Morocco',
+                                          'Myanmar',
+                                          'Senegal',
+                                          'Solomon Islands',
+                                          'Tajikistan',
+                                          'Timor-Leste'],
+                                         40: ['Afghanistan',
+                                          'Benin',
+                                          'Burundi',
+                                          "Côte d'Ivoire",
+                                          'Eswatini',
+                                          'Guinea',
+                                          'Kiribati',
+                                          'Mongolia',
+                                          'Nicaragua',
+                                          'Nigeria',
+                                          'Rwanda',
+                                          'Sudan',
+                                          'Zimbabwe'],
+                                         50: ['Cameroon',
+                                          'Djibouti',
+                                          'Gabon',
+                                          'Guinea-Bissau',
+                                          'Haiti',
+                                          'Kenya',
+                                          'Mauritania',
+                                          'Sierra Leone',
+                                          'Togo',
+                                          'Zambia'],
+                                         60: ['Burkina Faso',
+                                          'Central African Republic',
+                                          'Chad',
+                                          'Ethiopia',
+                                          'Madagascar',
+                                          'Mozambique',
+                                          'Niger',
+                                          'Papua New Guinea',
+                                          'South Sudan',
+                                          'Uganda'],
+                                         70: ['Angola', 'Somalia'],
+                                         80: [],
+                                         90: [],
+                                         100: []}),
+                 "rural_non_alb_bin_2020": (TEXT_FORMAT_DICT, {0: ['Albania',
+                                          'Andorra',
+                                          'Armenia',
+                                          'Australia',
+                                          'Austria',
+                                          'Azerbaijan',
+                                          'Bangladesh',
+                                          'Belarus',
+                                          'Belgium',
+                                          'Belize',
+                                          'Bermuda',
+                                          'Bhutan',
+                                          'Bosnia and Herzegovina',
+                                          'Brazil',
+                                          'Brunei Darussalam',
+                                          'Bulgaria',
+                                          'Canada',
+                                          'Chile',
+                                          'Costa Rica',
+                                          'Cuba',
+                                          'Cyprus',
+                                          'Czech Republic',
+                                          'Denmark',
+                                          'Dominican Republic',
+                                          'El Salvador',
+                                          'Estonia',
+                                          'Finland',
+                                          'France',
+                                          'Georgia',
+                                          'Germany',
+                                          'Gibraltar',
+                                          'Greece',
+                                          'Greenland',
+                                          'Guyana',
+                                          'Hungary',
+                                          'Iceland',
+                                          'Iraq',
+                                          'Ireland',
+                                          'Israel',
+                                          'Kazakhstan',
+                                          'Latvia',
+                                          'Lithuania',
+                                          'Luxembourg',
+                                          'Maldives',
+                                          'Malta',
+                                          'Marshall Islands',
+                                          'Mauritius',
+                                          'Mexico',
+                                          'Monaco',
+                                          'Montenegro',
+                                          'Nauru',
+                                          'Netherlands',
+                                          'New Zealand',
+                                          'North Macedonia',
+                                          'Norway',
+                                          'Palau',
+                                          'Paraguay',
+                                          'Philippines',
+                                          'Poland',
+                                          'Portugal',
+                                          'Romania',
+                                          'Russian Federation',
+                                          'Samoa',
+                                          'Serbia',
+                                          'Singapore',
+                                          'Spain',
+                                          'Suriname',
+                                          'Sweden',
+                                          'Switzerland',
+                                          'Syrian Arab Republic',
+                                          'Thailand',
+                                          'Tonga',
+                                          'Tunisia',
+                                          'Turkmenistan',
+                                          'Tuvalu',
+                                          'Ukraine',
+                                          'United Kingdom',
+                                          'United States of America',
+                                          'Uruguay',
+                                          'Uzbekistan',
+                                          'Vietnam'],
+                                         10: ['Algeria',
+                                          'Cabo Verde',
+                                          'China',
+                                          'Colombia',
+                                          'Ecuador',
+                                          'Fiji',
+                                          'Guatemala',
+                                          'Honduras',
+                                          'India',
+                                          'Indonesia',
+                                          'Jamaica',
+                                          'Jordan',
+                                          'Malaysia',
