diff --git a/sum23/labs/lab4/README.md b/sum23/labs/lab4/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..43d82b2a2f0c447deae8d15ec0c38a7cc4ffeb9d
--- /dev/null
+++ b/sum23/labs/lab4/README.md
@@ -0,0 +1,60 @@
+# Lab 4: Conditional Statements and Pokémon API
+
+In P4, you will be playing with some Pokémon and you will simulate simple Pokémon battles using conditional statements. In Lab 4, you will learn to use `project.py`, which you will need to complete P4. You will also be introduced to some simple conditional statements and 'helper functions' which will be useful for P4.
+
+### Corrections/Clarifications
+
+None yet
+
+**Find any issues?** Let Jane or Adi know during lab, or create a Piazza post.
+
+------------------------------
+## Learning Objectives
+
+In this lab, you will practice...
+* Learning and using an 'API' (Application Programming Interface)
+* Building 'helper' functions that can be used to create more advanced functions
+* Writing conditions using if/elif/else statements
+* Writing advanced conditions using nested if/else statements
+* Writing advanced conditions using logical operators (or/and)
+
+------------------------------
+## Note on Academic Misconduct
+
+You may do these lab exercises only with your project partner; you are not allowed to start working on Lab 4 with one person, then do the project with a different partner.  Now may be a good time to review [our course policies](https://canvas.wisc.edu/courses/355767/pages/syllabus?module_item_id=6048035).
+
+------------------------------
+
+## Project partner
+
+We strongly recommend students find a project partner. Pair programming is a great way to learn from a fellow student. Project difficulty increases greatly in this course. Finding a project partner early on during the semester is a good idea.
+
+If you are still looking for a project partner, take a moment now to ask around the room if anyone would like to partner with you on this project. Then you can work with them on this lab as well as the project.
+
+------------------------------
+## Segment 1: Setup
+
+Create a `lab4` directory and download the following files into the `lab4` directory:
+
+* `project.py`
+* `pokemon_stats.csv`
+* `type_effectiveness_stats.csv`
+* `practice.ipynb`
+* `practice_test.py`
+
+**Note:** If you accidentally downloaded the file as a `.txt` (or `.cvs` or `.csv.txt`) instead of `.csv` (say `pokemon_stats.txt`), you can execute `mv pokemon_stats.txt pokemon_stats.csv` on a Terminal/PowerShell window. Recall that the `mv` (move) command lets you rename a source file (first argument in example: `pokemon_stats.txt`) to the destination file (second argument in example: `pokemon_stats.csv`).
+
+Once you have downloaded the files, open a Terminal/PowerShell window and navigate to your `lab4` directory.  Run `ls` to make sure the above files are available.
+
+------------------------------
+## Segment 2: Learning the API
+
+You will be finishing the rest of your lab on `practice.ipynb`. Run the command `jupyter notebook` from your Terminal/PowerShell window. Remember not to close this Terminal/PowerShell window while Jupyter is running, and open a new Terminal/PowerShell window if necessary.
+
+**Note:** For P4, you will be working on `p4.ipynb` which is very similar to `practice.ipynb`.
+
+**Note:** Unlike `p4.ipynb`, you do **not** have to submit `practice.ipynb`. This notebook is solely for your practice.
+
+------------------------------
+
+You can now get started with [P4](https://git.doit.wisc.edu/cdis/cs/courses/cs220/cs220-lecture-material/-/tree/main/sum23/projects/p4). **You can copy/paste and use any helper function that you have created here in P4.** Good luck and have fun!
diff --git a/sum23/labs/lab4/images/README.md b/sum23/labs/lab4/images/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..2ec21d5f4cb7c35c604dc5e5157f974bd35594ac
--- /dev/null
+++ b/sum23/labs/lab4/images/README.md
@@ -0,0 +1,3 @@
+# Images
+
+Images from lab-p4 are stored here.
diff --git a/sum23/labs/lab4/images/add_new_cell.PNG b/sum23/labs/lab4/images/add_new_cell.PNG
new file mode 100644
index 0000000000000000000000000000000000000000..17cb9f00c6df4cf8e373e41ffd910945d724872a
Binary files /dev/null and b/sum23/labs/lab4/images/add_new_cell.PNG differ
diff --git a/sum23/labs/lab4/images/pokemon_stats.png b/sum23/labs/lab4/images/pokemon_stats.png
new file mode 100644
index 0000000000000000000000000000000000000000..05f47e0d3554d554298fa37f1d806603e7a4ef00
Binary files /dev/null and b/sum23/labs/lab4/images/pokemon_stats.png differ
diff --git a/sum23/labs/lab4/images/type_effectiveness_stats.png b/sum23/labs/lab4/images/type_effectiveness_stats.png
new file mode 100644
index 0000000000000000000000000000000000000000..7644b92f3fa198b29e829703146713e824c1d98d
Binary files /dev/null and b/sum23/labs/lab4/images/type_effectiveness_stats.png differ
diff --git a/sum23/labs/lab4/pokemon_stats.csv b/sum23/labs/lab4/pokemon_stats.csv
new file mode 100644
index 0000000000000000000000000000000000000000..68976ed15907eb09951350c570beb280f4f75901
--- /dev/null
+++ b/sum23/labs/lab4/pokemon_stats.csv
@@ -0,0 +1,982 @@
+,Name,Attack,Defense,HP,Region,Sp. Atk,Sp. Def,Speed,Type 1,Type 2
+0,Bulbasaur,49,49,45,Kanto,65,65,45,Grass,Poison
+1,Ivysaur,62,63,60,Kanto,80,80,60,Grass,Poison
+2,Venusaur,82,83,80,Kanto,100,100,80,Grass,Poison
+3,Charmander,52,43,39,Kanto,60,50,65,Fire,DNE
+4,Charmeleon,64,58,58,Kanto,80,65,80,Fire,DNE
+5,Charizard,84,78,78,Kanto,109,85,100,Fire,Flying
+6,Squirtle,48,65,44,Kanto,50,64,43,Water,DNE
+7,Wartortle,63,80,59,Kanto,65,80,58,Water,DNE
+8,Blastoise,83,100,79,Kanto,85,105,78,Water,DNE
+9,Caterpie,30,35,45,Kanto,20,20,45,Bug,DNE
+10,Metapod,20,55,50,Kanto,25,25,30,Bug,DNE
+11,Butterfree,45,50,60,Kanto,90,80,70,Bug,Flying
+12,Weedle,35,30,40,Kanto,20,20,50,Bug,Poison
+13,Kakuna,25,50,45,Kanto,25,25,35,Bug,Poison
+14,Beedrill,90,40,65,Kanto,45,80,75,Bug,Poison
+15,Pidgey,45,40,40,Kanto,35,35,56,Normal,Flying
+16,Pidgeotto,60,55,63,Kanto,50,50,71,Normal,Flying
+17,Pidgeot,80,75,83,Kanto,70,70,101,Normal,Flying
+18,Rattata,56,35,30,Kanto,25,35,72,Normal,DNE
+19,Raticate,81,60,55,Kanto,50,70,97,Normal,DNE
+20,Spearow,60,30,40,Kanto,31,31,70,Normal,Flying
+21,Fearow,90,65,65,Kanto,61,61,100,Normal,Flying
+22,Ekans,60,44,35,Kanto,40,54,55,Poison,DNE
+23,Arbok,95,69,60,Kanto,65,79,80,Poison,DNE
+24,Pikachu,55,40,35,Kanto,50,50,90,Electric,DNE
+25,Raichu,90,55,60,Kanto,90,80,110,Electric,DNE
+26,Sandshrew,75,85,50,Kanto,20,30,40,Ground,DNE
+27,Sandslash,100,110,75,Kanto,45,55,65,Ground,DNE
+28,Nidorina,62,67,70,Kanto,55,55,56,Poison,DNE
+29,Nidoqueen,92,87,90,Kanto,75,85,76,Poison,Ground
+30,Nidorino,72,57,61,Kanto,55,55,65,Poison,DNE
+31,Nidoking,102,77,81,Kanto,85,75,85,Poison,Ground
+32,Clefairy,45,48,70,Kanto,60,65,35,Fairy,DNE
+33,Clefable,70,73,95,Kanto,95,90,60,Fairy,DNE
+34,Vulpix,41,40,38,Kanto,50,65,65,Fire,DNE
+35,Ninetales,76,75,73,Kanto,81,100,100,Fire,DNE
+36,Jigglypuff,45,20,115,Kanto,45,25,20,Normal,Fairy
+37,Wigglytuff,70,45,140,Kanto,85,50,45,Normal,Fairy
+38,Zubat,45,35,40,Kanto,30,40,55,Poison,Flying
+39,Golbat,80,70,75,Kanto,65,75,90,Poison,Flying
+40,Oddish,50,55,45,Kanto,75,65,30,Grass,Poison
+41,Gloom,65,70,60,Kanto,85,75,40,Grass,Poison
+42,Vileplume,80,85,75,Kanto,110,90,50,Grass,Poison
+43,Paras,70,55,35,Kanto,45,55,25,Bug,Grass
+44,Parasect,95,80,60,Kanto,60,80,30,Bug,Grass
+45,Venonat,55,50,60,Kanto,40,55,45,Bug,Poison
+46,Venomoth,65,60,70,Kanto,90,75,90,Bug,Poison
+47,Diglett,55,25,10,Kanto,35,45,95,Ground,DNE
+48,Dugtrio,100,50,35,Kanto,50,70,120,Ground,DNE
+49,Meowth,45,35,40,Kanto,40,40,90,Normal,DNE
+50,Persian,70,60,65,Kanto,65,65,115,Normal,DNE
+51,Psyduck,52,48,50,Kanto,65,50,55,Water,DNE
+52,Golduck,82,78,80,Kanto,95,80,85,Water,DNE
+53,Mankey,80,35,40,Kanto,35,45,70,Fighting,DNE
+54,Primeape,105,60,65,Kanto,60,70,95,Fighting,DNE
+55,Growlithe,70,45,55,Kanto,70,50,60,Fire,DNE
+56,Arcanine,110,80,90,Kanto,100,80,95,Fire,DNE
+57,Poliwag,50,40,40,Kanto,40,40,90,Water,DNE
+58,Poliwhirl,65,65,65,Kanto,50,50,90,Water,DNE
+59,Poliwrath,95,95,90,Kanto,70,90,70,Water,Fighting
+60,Abra,20,15,25,Kanto,105,55,90,Psychic,DNE
+61,Kadabra,35,30,40,Kanto,120,70,105,Psychic,DNE
+62,Alakazam,50,45,55,Kanto,135,95,120,Psychic,DNE
+63,Machop,80,50,70,Kanto,35,35,35,Fighting,DNE
+64,Machoke,100,70,80,Kanto,50,60,45,Fighting,DNE
+65,Machamp,130,80,90,Kanto,65,85,55,Fighting,DNE
+66,Bellsprout,75,35,50,Kanto,70,30,40,Grass,Poison
+67,Weepinbell,90,50,65,Kanto,85,45,55,Grass,Poison
+68,Victreebel,105,65,80,Kanto,100,70,70,Grass,Poison
+69,Tentacool,40,35,40,Kanto,50,100,70,Water,Poison
+70,Tentacruel,70,65,80,Kanto,80,120,100,Water,Poison
+71,Geodude,80,100,40,Kanto,30,30,20,Rock,Ground
+72,Graveler,95,115,55,Kanto,45,45,35,Rock,Ground
+73,Golem,120,130,80,Kanto,55,65,45,Rock,Ground
+74,Ponyta,85,55,50,Kanto,65,65,90,Fire,DNE
+75,Rapidash,100,70,65,Kanto,80,80,105,Fire,DNE
+76,Slowpoke,65,65,90,Kanto,40,40,15,Water,Psychic
+77,Slowbro,75,110,95,Kanto,100,80,30,Water,Psychic
+78,Magnemite,35,70,25,Kanto,95,55,45,Electric,Steel
+79,Magneton,60,95,50,Kanto,120,70,70,Electric,Steel
+80,Doduo,85,45,35,Kanto,35,35,75,Normal,Flying
+81,Dodrio,110,70,60,Kanto,60,60,110,Normal,Flying
+82,Seel,45,55,65,Kanto,45,70,45,Water,DNE
+83,Dewgong,70,80,90,Kanto,70,95,70,Water,Ice
+84,Grimer,80,50,80,Kanto,40,50,25,Poison,DNE
+85,Muk,105,75,105,Kanto,65,100,50,Poison,DNE
+86,Shellder,65,100,30,Kanto,45,25,40,Water,DNE
+87,Cloyster,95,180,50,Kanto,85,45,70,Water,Ice
+88,Gastly,35,30,30,Kanto,100,35,80,Ghost,Poison
+89,Haunter,50,45,45,Kanto,115,55,95,Ghost,Poison
+90,Gengar,65,60,60,Kanto,130,75,110,Ghost,Poison
+91,Onix,45,160,35,Kanto,30,45,70,Rock,Ground
+92,Drowzee,48,45,60,Kanto,43,90,42,Psychic,DNE
+93,Hypno,73,70,85,Kanto,73,115,67,Psychic,DNE
+94,Krabby,105,90,30,Kanto,25,25,50,Water,DNE
+95,Kingler,130,115,55,Kanto,50,50,75,Water,DNE
+96,Voltorb,30,50,40,Kanto,55,55,100,Electric,DNE
+97,Electrode,50,70,60,Kanto,80,80,150,Electric,DNE
+98,Exeggcute,40,80,60,Kanto,60,45,40,Grass,Psychic
+99,Exeggutor,95,85,95,Kanto,125,75,55,Grass,Psychic
+100,Cubone,50,95,50,Kanto,40,50,35,Ground,DNE
+101,Marowak,80,110,60,Kanto,50,80,45,Ground,DNE
+102,Hitmonlee,120,53,50,Kanto,35,110,87,Fighting,DNE
+103,Hitmonchan,105,79,50,Kanto,35,110,76,Fighting,DNE
+104,Lickitung,55,75,90,Kanto,60,75,30,Normal,DNE
+105,Koffing,65,95,40,Kanto,60,45,35,Poison,DNE
+106,Weezing,90,120,65,Kanto,85,70,60,Poison,DNE
+107,Rhyhorn,85,95,80,Kanto,30,30,25,Ground,Rock
+108,Rhydon,130,120,105,Kanto,45,45,40,Ground,Rock
+109,Chansey,5,5,250,Kanto,35,105,50,Normal,DNE
+110,Tangela,55,115,65,Kanto,100,40,60,Grass,DNE
+111,Kangaskhan,95,80,105,Kanto,40,80,90,Normal,DNE
+112,Horsea,40,70,30,Kanto,70,25,60,Water,DNE
+113,Seadra,65,95,55,Kanto,95,45,85,Water,DNE
+114,Goldeen,67,60,45,Kanto,35,50,63,Water,DNE
+115,Seaking,92,65,80,Kanto,65,80,68,Water,DNE
+116,Staryu,45,55,30,Kanto,70,55,85,Water,DNE
+117,Starmie,75,85,60,Kanto,100,85,115,Water,Psychic
+118,Scyther,110,80,70,Kanto,55,80,105,Bug,Flying
+119,Jynx,50,35,65,Kanto,115,95,95,Ice,Psychic
+120,Electabuzz,83,57,65,Kanto,95,85,105,Electric,DNE
+121,Magmar,95,57,65,Kanto,100,85,93,Fire,DNE
+122,Pinsir,125,100,65,Kanto,55,70,85,Bug,DNE
+123,Tauros,100,95,75,Kanto,40,70,110,Normal,DNE
+124,Magikarp,10,55,20,Kanto,15,20,80,Water,DNE
+125,Gyarados,125,79,95,Kanto,60,100,81,Water,Flying
+126,Lapras,85,80,130,Kanto,85,95,60,Water,Ice
+127,Ditto,48,48,48,Kanto,48,48,48,Normal,DNE
+128,Eevee,55,50,55,Kanto,45,65,55,Normal,DNE
+129,Vaporeon,65,60,130,Kanto,110,95,65,Water,DNE
+130,Jolteon,65,60,65,Kanto,110,95,130,Electric,DNE
+131,Flareon,130,60,65,Kanto,95,110,65,Fire,DNE
+132,Porygon,60,70,65,Kanto,85,75,40,Normal,DNE
+133,Omanyte,40,100,35,Kanto,90,55,35,Rock,Water
+134,Omastar,60,125,70,Kanto,115,70,55,Rock,Water
+135,Kabuto,80,90,30,Kanto,55,45,55,Rock,Water
+136,Kabutops,115,105,60,Kanto,65,70,80,Rock,Water
+137,Aerodactyl,105,65,80,Kanto,60,75,130,Rock,Flying
+138,Snorlax,110,65,160,Kanto,65,110,30,Normal,DNE
+139,Articuno,85,100,90,Kanto,95,125,85,Ice,Flying
+140,Zapdos,90,85,90,Kanto,125,90,100,Electric,Flying
+141,Moltres,100,90,90,Kanto,125,85,90,Fire,Flying
+142,Dratini,64,45,41,Kanto,50,50,50,Dragon,DNE
+143,Dragonair,84,65,61,Kanto,70,70,70,Dragon,DNE
+144,Dragonite,134,95,91,Kanto,100,100,80,Dragon,Flying
+145,Mewtwo,110,90,106,Kanto,154,90,130,Psychic,DNE
+146,Mew,100,100,100,Kanto,100,100,100,Psychic,DNE
+147,Chikorita,49,65,45,Johto,49,65,45,Grass,DNE
+148,Bayleef,62,80,60,Johto,63,80,60,Grass,DNE
+149,Meganium,82,100,80,Johto,83,100,80,Grass,DNE
+150,Cyndaquil,52,43,39,Johto,60,50,65,Fire,DNE
+151,Quilava,64,58,58,Johto,80,65,80,Fire,DNE
+152,Typhlosion,84,78,78,Johto,109,85,100,Fire,DNE
+153,Totodile,65,64,50,Johto,44,48,43,Water,DNE
+154,Croconaw,80,80,65,Johto,59,63,58,Water,DNE
+155,Feraligatr,105,100,85,Johto,79,83,78,Water,DNE
+156,Sentret,46,34,35,Johto,35,45,20,Normal,DNE
+157,Furret,76,64,85,Johto,45,55,90,Normal,DNE
+158,Hoothoot,30,30,60,Johto,36,56,50,Normal,Flying
+159,Noctowl,50,50,100,Johto,86,96,70,Normal,Flying
+160,Ledyba,20,30,40,Johto,40,80,55,Bug,Flying
+161,Ledian,35,50,55,Johto,55,110,85,Bug,Flying
+162,Spinarak,60,40,40,Johto,40,40,30,Bug,Poison
+163,Ariados,90,70,70,Johto,60,70,40,Bug,Poison
+164,Crobat,90,80,85,Johto,70,80,130,Poison,Flying
+165,Chinchou,38,38,75,Johto,56,56,67,Water,Electric
+166,Lanturn,58,58,125,Johto,76,76,67,Water,Electric
+167,Pichu,40,15,20,Johto,35,35,60,Electric,DNE
+168,Cleffa,25,28,50,Johto,45,55,15,Fairy,DNE
+169,Igglybuff,30,15,90,Johto,40,20,15,Normal,Fairy
+170,Togepi,20,65,35,Johto,40,65,20,Fairy,DNE
+171,Togetic,40,85,55,Johto,80,105,40,Fairy,Flying
+172,Natu,50,45,40,Johto,70,45,70,Psychic,Flying
+173,Xatu,75,70,65,Johto,95,70,95,Psychic,Flying
+174,Mareep,40,40,55,Johto,65,45,35,Electric,DNE
+175,Flaaffy,55,55,70,Johto,80,60,45,Electric,DNE
+176,Ampharos,75,85,90,Johto,115,90,55,Electric,DNE
+177,Bellossom,80,95,75,Johto,90,100,50,Grass,DNE
+178,Marill,20,50,70,Johto,20,50,40,Water,Fairy
+179,Azumarill,50,80,100,Johto,60,80,50,Water,Fairy
+180,Sudowoodo,100,115,70,Johto,30,65,30,Rock,DNE
+181,Politoed,75,75,90,Johto,90,100,70,Water,DNE
+182,Hoppip,35,40,35,Johto,35,55,50,Grass,Flying
+183,Skiploom,45,50,55,Johto,45,65,80,Grass,Flying
+184,Jumpluff,55,70,75,Johto,55,95,110,Grass,Flying
+185,Aipom,70,55,55,Johto,40,55,85,Normal,DNE
+186,Sunkern,30,30,30,Johto,30,30,30,Grass,DNE
+187,Sunflora,75,55,75,Johto,105,85,30,Grass,DNE
+188,Yanma,65,45,65,Johto,75,45,95,Bug,Flying
+189,Wooper,45,45,55,Johto,25,25,15,Water,Ground
+190,Quagsire,85,85,95,Johto,65,65,35,Water,Ground
+191,Espeon,65,60,65,Johto,130,95,110,Psychic,DNE
+192,Umbreon,65,110,95,Johto,60,130,65,Dark,DNE
+193,Murkrow,85,42,60,Johto,85,42,91,Dark,Flying
+194,Slowking,75,80,95,Johto,100,110,30,Water,Psychic
+195,Misdreavus,60,60,60,Johto,85,85,85,Ghost,DNE
+196,Unown,72,48,48,Johto,72,48,48,Psychic,DNE
+197,Wobbuffet,33,58,190,Johto,33,58,33,Psychic,DNE
+198,Girafarig,80,65,70,Johto,90,65,85,Normal,Psychic
+199,Pineco,65,90,50,Johto,35,35,15,Bug,DNE
+200,Forretress,90,140,75,Johto,60,60,40,Bug,Steel
+201,Dunsparce,70,70,100,Johto,65,65,45,Normal,DNE
+202,Gligar,75,105,65,Johto,35,65,85,Ground,Flying
+203,Steelix,85,200,75,Johto,55,65,30,Steel,Ground
+204,Snubbull,80,50,60,Johto,40,40,30,Fairy,DNE
+205,Granbull,120,75,90,Johto,60,60,45,Fairy,DNE
+206,Qwilfish,95,85,65,Johto,55,55,85,Water,Poison
+207,Scizor,130,100,70,Johto,55,80,65,Bug,Steel
+208,Shuckle,10,230,20,Johto,10,230,5,Bug,Rock
+209,Heracross,125,75,80,Johto,40,95,85,Bug,Fighting
+210,Sneasel,95,55,55,Johto,35,75,115,Dark,Ice
+211,Teddiursa,80,50,60,Johto,50,50,40,Normal,DNE
+212,Ursaring,130,75,90,Johto,75,75,55,Normal,DNE
+213,Slugma,40,40,40,Johto,70,40,20,Fire,DNE
+214,Magcargo,50,120,60,Johto,90,80,30,Fire,Rock
+215,Swinub,50,40,50,Johto,30,30,50,Ice,Ground
+216,Piloswine,100,80,100,Johto,60,60,50,Ice,Ground
+217,Corsola,55,95,65,Johto,65,95,35,Water,Rock
+218,Remoraid,65,35,35,Johto,65,35,65,Water,DNE
+219,Octillery,105,75,75,Johto,105,75,45,Water,DNE
+220,Delibird,55,45,45,Johto,65,45,75,Ice,Flying
+221,Mantine,40,70,85,Johto,80,140,70,Water,Flying
+222,Skarmory,80,140,65,Johto,40,70,70,Steel,Flying
+223,Houndour,60,30,45,Johto,80,50,65,Dark,Fire
+224,Houndoom,90,50,75,Johto,110,80,95,Dark,Fire
+225,Kingdra,95,95,75,Johto,95,95,85,Water,Dragon
+226,Phanpy,60,60,90,Johto,40,40,40,Ground,DNE
+227,Donphan,120,120,90,Johto,60,60,50,Ground,DNE
+228,Porygon2,80,90,85,Johto,105,95,60,Normal,DNE
+229,Stantler,95,62,73,Johto,85,65,85,Normal,DNE
+230,Smeargle,20,35,55,Johto,20,45,75,Normal,DNE
+231,Tyrogue,35,35,35,Johto,35,35,35,Fighting,DNE
+232,Hitmontop,95,95,50,Johto,35,110,70,Fighting,DNE
+233,Smoochum,30,15,45,Johto,85,65,65,Ice,Psychic
+234,Elekid,63,37,45,Johto,65,55,95,Electric,DNE
+235,Magby,75,37,45,Johto,70,55,83,Fire,DNE
+236,Miltank,80,105,95,Johto,40,70,100,Normal,DNE
+237,Blissey,10,10,255,Johto,75,135,55,Normal,DNE
+238,Raikou,85,75,90,Johto,115,100,115,Electric,DNE
+239,Entei,115,85,115,Johto,90,75,100,Fire,DNE
+240,Suicune,75,115,100,Johto,90,115,85,Water,DNE
+241,Larvitar,64,50,50,Johto,45,50,41,Rock,Ground
+242,Pupitar,84,70,70,Johto,65,70,51,Rock,Ground
+243,Tyranitar,134,110,100,Johto,95,100,61,Rock,Dark
+244,Lugia,90,130,106,Johto,90,154,110,Psychic,Flying
+245,Ho-oh,130,90,106,Johto,110,154,90,Fire,Flying
+246,Celebi,100,100,100,Johto,100,100,100,Psychic,Grass
+247,Treecko,45,35,40,Hoenn,65,55,70,Grass,DNE
+248,Grovyle,65,45,50,Hoenn,85,65,95,Grass,DNE
+249,Sceptile,85,65,70,Hoenn,105,85,120,Grass,DNE
+250,Torchic,60,40,45,Hoenn,70,50,45,Fire,DNE
+251,Combusken,85,60,60,Hoenn,85,60,55,Fire,Fighting
+252,Blaziken,120,70,80,Hoenn,110,70,80,Fire,Fighting
+253,Mudkip,70,50,50,Hoenn,50,50,40,Water,DNE
+254,Marshtomp,85,70,70,Hoenn,60,70,50,Water,Ground
+255,Swampert,110,90,100,Hoenn,85,90,60,Water,Ground
+256,Poochyena,55,35,35,Hoenn,30,30,35,Dark,DNE
+257,Mightyena,90,70,70,Hoenn,60,60,70,Dark,DNE
+258,Zigzagoon,30,41,38,Hoenn,30,41,60,Normal,DNE
+259,Linoone,70,61,78,Hoenn,50,61,100,Normal,DNE
+260,Wurmple,45,35,45,Hoenn,20,30,20,Bug,DNE
+261,Silcoon,35,55,50,Hoenn,25,25,15,Bug,DNE
+262,Beautifly,70,50,60,Hoenn,100,50,65,Bug,Flying
+263,Cascoon,35,55,50,Hoenn,25,25,15,Bug,DNE
+264,Dustox,50,70,60,Hoenn,50,90,65,Bug,Poison
+265,Lotad,30,30,40,Hoenn,40,50,30,Water,Grass
+266,Lombre,50,50,60,Hoenn,60,70,50,Water,Grass
+267,Ludicolo,70,70,80,Hoenn,90,100,70,Water,Grass
+268,Seedot,40,50,40,Hoenn,30,30,30,Grass,DNE
+269,Nuzleaf,70,40,70,Hoenn,60,40,60,Grass,Dark
+270,Shiftry,100,60,90,Hoenn,90,60,80,Grass,Dark
+271,Taillow,55,30,40,Hoenn,30,30,85,Normal,Flying
+272,Swellow,85,60,60,Hoenn,75,50,125,Normal,Flying
+273,Wingull,30,30,40,Hoenn,55,30,85,Water,Flying
+274,Pelipper,50,100,60,Hoenn,95,70,65,Water,Flying
+275,Ralts,25,25,28,Hoenn,45,35,40,Psychic,Fairy
+276,Kirlia,35,35,38,Hoenn,65,55,50,Psychic,Fairy
+277,Gardevoir,65,65,68,Hoenn,125,115,80,Psychic,Fairy
+278,Surskit,30,32,40,Hoenn,50,52,65,Bug,Water
+279,Masquerain,60,62,70,Hoenn,100,82,80,Bug,Flying
+280,Shroomish,40,60,60,Hoenn,40,60,35,Grass,DNE
+281,Breloom,130,80,60,Hoenn,60,60,70,Grass,Fighting
+282,Slakoth,60,60,60,Hoenn,35,35,30,Normal,DNE
+283,Vigoroth,80,80,80,Hoenn,55,55,90,Normal,DNE
+284,Slaking,160,100,150,Hoenn,95,65,100,Normal,DNE
+285,Nincada,45,90,31,Hoenn,30,30,40,Bug,Ground
+286,Ninjask,90,45,61,Hoenn,50,50,160,Bug,Flying
+287,Shedinja,90,45,1,Hoenn,30,30,40,Bug,Ghost
+288,Whismur,51,23,64,Hoenn,51,23,28,Normal,DNE
+289,Loudred,71,43,84,Hoenn,71,43,48,Normal,DNE
+290,Exploud,91,63,104,Hoenn,91,73,68,Normal,DNE
+291,Makuhita,60,30,72,Hoenn,20,30,25,Fighting,DNE
+292,Hariyama,120,60,144,Hoenn,40,60,50,Fighting,DNE
+293,Azurill,20,40,50,Hoenn,20,40,20,Normal,Fairy
+294,Nosepass,45,135,30,Hoenn,45,90,30,Rock,DNE
+295,Skitty,45,45,50,Hoenn,35,35,50,Normal,DNE
+296,Delcatty,65,65,70,Hoenn,55,55,90,Normal,DNE
+297,Sableye,75,75,50,Hoenn,65,65,50,Dark,Ghost
+298,Mawile,85,85,50,Hoenn,55,55,50,Steel,Fairy
+299,Aron,70,100,50,Hoenn,40,40,30,Steel,Rock
+300,Lairon,90,140,60,Hoenn,50,50,40,Steel,Rock
+301,Aggron,110,180,70,Hoenn,60,60,50,Steel,Rock
+302,Meditite,40,55,30,Hoenn,40,55,60,Fighting,Psychic
+303,Medicham,60,75,60,Hoenn,60,75,80,Fighting,Psychic
+304,Electrike,45,40,40,Hoenn,65,40,65,Electric,DNE
+305,Manectric,75,60,70,Hoenn,105,60,105,Electric,DNE
+306,Plusle,50,40,60,Hoenn,85,75,95,Electric,DNE
+307,Minun,40,50,60,Hoenn,75,85,95,Electric,DNE
+308,Volbeat,73,75,65,Hoenn,47,85,85,Bug,DNE
+309,Illumise,47,75,65,Hoenn,73,85,85,Bug,DNE
+310,Roselia,60,45,50,Hoenn,100,80,65,Grass,Poison
+311,Gulpin,43,53,70,Hoenn,43,53,40,Poison,DNE
+312,Swalot,73,83,100,Hoenn,73,83,55,Poison,DNE
+313,Carvanha,90,20,45,Hoenn,65,20,65,Water,Dark
+314,Sharpedo,120,40,70,Hoenn,95,40,95,Water,Dark
+315,Wailmer,70,35,130,Hoenn,70,35,60,Water,DNE
+316,Wailord,90,45,170,Hoenn,90,45,60,Water,DNE
+317,Numel,60,40,60,Hoenn,65,45,35,Fire,Ground
+318,Camerupt,100,70,70,Hoenn,105,75,40,Fire,Ground
+319,Torkoal,85,140,70,Hoenn,85,70,20,Fire,DNE
+320,Spoink,25,35,60,Hoenn,70,80,60,Psychic,DNE
+321,Grumpig,45,65,80,Hoenn,90,110,80,Psychic,DNE
+322,Spinda,60,60,60,Hoenn,60,60,60,Normal,DNE
+323,Trapinch,100,45,45,Hoenn,45,45,10,Ground,DNE
+324,Vibrava,70,50,50,Hoenn,50,50,70,Ground,Dragon
+325,Flygon,100,80,80,Hoenn,80,80,100,Ground,Dragon
+326,Cacnea,85,40,50,Hoenn,85,40,35,Grass,DNE
+327,Cacturne,115,60,70,Hoenn,115,60,55,Grass,Dark
+328,Swablu,40,60,45,Hoenn,40,75,50,Normal,Flying
+329,Altaria,70,90,75,Hoenn,70,105,80,Dragon,Flying
+330,Zangoose,115,60,73,Hoenn,60,60,90,Normal,DNE
+331,Seviper,100,60,73,Hoenn,100,60,65,Poison,DNE
+332,Lunatone,55,65,90,Hoenn,95,85,70,Rock,Psychic
+333,Solrock,95,85,90,Hoenn,55,65,70,Rock,Psychic
+334,Barboach,48,43,50,Hoenn,46,41,60,Water,Ground
+335,Whiscash,78,73,110,Hoenn,76,71,60,Water,Ground
+336,Corphish,80,65,43,Hoenn,50,35,35,Water,DNE
+337,Crawdaunt,120,85,63,Hoenn,90,55,55,Water,Dark
+338,Baltoy,40,55,40,Hoenn,40,70,55,Ground,Psychic
+339,Claydol,70,105,60,Hoenn,70,120,75,Ground,Psychic
+340,Lileep,41,77,66,Hoenn,61,87,23,Rock,Grass
+341,Cradily,81,97,86,Hoenn,81,107,43,Rock,Grass
+342,Anorith,95,50,45,Hoenn,40,50,75,Rock,Bug
+343,Armaldo,125,100,75,Hoenn,70,80,45,Rock,Bug
+344,Feebas,15,20,20,Hoenn,10,55,80,Water,DNE
+345,Milotic,60,79,95,Hoenn,100,125,81,Water,DNE
+346,Castform,70,70,70,Hoenn,70,70,70,Normal,DNE
+347,Kecleon,90,70,60,Hoenn,60,120,40,Normal,DNE
+348,Shuppet,75,35,44,Hoenn,63,33,45,Ghost,DNE
+349,Banette,115,65,64,Hoenn,83,63,65,Ghost,DNE
+350,Duskull,40,90,20,Hoenn,30,90,25,Ghost,DNE
+351,Dusclops,70,130,40,Hoenn,60,130,25,Ghost,DNE
+352,Tropius,68,83,99,Hoenn,72,87,51,Grass,Flying
+353,Chimecho,50,80,75,Hoenn,95,90,65,Psychic,DNE
+354,Absol,130,60,65,Hoenn,75,60,75,Dark,DNE
+355,Wynaut,23,48,95,Hoenn,23,48,23,Psychic,DNE
+356,Snorunt,50,50,50,Hoenn,50,50,50,Ice,DNE
+357,Glalie,80,80,80,Hoenn,80,80,80,Ice,DNE
+358,Spheal,40,50,70,Hoenn,55,50,25,Ice,Water
+359,Sealeo,60,70,90,Hoenn,75,70,45,Ice,Water
+360,Walrein,80,90,110,Hoenn,95,90,65,Ice,Water
+361,Clamperl,64,85,35,Hoenn,74,55,32,Water,DNE
+362,Huntail,104,105,55,Hoenn,94,75,52,Water,DNE
+363,Gorebyss,84,105,55,Hoenn,114,75,52,Water,DNE
+364,Relicanth,90,130,100,Hoenn,45,65,55,Water,Rock
+365,Luvdisc,30,55,43,Hoenn,40,65,97,Water,DNE
+366,Bagon,75,60,45,Hoenn,40,30,50,Dragon,DNE
+367,Shelgon,95,100,65,Hoenn,60,50,50,Dragon,DNE
+368,Salamence,135,80,95,Hoenn,110,80,100,Dragon,Flying
+369,Beldum,55,80,40,Hoenn,35,60,30,Steel,Psychic
+370,Metang,75,100,60,Hoenn,55,80,50,Steel,Psychic
+371,Metagross,135,130,80,Hoenn,95,90,70,Steel,Psychic
+372,Regirock,100,200,80,Hoenn,50,100,50,Rock,DNE
+373,Regice,50,100,80,Hoenn,100,200,50,Ice,DNE
+374,Registeel,75,150,80,Hoenn,75,150,50,Steel,DNE
+375,Latias,80,90,80,Hoenn,110,130,110,Dragon,Psychic
+376,Latios,90,80,80,Hoenn,130,110,110,Dragon,Psychic
+377,Kyogre,100,90,100,Hoenn,150,140,90,Water,DNE
+378,Groudon,150,140,100,Hoenn,100,90,90,Ground,DNE
+379,Rayquaza,150,90,105,Hoenn,150,90,95,Dragon,Flying
+380,Jirachi,100,100,100,Hoenn,100,100,100,Steel,Psychic
+381,Deoxys,150,50,50,Hoenn,150,50,150,Psychic,DNE
+382,Turtwig,68,64,55,Sinnoh,45,55,31,Grass,DNE
+383,Grotle,89,85,75,Sinnoh,55,65,36,Grass,DNE
+384,Torterra,109,105,95,Sinnoh,75,85,56,Grass,Ground
+385,Chimchar,58,44,44,Sinnoh,58,44,61,Fire,DNE
+386,Monferno,78,52,64,Sinnoh,78,52,81,Fire,Fighting
+387,Infernape,104,71,76,Sinnoh,104,71,108,Fire,Fighting
+388,Piplup,51,53,53,Sinnoh,61,56,40,Water,DNE
+389,Prinplup,66,68,64,Sinnoh,81,76,50,Water,DNE
+390,Empoleon,86,88,84,Sinnoh,111,101,60,Water,Steel
+391,Starly,55,30,40,Sinnoh,30,30,60,Normal,Flying
+392,Staravia,75,50,55,Sinnoh,40,40,80,Normal,Flying
+393,Staraptor,120,70,85,Sinnoh,50,60,100,Normal,Flying
+394,Bidoof,45,40,59,Sinnoh,35,40,31,Normal,DNE
+395,Bibarel,85,60,79,Sinnoh,55,60,71,Normal,Water
+396,Kricketot,25,41,37,Sinnoh,25,41,25,Bug,DNE
+397,Kricketune,85,51,77,Sinnoh,55,51,65,Bug,DNE
+398,Shinx,65,34,45,Sinnoh,40,34,45,Electric,DNE
+399,Luxio,85,49,60,Sinnoh,60,49,60,Electric,DNE
+400,Luxray,120,79,80,Sinnoh,95,79,70,Electric,DNE
+401,Budew,30,35,40,Sinnoh,50,70,55,Grass,Poison
+402,Roserade,70,65,60,Sinnoh,125,105,90,Grass,Poison
+403,Cranidos,125,40,67,Sinnoh,30,30,58,Rock,DNE
+404,Rampardos,165,60,97,Sinnoh,65,50,58,Rock,DNE
+405,Shieldon,42,118,30,Sinnoh,42,88,30,Rock,Steel
+406,Bastiodon,52,168,60,Sinnoh,47,138,30,Rock,Steel
+407,Burmy,29,45,40,Sinnoh,29,45,36,Bug,DNE
+408,Wormadam,59,85,60,Sinnoh,79,105,36,Bug,Grass
+409,Mothim,94,50,70,Sinnoh,94,50,66,Bug,Flying
+410,Combee,30,42,30,Sinnoh,30,42,70,Bug,Flying
+411,Vespiquen,80,102,70,Sinnoh,80,102,40,Bug,Flying
+412,Pachirisu,45,70,60,Sinnoh,45,90,95,Electric,DNE
+413,Buizel,65,35,55,Sinnoh,60,30,85,Water,DNE
+414,Floatzel,105,55,85,Sinnoh,85,50,115,Water,DNE
+415,Cherubi,35,45,45,Sinnoh,62,53,35,Grass,DNE
+416,Cherrim,60,70,70,Sinnoh,87,78,85,Grass,DNE
+417,Shellos,48,48,76,Sinnoh,57,62,34,Water,DNE
+418,Gastrodon,83,68,111,Sinnoh,92,82,39,Water,Ground
+419,Ambipom,100,66,75,Sinnoh,60,66,115,Normal,DNE
+420,Drifloon,50,34,90,Sinnoh,60,44,70,Ghost,Flying
+421,Drifblim,80,44,150,Sinnoh,90,54,80,Ghost,Flying
+422,Buneary,66,44,55,Sinnoh,44,56,85,Normal,DNE
+423,Lopunny,76,84,65,Sinnoh,54,96,105,Normal,DNE
+424,Mismagius,60,60,60,Sinnoh,105,105,105,Ghost,DNE
+425,Honchkrow,125,52,100,Sinnoh,105,52,71,Dark,Flying
+426,Glameow,55,42,49,Sinnoh,42,37,85,Normal,DNE
+427,Purugly,82,64,71,Sinnoh,64,59,112,Normal,DNE
+428,Chingling,30,50,45,Sinnoh,65,50,45,Psychic,DNE
+429,Stunky,63,47,63,Sinnoh,41,41,74,Poison,Dark
+430,Skuntank,93,67,103,Sinnoh,71,61,84,Poison,Dark
+431,Bronzor,24,86,57,Sinnoh,24,86,23,Steel,Psychic
+432,Bronzong,89,116,67,Sinnoh,79,116,33,Steel,Psychic
+433,Bonsly,80,95,50,Sinnoh,10,45,10,Rock,DNE
+434,Happiny,5,5,100,Sinnoh,15,65,30,Normal,DNE
+435,Chatot,65,45,76,Sinnoh,92,42,91,Normal,Flying
+436,Spiritomb,92,108,50,Sinnoh,92,108,35,Ghost,Dark
+437,Gible,70,45,58,Sinnoh,40,45,42,Dragon,Ground
+438,Gabite,90,65,68,Sinnoh,50,55,82,Dragon,Ground
+439,Garchomp,130,95,108,Sinnoh,80,85,102,Dragon,Ground
+440,Munchlax,85,40,135,Sinnoh,40,85,5,Normal,DNE
+441,Riolu,70,40,40,Sinnoh,35,40,60,Fighting,DNE
+442,Lucario,110,70,70,Sinnoh,115,70,90,Fighting,Steel
+443,Hippopotas,72,78,68,Sinnoh,38,42,32,Ground,DNE
+444,Hippowdon,112,118,108,Sinnoh,68,72,47,Ground,DNE
+445,Skorupi,50,90,40,Sinnoh,30,55,65,Poison,Bug
+446,Drapion,90,110,70,Sinnoh,60,75,95,Poison,Dark
+447,Croagunk,61,40,48,Sinnoh,61,40,50,Poison,Fighting
+448,Toxicroak,106,65,83,Sinnoh,86,65,85,Poison,Fighting
+449,Carnivine,100,72,74,Sinnoh,90,72,46,Grass,DNE
+450,Finneon,49,56,49,Sinnoh,49,61,66,Water,DNE
+451,Lumineon,69,76,69,Sinnoh,69,86,91,Water,DNE
+452,Mantyke,20,50,45,Sinnoh,60,120,50,Water,Flying
+453,Snover,62,50,60,Sinnoh,62,60,40,Grass,Ice
+454,Abomasnow,92,75,90,Sinnoh,92,85,60,Grass,Ice
+455,Weavile,120,65,70,Sinnoh,45,85,125,Dark,Ice
+456,Magnezone,70,115,70,Sinnoh,130,90,60,Electric,Steel
+457,Lickilicky,85,95,110,Sinnoh,80,95,50,Normal,DNE
+458,Rhyperior,140,130,115,Sinnoh,55,55,40,Ground,Rock
+459,Tangrowth,100,125,100,Sinnoh,110,50,50,Grass,DNE
+460,Electivire,123,67,75,Sinnoh,95,85,95,Electric,DNE
+461,Magmortar,95,67,75,Sinnoh,125,95,83,Fire,DNE
+462,Togekiss,50,95,85,Sinnoh,120,115,80,Fairy,Flying
+463,Yanmega,76,86,86,Sinnoh,116,56,95,Bug,Flying
+464,Leafeon,110,130,65,Sinnoh,60,65,95,Grass,DNE
+465,Glaceon,60,110,65,Sinnoh,130,95,65,Ice,DNE
+466,Gliscor,95,125,75,Sinnoh,45,75,95,Ground,Flying
+467,Mamoswine,130,80,110,Sinnoh,70,60,80,Ice,Ground
+468,Porygon-Z,80,70,85,Sinnoh,135,75,90,Normal,DNE
+469,Gallade,125,65,68,Sinnoh,65,115,80,Psychic,Fighting
+470,Probopass,55,145,60,Sinnoh,75,150,40,Rock,Steel
+471,Dusknoir,100,135,45,Sinnoh,65,135,45,Ghost,DNE
+472,Froslass,80,70,70,Sinnoh,80,70,110,Ice,Ghost
+473,Rotom,50,77,50,Sinnoh,95,77,91,Electric,Ghost
+474,Uxie,75,130,75,Sinnoh,75,130,95,Psychic,DNE
+475,Mesprit,105,105,80,Sinnoh,105,105,80,Psychic,DNE
+476,Azelf,125,70,75,Sinnoh,125,70,115,Psychic,DNE
+477,Dialga,120,120,100,Sinnoh,150,100,90,Steel,Dragon
+478,Palkia,120,100,90,Sinnoh,150,120,100,Water,Dragon
+479,Heatran,90,106,91,Sinnoh,130,106,77,Fire,Steel
+480,Regigigas,160,110,110,Sinnoh,80,110,100,Normal,DNE
+481,Giratina,100,120,150,Sinnoh,100,120,90,Ghost,Dragon
+482,Cresselia,70,110,120,Sinnoh,75,120,85,Psychic,DNE
+483,Phione,80,80,80,Sinnoh,80,80,80,Water,DNE
+484,Manaphy,100,100,100,Sinnoh,100,100,100,Water,DNE
+485,Darkrai,90,90,70,Sinnoh,135,90,125,Dark,DNE
+486,Shaymin,100,100,100,Sinnoh,100,100,100,Grass,DNE
+487,Arceus,120,120,120,Sinnoh,120,120,120,Normal,DNE
+488,Victini,100,100,100,Unova,100,100,100,Psychic,Fire
+489,Snivy,45,55,45,Unova,45,55,63,Grass,DNE
+490,Servine,60,75,60,Unova,60,75,83,Grass,DNE
+491,Serperior,75,95,75,Unova,75,95,113,Grass,DNE
+492,Tepig,63,45,65,Unova,45,45,45,Fire,DNE
+493,Pignite,93,55,90,Unova,70,55,55,Fire,Fighting
+494,Emboar,123,65,110,Unova,100,65,65,Fire,Fighting
+495,Oshawott,55,45,55,Unova,63,45,45,Water,DNE
+496,Dewott,75,60,75,Unova,83,60,60,Water,DNE
+497,Samurott,100,85,95,Unova,108,70,70,Water,DNE
+498,Patrat,55,39,45,Unova,35,39,42,Normal,DNE
+499,Watchog,85,69,60,Unova,60,69,77,Normal,DNE
+500,Lillipup,60,45,45,Unova,25,45,55,Normal,DNE
+501,Herdier,80,65,65,Unova,35,65,60,Normal,DNE
+502,Stoutland,110,90,85,Unova,45,90,80,Normal,DNE
+503,Purrloin,50,37,41,Unova,50,37,66,Dark,DNE
+504,Liepard,88,50,64,Unova,88,50,106,Dark,DNE
+505,Pansage,53,48,50,Unova,53,48,64,Grass,DNE
+506,Simisage,98,63,75,Unova,98,63,101,Grass,DNE
+507,Pansear,53,48,50,Unova,53,48,64,Fire,DNE
+508,Simisear,98,63,75,Unova,98,63,101,Fire,DNE
+509,Panpour,53,48,50,Unova,53,48,64,Water,DNE
+510,Simipour,98,63,75,Unova,98,63,101,Water,DNE
+511,Munna,25,45,76,Unova,67,55,24,Psychic,DNE
+512,Musharna,55,85,116,Unova,107,95,29,Psychic,DNE
+513,Pidove,55,50,50,Unova,36,30,43,Normal,Flying
+514,Tranquill,77,62,62,Unova,50,42,65,Normal,Flying
+515,Unfezant,115,80,80,Unova,65,55,93,Normal,Flying
+516,Blitzle,60,32,45,Unova,50,32,76,Electric,DNE
+517,Zebstrika,100,63,75,Unova,80,63,116,Electric,DNE
+518,Roggenrola,75,85,55,Unova,25,25,15,Rock,DNE
+519,Boldore,105,105,70,Unova,50,40,20,Rock,DNE
+520,Gigalith,135,130,85,Unova,60,80,25,Rock,DNE
+521,Woobat,45,43,65,Unova,55,43,72,Psychic,Flying
+522,Swoobat,57,55,67,Unova,77,55,114,Psychic,Flying
+523,Drilbur,85,40,60,Unova,30,45,68,Ground,DNE
+524,Excadrill,135,60,110,Unova,50,65,88,Ground,Steel
+525,Audino,60,86,103,Unova,60,86,50,Normal,DNE
+526,Timburr,80,55,75,Unova,25,35,35,Fighting,DNE
+527,Gurdurr,105,85,85,Unova,40,50,40,Fighting,DNE
+528,Conkeldurr,140,95,105,Unova,55,65,45,Fighting,DNE
+529,Tympole,50,40,50,Unova,50,40,64,Water,DNE
+530,Palpitoad,65,55,75,Unova,65,55,69,Water,Ground
+531,Seismitoad,95,75,105,Unova,85,75,74,Water,Ground
+532,Throh,100,85,120,Unova,30,85,45,Fighting,DNE
+533,Sawk,125,75,75,Unova,30,75,85,Fighting,DNE
+534,Sewaddle,53,70,45,Unova,40,60,42,Bug,Grass
+535,Swadloon,63,90,55,Unova,50,80,42,Bug,Grass
+536,Leavanny,103,80,75,Unova,70,80,92,Bug,Grass
+537,Venipede,45,59,30,Unova,30,39,57,Bug,Poison
+538,Whirlipede,55,99,40,Unova,40,79,47,Bug,Poison
+539,Scolipede,100,89,60,Unova,55,69,112,Bug,Poison
+540,Cottonee,27,60,40,Unova,37,50,66,Grass,Fairy
+541,Whimsicott,67,85,60,Unova,77,75,116,Grass,Fairy
+542,Petilil,35,50,45,Unova,70,50,30,Grass,DNE
+543,Lilligant,60,75,70,Unova,110,75,90,Grass,DNE
+544,Basculin,92,65,70,Unova,80,55,98,Water,DNE
+545,Sandile,72,35,50,Unova,35,35,65,Ground,Dark
+546,Krokorok,82,45,60,Unova,45,45,74,Ground,Dark
+547,Krookodile,117,80,95,Unova,65,70,92,Ground,Dark
+548,Darumaka,90,45,70,Unova,15,45,50,Fire,DNE
+549,Darmanitan,140,55,105,Unova,30,55,95,Fire,DNE
+550,Maractus,86,67,75,Unova,106,67,60,Grass,DNE
+551,Dwebble,65,85,50,Unova,35,35,55,Bug,Rock
+552,Crustle,105,125,70,Unova,65,75,45,Bug,Rock
+553,Scraggy,75,70,50,Unova,35,70,48,Dark,Fighting
+554,Scrafty,90,115,65,Unova,45,115,58,Dark,Fighting
+555,Sigilyph,58,80,72,Unova,103,80,97,Psychic,Flying
+556,Yamask,30,85,38,Unova,55,65,30,Ghost,DNE
+557,Cofagrigus,50,145,58,Unova,95,105,30,Ghost,DNE
+558,Tirtouga,78,103,54,Unova,53,45,22,Water,Rock
+559,Carracosta,108,133,74,Unova,83,65,32,Water,Rock
+560,Archen,112,45,55,Unova,74,45,70,Rock,Flying
+561,Archeops,140,65,75,Unova,112,65,110,Rock,Flying
+562,Trubbish,50,62,50,Unova,40,62,65,Poison,DNE
+563,Garbodor,95,82,80,Unova,60,82,75,Poison,DNE
+564,Zorua,65,40,40,Unova,80,40,65,Dark,DNE
+565,Zoroark,105,60,60,Unova,120,60,105,Dark,DNE
+566,Minccino,50,40,55,Unova,40,40,75,Normal,DNE
+567,Cinccino,95,60,75,Unova,65,60,115,Normal,DNE
+568,Gothita,30,50,45,Unova,55,65,45,Psychic,DNE
+569,Gothorita,45,70,60,Unova,75,85,55,Psychic,DNE
+570,Gothitelle,55,95,70,Unova,95,110,65,Psychic,DNE
+571,Solosis,30,40,45,Unova,105,50,20,Psychic,DNE
+572,Duosion,40,50,65,Unova,125,60,30,Psychic,DNE
+573,Reuniclus,65,75,110,Unova,125,85,30,Psychic,DNE
+574,Ducklett,44,50,62,Unova,44,50,55,Water,Flying
+575,Swanna,87,63,75,Unova,87,63,98,Water,Flying
+576,Vanillite,50,50,36,Unova,65,60,44,Ice,DNE
+577,Vanillish,65,65,51,Unova,80,75,59,Ice,DNE
+578,Vanilluxe,95,85,71,Unova,110,95,79,Ice,DNE
+579,Deerling,60,50,60,Unova,40,50,75,Normal,Grass
+580,Sawsbuck,100,70,80,Unova,60,70,95,Normal,Grass
+581,Emolga,75,60,55,Unova,75,60,103,Electric,Flying
+582,Karrablast,75,45,50,Unova,40,45,60,Bug,DNE
+583,Escavalier,135,105,70,Unova,60,105,20,Bug,Steel
+584,Foongus,55,45,69,Unova,55,55,15,Grass,Poison
+585,Amoonguss,85,70,114,Unova,85,80,30,Grass,Poison
+586,Frillish,40,50,55,Unova,65,85,40,Water,Ghost
+587,Jellicent,60,70,100,Unova,85,105,60,Water,Ghost
+588,Alomomola,75,80,165,Unova,40,45,65,Water,DNE
+589,Joltik,47,50,50,Unova,57,50,65,Bug,Electric
+590,Galvantula,77,60,70,Unova,97,60,108,Bug,Electric
+591,Ferroseed,50,91,44,Unova,24,86,10,Grass,Steel
+592,Ferrothorn,94,131,74,Unova,54,116,20,Grass,Steel
+593,Klink,55,70,40,Unova,45,60,30,Steel,DNE
+594,Klang,80,95,60,Unova,70,85,50,Steel,DNE
+595,Klinklang,100,115,60,Unova,70,85,90,Steel,DNE
+596,Tynamo,55,40,35,Unova,45,40,60,Electric,DNE
+597,Eelektrik,85,70,65,Unova,75,70,40,Electric,DNE
+598,Eelektross,115,80,85,Unova,105,80,50,Electric,DNE
+599,Elgyem,55,55,55,Unova,85,55,30,Psychic,DNE
+600,Beheeyem,75,75,75,Unova,125,95,40,Psychic,DNE
+601,Litwick,30,55,50,Unova,65,55,20,Ghost,Fire
+602,Lampent,40,60,60,Unova,95,60,55,Ghost,Fire
+603,Chandelure,55,90,60,Unova,145,90,80,Ghost,Fire
+604,Axew,87,60,46,Unova,30,40,57,Dragon,DNE
+605,Fraxure,117,70,66,Unova,40,50,67,Dragon,DNE
+606,Haxorus,147,90,76,Unova,60,70,97,Dragon,DNE
+607,Cubchoo,70,40,55,Unova,60,40,40,Ice,DNE
+608,Beartic,130,80,95,Unova,70,80,50,Ice,DNE
+609,Cryogonal,50,50,80,Unova,95,135,105,Ice,DNE
+610,Shelmet,40,85,50,Unova,40,65,25,Bug,DNE
+611,Accelgor,70,40,80,Unova,100,60,145,Bug,DNE
+612,Stunfisk,66,84,109,Unova,81,99,32,Ground,Electric
+613,Mienfoo,85,50,45,Unova,55,50,65,Fighting,DNE
+614,Mienshao,125,60,65,Unova,95,60,105,Fighting,DNE
+615,Druddigon,120,90,77,Unova,60,90,48,Dragon,DNE
+616,Golett,74,50,59,Unova,35,50,35,Ground,Ghost
+617,Golurk,124,80,89,Unova,55,80,55,Ground,Ghost
+618,Pawniard,85,70,45,Unova,40,40,60,Dark,Steel
+619,Bisharp,125,100,65,Unova,60,70,70,Dark,Steel
+620,Bouffalant,110,95,95,Unova,40,95,55,Normal,DNE
+621,Rufflet,83,50,70,Unova,37,50,60,Normal,Flying
+622,Braviary,123,75,100,Unova,57,75,80,Normal,Flying
+623,Vullaby,55,75,70,Unova,45,65,60,Dark,Flying
+624,Mandibuzz,65,105,110,Unova,55,95,80,Dark,Flying
+625,Heatmor,97,66,85,Unova,105,66,65,Fire,DNE
+626,Durant,109,112,58,Unova,48,48,109,Bug,Steel
+627,Deino,65,50,52,Unova,45,50,38,Dark,Dragon
+628,Zweilous,85,70,72,Unova,65,70,58,Dark,Dragon
+629,Hydreigon,105,90,92,Unova,125,90,98,Dark,Dragon
+630,Larvesta,85,55,55,Unova,50,55,60,Bug,Fire
+631,Volcarona,60,65,85,Unova,135,105,100,Bug,Fire
+632,Cobalion,90,129,91,Unova,90,72,108,Steel,Fighting
+633,Terrakion,129,90,91,Unova,72,90,108,Rock,Fighting
+634,Virizion,90,72,91,Unova,90,129,108,Grass,Fighting
+635,Tornadus,115,70,79,Unova,125,80,111,Flying,DNE
+636,Thundurus,115,70,79,Unova,125,80,111,Electric,Flying
+637,Reshiram,120,100,100,Unova,150,120,90,Dragon,Fire
+638,Zekrom,150,120,100,Unova,120,100,90,Dragon,Electric
+639,Landorus,125,90,89,Unova,115,80,101,Ground,Flying
+640,Kyurem,130,90,125,Unova,130,90,95,Dragon,Ice
+641,Keldeo,72,90,91,Unova,129,90,108,Water,Fighting
+642,Meloetta,77,77,100,Unova,128,128,90,Normal,Psychic
+643,Genesect,120,95,71,Unova,120,95,99,Bug,Steel
+644,Chespin,61,65,56,Kalos,48,45,38,Grass,DNE
+645,Quilladin,78,95,61,Kalos,56,58,57,Grass,DNE
+646,Chesnaught,107,122,88,Kalos,74,75,64,Grass,Fighting
+647,Fennekin,45,40,40,Kalos,62,60,60,Fire,DNE
+648,Braixen,59,58,59,Kalos,90,70,73,Fire,DNE
+649,Delphox,69,72,75,Kalos,114,100,104,Fire,Psychic
+650,Froakie,56,40,41,Kalos,62,44,71,Water,DNE
+651,Frogadier,63,52,54,Kalos,83,56,97,Water,DNE
+652,Greninja,95,67,72,Kalos,103,71,122,Water,Dark
+653,Bunnelby,36,38,38,Kalos,32,36,57,Normal,DNE
+654,Diggersby,56,77,85,Kalos,50,77,78,Normal,Ground
+655,Fletchling,50,43,45,Kalos,40,38,62,Normal,Flying
+656,Fletchinder,73,55,62,Kalos,56,52,84,Fire,Flying
+657,Talonflame,81,71,78,Kalos,74,69,126,Fire,Flying
+658,Scatterbug,35,40,38,Kalos,27,25,35,Bug,DNE
+659,Spewpa,22,60,45,Kalos,27,30,29,Bug,DNE
+660,Vivillon,52,50,80,Kalos,90,50,89,Bug,Flying
+661,Litleo,50,58,62,Kalos,73,54,72,Fire,Normal
+662,Pyroar,68,72,86,Kalos,109,66,106,Fire,Normal
+663,Floette,45,47,54,Kalos,75,98,52,Fairy,DNE
+664,Florges,65,68,78,Kalos,112,154,75,Fairy,DNE
+665,Skiddo,65,48,66,Kalos,62,57,52,Grass,DNE
+666,Gogoat,100,62,123,Kalos,97,81,68,Grass,DNE
+667,Pancham,82,62,67,Kalos,46,48,43,Fighting,DNE
+668,Pangoro,124,78,95,Kalos,69,71,58,Fighting,Dark
+669,Furfrou,80,60,75,Kalos,65,90,102,Normal,DNE
+670,Espurr,48,54,62,Kalos,63,60,68,Psychic,DNE
+671,Meowstic,48,76,74,Kalos,83,81,104,Psychic,DNE
+672,Honedge,80,100,45,Kalos,35,37,28,Steel,Ghost
+673,Doublade,110,150,59,Kalos,45,49,35,Steel,Ghost
+674,Aegislash,50,140,60,Kalos,50,140,60,Steel,Ghost
+675,Spritzee,52,60,78,Kalos,63,65,23,Fairy,DNE
+676,Aromatisse,72,72,101,Kalos,99,89,29,Fairy,DNE
+677,Swirlix,48,66,62,Kalos,59,57,49,Fairy,DNE
+678,Slurpuff,80,86,82,Kalos,85,75,72,Fairy,DNE
+679,Inkay,54,53,53,Kalos,37,46,45,Dark,Psychic
+680,Malamar,92,88,86,Kalos,68,75,73,Dark,Psychic
+681,Binacle,52,67,42,Kalos,39,56,50,Rock,Water
+682,Barbaracle,105,115,72,Kalos,54,86,68,Rock,Water
+683,Skrelp,60,60,50,Kalos,60,60,30,Poison,Water
+684,Dragalge,75,90,65,Kalos,97,123,44,Poison,Dragon
+685,Clauncher,53,62,50,Kalos,58,63,44,Water,DNE
+686,Clawitzer,73,88,71,Kalos,120,89,59,Water,DNE
+687,Helioptile,38,33,44,Kalos,61,43,70,Electric,Normal
+688,Heliolisk,55,52,62,Kalos,109,94,109,Electric,Normal
+689,Tyrunt,89,77,58,Kalos,45,45,48,Rock,Dragon
+690,Tyrantrum,121,119,82,Kalos,69,59,71,Rock,Dragon
+691,Amaura,59,50,77,Kalos,67,63,46,Rock,Ice
+692,Aurorus,77,72,123,Kalos,99,92,58,Rock,Ice
+693,Sylveon,65,65,95,Kalos,110,130,60,Fairy,DNE
+694,Hawlucha,92,75,78,Kalos,74,63,118,Fighting,Flying
+695,Dedenne,58,57,67,Kalos,81,67,101,Electric,Fairy
+696,Carbink,50,150,50,Kalos,50,150,50,Rock,Fairy
+697,Goomy,50,35,45,Kalos,55,75,40,Dragon,DNE
+698,Sliggoo,75,53,68,Kalos,83,113,60,Dragon,DNE
+699,Goodra,100,70,90,Kalos,110,150,80,Dragon,DNE
+700,Klefki,80,91,57,Kalos,80,87,75,Steel,Fairy
+701,Phantump,70,48,43,Kalos,50,60,38,Ghost,Grass
+702,Trevenant,110,76,85,Kalos,65,82,56,Ghost,Grass
+703,Pumpkaboo,66,70,49,Kalos,44,55,51,Ghost,Grass
+704,Gourgeist,90,122,65,Kalos,58,75,84,Ghost,Grass
+705,Bergmite,69,85,55,Kalos,32,35,28,Ice,DNE
+706,Avalugg,117,184,95,Kalos,44,46,28,Ice,DNE
+707,Noibat,30,35,40,Kalos,45,40,55,Flying,Dragon
+708,Noivern,70,80,85,Kalos,97,80,123,Flying,Dragon
+709,Xerneas,131,95,126,Kalos,131,98,99,Fairy,DNE
+710,Yveltal,131,95,126,Kalos,131,98,99,Dark,Flying
+711,Zygarde,100,121,108,Kalos,81,95,95,Dragon,Ground
+712,Diancie,100,150,50,Kalos,100,150,50,Rock,Fairy
+713,Hoopa,110,60,80,Kalos,150,130,70,Psychic,Ghost
+714,Volcanion,110,120,80,Kalos,130,90,70,Fire,Water
+715,Rowlet,55,55,68,Alola,50,50,42,Grass,Flying
+716,Dartrix,75,75,78,Alola,70,70,52,Grass,Flying
+717,Decidueye,107,75,78,Alola,100,100,70,Grass,Ghost
+718,Litten,65,40,45,Alola,60,40,70,Fire,DNE
+719,Torracat,85,50,65,Alola,80,50,90,Fire,DNE
+720,Incineroar,115,90,95,Alola,80,90,60,Fire,Dark
+721,Popplio,54,54,50,Alola,66,56,40,Water,DNE
+722,Brionne,69,69,60,Alola,91,81,50,Water,DNE
+723,Primarina,74,74,80,Alola,126,116,60,Water,Fairy
+724,Pikipek,75,30,35,Alola,30,30,65,Normal,Flying
+725,Trumbeak,85,50,55,Alola,40,50,75,Normal,Flying
+726,Toucannon,120,75,80,Alola,75,75,60,Normal,Flying
+727,Yungoos,70,30,48,Alola,30,30,45,Normal,DNE
+728,Gumshoos,110,60,88,Alola,55,60,45,Normal,DNE
+729,Grubbin,62,45,47,Alola,55,45,46,Bug,DNE
+730,Charjabug,82,95,57,Alola,55,75,36,Bug,Electric
+731,Vikavolt,70,90,77,Alola,145,75,43,Bug,Electric
+732,Crabrawler,82,57,47,Alola,42,47,63,Fighting,DNE
+733,Crabominable,132,77,97,Alola,62,67,43,Fighting,Ice
+734,Oricorio,70,70,75,Alola,98,70,93,Fire,Flying
+735,Cutiefly,45,40,40,Alola,55,40,84,Bug,Fairy
+736,Ribombee,55,60,60,Alola,95,70,124,Bug,Fairy
+737,Rockruff,65,40,45,Alola,30,40,60,Rock,DNE
+738,Lycanroc,115,65,75,Alola,55,65,112,Rock,DNE
+739,Wishiwashi,20,20,45,Alola,25,25,40,Water,DNE
+740,Mareanie,53,62,50,Alola,43,52,45,Poison,Water
+741,Toxapex,63,152,50,Alola,53,142,35,Poison,Water
+742,Mudbray,100,70,70,Alola,45,55,45,Ground,DNE
+743,Mudsdale,125,100,100,Alola,55,85,35,Ground,DNE
+744,Dewpider,40,52,38,Alola,40,72,27,Water,Bug
+745,Araquanid,70,92,68,Alola,50,132,42,Water,Bug
+746,Fomantis,55,35,40,Alola,50,35,35,Grass,DNE
+747,Lurantis,105,90,70,Alola,80,90,45,Grass,DNE
+748,Morelull,35,55,40,Alola,65,75,15,Grass,Fairy
+749,Shiinotic,45,80,60,Alola,90,100,30,Grass,Fairy
+750,Salandit,44,40,48,Alola,71,40,77,Poison,Fire
+751,Salazzle,64,60,68,Alola,111,60,117,Poison,Fire
+752,Stufful,75,50,70,Alola,45,50,50,Normal,Fighting
+753,Bewear,125,80,120,Alola,55,60,60,Normal,Fighting
+754,Bounsweet,30,38,42,Alola,30,38,32,Grass,DNE
+755,Steenee,40,48,52,Alola,40,48,62,Grass,DNE
+756,Tsareena,120,98,72,Alola,50,98,72,Grass,DNE
+757,Comfey,52,90,51,Alola,82,110,100,Fairy,DNE
+758,Oranguru,60,80,90,Alola,90,110,60,Normal,Psychic
+759,Passimian,120,90,100,Alola,40,60,80,Fighting,DNE
+760,Wimpod,35,40,25,Alola,20,30,80,Bug,Water
+761,Golisopod,125,140,75,Alola,60,90,40,Bug,Water
+762,Sandygast,55,80,55,Alola,70,45,15,Ghost,Ground
+763,Palossand,75,110,85,Alola,100,75,35,Ghost,Ground
+764,Pyukumuku,60,130,55,Alola,30,130,5,Water,DNE
+765,Silvally,95,95,95,Alola,95,95,95,Normal,DNE
+766,Minior,60,100,60,Alola,60,100,60,Rock,Flying
+767,Komala,115,65,65,Alola,75,95,65,Normal,DNE
+768,Turtonator,78,135,60,Alola,91,85,36,Fire,Dragon
+769,Togedemaru,98,63,65,Alola,40,73,96,Electric,Steel
+770,Mimikyu,90,80,55,Alola,50,105,96,Ghost,Fairy
+771,Bruxish,105,70,68,Alola,70,70,92,Water,Psychic
+772,Drampa,60,85,78,Alola,135,91,36,Normal,Dragon
+773,Dhelmise,131,100,70,Alola,86,90,40,Ghost,Grass
+774,Jangmo-o,55,65,45,Alola,45,45,45,Dragon,DNE
+775,Hakamo-o,75,90,55,Alola,65,70,65,Dragon,Fighting
+776,Kommo-o,110,125,75,Alola,100,105,85,Dragon,Fighting
+777,Cosmog,29,31,43,Alola,29,31,37,Psychic,DNE
+778,Cosmoem,29,131,43,Alola,29,131,37,Psychic,DNE
+779,Solgaleo,137,107,137,Alola,113,89,97,Psychic,Steel
+780,Lunala,113,89,137,Alola,137,107,97,Psychic,Ghost
+781,Nihilego,53,47,109,Alola,127,131,103,Rock,Poison
+782,Buzzwole,139,139,107,Alola,53,53,79,Bug,Fighting
+783,Pheromosa,137,37,71,Alola,137,37,151,Bug,Fighting
+784,Xurkitree,89,71,83,Alola,173,71,83,Electric,DNE
+785,Celesteela,101,103,97,Alola,107,101,61,Steel,Flying
+786,Kartana,181,131,59,Alola,59,31,109,Grass,Steel
+787,Guzzlord,101,53,223,Alola,97,53,43,Dark,Dragon
+788,Necrozma,107,101,97,Alola,127,89,79,Psychic,DNE
+789,Magearna,95,115,80,Alola,130,115,65,Steel,Fairy
+790,Marshadow,125,80,90,Alola,90,90,125,Fighting,Ghost
+791,Poipole,73,67,67,Alola,73,67,73,Poison,DNE
+792,Naganadel,73,73,73,Alola,127,73,121,Poison,Dragon
+793,Stakataka,131,211,61,Alola,53,101,13,Rock,Steel
+794,Blacephalon,127,53,53,Alola,151,79,107,Fire,Ghost
+795,Zeraora,112,75,88,Alola,102,80,143,Electric,DNE
+796,Meltan,65,65,46,Alola,55,35,34,Steel,DNE
+797,Melmetal,143,143,135,Alola,80,65,34,Steel,DNE
+798,Grookey,65,50,50,Galar,40,40,65,Grass,DNE
+799,Thwackey,85,70,70,Galar,55,60,80,Grass,DNE
+800,Rillaboom,125,90,100,Galar,60,70,85,Grass,DNE
+801,Scorbunny,71,40,50,Galar,40,40,69,Fire,DNE
+802,Raboot,86,60,65,Galar,55,60,94,Fire,DNE
+803,Cinderace,116,75,80,Galar,65,75,119,Fire,DNE
+804,Sobble,40,40,50,Galar,70,40,70,Water,DNE
+805,Drizzile,60,55,65,Galar,95,55,90,Water,DNE
+806,Inteleon,85,65,70,Galar,125,65,120,Water,DNE
+807,Skwovet,55,55,70,Galar,35,35,25,Normal,DNE
+808,Greedent,95,95,120,Galar,55,75,20,Normal,DNE
+809,Rookidee,47,35,38,Galar,33,35,57,Flying,DNE
+810,Corvisquire,67,55,68,Galar,43,55,77,Flying,DNE
+811,Corviknight,87,105,98,Galar,53,85,67,Flying,Steel
+812,Blipbug,20,20,25,Galar,25,45,45,Bug,DNE
+813,Dottler,35,80,50,Galar,50,90,30,Bug,Psychic
+814,Orbeetle,45,110,60,Galar,80,120,90,Bug,Psychic
+815,Nickit,28,28,40,Galar,47,52,50,Dark,DNE
+816,Thievul,58,58,70,Galar,87,92,90,Dark,DNE
+817,Gossifleur,40,60,40,Galar,40,60,10,Grass,DNE
+818,Eldegoss,50,90,60,Galar,80,120,60,Grass,DNE
+819,Wooloo,40,55,42,Galar,40,45,48,Normal,DNE
+820,Dubwool,80,100,72,Galar,60,90,88,Normal,DNE
+821,Chewtle,64,50,50,Galar,38,38,44,Water,DNE
+822,Drednaw,115,90,90,Galar,48,68,74,Water,Rock
+823,Yamper,45,50,59,Galar,40,50,26,Electric,DNE
+824,Boltund,90,60,69,Galar,90,60,121,Electric,DNE
+825,Rolycoly,40,50,30,Galar,40,50,30,Rock,DNE
+826,Carkol,60,90,80,Galar,60,70,50,Rock,Fire
+827,Coalossal,80,120,110,Galar,80,90,30,Rock,Fire
+828,Applin,40,80,40,Galar,40,40,20,Grass,Dragon
+829,Flapple,110,80,70,Galar,95,60,70,Grass,Dragon
+830,Appletun,85,80,110,Galar,100,80,30,Grass,Dragon
+831,Silicobra,57,75,52,Galar,35,50,46,Ground,DNE
+832,Sandaconda,107,125,72,Galar,65,70,71,Ground,DNE
+833,Cramorant,85,55,70,Galar,85,95,85,Flying,Water
+834,Arrokuda,63,40,41,Galar,40,30,66,Water,DNE
+835,Barraskewda,123,60,61,Galar,60,50,136,Water,DNE
+836,Toxel,38,35,40,Galar,54,35,40,Electric,Poison
+837,Toxtricity,98,70,75,Galar,114,70,75,Electric,Poison
+838,Sizzlipede,65,45,50,Galar,50,50,45,Fire,Bug
+839,Centiskorch,115,65,100,Galar,90,90,65,Fire,Bug
+840,Clobbopus,68,60,50,Galar,50,50,32,Fighting,DNE
+841,Grapploct,118,90,80,Galar,70,80,42,Fighting,DNE
+842,Sinistea,45,45,40,Galar,74,54,50,Ghost,DNE
+843,Polteageist,65,65,60,Galar,134,114,70,Ghost,DNE
+844,Hatenna,30,45,42,Galar,56,53,39,Psychic,DNE
+845,Hattrem,40,65,57,Galar,86,73,49,Psychic,DNE
+846,Hatterene,90,95,57,Galar,136,103,29,Psychic,Fairy
+847,Impidimp,45,30,45,Galar,55,40,50,Dark,Fairy
+848,Morgrem,60,45,65,Galar,75,55,70,Dark,Fairy
+849,Grimmsnarl,120,65,95,Galar,95,75,60,Dark,Fairy
+850,Obstagoon,90,101,93,Galar,60,81,95,Dark,Normal
+851,Perrserker,110,100,70,Galar,50,60,50,Steel,DNE
+852,Cursola,95,50,60,Galar,145,130,30,Ghost,DNE
+853,Runerigus,95,145,58,Galar,50,105,30,Ground,Ghost
+854,Milcery,40,40,45,Galar,50,61,34,Fairy,DNE
+855,Alcremie,60,75,65,Galar,110,121,64,Fairy,DNE
+856,Falinks,100,100,65,Galar,70,60,75,Fighting,DNE
+857,Pincurchin,101,95,48,Galar,91,85,15,Electric,DNE
+858,Snom,25,35,30,Galar,45,30,20,Ice,Bug
+859,Frosmoth,65,60,70,Galar,125,90,65,Ice,Bug
+860,Stonjourner,125,135,100,Galar,20,20,70,Rock,DNE
+861,Eiscue,80,110,75,Galar,65,90,50,Ice,DNE
+862,Indeedee,65,55,60,Galar,105,95,95,Psychic,Normal
+863,Morpeko,95,58,58,Galar,70,58,97,Electric,Dark
+864,Cufant,80,49,72,Galar,40,49,40,Steel,DNE
+865,Copperajah,130,69,122,Galar,80,69,30,Steel,DNE
+866,Dracozolt,100,90,90,Galar,80,70,75,Electric,Dragon
+867,Arctozolt,100,90,90,Galar,90,80,55,Electric,Ice
+868,Dracovish,90,100,90,Galar,70,80,75,Water,Dragon
+869,Arctovish,90,100,90,Galar,80,90,55,Water,Ice
+870,Duraludon,95,115,70,Galar,120,50,85,Steel,Dragon
+871,Dreepy,60,30,28,Galar,40,30,82,Dragon,Ghost
+872,Drakloak,80,50,68,Galar,60,50,102,Dragon,Ghost
+873,Dragapult,120,75,88,Galar,100,75,142,Dragon,Ghost
+874,Zacian,120,115,92,Galar,80,115,138,Fairy,DNE
+875,Zamazenta,120,115,92,Galar,80,115,138,Fighting,DNE
+876,Eternatus,85,95,140,Galar,145,95,130,Poison,Dragon
+877,Kubfu,90,60,60,Galar,53,50,72,Fighting,DNE
+878,Urshifu,130,100,100,Galar,63,60,97,Fighting,Dark
+879,Zarude,120,105,105,Galar,70,95,105,Dark,Grass
+880,Regieleki,100,50,80,Galar,100,50,200,Electric,DNE
+881,Regidrago,100,50,200,Galar,100,50,80,Dragon,DNE
+882,Glastrier,145,130,100,Galar,65,110,30,Ice,DNE
+883,Spectrier,65,60,100,Galar,145,80,130,Ghost,DNE
+884,Calyrex,80,80,100,Galar,80,80,80,Psychic,Grass
+885,Wyrdeer,105,72,103,Galar,105,75,65,Normal,Psychic
+886,Kleavor,130,95,70,Galar,45,75,85,Bug,Rock
+887,Ursaluna,140,105,130,Galar,45,80,50,Ground,Normal
+888,Basculegion,112,65,120,Galar,80,75,78,Water,Ghost
+889,Sneasler,130,60,80,Galar,40,80,120,Poison,Fighting
+890,Overqwil,115,95,85,Galar,65,65,85,Dark,Poison
+891,Enamorus,115,70,74,Galar,135,80,106,Fairy,Flying
+892,Sprigatito,61,54,40,Paldea,45,45,65,Grass,DNE
+893,Floragato,80,63,61,Paldea,60,63,83,Grass,DNE
+894,Meowscarada,110,70,76,Paldea,81,70,123,Grass,Dark
+895,Fuecoco,45,59,67,Paldea,63,40,36,Fire,DNE
+896,Crocalor,55,78,81,Paldea,90,58,49,Fire,DNE
+897,Skeledirge,75,100,104,Paldea,110,75,66,Fire,Ghost
+898,Quaxly,65,45,55,Paldea,50,45,50,Water,DNE
+899,Quaxwell,85,65,70,Paldea,65,60,65,Water,DNE
+900,Quaquaval,120,80,85,Paldea,85,75,85,Water,Fighting
+901,Lechonk,45,40,54,Paldea,35,45,35,Normal,DNE
+902,Oinkologne,100,75,110,Paldea,59,80,65,Normal,DNE
+903,Tarountula,41,45,35,Paldea,29,40,20,Bug,DNE
+904,Spidops,79,92,60,Paldea,52,86,35,Bug,DNE
+905,Nymble,46,40,33,Paldea,21,25,45,Bug,DNE
+906,Lokix,102,78,71,Paldea,52,55,92,Bug,Dark
+907,Pawmi,50,20,45,Paldea,40,25,60,Electric,DNE
+908,Pawmo,75,40,60,Paldea,50,40,85,Electric,Fighting
+909,Pawmot,115,70,70,Paldea,70,60,105,Electric,Fighting
+910,Tandemaus,50,45,50,Paldea,40,45,75,Normal,DNE
+911,Maushold,75,70,74,Paldea,65,75,111,Normal,DNE
+912,Fidough,55,70,37,Paldea,30,55,65,Fairy,DNE
+913,Dachsbun,80,115,57,Paldea,50,80,95,Fairy,DNE
+914,Smoliv,35,45,41,Paldea,58,51,30,Grass,Normal
+915,Dolliv,53,60,52,Paldea,78,78,33,Grass,Normal
+916,Arboliva,69,90,78,Paldea,125,109,39,Grass,Normal
+917,Squawkabilly,96,51,82,Paldea,45,51,92,Normal,Flying
+918,Nacli,55,75,55,Paldea,35,35,25,Rock,DNE
+919,Naclstack,60,100,60,Paldea,35,65,35,Rock,DNE
+920,Garganacl,100,130,100,Paldea,45,90,35,Rock,DNE
+921,Charcadet,50,40,40,Paldea,50,40,35,Fire,DNE
+922,Armarouge,60,100,85,Paldea,125,80,75,Fire,Psychic
+923,Ceruledge,125,80,75,Paldea,60,100,85,Fire,Ghost
+924,Tadbulb,31,41,61,Paldea,59,35,45,Electric,DNE
+925,Bellibolt,64,91,109,Paldea,103,83,45,Electric,DNE
+926,Wattrel,40,35,40,Paldea,55,40,70,Electric,Flying
+927,Kilowattrel,70,60,70,Paldea,105,60,125,Electric,Flying
+928,Maschiff,78,60,60,Paldea,40,51,51,Dark,DNE
+929,Mabosstiff,120,90,80,Paldea,60,70,85,Dark,DNE
+930,Shroodle,65,35,40,Paldea,40,35,75,Poison,Normal
+931,Grafaiai,95,65,63,Paldea,80,72,110,Poison,Normal
+932,Bramblin,65,30,40,Paldea,45,35,60,Grass,Ghost
+933,Brambleghast,115,70,55,Paldea,80,70,90,Grass,Ghost
+934,Toedscool,40,35,40,Paldea,50,100,70,Ground,Grass
+935,Toedscruel,70,65,80,Paldea,80,120,100,Ground,Grass
+936,Klawf,100,115,70,Paldea,35,55,75,Rock,DNE
+937,Capsakid,62,40,50,Paldea,62,40,50,Grass,DNE
+938,Scovillain,108,65,65,Paldea,108,65,75,Grass,Fire
+939,Rellor,50,60,41,Paldea,31,58,30,Bug,DNE
+940,Rabsca,50,85,75,Paldea,115,100,45,Bug,Psychic
+941,Flittle,35,30,30,Paldea,55,30,75,Psychic,DNE
+942,Espathra,60,60,95,Paldea,101,60,105,Psychic,DNE
+943,Tinkatink,45,45,50,Paldea,35,64,58,Fairy,Steel
+944,Tinkatuff,55,55,65,Paldea,45,82,78,Fairy,Steel
+945,Tinkaton,75,77,85,Paldea,70,105,94,Fairy,Steel
+946,Wiglett,55,25,10,Paldea,35,25,95,Water,DNE
+947,Wugtrio,100,50,35,Paldea,50,70,120,Water,DNE
+948,Bombirdier,103,85,70,Paldea,60,85,82,Flying,Dark
+949,Finizen,45,40,70,Paldea,45,40,75,Water,DNE
+950,Palafin,70,72,100,Paldea,53,62,100,Water,DNE
+951,Varoom,70,63,45,Paldea,30,45,47,Steel,Poison
+952,Revavroom,119,90,80,Paldea,54,67,90,Steel,Poison
+953,Cyclizar,95,65,70,Paldea,85,65,121,Dragon,Normal
+954,Orthworm,85,145,70,Paldea,60,55,65,Steel,DNE
+955,Glimmet,35,42,48,Paldea,105,60,60,Rock,Poison
+956,Glimmora,55,90,83,Paldea,130,81,86,Rock,Poison
+957,Greavard,61,60,50,Paldea,30,55,34,Ghost,DNE
+958,Houndstone,101,100,72,Paldea,50,97,68,Ghost,DNE
+959,Flamigo,115,74,82,Paldea,75,64,90,Flying,Fighting
+960,Cetoddle,68,45,108,Paldea,30,40,43,Ice,DNE
+961,Cetitan,113,65,170,Paldea,45,55,73,Ice,DNE
+962,Veluza,102,73,90,Paldea,78,65,70,Water,Psychic
+963,Dondozo,100,115,150,Paldea,65,65,35,Water,DNE
+964,Tatsugiri,50,60,68,Paldea,120,95,82,Dragon,Water
+965,Annihilape,115,80,110,Paldea,50,90,90,Fighting,Ghost
+966,Clodsire,75,60,130,Paldea,45,100,20,Poison,Ground
+967,Farigiraf,90,70,120,Paldea,110,70,60,Normal,Psychic
+968,Dudunsparce,100,80,125,Paldea,85,75,55,Normal,DNE
+969,Kingambit,135,120,100,Paldea,60,85,50,Dark,Steel
+970,Frigibax,75,45,65,Paldea,35,45,55,Dragon,Ice
+971,Arctibax,95,66,90,Paldea,45,65,62,Dragon,Ice
+972,Baxcalibur,145,92,115,Paldea,75,86,87,Dragon,Ice
+973,Gimmighoul,30,70,45,Paldea,75,70,10,Ghost,DNE
+974,Gholdengo,60,95,87,Paldea,133,91,84,Steel,Ghost
+975,Wo-Chien,85,100,85,Paldea,95,135,70,Dark,Grass
+976,Chien-Pao,120,80,80,Paldea,90,65,135,Dark,Ice
+977,Ting-Lu,110,125,155,Paldea,55,80,45,Dark,Ground
+978,Chi-Yu,80,80,55,Paldea,135,120,100,Dark,Fire
+979,Koraidon,135,115,100,Paldea,85,100,135,Fighting,Dragon
+980,Miraidon,85,100,100,Paldea,135,115,135,Electric,Dragon
diff --git a/sum23/labs/lab4/practice.ipynb b/sum23/labs/lab4/practice.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..10e6f0c20f9d865272936aa8be355caa5fb09d04
--- /dev/null
+++ b/sum23/labs/lab4/practice.ipynb
@@ -0,0 +1,2781 @@
+{
+ "cells": [
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "8c468b9b",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "# Initialize Otter\n",
+    "import otter\n",
+    "grader = otter.Notebook(\"practice.ipynb\")"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "f5d44c5b",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "import practice_test"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "ba69c1ac",
+   "metadata": {},
+   "source": [
+    "# Lab 4: Conditional statements and Pokémon API\n",
+    "\n",
+    "**WARNING:** Please go through Segment 1 of [lab4](https://git.doit.wisc.edu/cdis/cs/courses/cs220/cs220-lecture-material/-/tree/main/sum23/labs/lab4) **before** you start to solve this notebook."
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "00ccba69",
+   "metadata": {},
+   "source": [
+    "## Segment 2: Learning the API\n",
+    "### Task 2.1: Examine the `pokemon_stats` CSV file\n",
+    "Open `pokemon_stats.csv` with Microsoft Excel or any other spreadsheet software first, and take a look at it. It should look something like the image below:\n",
+    "$$$$\n",
+    "<div>\n",
+    "<img src=\"attachment:pokemon_stats.png\" width=\"700\"/>\n",
+    "</div>"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "23eb2fa9",
+   "metadata": {},
+   "source": [
+    "Each Pokémon comes from a certain `Region` and has one or two Type(s). A Pokémon with only one Type has `'DNE'` (i.e., **D**oes **N**ot **E**xist) as its value for `Type 2`. Moreover, each Pokémon has six other statistics, namely:\n",
+    "\n",
+    "1. `Attack` (short for Physical Attack)\n",
+    "2. `Defense` (short for Physical Defense)\n",
+    "3. `HP` (short for Hit Points)\n",
+    "4. `Sp. Atk` (short for Special Attack)\n",
+    "5. `Sp. Def` (short for Special Defense)\n",
+    "6. `Speed` (which is self-explanatory)"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "3b3f10b7",
+   "metadata": {},
+   "source": [
+    "### Task 2.2: Examine the `type_effectiveness_stats` CSV file\n",
+    "Next, open `type_effectiveness_stats.csv` with Microsoft Excel or any other Spreadsheet software, and take a look at it. You will see a table of Pokémon types representing the effectiveness of one type against another. The rows represent the type of the defender, and the columns represent the type of attacker. Read the description below the image (of csv file), to understand these statistics better.\n",
+    "$$$$\n",
+    "<div>\n",
+    "<img src=\"attachment:type_effectiveness_stats.png\" width=\"900\"/>\n",
+    "</div>"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "383d3f44",
+   "metadata": {},
+   "source": [
+    "All Pokémon creatures and their moves are assigned certain types. Each type has several strengths and weaknesses against other Pokémon. In battle, you should use Pokémon and moves that have a type advantage over their opponent; doing so will cause much more damage than otherwise. There are 18 types in this table. Taking the second row (Fire) and the third column (Water) as an example, we see that Water type attack has an effectiveness of `2.0` against Fire type defense."
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "99df9fee",
+   "metadata": {},
+   "source": [
+    "### Task 2.3: Explore the API\n",
+    "\n",
+    "`project.py` is designed to give you access to the data in `pokemon_stats.csv` and `type_effectiveness_stats.csv`. \n",
+    "\n",
+    "Use the inspection process we learned in [lab-p3](https://git.doit.wisc.edu/cdis/cs/courses/cs220/cs220-lecture-material/-/tree/main/sum23/labs/lab3#task-22-inspecting-projectpy) to learn more details of the `project` API. In lab-p3, we saw how to use `dir`, and `help` to learn the API."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "012c7e9e",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# include the relevant import statements in this cell\n",
+    "\n",
+    "import project # we have imported the project module for you here; you will have to add the import statement in p4.ipynb"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "6d1f9cd9",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# use the 'dir' function to learn more about the project API.\n"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "f121dddf",
+   "metadata": {},
+   "source": [
+    "If you were to use the `help` function on the project module, you should find eleven functions here that \n",
+    "do not begin and end with two underscores (`__`). Read the documentation to figure\n",
+    "out what these eleven functions do."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "abf36234",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# you can find the documentation for any function by calling `help` on that function\n",
+    "# use the help function to read the documentation for the project.print_stats function\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "7c6797be",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# now try out the print_stats function on the Pokémon \"Pikachu\"\n"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "957df857",
+   "metadata": {},
+   "source": [
+    "Similarly, try to figure out what each of the ten other functions in `project.py` do, by inspecting them or reading their documentation. You can do that clicking on the `+` symbol on the Toolbar at the top of your Jupyter notebook. This will create a new cell for you to write your own code.\n",
+    "\n",
+    "<div>\n",
+    "<img src=\"attachment:add_new_cell.PNG\" width=\"500\"/>\n",
+    "</div>"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "b504f97a",
+   "metadata": {},
+   "source": [
+    "When you feel comfortable, proceed with the rest of the lab. If any of these instructions are unclear, or if you are unsure about what these functions do, feel  free to reach out to your TA/PM."
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "bbc511ed",
+   "metadata": {},
+   "source": [
+    "### Task 2.3.1: Getting familiar with `project.py`\n",
+    "\n",
+    "You will now demonstrate your familiarity with the functions inside `project.py` by answering a few simple questions."
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "c82e2850",
+   "metadata": {},
+   "source": [
+    "**Question 1:** What `region` is `Quaxly` from?"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "e28549da",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# replace the ... with your code\n",
+    "quaxly_region = ...\n",
+    "\n",
+    "quaxly_region"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "83cca102",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q1\")"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "b35dd169",
+   "metadata": {},
+   "source": [
+    "**Question 2:** What is the first type (i.e., `type1`) of `Scorbunny`?"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "d7150a9d",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# replace the ... with your code\n",
+    "scorbunny_type1 = ...\n",
+    "\n",
+    "scorbunny_type1"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "96654c7d",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q2\")"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "e26e9d7d",
+   "metadata": {},
+   "source": [
+    "**Question 3:** What is the second type (i.e., `type2`) of `Koraidon`?"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "7957b66e",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# replace the ... with your code\n",
+    "koraidon_type2 = ...\n",
+    "\n",
+    "koraidon_type2"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "9c9ef71f",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q3\")"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "c09defad",
+   "metadata": {},
+   "source": [
+    "**Question 4:** What is `Mewtwo`'s `HP` stat?"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "07698d6e",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# replace the ... with your code\n",
+    "mewtwo_hp = ...\n",
+    "\n",
+    "mewtwo_hp"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "0bc04d87",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q4\")"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "d1be7636",
+   "metadata": {},
+   "source": [
+    "**Question 5:** What is `Rayquaza`'s `Attack` stat?"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "e66afd86",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# replace the ... with your code\n",
+    "rayquaza_attack = ...\n",
+    "\n",
+    "rayquaza_attack"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "99b24d77",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q5\")"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "7e09c5c3",
+   "metadata": {},
+   "source": [
+    "**Question 6:** What is `Registeel`'s `Defense` stat?"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "aadf53e0",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# replace the ... with your code\n",
+    "registeel_defense = ...\n",
+    "\n",
+    "registeel_defense"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "0e387ba4",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q6\")"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "0174632b",
+   "metadata": {},
+   "source": [
+    "**Question 7:** What is `Mudkip`'s `Special Attack` stat?"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "eac13987",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# replace the ... with your code\n",
+    "mudkip_sp_atk = ...\n",
+    "\n",
+    "mudkip_sp_atk"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "c41a55dd",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q7\")"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "fba374ea",
+   "metadata": {},
+   "source": [
+    "**Question 8:** What is `Kyogre`'s `Special Defense` stat?"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "4cc6f9e8",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# replace the ... with your code\n",
+    "kyogre_sp_def = ...\n",
+    "\n",
+    "kyogre_sp_def"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "ce9d9df1",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q8\")"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "197c794b",
+   "metadata": {},
+   "source": [
+    "**Question 9:** What is `Slowpoke`'s `Speed` stat?"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "7c0c1b56",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# replace the ... with your code\n",
+    "slowpoke_speed = ...\n",
+    "\n",
+    "slowpoke_speed"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "093bac28",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q9\")"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "3b611e83",
+   "metadata": {},
+   "source": [
+    "**Question 10:** What is the `type effectiveness` of a `Water` type attack **against** a `Rock` type opponent?"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "370e17d8",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# replace the ... with your code\n",
+    "# do NOT hardcode, instead make sure to use the relevant function from the project module\n",
+    "# inspect or read the documentation of all the functions in the project if you are not sure which one to call\n",
+    "\n",
+    "water_rock_effectiveness = ...\n",
+    "\n",
+    "water_rock_effectiveness"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "5210bd09",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q10\")"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "e95fcad0",
+   "metadata": {},
+   "source": [
+    "## Segment 3: Conditional Statements\n",
+    "\n",
+    "You will now use conditional statements to answer a few interesting questions about some Pokémon."
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "6cb0ba3b",
+   "metadata": {},
+   "source": [
+    "### Task 3.1: Exploring the `project.get_region` function"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "e11506ac",
+   "metadata": {},
+   "source": [
+    "**Question 11:** Is `Pikachu` from `Kanto`?"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "6610ffdc",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# complete the following code that checks if the Pokémon 'Pikachu' comes from the 'Kanto' region.\n",
+    "\n",
+    "pokemon = \"Pikachu\"\n",
+    "if ...:\n",
+    "    is_from_kanto_msg = pokemon + ' is from the Kanto region'\n",
+    "else:\n",
+    "    is_from_kanto_msg = pokemon + ' is not from the Kanto region'\n",
+    "\n",
+    "is_from_kanto_msg"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "c580ad24",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q11\")"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "8b62bcb7",
+   "metadata": {},
+   "source": [
+    "What is the output of the above cell? If you change the name of the Pokémon from `Pikachu` to `Greninja`, does the output change? What happens if you use a bad name (such as `cs220`, which is not the name of any Pokémon)?"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "b239e04b",
+   "metadata": {},
+   "source": [
+    "### Task 3.2: Helper functions - `compare_hp`"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "fa2a442b",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# run the following code and observe the output\n",
+    "\n",
+    "if project.get_hp('Snorlax') >= project.get_hp('Heracross'):\n",
+    "    print('Snorlax')\n",
+    "else:\n",
+    "    print('Heracross')"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "3b436c2c",
+   "metadata": {},
+   "source": [
+    "In P4, you will regularly have to compare the stats of different Pokémon. \n",
+    "So, let's create a **helper function** here. Helper functions are simple functions that are called by other functions that perform more complicated tasks."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "3221fb1b",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# the function should return the name of the Pokémon with the higher HP\n",
+    "# if both Pokémon have the same HP, your function should return the name of the first Pokémon\n",
+    "# finish coding this function by removing the '...' and replacing them with valid variable names\n",
+    "\n",
+    "def compare_hp(pkmn1, pkmn2): # DO NOT EDIT THIS LINE\n",
+    "    if project.get_hp(...) >= project.get_hp(...):\n",
+    "        return ...\n",
+    "    else:\n",
+    "        return ..."