+                                          'Nepal',
+                                          'Pakistan',
+                                          'Panama',
+                                          'South Africa',
+                                          'Sri Lanka',
+                                          'Vanuatu'],
+                                         20: ['Botswana',
+                                          'Ghana',
+                                          'Mali',
+                                          'Morocco',
+                                          'Myanmar',
+                                          'Namibia',
+                                          'Oman',
+                                          'Peru',
+                                          'Senegal',
+                                          'Tajikistan',
+                                          'Timor-Leste'],
+                                         30: ['Afghanistan',
+                                          'Cambodia',
+                                          'Eswatini',
+                                          'Lesotho',
+                                          'Liberia',
+                                          'Malawi',
+                                          'Nigeria'],
+                                         40: ['Benin',
+                                          'Burundi',
+                                          "Côte d'Ivoire",
+                                          'Kenya',
+                                          'Kiribati',
+                                          'Mauritania',
+                                          'Mongolia',
+                                          'Nicaragua',
+                                          'Rwanda',
+                                          'Sierra Leone',
+                                          'Solomon Islands',
+                                          'Sudan',
+                                          'Togo'],
+                                         50: ['Cameroon',
+                                          'Djibouti',
+                                          'Guinea',
+                                          'Guinea-Bissau',
+                                          'Haiti',
+                                          'Mozambique',
+                                          'Uganda',
+                                          'Zambia',
+                                          'Zimbabwe'],
+                                         60: ['Burkina Faso',
+                                          'Chad',
+                                          'Ethiopia',
+                                          'Gabon',
+                                          'Madagascar',
+                                          'Niger',
+                                          'Papua New Guinea',
+                                          'Somalia',
+                                          'South Sudan'],
+                                         70: ['Angola', 'Central African Republic'],
+                                         80: [],
+                                         90: [],
+                                         100: []}),
+                 "17": (TEXT_FORMAT_UNORDERED_LIST, ['Cabo Verde', 'Colombia', 'Namibia', 'Oman', 'Peru', 'South Africa']),
+                 "18": (TEXT_FORMAT_UNORDERED_LIST, ['Angola', 'Central African Republic']),
+                 "19": (TEXT_FORMAT_UNORDERED_LIST, ['Jordan',
+                                         'Solomon Islands',
+                                         'Guinea',
+                                         'Zimbabwe',
+                                         'Gabon',
+                                         'Central African Republic']),
+                 "20": (TEXT_FORMAT_UNORDERED_LIST, ['Albania',
+                                         'Azerbaijan',
+                                         'Brazil',
+                                         'Cuba',
+                                         'Dominican Republic',
+                                         'El Salvador',
+                                         'Iraq',
+                                         'Mexico',
+                                         'Philippines',
+                                         'Tunisia',
+                                         'Vietnam',
+                                         'Cabo Verde',
+                                         'Colombia',
+                                         'South Africa',
+                                         'Botswana',
+                                         'Ghana',
+                                         'Mali',
+                                         'Morocco',
+                                         'Myanmar',
+                                         'Senegal',
+                                         'Tajikistan',
+                                         'Timor-Leste',
+                                         'Afghanistan',
+                                         'Eswatini',
+                                         'Nigeria',
+                                         'Kenya',
+                                         'Mauritania',
+                                         'Sierra Leone',
+                                         'Togo',
+                                         'Mozambique',
+                                         'Uganda',
+                                         'Somalia'])}
+
+
+special_ordered_json =  {}
+
+def compare_outputs(expected, actual, format, expected_ordering=None):
+    try:
+        if format == TEXT_FORMAT:
+            return simple_compare(expected, actual)
+        elif format in [TEXT_FORMAT_ORDERED_LIST, TEXT_FORMAT_LIST_DICTS_ORDERED]:
+            return list_compare_ordered(expected, actual)
+        elif format == TEXT_FORMAT_UNORDERED_LIST:
+            return list_compare_unordered(expected, actual)
+        elif format == TEXT_FORMAT_SPECIAL_ORDERED_LIST:
+            return list_compare_special(expected, actual, special_ordered_json[qnum[1:]])
+        elif format == TEXT_FORMAT_DICT:
+            return dict_compare(expected, actual)
+        else:
+            if expected != actual:
+                return "expected %s but found %s " % (repr(expected), repr(actual))
+    except:
+        if expected != actual:
+            return "expected %s" % (repr(expected))
+
+def check_cell_text(qnum, actual):
+    format, expected = expected_json[qnum[1:]]
+    if format == TEXT_FORMAT_SPECIAL_ORDERED_LIST:
+        expected_ordering = special_ordered_json[qnum[1:]]
+        return compare_outputs(expected, actual, format, expected_ordering)
+    else:
+        return compare_outputs(expected, actual, format)
+
+
+def simple_compare(expected, actual, complete_msg=True):
+    msg = PASS
+    if type(expected) == type:
+        if expected != actual:
+            if type(actual) == type:
+                msg = "expected %s but found %s" % (expected.__name__, actual.__name__)
+            else:
+                msg = "expected %s but found %s" % (expected.__name__, repr(actual))
+    elif type(expected) != type(actual) and not (type(expected) in [float, int] and type(actual) in [float, int]):
+        msg = "expected to find type %s but found type %s" % (type(expected).__name__, type(actual).__name__)
+    elif type(expected) == float:
+        if not math.isclose(actual, expected, rel_tol=REL_TOL, abs_tol=ABS_TOL):
+            msg = "expected %s" % (repr(expected))
+            if complete_msg:
+                msg = msg + " but found %s" % (repr(actual))
+    else:
+        if expected != actual:
+            msg = "expected %s" % (repr(expected))
+            if complete_msg:
+                msg = msg + " but found %s" % (repr(actual))
+    return msg
+
+
+def list_compare_ordered(expected, actual, obj="list"):
+    msg = PASS
+    if type(expected) != type(actual):
+        msg = "expected to find type %s but found type %s" % (type(expected).__name__, type(actual).__name__)
+        return msg
+    for i in range(len(expected)):
+        if i >= len(actual):
+            msg = "expected missing %s in %s" % (repr(expected[i]), obj)
+            break
+        if type(expected[i]) in [int, float, bool, str]:
+            val = simple_compare(expected[i], actual[i])
+        elif type(expected[i]) in [list]:
+            val = list_compare_ordered(expected[i], actual[i], "sub" + obj)
+        elif type(expected[i]) in [dict]:
+            val = dict_compare(expected[i], actual[i])
+        elif type(expected[i]).__name__ == obfuscate1():
+            val = simple_compare(expected[i], actual[i])
+        if val != PASS:
+            msg = "at index %d of the %s, " % (i, obj) + val
+            break
+    if len(actual) > len(expected) and msg == PASS:
+        msg = "found unexpected %s in %s" % (repr(actual[len(expected)]), obj)
+    if len(expected) != len(actual):
+        msg = msg + " (found %d entries in %s, but expected %d)" % (len(actual), obj, len(expected))
+
+    if len(expected) > 0 and type(expected[0]) in [int, float, bool, str]:
+        if msg != PASS and list_compare_unordered(expected, actual, obj) == PASS:
+            try:
+                msg = msg + " (list may not be ordered as required)"
+            except:
+                pass
+    return msg
+
+
+def list_compare_helper(larger, smaller):
+    msg = PASS
+    j = 0
+    for i in range(len(larger)):
+        if i == len(smaller):
+            msg = "expected %s" % (repr(larger[i]))
+            break
+        found = False
+        while not found:
+            if j == len(smaller):
+                val = simple_compare(larger[i], smaller[j - 1], False)
+                break
+            val = simple_compare(larger[i], smaller[j], False)
+            j += 1
+            if val == PASS:
+                found = True
+                break
+        if not found:
+            msg = val
+            break
+    return msg
+
+
+def list_compare_unordered(expected, actual, obj="list"):
+    msg = PASS
+    if type(expected) != type(actual):
+        msg = "expected to find type %s but found type %s" % (type(expected).__name__, type(actual).__name__)
+        return msg
+    try:
+        sort_expected = sorted(expected)
+        sort_actual = sorted(actual)
+    except:
+        msg = "unexpected datatype found in %s; expected entries of type %s" % (obj, obj, type(expected[0]).__name__)
+        return msg
+
+    if len(actual) == 0 and len(expected) > 0:
+        msg = "in the %s, missing" % (obj) + expected[0]
+    elif len(actual) > 0 and len(expected) > 0:
+        val = simple_compare(sort_expected[0], sort_actual[0])
+        if val.startswith("expected to find type"):
+            msg = "in the %s, " % (obj) + simple_compare(sort_expected[0], sort_actual[0])
+        else:
+            if len(expected) > len(actual):
+                msg = "in the %s, missing " % (obj) + list_compare_helper(sort_expected, sort_actual)
+            elif len(expected) < len(actual):
+                msg = "in the %s, found un" % (obj) + list_compare_helper(sort_actual, sort_expected)
+            if len(expected) != len(actual):
+                msg = msg + " (found %d entries in %s, but expected %d)" % (len(actual), obj, len(expected))
+                return msg
+            else:
+                val = list_compare_helper(sort_expected, sort_actual)
+                if val != PASS:
+                    msg = "in the %s, missing " % (obj) + val + ", but found un" + list_compare_helper(sort_actual,
+                                                                                               sort_expected)
+    return msg
+
+
+def list_compare_special_init(expected, special_order):
+    real_expected = []
+    for i in range(len(expected)):
+        if real_expected == [] or special_order[i-1] != special_order[i]:
+            real_expected.append([])
+        real_expected[-1].append(expected[i])
+    return real_expected
+
+
+def list_compare_special(expected, actual, special_order):
+    expected = list_compare_special_init(expected, special_order)
+    msg = PASS
+    expected_list = []
+    for expected_item in expected:
+        expected_list.extend(expected_item)
+    val = list_compare_unordered(expected_list, actual)
+    if val != PASS:
+        msg = val
+    else:
+        i = 0
+        for expected_item in expected:
+            j = len(expected_item)
+            actual_item = actual[i: i + j]
+            val = list_compare_unordered(expected_item, actual_item)
+            if val != PASS:
+                if j == 1:
+                    msg = "at index %d " % (i) + val
+                else:
+                    msg = "between indices %d and %d " % (i, i + j - 1) + val
+                msg = msg + " (list may not be ordered as required)"
+                break
+            i += j
+
+    return msg
+
+
+def dict_compare(expected, actual, obj="dict"):
+    msg = PASS
+    if type(expected) != type(actual):
+        msg = "expected to find type %s but found type %s" % (type(expected).__name__, type(actual).__name__)
+        return msg
+    try:
+        expected_keys = sorted(list(expected.keys()))
+        actual_keys = sorted(list(actual.keys()))
+    except:
+        msg = "unexpected datatype found in keys of dict; expect a dict with keys of type %s" % (
+            type(expected_keys[0]).__name__)
+        return msg
+    val = list_compare_unordered(expected_keys, actual_keys, "dict")
+    if val != PASS:
+        msg = "bad keys in %s: " % (obj) + val
+    if msg == PASS:
+        for key in expected:
+            if expected[key] == None or type(expected[key]) in [int, float, bool, str]:
+                val = simple_compare(expected[key], actual[key])
+            elif type(expected[key]) in [list]:
+                val = list_compare_ordered(expected[key], actual[key], "value")
+            elif type(expected[key]) in [dict]:
+                val = dict_compare(expected[key], actual[key], "sub" + obj)
+            if val != PASS:
+                msg = "incorrect val for key %s in %s: " % (repr(key), obj) + val
+    return msg
+
+
+def check(qnum, actual):
+    msg = check_cell_text(qnum, actual)
+    if msg == PASS:
+        return True
+    print("<b style='color: red;'>ERROR:</b> " + msg)
+
+def check_file_size(path):
+    size = os.path.getsize(path)
+    assert size < MAX_FILE_SIZE * 10**3, "Your file is too big to be processed by Gradescope; please delete unnecessary output cells so your file size is < %s KB" % MAX_FILE_SIZE
diff --git a/sum23/projects/p7/rubric.md b/sum23/projects/p7/rubric.md
new file mode 100644
index 0000000..d643ebb
--- /dev/null
+++ b/sum23/projects/p7/rubric.md
@@ -0,0 +1,124 @@
+# Project 7 (P7) grading rubric
+
+## Code reviews
+
+- A TA / grader will be reviewing your code after the deadline.
+- They will make deductions based on the Rubric provided below.
+- To ensure that you don’t lose any points in code review, you must review the rubric and make sure that you have followed the instructions provided in the project correctly.