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "c46fdd22",
+   "metadata": {},
+   "source": [
+    "**Question 12:** Use the `compare_hp` function to determine whether `Snorlax` or `Heracross` has the higher HP."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "ffb8826a",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# call your function for the Pokémon Snorlax and Heracross to see which Pokémon has the higher HP stat\n",
+    "# replace the ... with your code\n",
+    "higher_hp_pkmn = ...\n",
+    "\n",
+    "higher_hp_pkmn"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "5dfc8310",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q12\")"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "337a632a",
+   "metadata": {},
+   "source": [
+    "### Task 3.3: Helper functions - `compare_speed`\n",
+    "\n",
+    "Now, you will create another similar helper function.\n",
+    "- this function will return the name of the Pokémon with the higher `Speed` stat.\n",
+    "- if both Pokémon have the *same* `Speed` stat, this function will return `'Draw'`.\n",
+    "\n",
+    "The idea behind creating such helper functions is that if in P4 you need to quickly check which Pokémon has a higher `Speed` stat, you can simply call this function, without writing all this code again.\n",
+    "\n",
+    "**Note:** You will have to copy/paste this definition in your `p4.ipynb` notebook to be able to call it there."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "0a57a79d",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# the function should return the name of the Pokémon with the higher Speed\n",
+    "# if both Pokémon have the same Speed stat, this function should return 'Draw'\n",
+    "def compare_speed(pkmn1, pkmn2): # DO NOT EDIT THIS LINE\n",
+    "    pass # replace this with your code"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "b78c0595",
+   "metadata": {},
+   "source": [
+    "**Question 13.1:** What is the output of `compare_speed(\"Bulbasaur\", \"Charmander\")`?"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "7d6686ae",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# execute this cell without changing anything\n",
+    "test_1_higher_speed = compare_speed(\"Bulbasaur\", \"Charmander\")\n",
+    "\n",
+    "test_1_higher_speed"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "77f88800",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q13-1\")"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "6383c8ee",
+   "metadata": {},
+   "source": [
+    "**Question 13.2:** What is the output of `compare_speed(\"Beedrill\", \"Pidgey\")`?"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "7ca3f3af",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# execute this cell without changing anything\n",
+    "test_2_higher_speed = compare_speed(\"Beedrill\", \"Pidgey\")\n",
+    "\n",
+    "test_2_higher_speed"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "76522848",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q13-2\")"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "832d85f7",
+   "metadata": {},
+   "source": [
+    "**Question 13.3:** What is the output of `compare_speed(\"Fennekin\", \"Sylveon\")`?"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "f9af1dcd",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# execute this cell without changing anything\n",
+    "test_3_higher_speed = compare_speed(\"Fennekin\", \"Sylveon\")\n",
+    "\n",
+    "test_3_higher_speed"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "64743133",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q13-3\")"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "9d1a6776",
+   "metadata": {},
+   "source": [
+    "### Task 3.4 More helper functions\n",
+    "\n",
+    "You will now create the following function - `compare_stat_total(pkmn1, pkmn2)`\n",
+    "- this function will return the name of the Pokémon which has the higher total of `HP` + `Attack` + `Defense` + `Sp. Atk.` + `Sp. Def.` + `Speed`.\n",
+    "- if both Pokémon have the *same* total, this function will return `'Draw'`.\n",
+    "\n",
+    "Before you start defining this function, it would be a good idea to create another **helper** function. It will be inefficient to write the same code to find the stat total for both `pkmn1` and `pkmn2`. So, you might find it useful to create another function `get_stat_total(pkmn)` to compute this total, and then use this function inside `compare_stat_total`."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "29c0e3d3",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# this function should return the total hp + attack + defense + sp. atk. + sp. def. + speed stats of the given pkmn\n",
+    "\n",
+    "def get_stat_total(pkmn):\n",
+    "    pass # replace this with your code"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "1966e6a9",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# the function should return the name of the Pokémon with the higher stat total\n",
+    "# if both Pokémon have the same total, this function should return 'Draw'\n",
+    "# you MUST call the get_stat_total function here\n",
+    "\n",
+    "def compare_stat_total(pkmn1, pkmn2): # DO NOT EDIT THIS LINE\n",
+    "    pass # replace this with your code"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "896a9057",
+   "metadata": {},
+   "source": [
+    "If your `get_stat_total` function works properly, you should get the following outputs:\n",
+    "1. `get_stat_total('Piplup')`: 314\n",
+    "2. `get_stat_total('Torchic')`: 310\n",
+    "3. `get_stat_total('Rowlet')`: 320\n",
+    "4. `get_stat_total('Quaxly')`: 310\n",
+    "\n",
+    "Yo can test this by adding a new cell (refer to Task 2.3 to see how), and calling your function there to confirm that the outputs match up with the numbers here."
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "2f425927",
+   "metadata": {},
+   "source": [
+    "**Question 14.1:** What is the output of `compare_stat_total(\"Arcanine\", \"Carnivine\")`?"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "c106ae15",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# execute this cell without changing anything\n",
+    "test_1_stat_total = compare_stat_total(\"Arcanine\", \"Carnivine\")\n",
+    "\n",
+    "test_1_stat_total"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "c2596fbb",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q14-1\")"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "351a46b7",
+   "metadata": {},
+   "source": [
+    "**Question 14.2:** What is the output of `compare_stat_total(\"Inteleon\", \"Cinderace\")`?"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "92253b42",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# execute this cell without changing anything\n",
+    "test_2_stat_total = compare_stat_total(\"Inteleon\", \"Cinderace\")\n",
+    "\n",
+    "test_2_stat_total"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "3751bb2a",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q14-2\")"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "9556d367",
+   "metadata": {},
+   "source": [
+    "**Question 14.3:** What is the output of `compare_stat_total(\"Gyarados\", \"Lugia\")`?"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "195c02cf",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# execute this cell without changing anything\n",
+    "test_3_stat_total = compare_stat_total(\"Gyarados\", \"Lugia\")\n",
+    "\n",
+    "test_3_stat_total"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "3d6b4a04",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q14-3\")"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "719b1358",
+   "metadata": {},
+   "source": [
+    "## Segment 4: Advanced Conditional Statements\n",
+    "\n",
+    "So far, we have only used if/else statements to compare numbers. Let us do something fancier now. As you might have seen in the `pokemon_stats.csv` file, a Pokémon might have one or more types. For instance, `Pikachu` has just one type: `Electric`, whereas `Charizard` has two: `Fire` and `Flying`."
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "64b130ff",
+   "metadata": {},
+   "source": [
+    "### Task 4.1: Count how many types a Pokémon has\n",
+    "\n",
+    "Pokémon may have up to two different types associated with them. Let's write a function that returns the number of types a Pokémon has."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "47421937",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# this function should return 0 if type1 is 'DNE', 1 if type1 is not 'DNE' but type2 is, and 2 if neither type is 'DNE'\n",
+    "# replace the '...' from the code below to complete the get_num_types function\n",
+    "def get_num_types(pkmn):\n",
+    "    if project.get_type1(pkmn) == 'DNE':\n",
+    "        return 0\n",
+    "    elif project.get_type2(pkmn) == 'DNE':\n",
+    "        return ...\n",
+    "    else:\n",
+    "        return ..."
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "27e231b0",
+   "metadata": {},
+   "source": [
+    "**Question 15.1:** What is the output of `get_num_types(\"Kubfu\")`?"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "4653e68e",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# execute this cell without changing anything\n",
+    "test_1_num_types = get_num_types(\"Kubfu\")\n",
+    "\n",
+    "test_1_num_types"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "90dee5d1",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q15-1\")"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "a511faab",
+   "metadata": {},
+   "source": [
+    "**Question 15.2:** What is the output of `get_num_types(\"Dragapult\")`?"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "fc16ec59",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# execute this cell without changing anything\n",
+    "test_2_num_types = get_num_types(\"Dragapult\")\n",
+    "\n",
+    "test_2_num_types"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "eca0fda2",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q15-2\")"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "4389815a",
+   "metadata": {},
+   "source": [
+    "### Task 4.2: Determine if two Pokémon have a matching type.\n",
+    "Let us create a function that checks if two Pokémon have the same types."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "50975e7f",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# we have written this function for you - can you figure out what is going on?\n",
+    "# if you want to improve this function, make edits right here; do not redefine this function elsewhere\n",
+    "def same_types(pkmn1, pkmn2):    \n",
+    "    if project.get_type1(pkmn1) == project.get_type1(pkmn2):\n",
+    "        if project.get_type2(pkmn1) == project.get_type2(pkmn2):\n",
+    "            return True\n",
+    "    return False"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "b2135e15",
+   "metadata": {},
+   "source": [
+    "### Task 4.3: Debugging I\n",
+    "\n",
+    "There is a semantic error in the function definition above! Can you spot it? If not, see the output of the cell below to understand what the error is.\n",
+    "\n",
+    "Once identified, you **must** modify the function definition above to fix the bug.\n",
+    "\n",
+    "**Do not create a new copy of / duplicate the `same_types` function definition.** You should go back to the cell where the function is already defined, make edits by adding several lines or possibly rewriting the code already there, and then re-run the function definition cell."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "4f1a5ed7",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# look at the stats below - what does `same_types` do when these Pokémon are your inputs?\n",
+    "# what should it do instead?\n",
+    "\n",
+    "project.print_stats(\"Dragonite\")\n",
+    "print()\n",
+    "project.print_stats(\"Noivern\")"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "4c1d86c1",
+   "metadata": {},
+   "source": [
+    "**Question 16:** Do `Dragonite` and `Noivern` have the same types?"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "0988a5ad",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# go back and edit the definition of the `same_types` function so that the output for this cell is correct\n",
+    "are_same_types = same_types(\"Dragonite\", \"Noivern\")\n",
+    "\n",
+    "are_same_types"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "c903545b",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q16\")"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "1b48fe3b",
+   "metadata": {},
+   "source": [
+    "## Segment 5: Modify Previous functions\n",
+    "\n",
+    "### Task 5.1: Use Boolean operators to refactor `same_types`\n",
+    "\n",
+    "Some of the code you have written above may be messy and hard to read. We will now **refactor** the definition of the function `same_types` - which is just a fancy way of saying that we will make the code a little easier to read, by making efficient use of Boolean and logical operators.\n",
+    "\n",
+    "We will provide you with a code snippet, but you must fill in the rest yourself."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "03cf7e9c",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# this function does the same thing as `same_types` but will hopefully be a little easier to read\n",
+    "# replace the '...' from the below code with appropriate operators/Boolean expressions:\n",
+    "\n",
+    "def same_types_refactored(pkmn1, pkmn2):\n",
+    "    pkmn1_type1 = project.get_type1(pkmn1)\n",
+    "    pkmn1_type2 = project.get_type2(pkmn1)\n",
+    "    pkmn2_type1 = project.get_type1(pkmn2)\n",
+    "    pkmn2_type2 = project.get_type2(pkmn2)\n",
+    "    \n",
+    "    if pkmn1_type1 == pkmn2_type1 ... pkmn1_type2 == pkmn2_type2: # replace ... with appropriate logical operator\n",
+    "        return True\n",
+    "    elif ...: # replace ... with an appropriate Boolean expression\n",
+    "        return True        \n",
+    "    return False"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "57fb44d0",
+   "metadata": {},
+   "source": [
+    "**Question 17.1:** What is the output of `same_types_refactored(\"Dewgong\", \"Spheal\")`?"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "e94c8002",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# execute this cell without changing anything (for now)\n",
+    "are_same_types_refactored = same_types_refactored(\"Dewgong\", \"Spheal\")\n",
+    "\n",
+    "are_same_types_refactored"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "47f98ae9",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q17-1\")"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "0501bd72",
+   "metadata": {},
+   "source": [
+    "### Task 5.1.1: Good coding practices\n",
+    "\n",
+    "It is generally considered a bad coding practice to define two different functions that do the same or very similar things. We have currently defined two functions, `same_types` and `same_types_refactored`, which do the same thing. In such circumstances, we should delete one of these functions, and replace all calls to the deleted function with calls to the remaining function.\n",
+    "\n",
+    "Here, you **must** delete your definition of `same_types`. Follow the steps below:\n",
+    "1. Delete the definition of `same_types` from above.\n",
+    "2. Cut and paste your definition of `same_types_refactored` in place of the (now deleted) definition of `same_types`.\n",
+    "3. The definition of `same_types_refactored` **must** appear *before* any calls to either `same_types_refactored` or `same_types`.\n",
+    "4. Replace the name `same_types_refactored` with `same_types`.\n",
+    "5. Replace all calls to the function `same_types_refactored` with `same_types`.\n",
+    "\n",
+    "The result should be that there is **one** definition of `same_types` and **no** definitions of `same_types_refactored`."
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "415242e1",
+   "metadata": {},
+   "source": [
+    "### Task 5.2: Write the function `same_region`\n",
+    "Write a new function that checks if two Pokémon come from the **same region**."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "b7aeff91",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# this function should return True if pkmn1 and pkmn2 both come from the same region, and False otherwise\n",
+    "def same_region(pkmn1, pkmn2): # DO NOT EDIT THIS LINE\n",
+    "    pass # replace with your code"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "7643496d",
+   "metadata": {},
+   "source": [
+    "**Question 17.2:** What is the output of `same_region(\"Dialga\", \"Palkia\")`?"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "651a0268",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# replace the ... with your code\n",
+    "from_same_region = ...\n",
+    "\n",
+    "from_same_region"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "406c0531",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q17-2\")"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "35b8aa63",
+   "metadata": {},
+   "source": [
+    "### Task 5.3: Write the function `same_types_and_region`\n",
+    "Write a new function that checks if two Pokémon are of the same type **and** come from the same region. Make sure to use the functions we created in Task 5.1 and Task 5.2."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "9ae7269e",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# define the function same_types_and_region(pkmn1, pkmn2) here\n",
+    "# this function should return True if pkmn1 and pkmn2 are from the same region and have the same type\n",
+    "# this function should return False otherwise"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "1309e276",
+   "metadata": {},
+   "source": [
+    "You will have to answer the next few questions by calling the `same_types_and_region` function defined above. If you do not pass any of the tests below, debug your code as you did in Task 4.3 above - use `print_stats` to print the stats of the Pokémon which cause your code to fail, and go through your code line by line to verify that your code is doing what it is supposed to be doing."
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "8173f36f",
+   "metadata": {},
+   "source": [
+    "**Question 18.1:** What is the output of `same_types_and_region(\"Bulbasaur\", \"Ivysaur\")`?"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "b3c8db65",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# replace the ... with your code\n",
+    "same_region_and_type_1 = ...\n",
+    "\n",
+    "same_region_and_type_1"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "956a6b70",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q18-1\")"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "1981782e",
+   "metadata": {},
+   "source": [
+    "**Question 18.2:** What is the output of `same_types_and_region(\"Zangoose\", \"Rattata\")`?"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "21c58f89",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# replace the ... with your code\n",
+    "same_region_and_type_2 = ...\n",
+    "\n",
+    "same_region_and_type_2"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "e148bf80",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q18-2\")"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "3c2aca5b",
+   "metadata": {},
+   "source": [
+    "**Question 18.3:** What is the output of `same_types_and_region(\"Espeon\", \"Umbreon\")`?"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "6ba53bb5",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# replace the ... with your code\n",
+    "same_region_and_type_3 = ...\n",
+    "\n",
+    "same_region_and_type_3"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "79aef3a7",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q18-3\")"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "744a1cb2",
+   "metadata": {},
+   "source": [
+    "**Question 18.4:** What is the output of `same_types_and_region(\"Gible\", \"Golbat\")`?"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "d5807461",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# replace the ... with your code\n",
+    "same_region_and_type_4 = ...\n",
+    "\n",
+    "same_region_and_type_4"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "273d9909",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q18-4\")"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "72e1fc20",
+   "metadata": {},
+   "source": [
+    "**Question 18.5:** What is the output of `same_types_and_region(\"Rhydon\", \"Golem\")`?"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "d5846fed",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# replace the ... with your code\n",
+    "same_region_and_type_5 = ...\n",
+    "\n",
+    "same_region_and_type_5"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "bd7b74a9",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q18-5\")"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "8ebd0101",
+   "metadata": {},
+   "source": [
+    "### Task 5.4: Write a function that determines the stronger type\n",
+    "\n",
+    "In P4, you will have to compare the strengths of different types against each other. The `get_type_effectiveness` function in `project.py` will be useful for us here. Given two types `type1` and `type2`, we can use that function to find the effectiveness of `type1` against `type2`, and also, the effectiveness of `type2` against `type1`. So, we can compare the effectiveness of the two types against each other, to determine which is stronger. \n",
+    "\n",
+    "- Write a function that determines the stronger type out of two."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "593dc54b",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# replace the ... with your code to finish this function definition\n",
+    "def stronger_type(type1, type2):\n",
+    "    '''stronger_type(type1, type2) determines which of the two\n",
+    "    types is stronger by checking if the effectiveness of type1\n",
+    "    against type2 is greater than, lesser than or equal to the\n",
+    "    effectiveness of type2 against type1'''\n",
+    "    type_1_effectiveness = project.get_type_effectiveness(..., ...)\n",
+    "    type_2_effectiveness = ...\n",
+    "    if ...:\n",
+    "        return type1 + \" is stronger than \" + type2\n",
+    "    elif ...:\n",
+    "        return type2 + \" is stronger than \" + type1\n",
+    "    else:\n",
+    "        return type1 + \" and \" + type2 + \" are equally strong\""
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "ed36cf40",
+   "metadata": {},
+   "source": [
+    "**Question 19:** What is the output of `stronger_type(\"Fire\", \"Grass\")`?"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "3ce09603",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# replace the ... with your code\n",
+    "stronger_type = ...\n",
+    "\n",
+    "stronger_type"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "13a72ccc",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q19\")"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "f999ab1d",
+   "metadata": {},
+   "source": [
+    "## Segment 6: Fixing Indentation\n",
+    "\n",
+    "### Task 6.1: Debugging II\n",
+    "\n",
+    "The `def` and `if` statements you used in the functions above are two of the statements in Python that use different levels of **indentation** to encode the meaning of the statement. This means, by just changing the indentation level of some code, you might get invalid code that has a **syntax error** or you might get **valid code** that gives a different, **incorrect result**. Therefore, it is an important skill to decide on the **correct indentation level** for and to recognize a wrong indentation level in a piece of code.\n",
+    "\n",
+    "For each of the following questions, you will be provided with a function which has either **syntax/semantic errors** because of **bad indentation**. You **must** fix the indentation to make the functions work as intended. Note that you **must** fix the errors **only by changing the indentation**, and **not** by writing any code of your own."
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "b30dfb00",
+   "metadata": {},
+   "source": [
+    "**Question 20.1:** Fix the indentation errors in the `compare_sp_atk` function below."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "9375855a",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# fix any indentation errors you find in the code below\n",
+    "\n",
+    "def compare_sp_atk(pkmn1, pkmn2):\n",
+    "    '''compare_sp_atk(pkmn1, pkmn2) returns the name of the Pokemon\n",
+    "    with the higher sp atk stat.\n",
+    "    If both Pokemon have the same sp atk stat, the function returns\n",
+    "    the string \"Draw\"'''\n",
+    "    if project.get_sp_atk(pkmn1) > project.get_sp_atk(pkmn2):\n",
+    "    return pkmn1\n",
+    "    elif project.get_sp_atk(pkmn1) < project.get_sp_atk(pkmn2):\n",
+    "    return pkmn2\n",
+    "    else:\n",
+    "    return 'Draw'"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "5212e936",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# execute this cell without changing anything\n",
+    "indentation_test_1 = compare_sp_atk(\"Squirtle\", \"Charmander\")\n",
+    "\n",
+    "indentation_test_1"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "078bba47",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q20-1\")"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "9f401c85",
+   "metadata": {},
+   "source": [
+    "**Question 20.2:** Fix the indentation errors in the `compare_atk` function below.\n",
+    "\n",
+    "Unlike the previous function definition, this one has a **semantic** error, i.e., the code executes without any syntax errors, but the logic behind the code is incorrect. Fix the indentation, so that the code behaves as it is supposed to.\n",
+    "\n",
+    "**Hint:** If you are having trouble identifying the error, you should try tracing through the code using the test examples. For instance, you could insert a new cell and use the `project.print_stats` function to display the stats of `Aron` and `Gible`, then go through the function line by line to confirm that it behaves as it ought to."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "ed55e90f",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# fix any indentation errors you find in the code below\n",
+    "\n",
+    "def compare_atk(pkmn1, pkmn2):\n",
+    "    '''compare_atk(pkmn1, pkmn2) returns the name of the Pokemon\n",
+    "    with the higher attack stat.\n",
+    "    If both Pokemon have the same attack stat, the function returns\n",
+    "    the string \"Draw\"'''\n",
+    "    if project.get_attack(pkmn1) > project.get_attack(pkmn2):\n",
+    "        return pkmn1\n",
+    "    elif project.get_attack(pkmn1) < project.get_attack(pkmn2):\n",
+    "        return pkmn2\n",
+    "        if project.get_attack(pkmn1) == project.get_attack(pkmn2):\n",
+    "            return 'Draw'"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "6a2bbb73",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# execute this cell without changing anything\n",
+    "indentation_test_2 = compare_atk(\"Aron\", \"Gible\")\n",
+    "\n",
+    "indentation_test_2"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "e39076b3",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q20-2\")"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "0f7419a7",
+   "metadata": {},
+   "source": [
+    "**Question 20.3:** Fix the indentation errors in the `compare_defense_total` function below.\n",
+    "\n",
+    "This function definition has a **semantic** error, i.e., the code executes without any syntax errors, but the logic behind the code is incorrect. Fix the indentation, so that the code behaves as it is supposed to.\n",
+    "\n",
+    "**Hint:** If you are having trouble identifying the error, you should try tracing through the code using the test examples. For instance, you could insert a new cell and use the `project.print_stats` function to display the stats of `Thundurus` and `Tornadus`, then go through the function line by line to confirm that it behaves as it ought to."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "ddc05ab4",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# fix any indentation errors you find in the code below\n",
+    "\n",
+    "def get_defense_total(pkmn):\n",
+    "    return project.get_defense(pkmn) + project.get_sp_def(pkmn)\n",
+    "\n",
+    "def compare_defense_total(pkmn1, pkmn2):\n",
+    "    '''compare_defense_total(pkmn1, pkmn2) returns the name of the Pokemon\n",
+    "    with the higher defense + sp def stat.\n",
+    "    If both Pokemon have the same defense + sp def, the function returns\n",
+    "    the string \"Draw\"'''\n",
+    "    if get_defense_total(pkmn1) > get_defense_total(pkmn2):\n",
+    "        return pkmn1\n",
+    "    elif get_defense_total(pkmn1) <= get_defense_total(pkmn2):\n",
+    "        if get_defense_total(pkmn1) < get_defense_total(pkmn2):\n",
+    "            return pkmn2\n",
+    "    else:\n",
+    "        return 'Draw'"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "8388e536",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# execute this cell without changing anything\n",
+    "indentation_test_3 = compare_defense_total(\"Thundurus\", \"Tornadus\")\n",
+    "\n",
+    "indentation_test_3"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "cda13824",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q20-3\")"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "66937586",
+   "metadata": {},
+   "source": [
+    "**Question 20.4:** Fix the indentation errors in the `compare_attacks` function below.\n",
+    "\n",
+    "This function definition has a **semantic** error, i.e., the code executes without any syntax errors, but the logic behind the code is incorrect. Fix the indentation, so that the code behaves as it is supposed to.\n",
+    "\n",
+    "**Hint:** If you are having trouble identifying the error, you should try tracing through the code using the test examples. For instance, you could insert a new cell and use the `project.print_stats` function to display the stats of `Hoppip` and `Skiploom`, then go through the function line by line to confirm that it behaves as it ought to."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "c8362c4f",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# fix any indentation errors you find in the code below\n",
+    "\n",
+    "def compare_attacks(pkmn1, pkmn2):\n",
+    "    '''compare_attacks(pkmn1, pkmn2) returns the name of the Pokemon\n",
+    "    with both higher attack and higher sp atk\n",
+    "    If neither Pokemon has both a higher attack and a higher sp atk, \n",
+    "    the function returns the string \"Draw\"'''\n",
+    "    if project.get_attack(pkmn1) > project.get_attack(pkmn2):\n",
+    "        if project.get_sp_atk(pkmn1) > project.get_sp_atk(pkmn2):\n",
+    "            return pkmn1\n",
+    "        elif project.get_sp_atk(pkmn1) <= project.get_sp_atk(pkmn2):\n",
+    "            return \"Draw\"\n",
+    "        elif project.get_attack(pkmn1) < project.get_attack(pkmn2):\n",
+    "            if project.get_sp_atk(pkmn1) < project.get_sp_atk(pkmn2):\n",
+    "                return pkmn2\n",
+    "            elif project.get_sp_atk(pkmn1) >= project.get_sp_atk(pkmn2):\n",
+    "                return \"Draw\"\n",
+    "    else:\n",
+    "        return \"Draw\""
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "2c26b6c4",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# execute this cell without changing anything\n",
+    "indentation_test_4 = compare_attacks(\"Hoppip\", \"Skiploom\")\n",
+    "\n",
+    "indentation_test_4"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "cf474cbb",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q20-4\")"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "412007cf",
+   "metadata": {},
+   "source": [
+    "**Question 20.5:** Fix the indentation errors in the `compare_speed_region` function below.\n",
+    "\n",
+    "This function definition has a **semantic** error, i.e., the code executes without any syntax errors, but the logic behind the code is incorrect. Fix the indentation, so that the code behaves as it is supposed to.\n",
+    "\n",
+    "**Hint:** If you are having trouble identifying the error, you should try tracing through the code using the test examples. For instance, you could insert a new cell and use the `project.print_stats` function to display the stats of `Turtwig`, `Chimchar`, `Lunala`, and `Solgaleo`, then go through the function line by line to confirm that it behaves as it ought to."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "26516ecc",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# fix any indentation errors you find in the code below\n",
+    "\n",
+    "def compare_speed_region(pkmn1, pkmn2):\n",
+    "    '''If the Pokemon are from the same region,\n",
+    "    compare_speed_region(pkmn1, pkmn2) returns the name of the Pokemon\n",
+    "    with the higher speed stat and the string \"Draw\" if the Pokemon\n",
+    "    have the same speed stat.\n",
+    "    If the two Pokemon are from different regions, the function returns\n",
+    "    the string \"Cannot race\"'''\n",
+    "    if project.get_region(pkmn1) != project.get_region(pkmn2):\n",
+    "        return 'Cannot race'\n",
+    "    elif project.get_region(pkmn1) == project.get_region(pkmn2):\n",
+    "        if project.get_speed(pkmn1) >= project.get_speed(pkmn2):\n",
+    "            if project.get_speed(pkmn1) > project.get_speed(pkmn2):\n",
+    "                return pkmn1\n",
+    "        else:\n",
+    "            return \"Draw\"\n",
+    "    else:\n",
+    "        return pkmn2"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "3ad85047",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# execute this cell without changing anything\n",
+    "indentation_test_5_1 = compare_speed_region(\"Turtwig\", \"Chimchar\")\n",
+    "\n",
+    "indentation_test_5_1"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "e3a2d552",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# execute this cell without changing anything\n",
+    "indentation_test_5_2 = compare_speed_region(\"Lunala\", \"Solgaleo\")\n",
+    "\n",
+    "indentation_test_5_2"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "abda2e05",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q20-5\")"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "26e4a44d",
+   "metadata": {},
+   "source": [
+    "## Great work! You are now ready to start [P4](https://git.doit.wisc.edu/cdis/cs/courses/cs220/cs220-lecture-material/-/tree/main/sum23/projects/p4) and become a master Pokémon trainer."
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "4a15a647",
+   "metadata": {},
+   "source": []
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3 (ipykernel)",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.9.13"
+  },
+  "otter": {
+   "OK_FORMAT": true,
+   "tests": {
+    "q1": {
+     "name": "q1",
+     "points": 5,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> practice_test.check(\"q1\", quaxly_region)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q10": {
+     "name": "q10",
+     "points": 5,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> practice_test.check(\"q10\", water_rock_effectiveness)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q11": {
+     "name": "q11",
+     "points": 5,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> practice_test.check(\"q11\", is_from_kanto_msg)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q12": {
+     "name": "q12",
+     "points": 5,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> practice_test.check(\"q12\", higher_hp_pkmn)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q13-1": {
+     "name": "q13-1",
+     "points": 2,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> practice_test.check(\"q13-1\", test_1_higher_speed)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q13-2": {
+     "name": "q13-2",
+     "points": 1,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> practice_test.check(\"q13-2\", test_2_higher_speed)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q13-3": {
+     "name": "q13-3",
+     "points": 2,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> practice_test.check(\"q13-3\", test_3_higher_speed)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q14-1": {
+     "name": "q14-1",
+     "points": 2,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> practice_test.check(\"q14-1\", test_1_stat_total)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q14-2": {
+     "name": "q14-2",
+     "points": 2,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> practice_test.check(\"q14-2\", test_2_stat_total)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q14-3": {
+     "name": "q14-3",
+     "points": 1,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> practice_test.check(\"q14-3\", test_3_stat_total)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q15-1": {
+     "name": "q15-1",
+     "points": 3,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> practice_test.check(\"q15-1\", test_1_num_types)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q15-2": {
+     "name": "q15-2",
+     "points": 2,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> practice_test.check(\"q15-2\", test_2_num_types)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q16": {
+     "name": "q16",
+     "points": 5,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> practice_test.check(\"q16\", are_same_types)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q17-1": {
+     "name": "q17-1",
+     "points": 2,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> practice_test.check(\"q17-1\", are_same_types_refactored)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q17-2": {
+     "name": "q17-2",
+     "points": 3,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> practice_test.check(\"q17-2\", from_same_region)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q18-1": {
+     "name": "q18-1",
+     "points": 1,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> practice_test.check(\"q18-1\", same_region_and_type_1)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q18-2": {
+     "name": "q18-2",
+     "points": 1,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> practice_test.check(\"q18-2\", same_region_and_type_2)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q18-3": {
+     "name": "q18-3",
+     "points": 1,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> practice_test.check(\"q18-3\", same_region_and_type_3)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q18-4": {
+     "name": "q18-4",
+     "points": 1,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> practice_test.check(\"q18-4\", same_region_and_type_4)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q18-5": {
+     "name": "q18-5",
+     "points": 1,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> practice_test.check(\"q18-5\", same_region_and_type_5)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q19": {
+     "name": "q19",
+     "points": 5,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> practice_test.check(\"q19\", stronger_type)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q2": {
+     "name": "q2",
+     "points": 5,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> practice_test.check(\"q2\", scorbunny_type1)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q20-1": {
+     "name": "q20-1",
+     "points": 1,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> practice_test.check(\"q20-1\", indentation_test_1)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q20-2": {
+     "name": "q20-2",
+     "points": 1,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> practice_test.check(\"q20-2\", indentation_test_2)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q20-3": {
+     "name": "q20-3",
+     "points": 1,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> practice_test.check(\"q20-3\", indentation_test_3)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q20-4": {
+     "name": "q20-4",
+     "points": 1,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> practice_test.check(\"q20-4\", indentation_test_4)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q20-5": {
+     "name": "q20-5",
+     "points": 1,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> practice_test.check(\"q20-5-1\", indentation_test_5_1)\nTrue",
+         "hidden": false,
+         "locked": false
+        },
+        {
+         "code": ">>> practice_test.check(\"q20-5-2\", indentation_test_5_2)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q3": {
+     "name": "q3",
+     "points": 5,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> practice_test.check(\"q3\", koraidon_type2)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q4": {
+     "name": "q4",
+     "points": 5,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> practice_test.check(\"q4\", mewtwo_hp)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q5": {
+     "name": "q5",
+     "points": 5,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> practice_test.check(\"q5\", rayquaza_attack)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q6": {
+     "name": "q6",
+     "points": 5,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> practice_test.check(\"q6\", registeel_defense)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q7": {
+     "name": "q7",
+     "points": 5,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> practice_test.check(\"q7\", mudkip_sp_atk)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q8": {
+     "name": "q8",
+     "points": 5,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> practice_test.check(\"q8\", kyogre_sp_def)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q9": {
+     "name": "q9",
+     "points": 5,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> practice_test.check(\"q9\", slowpoke_speed)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    }
+   }
+  },
+  "vscode": {
+   "interpreter": {
+    "hash": "f08154012ddadd8e950e6e9e035c7a7b32c136e7647e9b7c77e02eb723a8bedb"
+   }
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/sum23/labs/lab4/practice_test.py b/sum23/labs/lab4/practice_test.py
new file mode 100644
index 0000000000000000000000000000000000000000..b1e9f9e1ea6fba68d2f8be081e0cd00004a2d141
--- /dev/null
+++ b/sum23/labs/lab4/practice_test.py
@@ -0,0 +1,89 @@
+#!/usr/bin/python
+
+import os, json, math
+
+
+REL_TOL = 6e-04  # relative tolerance for floats
+ABS_TOL = 15e-03  # absolute tolerance for floats
+
+PASS = "PASS"
+
+TEXT_FORMAT = "text"  # question type when expected answer is a str, int, float, or bool
+
+expected_json =    {"1": (TEXT_FORMAT, 'Paldea'),
+                    "2": (TEXT_FORMAT, 'Fire'),
+                    "3": (TEXT_FORMAT, 'Dragon'),
+                    "4": (TEXT_FORMAT, 106),
+                    "5": (TEXT_FORMAT, 150),
+                    "6": (TEXT_FORMAT, 150),
+                    "7": (TEXT_FORMAT, 50),
+                    "8": (TEXT_FORMAT, 140),
+                    "9": (TEXT_FORMAT, 15),
+                    "10": (TEXT_FORMAT, 2.0),
+                    "11": (TEXT_FORMAT, 'Pikachu is from the Kanto region'),
+                    "12": (TEXT_FORMAT, 'Snorlax'),
+                    "13-1": (TEXT_FORMAT, 'Charmander'),
+                    "13-2": (TEXT_FORMAT, 'Beedrill'),
+                    "13-3": (TEXT_FORMAT, 'Draw'),
+                    "14-1": (TEXT_FORMAT, 'Arcanine'),
+                    "14-2": (TEXT_FORMAT, 'Draw'),
+                    "14-3": (TEXT_FORMAT, 'Lugia'),
+                    "15-1": (TEXT_FORMAT, 1),
+                    "15-2": (TEXT_FORMAT, 2),
+                    "16": (TEXT_FORMAT, True),
+                    "17-1": (TEXT_FORMAT, True),
+                    "17-2": (TEXT_FORMAT, True),
+                    "18-1": (TEXT_FORMAT, True),
+                    "18-2": (TEXT_FORMAT, False),
+                    "18-3": (TEXT_FORMAT, False),
+                    "18-4": (TEXT_FORMAT, False),
+                    "18-5": (TEXT_FORMAT, True),
+                    "19": (TEXT_FORMAT, 'Fire is stronger than Grass'),
+                    "20-1": (TEXT_FORMAT, 'Charmander'),
+                    "20-2": (TEXT_FORMAT, 'Draw'),
+                    "20-3": (TEXT_FORMAT, 'Draw'),
+                    "20-4": (TEXT_FORMAT, 'Skiploom'),
+                    "20-5-1": (TEXT_FORMAT, 'Chimchar'),
+                    "20-5-2": (TEXT_FORMAT, 'Draw')}
+
+def check_cell(qnum, actual):
+    format, expected = expected_json[qnum[1:]]
+    try:
+        if format == TEXT_FORMAT:
+            return simple_compare(expected, actual)
+        else:
+            if expected != actual:
+                return "expected %s but found %s " % (repr(expected), repr(actual))
+    except:
+        if expected != actual:
+            return "expected %s" % (repr(expected))
+    return PASS
+
+
+def simple_compare(expected, actual, complete_msg=True):
+    msg = PASS
+    if type(expected) == type:
+        if expected != actual:
+            if type(actual) == type:
+                msg = "expected %s but found %s" % (expected.__name__, actual.__name__)
+            else:
+                msg = "expected %s but found %s" % (expected.__name__, repr(actual))
+    elif type(expected) != type(actual) and not (type(expected) in [float, int] and type(actual) in [float, int]):
+        msg = "expected to find type %s but found type %s" % (type(expected).__name__, type(actual).__name__)
+    elif type(expected) == float:
+        if not math.isclose(actual, expected, rel_tol=REL_TOL, abs_tol=ABS_TOL):
+            msg = "expected %s" % (repr(expected))
+            if complete_msg:
+                msg = msg + " but found %s" % (repr(actual))
+    else:
+        if expected != actual:
+            msg = "expected %s" % (repr(expected))
+            if complete_msg:
+                msg = msg + " but found %s" % (repr(actual))
+    return msg
+
+def check(qnum, actual):
+    msg = check_cell(qnum, actual)
+    if msg == PASS:
+        return True
+    print("<b style='color: red;'>ERROR:</b> " + msg)
diff --git a/sum23/labs/lab4/project.py b/sum23/labs/lab4/project.py
new file mode 100644
index 0000000000000000000000000000000000000000..99e46bf111d00509d6e413afc03e5e8c5b53f3d5
--- /dev/null
+++ b/sum23/labs/lab4/project.py
@@ -0,0 +1,120 @@
+__pokemon__= {}
+__effectiveness__ = {}
+
+def __init__():
+    """This function loads the data from `pokemon_stats.csv` and `type_effectiveness_stats.csv`. This function runs automatically, when the module is imported"""
+    import csv
+    f = open('pokemon_stats.csv', encoding='utf-8')
+    raw_pkmn_data = list(csv.reader(f))
+    f.close()
+    pkmn_header = raw_pkmn_data[0]
+    pkmn_header.pop(0)
+    raw_pkmn_data = raw_pkmn_data[1:]
+    for pkmn_data in raw_pkmn_data:
+        pkmn_data.pop(0)
+        pkmn = {}
+        for i in range(len(pkmn_header)):
+            pkmn[pkmn_header[i]] = pkmn_data[i]
+        for stat in pkmn:
+            if stat in ['HP', 'Attack', 'Defense', 'Sp. Atk', 'Sp. Def', 'Speed']:
+                pkmn[stat] = int(pkmn[stat])
+        __pokemon__[pkmn["Name"]] = pkmn
+
+    f = open('type_effectiveness_stats.csv', encoding='utf-8')
+    raw_type_data = list(csv.reader(f))
+    f.close()
+    type_header = raw_type_data[0]
+    raw_type_data = raw_type_data[1:]
+    for type1 in type_header[1:]:
+        __effectiveness__[type1] = {}
+    for row in raw_type_data:
+        type2 = row[0]
+        for i in range(1, len(row)):
+            type1 = type_header[i]
+            __effectiveness__[type1][type2] = float(row[i])
+
+def print_stats(pkmn):
+    """print_stats(pkmn) prints all the statistics of the Pokémon with the name `pkmn`"""
+    if pkmn in __pokemon__:
+        for stat in __pokemon__[pkmn]:
+            if not (stat == 'Type 2' and __pokemon__[pkmn][stat] == "DNE"):
+                print(stat, ": ", __pokemon__[pkmn][stat])
+    else:
+        raise  Exception("Pokémon '" + pkmn + "' not found in the file")
+
+def get_region(pkmn):
+    """get_region(pkmn) returns the region of the Pokémon with the name `pkmn`"""
+    if pkmn in __pokemon__:
+        return __pokemon__[pkmn]['Region']
+    else:
+        raise  Exception("Pokémon '" + pkmn + "' not found in the file")
+
+def get_type1(pkmn):
+    """get_type1(pkmn) returns Type 1 of the Pokémon with the name `pkmn`"""
+    if pkmn in __pokemon__:
+        return __pokemon__[pkmn]['Type 1']
+    else:
+        raise  Exception("Pokémon '" + pkmn + "' not found in the file")
+
+def get_type2(pkmn):
+    """get_type2(pkmn) returns Type 2 of the Pokémon with the name `pkmn`"""
+    if pkmn in __pokemon__:
+        return __pokemon__[pkmn]['Type 2']
+    else:
+        raise  Exception("Pokémon '" + pkmn + "' not found in the file")
+
+def get_hp(pkmn):
+    """get_hp(pkmn) returns the HP of the Pokémon with the name `pkmn`"""
+    if pkmn in __pokemon__:
+        return __pokemon__[pkmn]['HP']
+    else:
+        raise  Exception("Pokémon '" + pkmn + "' not found in the file")
+
+def get_attack(pkmn):
+    """get_attack(pkmn) returns the Attack of the Pokémon with the name `pkmn`"""
+    if pkmn in __pokemon__:
+        return __pokemon__[pkmn]['Attack']
+    else:
+        raise  Exception("Pokémon '" + pkmn + "' not found in the file")
+
+def get_defense(pkmn):
+    """get_defense(pkmn) returns the Defense of the Pokémon with the name `pkmn`"""
+    if pkmn in __pokemon__:
+        return __pokemon__[pkmn]['Defense']
+    else:
+        raise  Exception("Pokémon '" + pkmn + "' not found in the file")
+
+def get_sp_atk(pkmn):
+    """get_sp_atk(pkmn) returns the Special Attack of the Pokémon with the name `pkmn`"""
+    if pkmn in __pokemon__:
+        return __pokemon__[pkmn]['Sp. Atk']
+    else:
+        raise  Exception("Pokémon '" + pkmn + "' not found in the file")
+
+def get_sp_def(pkmn):
+    """get_sp_def(pkmn) returns the Special Defense of the Pokémon with the name `pkmn`"""
+    if pkmn in __pokemon__:
+        return __pokemon__[pkmn]['Sp. Def']
+    else:
+        raise  Exception("Pokémon '" + pkmn + "' not found in the file")
+
+def get_speed(pkmn):
+    """get_speed(pkmn) returns the Speed of the Pokémon with the name `pkmn`"""
+    if pkmn in __pokemon__:
+        return __pokemon__[pkmn]['Speed']
+    else:
+        raise  Exception("Pokémon '" + pkmn + "' not found in the file")
+
+def get_type_effectiveness(attacker_type, defender_type):
+    """get_type_effectiveness(attacker_type, defender_type) returns the effectiveness of `attacker_type` attacks against `defender_type` Pokémon"""
+    if attacker_type in __effectiveness__ and defender_type in __effectiveness__[attacker_type]:
+        return __effectiveness__[attacker_type][defender_type]
+    elif attacker_type not in __effectiveness__:
+        if defender_type not in __effectiveness__:
+            raise  Exception("Type '" + attacker_type + "' and Type '" + defender_type + "' not found in the file")
+        else:
+            raise  Exception("Type '" + attacker_type + "' not found in the file")
+    else:
+        raise  Exception("Type '" + defender_type + "' not found in the file")
+
+__init__()
diff --git a/sum23/labs/lab4/type_effectiveness_stats.csv b/sum23/labs/lab4/type_effectiveness_stats.csv
new file mode 100644
index 0000000000000000000000000000000000000000..88ef8fa3517506241ce3682310d6c13ab825fa7e
--- /dev/null
+++ b/sum23/labs/lab4/type_effectiveness_stats.csv
@@ -0,0 +1,19 @@
+,Normal,Fire,Water,Electric,Grass,Ice,Fighting,Poison,Ground,Flying,Psychic,Bug,Rock,Ghost,Dragon,Dark,Steel,Fairy
+Normal,1.0,1.0,1.0,1.0,1.0,1.0,2.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0
+Fire,1.0,0.5,2.0,1.0,0.5,0.5,1.0,1.0,2.0,1.0,1.0,0.5,2.0,1.0,1.0,1.0,0.5,0.5
+Water,1.0,0.5,0.5,2.0,2.0,0.5,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.5,1.0
+Electric,1.0,1.0,1.0,0.5,1.0,1.0,1.0,1.0,2.0,0.5,1.0,1.0,1.0,1.0,1.0,1.0,0.5,1.0
+Grass,1.0,2.0,0.5,0.5,0.5,2.0,1.0,2.0,0.5,2.0,1.0,2.0,1.0,1.0,1.0,1.0,1.0,1.0
+Ice,1.0,2.0,1.0,1.0,1.0,0.5,2.0,1.0,1.0,1.0,1.0,1.0,2.0,1.0,1.0,1.0,2.0,1.0
+Fighting,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,2.0,2.0,0.5,0.5,1.0,1.0,0.5,1.0,2.0
+Poison,1.0,1.0,1.0,1.0,0.5,1.0,0.5,0.5,2.0,1.0,2.0,0.5,1.0,1.0,1.0,1.0,1.0,0.5
+Ground,1.0,1.0,2.0,0.0,2.0,2.0,1.0,0.5,1.0,1.0,1.0,1.0,0.5,1.0,1.0,1.0,1.0,1.0
+Flying,1.0,1.0,1.0,2.0,0.5,2.0,0.5,1.0,0.0,1.0,1.0,0.5,2.0,1.0,1.0,1.0,1.0,1.0
+Psychic,1.0,1.0,1.0,1.0,1.0,1.0,0.5,1.0,1.0,1.0,0.5,2.0,1.0,2.0,1.0,2.0,1.0,1.0
+Bug,1.0,2.0,1.0,1.0,0.5,1.0,0.5,1.0,0.5,2.0,1.0,1.0,2.0,1.0,1.0,1.0,1.0,1.0