+
+## Rubric
+
+### General deductions:
+
+- Did not save the notebook file prior to running the cell containing "export". We cannot see your output if you do not save before generating the zip file. This deduction will become stricter for future projects. (-3)
+- Used concepts/modules (ex: pandas) not covered in class yet (You may use built-in functions that you have been instructed to use) (-3)
+- import statements are not mentioned in the required cell at the top of the notebook (-1)
+- Hardcoded answers or data structures (full points)
+
+### Question specific guidelines:
+
+- `cell` (3)
+	- Function does not typecast based on column names (-1)
+	- Function does not multiply the values in the pop column by 1000 (-1)
+	- Function is defined more than once (-1)
+
+- Q1 (4)
+	- Incorrect logic is used to answer (-2)
+	- Required functions are not used to answer (-1)
+
+- Q2 (4)
+	- Incorrect logic is used to answer (-2)
+	- Required functions are not used to answer (-1)
+
+- Q3 (4)
+	- Incorrect logic is used to answer (-2)
+	- Required functions are not used to answer (-1)
+
+- Q4 (4)
+	- Incorrect logic is used to answer (-1)
+	- Recomputed variable defined in Q3 (-1)
+	- Required functions are not used to answer (-1)
+
+- Q5 (4)
+	- Incorrect logic is used to answer (-2)
+	- Required functions are not used to answer (-1)
+
+- Q6 (4)
+	- Incorrect logic is used to answer (-2)
+	- Required functions are not used to answer (-1)
+
+- Q7 (4)
+	- Incorrect logic is used to answer (-2)
+	- Required functions are not used to answer (-1)
+
+- Q8 (5)
+	- Incorrect logic is used to answer (-2)
+	- Hardcoded income levels (-1)
+	- Required functions are not used to answer (-1)
+
+- Q9 (4)
+	- Incorrect logic is used to answer (-2)
+	- Required functions are not used to answer (-1)
+
+- `get_col_dict` (3)
+	- Incorrect logic is used in function (-2)
+	- Function is defined more than once (-1)
+
+- `dict_2015` (3)
+	- Data structure is defined incorrectly (-3)
+
+- `dict_2020` (3)
+	- Data structure is defined incorrectly (-3)
+
+- Q10 (2)
+	- Required data structures are not used to answer (-1)
+
+- Q11 (2)
+	- Required data structures are not used to answer (-1)
+
+- Q12 (3)
+	- Incorrect logic is used to answer (-1)
+	- Required data structures are not used to answer (-1)
+
+- Q13 (4)
+	- Incorrect logic is used to answer (-2)
+	- Required data structures are not used to answer (-1)
+
+- Q14 (4)
+	- Incorrect logic is used to answer (-2)
+	- Required data structures are not used to answer (-1)
+
+- Q15 (4)
+	- Incorrect logic is used to answer (-1)
+	- Recomputed variables already defined in q13 and q14 (-1)
+	- Required data structures are not used to answer (-1)
+
+- `dict_2015` (2)
+	- Incorrect rural_alb calculation in data structure (-2)
+
+- `dict_2020` (2)
+	- Incorrect rural_alb calculation in data structure (-2)
+
+- Q16 (2)
+	- Required data structures are not used to answer (-1)
+
+- `rural_non_alb_bin_2015_dict` (5)
+	- Data structure is defined incorrectly (-5)
+
+- `rural_non_alb_bin_2020_dict` (5)
+	- Data structure is defined incorrectly (-5)
+
+- Q17 (2)
+	- Required data structures are not used to answer (-1)
+
+- Q18 (4)
+	- Incorrect logic is used to answer (-2)
+	- Required data structures are not used to answer (-1)
+
+- Q19 (5)
+	- Incorrect logic is used to answer (-2)
+	- Required data structures are not used to answer (-2)
+
+- Q20 (5)
+	- Incorrect logic is used to answer (-2)
+	- Required data structures are not used to answer (-2)
diff --git a/sum23/projects/p7/water_accessibility.csv b/sum23/projects/p7/water_accessibility.csv
new file mode 100644
index 0000000..2be44fa
--- /dev/null
+++ b/sum23/projects/p7/water_accessibility.csv
@@ -0,0 +1,303 @@
+country_code,country_name,region,year,income_level,pop,urban_percent,national_alb,urban_alb
+AFG,Afghanistan,South Asia,2015,Low income,34414,25,61,87
+AFG,Afghanistan,South Asia,2020,Low income,38928,26,75,100
+ALB,Albania,Europe & Central Asia,2015,Upper middle income,2891,57,93,95
+ALB,Albania,Europe & Central Asia,2020,Upper middle income,2878,62,95,96
+DZA,Algeria,Middle East & North Africa,2015,Upper middle income,39728,71,93,95
+DZA,Algeria,Middle East & North Africa,2020,Lower middle income,43851,74,94,96
+AND,Andorra,Europe & Central Asia,2015,High income,78,88,100,100
+AND,Andorra,Europe & Central Asia,2020,High income,77,88,100,100
+AGO,Angola,Sub-Saharan Africa,2015,Upper middle income,27884,63,54,70
+AGO,Angola,Sub-Saharan Africa,2020,Lower middle income,32866,67,57,72
+ARM,Armenia,Europe & Central Asia,2015,Lower middle income,2926,63,100,100
+ARM,Armenia,Europe & Central Asia,2020,Upper middle income,2963,63,100,100
+AUS,Australia,East Asia & Pacific,2015,High income,23932,86,100,100
+AUS,Australia,East Asia & Pacific,2020,High income,25500,86,100,100
+AUT,Austria,Europe & Central Asia,2015,High income,8679,58,100,100
+AUT,Austria,Europe & Central Asia,2020,High income,9006,59,100,100
+AZE,Azerbaijan,Europe & Central Asia,2015,Upper middle income,9623,55,92,100
+AZE,Azerbaijan,Europe & Central Asia,2020,Upper middle income,10139,56,96,100
+BGD,Bangladesh,South Asia,2015,Lower middle income,156256,34,97,98
+BGD,Bangladesh,South Asia,2020,Lower middle income,164689,38,98,97
+BLR,Belarus,Europe & Central Asia,2015,Upper middle income,9439,77,96,96
+BLR,Belarus,Europe & Central Asia,2020,Upper middle income,9449,79,96,96
+BEL,Belgium,Europe & Central Asia,2015,High income,11288,98,100,100
+BEL,Belgium,Europe & Central Asia,2020,High income,11590,98,100,100
+BLZ,Belize,Latin America & Caribbean,2015,Upper middle income,361,45,97,100
+BLZ,Belize,Latin America & Caribbean,2020,Lower middle income,398,46,98,99
+BEN,Benin,Sub-Saharan Africa,2015,Low income,10576,46,65,74
+BEN,Benin,Sub-Saharan Africa,2020,Lower middle income,12123,48,65,73
+BMU,Bermuda,North America,2015,High income,64,100,100,100
+BMU,Bermuda,North America,2020,High income,62,100,100,100
+BTN,Bhutan,South Asia,2015,Lower middle income,728,39,96,98
+BTN,Bhutan,South Asia,2020,Lower middle income,772,42,97,98
+BIH,Bosnia and Herzegovina,Europe & Central Asia,2015,Upper middle income,3429,47,96,95
+BIH,Bosnia and Herzegovina,Europe & Central Asia,2020,Upper middle income,3281,49,96,95
+BWA,Botswana,Sub-Saharan Africa,2015,Upper middle income,2121,67,88,97
+BWA,Botswana,Sub-Saharan Africa,2020,Upper middle income,2352,71,92,98
+BRA,Brazil,Latin America & Caribbean,2015,Upper middle income,204472,86,98,100
+BRA,Brazil,Latin America & Caribbean,2020,Upper middle income,212559,87,100,100
+BRN,Brunei Darussalam,East Asia & Pacific,2015,High income,415,77,100,100
+BRN,Brunei Darussalam,East Asia & Pacific,2020,High income,437,78,100,100
+BGR,Bulgaria,Europe & Central Asia,2015,Upper middle income,7200,74,100,100
+BGR,Bulgaria,Europe & Central Asia,2020,Upper middle income,6948,76,100,100
+BFA,Burkina Faso,Sub-Saharan Africa,2015,Low income,18111,28,50,80
+BFA,Burkina Faso,Sub-Saharan Africa,2020,Low income,20903,31,47,80
+BDI,Burundi,Sub-Saharan Africa,2015,Low income,10160,12,60,89
+BDI,Burundi,Sub-Saharan Africa,2020,Low income,11891,14,62,91
+CPV,Cabo Verde,Sub-Saharan Africa,2015,Lower middle income,525,64,85,92
+CPV,Cabo Verde,Sub-Saharan Africa,2020,Lower middle income,556,67,89,93
+KHM,Cambodia,East Asia & Pacific,2015,Lower middle income,15521,22,68,89
+KHM,Cambodia,East Asia & Pacific,2020,Lower middle income,16719,24,71,90
+CMR,Cameroon,Sub-Saharan Africa,2015,Lower middle income,23298,55,64,82
+CMR,Cameroon,Sub-Saharan Africa,2020,Lower middle income,26546,58,66,82
+CAN,Canada,North America,2015,High income,36027,81,100,100
+CAN,Canada,North America,2020,High income,37742,82,100,100
+CAF,Central African Republic,Sub-Saharan Africa,2015,Low income,4493,40,42,58
+CAF,Central African Republic,Sub-Saharan Africa,2020,Low income,4830,42,37,50
+TCD,Chad,Sub-Saharan Africa,2015,Low income,14111,23,44,75
+TCD,Chad,Sub-Saharan Africa,2020,Low income,16426,24,46,74
+CHL,Chile,Latin America & Caribbean,2015,High income,17969,87,100,100
+CHL,Chile,Latin America & Caribbean,2020,High income,19116,88,100,100
+CHN,China,East Asia & Pacific,2015,Upper middle income,1430405,56,92,98
+CHN,China,East Asia & Pacific,2020,Upper middle income,1463141,62,94,97
+COL,Colombia,Latin America & Caribbean,2015,Upper middle income,47521,80,96,100
+COL,Colombia,Latin America & Caribbean,2020,Upper middle income,50883,81,97,100
+CRI,Costa Rica,Latin America & Caribbean,2015,Upper middle income,4848,77,100,100
+CRI,Costa Rica,Latin America & Caribbean,2020,Upper middle income,5094,81,100,100
+CIV,Côte d'Ivoire,Sub-Saharan Africa,2015,Lower middle income,23226,49,71,87
+CIV,Côte d'Ivoire,Sub-Saharan Africa,2020,Lower middle income,26378,52,71,85
+CUB,Cuba,Latin America & Caribbean,2015,Upper middle income,11325,77,96,98
+CUB,Cuba,Latin America & Caribbean,2020,Upper middle income,11327,77,97,98
+CYP,Cyprus,Europe & Central Asia,2015,High income,1161,67,100,100
+CYP,Cyprus,Europe & Central Asia,2020,High income,1207,67,100,100
+CZE,Czech Republic,Europe & Central Asia,2015,High income,10601,73,100,100
+CZE,Czech Republic,Europe & Central Asia,2020,High income,10709,74,100,100
+DNK,Denmark,Europe & Central Asia,2015,High income,5689,88,100,100
+DNK,Denmark,Europe & Central Asia,2020,High income,5792,88,100,100
+DJI,Djibouti,Middle East & North Africa,2015,Lower middle income,914,77,76,84
+DJI,Djibouti,Middle East & North Africa,2020,Lower middle income,988,78,76,84
+DOM,Dominican Republic,Latin America & Caribbean,2015,Upper middle income,10282,79,96,98
+DOM,Dominican Republic,Latin America & Caribbean,2020,Upper middle income,10848,83,97,98
+ECU,Ecuador,Latin America & Caribbean,2015,Upper middle income,16212,63,93,100
+ECU,Ecuador,Latin America & Caribbean,2020,Upper middle income,17643,64,95,100
+SLV,El Salvador,Latin America & Caribbean,2015,Lower middle income,6325,70,96,99
+SLV,El Salvador,Latin America & Caribbean,2020,Lower middle income,6486,73,98,100
+EST,Estonia,Europe & Central Asia,2015,High income,1315,68,100,100
+EST,Estonia,Europe & Central Asia,2020,High income,1327,69,100,100
+SWZ,Eswatini,Sub-Saharan Africa,2015,Lower middle income,1104,23,67,95
+SWZ,Eswatini,Sub-Saharan Africa,2020,Lower middle income,1160,24,71,97