+Rock,0.5,0.5,2.0,1.0,2.0,1.0,2.0,0.5,2.0,0.5,1.0,1.0,1.0,1.0,1.0,1.0,2.0,1.0
+Ghost,0.0,1.0,1.0,1.0,1.0,1.0,0.0,0.5,1.0,1.0,1.0,0.5,1.0,2.0,1.0,2.0,1.0,1.0
+Dragon,1.0,0.5,0.5,0.5,0.5,2.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,2.0,1.0,1.0,2.0
+Dark,1.0,1.0,1.0,1.0,1.0,1.0,2.0,1.0,1.0,1.0,0.0,2.0,1.0,0.5,1.0,0.5,1.0,2.0
+Steel,0.5,2.0,1.0,1.0,0.5,0.5,2.0,0.0,2.0,0.5,0.5,0.5,0.5,1.0,0.5,1.0,0.5,0.5
+Fairy,1.0,1.0,1.0,1.0,1.0,1.0,0.5,2.0,1.0,1.0,1.0,0.5,1.0,1.0,0.0,0.5,2.0,1.0
diff --git a/sum23/projects/p4/README.md b/sum23/projects/p4/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..714d8570a1351917961732e6d5bd1437d1499b7e
--- /dev/null
+++ b/sum23/projects/p4/README.md
@@ -0,0 +1,40 @@
+# Project 4 (P4): Pokémon Battle Simulation
+
+## Clarifications/Corrections:
+
+* None yet.
+
+**Find any issues?** Create a piazza post.
+
+## Note on Academic Misconduct:
+You are **allowed** to work with a partner on your projects. While it is not required that you work with a partner, it is **recommended** that you find a project partner as soon as possible as the projects will get progressively harder. Be careful **not** to work with more than one partner. If you worked with a partner on Lab 4, you are **not** allowed to finish your project with a different partner. You may either continue to work with the same partner, or work on P4 alone. Now may be a good time to review our [course policies](https://canvas.wisc.edu/courses/355767/pages/syllabus?module_item_id=6048035).
+
+## Instructions:
+
+In this project, we will focus on conditional statements. To start, create a `p4` directory, and download `p4.ipynb`, `project.py`, `p4_test.py`, `pokemon_stats.csv`, and `type_effectiveness_stats.csv`.
+
+**Note:** Please go through [Lab 4](https://git.doit.wisc.edu/cdis/cs/courses/cs220/cs220-lecture-material/-/tree/main/sum23/labs/lab4) before you start the project. The lab contains some very important information that will be necessary for you to finish the project.
+
+You will work on `p4.ipynb` and hand it in. You should follow the provided directions for each question. Questions have **specific** directions on what **to do** and what **not to do**.
+
+After you've downloaded the file to your `p4` directory, open a terminal window and use `cd` to navigate to that directory. To make sure you're in the correct directory in the terminal, type `pwd`. To make sure you've downloaded the notebook file, type `ls` to ensure that `p4.ipynb`, `project.py`, `p4_test.py`, `pokemon_stats.csv`, and `type_effectiveness_stats.csv` are listed. Then run the command `jupyter notebook` to start Jupyter, and get started on the project!
+
+**IMPORTANT**: You should **NOT** terminate/close the session where you run the above command. If you need to use any other Terminal/PowerShell commands, open a new window instead. Keep constantly saving your notebook file, by either clicking the "Save and Checkpoint" button (floppy disk) or using the appropriate keyboard shortcut.
+
+------------------------------
+
+## IMPORTANT Submission instructions:
+- Review the [Grading Rubric](https://git.doit.wisc.edu/cdis/cs/courses/cs220/cs220-lecture-material/-/blob/main/sum23/projects/p4/rubric.md), to ensure that you don't lose points during code review.
+- Login to [Gradescope](https://www.gradescope.com/) and upload the zip file into the P4 assignment.
+- If you completed the project with a **partner**, make sure to **add their name** by clicking "Add Group Member"
+in Gradescope when uploading the P4 zip file.
+
+   <img src="images/add_group_member.png" width="400">
+
+   **Warning:** You will have to add your partner on Gradescope even if you have filled out this information in your `p4.ipynb` notebook.
+
+- It is **your responsibility** to make sure that your project clears auto-grader tests on the Gradescope test system. Otter test results should be available in a few minutes after your submission. You should be able to see both PASS / FAIL results for the 20 test cases and your total score, which is accessible via Gradescope Dashboard (as in the image below):
+
+    <img src="images/gradescope.png" width="400">
+
+    Note that you can only see your score as `-/100.0` since it has not yet been reviewed by a TA. However, you should confirm that your tests have all passed the autograder.
diff --git a/sum23/projects/p4/gen_csv.ipynb b/sum23/projects/p4/gen_csv.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..7fb8782e821079649db46d459e62537f193d7d58
--- /dev/null
+++ b/sum23/projects/p4/gen_csv.ipynb
@@ -0,0 +1,371 @@
+{
+ "cells": [
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "import requests\n",
+    "from bs4 import BeautifulSoup as bs\n",
+    "import pandas as pd"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "dex_url = \"https://pokemondb.net/pokedex/all\"\n",
+    "re = requests.get(dex_url)\n",
+    "re.raise_for_status()\n",
+    "raw_dex_data = bs(re.text, 'html.parser')\n",
+    "\n",
+    "pokemon = []\n",
+    "pokemon_order = {}\n",
+    "tables = raw_dex_data.find_all('a', attrs={'class':'ent-name'})\n",
+    "count = 0\n",
+    "for link in tables:\n",
+    "    if link.text not in pokemon:\n",
+    "        pokemon.append(link.text)\n",
+    "        pokemon_order[link.text] = count\n",
+    "        count+=1"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "'https://pokemondb.net/pokedex/Pikachu'"
+      ]
+     },
+     "execution_count": 3,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "pokemon_url = {}\n",
+    "for pkmn in pokemon:\n",
+    "    pokemon_url[pkmn] = ('https://pokemondb.net/pokedex/' + pkmn)\n",
+    "\n",
+    "pokemon_url['Pikachu']"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "981"
+      ]
+     },
+     "execution_count": 4,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "# this cell takes a very long time, it scrapes every pokedex entry\n",
+    "raw_pokemon_data = {}\n",
+    "for pkmn in pokemon_url:\n",
+    "    try:\n",
+    "        re = requests.get(pokemon_url[pkmn])\n",
+    "        re.raise_for_status()\n",
+    "        raw_pokemon_data[pkmn] = (bs(re.text, 'html.parser'))\n",
+    "    except:\n",
+    "        pass\n",
+    "    \n",
+    "len(raw_pokemon_data)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 5,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "<table class=\"vitals-table\">\n",
+       "<tbody>\n",
+       "<tr>\n",
+       "<th>HP</th>\n",
+       "<td class=\"cell-num\">35</td>\n",
+       "<td class=\"cell-barchart\">\n",
+       "<div class=\"barchart-bar barchart-rank-2\" style=\"width:19.44%;\"></div>\n",
+       "</td>\n",
+       "<td class=\"cell-num\">180</td>\n",
+       "<td class=\"cell-num\">274</td>\n",
+       "</tr>\n",
+       "<tr>\n",
+       "<th>Attack</th>\n",
+       "<td class=\"cell-num\">55</td>\n",
+       "<td class=\"cell-barchart\">\n",
+       "<div class=\"barchart-bar barchart-rank-2\" style=\"width:30.56%;\"></div>\n",
+       "</td>\n",
+       "<td class=\"cell-num\">103</td>\n",
+       "<td class=\"cell-num\">229</td>\n",
+       "</tr>\n",
+       "<tr>\n",
+       "<th>Defense</th>\n",
+       "<td class=\"cell-num\">40</td>\n",
+       "<td class=\"cell-barchart\">\n",
+       "<div class=\"barchart-bar barchart-rank-2\" style=\"width:22.22%;\"></div>\n",
+       "</td>\n",
+       "<td class=\"cell-num\">76</td>\n",
+       "<td class=\"cell-num\">196</td>\n",
+       "</tr>\n",
+       "<tr>\n",
+       "<th>Sp. Atk</th>\n",
+       "<td class=\"cell-num\">50</td>\n",
+       "<td class=\"cell-barchart\">\n",
+       "<div class=\"barchart-bar barchart-rank-2\" style=\"width:27.78%;\"></div>\n",
+       "</td>\n",
+       "<td class=\"cell-num\">94</td>\n",
+       "<td class=\"cell-num\">218</td>\n",
+       "</tr>\n",
+       "<tr>\n",
+       "<th>Sp. Def</th>\n",
+       "<td class=\"cell-num\">50</td>\n",
+       "<td class=\"cell-barchart\">\n",
+       "<div class=\"barchart-bar barchart-rank-2\" style=\"width:27.78%;\"></div>\n",
+       "</td>\n",
+       "<td class=\"cell-num\">94</td>\n",
+       "<td class=\"cell-num\">218</td>\n",
+       "</tr>\n",
+       "<tr>\n",
+       "<th>Speed</th>\n",
+       "<td class=\"cell-num\">90</td>\n",
+       "<td class=\"cell-barchart\">\n",
+       "<div class=\"barchart-bar barchart-rank-4\" style=\"width:50.00%;\"></div>\n",
+       "</td>\n",
+       "<td class=\"cell-num\">166</td>\n",
+       "<td class=\"cell-num\">306</td>\n",
+       "</tr>\n",
+       "</tbody>\n",
+       "<tfoot>\n",
+       "<tr>\n",
+       "<th>Total</th>\n",
+       "<td class=\"cell-num cell-total\">320</td>\n",
+       "<th class=\"cell-barchart\"></th>\n",
+       "<th>Min</th>\n",
+       "<th>Max</th>\n",
+       "</tr>\n",
+       "</tfoot>\n",
+       "</table>"
+      ]
+     },
+     "execution_count": 5,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "raw_pokemon_stats = {}\n",
+    "headers = ['HP', 'Attack', 'Defense', 'Sp. Atk', 'Sp. Def', 'Speed']\n",
+    "for pkmn in raw_pokemon_data:\n",
+    "    raw_pokemon_tables = raw_pokemon_data[pkmn].find_all('table')\n",
+    "    for table in raw_pokemon_tables:\n",
+    "        correct_table = True\n",
+    "        table_headers = [header.get_text() for header in table.find_all('th')]\n",
+    "        for header in headers:\n",
+    "            if header not in table_headers:\n",
+    "                correct_table = False\n",
+    "        if correct_table and pkmn not in raw_pokemon_stats:\n",
+    "            raw_pokemon_stats[pkmn] = table\n",
+    "        \n",
+    "raw_pokemon_stats['Pikachu']"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 6,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "[{'Name': 'Bulbasaur',\n",
+       "  'Region': 'Kanto',\n",
+       "  'Type 1': 'Grass',\n",
+       "  'Type 2': 'Poison',\n",
+       "  'HP': '45',\n",
+       "  'Attack': '49',\n",
+       "  'Defense': '49',\n",
+       "  'Sp. Atk': '65',\n",
+       "  'Sp. Def': '65',\n",
+       "  'Speed': '45'},\n",
+       " {'Name': 'Ivysaur',\n",
+       "  'Region': 'Kanto',\n",
+       "  'Type 1': 'Grass',\n",
+       "  'Type 2': 'Poison',\n",
+       "  'HP': '60',\n",
+       "  'Attack': '62',\n",
+       "  'Defense': '63',\n",
+       "  'Sp. Atk': '80',\n",
+       "  'Sp. Def': '80',\n",
+       "  'Speed': '60'},\n",
+       " {'Name': 'Venusaur',\n",
+       "  'Region': 'Kanto',\n",
+       "  'Type 1': 'Grass',\n",
+       "  'Type 2': 'Poison',\n",
+       "  'HP': '80',\n",
+       "  'Attack': '82',\n",
+       "  'Defense': '83',\n",
+       "  'Sp. Atk': '100',\n",
+       "  'Sp. Def': '100',\n",
+       "  'Speed': '80'}]"
+      ]
+     },
+     "execution_count": 6,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "regions = {1: \"Kanto\", 2: \"Johto\", 3: \"Hoenn\", 4: \"Sinnoh\", 5: \"Unova\", 6: \"Kalos\", 7: \"Alola\", 8: \"Galar\", 9: \"Paldea\"}\n",
+    "\n",
+    "pokemon_stats = []\n",
+    "for pkmn in raw_pokemon_stats:\n",
+    "    stats = {}\n",
+    "    raw_stats = raw_pokemon_stats[pkmn].find_all('tr')\n",
+    "    stats['Name'] = pkmn\n",
+    "    generation_text = raw_pokemon_data[pkmn].find('p').text\n",
+    "    generation_idx = generation_text.find('Generation')\n",
+    "    generation = int(generation_text[generation_idx + len('Generation ')])\n",
+    "    stats[\"Region\"] = regions[generation]\n",
+    "    pkmn_types = raw_pokemon_data[pkmn].find('table').find_all('td')[1].find_all('a')\n",
+    "    stats['Type 1'] = pkmn_types[0].text\n",
+    "    if len(pkmn_types) > 1:\n",
+    "        stats['Type 2'] = pkmn_types[1].text\n",
+    "    else:\n",
+    "        stats['Type 2'] = 'DNE'\n",
+    "    for stat in raw_stats:\n",
+    "        stat_name = stat.find('th').get_text()\n",
+    "        stat_num = stat.find('td').get_text()\n",
+    "        if stat_name in headers:\n",
+    "            stats[stat_name] = stat_num\n",
+    "    pokemon_stats.append(stats)\n",
+    "\n",
+    "pokemon_stats = sorted(pokemon_stats, key = lambda x: pokemon_order[x['Name']])\n",
+    "pokemon_stats[:3]"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 7,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "cols = [\"Name\",\"Attack\",\"Defense\",\"HP\",\"Region\",\"Sp. Atk\",\"Sp. Def\",\"Speed\",\"Type 1\",\"Type 2\"]\n",
+    "df = pd.DataFrame(pokemon_stats)\n",
+    "df = df[cols]\n",
+    "df.to_csv('pokemon_stats.csv')"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 8,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "{'Normal': 1.0,\n",
+       " 'Fire': 0.5,\n",
+       " 'Water': 0.5,\n",
+       " 'Electric': 1.0,\n",
+       " 'Grass': 2.0,\n",
+       " 'Ice': 2.0,\n",
+       " 'Fighting': 1.0,\n",
+       " 'Poison': 1.0,\n",
+       " 'Ground': 1.0,\n",
+       " 'Flying': 1.0,\n",
+       " 'Psychic': 1.0,\n",
+       " 'Bug': 2.0,\n",
+       " 'Rock': 0.5,\n",
+       " 'Ghost': 1.0,\n",
+       " 'Dragon': 0.5,\n",
+       " 'Dark': 1.0,\n",
+       " 'Steel': 2.0,\n",
+       " 'Fairy': 1.0}"
+      ]
+     },
+     "execution_count": 8,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "type_url = \"https://pokemondb.net/type\"\n",
+    "re = requests.get(type_url)\n",
+    "re.raise_for_status()\n",
+    "raw_type_data = bs(re.text, 'html.parser')\n",
+    "\n",
+    "effectiveness = {}\n",
+    "raw_to_numbers = {'normal': 1.0, 'not': 0.5, 'super-effective': 2.0, 'no': 0.0}\n",
+    "table = raw_type_data.find('table')\n",
+    "rows = table.find_all('tr')[1:]\n",
+    "for row in rows:\n",
+    "    cells = row.find_all('td')\n",
+    "    for cell in cells:\n",
+    "        data = cell.attrs['title']\n",
+    "        types, val = data.split(' = ')\n",
+    "        type1, type2 = types.split(\" → \")\n",
+    "        val = val.split()[0]\n",
+    "        if type1 not in effectiveness:\n",
+    "            effectiveness[type1] = {}\n",
+    "        effectiveness[type1][type2] = raw_to_numbers[val]\n",
+    "        \n",
+    "effectiveness['Fire']"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 9,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "df = pd.DataFrame(effectiveness)\n",
+    "df.to_csv('type_effectiveness_stats.csv')"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3 (ipykernel)",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.9.13"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/sum23/projects/p4/images/README.md b/sum23/projects/p4/images/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..e5f053433cd90b05d75aa56d4bcf717f56c5886f
--- /dev/null
+++ b/sum23/projects/p4/images/README.md
@@ -0,0 +1,3 @@
+# Images
+
+Images from p4 are stored here.
diff --git a/sum23/projects/p4/images/add_group_member.png b/sum23/projects/p4/images/add_group_member.png
new file mode 100644
index 0000000000000000000000000000000000000000..402e5962e3e54ce8349f60ccfe4ce2b60840dd3b
Binary files /dev/null and b/sum23/projects/p4/images/add_group_member.png differ
diff --git a/sum23/projects/p4/images/gradescope.png b/sum23/projects/p4/images/gradescope.png
new file mode 100644
index 0000000000000000000000000000000000000000..a46c44d2a9b9b8d4b76a9721809d2e81754e946a
Binary files /dev/null and b/sum23/projects/p4/images/gradescope.png differ
diff --git a/sum23/projects/p4/images/pokemon.jpg b/sum23/projects/p4/images/pokemon.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..4b9cbd0eb68c883905efa8df7f0c02910d814083
Binary files /dev/null and b/sum23/projects/p4/images/pokemon.jpg differ
diff --git a/sum23/projects/p4/p4.ipynb b/sum23/projects/p4/p4.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..e84fd48e375129ca5d81870d0825cba1f0943171
--- /dev/null
+++ b/sum23/projects/p4/p4.ipynb
@@ -0,0 +1,2077 @@
+{
+ "cells": [
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "bb8cba63",
+   "metadata": {
+    "cell_type": "code",
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "# import and initialize otter\n",
+    "import otter\n",
+    "grader = otter.Notebook(\"p4.ipynb\")"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "df3e4b8e",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "import p4_test"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "02c2a706",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# PLEASE FILL IN THE DETAILS\n",
+    "# enter none if you don't have a project partner\n",
+    "\n",
+    "# project: p4\n",
+    "# submitter: NETID1\n",
+    "# partner: NETID2\n",
+    "# hours: ????"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "ead68acf",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "## Project 4: Pokémon Battle Simulation"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "04606b3f",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "### Learning Objectives:\n",
+    "\n",
+    "In this project, you will demonstrate how to\n",
+    "\n",
+    "* Use conditional statements to implement decisions,\n",
+    "* Write functions using parameters, return values, and conditional logic,\n",
+    "* Use good coding practices as outlined in Lab 4.\n",
+    "\n",
+    "**Please go through [Lab 4](https://git.doit.wisc.edu/cdis/cs/courses/cs220/cs220-lecture-material/-/tree/main/sum23/labs/lab4) before working on this project.** The lab introduces some useful techniques related to this project."
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "d628ca36",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "## Testing your code:\n",
+    "\n",
+    "Along with this notebook, you must have downloaded the file `p4_test.py`. If you are curious about how we test your code, you can explore this file, and specifically the value of the variable `expected_json`, to understand the expected answers to the questions."
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "f40e773e",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "## Project Description:\n",
+    "\n",
+    "For this project, you'll be using the data from `pokemon_stats.csv` and `type_effectiveness_stats.csv` to simulate Pokémon battles and to check the compatibility for friendships between different Pokémon. This data was gathered by the Python program `gen_csv.ipynb` from the website https://www.pokemondb.net/.\n",
+    "\n",
+    "* To start, download `project.py`, `p4_test.py`, `type_effectiveness_stats.csv`, and `pokemon_stats.csv`.\n",
+    "* You'll do all your work on this notebook, and turn it into Gradescope just as you did for the previous projects.\n",
+    "\n",
+    "We won't explain how to use the project module here (the code in the `project.py` file), or the dataset that you will be working with. The lab this week is designed to teach you how it works. So, before starting P4, take a look at Lab 4."
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "8e325aab",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "## Project Requirements:\n",
+    "\n",
+    "\n",
+    "You **may not** hardcode any answers in your code. We'll **manually deduct** points from your autograder score on Gradescope during code review.\n",
+    "\n",
+    "**Store** your final answer for each question in the **variable specified for each question**. This step is important because Otter grades your work by comparing the value of this variable against the correct answer.\n",
+    "\n",
+    "For some of the questions, we'll ask you to write (then use) a function to compute the answer. If you compute the answer **without** creating the function we ask you to write, we'll **manually deduct** points from your autograder score on Gradescope, even if the way you did it produced the correct answer.\n",
+    "\n",
+    "Required Functions:\n",
+    "- `damage`\n",
+    "- `type_bonus`\n",
+    "- `get_num_types`\n",
+    "- `effective_damage`\n",
+    "- `num_hits`\n",
+    "- `battle`\n",
+    "- `friendship_score`\n",
+    "\n",
+    "\n",
+    "In this project, you will have to write several functions and keep adding more details to them according to the instructions. When you are adding more things to your functions, you **must** follow the **Good Coding Style for Functions** described in [Lab 4](https://git.doit.wisc.edu/cdis/cs/courses/cs220/cs220-lecture-material/-/tree/main/sum23/labs/lab4). Therefore, you **must only** keep the latest version of your functions in your notebook file. You can do this by **replacing** your old function definition with the new one after you have confirmed that the new one works."
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "4a4beec4",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "## Questions and Functions:\n",
+    "\n",
+    "Let us start by importing all the modules we will need for this project."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "d9f07975",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# it is considered a good coding practice to place all import statements at the top of the notebook\n",
+    "\n",
+    "# please place all your import statements in this cell if you need to import \n",
+    "# any more modules for this project\n"
+   ]
+  },
+  {
+   "attachments": {
+    "pokemon.jpg": {
+     "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAFA3PEY8MlBGQUZaVVBfeMiCeG5uePWvuZHI////////////////////////////////////////////////////2wBDAVBaWnhpeOuCguv/////////////////////////////////////////////////////////////////////////wAARCAnYEU8DASIAAhEBAxEB/8QAGQABAAMBAQAAAAAAAAAAAAAAAAMCAQQF/8QAQxABAAIBAgMEBgoABgMAAQIHAAECEQMSITFRQQRhE3EyIqGBkbFCwdHwYuFSM3IUBSM08UOSglMkomNEgxWyNSVz/8QAGAEBAQEBAQAAAAAAAAAAAAAAAAECAwT/xAAhEQEBAQADAQEBAQADAQAAAAAAARECMSESQVFhMhMDIv/aAAwDAQACEQMRAD8AsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC9Kb88cYW8n83uND6yYEPk/m9x5P5vcmAQ+T+b3Hk/m9yYBD5P5vceT+b3JgEPk/m9x5P5vcmAQ+T+b3Hk/m9yYBD5P5vceT+b3JgEPk/m9x5P5vcmAQ+T+b3Hk/m9yYBD5P5vceT+b3JgEPk/m9x5P5vcmAQ+T+b3Hk/m9yYBD5P5vceT+b3JgEPk/m9x5P5vcmAQ+T+b3Hk/m9yYBD5P5vceT+b3JgEPk/m9x5P5vcmAQ+T+b3Hk/m9yYBD5P5vceT+b3JgEPk/m9x5P5vcmAQ+T+b3Hk/m9yYBD5P5vceT+b3JgEPk/m9x5P5vcmAQ+T+b3Hk/m9yYBD5P5vceT+b3JgEPk/m9x5P5vcmAQ+T+b3Hk/m9yYBD5P5vceT+b3JgEPk/m9x5P5vcmAQ+T+b3Hk/m9yYBD5P5vceT+b3JgEPk/m9x5P5vcmAQ+T+b3Hk/m9yYBD5P5vceT+b3JgEPk/m9x5P5vcmAQ+T+b3Hk/m9yYBD5P5vceT+b3JgEPk/m9x5P5vcmAQzo4j1vcyulu7fcmnlKun2gp5P5vceT+b3JgEPk/m9x5P5vcmAQ+T+b3Hk/m9yYBD5P5vceT+b3JgEPk/m9x5P5vcmAQ+T+b3Hk/m9yYBD5P5vceT+b3JgEPk/m9x5P5vcmAQ+T+b3Hk/m9yYBD5P5vceT+b3JgEPk/m9x5P5vcmAQ+T+b3Hk/m9yYBD5P5vceT+b3JgEPk/m9x5P5vcmAQ+T+b3Hk/m9yYBD5P5vceT+b3JgEPk/m9x5P5vcmAQ+T+b3Hk/m9yYBD5P5vceT+b3JgEPk/m9x5P5vcmAQ+T+b3Hk/m9yYBD5P5vceT+b3JgEPk/m9x5P5vcmAQ+T+b3Hk/m9yYBD5P5vceT+b3JgEPk/m9x5P5vcmAQ+T+b3Hk/m9yYBD5P5vceT+b3JgEPk/m9x5P5vcmAQ+T+b3Hk/m9yYBD5P5vceT+b3JgEPk/m9x5P5vcmAQ+T+b3Hk/m9yYBD5P5vceT+b3JgEPk/m9x5P5vcmAQ+T+b3Hk/m9yYBD5P5vceT+b3JgEPk/m9x5P5vcmAQ+T+b3Hk/m9yYBBXTzPP3N8n83uWpzSAh8n83uPJ/N7kwCHyfze48n83uTAIfJ/N7jyfze5MAh8n83uPJ/N7kwCHyfze48n83uTAIfJ/N7jyfze5MAh8n83uPJ/N7kwCHyfze48n83uTAIfJ/N7jyfze5MAh8n83uPJ/N7kwCHyfze48n83uTAIfJ/N7jyfze5MAh8n83uPJ/N7kwCHyfze48n83uTAIfJ/N7jyfze5MAh8n83uPJ/N7kwCHyfze48n83uTAIfJ/N7jyfze5MAh8n83uPJ/N7kwCHyfze48n83uTAIfJ/N7jyfze5MAh8n83uPJ/N7kwCHyfze48n83uTAIfJ/N7jyfze5MAh8n83uPJ/N7kwCHyfze48n83uTAIfJ/N7jyfze5MAh8n83uPJ/N7kwCHyfze48n83uTAIfJ/N7jyfze5MAh8n83uPJ/N7kwCHyfze48n83uTAIfJ/N7jyfze5MAh8n83uPJ/N7kwCHyfze48n83uTAIfJ/N7jyfze5MAh8n83uPJ/N7kwCHyfze48n83uTAIfJ/N7mRp+1jPuTo49cFfJ/N7jyfze5MAh8n83uPJ/N7kwCHyfze48n83uTAIfJ/N7jyfze5MAh8n83uPJ/N7kwCHyfze48n83uTAIfJ/N7jyfze5MAh8n83uPJ/N7kwCHyfze48n83uTAIfJ/N7jyfze5MAh8n83uPJ/N7kwCHyfze48n83uTAIfJ/N7jyfze5MAh8n83uPJ/N7kwCHyfze48n83uTAIfJ/N7jyfze5MAh8n83uPJ/N7kwCHyfze48n83uTAIfJ/N7jyfze5MAh8n83uPJ/N7kwCHyfze48n83uTAIfJ/N7jyfze5MAh8n83uPJ/N7kwCHyfze48n83uTAIfJ/N7jyfze5MAh8n83uPJ/N7kwCHyfze48n83uTAIfJ/N7jyfze5MAh8n83uPJ/N7kwCHyfze48n83uTAIfJ/N7jyfze5MAh8n83uPJ/N7kwCHyfze48n83uTAIfJ/N7jyfze5MAh8n83uPJ/N7kwCHyfze48n83uTAIfJ/N7jyfze5MAh8n83uPJ/N7kwCHyfze48n83uTAIJ0/axn3N8n83uWn10gIfJ/N7jyfze5MAh8n83uPJ/N7kwCHyfze48n83uTAIfJ/N7jyfze5MAh8n83uPJ/N7kwCHyfze48n83uTAIfJ/N7jyfze5MAh8n83uPJ/N7kwCHyfze48n83uTAIfJ/N7jyfze5MAh8n83uPJ/N7kwCHyfze48n83uTAIfJ/N7jyfze5MAh8n83uPJ/N7kwCHyfze48n83uTAIfJ/N7jyfze5MAh8n83uPJ/N7kwCHyfze48n83uTAIfJ/N7jyfze5MAh8n83uPJ/N7kwCHyfze48n83uTAIfJ/N7jyfze5MAh8n83uPJ/N7kwCHyfze48n83uTAIfJ/N7jyfze5MAh8n83uPJ/N7kwCHyfze48n83uTAIfJ/N7jyfze5MAh8n83uPJ/N7kwCHyfze48n83uTAIfJ/N7jyfze5MAh8n83uPJ/N7kwCHyfze48n83uTAIfJ/N7jyfze5MAh8n83uPJ/N7kwCHyfze48n83uTAIfJ/N7jyfze5MAh8n83uPJ/N7kwCHyfze5ltPE8/cnR35gr5P5vceT+b3JgEPk/m9x5P5vcmAQ+T+b3Hk/m9yYBD5P5vceT+b3JgEPk/m9x5P5vcmAQ+T+b3Hk/m9yYBD5P5vceT+b3JgEPk/m9x5P5vcmAQ+T+b3Hk/m9yYBD5P5vceT+b3JgEPk/m9x5P5vcmAQ+T+b3Hk/m9yYBD5P5vceT+b3JgEPk/m9x5P5vcmAQ+T+b3Hk/m9yYBD5P5vceT+b3JgEPk/m9x5P5vcmAQ+T+b3Hk/m9yYBD5P5vceT+b3JgEPk/m9x5P5vcmAQ+T+b3Hk/m9yYBD5P5vceT+b3JgEPk/m9x5P5vcmAQ+T+b3Hk/m9yYBD5P5vceT+b3JgEPk/m9x5P5vcmAQ+T+b3Hk/m9yYBD5P5vceT+b3JgEPk/m9x5P5vcmAQ+T+b3Hk/m9yYBD5P5vceT+b3JgEPk/m9x5P5vcmAQ+T+b3Hk/m9yYBD5P5vceT+b3JgEPk/m9x5P5vcmAQ+T+b3Hk/m9yYBD5P5vceT+b3JgEPk/m9x5P5vcmAQ+T+b3Hk/m9yYBBbS29vubGjmPW9y+p2LRygEXk/m9x5P5vcmAQ+T+b3Hk/m9yYBD5P5vceT+b3JgEPk/m9x5P5vcmAQ+T+b3Hk/m9yYBD5P5vceT+b3JgEPk/m9x5P5vcmAQ+T+b3Hk/m9yYBD5P5vceT+b3JgEPk/m9x5P5vcmAQ+T+b3Hk/m9yYBD5P5vceT+b3JgEPk/m9x5P5vcmAQ+T+b3Hk/m9yYBD5P5vceT+b3JgEPk/m9x5P5vcmAQ+T+b3Hk/m9yYBD5P5vceT+b3JgEPk/m9x5P5vcmAQ+T+b3Hk/m9yYBD5P5vceT+b3JgEPk/m9x5P5vcmAQ+T+b3Hk/m9yYBD5P5vceT+b3JgEPk/m9x5P5vcmAQ+T+b3Hk/m9yYBD5P5vceT+b3JgEPk/m9x5P5vcmAQ+T+b3Hk/m9yYBD5P5vceT+b3JgEPk/m9x5P5vcmAQ+T+b3Hk/m9yYBD5P5vceT+b3JgEPk/m9x5P5vcmAQ+T+b3Hk/m9yYBD5P5vceT+b3JgEPk/m9x5P5vcmAQ+T+b3K3psxxzl0Idf6oIgAAAS6H1kyHQ+smAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABkzFYzMxEdZag1rbrxTsjjP2ff8AJfQn/Rrns4fLgCQAAAAAAAAAAAAAAAAAAAAAAAAAAAGTylXT7Vp5Srp9oLgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzPFritEa2re+ZxHCsxPRN3fVm2aX9evb1gE4KX1a6frTxnlEc5BcQT3qtZjdW8Z7cfqnAAAAAAAAAAAAAAAAAAAABHTmkR05pAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVtaKxm04gFhSNSsxnOPTwVnV3R7E8P3Y+j8YBJmInGWuSJ07TNYxae3PGZSVtNOXGvT7vuTVxOK1tFozWcwsqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACOPXSI49cEgAAAAAAAAAAAAAAAAAAAAAAAAAAIra1a22Rm1ukfjAJWIItq2zuxSPDjP3M8uv1s3/tOU1cSzr6Uc9SvzZGvpTOPMr81IpSJzFKx8G4jlg1cTRMTGYnMNc06dJ+rHpjg2N9PVtNo6W4+/wD5NTHQIad4rNoreJpaeWeU+iUyoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjn10iOfXSAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGiG3eKROK5vP5eOFJvq2iczFY/L9/6A6Ry130nNb2nwtOYdFbbqxbrALAAAAAAAAAAAAAAAAI780iO/MEgAAAAAAAAAAAAAAAAAAAAI9a23RvMTiccPSC1bVvGazEx4LOWszo4mONPrR9v3ukGgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAApqdi0coV1OxaOUA0AAAAAAAAAAAAAAAAAAABk2iMZmIzOIy1z3zebTE8uFfD8T9AOgVpbfStuWYysAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAh1/qpkOv9UEQAAAJdD6yZDofWTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAj177NKZjnPCPSCGvGbX57p93Yv3aeOpTpbPzVrGKxHSMM05x3iOlq4+1VdQCIAAAAAAAAAAAAAAAAAAAAAAAAAAyeUq6fatPKVdPtBcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFL6tNP17RALubvGpNp8mnOfWnpDL69tWNujExE87z9jKUikcOMzzme0TWxEVrFY5QjvOzUpqdJxPoS9iLWmNkxzzwiERJqattS23SnFY53+5kUrTOOc85lunXZSKlpC1TTjzO9R0pGfi7XH3S9I33tesTaeUymnvGn2TNvREq0mEenrU1cxWeMc4SAAAAAAAAAAAAAAAAAAAjpzSI6c0gAAAAAAAAAAAAAAAAAAAAAAAAAAApbVrWcTPHtw2totGazmAWRa31P7fZKVFrxO2LRx2zkpGTMTHGGTx58lYtE8lbWmeFefXo5ui8YiMRwajimb1iZnjw5kzNbTEZmIXE1eYiZzynrE4Jm8R/Lb5R9zItE8pblNq5FI1uOPNvPorH3NjVnGfMt/wC1cR9EfSWpW055W6xzWpMVrtvjHHj2fo1KzYvpau6dt8RbsxylI5MRW01ieETwmOzo6NO+7hPC30rqWJAFQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARx66RHHrgkAAAAAAAAAAAAAAAAAAAAAAAAVtaK1mbTiI7W2tFazMziIc0TOtO+0YrHq1+2Qba19XlM0p1jnP3LVpFYxWIiFoay0qAijGsFAAVvWJjExmFKak6ExFpmdKfnX9Px6ZZUmM8JWVLHUOfu99s+VaeXq+Mfo6GmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEc+ukRz66QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABkziMzyRamvWk7a+1fpH2oZi+px1Lf+teQJb94jONON89ez5o5i+p/JbP5a8IbEREYiMQtHBQrWKxwiI9BLJlgEziJmexJ3bPkxM9uZQ0idbU2x6lec9fB1xEREREYiCjQEAAAAAAAAAAAAAABHfmkR35gkAAAAAAAAAAAAAAAAAAAAQ95n/TiOto+/7Ezm7zbOrSueUTP2ArS8TaadsJNGdk+V2c6/bDgtaY1ZtHOJdUWjVpExz7J6Sz0vbsEelqRqV6WjhMfj3JGkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAU1OxaOUK6nYtHKAaAAAAAAAAAAAAAAAAAAACmrbZpzaOM9npR1iK1iI5QtrcZpHjn5MFi2jwpMdJn7/tSOeLTpTNudZnM+HimraLViazmJ7RFgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEOv9VMh1/qgiAAABLofWTIdD6yYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVtaK1m1pxEILWnV9aMV7Kz9oLz3ikT7MWv41htNel528a26WjCitqxeMWjMLi46hzaWpbTtFLzmszitvsl0ogAAAA5+8TnUpXp7U/RDocl5zr38MR+PmEbngpaduLftmJWVnjmJ7Wmnag1O8RWJmtd0R25+hHGtN9OKxmMRi09fx2s1fa09sdsxEMsuwAAAAAAAAAAAAAAAAAAAAAAAAAGTylXT7Vp5Srp9oLgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAra1aRm0xEdZBYc095m38VJt+aeEKzXUv/JqTjpXgCe2vpV53j0RxRT3qZxs0bz6eBWlaerWIWTU1XztaeWlWPTYnV1+yNOPTlZgar5mv/8Ate88zX//AGve0E1sa2rEe1Skz4Tg8/U/+Uf+X6MA0nV1p5VpHpmZVm/eJ7dOPQsBqm29uN9W8z4TiCulSvKsfHiuADJtFecxHpV3zb1K58Z4QC17RWuZnClKTNt9uHSOi0U47rTun6FwYj1c7LY6JEWpxxXrIjNOu2scOPatMxWJmeUBSvma9aTyj2pFT9209mnun1r8Z8EwK0AAAAAAAAAAAAAAAAAAjpzSI6c0gAAAAAAAAAAAAAAAAAAAAAK2vSvrWiPTILCOdakdsz6ImWTrRn1bT48PvDEqLVvtjbX1p9ylta/KsVifn9yk/OZ5ylrUhPBJ3fPtT9WcY/HyV09Pf7VvV6df0/HLn0Eha0BWXJGnFZmJxM1nm2IiI4RhfU4av9o4fb9isxxYvbc6VmM9uJjjEt5AismInn8zjHi0BXdHbmPTC0TE8pz6BS1O2vCfx+Pxwo3bieHCO2FsZjE/PoyJzGWoJNPUtEY1P/KPt6JXNE4bWZr6k48J5fp8GpWbHSI66sTOLezbpPb6PxnwSNMgAAAAAAAAyXPN729rdNekRgMdIj07768fWjmkAAAAAAAAAAAAAAAAAAAAARx66RHHrgkAAAAAAAAAAAAAAAAAAAAAABFr6k0rFaevbhAI9SfN1Jp/115+M/ovCtaxWsVjlC0M63mNJJlUGjGorAAAM8cdoCsrKyIjvE8LV9avGHXW0WrFo5TGXOt3ads20/8A2j0NRmugBUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARz66RHPrpAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABDqd4pSdse1f8AbCObaup61tkT9Wv3gl1NamnOJnNuysc0Np1NX1520/bH3trWtIxWMNXBlaxWMVjENDIN5KzLJkAZi2pbZTh1noe1e2ynPtno6dPTrp0iteQNpWKVitYxELAgAAAAAAAAAAAAAAAAI780iO/MEgAAAAAAAAAAAAAAAAAAADk1Zz3i3hER9v2upx6s+3qz4/ZCVY5qxumZlJpW2WxPKVKcmzxhB0xby7xfs5W9H6fe6omJjMcYlxaV90YnnCbu9tszpz6a+j9FhXQAqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKanYtHKFdTsWjlANAAAAAAAAAAAAAAAAAAABFrcNk+OPcw7znbSY7LRn6Ptc3d9WaxFbcp5SK6VIi2nO7T5dtez4dJXFElbReM1ngs55ia23059sdf16JqXi9YtH/AAiLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIdf6qZDr/VBEAAACXQ+smQ6H1kwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIte+2mIn2rcI/HgCLUnzdXH1K++f0WVrEVrERyhuVVrGZZkUtEWrMT2pdDUm0bL+vX3x1Qmdlq3/b9HaJXYMicxmOTUQR60zXStMc8YSIe9TjQtPjH0gpo3nTt5d5zWfVmfo+5HHO89bSveItWYRacYptnnCqur2rZVVWxiIK+1qacfmz8mLaNqxrRutEYiecoOwZExMZji1GQAAAAZMxEZmcQgtqzfhTMVn63bPo/HoBfU1q0nbGbX/bH44IptrX9a0UjpXn82xERyhqrikU63vPptLazqUnNbTaOlp+1YBLTUrfOOcc4nsXctsxMWp60e/wdFbbqxbrGURYAAAAAAAAAAAGTylXT7Vp5Srp9oLgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA49bWnVtOnpTiv1rfj8fAEmp3jFpppRutHOeyEcae6d2rbfb3Q2lYpXFYwsjOthquWg0yzLAblgCAre9aRm0q51L8o2R1nmKkZNq152iPTKvlZ9e9reGcQtGnSOVI+QM8ysziJz6Iy3M8MR81gGACMitYnMRGeqzGgMaxARW46sR0jKWUMcdS3hiFVZfulc6mpeeu2Px8lEvc/Uv8A3kI6AFaAAAAAAAAAAAAAAAAAAR05pEdOaQAAAAAAAAAAAAAAAAAFb3ilcz8uoF7RSMz8uqCZtfja0x4VnH/LJtNp3W59kdGTLNrUhNazziJ9PFsYjlwRzqV7Jz6Gb7TyjHpMtLykS5MocXnnM/QrMYnxX5Z/7I6FJnNorHbMRLKWzwnnC9IjzKf2+yUz1vdjq5NBpgABHq0m1fZ9aOMfjxRxMWjPunsdCO+nFpzHC3X70s1ZcRTGGNmdvDUjb49k/FuOjDao3DAAAZEYz4l5xS0x2Q1kxmJjqCSdC0R7N/haPuUmtq+tXh1jjH49KXR1Y1Kx2WxxiUreRja5c5jrErVtNMYnNe2J7Px/wvfSieNZ2z7mV0rbvamMR07UyxdlTANMgAAAAADn1K7L8PVty9P4+10Kald1JiOfOEqy4gi3l2i3Z2+j9HS5cxasTDdLVnT9m3Gscsdkfj4pKtjqGRMTGY4w1pkAAAAAAAAAAAAAAAAAARx66RHHrgkAAAAAAAAAAAAAAAAAAAAAAQX468/lr9P/ABCdw94i8948us43cfd+gROytt2fCcM0rTavH1onE+kzEalq9vP7PsYbWAFAAAAFKcbXtntx8l2RG2uPGZEZaZnFYnjPCEGtTU0Ji2+ZievV0aUZ1v61+n/hbvVd3d7+EZajNQad41K5jn2wtMxS1bz9WePo/HFy6VtmpE9k83XMZiYlOl7dQj0bbtKs5zOMT6UjTIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACOfXSI59dIAAAAAAAAAAAAAAAAAAAAAAAAAAAAADJmIjMziAaKRqUmcResz0yuACmpfZXOMzyiAXHLel7Vta17bscIrOIUpN4iLVvblymcwDtHNXvMx/JX41T1vS/q2ifRILAAAAAAAh7xq+Vp5j1p4QC2pq00ozafRHVBa+pq8/Yp07ZZSmfavM2t1nsXXBla1pGKxiGgoAyZAlgICs5m0Up60+5s5mYrWM2n8fJ0aWlGnHW085Bulp106ba/Geq4IAAAAAAAAAAAAAAAAAACO/NIjvzBIAAAAAAAAAAAAAAAAAAAA49WP8AU1I8fsh2OXVjGtbxiJ+z7EqxyV9WFmRGIw1FK222i3zT2zMRNJ4xxiUCTRtzrPZyQdtLxekWjlMLOfu9sXtp/wDtH2+/6XQ2yAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAApqdi0coV1OxaOUA0AAAAAAAAAAAAAAAAAAAEfeIzoXxziM/Li4JiMzHZmXpvMjhmJjExwB0aGpujbafaj3pXHEzExaOcOqlovWJjtVYsrOaW31j+0R2/8fosAkpaL1i0cpWc2Z07b65mJ9asdvjHj9KetotWLVnMTyRFgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEOv9VMh1/qgiAAABLofWTIdD6yYAAAAAAAAAAAAAAAAAAAAAVtaKVm1pxEI4190ZpS1o68on5gmEW/UiP44+Fv0POiI9uLU9MfbGQSjInMZhoAAAADl1Zzrz+WMfH8YdTiid02t+6ZlYsWyzIKoAAACbu1s6eztpw+HYktatK7rTEQ5KalovM6cROYxMzyhvl7p3XtNp6yyi9+8Wtw0q8P3W+5BqUm0Ta9ptbCbEQrK4YRPDwkxxyrpzmkZ5xwWVVZ5sWlVAbFYmZmYiRaIBlYmmfLtNc9nZ8k1NfEf6sY8a8vvRhiY6a2i9YtWcxKzjjNJ3ac4ntjslPp60X4T7Nuk/YiJWTOIzPJrn17xefLjlHrfcCtrTrT0045R+79FmGVVozJkVrMmWZAW7vaYvbTnl60fapllZxr6c9mZj5iV2AIgAAAAAAAAADJ5Srp9q08pV0+0FwAAAAAAAAAAAAAAAAAAABW1opWbWnEQhzq34zaaR2REfSDoHLNLzOfOubtevK1b+mMCa6hBXvNeWpE6c+PL5pomJjMTEx4CtAAAABkzERMzygHP3rVmI8qk+3b3QipWKViIVpm9raludp9y6M1JAyGiAAANQYj1NTHs143nlDdS8ViZmfgj09SlYzmbXnniFVJp6UVndb2r9ZSI41aTMRnjPWEgAwyDWAIAAAAAAyUVed888pZRR/JbxxIqy3dZxralesRMKqzOzV09TpOJ9AR3gK0AAAAAAAAAAAAAAAAAAjpzSI6c0gAAAAAAAAAAAAAAAra1ax7U4Q31Zn1fZjr2/p+OQYkvqRXhzt0hBa3HfeePL0KTqRypGfH8c1YrMzm05lMtLZGzqTPqx8ZZsm3G05XiMDUkjF5WsisQ0FZFLc5XRqMicTEpZnFc/tnPyR49lJpzmsMcv668L+Ozm1HoTnSiP28Px8EgAAAAMmImMTGYRxoVrGKTNfR+uUoCHy7xytW3pjH3/QpadsxFomJnln8YdKt6xes1lMXa58xPII6zznhPpj8fQRxhhsABmjWZ1Yx9WZmfjH4+Trc+lONX+0fR+JdDcYoAqAAAAAAAADJnEZlqLXtiu2Odvo7Qc2nwpHTC3are23hHPojmZnnafgzJrV5SOjTvOnOOdenR0VtFozWcw4K3mOfGEtbZ41mYnrH4+lek8vTsEFda0evGY61+78ehNWYtETE5iVRoAAAAAAAAAAAAAAACOPXSI49cEgAAAAAAAAAAAAAAAAAAAAADi0Z399vaePPH0Oy07azPSMvO0LbNXTnrwn4g6sbda8dcT+Pk1mtONfT/ADRMNZrc6AEUAAAAJgARaF//AMu8T28vg6O8TjQv6JcGpM117WrwmJ4L63eZ1dPZtx14tudQY4OvTtu04n5uanFNocItXx4FnhL7ifu0xE3p253fN0ObTxGvE9s1mPtdIUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABHPrpEc+ukAAAAAAAAAAAAAAAQ6neK0ttxa09u2M4TOasYteJ57pmfEFo71TPtVvXxtCWupS3q3rPolFMKTp0nnWFwdQ5Nt4411bxPjOYWjW1q+tSto/L+qDpENe80mcW3U/tGElbVtGa2ifRILAAAAAAg1dS9r+XpYzj2rT2fqi1KUpETq3teeyJlJpRiLT22tMy5tWd2taZ7OEATaPq6dIjxjitTX1acN26PzIwHbp94pqcPVnpK2t/DbHOIzHwcCbT7xNY23ibV94J6zurE9Yyg5TMYxiV9C0W0+GcROIyakTvieyY96iqs1jOYzWescJWAbXW1KcLRvr1jm6aXresWrOYlylbTp23V7ecdf1B2DKzFqxMcpagAAOfvcfxz2RZ0IO9/wAOekxIKV5NVrLVGjBQywEBkzxiKxm08o/HYWtjxmeUdU+jpbIzbjeec9PCPADS0tkZnjeec/ZHglBAAAAAAAAAAAAAAAAAAAAAR35pEd+YJAAAAAAAAAAAAAAAAAAAAHL3iJjXieya4+U/q6kPeY9iJ6T+n2g4p4Wt6Rupwv6YyxloItttFugSDom2y1b9J4+jt+91uHTnfpYnpiXVoTM6Nc844fLgsSpAFQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABTU7Fo5Qrqdi0coBoAAAAAAAAAAAAAAAAAAADz9au3vGpHZM5+b0HL3yvGt/wD1/HvBzL6N9tsZ4Ty9KgqOyJaipbdWJ+aSs5GiylLzpTnnSecdPH7/AJrzyUQdMTmMw1z6V9ltk+rPKenh93ydAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAh1/qpkOv8AVBEAAACXQ+smQ6H1kwAAAAAAAAAAAAAAAAAACmpeNOucZnlEdZXQ3nd3iK9la5+IMrpTa2/VndbsjshKwZUZPGMS0QRVzo6kRHHTtOMftn7pdCHVjOlfPSUrURoCgACt7baWt0jLkpGKRHg6O8fwX9CBYsZaZiOHOeEKzWY41mc+M82zx1I8IWS0VpaLR0mOcdFlL5rO+PivE5jKxSZiIzPJWKzqc+FPpKx5k5n1Y5eKUCIiIxHCAAZKrZkUZERHJrACYZhoBhrAGgAMtWLfZPRoBHeL0pttE2tyrPZ8WVjEdZ7Z6q87+FfpXRAyCqZMqzaK85iGxaJ5A3IACtvX0/7wszGdTTj82UHYAjIAAAAAAAAADJ5Srp9q08pV0+0FwAAAAAAAAAAAAAAAAAAR62p5WnN+eOUAi1bebqbI9Sk8fGf0WU067aRE8Z5zPisM2gMmbZxSOPWeX6iFsRWd2MeKCbRS2dCZ3RPGKxwlJHd4md2pabT7ksVisYiIiPAVldfVmI/0ePXczf3jppx81wXUee8T/wBlY9EEef8A/WP/ABSAmo894j/srPphlra9qzWfLxMY7UrA1BFdStYjZFvRJm0c9O3w4pxEQxqxHrRavphaNSluVo+a6s0rbnWJ+ANJmIjMzER4obadsxXS3ViOc54JK6Fc5vM3nxFV8ybfx1m3jPCGxpalvX1MeFUwoir3fTr9XM9ZSREVjERER4GWCKatIvXHb2T0Zo2m2nx5xwlJKKvs69vzRkEgCAAAAADQGNVmQZKOeF4nrwXlW8exOOfOAWVtXdWY6ticxmGgm7rqb9KIn1q8JTOPRtGlr4n1dTt6S7FbAAAAAAAAAAAAAAAAAAR05pEdOaQAAAAAAAAAAAABBfUmZmKziInGUmrfZSZ7eUR1lzT7FPRHNLVkLWivGefzmUc7r8+XQrE2mZldZGOXLfIyIiGg0wAAAATylGvbkpPJUWrxrHiafC0x8VsY5K24WrPwZs8b43Kn0rY1Mdlvp/H0OhycccOccYdNLxekWrylmOlWAVAAAAAAEF4xqTHXE/j5KTzSa3C9J9Mfb9ilmL23OmAIpM7Zi37Zifv9zqcuM8J5Sn05mdOszz7fS1GeS4DTIAAAAAAADLTFazM8o5uS9+d5jjPKPx70mvbdaKdkcZ+z7/k5ptvnPZ2J3S3JrOec9rGktuWkEZicxzIb2huJK2zH2JNG228xPCLfT+v2Isdsc2xMWhizHaX6jtEWjqb4xPrRz8UqoAAAAAAAAAAAAAAI49dIjj1wSAAAAAAAAAAAAAAAAAAAAAApqxM6V4jntl5to9mvoenadtZnpDz49vQjrCxKtp6tr6unF55Z+h0uOlcXrP5odjHJvjdAEaAAAAAAcupH+vf8diKYnPJPrR/q+mG4jDpOnG+VFpxwlNpRGJntifp/4R5iJx7oSadbRMzPDPYXo4+3W2tsmt+ytomfRy+12OLVjOlaPB10tupW3WMsxurAKgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACOfXSI59dIAAAAAAAAAAAAAAAh1tObYvThePfHRMA5qX3R4xwmOkrc1tXS3TvrwvEfPwRVtuz2THCY6SosMAJjPNWaV+r7M9a8FgFaX1dP62+OlufzXr3mI/kpNPHnHuVDBPTVpqepaJXcdqVt60RJE3p6mpMR0nig7Bx1xrasxqzMT9WIn5pojUrOY1N0dLR9oK6c53R0tMe9y3jGpf0p62mk2832d1sx0+aPXx5vpiJBGAKAAm7tbE2p/7JdaM0z+3i5Ima2i0dn0O2Ji1YnsmBEHNrJjZbb2T6v3fAUaNjiYApqzpTx40nn4eLpraLViazmJ5ObCsRak507bc847JB2jnr3nH8lNsdY4rT3nSxExbdnlERxQTOTvGp5sbKcY7ZLzfV9f2a/t/Vm3CitPUjqvE5ViMZAXGRLVGMmYiMzyLWisZmcQl0NOf5Lxx+rHT/lA0dKYnfePanlHROCAAAAAAAAAAAAAAAAAAAAAAAjvzSI78wSAAAAAAAAAAAAAAAAAAAAI9eN2jeI54zHw4pAHnavGsXjsUicp71xN9Oezl6OxzRmtsSyq7JnBlluQqTQt7Vq/F1d34TeuO2J+f/Dg0Zxqx8nZp2xr1j90TH496/qfjqAVAQ6s3nUiKTiYjOJ5T6fevp33xPCYmOExPYC7MxnGeLUGtSb3nbOLViJrPjxBOKad99eMYtHCY6SuAAAAAAAAACmpq0049u0QC4hnvEfVpa3u+lTztWZjFaVjx4/cmmOkcs77etqzH9eH6q28usYvaZ/taZNXHWpOtpxz1K/NyTqaERwrE+ip/iaRHs1kHRPeI5Upe3ScYifmTq6mM4rX0zn7kddSZ51iPj+i2lHne1PqRPzBPSZmkTMYmYWBUAAAAAAAAAAAAAAAAAAAAAAU1OxaOUK6nYtHKAaAAAAAAAAAAAAAAAAAAAAi7zXdo26xxj4JWA80WtTZaa9JVVF9K22+P3J+Tl8Y5xydGnnUiJxNYmBYta8cvrT2QVraY9qML1rFeUYWRUdtKtoxbM/E8u0ca6t4nxnMe9IArFtWscdt/dP2rV1azbbOa26T+MCsxE84yCYQRe2njObU7esff9KWtotGazEx1gRYY0AAAAAAAAAAAAAAAAAAAUtetMRM8Z5QpNr3/JHhz+4El71pGbThSdS8zEV0+HW04++StKxOcZnrPGVgUt5s8r1r6K/qzOrpxutfzIjnG3EpEetaYptrGb24RAJxkRiIjo0AAAAAAAAAAAABDr/VTIdf6oIgAAAS6H1kyHQ+smAAAAAAAAAAAZM4jM8mWtFKza04iEUVnUndqcvq1ns9Pj9AL+bE+rE28Y5fNk21OytI+P6LDOqr5s19ek+mvH9fcvW1bxmsxMeDEV6zWfM0/W7Y/d+q6OgVpaL0i1eUrKggtOO8THWsfanRa9ZxFqxma9nWAbkR1vFozWcwtlhVjKuWZBmtb/Tt6JToKV8y8fsjjnrLoaiACgACHvX+3t8PpQujXjOjf+sufmsWK/Xn0R9qyv159Efathmgirx/0+yJ4+hLMYiZmcRCunE4zPOeMrBJVsyrN614ZiJV317Zx6VVIrMnNigDQYNAAAAAAAGWnbWZnsapfjNa9Zz8gbSMVjPPtWABXM2nFOfbPZBaZmdtZ4z29EtYisRERiIZtGVpWvKOPWeautXNN0c68YSK241mPBlFInMRPVqmlP8Ap1WdFatpRnWr4RMqJO7cdTUnpiEqV0AIgAAAAAAAAADJ5Srp9q08pV0+0FwAAAAAAAAAAAAAAAAAHNrTv1q0+rX2p9PY6XJS27U1Jn90x8hKuKbpvaa05Rzt9yWIxGBlkQ1oKwAAFL6tKTiZzPSOYLiKdS88oivp4z+PipaJt61rT4ZxAJ7WivOYj0yr5lP31+aCKVjlWG4joIm8zT/fX5tQWzPsxzlPEbaxEdkYAABoAGQYAADJR24XpPjj5pJR6sZpb0ZCJBkTmsT1aigAgBkGsMsygTLJlkyKDABWnq4/bwXUnhfPZPCVgL030mE3dtWb0239evCUTJtOnaNSvZzjrAsdoysxasTHKYy1WgAAAAAAAAAAAAAAAEdOaRHTmkAAAAAAAAAAABW9tlJsCHWndqRHZX6f0+1BqzmYrHxXmdtczPHt8ZUpH1p5yk9unK5MbEYhoNuQAAAAADLclYjMwtbkysccqfqzLRmskcYz1ag2k5rCXu843U6TmPj+uUGnwmYS1tFLxaeEcplz6rv3HSA0yAAAAAAj1vUiekx9yOeSXW/itPTj8kbHJvioNmGIok0Z42rjGOMfH9Ua1JxqV8cx9v2LO0vToAbYAAAAAAFNS+yme3lEeK7m1bbrzP1a8Pv+75pVk1DqTiu3MzNucqGZtM2luMtSZHPldoxvZI0wLRHFVevIGs5cYaI1LjYtMTFqzxh06epGpGY4THOOjkmJzmvPp1bW053V4Whjp1l+naI9PVi/CeFun3JFQAAAAAAAAAAAARx66RHHrgkAAAAAAAAAAAAAAAAAAAAABF3icaUx+72fmgvpTxnTx4wl1uOpSOyMzP2faJasmxzVpffXNZjjEukEt1ZMAEaAAAAAAR6unvxMTiYZ5UzHtXx6EqsrtZyK1pWvqw0ZExOcdgreaTuk57tT8dqNJ3WJju1IlYzUwCoAAAAAAAAAAAADJnEZImLRExykGgAAAAAAAAAAAAAAAAAAAAAjn10iOfXSAAAAAAAAAAAAAAAAAItXS3zurO28cM+HRKA5a2zMxMYtHOOjUurpRqRwnFo5T0QRMxO20Yt0UWbhXLcgKzOGzKKZzILTZXIIrJjjE5xMcpT6OrNq138JnlPX9XPNoj/hJp3057tqVtMcMzETIjpQ37tS3Gvsz1g0b2itY1J4zGYn7PSmBx20dSnZujrCOJieTvlHqadL+tHHqDlF50b1ziYtHvUzicTwnpICXQ1Ns+XblPqz9iPM/ttPohk2ieExMT4wDqvEWjE8kM2mk7b/AAnqaetGdt549UsxFoxMZiVFYWR7Lac+zxr+3tWreJ4cp6TwkFmW3Y9mOM+5bDJhRWKZjFrTb3fQtWtaxisYIzHPj4k2QarMsmQBXFr3ilJ4858IbM4rM9E3ddPbp7retfjIMju9u3Uif/X9TyLfuj5fq6BBz07ti+/UtuxyjHCHQAAAAAAAAAAAAAAAAAAAAAAAAACO/NIjvzBIAAAAAAAAAAAAAAAAAAAAADn7zTExqR2cLej9HLr0z7UdnN6Noi1ZieU8Jcc1mlp07cccp6wlWOStsStM5zBq6eyfCeSmQbWcWieku2OF6T0tHv4fa4XZNp8qLdvCftKR1a0Z0bxHGZrKOJtTjSd1J+rPOPRP2T82XnV33rW8eG6Oyf16q1zFYicxjgWkbOpFtWcc9sc/TLbcZi9eF47fvZ25E1cZGrqRe1prmsz6vbHDsWjVi1rzHGM45eDDBpjZvNb74jMYxMeH6JpvEUm+eGMoEc0mbbbWt5c9kTy/QlSx1ad/MpFsYntjpK7ni0aWrnlS/Pwn9VtPVmdSYtMYtxp6Pxx+LSJgAAQX1szNdLjPbbsj7wS2vWkZtOPtQ21r24Urtjrb7lJmK+1e2Z6z+PoQ37z2UjPjKauJpi1vX1LW8I4R7lJtpU5YifBzzqXvztPwWisR2IqSdePq1mVZ1NSeWKsAZO6edpV2QuGis1iIW0dPjunl2NpTfOZ9X6U1Ym9tlOfbPT8dghWk6t9sepHrT9n3uuIiIxEYiFdOldOsVr/yu0gAAAAAAAAAAAAAAAAAAAAAAACmp2LRyhXU7Fo5QDQAAAAAAAAAAAAAAABTU1K6cZtPoiOcop1dS3q1isfm4z8gdA5bVm0+1e0+GcR7sKxp0jlWPkDq3V/dHzbExPKYlyzSOysfJWaR21j5At3mu3Vz+6Po/EIZhadOn7Y+BGnm0Vi08efHsUxujp7p3Wj2Y5eLphSs1zNY+r2LCrBBKAwyxRrBkyBMqTWsznZXPoWkiEGRp1/bHyPKp+2PkuKK+Xp/sr8mTpac/Ur8lwFYpEcptH/tP3s2TnMal4/9s/TlcBn+pHLU+cR9mDfrRPKlo+Mfe0ArrW+tpTHomJb5+nHOZr6YmGCGJa2i0ZrMTHgWtFYzaYiOsobUpb1qxPphlYpT1axHwEXnWjHsVm/uj5z9itdXUnWisxXGMzEccfH0q2vOYrEZmeUJdLT2V48bTxmQSAAAAILatrTt0uXbafs6stbzZmtf445z+79OvVYVlaxWPpmecrZYrFpvMxpxnHbPKPx4KJMqzqVi23OZ6RGZ9x5O7+S0z4Rwj7/elrWKxisREeCIi/1LTwiKx1txn5R962npVpMzxm087TzSAAAAAAAAAAAAAAACHX+qmQ6/1QRAAAAl0PrJkOh9ZMAAAAAAAAAACGf9TVntrThHp/RdTTmJpEx28fnxXZUAQYNZMgp3ecW1KftnMeiU6HT/AJbT1iPtTNoAAh1NCLTupO2/WO30o6zaLWreIzHbHKXU57cde+OyI+1KDIjffZ2YzPj4LYk0Y/1r+ER9qRU3KGg0gAAADLRmsxPKXFp52RE844S7nJqRFda0fu9pYsVj+aPGqXCG/s2rfpPFMzRHrTnbX90+6DFr2204dbdP1ZqTPmRERxxw+P8Aw6KUilYrHz6m5Bmnp10/Vjj2zPNaYiYxMZhk3iPGekRmVY1Y+tW1Y62jEIK20ccdPh+Xs/RTPZMTE9JdLLVi0YtGVlEA22nevGvtR0nhKm/HrRav9ow1qrCu+v7o+Zvr+6PmosK7sx7NbW9ELRp6tue2kfOU0BeO71+ta1p9OPob5GlHKs/+U/en0Ixe2j+y0x6eKKZtScakRHjHKVlFmfX9Efj6Gq49qZ8FFlbW21y1kRu1IieVePx7EotpV214+tPGVwYQVvOKWnpCyPXnFMfunAMrGKxHg1XJl0VuU/dYxpZ/dMy5rRMxtrznhDtpWK0iscojCVKsAiAAAAAAAAAAMnlKun2rTylXT7QXAAAAAAAAAAAAAAAAABW87aWt0jLz9HdekUrwiPWl2a98R5dfWt7o6qUpFKxWvIStrEViIiMRCzGiNGANUvqVpznj0jmam7y52et2INPGMxz7c8wWtNr+twr0ifpIiK8oiDLMiNywACZxyjMzyjqzMzO2sZn6EtNOK5meNp7QNOm3jPG081gAaADGsAAAGgKypMZiY6ryqCujb/SiJ5xwXyjpwvePHPzXygtlmWZYDcmWAGRgAAADQVtGazjn2FZzWJ6rKV4WmvxgFzGQFW7rfZadGezjWfB1ODUnZNdT9s8fQ7omJiJjjEq00AAAAAAAAAAAAAAAEdOaRHTmkAAAAAAAAAABiDVtuvjsr9P6fjkl1b7KZjnPCHJqTtriJ4yl/iz+qzO+/hC7KxiGtyY5W7dABAAAAAAGXZPCjbdit59qI+ILRyayOTQVn2bRbs7UkTEx1hRSa7fV4ehmzW+PLE9LWp6s8P2zy/T8cE1NWLcJ9m3Sfx+vg4o1LR4rxqVmMW4elPY3sruHLW9qerOY6T+OCempW/CJxPSeZpZi4CoAAj1v4dT+s/Qovrfwan9Z+hRnk1xZMKrqzzZaYy04rnpx+TQHUI9Gc6NOuMSkdHMAAAABW1q0jNpwDNS+yuY5zwhyas4iKx280lrTe26fREIJndaZSe0vkFqxwyrCR0cVJj3yxe3YoFF6KLV5gsAijLRxzHCYaCsi0W4THHokjUvXlbMdLffz+lFauePayt5idtvmxZnTpOUvld1LxekWjtWc/d5xNq/GHQoAAAAAAAAAAI49dIjj1wSAAAAAAAAAAAAAAAAAAAAAA5rznXv4REK6d8WmluE5zHivrxt1ItjhbhPgpasWjFozDNaiQRV31ttiYtwzEW5z8Vq6lZtNZzFo7JTF1eeBFotWJrOYkOQAAqtr7ZrGJmZWDMCApbWpWcZ49IUnVvPq0xHWZMNSzKszEcZnHpRWi9o9bHDlCTSjTtWLRHtxwndOZiWsS1H5u60V0+M9Z7ElY21iFNLjNr9lpnHoSIKaltunMuvTrt0616REOasb9aleyPan7Pe61iUAVAAAAAAAAAAAAEetONOfHgi09SdPFZj2c8+iTX4xWPHKG3GMM25W5NjrEHd5mbXzz4J2mKAAAAAAAAAAAAAAAAAAAAjn10iOfXSAAAAAAAAAAAAAAAAAAAKamnXUjE8J7JjnC4DkndW22/PsmOUtdF6VvXFoy57Utpc+Ney3T0/eorbkoknjCOeYAzOJ48uxZFYzZF7xXGczx9C04iMzySaNJrE2tGLT7oEXtWLVxMcEOnrYnbaeGcRb70mtfbpzPbyhyxHDCjtyZiXLTUmnC2Zr9CeJiYzE5gGstWtoxaIloIi2Xr6lsx0s3dS87b1xP5vsSKalYtXiKpbT2Ty3U8eMx+jIi1PUtmOlltK/1Lc+yev6stXZbH1Z5A2urWZxb2Z8V5rFucZRTETzjLI3U9W2fCwJPbpy9qvjzWretuHKek81a6sTOJiaz4rWpF+cceyY5wDWTBXMezaeMe+GgpLGzDAZaMxjqtS99Ptm9e2J5/BjYB1UvXUrurPD6FnLpTs1eeK34Y8XUgAAAAAAAAAAAAAAAAAAAAAAAAAAI780iO/MEgAAAAAAAAAAAAAAAAAAAAACLX0/Mrmvr14x9yUBwTEalMTw+yXNas1tMS9HX0sz5lI9rtjr+rmvSNWsTE+iU6XtBFZmszHZzdNfa0YiO2MM06xz5TEbZhJERHCIwlqyFaRE54zPWZWYIrQAAAAZMg2cTGJ5MnsxzrOYAE+neL0zyntjpK3JyxM6d98cY5WjrH6F7zrcsxpx/wDq/RrWcbe862axw0+v7v0R6mrXSriOfZCmtrbfZpz7Z6OeeM5k7Om3vN7ZsyMdrFq1mVResx2QsyIw1loAQG0pv4z6v0tpTfxnhX6UvGZilIzafd6VGcbWilMbvoh1adI067Y+M9WaWnGlTEcZ7Z6pFZAFBTUttpaYmM4mYXcXebzebTXlp+z6c8J+QOrTvv04t29vpXQac7NWadlozE+MJwAAAAAAAAAAAAAAAAAAAAU1OxaOUK6nYtHKAaAAAAAAAAAAAAAAi1NSczTT9f3R6fsSop0Y4zSZrMzmcccz8QUrWK5mZzaedp7Wt8u8R61bT6MfepMakc9PP9Z/4VSRmZ7aXj/1kz+W/wD4z9wMmWG+JtNcTmOeYwAETtpa2eNpxHw/EtrSbxM5xWO3r6Pv+lWlfYpHSufmBocLzHWM5/HpTstSKxp4jjnEz8G5jdMdsAy1tuIiMzPKFJ1bVnF6Y9EstbZr7sfV+9mpM3tnKLIlzExkyj08+XX8cOxYRuWTIAGZGAvE+Lcx1RTatecxCk6sfViZ9wOjMdTMOadS8xwxX3qzmfWtMqa6ZvWvO0R6ZVnW04+tn0RlzxWI5Q0TU3n08fkz/ER+y3y/VEYkNS+fH7be772efP7fejI9rhHujM/ANXjVm1ojb8p5Lxuvw04zPWeUN0+7zMe3O2J51jnPpn7HTEREYiMRCCmnpxpxzzaec9UgAAAINW+606Vef1p8OnplJq3jTpNp49I6yipWa14zm0zmZ8QWiIiIiOUEzERmZxBM4jMqUr51t0/xxyj93j6FVtaTrcbZrp9kdtv0TxERGI4RApOtSOVt3hXj9CIkEH+I6aWpPwwf4iY56V8eAJxFXXrPOt6+msrU1KX9W0T6JBcAAAAAAAAAAAAABDr/AFUyHX+qCIAAAEuh9ZMh0PrJgAAAAAAAAAAc+n7NIjpGF8op9jVtSe2d0faszVSZMqZMoLTKsywBbTtEX2zzmOHwTOa1JvGa8LRxiVo7xE1jFc6k/V6elqImmYiMzwhTza/Vi1vRHD58lfLm051J3eGOEfjxXNVXfqzPClYjxt90KaO6Z1LXxum2Jx4JRNBFW0U177pxExE57O1KzEdOYLxMWjMTEx1hrmnSmkzbRnbPbWeUpdLVrqVzHCY4TE84aRIAAAAg7zSZrF6xmacfh2pwHFOLV8JhbRtmmJ9avCWXr5Wpt+rPGv3KTaaWi8cu2C+qkrGe9x4Vz+PmmvnG2vO3DPTx/HbhFWY86kx9aJwliJnXnpFfpn9GRetYpGIag7zq2pimn69vc5r+fpTFrWt88tI64r5V8R6luXhP3Sui8zze6zftrxmPGOKVmqAIMmlJ51ifTBFKxyrEeiGgAKXvtnFYm1ukfjgC4rFLz618eFY+9k0vEexqZn80fdhcF2WiLRMTGYlSNTFopqRttPLpK6Dmms6dtkzmPqz+OjV+8Vzp7o514qROYierpKoaUcLW6z9DJnETK+lH+nX0JyFloq2IawjMOfWmLavDlWPen1bxp0z2zwj0uaIxHPLUACc8ojNp4RDSpe7V3ak37K8I9P4+l1K0rFKRWOULIyAAAAAAAAAAAAyeUq6fatPKVdPtBcAAAAAAAAAAAAAAABTUvGnSbT2Qu5tS3ma22PVpz8Z/QGacTxvf17cZ8PBc5c2RaLcazE+gYbDWGQaKX1IpjtmeUIp1LzavGIiZ5QKnQ6mni2+kce2Ov6pQRBExLUl9OtuPKesI409TOJmuOsAyZiOba0tfnmtffKStK14xHHrKwMrWKxisYhoAA0AGAA0AAAGSDJVbICK3DWr+aMLK68TisxzyUtujjwmOcIq4AgMAaMAAAGsAapfhatvHErK6kZ07egVcZWc1iesLAyYiYmJ7V+56kzWdO3On0KMrOzvNLdlvZkI7QFaAAAAAAAAAAAAAAR05pEdOaQAAAAAAAAAEetP+naOvD5ghvffabdnKPx4/cgzvtn5L604riO3gpTmcf6nO/iQYTOPS05tzgjdb1KzKTT7vnjqf+P3uiIxGI4QmtTj/AFzRoak85iG/4a3/ANI/8f1dIa18xzf4e0RwvE/DH3o5zFttoxLsV1KRqVxPwmOw1PlyjbRNbTWece9isCk8bT6V54QpXnGQWAFCeMACOWLWVEbEzXlOPBet4tiLRiUYlmtzlY666tq8/aj3/r+OaatotGazmHDW8xz4wlieMWrOJ6wz7O2/L06xzx3ieVtOc+ErU14taItWa55KmLa38Gp/WfoUX1v4b57Ywozya4jJaMtqDZjDBEnd59m1elvp4pnPozjVmP3V+j/lNa8UjNpbjF7WEXn06z/4z9zJ7xT6sWmfRj6cKiZW1609aYhz21b27dsdI5/NSZrWeM8e3rP2pq4ltrWn1I2x1nn8vx6EfbmeM9ZRzqftj5qzMzzky0+pF73xGIn2voUjoxsNSY58uWr1jisyvJqsstyz4KL39VSFSja82NjmC4CKAAK3rEwsA3Sti1LeOJ/Hpw7Hn04xarupbfStusZYde/VgFAAAAAAAABHHrpEceuCQAAAAAAAAAAAAAAAAAAAAAFb1i9ZrPKXLx07bL8+yev47XYratb1mtozEg5rRnlOJjlPRHq+ZeI3xWYjsqkvW2j63GnZb7/vanTXaGu6ONbzOf3cYSRq27afKf8AhlqfWrz7Y6siYnhymOcSeUX8yf2z7vvZOpaeVfnP/LBcgzOpPOYj0cWbM+tM28JlJFJlaKQCOIiOUYEuIbiFEKlqRqWiOnOV9SYmbU5Xz7Po4fq2lYpXEfNLTtbkxqt4m2KRztOPvZE3dqzFJvPO/H4diZjWmQAAAAAAAAAAAGKVvm9o4YjktNoiLTz280Nq7aVnHGuJS3FjdafbiOkfj6Ea2px1LfJnKGL26TpfQjF7/BO59H+SfGHQ3OmOXYArIAAAAAAAAAAAAAAAAACOfXSI59dIAAAAAAAAAAAAAAAAAAAAAyYzGJ4xLQHNqaNq8dLjGeNZ+z7kNrRnExaJ6Yd4Dh8vUtHs6czE9eDJpqaUR5mMdYdtrRWs2tOIhDGdaIteMV51r9sgi06Tad1o4Ryjr6fsTM1b10448ZnlHVzX1LX4TwjpCjda++2I9WPpUBBsLUtNJ4RmnOfBWEnd/wCS/ogEsTExmOTXPN/K1bREez2wni0WjMTmJVGstyJmIR2tkFLRnlOJ7JTYjW0u2M+5E3TvsvifVt29J/UVkTPKeFo5w1Jracz7VfWjs6oYmJgGzGYS6FpmkxPOs4Qr6P8ANMdagk1OF6z14MO8epE9LRIDLZ7ImVJnU+rT5ykaCKK6uOM1jwZm1fXiMdYT9iOeYM5xz+Lo0NTfXFpjfHNyx7NtvZPGPubasWxziY5THYDuHL/iL6dfbjfjtjgpe1tX159nsrHL9UHTXW07X2ReJskcN4i0eMcp6Oju+rN6zW3rV9/iCYAAAAAAAAAAAAAAAAAAAAABHfmkR35gkAAAAAAAAAAAAAAAAAAAAAAAAc+roznfp8+2OroRd4tNNKdvrTwj4g59OZmM8onlCxEYiIjlDWGwYZBoAGTLAGjAAGgrMbpxPL6UevqzX2a8+2UquK6cTNazM/OZIjktWa+tGMqrX3bs2icz1Y2yLRbrxUaC2+Z8GxaGRpXnlWfikr3ec+1OI8E8X1XfnhHGUtNLtv8AJaK004zEY8UlNK+pObZrT3z9yKrEW1J20+M9HTp6ddOuKx6Z6trWKVitYxELLjIAoDJmIjMziEVtWbzjS5dtvu/GANW8zPl09aY4z+2Pv6EUrFYrEcIK1isYj/lrOqrqTtmlv22j38PtToNSN2naOsJNK020qWnnMRMrCrgKgAAAAAAAAAAAAAAAAACmp2LRyhXU7Fo5QDQAAAAAAAAAAAAAAAAAFNS/l0m3OeyOsrq2pW+N0RMR1By1zMYpE6lp4zMcs+nklpocc6k7vCOUff8AjgmiIiMRERHg0Fb13UtXrGHLWYiNPjzr9DscltLNZpXhNLTj6fokEtr1tFYzxzyZWMTaes/ogpExrU3VmJ/R0TPBVR6lYvz7OUqRSc8bZj0JBFYTPZHGehMznbHOfctEV068Z9MyIqNvNorujTmfd+qLzZ/bHzUSq2jNZjrDKX3Z4cm6k4pM+CDnpERWMdFmV9WGqyA2IyDGxVaIwyJ3zikbp8FRuGTbjiMzPSOMpa92tbjqW2x+2v3uilK0jFKxEeCauOWnd7346k7Y/bHGXTTTrSPZj0z2yuIoAAAACtrRWs2nlEZBDed+tjnWke//AI+lZTSrNacfWnjPpbe22sz29grLYvaa2nbSPWnlnw+9s6trcNOIrXstMfYi0tPEe1MzMznj1TxwBSdOtpzfN58fu5LxERGI4QcIjMqRq1tMxTNpjpCi7VP9TPDS4dZtH6n+rnjpT8LQCRW1K39asSydSK+vE19MfbyXQUib6fLN69J5x6J7fRPzTVtFozE8FFdO2dbUrHZEZ9PERMAAAAAAAAAAAAh1/qpkOv8AVBEAAACXQ+smQ6H1kwAAAAAAAAAAKamnXUri3wno55jV0+FqzeP3V+51gOTzqfuxPSYbuzGYraY8KuoTF1zVtFs45xzhaK5X1dKNTExO28crQjrq7bRTViK27J7JSwSRGFNSlot5mnjd2x1SCDInMZxMeloADQGAAItWkxMamn69ezrHRKA2totWLVnMSsg0/wDS1tn1b8Y8J7U7aAAAAKalI1KTW3/DkxNZmtvWj3u5FraXmVjE4tHKQckRs1K3jhETxdccNefGv0T+rl48a2jExzhLp3xpRPbp8J9H44/AqqW1Ip36Zty5e5bvWrS2ltrMTMyzvWluxq14xjjj6UVIpHGOM9BEnd+Hd9aOzE/Q6Y5Qi2bdGNOfWvbj9M+7gmSrABkAAZaYrWbTyiMq0xp6W+84mfat+PczWn2axPK1oj3oO/WndWnZjLUFp77GeGnMx1mUul3imrOI4W6SvpxWdKuIjEw87UxXVtsnhE8MKj0tSkalJrblKLRtMxNbetWcTPVJpW36VbTzmOKlf59X4fQlF3LThXEz6szHydUy5c8bf2k4qW41mPBNoYnSpPghX7tbEW0+k5j0LyVOy1opWbWnEQXvFIzacQ5r2tqWzPCI5QzJqMmZ1Lze3wjoA2on7vpf9lo4z6vhCPR0vNmLWj2I5R1/R2IlABAAAAAAAAAAAAGTylXT7Vp5Srp9oLgAAAAAAAAAAAAAAApqX2ac26INOPL05m08ecz4ra1t2rXT7I9qfsViPM1MfVpPHxn9BK2KTqe1fhXsr9/3KTt0+8RWuIi0cYjqm1rTp6eY9aeEOSIit6THPdzFzx1K0tupFuqyPQ/hqMKa38tJ8JZ9av8AZJq1m22a8ZiWUpbdm+OHKIBIAABMxWMzMRHiAMrato9mYloAAFpitZmewrmY4xieise3qflr9P6JAVBTjqTik4r22+4C2rETMVza0dkIq94tP/XmPCV9aI06xo6cY3cbT4KxGIxA6ceOpaalb+rPHou5Zic7qzi0cpTaOp5lePC0c4GeXHEjJarIyyQYCmt/HM9OLb0z7dPW+ltozWY6wzSnOlX0CsrbdGe3tjo0vTM7qcLfSytt0dJjnE9iDQBAAAAAGgGOAAppTnTqkR6P8VVxRTVzszHOvGFyYzEx1gHVW0XrFqzmJWQd0/29Y6Zj3p1aAAAAAAAAAAAAAAR05pEdOaQAAAAAAAABDrzwp/b7JTIe8c6en7Eqxy6s+3EdI/H0MrODUnOpLIa49OfPtebdOcunQ0dkbrcbz7lO66fDzJ5zy9H6uktWQARoAAABHrU314etHJzRLtc2vTbfdHK3P0/r+OaxmxFefZn5K15tvPCPSyvNWFgZNogVopFptOKxM+iMtxqfsv8A+MgWUlaZmJxaJifGMMEYAA2ttvoYRxnERmekFWWy+Jw09Gce3PoiJbOnOfZtjwmMuTukvffWkR2zmfh+uBTTptmZmYmZXLSQDsEVkxmFV1ZgGZ22rbpPH48GXvv1N3OI4R+PxwLxmsx1hHFvZibVmOC/ifq7LWiscfkbo25zmPBDmZmZnnKyanLljZtM85x6GA6Y422gAg2GLV5gkCAFb8oUhe/YpCjZYS2Im0xFYzMgkjkNtpamnGZiJjw4qxaJQ6aAAACOs4vHydnd5/05jpM/f9rinw5uru8+3aOyYiY/HyZvbpx6dAAoAAAAAAAAjj10iOPXBIAAAAAAAAAAAAAAAAAAAAAAAAgt3eIzOlO2enZ+PQnAcdpmnDUjb49nz+8tSLxiXWinu9M5pmk+HL5Ji6gtv3TPC0T04LadqTOInj0nmzU3aMZvMWjrHCfkYi9eNeHSYNVKIY0oj1ZtX0S3bPbe0mpiWZiIzM4hHOpNo/04/wDaeX6qxp1ic4zPWeK5q4rWu3PbM856rAijdDjrWnPqxj5s7OeFdKdTTtM+zaJ59k/cRK7BFXXpPC2aT+bh+iVpkAAAAAAAAAAABz3rabX2zznE+jEJLcYmJV3Ytf0/YTZzvtbkR1iYjjOZOctkp60FbNPhqVn4Ohz3iY5cJ7Eunqb448LRzhri58v6kAaZAAAAAAAAAAAAAAAAAARz66RHPrpAAAAAAAAAAAAAAAAAAAAAAAAAc+vO/VrpdnO32LXvFKzaeUKV/m1bdZiPkp3m3+ljrMQCGZm0za3OWNYKAAJu71xWb/u+xDibTFY5y6NW0aentrwmeECOeZ3XtbrJW00nMcu2GRwjDYzNsRxn6FEm+JrnPBkTa3q1zHWW00q14856pDBH5du2/wAoJ09PtjPxleYyrNVwbTV2ezec17Lfetq6O6d1Jxb6UUwU1baXDnXp0SwM8cTGLdF9H+b/ANZ+xedmtTrCOlbaetXPGJ4ZQS68Z0beHFiSeWJQ6UzOnGefJRZorW26sTHaotlW3NuWTxQR6nCInpMSuj1vUiOs4XBbmirG2007I5JFbxmImIzMcgGZmlo1K845+MNEHbW0WrFo5TGWufukzttWfqzw9EugAAAAAAAAAAAAAAAAAAAABHfmkR35gkAAAAAAAAAAAAAAAAAAAAAAAAQd44zSPGZ/HzTubWnOtjpX6f8AhKsYpqam3ERGbTyhaZxGZ7EOheLd6i1sRHZlJFrL21dK0eZjj2JpjjE9EPfNSNTV9nlWMJqcdOvogpGgIoDQYNV4zPSPpBoy1619aYhoDJzjhOJaTy54BD5ETmbWmZbGjpxzzPplfTpa+rtm87YjPKE8d30+3dP/ALS16y5409OOVY+Lc0p+2vudEd30YnOyJ9PH6V60rX1axHogw1yxbPqxafREy2unq2njWKx1mc+6HWGGoqaNa4mfat1n8fr4pUd9bTpnNomY7I4yjnvMz6tPjb8fcqOgck6mpP18eiPvyyNKLTm2bT1mcpq46J1tOs43xM9I4/Qp5upafYpiP3W+4rWKxiMQ3MGmK7Jtx1LTbw5R8vvyuMQazICjdDhpRHSZj3yxvd/Ut4Wn6ViVKAqAAAAAAAAAAAAAAAAAAKanYtHKFdTsWjlANAAAAAAAAAAAAAAAAAAAAAAQ3xXWjpePfH6fQmU1Kb647Y4xPiCitpKW3Rx4THCY6Sy3NVYAgydSKcOdp7E9KRiLT7U889PQ5bac7ptHHPPqtpaluVbLiOnVtFaT4uKYxGZS2tGfanMq7d05tGIieEfevQ3SjFOMYmeKzWMqpfTieNeE+6UXbiYxPR0stpxeOPz6KYg4RzlLGnqWxtpiOtvu5pNDFJ22rEW5RaI9b9fxDoNZxz17rXOb2m/h2fJPERWMViIjpDRFAAAAAAAAEPeI3VrTsmePoTILxM6+c8Irj8e4Go75m8RjhHH4pFJnnMqpDN1rzMacbpjnOeEfjwbTTnVjNsxTs6z+joiIrGKxER0hBFHd65zqTN58eUfBLEREYiMQ0EAAZMZRzoxz05mk9I5fJKAhimtMzm1IjrETn6V6UilcRmfGecrgAAAAAAAAAAAACHX+qmQ6/wBUEQAAAJdD6yZDofWTAAAAAAAAAAAAAAAINSvma0VnjWsZx1mU6HTndbUnH1sfLglDTpNPZzmvZ4eH3Lgyo0AAFBjWIAAI9eP9PdHOs7o+CaJzGY5SrMZjEs0f4qR2xGGoVIAqAAAAKamnXUjFo5cp7Yc0xfu94taM15TaHYAgiJrO7SmMTxmJ5S3ff/5ceuYx9/uUtHkXzH8dvdP3Jcs9KjrXbM6mraJt17I9CStotGazEx4KTjztPPGOOPT+MlqRfWt2TWIxMfEzRdqObzSdt6zPbmsZj8fP0tjV05+vX5gs1SdXT/fE+ic/QrbUvw26c8Zxm3CPvMDXrM6UzHOvtR8EXe6b611q8scU3+vXjatLR0rM595XNONPa07cdvT0fcs8Rw1raYxWfetGnNY48Z6OmNPQvPsWmtukTj3SvFaaXtTPHrZUX067NOtZ7IR6d9263Zacx6OTLTOrGOMU7fFqVotfFZnshz0jFYSas5mKxPjP2KrFYYy2sWveKVxnnOeyG2pqV9ak+mOKiuIznt6jcWnlS0/+q9NC9vW9iPnII5nHDtnlCfS7vxi2rxnsr2R96TT0qacezHx7UiM6AAAAAAAAAAAAAAAAyeUq6fatPKVdPtBcAAAAAAAAAAAAABk8OLUPerbdC3WeEfEEFdT2L6uJzaeH0Q6dLT2UiOc9vjLmimdXS045V9qfg7JnbEzPKBI5tad2tMdlYwivwiLYziYk05zTdPOZmZS2j/8AFtPX7xvqLKaXDSr6F5ZWMRgcmg0GNFNTUikY52nlAGpeKR1meUdUOJtO7UxM9kdkNiO2eNp5yCt0f5b+iEyHQ9fUn0JhBXVvspM9vYuj1K7rUjs3ZBeldtIj5tlqmpbZTMRmeUR1kVW0eZby4nEc7TH0fFPSkVrERGIhmjp7KRnjM8Z9J3icaF/GMfMWRzV9u1tSfrcvQ2SvCF9Ou68R2I6dIlYnZqRfs5S7dWu7TmPi5Bf+UTyrMqaVs12zzrwWVwAaAj0eFJr+2ZhIjp6+pHjEirqalJmd1eFvpXBEdLbo6THOFkepMWnNM7o5TDaamZ2zwt0RVwBBoAAAHKABkRiIhoAAAv3WcTqU6Tn5ulyd2n/8jUjwh1q2AAAAAAAAAAAAAAjpzSI6c0gAAAAAAAACDvHOk+OE6HvHKn9vslKscd/5JW0aeZqRWeXOfQzU9f4OrutNununnbj8OxqdMWf/AEmaCNAAAAAACt6xek1ntWAcFonExMe1E8WV5p+8VxeLR28JRTEzMVrHGeDUc7FfavbbSMy6NPutYjOp7U9OxJpacadcRxntnqkTW5GRERGIiIjwaK2tFK5lFL7YpO/G3ty5L6e+c6dNseM8/h+PQlnN5ibdnKOn6tyzeTXz/XP5NusN8if3x8v1TZMp9U+IjjQjttK9a1rGKxhuRNtakkbkAFLztiZ6cV2TETGJbHMGzyY2eTAABVZhkLTyVEZOnW8cY49YRzo2zwmJhNnDcrLYl4yuadO8fUlkUvPKlvjwdWYMr9Vn4iDyb4zwz0ypFbTMxFbZjnwdbOMTur60E5UvCOWa2iMzW0R1mJbTm762i0Zj4x0Vvo0vxmMT1jm3rF4uYbas6dorac55T1YrKl/W+CrbcbSxUOMziOMzydujpRp148bTzlH3bSxHmW5zydLNrcmMQ6ujWYm0ezP0pkN9XMWrjwTcbk1zzupOLR6PFbOVorFpisxwmVdTTtozx417J+9ZdY5cPnoZM4ZE5JngrCspe7zi9PHNfx8kKXRnE1n82Pn/AMpya4O0BGwAAAAAAABHHrpEceuCQAAAAAAAAAAAAAAAAAAAAAAAARamvTTnGZtb9teMo7W1dXnPl16RPGfj2AmvqU04ze0Qitq6l4/067I625/JlNOlJzWuJ6rM61iPZi02mZtaecy1tpmNsR2zgmBVcZZMY4zeYjxwcbzNacMc7dElKVpyjjPOe2REVePLUz6MLrX0qX51jPWOaKYvpet7VOvbHpDVwBRaIIhqBz4SrFNuZ07TSZ6cvksARralc76bo60+6UlNSl/VtEz07fkjZalb43RnHJdTHQOaLatJ4W3x0nhPzXr3ikzi8TSfzcvm0ziYZExMZicxLQBFbvGjXnqR8OP0JImJiJjjEg0AAAHNb+S3p+wZE7s26yMV1jWROLQdivaiprxmEcxPOOExylNHJWYiImZ5IzKtpX30zPCY4SkR6NdtMz9ac46JHVzoAAAAAAAAAAAAAAAAACOfXSI59dIAAAAAAAAAAAAAAAAAAAAAAACPWvNKcOcziAQxP+pqR0sj1+Vf7M0/Z1r1mZmZxOZ7Vtf+PPSVEbARRktSaGnvnfb1YnhHURbR09kTe/OevZCG9/Mtns7EveNTdOys/wBkM8FCIm04r8+jo09OKxwU06bI8Z5yl3YhQtwVJnIDMsm3RswpPNRkyjleVJSjdO86dsxy7YdGpxpW8cqzFnPpac6t9scu2fB0adeF9OeVZx8EEkzEwij2dWazytxj7TTmYzSedeHpjqasTNd1fWrxgF8I59i2OyfckrMWiJjlJNYtGJjMAqyZiIzJttWccJr71dszbNuzlAGN1t0xiI5QsACtp21meiympPqx2TIKRbERGLT44WzOOPuGX9WcdnFFdmjp+XTxnjKVWlt1K26xlYQAAAAAAAAAAAAAAAAAAAAR35pEd+YJAAAAAAAAAAAAAAAAAAAAAAAAHJf/AHGp6Idbkt/uNX4fQl6WKa040rON168Z0/i5rRjBCsdlP46+iHJEezMuyIxER0SrGgIrWAApq6nl18Z5LuPUvvvns7FkSuuvdq+RN7zM2mM5Rd2tmJrPZybqd63aMUiMTjEyi0P5YWpHWyRW04iZ6MtJe61nN79kziPg6EejWaaNYnnjj6UjbADm19aZmdPTnE/Wt0/UFtTvNKWmtYm9ukdiG9r6k+1bEftjl+qtaxWMRCzOrjIiI5RhrGiticG+erGA3MrxaIRgJJ1OkKxM2niq2JwCeOTWV5NEYtofx/8AtP0yw7vMzoxM9szPvWFSgKgAAAAAAAAAAAAAAAAACmp2LRyhXU7Fo5QDQAAAAAAAAAAAAAAAAAAAAAAAQ6unMzvp60dnWPxyQ148YmccsT2OxFq6UX4xO23UEQ3Zq151i39Z+/Ck32xm1L19MCrsmIt60RPphm+Olv8AxkznskGxERGIiI9BMxEZnhAApN54TEcJmIzKRS/Gaf2+yW6tppWJjqC8cGwRMTETHKWqMtWLVmJz8F9K0zG205tXn4+KrLcJi8Rxr747UE4yJiYzHKWiAAAAAAAADnpObak/m+jg6HNpcazPW0/SC8zwUpXzL8fVrPHxla3Jbu0T5NZnnPEVKAIAAAAAAAAAAAAAAAAAAAAIdf6qZDr/AFQRAAAAl0PrJkOh9ZMAAAAAAAAAAAAAAAi0/Vn+1vplKg0/ZtqRP7vp4pRIAyo1gDRgAAAAAzR9Sf7W+mSZND+P4z9MrCpAGkAAAAAAZzQTp20uNM2p07YdADmmY1KcJ8YmOxmneY1Zi8YmYjj2ThLqaMWndE7bdY+3qiturGNWvD90cvj0ToSbsa/pr9E/qvlzxXjFtO+cdkzmFovfPGnDrE/8Gi+7br9mLV+j/la2LVmJ5Sg1L5rwrbdHGOC2+08qY/tP3ZBbzcVndPGvCfH/AJKzO2Mxx7UU7a236to3dnh6CdWZ9Skz4zwO1Szx5sisROYiIn0Is6s/WrX0RlmyZ53tPxMonR6mpjhXn16KRpU/b71406ftj5Lgiiax2x8zM2nbSMym2Vj6sfI21/bHyVU2jpRpUxztPOeqRy+XTsrEejgtS1q3rXMzEzjE9iJjoAEAAAAAAAAAAAAAAAAAAZPKVdPtWnlKun2guAAAAAAAAAAAAAA5u8e1q6dOntT9jpcud3edSf2xFYEq2jGda9ukREfSl1pxo3n8sqd356n9vshbX/gv/WRXHScVj0OnUj/8Of6uaOUOnW/2vwj7Bvl0yOQNHEAAQ61LZi9eMxwmOsJgHPExaMw1e+nFpzWdtuqOZtT16z6Y4wC+hHs2nraUqPQ/ir80gAMBqlY8zvMVxwpGZ9Kx3SM1vqT9a3uFjoQd6nGjjraITubvmdlOm8aRRKbu/G1p8ECbu0+1MdYR0vTocLunhGXCJxZScavphKi5XpPjhKrHLsaAwxTlrT41yurMf6kT4T9gqyGfbtbd2TwhMj1I22i0dvCQGWrFo4/NoCsXmvC/LsskVxExiVNtqcacY/bKCYVpeL8uE9FhBgrN8zivGfdALTOPSQyK44zxme1YAAAGAt3TE62rPbGIdbl7lxpe3WzqVsAAAAAAAAAAAAABHTmkR05pAAAAAAAAAEXeIzo28OPySstEWrMTymMA4LV3ata/u4O9yaUf62nNucZj44/R2JC9gCgAAAAAAACmpXfpzXt7EehpznfaJjsiJTgAra9aetOFJ1f21+fAF7WitZtM4iEOZvO60Y6R0/Utm8xunhE5iIhrFrcgytJ1eOcU8Prfozb5ltnZHrfd8XRyWRLVfJ0v/nT/AMYZOjpTGPLr8kg0y869J0rzXMxjlPWG0vMWiJnMTw4pe9x7dZ7Zifd/yj09POLT8C5iTdStjLFojDm6tbDGxm3q8I6yQtJU31nlaJ9CTyqzxt7U+K6s6hm0Rz4ekiYtxiYn0JlbUraYmY4xylF1RRea2r+aPf8Ar+OCmYnjE5gXTPBFOr0jh1k1cxGOy3NuhTdrV6Rxbk/WOXK7kTU0rWrE3tiZ7Ij/AJX8inbNpnrux9GEjTE1zzFqTi3GvZb72ppiLRMTxieaCazpzFedZ5T9iWNSnGtt1efbHVNW0WrmOSJkTals14xPOOv6pKtiXVpGpSa8p7J6S5YzymMTHOHVW9bcp49O35Ie8U228yOU8J/H47HSOXKOaec+lJoaXmX4+rHPx8EeJm2IjMzPCHfpacadIrHHrPVanGLgMtscjrnhEuWYwzyb4N05xeJT1nfnhms9e1HpRGc9q88Jie3OElOXaDV7vNeOnxjp0QxOXoOTvOnstujlaePpdJXKz9QrUnETPS0T9Cra/wAd/j9ByTh29EBGwAAAAAAABHHrpEceuCQAAAAAAAAAAAAAAAAAAEeprVpOMWtbGcVjINtelMbrRGeWVb61a7cRN93Lajve97VtXTmMdsz2ehu2InMRETPOU1ZG/wCJrNY8ulrTPhiI+Klo1NTMWvtrP1a/euJq4ylK0jFYw0EaAAUmc61Y6VmVrZtaKVnEzznpH45KZiL31J+rGI+lNpUmtc2xvnjOFZtbFIrWK1jER2G1YVFcG1YBzWp5M5j+OZ4/l/RJEJJiJiYnlKCP9K8aczmJ9WfsSrKuAjQAAAAYzHEAU8rbOdO00nw5fImmf5bTefHl8l54KzORMZPtTXTjhE8Ph2umIisREcIjhDktStpzaMqzXSpMYpO7siszlqJXcKaUXjTjfzXVlimpOfYjt5+ELXtsrNuilYxHGczPGZZ5XFil+cRDJrisL7c8ZWmMww3qGeTIji2Ula8IGtxeOSto3WivZzlbkiid2pesRwnGZ8OjUc01LxfOOUTjKyHRtxiu3GYmZTNsgAAAAAAAAAAAAAAAAAI59dIjn10gAAAAAAAAAAAAAAAAAAAAAACDvOMU9P2SnQ9505vp5rzrOY8Qct5xqUv0nEpdWN2naPBBed+lMw6ecZ6qOWJzGRkRNZms9krIERutFY7Z4+h1alo0tLh2RiEXdq5va/T2TvE5vWnTiCKI68+1bTrm+Z5RyJ4RleK20sVvznlPXqosMzxaozPHBmFZnjlkqLWlSZGSDJVis3tFaxmZbaXZ3bR8uubevPPwZo3S0o0qYjnPOVOXebeNYl0Sg56156REIIteZpqVvEZnGJ9CSJiYzE5iUWtOdXHZEM0bbZ2Ty+qotT2LzTsnjX7UqPVicRavrV4x9qSsxaImOQCswsAjli9oViAVm2JxETPoU1JzSfZtExyzCcBBmJ5TDUs0rbnWJV8qnSfnJgl7pb/Tms86zjHg6HHGnFZzWZiesSt7X77/ADMHUOTFv/pf5m23/wBL/NMHWOWItHLUv8z/AFOzVt8o+4wdQ56atqcNSd0fuxjDoAAAAAAAAAAAAAAAR35pEd+YJAAAAAAAAAAAAAAAAAAAAAAAR6mrFJ2xE2tPKsfjhAJHJmLWtb90/wDC2vbUro2tNsTHZX7/APhSvCMM1YakZpMIMVtDoUnTiZzmYz0RUVK5tER6XQrWkVzjPHqsKDQGDQFNS23TmfBxOvvH8fxc9q4rDUZqq+h/NDKRxSaNc6k27IKOiVcbpiv7px9/ubK2jGdfOOFY5+M/iUi11ANMotfU8unD1p4R+PBy1jEYW1bb9e09lfZj7WJVg1jUUBiANFGNY0AjmEc0E8S1lYxBmJULW21mekZW7vGNCkfliUWtny5iOc8I+PB0REViIjlCxK0BUAAAAAAAAAAAAAAAAAAU1OxaOUK6nYtHKAaAAAAAAAAAAAAAAAAAAAAAAAAAAi7x/F8Y+mEqLvE40Znxj6YBEAKAAy0Z2z0tDNaN9sRzis+9aYzWYzjLKxPGbY3TzwDdOJpWvH2bRExw5T0+75JGaExfTtp2+rOMeHYzjS0Vvyn1bdfCfH6QWaCjND2Jtp9OMeif1ymQT7OrS/8A6z8eXvTogAAAAAAAA5dH+OPTP0upzafCdSOl5wEbqTikz0hLpxt06x0iIQ6v8V/RLor6segWtAEAAAAAAAAAAAAAAAAAAAAEOv8AVTIdf6oIgAAAS6H1kyHQ+smAAAAAAAAABW99lJtMTPhHaDL6kU55mZ5RHGZReZ3iZ4adax+ac/Qvp02xm3G885/HYumqji+tX1qVt/WfvSUvF65j4xPOGKzXjurwt16+nqmiVza1tuvisZm1W3trT7Ps06zHFlaxXPOZnnM8ZlbUXiVsqGWVSCPLdwLim43AuxXczMgvlWbMMAre22kz0Q0m+nHsW9MTylbUndbHZH0sbkHVpatdWOHC0c46JHDt7YnFo5S6tHU8ymZ4WjhMeIiQAAAAAAAAAEc6OnPKu2eteEodWs6NcxqTPZEWjOfjwdF7xSs2n/lyTuvbdecz2R2QYN820R6kfP8ARWb3t+WPDm3EZxMtwuRpWtYjjjj1lcFAACFoUzEK+bXOInM+HEEwpHm39XTx424L17vM8dTUmfCvCETVJvx21jdbpCXR0ppM2vbN5+UJKUrSMUrEehZEAAAAAAAAAAAAAAAAAAAAZPKVdPtWnlKun2guAAAAAAAAAAAAAA49GYtOpeO20uueTj7vGNGPHiJXRo4ibePFfUjdp2jrEwgmJzE1tiYlae8bJ/1K4r+6OISuenGlfQmtbPd4rnjmI96DSmParWcxE8PQvMZtSPzI6X2JWgriAADGgAwAAAAGXnFJnpCXu8bdCkR0yh1f4reiXRp/x19ECxZz98jOlE9LRLoQ95ru7vf0ZGnM2ltt4tHYyvGInqthHVPqalZ052zxlzYWaEmI5jl6Y+lMjtMZrHbMwkVy59jAGA7cgAyYiYmJ5S0BFGeU84aakYnd8JBQARlqRbjyt1hSNS8W22mseMpFbxGN2OMe8VbZn1pmfdC0RjhCkxOnxic06dF+fJAaAgAAredtJnwaj1czFaRztIrq7pXZ3evDjPFOyIiIxEYiGq0AAAAAAAAAAAAAAjpzSI6c0gAAAAAAAAAAOTWidO82jlndH2/jxdatq1tGLREx4rAAAAAAAAAAAKX1K05zxnlEc5XcupO3WmbY48vR/wApVjbbptN/rdkeHRsTExwZpz5t5iJ9mI44ls1iupMV5REdvb+MM2frW/jRnLmyL1tynKKZ8u++I4Twt9/wdETExExxiUK+jw0+nGfpa41nlEgI9S+2MR608vDxaZRasRqasRzrTn4z0WZEYjDXO3XSTGYJnHjPZHUmcRlelccbetPuC0pTttz6dkLg0wAIAACG9MTNqxx7Y6/qmUkEMxF6cFu51n25nrj5f8svXbO6I4Tz+/7/AJr6M4vNevH8e5Yt99TgNMit4iazFuEdeiyG9t8zEerE49P4/HBKRWszNYmYxOGgw6MmImOMRPpZFa0zwxS0YtHZ6fx6exs53RMcu0NwzWd30pi82txiPVnr4/jq6XL/ABZvXhEcZjsl0t7rnmNAUY5ojFpjo6kM13WmY6s8muNxmnXEzKT60Z9COlttZnxWrO+vFmLUqPXru0bR0jPybXOZjsWdGHmr1j/Tt45VtXbaa9Jwkp/HHxOXScJ67KTmkT1hZWkYpWOkLCgAAAAAAACOPXSI49cEgAAAAAAAAAAAAAAAAACl9OL8Yma27Jj8cVwHNumLbLxi3un0LJNSldSu23/CCkzE2pac2p29WbGpVwEaBmYMwDRm5W99tZnpAiuj/q2iI5RM2n58Px4OpB3TT2aMTMcbcU7TIAADAarqUjUpNZ+E9JWAQUtMxNbcLV4T96zNeJrjVr9X1o6x+hM+zurGe1K1K0Urq0nhnE9J5r5jqgBmGZgVozMMtOY4ZgRl4tHtVmZ616sicxmFNup/9f8A9JW0RExEze3P2YVEhp7dPU9uMzaeFunh4faV0dW/G9tkdI4z801dGlcTjdMdtpyuJakAVEWvMxSJ7ItGWrzEWjExmEGLaXCc2p16M8osSMtOKy3PBluMObStK54yu3sYtFbzwlWnrTPVl54yyJns59g1niXS9q1rfCEqtK7axHRZ0jlQBQAAAAAAAAAAAAAAABHPrpEc+ukAAAAAAAAAAAAAAAAAAAAAAAAByd60tu7Uryn1o+00/wCOvoT607dG8+COtcViOkA5b/z29EC2tGNf/wBVJ5SDq7vXGlHjxQWtnVvPScOjS/ip/WHL9e/9pUWmM4jrMR73belb0mtozEvPvaYrExziXpIOK9LaVsW4xPK3UieGHTr1m+jatYzMw576N9OsW5xjj1j71lFWMicwNDVZnDVtG9dPU3Xjh2T0/wCUotpaV6a+la0c88OnB2siYmMxJlkJc+lOZ1Jn98pb3rSu604hB3e26t5xj2pBFfjq39Kts845xyWvw1rx14sUT0tF6xaO1TT9i9qdkcYZoTxtXs5wvaPbpbPLh8wXGAEsZM44mVGtxKuTKC2G4hTJkF8QzEdVMtBfgzgqAtmDKpM45yDZxMTEp9H+Kn9Ycm+bzt043W+h2UrtpWvPEYKLAIAAAAAAAAAAAACO/NIjvzBIAAAAAAAAAAAAAAAAAAAACLUvasxWlJmZ7ccI/H4kG6l5i0UpHtTxmZ5RH45MpSKxwzM9szzlTSm1szjERPGZ52n8fclSqrqUjU05rPa54meUxiY5w6kWrpzb2q+tHvQUFYnKyNAMxaOWJjxkGzGYmJ7VKac1tndw6RyWzPbHyki8cp4T4gsMMxnHaDL13VmOqGMcp59HQyYiecRPpBzzHHFecpqV2Vx824ivKIj0Agto2vWtrRSLbpzzxw+SO84rw5zwj0p6xFaxHZEYWFW09at7bcTW3Sy97bKWtPZGUVqxeMT8PBHqXnyLad+Noxx6xmPxKsoq5xmec8ZXUWhGmgIMGsUaMagwawGtrzYZUSXv2Qyk45o8syCaZi+ppV8d3ydLm7vWZ1bW7K12/a6WmQAAAAAAAAAAAAAAAAAAAFNTsWjlCup2LRygGgAAAAAAAAAAAAAAAAAAAAAAAAAIu8T/AKcR1tH0pUOvMbtOvbNs/KJBQWmGKqo0BjTBhBlbeXrVnHC/sz6ex0WrF6zW0ZiUFq7qzHLx6JdG+/TiZ9aOE+kRSYtpT7WbU69sen7/AJrRMTGYnMeCVFbRiZ3UnZPbjlPpgFdaN2jaI54ymicxEx2od16/yafDrXjHy5r93mZ0KZjE4xxBIAAAAAAAAgnhrXjrifs+xO57z/8AkzHWkfTINmMxMTylfRnOjSfywq3u8Y0ojpMx75FqUAQAAAAAAAAAAAAAAAAAAAAQ6/1UyHX+qCIAAAEuh9ZMh0PrJgAAAAAAAAENuOvWOytc/Hl96ZDM47zMdaR9P6pRIwGVAZM4BW6szERmZxBe2IytTRj1tSItbpPKPx1WQRRqRPGK2mOsV4LxMWjMTmE6PU0uO6mIntjsn9fFcFBkXibbZzW3SVkGNBADBwgBW9rZilIzefd4s8ybzt0Y3T2z2Qm0tKNOOszztPOVkHLNbafC9cePZ82xDsmImMTxhy6lJ0bZ56c//p/Rs0ZFvLvF+zlb0fo1nNVdbUXd5zp4mczWcfj4JWWQAAAAABlpitZmeUNc2pfzLcJ9iPfP4+/oCs2m9t1vhHT9QGmmTETHGMqWrERmJmseE4XmcRlLp6cV4242+j0Jbg5Zm1Y4XnhHKYM3/f7nVq6UalZhyRExWu6MZjh4pLqGb/v9xx7b2+bRRWaRPOZXpfU04xW+I6YhgCSO8asdtZ+H6t8/VntrHw/VFC0Ak83Vn68R/wCpF9WJ/kifTVkMtaK+MzyiO0HRpas3nbaMWxnhylKh0NOa+3f1p5R0hMiAAAAAAAAAAAAAAAAAAMnlKun2rTylXT7QXAAAAAAAAAAAAABlvVn0OTRn/Tr6HXMZiYntcOnnTtOlbnWeHiJU0TE8p5cFnPunStOY9iZzmOxNW8TGYngMsto0tOcYnrHArpRW0W3TMxyyvkF0BsCMY2QGA0GDQAABjWApq58q2OiXu+tS+nWImItjGFVJ0tOfqx8OAsrrZOMceTmrSteWY+LZrW3OMi6h4aV507Twz7M+B5lc4zmfDil2Uj6lfksL9oN1p5Ut8eDdt7c5iseHGUrBPu1SunWs54zPWVmXtFazMlc7YzzxxEaAIAAAATETGJ5Io4ZrPOEqmpHK0RMzHPHQVgrur1x6eDd0dYBrJ4xhqs2iO3j0BJpznTr6FJjypzHqTzjovpxjTrGMcFucYkFc54tRx/p22z6s8pSIAKzMRHEQmYrEzPKDulZ1NadW0cK8lIrbX1IpHDr4fq76VilYrWMRCtSLACgAAAAAAAAAAAAAI6c0iOnNIAAAAAAAAAAAAAAAAAAAAAAArasWrNbRmJWAR1pszOZtw7UVLbqRbtnjLpck6N6Z213x2Y5/FLNWXEmnEXvmeVZ9/wCn45La1YnTm0xxrGYk0ImKzmMZnPRbVjOleIzxiY4EhaiieCTQ46fxn6ZQU0tSZ6R2zxjPw/HpdNaxWsRCSYtutmcRmeUIIndM3nt5eEdi2taZmNOOU8bej9WHKnGAMnM4iOc8GWm6cbrbp5Ry+/8AHikIiIjEcIgVhoxoAMBoxoCk811JBkxmMTyRT7E8Pq8Y9H4zCVXUjhu6fR2/f8BU/NqPQn/TiP28Pu9yRtljm07bomeWZmcOpy20Lac5pPsT4ZmPvj3pZqy4vWJvMxE4iO2OpMTW22fTE9V9Ku2mOPXip3ids0nxlM8XfVb+pPGYiOcx0Xvo12zt9mccJifxlSL1mPsTaUf6VfQQ5OeIvqexNcZjjOXUytYrGIjCzTOgAKzbjiIzLIjHx4yyZ2xbPPm2J4QxaqCYwtS8Vji2I3boZERmInqjpUtczOZjHRcHRycXea41pnrET+PkyP4oxzwk77Gdk9cx82Ujdq1jsjjPw/VKT9rqaCgAAAAAAAAjj10iOPXBIAAAAAAAAAAAAAAAAAAAA5PMiLXxW1rbpzFY+EfQ6wHNWNa3/XFY8bE6er+2s/8At+jpExdcm3W/+Uf+TYprT/1xHps6gw1zeVrfkj5qamjfFd+pmLWiMRDsR6mN+nH5vslUWARQAAGIDWANc+n7F7ac9nGvo/R0Ie8RtiNWOdefjARW9InnET6YU2Y9W0198e9MrNU1pFWNTfFN1ZzymeH0LzTWj/rifRYtTdGO3snon0dTzK8YxePWjo1GagimvP8A11r4zb7mxoas+tqVr6Iy6hU1BHdqY9ubX9Mpa1rWMViIjpELAAAAAAAIPUvascucLQzVpMzF68ZiMTDazE+np2sco1vi0stOKstOGTOa5llUXOVtOM6tfDizlxlulE21K2iJxGcy1O2uXTpAbcgAAAAAAAAAAAAAAAAAEc+ukRz66QAAAAAAAAAAAAAAAAAAAAAAAFL6tNP1p49O2QV7zG7SmvbaYj3tQeZbV164jFK5nE800zFYmZnEQDl1uOvbwxChmZ4zzniA6O723aUR+3ggvG3VtHXi3Sv5d+Pq290r94ryvHZz9AIbcIz0dWhqRERpzOJjlntcs8YbE7qxlR6GVNTVrpxmefZDj3X/APpf/wAmTxnM8Z6yYGczMzzmcyMyZUarJMsBtbWpOaWmE3+J1Jj6vy/VA2ImeFYmZ8Iygta02tutMzK+hfF7V68Ud62pMRbhmM4VzMTExzgE2tGJi/wlXKWJi9M84lDiaztnsBunP+rHjEpNecaUz0x9KOn81Pik1/4bAvE5jIyOUNUVtGYmOqlPZnZPwnqkVmInhMZQaMjhHPLN3SJn0As1HNrZmIiOHWSd0xxtj0AkV30j60fNSKRPOZn0yala105mKxHwBeLTPq0vbxiF/L1Z5VrH9p+50xyag5o0NSfXvEf1j71q9104tututP5pTgMiMRiGgAAAAAAAAAAAAAAAjvzSI78wSAAAAAAAAAAAAAAAAAAAAI9W0xTFfWtOI/HhzSIbznvFa9la7vjy+8F61itYrHKCWsllRgApqaW7M14X69fSh41nFoxP0ui0zwiscZ69jPKrPG8bp6z9nT4Ahy3JfSvT1fbj3/qrFomcdvSUxdXYzLcis2V6Y9HBsRERiIwZZkG5ZlgDRkzEc5bFJvz4V98/d+OSoacRe27sjl+Px2pSOEYgEblXVrF6Y7Y4x6WgOWJ7J4THOFobq7JtMxaIvHOJ4Z/HYpExMZhRfIrluUVZgANAGAAAyZAmWdozEzwr608IUdfdY/0t37pmUzK1itYrHKIw1WQAAAAAAAAAAAAAAAAAAAFNTsWjlCup2LRygGgAAAAAAAAAAAAAAAAAAAAAAAAAOfX46+l4ZdDn1OPeo6RT7QWY1iqAwGsGgxtPY1Py35+n9fuCYiYxIJxFpXmfYt60e+Ov3pUQAAAAAAAAAAc+pH/5MT1p9roRan8tP6z9gMbozwtHS36/aM0Z9vVjxj6IFqYAQAAAAAAAAAAAAAAAAAAAAQ6/1UyHX+qCIAAAEuh9ZMh0PrJgAAAAAAAAEOvExEakc68/R2/emAQxbg3cj1ItpTnGdPw7P0bW0WiJicxLOKvuVmRSb5tspG63uj0gvSu7Ujh7NePpn8fYnU06bK4zmecz1XaQABW1K3jFqxMeKOdGY9S8+i3GPv8AemAc+3WiPUrb0Wx9jM63/wAf/wBcOkTBzRXXt2VpHjOZWr3eM51L2v4Twj5JxRkRFYxEREdIaADJiLRMTGYloDjiNtrU/bPu7Gr95ri1bx/WVFWLaM7dXH7o98OlxzO2Yt+2Yn7/AHOxKUAEAAAVtaK1m08ojII9e+MUieM9OyETOMzNp525+H/DVagxrIjfqRTs52BJpU+vaOPZE9n6/wDCUHNBXTrWdLbMRMZnhMeMrKd35an95WCl+69unbHhPGENtPUpzpM+NeLvGkebujOJnHpbEx1h6ExExieKG86FbbZrWbdIrmV1dc0TWOcx8yLZnFYm09IjKfOn2d2n/wAIS6d62iYrG2Y51xjCaagro6t+eNOPnKfT0aafGIzP7p5pAQAAAAAAAAAAAAAAAAAAABk8pV0+1aeUq6faC4AAAAAAAAAAAAACDvGh5mLVnF68vFOA4q23RiYxMcJhk0mvHTnHh2OnV0a6nHlaOVoc0Tat/L1OFuyeyRMI1ZjheNs9exLFlUdo2Xifaik89vZ8BE8TkrExe054TyQb7RaYrMakR28lo1o+tmvpDE0isWzGYnMNyI1StrWnjXEdmea2TMA0ZkyDRmTIAzJkGjMmQaKTqVjnaPmr51OyZn0QGJcsyjre2pMxSnLnmcYU1batLVjdGZ7IgXE0zERmZxCPzYnhSs2nw5EaccJvO6fFfsBHsteYnUmOHKsJAABWZ9uKx0zIiwAAAAAGMs21/bHyaAzy6ftr8mxWI5REeiAFABFb1i9ZiVKXx7Ns7o8EqPWiY/1K845itzaeUY9Kta21bY05zPbeez0JO76M61N+pacTyiOGXVWtaVitYiIFxXS0q6VNtfjPVIAoAAAAAAAAAAAAAAACOnNIjpzSAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKampXTjNvhEc5VvqcZrTnHOeyP1UiOOecz2yluLJrK5nNrRi081gYbDTjN5npw+37hbS/jrPXj8+IlXAVkAAY1gDQBkqtmVQAAV7vmL2rPT6PxDocs2jT7xEzynhM+n/iHS1ErQFBHqacamMzMY4cPx4JAEcaNI7Jn0ykAAABjVNSImvHs4gpqzxjHHgtWYxVkUiJ+GEdZmLQ531uTYmxGZlHevHPVKj1fVj0ok7VjVtEY4T6U1bbqxKG2njGF9KcTNfi3KtkzxnecTWkY+t9knd64punnb6Oz7/itqaUak1mZnh2dV2mGgAAAAAAAAAI49dIjj1wSAAAAAAAAAAAAAAAAAAAAAAAAAAIb8e8Uj9tZn7EyCf95//L+0EoCKAAMaxAABrJiLVmJ5TwaKOfSnNIiedfZn4Lq4294tWOVo3fYszWoK2maWjUiOXP0LAJonMZjk1z6NtlvKnlPGv2w6G2AAAAAAAABWaxbnESsy1orWbTyiMg55mZ1b0ieFcc+PM06ze96zPCuOXizRzNZvb1rzlbQ/m1fh9DP611EldKkdmZ6zxSMa0yAAAAAAAAAAAAAAAAAAAAjn10iOfXSAAAAAAAAAAAAAAAAAAAAAzkiv3ileXtz+VTXtN9TZn2ax7UdUU1xyBa+tq3zGYrHhzUiIic856zzaAv3f19T4Qd6tjT2/uk0OG70q95jNaz0lREAisnil0r8PLv8ACZ+hGyRFtTTnTnMer9CmcTjs7HTp2jUpx58pc+pTbeaxyjjCjMs45iMx6ZYA6P8ADanWs+if0Z/htXpHzV0te2nw9avSez0OmveNK2PaxPSQc1u76la5nbzxzSV7pb694j0J9aN2jaaznhmMeCSMTxhBzR3elNSvO0Tnmn9nTrMxEViOkI9fWrpxwmJvE5iPx4OXV1ravPhHSAZq3nU1Jt2dnoUBRbT1PLn8s802tGabo7HOn0rx5UxafV5gzRru1o6RCXvEf6Mx1mI97e76eymZ9aebNWc6lKxyjjP2AAAMlrABjMcecgrWczb0rKWraJm2MTHbHb6SLxMZmMIJIZeu6NvWYgiYlanHX047OM+5R2AIAAAAAAAAAAAAAAAAAACO/NIjvzBIAAAAAAAAAAAAAAAAAAAAhteK31LzyiIj6Z+1M5NaJtOtWYnERvz14cPx4AnieHGMS1WJzLWVaxqlM2tN55cq+j9fuBZore2IxHrTwgFlNTTreMTGW1jbGMzPjLQQzpR2TaPj9+WeVaM+3n01/wCE8xEqzAItl47Yn3feyKX7ZrHwSgI/Lt++PhH6tjSjttafd9GFwFNPFLTTGJ556wurqVmYiY9as5haJzESAAAADntT27YtOY5ejmrE54TGJhLfhqR4x9H/ACpeueMetArBkTmMtVGmWAq2TKog3JlgAAoJe66e63mTyjhX7ZR0pbUttr8Z6R+OTurEVrERGIgStAVAAAAAAAAAAAAAAAAAAAAFNTsWjlCup2LRygGgAAAAAAAAAAAAAAAAAAAAAAAAAIJ469vCIj6U6COOrqT+bHugGgKoxoDBoAADLRnEx60cpSad99c4xMcJjpKitomJ309eIx6Y6IOgU0711K5r8YnnC4gAAAAAAAA57z/+VEfk+10ILR/+RM9KRHvkFldD+bV9MfQsaP1562+jEfYKlAEAAAAAAAAAAAAAAAAAAAAEOv8AVTIdf6oIgAAAS6H1kyHQ+smAAAAAAAAAAARzo0m02xiZ7YnCQBDPd62nja+OmeCSlK0rtrGIWAAAAAAAAAAAAAAAR61d+lavbjh6XPWd1YnrDsceNt70jsnh8eKxYTGYmOro0LbtGszzxiUCTu84318c/P8AElKnARAABB3m2IrT90/R+ITuTvM/68R0r9oCtpiOec9IZErZaaUjzJ6RHj+jaReszManPnwhYTBu6/77fKPuZu1ezU//AEw1mTILRrWj16Z8a/cv3W0WrqYn68yhmWcrbo4T1hMTHcpqXrp1zb4RHOUNe8TFdsxnU7Mdv47V6afHfed1+vT0JfEMX1ON521/bE/TP3LVrWkYrERHg1k2TVah1vW05iZid2Mx4r7kcf6mtHSn0/oCfSvvpEzzjhMeK6DuvGl7dlrzMJ2kAAAAAAAAAAAAAAAAAAAAZPKVdPtWnlKun2guAAAAAAAAAAAAAAAApfTrqV23jMLgOO2lq6UzjOpT3wVtF4zE5h2IdXR3TvpO2/un0iY57afHNJxPTslHe0zEUmJrMzhLvms7dSuyfHlPxWmItGJjMBuIo0qxyznrkit45ak/HitNbV9Wd0dJ+8raJnbPC3SRfKZ1I+tWfTBu1fye9fa3EKuRHu1fye83av5PekxBgMiKZ1etYP8AU7dSP/FLgxAZEONT/wCnuNk//S/zTYhm0MR7OGJtafTLPLp096TazEhjIrWOVY+TZmIjjwUnUjOKxunwbGnumJvx8OwLcZXfbU30nbERjPVeKe1utM2t1lYRjQaCMGqTfM4pxn3QK21tscOMzyhXTpNYmbTm0816145njPVbAK4bELYaIrglZmAVGypacXrHXINAmYiMzyAMFImeMxiOyF8AzDJWZIKgAd1vsvbRn01/H47XW4dTNdupXnSfm7azFqxaOUxkajQBQAAAAAAAAAAAAAAAEdOaRHTmkAAAAAAAAAAAAAAAAAAABW960jNpwCzJmKxmZiI8UFtW1vV9mPf930qYzOZ4z1nimribz9PPrZ9ETJ/iNP8AN/4ygmBNXHRGvpz9eI9PD6V4mJjMcXIzbGcxGJ6xzXTHai1b4xWs+1PujqhjU1K8rTPZETx/X3rVieM2nNp5yWkjYiKxiI4NBhoAFV1PUt4xhMh1P47Y544JYkZqwwVlowBowBrBkyDJYAAAItWInUp45z8k2haZptmeNZx9yHU46tPDPvJzFotWcTy/H47V1c8dYh09bMxW8YnsmOUpmmQAAAAABnNoCleXHs4MtSJ49razmM9eLXOqMmMkzEEziMoMvMRWWaUZ9r4QribccTMJaRNaxE82uMW9LANsgAAAAAAAAACOPXSI49cEgAAAAAAAAAAAAAAAAAAAAAAAAACGf91/6famQ7qz3nETxisxPuBIAigADGsAAQaMaoi1oxbTtntx84/Qb3jPkzMRxjE/JiVYAI0reu+uM4nnE9JS6N/MpmeExwmOkqKTaNLV8zjttwt9krGbHUMa0yAAAAAAObvNt9o0onxt6P1Tal66dJtaeDmpE8bW9a05lKsSwd3421bfmx8oViYiszPKF+7R/oxMxibTNp+KRamAaZAAAAAAAAAAAAAAAAAAAARz66RHPrpAAAAAAAAAAAAAAAAAAAAAcmrGzXtM/Wxj4KzOXXelb1mtozCGe6V7L3j4ghE3+Fj/AOlmT3W3Zqz/AOII9Cfb1I9C2vGdG3hxVtpz3e8XtbdWeFpxy6JpjMYlRyDaxiJrPOODdqCo2YYKvoTjVmP3Q3vMYtT4q6X89Pj9C/eudPiI55jthi7JrnjHNRUO3HaAzENwAAAAACbu2numbT6sTy6z+iGeWYd2lWKUisdgLWtFazMziIQxmczaMTPNt53XnpXl6WcgayJj5NryzPbyZakW48pjlINZlSbTT1+X7uq0TnkDWDQZbhSZ6QjrGKxC2t6sR1nCtpxEoLVpa/Glc8cTOeTr0tKNPM5zM9po02aVa4xOOPpSAAAAAAAAAAAAAAAAAAAAAI780iO/MEgAAAAAAAAAAAAAAAAAAACtqxatox60YmVgHFo2xbbMTHZ8Yji6c8G3062rMYiO2J6T1Qxac7b8LR2dfGEqpNSZik45zwj4rViIjEcIhFqT7Mf2j6YSwg1WY9rPg1lZ3Vi3ZPGAaxYxwBgAMwyYWlgKMrPDHbHBaeaPlrT0tX6P+QXZE5mY6ThqOk/6mpHjH0AkAAR2vjvFa47OfplIg4Xm89kziPQCmnn2emJn5pWRGIiOjRUdo22z2T9IvaN1ZhHE5iJBrGigAAAARW1rbaxmZ9zaUtqTinLtnsh2aenXTjFe3nM85EZpaddOuI5zznqkBUAAAAAAAAAAAAAAAAAAAAAAU1OxaOUK6nYtHKAaAAAAAAAAAAAAAAAAAAAAAAAAAA59P19TP75+iHQgj+XUjHbE+6AaNmGKoDJnGPTgGgAAAAArMTW2/T9btjst+OyUunqV1K5rnhziecKK2rOd1J2369UHQItLV38JjbeOdZSiAAAAAADnrO7U1J/Nj5RCe0xWszPKOKDSiYpG71p4z6ZCLN7vnyazPOcz85yj1bTWk49aeEel0ViK1iI5RwgWtAEAAAAAAAAAAAAAAAAAAAAEOv8AVTIdf6oIgAAAS6H1kyHQ+smAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc2vXGrFuy0Yl0o9em/TmI9aOMekEBW2zVrbsn2ZZWYtWJjtLRFqzE9rTTsEWhqTentetXhKVlkAAcveYxq1t1jDqRd4pN9KcRm0cYBytZE5iJrGc8oSRpRPr8fDs/H4wtuNIt8ZxHGekcW/6s8tP5yniIiMRGI8Gs/SOfGt26fvZvx60TX0w6VbWrWszbkaIhevd7TTdE7Zmc7ez0fj5I6xv1I05/wDZrTU+hSNsXmOM8vQlFLS5jZsqwBlt08I4R2yradlNtIxaeFYWmYrGZnEQ3QrN58y0Y/ZE9kfqsE2nSNOkVjlELA0gAAAAAAAAAAAAAAAAAAADJ5Srp9q08pV0+0FwAAAAAAAAAAAAAAAAAAAQd7jOlET+6EE0vp+p7Vf2z2ehP3v+OJ7ItGWDNRU1K34RwnpLbVi0YtGVr6db+tGVJpqV9S26OlgV23r6lsx0s3zcevWa+PODzMevWa+POFomJ5TE+gXa2tq29WYlZFOlSZ41j4N2R2WtHosL9JBFFLR/2W+Ldk/vv8/0U+okVtatfWmIU8qJ9abW9Mtila8qwh9M83PqUm3jyhm29/WtiOkJATaytYrGIjDQGRqnm0ziJzPhxZvvPq1x4zIqRS2rWOEe1PSFdk2j27TMdOTY2xWZiIiIBm2+pPtztr+2EtaxEYiMQzTiZrunt5QkEZgABrGgAArKPU4X058cJEWt9T+0AvKtIm87p9Xsj7SY332/Vjn4peQCt7xSOPwiOcq2vMzinxsrtiJzznrIE6mpOZiIrHTnK8W3Vi0dqhpepjpMwKuAITGYmJ5Sv3O0+XNLc6ThRuhbb3i0furn5Cx1ADQAAAAAAAAAAAAAAACOnNIjpzSAAAAAAAAAAAAAAAAAAj1dTZEY42nkDNTV2ztrxt9HpQ8ZnMzmepEY+1rFrcmMzHLPHoZjx+R7jArMxPKYkJpn60+77jbHbMz8fuBnIznlx9DYrEccRnqT7Vor14z6AbpxM+1PwSwxblCCoAACKrbo3Tn/AE6+iGdrdP8Aip/WGozV8tyqDK+RRuQWFcsyDZlgAAAAAjnjqTPhEfj5twynHNus5XStxS0cMSl0tTPsWn2o5T1hWYyrMZjniY5T0WXEs10iLS1N/s24XjnHXxhK2wAAAAAAjiJiMY5FrxWOOfkvMxETMziIcmpqTb2pjhHq1/HazYsW8zK9Im+M+rHvW0tLbSN8RNuc+CQnFby/g0GmQAAAAAAAAAAABHHrpEceuCQAAAAAAAAAAAAAAAAAAAAAAAAEF7ebmsep2z1/T8cgZe9tWMac4r+7tn0fezEac6eI4VnHz4fSureu+k15ZZ1rEwj09TfSJ5JMqgAASMyAMyZQaZVyxQ1Jjy7Z5YU04mKxu5/QW9q8R2V4z6fx9i8QlWMGzDEaGTETExPKWgM7vqRWfJtnMernth0OXViY26lfWpOfT1dFbRasWjlMZajFiwCoAAK3tFKza04iEV+80rO2vt26R96Gd2pO7UnPSscoBtpnV1N9oxWPVr9srMJnEZZaU1uNYpHOfp7Px4OyldlK16RhzaVM949qMzSMz0z2e73utqJQAQAAAAAAAAAAAAAAAAAAABHPrpEc+ukAAAAAAAAAAAAAAAAAAAAAAAABW1YvWa2jMS5a507zpWnOOU9f+HYj1tKNWuM4tHKY7AcurWYtviJxPrYZExPKcpItMWml8RePf6FbaUTxr7M+4FWTBO6vr1+McjMTHCQNP+enx+hJ3mPZrPSUUWimpS08ol0a1JvpzWOfYDlWwrE5hZQmImMSpNOk/BcBFiekmUksyCPMdWr8OkNBSImez5rRSO3i3K9dO9uONsePMFJxupE9XU59WkadItGZmLc5Tgi05zTPWZ+ltoziOss0v44z4/SvHMGtY1QwivWtJ3Rw6x1TTwhBrfx2QbaZjsmY7cNi0T2tRTnUrmeEdnAG3mLakYmJiI96+jWL61Yn6vtIqxsjE/NN3Wf9e0daoOwAAAAAAAAAAAAAAAAAAAAABHfmkR35gkAAAAAAAAAAAAAAAAAAAAAAUvSupGLZ4cpjsXAcmtv06znjEYmLejqnicxleYzGJ5OekzSZ05+ry8Y7EqpYlTR/ip/WGxPFmlPCY6TMfd7kEmeBlkTkBuWsAawZM4gFZ5qT/LX+s/YspXjqWt2co+38eALqU431Jjrj3LWttrM88djNOs1pGec8Z9ILBM4R21JnhT/y+7qBq24baz7U8/BWIxGIIjEfa0UBiDUUc7RicRPPHBKv3Wf9TVj0LCoMxPLiO22nS05tSsz1mGeTpf8Azp/4qmuNmYzjPHo7fJ0v/nT/AMYXisVjFYiI8A1xV0tS3KuI624fr7k1e7V+vO7w5Q6BUZEREYiMQ0AAAAAAAAAAAAAAAAAAAAAAAAAU1OxaOUK6nYtHKAaAAAAAAAAAAAAAAAAAAAAAAAAAAgvO3vEZ5XriPTH/ACnQ944ae+OdJz9/uBZVZkisV1PVj0x9Kymt/FZRbd7e3wzLVdPOMzGJn3LgwAAAAAGWpFueYmOUxzgrrTX2dX0Rbsn7mkxmMTyBMOeK2p/HbH5Z4x+n44L01omYreNluk8p9CIlAAABD3iYmsafbefdHMViY1NSbxyj2Y/H45LiqxG7WrH7fa5fCPt+SdDocazefrTw9HZ9/wAUwgAAAAAAAAAAAAAAAAAAAAAAh1/qpkOv9UEQAAAJdD6yZDofWTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5NWvl6v5bcY9Pax06lK6ldtv+HLxreaX59k9YWLD2q230nFvpdGnr0vwztt0lATETHGMhjsHFFNvq2tX0S2d+P5L/Mwx1WtWkZtMRHi5795m/DSiYj90/Yh2xnMxmes8WhjIia2i1eOJzMT2pq6lL8p49JR6dJ1rYrmK9tvudcadNkU2xtjsSwRCPvGlGnEXpmIziYyhmM88z6ZTBNfWpXlO6ekJdPR4xbUndbsjshyYdndb79GM868FzBM5q4/xerw44h0ufV05rrRq1iZ7LRCVEkqStmLRmsxMeClrRWM2mI9LKtVtatYzacETe/8deH7rcI++UlNGsW3WndbrPZ6FwU09KdT2tWMR2V+/wC50A0gAAAAAAAAAAAAAAAAAAAAADJ5Srp9q08pV0+0FwAAAAAAAAAAAAAAAAAAAQd8/wBtf4fSxJr13aN4xnhKHTnOnWfAZqwKW1YicRE2t0jsEWmFLadLc6x6VZi949q+PCvBbTmZrMTxmJwCvl2j1b2+PE/1Y/ZKQkVHvtHOk/Ccnm/kv8m2mI4zyAV86P2W+R5tuzTt8VmgpF9Sf+vHpknzetYXYCsVt9a9vhwbsr0z6eLRQ8ABC04rM+CsRuvXT7Kx7S0zERMzyW0a7a5n1rcZRUgMEU1L7ZiIjNp5KTXd687voW1IxaL/AAlgq2jP+nETzjguj0p9q8eMT7kgjWS1WQYh7zMxWuOuUyG8RfXpSeUcZFiXTrtpGefare03zWOFeUz2ylQViaTNJ7BFoiIjEAyRQ0uVo/Mw0/Wt8ASACDInGvpTPWY+bVNWcbJjnF4FjuAGgAAAAAAAAAAAAAAAEdOaRHTmkAAAAAAAAAAAAAAAABW1orWbTwiHNmbTNrc593gvq33W2xyrz8Z/T6fQqza1IAMtAAAwyDWafGbW6ziPh+JVtbFZmF6xtiI7IUSQ2WQTKDABRWZbMqiFpxWZ6QvpxjTrE84iEcxu9nrz9CZWawAQAAAAAAGsAVvOIx14LTMRGZR85z8hYtHJoI0AAyYnhNeFo5JaXi9c8p7Y6IyLbLZnlPCfs/H3LKlicBtgBW1619a0R6ZBZW1orGZnEI7a37Iz4zwj7/xzQ2tmc2nM9n6fj0pq4tqam7jPCvZH4933mhSb3325Ry/Hh9PoV06TqX49nPw/X8enriIiMRGIghWgKgAAAAAAAAAAAAAAjj10iOPXBIAAAAAAAAAAAAAAAAAAAAAACtrRWs2nlEZBTVtM28uszE4zMx2R98siMRiGaUTt3W9a3GV2a1FRssRVK+xqzXlFuMent+9Ij1I3RjtjjE+K1L765xie2OipVzLGqhlgAGABg1H3idujefDAN049nd224yuQIpKrZYigApPJFp686Vp05pM1jjGOzKSyHU4alLdeErGan/xVO2l4/wDVk96r+zUn/wBUYupi1u83t/Hp48b/AHKW36kY1LzMdI4Q0NXGVrFYxEYhoIBW0YnUtjbX1fGfxyZFfMtMfVjn4+H3r6dfOvFpj/TpPs+M/dCpal0KTWmb+vbjZKCoAAAAAAAAAAAAAAAAAAAAAAjn10iOfXSAAAAAAAAAAAAAAAAAAAAAAAAAAApqaddSMWj0T2w451J09S1be1WJxuiHXrXmlMxjdPCMuTbiMc/SCWJi0ZicxKLU08e1SPTDKz5VvyT7nTVRxz7VfSm0tabUxPrRzV1abLzjlPGEWJzms4lBJfTmbbqYie2OxkzifaiY8exsauPWifgtFq34RMT4AoLW04514T7lKznnzjhKhLGywGNgZPCJBL3em+83n1a8I9KbUvFOHOejNKI0+7xPhmUOZt7U85QZfOp60/CE2nbdp1nwRL6H8NVGU4XvXsifpXUr/Lf4LSDctiVWg20otTjin7pXtOIzPYj0/atN+zlAN1Z9nbHOzVa+1M368loQZhfQr/8AkRMdleLOkRGZnhDp0tPy6YnnPGfSCQAAAAAAAAAAAAAAAAAAAAABHfmkR35gkAAAAAAAAAAAAAAAAAAAAAAAARa1JtEWp61evb4JQHNS8XjpMcJjoyZ2akdL/T+p3msxqUvThacxM9fSyLxau28e106+hFSROJbuVpatq5rOY6tQbM5bEqtjgC0yrM5lgBPLgjp7Vt0epHCPHxbP+pwifY7Z6/ora+72acK9Y+wGX1Ym84jdFOzx/QnWmaxFYzacZnozEbcRGIKxEVxHKBcMTPrTnpHT7/S0JnETIDWNQGAAk7rHt6k+MfQjTd15Xn832QsSpwGkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAU1OxaOUK6nYtHKAaAAAAAAAAAAAAAAAAAAAAAAAAAAy1YtWazymMNAc+habaUZ9aOE+mF1KRs1dSvju+awopr8NK3oXR6/8U+PBRasrKM3zFtsRm3SEEjN0Zxnj0hnlzb17Z8I5fr+OC8RERiIwDBoowaAwABlqxaMWiJ9LQGVm2nyzevSZ4x+PH5pa2i9YtWcxKNX1LTesce2Ov6/8IOhHq24bKzi1vdHX7vFltaldOL5znlEc5VrE8bWn2p5+Hh8BGxERERHCIZaJtikfW5+EdrZmI5t0azib2jjblHSBUkRERiIxDQEAAAAAAAAAAAAAAAAAAAAAAEOv9VMh1/qgiAAABLofWTIdD6yYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABTU066lcWj0THOFwHLbT1KTwjfXrHNTdHLPHpLtZNYtGLREx4rq65CZiOc4dE6GlP1Ij0cCuhpV5Uj48fpNNcsRN/UrNvHs+aWvds/wAk/CHQ1E1kRERiIxDUU6+lWcTqQ3ztPbui8THpBTveP8PMdZiI+blX1r21LZmMRHKFFUdHcv4rf2n7HM7tCk00a1nn2lKkARFLaVLTm1YmepXTpT1axHohcAAAAAAAAAAAAAAAAAAAAAAAAAABk8pV0+1aeUq6faC4AAAAAAAAAAAAAAAAAAAMcfd8xW1J50nDtcfeYnT1d1P+yMeiRKy9pvbZScRHOY+gisVjERhtKxSsRHJsiMVr/JPjH0NVzi9Z8cCJQAZKmJry4x0SMBlbRbk1W1It1iesc1bTenGfar29RV2MrqVtyn4LCMG4FGDWAy3tTWn7p+hJa9acJnjPKIQbpnW9ns4Z6Ja0ivLnPOZ5opNtS3LFI8eMo9SNtZtm0zHKZlKj1OOK/umIBPzjiinStHCtox49iYEU06bInjmZ5yuAMZLZVAR6UbtW9/hDda+ynDnPCFqRFKxWOwF1NWsz7VecdnWFsmQRRaJiJjtZLb1xMzTt5x9ymcxkVrdP159CszERmW6XG02xwxiBEoACPVn1P7QkUvx1tKPzCx3ADQAAAAAAAAAAAAAAACOnNIjpzSAAAAAAAAAAAAAAAMtaK1m08ojLVb13UtXrEwDlpPsxnn2rI6zurErMOiwqA3LMgAADOcxHx/HxwtecUtMdkK142menD8e5cRZqkcIblFWVmWTPHqAEzhmeyIzK9a4nM8ZVLSlduZnnPNdjRlgAAAAAAABMxEZnkpfUrTP1p6QpviZzafRwxECrzO70fj8fjhgI0uMiWgArM4BZW+NvHlPD5rZUtxxHiDdLXtOlX2czyzM81p1bzHCKx7/uQaWY06tm0dePRrazkXm1p53n0Rw/X3qxiJ4Rx6s4z2Y9Jt68Q2Ruc8iInMRHG0/j5fjm2Im04rGZ+hPp6ezjPG085WRLW0pFK4j4z1XBUAAAAAAAAAAAAAAAAEceukRx64JAAAAAAAAAAAAAAAAAAAAAAEHepzStP32iJ9Cdz6/8+j/7fQCRkyzLMst4ZZMsmWICs5i26nPtjr+OxYUXpeLxmvy6LueYmLbqTEW+lJTViZ229m3Se30KyuNYAAAj7zw0LT6PpSqatd+navbMA2JMq0tF6RbrDWWgAUBkyDJlHqxnTnHOOK7LRmsx1hUZE5iJ6iunOdOvoWEAZNojxnpHMGsiJvy4V69fR97Y05t6/L9v3re1edun8bdkfqqaRSbf6dI21+tPTw9LorWK1itYxEcilK6ddtYxCyoAAAAAAAAAAAAAAAAAAAAAAAAjn10iOfXSAAAAAAAAAAAAAAAAAAAAAAAAAAAg71Sb6Wa+tWcwhzF65jk7XHrafk23V/jtzjpIKTGYxKTu9uE0meNeXoUIts1K2jtnE+iQX7xXNYt0lA69Sm+k16uOJzGQayYiebQVunaazFZ4xPKW6kYvFuvBSeXDnHJLjzNOM9sCI5YeE845igzG61a9Zw1L3aIm9rT9XhAJNecVisdv0IVtWd2pM9ODIiZnbEZkGTmeFYzM8k8V21iI7G6enFOPO085V1L59mk8e2egKVj2rT1lts44c21rFYxHJswCLy687cZ6lo21mazMY8VmX5R6QV2WtjfbPhhtIm+pXTtGIt06LRHHJxiYtXhaOUglv3aI/j4fllHsvnGyc9P15Oql41KRavKVkEWlpbMzac2nt+xKAAAAAAAAAAAAAAAAAAAAAAACO/NIjvzBIAAAAAAAAAAAAAAAAAAAAAAAAACHvUZ0t3H2ZieCCYi0ceLstEWrNZ5TGJcVeEbc52zj5JVjIpMTOLTE88ptO+7MWjFo96Nk5zE14WjkiujApF90UmPrTiY+H6ItTUmdSMcYrbGI7Z/H3iJrWisZmUM6sWicx24isTz9P46828ZndbjKs6cTGPHMhi9rbuFeFesdv6M5NYKK6cY06mpOKT48FJzaMTwjpALzesduZ8FtKtta0x6tY59syixjk6O5+tqeiPtXEUpnbGefatgvXy9aY7L8Y9PaM1YzAswVibusY05nraZ+z7EOE/dpzoRPjP0ysZqUBpAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFNTsWjlCup2LRygGgAAAAAAAAAAAAAAAAAAAAAAAAAAA57/7r/0+1Y1v5dOc9YBRD3m23TnrwwmQakedqRTsiczP2AVmdXGzhHbP2R4p6UrSMVjEFYisRFYxENAAUAAAAYAAAAy1orGZ+UdrQEVNLGpOpaIiZ5RHYlFL2nlEZmeUdQZjzdSKTHsxxs6lNLT8umM5meMz1ldEAAAAAAAAAAAAAAAAAAAAAAAAEOv9VMh1/qgiAAABLofWTIdD6yYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABBNvNvaPqV4T4z+idBoxjSr80oXtGlpzaIjh2QgivHdMRunwTa9ZtpTtjMxxiEVLRaMwvFSYZtWKROrOKcu2zSs09LzdTHHbXnP2O1WlK0rtrGIWZZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZPKVdPtWnlKun2guAAAAAAAAAAAAAAAAAAAAh71TfozMc6+1CYBx0turE9SVNttLVtp1jMc49DZm0c6W+Qy2eSmlG++/sjhDZi2pO3E1r2zPBLEREYiMQIAAAAKXttrM9vYuzQrGrqeZPq0nFfGeosX0+66flxGpXNucyrbu16/x6mfCzqBp5831K2mttPMxzxJGtXlaJifFP3ik1t5tY8LejqjkZqsalJ+tDd0RGc5iDZX9sfJFrUrFcxGJyok0oxSM854ykUjhER0blBsq0jdr57KR75a3Q9SbfunIJQBBjVZkCWCmrfbXEetbhAItWd1ptHKnD4p0NqbdGax6UtZzWJ6wK0AQUvpxac5mJ6wuApGnWOM8Z6yuAAACunG7vdPyxMys3uld2pqavZ6sCx1ADQAAAAAAAAAAAAAAACOnNIjpzSAAAAAAAAAAAAAAAAA5dXS2Xm9eVp9/6/p0UzjnEw7LVi1ZiYzEue1ZpOJ+E9f1SxZUcTnkZiO2F+fMTF1TPDhx9BxxwiZXA1TFvCPe3bE8+PgsCarTjmfGfuWVpGKR15rI1ABFGWnGIjnPJrIj/AFM+E/Z+qpTy+3OZ6zH3YWzaOcZ9E/8ADRWTfEc+Hpgi9bcpifRIyaxbnET6QXyI5rSsccVjwnDIis8t9vRMyCUV23mOFcemY/VsaNp9a+PR9/6GDcsm9a85iPSR3amJibXnxmzP8Pt9SY9Exz+MfcuDJ1P2xM+78fJWZtbnOI6R+PubNLxzpPpjj+vuVmYjnw9PAxGRWIjEZg4+ErAuqR7PKJr8MtjU61n04WExdbnMZhsSpXhMx8fmsy1FssniwAZacVtPSGsvOI+MArsjEZ446rLV0727NsdZ+7/hJXRrHre16eXy+9tzQxm3CsTb0JK6Ez69vhX7/wDhM1RWtYrWIrGIjsWAAAAAAAAAAAAAAAAAAABHHrpEceuCQAAAAAAAAAAAAAAAAAAAAABzd54aujbszMfN0otfT83Smsc+cAj3MyrS26ufnHRZlsAAAAZasWjExmGq78zikTefywBXfThWYmvS3Z8VvPiPXravjzgjT1Zj1a19M/c3/D6k/wDbEeiv6qz4vW1beraJ9EtRx3SPrXnPWsRC/kzEexq2ifHiI1quzVj61LemMff9DLebHLSi3ov98CoseXqTXstxj7lsq6s6t648i0TnhMTyKWmcxaNto5wlWVfJlgKZAAABDp2iK7c8YmYwvG6eVJ+PBmlasb8zEe1PNfzImYisWv8A1jKs6yNO0zxtiOkff+jf9PSzPKZ+crxp6t8brRpx0jjKSmlSk5iM26zxlURVpfV5xNKf/qn7k9axSsVrGIjsWAAAAAAAAAAAAAAAAAAAAAAAAAAARz66RHPrpAAAAAAAAAAAAAAAAAAAAAAAAAAAGTETExPGJaA5rd1mJ/07Yj9s/ejto6sxMeX8ph2gOfStu06z244+lBrUmupn6tvdJbUrpd41MZmsz7U9JTzNb17JiVHNtZhJOnNY9njHSeakWiZxynpKDCt9k4n1Z7ei0wrIL2rXUjMTx7JRTFq+tHDrBtjOeXoNkTzmZA3RPLivo3mszWeEzOVYjHInExxBelbWvaI7ZznpDorWulSfnM9Wd3rt0omeM24s15zetOntAra0358K9CIGxKizDIorLJiJxnsnLbK1ndEz2Z4INAAredK26vGJ9aOrrraL1i1ZzEuQpedGZmIzSecR2egHaK1vW8ZrMTHgsgAAAAAAAAAAAAAAAAAAAAAAI780iO/MEgAAAAAAAAAAAAAAAAAAAAAAAAADk1a7daeloz9/2OtB3mua1v21n3TwBCLYZhhtS0Wj1eu7HiUiIm0eP2L4ZWP9S3oj7V1BrcGEVVphgimpObRX4sZPG9p+A0jU/c446k9nCPpQRE2tFaxmZd2lpxp0isfGesqM1qb9OYjnHGPSgicxEx2p9e23RtPbjEIIjERHRmkawEaJmIiZnsdGnXbp1r0jDnmJtMViM7pxPo7XW1GaAKgAAAAAAAAAAAAAAAAAAAAAAAAAAAAACmp2LRyhXU7Fo5QDQAAAAAAAAAAAAAAAAAAAAAAAAAAAQ63r6fpn6JGa2fP0sdmZlosZadtZnpCujXbXjxmeMs1uMRXrP6ticAkGCjRgDWAAAAAAAADJnAFpxCuhO7WndHHGa+jt+xSZ36m3srxlas47xp+MTCDqAEAAAAAAAAAAAAAAAAAAAAAAAAEOv9VMh1/qgiAAABLofWTIdD6yYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABBofw1z2cPknQU9jUvTx3R8f1Si6O2jWZm0Zrae2O1KMqijQj61pt4TybbOlM6lY4fWr9vwSC6LRMTETHGJag0f9O86U5mOdZ8OnwTtIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyeUq6fatPKVdPtBcAAAAAAAAAAAAAAAAAAAAAEHeY2xXVjnXn6JYntEWrMTynhLi0bWj/AE7dM18YEqaWK767sZjPRoyAAAre0UrMyCutMzEUr61uDr06Rp0iteUIe76MxPm3j255R0dI1AAVjk1dPyeMT7Ez8v0diHvFLXpG2sWxbOOoIInMZhHqT7dInlzTV7rbnvis/tiMwrWk+deL4nbGBnMYNtS1fV9qOnbDIpqW54p75Bl5xXHbPCIT1rtrER2QpTSis5mZtbrKQAGTIhMqtYBy4yro6Ua9ral4nbyrHJkROvqTp1nFY9afsdkRFYiIjEQNRBbutJriJtX0ShpE03ac8ZrPudzn7xp4nza9kYtHWAqgAyAAAAAArqW20mfB0d3ps0K17cZlDpV83Uz9Wk/Of0dY1AAUAAAAAAAAAAAAAAABHTmkR05pAAAAAAAAAAAAAAAAAGTETGJjMNAc99O1eMe1X3x9/wBPpVjjydSltOl5zNePWOE/NMEAk8ivZa0fFsaFO2bT/wC33GKiVtMT7ETGZ4Y8HRGjp/tz/ac/SiiIm9piMRX2YiPf7/oL4T1luFs9k8JF5jMYUiJjhnh6GGwADtwUi1tSYrEcIjOZ9PgRGPSvofyX9ER9KxL03y7z21j4Z+48q3bf/wAYx9OUw3jCLyY7bWn44+jC0aVO2ufTx+lcBWtK19WsR6IWAAAAAAAEc6WnP1Yj0cPoVnQr2WtH48UwCDyLdl4+Nf1PIt++v/j+qcBy307UtW02ic8OEY8evgJtas2rG3jMTnHVBExPJmtRs57J+cMzMc4aRW1ozWYiOzMc0k1bcZMzjhGfc36eZHFk7tu/Hs4z446/j9DBPp6kXzExi0diRy13b4ms4xH3J6Xi+Y5WjnDcZq4AgAAAAAAAAAAAAAAAAAAAAjj10iOPXBIAAAAAAAAAAAAAAAAAAAAAAj1NXbwrG63SPt6K2vOpwpOK9tvu+9FET5ltPT5T7U257fvBW1LUtvzE7p9qI4fL8cVonJfNbbb+1E8pxz8J/HFX2azz97LS4AoDJtEc5iPTIKXibXrE8KzaImOrtrWKxisREdIcdZnV1KRpxMxFomZ6O1YzQBUAAAAEWto+Z7VZxeOU/ZKUByVmZ5xiY4TDV+8VxMakRM9lvR1+CjNagAKAA3u2lSd9rViZ3c5h0OfStGlad0+zbjnpP6uhphoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI59dIjn10gAAAAAAAAAAAAAAAAAAAAAAAAAAAACLX1PLpw9aeEJLTFazM8o4uK1p1Lzefh4QDIjhx4zPPxVjdp+pxjpK4Da61Z4T7M/mXtStucRPijrWdWdtYieszyhJOhbSrnTmbRHOs/YCK2navqzujpPNHnLrpNb1zH/CHXptmLRwieE+kEQAoW9WfQFvVn0COzT/AI6x4Qj1f5v/AFj6ZSafqV9CLV/nieya496jBoAZAGW4xiOc8Ib5OrSvGItEft5t0I36/WtI97rQcO6M4nhPSeEtdV9Ot4xasSgt3e1f453R2xafoUVbhSJzOJiYnpPCUkApXdpW3U5dteyf1dVL11K7q/8ACHClt1Pb0+ExzjqDsGROYieTUAAAAAAAAAAAAAAAAAAAABHfmkR35gkAAAAAAAAAAAAAAAAAAAAAAAAAAU1ozo3jwldXUnGnaekSDmjjGWsrGKxHSGsNisfyT6I+1ZSvr2n0R+PmC7GsAZaYrWZnsapq8cV68ZBHEYjiLYX0NPzL5n1a8/GWmUvdtOa1m9oxaeUdIdAj1dTZEREZtPJUU17RNopE8uM/Z9/wUZHjxmectYrUBjLTOMRznhHpFS93jM2v/wCsfb+PBOrWsVrFY5RGFm2AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFNTsWjlCup2LRygGgAAAAAAAAAAAAAAAAAAAAAAAAAAAgvEz3mZzwimPnP6EzhlZ3X1J/Nj5QyZzIqmrbjSfzLo9afYx2zwbp23Rx9aOYJIlZQyouK7m5BoAAAAZhm4GmcKbpAbNmAgrWJzMzzmfc2nHvNY/bWZa3u8btS9+nsx9oOgAQAAAAAAAAAAAAAAAAAAAAAAAAQ6/1UyHX+qCIAAAEuh9ZMh0PrJgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEOvXGNWOdefjH6c0wCGLLZRWr5M8P45n/AMf0WZVJlXfttEX4Z5T2T9344q5llo3Vms8pQNadu3Uj6k+6XQ45tNtC8TxmImJdjUQAUAAAAAAAAAAAAAAAAAAAAAAAAAAAAZPKVdPtWnlKun2guAAAAAAAAAAAAAAAAAAAAACPXv5eja0c4jg5Na1LbPLnN4xFcO61YtGLREx0lza1bV1NLytLMVzOI4RkFp0azpxS0Z6z4oqzNbzp34zHGJ6wmjS1bTm+pt8Kx9sqz3SN26upaJ7ZniIrETe+yJxwzM9FeOnqbLTmJ41lul5mjNotp2ta3HML30dTVxumtMcscZDFZmKxmZxDdHTnUtGpePZj1Y6+P3JNPu9aTumZvbrZMEgAKAAAAOPTmJ1NXjx3yn7zedPQtaJxPKEM6GNOu3hqV7es+IlSClLxbT3Twxz8CtdTUruz5deyMZmRMXYjpqTuml+Fo9602xzEbMsU3zF4res1zyyvM9QEc2tqX8vT59s9G7b684pmKdtvudWlpV0q7ax8eo1IaenXTpFaxwhcBRjQHHelqa/l0xFbcYnp1ZE2rbZeOPZPZKbVrqebW9Ii0YxiZxhS+hq6lfatWsxOYxH2iYre22M4zPKI6s3TW0V1K7Znlx4SXrfT1dOdWY2Z5x18TX1NK1Ji1s55Y4hiys3rWcTKudbyY/07ZmOeEmnfSro1xaOXHMiYc1bTOYrX1rcIZTTvMz5Uf6c8Ym3B0aOj5cza1t1p7ekC4vpUjT04rHZ29VwFAAAAAAAAAAAAAAAAAAR05pEdOaQAAAAAAAAAAAAAAAAAAAAAABzVrM6t6RnEWzM+njh0oqWiKWtPbafpwCO0Rp6kRXhS3Z0n9WxXfMxyiOc/YXre+JivCJziZ4z+PFbSxGjEx9bimerviLE1nbM56S3E2tticdsyW3WvmtJmIjGeTdDO+1bxttM5x4Gem+M9WcW5x07U+lTZXjznjKs1j/EV8ImY9yUw3QBUAAAAAAAAAAAAAAFL6dLzm0cevKVwEFtCZjFb49MZ+4mbU9eOH7o5fp9HinAc2pTMxNIzFucdf+YXi8bsTwnpP4+haNKIvE1nERx29i8xFoxMRMdJBBOnsvupOK24TGOX6Lbbxas7YmYnGYns/HjLbaXCdk4ieE1nlP3fBeudsbueOOAWAAAAAAAAAAAAAAAAAAAAAARx66RHHrgkAAAAAAAAAAAAAAAAAAAAc/eL+3XS47bRxn7I+10AOa+rtitaUtMzwrExMQkpXy6bYnM85nrKmpu/xGYpa22vs9Mzz4reXaYze09dteHv5z7gU1MaudKs8e20fV/VJtrFNsRG3tz2+lDpV1Irimnt3TmZtwiPDHPEJo0Yzm9rX8J5fIHPE4ma1zqRHKa8fxheulq25xWnp4y6YiKxiIiI6Q0xdc8d2jnbUvM+E4hevd9KvKkT6eP0pQRkRERiIxDQAAAAAAAABkxExMTxiXLXMRNZ51nEutzd4jy7+ZiZrbn4JVjBlbVtGazlamnGrE7pmOyMTjCYusVtaK9Z9EcmWzozt1JzH1bdUmlwrFu23GVkTUUWrrXikTmuMz4+CWu7u8/Wvpe+v6fj05fRzPmaWK3js7JNPV1LxO3TiccJjdjHuVHTExMZicw1Fo0tSLRMRETOYiJzj3QlAAAAAAAAAAAAAAAAAAAAAAAAAAAABHPrpEc+ukAAAAAAAAAAAAAAAAAAAAAAAAAAAABz94tm0af/ALT6EUr95paupGrWMxjFkeYtxjkA3T051rYjhWOcmnSdWcRwrHOfuddaxWsVrGIjsArWKxisREdIWAHPePK1YtHq3nEx49fi29d1Jr1hLasWrNbRmJQVmaW8u88Y5T1gHLymYnnHCRNrUzO6vPtjqhjiATMY4tdehoRSIteM3+gFNG2dKvoU7xyrb9tlrR5evaueF/aj0ttG6sx1jCijVKeriedeErTOIzINVxbVt5dPjPRtKX1uNfZp+7tl10pXTrtrGIgGaWnGlSKx8Z6rggAApqaddSuJ59kxzhzWrbS9fjX90fjg7AHLExMZKx5t4ivq1njP2JJ7to2nM0+UpaxFYiIjEQujQEAAAAAAAAAAAAAAAAAAAABHfmkR35gkAAAAAAAAAAAAAAAAAAAAAAAAAAQa1s2inZHGfsTufXpbfGpSM8MTAMwzCmlqRNIjPGOC1LZrHXt9LDTZ4c1aZ25nnPFmpMTiJ5TOEgrBoCrdPQjUjzJtaN3KIxy7PvU1J9nEc7cI9MuysRWsRHKOELGah/w1f33933Ja1itYisYiFhpBy63DvMZ5TTh83Uj1dKurERbnHKY5wDnic3t4cGzOIb/h71mZi8TnsmMferfS1ccKROJjlLONas3RjdqzbsrGOXbP496saWrbht2+Mz9zo06Rp0iscfHqSJauA0gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACmp2LRyhXU7Fo5QDQAAAAAAAAAAAAAAAAAAAAAAAAAFbWitZtPKIysg7zbO3T/AHTmfRAKacbdKInn2givbfM0rPCPWn7BWZ323dnKFtPSveJ1aTy4Vjr1W0tLzeM5in0/o6dTUrpVzPoiIgRzUvF46THOOizNWttW0WxGnMcp5yyJtHC0fGBVxgDcmWANyMaAxrAAAAIzadtMTPuj0gy82xFaRm88k+jpxpacVj4z1bp6cUzPOZ5yuIAAAAAAAAAAAAAAAAAAAAAAAAAAIdf6qZDr/VBEAAACXQ+smQ6H1kwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK2rFqzFozEue2nfRjNfbp07Y+91AOaupS/K0ehZe+hpX9akZ68lY7tox9T3ymLqGkebFopytPGekcnYyIiIxEYhqoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyeUq6fatPKVdPtBcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFNTTrqUmtozCkd208RFt1sdbSmAcur3WsadvLiYtzxngvXWrfRi0zEdfCU6nlUm++axu6g571nWms6UcY+vPCPR4smLaWrW2tia44THKJdjOccQcmtPn/AOnp+1aJznshLHdqzjfab+E8IS1rWsYrERHhCwMiIiMRGIhoAAAAAAAyYzGJIiIjERER4NAFdld+7bG7rhYAAAAAAAAAAAAAAAAAAAAAABHTmkR05pAAAAAAAAAAAAAAAAAAAAAAAEdNKK2mZmZ4zMR2QkAHPp+1Hl1nG2ZzjsjMuhkREZxGM8wIjEYjhDLVi0cefZMc4WARVi/m5vEcIxEx2pQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARx66RHHrgkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABDfu2neYmI2zHbXgjjT1dG07I8ys8eeJh1AOadTT16zp6kTW09loxKmlpTmaRq2revZPGJjrDqtWtoxaImPGFKaGlS+6tcT6QRzGvWfUrfxicfSUpqzrxeabI7fa5/J0gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI59dIjn10gAAAAAAAAAAAAAAAAAAAAAAAAAAAACO2jp2nNqRMpAGRERGI4RDQAAAU1dONSuJ584npK4DitNtKcascOy0cpUtbTtOa24+jm9BmAc/dtGYnfeMT2R0dIApqaddSuLemJ6ShmupWcbJt4x2ukBx209W1sxpYnruhJp93iMTqzvtHyh0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACO/NIjvzBIAAAAAAAAAAAAAAAAAAAAAAAAAAACl9Kmp61Ynx7VP8Np9m6PRaUwCG3d9OazERMT1znHzc8zNNTFuEzGJdyl9OmpGL1iUHPulWLxtic8E/wDh9P8AN/5S2O76UY9jOOs5MXUWlTzLxaY9mvGPGXUxqoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAApqdi0coV1OxaOUA0AAAAAAAAAAAAAAAAAAAAAAAAABy6ua69rWicYiK4j8drqAc1dO2piZzWvvn7vpXr3bTr2TMdkTPBMAOTVtNe8zN5xXHs55eLrYDlnVp++PmzfT99fm6tlf2x8jbXpHyF1yzevZevomWebTOJn484dm2OkHIRyxas8pifRLU1tDSvzpH0Kx3bSjlWY/8AafvF1Gckk920p51n/wAp+8r3bRrOYpHx4hqHfT90fNaN0zERS8/DH04dFaVr6tYj0QsI5vJ1bT61aR85I7tavLU49szX9XSAijQj61rW930JIiKxiIxDQAAAAAAAAAAAAAAAAAAAAAAAAAAAABDr/VTIdf6oIgAAAS6H1kyHQ+smAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABk8pV0+1aeUq6faC4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI6c0iOnNIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjj10iOPXBIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACOfXSI59dIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjvzSI78wSAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAApqdi0coV1OxaOUA0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABDr/AFUyHX+qCIAAAEuh9ZMh0PrJgAAAAAAAAAAAAAAAAAAAAAAAAAAHF3vvF6auzTtjEceDsmYiMzOIh5XHX1+3N7enH/AOnuneL31dmpbOY4cHa8mJnR1s9tLdk83qxMTGYnMSCurM10rzHOKzMOPu3eNW+vWtrZic9kdHbe2ylrYziJlz6Pe/N1Ypsxntz+gOoQd47x5G32d27PbhSO+08vdNcWziKxIOocdO/Vm2LUmsdYnLqraL1i1ZzE9oLCPV1aaVc3nHSOrnt3+M+zpzMeM4B2Dn0e901LRWYmtp68nQAOCvftTdG6tcZ44j9S3fr7p21rt7M8wd45Kd9pNJm8TFo7I7UU9+1MzitcA9AQd27xGtExMYtHvTgAAAAAAAAAAAAAAAAAAAAAAAAAAAAyeUq6fatPKVdPtBcAAAAAAAAAAAAAAAAAAAAAAAHB3nvGrTXtWtsRGOyOiP/F6/7/dH3HfP9zf4fRDv0f4NP+sfQDgr3zWiczaJ8Jh293141q9LxzhnfK1nu9pmOMcpxy4uXuMWnXzHKI4g9Ec/eO8+TeK7N2YznKTR1PN0ovjGewEgg7x3jyNvs7t2e3C3d9bzqTbbtxOOeQcvee8atNe1a2xEY7I6Orfb/C78+1sznxw4e+f7m/w+iHZ//Bf/AMv7Ac/du8at9etbWzE57I6O95fdrRTXra04iM8fg6Ld/jPs6czHjOAdgi0temt6s8ek817WilZtacRHaCw4b9+tn2KREeLK9+vn2qVmPDh94O8U07xqUi9eUqa3eaaPCeNukAmHF/j/AP8Aa/8A1fo6NLXprerPHpPMEoj1taujTdbn2R1ck9+1M+zWsR48Qd44tPv3GI1KxjPOOz4OnW1PK0pvjOOwEg5+79586812bcRnOU17bKWtjOImQWHLo9783VimzGe3P6Je8a3k0i23dmcc8AlHLTvlZpa1qzWImI4TnOV+7948/d7O3bjtyCcAAAAAAAAAAAAAAAAAAAAAAAEdOaRHTmkAAAAAAAAAAAAAAAAAAAAAAAcveO9xp2mtIi1o5z2Qm17zp6NrRziODzu76XnasV5RzkFp73rTM+3jwxCTT77eMRqRFo6xwl20pWlcUiIjwc3e+7TfFtOsbs8ccMg6a2i9YtWcxPa5++at9LZstjOc8PQ3uenqadbVvGIzmEf+Y/8AX8fsBL3TUtq6U2vOZ3YdDi7rrU0e7TNp524RHOeENr3+M+1pzEeE5B2CtbResWrOYntZqaldKk2tPD6QXHBbv18+zSsR48fubTv1s+3SJjwB3DKzFqxaOUxmEHeO8+TeK7N2YznIOhF3m9qaFrVnExj6UVu+VjTrbbO60ZxnxxzX/wAR/wDjedt+GfHAIu6a+pqas1vbMbc8nY5+79586812bcRnOU17bKWtjOImQWHF/j//ANr/APV+h/j/AP8Aa/8A1foDtEXd9bzqTbbtxOOeVtTUrpUm1p4fSC44Ld+vn2aViPHj9zad+tn26RMeAO4ZWYtWLRymMwg7x3nybxXZuzGc5B0Dlt3ysadbbZ3WjOM+OOabR1PN0ovjGewEimrM10rzHOKzMINTvtK2xSu7HbnEK/4umppXrMbZms448OQKd27xq3161tbMTnsjo73mdz/3NPj9EvTAAAAAAAAAAAAAAAAAAAAAAARx66RHHrgkAAAAAAAAAAAAAAAAAAABDr94roxGeNp5Q47d81pnhMV8Ij70d7W1taZxxtPCPoejo6NNGuIjM9tu2QcdO+atZ9rFo8Y+526OtXWpurz7Y6K940Y1dOcRG+OUufuuhraetFrVxXlPGAdPeb2poWtWcTGPpQd019TU1Zre2Y255Je+f7a/w+mHL3K0U1bWtOIiv2wD0Rx27/GfZ05mPGcOjR1qa1c1nlziecAkGTMRGZnEQ49Tv3GY06xjPOe34A7RwR37Uz7VazHhwdejqxrae6OHZMdASCLvGt5NItt3ZnHPCKnfKzS1rVmsRMRwnOcg6hzafeZ1NPUtFcTSM889UNO/W3RvrG3txHH6Qd48+e/amZxWuE0d+p5eZrO79v6g6h5/+O1f20+U/e69DWjWpMxGJieMZBKMmYiMzOIhx6nfuMxp1jGec9vwB2jgjv2pn2q1mPDg69HVjW090cOyY6AkEXeNbyaRbbuzOOeEVO+0mtptXbjGIiczP0A6hxR3+M8dPh6f0dWlqV1a7qTwBcU1NSulSbWnh9Llnv8AGeGnw9P6Av3zVvpbNlsZznh6Fu6altXSm15zO7Dm73rU1q6c1nlnMTzjkn7h/Bb+32QDqFbWilZtacRHa5bd/rn2aTMeM4+8HYOfR73TUtFZia2nrydAA5dbvflas02Zx25/Q1O+VpFcVmbTETMZ5ZB1CtLb6VtjGYiVgAAAAAAAAAAAAAAAAAARz66RHPrpAAAAAAAAAAAAAAAAAAAAAAAAAAVvbZS1sZxEyCHvHeY0fZiN1+nRyW75rTOYtEeEQpSttbWiM8bTxn6Xp6elTSrikY8e2QcNO+6lfWiLR8p/Hwd2nqV1aRas8PoRd60PNpmlY3xPzU7npaule2+uKzHWOYL971LaWlFqTid2Fe56t9XfvtnGMcPSd/8A4K/2+yVP8u/7Ph9oO0R6urTSrm846R1c9u/xn2dOZjxnAOwc+j3umpaKzE1tPXkmvM1pM1jdMdnUFhyaffYvqVrNNuZxnP6OsAclu+4vNa6e7jiMW5+50XvXTruvOIBccdu/xn2dOZjxnC2l32l5xeNk/OAdFrRWs2nlEZQ6fetPUvFKxbM9YO963l027c74mOfJw6Op5WrF8Zx2A9YR6Op5ulF8Yz2I9bvdNO01iJtaOnIHQOOvf659qkxHhOfudVbResWrOYntBYRd41vJpFtu7M454RU75WaWtas1iJiOE5zkHUIO7948/d7O3bjtynAAAAAAAAAAAAAAAAAAAAAAAAAR35pEd+YJAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARd5vamha1ZxMY+lw/4vX/f7o+52d8/21/h9MOb/L/57f1+2AU/xev+/wB0fcf4vX/f7o+56YADn1u9007TWIm1o6cgdA469/rn2qTEeE5+50xeLae6ntcMx4guOTT77F9StZptzOM5/R1gDj/xub7a6e7M4j2ufudczERmZxEA0cl+/UifYrNvGeDdPvtLTEWiazM8+wHUCDW7zTRnbObWxygE4469/jPtacxHhOXTp6ldWkWrPD6AXAAAAAAAAAAAAAAAAAAAAAAAAAAAAABTU7Fo5Qrqdi0coBoAAAAAAAAAAAAAAAAAAAAAAAAADj73r6mnqxWlsRtzydjz/wDMP56/1+2QU/xev+/3R9x/i9f9/uj7nZ3P/bU+P0ynBx9019TU1Zre2Y255OwUveunXdecQC447d/jPs6czHjOFtLvtLzi8bJ+cA6gcl++7L2r5ecTj1v0B1jl1O+0rbFK7sducQto97pqTFZ9m09kg6AQa3eaaM7Zza2OUAnHHXv8Z9rTmI8Jy6dPUrq0i1Z4fQC4j1dWmlXN5x0jq57d/jPs6czHjOAdg59HvdNS0VmJraevJ0ADkv33Ze1fLzicet+jdTvtK2xSu7HbnEA6hzaXfKaloraJrMzw7XSAAAAAAAAAAAAAAAAAAAAAAAAAh1/qpkOv9UEQAAAJdD6yZDofWTAAAAAAAAAAAAAAAAAAAAAAAAAAA5++32aGInjacc/x+Jc/cKbtWbz9WPpZ36+7W29lY/H2I6RrxX2I1IiePDIJO/U2627stH4+x1dzvv7vGedeH4+DhvXWtGb11JiOsTwSdxvt1tvZaPx9oO3W/g1P6z9Dg7n/ALmnx+iXfrfwan9Z+hwdz/3NPj9Egm/zH/r+P2Kd07vXVze/GsTjC/8AmP8A1/H7Fu4Wjy7Vz7Wc4BTvXdq009+nwiOcN/y+/G1PjH4+SXvtoroTWedp4IP8vifNtbsiuARd6vN9e2eydsfB16fc9OtIi8brds5cXeImuvqRP7pl6lbResWrOYntB53edDybxiZmsxwy7e66nmaFZmczHCXN/mFom9KxzrHH4pu41mNDP7pmfsBwadYtqVrPKZiHo6ujpRoXxSsYrOJxxefo/wA+n/aPpenrfwan9Z+gHm6FI1NatZ5TPF3d40NOdG0xWtZiMxMQ5O5/7mnx+iXfrfwan9Z+gHH/AJf/AD2/r9sPQef/AJf/AD2/r9sPQAAAAAAAAAAAAAAAAAAAAAAAAAAAABk8pV0+1aeUq6faC4AAAAAAAAAAAAAAAAAAAAAAAPM75/ub/D6IZX/EbY2+bjHDGW98/wBzf4fRDv0f4NP+sfQDzdSNXETqRfHZuy6u46mnt2REVv8A/wB346OjXtWujfdPCYmOeMvO7rn/ABFNs4nP/IJf8w/nr/X7ZdPc/wDbU+P0y5v8w/nr/X7ZdPc/9tT4/TIIf8x/6/j9i/cP4Lf2+yEX+YWib0rHOscfil7h/Bb+32QDm75/ub/D6Idn/wDBf/y/scffP9zf4fRDs/8A4L/+X9gPP0qTqalaR2y757npTTERMTj1suLutop3ik2nEdfg9SZiIzM4iAeVSZ0deJn6tsTj3vQ7zp21dPbSYjjxy8+/+pr22cd1uHxl2d+1JrpxWJmJtPH0Aj0dPS0d861tO08sZzj4Iu9W0bWr5URy44jCTuWnpXzNoi14nlPRnfZ04mtdPbGM5iATdw/gt/b7IcVpnzpm9eO72odvcZiNC0zOIi0/RC2pp9317etG6f224yCOLd01KbcRXMdsYmPj+rNDuupp6ldSLUmPT2K37jePVtFuHbwRd3vbT16xGYzbEwDq73oX1bRaLVisR2yrp/4fS04jUnTtbtmI3I+/ak21dmZxWOXim7tp6HkxbFbcPam3HH3A49aaTq2nTjFex2av/wDj4/rX7HJ3ma217TTG3hEY9Dr1f/8AHx/Wv2Ah/wAv/nt/X7Ydmt/Bqf1n6HH/AJf/AD2/r9sOvvNopoXz2xiPiDh7n/uafH6JdPf/AOCv9vslzdz/ANzT4/RLp7//AAV/t9kg5e7aHnWnM4rHN36OhXR3bZmc9XP/AJd/2fD7XaAAAAAAAAAAAAAAAAAAAAAAAACOnNIjpzSAAAAAAAAAAAAAAAAAAAAAAA5e/wD8Ff7fZKH/AC/+e39fth1d5pOpoWiIzPOHD3XUjT1omeU8JB6gyJiYzE5iXP3zXnSrWKWxaZz8AdLi/wAx/wCv4/Yv3PU1NXdN7TMRwjgp/mP/AF/H7AU7p3eurE3vxiJxEZb3zQrpVrakYjOJjKXuH8Fv7fZB3/8Agr/b7JBn+X2zS9ccpzn0/wDC/etG+tFYrMREc8yi/wAu/wCz4fad/wBSfZ04mcYzPj0A0a6GjSfNtp2mZ7PaQd5tp21c6UYrjsjDo7npaVtPMxFr9uexD3uaTqxGnjbFccOQOvuf+2p8fplzf5h/PX+v2y6e5/7anx+mXN/mH89f6/bIHdu6xq033mYieUQn16Rp9ytSucR19K3c/wDbU+P0yd8/21/h9MA5v8v/AJ7f1+2HfaItWazymMS4P8v/AJ7f1+2Hda0UrNrTiI7QQ27t3elZtauIjtzLhtEamrjSpiJ4RC+vr217xERO3PCHX3Xu/lRut68x8gX7vpeTp7c5mZzKnetG+tFYrMREc8y6HF3/AFJ9nTiZxjM+PQDRroaNJ822naZns9pB3m2nbVzpRiuOyMOjuelpW08zEWv257EPe5pOrEaeNsVxw5A6+5/7anx+mXN/mH89f6/bLp7n/tqfH6Zc3+Yfz1/r9sgd27rGrTfeZiJ5RCXvONDusadJ5zjjPHHNJ3P/AG1Pj9Mo/wDMKx5dbdsTj8fIEHdNCNa0zbO2PfKXvPdaV05vpxMTHZzb/l94220+3O5N3m8U7veZ7Yx8wcXc/wDc0+P0S9N5nc/9zT4/RL0wAAAAAAAAAAAAAAAAAAAAAAEceukRx64JAAAAAAAAAAAAAAAAAAEet/Bqf1n6EjJiJjExmJB5Oj/Pp/2j6XrvImLaOrx9asvV0711Kxas5ifcCwj19TytG1s4nGI9Lk7vr62prVrNpmOc4iPuB0d8/wBtf4fTDh7tpRrau2ZxERmcO7vn+2v8Pphzf5f/AD2/r9sAl1+66caNppXExGeaDuNtveIjHrRMfb9ju1v4NT+s/Q4O5/7mnx+iQd+vS2ppWrWcTLk0tCmjqTOtfTmIjln7HR3vUnT0JmJmJmcRMOXudNO+pManGfqxPaB3q+hatfKiN2ecRhJ/l3/Z8PtO++XXTilIrFt2ZiI/HU/y7/s+H2gv3/8Agr/b7JcvdtDzrTmcVjm6u/8A8Ff7fZKn+Xf9nw+0EvkV0dDV2zM5rPP0S4u70jU161tyl6Ot/Bqf1n6HB3P/AHNPj9Eg6e96WnHd7TFKxMY4xGO1zd0041NbFuMRGcdXZ3z/AG1/h9MOb/L/AOe39ftgEvfNGkaM2rWKzWeyOav+Xf8AZ8PtTd8/21/h9MIf8u/7Ph9oOnXpbU0rVrOJlyaWhTR1JnWvpzERyz9jo73qTp6EzEzEzOImHL3OmnfUmNTjP1YntA71fQtWvlRG7POIwk/y7/s+H2nffLrpxSkVi27MxEfjqf5d/wBnw+0F+/8A8Ff7fZLn7poRrXnd6tejo7//AAV/t9kqf5d/2fD7QO9d206aU3pG2Y8eav8Al8z5tq9k1y6O+f7a/wAPphzf5f8Az2/r9sAr3y8215jPCvCE+h3SnlxOpWZtMcs8nN3qsV7xeI65+fF6OleNTTreO2Aed3nRjR1IiMzWYzEy6u4fwW/t9kIu/wB4nUrX9sZ+aXuH8Fv7fZAIe/ak21dmZxWOXitoW7rTTjfMTaY45rMou+xMd5tM9uJhPpdz0r6dbbrcY44mPuBzd48qdTOl6sx73f3a86mhWZnM8pQ27r3es4tqTE+NoT6GnTT08adt1ZnOc5Bw98/3N/h9EJdDucX04te0xmMxEIu+f7m/w+iHfo/waf8AWPoBatYrWKxyiMLAAAAAAAAAAAAAAAAAAACOfXSI59dIAAAAAAAAAAAAAAAAAAAAAAAAAg75/tr/AA+mE6mrXfp2rw4xwyDz+5/7mnx+iXpvJ0rzo61bTHqzxh6sTFozWYmOsA0Qd61Z0tLNZxaZ4Iu6a2rq6k77TNYjpH3At3/+Cv8Ab7JU/wAu/wCz4fav3/8Agr/b7JU/y7/s+H2gg71eb69s9k7Y+Dr0+56daRF43W7Zy4u8RNdfUif3TL1K2i9YtWcxPaDzu86Hk3jEzNZjhl2911PM0KzM5mOEub/MLRN6VjnWOPxTdxrMaGf3TM/YDj1qTpa0xHDE5rh6F9XHdp1PVma5jwmeTn/zCnCt/hP4+aCdbPdY0s8Yt2dP+QW7lTfr5mOFYzy/H4hJ/mGd1OHs4nE/j4Je4026O7ttP4+1Jqzo2iaalq+iZwDk7tqd3rXGpSN3WYzlt+7V1bzbQtTbPGYzyWv3GJjOlfs4Z7fi5tXSvoXiLcJ5xMA7raeO6zGpFZtWk4nDj7rWLd4rFoiY48J9Dspab9xm1ueyftcnc/8Ac0+P0SDr7zbye7zFPZzOIx2OPu3kxaZ1p4RyjEuvv0TOhmOy2Zc3ddGmtNotMxMcsSC/eLd2vp/6eIvHLFcfYdwvMalqTPCYz8Ulu5aNYza9ojrMx9zdHQ0a6kW09TdaOzdEgd//AIK/2+yXL3bQ8605nFY5urv/APBX+32Sp/l3/Z8PtB0aOhXR3bZmc9UoAAAAAAAAAAAAAAAAAAAAAAAAAI780iO/MEgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIO+f7a/w+mHn6fmbv9PdnH1Xod8/21/h9MOb/L/57f1+2AU//K//AHvek7t5/n13+Zt45znHJ3gIO96k6ehMxMxMziJhxd28mLTOtPCOUYl19+iZ0Mx2WzLm7ro01ptFpmJjliQX7xbu19P/AE8ReOWK4+w7heY1LUmeExn4pLdy0axm17RHWZj7m6Oho11Itp6m60dm6JBy94pOl3i0Rw45jHB3aupEd2tqRmM14deKLv8ATNK3iOU4nh+PxLmnVn/C10/zTyns/wCZ9wLdypv18zHCsZ5fj8Ql7/qT7OnEzjGZ8eiTuOns0d0xxtOfgh/zCJ82tuya4Bndp7vWmdSYm89YmcfYp3mdGbROj284iMQl7v3XT1dKLTa2e3Er27poU9bUmuetoj7AZoa0x3O8zPGnCPsc2j5c6uda3s8558XTbRpXu2r5Vt2cZ4xPJz92066uptvMxw4YBPrX7rfTtFcRbHDFccfki7nea68RnhbhLonuWlEZm1oiPGPuZp937vGpWa6ubROYjdAOsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFNTsWjlCup2LRygGgAAAAAAAAAAAAAAAAAAAAAAAAAPP8A8w/nr/X7Zeg8/wDzD+ev9ftkEVPP2xs8zb2Yzhb/APK//e97s7n/ALanx+mU4IO6eZ5U+Zuzu+sg/wAwzupw9nE4n8fB3ItWdG0TTUtX0TOAcndtTu9a41KRu6zGctv3aurebaFqbZ4zGeS1+4xMZ0r9nDPb8XNq6V9C8RbhPOJgHp6VbV0q1tjMRjg8vW/n1P7T9L0u7Wm+hS1ueHm638+p/afpB3afc9OtIi8brds5cfeNLydTbnMTGYenW0XrFqzmJ7Xn99tFtfh9WMSDq86f8H5vHO3n48vpcWj5c6uda3s8558XVst//TsY44z8M5+hzd2066uptvMxw4YBPrX7rfTtFcRbHDFccfki7nea68RnhbhLonuWlEZm1oiPGPuZp937vGpWa6ubROYjdAObvV5vr2z2Ttj4OvT7np1pEXjdbtnLi7xE119SJ/dMvUraL1i1ZzE9oPO7zoeTeMTM1mOGXb3XU8zQrMzmY4S5v8wtE3pWOdY4/FN3GsxoZ/dMz9gOHW/n1P7T9Lup3PSisb43W7eLh1v59T+0/S9cHk6+nGlq2pE5iHp6UzbSpM85rEy8/vn+5v8AD6Id+j/Bp/1j6ASAAAAAAAAAAAAAAAAAAAAAAAAIdf6qZDr/AFQRAAAAl0PrJkOh9ZMAAAAAAAAAAAAAAAAAAAAAAAAAyeETwz4NAeb/AIXXvfN64zPGcw9GIiIxEYiGgMtEWrNZ5TGJedXu2vS8WikTtnMcYekApqxNtK8RzmsxDj7t3fVpr1tauIjPbHR3gOL/ADH/AK/j9iDT0dS2n5mnnMTMYjnyT/5j/wBfx+xfuH8Fv7fZAOWNHX1be1W2etv1d3d9GNHTxztPGZTAObvXdo1Y3U4Xj3uTZ3jTzWI1I/rnHueoA83R7pqXtG+JrXtmeb0axFaxWOURiGgOHT7nqV1K2m1cRMTz/R16lZtp2rHOYmFwHHod0vp61b2muI6S6dSs207VjnMTC4Dl7r3a+jqTa01mJjHB1AAAAAAAAAAAAAAAAAAAAAAAAAAAAADJ5Srp9q08pV0+0FwAAAAAAAAAAAAAAAAAAAAAAAcHee76t9e1q1zE47Y6I/8ACa/7PfH3vTAeZHdNaZj2MeOYdfdu7Ro5tM5tMY9DoAcve+7zq4tT1o4Y6uWmnr1nFK6lc9Mw9QB51+6au2sxG685m3Hk6e6adtLSmt4xO7LoAcHee76t9e1q1zE47Y6OrZb/AAuzHtbMY8cJQHm17nrTbE12x1zCtqd4iNkxqTEdnGY+56gDj7t3S1LxfUxw5RzT940vO09ucTE5hKA8ye6a0TPsZ8cwl/wNvLjFo35+GHcA5+66Wpo1mttsxM54S5tTumpp2zp+1EcYxPGPx4PRAedOp3uYxi//AIfov3ful41IvqRERWeWXcA5e9d3nVmL0n2ojGJ7XNXuetM4msR4zL0wHDfuNsxstGMcc9fk6I0rW7v5WpjOMZj3JgHl20NbTt6lsxymvFJXu+tq1m2pNuETtiZ4zPx5PQAcHdu76tNetrVxEZ7Y6J+96dtXSitIzO7LoAcvc9K+lv31xnGOPpdQAAAAAAAAAAAAAAAAAAAAAAAAAjpzSI6c0gAAAAAAAAAAAAAAAAAAAAAADi7x3OZtu0ojjzr9ztAeXFO8UzFY1I49mVqd11dSc2jbE85tz+96QCmnp10qRWscPpQd80r6uzZXOM54+h1AOfumnbS0preMTuyd707aulFaRmd2XQA5e56V9LfvrjOMcfSv3rQnWrGJxavLPJOA8yO6a0zHsY8cwlt3G22u20bvrZ5fDg7gEPd6X09PZfbw5TCHvehqamrFqVzG3HN2AIu7UtTQrW0YmM/Sd5pa+hatYzM4+lKA4+6aGpp6s2vXEbcc0/eaWvoWrWMzOPpSgPM/wmv+z3x95/hNf9nvj73pgOXuelfS3764zjHH0r960J1qxicWryzyTgPMjumtMx7GPHMJbdxttrttG762eXw4O4BD3el9PT2X28OUwh73oampqxalcxtxzdgCLu1LU0K1tGJjP0ralI1KTS3KVwHmX7tq6d+FZtx4TX8cG17vr6uZvu4R9bn6OL0gHB3bu+rTXra1cRGe2OjvAAAAAAAAAAAAAAAAAAAAAAABHHrpEceuCQAAAAAAAAAAAAAAAAAAAHP3nu0avtVxF/pcfla+nbhW8TjnX9HqAPMjQ19W3tVt0zb9Xb3fQjRr1vPOUwCLvNLX0LVrGZnH0oO6aGpp6s2vXEbcc3YApqxNtK8RzmsxDj7t3fVpr1tauIjPbHR3gKaunGrp2pM4z2vPt3PWicRWJ8Yl6YDgr3G3lzNpiL9kdnxS910NTRtOds1tzxPF1AOfvenbV0orSMzuyr3PSvpb99cZxjj6XUApqVm2nasc5iYc2h3S+nrVvaa4jpLsAR69J1NG1K4zPVD3Xu19HUm1prMTGODqAR69J1NG1K4zPVH3XQto790xOccnQApq6caunakzjPa8+3c9aJxFYnxiXpgOCvcbeXM2mIv2R2fFL3XQ1NG052zW3PE8XUA5+96dtXSitIzO7Kvc9K+lv31xnGOPpdQCLvNLX0LVrGZnH0oO6aGpp6s2vXEbcc3YA5+9d382N1fXiPm4409ekzFa6kdcZeoA82e5622J25mecZjg6u6adtLSmt4xO7LoAc/ee7+dETWYi0de1y0jvOjmta2j0RmHpAPOp3bW1r7tTNc85n7nfWsUrFaxiI7FgHB3nu+rfXtatcxOO2Ojs0omulSJ5xWIlcAAAAAAAAAAAAAAAAAAAABHPrpEc+ukAAAAAAAAAAAAAAAAAAAAAAAAAAByd57pvnfp4i3bHVzRp9405mK1vHXbn7HqAPMr3fX1ZzMTHWbfjLv0dGujTbXn2z1SAOfvenbV0orSMzuyr3PSvpb99cZxjj6XUA5u9d2jVjdThePe5NneNPNYjUj+uce56gDzdHumpe0b4mte2Z5vRrEVrFY5RGIaApq08zStTrHB5Vaza0VjnM4dveO9zp3tp1rxj62fsRdx092pOp2V+kHdWsVrFY5RGHP3ru86sxek+1EYxPa6gHnV/wAVoxsrFsR+XLPJ7xr23XiembcPx8npAI40oroeVE/VxlweVr6OpmtZzHKYjL0wEOnFtXu2NWJzaJzmMOO3d9bRvFqZtieE1+78Q9IB5tq9518Ratpxx4xj7nX3bu8aNZzibTzn7E4Dn73p21dKK0jM7sq9z0r6W/fXGcY4+l1AAAAAAAAAAAAAAAAAAAAAAAAAAACO/NIjvzBIAAAAAAAAAAAAAAAAAAAAAAAAAAAAACLvNLX0LVrGZnH0uH/Ca/7PfH3vTAeZ/hNf9nvj7z/Ca/7PfH3vTAR10893jTvH1YiXDbu+to3i1M2xPCa/d+IekA821e86+ItW0448Yx9zr7t3eNGs5xNp5z9icBTVp5mlanWODz47prTMexjxzD0wGViK1iscojEIu8aMa2njlaOMSmAebFO8aF52Rbj2xGYlsaOvr33XiY7JmeGPg9EBHp6VdPTikRExjj4uLV7pqadt2nm0Ryxzj8eD0QHnW/xWtGy0WxP5cOjuvdvK9u+JtMfJ0gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKanYtHKFdTsWjlANAAAAAAAAAAAAAAAAAAAAAAAAAAcfe9DU1NWLUrmNuObsAeZ/hNf9nvj7z/Ca/wCz3x970wHB3bu+rTXra1cRGe2OiXvXd51Zi9J9qIxie11APOr/AIrRjZWLYj8uWeT3jXtuvE9M24fj5PSAU0qRp6daR2Q8vW/n1P7T9L13ka38+p/afpBLbR7xoztpN5r2TX9G6PdL3mJvG2vjzeiAzEbduIxjGHn6vdNTTtu082iOWOcfjweiA863+K1o2Wi2J/Lh0d17t5Xt3xNpj5OkBzd67tGrG6nC8e9ybO8aeaxGpH9c49z1AHm6PdNS9o3xNa9szzejWIrWKxyiMQ0B52r3bWtq3mKcJtMxxh6IA4O8931b69rVrmJx2x0dmlE10qRPOKxErgAAAAAAAAAAAAAAAAAAAAAAAACHX+qmQ6/1QRAAAAl0PrJkOh9ZMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACtqVv61YtjrGSta1jFaxEeELAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMnlKun2rTylXT7QXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABHTmkR05pAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEceukRx64JAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARz66RHPrpAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUnTpac2pWZ6zC0RERiIxENAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEd+aRHfmCQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFNTsWjlCup2LRygGgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKTpaczmdOszPguAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIdf6qZDr/VBEAAACXQ+smQ6H1kwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMnlKun2rTylXT7QXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABHTmkR05pAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEceukRx64JAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARz66RHPrpAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEd+aRHfmCQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFNTsWjlCup2LRygGgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIdf6qZDr/VBEAAACXRmIzlJujqi0q5yl2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIE2jE8VaTEZy2aREdrK1zkFt0dTdHU2R4myPEDdHU3R1NkeJsjxA3R1N0dTZHibI8QN0dTdHU2R4myPEDdHU3R1NkeJsjxA3R1N0dTZHibI8QN0dTdHU2R4myPEDdHU3R1NkeJsjxA3R1N0dTZHibI8QN0dTdHU2R4myPEDdHU3R1NkeJsjxA3R1N0dTZHibI8QN0dTdHU2R4myPEDdHU3R1NkeJsjxA3R1N0dTZHibI8QN0dTdHU2R4myPEDdHU3R1NkeJsjxA3R1N0dTZHibI8QN0dTdHU2R4myPEDdHU3R1NkeJsjxA3R1N0dTZHibI8QN0dTdHU2R4myPEDdHU3R1NkeJsjxA3R1N0dTZHibI8QN0dTdHU2R4myPEDdHU3R1NkeJsjxA3R1N0dTZHibI8QN0dTdHU2R4myPEDdHU3R1NkeJsjxA3R1N0dTZHibI8QN0dTdHU2R4myPEDdHU3R1NkeJsjxA3R1N0dTZHibI8QN0dTdHU2R4myPEDdHU3R1NkeJsjxA3R1N0dTZHibI8QN0dTdHU2R4myPEDdHU3R1NkeJsjxA3R1N0dTZHibI8QVrMRPFbdHVSsZlfZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OqsTG/K2yPFSI9rAL7o6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4grMxvytujqpMe1hfZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OqtpiZ4LbI8VLRiQX3R1N0dTZHibI8QN0dTdHU2R4myPEDdHU3R1NkeJsjxA3R1N0dTZHibI8QN0dTdHU2R4myPEDdHU3R1NkeJsjxA3R1N0dTZHibI8QN0dTdHU2R4myPEDdHU3R1NkeJsjxA3R1N0dTZHibI8QN0dTdHU2R4myPEDdHU3R1NkeJsjxA3R1N0dTZHibI8QN0dTdHU2R4myPEDdHU3R1NkeJsjxA3R1N0dTZHibI8QN0dTdHU2R4myPEDdHU3R1NkeJsjxA3R1N0dTZHibI8QN0dTdHU2R4myPEDdHU3R1NkeJsjxA3R1N0dTZHibI8QN0dTdHU2R4myPEDdHU3R1NkeJsjxA3R1N0dTZHibI8QN0dTdHU2R4myPEDdHU3R1NkeJsjxA3R1N0dTZHibI8QN0dTdHU2R4myPEDdHU3R1NkeJsjxA3R1N0dTZHibI8QN0dTdHU2R4myPEDdHU3R1NkeJsjxA3R1N0dTZHibI8QN0dTdHU2R4myPEDdHU3R1NkeJsjxA3R1N0dTZHibI8QN0dTdHU2R4myPEDdHU3R1NkeJsjxBW8xOMLRaMRxVtXGGxSJjtBu6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqj1picYSbI8UWrXGARgAAAl0PrJkOh9ZMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADJ5Srp9q08pV0+0FwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAR05pEdOaQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABHHrpEceuCQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEc+ukRz66QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABHfmkR35gkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABTU7Fo5Qrqdi0coBoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACHX+qmQ6/1QRAAAAl0PrJkOh9ZMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMmYrGZ5ETExmOMSDQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZPKVdPtWnlKun2guAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADLWisTNpxEdsg0UpqUv6ton4rgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjpzSI6c0gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdG7bmMx2ZaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjj10iOPXBIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK2tWvrWiPTLPN0/wD6U/8AIFxkTFozExMdYaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACOfXSI59dIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKzekc7RHxZ5mnn16/MFxkTExmJzDQAAAAAAAAAAEd+aRHfmCQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFNTsWjlCup2LRygGgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACu+sW27oz0ysAAAAAAAAAAAAAAAAAAAh1/qpkOv8AVBEAAACXQ+smQ6H1kwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMmYiJmeUAj1J4/14/H8fSaF90TE84lHbl4zxlujONT0x+PtRrPHQArIAAAACtrRWPojqCwirNvNxM5zGcdMY+/j9iUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGTylXT7Vp5Srp9oLgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAArqXilJtPKIBrUOLzETOpMT0rEY+2WbY/db/yn72fqLiYQXm1I9e/GeUYn6VI1dWJ4zmPHj9GFl1HWOWO8XjnWs+jh968d5jtrb4KJ0Pec7K47bcflK1NWl5xW3HpPBXvMZpWelv0ByzzS6etak4tm1fejlWJaR30vW8ZrOYWcNb2paLV+MdXZS8XrFoZVYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEdOaRHTmkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgINOsTXPW02heNSazi/Lst9/4x6FdL+Kn9YW58xEogrby5iJn2PHs/T8ck4oAAAAAAAAAAAAAAAAAAAAAAAAAAjj10iOPXBIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKX1K0xunGeSHU7zesTNdPh1mQdI5qd7rPr1mvvhPW0WrE1nMT2gsMmcRmeEOa2rbVnGnM1p22xxn0Am1Namnwmc2/bHGUM6mrqdNOvhxkpStOUNBWunSOMxmZ7Z4rbY6QNQUtpUn6sR6ODazenq3mfC3FZgEa96+vp5jrX7ktdfTtyvGek8PpRKWrW3OFHYOKN+n/HeYjpPGE1O8RjGpGyfdIJxkTmMw0AAAAAAAAAAAAAAAAAAAAAAAAAAEc+ukRz66QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVvetIza0RHii/wARNv4tO1vGeEAnZPDmg261/X1NsdKfeR3fTiczG6etpymiSdfSiYjfEz0jj9DJ1pn1NO0+nh9PH3NisVjERER4Caqk3159WtK+mZn6Fdmvb1tbHhWEom0ReTPbraufCx5ETz1NSfTZMw2iKO7aXbEz6Zk/w+j+z3ylE0R+RpZzshvlaf8A86/JdFf/AFrzpUmYiPXmPoWbRXu9KzrTqUjbSvDhPrfo61a1itYrWMRHJZtAAAAAAAAAABHfmkR35gkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABHr2mulaa+tyhH3W9prOnf1q9vWDXtM6tKRyiN0/YitM0vXUjs9b0A7RkTmMw0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFNTsWjlCup2LRygGgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjvrUpOJnM9IBIy1orGbTER4ua3eLWjFY2++fx80czNrbpnM9ZB0W7xHHZEzPjwhDbUvbjNsY6cFUulpbvavHDsjqBoaWZi9o4c4j7fu+bpAAAAAAAAAAAAAAAAAAABDr/AFUyHX+qCIAAAEuh9ZMh0PrJgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEetM7YiO2cT6PxwSIdWfb9EfT/wACztHPMrOL1nxj38GMmZiJmOccYZdL07BkTmImOUqal8Tis+lpySCmlMzpUmecxGVwAAZMxEZlDa/bPCeyOhqW3Wx9WPp/T6fGEVpylb4xJpTnVj0T9joc2j/LH9Z+x0rGeXYAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAyeUq6fatPKVdPtBcAAAAAAAAAAAAAAAAAAAAAAAAAAHPqd42zMVrmY4Zn8fcDoHJ/idTpX5fqye9akccV+X6mDscnedTdurHKPfLLd5vNZjERM9sSizhcHXMo76m20RjPVunbdpxPb2orzm8+5x4zb61b4ta9b0xOYnszH3KROYyyWOsmM26sKjSLMnO3ETOI7M8GALc4ierJhlc8Yz4w3E44z8gZ9aPBJpanl34+rPPw8fvR8jOcRPaivREWhffp8edeEpUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEdOaRHTmkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZPKWsBDpfxU/rCyul/FT+sLKyreOBpX2zFLTw7J+z7vk23JHMZjEorqEWjaZjbaczHKZ7YSigAAAAAAAAAAAAAAAAAAAAAAACOPXSI49cEgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKX1K0jjxmeURzkFpnEZnkgvrWvw0uEfun7IZaJvbN59EdkAMisROec9Z5q6torSesr2tFYzLlmZtbdPwgGRwiDdNfVmYmekkzhLoaePbtznkDaUvaP8AVtNvCZSgg0ABgA0YyZBpOFcsBrJ4wAGjfytTEziluzpLsefqQ3T7zqVjbmJxyzCjvEOl3iupHH2bdJn6EwAAAAAAAAAAAAAAAAAAAAAAAAI59dIjn10gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAApfUrTG6eM8oiMzKK06urw/jr4Txn7k0X1NatJ28bW/bXjKsW1r88acfOfubWlaRitYhZn6XEddGkTutm9utuKVjTQAAAAAAABgWtFaza04iEONTXn2c00uvbJg21ral509Phj1rdP1TaenXSpFaxw+ltKV06xWsYiFmsxABQAAAAAAAAAAR35pEd+YJAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAV1LxSk2nsgHPa0W1bzHZO35MmMxMTylmnXbSInnzlZRfutvY8uZ9qn0didxzPl3jV6cJx2x+jriYmImOMSg0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFNTsWjlCup2LRygGgAAAAAAAAAAAAAAAAAAAK7ozjMZ6ZWcutoYmbVjMTxmPx+PsDqHDFrVxttMY5Ynh8uST/EakdlZj8fjkDqENe8VmcWia/QlraLRmsxMdYBoAAAAAAAAAAAAAAAAAAK2tFaza04iAWRamvWnCPat0hDqa9r8K5rX3osYBe+pe+czw6QoNAAiZraJjE47JgE2jpbvavHDsiXS5J1tS2MWxPhH35S6MaszuvacY5TEZBMAAAAAAAAAAAAAAAAAAAAh1/qpkOv9UEQAAAJdD6yZDofWTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyZxGZOampONvjOPdKmnfbeaz6tp4eE/r9PpFxO57zmZnPDKe0xWszPKIy5cYrEdEq8ewBHRLFtmhXbxnGIRWnFZ8OKtec8c4nh4dq3bGe2YhWZMdURiIiOxl5xwjnKyC9s2meyOEfb+PBWJ6lpbdSJ+CurfbXET7U8lNC8RuiZ/Nx/H4ypa26Zt15ehFk9ZMxEYjhCpM5EbSaMf6sT+WfsdKDu/rW9Efanajny7ABAAAAAAAAAAAAAAAAAAAAAAAAAAAAGTylXT7Vp5Srp9oLgAAAAAAAAAAAAAAAAAAAAAAAAAOLXps1PC3GHapekaldtv8AgHBlkzwlfV07ac4mM9JjtR46qNyyZ6tZPOAS6F4jMTPCZ4T4sic8es5NKY3bZnEW4fHsbMTEzE8Jjmknuiucs58+ENmWelRtNnbMz6JRWm02nbExHR0WtWdGleG6PdDLU26dbROYn5oKViYrx5tZE5aok0dKNTd7UxaOXRW2azMWicx0hujO3WrOeE8J+P6urV04vHS0cpBxTPSJ+TI55lJes09eMePYpMCOnus8bRnhwmHQ5e653WnsiHUigAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI6c0iOnNIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADn0f4qx04Lq04bo6Wn7/tXGVNWZikzHNStotGYW1v45QVmazu7O1RNxiYmvOOSetotWJhA3Tts1Mdlvp/X7kV0ACgAAAAAAAAAAAAAAAAAAAAACOPXSI49cEgAAAAAAAAAAAAAAAAAAAAAAAAAAAAItbU2+zX155eAGrq7OFYzeeUIoid02tObT+ODa1xmZnNp5z1agMmYiMyTMRGZc99Sbzw9X6QL3m8+HYqMnjOFFtKk3vmY4Q6Uehjy89UoMGsQaADGZayQZkYAAANAEepyQZxxS61uOEU8VGzOex06PettcakTMxymHMA7Y73pzPHdHjMJaatNT1LRPg87bPoWrWKzExzjtB6Q5dPvM1jGrx/NEfS6YnMZjjANAAAAAAAAAAAAAAAAAAABHPrpEc+ukAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABW960rNrTiIBZz31rWvNNGImY52nlCub94nM5pp9O2yWtYrGKxEQzbiq004rMzMza087SuDAACjRio0Y1QAADLJmIjM8E0apqaldOOPGZ5RHOUcXvrTjS4V7bz9ibT0q0j91u2082pBHTStqW362MdlOyPS6AaQAAAAAAAAAAAAAAR35pEd+YJAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHP3vjWlP3W4+h0OS9t3ebY5VrgGgTOFGTGYmF+63mYnTnnTl6EczxVzNNSt4nlPH0A7hkcYzDUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFNTsWjlCup2LRygGgAAAAAAAAAAAAAAAAAAAAA59bR+tSPTEfZ+Pfzg5u9Dq6MX9qvC30g5iOE5iZiescGdsxymOcAJqd4tHrRu90/j5J6XrePZnLiJn3A9Ac2j3iZmK6k8+UukAAAAAAAAAAAAAAGTMRGZ5OLW1fNt+WOUdfFfvGtunZWfZjnPVADctyqAsMyvp0tqTisemegKpKaN78fVjrP3J9PRrTE+tbrKUEenpV0+UZnrPNIAAAAAAAAAAAAAAAAAAAAACHX+qmQ6/1QRAAAAl0PrJkOh9ZMAAAAAAAAAAAAAAAAAAAAAAAAAAAACPV+r6fslBMZTa31P7fZKFK3xSeZu0LbuM+rPx4I5VtnnGfGOv47FhZMBgjRHOei1P5aR4/Yqk0YzqZ6QrN6TXttpNukOa3CsRnPil159Wvx+SG08SpxiucY+UtmWTxgRoawB093jFZnrKVHoRjSr48fnxSNOVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZPKVdPtWnlKun2guAAAAAAAAAAAAAAAAAAAAAAAAAAADJiJjExEx0lz6ndYnjSceE/j73SA4Z7vqxOIrnxzDP8AD6v7cz6XeGjj0+62mYm/sx0zxdGpo11MTOYmO2EgDl1tGmnp5icWjjm083O7NS8xEzWszas8cfj6HJMxe8zWMR4Cszx4EzMRynEe5bHZyXi1tDUibRjPAEURunHGMNxjMTzXjtnGMzll+yUl9avHxXj2Tieru07b9OtusccOF0d1tzp8YarDpRf4fSznZEejglEFa1isYrERHhCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjpzSI6c0gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIeWreOuJ92PsaXjGrE9YxPw5fTIM1Hr/AMU+mPpRpdaM6NvQiUrdOcTt+S8xujCKc9nOOMJYnMRPWMgm0rTavHnHCV0GlMxrTXsmufl/ynRoAAAAAAAAAAAAAAAAAAAAAARx66RHHrgkAAAAAAAAAAAAAAAAAAAAAAAAAABkziMzOIBTW1PLrGONp4RCGtZjMzObTzllbTqWm9uXKsdI/VaZiOYNVtaKxxR31uyvGUPtXnlNpBa95v6GJI0OHtWnPgeRHZawI1a8sr307xHBSs4iI5AvW00nMcujopeLxmHMcpzE4kHVkQV1ccLfNLExPJBuTLADIKzasTiZiPiDRk2rHOYVnVrHLj6AXEXmzPKMelk2tPbj0KJbXivOUdtXPqwpjjERHGZxxOMTiYxMdkgzjnMzmQmWRyFavEYRz2JAaAILaepOjOY407a/cqA762i1YtWcxKzg0tWdG2edJ5x9ruicxmJzANAAAAAAAAAAAAAAAAABHPrpEc+ukAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABTV1I0qbp+EdQZq6tdKIzxmeURzlFFLalt+t8KdkfqadLbvM1ON590dErFqgDKgAAAgAABMxEZnhAAj86tpxTN56RDY0b6nHVtiP21n6Z7VkoydXNtunG+3hyj0yRoWvOda0TEcq15JqUrSuKxER4LNyYjIjEYjhDQUAAAAAAAAAAAAAAAAEd+aRHfmCQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGTMREzPKHJTGJt+6d3zTd6/gmM4mZiPejiMRER2AK2WVuoqACbu2pGPK45rHD0OhwTuiYtX1o4w7NPUrqU3VnMILgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAApqdi0coV1OxaOUA0AAAAAAAAAAAAAAAAAAABSl66kZrOV3FHsW9mcbZxn0A6dalr1jZaazHjjLktNvVvNvRaXXpakalelo5wtelbxi0ZBwxERyiBLqaNqcY9qvv/AB+MIc8OAEywYA7O7au+u20+1HvhxrUvNLxaOzs6g9EVraLVi0cpWAAAAAAAAAAAc/edaa+xSePbPRbX1vLriuN88nF7wGsAaEdHXoaOyN1vX+gFdPu3KdT5R9roiIrGIiIjpDQAQaneaVzFfanw5fNBbVvf1p4dI5A651aVzm0cOyOKk950+zdPw+9yx4AOr/E06W+R/idP83ycoDq/xOnn63yb/iNPrP8A4z9zlaDp/wARp9Z/8Z+48/Tntn/xn7nPHGcRxnwXro6lp4xFY8eM/j4gnjUpPK0LoqaNKznjafHs/HzSgAAAAAAAAAAAAIdf6qZDr/VBEAAACXQ+smQ6H1kwAAAAAAAAAAAAAAAAAAAAAAAAAAAAI9b1M4ziY+5BPNPq5mk0jnaMehBnMRbrGUrfFgCNgTOCInt9yyazeUgvoWjfbjHGIx481a03cZn2enVJzWRi82als3nE8uCKZ4rTTHqcuiPOUsa42WNARoZM4iZ6NOGY3csxlSuysRWsVjlEYZGpW1tsTmcZQX1Jv4V6fj8elfu8cbW+CueeJwBAAAAAAAAAAAAAAAAAAAAAAAAAAAAGTylXT7Vp5Srp9oLgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMaA5tS2psm8ViLcpjP6dnv+SPSj2InrxT69Jmu6mc8piO2Px8UFZtFIj2eHDOUrUban+lFs+zavGO2GTe2pFd/Z9LMREc8xHLwZujs4+hNWT+rKz7UY7GTm3Pl0EaVjd1iVqX2XraeGJ5/Srxi3ZhvHp8nRyr0RD3a+7T29teHw7EyAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACOnNIjpzSAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAApqVzXMc44wrExaMxylKhtGy+fq2n5T+v0+kStmMxhzRGM16Th0odaMWi3XhKoqvp/x19Ci+n/AB19EFIvpRnVmelfp/4TodGPbtPWI+1MjQAAAAAAAAAAAAAAAAAAAAAAjj10iOPXBIAAAAAAAAAAAAAAAAAAAAAAAAAA5u9W3Wrpco9a3odLg71E/wCInPbEYBt9aI4V4yimbW9afgNpWb2x2doFKTflwr1dFaxWMRBEREYiMQ1AY0BiO+lExmvBKxRyYmOEcJ6G7HrRhPekW9KLwkAjMcpwriY5T8GxOfSC3m2jnEHmXnopPMgF91/3e5bR2zaa6kRO7lM9VMszu4REz6AdFu60n1J2z84Q3pbT9eMR1jk6tK++nH1o5rzGYxPGAcETE9rUl9Ku+1Y9MeDa1raNs1iLRzwCGeTr19KNSuY9aOSG2jwmazj0ujSndo0nwBwT07Wpu86Xtxesc+EofpBk8l6zmFFqdBVgBAAB1d0vu05rPOs4+HY5U3dbY1pr+6PoB2AAAAAAAAAAAAAAAAAAjn10iOfXSAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyZxGZ5ArqaldOk2tyhDp0tNvM1fW7I6MrnXvvt6kT7MdfGUzFqjGjKgAAAAMmYiMzOIBoi82bzjSrNvHshfyJvH+raZ61jhH3rJUR215m2zRrvt17IZXutr2i2vfP5YdNKVpXbWIiFm5MRlYisYiIiI7IaCgAAAAAAAAAAAAAAAAAAAAjvzSI78wSAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5u8WzradOmbSxlpi+ve37fZhqgrdZS3MGAAGnNtK82pjE84kbEAvOvqzyikMnW1p5TWPgxgN83X/fX5LR3jUjnWtvRwUASV73GcXpNfHnCampTUjNLRLkZaItzjJg7xwUm+n6l59E8YXjvOtE8aVn0ThB2Dl/xV/8A4/8A6j/E6nZo/wD6gdQ5v8Rqdmj/APqI1daeykfOQdI5t+pP1oj0Qpas39bUvPhkHXMxEcZwjt3jSrz1I+HFzRo6cfVz6V4rWOVYj4AtbvmlHLdb0Qz/ABcz6ulafSCh/idT/wCE/wDl+i3n6k/9UR/7foqwFvN1elI+as31p/7Ij0VJmFZsBPmzz1p+EYUte9az/q3LWiIzMpu76E7o1NSJi0coBL3et4048y02mePoSggAAAAAAAAAAAApqdi0coV1OxaOUA0AAAAAAAAAAAAAAAAAAABya0bdWfHj+Pk60HeK8K26cJ+IsQxM1tFq8Jh1ad41K5j4x0cra2nTtuj4x1j7xbHYi1NCupmeVusJKzFqxMcYloy4dTRvTM4zXrCJ6bl7xoc70j0x1BzDZiYxM9rAdHddTbbZPKeXpdbzHfpanmUi3b2wCQAAAAAAc/d9Wb6lonjE8Y8Px97oAU1dSNOk2n4R1laZiImZ4RDg1dSdW+eUdkAra03tNrc5YAAOvu+jt9u3rTyjp+oN0NDZ7VvW+hOi1Namnwmcz0hy6mtfU4TwjpAOjU7xSvCvtT4OfU1L6nrTw6Ry/HpRtAABuW5VAWWrS14zWszCsS2trU9S0x4RyBLXu9pjjaK+9LGhSMZiben8YR17xbPtREx4fj7k2nqRqV3Vz04gtyhoAAAAAAAAAAAAAAAIdf6qZDr/AFQRAAAAl0PrJkOh9ZMAAAAAAAAAAAAAAAAAAAAAAAAAAADJnETM9gIYnOb9fo7Pv+KKPV9EyvPs0xHoR0jbmvWM/HtLDhfWkziArxnPTkkmunK5GxGOM821jdOOyObJnEcIzPZC/ClfQ24f62bRGMzEZ5C9IrXhON0847fx+qLUxpakR9W3Lwn8fjCatjVb03cY4WWGmZ4544885jsWjEcow3UpOd1Y4qRLLW62OE47Oxsxy8FZ69Fma68bsHVoxjSjx4uald1or2S7CJyaArIAAAAAAAAAAAAAAAAAAAAAAAAAAADJ5Srp9q08pV0+0FwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFbUpf1qxPphZS2pSnrWiAc2vpUpes1rEZhGvq61dW0bYn2Ynn8FWa3x6YAjTLRmPGDPDlLWTwn0tSscok0NTZqxEziLcJ+x2vO5uru+tu9i8+12eP6tVlOAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjpzSI6c0gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzkpOtpxPr1+YJBkTFozExMeDQAAAAAYDWTETExMZiVZ1dOOepX5nnaf/0p/wCUAjrmttkzntiesfo29d1JjqvaIvX2ZjMcpUic5jlMcJgSuaZnZM9uPemiMRiOxTVrjUiOy05+XNdUSaGZi0/m4fKEqPRjGlXx4/PikRoAAAAAAAAAAAAAAAAAAAAAARx66RHHrgkAAAAAAAAAAAAAAAAFb3ilJtPYp50R61LxHXGfoyCUUpqV1IzS0SuAAAAADJnEZnkDXH33EalJzxmJSamvP/VWLeM8v1cmpW+ZvfjnmDHRpV2Ux2zxlBo03ameyHUAAgAyQGSMAR63DGOeUiG85v6FGMmMtAUmZzjC1aWt4Q3TrvvMzHBPy5ApXSrXjznxXAFLZjUi0X2cOcpJtrTHGaemGYieE8lYi2n6vGvSfsBaIiIZeJ4TX1oWjF67q8gVS14vpzETi2OUtpe9Yzp4tSeOJnkTWJ5xEsp7F+EezPCfSC1r21I2zXbHbxQ60e1E9YdFoxKLWjNPRIIDlOVtnjLJrMcuILxORHE45fJJE5EAAG0nbq0tyxPFjLcayD0x5+n3rUpiJ9uPHm7NLVrq1zXs5xPOASAAAAAAAAAAAAAAAAjn10iOfXSAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOfXtN7RpVnhzvjsj9UmrqRpac3nsQ6NZrWZt69uMpbgkrwjEcllTLDSwrkyg0yinWrnFc3npWMtiutflEUjrPGVxEk2iIzKnm1mZiubTH7Yz+i1e71znUmbz48vkliIiMRGIa+TUG3WtyitI6zOZ9y1e71zm8zefzcvkmFxGNBQAAAAAAAAAAAAAAAAAAAAAAAAR35pEd+YJAAAAAAAAAAAAAAAAAAAAAAAAAAAABmYzjLQGTwjLUPer7dGcc7ezAINKJikZ5zxlcFGROVJ5trLJ5gDGwDYawyDWMyA1gAMaAGBaMgzbLYqsAAAAADMsmwLMypmQFtysyyZZkG5VmZzisTa09kFa31Z26fxnsh26WjTSj2Y4zzme0Eej3fbO7U9q3Tsh0AgAAAAAAAAAAAAAApqdi0coV1OxaOUA0AAAAAAAAAAAAAAAAc+rOpS3rzieU4j7iNe0R7VYt6OAuOgR11qWmIziZ7J/GEggpqV30mvXkuA4onMZjtG3jbqWrHpj4sG19HU2W2z6sz8p/HvW19W+neIiK7ZjtRc0lY87TnTtPtRxifx8pGbFqd5paYi3sz48lte2Kbe23D73FaJraYtGJhbT7Qhqdk/BRNtraYi3KUVqzW01twmArEuhqeXqcfVtwlECOyutP+JtSZ9meEen8ZTvMraYndzmJzxelWYtWLRymMg0ABTVts0rW7Yjgug73bGjjrOPt+wHNpW26tJjrj58HoPOp/JWZ7LQ6NfvER7OnPtds45Ar3nV3TsryiePj/AMOcAAZxmeHIE+lWunEaur/617TU7za/Cvsx7/x+MopmZnMzmZ7ZYAAAADQrE2tisZnwT07rafXnb4Rxn8fMECSujqW+rMR1nh+rrpp00/VjjPauDkjut+21Y9HH7kkd2r22t6E4CONHTiMbImPHj9K7QAAAAAAAAAAAAAAAABDr/VTIdf6oIgAAAS6H1kyHQ+smAAAAAAAAAAAAAAAAAAAAAAAAAVtaKxmZwpfXrWOHH48HPbUnVtmYxjhjImpba8z6sY+n8fNFfVvat/a4YmMYGUjdw7Mzn5qmpbclLcIz0WtPFipPFbdInnyWjhGIZWmJz2RwhbCSY1y5aV439EZ/HvX53rHWePwU0+OZ7M8Fb3imvpzPLjlWZ2vrTi8xHrTPCenBnfPa0644zng22LXzTExPHPSeTfHnPVmRu1lc7Y3c8cWtiu6cZmMdGWzT1p4dfva38Yz9GTWJ5w1qor5VZjGPezyqR9X5pMsRVMRpe1XOeWOeUlZvMRNrYnpHL7VeepH5Yz+Peui6yb3rxzWY6TGPx8lq6tLcp49sdHLqTN7Y+H49HNPSsUrFY5QLq/m1zj2v/GfuXi0W5TE46Ib22x4oqzeZ3VnGOUz2mGuwRRqzn2qY8YnP3JKzFozE5hFaAAAAAAAAAAAAAAAAAAAAAAADJ5Srp9q08pV0+0FwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQavea0zFfan3AnQaneaV4V9qfDl83Lqal9T1p4dOxVcEl9fUv9bbHSv4yjiueXCFq0meM8IWxgCsRHCAr60tmM9swxe3Tj0xi202oquTn2SvEREAYjxPa2IWtGfT2Mji3LrnymJtPvExONTl+6Pt+90ROYzHJxQl7vbbfbn2Z5R4qjpAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAR05pEdOaQAAAAAAAAAABHGtp59bHjPJI4aepX0QJbjticxmGuKszSc1nHhHalr3iY9evDrX7v8AkNdAytotETWYmJ7YaKAAAAAAAAAAAAAACltWtZxzt0jj/wAfFXfqTPCK1jx4z+PjIJVLatKzibcekcZ9ylq7pzaZmOmeH49LYiIjERiPATTzbT6tPjacfez/AFJ53x/WPvy0DVfKr2xu/tOfpX5MJmI7RGTSM5rms9Y/HEjUtX14zH7q/c3MSBq9bRaM1mJjwWQbI3bqzNZ6x2+lsas1nGriOlo5foLqZS2pFZxGbW6R+ODLWmbTWvCI5z934/TKxFYxAMzqW5zFPCvH3z9x5dZ5xu/tx+lZHqTn2Y7efoEbW9JnFZjwUmbbp9rlPLHD7/eTEYVzbzJzjExzXE1aMRObUrPjEK0mYxMWmZiMTE/jK2SYifT1XDSbxbEWjbMci0ZjEc54fNWeHC3GJbX2bRMcYic4lMJXWK0vF4zCyNgAAAAAAAAAAAAAAAAAAAAACOPXSI49cEgAAAAAAAAAAAAAAAMmMxieMIYzp32Tyn1fu+CdTUpF64n4T0kEdqUtOZrx6xwlTU83TjdXVmaRzjEZ+hmnrxakTf2Z+k1NaLVmtMznhnsBNo6k2zW3rR29fFK4omYmJicTHavOta+NKaYm3DMT2doJqatb3msRPDlPVI59WY04i8R6nZ7lq950rTEb8TPXgCZzd4tNtSNP6sRm3i6ImJjMTmHHW2+179bcPQCzL42zlql+OK9Z4oN0a7aeM80isNyBkywBuSZVAAFGWnEZQRx49UmrPDHVQBlp4elpSN2pHgCXTrtpEdqzRBgNAVtOI8Z5KTa977dOJnxhJFfLtHmV4zynOf8AhRetYpWIjlCs81ptnkqKRxnGV9sYiMcIR6c/6to7cQlBW6kxmMStaWA544TNZ5w1a9M6nCcThWJyDJrE+lTjWUhMZEZFolqOYms5hatsgsGVbT2AykZx4JK3nSvF47OcdYVpyy2eMYB6Qj0bbtGs5zOOKQAAAAAAAAAAAAAAEc+ukRz66QAAAAAAAAAAAAAAAAAAAAAAAAAAAGWtFYzaYiOsg0Qf4mkzikWvPhDJ1Ne0ezWlfTOfoB0K2tWvrWiPTLn2ato9vWt/6xgjQ0447cz48QSW7zo1+vE+jir/AImJ5aWpPwbFa19WsR6Iamis6+rPq6PzsTfXnlGnHpmVgRXdr456ceiJZE94iPWpPphcBDqRrXmu+KTFZziJxlbzLRHtaVv/AF4pAXUVtfTrzmc9MK01p1bbdKmZ62nknnExiYzCOdHTzmI2z1rwTIavGleZibamPCsfflbyKTjdE2x1n7OSkebT1bxeOl+fzb/iNv8AJSax1jjH4+CiaKxWMViIjpDVa3reM1tE+iVlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABHfmkR35gkAAAAAAAAAAAAAAAAAAAAAAAAAAABw6tNvebZ7eMSyZt2al4/9knfOGppW65hDMqJK941a87Rb0wTqzrWrW1Yjb7XCUa+lGMz2yCQ7BWJ7AVYANAAAAAAAAwttZlvEG4wAAZGZBuTKuWZBabMzKuWZBZmWZYDcsywmcemeUA2Z6r6WhbV42iaV98pNHu2fa1Yz0r0dSCta1pXbWMQsAAAAAAAAAAAAAAAAAKanYtHKFdTsWjlANAAAAAAAAAAAAAAABloi0TExmJc2ppzpz1r2T0/H48epkxExieMSDjbW1qepOI6dn49C+rpTT2o41+j9EY12nprxOIv7M9exK4plfR1NlorM+xPuEsX71wmk9nL8fJDlN3ueFI8c+79XOLFstpbGpWfGI+fBRakZvX+0fSqujX0o1K54RaOUuakYpHjxT97rW1Iz63YhjkjMZqepPwUteZiN3GY7fBe/qSjCgRw4AjI7Xb3S2dOazPKfc403dbbdXH7owDtABTzK+ZszxxlB3znT4qavHVtOe35KaupOpeJnhMRET6QU7Fo9qJ3cZzxVbWcSLCYx6GLTKsx8gsOfoAEAABemnfUn2Y4dexPTusYzecz0jkDmrWbTisTM+Do0+69upPwh0VrFYxWIiPBYFa1ilYisYiFgAAAAAAAAAAAAAAAAAAAAAAAQ6/1UyHX+qCIAAAEuh9ZMh0PrJgAAAAAAAAAAAAAAAAAAAAAR6mrFOEcbAkc2tqbrTWOUcJ8VbXtaPatM+78fFHWMZjxVnSSOFpjrxbMZiYZjMRnn4KjU1axWuEWlGdTMzM4j6UwI/r2jx+xaIbGnE2m09vY3ZWOURHo4BjOTMbusR9P6fj0tvHjMzhYQR204veLW4xEckjACZiIzPIRcda+KzGOzM8yrJq2jaba2Znht5J54wgrS2nrUzymeceiXQ510QV9m2zs5x+PBdW/OJ6T+jW57HPl5WjBpCvrz6I+1tvVlkxmc9qs0mfr2933IqlI9usz1lOpFcRER2dWzNuyIn4hqO3t6m3s7UitKzE2mectn2p2xOOs9BC14jhznpHGW0vats7LbZ58vnz/AB8Fq1isYiMNRqeL1tFozE5WQ8YndXn9KWJi0RMIrQBQAAAAAAAAAAAAAAAAAAAGTylXT7Vp5Srp9oLgAAAAAAAAAAAAAAAAAAAAAAAAAAAKampXTrm0+iO2VNbXjT4Rxt9HpcVpm0zNpmZntkEmrrX1eE8K9IRgoNpGbcexi2n6ueoLzLBk9O2eCotTjGeq2CIxHBrk7MwYaAzBhrAFLRjj812EuFmqr6U/6tJnsn9FOU47OwztmJnlExM/N07cuneMmcRmVY3bom04zw2oLgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjpzSI6c0gAAAAAAAAAADhpExWInnHB3OKYmNS8T+6ffx+1UoAMEZrOaTifdKfT14twvG23ulAcxZXaOWmrbT4Tm1ffDoraLViazmJRtYAAAAAAAAAFb22Um2M4RzE29a2Y6RwhKitpTXjpf8Aj2fDp9ANiIiMRGI8BHF85jjExziexu5WV1bXrXnMQrlW1Itzjj1QbOvH1azPuUnV1LcsVZNLRy4x7yJj49FDjPO1p+OPoNtekTPi0VGYiOXCfBaNS1eftR72CCat625StMRMYnjDmx8+ra6s1nE5t6OYqXbOn6nGv7eno+5eLRaMxLK2i0cGWrOd1Zxb3T6UFkMTmZtzzxbe8Wrt5WnhMdGLErVbcono0VkGV5ejg0Dmr6s4n1evRfBiJjEikTas7q8+nV0VtFqxMdrmrOImJ4zHBL3ecxfpn7ErUTAI0AAAAAAAAAAAAAAAAAAAAI49dIjj1wSAAAAAAAAAAAAAAAAAA5dTTnSjNeOn2x2x+ikuyYzGJcMcLWiPUzO0VZfQ46tvCFFNObRabafGc+1WVHTeN1ZjrDmiN2nWYj2ojHpSWve0Y27c9ucqxGIxAMi06eb6c4nHGFqRtpEeCmpWMcOdpwlSoxWJzqz4QspHs609LQgkY1W1615zANapFpn1a2n4N/1P2Y9MqLMManSvzVm1o9ak/DiCzVPNp1+attWMcOIK3nN58GMjhDQZPCEmjHOfgj5z6E2nGKR1niC4CDJnENrpTeM6mYj9v3smInmcY5Xt81E8cIxEYjwR6/8AFPH0KYzztb5qTpe1ms4nx4gkEe2//wBPcRa0c4zHWBVrROYmOFo5LRqZjlx7YVi0W5S3HHINniwLTFYzPIFY46kz0jDNSv1o5wtSPZz2zxaCELRtvjsnkCMUmMehIwFPQdhNds+B2wCSOENYA6e52zW1ek/S6XH3Sca169Yy7AAAAAAAAAAAAAAARz66RHPrpAAAAAAAAAAAAAAAAAAAAAAAAZMxEZmcR4g1S+pXTjN7REIp1r6n8UYr+632QymnFZ3TM2tP1p5g2dbUv/HTEfut9yvkxa27UtN58eXySCIRERGIjEAAAAAADWAAwGsBAABowUUto0mcxG2eteC0ampp8Lxvr+6Ofya0F6aldSM0tErua9ItxiZraOVo5trrW05xrYx2Xj7VV0DInMZjk0AAAAAAAAAAAAAAAAAAAAAAAAAABHfmkR35gkAAAAAAAAAAAAAAAAAAAAAAAAAAABB3yu7QmY51nLk5vQvXdSaz2xh59YmsbZ5xOAJ4RMpacoRTW14tFeyMykpyhRIj5TKRSecgqNYDQAY0iMtwDBpgGNw3ABgGTMQDWTKs2YC2RhkAZlmQawAAKVtq2207Oc9AZxm22kZtPY69HQjT9qeN5j5ehfS0a6VcV59s9UiAAAAAAAAAAAAAAAAAAAACmp2LRyhXU7Fo5QDQAAAAAAAAAAAAAAZaYrGZ5A0Rf4jT6z/4z9xGvpz2z/4z9wJXLracacxNY9mezon83T/fX5tvWL1ms8pBxMxlsxMTMTzicCtral5vXTmecRMT7lCPWn0NCMW07RXUrM8o5/JjMRmJ6Ate03tNrc/oYAMvPsT6GRTrOWzxnHzJnsjjPRGabK9I+TNufVnh1W2Z9bj4NtOIyGI7ViJjETPWWRbExMc4nK8cOfEmsSI744k5xw5uWmrfTjHC1YjERPBPTWpftxPSQcftZnMxnM54dvzVtE5zhe3DUv42n6VZkaxWPazBETaM1jKWunHO3ySLjOodl+kfNWcxzjDoVnErh9IMTnh29h4TGFrUxGa8cdi3C9eLJ2rSlrzisZdOn3Wscb+1PTs/X8cFtDUzGyYiJjljlKYGcmgAAAAAAAAAAAAAAAAAAAAAAAAAAAh1/qpkOv8AVBEAAACXQ+smQ6H1kwAAAAAAAAAAAAAAAAAACtrRWMz8uqzntqRum09kzEQC2bzxm8x4RjH0KW085mLcZ6kasdvDPVbMTyVnUMxNZxbgyY45hNbG2d3JHETsiZ5qiuJ7fccl6Um9sROMc09NKlezM9ZRcQacTFpnE4mOa6eYzGJ5IdWPLmLR6s8+PIlLGxyJVrbJacROOao1ik3ileM/GSa3nTm1pmMRnEGmatN6xzlSdX9sfNSKxnLcJrc4tnNtPdaec4xCsTNZiY5xybhiLibf5lqT4/LhKZzaEf6vwmfodM8maIL8fnCyluN4jpx/HvXb49McuxS2d3OeS6O085lWYvpVm8zMzMRHvSTpZ+vaPl9zdHHlVx04+ntSM63iKdK31bx8Yz9sK+Xqx+yfjMfenF0yIJia4zHPtjkyuMz1TWrFqzE8kE5rOccYnE+j8cfcJZi1rRWMzOEc6l7epX4yY323W5Ryhb2rTimIjtlUUzqxxnCXu+pFptGePRkade32v7cf0bsr+2PkipxFS01mItOazymexKjQAAAAAAAAAAAAAAAAAAADJ5Srp9q08pV0+0FwAAAAAAAAAAAAAAAAAAAAABWbYnGMz4KedFbbb4ifCc49PAEoyJi0ZiYmOsNAQa+vs9mvrfQd41vLjbX1p9zkBkgKCTQittTbaMxaJj7fsZo6cal5rM49mcT48GTu0NTjzjj6YBbW0Z0pjHGs8pkiMRhJr6m72Y9MoyIFevyUtbPCOXUrW2pOK1m0/QX1qeJoaitp30LRumMT2RK7FmOkurDBFawYBKu5aKeZeKROM8/Qn/w+njERMeOfvWRm8sc8+1GOTInKS3d7xymLe6fx8kVsxPGJie2JWeM31LoWxO2Z5erCfdnVrEcsTP0OSYy2LXi0W3Ynlnwaxl1zMzM1r2c56fqaUzNOM5xMx8pmGac1ikRHCINH+OJ6zM/OcoJAABW1614WtEemUdu8UicRE29EAmHLbvF5j2Yivv8AuUtNrx7dpt4Lg7RyaERvmImazMcMfjEp4vNZit4xnlaOU/d+OKCQAAAAAAAAAAAAAAAAAAAEdOaRHTmkAAAAAAAAAAAcutGNefzRE/j3OpB3mPUt44/HyEqEBWAAApedO2Y4xPOPx2jBXZW1bxms5hZxad/L1N2fZn1vvdqNQAFAAAAAAAAUvp1vz4T2THNDal6c43R1jn8vudIDliYn4NTX0639aOPWOaOdK9fVndHSeE/d9AiuGTSLc4y2LRM4nhbpPNoiKdO0erbPpZ7Uc6z9KYUQ4tPKk/GW7LTzmI9CUBH5de3M+mVoiIjERgmYiMzOIZFt3qxNvQitxGc9q0WZFbz0j3/c2dOsZtaZnHHj2CKTO7UmenAKxivHnzlrTNMGDJkRkRi0+PFZS08OHGYM5jIq2WTZUmcRkGRPrTPLLq0azXTjPOeMuOeUV+My6tHWi/s24W+lK3EwCKAAAAAAAAAAAAAAAAAAAAI49dIjj1wSAAAAAAAAAAAAAAAAyeEI516Z9mJt6IR6kzrztpOKRzt1R3m+lMbp3164xgEmpfUtwrMUr15yyKxFcRyhm6GTZVZPCWYxO6Of0gC26L1zDFKRiZtnnPFaZBXMTq1jpCVzXzGpmO1LGpE8MTnolRIjmLakx5ccYnn2JI0ptMTqTw/bCVFQxoWnje8z4RwXrpUryrCQBUJFBWzZnClrds8gUvFeE2jPFHfT28a8uiSJ32zj2Y5eKwOZucQtqU2zujlPNHPHgDcez6XSgziYmeyU2RGtVyILMIkAawkGSrMkyrMqFKxbV454x2JZ07xytn0wi0/5a/F1CoP9T8qtq2zvtiYjsT2hWegMayvqx4cGgpqV3VnHOOSKOMJ0Exi1o6SDQYITGYwpE8YXUmOMwCQZWcw0E3df55/rP0w7HD3eZjXrjtiYl3AAAAAAAAAAAAAAAjn10iOfXSAAAAAAAAAAAAAAAAAAAAADJmIiZmcRDmvqamrM10/Zp+/r6ASamttnbSN1+nT0qWpvmJ1bbsdnKPx6W6dK6cYrCyIZAAAAAAawBrAAGAACAAoAIAAAADefCWCisVtp8dKeH7Z5fDol0taupMxia2jnEqq3pF8TmYtHKY7AdAg09WYmKavCey3ZP6p1UAAAAAAAAAAAAAAAAAAAAAAAAR35pEd+YJAAAAAAAAAAAAAAAAAAAAAAAAAAFNTUrpV3WzjlwXV1KRqUms8pBH/idLtmY+EuTUvW2vfbOYnE+4icZrPOs4lk4jiDp7tXOjMz9afchpE1rET2Zh2Urs0q16Q5p/k1K9Jz84BZWY4wsSophiRm3iCkRlaKtw0GMwswGAyZBrJthS18RmZWppX1K5n2PTzBWbszlmpp7NbHGYxmMtAMgAZAAAAZM4jMqxmZiZiMdJ7QS6WlOvPTT7Z6u2lYpWK1jEQ5o71NYxGlHwt+jY75H1tO0eicoOoc3+M0u2LR8Fo73ozPre4E4jjX0p5alfmvExPKYBoAAAAAAAAAAAAAAAAAKanYtHKFdTsWjlANAAAAAAAAAAAAAAZMRMYmMw0Bz30JjjTj4TP496LlwmMT0l2qX063jE8+yeguuOW1tauNtpjHZ2LamnbT58Y6qK1221ptfMxHHozhB4RzWrSJ4zx6CW4pE1meExMtjjxjl17EkxE84ifSznPhBifSkRM8+ENmvDhPHxWZlcZ2qZ44ngTOPEtGWVnqjcukROOM/JasRHIBVlJndOeyOTZnPCPiIloAMhz5jM9naDIiMTHZDdOPamZ7GZmOyPmvTjCwq+TLBpkypeeO35rqWrEznOJSikzjjHBblPhLMRPblsViYzOZ9LLTczExMcJjlJGvqxzv7o+4muOMK26gv/iNX9/uj7j/ABGr+/3QiAT/AOK1Py/I/wAVqdK/JAAmnvOpPSPgz/Eav7vciAT/AOK1OlZ+C8d7rj2qzE+HH7nKA7662naOFo9E8EjzFq3tT1bTGOgPRHJXvVo9asT4w6KatNT1Z49AXAAAAAAAAAAAAAAAAQ6/1UyHX+qCIAAAEuh9ZMh0PrJgAAAAAAAAAAAAAAAAAVvbbHjPCAZa+JxXEz2+H46IY0sTMzaczOZx+JXjERjIrOqTW35beHL71Yj9uYmPqz+P0SK37J7cqiufM4dkc/uWt0jjM8Iato1z7c9vq+j9QnqSlIpXEfGeqwMtitqxauJWAc3kWrHs4x0zyRTfE4xOeXJ2uPWj/U+P2mmGOOZ5rxeY0p09uYxiOPYqYGsYNwIMVmcela04hTxnmCbu0evbOczj8fNLefZNOuykV+amrac4jmiK14zMrEYiMR2DpHKkziEVvtWtbPJS08OosX0r+Xb8s8/vdUTmMw449m0JtC2JmnTjHoRqVOAiiLWrj2+nCfR+n3pWA57cZiscM9q8RERiOUIaTmMcM15fj3JYtExlpjpZkzEc5Rb7X9ThHWWeVn1r2+HBBLM1mJie1fTtM5iZzMdvVD5dfH/ylulExqxGZxiZj7irK6QEaAAAAAAAAAAAAAAAAAAZPKVdPtWnlKun2guAAAAAAAAAAAAAAAAAAAApa05219bHybe0xiI4zPLw8StdsY94EVivLtcmpmNa8TMzxzxdc2iHJralbas4njEYkgyJxbdWZrPWEnn6kVxwmcc+X49yGJieUtaxFOOZzE55zLEuWTFZ5wgjFpp0lm2fCVVulaKatbTyiXR3i1ZxHCZ7PD8fjk5ormePJftz2ymByR2tu4RyTU0ba0TidtevVb/Bz/8ASP8Ax/U0RaOlOrbHKsc5d1axSsVrGIjsKUilYrXlCyDl7361PCJ+xFSeGOi2vM217dIxH4+aOnryXprj2kAYdAAEndZzfUjpj7XS5O5+vfx4/S623K9it6VvGLRmFgRx6mjOlHDM169PT96jvc2roY9rTjh21j7PuXRDW1qerPDpKWmvatIrsicRjOcfYiMmIltr6k+risfOfx8EdrWv61plmWARw5NBQGYntlmyOgJ+7Y8yZ7Yj6f8Ah0ziYxPGJcWhWbauInHDPvh00vxmtoxMMqRM6dtszmk8pns8P1+CVWaxasxPGJZpzO3E5zHCZ6+ILgAAAAAAAAAAAAAAAAAjpzSI6c0gAAAAAAAAAACPXru0bY5xxj4cUgDiicxmAxstav7ZxHo7BXMBmQAYoOrQvv0o48Y4S5Und526k9Lc/s+ifnCVqOsBGgAAAAAAAAAAAFbVreMWiJRzpTHqW+Fvv5/SmAc8xeJxsmfGCIvM/wAdvTw+90AmIZ07zOI2xHXP2fq2NH91pnwjhH3+9KCqV06VnMViJ644qzGNS09luPx/GEqPVjGL9Ofo/HH4AK3ibUmI7YaKy59/HE8J6S3LbRE3vHj9kFdONkTGenNUxUViYnleY/tH3Lxp2mM7o/8AH9U0xjJ6wt5d+sf+P6tjSt2z8o/5DFInLONpxXs5z2JY0In1szjln9FrViulbHDESK5YzExmJzPgtzdF43d6pjsjMr30KX48p6wauItPvE1jF4zHWOboret4zWYmHLbQ1K9m6Osfd/yjiZrbhM1tHwkHoDnp3j/6RjxhPExMZicwitAAAAAAAAAAAAAAAAAARx66RHHrgkAAAAAAAAAAAAAAQa9szGlHO3OekJ0E6V/OteJricc+wGxEREREYiEepemJrM5mY5QljR/febeEcP195Pd9Kfq49E4ByRMzMVrE2t0hJXR1p4zFY8Jl06enTTjFK4XBw2zScXiaz4sy7piLRiYiY6Si/wALpftn5yujjm2y35Z9y0TE8pdNu66U0xFcT2S5fLiJmJjFo4TgVmpjb9CfQ09td1vWn3ItOkTq18OLqSgAgMyZR31Ir4zPYovlW14jnMQrpVtrZmbbYicYhNXQpWcxWM9Z4g576uJiMTMzy4GybevPwjkk1o/1o8KsBg1gExExieTnmmy/hPJ0qald1fGOQIUmnOa8ecI4nMNiZicwImYyLRMZhuQFlcsmQWmVZsrMsyDZljAF9H+WPQ6XNofzT/V0iitoWJ5AhrztHxWUp16xC4CHV4XieyYwlR6/qZ6SCgpE45N3W8BFlZ9ZnGecnIFqdsLI+UxKQEmh/uKfH6Hc4u7RnXjwiZdoAAAAAAAAAAAAAAI59dIjn10gAAAAAAAAAAAAAAAAAADGue1/NmYj+OOc/u/T6fQCup/r2xn/AEo6fWn7l+UYjhAeKIBW0WjMTmGWtFazaeUA1k2ivrTEemVIjU1IiZnZE9kc1q6OnWcxXj4gRq6cz69fmtFotGazE+hk6dJ4zWs/BXyqxOa5rPh+MAu1FXUmt9mpz7J7JSA1gIDWNUYAAAAAgAAAKA1iAAAABMRaJiYzEspe2nO285pPK3T0/e05xieUqJxz6d50rRS05pM4rPTw+50KoAAAAAAAAAAAAAAAAAAAAAAjvzSI78wSAAAAAAAAAAAAAAAAAAMm0RzmI9KHW19k7Kcb/Q5tkTxtM2nrMg74nMcGvO2Y9S1q+iV6a2rp87b48Qdw5a97jPt6cx6OKWveNK3K8R6eAJRTzdOeWpX5ti1Z5TE/EFgAcneqbbxqVjhbhb7EFo9ifQ7e8Y8i+ejkmPZwDv5w45z/AIq89nL4pe6am7T229avD4K61NlLWiczFtwACgAAMyyZBrJlS1us4K1vqTwrNY6yDLXiOcrV09S88Y216zzTaehWnHG63WUsVBFp6VNPjEZnrPNJhba3CDh1bbte3hiFScTe8x22mRQAAAAYAMmMzx5Q0AAAAaBEQ3bXpHyIbkGTp1n6sM8qnRaZiIzM4Wppamr2TSvWY4/IEM0pE4zOZ7IdHdu73pbdebV6Vyn0tGmnHCMz+6eaRAAAAAAAAAAAAAABTU7Fo5Qrqdi0coBoAAAAAAAAAAAAAAAAAMmMxhza2jNParma9OjqAcFcTntzw+9KpM41JiOWZ+luWkpacRw5nCsdIhkzO6PmrqT9WAVtbd6Ck4mY6wYziI5QRHtehFqynbPpWVnnOAi0StSl9SPYj4zyZWdPy5res7p+tz9zaatonMXnxieKNajxas4xy6SZxzzC88Zmes5BlXJlmMT4ALZI4cGQ2eIrLFbbefInLFW+pNzJtjnwR8o4Tgrx4ms4tNpnl72Y68WgGCM844sn3rcIgK2LZZMZiVe3LcoKZ6zxa6e7anGdO2Mc4+38elP5Wn/86f8AjAPPHfbQ07c6R8OH0KT3XTmeE2jwyDjHTbuk/VvHomFP8Lqfl+E/oCFta2tbbWMz6YWnR1I50n4cWbLxx2WjHbgFvI1f2e+GTpakTjZb5JNLvM14XndHXtdVbRaM1nMA4fLv+y3ybXS1J5Un6HeAg0Z1onGpXh1mY4JwAAAAAAAAAAAAAAAQ6/1UyHX+qCIAAAEuh9ZMh0PrJgAAAAAAAAAAAAAAAAEGvG69MTyzlNM4jM8kGczNp4ZWJVfLr4/OTZMT7Npj0rCsKxaYnFoI9q27sjhC0xExiYzBwiOkQBFd87ezt9H6p1dOs1r7XOeMrpW5MAEUAAcupWt4nNttojjE8vx8XUgtXTm81vHHOYme0EelxpEzzXwirMad5jPs5+X4/HamGmYVtERGeiysY1NTZOYjHPx4fqCKtbXmZiM47PBbSru1I6V4z9n48FprbR1YmvtRPDHamrG2Jm2MzxmUqNtaK1mZc2Zm02+Xg3Uv5k/lj3qrIzatvlkzM+hjVRnGeXzbEY9JX1PjP0tEZbhifFJozHmR6Jj8fJHMZjBoznU05/HKRY7QEaBH5tfMmk8Jjr2pAcMZrie2Ek0i8ZzOJ547Ucz0X0v44josOc/VwGnMJjhwnE9kk8IJ5cAS0vF655T2x0ldz0ttvE8otwn09n3OhhuAAoAAAAAAAAAAAAAAADJ5Srp9q08pV0+0FwAAAAAAAAAAAAAAAAAAV1JxScTiZ4RPjIMpi0zfrwj0R+M/EvbEF7RSIiI8IhlaTndbjPZHQHNq3tNprjEY4wjwtNpvM2nt4iozBhooAAAk0dHf7VsxX6QRraenOpbHGKxzn7PSmt3aszwtavhCWtYrWIrGITVbERWIiIxENBAVtaK1m09ha1aRm04hy6urOpMcJivT8fjtBT08Z7WV9efRH2tKcZnbEzMz2dhy6Xj2sLeXaY9aI9HFvlcPXt7vuc9jpqgt5dojhMT7vvV4xwmMBquhbZqUtnhyn4u950Rwx8HZo6m+nHnHCfF0ckoAAAIr6FLWzxiZ54lzXpsvNZzOJ4TLucveYmNSs9kx9H/KwRAKgAAACXu0f6uelfuTatJvETWcWjlKLuse1efCPtdLNVFpX3RiYxPKY6StjGpnrGPu+1XVjbPmR2c/R+n0LWmMVtPZMe/h9oLgAAAAAAAAAAAAAAAAAjpzSI6c0gAAAAAAAAAAAAOXvMRGpWf3Rj5I3T3iu7SzHOvH8fByrGa1gKyAALUxNts8rRjh15wq2LbZi3Sfd2osdenfdGJ9aOE/jxXQ2zWd9czMc4jtj8cv1S1mLRExOYlG2gAAAAAAAAAAAAAAAAAMawEUezaadIzHoWQ1tv7xNuzbiPRwSjKK3DUt44n7Psbpz61fjH4/HNmpw1I8Y+j/AJZnbMW6c/R+OLX4n6g47YSd2rNrzEWmsYzwW1aYmZiPZnj6FNLU8u+7sRU9tTZqbb8uyV0URbU1PMtGI7ISgMvxrMdWodXVis4iMz0BbRiKakcZndw/H47XSg0q7rRacez9KdGhW1a2jFqxMeMLAIZ7vTsmY+KGd/d7c+E9uOE+mOx1svWL1ms9oI6a9Z9b2Z69iZwzWa2mJ4WjnjtW0720+XGOn45Lia7BHTVrqcI4T0lIigAAAAAAAAAAAAACOPXSI49cEgAAAAAAAAAAAAAAAAAAAAADl7zTbeLxytwn0upTUrv07V6wDl0vXn0JsoNHO+2YmJiMTEpxTIMmcQCupfbEy565ta2eZa++/CszEdF43ZzFPnIsS939nVmOyYdOcOON+6LZiJjpBNd05vM29Il7Wm8al7WjlnEDAGgAMkmVZkEV4229LG6s4wqDYttnwXyjInE4nkIkyzLAAABrGTboC0X8u8T8/Q63BzS6OrNPZt6s9vQV1HYK3nFLT4ApX1Y9DWVjFYjwJmIjMzgGodad0xSPTLbakzwry6qAyaxPgr4SurPrSIzOGxHUjjPoWBSYxwXrOYZaOHoZWLTbFYzM9gOrukZ1LW6Rj5/8OtHo6fl6cV7e30pAAAAAAAAAAAAAAARz66RHPrpAAAAAAAAAAAAAAAAAARa+pNKxWnr24R94I9W06tp068KRPtT18I+1aOEYjlDKVilIrHY1EJnEZlFNZ1piZmY0+n7if9a+36lZ4+M9EoHKMQi46mtj6lPfKVHofxRPbMzM/MEjWAAAK6mnGpXbPwnozStM5pf1q8/Fdk19uLduMfAGgAAACPWi8YvpzOY5x1W07xqUi0doLAAAIAAAANGNUGAAAAABNYtExaMxJpXmto0rzMz9W3X9RlomY4TiY4xPQHQI9HU8yvHhaOFo6SkVQAAAAAAAAAAAAAAAAAAABHfmkR35gkAAAAAAAAAAAAAABkziMyDXLr68+ppT7WeM9FdbXtqTNNOcV/fH2KVrFY4AVrtjr1loKCjZlWZxzBrJiJ5wZieU5aCuyvQ2V7I96wCTS170vFbTupyzPY7Xm84dndpzoRmczHCUF9Wnmadqz2xwcUTPKeExwl6Dz9edveLxjGeMeIGJi0WrOLRyle2vnRtF4xbGOHKVK2iYao2l91Int7UiKIiOUYWzwBbcrM5Yy04gGzOFY3XmYpGZjnPZClJ36kRqezXtdtNuMUxjwBz6dI/xM1t7W2ufi64qpTR269tTPOMYTIMiMNABHr32aN7eCRy97vnGn14yDnr6sehoKAMicxkGsawAAAAAABrDOZxEZnpANKRbU4acZ8eyE2n3XMxbVn/1dUVisYrERHSEEOl3etcTf2r9ZTgAAAAAAAAAAAAAAAACmp2LRyhXU7Fo5QDQAAAAAAAAAAAAAAAAAAZMxETM8oBxf9lvTP0rERzme2Zn0ZJajIitmbTwmfglUtaIKRWM8sYbwiGTMz4CNNicxlXtn0rV4ViFo7vqTSLV2zE8Y48eIRG2OMLeRq//ADn5x96kTOPVlGtbxjxazM9Pe3tyJWW4TE/Bi08YV49ojYaQA1k1ifD0AClomI8FqxwLRmFqRHLrxgVmG4X2qW6Rz+gVXnOejJ4z6GzOIxHNWI8VZaHIQX0omdWmOefx7neg7tpbY325zy8ITgAAAAAAralbetWJ9MFa1r6tYj0QsAAAAAAAAAAAAAAAAAAAIdf6qZDr/VBEAAACXQ+smQ6H1kwAAAAAAAAAAAAAAAAI9WeERHaj+tx5Y4GrP+tHTGPpn7IZzv6I+n/hqMXtvGbRHZ2tnmr9ft4R+PobM45qgRxtWM4zJ6VtKM3meHDh+PclWdpgGWwAAABW9d0dJWAcl9Kc+zHpr09HgjibU4Rw8Jh3TETGJQak207xFbZzE8Lccfb70XUM3tMYmcejgytbWxsifCYSb75z7H/j+rbWvb62PR+MrlT6i3DTxbUtm2PxiEd7Tqc4xXp95txx7epgxNYNxJhUZhoKhHOY+ITHbHNk58IAtnGI5y3TnbevDtx9jIjBx7OE9koO0VpbfSLYxnsWRtz94rxi3XhKunqzp4i3Gvvj73Reu+k16uLPXhKNT2MnGZxOYX0pxz5TKNLpxE6MY4cPesTn0kZNp5Y7WUtuiYmMTHNt/VzPZxacmznHBlZ3VieXg1ledo6T+v2qKzb2Jxzj7HW4oj2rx4uukzNKzPPDNbiwCKAAAAAAAAAAAAAAAAyeUq6fatPKVdPtBcAAAAAAAAAAAAAAAAABHqWiLVz2Zt9n2pFJ062vFp4zHIClZzNretPuhmvMRo2z2xj5pHP3qeFK+Ofl/wAggAaQAAArWb2ilec9vQF9LT82Zz6sc/Hw+91spWKViscoWZUAARamtFJxEbrdOimrrzM7dOfTb7kURgCc2tutOZZMcJzyam09Hju1OP5en3qIY07+Xa0xjEcM9v4/GU1IxWInshXvN8zWlZxPP7vx4Gnfdwn1o97nz3Fi4Dm2ExExiQBzTXZe0RnGcwtS86dt0ZmO2I7W60Y1InrH0f8AKrvxuxzvbtraLVi0TmJ5KV1ItfZic4zE9kwg0ZmbeXE+zMZmOn/P6p5/mr/WfsBIAAg71E+XEx2WjP0J1NWu7StEc8cPSDjAaQAAAB0d1j/Tmetv0+xOj0IiNGuO2M/PikZUQTG2s0nsmJr6M/Z+OadW9IvjOeE54AsAAAAAAAAAAAAAAAAACOnNIjpzSAAAAAAAAAAAAAOfV0OO6nxq6AHDttjMRujw5x6Y/wCWZ7O3o676UWndEzW3WPt6o7xwnzaRMR9aOP6x+OK6ziASzoxMZpeYz8Y/HxUnT1I7In0T94mKjZraOdZ+EZ+hmcc4mPTCifRnOlHhwbny7TaI9mfWx2eP3qd3n1scueUqKkiYmMxxiWoIi2nOacY7a/clret49meXNGlgAAAAAAAAAAAAAAAHP3i+fYif7N1teKxik8eWeyPv/GUNdO04xE+mRKtox7cz0j8fQmVpTZHPM9VlRHqzwiek/p9qqTUrupMRzwjicxE9ViVbSnEbJ7OXo/T7kmYQT1jnDYvE8sz6ImUqz1NmGTZHGZnEVt8azDY0bW7Nken7In7UXC1+srU05txtGK9O2fu+n0L6ejSk5iM26zzSAyIxGI4Q0BQAAAEWtTdTMetHL7nNzdzitXZe1eyOMej8cFiVkzETxnil0tfHC85j933/AH/Nzz61mYEejz5NcOlrW0px61en3Oyl63rms5hGlgAAAAAAAAAAAEceukRx64JAAAAAAAAAAAAAAAAAAAAAAGTOIzPCGoe8zM0ikTjdOJ9AKU4xNp+tOePTsWMxEYhk2gVvJDe262yJ9Ja82ma059eyG1rFY+mQMY5NFZvETjnPSAaM9qelfeRSO3M+lcXCb1jthm+OyJn4LRERyiIZqepjrwMMUi9rcoxHWVssEQBTUtw2xzkEd83tw5QROOEtJjIgc2RPZPNopE458m7o6wwxHQRu6GZn0ABPjLObM5aKYzwXwynVoi1NS1OEcY6SW1ZtPtbsdIVAWnVtPKMelWcz605AUAEFJ5zK0ziJZWOPoBsRiGgBPJ19zpEaMX+tbnLkdfc5mdDHSZgHQAAAAAAAAAAAAAAACOfXSI59dIAAAAAAAAAAAAAAAACtrRWs2nlEZc+nEzM6l/Wt2dI6LatvM1PLj1a8bfZH3tRAACIiIxEYjwAAQ6MbLXpPXMehMj1ojMW3xW0cs9oJBFp6sanDExKSAaAA1jQYAAAAivWdO06lY4fWj7UoBWYtETE5iRDP+jfMR/p25/lTAAIAADWAACgAAAAAATIyUFbTNZ82vOscY6w6azFqxaOUxmHP4dkqd01NuNK/by+5YrsAUAAAAAAAAAAAAAAAAAAEd+aRHfmCQAAAAAAAAAAAAABF3qcd3vj0JXP328V0dvbYEERERiOTRijWTLJlS1ojxkGzOIzJFM8bc2acTec2jhHJKCu3ozC4CgSAOjufq36bnNacRiOMzyh3aFJ09GtZ59qCRWa1mYmYiZjksA4+8aMU/wBSnCM8YRZdutGdG/ocMZmI2xmZ5QC2W5ZrUnStETMWzyxz+Su6OuPSouKxOeUtyDcQr5dc5w3JkFotevq6lo9PH6TzdeOWpE+mFcsyCaveNSPWrSfROFv8VP8A84/8v0c+QEt+86k8KRFfHmh45zMzMzzmSZiOcwzPSsyg0m0VjMkVtPOcR4KxWIvOM4gVvG3PhHRoKgAAAAAAZxBEWvOKRun6HVpd2rSYtb2re6EEGno31YiY9mvWebr09KmlGKxx7Z6pAAAAAAAAAAAAAAAAAAAAAFNTsWjlCup2LRygGgAAAAAAAAAAAAAAAAAIe8TitY7Jtx+n7EympTfSa5x0kHPlWZhl91JxeMT7pbTRvbs2x1lrUUvaccFKxxdNqV0s1txi3b2/jo56+tiUWNZPL0pdOK7sWjhMK3iIt7M8IBmMzEZxmcO+IxGIcvd67tTMxwrx+P4y6pnEZnklEXeL7abYzmzmbe2+8268vQqB2wM+tHobyAAABlp4ekGlpxHBleXoJ429ApFuvCTE8YxmCYjHJesRHGO1cS+Mjlxtu8PxxbOZjhGPS0VnVJpMTmJyr8JXmWJi6yIzOI4p9DRmbbrxMRHKPx+PtppWtXVjbiImcTn8fJ2ooAAAAAAAAAAAAAAAAAAAAAAAAAAAAh1/qpkOv9UEQAAAJdD6yZDofWTAAAAAAAAAAAAAAAAA5LzE6/D932LROZt4ThutSI1K3tETXOZ4eGPx6Ora6dd14xxzmJ7eULrNilMzume2Z+77EmnG6+eyv0/j6Vdlq0rOc2nnE9U1KxWsRBpJ6irS05ndGN09njPik0oxSM8548sK87Wrjt4+jEfTySo0AAAAAADJmKxmZwhtqWtOI4V98/j8dAWvqc6159eiHGbTz+LZ4V4fBaIaxi1kVbhoqMMNYAYAGYZhYBRi8wrMIrA5ANra1J4fLqvHeJmOFIz03fopEeCt6ZjhOJ6pi6mjX/dSY9E5+5BqzSdWdk8+PJkTb5c4nm3MWjExyMWXFF9KedIjM81J9nxgzMTE1zEx2wnTVyxa0209WJmsxw5dYT84zCLU1PNpE2jbevvjwboTO7ZM8J5SrFi9OEY6cPu9zInGpMdcfj3G2NPXiLTM1vHb1XmkU1J1IiIjHHHTt+z5GmM06Ra+puieeOnZCesYrEdIRzEzN5rzifnwhIjTQAAAAAAAAAAAAAAAAAZPKVdPtWnlKun2guAAAAAAAAAAAAAAAAAAAA5Ne27WmOysY/Hudbhtbde1usysGAKgAA6tDS8uuZ9aef3I+703TvnlHL0ulKoAgOXU1pvO2kzFY52jt9H3t1tXdM0pMxETxmO1FCjYiIjERgG1ra84rGfHsEZWInUrnsnKe+ptrmZwgvXZqTG7OI58sT/wztz29RVZza26eecrY7Y4THKWNhUTUvF46THOF3PmYndXn9KatotWJjtcOXHG5VgU1L7a8Oc8me1RasxOpE/tnHz5ilvVnHRd6JMjC+hPG09ucJLakV1KTPKYmJnpyc/Gs5rz7fFs2m0xOMYiUHZadsZ4z6Edb386a2xia5jHYpoRmMzOYj1Y6fjs8OS8RP8AiJ6RT6Z/QEoAODG32ek4F9aJjWtnwmPko0gAAY3ezHOeAtpxu1aR45+XEHZEREYjk0GVAAAAAAAAAAAAAAAAAAAAR05pEdOaQAAAAAAAAAAAAAAAAEVtKMzNJmsz05T8Fc2r69f/AGjl+n44pwEUTExmJzHgNtpVmcxms9a8P+fizbqVjnF/d9/2CY0U8yI4XiaT+b7+Syo1S1YmcxMxbrC2VZnKDa6s14an/lEfjH0JYmJjMTmPBArEbZzWZrPh2i66hBGraMZrFusxw936rxrafbO3+3AVIMiYmMxMTHgA0RedunGnXd48o+f3E21J5TWPhn7YBKIbW1K1mZtXEfln71PPv+2J933ia6Rz/wCIn9vvZPeLdlYj08fuDY6ByTr6s/WiPRH35Utm3rTNvTK4a6ra+nXlO6fy8f0c+pq31OE8K/tjt+KvJLpUmPat8IE1JSu2lYnshoAAAIeVrRPZKZHqRiYt8J+z8eJEqra2nTtmONZ5x9rBUlx01tFqxNZzErOWszS2az6Y7JTU1Ytwn2bdJ+xMbl1IAigAAAAADn7zWImtu3k6FNWm/Tmvb2A4e2fSMjt9LVZFtO86ds1+MdVQHoVmLViY5Txah7rOdLH7Zx9v2pkaAAAAAAAAAAEceukRx64JAAAAAAAAAAAAAAAAAAAAAAHL3qs+ZS2ZjnDqU1dOurXbbPXgDkxf90fJmyZ9a0z4ck1tDUifYtWY8SNDVzxtSI8ImRVIiIjEcibRHDt6RzS/4eZ9bUnHhGPvX09Gmn6scZ5zPMHFebzmJiaeHVJSkUrhurO/vM9KxENaiwAVoR3nOpEftSckVeMZ6pUrQnhzRzM38I+llltr9leM9UccOcTlcEVyNmIlmJjlxFJjLInsluSQAiOHHmsDMGIaCMmInmrMY9C7LdnpAr6qytfVhoAAAZhmY6g0GTOPSDLT7m1jEK47Oq4AAE8Id+hSaaNazzxxcnd9PzNXPZXj8ex3gAAAAAAAAAAAAAAAAjn10iOfXSAAAAAAAAAAAAAAAKal406TafhHVdBq4vrRXPCnGfTPIFdKs1p7XrTxn0rAiACADLTtrM9Iyore1rW2UmIntno2unSscszPOZ5yroVxTdPrW4ykAAAAAAAAQAFAAABAAAawAAAAUAAAAAAGS2VUBzTxm2JxNbTMfN0uObbda3plYPR0dSNXTi3b2x0lI4+7XiurMdl498OxVAAAAAAAAAAAAAAAAAAEd+aRHfmCQAAAAAAAAAAAAAEWtrRp+zHG88ocetm1Ztac2ntbO6t77/W3MtxiYUblkyyszMceccyYzMV7bTgFJtNuXCOpEcYrHa657nEV9m858eTmvp309SkXrjM8OKCWIxGI5DRRjJbJpac6855afXtkFK1tqWmtIzPbPZCavdL/AF9T5Q6a1itYrHCI4LIIKd106W3cbTHbMpwAABiLT0K6WpNonh2R0TMtGazHWAedN7amtW9uc5x4QkmInnCGJxstjlCaJzGRYjtWKzFo4Ryls8Oa0xExiVMWnFccI7esA2sTaN0zMRPKGzTpaVgXFNlv3+42W/f7lwMRxmLbZ49sSWzjEc5WvXMcOccYZWM23TGMdgmNrSKxy49VgFZacVmfBHSMVbqTma1j0yCUAVAAAABk5nwaAV9ic1mYnwlfztXs1J+UKCC/n63/ANM/+sN/xWrXjOyfgpSl9X1K8Os8nVpd2ppzun2rdZ7PQC2he+pp7r1iM8sJQAAAAAAAAAAAAAAAAAABTU7Fo5Qrqdi0coBoAAAAAAAAAAAAAAAAIta16ViaRE9fAEo4vO1J4xeflH3Hman/ANJ933C47RxTq6v/ANJ+UfcR3nUjhOJ8Qx12rFq4nk5dXQvWc1zauPiR3q/bFfo+9JXvWedPlOfuEc8U1LcJrP8A4ylp3e0+t7MdO37vpS17xSee6vpj7srW1tOsetEz0jiC1KVpGKxiEHeNWJ/068f3T9iuprWvw9Wvh2o+QDBkgyYmeMfV4y23LHVP3bTi1bzPb7P3/jwQVjjiezhjoLCs8MS0iMxMdsTmAQVtGZieyFp4QtFfZx15rDcU5T4Njx5yycTHHnHRvH0I0Np0n0kREMmenNSzUnJWZZuzArmDIloo69G+/Tie2OE+lyJNC+3VxM8LcPj+PsSjrARQAAAAAAAAAAAAAAAAAAAAAAAAABDr/VTIdf6oIgAAAS6H1kyHQ+smAAAAAAAAAAAAAAAABlqxasxaMxKKaWi3CZmLRtz0/HH3elMAi0p3xW3ZEcPt/HpSgDO1oAAAAAxW99sdZnlDbTtrMyiiJ5zOZnnIlZxmc2nM/QYWlnJpmqc7/wBfp/H0rxCteG2ey8Z/Hw+hc0wmGNlgDGsEAFAAAmBm7jER8wV2Ztx5R714iIaIMMNFEd6Z9PVHjj0tDoR6lN3GOcIqOJzH0sjhOPkZxxx4TBz7MIpjI0VE+neNSIreY3RPzXrmbYtxmImJ8eX0/er3avszbHOfo/Ep2W1NOmzPHOZz9i4AAAAAAAAAAAAAAAAAAAyeUq6fatPKVdPtBcAAAAAAAAAAAAAAAAAFa2rePZtE+iVnnRFtK0xE4tXhl2aOtGrGJ4WjnAJJmIiZnlDgiMViHZrzjRv4xj5uRYACoNrWb2isc57ejOTq0KbaZnO63PwSiSsRWIiOUNBFHPr6sxOyk8e2Y7FtbV2Rtr60x8nMsGxDWQ1UW06TeZiOERzl0cKVxWMIu7TFe7xM854yrrX9mYzxtwZVHndm09s5ZINIyWVn6SZ7VYzH2oJYltLbL+FufpRtnjGJLNium1orXMoJmbW3T8I6K5mcbpzgyzx44tuluFZnwWR2nOI6rxLbKxMZhjcgvpX4Y5TEcklLxOtMTzmI92fvc84n72Y45mZmc5z0TFd4j0dTzK8eFo4TCRBy95j/AFYnrX70SbvXrU9E/YhWIAKCXu1c6k26Rj5/8InT3asxpZn605SiYBFAAAAAAAAAAAAAAAAAAAAR05pEdOaQAAAAAAAAAAAAAAAAAAAABH5NOyNv9ZwkAQzoz2ak/GM/cydLUjltn44+9OA5prqR/wBcz6Jj72ZntpeP/WXUCOOdSsc5mPTEt8yn7o+brAxxTOlPH2Z+GVqaMWmLXrEdK4+lNM77flr75/T6fQ0AAQ5oL6U1404x+37k4Dlic8OU9JJdFqVv60ZR20f22+E/j71TEQtOnePq59EwkppY424z7oDGaen9a0eiPx+PslAUAAAAZaItExPKWgIY5ceccJG6kbbRbsnhP2fd8mKzQmImMTxZaZiuY5q7rdY+QJa6l6fmjpPP5/f80tNWt+ETiekuXdbrHy/Um0zGJrEx6UWWu4cldaadZjpb7+PvdGnqV1K7qzwRtcAAAAAHNr6HO9I9MdfFzvRc2vo870j0x+Px8edSxzhAMp+6z7do6xn5f8upxd3nGvHjEx+Pk7UagAKAAAAAAAAI49dIjj1wSAAAAAAAAAAAAAAAAAAAAAAAAAAzkhnvOnFcxMzP7eUp3NXy76Vq3x7HszPbwBHoVm1ZvPO05lNFYR92nOjEdEzTalpitZnGfArMWmYxMWjnEs1/4reDNe9bY8uc36x2JqazVmOFI5zz9CmGxGOMzm085R3vu4Ry69URlp3ehgCAAAAMtHD0KzyXU8AXGRxhoAADLdjWW7AbHIZWeGO2FojdaK9QbTTtqcYmIjqlju9Y9aZt7ksRERERygFUjS045Uj48W7Kftr8lgEc6OnP1Y+Clu71+rMwnYDjtWaWjPLq1PasTGJ5IJjbbbPYAC+jp+bqbfqxxn7hHV3bT8vSjPrW4ymAAAAAAAAAAAAAAAAAEc+ukRz66QAAAAAAAAAAAAAAFb2ilJtPKIyg04mKZt61uMt7zO7Zp/unM+iGogAAAgKa38NvQuy9d1Jr1hRoj0b7qYnhavCYSAAAAIACgAgAAAAAKACAAAAAAoAIAAAMAlgAOHU/kt6Zdzh1P5LemVgvSZmuY9as5h6OleNTTreO2HmaU4s7e52iIvTpOY9EqrpAAAAAAAAAAAAAAAAAAR35pEd+YJAAAAAAAAAAAAAAc/etPNfMjOa84jtj9HK9Jx6+jNJm9czWeM+AOeZ26kePNNoRu7xXwiZV0KxfvERPGJrLo0NCdLVvPOuIxIOhz97pNtPdHOnF0AOCLxMZhu5uvpeVabR6k+5GotWnnamzOIiMy7oiIjERiPBz9zr7Fr/un3Q6UAAAAAAAAHn61PL1LVjlPGPQrSZ9mZnhMYiHX3nT303RGbV5OOeMRMdnEEm6N23taixisWn1s5SxjG7sxkag3CuneLWmsxiUoKYMLgqPAvgwChM4jMtmEVp3TiPV7RGRxzae1oDIAoAAAADJmIjMpdLu9tXjfNaTHDHOUEUZtbbSN09IdOn3TjFtSc/l7P1dFKVpXbWMQsDIiIjERER0hoAAAAAAAAAAAAAAAAAAAAApqdi0coV1OxaOUA0AAAAAAAAAAAAAAAAEOtreXwiOM9s8gbfQpac4xPg5b4pON0W8alrTf17Z+hWZGozOWLVrNp4fNJGnX0+lUtRbZ6w3b+IWtFInHCPR+jZr4zBiarDVeOfZnMdZhZABWZBsyrxnlxnsa6NHQmLRa8cuUfaCbTrs0616Q5e8026ueyztR62n5mniOfOAcVZxfMzz4L2jPGOEo55zHbErROYypSONojpxlIoKhbhOerMnNWeHCZStStyyZZ6IbhGmROOPYkUInHDsVmxaeE5+DWTxjBE5hWWszMcY5xxgag7a2i1YtHKYysh7rOdLb+2cfamRQAAAAAAAAAAAAAAAAAAAAAAAAABDr/VTIdf6oIgAAAS6H1kyHQ+smAAAAAAAAAAAAAAAAAAAAAAAAABW9tlJtPHAKX9rU8K/T+PtGVjEY5tVlkqXjNZrPbw+azJjl4TE+9USWjdXEc+xWJzHTrHRdS9Zid1Y49sdf1YlbsZIROeI2wMBUAAGWtFY4tjN/U5fu7P1/HFetIr4z1lm3FnFTy7X9f2Y/bE8/T+Pic5nhiI4RHoSTMRGZ5QirExWInnhJ7VvkWAw0yACgAiHVrid3zVTW5IcYnAoejn2CXQru1M9lfp/H2CujTrspFekcVgZaAAAAAAAAAAAAAAAAAAAAZPKVdPtWnlKun2guAAAAAAAAAAAAAAAAADi71G3Wzj1oz+PciiZiYmJxMcpdXfK5pW2OU+78Ycijp1NaNTu8fum0RMfj0IkdYzeJSiMGsnw4z2KJNCm/Uz2V/H6utTSpspEdvb6V2VAAcN5m2peZ/dMR6IY23r2/tP0saQawAibRGItiOmGY7ec9WsyDVZblgMnshqscZmfksisjo1k+9scQGTPzM9DlAMiPa9C8SrHL0tBYZDVRowBal/LvFuzlPo/R2OF0d2vmmyZ415ej8cEqq969enon7EKfvUcaT6fsQEQAUIjdO2O3g7qxFaxEco4Q5e713auc8KutKoAgAAAAAAAAAAAAAAAAAAAAjpzSI6c0gAAAAAAAAAAAAAAAAAAAAAAAAAACPVtNaez61pxH48OaRDbjr+Fa/T/AMA2sRWsRHKGgMgAAwUawAAAAAAaDBoDGgCt4iaTE8OHPohrMzHGMT2wl1IzpX9Et1q49uOzn6P0IWag1PV+MKr2jNZjrCkTmMqyNY0BfSts1Y6W4T9n3KExmMIsdwppW3adZnjOOPp7V0bAAAAAAc+toZmb6fPtjq5nootXRrqceVusCWObR/np6Z+iXc5dLRvXWibRGI45jtdQQAFAAAAAAAAEceukRx64JAAAAAAAAAAAAAAAAAAAAAAAAAAHFbTrW2y8f1t1h2q3pW9dtozAOWtIrMzF7RM/jo2Ymf8Ast8Mfcknu/H2b2jw5oJid+KamaxznHaK3ZGczmZ8ZyTaK85iFZpMxPtzllaxjMRx7QVvab8OUfSxeYVmBGAAAAAAKzzWZYGVnsWUlaLdlgaDN0A1Sc5y2cyAzxdHdomYm0x4Q555O3Trt06x0gVYAAAAAFbwg1Y4bu2HRbkikEPPlxnsiHZ3bS8vTzPrW4yp3OK1m8Y9rPPwdQgAAAAAAAAAAAAAAAAACOfXSI59dIAAAAAAAAAAAAAADnvie8TPSsR75arSd2pq2/Nj5LIgAgAKAAItStot5mnGZ+tHVunq1vynj0lIrbTpfnWM9e0FsmUXlWr6upb48TZM+te0+jggkyxkViOs+mcrRANjkAAAoAIAAACgAgAAAKAAAAAZYgMAAABw6n8l/TLucOrGNW3pWDInEurQtt7xSf3RhyJonFa2/bMSqvTAAAAAAAAAAAAAAAAAAR35pEd+YJAAAAAAAAAAAAAAGTGYxLQEMaFa63mVnEftxwTAAADJiJjExmHHr6FtPjpxNqz2dsO0BD3Ws17vWLRMTx4T6UwAAAAAAAAAOXvGhPHU04zPbWO11APNiYk3TjZ2Z5+HR1a/d92b6fC/TslyzmLbbRi0dgN4RqVt8FtX2piueHajniRmM5nMipdG3DZM8Y98JHPmYmLV5wk82uOU/IWVIy1orxmYhDbUvM+zEVhWYzObTmQ1a95vwrmI69WegBAGZjrCo0AAABktAX7tWLd4xfE8MxDucOhw7zSfTHud6AAAAAAAAAAAAAAAAAAAAAAAACmp2LRyhXU7Fo5QDQAAAAAAAAAAAAAAAAZaYrWZnhEAralLcbVrPjMOTU2Wnbo149ZmTV1rak9K9PvNKOG7qq9L1iKxiFb27I5rZVmsWnirKOIj4RzWmZtz5dGTnPq+jkyZx0+MoqzMs444z8mRHag3K+lpW1Z4cIjnKtKze0Vjt9zupWKViscoBmnp1049mOPVcAAAedqR7dpiPrT9LI4TnOYSXjGpePzSpMdOamrCkWxOJjCwjWTGQBXwnmLTGVJzHP5jUrWeg9LUUiceMLRE4i3Zbkpz8IdMxv7pW3bT/j6OKs1CAqJu6zEXtHbMfR/y6nFpTt1azPXHzdrKgAAAAAAAAAAAAAAAAAAAAAAAAACHX+qmQ6/1QRAAAAl0PrJkOh9ZMAAAAAAAAAAAAAAAAAAAAAAAAAg15nhHZGJn8ejKdzzi+/pMzE/R9glbkVrPZPOOazTIy0bqzHWMNYqJKTM0iZ544+lZFpWxM18cx8f1SuTqjtTHtUjj2x1/VWJieSZS9ItOY4WjtalZs1VjM23bdvtenhjr+OK8aefXnPh2fj8YXYz81WJzwrG70NjSzxvOfyxy/X8cEgzbrcmERiMRwgBFV1Izp2jrEqL6kxslRrixybDWQ1pISxssAYAjLckV44Z6JLK8+EixWImZxEZmeUOvTpspFfmh7rT2d9o4xwh0o1ABFAAAAAAAAAAAAAAAAAAAAZPKVdPtWnlKun2guAAAAAAAAAAAAAAAAACLvEZ0L+EZ+XFwvSmMxieTzI4xCwWp6/wSI9P15nwSCCTu9N190xwry9P6fjkj48o5zwh2UrFKRWOwqrAjtradM7rxmOztQSItbWrpR1tjhCHU71M8NOMR1lz2mZmZnjMgvEzPGeczlaIVryiFmkZITPaqDcsOTJt04g1WZ7I+Zx7ZEUhZVoNZjjzGgM5zhalLak4pz7Z6OindaxHtzNvcDmE+p3aYzOnOfyz9/wCPSgmJrOLRMT0kBuWCotkVMgstpW2atZ6zifj+qOJytpUm+rXHZOZRXR3r1K/2+yUCfvPqV/t9koCIYY1ald94rjh2+j8cFE/d67dKJ7bcfx8EoMqAAAAAAAAAAAAAAAAAAAAAAjpzSI6c0gAAAAAAAAAAAAAAAAAAAAAAAAAACGvG1562+jgmQafGkT14/PiJVgFQAAAACJzGY5NBg1gNGZhm4FhTcraeGenFBKMFGgArblx7ZiPmmQW9rUpXx3T8P1wnRY5r02Tw9WeXh4fchxiZjxdt6xes1nlLk1a207Ru4xy3LqWMayJzyFZAATd2tibUn0x+PxzdDj0526tZ8cfP9cOxluAAoAAAAAAAAAAAAAAAAAAjj10iOPXBIAAAAAAAAAAAAAAAAAAAAAAAAAACHvGpOnSNuN1pxAK62rMz5enPH609P1RxERGI5MrWKxiFlUUn2bbuyeaytp7ALKSyLbeE8uySUQljQGAAAAKzxstM4hWAZ2tI6kRn0Cs4Nz0haIiARXj0Ns+CzQUiJm1YntnDuccziYnpLsFAABpIMABk8kcpJ5IpApby9atp5T7Mu1wWjdEw6tC+/RrPbyn0iJQAAAAAAAAAAAAAAAAARz66RHPrpAAAAAAAAAAAAABW94pXM/8AKCd+rObTNK9lYnj8ZBmjxi9uy15ldF3af9GI7YmYSogAgAAAKAABgAMAIAAAAACgCKY86eMzsjlj6wN83M4043dZ7I+JNNS3PUx4Vj7UkRERiIxADIjEYzM+loAAAAAAADMsyg3LAAAAAARa+lvjdHrR70oDz0n/AEyv3nTxO+I4TzU/6ZaV6oAAAAAAAAAAAAAAAAACO/NIjvzBIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAApqaddSMWj0T2wuA4b93vpxmvtx70fKcTwnpL0keppU1PXrnAOETandbRx07ZjpZDStr4mfZj6QBttOc8LcPQRSe20qMmYjnKu6Z9WM+KSNOvPGfSTx4VBWKZn2pytsr0j5LRGIARzSY41n4Mic+E9EqPVrj245xzACOMZEABQ3bZi0fVnL0azFqxMcp4vO5w6+6336UV7acEE4AAAAAAAAAAAAAAAAAAAAAAAKanYtHKFdTsWjlANAAAAAAAAAAAAAAAAU1NONSu2ZmI8FwHNbu1a0tbdacRM4RxwjEcodqGO71jttMdM/iVlL6irW15xX4z0Q3m1ZtWZ5Th6ERERERwiHJ3ymLRaMcY4x6DSIIiJjM8c9W8o4cF9sq49r0ClsY2kRNpxWMz0S6WjOpm0ziuccubqpStIxWMIiulpRpVxnMzzlIAAAAAOPXiY1rT14+5Gm7zGNWJ6x+PpQqhMZ5t0tObX2xOIxnkx0d1j1rdcQCOdHUifVz4xKlvZ9bMemMO9kxmMSargzH7o+bJtXrlmtTy9Waxy7FAxaZ/b72RxnixtfW+Aqzp7pi1L1njGfsczo7nz1PgVlFMTWcTzhibvNcam6PrIQJ8ObvrMWrExymMuGtZtetYnnP2OvQraunFbRiYKqQBAAAAAAAAAAAAAAAAAAAAAAAAAQ6/1UyHX+qCIAAAEuh9ZMh0PrJgAAAAAAAAAAAAAAAAAAAAAAAAHLnZqWiZ4TbPozx+TqQd4ryvHZwn0foJWWrFuOcTHKYVxaOdq/L9VZzjGZ+Zj4+lpki854TEx6MNi2Y4845sZPCc9nIGzzi0c4TUvExExOYQsraa2/LPPwZsaldWRFFsxmFotLLTZj/VifCYn3fqsjtblOOU5buBcR7pMoL5VmyuVLakZxHGVFr5tWY6xhsTmImO1DMzPrTnw7F9KeG2exvj4xy9SGWDTICs6lInG6JnpHEFiZiIzLM2nlX5yRTjm07p7OkIYpO6a7ojh9LYLW3W4coZT1fRwRU+h6tvSlQ6HK3p+xMjUABQAAAAAAAAAAAAAAAAAAAGTylXT7Vp5Srp9oLgAAAAAAAAAAAAAAAKas3jTmaRmy4DgnX1s+vjwxCKIxGHfq6NNTM4xbrDghRfT9afRC6mnzn4LWnbGVRWdS1dTNeGPBv8AiNXPr8PRH3I45CKta9rcJvac+KsRjkdoDWRxn0C0RiAbE8Z4tyqycfW+QLTOeTJt0VzM+AB6eLQAAAawUatp0tqWxX4z0SaXd5vxvE1jp2z9zqrWK1iKxiITRmnSunXFY/VcEBS+nW8YtGVwHJfu1o40ndHTtQ9uOU9Jei4u8XjUvG3ExXt6qIwbSs3tFY5z29ANOlr221j0z0dunp1064j4z1bSlaVxWMQsg5+8z6kemfx80KbvPr09E/YhWIZxGZdOhTbTM+tbjP4/HFFo6calvaj2Y98uoqgCAAAAAAAAAAAAAAAAAAAAAACOnNIjpzSAAAAAAAAAAAAAAAAAAAAAAAAAAAre2ylrdIypEYiIjlBrTma6cds5n0R+oJQBUAaDFdScV4c54QujinnTNt0xEcIx29UCJxGI7DdLfIn/AOtvlDf8PHbqX90fYLis2U3xM4rm0/l4po0NKJzNc+mc/SkiIiMRwDEFdPUnnEVjxnj+PitGhM+tefRXh+vvTAqH/DaU86zP/tP3ufUpFbXrXPDhzno7nJqfzX9MfRAJazurE9Yy1XR/hp/WFlZAV1JmKTjnyj0gto+1Nr9eEeiP1Sq1rFaxWOURhZGgAEc6WnbnSvpwrPd6Y4bo+P3pgHPPdumpPxj/AIP8PbtvH/j+roBMiD/Dz+/jHHknAUAAAAAAAAAAAAAAAAAAAARx66RHHrgkAAAAAAAAAAAAAAAAAAAAAAAAAAcve/X0/j9jqcnerROrWsTxiJz7gVixNoiOKjJ4xhVW3xMcGMFCYzGJV2zHqz8JWaCPdMetGGxMTyWZNI9HoTAFcWjlOfBeaalYzbTtHDPJEVGTeEle761+O3bHjw/UEU8ZZnKfW7v5elFptmc8eiGsZ49gNiM82tAYNAY0AZMZjDp0rxekT29rmbS86dsxynnArrbCsTExmJ4NBZhkygwGZULckUr2ngjkGJO6226tqTytxj0o2TbZNbx9Wcg9AAQAAAAAAAAAAAAAAABHPrpEc+ukAAAAAAAAAAAY1Frz7EVj684+HaCOtvNtOp9XlX0dfiuRwgREGjOL6telspkNvZ7xHS8e+EsSDQEAAABQAAAAAAAQAFAAEep7Vo047eM+hLEYjEckNOOtqT6ISg1gAEzERmeQiiPOtmfUjlH7gSVtFuMcurW4YAAgMmWo5n/Xx+X7QWAAAAAAAAABloi1ZieUuW0YpNO2Jw60d6RbvGl1mePw4rB2gKoAAAAAAAAAAAAAAAAjvzSI78wSAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMmcRmeTL3ilJtblDlvqW1ZmJ4U6feC2tfzZmsep1ief6KszEcjKjZR2nHCOMysrTje09OALRWe2fktgAVkbLAAARV4ZjpLS3s6n9gAAGTOIyk0LxTWi3ZbhKjKadrUtt9rbzr2+lB6Yj0dSNXTi0fH0pAAAAAAAAAAAAAAAAAAAAAAAU1OxaOUK6nYtHKAaAAAAAAAAAAAAAAAAAAAAh7xSbYtHHETwTAOKPMxtjTtM9Zjgk0+7TE5vPwjt9P4+LpAZEREYiMRDQAAAAAABD3muaRMRylz7XZaN1Zr1jDk48p5xwlYlVxjm6O6zHlzjqgn2s15ZnEe773ZFYiZmIxM8ykWARXD3z+eP6x9qBJrzFte8x1x8lFVjaxxli0chK11d0j2LT1t9kOV292iY0K57ePzKh3iudPP7eLnw7JiJjE8Yccxsi0ft4EK3RiY1dPMc5mYnrExLsUpSK1rGONYxldFAAAAAAAAAAAAAAAAAAAAAAAAAAEOv9VMh1/qgiAAABLofWTIdD6yYAAAAAAAAAAAAAAAAAAAAAAAABnNoDntozWfY416Z5I5iYzM1tiPB2MmYrEzPKDUxxb48Z+DJmbRjGPGWzEzabR7MdOxntdM+hUaMzjsn5HGeyVQjNZzWcfQkjVjHt8J9yOOMZZOOcpYsro4WjsmJZWZ4xM5mEdNLUmfZiaxM8Z5f8pp0bRiYvxiOOY5s41rFJvH1fa+gtp62farujwnh9hs1f/lPzj7zC1Sc29afhHI5cuC8aWrP1Ij02+5eO7z9a8fCPx9DSeoWZ2zE9na6Y7vTHHdPx+7DZ7vpTzrP/AJT96GIolXMTac1rMdG30/KmIzmk8pns8PuVtw49FZXjyu2kV9NfxC9bVn1ZifRKJmys86x8hU6K9pt7McK9s9VYrWOURHwaIRBnDLWivpnlCsZ5RxmRXV3euNPM87Tn8fBKysRWsRHKIw1GgAAAAAAAAAAAAAAAAAAAAAGTylXT7Vp5Srp9oLgAAAAAAAAAAAAAAAAApq32adrdI4PPdfe5xpxGec/j7HIsG6frTHWC85tjoyJmJzC+lpzq3xxx2z0BTExGZiYieU45s8Hp4iYxMRjohv3XTtOYzX+smji7Wui3dLYnbeJ8JjDntW1bbbRy58QIjPFZkY7Ggzkrz4y2ZzPoYAADRkcZxHGekLxpaluVLfGMfSConr3W0x7VorPTGU1O76dOON0+Jo5aaV9T1a8Os8I/HodWn3etJzPtW6z2JhAAAAABFr60aUREetPIFO8a2PYpPHtmOz9XMzHjOepx6/NRrp7pWNk3/dy9EOXj1j5O7Qrt0aRy4FEgCDk1pzrzHSIhWIm07a85XvS1ta+Kzxnn2coT6enGnXrM85UbSsUrFY7FgQAAAAAAAAAAAAAAAAAAAAAAAAR05pEdOaQAAAAAAAAAAAAAAAAAAAAAAAABW1orWbWnERzWQ2nzL4+rWfnP6fT6AZSJ42t61vd4LArIAA1kzFecqxW2pzzWnTtn7vp9CDOOrbFZ9iOcxPPw+9PEREYiMRBERWIiIxEdjRoAAAAAAcUzm9562l1at9mna3bHL0uSsYiI6CVL3ec6NUiPu/8ADVIqDMbtSkdke1Pw/wCWs0eNr38cR8P1yhEwA0AAAAAAAAAAAAAAAAAAAAAAAAAAAAI49dIjj1wSAAAAAAAAAAAAAAAAAAAAAAAycxEzEZnsgGoL95pGdsTbHTl80eJ1fa1ot/XExEMvqxemyvKeGcYgG219S/CMVjw5oq19qZletcTntWwqop5sXtCqjAAAAG8ZtFYjMzOIYUx5nG23Ec4nAOzR0Y04zPtW6pXNTWtFoif9SJ7axxj0ullGY45aAK6lI1KTW3KXN/g5iOGp84/V1gOG3d9WsZxFvRKKZxOLRNZ6TD0wHmNdtu76VudIj0cFP8Hp/uv8wcrMx1d0d30ojGyOeePFeta19WsR6IB51c2nFYm0+EJqd21LT7fsx28eLtActtHyKzakzNY5xJF4mHU4tWnla2I9W3GPDwBu+az1jo3zM8kbLRwmY4SKvuk3SrHLiA2bZlgAExmMADq7vM20KZ5xGPlwSubuk+vXxy6RAAAAAAAAAAAAAAAAEc+ukRz66QAAAAAAAAAABz95zF9K3ZE4n4uhHrafm6VqdeQKZZMo9O8zmtuF684XZRHrxM03RzrOV62i1YmOUtR6cbNS1eyeMAkblgCwrluQaMyZUaAAAAAAAABkAMsygjjhrXie3EwliUepWbRE19avGCl4vGeUxzjoCQVyZBmtbGniOduELUjbSK9IQ60+3px2bk0SoswAAMoCKOOtaekRCSZR6fGbW6z9HAFwAAAAAAAAAGaUbu8zPZSuPjJMxETM9iTu1ZjS3TzvO5YJgFUAAAAAAAAAAAAAAAAR35pEd+YJAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGNR6840Lz+WQct7+bqTbPsxwr94pp8KRC2VGsmVctpW2pMxSM45yBMmjE7Jme2cq6lb1tFLVxM9uUsRiAawywCWDQAAU1IzXPbHFkTmMpFNPStabVpMZr2T0BgyJ4zExiY7JaA2l/K1IvjMcp9BjJgHoRjHBrk7pqTE+VaZmedZ8HWgAAAAAAAAAAAAAAAAAAAAAApqdi0coV1OxaOUA0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABza1Nupuxwt9P/AB9DpVtWL1ms8pBFo1raLZjOL5j04hOi0a2pvi37vnwhKAra22s2nlEZWQ95/gtjw+kHAZhrFU5zhdWscfQsrNbWs3tFY7Zw9Bzd1pxm/ThDqSqOfWr/AKlcxmt8Vn0/8fQ6GTETjMckGgAAAAAAAAAAAAAAAAAAAAAAAAAAAIdf6qZDr/VBEAAACXQ+smQ6H1kwAAAAAAAAAAAAAAAAAAAAAAAAAKWtMztpz7Z6fr+J8QW1K1nbzt0Q2mdSeM8InlH4/HRs0iZ8ukcInNrdv/MtvXbMRSOfZ0VLqKeEkxheOEdJjmpaeOVZDhE8uKSujaec7Y9/4+aWlK0jFY+PbKauIa6FretO2Onb+PmlppUpOYjj1lII0AAAAAAAArasWrNbRmJ5oL6c05ca9en46/Pq6QHFia8sY6SzdMc6z8HRfRzxpiJ6dn6ILxNJ9uMePYrOG+PH5SzdM8o+MmQGRHbznqm7vTM757OSHMRMbo9nt4u6IxGI5IrQBQAAAAAAAAAAAAAAAAAAAAAGTylXT7Vp5Srp9oLgAAAAAAAAAAAAAAAAra0VrNrTiI5g5O9W3a2P2xj8e5C2Zm0za3OeLMTM4jjKhETaYiIzM8od+jpRpVxzmecq930fLjNvWn3JkAFbWitZtacRAK62p5dMxjdPKHFNszmZ4z1be86l5tPOezoxQxEsmJxwz6DHjK+lXdq0jPbn5cQdWno1jSrW1KzMRxzGePat5Wn/APOvyXEFPK0/2V+R5Wn/APOn/iuAyIiIxEYhoAAAAAAAAAy0xWs2mcRHGXn2tOpabW5z2dPD8el261J1NK1Y5y4ZjjxzExzWBiY7fmcekfM49DPHt+QHHp73oxiYiY5POz6fk6e66uY8u3DHq/j8cPQUdICAAAAAAAAAAAAAAAAAAAAAAAAAAAACOnNIjpzSAAAAAAAAAAAAAAAAAAAAAAAAAi1b7fZr60+6FaztiI7IZqcNa3WYifpZkSr7jcplS15zivZzmREs3iIzPCEdtaZ4UjnyyjtMV424z4unQ09tYvb1pj5eArdLT2Rm07rzznp4JQFAAAAAAAAc/eZnNK9nGfx80XLil1o/1a/1lFqTFaTnnMcBE2lGNKnohYjhENVGL0iIrw9PzQ6t9kYj1p5JdH+Gn9YRYuAKAAAAAAAAAAAAAAAAAAAAAAAAAAAAI49dIjj1wSAAAAAAAAAAAAAAAAAAAAAAMmcRmWufvFt1q6WLfunHbHQG2t5s4iZ8vt/N+n0o9bb5eOXTHVea6k1zWK0iP3Si0YnHmak5meXgotXTzGdTn0ieSm6a2mtp5cYnwSxNrz7EZ8Z5IY05vqzutmteE9MgtNonrGY4ZVwvrY256cYVpW2r/HHxnkKrhkzEc5dFe6546l5nwrwS10dOvKlfkaOOubzitZt6IXjQ1ZnGyI8Zn7naGo5I7reZ9q8RHhGU9NHTpHCsTPWeMpBAAAAAAAAAAAAAAAQd7rmlZiOVoToe8T7EV7ZkHPMGMrsFUxiMC8xlTGAAAAAX0JiNePzRMfa7HDHC9JzjFodwgAAAAAAAAAAAAAAACOfXSI59dIAAAAAAAAAAAACPV0q6kdLdlo5ovL1q/tv7p+50gObbqT/1z8Zj72zoWvGbWito9XDoAclbTMzW0YtHOFkmtpb8TWcXjlP2ShrbOYmMWjnCVFgEAAAyAGW5YA3LMgBkyAGQAAAFbacWnPGLdYWAR51K84i/onEsnWmP+u/ySgINSNS1N8xFdvGITVtFqxaO1qLE6cztjdWezp6AS5blFXWpbhnE9JSAZGTMRxmcKeZu4acZ8Z5QDdS0xEVr61uXh4rVrFaxEcoZWu3MzObT2rAAAAAAAAAAAj1Ym2KR28/Qk076mnWKz/qRHThMfepp+1M3nt4R6F1E1NWmp6s8Y5x2wu5ZrFufCeyY5w2NTU0+cTqR1jnH3mq6RSl66kZrOevguoAAAAAAAAAAAAAAI780iO/MEgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACDvk/6Ex1mITuXv3DTp/YEDO2IiMzPCIam7pp5mdS0f1yovp92jETqe1PTsTzMVrMzwiIa5+9XmIrSPrc/Qghm3mak6nZyiPBsyzlAoAUrbVttrwjtt0BSbccZbEuuNDSiuNlZ8Zji5dbQnRmJrOazOOPYDYWVhYA05269Jjt4T6GTLdCN2vy4VjPxB0amlTVjF4z4ue/db1/jndHSebsEHnTOycXiaz4rO21YtGLREx0mEN+6xM5paaeHOAc85iYtX1o5OzR1a6teHrR60dJc19PVp9XdHWv3Kb/AC7xaJ2zHOs8MqPQFNPUrqV3VnP2LoAAAAAAAAAAAAAAAAAAAAKanYtHKFdTsWjlANAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQ96/i9MpkPeYzoznsmAcWGYWxMeLFabWObSvqrYViunu1caMdZmZTKaP8ADT+sLsqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIdf6qZDr/VBEAAACXQ+smQ6H1kwAAAAAAAAAAAAAAAAAAAAAAAAMnOOHNHi1KY3Ta08I7OP44pVZrmYnM+iAU4aWntrm0x4858Z8c/ctWNsTa3Oec/jshW0x5kVjs9rbHb+OPxw3ZNv5OP5Y5fr+OAK3idWY28Ij608p+/8cV6adacozPWea4AAAAAAAAAAAAAAAh7zGaV8J+yUyLvFc6Wc+rx+/wBwOSKxjoY4fiVsdTCssdHdr5rsmeMcvQgwRM1mLV4TAruFaWi9YtCyKAAAAAAAAAAAAAAAAAAAAAAyeUq6fatPKVdPtBcAAAAAAAAAAAAAAABz97vikU7bT7odCO+lTUmJtXMx4g4qUtecVjP2OzR0Y0ozzt1SRWKxisREdIaAAA5e9XzaNOOzjP2fj0Opw3nde1us/wDBBTGTE9k/NeIMNIj4+CXuv8/HHqzj3KraMf69J9P0IrtAQAAAAAAAAAAAAEHeNLdG+vrR2dYTgPPwYX1aeXfHZPGPx4KtIzBj5xylalZvbbHxnoyYmtpraMWj3g6tHVjUrxxF+2ISuCItM/6cTNo48OxPTvGaxNo4dsx2emGVdAyJi0ZiYmPBoAAAAAAAAAAAAAAAAAAAAAAAAAAI6c0iOnNIAAAAAAAAAAAAAAAAAAAAAAAACDXjGpSesTH496q/ePUi37bR932obalY5cZ8BK21orGZQxqetnjMyTM2nMqRzn0qjbTM5y9Gk5pWesPOd/d53aFJ8MfJFiQAUAAAAAAABB3rMVreOdZ+n8Q5ZzOczmZd96Rek1nlLg48p5xwlUrrpO7TrPWIktaKVzKPSvFdCJmeXBHa03nM/COgjL2mc2nm7NKMaVI6VhxX9S3od8cIwUjQEaAAAAAAAAAAAAAAAAAAAAAAAAAAAAEceukRx64JAAAAAAAAAAAAAAAAAAAAAAAARa+nOrSKxOOPFtNGtZiZ9q3WUgCLXvt05iJiLW4QirFrViulGYj608v1+Ce2nW8xNqxOOWVwRaejFONp326zHL0JQAAAAAAAAAAAAAAAAAAAABkziMy57e3qTbOY5QtqxbWnbWYisTxme2eilLTMzW0RFq84gGTAtbhGVefIUZMZaApMYYtaezjM9IUiYmcdsdkg0ACYzEw69G830q2nnMcXPp6M6lc2m1ekRKXRi2lPlWnMT6s4+cCJwAAAAAAAAAAAAAAARz66RHPrpAAAAAAAAAAAAAAAAAEWroxqYmJ23jlZKA5N0xbbf2be6fQulvSupXbaMw57RfQ9ad2n+7tj0piL4Y2JiYzE5gQYNwAwawAAAAAAAAAAAAAAFbadLetWJRz3anj80wCldKleVY+K4AAAAAAAAAAAK2jd7PZ2+KwAAAZACa8d1J2369fSk09XdO23s36dfQjLVi0eMcp6Lo6RFoanmVmJ9as4lKqgAAAAAAAAAAACO/NIjvzBIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5++xnQz0mJdCt676WrPbGAcEV8y9aR9bn6HoViK1iscojEIO7aM6cTNvWnh6IdADk7xOe8RHSrrcPeOHeZ/rADGbmTPDMqNxa9orSMzLt09OunXbXkh7pp4r5k87e6P1dKA5u929SnWc/J0uPvHHvMcfVqCsc2zLIFCZxxl0d1rjRi0xibcZ/Hoc9azfUrSI4c7ej9XbHCOBRoCAAAralbxi1YmPFYBHTS09OZmlcTKQAAAAAAAAAAAAAAAAAAAAAU1OxaOUK6nYtHKAaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAprV36VojnzhcB55hsx5dppP1Zxlm6OsK22kez8Z+lbsVpOcxyWiYmJ8OEq53t1aX8VP6wuj0f4dP+sJGVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEOv8AVTIdf6oIgAAAS6H1kyHQ+smAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZMZjDQHFETERE84ji3C+rp7Jm0erM8fAqsYqmGTwla0Yn0tmtr0nbGceOANK2ycz6s8/D8fjk6nLo13554+WU2nmszpzyj1fGP0+5GokAFAAAAAAAAAAAAAAAAAAAAZPKVdPtWnlKun2guAAAAAAAAAAAAAAAAAAAAACmrONK0xOJxwcccImYiZivPHY6teN1IrnG6YgtWK0ikRwBzZZNsEVmLRSOecQ6badY0tkdvb9q6OYiYi1ZmcYmJKxMzt7c4dGpo18iaRHHnnxNROK6c7tOsz2xErIoAAAAAAAAAAAAACmpSupXbb/AIQ/4aY5Xz0zH2/o6QEOn/pUxeNvW3ZP48fQtq6ddWuJ4THKeiRSdOM5rM1n8v3cgR93tFY8ucReOcL304tO6OFuvX0stS02iZiluyZnp6OP0rTpx2TNem2ce7kCGm/fMVrNLxzjPCfv9LojOOPNXZPDNpmYnMTMfdhcAAAAAAAAAAAAAAAAAAAAAAAAAAEdOaRHTmkAAAAAAAAAAAAAAAAAAAAAAAABTUrv07V6w4Y4xl6Lz7cL2iIxETMCVis+tKytuGJVB0d11Yj/AE7dvJzk9QemIe7Xm+l7XGazjPVMjQAAAAAAAA4+80iupuj630uxTUpGpXbb/gHDTnPpWLadtO8xblPKY7RWKyYzEx1d1Zi1YmOUxlxOju+pmuyedfoKsTgI0AAAAAAAAAAAAAAAAAAAAAAAAAAAAI49dIjj1wSAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI9S05ilec856R+OS8zFYmZ5Q59PU9idS3O88I+iASxEVrERwiEGpGNaLdapYjUvGfU6Z4z+jL6VK6drTG6YieNuIK6cRqzMzxrWcY6yj1dPyp3U4V7YTd3rFdGvjGZbaItExPKYBDE5apoaepqVjHCv7pSz3e+PXifCYwK3u9Y2ReY9q3aa+lF/arwvHKVu7/AMFfBewjiicxyxJb1ZTV0I1L3mbTEZ5R6IW/wlP3X+YqSrNSm+kxHCecT0lWujfSj2L7ojlW33trrRNtt4mlukiL6d99ImefKY6SuhrGzXmI9W8Zx4pgAAAAAAAAAAAAAARz66RHPrpAAAAAAAAAAAAAAAAAAAGNAQW0JrmdKcZ+rPL9FK3iZ22ia2/bP44upS+nXUjFqxIIgnSvT1Zm9ekzx/HpZF4mccp6TwlEaAgMawAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZNorzmI9Msi8WnFIm3oj8QCzL6tdOOM8eh5WtfhONOPTmUmn3fT05zjdb908ZXBndq2iLXvGJvPLpCcFUAAAAAAAAAAAAR35pEd+YJAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHH3yMaunbrEw7EHe6btLdHOnEHKUr5mrWk8p4z6COMcE/cq5i2p2zOI9AOloAPPtbOtqT+bD0HnXrt1tSPHILZJnCq2lpxq6m2c7Y4z9yifuunNazeed+Pw7HQyIxGIagAAAAAAAAAAAAAAAAAAAAAAAAAAAApqdi0coV1OxaOUA0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHP3nT5XiPCXPM4xwzl3zETExPGJcWtpzpz1jnE/Z6RZVYnjExPCWdnDt5+JMdCsTEceYOvu1pnTmJ51lM4tK/l33Ty5T+PD73YI0AAAAAAAAAAAAAAAAAAAAAAAAAAAAABDr/AFUyHX+qCIAAAEuh9ZMh0PrJgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHPbTtS2K+raeE/t/HZ8nQyYzGJBDq6dY0pnHGIzM9uO1fTmJjEcMcMY5ETtnbfjWeU/ZP44+krXdSu7O6OGe0GbdmpOz63HE8p6+j7S14n2uVqcZieeO37/gW3xHGM49W0R9Mfd7l5rW9YzH2TH3AsMiIiIiOUNAAAAAAAAAAAAAAAAAAAABk8pV0+1aeUq6faC4AAAAAAAAAAAAAAAAAAAAAKWxN6x2xmfs+1W2b3xE46z0NTd5tdsZ9mYz05L1rtjHznqCtq1pFZiPVnh8eH2mrOI9DdSJnTnEZmOMR4xxViY1NSsx6sRu+77/kDI0sacTFYjUj2vj2x9i9bRemcY6x0ldHaJrabVjMTzj7Y8fpA0Z4Wifq2mPt+1Ij0pid0xymfshIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACOnNIjpzSAAAAAAAAAAAAAAAAAAAAAAAAAOLXrt1rdJ4w7UerpxqVxPCY5T0BxDb0tpzi8fHslisr0pTUnbPs27JjlP48ML/AODn/wCn/wCn9UVI3XpHbuegixTT066ddtVwFAAAAAAAAAAR62n5lMdscYcnKcTwmOcS71L6ddSMWj0T2wJZrjZums5ieMcYTT3WezU+cNr3WM5veZ8I4KmJ6W3Ui0dsZWZEYjEcIajQAAAAAAAAAAAAAAAAAAAAAAAAAAAAjj10iOPXBIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADLRFomJ5TwlTS0aaXqxx6ykAEPe/wDb3+H0pkPev9vb4fSDa+zp1ieyFIidaf8A9vr+79G7Z1sc40//AO79E0RiMRyBoAIa+xrWrPK3tV+1a84jM8ma1JtWLV9as5j7vipN661a1rOYtOJ+mQSaEzOlEz25n3pGRGI4NAVtWt64tETHisAirpbbRi0zWOUT2JQAAAAAAAAAAAAAABHPrpEc+ukAAAAAAAAAAAAAAAAAAAAAAAVtSt4xaImPFYBzz3ea/wAd5jwtxhSbXp/JSYjrHGHWA5a6lberaJamtpaduNqVmZ7cI7d2pj2bWp6JTEVCdDVj1dStv7QrNdevPTi3jFjBYU327dHU+TPPp2zMT0mEEgrGpSfrR827qxztHzBoZgAAAGbo6wb6/uj5g0V8yn76/Nk62nH1oBcR+dWfV3W9EN3z/wDPU/8AEFxTfbs0tT/xbEa0/wDT/wDqgwWGbdaY/jiPTZsaWtnjNIj4z9y4AvGhPbqT8Ij9WR3aueN9Sf8A2MFRJGhT80/+0/eRoaUfUifTxMEU2rHO0R6ZVnVpE43Znw4unydP/wCdP/FaIiOUYMHLvmZ4aWp/4mNaY4aPztDrDFcsaOtb1rVpHhGVv8NExx1dTPhOHQKIq6GlXlSPjx+lJyaAAAAAAAAAAAAAAAAAI780iO/MEgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADJ4tAef3ivk2mIj2Z9V26dI06RWOxcAAAcPeuHef7VdyDvdc6O7GZrOYBy9sRHOZxDt0dPytOInjPOZ6ou66UxM3vGJ+rDpAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABTU7Fo5Qrqdi0coBoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACtq1vXFozCwDivpTpzieMdkq4dtqxas1tGYlBfRtXjX2q++Pv+kEPGJjljtz2OnR30nZas7eyenvc+eWMznpGUuhrRmNOZ9AOkAAAAAAAAAAAAAAAAAAAAAAAAAAAAABDr/VTIdf6oIgAAAS6H1kyHQ+smAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABkxExiYzBEYjEZ+M5aAAAAAAAAAAAAAAAAAAAAAAAAAyeUq6fatPKVdPtBcAAAAAAAAAAAAAAAAAAAAAAABWtYrGI65WAAAY0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAR05pEdOaQAAAAAAAAAAAAAAAAAAAAAAAAAAGTxjijnu+lM+rj0TMJQFKadNP1axC4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI49dIjj1wSAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMmMxiWgAAAACkadItuisZ64XAAAAAAAAAAAAAAAAAAAAARz66RHPrpAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUnTpMzM0rMz4K/4fSzny4SgIp0NKeenX4Qz/C6M/U98pgEH+E0P2e+fvP8ACaP7PfKcBDHdtGP+uFo0NKP+uvySAI/J0v8A50+S0UpX1axHohYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAR35pEd+YJAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGc2gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKanYtHKFdTsWjlANAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABS2nS1otMcY7VwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQ6/1UyHX+qCIAAAEuh9ZMh0PrJgAAAAAAAAAAAAAAAAAAAAAedq951q6t4i/CLTEcIB6I8z/F6/7/dH3H+L1/3+6PuB6Yi7te19CtrTmZz9KUAAAAAAAAARd5vamha1ZxMY+lB3TX1NTVmt7ZjbnkDsHL3zVvpbNlsZznh6Fu6altXSm15zO7AOgAAAAAAFNS8aenN7ZxHQFxDo95prXmtYtExGeKYAAAAAAAAAAAAAAAAAAAAAAAAAAGTylXT7Vp5Srp9oLgAAAAAAAAAAAAAAAAAAAAAApq6ldKu688AXHnX77qW9WIrHzn8fBWvfNaJzNonwmAemOfu/eq6s7bRtv06ugAAAAAAAAAAAedq951q6t4i/CLTEcIeiAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACOnNIjpzSAAAAAAAAAAAAAAAAAAAAAAAAAAACHX7xXR4TGbdHHbvmtM8JivhEfeD0h51O+atZ9rFo8Y+52aOtXWrmvOOcdASjn73qW0tKLUnE7sK9z1b6u/fbOMY4ekHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjj10iOPXBIAAAAAAAAAAAAAAAAAAAAAAAAAAAADLTFazaeURmQaOHV77OZjSiMdZRf4vX/f7o+4Hpjj0u+xM41YiPGHYAAACmrM10rzHOKzMAuODu3eNW+vWtrZic9kdHeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACOfXSI59dIAAAAAAAAAAAAAAAAAAAAAAAAAAAAADl1++RSZrSN1o5zPKAdQ8ye960zPt48MQk0++3jEakRaOscJB3itL1vWLVnMSsAAADztXvOtXVvEX4RaYjhAPRAAAAHP3vUtpaUWpOJ3YV7nq31d++2cYxw9IOoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABHfmkR35gkAAAAAAAAAAAAAAAAAAAAAAAAAABy981b6WzZbGc54egHUOXuerfV377ZxjHD0uoAcHee8atNe1a2xEY7I6OzSmbaVJnnNYmQXAAAAAAAAAABFra9dHbuiZz0BKI9HVrrVm1YmIiccUgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKanYtHKFdTsWjlANAAAAAAAAAAAAAAAAAAAAAAB52r3nWrq3iL8ItMRwgHoimlM20qTPOaxMmrM10rzHOKzMAuODu3eNW+vWtrZic9kdHeAAAAADl75q30tmy2M5zw9AOoc/dNS2rpTa85ndh0AAAAAA4O8941aa9q1tiIx2R0B3imlM20qTPOaxMrgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIdf6qZDr/VBEAAACXQ+smQ6H1kwAAAAAAAAAAAAAAAAAAAADyNb+fU/tP0vXeRrfz6n9p+kHrjzP8A8r/973n/AOV/+97wem59bvdNO01iJtaOnJve9SdPQmYmYmZxEw4u7eTFpnWnhHKMSDor3+ufapMR4Tn7nVW0XrFqzmJ7XF3i3dr6f+niLxyxXH2HcLzGpakzwmM/EHV3jW8mkW27szjnhFTvlZpa1qzWImI4TnOTv/8ABX+32S5e7aHnWnM4rHMHb3fvHn7vZ27cduUet32K2munEWx9aeSSnd40qXjTtObRzmeTnp3aNPVrOtfTxzxMgyO/amYzWuHV3fXjXrMxGJjnDm7xfu1tKY04jdnhiuGf5f8Az2/r9sA6e+f7a/w+mHN/l/8APb+v2w6e+f7a/wAPphzf5f8Az2/r9sA6e8d48jb7O7dntwt3fW86k227cTjnlz/5j/1/H7F+4fwW/t9kAl1temjjdmZnshBTv1Zti1JrHWJy5bWnX1s8pvOIdsdy0tm2c5/dn8QDNXvkaepNYpuiO3dz9zopbfStsYzES8rVpOnqWpPZL0qRM91rFZxM0jE/AEOt32K2munEWx9aeSKO/amYzWuG07tGnq1nWvp454mTvF+7W0pjTiN2eGK4B0931416zMRiY5wi79rbYnS2+tETnPj+iL/L/wCe39fth0d8rWdC1tsboxxxx5g4u763k3m23dmMc8PTpbfStsYzES4O5VrbWmLViY29seh6ERERiIxEA5tbvflas02Zx25/Q1O+VpFcVmbTETMZ5Zc3fP8Ac3+H0Ql0O5xfTi17TGYzEQDspbfStsYzESsrWsVrFY5RGFgAAAAAAAAAAAAAAAAAAAAAAZPKVdPtWnlKun2guAAAAAAAAAAAAAAAAAAAAAA8vvWpN9a0TyrOIh6jx9OInUrFvVzGQej3fu9dKsTMZvPOZ7Et6VvXF4iY8VnL3rvN9HUitYrMTGeIILd01q6k7IzETwnMPQrMzWJmMTjjHRwf47V/bT5T97t07TbTraecxEgi1+810ZisRut2xnk5/wDHav7afKfvbr92vOpa9tSkRM8N0pbX7pWJris4jsjPv/UG9373GrbZau22OHi6XkaP8+n/AGj6Xrg5Kd933rXy8ZnHrfo2O+Vtq1pWszEzjMzhwVibWisc5nEPQ0+50pNbTa02ic+AJdXVppVzecdI6uae/wAZ4afD0/og71eb69s9k7Y+Drp3PTimLRM2xxnP0Avo95prcI4W6SmeZbR1dLWny62nE8JiPx8XpROYyDydb+fU/tP0u7W73TSttiN0xz48HDrfz6n9p+l3U7npRWN8brdvEDR73TVttmNszy48HS8nW0/L1bU6TwdvedWf8JFojG+Ij0ZA1O+adJmK5vPhyUr3+M+1pzEeE5Qd10I1rzNp9mvOOrp1e56c0ny4mLRHDjz+YJ9PUrq0i1Z4fQi71r20dm2InOebk7nqbNeIzwtwn7E3+Y/9fx+wGf463lzmsb8/DDKd+tu9usTHgt3LSpalr2rFpzjii77StNaIrERE1ziATavfYjhpRnxmOClO/W3e3WJjwSdz0aToxa1YtNp7Y5OfvenGnrYrwiYzjoD0omJjMTmJcle/Ra8RNMRM4zu5e50aP8Gn/WPoeXWs2tFY5zOAdl+/Vi2K0m0dZnCbR7zTW4Rwt0lWO56UUxMTM49bLh1Kzoa0xnjWcxIPWFa2i1YtHKYysAAAAAAAAAAAAAAAAAAAAAACOnNIjpzSAAAAAAAAAAAAAAAAAAAAAAAAAK3tspa2M4iZWQd8/wBtf4fTAOCsW19aImc2tPGXp6elTSrikY8e2XD3GI/xHHnETh6IItfRrrUmJiN2OEuXu+hraWtW004cp9qG6nfNSupasVriJmOX6mn3zUtqVrNa4mYjl+oJO/8A8Ff7fZKn+Xf9nw+1fv8A/BX+32Sp/l3/AGfD7QddrRSs2tOIjtcd+/Wz7FIiPF0d507auntpMRx45c+jp6WjvnWtp2nljOcfAGV79fPtUrMeHD73Zp3jUpF68pef3q2ja1fKiOXHEYdHc7bO63tjOJmfdAJdbvNNHhPG3SEEd/jPHT4en9HNp1nW14iZ42nMz9Ltv3PTmmKxMWxwnP0gl0tWmrXNJz1jota0UrNrTiI7XD3Surp60ZreKzwn2ZO/ak21dmZxWOXiCS3f659mkzHjOPvSaPe6alorMTW09eSHQt3WmnG+Ym0xxzWZQd48qdTOl6sx7weq5tTvmnSZiubz4ckd9aZ7jE5zafZn8ej6UPddCNa8zafZrzjqCevf4z7WnMR4Tl06epXVpFqzw+hBq9z05pPlxMWiOHHn83N3PU2a8RnhbhP2A7u8a3k0i23dmcc8Iqd9pNbTau3GMRE5mfoO/wD8Ff7fZLn7poRrXnd6tegJY7/GeOnw9P6OrS1K6td1J4OXvXdtOmlN6RtmPHmr/l8z5tq9k1yDvAAAAAAAAAAAAAAAAAAAAAAAAAARx66RHHrgkAAAAAAAAAAAAAAAAAAAAAAAAAAAAcXf9Sc1044RjM+LteZ3z/c3+H0QCbufd62r5l4z0ieTsmImMTGYlH3eIju9NvLH/LO9attHTi1YiZmccQc/eO6W8zOlXhPOM8nR3aL10YrqRiY4c8uX/Hav7afKfvdGjr2voX1LRGa54R6AW1e86elOLTMz0hB/j/8A9r/9X6ObTrOvrRGeNpzMu6e56O3GJieueP3Avo69NbO3MTHZLdb+DU/rP0PNtFtDX4c6z8/+Xpasxbu97RymkzHyBwdz/wBzT4/RL03mdz/3NPj9Eu/Xv5eja3bEcAU1u800Z2zm1scoRV7/ABn2tOYjwnLm0fLnVzrW9nnPPi6Na/db6doriLY4Yrjj8gdWnqV1aRas8PoU71q20dOLViJmZxxcfc7zXXiM8LcJdHf/AOCv9vskEde/W223Vjd9XHL48WR37Uz7VazHhwZ3HSpe1pvGduMRPJvftOlJpNaxXOc4BJqd9rFf9OM2nryhHHftTPtVrMeHBbuOlS1bXtEW44iJhTvulWl62rERFo5RHQHdS0XpFq8phZB3P/bU+P0ynAAAAAAAAAAAAAAAAAAAAAAAAAAAABHPrpEc+ukAAAAAAAAAAAAAAAAAAAAAAAAAAAABB3vUnT0c14TM4z0cfddGNbUnd6teab/Mf+v4/Yt/l8R5dp+tnj+PmDqiIrGKxER0hzd67tvjdp1jf29mU+paa6drRziJlxf47V/bT5T94Ju56erpTaL1xWeMcfx+INbvflas02Zx25/Q7r3m+tqTW0ViIjPBzd8/3N/h9EA9Glt9K2xjMRKHvHefJvFdm7MZzlJo/wAGn/WPocf+Yfz1/r9sg7NHU83Si+MZ7Hma38+p/afpeh3P/bU+P0y8/W/n1P7T9IPT1tTytKb4zjsQU77W0zurtiIzzzlJ3z/bX+H0w4e76Xnam3OIiMyDp/x8bv45x1y6NLVpq1zSc9Y6ItTuenakxSNtuycuTul9neK9J4T+PSDv7xreTSLbd2Zxzwr3fvHn7vZ27cduVO//AMFf7fZKn+Xf9nw+0EveO8+TeK7N2YznKs99pGnE7c2n6sTy+KH/ADD+ev8AX7ZX7r3al9OL6kZzyjINp36s2xak1jrE5ddZi1YtHKYzDz++aNdK1Zpwi3Z0dHcZmdDE9lsQDpAAAAAAAAAAAAAAAAAAAAAAAAAAAAR35pEd+YJAAAAAAAAAAAAAAAAAAAAAAAAAAHF/mP8A1/H7Ha4v8x/6/j9gH+Xf9nw+12vJ09K+rnZXOOfFf/Ca/wCz3x94HfP9zf4fRDv0f4NP+sfQ8u9LUtNbRiYepo/waf8AWPoBHr95rozFYjdbtjPJz/47V/bT5T97dfu151LXtqUiJnhulLa/dKxNcVnEdkZ9/wCoN7v3uNW2y1dtscPFbvHePI2+zu3Z7cPP0f59P+0fS6v8x/6/j9gOju+t51Jtt24nHPJ3jW8mkW27szjnhF3D+C39vsg7/wDwV/t9kgv3fvHn7vZ27cduWd47z5N4rs3ZjOcov8u/7Ph9qn+Yfz1/r9sgmnvtI04nbm0/VieXxVp36s2xak1jrE5Z3Xu1L6cX1IznlGUffNGulas04Rbs6A9CsxasWjlMZh53e9bzL7duNkzHPm6e4zM6GJ7LYhF3+tazSYrETOc4jnyBXunePLxp7c7rc89Xda0UrNrTiI7XL3GlZ0ptNYmYtwmY9CPv2pNtXZmcVjl4gkt3+ufZpMx4zj70mj3umpaKzE1tPXkh0Ld1ppxvmJtMcc1mUHePKnUzperMe8HquXW735WrNNmcduf0Sd2vOpoVmZzPKXF3z/c3+H0QDp1O+VpFcVmbTETMZ5ZdFLb6VtjGYiXHodzi+nFr2mMxmIh2VrFaxWOURgFgAAAAAAAAAAAAAAAAAAAAAAAAAU1OxaOUK6nYtHKAaAAAAAAAAAAAAAAAAAAAAAA8jW/n1P7T9L13ka38+p/afpB6ej/Bp/1j6DW/g1P6z9Dz6921rViYpwmMxxgt3bWrWZmnCIzPGAb3P/c0+P0S79a86enN4ruxzjLg7n/uafH6JelaItWazymMSDn0O9xq6mya7c8uOfsdEzERmZxEPKjdoa0Z51n5/wDLv73fZ3e3HEzwj8egEen3yb6laxp85xz/AEdGpqV0qTa08PpcfcKZva8xy4Rw/H4lTvl5trzGeFeEAlnv8Z4afD0/oj73rU1q6c1nlnMTzjkm0O6U8uJ1KzNpjlnk5u86MaOpERmazGYmQdXcP4Lf2+yGX77svavl5xOPW/RvcP4Lf2+yHFrfz6n9p+kHbq98rS81rWbTE4njh0WtFKza04iO1y07jXZG+1t3h2fSj79qTbV2ZnFY5eIJLd/rn2aTMeM4+9Jo97pqWisxNbT15IdC3daacb5ibTHHNZlB3jyp1M6XqzHvB6rl1u9+VqzTZnHbn9EndrzqaFZmczylxd8/3N/h9EA9Glt9K2xjMRKHW73TTtNYibWjpyJvOn3KLRzikYcXd9LztTbnERGZB2aPe6attsxtmeXHgrTvu+9a+XjM49b9G6vc9OaT5cTFojhx5/NxaP8APp/2j6QetMxEZmcRDmv36leFKzb3Qzv95rp1pH1p4/BF3Tu9dXN78axOMAkr3+ufapMR4Tn7nVW0XrFqzmJ7XL3julI05vpxMTEcsqdw1Mak0meFozHpB0d47x5G32d27PbhSO+08vdNcWziKxKn+Y/9fx+xTund66sTe/GInERkEle/xn2tOYjwnLqpet6xas5iXF3zu9NOsXpw44wv/l8ztvHZExIOwAAAAAAAAAAAAAAAAAAABDr/AFUyHX+qCIAAAEuh9ZMh0PrJgAAAAAAAAAAAAAAAAAAAAHka38+p/afpeu87V7trW1bzFOE2mY4wD0QAc3fomdDMdlsy5u66NNabRaZiY5Yl6F6xek1tymHn27vraN4tTNsTwmv3fiAT27lo1jNr2iOszH3N0dDRrqRbT1N1o7N0S57V7zr4i1bTjjxjH3Ovu3d40aznE2nnP2Ap3/8Agr/b7JU/y7/s+H2pe96dtXSitIzO7Kvc9K+lv31xnGOPpBNr38vRtbtiODz+7Vpqa2NWc56zzl6Vqxas1nlMYeffuerW2KxFo6xIOjvcaVNG0RFa2nGIiOPND/l/89v6/bDdPuVprM3nE44R4+KTu/dtXR1N2aTExieM/cCTvn+2v8Pphzf5f/Pb+v2w6+80tfQtWsZmcfSg7poamnqza9cRtxzBn+Y/9fx+xfuH8Fv7fZB3zSvq7Nlc4znj6Fu6adtLSmt4xO7IODTnZrVm3DbaM+D13F3ruszadTTjOeMwgjT7xaNkVvjpOYj7gZ3m0X172ryy7t/l9zi3bFIw8/V050tSaTOZh6WnWLd2rWeU0iPcDg7tWmprY1ZznrPOXV3uNKmjaIitbTjERHHm579z1a2xWItHWJX0+5WmszecTjhHj4gz/L/57f1+2HT3z/bX+H0wj7v3bV0dTdmkxMYnjP3J9fTnV0rUicTIOP8Ay/8Ant/X7Yeg8ytO8aN520tE4xmIy9DTmZ06zb1sRkHn98/3N/h9EO/R/g0/6x9Dk7z3fVvr2tWuYnHbHR2aUTXSpE84rESC4AAAAAAAAAAAAAAAAAAAAAAAMnlKun2rTylXT7QXAAAAAAAAAAAAAAAAAAAAAAeV3ik6etaMYjOYx0eqi19GutXE8JjlIHd9aNbTzw3RzjotelJ9q9aziOcw8+/dtbTnMVmcTwmvH9SNPvGrO20Xx+bOPeCmvat9WZpERXsxGHpaP8Gn/WPocmp3S8adIpG63GbT8nZpRNdKkTzisRIPNveNXX3Xmdsz8od+zQ0qRbFIiOMTzc/eO6XnUm2n7UWnOO1TT7lqWt7fs17ePEEOj/Pp/wBo+l67hjuepXU3UmuInMZn9HbGcceYPJ0f59P+0fS9d52l3bWrq0macItEzxh6IPJ14mNfUzGPal6tZi1YtHKYzDl713adSd+n63bHVzeXr1iaxXUiO2IzgHTqd9impasU3YnGc/o6ozjjzcXdu62i0ampwxOYh3A8jW/n1P7T9L13navdta2reYpwm0zHGHog8zvn+5v8PohP3iJnuOnMdkRM/JTvPd9W+va1a5icdsdHXWkToVpeM+zETAOX/L7RFr1meM4xHV2XtFKTa3KIcGr3XU07Z04m1Y4xMc1J0+8akxFq3npuz9oM7vWbd4pEdc/Li6P8x/6/j9iXuvd/Kjdb15j5HetC2ts2zEYzzBXuH8Fv7fZCH/MP56/1+2XV3XSto6c1tMTMzngj713a+tqRas1iIjHEF+5/7anx+mXN/mH89f6/bLs0KTp6NaWxmOiHvXdr62pFqzWIiMcQTaP8Gn/WPoeZpTFdWkzyi0TL1NOs1061nnERDyqV33rXOMzEA9eJiYzE5iXl95tF9e9q8srW0+8afsYvNfy5mEnd+6Wm0W1IxWOOO2QdmlE10qRPOKxErgAAAAAAAAAAAAAAAAAAAAAACOnNIjpzSAAAAAAAAAAAAAAAAAAAAAAAAAKatd+navDjHDK4DydO86OrFsca84l6lbResWrOYntQd57rGrO6s4v48pcnla+nbhW8TjnX9Ad2rGjp1m96V+UZl5+jOdek/mj6UlO762tbN8xHWySe7Xr3ms0r7ETHHMdmASd//gr/AG+yVP8ALv8As+H2pe96dtXSitIzO7Kvc9K+lv31xnGOPpA79qTXTisTMTaePoRdy09K+ZtEWvE8p6OrvGl52ntziYnMOGe6a0TPsZ8cwC/fZ04mtdPbGM5iF+6xM9z1YiMzOfoZ/gbeXGLRvz8MJu66Wpo1mttsxM54SDj7rMV7zSZ64enaYrWbTyiMy4Nfulq2mdKM1547YR+Xr2iKzXUmOyJzgHVpd7nV1K0jTxnt3fo5u+xMd5tM9uJh1d17vOjm1p9qY5dG957v50RNZiLR17QR6Xc9K+nW263GOOJj7i3de71nFtSYnxtCGkd50c1rW0eiMw2ndtbWvu1M1zzmfuBJr6Vad0/053V3Zmc/Bn+X2iLXrM8ZxiOrr8unl+XtjbjGHDq911NO2dOJtWOMTHMHfe0UpNrcoh5nd6zbvFIjrn5cWzp941JiLVvPTdn7XZ3Xu/lRut68x8gV7/8AwV/t9kqf5d/2fD7Uve9O2rpRWkZndlXuelfS3764zjHH0gv3z/bX+H0w5v8AL/57f1+2HX3mlr6Fq1jMzj6UHdNDU09WbXriNuOYOwAAAAAAAAAAAAAAAAAAAAAAAAABHHrpEceuCQAAAAAAAAAAAAAAAAAAAAAAAAAAABwd/pMalbxHCYx8XeresXpNbcpgHL3HWia+VOImOXi6rVraMWrEx4w4NXuepWZmkbq+/wDHoUiveJjbjVxyxxwC/fJ090U061jHrYhL3WJt3TUiOczMR8lI7naNG0zibzEYjpyT9007aWlNbxid2QcXdbRTvFJtOI6/B6ri7x3SZtu0Y5869EE17xNds11Zr0xOAZ3m0X172ryy77VmvdJrPOKY9yDu3dLVvv1YxjlGXVqxNtK8RzmsxAPP7n/uafH6Jdveom3drxHTLm7t3fVpr1tauIjPbHR3TETGJjMSDzO7addXU23mY4cMOqe5aURmbWiI8Y+5Bq901NO27TzaI5Y5x+PAt/itaNlotify4BNp937vGpWa6ubROYjdDe//AMFf7fZLe6928r274m0x8l+9aVtbTitZiJic8QQf5d/2fD7T/Mf+v4/Yl7roW0d+6YnOOR3rQtrbNsxGM8wV7h/Bb+32Qp/mP/X8fsT910raOnNbTEzM54K960La2zbMRjPMG9z/ANtT4/TKdHoUnT0a0tjMdEgAAAAAAAAAAAAAAAAAAAAAAAAAAAAI59dIjn10gAAAAAAAAAAAAAAAAAAAAAAAAAAAAObvtJto5iONZz8HN3PWjS1Ji2IrbnPR6Ti1+5zmbaXHP1fuB2TETGJjMS5e9+Vp6c1ilYvblisOaKd4pmKxqRx7MpdDul7Xi+rwjOcTzkGf5f8Az2/r9sKd8/3N/h9EJ+6aGpp6s2vXEbcczvfd7Xt5mnGeHGAdGj/Bp/1j6HD320W1+H1YxKtKd4j2aRqVz6YhfU7nqVmIpG7hxnPaDq7n/tqfH6Zefrfz6n9p+l6XdqWpoVraMTGfpcer3bWtq3mKcJtMxxgHV3z/AG1/h9MOXuNorr8ZxmMQ6u+f7a/w+mHBpaU6s2ivOIz6Qepe0UpNrcoh5fd4m2vpxH7ola1O8WnbaNSePbnH3Oruvdp0p33xuxwjoB3/APgr/b7JU/y7/s+H2pe96dtXSitIzO7Kvc9K+lv31xnGOPpBD/mH89f6/bLp7n/tqfH6ZRd70NTU1YtSuY245p+7UtTQrW0YmM/SDn/zH/r+P2L9w/gt/b7IO+aV9XZsrnGc8fQt3TTtpaU1vGJ3ZB0AAAAAAAAAAAAAAAAAAAAAAAAAAAAI780iO/MEgAAAAAAAAAAAAAAAAAAAAAAAAADi/wAx/wCv4/Y7XL3zSvq7Nlc4znj6AU/y7/s+H2u1y9z0r6W/fXGcY4+l1A8zvn+5v8Poh36P8Gn/AFj6HJ3nu+rfXtatcxOO2Ojs0omulSJ5xWIkHm3vGrr7rzO2Z+UO/ZoaVItikRHGJ5ufvHdLzqTbT9qLTnHapp9y1LW9v2a9vHiCHR/n0/7R9Lq/zH/r+P2MjuepXU3UmuInMZn9E3edGdbTjGN9eP6Ar3D+C39vshn+YWjZWnbnLljT16WnbTUieWYiUtu6as03WzbUmeWewF/8u/7Ph9qn+Yfz1/r9spu56V9LfvrjOMcfSr3vQ1NTVi1K5jbjmCXuf+2p8fplD/mP/X8fsdHdqWpoVraMTGfpRd80r6uzZXOM54+gDuH8Fv7fZCn+Y/8AX8fsS9007aWlNbxid2Wd80batazTjNezqDO4fwW/t9kObvsTHebTPbiYW7v5+natYraKTaM+y6e89386ImsxFo69oI9LuelfTrbdbjHHEx9xbuvd6zi2pMT42hDSO86Oa1raPRGYbTu2trX3ama55zP3A7NDTpp6eNO26sznOcuHvn+5v8Poh6NaxSsVrGIjscXee76t9e1q1zE47Y6A69H+DT/rH0JFNKJrpUiecViJXAAAAAAAAAAAAAAAAAAAAAAAAAABTU7Fo5Qrqdi0coBoAAAAAAAAAAAAAAAAAAAAADyNb+fU/tP0vXedq921rat5inCbTMcYB26P8Gn/AFj6DW/g1P6z9DdKJrpUiecViJNWJtpXiOc1mIB5/c/9zT4/RL03B3bu+rTXra1cRGe2OjvB5/f6bdWLx9aPoR6utv0dKnbWOPTwd3e6b+726xxj8eh5+jp+Zq1p1niD0O6U2d3r1njP49Dh71WK94vEdc/Pi9Rz967v5sbq+vEfMEuleNTTreO2HH3+8TqVr+2M/NFGnr0mYrXUjrjK09z1tsTtzM84zHAHR3D+C39vshxa38+p/afpd/dNO2lpTW8Yndlzavdta2reYpwm0zHGAei8zvsTHebTPbiYem5+89386ImsxFo69oI9LuelfTrbdbjHHEx9xbuvd6zi2pMT42hDSO86Oa1raPRGYbTu2trX3ama55zP3A7NDTpp6eNO26sznOcuHvn+5v8AD6IejWsUrFaxiI7HF3nu+rfXtatcxOO2OgJtWJnuEYjPs1+xz9xmI18T21xDtpT/AEK0tH1cTHwcOt3W+nb2Ym1eyY5g9C9opSbW5RDytH+fT/tH0pa6OvrWiL7sR227EWj/AD6f9o+kHX/mETtpPZEzDe4Wjy7Vz7Wc4dGpp11aTW0cPoeffu+tpWzWJnE8LV/GQd3ebRTQvntjEfFxdyrM94if2xM/Yr5WvqW41vM452/V3d30I0aYzm085BB/mP8A1/H7F+4fwW/t9kHfNK+rs2VzjOePoW7pp20tKa3jE7sgr3/+Cv8Ab7JU/wAu/wCz4fal73p21dKK0jM7sq9z0r6W/fXGcY4+kHUAAAAAAAAAAAAAAAAAAAAh1/qpkOv9UEQAAAJdD6yZDofWTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8/U1u8aOpi1sxnhmsYlL/jtPb6ts45OqYiYxMZiVPJ0v/nT/AMYB59KX7zrTPWczPT8dj1GRERGIjEQ0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGTylXT7Vp5Srp9oLgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPI0f59P+0fS9dSNLTicxp1iY8AXAAAAAAAAAAAAAAAAAAAAAAAAABHTmkR05pAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEceukRx64JAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARz66RHPrpAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQd8/21/h9MOb/L/57f1+2HfMRaMWiJjpLK6dKzmtKxPhALAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI780iO/MEgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKanYtHKFdTsWjlANAAAAAAAAAAAAAAAAAAAAAAAAAAABw9473M79OtccZiZy3uGnMbtSe3hDqnS05nM6dZmfBcAAAAAAAAAAAAFNWLTp28ucWxwcVO96tNTGrmY7YmMS9BW1a2jFqxMeMA5NXvtZ05jTi0WnhmexXuWjabxqzwrHLxdkaWnE5jTrEx4LgAAAAAAAAAAAAAAAAAAAAAAAAAAAAIdf6qZDr/VBEAAACXQ+smQ6H1kwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMnlKun2rTylXT7QXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABHTmkR05pAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEceukRx64JAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARz66RHPrpAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEd+aRHfmCQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFNTsWjlCup2LRygGgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIdf6qZDr/VBEAAACXQ+smQ6MxGcpN0dQWFd0dTdHUFhXdHU3R1BYV3R1N0dQWFd0dTdHUFhXdHU3R1BYV3R1N0dQWFd0dTdHUFhXdHU3R1BYV3R1N0dQWFd0dTdHUFhXdHU3R1BYV3R1N0dQWFd0dTdHUFhXdHU3R1BYV3R1N0dQWFd0dTdHUFhXdHU3R1BYV3R1N0dQWFd0dTdHUFhXdHU3R1BYV3R1N0dQWFd0dTdHUFhXdHU3R1BYV3R1N0dQWFd0dTdHUFhXdHU3R1BYV3R1N0dQWFd0dTdHUFhXdHU3R1BYV3R1N0dQWFd0dTdHUFhXdHU3R1BYV3R1N0dQWFd0dTdHUFhXdHU3R1BYV3R1N0dQWFd0dTdHUGzylXT7WzaMTxVpMRnIJBXdHU3R1BYV3R1N0dQWFd0dTdHUFhXdHU3R1BYV3R1N0dQWFd0dTdHUFhXdHU3R1BYV3R1N0dQWFd0dTdHUFhXdHU3R1BYV3R1N0dQWFd0dTdHUFhXdHU3R1BYV3R1N0dQWFd0dTdHUFhXdHU3R1BYV3R1N0dQWFd0dTdHUFhXdHU3R1BYV3R1N0dQWFd0dTdHUFhXdHU3R1BYV3R1N0dQWFd0dTdHUFhXdHU3R1BYV3R1N0dQWFd0dTdHUFhXdHU3R1BYV3R1N0dQWFd0dTdHUFhXdHU3R1BYV3R1N0dQWFd0dTdHUFhXdHU3R1BYV3R1N0dQWFd0dTdHUFhXdHU3R1BYV3R1N0dQWFd0dTdHUFac0iOsxE8Vt0dQWFd0dTdHUFhXdHU3R1BYV3R1N0dQWFd0dTdHUFhXdHU3R1BYV3R1N0dQWFd0dTdHUFhXdHU3R1BYV3R1N0dQWFd0dTdHUFhXdHU3R1BYV3R1N0dQWFd0dTdHUFhXdHU3R1BYV3R1N0dQWFd0dTdHUFhXdHU3R1BYV3R1N0dQWFd0dTdHUFhXdHU3R1BYV3R1N0dQWFd0dTdHUFhXdHU3R1BYV3R1N0dQWFd0dTdHUFhXdHU3R1BYV3R1N0dQWFd0dTdHUFhXdHU3R1BYV3R1N0dQWFd0dTdHUFhXdHU3R1BYV3R1N0dQWFd0dTdHUFhXdHU3R1BYV3R1N0dQWFd0dTdHUFhXdHU3R1BZHHrrbo6qxMb8gkFd0dTdHUFhXdHU3R1BYV3R1N0dQWFd0dTdHUFhXdHU3R1BYV3R1N0dQWFd0dTdHUFhXdHU3R1BYV3R1N0dQWFd0dTdHUFhXdHU3R1BYV3R1N0dQWFd0dTdHUFhXdHU3R1BYV3R1N0dQWFd0dTdHUFhXdHU3R1BYV3R1N0dQWFd0dTdHUFhXdHU3R1BYV3R1N0dQWFd0dTdHUFhXdHU3R1BYV3R1N0dQWFd0dTdHUFhXdHU3R1BYV3R1N0dQWFd0dTdHUFhXdHU3R1BYV3R1N0dQWFd0dTdHUFhXdHU3R1BYV3R1N0dQWFd0dTdHUFhXdHU3R1BYV3R1N0dQWFd0dTdHUFhXdHU3R1BYV3R1N0dQVn10iOZjflbdHUFhXdHU3R1BYV3R1N0dQWFd0dTdHUFhXdHU3R1BYV3R1N0dQWFd0dTdHUFhXdHU3R1BYV3R1N0dQWFd0dTdHUFhXdHU3R1BYV3R1N0dQWFd0dTdHUFhXdHU3R1BYV3R1N0dQWFd0dTdHUFhXdHU3R1BYV3R1N0dQWFd0dTdHUFhXdHU3R1BYV3R1N0dQWFd0dTdHUFhXdHU3R1BYV3R1N0dQWFd0dTdHUFhXdHU3R1BYV3R1N0dQWFd0dTdHUFhXdHU3R1BYV3R1N0dQWFd0dTdHUFhXdHU3R1BYV3R1N0dQWFd0dTdHUFhXdHU3R1BYV3R1N0dQWFd0dTdHUFhXdHU3R1BYV3R1N0dQWR35rbo6q2mJngCQV3R1N0dQWFd0dTdHUFhXdHU3R1BYV3R1N0dQWFd0dTdHUFhXdHU3R1BYV3R1N0dQWFd0dTdHUFhXdHU3R1BYV3R1N0dQWFd0dTdHUFhXdHU3R1BYV3R1N0dQWFd0dTdHUFhXdHU3R1BYV3R1N0dQWFd0dTdHUFhXdHU3R1BYV3R1N0dQWFd0dTdHUFhXdHU3R1BYV3R1N0dQWFd0dTdHUFhXdHU3R1BYV3R1N0dQWFd0dTdHUFhXdHU3R1BYV3R1N0dQWFd0dTdHUFhXdHU3R1BYV3R1N0dQWFd0dTdHUFhXdHU3R1BYV3R1N0dQWFd0dTdHUFhXdHU3R1BYV3R1N0dQWFd0dTdHUFhXdHU3R1Bmp2LRyhS8xOMLRaMRxBYV3R1N0dQWFd0dTdHUFhXdHU3R1BYV3R1N0dQWFd0dTdHUFhXdHU3R1BYV3R1N0dQWFd0dTdHUFhXdHU3R1BYV3R1N0dQWFd0dTdHUFhXdHU3R1BYV3R1N0dQWFd0dTdHUFhXdHU3R1BYV3R1N0dQWFd0dTdHUFhXdHU3R1BYV3R1N0dQWFd0dTdHUFhXdHU3R1BYV3R1N0dQWFd0dTdHUFhXdHU3R1BYV3R1N0dQWFd0dTdHUFhXdHU3R1BYV3R1N0dQWFd0dTdHUFhXdHU3R1BYV3R1N0dQWFd0dTdHUFhXdHU3R1BYV3R1N0dQWFd0dTdHUFhXdHU3R1BYV3R1N0dQWQ6/wBVJujqj1picYBEAAACTSrnKXZHij0PrJgV2R4myPFYBXZHibI8VgFdkeJsjxWAV2R4myPFYBXZHibI8VgFdkeJsjxWAV2R4myPFYBXZHibI8VgFdkeJsjxWAV2R4myPFYBXZHibI8VgFdkeJsjxWAV2R4myPFYBXZHibI8VgFdkeJsjxWAV2R4myPFYBXZHibI8VgFdkeJsjxWAV2R4myPFYBXZHibI8VgFdkeJsjxWAV2R4myPFYBXZHibI8VgFdkeJsjxWAV2R4myPFYBXZHibI8VgFdkeJsjxWAV2R4myPFYBXZHibI8VgFdkeJsjxWAV2R4myPFYBXZHibI8VgFdkeJsjxWAV2R4myPFYBXZHibI8VgFdkeJsjxWAV2R4myPFYBSaREdrK1zleeUq6faDdkeJsjxWAV2R4myPFYBXZHibI8VgFdkeJsjxWAV2R4myPFYBXZHibI8VgFdkeJsjxWAV2R4myPFYBXZHibI8VgFdkeJsjxWAV2R4myPFYBXZHibI8VgFdkeJsjxWAV2R4myPFYBXZHibI8VgFdkeJsjxWAV2R4myPFYBXZHibI8VgFdkeJsjxWAV2R4myPFYBXZHibI8VgFdkeJsjxWAV2R4myPFYBXZHibI8VgFdkeJsjxWAV2R4myPFYBXZHibI8VgFdkeJsjxWAV2R4myPFYBXZHibI8VgFdkeJsjxWAV2R4myPFYBXZHibI8VgFdkeJsjxWAV2R4myPFYBXZHibI8VgFdkeJsjxWAV2R4myPFYBXZHibI8VgEVYzK+yPFWnNICuyPE2R4rAK7I8TZHisArsjxNkeKwCuyPE2R4rAK7I8TZHisArsjxNkeKwCuyPE2R4rAK7I8TZHisArsjxNkeKwCuyPE2R4rAK7I8TZHisArsjxNkeKwCuyPE2R4rAK7I8TZHisArsjxNkeKwCuyPE2R4rAK7I8TZHisArsjxNkeKwCuyPE2R4rAK7I8TZHisArsjxNkeKwCuyPE2R4rAK7I8TZHisArsjxNkeKwCuyPE2R4rAK7I8TZHisArsjxNkeKwCuyPE2R4rAK7I8TZHisArsjxNkeKwCuyPE2R4rAK7I8TZHisArsjxNkeKwCuyPE2R4rAK7I8TZHisArsjxNkeKwCuyPE2R4rAK7I8TZHisArsjxUiPawlRx64LbI8TZHisArsjxNkeKwCuyPE2R4rAK7I8TZHisArsjxNkeKwCuyPE2R4rAK7I8TZHisArsjxNkeKwCuyPE2R4rAK7I8TZHisArsjxNkeKwCuyPE2R4rAK7I8TZHisArsjxNkeKwCuyPE2R4rAK7I8TZHisArsjxNkeKwCuyPE2R4rAK7I8TZHisArsjxNkeKwCuyPE2R4rAK7I8TZHisArsjxNkeKwCuyPE2R4rAK7I8TZHisArsjxNkeKwCuyPE2R4rAK7I8TZHisArsjxNkeKwCuyPE2R4rAK7I8TZHisArsjxNkeKwCuyPE2R4rAK7I8TZHisArsjxNkeKwCuyPE2R4rAK7I8TZHisArsjxNkeKwCuyPE2R4rAIpj2sL7I8VZ9dICuyPE2R4rAK7I8TZHisArsjxNkeKwCuyPE2R4rAK7I8TZHisArsjxNkeKwCuyPE2R4rAK7I8TZHisArsjxNkeKwCuyPE2R4rAK7I8TZHisArsjxNkeKwCuyPE2R4rAK7I8TZHisArsjxNkeKwCuyPE2R4rAK7I8TZHisArsjxNkeKwCuyPE2R4rAK7I8TZHisArsjxNkeKwCuyPE2R4rAK7I8TZHisArsjxNkeKwCuyPE2R4rAK7I8TZHisArsjxNkeKwCuyPE2R4rAK7I8TZHisArsjxNkeKwCuyPE2R4rAK7I8TZHisArsjxNkeKwCuyPE2R4rAK7I8TZHisArsjxNkeKwCuyPE2R4rAK7I8TZHisArsjxUtGJSo78wW2R4myPFYBXZHibI8VgFdkeJsjxWAV2R4myPFYBXZHibI8VgFdkeJsjxWAV2R4myPFYBXZHibI8VgFdkeJsjxWAV2R4myPFYBXZHibI8VgFdkeJsjxWAV2R4myPFYBXZHibI8VgFdkeJsjxWAV2R4myPFYBXZHibI8VgFdkeJsjxWAV2R4myPFYBXZHibI8VgFdkeJsjxWAV2R4myPFYBXZHibI8VgFdkeJsjxWAV2R4myPFYBXZHibI8VgFdkeJsjxWAV2R4myPFYBXZHibI8VgFdkeJsjxWAV2R4myPFYBXZHibI8VgFdkeJsjxWAV2R4myPFYBXZHibI8VgFdkeJsjxWAV2R4myPFYBXZHibI8VgFdkeJsjxWAR2rjDYpEx2mp2LRygGbI8TZHisArsjxNkeKwCuyPE2R4rAK7I8TZHisArsjxNkeKwCuyPE2R4rAK7I8TZHisArsjxNkeKwCuyPE2R4rAK7I8TZHisArsjxNkeKwCuyPE2R4rAK7I8TZHisArsjxNkeKwCuyPE2R4rAK7I8TZHisArsjxNkeKwCuyPE2R4rAK7I8TZHisArsjxNkeKwCuyPE2R4rAK7I8TZHisArsjxNkeKwCuyPE2R4rAK7I8TZHisArsjxNkeKwCuyPE2R4rAK7I8TZHisArsjxNkeKwCuyPE2R4rAK7I8TZHisArsjxNkeKwCuyPE2R4rAK7I8TZHisArsjxNkeKwCuyPE2R4rAK7I8TZHisArsjxRatcYTodf6oIgAAAS6H1kyHQ+smAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABk8pV0+1aeUq6faC4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI6c0iOnNIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjj10iOPXBIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACOfXSI59dIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjvzSI78wSAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAApqdi0coV1OxaOUA0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABDr/VTIdf6oIgAAAS6H1kyHQ+smAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABW960jNpiIBYc/wDiJvP+lpzeOsziD/Xt9etPCIymwdA5Z0NS0+1r2+EYZ/hv/wB2/wA0+oY6xzRozH/dqfNs01ezWmPTWJPqLjoHPv16c611PGJw2O86fK0zS3SYXUTjImLRmJzHg1QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABk8pV0+1aeUq6faC4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMmYiMzOIImLRmJiY6wi7x6lem6Mo9mONZ2z1j8cUtxZNdQi09XNtl4xbs6T+OiVUAAAAAAAAAAAAAAAAAAAAAAAAR05pEdOaQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVtaKxm04QWve+eOyOzHMTcdI48THO1p9NpK3vScxaZ8LTmFw2OwR6erGp4THZP45JEUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARx66RHHrgkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABW1orGbTER4tRas5vFeyIz+Px2s0r7beXPKfV+77gTgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjn10iOfXSAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKxes3muY3RxmFNTUndspz7Z/ajitaaulERjjP0Jo6QFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABHfmkR35gkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFL6laTEcZtPKI5ypnUvznZHSOfz+75gktetPWmIKXreM1nMI60rXMxHGec9rK8O8xjtrORcTgCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKanYtHKFdTsWjlANAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABjVI43n5LgAAAAAAAAAACsWzM45R2rAAAAAAAAAAAAAAAAAAAAAAAIdf6qZDr/VBEAAACXQ+smQ6H1kwAAAAAAAAAAAAAAAAAAAAAAAAAAAADJ4KampFMRjNp5VjtU8qdXjrTn8sco+9BW2vfUma6FeEfXnkV7vG7dqTvt1lPERDJSqwGMK3LMhIMAAyZ4YnjAAi8iK23aVp05+cL115pw1429LRxifuWFnJMSxOYzDXJsvpZnRnh20lPpa1NauazxjnHRuXUSAKAAAAAAAAAAAAAAAAAAAAAAAAAAAAMnlKun2rTylXT7QXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARa9pisRH1px9qVBr/wAmn6Jn6PvSrFJvPk2rac2rMTnrGVketwpNvCYn4/rheOMM1qeMtWLxi0ZhJo3n1Lz7Ucp6x96qtonGYnFo4xJKWa6hTTvF6RaPjHSV22AAAAAAAAAAAAAAAAAAAAAAEdOaRHTmkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEV9WKziIm0xzx2N8yLadrU5xE/MEV7b9SZ44jhH3sVpb2K56Ey3HOksZFotOK5n0QTv7NOfnAY3MxOaziYddLResWjlLj9v9nvS6OrFImNT2ePDP4wlajotMViZmcRCHzL2mNkRFOtu34febvMnd9WPV+9ucJi6rNbc/Nv7vuZv1KxiLbv7fo2bKrjOptPVi/DlbtiUjlmM4nOJjlPRLo6m72betHv8AFLMal1KAigAAAAAAAAAAAAAAAAAAAAAAAAAAAAACOPXSI49cEgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAj1bWrjbMR6WV1oz7UbfHs/H4yCUAAAHPfPmW9PD5I9SOGei2MTb+0/SW5SrKfSv5lM9vKV3J3e+2+Jnhb6fx9jrRoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABHPrpEc+ukAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARauptxWvG88o6eK2peKUz29kdZR0rMZtb17c/uS3FbSsUriOPbMz2svONTSn82PnCymrz0/7wzO1dADbIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjvzSI78wSAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjvq1pO31rT9WOYLzMRGZmIjxQze2rwrmtJ+t2z6OjIpN53avHpXsj75SC4yta15Rz5z1aAoro+1qXv2erE/SzUmYjFfWtwhLSkUpFa8oEqwAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACmp2LRyhXU7Fo5QDQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFbTOYiFlPrzPgDKcJxPPCRHp5mZnsnkkKkABQAAAAZM45q53eEAtlS0zbhHKfe2YrjMTw7cFYz7XyVFojEYaCKAAAAAAAAAAAAAAAAAAAAAAIdf6qZDr/VBEAAACXQ+smQ6H1kwAAAAAAAAAAAAAAAAAAAAAAAAAACHV1Z3eXpRm/bnlDdTUmLbKcbz8o9P2FKRSMR8ZnnLNuKaentzMzm0856pFTLMo2ZVMsS3VGgDGSTIAAAAAAAjvpbrRek7bx2pADQ1o1YmJjbaOcJnLq0mfbpw1K8pjtTaWpGrpxaO10l1lIAoAAAAAAAAAAAAAAAAAAAAAAAAAAyeUq6fatPKVdPtBcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABBrfyU9E/YnQ945Unpb6UvSztS0bqzHWMKaU50qz4YWyrXhNo8c/P8Sw6LloxDIXnjp+gFdGdurMdl/p/4+h0uO2cZrzjjDqraLVi0cpjLUrHKerANMgAAAAAAAAAAAAAAAAAAAI6c0iOnNIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADmrO21onjMTP3/ayZmLbq8/pjo3WjbqxP7498MlqdMXyodObW9mK4xwzKWNKs4m3tTHVkxntxPWFolU1dmWZYGtlS/GIr+6VlLfyU+IJN3ZAxSZ3TiJ4RzwC03rHO0fNsTExmJzCkYiMYhlsUjdXhjnEcpBIyJ23i0TjE8fQZUv6k+gI7hTSnOlSZ5zWF2HQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARx66RHHrgkAAAAAAAAAAAAAAAAAAAAAAAAAAAAABHrRmmYjMxxj8ehE6XLMbLTXpy9H44fAStradPlxr0+78fenraLxmsueWRM1nNZxK4a6xTT1I1I4cJjnC6K5pn2p9LJ5MvON09EOlqT6tpz0Vlvb0d2nbfSLdXCn7rbjavDr+PciukAUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABHPrpEc+ukAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABFr5mK1iZjNsTMM09Sd/l6nrdk/ubrTidPP7vslXUpvrjOJ5xMdkpb6qcRaOpvia24Xrwn7/AIpVQZMxEZmcQ1z6lvN1PLj1Kz7U9Z6feBX/AFb+ZPKOFY+34pGcmsX1oR6v1P7wurqcq/3j6SCcBtkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAR35pEd+YJAAAAAAAAAAAAAAAAAAAAAAAAAABkzFYzM4iO1z3vOrmMYp75+6AWtqzfhpTiO2/wB338m0rWkYrCscIbkaXFMmQWyTaIiZnlCuWUr51sz/ABxPzn7vtBbRrMzOrbnPKOkfqmAZAAARzrU7J3f1jIJBF5lp5advjMR97a6mb7LRicZjjwkEgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKanYtHKFdTsWjlANAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABiPPtW9KRFeNtvCViL6fqQuj0rcMdEiVYCtZznwnCwAAAMmcRMyCKbTaePLot63COXbKOOyE8RiMQtRXy4zw5dsLgigAAAAAAAAAAAAAAAAAAAAAAACHX+qmQ6/1QRAAAAl0PrJkOh9ZMAAAAAAAAAAAAAAAAAAAAAAAAAj1tTy6TMRm08IjrK7m0rTr6k6k5214VhLcEmlTZXjObTznquDm0wkZIMadjAayZAAAAAAAAAAABFnyNbdwjTvOJ8JSq6lIvSaz2rLg6BB3bVnU08W9evCU7oyAAAAAAAAAAAAAAAAAAAAAAAAAAyeUq6fatPKVdPtBcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABTUpv05r1XAcdZzWJ5GOMyXi3nam2YiuffgiIrGIc746y62FuxVsIMlL3efYmv7Z9344fBFK2jONbH7q/R/y1x7Tl06QG3MAAAAAAAAAAAAAAAAAAABHTmkR05pAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAR6l9sREetPIEXeLTa1a1+rMTLG4xDG5HO3TACoDN3GYiMzDRRkxnHhLQQR15fGUiP1LzHZac58UVrLRujE8mgNZPHFf3TgmcJ9HT2+1bnPZ0SrIliMRiOUNBlsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARx66RHHrgkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQ69eEXiOMcJ9H4+1MyYzGJBxxeN01nhP0rI+86e2Zx2fR2M0tTMYt8JVnG5mt81nEw7NO8alc8p7Y6OPnmexm2J5xEosSavGNT4uWHTpfxx04o60iKTE8881CJzGV9O+y8W7I5+hHWJjMStM4jMg9ARd3vv0a9Y4SlRQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEc+ukRz66QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEHe+GnW37bRK7O813aF48M/Liys5rE9YZ5LFdSJrMalYzNecdYTVtFqxas5iVEUakaFp3Z8u3GPCf1JSxJr3212Vn27cI8PFXTrFKxWOxlYm1p1LR7U+6On3rs2rIsMaAj1J9SOt4+lIi1Z9rT/vCzsdIDbIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjvzSI78wSAAAAAAAAAAAAAAAAAAAAAAAAK2tFKza04iC1opWbWnER2ueZnVtFrxiI9WvTxnx+gCbTqzumJisco+2WtYNNAUBjIi2rwpwr22+770CInVtNaziI9a3Twjx+h01iKxERwiEUalaxs0a7tvDEco+JstbPmXmYnsjhH3iL21KVnE2iJ6dqvnccRp3nxxj6cNrWtYxWIiPADFZ1dTs0Zn02gm+riNtKxPjbl7lgMZs3evO7wnl8vxPi2MRGI4QMFWR6scIvnGyd3w7V1LYnMTyngCcR6Fpto1meeMT8EgyAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAApqdi0coV1OxaOUA0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABHeYtSfBdBbnb0rEracdSEszEc0Wl6/wAF8xM2mSjdPlPpXUp2+k1NSunXNs+EQixccttW+3da23pER95pd5m04mufGPx+OgOibRFojqj1Z4xCmeOZ5nGZ8ZaxFqetVOj0644zzW3xjhxylGtUrGZ3T8F0UAAAAAAAAAAAAAAAAAAAAAAAAQ6/1UyHX+qCIAAAEuh9ZMh0PrJgAAAAAAAAAAAAAAAAAAAAAAAAQd71NmjPHFrcIbo1rXSrFc4x2uPvWp5mtPSvCHX3ed2hSfBnksSAMKyVWywAAAAAAAEWpr1pwj2p8ASiCveqzPtRNfemiYmImOUmYNAAAAABFnyu8RfPs34W+x1ubVpv07V6p6W3UrbrGW+N8SrANIAAAAAAAAAAAAAAAAAAAAAAAAyeUq6fatPKVdPtBcAAAAAAAAAAAAAAAAAAZni0AAAAAAAAAAAAAAAGA0ZMxETMziIQU15nWxPCluEfjx+4HQAAAAAAAAAAADj+vqf2lpMY1dSPzZ+cDne3WdDYYIrZKfzac+Mx7pZKl7TSaTHGYss7S9O4c2hqWnVmtpzmMul0cgAAAAAAAAAAAAAAAAAAAEdOaRHTmkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc+d0zfPCeXo/Xmv3i0xp4rwm07cqWnsWM1UBtgZxm0VjMZ7ejWcp4Txtw48kVadlK4jEQhtrRv2xGZzji6qaUVnM+1brPZ6OjivSfMvbt3Tj5s61ibvG7RrE5ic9mDMotW99bG+MY4REJFlSzG7pZPGOIKjMTHKeHitp0tqTaMxXbjjjOWJu7Z9vpn7EqxemlWnHnbrKQGWwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABHHrpEceuCQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEWvp+ZTh60cnFSmZxjhziXpOe9YjUtjtEqO0YiIhXGeGcZbM5mZ+BX1uXYKvKO88V7TiEMzx8VZJnCvPmRx4iNLU1b6U5rMcecS69LvFL4ifZt0lwzyAeoODT7zenC07q+PP5uzT1K6kZrOfsBcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEc+ukRz66QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGTETExPKXPpTnSr4Rh0uanC2pWey0+/izy6WL9it6xes1nlKww0rTMVxbnHDPVaGNBplgaGVLRnW0o8Zn5Quj1KxfUpmMxGSdldE2rX1rRHplnm6f/0p84RRp6f7K/Jvl0/ZX5N/TOJPN0//AKU+ZGpS04i9ZnpEo9lP21+SPUpW0xp1pG63bjlHUlMdYyOEYa0gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjvzSI78wSAAAAAAAAAAAAAAAAAAAAAAMtaK1mZnERzJmIjM8Ic9rzqTyxSOXj4/d8+gMmZ1LRa3CI9WvT0+P0NAaarNva21ibW6LMpn/EeE1+39QPL1J52rX0Rn8fJbyo7bWn44+jCRgIraVJrMTNoj+0laWvGL2ny+yuMfPGErQZEREYjk0BAAGAwVowAR9qRlq5jhzBuhOaTHS0/f9qVDofXieE55fCEwyAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAApqdi0coV1OxaOUA0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABDaPalMi7Zz1NwZpRO6Z8GRPHwmVottrMTzhHHCYz1aZS2tXRpmZ4fS58zMzqanPsjoTfzr7p9SvKOvii1dTdOOxGmWtOpbEOimnFKeKndaxMTPa6OdohN9EcxMc4SaVYxuk1KTM55/YzdnhHqx72kWm0Txn1fpMRNpiPizburPuXrGI8UFgEUAAAAAAAAAAAAAAAAAAAAAAAAQ6/1UyHX+qCIAAAEuh9ZMh0PrJgAAAAAAAAAAAAAAAAAAAAAAGTOImZ7Go+8TMaF5joDy3Z3O2dOa/tn6XLWs3tFY7Zw7a0jR15ivCt44R6E5dCYBzaVljZ5sAAAAAZaYrEzM4iC1opXdacRDh1NSdW2Z5dkLJqL6veJ1IxXhX6UIOmIL6epbTtmOXbCgD0KWi9d1Z4LOHS1J0r5+rPN3OdmKAIoAAd0/21Pj9KHU1YnTtMca4+bo0KTp6NazziOLfFKkAaQAAAAAAAAAAAAAAAAAAAAAAABk8pV0+1aeUq6faC4AAAAAAAAAAAAAAACDU1ZvmunMxHbb7jVvM2nTr/AO0/YyIiIxDNrUjNKsV1oxH1Zz48YdLn0o/158K/b+jNS83vMRMxWs44cMz+i/iZtdIi0LTbSjM5mJxM+hKqAAAAAAAOTvVt2pFOyvH4/j6QdUzERmZxEETFoiYnMS45te9Yra2a/jmk0dWunWa3nGOMfEHSI6a1bUm0+zETjizzc+rS0+OMfSCVzd5/kpHHhE8ltS2tNJisVjh1mZ+xyVtNsTa0zOO2UEtrXvEVvbNY9/p9CluLZngpu4oLzrato43x/Xg6u7TM6FZtMzPHn6XFyX0deaXrWbTsjs4KO9W1orWbWnER2qRr6WcTbbP5uH0lP9S2+eNYn2Y+349nh6VG+ZaY9nTtPp4fTx9x5uPXpasdZjMe7KRB3rWto1rNaxOZ5yCaJiYzHGJahrM0mtsYrfGa/tmfxifn1TAAyZiImZnEQDVNTVpp43zjPLghpraupm9Yrt7Kzzn7md5mL6eneOWfx9AM1L0tq1tS0TujEwOeZjrxj3Ja6kWrntYsb41fOI4iPUndXb1nDJia8a8u2ExbcqSbREIZtNrVzHbmG5i+IjlzlsxmMNSJa2N1b1vXGY6pPP1fyfKfvRxOY482qwn0NW97zFsYiOyP1ToO619m1/3Tw9EfiU6gAAAAAAAAAAAAAAAAACOnNIjpzSAAAAAAAAAAAAAAAAAAAAAAAAAAAAAi1vqeE590o7c1+8TtrW0xwiePginjHCWoxyaMMw0y0V3R1hu6OorccMRNo9EzCOdOOe6/zWm0R2wrvi04icz4cU8PSKxHbM+mW85iI5zybFLzPLbHWfuSUpFM45zznqzv8akt7VtTbGVJ5Jbz7MoZ5SsSzKVnLp7vGNKJnnbi5K1m0xWOdpw7yrGgMtAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACOPXSI49cEgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADl1LxGreJ4Y6+h1OPvMbtbHZt4grx7eMtpOLTnpH2sUtMZ8QbqXmfCF9DSi0bpnlwx0R7JvXd2fjikrqxTTmI42z2BiGYiJmI5ZnAAGOCscl7RMR0UxgGtiZraJicTHaxuAdWj3mLezqYievZLpeZhPoa+z2bz7PZPT9Po9HIOwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEc+ukRz66QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEHeNSaxsrOLT29IBbU16Utt4zbpCCt4nvFuExuiOfgVisR7JasWjEs310nFMItO+PZtPGO2e1JE5YxGgIoAAdoADMqXvFYzPJUbqam2OszwiOqTR0tkTa05vPOengpoac58zUjjPKOn6uh0kxm0AVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABHfmkR35gkAAAAAAAAAAAAAAAAAAAABBrXmZ8us8frTHZ/yCupfzLTET7Ef/AKp+4ZEYjEE2ivGZiPSrTRkbrR7FJnxnhHvXjRtM5vfh0r9//CJqlrRXGZ58oIi+6t7V21ie2eM54J6adNOPZrENvSL0ms8pgNZlitLbq55T2x0laBWgwGjAGsAGAACkzNpnE7a15z1/4R2jV06xeMzXtraeImpxlLResTVoqt4nGa8LxylJp38zTi2MZ7FVdP2Ne1ey8Zj0xzEqcAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABTU7Fo5Qrqdi0coBoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACl4xO75rst6sgitGbQi18xMUiefP0JoxtiZnl2uXfNpm89qcRmpbEbYRc2zOZdmjpxWkZjituBo18vT4828ZjM8MrW4cbcIhlJrq8p4dEiKza0xiZWpXM8eUNnS6SkiIiMQ1o0BFAAAAAAAAAAAAAAAAAAAAAAAAAAEOv9VMh1/qgiAAABLofWTIdD6yYAAAAAAAAAAAAAAAAAAAAAABXUjdp2r1hYB5Wnbbi37Zd+vita6n7Z908HNbQiupOnM7c+pPXrC+jqxSvk68beGMz2wg6RHoTM6cRafajhKSHPPVUnmNnmwUAAZa0VibTwiGqacedqzM+pSeHp6rJo3T0vMxqasZ/bXpH3s77FY0OXKYw6XD33U3WjTjs4y6MuYwtFW4BXBtlcrm84pG6QRzDs7rMzoxns5KU7vM4nU5ftj73REREYjkxyqwBW18RwjLKrTMRGZlHNptMx9X6WbZm2605ns8GXmeFaevPJRunSNXW/Jp++f0damlpxpacUjjjtXbZAFAAAAAAAAAAAAAAAAAAAAAAAAGTylXT7Vp5Srp9oLgAAAAAAAAAAAAAItbU2VxHrW4R+PBI5d3mXm/Zyr6P1S3Fk0pG2MfOeq7I4MmWHRkXmsakxznFY9P4nJERWIiOUKUtuvbpE5+PL7PeuVJP1L3b1b/2+yEyHu0Y05nraZ+xM6Ri9gAgKX1K09a0R0jtlkaszy07zHox9MgkFK6lbTjjE9JjErg5NfV1a601i0RGMxw5oczMzNpzM85Td6tS1q7ZzaOE4QpRsSTOVZnBuQSd3/wBxP9c/Q63P3WnCbz28IdArHFq08vUmPqzxh3K2rW8YtGYBw54MdNu61n1bTHvI7rX61pn0cF0c0ZtMRHGZ7Hbpafl0x29stpStI9mMLJaOKIxWeHHt9Lr0bx5dY8Iw59SNupMdk8YNPUins29XsnosW9O1qCJnskm044yrLe8WiNG3o4Mr3rRt9fHphDe+/hHq9s9Va6W/VjbOMcbTCaueOqdemcVnfbpXj+iLVi18RecTP1Y5R4z1np2Nm96cLzmOy339CI5z1S1ZGTaNOvSOyENrTaZxwrM7seK+rSZndXjMcMIokhWcrelbETzhkxlkZVlv144zjokR9uWwC0RETOO0aCsLWxBZWUF9LvNtOIrMbqx83ZS8alItXlLzorEWiZiZr2xl36WpS9fY5R2csNIkAAAAAAAAAAAAAAAAABHTmkR05pAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEXkaeZnbiZ6SlAQW7vEzExaYjtjPNXZTTzNqbcTz5+/73SwEUYmMxiYMR0hfyqdlcf14fQyNLbyvafTx/X3piqxERyiAmmr2TSfnH3opvqbYmIpx8ZMErJtEc5RTa9udsf14MWcWbyba26VZ4xgtOIOVcz2Q2wl7tT25t2RGPx7nSj0K7dOOHGeMpGHSAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACOPXSI49cEgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIdbV2+zX1u3wc6TX07xebVibRPuc9t0zjlMc8g2bKrbTER2BqsY7IifFuJnsbni0RXb1laIiPAdGho8r3j0R+Px8eVHPq6d6xW1uU+5SId+vTfpTGOMcYcMckVmMT4NCPEBuBoJdDW2TFL+r2T0/T8cuXW8/GXV3e++mJnNq8wTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjn10iOfXSAAAAAAAAAAAAAAAAAAAAAAAAivr1jhX256R94JUdtbTrON2Z6RxQTN7+vbh+2vCCKxWPZjCa3ONXtr3n1KY8bfoyb6k/Xx/WPvywTWvmK4ntvef/aWeXWOyFwXIzGOQCKj1a8N2M4WilecRj0ThbnCmnPDb214CfrfbiPZvM+Fmxq2r69OHWrRD5i9dStuUxnos55rGcTHCeXg3OpTlO6vjzMZxNPBk2Rxfdy+RaYrGZTE1trYjMzwX0dKbW33jl6sT9P3GlpTb2tSOHZWftdDcjNoA0gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjvzSI78wSAAAAAAAAAAAAAAAAAAAre0UrNrTiIBXVvsrwxNp5RKCIxHXrM9rczed1uc8o6R+OZFZ1LbaziI9aen49wrI3XttpHpnsj9fBNTRrWcz7Vus/Z0XrWKVitYxELCAAAAOfUzXWiK/8AZz8Mdv48Eqmc6tulYiI+mfsWFaxTjqWnjMVrOOHDM/crunTvbjM0jGcznb+O0EorMzF69J4NFawAV1M+XbHPElvZpw4dkfQsreM2p/b7JBmpG3u9ojPJt9SttGZzzXtXdS1esYcdY3VhWW6F9t8dluHxdTk2cHVSd1ImecwYsrVZj/X056Z+hZlOOtz9WOPx/wCEWpgBkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABTU7Fo5Qrqdi0coBoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOXvExstjttiPt+5z3nERCTvWa6kRj2ZzMfj05+aLFrz7MZUTd0r7U24TPKISTeN9qxbNsTnHDH4/GEVIvpxNfaxnsg06Tum0+zX5IJda2aThSLTSkWjs7F7ZtHOYiekcZQ231pFbVx45WZPEdtLxqV3VWcndL4vak9vGHWigAAAAAAAAAAAAAAAAAAAAAAAAAAACHX+qmQ6/1QRAAAAl0PrJkOh9ZMAAAAAAAAAAAAAAAAAAAAAAAACPW0o1abZ59k9HLXUtX2dWu6sc4xmY/R3ItbSm3tUxF49/pSwK7dsbMbezHJeHLpzMcacOtJ4Y+5NXViZxxieksfqtnmwkRQAGXiZpaI544OTRvraOYjTmYnsmJdgsuI5r9417xiKTX0ROUddPU/+d8+MO6Gr9GOONDVnsrX0yvXusz69/hV0ZjqrOpWvOYj0yn1TFad306/V3T1txScoxCk6sdkTb0Kza8z2RHvRUjJmFIzjnM+loNmypyRzebTt04z49gLWvFeEcbdkRzT6Olsza05vbn4OWNO2jaurHtTHrfo7a2i9YtWcxLckSrANIAAAAAAAAAAAAAAAAAAAAAAAAAAyeUq6fatPKVdPtBcAAAAAAAAAAAAAEPeLYpsjnfh8O1HWC9t+raeyvsx9v48CGL26cZ42VZnEZWtyVZVHoRjTz14rzOKzPSFYiacIjNfoZe/DhWZiOM8McF7p1HZo12aVK4xMRxXB0chTUtNa8PWmcR6V0d/5aRPLEz8fxMg2mnFMzztPO085XAHNTWr3i9tOazGOMT+ORfXvpxs27tSO3lGOv48U8VrWZmIiJnnOObm15idWJjoLGaVK6s38zM365/H0KX0dSnZujrH3L6P83/rP0w6WdWxwRp6lp4Ut8sfSl0+7TPHUnEftj8fjq6hdQiIiMRwgGIACKDJmK85iPSzzKfvr8wWABTU041K45THKejk1otSsxaMfQ7mTETGJjMKPNre1fVtMJKTNqzN7TMeMuq3d9K05249Da6OnXlSPjx+ldRBSttSfZ5fu7IdVKRSuK/8tgmcIpMRMYmMwhmJ0p//AG+yf2/p0+SXfDeEx1iQ6RTwQ6lYxNuU/SktXy5iPqzy8PD7kF7b7eEckk9atmESMWhpzAEFokyqCtmWK35wxcRabQv3eL21omnDbznw6KaenOrfbXh1no79OldOsVrHAFwFAAAAAAAAAAAAAAAAEdOaRHTmkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABTUvs07W6Qgtw06xPNLq8ZrTGYnjPw/XCLV5wTtL0oA2wNrWbXrEdePoYk7vXOpa3ZEY/HuKs7dIDDYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjj10iOPXBIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACtrRWs2nlDzr2m9ptbnLr73M7a17J4y5doKYjpDeUcOwxOeS9NPdXM2iPCOYE1mI4XjHi3tnwW2+zEdMM2RnPJNMNO2NTPTsTxq3nPKZ7IiOfvRxWZnhC9cadpmLVm2MYmTVdEZxx5uPXps1Z6W4w6dPVrqRw4T0nma1PMpjt5wqONkw0BkTlqsxicw33T0kGp+6etf0R9qCOM4jjM9js0dPy6YmczPGQSAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjn10iOfXSAAAAAAAAAAAAAAAAAAAAAK2tFaza04iC1orWbWnEQ5rTOtObRivZX7ZFk1e17avCma168plsadaxiIw2vCGWsjUikxgBl0BkzEc5ZvrPKYEWZLImJ5TlorAEVqPMV1ZmZxFoXU1MZpM9cLEqSLR2TElr1jn7ldlf2x8FZrstF44x25EurRS15zbhEcoXmJK2iYzErKdIrViZzynrDdKa1vnW5x6s9n49K8xCs14YnjB0lkrqa46Xto8szTtjp6HVW0XrFqzmJac7MWAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEd+aRHfmCQAAAAAAAAAAAAAAAAABza0+ZqRWPVpOZ9P6JtW+ykzHOeEelz+rXtn6Z/5FjeNrbKzi0+6OropWKVitYxEK6NJpXNvWnjP3fBIIAAAAAAhp9ae2bT9OPsbM44q6c8LR0tP0rDTNGuNGmP2wytoi+rWesfRC+lw0qx0jHy4OfvFIjWz+6Po/EDLdG+6mM5ms4+5M5dKJrqxHZPCXULAAUVtOLUmf3fZKzL13UmInE9k+IJHNevl60x2W4x9qautXbGZiLdtY4z8uat4nViItG2vPHb+nwGc1FFfMmYieEc5/HaniIiIiOUERERiIxBM45iyYy1opWbW5QtpVmtPa9aeM/jw5K0r5lovMezHq+Pj93zSzaKxmZiI8QrRFbvGnHK26fy8VZ7xM+rpz/7Tj7xE45fN1ZjjNY9EKzNpnM6l/nj6MBjsR21dOvO9fm5Z8vPHbnxbExMezEz/WMiuiO8aU8rTP8A6z9zJ7xXsrefh9+EEb55aV/jGF409WfqRHpt92QXnvE9mnb4zDP8Rf8A+Uf+X6MjR1etI+bfI1P31/8AH9Qb59/2V/8AL9Dz7/8Azj/y/RnkX/fX/wAf1b5N/wD6V/8AH9QZ59//AJR/5fovGvH1q2r7/oV8m/76/wDj+rI09WOeyfROA8SRraczjdifHh9KRyzMxOLUtHw+5kRHOk48ayGOsQaWrbds1OfZMdqcQAAAAAAAAAAAAAAABTU7Fo5Qrqdi0coBoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKW1IjhzkGatN9Y4Zms5hFExFdunifs9K86s9kQraa24zExPhOPthcTSZ2xm0xCkzmeGZ9PKPvX2RnNJ4+9WfFRbSj2pmeNurdeudOZ6cWafrJZ4xiXPl5WnFSZpq1meGJ4vQedqTmuZ6PRbqACAAAAAAAAAAAAAAAAAAAAAAAAAAAh1/qpkOv8AVBEAAACXQ+smQ6H1kwAAAAAAAAAAAAAAAAAAAAAAAAAAIdbRm079Phf3T6UFdTzIz5dp+Dp1rTXTmK+tPCEOhTytS9InhwmM+9mrCb3rz05x6TzoxymJ6TzTIrxEzMTET6WFZ535L/IjVz9S/wCPirsxxraY8J4wbrRjdX41UX8yZ+pPxx97JvfsrX4z+jItWZxExLUGbtXrWPmTutzvMeiP+WgKxSO2bT6Zbsr+2vyWZNqxztEfEDDVJ1a9mbeiGbtS3qxFY8ea4JJmIjMzj0o51szikTaevYyNKJ42mbelJFYiMRGDwUilrTm858I5JIiIjERiAQWqrSfJ1Ns/x25dKz+rYbekXpNZ5SsuCcQ93vNqzW/r14SmdGQAAAAAAAAAAAAAAAAAAAAAAAAAGTylXT7Vp5Srp9oLgAAAAAAAAAAAMtMVrMzyiMtR6840L+iYBz09WM854ykpGZhRas44ubrei88ZVbLEWCt/47eiVlb/AMdvRIOxrimIva0248cRPoXjW1KRjEXjxnEumuXzXUj1qzNYmvOs5x1U/wAR/wDt3+Ufey+rqWziI0649aeM/KFRtdTMRNZzEt32celMxXMWnPak82/5fl+pq4mtbhmZ4OWdSL6k4+Cuta8+tPDwV0tK2rfFeHWegdOvu8cbW+CdlaxWsRHKGsKEziMzyR6trV2xXhnt6Oa18zmI3T1t+PuUdM61ezNv6x9vJW2rPStf7T+Ppc8zaZ42n4cGRERyhcE3n4nO+Z8Ijh+PiydeeyJ+M4RgY3f0pWDzJzG6K47eDCYyGOmlo06RWcz6Fo1Kz1j0w5M2/dY3W/dJg7JvWIzlkatP3Y9MY+lybrfulu+/7s+mEwSaurHmYi0zGPqyRqzMxjUnPS0fpCHjNpmcZnpBMZjCmOzTvNsxOMxPY288UejmZ3dax+Petf1kWDYnEq5Mo1i96xqUms8p6OWdPbui1pzX6HTpz2OfvF4vOa8vVz1VjpFXPbK6huz2qyvmGZyqwwbM54EZry+QzMZwo2ZzMAk0NONXUmszMcM8PgC3dLbdWa/uj3w7nNTus01K2i+YiejpAAAAAAAAAAAAAAAAAABHTmkR05pAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAU1bTWkzWM25QCtJ3Ta2cxPCPgi1fXTxEVrERwiEFuMzK8U5KDcMw0wOju9dunn93tOeazMYjnPB2REVrERyiMJWuLQGWgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABHHrpEceuCQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHN3uJ9m3ZHCfsc/KMvQmMxiXN3imnp1zFfamYxx+zIIojEeK2nSbWmcROPHGGZTaUWjT9Xj48M/j0IM8rxWjTrC0W44nhboy87dO1o7ImWVQakxfHCOCO04WUnjLaFbzS1b8eEvScERnmlrqXpynMdJMTUmroRqe1HC3XqgnQ1Yn1c+iXRXXpPP2f7fjCQVz6fdp3ZvjEdnVPatbR7VYn0wsAytYrGKxER4Q0AAUtM5itfjP4/HMFxHWcXmk5nhmM/j8ZSAAAAAAAAAAAAAAAAAAAAAAAAAAAjn10iOfXSAAAAAAAAAAAAAAAAAAAMag19WNs0rMTa3CYjs6gjvfzb/AJKzw8Z6tZXERiBl2kxZhkRRld2paa05Rzt0ZOZxWvOeDqpWKVitYxELGOVxSujSs5xunrKQGnNS+lS/GY49Yc87qW22+E9XWprafmacx2xxj0pYsuOcKzurE9WsOwprfxz4LstGazHWFK2OIrpzmkehYIp6lsfVlbJaM1mJZSZmsTILxbq3KjTTGzETyVrNtK26nKfWr1aGpZrprat65rOYWcVbzo6ufqW5x9rsic8YbcrMaAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI780iO/MEgAAAAAAAAAAAAAAAAKal9lJtzx2dQQ6tt+r4U4fH8faaVd+pmcTWv0/opiaUxHGfpn/l06dNlIr05+MirgCAAAAAAILRNNabfVvj4T+qy9qxes1tGYlHxpOL8uy345fj0CxmZ0pmcexPGcdk/c3UrGtpxNJie2JWUtp1m27jFusTiQxBM+xujnHH5OlHbQi0zM3txjE8vuSKSYDSUVgADJtiWzwhzze06kxWM4+QJbXisTM8IhFGrvtxraaxyiO30+C0V45tO6ezwUtmkziszE8eAiSdXVtnlSPDjP4+COYjGbTNsdtpyRMWxNr7PCKzP2JKx3eJzO609bVmfswCOLxM4rm09IheNPVtyrFf7T92U3nacR9aI/rP3Nrr6VuV4+PD6QRx3e0+vqT6Kxhavd9OOcTb+05SxMTGYnLRFI06VnMUrE+ELgAAAAAAAAAj1NKt4nHs2/dHNIA44zqUmJ9m0T2dkw6tO2+lbR2w564mbWjlNplL3aMd3p6Mi1KAIAAAAAAAAAAAAAApqdi0coV1OxaOUA0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABjUdrxviOyAZa02tjE4VjStPSF51OyvGUc3tPb8mkW8qesK2pNeM8lUlY2xx5T2G4KxSZ8GzGcRPPqvHGIJj2ono5/V1cIrFY4M1JxScc54Qy+pTTj2p49HNbUteczwjokltUxF9WKxGYmY4eDvcndaZtN57OEOt0qACAAAAAAAAAAAAAAAAAAAAAAAAAAAh1/qpkOv9UEQAAAJdD6yZDofWTAAAAAAAAAAAAAAAAAAAAAAAAAAj17zp6NrRziOAKR/qam/wCrXhXx6s7x7G3Vj6nOPCV9OsUpFY5RC1oi0TE8pY/1WI7x7RoTNc6VudOU9YW1I4xLKqdg1gK206244xPWOaKtrxM7M3r1mVrW8y00ieEetP2L8oxCimdSZ5Vj3tnfP1oj0V/VYBTZM872n4t2U/bCzYNCIbgEAAAAGrRKjQZqTOnPm1jlzjrH6OiOMZQ5Z3S8W0tsTnbOG+NSugBpAAAAAAAAAAAAAAAAAAAAAAAAGTylXT7Vp5Srp9oLgAAAAAAAAAAAIu88dGfTH0wd5ma6FprMxPDjHpcc6+pNdtpzGY58wTNjkwcnYAAU1v4rLo9aJmsVjnMrO0vS2nGNOseCyKN0REbuUY4QvSZmJzOcSWJL+LFY8y+2eNY4z9jLTiM8/BLpU2UxPPnPpIcqX0qX5xx6xzRz3eOy8+5OKyh/w9O2ZmOkylrWKxiIiI6QrbUiJmIn2oRaWr6+Jm054ZlR0TMRGZnEIra2f443eM8v1/HFFfUzPH27e6Px80dpm3rTnw7DBe2pmczbfMcojhCOOENw3CrjDC1a2v6lc+PYlr3efr3+FQQs3R1dNtCmyYrWMzGMzxX0pzp1nrEJprkxM8q2n0VkndHGaXiI7drtJiJiYnlJqa4grFsY2zMxwnELRp6k/Un5wq6qYW8rV/Z74J09SI40n4Y+8NUngyZxz4elfFsx7F+cfVdOnGImes5EQ93tEVrHWZhNeO1XVpWKTeKRurO7pyS4QiEbaMSradtco2rad1tkTw+t9zbVraMTHArGI8e1qaKxp0j6sfFTWjEVmPQlVvXdWYJfSzxzrTp2iu6fjHRLp6cV4zxlaZxEzPKGry/jM4/1zO/S0K10dt6xMzxnPX9GaWhSI07zX2ojM+lO0w5b9zjPsXmvhPFvdtG2ne83iOkTDpAAAAAAAAAAAAAAAAAAAAAR05pEdOaQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABF6+tPPFPfM/dH0ral406TafhHWWUrspETOZ7Z6oGpOKoV9Sc2x0UbnTHLsAaZKRM61McozM/j4upz6E51dTwiPtdDF7dJ0AIoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjj10iOPXBIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADJmIiZmcRDi1rTqWm2MdIlLq33ziPVifmjmMwqapp6my2ZrFo8ex0116WhHHdbTXOYi09ilYzSuYzwhFSzqROrE44REx88MvfdWax2xhSIxwiDGZiI5yyqLdwYm1O73rxj2s84iOStdHUtOIrMeM8GkNLdaZiKzOOeF5nExE8Jnsng6NLTjSriOM9s9V5jMYk1Mcja5r6szX0fdySzoU+rmvo5KWpakcYzHWFTGxrXjnEWjw4T+PkkjWpPO23+3BBE5jMNMNdMTmMw1wXpGc2jPivXV1K8rZjpPH9fejTqtaK1m09itM44+tPGUcak6s4msREcZxPP8fYtuwDbTi1Zz24+fD6cJXNeZ2WmOcRmHRWYtWJjlPEGgAAAAAAAAAAAAAAAAAAAAAAAAAjn10iOfXSAAAAAAAAAAAAAAAAAAAh1M3tNI9WPW8fBHqaWcTX2Zjl0XvFtO9rRGaW4zjsZGpW08LRM9MjURZtXheuPHslZJaItExPKUMRNZmkzy5ehmxuVYBltfQjOrM9I+n/hO59Cca1o61h0Nzpw5djIi2+ZmfZ7IxyaKgBIOTG3UvWOUT9PFpPHUvPjj5DF7duPQAjSml6uOi6Klora0TPbK++uM7o+aswvyx2zwbjERHRWvtTv+SwsGsaigCil+UT0nKbR1Ns+XaeE+rn6PuR2jNZjwZjfSPRklYs12iLQ1PMrifWrwn70rbkAAAAAj1NamnznM9I5gkHNOvqW9WsVjrPGVJm1o9vUtPuj3JrU411WtWvrWiPTKs6+nH14n0cfockTp14VjM+HFaN88q49MmmSd10efp9Z/8Z+48/Tzjdj0xMOe1bxiN1czOI4Jq92rwm9ptj4QJ4nAVAAAAAAAAAAAAAAAABHfmkR35gkAAAAAAAAAAAAAAAAQd4mZtSvZxmU7m1Jzr28Kx9oGnG/VjjwpxmPHs/HodKHu8exa3W0+7h9iYAAAAAAAAAAEXlRHqTNfDs/HowzGpGd1Yt/Wfsn70yK2vSvCJ3T0rxBTzeGfL1M9NsrxOYzHJHbW1LcsVj5z930o62nSjhOa9sTP0CunLEddbTtGd0R4TwX3RMZiYFaKTq1icZzPSFZta/L2Y8ef4/GANS0+rXnPuK1ilcQVrFYxDQAWrANrGIaAAAKW0tO3OkFonTpM1tbhHLOfpXV1NStfZmJtM/ViM5BNGcRnGe3DUelMzpxmJjpnnhIMgAAAAAAACHWvjFKzi09OyPxwW1dSNOvLMzyiO1BWJ42tObWnMgWzFYrT1p4Q6a1itYrHKIwh0K7rebPLlXh7/wAdjoCgAAAAAAAAAAAAAAAKanYtHKFdTsWjlANAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABW07azLnTa3qx6ULUQBtazaeAraRm3oSziVYjZwntWcuV9WMjhCPW1dvCvP6F9S01rw5zycdrZXjx32jLTnMy3TrOpaKx8Z6NpoampicYrPbLt0tONOu2vxl0tRtKxSsVrGIhYGQAAAAAAAAAAAAAAAAAAAAAAAAAAAAQ6/1UyHX+qCIAAAEuh9ZMh0PrJgAAAAAAAAAAAAAAAAAAAAAAAAFNWnmadqTOM9q4Dh0Na2n/p6lZ9nhmOxPOtXHsxNvhj6UOrF796tOnGdsRE8ea9K3n1q7fjliqj1tWd1bRERavKI4ujdGppxaO3iyunFYxHBDo2tp03zH+naZzH7TsSotWZnFK855+EL3vEV3ROY7MKUrMZtb1p5oqPbNdSa0nHDPpW8yazjUrjx5l/Z1aW68Ek8QZExMZieDUflYtupOPAi9qxi3GZ6/jH0GCUhXfWPWzHpWi0TymJ+KDQAAyybY5RkGiuZx2R72RnttMgvMxEZmcQr5kTGaRNvd9KsUrXjEfGWTq0j62Z8FFda87PaxET9Xr8XT3bStp0nfPG3HHRH3bTm9vOv/AOsdHW3IyAKAAAAAAAAAAAAAAAAAAAAAAAAMnlKun2rTylXT7QXAAAAAAAAAABy371bMxSmMTj2vu/UEneome72x6fe4J4xKa2rqXiYtfhPZEI9vHEThBLW3sxPZhWZm3tZmOikZiNtuWeaVMatbS26OPOOa0zERmZwitmJ3V49kw2K542nM9OxMX6Xyjm26/sxmIjGexkVnjWfVj3tvbbGIWQt1sTmsT1gpaIrETwnxZT1Y9DSsy4lpXN4meUcvSvN8TwQ6e6s4rM7e3PZ6F0bnvqSt88ORqW26drRziEa9pzpWmYzwngJY5tTh7Ecucz1UwvqevHjCrSMbhsQChw4TPGInMtrFr+pWZ8ez5pa93/8ApbPhHL8fINTgyZisZmYiPFlGsiIiMRGIV8yJ9WLW9EfbPBm+832xWKzjPGc/j5qJBTbfPHU+VfvyeXHba0/+2PowguI/I0s525nx4t8rT/8AnX5KLTasc7R82eZT99fmeXSOVK/I8un7K/JBsWrPKYn4tVnTpPOlfkzyqdlYj0cPoBa8bqWjrGGUndp1me2Ilnl4nhe8fHP05ZFdSkRWs1tEcOMY+9USTGUF4jzMR9XjPpX8zbH+pWa+McY933I6zuzb905/HwStRoDLYAArjfetOyZ4+jtJsm7tThOpMcbcvR+v3NSM8qnBW1orWbTyhtzWHDHeL+bvmZ29tfD73ZbUpWu6bRETy48wWFKaldSJms5x4LgAAAAAAAAAAAAAAAAAAjpzSI6c0gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKXtNY4c54QCvr6mc+zThjxWtbbGWViK1wivbdPhBJtS3GAztiIjMz2fjsdGGqebTOM5nwjKWNCJ43nM9I5JIpWvqxEehnWvlBo6laampa26ItjHsy6aXreM1tEx4I5nipOzPCYrbrE4llpLq3mtfZjNpnEIqaenHrVi0zzmeJFr21MWxMVjhMeKwHl6ec1jbPWvBbRvNqzFuM1nGequW939W09bT9wJgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEceukRx64JAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEWtfEbYnjPuhl9XhinzR9sz1VLVeSXRpFoi88uyMe/7vmpSm++OznP48XUUjLTFazaeURlDGnEViI7IwkvOcVifGfR+v3sYrUU8vq3TrHmcuUcPj/wALSaU8bRM9uY9H4yQSANIAAAAjvpVtx5T1hDas0nFu3lMdrqZMRaMTGYExyqTTHq/JPbRmONZzHSef49PzQakzW0Rma57MKnpW81mZr6Jyv5tfrZhFPGczzEadFZi3GJzCmj3ia6dYtXMRHOPx9qGYjPGIytjhgHZTUrfO2eS7z+MTExPtRxifx73dS0XpFo7QWAAAAAAAAAAAAAAAAAAAAAAABHPrpEc+ukAAAAAAAAAAAAAAAAAAAcve9OM1v19mXUi7xGdC/hGflxBBo34zSezjC2tGIrbpKGlsXrPWcfNPqxnStHgNRUZE5iJaw6smdsxeOM1dNbRasWrOYlzsrNtKZmkRMTzr9yyscuP7HXkyhp3iluc7J6WSRas8pifRLTmsj1b7KZ7eUektrUiOExaekcUNpte2bfCOiW4smsiMQ0VvfbiIjNp5Qy7dNmYjnOFZ1OlbT4xDa6fHdfjPuhs6nH2Ym3oXGdRRMxaZ2W4z0W3RPPTt/wCK+6//AM5+bc6n/wA5+cGJv+oa2ms4iltvo5Lb5/Zf5JM6n/zsf6v/AM5+cGG/6p5k/wDzv8jfP/zv8l8av/z/AP1QtFdWfq1j02/Qw+v9Rbr/APzk3W/+dkuzV6V/8v0Nmr+2v/l+hh9f6j3W/wDnZWtprWIml8+ha9r0nHszPSJz9jK3veucxHwF0rqeXqxeYmI5TmOx2uCa5n2pm3pdfd9Tfp+NeE5WMckoMmYrGZmIjrKstR6urXSjNufZEc5QaneLXzGn7Nf3ds+hFERHHnPbMpqyavfW1NTt2V6Rz+akbaQRm84pHxnklppxXjzt1k7XZOlI8y8cI2x1laNGvO0zafHkkxK8VXEttUiIiMRGIW2yvEQ0RDWue8R0pXPxl0IdLPnatuzMR7v1TAAAAAAAAAAAAAAAAAAAI780iO/MEgAAAAAAAAAAAAAAADm1YxrTP7ojHwdKPV041K4ziY5T0BHoW23mk9s5r9rock8J23iaz9PoWrq6leeLx48JFdIgjvNc4ml48cZj3L+dp/viPTwESCPztL/6U/8AJn+I0s+vE+jiCURf4jT6z/4z9yv+JrnEUv8AL9QTjnnXvPq0iPTP4+lHa2pbO/U9npEYB031aU9a0RPTtRW17TwpXEdbfchpj1dOs29H3pY0Lz61orHSOP4+QqO0TaM6lptjrwgrm0f6dZt6OEOiuhpxOduZ6zxSg5o0NS3rWinhHFfZpaMbp4zyzPGZ/HgtqasVmKxG689n3qVpOd95zeec9PCAVvu1eFuFP29fT9zI06RypX5JcKisxEMic54YxOGzaK8ZmI9Km+salZiYmLezOPd+PEFjCTENwCsVa1gKW0qW9aJn/wBp+9XS0NLdalqZnnEz2x+iVW9ZmYtWcWry+4RbyNL/AOdfkf4fS/8AnC2neL1zHxjpK4iLyK1j2Jms9c59zdOlota15iZnhGOiQAAAAAAAAAU1LxSuec9kdWamrGnw52nlEIIiZmbWnNp93hAERM2m1pzafd4Q2tfNtt+rHrT9n3srE6tprScRHrW+yPH6HTWsUrFaxiIFbyaAgAAAAAAAAAAAAAAACmp2LRyhXU7Fo5QDQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARa3YidFoicZ7eCONOZnjyhqIrSk2nwXteK+zVt7RWNteaEEsRO3nnPVtc44lfVj0NcbWsc/ebe3EeCLR0/N1cTyjjLdf8Alv6fshujqRp0vMTG6ZxiezHb73Wf8Udd71065tOIU/xOln1vc44i2raZmZnxlJGhHLPFcHZS9bxms5hZ5sxbSvmJxMcph3aWpGrTdHDrHRLBIAgAAAAAAAAAAAAAAAAAAAAAAAAAAIdf6qZDr/VBEAAACXQ+smQ6H1kwAAAAAAAAAAAAAAAAAAAAAAAACupeNOk2nlCyHXjfamn9WeNvgDNGk004i3rTxn0pAcmlNa010rTHPsXrWK1iscoR3nOrpV7MzM/CEio5tXTpTVpNaxGc5wsXndrTH7Y+lsFVHr+pFv2zErNtG6sx1jCPSnNI6xwk/BcBBXZMepOPBWd2eOjEz1ylauiKJn/5THyWibTPGkx8lxBmJMS0BW1bTHCcfBkac443tPuSAI/I0/2+9eIiOURHoarfUrSMzIL6E7bW0+znX7U7m0dO9tSNW8bYjOI7fi6XSMgCgAAAAAAAAAAAAAAAAAAAAAAADJ5Srp9q08pV0+0FwAAAAAAAAAHJ3nSmJ8yvKfW+/wC91otbVrp19rjM8q9QcbO3JE8+GI7I6CDVqz2KtiEFwVmRW5RWzlaWKjYlszMV4c2NhBPG2KVik5jqxHjjms4n6VqWi9cjpxqySnGqNJT1YQrmik6myK86xi09F76FK1jjMzPDMpdPhN69LZ+fFaYi0YmImPFdZcmnS+pEbY+M8v1T10KR63tT48vkktatK5tMRCm+9/UriOtvu/4BeZiIzM4iFfMz6lZt48o/HoyRpxztM3nrP3clwU23t618R0r9/wDw2KVicxWM9Z4z81mWtFec8+SDUepaK3paZiI4xOfx4Nze3KNkdZ4z+PxhsadYnM+1PWVRk6unH16/M82k8pmfREyuIqnm0/N/4z9x52n22x6YwuAr5mnPK9fmsTETGJjMeKPRxFNsfVmY96iQBAVvqVpz4zPKI5yy9pj2a8bTy8PGW0pFInttPOeqiPUvqRp2nEV7Mc5/HzZEYjEdi2v6tY62/X7FMwzWuLRm5WZTGlplWZFfWtFY5ZiJlqRLUmjpebObR7Ee+XYitqaelG3PLshHbvNp9WsR42+6Pva6c/atra/lWiNmYmOeUOv3iNSsVrExGeOVNa1r4tac47IjkiVL4kZEY/VWJw2J4oOjut61tfdaIzEYzPpdWc8nnzMQaNorqxaYmKx+37QeiKU1KanqWifBdQAAAAAAAAAAAAAAABHTmkR05pAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZPCMypX2p3z28vR+v3MvO+2yJjEet93xbe22MRzBXUt2QjGTbjiIzbo3059stacxWsZtPKE2lp7I48bTzn8dilIjTmeG/Ut0/HBab62MxpR6NzNrcmJJmI5oLalrcNPHpnkyLW1JndG3HCYzxXiIiMQio40sz7Uzb0reVpxGZrX5LtBHpV21nhjM5x0WayQYk0P4/8A2n6UbNK+pSLRiLRFuEcgdQjpq1vOIn2o5xK171pXNpxALDnjW1c58uuOkTx+5NS8XiZjsnE+ALAAAAAAAAAAAAAAAAAAAAAAAAAAAAI49dIjj1wSAAAAAAAAAAAAAAAAAAAAAAAAAAIabp063ifamImYmeE/d8P0TI6xEViI5RwBatot4T2xKLX1cTsiePbj6Px9q9ozxjhaOUuTjmc8+30g2JmbRHZ4JEdfX8ML4mZiI5zOFjNTd3j2JnrM/d9i9rY5cZ6I9TUjRpFa8Zxwz9raYmMxOc8c/j8djNrTQGVZKvGJ3Rzj3rqXtFIzM/AEtbRaMxyWcdda1b5xGJ5w6q2i9c1nMNosAAAAAAratbRi0RMLAOXU7vNYzSZmOiGJdt9StJiJni5NSa+ZM1nhbj9/4+4GcJMqzOGZnOALz29Hdo02aUVnnzlz6Oha1oteJiscePa7AAAAAAAAAAAAAAAAAAAAAAAAARz66RHPrpAAAAAAAAAAAAAAAAAAAGWiLVmJ5TwaA8yJxSJ7Y+x2c4cmr6+pEdkzLp0/46+iBqItPOyInnHBaZxGWU53/tLbdk88TnDH66fjJtavG2nMR1bExMZicwm09SupXMTlHqaM1ndp/GvUZnL+smInnxV2V/bHyK2i0ZhYbZERHKMNEcTbVmYrOKxzkLcWm0zO2nGe2ejYiulEzM8e2ZbM1068IxDNKk6lt9+XZCxi3Ctba0xNoxXsjr6U8acRC8REKW1tOs4m3HpHFpzWiIapF7W9XTn/ANpx98n+pP7I9/3AuI9mrM/y49Ff+W+Xn1r2n44+jALNU8qnbGfTOfpZfytKu6a1j0QC9rVrWbTMYhz21LakcM0r75+5kzbUtuvGMcq9Gs2unHj/AFkViI4RhHWfZ+MrzKOnqQjVWSd2tFdW1f3Rn5I1bTNcWjnWcrGb07tXUrpU3W+XVx3tbVtuvy7K9kMza9t95zP0EzEQusyEzERmW005vxvwj9v3raenOd1+fZHRPFSRLdVivZEYheKLRGGqjMYGWtWvOYj0yrOtpxzvX5gu1HGvpT9eDU1I8q00mJnlGJ7QO7cdLf22mZTK1rFaxWOURhYAAAAAAAAAAAAAAAAAABHfmkR35gkAAAAAAAAAAAAAAAAABW1YtGLREx4o50P23mPCeMff70wDlnT1Y+rW3on7/vUmbROJ0tT5O0F1x5n9l/8Axlkzb/56k/8Aq7QNccRef+q/y/VuzVmcRp48Zl1gmuauhefXvEf1/VJGhpxzru/tx+lKAyIiIxEYhoAMtnbO2MzjhDQEGlEbN2Zm0+tMxxysydO9ItNLRaOcVmPtZFJ1Jmb5inZXr4/oLpN4zivtT0r+PpPKvaZ3Wisfl5/NNEREYiMQ0NR10dOPqxM9Z4ya38Vp6cflxSKavHStHWMCMAGgAGDQFJrMW30nFu2J5T+OqSl4vnHCY5x0YpekWmLROLRytHYJicRV1cTFdXEWnlMcpSiAAAAAMmYiMzOIBqHU1uO3T427Z7I/XwR31Z1eFeFOvbP3M4ViI5RygXCIxmZnMzzmW1rbV9XhTtt19C1NGb8dSMR2V+/7nQGq1rFKxWsYiFgEAAAAAAAAAAAAAAAAAAU1OxaOUK6nYtHKAaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACmpHsT4K+bG3xSTyc3bMdFiEzmcyDaxutEKqSk+zBa0ViZmeENm2bbY4RDm7xbN9scq/S5/O0U1L7rTaYwiiOi1uxunaK5tPPsdUS1pO2ImceEJNHR+ta0zE8oc06lpnMz8Hfp3i9ItHbCUcvetKa2i0Z2z7le7asad8WnFZ+l23rF6TW3KXBq6NtKePGv7kV6KmpqV04zPwhxaWtfG2kzPhHFNpaE2tu1flPb6TBNo7p04m/OeKQEAAAAAAAAAAAAAAAAAAAAAAAABDr/VTIdf6oIgAAAS6H1kyHQ+smAAAAAAAAAAAAAAAAAAAAAAAAAc9LZ7zrRnph0OTvFfK1660Z2zwsl6HQK7oRTqW1LbdKInrM8nNpes7te35IiPmkQd0zalr252lO0jm//iNX4fQur/36nw+hZKoij2dW1evtJUOv7M11Ok4n0EEjWVxMZhqA0AAaAAAyZiOaltWInFYm09IZGna3HUn/ANY5GBN7XnGnGfGeRXS262lmZtaZnmliIiMQR7XeKY+rEzPxanaV0ANoAAAAAAAAAAAAAAAAAAAAAAAAAAyeUq6fatPKVdPtBcAAAAAAAAAB52tXUrqTOp2zzjk9FTUtFdO1rcYiOXUHnLVV7ZnlnshanJKNbEszGcZ4tQblWSZAAACZxBkBby5mPatPwW3TX1o4dYNOc0j5LM66yfxavtYwlc8RNJzSceHZKSNWs0m1p245xPYrNbPs6sT2WjHxj8SzfN5xpYx+6eXw6/QzZOridSMV5xXt+P3JYjEYjkrKldOIndPtW6z+OC4xFay1orGZnEQ1Hpxuza/G0TMej0A2Jtflmtes8/l9/wAm1pWnGOc85njKwAAAAAAApThqXjrifs+xdS2nFrbszE8sxILstaK1m08ojKu28ctTP9oz9GFLTbdSt4jEznhPT8Qovp1mIm0+tbjP3fBabRCtrqTOQV1rZ2+n7FVrRurjOFMX/b8c8BZWsmYiMzLdlp7Yj3/cpiJmduZ/NP2GLpE7uMziOkc5+4ivwjOcQ2tYrGIaaZ/SIiIxEMtaKxxay1YtCKjtabeEMOMTiebW3KgAC2nOPZn4KrVpnEz6YhKs7SbYmePOO1JXVvp+tm9ffH3o4XY3HTJXTW0Xrms5hZx8azupOLfT6U+lrRedsxtv0+5uXXOzEoCoAAAAAAAAAAAAjpzSI6c0gAAAAAAAAAAAAAAAAAAAAAAAAAAAACt7bKzOM9I6rIZxa8X7K+riefX8ekGxmtcTObds9VLTxWlFNZ1LTWs+z9afsanjN9Zm15xScRHO3RLWtdOvDhHbMo9/1dKInHDM8mxp5tutO6fHsRZMX0ZpbdavOZ4/YvM4hDMbdSJiPW4T8FkVW1czmJxbrBWbZnMfHPNpWc2x08AWiQFGRbrw6eLewEFSI9rPhgiIiOc8sLRAK2rFoxMZUtW26JzNscon70skgpxjwW0czrTPZt4/j5k8W6NsTNbcJnlPUE4AAAAAAAAAAAAAAAAAAAAAAAAAAACOPXSI49cEgAAAAAAAAAAAAAAAAAAAAAAAAACGPZtaIzwn6eP2pZmIjM8Ic06udfMerMY/H0Al3OfVmN/Dsjj+PxzSat9sYj1kANpMRNsziMR9q0am20zX1uXo/VSK7rcPi2a7ZxlU/RfT1JpMRzrPu8VGdMxmO1FdkchzzrT5kWtOKR2K3tvtun4R0ZxdTW1qx6vtT7kEzNpmZ4zILiMWpe2nbNePWOqpEbuXzUd1Lxeu6v8Aws46ZpOazx7fF001K34RwntgRcAUAAVvaKVm08obM4jM8nJq6nmWzHqxyj7QZzmZnnPGVbRExiQmWmWV21tE3ibQ7aRTbE0iMT0cEzlLoa3l2xPqT7vx2ortARQAAAAAAAAAAAAAAAAAAAAAAAEc+ukRz66QAAAAAAAAAAAAAAAAAABz698zOnGcfWn7EupeNOk2nshxxWdS2yZ4zG60ixWKx5dpjtdURisR0RaelaNsWjEV96S9oiJFQ09a/wDZdTTidkZ5zxWYrrOmTWc7qzi30pdPU3RMTGJjnCilomJi9ece+BmxfWrstF4jhPCzEkTF6dYmEVJ4YnnE4lDjS04rM+BX2aRDZjMYlTU9SfQrV/pSPMndb1I5eKeNSbRjSrn808I/VFpRp4iLWi2OvJ1RjsbcO0UaM2/lvN/DlCWta19WsR6IaAAAAy0xWszPCIBmpeunXdb/AJc85vfffn2R0ZMzq2324R9WG5ZtdOPH9rVZkmWI1rLT7Mz4MrGKx6C88MdZwsqMZMZrMeDQFYnFImeiTTp9e3Psz2I61te0Vrj2eeXVTQrzv7U9ZWMWqxev1c2nwj8Qvm88qRX+0/d96QVlH5dp9bUn4cP1PKp2xM+mZlIApGlp/sr8ltsdIaAYjohmlb94rtrGKcbTjt7F9S+2IiIzaeFY6radNlcZzM8ZnrILgAAAAAAAAAAAAAAAAAAAI780iO/MEgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACPW9T/2j6YSItf1I/tX6QaDRpgAMGsAAAmImMTGYUibaPW2n07a/fC4CSJi0RMTmJagz5dsx6szxjp4/f8ANOMgpfUrT1rRCC+va8Y042x1nmCbU1a6fCczPSObmvNtWc3nh2VjlH3siIrmZnnzmZXppX1Ota9Z5z6P1FVjM221jNvo9Lo0tGK4tbjfr0XpSunXFY/VYQAAAAAAAAAAAAAAAAAAAAABTU7Fo5Qrqdi0coBoAAAAAAAAAAAAAAAAAAAAAAAAh1tadO2NmY65wjre1Ym2bTWeUxOcfP7YgHUIqakzHZb0cPcvW0WjMSCwAAAAADirb/VvWf3Th0a+p5enMxznhDgzMTuiZysSupJpxtrNpV0tupETnHWF9SfqwojicTlzzMTaZjlM5TWnFZmOcQ5p5YWKyeM5bETPJk819OcApMTE8Xf3X/b1+P0uW22Zjhzl26WPLiI7IwzRcFbWitZtacRCDNS9dOs2tyR6PePN1JrtxwznLn1dWb+1MYj6sJO5U9a89vCAdYAAAAAAAAAAAAAAAAAAAAAAAAACHX+qmQ6/1QRAAAAl0PrJkOh9ZMAAAAAAAAAAAAAAAAAAAAAAAAArekXpNbcpWAcVY1JtGjaZjHO0dsdmHTWIrGIjER0R5z3q/hWIXtxrMdYc72qndf8Ab1+P0pUXdZz3enx+lKtEGP8AV1J8Y+hp/wBl/TH0QM1Rl67qTHWGgOXS8ysTMRmInEw6KXi3p6dqnqa0x2WjPxbakW48p6w1RIIt9qT7ccOsfckraJjMcmRYVm0RGUN9a01maRwjnJmia2pWnOUft6s9tK+9bT0or7U5m3WUiitKVpGKwsCAaPHX1Z6YhsczuvHTm/ba0y1xSpwG0AAAAAAAAAAAAAAAAAAAAAAAAAAZPKVdPtWnlKun2guAAAAAAAAAA5e+2mK1jsmeM/j8cHUyYzGJ5A8xmPS9GdDSnnp1+EYcF4iNS0Ryi0x7wV5cY7EkzERlRmPcg3dMzxjg3LBRaLdWWlgg2tbTGYx82xS3WG6fqQsmtyQpG3tyvEqiNLq2rnExwtHKcMy3KCTTm94zGp6YmOXyw2bXr61d0da/cipfbqRPZbhP2OiLRLTGFb1vGazmGo7V4zenrfStS0XrmPl0QWUrw1bx1xb7PsXRW461NvHbncolAQAABmY6m6AaKTdk3kEmVZtCPMii03R3n262nlHD5rMnjGJBoptmvK2I6TxZSbWmZzG3s4c1EgI7zunbHKOf3IMtbfwj1fpARuQAAABHqcbY6MWmnOYnCu21YibROLcp6tRzoHGZiIiZmeyGTPDKoZ8UmnPs+iV7aXkzEdkxwn6Rmt8YQupC0M1trJrFufwnthogl0dSbezf1o7esfjmmcmM9uJjlPRPpX3144i0cJh0l1ysxIAqAAAAAAAAAAI6c0iOnNIAAAAAAAAAAAAAAAAAAAAAAAAAAADJmKxMzyjiCmpMzOyJxM8ZnpH39Pir4RGI6MrMzEzM8bcfR4fAvaKVm08oWM0nNp2Vn0z0/XorqTxjRpwjGbT4ffK9f9LSm1+NudlNKOE2nnacyKtFYrGIhowVl4m1cROJzBMNagpLarMUaYAGRPVrGgyWZbKoLKTW8zjdER4RxWhZBSNKsV52meueKs1xMVtMzE+rbtifv6JYmEerxmkR+7IJdLUmfYt60Rz6/jtSuW0TwmOdZzCfTvvpFsY8OgLgAAAAAAAAAAAAAAAAAAAAAAAAAI49dIjj1wSAAAAAAAAAAAAAAAAAAAAAAAAAA5de82vNPq198osZX7zWaas2+rbt8UcWzzAxjg3EzOI5s3RlJpxw3dsgtEYjBMZjDWKyinhOJ4SxLMRPCVZpx4SYuqNNto+rn0T/AMEVtPZj0yitJbsnttj0R+PoWisRxxx6mGqRWZ4zwhZZis1hMcpicTHKegKOnTvvpFsYntjou59C2L2r14x9v2OhloVtaKVm1pxEKamvXT8bdIcmpqW1J9qeHZHQEmrq+ZOI4Uj3qKZMqi02V3ZnCbS7vNuOpmsdO2fu+n0OidHTmMTSPgaY4R0X7p+y3wlFOlqV50n4cQdHdtSbVmlp4xy9H4+xO8+tp0rxM5iY5x4PQRQAAAAAAAAAAAAAAAAAAAAAAAEc+ukRz66QAAAAAAAAAAAAAAAAAAEHepny6xHbaM/S593l60WnlMYdHef+v+32SroVi17zMZxEQn6rPMzHCUOpeLTt7JnjKTvGhWkxesYr9aEeIxjHAtWerxLco4nHCfgsy6asK5bkXTR9m9qdnrQ23DV/tCsT/q1n4La3DbbpJ+sdUJjMYlmW5G2RikYvGax24ynjT0r1zFK8ekIcsiZpOaTjwnksrneP8T+VER7FrV+OfpbEatec1v6eH3q6evW87bezbpPalaYVi/HFq2r4849y2c8YABz94tuvGn2c5dDizuve3WUqztbLAZdAGArbjeI6cVla8Zmfgso1k8Iy1TU44rM4zOAro7vXGnE9eKdlaxWIiOUDTk0AGNYA1W94pXM/CI7S9opWbTyhmnSZt5l/W7I/bH39QbpUmJm9/Wn3R0SAAAAAAAAAAAAAAAAAAAAAAjvzSI78wSAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAObvNrTradI9WJiZ+bpcls2mL9dSMejlAOgAaYNYArEz5lo7IiPtWV/7Z9EfaCzGgMAAmImMTyc8xat5rNr9YndPGPn2OhF3iMVrf8AbPukEcViJzjj1bGZttrGbdG0pOrbbXhEc7dPx7nVSlaVxWMQIj09CK8b4tb3R+OqYBAAAAAAAAAAAAAAAAAAAAAAAAFNTsWjlCup2LRygGgAAAAAAAAAAAAAAAAAAAAAAAh16Z9qOcc/R+iGuI41ttme3sn8fJ2OW1IpbEx7MzwmPxxx9AKzeaznV05rP7q/j7/QlndiLV9rhwmOE/j8YZFbRGaWzHT8foW1rV56VogG17zTGLzMW7YxK8a2nblePjwcmtqV1JrNYmJ7Znoo1g9IefW9q422mMdmeHyW/wATq14ZifGY+7CYO5nJzV73x9qnDrEq6+vumsUnhHGezPgYJL23T4KzETGJxMK6czNZm3OeSTTrF5zE5r1VHPidG0c8Ty8UsTFozDo1NOupTbPw8HD7enaY6cyXTF9a3CK9UPa21ptOWNDLckmnWtpnM8Z5KNjhOY5mCetIrOczPpSUttnwRV1ImuZ7Oa03r2THoyyOmb1im7dG3q5rb+9caxEUieGZ5/S57Z2xWZmax2JNHV8ql+PojxTFRak+1Ph0ejpV2ada9I4uDRrF9WlZ5ZekgCLWvNYiKziZ8Fa3mKzabTMRPGLdPhH45AnAAAAAAAAAAAAAAAAAAAAAAAAQ6/1UyHX+qCIAAAEuh9ZMh0PrJgAAAAAAAAAAAAAAAAAAAAAAAAAAc08O9X8axKRTUjHeqz1qs58u1iPu/s21KdlZ4fFOgrOzvX94+hOohn+S/p+yBkz7dvT9kNZUABHr8qT27oSIv5NbP1afSlWgpbRiZ3VnbbrCQQRRoxM5vM390LalYmK07Jn3Lo49rWmeysY+KiQBAABlrbazbpCTu9dmhSJ6IdaM0ikc7zh1N8UrQGkAAAAAAAAAAAAAAAAAAAAAAAAAAZPKVdPtWnlKun2guAAAAAAAAAAAA4O81269vzcXepfTpqY31zjkDgpS2pOKRnrPZC+t3edKsXzu/d4O6IiIxEYhD3nUtTbFcZnrAOJsVm0TO2ZrHOYbtra3OKR255fD7pSR3nbMRp1iNOOztkFPLr2TMehnlz2TEp9XTpWu+lq1ieOJ5T6Px8ENbxbwnpLPrflWrGKxHQBGmsABrCZiOYMv6spkVazb1oxXpPalVmmZUm2y+c4iea6mpiaxE9sx9Ii3mWvymYr17Z9H3rVnbERXhEMYC++epvlUBu6fEyqTMVjMg3KttStedoMTb1uEdGxERGIjAMi9bcrRKzJiJ5xn0q4mnq8Y6fcC4yJi0ZictAY1kzisz0gFZ9udv1Y5+Ph966tIxSFgVtO2sypEYhbU+r6fvYVqMGsRRrGbo7OPoBpznERMzPZCs7p5TFYbS16RitsfCOKpa6NPu8cLamJnp2R96XV041KTWfhPRyedqf8A0n5R9zP8Rqf/AFj5QrGVNp1p3bbF59u84yvqd3072i0xiYnM47fS4tS9tW262OkYbfWvekUtPCI4+PpVHfatdWmJxMT2w5b0tp2xblPK3X9V+66ta6c1teIxPDMpotp61ZrExaO2BZccrYlfU0Jpx0+NenbCKJiZmO2OxixuXUgyJay0E38u1dTs5W9H6BjdSa9ViWeOsU0pm2lSZ5zWJXdHIAAAAAAAAABHTmkR05pAAAAAAAAAAAAAAAAAAAAAAAAAAAEerOcVicZ4z6ISOe1o3Xt09kiVZWY3atI7I9qfsUreZvMyto8Zvqfunh8GqkNXN9StInhHGSNPzZnfmKRwivXxZp4mbX/dP0cF6akY2zwtHZPay0rOnWk+zEx6JInxbacyrM448gXayGqAADMstMRGZmIjrKnmx+y+Ou3gCQZExPGJ4NBhJIBDY6M5CCtp2xMz2FK49q3rT7vBcyCtlYvOlbMRmLc8y2eLJrFomJ5SDd+ruzvjHTbw+9Np6u+ZrMYtHZ4dUHHtW0/5azHPExPoB0gAAAAAAAAAAAAAAAAAAAAAAAI49dIjj1wSAAAAAAAAAAAAAAAAAAAAAAAAAAyYiYxMZiXLr93xO7Trw7Yh1gPP8nUxmazEdqZfvE8