+ETH,Ethiopia,Sub-Saharan Africa,2015,Low income,100835,19,42,82
+ETH,Ethiopia,Sub-Saharan Africa,2020,Low income,114964,22,50,84
+FJI,Fiji,East Asia & Pacific,2015,Upper middle income,869,55,94,98
+FJI,Fiji,East Asia & Pacific,2020,Upper middle income,896,57,94,98
+FIN,Finland,Europe & Central Asia,2015,High income,5481,85,100,100
+FIN,Finland,Europe & Central Asia,2020,High income,5541,86,100,100
+FRA,France,Europe & Central Asia,2015,High income,64453,80,100,100
+FRA,France,Europe & Central Asia,2020,High income,65274,81,100,100
+GAB,Gabon,Sub-Saharan Africa,2015,Upper middle income,1948,88,84,89
+GAB,Gabon,Sub-Saharan Africa,2020,Upper middle income,2226,90,85,90
+GEO,Georgia,Europe & Central Asia,2015,Upper middle income,4024,57,96,100
+GEO,Georgia,Europe & Central Asia,2020,Upper middle income,3989,59,97,100
+DEU,Germany,Europe & Central Asia,2015,High income,81787,77,100,100
+DEU,Germany,Europe & Central Asia,2020,High income,83784,77,100,100
+GHA,Ghana,Sub-Saharan Africa,2015,Lower middle income,27849,54,80,91
+GHA,Ghana,Sub-Saharan Africa,2020,Lower middle income,31073,57,86,96
+GIB,Gibraltar,Europe & Central Asia,2015,High income,34,100,100,100
+GIB,Gibraltar,Europe & Central Asia,2020,High income,34,100,100,100
+GRC,Greece,Europe & Central Asia,2015,High income,10660,78,100,100
+GRC,Greece,Europe & Central Asia,2020,High income,10423,80,100,100
+GRL,Greenland,Europe & Central Asia,2015,High income,56,86,100,100
+GRL,Greenland,Europe & Central Asia,2020,High income,57,87,100,100
+GTM,Guatemala,Latin America & Caribbean,2015,Lower middle income,16252,50,92,97
+GTM,Guatemala,Latin America & Caribbean,2020,Upper middle income,17916,52,94,98
+GIN,Guinea,Sub-Saharan Africa,2015,Low income,11432,35,64,85
+GIN,Guinea,Sub-Saharan Africa,2020,Low income,13133,37,64,87
+GNB,Guinea-Bissau,Sub-Saharan Africa,2015,Low income,1737,42,59,73
+GNB,Guinea-Bissau,Sub-Saharan Africa,2020,Low income,1968,44,59,71
+GUY,Guyana,Latin America & Caribbean,2015,Upper middle income,767,26,95,100
+GUY,Guyana,Latin America & Caribbean,2020,Upper middle income,787,27,96,100
+HTI,Haiti,Latin America & Caribbean,2015,Low income,10696,52,65,85
+HTI,Haiti,Latin America & Caribbean,2020,Lower middle income,11403,57,67,85
+HND,Honduras,Latin America & Caribbean,2015,Lower middle income,9113,55,93,99
+HND,Honduras,Latin America & Caribbean,2020,Lower middle income,9905,58,96,100
+HUN,Hungary,Europe & Central Asia,2015,High income,9778,71,100,100
+HUN,Hungary,Europe & Central Asia,2020,High income,9660,72,100,100
+ISL,Iceland,Europe & Central Asia,2015,High income,330,94,100,100
+ISL,Iceland,Europe & Central Asia,2020,High income,341,94,100,100
+IND,India,South Asia,2015,Lower middle income,1310152,33,88,93
+IND,India,South Asia,2020,Lower middle income,1380004,35,90,94
+IDN,Indonesia,East Asia & Pacific,2015,Lower middle income,258383,53,89,95
+IDN,Indonesia,East Asia & Pacific,2020,Lower middle income,273524,57,92,98
+IRQ,Iraq,Middle East & North Africa,2015,Upper middle income,35572,70,94,98
+IRQ,Iraq,Middle East & North Africa,2020,Upper middle income,40223,71,98,100
+IRL,Ireland,Europe & Central Asia,2015,High income,4652,63,97,97
+IRL,Ireland,Europe & Central Asia,2020,High income,4938,64,97,97
+ISR,Israel,Middle East & North Africa,2015,High income,7978,92,100,100
+ISR,Israel,Middle East & North Africa,2020,High income,8656,93,100,100
+JAM,Jamaica,Latin America & Caribbean,2015,Upper middle income,2891,55,90,95
+JAM,Jamaica,Latin America & Caribbean,2020,Upper middle income,2961,56,91,95
+JOR,Jordan,Middle East & North Africa,2015,Upper middle income,9267,90,100,100
+JOR,Jordan,Middle East & North Africa,2020,Upper middle income,10203,91,99,100
+KAZ,Kazakhstan,Europe & Central Asia,2015,Upper middle income,17572,57,95,98
+KAZ,Kazakhstan,Europe & Central Asia,2020,Upper middle income,18777,58,95,98
+KEN,Kenya,Sub-Saharan Africa,2015,Lower middle income,47878,26,58,87
+KEN,Kenya,Sub-Saharan Africa,2020,Lower middle income,53771,28,62,87
+KIR,Kiribati,East Asia & Pacific,2015,Lower middle income,111,52,74,89
+KIR,Kiribati,East Asia & Pacific,2020,Lower middle income,119,56,78,92
+LVA,Latvia,Europe & Central Asia,2015,High income,1998,68,99,99
+LVA,Latvia,Europe & Central Asia,2020,High income,1886,68,99,99
+LSO,Lesotho,Sub-Saharan Africa,2015,Lower middle income,2059,27,71,90
+LSO,Lesotho,Sub-Saharan Africa,2020,Lower middle income,2142,29,72,93
+LBR,Liberia,Sub-Saharan Africa,2015,Low income,4472,50,73,84
+LBR,Liberia,Sub-Saharan Africa,2020,Low income,5058,52,75,86
+LTU,Lithuania,Europe & Central Asia,2015,High income,2932,67,97,100
+LTU,Lithuania,Europe & Central Asia,2020,High income,2722,68,98,100
+LUX,Luxembourg,Europe & Central Asia,2015,High income,567,90,100,100
+LUX,Luxembourg,Europe & Central Asia,2020,High income,626,91,100,100
+MDG,Madagascar,Sub-Saharan Africa,2015,Low income,24234,35,49,78
+MDG,Madagascar,Sub-Saharan Africa,2020,Low income,27691,39,53,80
+MWI,Malawi,Sub-Saharan Africa,2015,Low income,16745,16,66,86
+MWI,Malawi,Sub-Saharan Africa,2020,Low income,19130,17,70,86
+MYS,Malaysia,East Asia & Pacific,2015,Upper middle income,30271,74,97,100
+MYS,Malaysia,East Asia & Pacific,2020,Upper middle income,32366,77,97,100
+MDV,Maldives,South Asia,2015,Upper middle income,455,39,99,99
+MDV,Maldives,South Asia,2020,Upper middle income,541,41,100,100
+MLI,Mali,Sub-Saharan Africa,2015,Low income,17439,40,74,91
+MLI,Mali,Sub-Saharan Africa,2020,Low income,20251,44,83,96
+MLT,Malta,Middle East & North Africa,2015,High income,434,94,100,100
+MLT,Malta,Middle East & North Africa,2020,High income,442,95,100,100
+MHL,Marshall Islands,East Asia & Pacific,2015,Upper middle income,57,76,88,86
+MHL,Marshall Islands,East Asia & Pacific,2020,Upper middle income,59,78,89,87
+MRT,Mauritania,Sub-Saharan Africa,2015,Lower middle income,4046,51,67,86
+MRT,Mauritania,Sub-Saharan Africa,2020,Lower middle income,4650,55,72,89
+MUS,Mauritius,Sub-Saharan Africa,2015,Upper middle income,1259,41,100,100
+MUS,Mauritius,Sub-Saharan Africa,2020,Upper middle income,1272,41,100,100
+MEX,Mexico,Latin America & Caribbean,2015,Upper middle income,121858,79,98,100
+MEX,Mexico,Latin America & Caribbean,2020,Upper middle income,128933,81,100,100
+MCO,Monaco,Europe & Central Asia,2015,High income,38,100,100,100
+MCO,Monaco,Europe & Central Asia,2020,High income,39,100,100,100
+MNG,Mongolia,East Asia & Pacific,2015,Lower middle income,2998,68,81,94
+MNG,Mongolia,East Asia & Pacific,2020,Lower middle income,3278,69,85,97
+MNE,Montenegro,Europe & Central Asia,2015,Upper middle income,627,66,97,98
+MNE,Montenegro,Europe & Central Asia,2020,Upper middle income,628,67,99,100
+MAR,Morocco,Middle East & North Africa,2015,Lower middle income,34664,61,84,96
+MAR,Morocco,Middle East & North Africa,2020,Lower middle income,36911,64,90,98
+MOZ,Mozambique,Sub-Saharan Africa,2015,Low income,27042,34,51,80
+MOZ,Mozambique,Sub-Saharan Africa,2020,Low income,31255,37,63,88
+MMR,Myanmar,East Asia & Pacific,2015,Lower middle income,52681,30,74,88
+MMR,Myanmar,East Asia & Pacific,2020,Lower middle income,54410,31,84,95
+NAM,Namibia,Sub-Saharan Africa,2015,Upper middle income,2315,47,83,97
+NAM,Namibia,Sub-Saharan Africa,2020,Upper middle income,2541,52,84,96
+NRU,Nauru,East Asia & Pacific,2015,High income,10,100,100,100
+NRU,Nauru,East Asia & Pacific,2020,High income,11,100,100,100
+NPL,Nepal,South Asia,2015,Low income,27015,19,88,90
+NPL,Nepal,South Asia,2020,Lower middle income,29137,21,90,90
+NLD,Netherlands,Europe & Central Asia,2015,High income,16938,90,100,100
+NLD,Netherlands,Europe & Central Asia,2020,High income,17135,92,100,100
+NZL,New Zealand,East Asia & Pacific,2015,High income,4615,86,100,100
+NZL,New Zealand,East Asia & Pacific,2020,High income,4822,87,100,100
+NIC,Nicaragua,Latin America & Caribbean,2015,Lower middle income,6223,58,81,97
+NIC,Nicaragua,Latin America & Caribbean,2020,Lower middle income,6625,59,82,97
+NER,Niger,Sub-Saharan Africa,2015,Low income,20002,16,45,88
+NER,Niger,Sub-Saharan Africa,2020,Low income,24207,17,47,86
+NGA,Nigeria,Sub-Saharan Africa,2015,Lower middle income,181137,48,69,85
+NGA,Nigeria,Sub-Saharan Africa,2020,Lower middle income,206140,52,78,92
+MKD,North Macedonia,Europe & Central Asia,2015,Upper middle income,2079,57,97,97
+MKD,North Macedonia,Europe & Central Asia,2020,Upper middle income,2083,58,98,98
+NOR,Norway,Europe & Central Asia,2015,High income,5200,81,100,100
+NOR,Norway,Europe & Central Asia,2020,High income,5421,83,100,100
+OMN,Oman,Middle East & North Africa,2015,High income,4267,81,90,94
+OMN,Oman,Middle East & North Africa,2020,High income,5107,86,92,95
+PAK,Pakistan,South Asia,2015,Lower middle income,199427,36,89,94
+PAK,Pakistan,South Asia,2020,Lower middle income,220892,37,90,93
+PLW,Palau,East Asia & Pacific,2015,Upper middle income,18,78,100,100
+PLW,Palau,East Asia & Pacific,2020,High income,18,81,100,100
+PAN,Panama,Latin America & Caribbean,2015,Upper middle income,3968,67,93,98
+PAN,Panama,Latin America & Caribbean,2020,Upper middle income,4315,68,94,98
+PNG,Papua New Guinea,East Asia & Pacific,2015,Lower middle income,8108,13,41,85
+PNG,Papua New Guinea,East Asia & Pacific,2020,Lower middle income,8947,13,45,86
+PRY,Paraguay,Latin America & Caribbean,2015,Upper middle income,6689,61,97,100
+PRY,Paraguay,Latin America & Caribbean,2020,Upper middle income,7133,62,100,100
+PER,Peru,Latin America & Caribbean,2015,Upper middle income,30471,77,90,95
+PER,Peru,Latin America & Caribbean,2020,Upper middle income,32972,78,93,97
+PHL,Philippines,East Asia & Pacific,2015,Lower middle income,102113,46,92,96
+PHL,Philippines,East Asia & Pacific,2020,Lower middle income,109581,47,94,97
+POL,Poland,Europe & Central Asia,2015,High income,38034,60,100,100
+POL,Poland,Europe & Central Asia,2020,High income,37847,60,100,100
+PRT,Portugal,Europe & Central Asia,2015,High income,10368,64,100,100
+PRT,Portugal,Europe & Central Asia,2020,High income,10197,66,100,100
+ROU,Romania,Europe & Central Asia,2015,Upper middle income,19925,54,100,100
+ROU,Romania,Europe & Central Asia,2020,Upper middle income,19238,54,100,100
+RUS,Russian Federation,Europe & Central Asia,2015,Upper middle income,144985,74,97,99