aV8Zn8fNRUrWNYIwmcRkFQFMzXh2LVnMZBZrGorGSsrKjAAZNpri8Rma8mX19S/CZxHSFpjMTHWEVK21PUiZRYqJ691vOMzFffj8elNTu9K8Z9qfEHLp6V9SYxHDrPJ1aWhXTndM7rdUwigAAAMaAAAAAAAAAAAAAAAAAAAAAAAAAI59dIjn10gAAAAAAAAAAAAAAAAAAOfvU4in9vsk7tPt6kdnCW97jOlE/ttEotKdveKz2WjH2orrmImMTGYceppzp2x9WeU/Y7VbVi1Zi0ZiVJccUxmGZmOfLqk1NOdO2J4xPKVcMt9gria8uMNicop9av9oS6sZpb0IbcMT0mHRaMxMFZqAZX1Y9DVaAAVv6vGMr6XeLacRF8zHvU528IWGbNdlL1vXNZzDXBW1qak7ZxOMurS1ovituFunVpmxJb1Z9Dh0/Uh3zxhw1jFcTzjglXi0BlsZacRLVZ42x2Qo2IxEQ0ZMxEZkGkafm2x0jPx7FYzbjyhP3b+S8+EfaRm9J6Wi9ItHa1FTOnqTSfVtxr9sJWmAAAwMtMVrMzyiMgpEb9bj6tPp/RMj0YxpVmec8Z+PFIAAAAAAAAAAAAAAAAAAAAAAAjvzSI78wSAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAApqzNdK8xzisyiis+TSOm33YSa38N/6yyY7OwWNGROWigACl5xatvhPx/XC7LRurMT2gCtLTOYn1q8J+/wCKwA0AV1Kxelqz2wsraQW0MeRTHRIi7tGNGI6TMe+UoyAAAAAAAAAAAAAAAAAAAAAAAAAApqdi0coV1OxaOUA0AAAAAAAAAAAAAAAAAAAAAAABW1YtGJjMLAIfLvT1ZzHjz+76Edu8TSdt6TEupW1a3jFoiY8QcNfbvNp4Z7F/LjqW7tqVn2fahHO+vOto9MNC06cwpMM8zx95mbcomfRC6MZyXro6luVLfGMfSmp3S08bzFY6Rz/HzNFdOt9aIrHCkRxl2ViKViI5RDYiKxERyhB3y81pFY+tzZ7Eer3m0zMafCOvbKCLTFs5zM889rBrBacTxj4wr4QTGV6xmMxPpBk1jMR29S1WxWY7cticzieaDJiIjdX5Mz8m52zieSk8MxHBYLc2RTM8SI8ZXgCsbLRas4mO1Je2rOlW1p9nP/Ez+P0pSsat9vZ2uu0xFZzyZogiY1KzeIiLR60dfx+hE4zMccxjHVBHsa+OyUmlqxXVxePZjhGOwHa0EAAAAAAAAAAAAAAAAAAAAAABDr/VTIdf6oIgAAAS6H1kyHQ+smAAAAAAAAAAAAAAAAAAAAAAAAAABz6/8+j/AOyzO9ezWup+23H0NY5LEWvms01P2zx9EuhFqV36c16t0L+ZpVtPNII/+7U9MfQspP8APqfD6Fiq1TVvspM9vKF0Ue3qTbsrwj7yC2jEV04xOc8ZldF/HabRxrPOOnilicxmOUlBrGoMtO2sz0jKulGKRPbb2p+Jqe1NaR28Z9C4AAANjrPKAUr7feojspH0upzdziZrbUt9efodLpGQBQAAAAAAAAAAAAAAAAAAAAAAAAABk8pV0+1aeUq6faC4AAAAAAAAAAAAMtaKxM2nER2yCDW176d9sVjrme1z6urbUmN0V4dFu8a0auIrXhHK080IEgAxJpTMVtEbZi3WM8lGYjoESRSY5WluLdYn4K6eeM5nHYkZdIr7XSPn+h7XhDRFZMWn63ygrmnZFvHtaGpi9bxacRz6SsimMti014W4x1VMXtMxGYiZUpO+czPGPq9EjLVi3P5qjRTM14W4x2T966AAApX2p3Ty7PvL8cV/d9C3IGsaAxoApaNs7o+KzVK+zbZ2c4+4F2YzGGgKac8Ns868JXVvFcZt2dqta27bzEdkcFF5iJjE8kc0tXlaJjxX9WJmbTMeKk5tObfCEWKxa1uVfjMtxaecxHohojTNsduZ9LeQyQJlgKit44RPRVa84jHbKqxigCoOjuurTTiYvwmZ59jnM4B6kTFozExMdYVvpU1PXrE4c3dKXm2+LYp2x1+HY7Ac092mPUv8Lff/AMqzXUr61JmOteP6+51iZF2uOZzwjhPSYbSMTmZmU2tp765jhaOX3IKzmPpjozZjcupu7z/pzX9s4+73JnPocNW8dYifx7nQ1GKAKgAAAAAAACOnNIjpzSAAAAAAAAAAAAAAAAAAAAAAAAAAAraYrWbTyiMuS0zMRnhwzPpdOtONK3jw+aCaxM5ajPJWPZrNpSaVdmnWvSEWt6kV6zEJ8FOKmjGNGvobasW9aPQaUxOlWY6LstKRWY4TOekmJyuKEDWAAArWsXtunExE4qkR6UxG6meNZ+nivmEEVqzW0zTET0nl/wAtrfdMxtmJhs8ZYCzCJ6kqAzIgZIGTHCYicT1BorjU/fH/AI/qZtE4vEY6wCtpituM8Jh0aNMRumOM+6PxzQWiszXdHDdH0uwAAAAAAAAAAAAAAAAAAAAAAAABHHrpEceuCQAAAAAAAAAAAAAAAAAAAAAAAAAAAEGtPtxHbEfj6FF9aMakT1j6P+VFZoDFQYMAmIkrwnE/ATTo40oxETeOOevX9Pgio2sicxmGqjVZawVgACfQtnTx2xMx+PggTd29W/8Ab7ISrEwCKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjn10iOfXSAAAAAAAAAAAAAAAAAAApqV36dq9Y7XHEz5cTj2qznE9Yd7k1I2a1q9lvaj7Uqx01tFqxaOUxlZz92tiLaeeU5j0S6FRW1YtWa2jMS5tTStp8a5tX3x97rBZccG+v7oVnj6sTnq69TQred0Ttt16oLUvT168Oscmcal1FebRXjGfF1Oa8xNJxOXQlEFfVgZWJ2xiTNumfQqrK2nsjmyb4nGOPitWMcecz2gRGIw0Vm3HFYzIH/Z8FsZZWuJzPNoJNPXmvC/GP3dqOZidW+2c1mc5A1M9ABpkziCsYjx7VYmJtnnPZEc09O73vxvOyOnb+hiaj4zO2sTaekJf8LFqTvmZtMcOkJ9PTrp1xWMfauuMW68+vqx6E3dvXv6I+1DEYzX9s4S93nGrMda/j6SdtXpPqV314Ti0cYltLb6ROMdY6NRz/p33fVtz8J/VWEgACmv/DbxjCyPvE40Z9MfSCcAAAAAAAAAAAAAAAAAAAAAAABHfmkR35gkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABHrzjQv4xhWlt1K26xlveP4vjH0wj0p22mszwmcx9wsWmdt/C30/r9niuy1YtGJjMSrFts7bc+yev6/8AIq4zJkGsmcGVZ4gpfO6LV9aPfHRempFo6THCY6SxS1Zmc1nFoBNmDdCCNTE4vG2fHl81otE8pifQC82YMnlOOYN7tqxNYpMYmZmY8eLocu3FIivOvJ0UtvpFusZGVgAAAAAAAAAAAAAAAAAAAAAAAAAU1OxaOUK6nYtHKAaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4u+Z8yvTDtc3e6zO3h1+xYOQBsGxM14wwBJmZtiOcMxMTnmpntzxbx6z80wWznhMKcOKTSib6tazPCVLxjUtHSZggyJxwS6dZveIjl2yimF9HVnStxjMSUdV5ikRiOMdkdDUnMRjlKG+tXjPGfBDF5iMbp4eLOC2twvW0GlE2tP0qcbTiMzK8TbT4NYOrRttmKTynkncG+bUme2vGPnDtraLVi0cpjLNFgEAAAAAAAAAAAAAAAAAAAABDr/AFUyHX+qCIAAAEuh9ZMh0PrJgAAAAAAAAAAAAAAAAAAAAAAAAAARd4rv0LxHPCLQ1PM04nMZjm6XBpZ0Na9Z9WJxM/QzZ4sTa1tunaY6Kd2zpXnTn60Zj7Wd4tOa1jtlfVpMU31zvrxhmDbxEa0z1iBmpeLW0r15WzDZ4FVTUtOYpHO3P0L1rERhHpRumdSe3hHoSlDCKY8m2Y9SZ4x0SkxExieUoETmMw1DTOnbZblPqz9i+pbFOHOeEGBT2rWvPXEehdlY21iOkNAAAU15/wBPbHrXnELq0iNXvHhp/TKyeldFaxSsVrGIhYHRkAAAAAAAAAAAAAAAAAAAAAAAAAAABk8pV0+1aeUq6faC4AAAAAAAAAAACmpp11K7bcvoXAefraVtKYzMTE8pRpu923a23srH4+xCAAAyeXBrM4kE1cTWMchlIiI4TnLWHUAAAAawBtZ2zjsnl4JENuyI5zPBMrNZzjirTMZrPZynwXUrxtNo5coEXABSOOpaekY/HuXU0+MTPWZXAAAAAU1Ima5j1q8YXAZExaImOUtUp7MzT4x6FwUv9XPLP4967JxMTnkrTdM/k7M81GavCsT2RPEWtaKxxQzn6sbY6SiyrmVM27YifRJu/LJi6tljN3hPyN3hPyDWjN35ZJmY7PeDLR2qk2meE4wZjq0xQAQbXhbiRGZbFZzE59yLIkpe2nbdX4x1/HY7aWi9YtHKXAl7vqbL7Z9W0/Kf1ItjsAVkc+vTbPmRy+tH2ugBzaU/61fGs/Y6EVdCK6u+JxWOVekpUi260BUAAAAAAAAR05pEdOaQAAAAAAAAAAAAAAAAAAAAAAAAAAEPevUr/eEUTmZjom7xGdOPC0fShx7WWoxyZaM204/N96fGEF67q8JxMcYXjWrMcZis9J4SVeJak86Wmszz4ZIrqR/2RP8A6/qebT91fmebT99fmy0Wtev1Yt6Jx9jY1a5iJzW09k/jBzZPGMSovkQ4nTj2czXp2/Bes5jMTwBcVyArqxiY1P28/R+nNvOGzxjDIjbERHKAayZiIzPIic8mgwGwgwawAABW8RakxPLDZmIjOeCkxN+cYr48wLxNqTHbh16dt2nW085iJczdC+ysVvbFZjMTM8vD7gdQp5unPLUr81omJjMTEwDQAAAAAAAAAAAAAAAAAAAAAEceukRx64JAAAAAAAAAAAAAAAAAAAAAAAAAAAAQ94jjS3Th8/8AhG6nmz7N7RXhiZjgupjoVlDmf3T83Ro6UamnFpvbM56fcaYqJ40KR+6f/aVvKpw9ivDrBpiHRpvtFp9WvLxn9PxydIIrn1abLZj1bfSo6bRFomJjMSp5Fc+tbHRdSxExN5Efut7vuR6uhMUma3tMx2dflg1MUlk2iJxmMoZ48+PpDVx0Ura8RNYzE9s8P19zo06eXWYzmZnKDul+M0n0w6kUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABHPrpEc+ukAAAAAAAAAAAAAAAAAAARd405vp5j1q8YSgOPTvEWrfs5T+PB2OPWps1J/Zf6f1Td3vu09vbXhP2IqYBUAAQd40qW07Wx7URM5hWONYnwT2jdWa9Yw56caV9EM8liHFq6cWtWYrjmrNp7In04SeZN9ONPHCvCfHowXapE0xjOfS3ZXs4eiVldlZnkLpNc8My2IiIxBt8ZNv5pDWiuz81vmyaR0z6Z5hq0zEc5giYmcV4z4Rl0938qa5pSKzHOO2E64n04o0tS2MUxHWZx+qSvdc/yWz4Ry/HydIuJtUpp104xSsQuAgADj7xXbrzMR60ZUi2zUpbpPH0J+91maReI41nPw7XPMZiY6o3PY7iYiYxPGJR6N9+lEzz5T6UisI6TNZ2W5fVnr/wALl6xeuJUrf2tluFuyeoLo+8RnSmI5zMfSkR63/XHW8AnAAAAAAAAAAAAAAAAAAAAAAAAR35pEd+YJAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARd4jOjbw4/LiimMxhPrfw3/rLnrOaxPWBY2NSaR7fGOsfatM1vXjxhVTUpwm1eFusCrxNq/mj3/j8YWraLcp5LV0Kzi2+9oxw4/dhvkaWJjZHHtnn8+Ymqi06P7b2j3/AEq+RbP8s/KA1inmRa23Tibz4fel/wANSfXm1/TP3YSVrFYxWIiPANQxoTeP9Wf/AFr9q/8Ah9LGPLqlBHNq6GnSIvWkYjn6OvwbEREYiMQntEWrMTymMObTmdkRbnHCfgLFm6E4tbTz+aPRP6sVtO21bx9WePo7QrqAEAAAAAAAAAAAAAAAAAAAAAAAAU1OxaOUK6nYtHKAaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAj1qb9PEc44wkAeZaMSx2a+jmJtWPTDkmJiW5RgHxVBsVmYmccI7W0jdbH2uiu2IjfWZ8I5fr+OCWh3TSmM6k8MxiI8Efea41rT1+52VtFq5jkh7zp7o3dOEsy+q4zwbMYnDGw5cjiALVttnMJuGpRzr6ed8YEZMTTdWe36HfpRMaVInnFYcmzztaK49mOcu5iqAIAAAAAAAAAAAAAAAAAAAACHX+qmQ6/1QRAAAAl0PrJkOh9ZMAAAAAAAAAAAAAAAAAAAAAAAAAAA5O81impGpMZraMW+x1q3pGpSa25SDh2TGrpxM5jPCZ5uyHHEzXUpS/rVt83Y51XJqxOjFqxnbMxNZ6NmY1MVrPCeM+hfV1qT7MRvz2RxQ6ddWsTspERPXmo6MYjEchF5mpX1tPP9W11q2nE5iekpipAEGXrFq4n4eCLTtadXbf6sfiUymrWeF6+tX3wsEgrp2i1YmJWQAAZa2yk259ISaGl5WnjnaeMz4o6R5mtn6uny8Z/R0tyJQBpAAAAAAAAAAAAAAAAAAAAAAAAAAAAGTylXT7Vp5Srp9oLgAAAAAAAAAAAIdbXjTzWvG/Tp6Wd41ppG2nrz7nJPLhPGe1FkIjfab24zPXtNSsRETFY59F4jEYE1vEW20xmIx9rOaZHemMzE8+xZWbxVznlyOIKyY48OEpM2jtifSimexLE5jglahu6xLd8fiGCNN31/dBvr1hgDd0dmZ+BmZ5Rj0tiRFZXNJzMRbx5SkraLcvjCjJ4WrMc84+Cs2JLV3cJnEdIVjNOfGsdvbCRkzw4iNFdP1I9CwKaX8VfQurp/wAdfRCwAAAAAYbgEd+E1t04T6JXZbFomlYm1sYxH44L10dSYjdeK9dsfb+ipqLV4RGeETPEm2eTqppVpxiOPWeMqW7tpzOYzX+phrkvwxboROYzDrr3bTjnm3pn8QX7vS0cI2z1gxdcglt3fUjltt7vx81JpqVnE6dvhGfoMXYqNmJjnW0f+ssjM8on5IaI5mZzEyktM1jM1tHwR85mViWmMgKyzw7F5p+1lfW4rpWpFacs9VmRwmY+TUWBMZjACuvu+pv08TPtV4SmcOlfy9SLdk8JdzTFABAAAAAAAAAAAAEdOaRHTmkAAAAAAAAAAAAAAAAAAABFqa0VnbWN1+kAkR216RHCd/hXiimt7znUtOP2xy/UiIiMRGIXGbVra159SsR/b8faybalo43mP6x/yzA1kTarETnje8/+zcT+6/8A5T97QxNqs0zGJvf/AMpIpMfXt8VgNZ7efqzHyJiJ5xE+loDMRHKME1iecZaKK7IifZma+jk2LzHC/Cescmq5i0YmPgliypFJ9id0cp5/f96tLTExW3HpKSeTLZkypX2Z2z8Px4LILMABrAGsMgNGABAATETzGSAy07azM9iO3CmlnrC+piYiv7pZqcdkeOQq01rbnET8GbYj1fZ/rwIluW3Ntb6lMRE7o/Nz+aWmtS8441npbhlEyYi0YmMpYs5Ooc9L20+E5vXPbPGPvT0vW8ZrOYZa3VgBQAAAAAAAAAAAAAAABHHrpEceuCQAAAAAAAAAAAAAAAAAAAAAAAAAAABw95ps1ZmOVuPx7fx4u5zd7x7EY48eIOV291mPJiInlM5+lxxVN3e2zUxM+zb6fx9gOwAAAAAAAHD3nS8u2Y9WeX3fciicvRtWLVmtozEuHU0ppaY+U9YBWJmsxNZxMcpdmlrxqYiY22+lx4ytjhgHoCDu+pNomtpzMcvQnAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABHPrpEc+ukAAAAAAAAAAAAAAAAAAAABTVp5mnNe3snxcujbbq1tPDPs2j8eLtcevTGrMfV1Iz8UHYIu76k6mn7XrROJSqAAMcunwia/tmYdbjpbOreey3GMM8uljIiIvaOvFs1L8LVt8FmVU2swkMKI8GF8GDRTBhfDcApWJpaL15x73Vp3jUpFo+XRBgi06Vt0ca/Wj7VlLHUMicxmOTWmQAAAGTETExPKXBiazNJ51nD0HL3qsxNdSOXKUqyq93nbqzXstxj0upwzmMWjnWcu2Ji1YmOUkLPWq3pF64t/wsKiLfbTmI1OMdl/vI9vvMY5Ujs6z+i+paK0mZjPh1NGnl6eJiImeM46gkAAAAAAAAAAAAAAAAAAAAAAAAR35pEd+YJAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAY5KcImuc7Zmvydjlmu3XvXhx9qBYYW2thop3eZ2zSedZxHo7Pu+CZzzOzUrf/ANZ9E/q6BkAAAAAAc85jWvHZOJj8fB0INbEa1PzRMfL8SAyYiYmJ5StFW4gaNCfY2zzpw+HZ7kqH1NWJ7LezP2fcmGQAAAAAAAAAAAAAAAAAAAAAAAFNTsWjlCup2LRygGgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI9TSpqc4xPWEgDjt3S31bVn08PvUnu2tmY2xPjl3i7Rw00Nas52z84+9PGjafWmIjw5/j5pxNGViKxiIxBMZjE8YaA5NbR28Y9Xsno55rMPRtaKxm0xEOXUiJn2IxHSfxw/HBqUc4ktWO2Jj0cVJiInn810ZGZnCelcTtmJrH7kNc7o9Xrxl06cWm8RNJx17EtE2lsiNtIx24mPvSKVrOc2xnw7F2QAAAAAAAAAAAAAAAAAAAAAAQ6/wBVMh1/qgiAAABLofWTIdD6yYAAAAAAAAAAAAAAAAAAAAAAAAAAAAHN3ykeV5n1qTzZ3m9oiKU9aybWp5mlanWHNof6upF5n1Yhmql0tCulTrbtlkJp5IYZqjLVreMWiJaIItt9OPYndHSV6Xi8Zj5LI70nO+nrdvivYkFaXi8ePbCyCL+PV/Lb6U3NTVrupOOccY9JpW3UiVF2TMzaKU9a3b0gtaKVm08oSaGnNIm1/XtzWTUq9KRp0iteULA2gAAAAAAAAAAAAAAAAAAAAAAAAAAAAADJ5Srp9q08pV0+0FwAAAAAAAAAFNS/l6c26di7l71ObVr0jP3faEQcZmZmczPOSONvQNp6uevFl0aNYitR6vKI8V1LYtbE9hEqhPYkxiMQj2zXjwaYsZji3x5NitprNorMxHOei+hpedNoziIjmqKxu2xPCW7usTCS2hfTjhG6Osfd/wAqZ447eiNxm6OsNGbY6R8kVuTdHWGbY6R8mgybT2VmfctS0Z4+tPVkzjmyPb5cs81SpszPJSa2tMTNox0xw+kmYjnOFqxe/qVmfGeEfj0CNpaZznnHNZaO61xxvfPbMThv+Hj/AOl/d9xiai0/Ux0zC2Fo7rWJzGpqcfGPuW8j/wDcv7vuMNR4bheO717b3n/2+5s93055xM+m0/eYajma15zEelXzK5xXNp6VjKeNHSjlp1+S5hrnrXVtPqRSOszn3QvGhH17Wt4co9yYVGREVjERER0hoAAAAAAAAAi1dGmrxtnPLMS8+sTNc4mYjnOHqsmImJieMSDyyc9nN16fdIrqZtOaRyj7157tTfFq+zic4jkDjisc+ayfX0Zi03pGYnnEIOaNxkxn0ticwMmOOY5orRkT2TwloDr7tffpRmczXhLkTd0nGrevWIlYzXWArIAAAAAAAAAAACOnNIjpzSAAAAAAAAAAAAAAAAAAg1bTe2yPVj1p6+H3gX1LX4ac4r22+772VrFYxENGsYtDEAoMxDQGcmEx1lggAqAAAjrOc2jtWRS8+zKPKRXbANmImOPKW0tj2Z+EsjhGCYzBYsuL2rFoxLKzx225/Syt/q259eq9qxaMSw2Cmb1zujdHWOa0WiYzxj0xgGsZvp++vzJtHjPoiZBaBTzPy3/8Zbvj9tv/ABkFhWb1jnaI9PBsTE8YmJ9AAAEh2q2mZnbWePbPQCntWm3ZHCv2q8LakzHZwWvOynsxx5RClb12xm0Z7eKxKsETE8pyNMNy2JVAXZic5rO23VVuQTV1ozEX9mZ5dJSuXMTzKWtp42T7PbWfs/GGbGpXWI9PVrqcsxPSeaRGgAAAAAAAAAAAAABHHrpEceuCQAAAAAAAAAAAAAAAAAAAAAAAAAAAByd4tu1ZiJ4V4Oq0xWs2nlEZcHPjPOeMgLU9evDPGPpVSd3jOtHhEz+PmDsAAAAAAAAQ95rnT3dtePw7UzJiJiYnjEg4AxMcJ5xwkBtbTSd1ece93VmLViY5TxhwJ+7XnM0nlzj7fx6QdIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI59dIjn10gAAAAAAAAAAAAAAAAAAAACHvNd2lMxzr7UfBMwHLo2260ft1Ix8ex1uHbNa2rHrUnh9MOytotWLRymMpFqwCoh7xbGntjnfh96G3s2rPZyW1t86/s0tbhiOi3+G3V9u856Ryj70vqq3rurMMrOaxPVunbdXjzjhPpViNt7V7J4ww0sMmcRmeUFqXpSNXjP7q9I/TtWRGhHGMw3CKzDcNw1BmG4aIrNKdltnZbjXw6x+PFO57RmMJNO82id0YtHN043WLEgDSAACtqxas1nlMYWAcURtmaTzr71+7322nSn01Sa+nMxF6xm1eyO2HPbMxFqTxjjEs9Vv/lHYy0xWM2nEK6epF9OL8uvgUibzGpPL6sfb6WmClZtbzLRj9ten6pQAAAAAAAAAAAAAAAAAAAAAAAAAR35pEd+YJAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEGtG3VpfrG37YToteudKZ7a+1HwBVrImLRExyluBpkxExMTylbQtM1mtvWrw9PixS3sWjVjs4W9H6cxK6QBAAAABFrR6lulo9/D7UqLvETOhbHOIz8uINAGlb1i9JrPavpX36cWmMTymPFitZ2a0xxxf3TH3x9AlTACAAAAAAAAAAAAAAAAAAAAAAKanYtHKFdTsWjlANAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABjWKzbjiPmC0zjmzf0iZVx2zxlrP0Ybp6RBm3WPkDP1VwzbrHyMz1+TMx1N0dYyu0ZalbYm2ZmPFS1NsxxzErTfsxxV35vG7l4R2rJyRSYxPFWK23xFYzM9ieazqTHDEdZSUpFIxHxnq2M06RSuOczxmVwQAAAAAAAAAAAAAAAAAAAAAAAAEOv9VMh1/qgiAAABLofWTIdD6yYAAAAAAAAAAAAAAAAAAAAAAAAAAAABy6NY09bVpHLhMOpz6/samnq9kcJ+KXoS9iLtSKW5ubSo1gAAItSs1t5lf8A2jwS1mLREwIqf6epNOyeML2JkOl61/7yvrX8vTme2eEKd2p5kYx7Ec56ysiJtOvmWi8x7FfV8Z6/c6GNbQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABk8pV0+1aeUq6faC4AAAAAAAAADi7xaLa047Ix+Pm69S2ylrdIcHpnM9spVitp4Y7Z4JOSu3dWbdlZiI9KyVuACKclK54zMYmZS6dPM1Ir2Rxn8eP3qW9e/9p+lWd9YTGYxICujucYi8RHDKalK0iYrGImcqd1rjSzP1pymacxW1a2jFqxMeMLAIZ7vpT9XHomYV/wlP3X+cfc6AHP/AIWv77+77lo7tp9sTPxlMBqOmjp09WkZ685bOnS05tSsz4wuApGnSs5rSseiFwAAAAAAAAAAAAAAAAAAAAAAAAAQ6nd6XmZjNbT2wmAcdu76leURaPDh9P3opzEzExiY55ei4NSd2refzT7uCNSqWj2fHsSaulOlt47onh8TQpv1Y6V4z9ifvcf6dZ6WC31yxnth0d0rwtfstwj4OeZxGXdo126VK4xMRGSFXAVkAAAAAAAAAAABHTmkR05pAAAAAAAAAAAAAAAAVvbZSbdIBHq6k58uud09vSPxyZEREYiMQyscJmeczmWtRm0AVAAAAFZli2GcBGA2Kz28DTNYrbFrRp54zzxPKF8zu2acRN+3PZ+Oi8aFNm2eNv39vzZtakVmkTHLHoUmswkxeke17URHrR9xExMZicxKS2NWSoRJeKRGbcI6o8TMzjhHZM/c1LrFmMmJnkZiOcx82104jnM29K0VrHKsR8FRHM0mOM1mPS2tpjlO6vp4pGbYjlEQYbjI1KzHGdvhPBeJieUxKlq9Yyrsr+2PkmNfSWZiOcxDN9f3R80eyv7Y+Rsr+2PkmH0ki0TymFkGyv7Y+Rtn6trR8TD6TWxPCeKuyvZGPRwV33iIzEW8eTfMrymdsz1GtNtqx7Ns/wBuJm0R7Vc/1n71yUFPat+WPetWIrH0zLUd7b/Zj1e2eoK3mbRNseFYIpWIiMROPBsxm0dIa2xazZX9sfBmzE5i1vpWBFc2iPajPoXiaz9eseE8GK2pF44xx6oq/sf/AEr8z2P/AKV+bdO2nGK6mnSOzdFef3fQ6YrWvKIj0Qm1rI5Zx2breisrRS9o9mkx/bh97qDaZEOlozSd1pzbHZyTAigAAAAAAAAAAAAACOPXSI49cEgAAAAAAAAAAAAAAAAAAAAAAAAAAMmYiJmeEQCHvN/ZikdvGXMta03tNp7exUB0d1r61vg53X3bHkxOO2fpBKAAAAAAAAADk7xXbqzP7oz9n3I3T3mmaRbtr9H44/BzAxsTNbRaOcTlgDupaL0i0dqzm7rfEzSfTH4/Ha6QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARz66RHPrpAAAAAAAAAAAAAAAAAAAAAAAc2tG3Xif3x74X7t/Ht/bOPt+1XvEf6mlPZmY9y2hPt6lfRP4+Sfq/iYBUAAc+rWKakW7L8J9P6/YpqRO2LR9Xn6HRqUjUpNZ+E9EGnbOYnnWcSxf61DTrGrqYnjWvGfGex1INDFJnTxEdseP8AwnaiVzXr5Vpn/rn/APTP3LJpiJjE8YlzTE6N9s+pM+zPTwTlFlXV23vqzFb7YrHHhnistoR7E2/dOfu9zPGFR41a+tSLR1rP2MjVpnbMzW3S0YdStq1tGLREx4w18xNRMnNZi8c45+MNnu1PqTak+Eqzpa8T7OpW39ownzYuuiJi0RMcpaj0aWppxW2MxM8pSNsgAAADl1tPy5m9fUnnHR1AsuOCaxujjilpjc7nPfu26Z2X2xPZjMOiIxERmZx1C+tAEAAAAAAAAAAAAAAAAAAAAAAAAEd+aRHfmCQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHPSJrNqT2Tw9HZ93wXZrxtmNWPq+tHWP0MxjOeArWTiYmJ+MNUv7MxfHhPo/T7wSaEzOlG6czHCfgkRaH1/7fZCUQAAAAZMZjEtAQaM7tGs+C6mnGItXGMWn70kDTFbxM19n1o4x6V8MBbTvGpSLRylZDpTt1L0/9o49efv+lMMgAAAAAAAAAAAAAAAAAAAAAKanYtHKFdTsWjlANAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABlpxAK2nM47O0I4QyeTnbtVvJXdNvVjh1WiueNuMrNTjiI9lp52PJ/N7ko0I504mczJ5UZzmUgCnl1zmczK0REcow0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAQ6/wBVMh1/qgiAAABLofWTIdD6yYAAAAAAAAAAAAAAAAAAAAAAAAAAAABTVpGpp2pPDK4CDT1YtpReeHVFMamp7W7ZE8oxlXvcTpzaa+rqc/CY+90X5QxZioMatOOd8dOS1LxeOHxXUvTdxjhaOU/jsRVhSlpnhbhaF0BHrR7MW/bMSkUtE6lvKr/7T0j71nYaOnGvab3jNI4RH2uuIiIiI5QytYpWKxyiMLOjIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADJ5Srp9q08pV0+0FwAAAAAAAAAQ96nGjjrMfS5YiZmIjjM8IdXeYzozPTEqd10+PmTHhX70WXI3WpFO7RET6sx8eKB23rF6WrPbGHFx5WjExzhK1xDjPCIzM8oJnDo7vp4iNSeM2jh4QSLbi+lpxp0xzmeMz1cmpG3W1I8c/N3ItfR8zFq4i0de1piVyNpHmakUiefOWWi0TttE1nxIzGJrwmOMMtPQiIiIiOEQ1XTvF6RaO1ZpgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABjzq5mI7bT9L0kOl3eunOc7pjlnsgWXG6Gn5dMT608ZZ3mM6FvDEplb130tXrGBHDWu+1a9Zx8O33PQc3d9G0W36kYmIxEOkW0AEAAAAAAAAAAAAR05pEdOaQAAAAAAAAAAAAAABBrTu1K06e1P2J3NWZta9p7bTHwjgsSrDPQyLUzibxM9MrrONzBxnlBviOVLz6KyRa08tO/xxH2prXye10Pa8Foi37Jj4x95tt+33ptMiuJ6wbZ6r7b/ALY+M/orNNbsjTj0zM/YbTIzZPU2xHNtdLU+vq/CsQtGhpxOZrmeszk2mRHGpWZ209qekR+IWil7+t7EdI4zPx7PxxTNFVrWtK4rGIWABBrRSLZiszqTHDE4Sal4pWbT8I6oaRPG1vWtxnw8FkS1WtJzutO63VuFxplXEsXZtgRUbhigrMYWJ5AoZCtLbrTjhyQBu2eksAABkRtztnb6G7rxHZb3AYu1k7retwjpDLTtx2R1WZbMRmvOOMIatjhnqxPbTzE30piJtx8J/HgjtERwtGyes8vn+PQmr8qC00n0s2z0lrWcYAAtp3nS4Rxp06ehVsGEuOqtotWJicxLXNp38u35Z5+H47XUw3LoAKAAAAAAAAAAAAAAI49dIjj1wSAAAAAAAAAAAAAAAAAAAAAAAACtrRWs2tOIhFbvP7aTPpnH3gnQ94vEU254z9CK2vqTPCYiPCEfHOZzM9ZAYADr7vx0a/H6UGjpeZMzbOyPe64jEYgGgAAAAAAAAAy0RasxPKeDg4xwnnHCXoOTvFdurnstGfj+MAjY1gNrbbaLR2Tl3RMTGY4xLgdPdrZpNf28vQCcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEc+ukRz66QAAAAAAAAAAAAAAAAAAAAAAEGvP+ppV6zM+40Zzq6nhEfaavHWr+Wufn/wtoepNv3TlP1fxKAqAADn167LebHLlb73QyeMYnkCCc8JrjdHGE1LRekWjtQbZ0rbZ9SfVn7PuOOnffSM55x1YnnjV9dKt6Rek1tykpeupXdWf0WbZcc76R5VsznhW3XLriIrWIjlHBomAAoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI780iO/MEgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADnmkacTSf455T08PudDJiLRiYiY6SCDTtmvHnHCS9o2znky3d7ROdO/Pssvp6MxMWvbdMdkRwgXW93pNNGsTGJ5ylAQAAAAABDE/6upH5o+iF4UiMa+p4xE/T9y4rWBmM4BHqexqUv47Z9E/dKdFq136Vq88xwW0rb9Ktu2YjIi4AAAAAAAAAAAAAAAAAAAAAKanYtHKFdTsWjlANAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVt2LItW01vXhnMT9iUWKxmc9GRMTGYbS0TM17YZ49rVwG0AAAAAUtetZxILinmV6+48yvX3GC0zERmVeMxmZwzO63hDY9q2eyFRmelrT6I/Rub9kfNYQZXd9bHwWAUAAAAAAAAAAAAAAAAAAAAQ6/1UyHX+qCIAAAEuh9ZMh0PrJgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAU1NONSk1tylDpTM1nTv69OE/Y6UOvWYmNSnOvOOsfjklmioyJi0RaOUtc2kepWfXrzj3wtWd1YmO1ZDp22zakRm27hHT9F7F7zMYpTje3Lw8U+lpxpUxHGZ4zPWWaWlFPanjeec/ZHglbkxkAUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZPKVdPtWnlKun2guAAAAAAAAAAxoA5u9140tw4+zLpU1ab9O1e2eXpBxxERyjDr0JzoU9GHJE5jo6u7fwx6Z+mWY3ySgNMI9XSjVrieExyno47VtS228Yn3S9BW1YtGLREx4iy4g7pb1qTPjDpRaehXTvNqzPLGJSiAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI6c0iOnNIAAAAAAAAAAAAAADHJFpzsr7VsznHZ6XYyIiJmYiOPMRDXQmcTqWmfCvCEtaVr6tYj0QsCgAAAAAAAAAAAObU/1Nbjy0+XjP6LKaOZ04mec8VpmIajFaMzaeUMmMetaI+Jpi2VZlmdP/AOkfNmdP/wCkfM2LlazLN2n/APSPmbtP9+fRB9RPmtyzMytWsT6tbT8MfThaune08YjTr85+4+l+VYjExERFrz2dPGUkd3rEYi148dy9KVpGI+M9srstIZ07xHsWif7fp9yts1xF6T6Y4w6AHNtraM1mPgrNJjxT20aW5RtnrXhKlqalfUmLR0nhP3e42pkQiS3Cub0mvv8AoUiK340tEtaz8sabbR2Col7tb2Z0/wBvL0SmmImMTGYcsTsvF5nhHCfQ6ma3LqOdGM5ra1fCJ4fJk6ep9W1Z9MfqmEVB5et2zp/KfvbGlbtvHwr9+UwCGe7xP17+77iO71/def8A2TAIf8PTtm0+G6UwAAAAAAAAAAAAAAAAAI49dIjj1wSAAAAAAAAAAAAAAAAAAAAAAAA5+9T6kY4cZQZzMx0dPeNO2pETXnHZ1ckxauZmsxHjALTODhz7VJnJukF5bp08y+2OXbKPLs7vpTp0nd608/DwBLERERERiIaAAAAAAAAAAADk7xeLXiIxO3nK3eLzv2Z4Y4+P4wiBUbDQVWpbZeL9OfoZHEB3iLu9t2lGedeCUAAAAAAAAAAAAAAAAAAAAAAAAAAAAEc+ukRz66QAAAAAAAAAAAAAAAAAAAABkzERmeENVtWL1mtozEg54idS1uGJvPHwj73TEYjEMrWKxiIag0BQAAABW1YvWa2jMShnNLbbcYnlb8droVtWLVmtozEpZqocTWZtp4i3bE8pSaerF+HK0c6yjtE6XPM069sen8ekmIvETE+iYlnbO17dAhrqzWMav/l2fHp9CWJzGY4w2y0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABHfmkR35gkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABDfhr1/NWY+X4lu729vhlutHsxb9s5+Hb7lLTxpeOMcvhP64FSKanCN+PV4/Dt/HguATyV7v/HiOUWmPepSZjSiJn1cx8pwvofxRMdszPvBKAIAAAAAAAAAAAAAAAAAAAApqdi0coV1OxaOUA0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABHq1m1OHOOMJAHPpxFq85+eFtuyM1jlx8Z/HvxGS9ZpbfWPZ7YhaLRaMxMTHUF4nMZjjDUGn9aaTPOeE8v0X82kTi07Z8fxgEgzm0BjVLW47a8+vQC1uyvP6EdqrxGI4MtyZnL0xE3jCWunGPajitsr+2Pk3oirmeEJojEYgAaAgAAAAAAAAAAAAAAAAAAAAAAIdf6qZDr/VBEAAACXQ+smQ6H1kwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOXV07aUzekTNJn2q9PGGV1aTXO6PR2utSNOkW3RWueuEs1UEb9ThSs1jttaPoTaelXTzjjM85nnKQJMQAUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZPKVdPtWnlKun2guAAAAAAAAAAAAADk16bNTP1bfT+PtTd2/hj0z9Mr2rFoxaImOklaxWsRWMRAurACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI6c0iOnNIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAxoDj3zWK0x7fLCSulqWxMzFPfP3J8cWrqYinu+nM5tE2nxleKVr6tYj0QsIoAAAAAAAAAAAAralbxi1Yn0wsAi/w+lE8KzHomYPJr2WvH/t96UBD/h6T602tHjKWOENAAAAAAAAAAAAAAAAAAAAAAAAAEceukRx64JAAAAAAAAAAAAAAAAAAAAAAAAAAZFYjlEQy1K29asT6YWAVita+rWI9ELAAAAAAAAAAAAADm7zS0zF6xnhicc3Pvjq9FTy9OZzNK5nwBw1tmOPPtbuh2W0NO0caR8OH0K/4bS6T8wcm7jPuNzsroaVfqRPp4t8nT/ZX5Ah7nbM348Ix9rqVrStPVrEeiMLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjn10iOfXSAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIbaEc9OdlvdPwTAIN0xGNSuOs84/HpZFeGdG+PDOY/HodCk6dZ7MTPbHBMVHGrevDU059NOPu5paXreM1nKs6UdlrR/wC33rVrFYxEKiwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACO/NIjvzBIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5r0tpZiI3aVucRzjP2OkBzaWrExtzmY5T1/Hak3F+76d5zNcT1jgr/haZ9q17R0mwuo6xOturX1ZnjPh2/F1RERERHCIK1isYrERHSGiAAAAAAAAAAAAAAAAAAAAAAKanYtHKFdTsWjlANAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQ30Ym26vOOyZ4fj8YTAIomKxxrNe3l+IZfZNM2mMdkplZ06TOZpWZ64BBGlurEzEZ8WW08eHTDpxE84hlaVr6tYjPSAc9fM4RO7PxNtp5+zE88upgItOlKR7OPGVojdbPZC22s9kNiIiMQkn6NAUAAAAAAAAAAAAAAAAAAAAAAAAAAEOv9VMh1/qgiAAABLofWTIdD6yYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGTylXT7Vp5Srp9oLgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjpzSI6c0gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACOPXSI49cEgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI59dIjn10gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACO/NIjvzBIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACmp2LRyhXU7Fo5QDQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEOv8AVTIdf6oIgAAAS6H1kyHQ+smAAAAAAAAAAAAAAAAAAAAAAAABy981b6WzZbGc54ehbumpbV0pteczuwi/zH/r+P2N7pqV0u7WtaeG758IB0a2tXRputz7I6uPR1u8a2ptjUx2zOI4Iv8AU7zrdbT8oj8fjL0dHRro02159s9QXrExGJmZ8ZayZiIzM4iHHqd+4zGnWMZ5z2/AHaOCO/amfarWY8ODr0dWNbT3Rw7JjoCPvepbS0otScTuwr3PVvq799s4xjh6Tv8A/BX+32Sp/l3/AGfD7Qdo5O8d7nT1NuntnHOZT6M6lqbtWIiZ5REAkHJTvu+9a+XjM49b9HWAOS/fdl7V8vOJx636Om9tlLWxnETILDk0++xa8Rau2Ouf0Zbv8Z9nTmY8ZwDsEOh3imtwjMWxxiUwA5NbvsVtNdOItj608kUd+1MxmtcA9AQ931416zMRiY5wmAAAAAAAAAAAAAAAAAAAAAAAAAABk8pV0+1aeUq6faC4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAODvPeNWmvatbYiMdkdHZpTNtKkzzmsTLz++f7m/w+iHTfXjS7rSIn25rGAb3rvHlxspPt/Qp3a2vrZtbUxSOHCIzPuQaGhbXvMzM7c8ZejWsUrFaxiI7AWedq951q6t4i/CLTEcIei8jW/n1P7T9IPXBz6/ea6MxWI3W7YzyB0Dz/8AHav7afKfvT9373GrbZau22OHiDpHNr96nR1NuzPDOc/om0tSNXTreIxnsBccl++7L2r5ecTj1v0dNLb6VtjGYiQWZMxEZmcRDkr32b2isafGZx636JO963l027c74mOfIHNbvete/scM8oiMu3Qm9tGs6md3bmMPN0dTytWL4zjselo6nm6UXxjPYCQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEdOaRHTmkAAAAAAAAAAAAAAAAAAAAAAAAAAAU1ZmuleY5xWZhdHrfwan9Z+gHJ3bvGrfXrW1sxOeyOjveZ3P/c0+P0S9MAFNTUrpUm1p4fSC44Ld+vn2aViPHj9zad+tn26RMeAO4ZWYtWLRymMwg7x3nybxXZuzGc5B0DlnvtI04nbm0/VieXxZp9+pacXrNfHmDrGRMTGYnMS5tbvflas02Zx25/QHUOXU75WkVxWZtMRMxnllNOtWujGpbhExE4BIOC3fr59mlYjx4/c2nfrZ9ukTHgDuGVmLVi0cpjMINbvdNOZrHtWjsgHQOKO/xnjp8PT+jp0tWmrXNJz1joCQAAAAAAAAAAAAAAAAAAAAAAAAAAABHHrpEceuCQAAAAAAAAAAAAAAAAAAAAAAAAAAAHnaXeda2rSJvwm0RPCHovI0f59P+0fS9cAEXeNbyaRbbuzOOeASiDu/ePP3ezt247cr62p5WlN8Zx2AkHP3fvPnXmuzbiM5ylveunXdecQC447d/jPs6czHjOEmj3umpMVn2bT2SDoGTMRGZnEQ49Tv3GY06xjPOe34A7RwR37Uz7VazHhwdejqxrae6OHZMdASCLvGt5NItt3ZnHPCKnfKzS1rVmsRMRwnOcg6nnaXeda2rSJvwm0RPCHV3fvHn7vZ27cduUdO+771r5eMzj1v0B1jJmIjMziIc1+/UrwpWbe6AdQ469/rn2qTEeE5+51VtF6xas5ie0FgAAAAAAAAAAAAAAAAAAAAAAAAAAARz66RHPrpAAAAAAAAAAAAAAAAAAAAAAAAAcHee8atNe1a2xEY7I6N7t3jVvr1ra2YnPYi75/ub/D6IR1mdO9LzHbmPHj+gPXefrd61Y1rxW2IicYxDutaK1m08ojLyq1m1dS05nEZz45gHX3TX1NTVmt7Zjbnk7Hn/wCX/wA9v6/bDvmYiMzOIgGji1O/cZjTrGM857fgrHftTPtVrMeHAHeI9HVjW090cOyY6M1temjjdmZnsgEo46d+rNsWpNY6xOVtXvkaepNYpuiO3dz9wOp52l3nWtq0ib8JtETwh30tvpW2MZiJc1O+771r5eMzj1v0BfvepbS0otScTuwr3PVvq799s4xjh6Tv/wDBX+32Sp/l3/Z8PtB2jk7x3udPU26e2cc5lPozqWpu1YiJnlEQCQcuv3uNO01rG6Y58eEIf8dq/tp8p+8HoCDu/eY1pmNu20ccc0t7bKWtjOImQWHJp99i94iabYxMzOc8o9C2n3uNTWilaTie2ZB0iLvGt5NItt3ZnHPCKnfaTW02rtxjEROZn6AdQ469/jPtacxHhOXTS9dSu6k5gFwAAAAAAAAAAAAAAAAAAAAAAAEd+aRHfmCQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHP3vUtpaUWpOJ3Ycn+L1/3+6PudPf/wCCv9vslwREzEzHZGZB62nabadbTzmIlD3zWtpVrFJxMzzb3G27u8Rj1ZmPt+1zd9tNu8RWMziMY8QV/wAXr/v90fc9N4+pWK6lqxyiZh7AAj1tamjXNp58ojnLmnv8Z4afD0/oDtEWjr01s7cxMdko9fvU6Opt2Z4Zzn9AdIppakaunW8RjPY57992XtXy84nHrfoDrFaW30rbGMxEuWvfZvaKxp8ZnHrfoDsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABTU7Fo5Qrqdi0coBoAAAAAAAAAAAAAAAAAAAAAAADn73qW0tKLUnE7sOhy9/8A4K/2+yQc3+L1/wB/uj7noadptp1tPOYiXkxEzEzHZGZej3G27u8Rj1ZmPt+0Gd81raVaxScTM83L/i9f9/uj7lu+2m3eIrGZxGMeKDUrFdS1Y5RMwD0+83tTQtas4mMfSg7pr6mpqzW9sxtzydGtqeVpTfGcdiPu/efOvNdm3EZzkHQIO8d48jb7O7dntwpHfK+VvmsxOZiIiQdQh0NaNXTm8xtiJxzQanfuMxp1jGec9vwB2jgjv2pn2q1mPDg69HVjW090cOyY6Aj73qW0tKLUnE7sK9z1b6u/fbOMY4elL3jW8mkW27szjnhXu/ePP3ezt247cgnFNTUrpUm1p4fS5Z7/ABnhp8PT+gL981b6WzZbGc54ehbumpbV0pteczuw5u961NaunNZ5ZzE845J+4fwW/t9kA6hDq9509KcWmZnpCD/H/wD7X/6v0B2iLR16a2duYmOyV722UtbGcRMgsOTT77FrxFq7Y65/Rlu/xn2dOZjxnAOwQ6HeKa3CMxbHGJTAAAAAAAAAAAAAAAAAAAAAAAIdf6qZDr/VBEAAACXQ+smQ6H1kwAAAAAAAAAAAAAAAAAAAAAAAAOL/ADH/AK/j9jkrW9/ZrE2xxxDr/wAx/wCv4/Yt/l8R5Vrds2wCHuetGnfbbEVt29HovP733fZbfSPYnn4Sl7lr7o8q3OOU9fx9AJ9eltTStWs4mXJpaFNHUmda+nMRHLP2OjvepOnoTMTMTM4iYcvc6ad9SY1OM/Vie0DvV9C1a+VEbs84jCT/AC7/ALPh9p33y66cUpFYtuzMRH46n+Xf9nw+0F+//wAFf7fZLk0tadPTvFcxa2MT0dff/wCCv9vslzd10I1ptmeER75BbuejXUtNrTnb9V6LytK86GtmeycWh6kTExmJzEg8nR/n0/7R9L13kaP8+n/aPpetMxEZmcRAPJ1v59T+0/S9PW/g1P6z9Dy9S0W1LWjlMzL1Nb+DU/rP0A83R0/M1a06zxd09z0ppiImJx62XJ3P/c0+P0S9MHk93ma6+nMfuiHqXiZpaKziZjhLytH+fT/tH0vT17+Xo2t2xHAHJTu0aerWda+njniZO8X7tbSmNOI3Z4YrhF3atNTWxqznPWecurvcaVNG0RFa2nGIiOPMEP8Al/8APb+v2w9B5/8Al/8APb+v2w9AAAAAAAAAAAAAAAAAAAAAAAAAAAGTylXT7Vp5Srp9oLgAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8zvn+5v8PohFtvak3xM1jhlL3z/c3+H0Q7dKlZ7tSsxms1jMAi7lrRavl2xExy8XW8rW0raGpjjEZzWXf3fWjW088rRwmATPI1v59T+0/S9d5Gt/Pqf2n6Qeu4Nfu151LXtqUiJnhul3vKveNXX3Xmdsz8oB12v3SsTXFZxHZGff+ri0f59P+0fS9HZoaVItikRHGJ5vO0f59P8AtH0g7O/0mdOtv2zj5s7lqRGhfOZ2cfg6NenmaNq9sxwebp6k0pqVicbq49/3ZBXba1bX5xHOc9XZp6kf/wBPtMzM4ia/d9MK6Glu7nqcJzbljtxy97ni8xoWpnnaJx8/0BL3Gu7X3cfZh2d4rW2jeZrEzFZxmOSLuFMaM2xxtPu/GU2t/Bqf1n6Aef3WsW7xWLRExx4T6HpxEVjFYiI6Q83uf+5p8fol6YAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI6c0iOnNIAAAAAAAAAAAAAAAAAAAAAAAAAAAj1v4NT+s/QkR638Gp/WfoBwdz/3NPj9EvTeZ3P8A3NPj9EvTAc/etG+tFYrMREc8y6HF3/Un2dOJnGMz49ANGuho0nzbadpmez2kHebadtXOlGK47Iw6O56WlbTzMRa/bnsQ97mk6sRp42xXHDkDr7n/ALanx+mXN/mH89f6/bLp7n/tqfH6Zc3+Yfz1/r9sgt3Xu1b6e/U4xPKFe993rpYvThWZxh0dytE93iInjXnHxU/zC0bK07c5BvcL7tKaT9Wfpc3fP9zf4fRCf/L4nbeeyZiEHfP9zf4fRAJdDucX04te0xmMxEJe8d3tqU06UtGKxjjKXR/g0/6x9Dm7/qT7OnEzjGZ8egGjXQ0aT5ttO0zPZ7SDvNtO2rnSjFcdkYdHc9LStp5mItftz2Ie9zSdWI08bYrjhyB1d2zHc42xm2JxHxl5+nNYvE3rur2w9DusxXutZtMRHHjPpVvoaGvaZraN3P2ZBW0921tOa120tjMcMYb3bu2po6u6ZrMTGJwh1O5alYmazFoj5ncr2jXisT7Ns8AeiAAAAAAAAAAAAAAAAAAAAAAAAAAAAjj10iOPXBIAAAAAAAAAAAAAAAAAAAAAAAAAAADyNH+fT/tH0vXeRo/z6f8AaPpeuA5e/wD8Ff7fZLqcvf8A+Cv9vskFP8u/7Ph9qbvn+2v8PphD/l3/AGfD7UvfbRXQms87TwBz/wCX/wA9v6/bDO/Xm2tt7Kt/y/8Ant/X7YU75Ex3m3Dnj6AdGh3TTnSra8bptGeaDW7vfT1f9OLTHOJiHd3eYtoacx+2IRa/e40tTZFd2OfHH2Avat9XuuInF7RGc8PS5tLQpo6kzrX05iI5Z+xNr60x3WLx7Nr4xieX4hz9zpp31JjU4z9WJ7QO9X0LVr5URuzziMJP8u/7Ph9p33y66cUpFYtuzMRH46n+Xf8AZ8PtBfv/APBX+32S5e7aHnWnM4rHN1d//gr/AG+yVP8ALv8As+H2g6NHQro7tszOerzdH+fT/tH0vXeRo/z6f9o+kHZ3+81060j608fgi7p3eurm9+NYnGEn+YRO2k9kTMN7haPLtXPtZzgGd47pSNOb6cTExHLKncNTGpNJnhaMx6XV3m0U0L57YxHxcXcqzPeIn9sTP2A9IAAAAAAAAAAAAAAAAAAAAAAAAAAAEc+ukRz66QAAAAAAAAAAAAAAAAAAAAAAAAHmd8/3N/h9EM1K/wD4+jbHWJn4/wDLe+f7m/w+iEs13f5dXnms54emQXvqRHcImJxmIr9k/ag0647lrWzzmIx6P+Uc6me7xp5+tM+j8cXVas1/y7E9In5zkEf+X/z2/r9sOzXpbU0rVrOJlx/5f/Pb+v2w6e96k6ehMxMxMziJgHPpaFNHUmda+nMRHLP2K96voWrXyojdnnEYO50076kxqcZ+rE9qTvvl104pSKxbdmYiPx1A/wAu/wCz4fa5rWnX1s8pvOIdP+Xf9nw+1y6c7Nas24bbRnwB3R3LS2bZzn92fxDh1aTp6lqT2S9d5XebRfXvavLIPR0f4NP+sfQ8zR/n0/7R9L09H+DT/rH0PM0f59P+0fSDt7//AAV/t9kuTS1p09O8VzFrYxPR19//AIK/2+yXN3XQjWm2Z4RHvkFu56NdS02tOdv1XovK0rzoa2Z7JxaHp2vEUm/OIjPAHD/hbVvE6upTEzmc259Umtfuvl3isV3Y4Yr2+lzacxqa8TrW4TPGXbrV0dLRt7NaztmI4cfvBydz/wBzT4/RLv1v4NT+s/Q4O5/7mnx+iXfrfwan9Z+gHmaVJ1NStI7Zd+l3Smlet4tabR8nJ3P/AHNPj9EvTBy9/wD4K/2+yXN3XQjWvM2n2a846unv/wDBX+32Sj/y+0Ra9ZnjOMR1BfvHdKRpzbTjbNePPmh7jfbrbey0fj7XZ3m0U0L57YxHxcPcome81mOzMyD0wAAAAAAAAAAAAAAAAAAAAAAAEd+aRHfmCQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHL3/wDgr/b7Jcvd67/NjGfYnEfJ1d//AIK/2+yUP+X/AM9v6/bALf5faItevbMRP4+aOk+d32Jzw3ZicdkcvoZWf8P3m3ONuYjPb0+xJ/l9Z8y1uyIx+PkDn1v59T+0/S9d5Gt/Pqf2n6Xrg8nUv5utNrWmKzPOeyHXF+5xXbiuP6zn54y44r/qxS/D2sT4O3/A6X7r/OPuBxRby9XdpzwieE9XZ3+u7TpeJzET2eKs927tE4nVxMfmh0amlnu86cZnFcR8OQIO5akRoXzmdnH4OPba1bX5xHOc9VtPUmlNSsTjdXHv+7Lo0NLd3PU4Tm3LHbjl7wW09SP/AOn2mZmcRNfu+mEXca7tfdx9mEUXmNC1M87ROPn+js7hTGjNscbT7vxkHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACmp2LRyhXU7Fo5QDQAAAAAAAAAAAAAAAAAAAAAAAHL3/wDgr/b7JdTl7/8AwV/t9kg5e713+bGM+xOI+Sb/AC+0Ra9e2Yifx81f8v8A57f1+2FKz/h+825xtzEZ7en2A2k+d32Jzw3ZicdkcvoRa38+p/afpdH+X1nzLW7IjH4+Tn1v59T+0/SD0O+f7a/w+mHN/l/89v6/bDp75/tr/D6Yc3+X/wA9v6/bAL/5j/1/H7EXdu7edm1pmKxOOHal/wAx/wCv4/Yv3D+C39vsgFp7vt7vbT07Tm085lBpaFNHUmda+nMRHLP2OjvepOnoTMTMTM4iYcvc6ad9SY1OM/Vie0DvV9C1a+VEbs84jCT/AC7/ALPh9p33y66cUpFYtuzMRH46n+Xf9nw+0F+//wAFf7fZKn+Xf9nw+1fv/wDBX+32Sp/l3/Z8PtBF3y8215jPCvCE+h3SnlxOpWZtMcs8nN3qsV7xeI65+fF6OleNTTreO2Aed3nRjR1IiMzWYzEy6e522d1vbGcTM+6Eff7xOpWv7Yz81+6xNu6akRzmZiPkDl06zr60RnjaczLunuejtxiYnrnj9zi7raKd4pNpxHX4PVB5Notoa/DnWfn/AMvS1Zi3d72jlNJmPk87vNovr3tXll32rNe6TWecUx7gefo6fmatadZ4u6e56U0xETE49bLk7n/uafH6JemDye7zNdfTmP3RD1nkaP8APp/2j6XrgAAAAAAAAAAAAAAAAAAAAAAIdf6qZDr/AFQRAAAAl0PrJkOh9ZMAAAAAAAAAAAAAAAAAAAAAAAADl75pX1dmyucZzx9C3dNO2lpTW8Yndl0AK2rF6zW0ZiexwW7prV1J2RmInhOYeiAhmttbQmupGy088cXFbuetE4isT4xL0wHBXuNvLmbTEX7I7Pil7roamjac7ZrbnieLqAc/e9O2rpRWkZndlXuelfS3764zjHH0uoBx977ta99+nGZnnCTuldSlNmpXERynMOgB5uv3W9LzNKzaszwx2Gno941PYnfWnbu5fJ6QDzbd01YvO2ma54TmHfqxNtK8RzmsxC4Dg7t3fVpr1tauIjPbHR3gDztLu2tXVpM04RaJnjDvtWLVms8pjCwDzb9z1a2xWItHWJX0+5WmszecTjhHj4u8Byd37tq6OpuzSYmMTxn7nWAAAAAAAAAAAAAAAAAAAAAAAAAAAMnlKun2rTylXT7QXAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwd57vq317WrXMTjtjo7NKJrpUiecViJXARa+jGtpzExxjlPRyaOj3jS1IvFPTG6OPvegAyOMRwx4PP1e7a1tW8xThNpmOMPRAHD3jul51Jtp+1FpzjtdwDztPuWpa3t+zXt48V47nqV1N1JriJzGZ/R3AMjOOPN5+p3TV8y2yma54cXogI9Cnl6Na9sRxcFu6a0WmIrmM8JzHH3vTAU06RTTrWOyMGrE20rxHOazELgODu3d9WmvW1q4iM9sdHeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI6c0iOnNIAAAAAAAAAAAAAAAAAAAAAAAAAAApqxNtK8RzmsxC4DzP8ACa/7PfH3n+E1/wBnvj73pgPO0u7a1dWkzThFomeMOrvWhOtWMTi1eWeScB5kd01pmPYx45hLbuNttdto3fWzy+HB3AIe70vp6ey+3hymHL/mH89f6/bL0Hn/AOYfz1/r9sgpXR1Y066ulM8Y47eccSvd9bVtOYmJ7Zu7O5/7anx+mU4I9HTjS04pHxnq5O8931b69rVrmJx2x0d4CmlE10qRPOKxEo+9aE61YxOLV5Z5JwHmR3TWmY9jHjmEtu422122jd9bPL4cHcAg0dK1dCdLUxjExE1nq5bd21tG26nHHKa/c9EB50271eNsxfE8PVx9ibuvdrad9+pjPZDrAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEceukRx64JAAAAAAAAAAAAAAAAAAAAAAAAAAAAeZ/hNf9nvj7z/AAmv+z3x970wHmf4TX/Z74+93a+l52lNeU84SgPK8nWpbhS8THbH3wl/w2tqUm98zbHsxM8XoAOPumhqaerNr1xG3HNJ3ru/mxur68R83QA8uNPvGnMxWt467c/Yvod0veYnUjbXpPOXogKaunGrp2pM4z2vPt3PWicRWJ8Yl6YDgr3G3lzNpiL9kdnxS910NTRtOds1tzxPF1AOfvenbV0orSMzuyr3PSvpb99cZxjj6XUAPO0u7a1dWkzThFomeMPRAU1NOurSa2jh9Dz7931tK2axM4nhav4y9MB5fla+pbjW8zjnb9Xd3fQjRpjObTzlMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjn10iOfXSAAAAAAAAAAAAAAAAAAAAAAAAA4O8931b69rVrmJx2x0dGjpWjuvl24TMTHoynAeZHdNaZj2MeOYdveKTbu9qUjjwxHxTAOPumhqaerNr1xG3HN06unGrp2pM4z2rgPMt3PWicRWJ8YlJXuNvLmbTEX7I7Pi7wHL3XQ1NG052zW3PE8VO9d1mbTqacZzxmHa8/U1u8aOpi1sxnhmsYkEcafeLRsit8dJzEfcpq6c6WpNJnMw7P8dp7fVtnHJzUpfvOtM9ZzM9Px2A9DR/g0/6x9Di0u7a1dWkzThFomeMPRAc/e9O2rpRWkZndlXuelfS3764zjHH0uoBx977ta99+nGZnnCTuldSlNmpXERynMOgB52p3LUrb2Par2ceK2l3K8znV9mOkTxd4Di0u66ulqVvE0nHZmfudWrE20rxHOazELgODu3d9WmvW1q4iM9sdHeAOXv8A/BX+32S5NHRvqRa2n61Zjg6+/wD8Ff7fZKn+Xf8AZ8PtBBOn3jUmItW89N2ftdndu7+TEzaYm09Ox0AAAAAAAAAAAAAAAAAAAAAAAAACO/NIjvzBIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADn73p21dKK0jM7so+6aGpp6s2vXEbcc3YA4e9d21L602pGYmOqbumlbS053xEWmXQA87V7trW1bzFOE2mY4w9EAcfee6Wteb6eOPOOSGLd6rTbEamMY9X9HpAOHu/c7botqxERE+rzy7gB52p3TV8y2yma54cXboU8vRrXtiOKQB5lu6a0WmIrmM8JzHH3vQ06RTTrWOyMLgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKanYtHKFdTsWjlANAAAAAAAAAAAAAAAAAAAAAAAAc/e9O2rpRWkZndl0AOPumhqaerNr1xG3HNXvXdtS+tNqRmJjq7gHP3TStpac74iLTLm1e7a1tW8xThNpmOMPRARd5pa+hatYzM4+lB3TQ1NPVm164jbjm7AHL3zSvq7Nlc4znj6Fu6adtLSmt4xO7LoAU1dONXTtSZxntefbuetE4isT4xL0wHBXuNvLmbTEX7I7Pil7roamjac7ZrbnieLqAc/e9O2rpRWkZndlXuelfS3764zjHH0uoBz967v5sbq+vEfNxxp69JmK11I64y9QB5s9z1tsTtzM84zHB1d007aWlNbxid2XQA4u8d0mbbtGOfOvRBNe8TXbNdWa9MTh6gDi7t3S1b79WMY5Rl1asTbSvEc5rMQuA4O7d31aa9bWriIz2x0d4A87S7trV1aTNOEWiZ4w9EAAAAAAAAAAAAAAAAAAAAAAAEOv9VMh1/qgiAAABLofWTIdD6yYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGTylXT7Vp5Srp9oLgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjpzSI6c0gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACttOlpzalZnxhYBkRFYxWIiOkNAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABHHrpEceuCQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEc+ukRz66QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABkxExiYzEtAR+Tpf8Azp/4wvEREYiMRDQAAAAAAAAAAAAFbVraMWrEx4wVpWnq1iuekYWAAAAAAAAAAAAAAAAAAAAAAAAAAAEd+aRHfmCQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFNTsWjlCup2LRygGgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIdf6qZDr/AFQRAAAAl0PrJkOh9ZMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADJ5Srp9q08pV0+0FwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAR05pEdOaQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABHHrpEceuCQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEc+ukRz66QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABHfmkR35gkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABTU7Fo5Qrqdi0coBoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACHX+qmQ6/1QRAAAAl0ZiM5Sbo6otKucpdkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBNoxPFWkxGctmkRHaytc5BbdHU3R1NkeJsjxA3R1N0dTZHibI8QN0dTdHU2R4myPEDdHU3R1NkeJsjxA3R1N0dTZHibI8QN0dTdHU2R4myPEDdHU3R1NkeJsjxA3R1N0dTZHibI8QN0dTdHU2R4myPEDdHU3R1NkeJsjxA3R1N0dTZHibI8QN0dTdHU2R4myPEDdHU3R1NkeJsjxA3R1N0dTZHibI8QN0dTdHU2R4myPEDdHU3R1NkeJsjxA3R1N0dTZHibI8QN0dTdHU2R4myPEDdHU3R1NkeJsjxA3R1N0dTZHibI8QN0dTdHU2R4myPEDdHU3R1NkeJsjxA3R1N0dTZHibI8QN0dTdHU2R4myPEDdHU3R1NkeJsjxA3R1N0dTZHibI8QN0dTdHU2R4myPEDdHU3R1NkeJsjxA3R1N0dTZHibI8QN0dTdHU2R4myPEDdHU3R1NkeJsjxA3R1N0dTZHibI8QN0dTdHU2R4myPEDdHU3R1NkeJsjxA3R1N0dTZHibI8QN0dTdHU2R4myPEDdHU3R1NkeJsjxA3R1N0dTZHibI8QN0dTdHU2R4myPEFazETxW3R1UrGZX2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqrExvytsjxUiPawC+6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIKzMb8rbo6qTHtYX2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqraYmeC2yPFS0YkF90dTdHU2R4myPEDdHU3R1NkeJsjxA3R1N0dTZHibI8QN0dTdHU2R4myPEDdHU3R1NkeJsjxA3R1N0dTZHibI8QN0dTdHU2R4myPEDdHU3R1NkeJsjxA3R1N0dTZHibI8QN0dTdHU2R4myPEDdHU3R1NkeJsjxA3R1N0dTZHibI8QN0dTdHU2R4myPEDdHU3R1NkeJsjxA3R1N0dTZHibI8QN0dTdHU2R4myPEDdHU3R1NkeJsjxA3R1N0dTZHibI8QN0dTdHU2R4myPEDdHU3R1NkeJsjxA3R1N0dTZHibI8QN0dTdHU2R4myPEDdHU3R1NkeJsjxA3R1N0dTZHibI8QN0dTdHU2R4myPEDdHU3R1NkeJsjxA3R1N0dTZHibI8QN0dTdHU2R4myPEDdHU3R1NkeJsjxA3R1N0dTZHibI8QN0dTdHU2R4myPEDdHU3R1NkeJsjxA3R1N0dTZHibI8QN0dTdHU2R4myPEDdHU3R1NkeJsjxA3R1N0dTZHibI8QN0dTdHU2R4myPEDdHU3R1NkeJsjxA3R1N0dTZHibI8QVvMTjC0WjEcVbVxhsUiY7Qbujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6m6OpsjxNkeIG6OpujqbI8TZHiBujqbo6myPE2R4gbo6o9aYnGEmyPFFq1xgEYAAAJdD6yZDofWTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyeUq6fatPKVdPtBcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEdOaRHTmkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARx66RHHrgkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABHPrpEc+ukAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAR35pEd+YJAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAU1OxaOUK6nYtHKAaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAh1/qpkOv9UEQAAAJdD6yZDofWTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAra9aetaI9MgsI41tKf+yvzXjjyBoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMnlKun2rTylXT7QXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABHbW062xa9Yn0gkFPN05/7K/M8yn76/MFxXfX90fNYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEdOaRHTmkAAAAAAAAAAAAAAAAAAAAAAAAAFd1Ztt3RujszxWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARx66RHHrgkAAAAAAAAAAAAAAAABkTE5xPIGgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjn10iOfXSAAAAAAAAAAAAAAAAAAyZxzBoyJzGY4w0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABHfmkR35gkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABSNSkziL1z0yC4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKanYtHKFdTsWjlANAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFbWrWM2mIjxlYAAAAAAAAAAAAAAAAAAAAAAAAAABDr/VTIdf6oIgAAAS6H1kyHQ+smAAAAAAAAAAAAAAAAAAAAAAAAAAAU1NSunGbTxnlEc5NTUjTrnEzM8qxzlDpxM3tbUxN44eiPAGzOrq858uvSOc/crGjp1nO2JnrPFe1+imWsYtZqxpxEWmkcJ6Eada8dOZpPhP2M1OOnb0LLhq9daazFdXt5WjlP3J3L4StpXmlopPqz6s9PD7vkzYsuugBGgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGTylXT7Vp5Srp9oLgAAAAAAAAAAAAAAAAAAAAAra22M8+kR2oNTXvWPZisWjs5/d9qXU9fT/ALfZLkiJjnzyDtpbfStsYzGVkXdpz3enowlAAAAAAABS+pWnPjPZEc5BdW1615zz5R2ypu1bzwrFK9Z4z+nxZFIr1me2Z4yDLb9Tn7Nf2xzn4/d80elpUim21azMTiZmPx2JlbTtndM8O37/AL1FZ0dOfqQzyNL9kJItW0Zi0T6JbiARRoaUfUhltGtY3U9i0cYlNhDqW3TtjlHME2hq+bTPK0c46JXFS3lau/6s8Lff8HXNqxXMzER1mUFhFOtGcUib+Mcvn92VK94mttuvEVzytHKQdAyJzGYaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACOnNIjpzSAAAAAAAAAAAAAAAAAAAAAAAItfV8qmY9aeUL2tFaza04iHna2pOpebz8PCAbp2t/iKWzmZtx+L0nkxaYnMc4erE5jMdoNAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARx66RHHrgkAAAAAAAAAAAAAAAAQ61ds+bXhMc8dEzAU0tTfHHhaOaRxXzpauI5xxr6PxwdOlqRqVzHCY5x0QSAKAAAAAAAAAAAAAAAMmYiMzOIBohnvFI5Zt6EVu827IrX08QdY5KX19TjWeHWYiI+hLGjefX1bZ/LwBMK0rsjGbT6ZysAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACOfXSI59dIAAAAAAAAAAAAAAAAAg1a/6mZ48OGexOi1o9mLdPo/HH4AppWil9sz7NuXhP6/jm6HLMZjCbSvujE+tHPx8RIkAFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEd+aRHfmCQAAAAAAAAAAAAAAAAABza02nUmu61YjlicZdKLXpupmvrV5eIIc2ry1L/Gc/SR3jUrMboi0duIxKszmImFVHbW0XrFqzmJWcejqeVbj6s8/Dx+91oNAAAAZMxEZnhBMxETM8IhDMzq8bcK9kdfT9wE2nV48Y0/p/RTfW3CKZr1wy1vMnEerHPxATaEzNJiZztnET4JUXd4/089ZmUoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKanYtHKFdTsWjlANAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABB3mMxpx+ePtboWmJnTtOZryme2P0V1+OvpRHZmZV1M1tXUj6s8fQDqGROYzDQAAAAAAAAAAAAAAAAAAAAAAAAEOv9VMh1/qgiAAABLofWTIdD6yYAAAAAAAAAAAAAAAAAAAAAAAABkziMy1Br2m1q6UdsZt6P1ArO+fMmOH1Y6R+qkz/q2x2xH2r2nEYRWnGpXxzDUjFqwDTKt/Ut6JWjky0ZrMdYKepX0QitZaM1x29k9JaKibSv5mnFu3lMdJXc/duF9SvZndHxdLm6gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMnlKun2rTylXT7QXAAAAAAAAAAAAAAAAAAAAABHqzi2n/b7JckTmInrDq1eNqR0zP2fa5aepHoB091mPJxHZMx70zn7pwrePzfZDoAAAAAABW1orWbTyiMoe7zM2vNvWnEz4eHwb3i2ZjTj+0/Z7/oU08RaePGY+gE836K5ZlqgpqziseldHrcafGBUWyvSI9BEWieFpx0ni0QW3T1V5GQGTxjBpRWL4vETn1Znj8AmImMTHCQdMsmItGLRExPZKDzb0iIti0fumcfNfzfBRW030Lx5c5pP1Zn8YT6WtXVjhwtHOs84Qalt8RGOU5UtWLc/miO8Q921J1dPNucTiZ6rW1qVnETut0rxn8ekEitrVr61oj0yim97csUj5z90e9TyqdtYmZ5zPEHTFotGazEx4NcVtLSjnX3q1m2lbOlOI7azyB3iHR16avD1bftlMAAAAAAAAAAAAAAAAAAAAAACOnNIjpzSAAAAAAAAAAAAAAAAAAAAAAra0VrNp5RGQcvfNTNo04nhHGXHacyve02mbW5zxlGDXqaE50KT4RDzdPTtqZ2xnD0O6f7anx+kEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACOPXSI49cEgAAAAAAAAAAAAAAAAAObvVM7bRz5IdO80tFo5dsdXXq8KZ8Y+lyakbdSfHizVjtraL1i1ZzErOLR1fLtx9Wefh4u1pAAAAAAAAAAAGWtFYmZnEQDVL6lNP1px4IL95meFIx4yg7czxnqmria/ebT6kbY6zzQ2mbTm0zM+JxmcRxmUtNGI434z07E0R1pa3LhHWU2l3es8Zzjsz2rxXzJx9WOfj4J1gyIxGI5NBUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARz66RHPrpAAAAAAAAAAAAAAAAAGWiLVms8pjDQHJGZ58J7W52zFo5x71tSuNS3SeP4/HaqMuitotWJrOYlZz6d9lsT6tp+U/j3+l0DQAAAAAAAAAAAAAACO+rWme2Y7M8vT0BIOSdS1ucz8JxH3/jkvo7rX9adsc+c5+YmugAUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAR35pEd+YJAAAAAAAAAAAAAAAAAAAZM4By6lduraOvtQjTd4vT2Zi8TMTjEShm1eyVBN3fVxjTt/6z9iDdHj8mbo6yD0Rzafeq8tThPXqm83TxnfXE+KC4rvp+6Pmi1r7rRp1nxt6OnxBtreZOI9SPf+n45ItS02nZHLtle9ttcRHHlEI4jCjeUMmcVmejWTGZiuM5mIB1UrtpWvSMLAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAApqdi0coV1OxaOUA0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEetqeXpzPbPCI6yCKJ3a2pbsidsfDmtaN1Zie2MK0jbSInn2+lZUV0NaK6VK6nCc7Pk6Xn6n83l44TbOfTGJdehabUxb1q8J8UVKAAAAAAAAAAAAAAAAAAAAAAAAh1/qpkOv9UEQAAAJdD6yZDofWTAAAAAAAAAAAAAAAAAAAAAAAAAOalt99S35sR6ITattule2cTEThDpxs0ax4LEpaeKludZ8Vlb+pM9OLTCwCoK6f8dfRCymlOdKvoRVwFRlOHeqfmiY+11uK07dXSt0tj5u1i9uk6AEUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABk8pV0+1aeUq6faC4AAAAAAAAAAAAAAAAAAAAAItT+Wv9Z+xy6XqR6E95/wDyojsin2odL1I9AJe7YjVvHWIl0uXRj/8AIz+Sfph1ADJnEZnkitqzfhpfG88o+/6AXvqVpGZnj2RHOUdtTWtxpWsR+bn7m6elWuZ4zM85meMpYjAIIv3jPGNOfRlbzNX9lf8Ay/RJavRGCG1da15t7HH0smmtFq2xSds8olOKKU1q2nHq26W4JFbVreMWjMKbb6fqe3X9szy+IJketmNOcc1J7zWOEROek9iG+te088R0gF4nNYnq1BEzX1Z+CWl4t4T0RVsA2AMGGgMmMo9PMRMT2ThKjj1ren7IBqupbEYjtWRX9eQZSIm0xMZjGUm2vSEUTi8T8EwhEzHK1vnn6Vt9lQUid0ZGcreloKzWJ48pjlMc0un3i9IiNSN8dY5qGQdtL1vGaWiY8FnB27o4W6w6O6606un7XrRz+8ROAAAAAAAAAAAAAAAAAAACOnNIjpzSAAAAAAAAAAAAAAAAAAAAAOXvt/YimeM8Z9Dqed3q27vFsceyPx6QQTLp0O65jdqRP9V9Du8Uxa8Zt06Ohi1cIjEYhXuv+3r8fplZXun+3r8fpk4lTANoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhm86k7dOcV7b/d9/YC19TE7axuv0zy9KulqXm801dsWxmNvKYXrWKxiI/VHqxttTU4ezOJ9E8E0TgKAAAAAAAAAAAAAACOPXSI49cEgAAAAAAAAAAAAAAMtMViZmcRANEcatJ6/+MrxMTGYnMApr/xT6Y+lDrVzTPbCbV41x1n9VJjMTEs1Y5XV3W+abJ515ehy4xMxPOG1tNLRaOz3kHoDKzFqxMcp4w1pAAAAAAAEerqRp03dvKI8QNXVrpxx4zPKHJe9tSc2n9FZmbTMzOZnmM2rgVibzivzK1nUtiPjPR01rFIxEJ0pSkUjEfGS3KI5TM4haIMZ1qR0iZ+z7UntRJWsVrFY5QsDogAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACOfXSI59dIAAAAAAAAAAAAAAAAAACLWj1bdJxPx/XCJ0WjdWYzjMYy544xmeE9olJjMYlLo3zE1tPtR74RE5jE19aOQkdQrW26sTHD0rDQAAAAAAAAAAra1aRm04hHfXjHscezPZ+v44oZtNpzMzM9Z/HATUl9W0ziOER85+76fQjZkiJnhEZmeUCbra1m9ttfjPR1VrFaxFYxEM06Rp1xHGecz1lcWQAFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEd+aRHfmCQAAAAAAAAAAAAAAAAAEGpW2/PtTX8s4x8lYjTnsicdeLpUtp1tOZjj1BHivZEBbStX1Z3eE81InjjlMc4lRcVBFuDJxPOIYArNKfsr8jRrERNojGZL8sRzmcLTMVr4RAqk+1qTP7eENZWMRx5zzaAtpxnWr4RM/Z9qpS8U1ZnbmMREzHYDrFa2i1YtWcxKyAre9aRm0xEFrRWs2tOIhDGZnffnPZ0/HaCeJiYzE5hrn08RrYrwiYnMdjoAAAAAAABmYmZiJjMcwaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACmp2LRyhXU7Fo5QDQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHLa3ma08PZpOPTKTvGrNYilPXty8PFHWu2sVjsWJVmsaIhmM97jwqkp7PevC9ffCunObWv1nh6IWnEa2laeuPnArpARQFNS8adJtPwjrIGpqV067rziEXn3vHsacVjsm0/YpWs2t5mpxtPLwSKms3av7qx/6/qedqRzpW3onAGJqTT1qanqzx7YnnCRy2pFo4845THOEmnq8qak+12T2T+vgi6mAFAAAAAAAAAAAAEOv9VMh1/qgiAAABLofWTIdD6yYAAAAAAAAAAAAAAAAAAAAAAAAEPe4z3e0R24+mGW5N7xOK08bwyyxmqK340t6FhthlZzWJ6w1XT/jr6FkUU0f4o+P0rq6cYpjxn6QWAVEevOK1n80O5w63Kv8AaHcxe2+PQAjQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADJ5Srp9q08pV0+0FwAAAAAAAAAAAAAAAAAAAAAQWj/wDImfyR9MoaRikJdW3t6mOykfajjkDafzac+mPc6dS8adJvblDkzi+nMfvhLr+3qVr2VjdOY+EfaDNttSYnVxjsr2R6espa4hHp2zM1nnWV1F90NzCPLAXm8dirGgMaTyFYMbwrGZnkCPXik6ftxnpjm5ZrNJxb5umc2tuns5R0R61c0zHOvFERMAEldXji3PqlhzJtGc1mOkgkV3xv2ccrcublzmZnrORXUipzv/aSNaMe1HHw7WaUzMWme2QXR6kYmJ6pVNX1PEEU8Iz0TIZ5Slr6lfQI0AVkxmOHNsTmMwM5Wx2TxBoAMtwrPoX7tM01qx2Wrj4wpb1cdeDbzNYi8c6zkR3gAAAAAAAAAAAAAAAAAAAjpzSI6c0gAAAAAAAAAAAAAAAAAAAAK2tFazaeURly920p/lvxmeMfe6Nb+OY/dMV+c4JZ5VYAMKZxGVe6xju9Gav8V/6yk0o26VI6RDfFKuA0gAAAAAAAAAACK+vSs7Yza3SvEEohm2rb1YrSOs8Z+73s8ubRjUva3uj3JokvqUp61oj0yiv3rTrjheYnlOPvwvWtaRisREeDl77bNq16Rk0Wt36fq0j0zKO3e9aeUxHohAKJv8TrT9f3QrOrq253t88I2wC3PnOVtOLTqVrSZiZnslXwji7+76HlRMzibzzkEwAAADLWitZm04iFdTUrpxm3bwiI7UcVtaYtqc4nMV7I++fxCaHta3PNdPHLtn7ksRERiOEAmqK6lN+navWFgGaU7tKszzxx9Paui0vZ1NSuOGd0fH9YStIAAAAAAAAAAAAAAI49dIjj1wSAAAAAAAAAAAAAAItaJnbEdff2JVNSu+kxHPs9IM8uMcLWz1z+IUjNbYtwmeVo7f1Xjbq1iZjj74kiN+nMW8YTBkRxzMzMkwRMxO23OOU9Y/HNrnWnJrxjUz1hTKfvMcInxc7UR190vms0/a6HB3e23Wjx4O21orHGfh1bRYR7rzyiKx4/j7VbUmZ43t6InH0JolmYjmzdX90fNF5dP2xPpbtjpHyT6XErXPsrnO2M+DcTE5i9o+OfpPqGJ3D3jUm+rMdleEOjzL1njWLR4cJcdpza09ZmV0MnG0xEc5Ym7vWMTbt5QnQlpSKVxHxlaIFoYUVtSLYnlMcphaeEZlWsTqcZ4U7Os/osiKbIn1a7568/fK9aakRwxHhn9EkzFa55RBE2nnER8W8RXS1N2a29avNIg0/a7zqWjlHD8fJOoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjn10iOfXSAAAAAAAAAAAAAAAAAAAObUiK3tEdvH5ulDrxwi3Th8/wBcCVHEmcqmenOeEekZTaFcbrZ4Wn6EzKxFaxEcoaNgAAAAAAzkhvr5iYp/5fd+MekEl9StOfGekc3Pqak2zFuX7VJt0z6WDOkzMzmQEQmXVo6e2N1vWn3KaGnnF7Rw+rH2/c6FakABQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABHfmkR35gkAAAAAAAAAAAAAAFb220mY544elFGdGOEzavOc8ZgE4yJzGY4w0AGWmKxMzwiAZa0VjM8nLNd97Wt9bs6JczqYtMY6R0/UwohpmszWZmcdV2c72n4LAACGOMSpq52ZjrxXAVjjGQiu2MRybHIVkcysY1LT1wtgEIm1JzT4x2SmjVpNN+eEc/BDOccIyrXTjfvtxsKvx1LRe8YiPVr9s+P0KzfPLkzUvMztj4siAM7L1vEZ2zxiHTXV07RwvX5ucmInnWJ+CDqy1x+XW8xWKxx6Ryh2AAADOXNFOtM/xxmP3Ty/UF9S2yk27exHNZ04ravGY9bx6/opaZtracWtnjnHYnsCPzrWjNKxEdbT9zPN1K8bbJj4x96kTi1qxyiTd7dM8twJq6+nPCZ2z0tGEkTFozExMdYZmEd60j2oiYt2beEyCYVpu2Rv9btWAAAAAAAAAAAAAAAAAAAAAAAAAABTU7Fo5Qrqdi0coBoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACmpqRp0m0/LqampXTrutPw6ueN2pffqRjHq16AUiZmdS/r25+C4KyMtG6MTylooRwR6nraf8AeEinrd40688ZtP2IR1gI0OXU/wBTX/LT6f0dM8OLl0onZEzztxn4kSrtYNIMmYiYiZjM8moYr5ltSenCs9MJbiyamZaItExPKWUtF6xaO1ZUbo6kxfy75n9tuv6p3LeMx4xxiekptHU8ymZjFo4TDKxIAKAAAAAAAAAAIdf6qZDr/VBEAAACXQ+smQ6H1kwAAAAAAAAAAAAAAAAAAAAAAAAIO9ctP/8A6QXW7xGaVnpaJ96lljNVAbYV054THS0rKacYm/8AZdForTlPplZSn1v7SC4CopeM30463h2uSP8Ac6Xx+h1sXt0nQAigAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMnlKun2rTylXT7QXAAAAAAAAAAAAAAAAAAAAAByanrd4nwj6FVtSYmuvMdce6FQJnbi08omJ969JzuvM+tOY9HYi1JiKTmexNSPYrjlgVkztvFo5crejr8EqloiKznjHRFXV1I5xWY96icRxrVnnEx6V4tE8pgGit9StI48Z6RzV8y0z6sRHpyIkblFXWrNtts1nx7Vr6kVjrPSBVptERmeEIb3m/CvCI5T1VmZvPtcujUFsipmY8QQ2rstMdnOFUuras6ee2JRiC+laKzbMxHLmoYBJqakTE1rxz2opXwyQUW07TXnHCVcZ4rAk8yuM+5Had05kYDLck1PUr6EM8eEJ6zExmAbENwCqzCto4cOcclpliDInMRJExPKVa1ic5jPGVwZON0Z6rzGYmOqvMiccAdXd7b9Ck+GPklc3dJ46leyJzHxdIgAAAAAAAAAAAAAAAAACOnNIjpzSAAAAAAAAAAAAAAAAAAAAAh1+WnHW8LK6s/wCtpR2cZ9yzHJYAMqprcdOYjnOI+fBMgv7Wpp18cz8HQ3x6SgDSAAAAAAAxHOtEzjTjfPWOUfEEiKdaLcNON88s9kfH7ss2Tac6lt35eUfLt+K8RERiIxDN5LilqzeMalpmO2I4R9/vWiIrGIiIjwaM6oDEGvO1b79S1uzsdXedTZp4jnbg4m+MSgDSC1aza0REZmeUL6WhfVnhGK9Zd+jo10q4jjPbPUFNDQjS9qeN5j5JwAAAU1NSKRGeMzyiO1mrqeXEYjdaeVYUrSfWvO689vT0JbgVrM2339bHLshIwY1prWCoMySIqmdveKfmiY+XH707n1eEVtnG20S6G50lAFQAAAAAAAAAAAARx66RHHrgkAAAAAAAAAAAAAAABW1czmJmJ6w2sbYw0BTUiZrmI4xxhWtotWJjlKVDb/T1OPq25eE/qzyixTvMf6focrr1uOnb0OfS0/Mt4RzSdBpaU6nhXq7K1iscPmjpfdaaacR7POZ5LVvMzasx7VeeFF2SDKsCZYijJtWOcxCuraa6dpjnhTQ7xp10ttonPbw5rJqW4m5qamnF46T1Rd2tO61eznEdHQXyr247RNbTWecOjQ/iqatN9eHrRyU0Y1YjNaZrK9xnpP2rTMRGZnEKxGpP1YifGfuyvXTxObTun6D5NVrWbTFrcIjlH3/clBtFNWs2rGOcTE46qTfUvGK0mvjKYBTTpFK4hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARz66RHPrpAAAAAAAAAAAAAAAAAAAFb13UmOWY5rAOPnGVqRE3jPVupXbefHj8/wBco7TNYzHZMT8hj9doyJzGYaNgAAACl7xSOPOeUdUV9fOY0sT1t2R6OqKbcZ5zM85kS1bU1JtPtcv2xPD9UczkEZAjjyiZ9EZW8vUnlSfo+kFUmlpTqTmfVj3/AI/Rte73mY3YrHbx4/j4umIisRERiIVZDk0BoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAR35pEd+YJAAAAAAAAAAAAQ6se3mZnbPDhPL8fjsVmK1jO60RH5pTzETExPKXNrVmtq0zmszn5ApnUttm9pxuicOmUExmJjq3zLxwxFvHOFF9PUmInNbbYmcTHFJXUpacRaM9O1Do2nM1tERnjGFe8VzERMZnPBkdaC9vM1NserXn4z+jIm0VmK2mJ7M8cI9LUxXE0nhwmY4qJmWki0TGYnKszmVQAAAAAAAAGYt1j5fqre1q9tZnpj9RV2XttrMz2GWakbqTAikRw4814VWhFCkb9aKcoxmRkzNbRanr8ojqDqrp0p6tYjx7VmRy4tAVtaKV3WnEFrRWJmZxEIJzqWi9oxEerH47QJm2pxtGK9lfvWBUV1KReI4zExxiYVmbzGJvM+iF55KCsnFK8I5ExujEkxmYjs5tBbzLxGMRM9ct7vmb33Tm0Y4qJO7/X9P2IJwAAAAAAAAAAAAAAAAAAAAAAAAAAAU1OxaOUK6nYtHKAaAAAAAAAAAAAAAAAAAAAAAAAAAAADJmIjM8IhDOta/8AFGI/db7IV1JnV1ZpP8defjP6LRGIxAjPbmMTqW90fYrt1InNdW3x4riisa2pT+SkWjrXn8k2nqV1K5pOUStqRM5j2bfujmYa6hzRr20+GrGY/fH2w6ImJiJjjEorQAAQ3143TTT9q0c57IBJa9aV3WmIjxQ217Wj/TpjxsrFOObTNrdZ+zothcTVNmbRa87rR2z9y5gEAFAAGWmK1mZ5QjpSZmb2zFp6TjCSYiebUFZnWjG3Uz4WhaO87cRq1mvjHGBhhq+teP8AD3tWYmMYzEo4nEYR30YmJiszXPOI5SyNSYttvGJ7PEVM1TLciNmcRMz2K6ETGnmZ424q61saVvkvX2axHSMOf/p01xVpE1vevZnMfFeZR2tjVr4xMStlvjdiXsmWUvGlqxaeFbcJ+wZasWrMT2qO0Rd3vv0ozzjhPpSooAAAAAAAAAAh1/qpkOv9UEQAAAJdD6yZDofWTAAAAAAAAAAAAAAAAAAAAAAAAAh71w7vaemPpVtxjKTWjOjePyyhrOdKs+ELGaANsKxwvbxxP4+SynHzfCa/j6V0UVpzv/b7IWUpzv8A2+4FwFRlYz3nT8Mz7nW5tGue8TbpX6ZdLF7dJ0AIoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADJ5Srp9q08pV0+0FwAAAAAAAAAAAAAAAAAAAAVtaK1m1pxEcwcuP9PWz23li0TnRm2MbrTPH0qWnFZnpAq8UiazmM5KasV08W514Y6kezSI6RhHNazq13xmJ4fcDZta05tw6R0Ek93r2WtHxUtpTHq6s/GAYYxHDh6FczWcW7eUwtkGVzF545ieq6rYnIjZiLRiYzCkVxa2Zzx4Z6JGTHtZFYNwYBg3DJ4RmQc+rxtOOyGsnr1nLRCFogq2VURzOZ8Fp3TwrEzPhGVYxjgiNCIbOI5gqznPobM55EALUttnwlUBOTKKt5iMTmV4mJ5SK0Y0GRGIaAByZadsIZ7Z7RHV3e0/4iMcYmvH73Y5u6aeInUnhujER0j9XSAAAAAAAAAAAAAAAAAACOnNIjpzSAAAAAAAAAAAAAAAAAAAAAh1f59P0W+xZTX4a2jPjMe5djksAVnTm/rzw/bHL9fxwRVPNpXV9qeMRjER1/wCF41rWn2dG/wD7cF4iKxiIiI8BrUZu1P2U/wDKfuZv1P2V/wDL9Fg2iu/U/ZX4W/QnWmIzOlf4Yn7WifRite8UmcWzSfzRhLExMZicwop5dc5rG2eteC/RidHqatdPhxm08qxzlS1tWvq7b+nhP3fQzTptzNpzeecmmG2+px1ZxH7Y+3r9C8RERiIxA1m3VBjUAY0AEPeNXy6cPWnhAOXX1PM1ZmOUcIRtrWbTisTM9IdOl3OZ46k48IdWXNWs2tFaxmZ7HXo9z7dXj+WHTTTrpxilYhcGRGIxHJoAAAI9TU2RERG608og1NTb7NeN55R9sq1pETNp42nnKW4rKUmPatObzzlcHNQY0AAAAFNWM6V48JSadt2nW09sRLGd2jGjFZnlMx72+KVKA0gAAAAAAAAAAAAjj10iOPXBIAAAAAAAAAAAAAAAAAArasWrMSsA5dWNSunNZrns3R2trXZp4rzwvq29uK9kcWZj0T48GK1HHp2vSZmk4mebo7vumbXvOZls6VJnOOfivEREYiMQXkYtlXfG7bni1S+nW85tHFlW1vW+ds5wsrWlaRisYWBloi1ZieUufyLVnhGY6uiZiJiOrVlwxHp02RM2mMz7lt9Y7Z9OODaxunM8o5LoijdK22817J4x6fx9rJrsnh6s+5k8MW6cVnlL66AHRkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABHPrpEc+ukAAAAAAAAAAAAAAAAAGTOIzLnnUvMbt01zyjEcIB0jlnvFojs+LPN1bzMZisdYjiJq3eMb4xxt2xH4/GVYpaY44j8fjqtWsVjEfHxJkRWK4rFd1piPFmyn7Y+TebLWiscwUmNs+zM19E4S6NtSYn25nHLPHP49KkUmczb2ax2ytac1mlfZryz2/jxZ3+LPO0n+IrHS39ZypqXm8Yty/bE/jKOMVjFY+LFS1szMsJnGI7ZTaOnScTqT7U8qzw/wCfoCRHTTveYxHDrP44/jinp3eleNvanx5fJMKuAAoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjvzSI78wSAAAAAAAAAAAAre9aR7U+iO2XNqWtfUrM12xiccePYmvpTv31nMzw49noQ6sWiaWmsxieIACoraZjjHOOSSlZv7d5iZxwxyUk09SNOdtpxE8pSxYvMYlHpTxtMcple9vM4aeZ6yRG2MMqprR7UX+E4W40njOaz2q6vZHVa0ZrMKLDKzmsT4NaZGyrzvHgzUtm0UicZ7RVq1jVz+yPezZbTnnur17YO6T7M45Jb3rETXOZQRgKhPJDWce1aJ3T4JgVHvr4/I31/dCSbbYzPJFN7WjhERHWQbJCOLYrOImfHkl09OdSM34VnsQZum3Ckbp9zfKmZi1rzEx+3gmiIiMRGIZKiu20ctS/xnP0tnVtpx7eLR15Sre0xitfWlsUiJzPG3WQJm2rbdaMVj1a/bKwCAZVmwNtPBQyCgAFKxqXnOdtek44pq6ezOy0xnsnjCHRvWsTWc7pmeERzTbb2/JHv+5BsamLxS2ImeWO1IpWlazmI49Z5rgAAAAAAAAAAAAAAAAAAAAAAAAAApqdi0coV1OxaOUA0AAAAAAAAAAAAAAAAAAAAAAAAABHrXmmnMx608I9MpHPr2zq6dOfO0/YBSu2sR0WY1WWCt9SKTETnj0haJiYzE5gBjWKClZnQzNYzWedenoXEE8TFozExMdYa5K2jQvwj2LTx/Kvq6u+fL05iYmPatHZH3o0zU1LakzSnCvbePsK1isbaxwIiKxiIxENhWW4AAYSKAAAAAAAACO1YmJiY4JGSg5+OlzmZp9CSJiYzE8Gyjj/St+SfcK3V4xWPzQkR2n26R4pHPn21FNX1YnpMSszU/jt6Cs5rE9YXh0laA2y3u0zGvevZMZdbk0eHeY8azDrRoAAAAAAAAAAQ6/wBVMh1/qgiAAABLofWTIdD6yYAAAAAAAAAAAAAAAAAAAAAAAAByaXClq/ttMOtyxG3W1a9kzu+axKANuatvWrPwWVv9Welo+5ZFFac7f2+yFla87ekFgFRvduN9W3ZmI+TpQd0j/Sm3Za0ync3UAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABk8pV0+1aeUq6faC4AAAAAAAAAAAAAAAAAAKal4pXM854RHWQZfU2ztiM254UiszMW1JzPTsj0FK7czM5tPOepedtLT0jKiKsf/AI1Y9E+/Kl+NcdZhLy0axPPEQjt2eMorWXjdWYjm1WczOK/GegJItNqxPWBkRiIiOwmcATEWiYmMxKPE1nE8uyUm6I55ZeYmsRz3TgGGM9uFfapMRblPKV4Bm2/ZeflC0RMc5ifg0AAAR6tuG2Ofa3UvtjFec+5FEArPJsceTbxikvRtSt4xasTHiI4KxMziImZ6Qmp3a0+vO2Okc/u+l00pXTrtpGIWBHp6VNKMVjj2zPOUet3aLzupitu3pLoAclO6T/2Wx4VR6mlWmrMRyxEw73N3rTtu8yvGIjEx4dQc0wrhJExMZjkyagjwLMBg3DAbFpjtz6VovGFAEtbRaMwTMRHFSlornLJnM5kGTMzOZSaGl51+Pq15opSUtFMWpO28c88pB6Qi0taupw5WjnWexKAAAAAAAAAAAAAAAAAACOnNIjpzSAAAAAAAAAAAAAAAAAAAAre8UrNpz8AR944Vrb9to+5tZm0ZmMR2MrFrzFtTHDlHT9fxC7F9UAAAAZIg1tX/AFK6UTjMxuTsSzesZzaOE45tratvVmJ9ErbaV09uIisRy7Hl1tNbRNZxMNfJr0xXTtvpFusLMKMayQMmWMzGcdsqLZMsU3xM4rm09K8QSZZNsRmeEM2atu2KR85+76Vo0KZzbN5/N93JflNRzqZ9SJvPhy+fJX/CzqW3atsfljs+Lq5NakxFKadKRilYj0LgoAAAAI9XU2V4Rm88o6t1LxSucZmeERHajpWY9q05vPOUtwNOm3MzObTzlYGGmsBAAAawBoxoCujMb9SvSc/OFkdOHerR+6sT8uDXHtK6AG0AAAAAAAAAAAAEceukRx64JAAAAAAAAAAAAAAAAAAAAQx7Wpe3ScQ29YtXHynoynb/AGn6VnO9qpHGIzzJieyWV7f7T9KyNK+14QbZ7bSsApsn99vd9xtt++fkuGisViJzznrKwAaX8VfQspp8M06cY9C8iK3jdWYUid1I8YSIqRikR4KJ9Gd2lWZ58p+C6Lu/q2jpaUroyAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjn10iOfXSAAAAAAAAAAAAAAAAy0xWJmZxEcwRa85iKRynn6P1+9z2tmW3tPG1uc8/DwZWueNvhAzWRWbRmY4Rxx1SWxmbVtGbcdsxmf0JtjhHNmdvbme2UNJrGInUxaekcoZmOzMK5yyZiOcxAi02nj9nD7/oK2inGKZt1mVYtFpxE5lou4Wta8xNpjEcogyAmjJnHp6NZGczM/AFq8M545XpttE044mPl6Eba+vXHUqy+pK2vXlOfCfxn6fQmpq1twn2Z6T9iDVnbfh2xlm6JjEkq7jsHNS9qYxm1enb8/vT1tF4zWVVYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABHfmkR35gkAAAAAAAAAAAAZaItExPKWgOOMxM1t61eEtS6+nM+3X1ojl1hBExMZhYhKto3TERjOe1ZmcXpP5lE+nMTWNsYjoy8RHHsU1KTF99c4nniSNlo3Tfd6ZYaZX2p3THobecVnrPCGeZGcV9qfBsVnObcZ7PAwWiMREANMq2zFs9mFdOa20p5za054Ry6JGxwFUrS3bOPCFuEcIJlTdNpxpxnx7AXEOpurfG6Z4EasxOJ4+IJhlbRaODREepGbVzyZMbuaS1cx08UM3/08xznhAq1a+ZfH1a8/F0o9OsUrEL5AmWBPIRHXjrTPSMJEdJxqWjwhJkBkzhWbMBszlgCgMzGcRxnpHEGsmYiMzyW2atuVYj+0r17vHPUndPTlCDO70mZ8y0c/Vjw/V0AAAAAAAAAAAAAAAAAAAAAAAAAAAAACmp2LRyhXU7Fo5QDQAAAAAAAAAAAAAAAAAAAAAAAAAHJaZnvl+laxH2uty8u9avjj6AXAVlS841tPxyr/DbhH+nPun7jXnbFL/tt7ksxmJieUufK5dansGI6TOnfy5mZifVn7PgkdJdZAFGTETExPKUWjHl2tpz6YnqmR6lcWreOcTx9CCRsMFGsyAAAAAAAAAAACs2ry3RnplXVm07aU527Ule7ada42xPpTVxHLJiJjE8m6lJ043VzNY5x0InMZgEenHtzFp415ehKj1ImMXjnX6F4nMRMdrlynrULRmsx1hXT/jr6F1Jpj1OE9Ow43CzVhWLcdsxifpWdWSn+40/j9Dscen/Pp/H6HYigAAAAAAAAACHX+qmQ6/1QRAAAAl0PrJkOh9ZMAAAAAAAAAAAAAAAAAAAAAAAAA59Xh3iJ7LVx8v8Al0OfvMYtp36Wx8yJVZGyx0c1b+pM9OKyt4zS0R2wUnNKz4IqytedvSsyvKfTP0qjVbzjTtPgsrecbZxMxujMR0SrHTo12aVK4xMRxXUpq01PVtx6dq7DoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyeUq6fatPKVdPtBcAAAAAAAAAAAAAAAAAGTMREzPCIQxE3nzLR/WOkffLdXFrxSZ9mI3W8en48FI1bX1pryrjMAurq+pjrMR81u1TWx/p5/fChq+rHpQW9avxTa8+zEeMfSj2xa+eyPegyM2jhwjr9y8RERiGgorEZvnpwWVrmJtEz25gFlIjOrnEYiF8srGI8ZBtoi1ZieUo6zMTstzjt6pFb0i8Yn5g1rnmb0tiZmJb5tojs+MAnVvfbGI5o/Nt4fJSIBvNaOEK5iOafu+j5mL39XsjqItoaU2tGpaMVj1Y6+P3fN1AAAAAAADl19Cc+ZpRx7a9f1QRMTGYeig1u7xed1Jitu3pIOSzElu760fVifRKl6205xeJr6VGAwVkhIAMycZ8EQ5y0AOPZMxMcno6N/M0q27Zjj6XnOruVoxanbndAOsAAAAAAAAAAAAAAAAAEdOaRHTmkAAAAAAAAAAAAAAAAAABlpitZmeERxlzzb2o1LxO6eFaxz+XXq3XvWZ2zPs042+yHPoa0efN9WcZjEeCdjri3tbZiYnGYysh8yNbXjZnFInj1ylZvitGCaoAgPO1c+bf+0vRQa+hN5309btjq1KlcttXUvWK2tMxCsR2pPLvnE0t8k2n3eZnOpwjp1a1End4mNGufSlCeEZlzaGSegBit6764zieyeiwozRpp3rummbRwndxxPxymQRM01on6t+E+ns+50NxkAUAAAAAAFNS8UrnnM8o6tveKVm1uUIaxNrb7855R0j8c0twKxOZtfjaenKPQsDDQAgNYA0YA0ABrDOIAVrH/wCVE/kn6TNrz7EYr22n7Pv5elJTTikTjMzPOZ5y3IlXAaQAAAAAAAAAAAARx66RHHrgkAAAAAAAAAAAAAAAAAAABDWJi1on93D48Vsq60zS1bxGYnhMfQrNt0YjMdcudnqwrHD0zlZhlGmgIAMyDRmWKMtGcTE4mOUtjUxHtxMT4RkALW3cMcPFgAvocr/2+yEyHQ9e/wAEzpGABQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABHPrpEc+ukAAAAAAAAAAAAAAAc+teLTtj1Y5+lfUvx21nj2z0/X8emDV4RiPmJVaxvtmeUe9eZ7K8/oZXhWPqx6FZtERiOQy3MRy5zzlS27bNq1zHVW1b2jETEeDd0xWJtS2+tdsY5IsiGdS09qTQ0ovG63LopGlaZ5YdFZ21iscoVbVvZpGKxhRm7PLj6GzE9Yj3omWgyJmfR6GiAABPGABJvpeI8yMY5T+Pt4Mtp2j1fajr+Ps+Sja2tX1Z4dEz+Nbvba26SvHPdE4nrDM11J/bee3skzNJxePj2LqZiWmtiMamInr2fomcvOPBtLzp+NenT0fd8lXXSrN61mImYiZ5Mm9YpvzwxlyXmbWmc8Z93T5Cu4ZE5jMcmgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI780iO/MEgAAAAAAAAAAAAADk19Py7TePVnnHR1smMxiQcTLZxw5xySaujbTnNPap07YRRbMcGtR0UtFqxPWFb0rnO2Pkhi00tExxjok86s9uPTwRVoaj31iZzaPgTq18Z+AJBF5sziIrz5Zlvtzztj0QGLzMRGZnCk6sfVjd49is1iZ48fS3AuKzut608OkLaepFPZt6vZPRuGbQw1v5Ix2wrSM6k+EG2teK9IxXjznjIMmuJ3U4T06