+RUS,Russian Federation,Europe & Central Asia,2020,Upper middle income,145934,75,97,99
+RWA,Rwanda,Sub-Saharan Africa,2015,Low income,11369,17,57,80
+RWA,Rwanda,Sub-Saharan Africa,2020,Low income,12952,17,60,83
+WSM,Samoa,East Asia & Pacific,2015,Lower middle income,194,19,91,91
+WSM,Samoa,East Asia & Pacific,2020,Lower middle income,198,18,92,92
+SEN,Senegal,Sub-Saharan Africa,2015,Low income,14578,46,79,94
+SEN,Senegal,Sub-Saharan Africa,2020,Lower middle income,16744,48,85,95
+SRB,Serbia,Europe & Central Asia,2015,Upper middle income,8877,56,93,92
+SRB,Serbia,Europe & Central Asia,2020,Upper middle income,8737,56,95,95
+SLE,Sierra Leone,Sub-Saharan Africa,2015,Low income,7172,41,58,76
+SLE,Sierra Leone,Sub-Saharan Africa,2020,Low income,7977,43,64,78
+SGP,Singapore,East Asia & Pacific,2015,High income,5592,100,100,100
+SGP,Singapore,East Asia & Pacific,2020,High income,5850,100,100,100
+SLB,Solomon Islands,East Asia & Pacific,2015,Lower middle income,603,22,69,91
+SLB,Solomon Islands,East Asia & Pacific,2020,Lower middle income,687,25,67,91
+SOM,Somalia,Sub-Saharan Africa,2015,Low income,13797,43,49,74
+SOM,Somalia,Sub-Saharan Africa,2020,Low income,15893,46,56,79
+ZAF,South Africa,Sub-Saharan Africa,2015,Upper middle income,55386,65,92,99
+ZAF,South Africa,Sub-Saharan Africa,2020,Upper middle income,59309,67,94,100
+SSD,South Sudan,Sub-Saharan Africa,2015,Low income,10716,19,41,61
+SSD,South Sudan,Sub-Saharan Africa,2020,Low income,11194,20,41,70
+ESP,Spain,Europe & Central Asia,2015,High income,46672,80,100,100
+ESP,Spain,Europe & Central Asia,2020,High income,46755,81,100,100
+LKA,Sri Lanka,South Asia,2015,Lower middle income,20908,18,90,98
+LKA,Sri Lanka,South Asia,2020,Lower middle income,21413,19,92,100
+SDN,Sudan,Sub-Saharan Africa,2015,Lower middle income,38903,34,59,73
+SDN,Sudan,Sub-Saharan Africa,2020,Low income,43849,35,60,74
+SUR,Suriname,Latin America & Caribbean,2015,Upper middle income,559,66,96,98
+SUR,Suriname,Latin America & Caribbean,2020,Upper middle income,587,66,98,99
+SWE,Sweden,Europe & Central Asia,2015,High income,9765,87,100,100
+SWE,Sweden,Europe & Central Asia,2020,High income,10099,88,100,100
+CHE,Switzerland,Europe & Central Asia,2015,High income,8297,74,100,100
+CHE,Switzerland,Europe & Central Asia,2020,High income,8655,74,100,100
+SYR,Syrian Arab Republic,Middle East & North Africa,2015,Lower middle income,17997,52,94,95
+SYR,Syrian Arab Republic,Middle East & North Africa,2020,Low income,17501,55,94,95
+TJK,Tajikistan,Europe & Central Asia,2015,Lower middle income,8454,27,76,95
+TJK,Tajikistan,Europe & Central Asia,2020,Lower middle income,9538,28,82,96
+THA,Thailand,East Asia & Pacific,2015,Upper middle income,68715,48,100,100
+THA,Thailand,East Asia & Pacific,2020,Upper middle income,69800,51,100,100
+TLS,Timor-Leste,East Asia & Pacific,2015,Lower middle income,1196,29,75,90
+TLS,Timor-Leste,East Asia & Pacific,2020,Lower middle income,1318,31,85,96
+TGO,Togo,Sub-Saharan Africa,2015,Low income,7323,40,64,88
+TGO,Togo,Sub-Saharan Africa,2020,Low income,8279,43,69,91
+TON,Tonga,East Asia & Pacific,2015,Lower middle income,101,23,99,100
+TON,Tonga,East Asia & Pacific,2020,Upper middle income,106,23,99,100
+TUN,Tunisia,Middle East & North Africa,2015,Lower middle income,11180,68,95,100
+TUN,Tunisia,Middle East & North Africa,2020,Lower middle income,11819,70,98,100
+TKM,Turkmenistan,Europe & Central Asia,2015,Upper middle income,5565,50,98,100
+TKM,Turkmenistan,Europe & Central Asia,2020,Upper middle income,6031,53,100,100
+TUV,Tuvalu,East Asia & Pacific,2015,Upper middle income,11,60,100,100
+TUV,Tuvalu,East Asia & Pacific,2020,Upper middle income,12,64,100,100
+UGA,Uganda,Sub-Saharan Africa,2015,Low income,38225,22,48,77
+UGA,Uganda,Sub-Saharan Africa,2020,Low income,45741,25,56,79
+UKR,Ukraine,Europe & Central Asia,2015,Lower middle income,44922,69,94,92
+UKR,Ukraine,Europe & Central Asia,2020,Lower middle income,43734,69,94,92
+GBR,United Kingdom,Europe & Central Asia,2015,High income,65860,83,100,100
+GBR,United Kingdom,Europe & Central Asia,2020,High income,67886,84,100,100
+USA,United States of America,North America,2015,High income,320878,82,100,100
+USA,United States of America,North America,2020,High income,331003,83,100,100
+URY,Uruguay,Latin America & Caribbean,2015,High income,3412,95,100,100
+URY,Uruguay,Latin America & Caribbean,2020,High income,3474,96,100,100
+UZB,Uzbekistan,Europe & Central Asia,2015,Lower middle income,30930,51,98,100
+UZB,Uzbekistan,Europe & Central Asia,2020,Lower middle income,33469,50,98,100
+VUT,Vanuatu,East Asia & Pacific,2015,Lower middle income,271,25,90,100
+VUT,Vanuatu,East Asia & Pacific,2020,Lower middle income,307,26,91,100
+VNM,Vietnam,East Asia & Pacific,2015,Lower middle income,92677,34,93,98
+VNM,Vietnam,East Asia & Pacific,2020,Lower middle income,97339,37,97,100
+ZMB,Zambia,Sub-Saharan Africa,2015,Lower middle income,15879,42,61,86
+ZMB,Zambia,Sub-Saharan Africa,2020,Lower middle income,18384,45,65,87
+ZWE,Zimbabwe,Sub-Saharan Africa,2015,Low income,13815,32,65,94
+ZWE,Zimbabwe,Sub-Saharan Africa,2020,Lower middle income,14863,32,63,93
-- 
GitLab