r0vFo8Y5wIqxumbZmJnlPgIted87Y5RzZjOpEdleK0RFY8GUj2rT4glrKykThcQZPJoCGeGpHjGFmakTjhzjiVtFozArQZa0VjMg1ld15xpxnx7FdOs6utEWj2cZmHbEREYjkghr3ft1LTPhHCEta1rGKxER4LAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKanYtHKFdTsWjlANAAAAAAAAAAAAAAAAAAAABlrRWM2mIjrINGVtFozWYmOsNAAAc1+Hep8axLpc+tGNeluPtRNftBoCsqa0btK0eGVq23Vi3WMtRd3zFJpPOs4Y5zxrivqU31xnE9k9FdO82iYtGLV4SkQ6tdtvNr2c46wzw5Z4tiUZExMRMcpa7MDJiJiYnlLQAAGTOIzKtZvaMxWKx4q6tom8UmM444jt8F92tHGKUmOmeLNuLIybXrxtXNe2YWiYmMxOYSaWrXU4eraOdZR6tJ07zqV9SfWjp4/eumNAVAAAAAAEVqzfWiuZiNvHC9tPb7WnO2Y7OyfS2v8s+hWNaZmItXEWj2Zy5ct1udLUvGpTOMdkwi9TUmkcpjMNiduvjsvHvhbW5VtjlLUupWK0njNen0LK8tWPGDlPCLMtaKxmZwzUtMRERzmcMisV4856zzYnHVtON5icbYjrzWZlky6yYyk7vOe8Y6Vn6Ydbl7nX17z2ziPg6kUAAAAAAAAAAQ6/1UyHX+qCIAAAEuh9ZMh0PrJgAAAAAAAAAAAAAAAAAAAAAABW966dd15xCC821fWzWv7e2fT9wLX7xETNdON9vDlHxQ61b3pM3vxjjERwhJERWMRGIbPFrGdZE5rE9YyxXRz5UZ5xwWWM0Vp6sR04LK14TaPERZlYmI49ZaKAAMtWLc4ytXVvp8LZvXr2x97BLFlx0UvXUrurOYWcmJi26k4t7p9KbS1o1PZmNt45wzZjcupQEUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABk8pV0+1aeUq6faC4AAAAAAAAAAAAAAAAMtMVrNp5RGQc1p3at8TmMxHy/XPubp1jdNu3kzTptpETz7VtP1ZnHOZBdHrxM1rMRM7bROISGVHPeZ1OERPPnjGFoiIjENtwliKBJACto7e1YBSOMro6Ri09M4hIAACmrXdpz4cYQc4dTlmMTMdkSILYyq2sWtOKxNp8ASaWn5mpFYj2Y9aekfq74jEYhHo6UaVMfWnnKUAAAAAAAAAABy98nM0rmMcZmPo+11OHvczXXzblMcJBFtjs4KzmPFbdHVWeKqzM9DjlrJ4IgADWwq3INwk7tO3vFfHhKPKfudJtqTeeVeEen8fSDtAAAAAAAAAAAAAAAAABHTmkR05pAAAAAAAAAAAAAAAAAGWmK1m08ojLUWvPCtee60fLnIOfvGfIiZ4Ta2Z/Hh9jlw9DV041KbZnHHMSir3b2s3mJjpHazKuN7rp7NPdPO30J2ZiMRwjpAzVZam6c7rR4RKyOdalZxM8fCMs/xGn+73SeiURTr17ImfRH34Q6upe9bRE4r9JlHTS0XiZjlnGeqxHCMRyEAFNSZik4nEzwBW9ptOInERznqrNazOZrEz1mGxGIxA01im3ZbNOE9OyUtLxeueXWOiOebdKcak16xkqWJQGUVvXdSYicT2Sl0r79OJnnyn0qM0vY1bVzwvxiPHta4pU4DaAAAADLWisZtMRHWWua8+bq4+pSfnP6Ae1qWi9omIjlXp4z4rg5260AIAAAAAAAyZisTMziIK1vqYnjSvvn7vpWTQm/HbWN1ukdnp6LV0sznUnd+Xsj7161ikYrGIWbkxnQBQAAAAAAAAAAAAAARx66RHHrgkAAAAAAAAAAAAAABlrRWM2mIjxBoinvGnH1s+iFf8TXsrefh+oJxB5155aU/GW+bf8A+f8A+pNhiS9d9JrPahicxE9V/Nt+z3o6zOOMY4zwZ5NRYY3GWVYLRRuyFxNUEm2FZoYaqDEVrAAmcK7o6T8lmxCjNHUpvvmYjlz7XQiVmtZ4zEZ6rOSY6ByTe9PVvOOk8Wx3q0etSJ8Yn8fS1sTHUI9PWpqcInE9J5pFQAAAABHbVrW+2YnlnkCQUrqVv6toz0XAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABHPrpEc+ukAAAAAAAAAAAAAABy0zjM85mc+kviJzMZllrTS9qRxndMxjx4/aTo3nje0Vifn90DKO1+PbPgzMdYz0y6dHR0/KrM1iZtETOeKbETGJiMdBcjgndHZHHhz/QtmIzn3Zdc0pp7tSImcRnGeSHV1N2fYrFuWec+gXIirFpz09P6fats4Ymfd9+VqxiIhoqOYxeOM8I48WTOZ8IbbhFp7Z4R+PSrwiBOV8bnHoam0NGMRe8cZ5Vlmrp7J4erM8PDwGcRNpSb3xExEzHawiZiYmJxMckRJOjeI4xn+s/fhTEZxynpMYdlLResWjlJatbetWJ9KtY4piYHRbQxmaTmOk/ehmvGeExMc4kTFVq3mOE+1XpKsiJ0vEcN1JzXp2x+Pxk3RMZUiZrOY4SviNTjXhfp1/H/PYnTXaszPKOXOYVi0eifFqnLUmOy0Zwqb+O7QnOjXwjHy4JHP3a2I2T6Y+10K0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI780iO/MEgAAAAAAAAAAAAAAACO+jp3nNqxnrySAOee61zmLWj4o7d31K8sWj5T+Pi7AHnfXmMYnBPKXT3qmaxeI4xz9Dmt6s+hRsfyRHSqRDE41It2TEJ9sosYLbZZtkVg3CszMztrxt9AMmN1ojsjjK7IiKV+mVMzfwr9Kskzv/r9KzRBW/KI6zheIwraOET0lYBaJVFEgpEm4QtzR7Zic15T2JJYKput+2WRWc779nKOiRulp+bO63qRyjr+iCTu1Jik3nnfj8OxMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKanYtHKFdTsWjlANAAAAAAAAAAAAAAAAAABHqakaccs2nlHUDV1Y0q5njM8o6oIrN53auJnp2QtWs53WndeecrOXLl/GpDu2KzqUjlE5+adzaHDX1Y6xEul0nTIAoIe88NLd+2Yn8fBMy0RasxPKYxIIGo9PMU22514SurLUUzs7xHS8e+EimtHsZjnWcwlmxYkYROYzDXndEOnml5055Rxj0JWXpF8Z7OUwr5Uxy1L/ABnLrOcz1i8VxFNdas5i0XjxjC1LzM7bV2254bllSyxcBpEWjG7XveeycOhD3fnf+0tinmWta2cxOK8eWP1cb23C9eMXr61eXj4J6zXU04nnFoQ6dt9ePOJxPpW0OE3r0nPz/EnG/hVKRNYmkzxrOPuWZqxs7xE/vjj6Ya6sUAUAAAAUmcatOk5j8fJXh5ERwzScfKVtWJmmY51nMMvTjmLezPGYxzc+Xbc6ZaeNZ6Wj7ltaM6No8MqWzurEdtoSa040rT4HHoqnNW/C9J9K6LWnFqZ5cWr0zCZzqR4Q3KlInGZ5yssmQWyy04rMi2lXzNaInlXjP2A6tGuzRpXliOKQEUAAAAAAAAAAQ6/1UyHX+qCIAAAEuh9ZMh0PrJgAAAAAAAAAAAAAAAAAAAAEerqxpVzPGZ5RHOW6mpGnTdPwjrKCkWtbfqcbT7vQRLStbTbfqTm3uj0L4aNMqhIojpw1L17OcLSzU9ma36cJ9ErSRKwBUAAAAAAGWrFo6THKY7GgL6OtMz5ep6/ZP7k7kvXdHSY4xPSU2jq+ZXjGLRwtDFjpLqUBFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZPKVdPtWnlKun2guAAAAAAAAAAAAAAAAh7zOO72+GfmmYCDPDgtSJilYnjMQ5/MimpMV46ecRjsdEWi0ZicwoTwCZiOMspMzXMxjPYDLx2qL6k+rHVWYwisAAGTaK85wrN5m012zHpjAK04RGec/alR2iIiJnrH0pABktgGTOImeiun3S1tOtt8RmM8jVtEads9MO2sRWsVjlEYEQV7ppx62bemfuTVrWsYrWIjwhYAAAAAAAAAAAAAQd60p1NLNYzavGE4Dyo5CXW0/K1ZrHqzxqpgFRrAZgzjm1kgBEYaBETM8OM9j0tLTjT04rGPHxlyd009+runlT6fx9juAAAAAAAAAAAAAAAAAABHTmkR05pAAAAAAAAAAAAAAAAAHL3rPmaUROM5+x1OfvUYnTt2xbHzCM07TW2205ieUzzSoLRmEunffTPbymOkudbsbMRMYmMx4o/I0v2+9KIjktSNPUmscp4wxP3iP9PdjM14oHSXQAzz7cdFHTpW3aVZ8F0Pdc7LRPZZM50Eetyr/b7JXyj1uNM/tnJBXPEmeCorbTT/AJf/AFn7BbS+tPw+QlSAIyKanCIvHOk5+/3LgJYmJiJjjEtQ93mIidOPqT7p4pnRkAAAAc2lG2LafbWfd2OlBr12W82scoxaOsfolg0BzaAFABABlrRWM2mIhRqlr+1spG6/Tp6WxF9XlmlOs859HRLTTrp1xWMfa1Imq00sWi953W7OkehKDSAAAAAAAAAAAAAAAAAACOPXSI49cEgAAAAAAAAAAAAAOW+rOpPszMV8O1HaInj29W3rOlaa9nYpM5ZqsSadsc1ISV055yyqaOIRGBlWAtWMyoyK5XiMNwxuRkAUAAZMRKOYwlZMZSwRBMYGGgiQBuUOpbilU1MY4qIsthUVEnCY5JK61tOfazavvhBmTMyqPQrMWiJjlLUHdInypnsmeCdpAABTUpvrw4WjlK4DmxmcWjjEtzeJzW0+ieML6tPr15xz8YRxMTGYYvipI1sevWY8Y4r1tFozWYmPBCzbGcxwnrHBfox0jni+pXpePlP3LxrUzi2azPX8YXUSgKAAAAAAAAAAAAAAAAAAAAAAAAI59dIjn10gAAAAAAAAAAAAAAAAAAIta8VjbNc7ont7PxLmrWZmO3bHv/H0pu9W4RWIzMcfx6Va12xgVitpmMY7e1IpfjMxPLp1FR24TEfGV9Cm/UiJjMRxn7FPrTOXX3em3TiZjE24yMX2pVbVi1ZrMZiVgVxXrNbTE849/io7NWm+vDnHJyYzyGbE3drYtNevGPT+PodLhiOHSXXp3i9M8p7Y6CxdTU041I4845T0XBXJesxbbbGeyeqOYw7b1i9ZrPa5NTheaTxmO3qM2Ks8eUw05Ii/8sZ+vEfNBz1v6w22rxiKcbdYR1m1L+128yRrt01zPDOJjjErRr6k/s/8Z+9RW8RnOI4qkrojvE441iT/ABE9lI+Nv0cuI6QtiPH5yNbHR/iLfsr/AOX6Nrr5tEWrMZnGc5c230/M5dZ4x9IbK9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABHfmkR35gkAAAAAAAAAAAAAAAAAAABkxExMTxiXDek6d9s8uyervUvSupXFo/QHDt3V2/Wjl4wl0tSLRttwtHVW+lat4pPbysvalo7IvEdk84U1IyZiIzM4hHuiOddSPjP2E3p+2Znxj7xdbMzfhThH7p+wzXSr+OKs3vblG2GRHHM8Z8RGcbzm3COyF2NQGxGWQvEKKzB6FlQI5ArN4jnmAWFd9P3QzzM+rEz8AXZa0V5z8FZ3TGZmKx4K0rHG3Hj1QZNp1OfCOjp0taY20vxieEWhz2rttnst9KXu9JvfM+rX6f0B1gAAAAAAAAAAAAAAAApbUpWcWvWPTILinnaX/0p/wCULRaLRmJiY8AaAAAAAAAAAAAAAAACmp2LRyhXU7Fo5QDQAAAAAAAAAAAFbTtrNp7IysyYiYmJjMSCCPNtObamInsrH3my3/0v81NGZrNtK3OnLxhLlztutK4vH/Zf3fcyLa1Z9et/TGPoXmWM/VMP8RNYzfTt/wCvFTTjMb5tutMc1wvK2GAMllWaUf8A5Wfyfa6XNo/7j/1n6YdLtx6ZoA0gADm1o2asX7L8J9PY1LqaddSk1tHBBSedZ9avCfx4rEqzLTFazM/Lq1SI36kzPGK8IjxS3JqSatp1munET2LA87qArqXilc4z2REdp2F7xSOszwiOqtKzGbXnNp9xWs53XnNuzwXd+PHHO3QBtFNONt7x45+a1Jxur0mffxVtit62nt9n8fjtbas7t1ZxPbw5uPLytzpXT9bUxy3L6Uz/AIiemz7VaVikYhfRjOre2OURH2nHtb03XiM6c9Jx7pY3Xnjpx27vsljrGKAKitrxExGJmZ7IVnUmOdYx6W2pW3GcxPWJZGjWOczb0ynqzF6zurExyloKgiidvsWmOHL0JJR6lYvHjHKWbNWXDTjffzOyOEfea9szXT68Z9DfMvHDZE+OeCta4mbTxtPOSRdWRWxbUxziv0pJnETM9iKnLM854qjWjJmIjMg2c9kZmeEQ69DS8qmJxNp5z1V0NDbMXv63TonRQAAAAAAAAAAABDr/AFUyHX+qCIAAAEuh9ZMh0PrJgAAAAAAAAAAAAAAAAAAGWmK1mZ5Rxlrm7zO+1dLs52nw6ArEzq6nmWzj6seC8MhrbC2WTLAAARkxExMTylWkTFcW5xwyuAqNlioAAAAAAAAKWzp3jVrHGOcdYSCLPHRE5jMcmoO7WxE6U868vGE7DoAAAAAAAACmpq00ozecdI6ot2tqerEades8Z+QJ5mKxm0xEdZRT3nTziu689KxlkaNInNom9utuKXIIvN1J400LTH5piFo1bRGdTTmkdc5hYBZqHTnbqzpdmN0eHgmAAAAAAAAAAAAAAAABk8pV0+1aeUq6faC4AAAAAAAAAAAAAAACLX1PL0+E+1M4hKh71XdozMRxr7UfAENKbYpaIjhbjn5JdXT2RbUpOMRmY7J/VXSiLaWJ4xOYX07Xr7N43R+6Ptj7gQ5i9tkzMTPOJ5uiYxCkW09TvMTXjMVnPDGOX6ppjIOfUn2qellpg7xMxEY554IqRWLf6sb469Ph2gtWZv6lZt4xyW0tOdWszaduJxiOcJq62jNfZvWIjxwVvo1zNb0jM5n2u0Gxp0pxiIjxn73NnfqWv2TPD0L6mp53Cvqdev6M5Areu+kwyt59W/CfdK6k8xVxHumOXGOi8WiY4SCl4i160nlmPpd7z4ndqUt+eMPQEAAAAAAAAAAAAAAAAR62lGrXE8JjlPRy27vq15RF48Obuc2p3iZmY0sY/d933g5J4TiYmJ6SJZrFs7uMzzmUVq7ZxHGPoVWMMzzxwZxEa3tiI4zPYrhvLjHCeoPR0NPy9KKzjPOUqHu2t5tOPrV5pkAAAAAAAAAAAAAAAAAAEdOaRHTmkAAAAAAAAAAAAAAAAAU1a79O0Rz7PSuA44turEraM4vavWM/f9hrVmmpu+rb3T+qtf5KT4/YzW+46BmTLCNclq7LzSfTHodWUetTfXh60cYalwQcZnEfFaIxHCDSjhOeeeKRsbocIv8A2+yEmUWlytPW36fYkc72DGgOe0Tp849nsmOxsWieUxKdk1rM5msT6YXV1DETfhX59iaIiIxHJogACAAKTOzVpbr7M/Y6XPasWrNZ5Sk0r+ZSJnnHCY6S1EqQBpAABnNoDnpE1zSfq8vGOxZneKxXGr214T6P0ZnOJYsWLMhkydiK1qs2itczOIgiltTO7Nae+fu+kk0N02tNaRumOfSPSvTRiJi153WjlPRJWIrEREYiOxrcmMgCgAAAAAAAAAAAAAAAAAAAAjj10iOPXBIAAAAAAAAAAAAACmrpxqVxPPsno476dtOfajh17HeyYzGJ5Jg8+JT6d8xxWv3as8aTt8EcVtp+vGI69jNjUqXLVI4tZVsziJS1jEIqxm8R8UzUiUAaZZgw0FVGmAYGAFLx2qJpjMIpZqxkzEczmKzFI4ziPcgsrasTHFmItE7bT8JTRo0tETm2J8VkNcc8JHZ/htL9s/OVo0dOPqR8eLWJrhjNpxWJmfDim0u72vxvmse91xERHAmcRxMTSIisREco4Q1TzdP99fmydfTj62fRGVEgj86nWf8Axn7jzqeP/jP3AkEfnU8f/GfuPOp1n/xn7gSOe9fLtmI9mfdP6pI1tOfrRHp4LezesxmJieHBOxCMiJrM1tzjt6w1hQmImMTxaCq1iaepaYjpPGEldXsvG2evZ+PSq1dRK1BETWc1nHh2L11Ymdto2290/FqXUSAKAAAAAAAAAAAAAAAAAAAAI59dIjn10gAAAAAAAAAAAAAAAAAAOK84m0znMWnOfd7sJMxK2toza26nOecIJ0NWOEVzH9vs4C6vN6x25nwR2tOezdPZ0X8jVmOysdM4+hFMbc1zHPHCA3+MnEYrHHqlt3nUnlMx6I+9FEYBjVp1NS3O0/P7sJu7607ttpzE8pnqgZIsr0kGvTE74jh9b7/v/Q7vq74229aO3rCcVx4wvpX2X8LcJ9PZ93yVvTy7Y+rPL7vu/Rk8YwMdOwQ6etXb7doraOs4z4rxqUnlevzG13LrVib2pblfjH0fYn8yn76/NFq33zEac1nbx+77RHNOlePVvOGeTM+taZdETExnqraJyIjrWK8oU149mJ6SkUndqZrSOHbMokWpbdWJJ4wV0rVjEWifgRPHExiQZ2rQrHTosoHbEeMfS1nO0emPpGuPbvAFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEd+aRHfmCQAAAAAAAAAAAAAAAAAAAAAEVuOrP5Y+n8QK6c5ibfunP3e4vaK1mZ5KDJiJ5oZva3HlHSFZmO2cglmvScqo4muecRPyW4xynKCzVYmJaotWFmRyAaqAAAAyZisZmcQpOb8+FenUCZ8yfyx71o5jaoF67qTDo0IiNGmOnH0oVtLUpTNbWiOOYyDoGNAAAAAAAAABW960jNpxALK3vWnrThBbUvfl7FffP3MisROe3r2gvbWvPq1iP7T+PpRTOrPrWzHSs4/HzXZkRTbS88czPbmVopWOVY+TLceMcJ7JIvmMqLbY6R8lLaVZ4xERLd0m6RSkzMZre0eGc/Slrq3r60RaOscJ/HyQxbFp8eLdwOmmpW/qzxjnEruTMT6YSaept4XnMdkz2en70E4AAAAAAAAAAAKanYtHKFdTsWjlANAAAAAAAAAAAAABDr6U3xenC9eXj4I9O++OMTW0c4nsdSLV0t87qzi8Rwnr4Szy46sqopW8523jbfp19C7jZjQi1tSaREV5z29Erl1p/1pienBrjNqVXdbttb5m68crT8eLGxOHbGV9LWmmrvtXPDHB1019PU5WiJ6TwlxcJVmsSD1Bw6PebacbbxNqxymOcOvT1aanqWz4AuAAh1tOc+ZWJm0RiY6x96YBzZzGY4oqataVis1tGI7YSalY0PaiJ2TPH8s/c3mWSpuI/8RWeVbfJeupFucTX+0YWZasWiYnlLP/XF+lkWtypPS0SRNtLhbjTsnp6TX/izHHjGGMsrW7EgDu5gxoMtWLVmJ5SpXUiJmupOLR2z2pFbVi0xOZi0cphnlx1ZcZN4nhT2rdITaOn5dMTxmeMz4oqa2ydt9PHjSOC19a1vZ0onP7pjEQk44uq6k79fwpHvlZWldlYjOfFZpkFd8RMxb2ekzylZQAAFLXmeGnG6evZBEYzOczPNBsyqAAAK7POv5cWxwzMr/wCG1M8JpMenH2KWryms7bROYl06Gr5tZzGLRwmEVDHdtSedqx6OP3JdLu9NOd3rW6ymBQAAAAAAAAAAAAABDr/VTIdf6oIgAAAS6H1kyHQ+smAAAAAAAAAAAAAAAAAABlpitZmeUcZclMzm887Tn7kvebcK07bz7o5qNRnlWw1VZWQGTaI6zPSIzIrRWt4mcTE1npMYlYAAQZhoDMMlssAAVAAAGTaI9PSAWFfbnpWPnP4+Zsn99vd9zH3G/isvOy1dT9s8fRLrcdsxmL42zwzHZ6XR3e020KTPPGPkmy+rJZ5UoAoAACt7xSuZ+EdQbM4jM8kM6t9ScaMYj99o4fDqRW2pO7V4R2Ujl8eqQFKaVaTnja37rcZXBQAAABFfMd60vGJdCC/+40f/AG+hOgAAAAAAAAAAAAAAAAyeUq6fatPKVdPtBcAAAAAAAAAAAAAAAAFNa+zStbOMRw9IIO7cNCvx+lMi0oiKYjlmfplJlRmlOdbUx2REfSllHo+tqT+b7ISIObX43iJ7EVs4xHOeSTVnN5NOkTO6RVaafCIiOEJq6cRzWgUZsjoy0ViOLZnEIb2zOARxHGZxjPZ0ara+3hHNXdaZ549EIJGTFZnjESzTre+pFItPHnOOTs09GtOPO3WfxwER6WjM2i94xEcYjty6QAAAAAAAAAAAAAAABHqa1NPhaePSIBTvdsaMxHO0xWEFPViOnBurqRq6tdsTikdvipvxmJjE9nio2844RzUaCstGYwjSqTTtiQVDlz4ALad507xavOPe9HT1K6lItWeH0PMdHcpnzpjM428vkiO4AAAAAAAAAAAAAAAAAEdOaRHTmkAAAAAAAAAAAAAAAAAABW1YtWYtGYly7LaetWtuNeyevg7FbVres1tGYBGKzFtLETm1f3dPT97YmJjMTmHOzGmgApfTi07oma26wrs1c43Vx1iOKUNoyIiIxEYhoAAIAAAI73vE4pTdiOM9FF5tFYzaYj0sjUi0Zrm3ohSNOmpPrzbEZm3j9mOnoykpeYpFZ9rUjhjPv+S4jJtEdlv/ABlvODS1LXiYtERas4mF0qqq1maasftvwnwns+fJfDLVi1ZrPKSXBMItG++sxM5tWcT9/wAUroyAAAAyYiYxPGJctYmlrac/V5T1jsdbn7zGJrqR2cLej9Eoxl7baTbGcNJ4xieTDS+lpYxe/G2PhHoTIO7WzSaTzpw+HYndGQAAAAAAAAAAAAAAAAAAAAAAABHHrpEceuCQAAAAAAAAAAAAAAAAAEdtKlpzMYnrHBXybR6t8+mEzJnEZkEelWYtaZ5xw4fjxSKaXqRM854z8V0AAAAAAAAGYR2jEpJnEZlHPtTmfglWI9S9aRxnj0NOk2rw+My2lIvum3bMr6Uba7ek/NBSe7x1nKPTpbM1r7Nq85h1KYxq56xxUVvr2pis1jdjnPJDOtqXmYi0+isfiU+rWJiLTETtnPHp2poiIjERER4Kjgmt7T7Vbz6YltMVn2oiPTDvAc0YxwE3l0znbGeuFZ0Y+rNo+OfpT5XUbWzp3jpb0cFc8ccp8WcGgCjJrE84iWgKxp1i26M59KzQABAaxoNhsxExieTMQ0FY3afL2q9O2ElbReM1nKqs1zOYnbbrH44tTkmJhHXU4xW8bbe6fx0SNoAAAAAAAAAAAAAAAAAAjn10iOfXSAAAAAAAAAAAAAAAAAAAAApqW26dpicTjh6XBMe1HSI4OnvGrW2KVnPbOHNnOZ8QvTWHH0GOvEZMwZ8ABmJ7OH2LW1NWK4i9sen7eYBrImLcZ4+M81o1JjhMZ8YR1jFpj4wvyBuZm2cYazExzmK+mTh++P8AxlNXK1bTtjdGe1SYtEZnGOsSUpFpm1vRColpMTNo6cYWmMItOcauJnw/HyS2wCHWzWsyk0YiulXHTKutXdpzEczSvE6ceEYkF0VoznC9rxHJHM2iszj3ojMe14LK29aPRK0A0j1q/wBo+ljJmYiZjnFox7la4vQEOn3nTviJnbbtifvTCgAAAAAAAAAAAAAAAAAAAAAAAAAAAAACO/NIjvzBIAAAAAAAAAAAAAAAAAAAAADn0v4qeiEOrbfqeFfpSUnZWdO3Ca+9DMxmIzjINiu+eeIj3pK1iPVjC9KcPBeIiEVHtmVZ0YnsxPWE8wxBy3ranGeX7vvWrOfS6EN9Htp8l0xrFYtjhbh6VmkAJmIjMgK2vFeEcZnsbEWvy4V69srzpxNNvKE0Q7czm3GfoWK8Y4844StgFVo5Ao1HrRwi3TmkZaN1ZjqCmnNqepOPyzyl16d41KRaIx4OGszjxjg7tKuzTrWecRx9KC4AAAAAAOfV1d0zSnLtt9kAtq60U9msbrdI7PShzabbr1mZ68ODYxWMRwg3Ab65xnE+PBuVJnKnGvLl0USTZmWADI9aY+LVZ9ePEFhkzEL10tS/KNsdZ+4EccbT8lk1O61iMWmbe5eO76UT6mfTOUHMb4jnLrjTpHKlY9ELYiOUAj7vx0a8/DPRKAAAAAAAAAAAKanYtHKFdTsWjlANAAAAAAAAAAAAAAABW9K6ldtozDlzamtakTurGOfOHY5Lfz6k+MfQzy6WLZQ61N8RMetCQc54rmnNfWiYInLoUmlLWxt4x2w3OSYiF50rR6s5jpKmcTiYxPi1LoEZiYtWcTHKYBUdWj3r6urOJ7Ldk/j5Op5c8kuj3i2lwt7VPfAO8VraL1i1ZzErAznHFy6lJ0ZzWJnT+j9HWyYiYxMZiQc0WiYy3LNTu8046PLtqpF4mccYnpPNUxKp5VezMRnMx2GTIi7JlXKsTbUtt0+PW3ZAEW3avhX6UqGsTpz5d4xbr1XyC4zJlRoAAAHNTy4j1ZmvoldmYQZtmfr2933MnTpwmYmcdZmWzLMg3KuQABk2iJiM8Z7BWgCCs7q2i+n60dnWDS09S9bTS0cLYxZedPVr9SLei33iuml4vSLV5Ss5+7UvSbxNZrWZzEfS6EUAAAAAAAAAAAAAAQ6/1UyHX+qCIAAAEuh9ZMh0PrJgAAAAAAAAAAAAAAR6urGnNYmtrTbliGV19O043Yt0twZ3iudPdHOk7oU4Wr1iUtxZNdDXJFbUj/TtNfDnC/8AiLVj2tPPjWfs/wCSWUyq6kRqa94tGYrERH0qxM1tstOe2J6w3SnfWb/umZNSu6vDnHGEnLKt47GjKzurE+5rq4NU7rqVvr3mZjM8K+ht7baWnpDhSt8Xd3vUrGppxHrROZ8I/Vd58VmXoZIUBistGZJkGRnU1dkcojNpbrafl130mcRzrM5y5u7948vUtNo4W54S9571S+nNKZnPOejOt4tE5jMNR6M50q5SNOYCszMztrz7Z6FuLJpMzMzWvPtnotWkV5Rx6zzltaxWMRyWcbddpMZhmFhlpWYi0TExmJb3SJrS1ZnOLfcxbQ/k1I8In6WuKck4DbACmpeKUm08ekdZBmrqRp1zPGZ4RHWVaUnMX1ON/wD+3wj7ylPa3243mPlHT9VwAFAGWtFK7rTiAaI4va/qVxX91vu/4b5VbYm8zeY68vlyBltfSrPG8fDj9B59MZzOOu2fuSRERGIiIjpACGlq6veYmsxataZieky6UHdozF9SY9e2Y9HYnQAAAAAAAAAAAAAAAAZPKVdPtWnlKun2guAAAAAAAAAAAAAAAAi1+NIieU2iPelR60TbTnb60YmPhxBFofxR8fpXZWsRm1ZiaW4w1Q0P+zP7/shLM4iUPd+Man95+iF9WcUlByzxs6IjEYQ6cZsmVWjFdS8Urx5grqW446INTUinjK3KJmefOXLM5mZRF6dZ7VoIjEYdHc9KLR5lo5T7P3gm7vo+XXdaPbnn4eCYAAAAAAAAAAAAAAAARa2tGnERGJvPKANbV8uvDE2nlDk7ZmeMzzlszNpzacz1ZMxHNQ0+MTbqyY5KU4TMclxWTPYQYaAABM4jMolrzxwqiDq7jTje/wD6w5Xo92ps0Kx2zxn4glAAAAAAAAAAAAAAAAABHTmkR05pAAAAAAAAAAAAAAAAR019K84reM/IEgitrViZrXN7R2R9/KFf9W8e1aKR0rz+f3JoltaKxm0xEdZRx3itp9itr+MRw9+CulWs5xm37p4ysn0uKzbVnlFa+/7kflWrM3rbNp5xyiUwztXFY4xExxiRZmEGAKACAAAAAi0bWmbzbtiJiOkcW6vZuz5f1sc/+Oq0RStcUiIie2FGzjsjHUzjjjj1YyJzx7OwGakXjfqUtFeEZ4c8JkV+NLR1iYSRjHAGgIOaLzpatp7Inj4xz92XY59akzi1YzMc2d21cW8q0/18PD7nSVHUAqAItXWik7Yjdf8AbH2gtqXrp13W/wCXPabas5vwr2V+9mJm++85t7o9CzNq4AIrN001qW7J9mzrcV/a9iIza3KHXSJikRM5mI4y1EWAVAAAAAAAAAAAAAAAAAAAAAABHHrpEceuCQAAAAAAAAAAAAAAAAABTU9SYnt4fNdHq5nbEdto+/7AXAQAAAAAAAAR6nG1a9nOWq2n/UmPCGs1qMpOJtXpOfm20TExaPjHWFb+zi8c45+hJExMZjkIExn4AAzRzsxM5mJmPx8Gq04ato/dGfs+5YVKA0gAArasWjFoysAhtpzHGk/CVc9kxiekuhloi0YmMwlggFrUmsZr7UdO1WJieTFmK0GorBqt521mY44jINazbqRHqxPok3RX14mvp+/kuVGrEYnlIigAMtWLRiYzBFppOJzNevRosuIvE5jMcmoeOnOa+r2x9yWJiYzE5huXUaAoAAAAAAAAAAAAAAjn10iOfXSAAAAAAAAAAAAAAAAAApe8UjM/COoGpbZSbc8dnVyX1ptHt2z4Ry/HpX1LzqcJ9Xp96mI5CKxal55/BbCPU04njHCWad5zieYJcMxDJsrmRGzEdWDJnhOOPoBasTacV+c8lrac14xbcltp20qROc4jjGOXoRzMyFQ8Z1IxEzwSYmsbrVxPKvgrPrTeueXZKbyNWfrUms9ZmUWIe2Z7ZHRHdcetqTjwj78q209KPVva89Ixj5/qqYjpnfis4mea17RSIrHBtJrWsxGc9ueaTR0a6lZveM5nEcQc2Yp7e7Mx4Yynid0ZjlKveNGudtImJiM8/wAdHLvtFdmeAqTW1c+zX4yRpXrGYmImexJoaEV9q3PsjoknjAjn3WrMTeIiOWYTTTgh1/Vj0pNCZmkRPTgCs9nXktHI1K4mJZHMRqv7vTH2LK5xFpnqNRHHHUtHYm09W+niInNekodOOE2ntSCOvT7xS84n2Z8e1M85Jp69qTic2r74F12ilL11K5rPpjouKAAAAAAAAAAAAAAAAAAAAAAAAAAI780iO/MEgAAAAAAAAAAAAAAAAAAAAAIO803xT+3PwVjRpEcpmes80mt9T+32SJVRxp3p6luHSW+ZePW05+EpAEfnV7YtHwZ51fzf+MpJrWedYn0wzZX9sAp5telp+EsnVnsp85wk21/bHyaggtS2pibdnSMK+VqU9XFodIujnzfOPLtleulOc6k5np2QlDQAQQ2jbqT0txFtfhTd+2cqtRAGZmZxWMyDQjSmfXt8I4MnQp2RMT4SoaVInvHHpuw7HBbTvGMWmccYzz+aTS7zavDUzMdccY9KDrFa2reM1mJjwWAAABBrd4rT2azG7r0BneNWY/06Ti0856fqhjhGI5MiY7Jz8WqAAAAKxwnHyWZbsnxaArWttTVxSOUcZnlCSlJ1LYicRHOXVWsVrFaxiIQV09Gunx527ZSAAAAAAAAAAAAAAAAACmp2LRyhXU7Fo5QDQAAAAAAAAAAAAAAAHJf+XU9P2Q63HeJjvGpntxj5M8uljRjJmZnbSN1unT0ueapObWjTr61u3pHV0f4fT4ezxjtziZ+TdHSjSrPHMzOZlI6yYygnu0Z4XvHxVnukTwtqWmPRDpFHJfueI/07TPhZzcYnExMT0l6iPV0q6tcWj0T0B57Emro30Z48a/uhGC2lq20bZrxjtr1ehp6ldSkWrPB5q+jqzo33YzE84B6QysxaImJzE9sEziMyDVLadL8bViZ6zCLQ7zGrbbNds9nHm6AQT3auZmt7V+OfpVju1+3V/wD0w6QEEd1pn2rWt4TPD3Jq1isYrERHSGgKalK3ri8cI7ejk0szTOZmM8M88OjvM509kTibzj71NsYxHYsSqGVphmBDJlgDcmWAGTIABMxEZmcK745R7U9K8RViZxGZWrpaluyKR48Z+X6pKd3rWYtaZvbrPZ8ARadL6sZj2K9kzHNLPd9Oabccf3dqYRXHel9KI3e3XttHZ8GVmLcYnMO1Dq93red0ezf90CK904eZH5suhDoaVtO15tMTuxy8EwoAAAAAAAAAAAAAAAAh1/qpkOv9UEQAAAJdD6yZDofWTAAAAAAAAAAAAAAAxzRHl6lqTy519H6OpD3is7IvHOnH4dqWasuKGCJzGYHJ0V0MeTXHReVdKNtMdJn6VpWpEU+xqflt9P6rsvXdWY7eyeklbbqxLrwuxy5zLpaN1ZjrDjrHtYl2o76VbzmcxPg1ZrMuKVjdeIjlHGU7K1isYhqyYlugCoK39S3oWAcC0UmYz2LXp5epj6vZKWkb8ft7XN11Jp120iFgdHJW9tscONp5QvSu2uM5ntnqpSN1988uVfvSOPO7cduEyNAYbAZIMV0tWtO8Xi0xEYjjM/jqTFrZjOI8OZGnWJzjj1njKy4l9Sz3is+pW1vGIxHvUnU1bTw2Uj5z9wH1T5V8ubevqXt1jOI+Roaf+ta0cKV4RHj2mpaeFacbTwhNp0jTpFY5Q1xZqwDaBMxEZnhEK3vFI45mZ5RHOVfLnUmJ1eX7I5fHqDJ1L34aMRj988vh1WrpVid1p32627PR0X5cIAAAEetMzWNOOd5x8O1Ii0JnU1r6n1a+zXj8wT1iK1iI5RGIaCAAAAAAAAAAAAAAAADJ5Srp9q08pV0+0FwAAAAAAAAAAAAAAAAAc+pW2lab1zNJ9aOnib4zHS3Keroc99Py4nbGaTzr09H49ALaHDzI/N9ynebZrEdZ/VTTvNLWmZzFuMSzWtN4rt7J7Qbp8IiUm6sdrnmcV9u04VjVpyxMfAV0W1ekIp5ze856eCs6sY9njKOeM5tORDU1d0Yry6qVrmfBaK5nwXxiMQDJ5cOb0qUjTpFY5RDj7tp79SLfVrPzl3AAAAAAAAAAAAAAAMQ6+vs9imN/bP7XLEbvatGZntkHovN1pm2ve3KYtj5cG7a/tj5KV5cFG5me0AVk9k9F1WRO3MT2cgbacRw5qRwnME5mciItF+sfJk2mfAAZhuG4Wpp21Lbax8eyFGadJ1NSKxGevoempp6ddKuK/PqugAAAAAAAAAAAAAAAAAAjpzSI6c0gAAAAAAAAAAAAAAI9TVik4iJtbpH29EVI9jbfTiIzmI5r6vs3ia+tfnHh1+H6eis5ZqxesVrHsxER4NyhpsridT1/3Ty+HZHuTM1QBAAAAAZhoCoszAMG4ZgAABXRxOlWMYxwmPFZSvsauMcL8fio29ZmsxyzHNTSzGnETwmOCdU0VxnmsANiWqwsgK3pF64n4T0lYA0rzentRi0cJhI57z5d/MjlytHh1+Cd0l1lz6mtN8105xHbf7la1ivL4z2y29J0v6TPDw/HYJVgCtrRXnznlEdqKsysW1JxThH7uz9V6aNrTnU4V/bH2p4iIjERiGpE1XT066ccI4zzntlcFQAAAAAAAAAAAAAAAAAAAAAAAARx66RHHrgkAAAAAAAAAAAAAAAAAAR39bT/ALfZKRHqc6f2+yQXAQAAAAAAAAQ34as+iCJbrcJrbs5SoxWovlWs7LbZ5TPAyy3tVmCKmEWjebRNbetCVWRW3Oto7J+ng2bVicTMRPpZeM0mOsKJRWlt9It1WaQAAAAAAR304tOYnFuqQBz8YnFoxP0rJLVi0YmMoprbT58a9enpYsXWnMGVW0ZzTbPOvBIgrO3Ujpbh932p3SMqW06251jPXtV8uY9W8x4Txj7/AHpRRFO+v1YtHhP2fqyNSsziZ2z0tGEzJrFoxaImPFn5i6oE6UfVma+ieHy5MxqV54tHhwn8fFPmmtV40mbVjOecEalc4nNZ6Ssz0L1tFqxMTmJah40ndWOHbEfjmliYmImOUukuo0BQAAAAAAAAAAABHPrpEc+ukAAAAAAAAAAAAAAABTUvsiOGZnlAGpfZiIjMygtnnacy2Ixxmc2nnKluMjLAZnsjjIE8kFuGrCWYtblNZ9Eo7R/qxxicRxx2IuNz0iZ9ENiJnhyMEWt2cY8VPFtkY48W4xG7hEVmMq8eyuPROEujqVpMb4msRE8uMAzWv5szGfY8O38fqjiImOUJr7NS9ZpeMzwnHP5eH45Mrpe3NJtEY6c5j8ekT1SIm3qxn6Fva045zt6RMxhLOlp1rMxExMR62eMIbWmQ6Wm1bc43eniTfwX0+7ezE3mfRCWNHTj6sT6eP0hiCml5ubZxHLk6a1itYisYiFlbW21m3SMjSC/HUtOfR+PTlyacbu8eETMumZ20mZ5859KLS0r6dom2a7uHL9RlP2MnhDMzWcTOY6l54CObX+qkiMVr1hFrT7UQmRfxecXrmEXKcLUtEWtHZjJeJmPVmI6qMzOcRzb5VrRHszs5zPX7fx0S9204tG+eyeXj4/j9Oka6cPlxidkxiOyVZzE4mJz0w77UreMWiJQ6nd7TExW3DpP3oZHLxjnEx6YGzFqTic1npkm2fWjj+6I/GRMhEzWc1nE9YdelrxfhbhPZ0n8dHJaNs4+U9WZVOnpDl0deY4XnMdejqGgAAAAAAAAAAAAAAAAAAAAAAABHfmkR35gkAAAAAAAAAAAAAAAAAAAAVtaKRmZV1NWNPhztPKEGZmd1pzMgatpt7c8IrOYhMhnjEx1X0rRbTifhKUiQY0UAQYAKACAADLWisZmcQpOrmcacbp69kFdKInNuM+IKzWdec24VjlCtZxSMzy4SntMRHgh06ZmbzymcxCwpETqcuFevbKSIisYiODRpkABkxlFemeMcLQmVsCCs8cxmto54SRrasdtbemPuZeueMc4VicxkVL/ibxH8cT6Lfor/AIrUmcRFa+E5/RUmImMSBa17+teZjpHCGRERyhnGvjC0TkGTETzg245TMNAV3YnFuHiszmyPZnHZPIFgAZb1Zbn2YmO3lBPqz6F+60mZi08qxiPSDo0qbKRHbzn0rggAAAAAAAAAAAAAAAAAApqdi0coV1OxaOUA0AAAAAAAAAAAAAAABzd4iK3reZxExtn6fvdKt61vWa2jMSDkrF9WcafCP3THD4OnS0q6UYr285nnK8RERERGIhqSYACgAAADJiJiYnlLh1+7zpe1TM098O8B5Q6O8d22+3pRw7aw5sgn7rreVbZafYnr2O287dO09ImXly69LV3911K2n2q1n5YBy1zERMcJjjEvR0NTzdKLdvKYefHKEvdrzTViM+zbhPp7Ad4i1NfT05xM5t0ji57d51LerEUj5yDtR21tOvCbRM9I4y4b2taJm9rW8MptHS2RmYjdPMCdSL6s3t7MV4RFp+bJ1o47Kzf0Qt5VN022xMz1XVlDXVvOpFbU2xKSYZb+TT6cfoZq6sUjEcbdkAj1b7eEc5QRw5TMNnMzmZzMiNNi94+tLfMv+73KAL+Zf93uZN7z9aVQCePOc+lfTvs1K2jslQxnh1B64po336VbTzmOPpXAAAAAAAAAAAAAAAAAAAAAAAQ6/wBVMh1/qgiAAABLofWTIdD6yYAAAAAAAAAAAAAABjUXeJxp7Y539n7/AHAh04xFserunb6FiIiIiI5QOVdGwSxoMUjheY7J4x9v48V1NTERF5+rK8blTlNiwD0POMiYnlLWRERnHbOQaDMTuznh0BoAMmImMTGWxGIxAAK3zMRWOduHojtWVpib2t09lnlcjXGbV4iIiIjlDWDg7tDLAblg1FYAAy1oiJmeUNlSK+bqbJ9WvG3j0hZNS3Fu703f6to4z6ueyP1/HNODs5il7zE7aRuv7o9P4yy95m2zT59tuyv6+C1KRSuI+Mz2gUpFeMzut22n8cFgAAAAmYiJmeEQCLXmZrGnX1r8I9HampSKUiscohDoVm9p1rRibcKx0j9XQgAAAAAAAAAAAAAAAAAAyeUq6fatPKVdPtBcAAAAAAAAAAAAAAAAAAAHLraFotu0oiY/by+SG02rO2aTFnoItbT3xFo9aPf4A861b2nMwpNZjnDsnMc9O0Y8FZx+23/jIIIxENiuefyW3UmeEw2sTe23TjdIMmYjmm0+7WvMTf2a9O2fu+lPo93rp4tPtX6pgVrWK1itYxEdiwAAAAAAAAAAAAy1orGbTER1mQag7zqTSK1rwm3b0hJ5unj16/Nzd4tF9WuJiYivDAIpjFevVk26R811JmJngqsnM8+PgyvCsNnjCPjysCQUiZjxW3R28AI9aS2MeLJnPL5n0gziZaYAal7roxqWmbRmsR17XbWla+rWI9EIjzqxN5xSJtPg7tDS8qmJnNp4zKUAAAAAAAAAAAAAAAAAAAABHTmkR05pAAAAAAAAAAAAAAAQWrat7WxurOO3jBMccQlvWbVmItNZ7JRRo6nHOtx/rDNitrGFmbdSO2tvd97InU7dKfhMT9zOU1YUnUrWM2i0emssjW055Xr8zFSDImJjMTlqACmlOYmMY2zj7vcC4AAAAAAACt6xeuJ+cdiwCtJt6t+cdvUWYDAwARzWZENAAAU0p8q/lTnE8az9i6LvNd1IxOMWicwsqV0TETExPGJct6+TbE+pPqzM+5NoavmU4+tXhb8eKS0RaMTETHSXRHKZmtovXnHZ1LVnStFbTM1nlafoVzicTyZ6V10vF6xavKVnFTUnSvujMxPOPt9LrraLVi1ZzEtIsAAAAAAAAAAAAAAAAAAAAAAAAAAjj10iOPXBIAAAAAAAAAAAAAAAAAApqx7MT0mJXVvXdS1esYBoj077qRM8+1fKDQAAAAAAZM4BXUxMYnlKGOnTtSTbip25YaAEVS07LxePRKa9/Zjb2yjtG6sxParW2dOs/tni1ESYjGMMjNbbfqzy8FlbdnphIJNH1bR0tP3/AGpUWlPG0eifx8kroyAAAAAAAAAAhtTbOa+r06egjExmEyO1ds5rHDthmxVLVzWY7ez0pa2i1YtHKYypGJjMGl7NrU7Ocfj0pxKlAbQAAABkxFoxMRMeKk6fD2ZmPekARZtHrVn0xx/VWt4rMYnNLTj0SnR30dPU9aselMwSAKAAAAAAAAAAAAI59dIjn10gAAAAAAAAAAAAAAK2tFKzaexDHGZtbnPu8G6lt18dlZ97JnEiWsurhssnkIrKlp5xE+mW2nETOUmhobo3Xjh2R1/H44IqKunqWibVrMxj8elWazScTWYnnOXooe86e6u6IzavZHbCrjkx1bEZVzj0dUlNPUtyr8ez5/cJlZwjtZa2eHKOsuindeHtW4/l++UtNHTpyrx6zxkXDQrFdKuO3ivMRMYmImPFoCKe76U/UiPRw+htNHTpOYrx6zOUgAAAi159mIxzn9fsSufvd5jT21424T6Px94MpiLTaZxFfp/H44K62rW3sxMTPCeCsVmY32iKzPz/AEVntrz7Yn8fjAy3dParme3l9BET2zHwbwjCIhmYnW54iJTeiJn0Mr7PDGMdYSxaMcRVa6eLbrce3C1p4Mm/ZHatTRtfjbNY9/6fjgp2v3WeFoxwynVpStK4rGIWGgAFbVreMWiJhzavd5rxrm0dO2Pv+n0usB58R9SeU+6VfS7b6NbW3Rwt1ct6TW2JiYmez7uv4yiYrHBNpauzhzr06fjp+JgzHWPmRPbCo9GJi0ZiYmPBri0tWaTw4xPOHXW0XjNZzA0sAAAAAAAAAAAAAAAAAAAAAAjvzSI78wSAAAAAAAAAAAAAAAAAAI9XUjTrnGZnlHVa9opWbTyhy8bWm9+c8o6QBGZmbXnNp93g0FQZpxMTbZzieXWGsi23UieyeEpViSNSPrezPivEsmsW5wjnSmOOnbHh+PuZVMxFHnR0n0w3Or+2s/HAJBHM6vZSsemTGtP1qx6IBIybVieNoj4o/KtPrX9//C0aVY/TgDJ1eOK1mZZFJvx1J+HYkiIjlGGgRERyJlkyrMgpad+pFOyIzKRHpcZvbrKWG4lMEtZIjAAGW5NJ5AjR3jbbd2TzSMmImJie0VUZXMZrPOGgKz7M57O1YAFacM16LAMmMxhoDKzmIlZWvCbR4rCK39Scc54OzSps0616Rxc+hXfrZ7KfS60UAAAAAAAAAAAAAAAAAAABTU7Fo5Qrqdi0coBoAAAAAAAAAAAAAAAAAAAAAAAAAAADi71obf8AUpHD60fa7WA8qIzHMzauccMxicL6mnOjqzXsnjEsAMTbnwgWAiIjk3BDQKRu1ax04ulBofyX8MJliUAVFLxbNZrETMT2ue9dupaJnM9XWg7xHGs/BKsQsWK1m1sR8ZRVMjomkYxiMQzbX9sfJU1A2ImeUZTbY6R8mi651tOM6lYNThf0wk7vT63XhCDq7tbhan7Z+ninc2lmO8THZNPon9XSAAAAAAAAAAAAAAAAAAAAAAAh1/qpkOv9UEQAAAJdD6yZDofWTAAAAAAAAAAAAAAAOW079a0xPs19n49rotmKTt42xw9LlpbbpxFotE9u6O1L0s7XFfMp+6PmRqUmfWj5ueNrMicWms+mGsvGY4TiY4wDSYiYmJ5SytotH0+DUVXSra9MzaImJxPs/qtGjbt1J+EQaM41bxM88TH0JneXY45EXk27NSPjX9VZ09bPszSY8cpw0yOfZrRzrW3onH0s3WicTpXz4Rl0hqZHL5lM4mcT0ngvE5jMcU0xFoxaImOkqW0NOeUbZ614Lp8qDZ0LR6upP/tGVdurXnWLf1n711PmtmcRmeTNP1Imec8fmpe8eXOYmszHKYwl5OfOt8IAOTqAA1gAAAM0pjTvNJ5W4x9rVb13V4cJ7J6NcblSzXQpa8zbZTn2z+2Pv6I41s6cTEe3PCK+KTTrFI55tPO09rq5rUpFK7atAAAAABHePNv5f1Y43+yPvbranl0zHG08Kx1lbR0506Ymc2mczPWUEgAAAAAAAAAAAAAAAAAAAMnlKun2rTylXT7QXAAAAAAAAAAAAAAAAAAAAAAAAY0AAAAAAAAAAAAAABlpisTM8o4y4bXnUtNp5fVjpH45r6+rGrOyvqxPGes/coozER2QrwjU+CyLOb+mAWmd3oMAKMmM82yyZx6QUierTDOPTIiwyubTiKzM9IheNLUtOI07fGMCqtdFO6TMf6lseFfvdFNHT08baxmO2eaIr3Wk00eOYmZzMT2JgAAAAAAAAAAAAAAAAAAAAAABHTmkR05pAAAAAAAAAAAAAAAAAAAFbUpbjalZ9MLAI/J0v/nX5Hk0/NHotP3pAEH+Hj/6an/krFJ0taM2m0XjHLlh0ou8ZjS3RGZrOfx8EwaMicxmO1rm0AAAAAAAAAADAGgAxoAK3rvpNeWVgHLm2jqxaYnEc8cph2xMTGYnMShug8zUp/pVmIiOMTznDcqOrVtpxSY1JjExy7ZccZxxnPTLe3MzMzPbIWgto6nlW/JPPw8fvVK5vOKRNp8ORB3RMTGYnMNRaFLaenttOePDwhK0gAAAAAAAAAAAAAAAAAAAAAAAAjj10iOPXBIAAAAAAAAAAAAAAAAAADJmIiZnlAIbexqz0tx+9eJy5NfV33i0ZjHKE1L5iJjlLN8VM3KkWWyo3JlgDcmWZVmwLTKO1ssm2VZmIjMzhm1caIp1o+rEyk0I82szaZjE4xBlNaJfJr1n5qzpWj1bZ9P4+w+TVFKRjUtXsmMpJpePq59EqTM1tEzW0dkzgkoZ2cLcuyW+tMRHKOMri4i2l69vRH2pUelxi0+KRpAAAAAAAAAAAAEdq7c2rHDthWZ2zW/ZnE+iUyLUp7NpiJmJjjEM2fqpRWkzNKzPPEZWaQAAAAAAAAAAAAAAAAAAAAABHPrpEc+ukAAAAAAAAAAAAAVvbZSbdFkPePVrH5uIIezdMRF4mMzHbn8e5ZWeWr/WPtWwkShIKyrTT8zWxMcIxM+/7/pdaDu0cdSfGI/HzdA3GMretvVtE+iXP3i8TO3nEc46z0/H2IZzPOKT8AdldKlbTaK8c5SOCJx9SI9E/wDDYvP/AO5/5fqHn9dw5K6sx22+M5b5tpnEXmPh+guOoU0rb9Otp5zHH0riAAAMtMViZnhEcQZe0UrNp7HNbM1mbYzMxM4/HYta03tmeERyj8fj3sGbW62lWtc1riY7fxzc03ruiOSesRXlmPjKO1IjhjgDJtG3MTlLTStWk3xWPCeePGUVIjTvvrjl2xlfU8yaRN7RMW7OSENSYxz8V9PQtaM39nw7WaGl5kza/Gsco7Jl1qsimnpU0/Vjj1nmuAoAAAAAArasXjFozCwDk1NO9LZi1pr1js9KOcZ9qIx1jn+ruQ6mhGM6cY8Ov3Jg5pjbOY4x2Svp6k1nMT8OqsRmbUzzjl0lWJ7RK76Xi9c1n9Fnnzq3pMbLYzzdejq+ZXjjdHOFVKAAAAAAAAAAAAAAAAAAAAjvzSI78wSAAAAAAAAAAAAAAAAAy07azM9kZBz6tt+pj6teXjP6Kq14VjPPtblUayZZMsBsyrOMTnk0xkVJpam6vHnHNI55zE7o7OzqkraLRmGaqUU3N3ILCu43AsZUyZBbLJlUBrJnETPQV1Z/058eALaUY06wkVa2y1VrAAAGS1gKTzCeYKpeMWi3wkWtG6sx1UrOaxnmDQAVtwtFvhKyt/VlYAaCKx/JPobacR1nshketaU/d9PM+ZaP6wKl0qRp6cV7e2esrggAAAAAAAAAAAAAAAAAAAApqdi0coV1OxaOUA0AAAAAAAAAAAAAAAAAAAAAAAAAAGWiZrMROJ7J6Ay1619a0R6Zwhv3vTrwrm0+HJzamhq1tm1Zvn60cco54TieE9JBJr60601nbt257co+c+hmY6try9INblgC0S3KgCXu/O8+KdB3bnePQnVmgCgpq13UmO3nC4DjiJtMVrxmXRXTilcRx6y3T066cTFe1dFtUwzC8wrMCK4ZhbACK+lNrRj4p6VitYiGVhcCn89f6z9jocsf7jT9EupFgAKAAAAAAAAAAAAAAAAAAAAIdf6qZDr/AFQRAAAAl0PrJkOh9ZMAAAAAAAAAAAAAAAADJrFoxaImPFHfQ07ac1ita57YjklAclJmaxu4W5T6VjVjZrRPZf3TBbhDlZ66SotT2InUjnHOOq9bxaMxOYW0aeZMXt6sT7MdfFbV0N876Ttv7p9LXz4zqkTjWpOcZzE/j4J3JNvbrW9ZraLROOvF1NcekrRmW5aQAAAAABH3isW0bZjOIyqlvXdS1esTCGk5pGeeOLHNri0azLm2DMobakU1OE8J5x0WTU1OMicw1FDKt7ba5iMz2Qpm/SvzanG1m2RK1Dm/5YJnU4YmvGccv1X4qfUXisV1onHre6f1So66don277scoxhI6Tpmty3KoIuK5bkGkzFYmZ5Rxkyhx/iL4z/pVnj+afuFW0YnUv5tomI5UienX4pwQAAAAAAAAAAAAAAAAAAAAZPKVdPtWnlKun2guAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADy9OcRHilRRHDExy4S2OEc5wqlpzwjkrePmsrYGVtK2/wlSY+bYnINmZnwYNAMNIiZnERMz0gE3c6z502jlEYl3ItDS8rTxw3TxmYSogAAAAAAAAAAAAAAAAAAAAAAAAACOnNIjpzSAAAAAAAAAAAAAAAAAAAAAAAMmImJieUtAQaX8dYnnEYn4cF0elwvq1nnFs/NI53toAQAAAAAAAAAAAAAAAAUsh1+ERbpPH0Jbc1bVi1Zie1YIpnHNaunqXiJrXhPbPD9UdZztvti2OyeUu7T1K6lc1n0x0biIq92rw3zNvDlCeIxGIaKgAAAAAAAAAAAAAAAAAAAAAAAAAAjj10iOPXBIAAAAAAAAAAAAAAAAAA5O86mZ2RPCOfjLo1b7NObRz7HHSvmasVnlPGQS910s/6lo9Efavq02zvrHsz63h4/f800cI4NBzRLcy2+nNZmaca/t6ej7lYnLnZjTd0m6WANzLA42tFY5z7oAiJtOKx6Z6Ja6VYjjG6esrVrFKxWOSzcmJrz9fT8vUxHqzxhN3L1bx4s77zp8fsW7lHs3nxVHSAAy0RasxMZiWgOeItSMXicRytHHK0RN8bYnE9vJMJgyIiIxHJoKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI59dIjn10gAAAAAAAAAAAACDvE+3SPT9idz959ak+n7BKpP1567Y9/6t7WREzXPZNvs+9eYSJWSwZa0VjMziFRJ3efa1I8Yn8fJfWvspw9aeEfjwc9L2zFqezE890c1dSbTPtbrdmfD4DcZ6057I5feETE8pg4oxbreDcEQ0DGGW4RE9Jz+Pg1kxmJjqpE3dp4Xr0nMeif1yncmhbGpWbc7RiXWOlARX1ojhT2p69kCL2tFYzM4hz2tbUnjwr2V+8nNp3WnM9ng3AzrBsR1ZPGYrHaBxmcVjMwrOzHtTN5/Lwj8fGW2mMYj1I98qZyna9Nr5efariM/umfmXm19SY5znER+PezbumK9kzx9CfQpxnUn63L0GencS0rFKxWOULAqgAAAAAAAAAAAI76cX48rdXDqWilpri0THDD0kOro7+NZ2290g4IibW3WjHgkiZic1mYmOhbMXmtuccwZT6XeZ5X4x1xxdFbRasTWcxPa86YxO6EmnqWpOaz8OyRrt3iPS1a6nCOE9JSAAAAAAAAAAAAAAAAAI780iO/MEgAAAAAAAAAAAAAAACLvE40L+hKpq13aVq9YByDKTmsS1QAnhAHbhZSvLPVoNmVczWc1+MNASVmLRmGoJiedZxK1daeVq8ujNipRWNSvXHp4NiYnlMINDLJvWOdo+YNFPNp1z6IZOr2RHzBIj1rRsmInj4GL35ziPl+q9aREYwC1Z3ViY7WodCds2pPZPBM2yAAAAAyQUnmEgoijhe0fFKpePbifAAAGX9SWq37I6ysDWTMRGZMr6WjOrMWvwpHKOoGhpTbFrx7POI6z9zrBAAAAAAAAAAAAAAAAAAAAAABTU7Fo5Qrqdi0coBoAAAAAAAAAAAAAAAAAAAAAAAAAAADLVi0YtETHi0Byd809OulmtKxMziJiMOV1d+56celyg0AAAEuhOLzHWE0zETHi5YnbaLdJTzbdq1iJ4RG5UqQBUAABW84pMxzxwWAGMmQbOIUjjbEdnNW9rTO2nG30JK1isYj/AJQWAUZpznvWOlM+90ubu0Z1dW/jtj7XSy0AAAAAAAAAAAAAAAAAAAAAAIdf6qZDr/VBEAAACXQ+smQ6H1kwAAAAAAAAAAAAAAAAAAKatPM05rHCeyfFFXQvaf8AWmJiPqx2+n7nQAxoAy1YtGLREx0lDOlen8Vsx+232SnAc0a0ROLxNJ/NHD5pInMZjjEq96rnTiZxiLRM5+X2oPLiPVma557ZwsS3HS1zRbVr9aLR+aElNSbTMTTGOkhqXJlWLZ7Jj0tyDcmVZnhyyybWxwpmemQXygmNmpMdluMT49rZvrTPCla+mc/Qj3ampX2tsceyOJZq7iTlzUnUryr7U+DI04+tM2/tOVoiIjERiEnD+l5/xXFrR7U4jpC0ViIxEcGjckjnbajjOlP5J936Jo5KK0tOlO20+zPKenpc+XH9jpx5flbfjqR+WPpGUndE3xjdOfua3xmRjldoy+dlsen5NMZ4dVRPE5jMCmjMW0q4nlEQujYEzFYzM4jxUnW04+vE+jiC4j33t6mnMeN+Cl621LRpxaZn62OER+OzigtMzrX8vTn2fr2jp0dNaxWsVrGIjkzT066VIrWOH0rooAAAAAAAAAAAAAAAAAAAAADJ5Srp9q08pV0+0FwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAU1L1065t/wAuW+tfU4erXpHb8W96tM6ta54V+n8fSjUUrwjHiTyZqUiPaj5Kx8RV5nCs8ZYAExloDMeMunQ7tXU0ota1sz0R6OlOrbHGK9s/jtd9KxSsVrGIhEQf4On7r+77kmlo00szXMzPbKUAAAAAAAAAAAAAAAAAAAAAAAAAAAABHTmkR05pAAAAAAAAAAAAAAAAAAAAAAAAAQ4iNe8x21ifpWZaMa0T1rPu/wCVmL2sYAyoAAAAMaDGgAMaAAAAAyWq2kFZ5sBRz04RMdJmFq2tp23U+MdVtHR8zfO7Eb5jkmjutM+1NreEz92G0S6d41KRavKVla1itYisYiOyFlQAAAAAAAAAAAAAAAAAAAAAAAAAARx66RHHrgkAAAAAAAAAAAAAAAAABy96tm0V7I4rd0p7M3nnPCPQg1ZzqXnx+h16FdujSPAEgACltOtpzjE9YXAc163pxmMx1giU+p/Hb0S56xERwYsajTQtjVtuj1uU+gZMZjCS4V1CtJ3UraecxlZ0ZcnfZjdSO2IlfucY0pnrZza99+rac8OUO7Srs0q18OILgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjn10iOfXSAAAAAAAAAAAAAIe8Vm1a4x63b+OuEytoi1ZieUg5pjFq17Yr2dq2cwXibV4cb1njw5/8APNWtsxmGYlLWitZmeUI9Os6k77xw+rDNXGpq10+znKflyaRVrZhgMmItziJZFIjlGPQsCKbMcpn5mJ/dPuXAR4t1j5fqce23yhJMINW+I4c55ATMRPO0zz5/cmpqate3Mfm5wppaWyMzxtPOUmBSZtb1rTPh2fj05Ijo3h6TINiGqebX91fmZzGcg2VMzG+Y5xWIjwzktfBSvC1rztraMcUqztWZ7I5QyW7a4z5tZ9EZ+1bTrN5xSJrjneeM/d+gmN0dPN/az49MdPtn5drqZWsVrEQsrQAAAAAAAAAAAAAAADl71TNq268Pj+Poc8Tnnzd2rXfpzEc+cOGeM++AvTVeU47Jbn5mMwMkTNZ7fTHOHTpd44Y1J9Fvvc0Stjtj5Cy/16A49LWmnDjMdOno+75OqtotWJrOYkVYAAAAAAAAAAAAABHfmkR35gkAAAAAAAAAAAAAAAAABw2rs1LU6TmPRIm71ThGpEca8J9H6IOajVb9kdZWZMcYnoDQAAAGTGfCerZmIjMpNLRm85vExXsjqCGLxHrxwnlaO1eNOluMTE/CHTq6Uamnt5Y5eDimtqWxMTFo/HxZEvlU6R8m+XXpj0I41LxziLe5bzo7YtHwMVfbHT5kREcowp51fH5E61eyLT8EEgi8208q49MqTMz61s+C4LcJvaKzxjjCes5iJc0TttE4xHJNX2Z8JaRIMyZEaMyZBqtm5VmcgwAUUv60eiV1L+vHokAFZ4zj5gV4zu+TW1ra84pGfHsh06ejWk5n2rdZ+wFNLQnO7Uj0VdAIAAAAAAAAAAAAAAAAAAAAAAAAKanYtHKFdTsWjlANAAAAAAAAAAAAAAAAAAAAAAAAAAAAABw98nOtEZ5VQL68xbvF5jrj5KAAAZblgDcpO7xm1p6RiESfu3qT/YKmDsGmQAFNScVj0x9Lcqa0xupE8s5ZvifV9qeleKC+WTEzHCceKlLWtqbZrtxGZymBlaxSMR8+qwKAI9acaVp8MIJe6cdCLdtpmZ+adTRrs0q17YjiujQAAAAAAAAAAAAAAAAAAAAAAh1/qpkOv9UEQAAAJdD6yZDofWTAAAAAAAAAAAAAAAAAAAAAAAAAj1q79K1cZmY4Oek7qRbw4uxyRXbq6les7o+KxKM4xMWjnHvWmGNMJK2i1YmGoJ3Utupx6x1TVtFozWco3PWgAIZjZqTH7vaj7Uyt67645THGJCqCtJma8efFZWABUGTETGJjLQGMarHG89I4IrWxzYy8407T4A3R0qTo13VjPXtSeVXGPax03T961I20rHSMNZbUjR045Uj48VorFfViI9EN5c0cTbX4afs17b/cDZta1tmnjPbM/V+9NpacadcRx6zPOTT066ddtYxC6KAAAAAAAAAAAAAAAAAAAAAAAAyeUq6fatPKVdPtBcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABW9opWbTyhZzd9zspOeG7kDntM53TxmZzOGTaSZyxVJ481bR2xzWVtOZxAMyQAjUmjo21rcOFY5z+O1J3KlbTfdWJ5c49LsiIrGIiIjpCDKUrSu2sYhYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAR05pEdOaQAAAAAAAAAAAAAAAAAAAAAAAAEOrmNXTnPDjE/j4LK95j/Ti37LRZZjksAGVAAAABm6GboBYV3Q3MANZkBozJkGjJtCs2BsyrPEFAGAt3WPYvPW8zCdF3aMd3pnpn5pXRkAAAAAAAAAAAAAAAAAAAAAAAAAAAARx66RHHrgkAAAAAAAAAAAAAAAAAB5+r61/TLvjhDh1ON7x4y7NO2/TraecxxBcAAAFb+pb0OevKPQn1f4r+iULPJYAxhpL3fjo1/HazvGr5dMR61uEK6epGn3as2544R1ct7W1b5njaeEQ6sJO66e/UzPKruR6OnGlSKxz5z6UgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI59dIjn10gAAAAAAAAAAAAAAItWMTviM44TEdP0Q6mnMxv0p58cOtDas6dptXM1meMdPGPu+TNn7BzaeyL2mtpm0xxi3NfdjnEx9H49KtojzZmMTW8Z+RMTX1Z+fFS4ki2YzGJhvBDNs+tXPjH4+hu6I4xeY/t+vFUz+JcM7Wbp6RPon8fSRbM8YmJ9AmVbmw3VziJjPTLRFbTiqCnt94/qnvyQ6H8txYnBWcTmbcaxPLrP4/HBBvON0ztr1n8fjo2JrExNaZx225/bP0Mzxzacyyb9DP6u50ta9onnX4x+rN1dS2JjFuy34/4RzLax9bsrx9M9EyEtq3s6dv33jt5RH4/GFJmZnNpzLIz6Znon0+75mLan/j964dqaWnOrx5U69fR97qrWK1iKxiIWFUAAAAAAAAAAAAAAAAAAcOvXZqz8/m7UPeabqbu2v0A5JjPpIng2PoZMYnMDJPCc/BeFOcNpF5nEVtPZkGzGfCVtPUmlsxwntjq2NDVtzjb6Z+7K/+E453x/4/qNTxPp6ldSMxzjnE9i6LT0a6dt0TMzjHFKAAAAAAAAAAAAAjvzSI78wSAAAAAAAAAAAAAAAACt7RSubTwQ2i2pOb5ivZXP0gktq0rOJnM9IjLjiJrnEYjPCOkJbU2RM0nER2TyUm2YiZraI6zAACjJz2GZ/bLQFcz+2WTa3DhEZnnMrsmMxiQdOn3etZzad1vHlCZD3a83pMT9XhnqmQFNTSrqRi0cuUxzhcBxX0r6ed0bqx9aFMxL0EV+76duONs9a8AcePGTE9Utu76teUxePlKOYtEZtS0R4wozHWZbERHJm6vWDMdYAmMxhJS26sdY4Sj3R1gruzupWbR2xEAmapF4nhynpLcgsKxaJmY7Y7Gg1gAAAI7fyfBeJz6F9GtZ1rTaImYiMIIYi94/06zbx7E2n3bHHUnPhH2ukBkRERiIxENAAAAAAAAAAAAAAAAAAAAAAAAAAAFNTsWjlCup2LRygGgAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8u05vaetpljK8mgAANpSdS9aR2yx0dyrE3vbtjhAJL910opnNoiI4zEqaEY0aujvExGhfPTCKsYrEdIwsSt7BssVAAGadK6mvabRForWIxMdsp61rX1YiPRCLunGlrfutMx6E0zERMzwiGWnNM51tSc5xiIWQadr43bc7pmeEpPMxzrb5Z+g2JYuKeZX83/jP3N3x0t/4z9y6mLI9T2rUpz3WjMeHatu6VtPwx9OFdHdqd6zMTEUj6TYuOwBFAAAAAAAAAAAAAAAAAAAAAAEOv9VMh1/qgiAAABLofWTIdD6yYAAAAAAAAAAAAAAAAAAAAAAAABz68bdbTt1iaz9joQ96ifItMRxjEwCrJho25qzCs1zOeMT1hIyeQI41b1mIvXdnlNefyS11KW9W0Tnsyppxu7zX8kTPzT30tPUzupE57e1luKjI7tEctXUj4snT145Xpb0xj6DVR1jhP9p+luGaPHSiZ7UjTnVcNw0BWYVWlHqTik49AKxMxp1xxtPJasbYiGUrtjjxlYBl43bafun3NKVvfV3ae32OHtdZ9BVnadS+pWvCPat2Vjm3yta/C961j8kc/mk0tGml6sces82dbR10LamJ18dYpHL4p4iIjEcIaIAAAAAAAAAAAAAAAAAAAAAAAAAAMnlKun2rTylXT7QXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQ96rv7veOkZ+SZkxmMTyB5meGerMeMpNbQtozM8bU7J6I4nPJQmGNYKAtTbOpWLzEVmeOQdvddPZpRM87cU4IgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACOnNIjpzSAAAAAAAAAAAAAAAAAAAAAAAAArasWrNZ5TGEOnMxXZf1q8JdCLW05t7VIjfHvjolmjRDW8W5dnOJ7F90sY0uzKu6WZBabK5lgAEzERmZxCsWteM6dJtHXlHvXBYbGlqzPOkfOfuJ0tSOVqT8MfeZU1jcyzGpGd2nPpic/r7mRetpxE8enaYq2WAgAAAA1TUttpOOfKPSs3SrvvF/qxy8ZWImrXbWKx2RhYG0AAAAAAAAAAAAAAAAAAAAAAAAAAAAEceukRx64JAAAAAAAAAAAAAAAAAAcneKTXU3dlvpb3fUxOyeU8pT6lIvSazwy47VmtprbnAO8cun3ia4i+Zjr2uit63jNbRPoBYAEetPsxHWUWFrWi98xMTFeHAY5X1qK4V1fZpKVz607pitfQzFRx6sds8odfd9DZ7VvW+g0NCNP2rcbfQndWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEc+ukRz66QAAAAAAAAAAAAAAAAEOpoVvO6PZt1jt9KHtmJjExzh2KamnW+M5iY5TAljkwxu6azMXjlOMwTiZxExnojOK7Y7Ix6ODYzH1pANpOZ54mOmGceyIj0WmGgv1WRNuU5x6cqUiY7xjMRu7ZSKalN8cOYannTmOepHy/Vl4jZXZO6Kzxxx5oKWiOFq7Z64SRMxOaziesJlXYZjOO3o3bbONtvkt51uWYmSKa2rwmbRHjw/VfUyMmtaxPmWxj6sTx/H4yRXU1pjFcVjl0j7/gn0+70picZmPklMaU09GunxjMz1lICgAAAAAAAAAAAAAAAAAAAAyYiYmJjMS0B581ml5ifR+PSTyS96pi8Wjlbn6fx9CPSpbUtET2c/D9enzCzVIraYm0VnbHOfx7/em7rbbq4n60e/8AGXVWsVrERyhy6unOneJry51+4R2DKzFqxaOUxlooAAAAAAAAAAAAAAjvzSI78wSAAAAAAAAAAAAAAM5NU1Kb9Oa5xntBBEzqak3t6sepH2/Fa1orGZnELxoxHO1p+OPowirSlr74rG2PV8fH7gbWm+d1+XZX70uUdtStZxM8ekG7Ut6ulP8A7cAV1NL61OE9OqPLojT1J9a+PCsfbLa93044zXM9ZnIOWLRM4jjPSOK8aWrM42RHjM/dl1xEVjERER4NBzx3aZ9a8/8ArGF47vpR9WJnx4pQGREVjERER0hoAAAAAAAKeVp//OvyXAVrStfVrEeiFgBW9K3jFqxKKe60zwtePDKcBya2hspvre2a9Va2zwnnDo7xMRoWmejmiPaz4AuAoMvEzWYjm0BkcIX0uGtHjEwqyZ2zW37Zyg7AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAU1OxaOUK6nYtHKAaAAAAAAAAAAAAAAAAAAAAAAAAAAAAADyY5NVhoNGANd3c640In905efL09H+HT/rAI+9TM7NOs4m05z6FcascppPp4fetqe1rxw4Vr9P/DYc+XKy+Lis7/21/wDL9Gf6n7a/P9F5E+6vzEc+b2RT5yy0akRMzqRGI7KpUevONGxOdtMifRrs0aV6QzvMzGhbHOeHzU7nabaOJ+rOIO9xmtK5xm2fc6so44RER2NyjjzI7YtHjwbuv+2Pn+jneNXYliTci3Xz6kR8TOp+T3p8VdiSbLd0j2J1O28+5z3reaz7UeiIdXdv9vTHRvjxxLdTANIAAAAAAAAAAAAAAAAAAAAAAIdf6qZDr/VBEAAACXQ+smQ6H1kwAAAAAAAAAAAAAAAAAAAAAAAACPX/AINT+spEHe5/0JjOMzEZ+IKR7NYz4Qspac3rWOXOfx+OS1pisTM9jbBmJ5MvMRGZ5QyuKU3W4Z4zlulpzq2i94xSONY6+KaYk7tSa0m1oxa3GfDomBlsU1Jxp2npEyuj7xONC/owCDSjGlX0LsrGKxHSGtsAAjLOe9s6ta9OMpdS0ViZkvp+Vo0m3rTb2p+EpVkZnOfAzxwynGuessm0ReZ5zHCIjtlUbadscIzM8IjrLq0dPy9OI7Z4zPipo6OJ33xv7I/anZtbkwARQAAAAAAAAAAAAAAAAAAAAAAAAAAAGTylXT7Vp5Srp9oLgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOfV7pS/GnsW8I4S6AHnW0dWk4mkz414qXpakxFoxMxl6jk75pXtaL0jdGMTEcwcnxWpjbhTME+HMHd3XUpXu9YtesTGeEz4ul5kRE18Gxr6kVjT3TER2xzB6Q4OM872n/2k4xyveP/AGlcHePPjV1NK26LzaO2tpT6nea+Tu07e1PCInnCDpHBN5t615nPZM8PlyNLWtp3rWtt1ZmIxPHHoB3gAAAAAAAAAAAAAAAAAAAAAAAAAjpzSI6c0gAAAAAAAAAAAAAAAAAAAAAAAAAAItXSi/GJ22/dH44opm1JxqVxH7o5fo6hMHLFonlMT6GpLaGlaczSM+HD6HNSPZxMzmOE8UsXUk2iOcxHpVjU32iunWbT8oZ5dInMxz68UmjH/wCR/wCs/TBILU0Izu1Z3z07ITg0gAAralb+tWJ9MclgEM6ExPsXmPCeP6+9S0aleenmPyzn7nSJg5N8Rjdmuf3Rg8yn76/N1qzWtucRPphMXXN5lP31+bd3SJlutStNSs1rERMTHCPx4qpYMmJtz5dE/d8eXNY+rM/f9qHK2hONW1esZ/HuWDpAaQAAAAAAAAAAAAAAAAAAAAAAAAAAAARx66RHHrgkAAAAAAAAAAAAAAAAAAVvSt64tH6LAOO+henGPajw5opxnjz8XosmInnET6Qed7PgZryjGXf5WnHHy6fJya1otf2cbY4RgovoYiuFr3ivpQZwzOeLnjS9tSZjBoxnXrlRP3SubWv04QsK6gG2QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEc+ukRz66QAAAAAAAAAAAAAAAAAAHBb1v/eftJiJ5xlvrTXxiZ/HzbtlE5dq44cJlmJ6/OG4wDLPa6R8zM/tloAyZmOUZmWsjnM9kCybWxOZmNszPbERkjStacRpT8Yw69GmykZ5zxlIq4i0dGNKJ45mfBKAoAAAAAAAAAAAAAAAAAAAAAAAAACt6xes1nkzTpXTrtrHD6VwBW1YtGLRmFgGViKxERyjhDQAAAAAAAAAAAAAAAR35pEd+YJAAAAAAAAAAAAAAAAVvXfSa5xlSNCv1ptbwziPclAVrWtYxWsRHhCwAAAAAAAAAAAAAAAAAAAAAresXrNbcpclaWpe1J4xHKXa57TFtS0x2cAZFW4grE6kzETisc5jtWvoxFc0jFo9/pUUmqq1bRasT1ZNZ1L7YnERzkFZtWvOYgtGaTHWE9dOkRiKxhBas6epNfqTxj7kHVSd1Kz1jKyPQ/hp6ISAAAAAAAAAAAAAAAAAAAAAAAAAAAAApqdi0coV1OxaOUA0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAHlaldupavSZVdve9Cbz5lIzPbHVxTwnExiekgAAO/uds6GOk4cdNHUv6tJ49s8IehpacaOnFc8uMyDmrNrampesxiZx8l83/bX/AMv0V0YxpVhIfMqbVZtf9kf+X6M3amPUj/y/RcT4h9VSZ1McK1j0z+imrTUtSZm0YjjiIStWcZDat3WmzRjrb2lO9fyaXxX7tM7bUmfVnEejsb3ik308151nMR1FQDK2i0Zhqoztw1X68eifsWBmfaxPbybpW8vXiM+zf3SpqfU/tC0V3a2nHbE5+QO0BFAAAAAAAAAAAAAAAAAAAAAAEOv9VMh1/qgiAAABLofWTIdD6yYAAAAAAAAAAAAAAAAAAAAAAAABW9YvWa2jMSsA5v8AD3raZreLRP7idDUvzvFcdOP3OkNTENNCtZi1s3tHbPZ6EwCgADn71bEadetodCDvVLWpFqRm1ZzgEepbERETiZmIhdFW0X1M/tjl4yte+2uY4z2NsLROZnpDLWiIzKsXrWIrGbT0jjK+nozad2rEeFfvTTDQ05vMal44R6sT9Ke1YvWa2jMSsMtoP8NTsm0R0ifxPvSaelTTzsrEZ7VwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGTylXT7Vp5Srp9oLgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAApbTpbjakTM9uHn6ujfSzms7c8LPTAeTETacViZmeyGQ9WtK0ztrEZ54hxa3db1tNtOM17IjnAIYtaOUt3T1VmJicTExPSWxmVUZPDitFesr6ejOtOKzwjnIIpW04zq0j80fSlt3XVjsi3on78Oju/d/KjNsTfw7EROAAAAAAAAAAAAAAAAAAAAAAAAACOnNIjpzSAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOTWri96x9aMx6fxxdampTzK4ziY5T0BzzGdPd2Yz9q+lGNavjWfsVru0s11IiK54Wjl+i3d6TmLbomsRNa+jP6MztXQA0gAAAAAAACLXpOpp4j1o4x6XPHtbbxPDl8/1drm1tGfatTlbnX7Y8UoremI3ftnP3r6cY1YmP2z9jKW3Ri3rdsTGFtCkxic5rGYjrz/RIqcBpAAAAAAAAAAAAAAAAAAAAAAAAAAAABHHrpEceuCQAAAAAAAAAAAAAAAAAAAAAEPebbdOI/dOJcuN05jk7dXTjUptnh0lxzFtK2y3wnqlWMmMcOrdsRClpmZiejZllWT0jjLv0qbNOte3t9KHu2jMTvvGJ7IdLUSgCoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjn10iOfXSAAAAAAAAAAAAAAAAAAA5Z0LVriY3RHKYnjj8dFcznET8LRifx8HWy1a29aIn0wLv8AXLMxHrRMeKsxmM1mJjwdFtCJnNbWrPzj3qToWic4rPjHCfx8RMiELUmucxaseMZj5/qyJmeW2fRKM/NJnEJdCm68RPKvGfT+OKOInOZj0Q7NKmymO3nKtSZFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEd+aRHfmCQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzX076cXmntRPHxh0gING1ZpGzhjhiecJc8FNTSzbfSdt+vX0sred228bbe6fQCKlL+1Fa5iJmOa2nM6UTGpWa5nO770uj6s/2n6V5iJjExmAVhHr0m+yI4TNufwls6dqcdPjH7Z+zoUvXUvXE8azMzE847PtBLEYjENAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFNTsWjlCup2LRygGgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK2pW3rVifTCwCGe66Mz6nvlaujp0xtpWMduEgArqRnTtGM5ieCwDkpMbYxywvmEWpS2hM8M6fZMdjI1KzytHxVEtZic+EtRads1z1mVsiN1I9ifCMtzGMoNXUjbti0Znh6F6b9WP8ATriP3W5C4k7tx1NW3Zwj5OlTS040qba/Geq6Kg1O71tabVmaWntjt+CKdLXrONtb+MTj6XYA4Ypqxa0205mfCexuNSf+qztAcM6Ove0exFYjlmXVpaUacdbTznqkAAAAAAAAAAAAAAAAAAAAAAAAAEOv9VMh1/qgiAAABLofWTIdD6yYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEd9Kl5zaOPWJwzyNPtiZ8JmZSgK1pWvq1ivojCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyeUq6fatPKVdPtBcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFbUreMWrE+mEcd10Y5V98pgEUaGlH1In08fpSRwjg0AAAAAAAAAAAAAAAAAAAAAAAAAAAABHTmkR05pAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZzOTQAAAAAAAAAAAAFL6dNTG+M45NrWK1xXksAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI49dIjj1wSAAAAAAAAAAAAAAAAAAAAAAMmItGJiJjpLQEddHTrOYrGfHitGnSLZilYnrhYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABHPrpEc+ukAAAAAAAAAAAAAAAAAAAAAAAVtSlpzatZnxhYBSNKkW3RXiuAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACO/NIjvzBIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAArasWjFozCwCtaxWuK8lgAZiM5xx6tAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAU1OxaOUK6nYtHKAaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAApOlpzz068fBcBDPddGZzs98kd10Y+p75TAI40dOMY068PBIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACHX+qmQ6/1QRAAAAl0PrJkOh9ZMAAAAAAAAAAAAAAAAAAAAAAAAAOfvepbS0otScTuw5P8Xr/AL/dH3A9MU07TbTraecxEoe+a1tKtYpOJmeYOkeZ/i9f9/uj7npgAAAAAADztLvOtbVpE34TaInhCfvmrfS2bLYznPD0A6hz901LaulNrzmd2HQADn73qW0tKLUnE7sA6By9z1b6u/fbOMY4el1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyeUq6fatPKVdPtBcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcmt32KzNdON09Z5fq5573rTM+3jwxAPTHBpd9tExGpG6OsRx+521tF6xas5ie0FgAAABz971LaWlFqTid2Fe56t9XfvtnGMcPSDqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABHTmkR05pAAAAAAAAAAAAAAAAAAAAAAAAAAABwd57xq017VrbERjsjoj/xev+/3R9wPTHmV75rROZtE+Ew7tDWjWpMxGJieMZBKOPvevqaerFaWxG3PJP3a9r6FbWnMzn6QSjztLvOtbVpE34TaInhD0QAAAAAAAABz971LaWlFqTid2Fe56t9XfvtnGMcPSDqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARx66RHHrgkAAAAAAAAAAAAAAAAAAAAAAAAAAAAEXeb2poWtWcTGPpcP8Ai9f9/uj7gemPM/xev+/3R9zad81a2zaYtHSYB6QrS0XpFq8phYAAAU1ZmuleY5xWZhx927xq3161tbMTnsjoDvAAAAHH3vX1NPVitLYjbnkn7te19CtrTmZz9IJQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARz66RHPrpAAAAAAAAAAAAAAAAAAAAAAAAcfe9fU09WK0tiNueQOweZ/i9f9/uj7j/F6/wC/3R9wPTHH3bvdr3impjjynk7AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEd+aRHfmCQAAAAAAAAAAAAAAAAAAAAAAAAAAAAedq951q6t4i/CLTEcIV/xev+/3R9wPTHmf4vX/AH+6Pudfdu8edExaIi0dO0HQOXvmrfS2bLYznPD0Ld01LaulNrzmd2AdAAAAAAAIu83tTQtas4mMfSCUcfdNfU1NWa3tmNueTsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABTU7Fo5Qrqdi0coBoAAAAAAAAAAAAAAAAAAAAAAAAAAAAK2tFKza04iO0FhwanfbzmNOIrHWeMo/8Xr/AL/dH3A9Mcmh3zfaK6kYmZxExydYA4+96+pp6sVpbEbc8k/dr2voVtaczOfpBKAAPO1e861dW8RfhFpiOEPRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQ6/1UyHX+qCIAAAEuh9ZMh0PrJgAAAAAAAAAAAAAAAAAAAAAAAAcvf/4K/wBvslwREzEzHZGZd/f/AOCv9vsly93rv82MZ9icR8gdncbbu7xGPVmY+37XN32027xFYzOIxjxX/wAvtEWvXtmIn8fNHSfO77E54bsxOOyOX0Ah1KxXUtWOUTMPT7xreTSLbd2Zxzw83W/n1P7T9Lt7/wDwV/t9kgv3fvHn7vZ27cduV9bU8rSm+M47HN/l3/Z8PtTd8/21/h9MAzu/efOvNdm3EZzl0PP/AMv/AJ7f1+2HV3m86ehaYnE8oBTW73TSttiN0xz48GaffaWti9due3OYcvdtHztTE52xHGYdWt3TT8uZpExaIzERxyDi0f59P+0fS6v8x/6/j9jl0f59P+0fS6v8x/6/j9gL9w/gt/b7IU1e+WjV26UVtHKO3LnjWmvd5065iZtmZ8HR3LRraPNnjMTiI6A6tPfsidTG7pHYr3jW8mkW27szjnhK5e//AMFf7fZIL937x5+72du3HblTW735WrNNmcduf0U/y7/s+H2oe+f7m/w+iAdN++0rEYrumYiZjPCDS77S84vGyfnDO790pOnFtSN0248+Tn71oRo3iaz7NuUdAemIO53393jPOvD8fBOAAAAAAAAAAAAAAAAAAAAAAAAAADJ5Srp9q08pV0+0FwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHP3vVnT0fZnFrTiHQ4v8AMf8Ar+P2Ah7roxrak7vVrzelERWMViIjpDl/y+I8u0/Wzx/HzdYOLvnd61rOpSIrjnCvcNXFp055Txj0/j6HXrfwan9Z+hwdz/3NPj9Eg9G9tlLWxnETLm0++xa8Rau2Ouf0T638Gp/Wfoebo6fmatadZ4g6rd/jPs6czHjOE2h3imtwjMWxxiVZ7npTTERMTj1suHu8zXX05j90QD0e8a3k0i23dmcc8K937x5+72du3HblTv8A/BX+32Sp/l3/AGfD7QdGvqTpU3xXdEc+OMI9Dvcat9k12zPLjnLomImMTGYl5mtp27vrcM4zmsg7e8d5jRmI27rTxxyb3fWnWiZ2baxwznLhxbvPeJ4etPyj9HpUrFKRWvKIBYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEdOaRHTmkAAAAAAAAAAAAAAAAAAAAAAAAAAB5nfP9zf4fRDv0f4NP8ArH0ODvn+5v8AD6IWr3zUrWKxWuIjHL9QT9+pWdLfOItE8PHw+1D3CZ860Z4bUWtr31sbsREdkOzuejOnWbXjE27O2Ab3jvPk3iuzdmM5yk0dTzdKL4xnscf+Yfz1/r9sunuf+2p8fpkHn6P8+n/aPpel3jWjR088N08o6vM07RXUraeUTErzae8a8brY3TiM9gOvu+vra1vVrFI5zifvTa2tXRputz7I6t09OulSK1jh9KDvehfVtFotWKxHbIIp79qZ9mtYjx4raffuMRqVjGecdnwbp/4fS04jUnTtbtmI3OXWmk6tp04xXsB6zl1e+0pOKRvn5QzWvNO40x9asR7kHdNCNa87vVr0BNTv1Zti1JrHWJy6q2i9YtWcxPa5O890rFN2lWcx2c1u5b6xal4tEc4zHzBvf/4K/wBvslF3PUrpU1bWnhw+PNL3/wDgr/b7Jc/dNCNa87vVr0BN/j43fxzjrl06epXVpFqzw+hy967tSmlv04xiePFX/L7YveuOcZz6P+QS63e/K1Zpszjtz+jopbfStsYzES87vn+5v8Poh36P8Gn/AFj6AR947z5N4rs3ZjOcpNHU83Si+MZ7HH/mH89f6/bLp7n/ALanx+mQTgAAAAAAAAAAAAAAAAAAAAAAAAAI49dIjj1wSAAAAAAAAAAAAAAAAAAAAAAAAAAAAg75/tr/AA+mHN/l/wDPb+v2w6e+f7a/w+mHn6epbTtupOJxgHrvO79WK6/CMZjMq/4vX/f7o+5Ssxqauda8xnnOMg7e4xP+H48pmcM1+9xp2mtY3THPjwh0UitaRFMbccMOH/C2reJ1dSmJnM5tz6gf47V/bT5T97p7v3mNaZjbttHHHNFrX7r5d4rFd2OGK9vpQdz/ANzT4/RIPRvbZS1sZxEy59Hvfm6sU2Yz25/RNrfwan9Z+hwdz/3NPj9Eg9G1opWbWnER2uW/fqxbFaTaOszhX/MLzurp9mNze692pfTi+pGc8oyC+l32l5xeNk/OHU87vPdZpaPKraaz2Rxw7O7TadGu/O6OE5gHJ/mH89f6/bKTS16aPdaZ42nOIj0yj/zD+ev9ftlfuvdqX04vqRnPKMg2nfqzbFqTWOsTl1xMTGYnMS87vmjXSvWacK2jk6u423d3iMerMx9v2gpTvu+9a+XjM49b9HW8jR/n0/7R9L1wcl++7L2r5ecTj1v0dbyNb+fU/tP0vXAAAAAAAAAAAAAAAAAAAAAAAAAAAABHPrpEc+ukAAAAAAAAAAAAAAAAAAAAAAAef/mH89f6/bL0Hn/5h/PX+v2yDp7n/tqfH6ZS2rF6zW0Ziex5lO8atKxWtsRHhDbd51b1mtr8J58IBHWJm0RX1s8HrWtFKza04iO1xdyrpTfNrZv2VmPxl09507auntpMRx45Bz379bPsUiI8WV79fPtUrMeHD726OnpaO+da2naeWM5x8EXeraNrV8qI5ccRgHfGpu0fMpG7hmIQaffYvqVrNNuZxnP6N7h/Bb+32Q5Nak6WtMRwxOa4B6rkt33F5rXT3ccRi3P3Jr6uO7TqerM1zHhM8nF3Km/XzMcKxnl+PxAPQtaKVm1pxEdrlt3+M+zpzMeM4U7/AHmdStInhEZ+K3du61tpxfUiZzyjPYCS3e6Rpb6xnjiYmcTC3d+8efu9nbtx25cve9CNGYmmds9exJ/l3/Z8PtBa/fdl7V8vOJx636Ot5Gt/Pqf2n6Xrg5dbvflas02Zx25/R0UtvpW2MZiJed3z/c3+H0Q79H+DT/rH0Arr94roxGeNp5Q5Z79qZnFa4X7z3e99S2pvrFeHrTyWrPddOla28uZxxmIyBo9832it64meGYdbx7Ym07YxXPCHsA5dbvflas02Zx25/RT/AB//AO1/+r9HRfu+le02tXMz4y4+9Ro0nZp19rtnM8AT6Pe/N1Ypsxntz+jqcXc9CYmNW3D9sdXXeJmlorOJmOEg5tbvsVtNdOItj608kUd+1MxmtcNp3aNPVrOtfTxzxMneL92tpTGnEbs8MVwDp7vrxr1mYjExzhM8/wDy/wDnt/X7YegAAAAAAAAAAAAAAAAAAAAAAAjvzSI78wSAAAAAAAAAAAAAAAAAAAAAAAAAAAA8jW/n1P7T9L13ka38+p/afpSf4vX/AH+6PuB199rE93mZjjXlPxcvcon/ABEY5RE5/HpR6mtqasRF7ZiHb3OulFJmlt1u2ZjEwCP/ADH/AK/j9h3XWpo92mbTztwiOc8IP8x/6/j9indO711Ym9+MROIjIJK9/jPtacxHhOXVFotTdSYmJ5OLvmhXSrW1IxGcTGUn+X2zS9ccpzn0/wDAMjv3tYtp7eOJ48vc7Hmd809mvM44W4x9rt0NTPdq3t2RxnnyBHq98jT1LUim7Hbu/R0VtmkWtG3hmc9jzdCs63eI3cczung6O/3mK1pE8+MgX79WLYrSbR1mcM1e801u73rjbbhw+KvdO7V1KzfUicZ4R1O992rp130zjOJjoDP8v/nt/X7Ydmrq00q5vOOkdXH/AJf/AD2/r9sI+9Xm+vbPZO2PgDot3+M+zpzMeM4SaPe6alorMTW09eTNPuenWkReN1u2cuXvOh5N4xMzWY4ZB6bkv33Ze1fLzicet+iXuup5mhWZnMxwl52t/Pqf2n6Qdup32lbYpXdjtziG6XfKaloraJrMzw7Snc9KKxvjdbt4uLX040tW1InMQD1hTSmbaVJnnNYmVwAAAAAAAAAAAAAAAAAAAAAAAAAAU1OxaOUK6nYtHKAaAAAAAAAAAAAAAAAAAAAAAAAAAAAA5u/TMaGI7bYl0qalI1KTS3KQcXcYpOrO7G7HsxLvmItGLREx0l5+p3LUrPsYvHyVz3jS4+3EV4ceX3Atq901I1LeXXNc8OP6u+uZrG6MWxxhw6Xfb1n/AFI3R8pd9Zi1YtHKYzAOD/MP56/1+2Umlr00e60zxtOcRHplH/mH89f6/bK/de7UvpxfUjOeUZBtO/Vm2LUmsdYnLriYmMxOYl53fNGules04VtHJ1dxtu7vEY9WZj7ftBS/fdl7V8vOJx636Om9tlLWxnETLytb+fU/tP0vT1v4NT+s/QCDT77FrxFq7Y65/Rlu/wAZ9nTmY8Zw5dHT8zVrTrPF3T3PSmmIiYnHrZBbQ7xTW4RmLY4xKS0zFZmsZnpnDy+7zNdfTmP3RD1gcde/RNoi1MR1znHudGtqxo6e6ePZEdXJ33R228yscJ5+H/KC+pbUilOe2MR+PkDt0e9Tram2NPHbM7uXudKHu2j5OnifWnjKYAAAAAAAAAAAAAAAAAAAAAAAAAABDr/VTIdf6oIgAAAS6H1kyHQ+smAAAAAAAAAAAAAAAAAAAAAAAABy9/8A4K/2+yUP+X/z2/r9sOjvenbV0orSMzuyj7poamnqza9cRtxzBBWf8P3m3ONuYjPb0+xJ/l9Z8y1uyIx+Pk3vXdtS+tNqRmJjqm7ppW0tOd8RFpkHBrfz6n9p+l29/wD4K/2+yUGr3bWtq3mKcJtMxxh2a+l52lNeU84Bz/5d/wBnw+1L320V0JrPO08HF5OtS3Cl4mO2PvhL/htbUpN75m2PZiZ4gf5f/Pb+v2w6O+1ie7zP7ZifsR900NTT1ZteuI245uu0Ras1nlMYkHD3C8V1LUn60cPg7NS8U07WnsjLg1u6307ezE2r2THMro6+taIvuxHbbsBFo/z6f9o+l1f5j/1/H7Eel3bWrq0macItEzxhP3zSvq7Nlc4znj6Ac+h3fzdG9u2OFfSzuur5WtGZ9m3CXX3TTtpaU1vGJ3ZQ947redWbacZi3HGeQO5y9/8A4K/2+yUndvMjSiupXE14c44q9707aulFaRmd2QRf5d/2fD7UPfP9zf4fRDp7npX0t++uM4xx9Lm75/ub/D6IB3d3tFtCm2c4iIly/wCYWib0rHOscfij8rW06xbT3TFoifZbp911dW2bRNYzxmwOnuMTGhme22YdKtKxSkVryiFgAAAAAAAAAAAAAAAAAAAAAAAAAAZPKVdPtWnlKun2guAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5u/ae/R3RHGs5+DpAed3PWjT1Ji3CLdr0XDrdymJmdKcx+2UMV7xT2YjViI7IzgHV3zWitJ04n2p547EPcdPdqTqdlfpU0+6at5jMbY6z9z0NPTrpUitY4fSDNb+DU/rP0ODuf8AuafH6JehqxNtK8RzmsxDj7t3fVpr1tauIjPbHQHe8jR/n0/7R9L13naXdtaurSZpwi0TPGAT9/8A4K/2+yVP8u/7Ph9qXvenbV0orSMzuyr3PSvpb99cZxjj6QdTze+a0aupEVxNa8p6uzvMak6e3SrmbcJ9CDuvdb11d2pXERy49oINDUnQ1/aj8tvB6cTExmJzEuXvfd7alovpxmeUr90rq0rNNSuIjlPAHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACOnNIjpzSAAAAAAAAAAAAAAAAAAAAAAAAAAA8zvn+5v8Poh26Wlpzo0mdOszNY7HN3nu+rfXtatcxOO2Ojs0omulSJ5xWIkCNOlZzWlYnrELgDz/wDMP56/1+2XT3P/AG1Pj9Mou96GpqasWpXMbcc0/dqWpoVraMTGfpB5laza0VjnM4S960Y0bxt9WY4LaXdtaurSZpwi0TPGHZr6XnaU15TzgFe66vm6MZn2q8Jc3ftSbauzM4rHLxboaOvo6sW8vMcp4wl713edWYvSfaiMYntA7tp6HkxbFbcPam3HH3OTvM1tr2mmNvCIx6Fq9z1pnE1iPGZS37jbMbLRjHHPX5A3vETPctLhyx9DP8vmN147ZiJdFdKbd38rVxyx7MuK/dtXTtmsTMRPCa/jIO/X1Y0dPdMZ44iOqnd+8Trzb2NsR4/o4o0dfVt7VbZ62/V6GhpRo6e2JzxzM9QQ9/8A4K/2+yVP8u/7Ph9qXvenbV0orSMzuyr3PSvpb99cZxjj6QX75/tr/D6Yc3+X/wA9v6/bDr7zS19C1axmZx9KDumhqaerNr1xG3HMEHfP9zf4fRDv0f4NP+sfQ5+993te3macZ4cYc9Kd4j2aRqVz6YgFu+2i2vw+rGJdfc/9tT4/TLl1O56lZiKRu4cZz2uzu1LU0K1tGJjP0glAAAAAAAAAAAAAAAAAAAAAAAAAARx66RHHrgkAAAAAAAAAAAAAAAAAAAAAAAAAAABB3z/bX+H0w5v8v/nt/X7YdfeaWvoWrWMzOPpQd00NTT1ZteuI245g7Hl96rFe8WisREcOEeh6jh713bUvrTakZiY6g6NG8f4Wt+OK14/Bwacxqa8TrW4TPGXf3WtqaMVvXExPXOXJqdy1K29j2q9nHiDp1q6Olo29mtZ2zEcOP3uTuf8AuafH6JSaXcrzOdX2Y6RPFbS7rq6WpW8TScdmZ+4HTrfwan9Z+hwdz/3NPj9EvQ1Ym2leI5zWYhx927vq0162tXERntjoDO/xPnVnHDa6O5TE92rEdmYlbvGhGtTGcWjlLh8rX07cK3icc6/oDs7x3mNG0V27pmM88JNHUnV04vtxnszlw6fddXVtM2iax2zbm9GsRWsVjlEYgHB/mH89f6/bLp7n/tqfH6ZRd70NTU1YtSuY245p+7UtTQrW0YmM/SDn/wAx/wCv4/Yv3D+C39vsg75pX1dmyucZzx9C3dNO2lpTW8YndkHBo/z6f9o+l60zERmZxEPO1+63peZpWbVmeGOw09HvGp7E7607d3L5Ah1LRbUtaOUzMvYebbumrF520zXPCcw9IAAAAAAAAAAAAAAAAAAAAAAAAAAAAEc+ukRz66QAAAAAAAAAAAAAAAAAAAAAAB5/+Yfz1/r9svQcfe9DU1NWLUrmNuOYJe5/7anx+mV+8RE6F8xE4rMxn0M7tS1NCtbRiYz9K9676WrnGYmAeb3W0V7xSZ64+fB1d+1JrpxWJmJtPH0Oendtel628vOJiecO3vGl52ntziYnMA5e5aelfM2iLXieU9Gd9nTia109sYzmIUnumtEz7GfHMJf8Dby4xaN+fhgEncP4Lf2+yFP8wpwrf4T+Pml7rpamjWa22zEznhKXVp5mlanWOAPOnWz3WNLPGLdnT/l19xpt0d3bafx9rgrWbWisc5nD1q1itYrHKIwDz+/V294mc+tET9n2Ozu14v3ekx2Rj5HeNCNamM4tHKXD5Wvp2nFbxPWv6A6P8wvG2un253M/y7/s+H2odXQvp6e/U9abcs+nmm/y7/s+H2g5db+fU/tP0vXcHeu7X8yb0ruieMxHOEdNPvFvYiL1r45iAV7zaL697V5Zejo/waf9Y+hxanc9SLzFK7q9cw7tKJrpUiecViJB5/e9Sb69ozOKziIdmnp93rpRaIrNf3W/VF3rutr3nUpxmecIadz1bWxaIrHWZBFqzFtW8xym0zD13BfuNt07LRt7Mzx+h213bY3Y3duOQOXvXetudPTn2u2en4/HFF3Xu06s7r8KR7zV7trW1bzFOE2mY4wr/hNf9nvj7wemj17+Xo2t2xHBxaXdtaurSZpwi0TPGHfasWrNZ5TGAeb3atNTWxqznPWecurvcaVNG0RFa2nGIiOPNz37nq1tisRaOsSvp9ytNZm84nHCPHxBn+X/AM9v6/bD0HJ3fu2ro6m7NJiYxPGfudYAAAAAAAAAAAAAAAAAAAAAACO/NIjvzBIAAAAAAAAAAAAAAAAAAAAAAAAAAADyNb+fU/tP0vXedq921rat5inCbTMcYeiDk7/EeVW2Izuxn5qf5faItevbMRP4+afvelbV0cV5xOcdUPdNHV0tbNqcJjGcxwA/zH/r+P2L9w/gt/b7IO+aV9XZsrnGc8fQt3TTtpaU1vGJ3ZBXv/8ABX+32Sp/l3/Z8PtS9707aulFaRmd2Ve56V9LfvrjOMcfSDe/U3aO7trP4+xyU1tvdtTTzxmYxj3vTtEWrNZ5TGJeRas1tNZ5xOAdf+X04Wv8I/HyZ/mFYi1LdsxMfj5urRp5elWnSOJraUa2ntnh2xPQEXcbxbR29tTv14robe204ck6Gtp34VtmOU1Wju2tqRN7ROezdzkFv8v/AJ7f1+2EPeImuvqRP7pl1d00NTT1ZteuI245r967tGrG6nC8e8E9bResWrOYntcX+YWib0rHOscfii2d4081iNSP65x7ltHumpe0b4mte2Z5g6e41mNDP7pmfscOt/Pqf2n6XrViK1iscojEPP1e7a1tW8xThNpmOMA9F5nfP9zf4fRD03B3nu+rfXtatcxOO2OgOvR/g0/6x9CRTSia6VInnFYiVwAAAAAAAAAAAAAAAAAAAAAAAAAAU1OxaOUK6nYtHKAaAAAAAAAAAAAAAAAAAAAAAAAAAAAAh7zqW0tPdSInjxymVvWL0mtuUwDn7r3mdW01vtieyI7XU8zU7pq0mcRujrH3MmO8zGJjVmJ9IN75s8+dmOXtY6u3ukTHdqZjHP6XLpdyva3+p7MfPLviIiMRGIgHB/mH89f6/bLp7n/tqfH6ZRd70NTU1YtSuY245p+7UtTQrW0YmM/SDn/zH/r+P2L9w/gt/b7IO+aV9XZsrnGc8fQt3TTtpaU1vGJ3ZBwa38+p/afpenrfwan9Z+hxavdta2reYpwm0zHGHdqxNtK8RzmsxAPP7n/uafH6Jem4O7d31aa9bWriIz2x0d4PI0f59P8AtH0vXedpd21q6tJmnCLRM8Yd95tFJmsZt2QDl79rRFfKjEzPPwcdc0tW+PGE8d11r6mdSuImczOYdXedHzNHbWIzX1fuBJpakaunFq9vOOi7i7rpa+jqcaezbnxj73aAAAAAAAAAAAAAAAAAAAAAAAAAAAh1/qpkOv8AVBEAAACXQ+smQ6H1kwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADzO+f7m/w+iHpqTp0tObUrM9ZgGaP8Gn/WPoSMiIiMRGIhoAAAAAAAAAAAAAAAAAAAAAAAAAAAAMnlKun2rTylXT7QXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABHTmkR05pAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEceukRx64JAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARz66RHPrpAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHJ3jvc6d7ada8Y+tn7HWpOnS05tSsz1mAcXcdPdqTqdlfpegyIiIxEYiGgAA5e/wD8Ff7fZKn+Xf8AZ8Ptddq1tGLViY8YK0rT1axXPSMAsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjvzSI78wSAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5u8d5nRttiuZmM5y5u60nV7xunsndMvQtp0tObUrM+MNiIrGKxER0gGgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAApqdi0coV1OxaOUA0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABDr/AFUyHX+qCIAAAEuh9ZMh0PrJgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZPKVdPtWnlKun2guAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACOnNIjpzSAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI49dIjj1wSAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjn10iOfXSAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI780iO/MEgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKanYtHKFdTsWjlANAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQ6/1UyHX+qCIAAAEuh9ZMh0ZiM5Sbo6gsK7o6m6OoLCu6OpujqCwrujqbo6gsK7o6m6OoLCu6OpujqCwrujqbo6gsK7o6m6OoLCu6OpujqCwrujqbo6gsK7o6m6OoLCu6OpujqCwrujqbo6gsK7o6m6OoLCu6OpujqCwrujqbo6gsK7o6m6OoLCu6OpujqCwrujqbo6gsK7o6m6OoLCu6OpujqCwrujqbo6gsK7o6m6OoLCu6OpujqCwrujqbo6gsK7o6m6OoLCu6OpujqCwrujqbo6gsK7o6m6OoLCu6OpujqCwrujqbo6gsK7o6m6OoLCu6OpujqCwrujqbo6gsK7o6m6OoLCu6OpujqCwrujqbo6gsK7o6m6OoNnlKun2tm0YnirSYjOQSCu6OpujqCwrujqbo6gsK7o6m6OoLCu6OpujqCwrujqbo6gsK7o6m6OoLCu6OpujqCwrujqbo6gsK7o6m6OoLCu6OpujqCwrujqbo6gsK7o6m6OoLCu6OpujqCwrujqbo6gsK7o6m6OoLCu6OpujqCwrujqbo6gsK7o6m6OoLCu6OpujqCwrujqbo6gsK7o6m6OoLCu6OpujqCwrujqbo6gsK7o6m6OoLCu6OpujqCwrujqbo6gsK7o6m6OoLCu6OpujqCwrujqbo6gsK7o6m6OoLCu6OpujqCwrujqbo6gsK7o6m6OoLCu6OpujqCwrujqbo6gsK7o6m6OoLCu6OpujqCwrujqbo6gsK7o6m6OoK05pEdZiJ4rbo6gsK7o6m6OoLCu6OpujqCwrujqbo6gsK7o6m6OoLCu6OpujqCwrujqbo6gsK7o6m6OoLCu6OpujqCwrujqbo6gsK7o6m6OoLCu6OpujqCwrujqbo6gsK7o6m6OoLCu6OpujqCwrujqbo6gsK7o6m6OoLCu6OpujqCwrujqbo6gsK7o6m6OoLCu6OpujqCwrujqbo6gsK7o6m6OoLCu6OpujqCwrujqbo6gsK7o6m6OoLCu6OpujqCwrujqbo6gsK7o6m6OoLCu6OpujqCwrujqbo6gsK7o6m6OoLCu6OpujqCwrujqbo6gsK7o6m6OoLCu6OpujqCwrujqbo6gsK7o6m6OoLCu6OpujqCyOPXW3R1ViY35BIK7o6m6OoLCu6OpujqCwrujqbo6gsK7o6m6OoLCu6OpujqCwrujqbo6gsK7o6m6OoLCu6OpujqCwrujqbo6gsK7o6m6OoLCu6OpujqCwrujqbo6gsK7o6m6OoLCu6OpujqCwrujqbo6gsK7o6m6OoLCu6OpujqCwrujqbo6gsK7o6m6OoLCu6OpujqCwrujqbo6gsK7o6m6OoLCu6OpujqCwrujqbo6gsK7o6m6OoLCu6OpujqCwrujqbo6gsK7o6m6OoLCu6OpujqCwrujqbo6gsK7o6m6OoLCu6OpujqCwrujqbo6gsK7o6m6OoLCu6OpujqCwrujqbo6gsK7o6m6OoLCu6OpujqCwrujqbo6grPrpEczG/K26OoLCu6OpujqCwrujqbo6gsK7o6m6OoLCu6OpujqCwrujqbo6gsK7o6m6OoLCu6OpujqCwrujqbo6gsK7o6m6OoLCu6OpujqCwrujqbo6gsK7o6m6OoLCu6OpujqCwrujqbo6gsK7o6m6OoLCu6OpujqCwrujqbo6gsK7o6m6OoLCu6OpujqCwrujqbo6gsK7o6m6OoLCu6OpujqCwrujqbo6gsK7o6m6OoLCu6OpujqCwrujqbo6gsK7o6m6OoLCu6OpujqCwrujqbo6gsK7o6m6OoLCu6OpujqCwrujqbo6gsK7o6m6OoLCu6OpujqCwrujqbo6gsK7o6m6OoLCu6OpujqCwrujqbo6gsjvzW3R1VtMTPAEgrujqbo6gsK7o6m6OoLCu6OpujqCwrujqbo6gsK7o6m6OoLCu6OpujqCwrujqbo6gsK7o6m6OoLCu6OpujqCwrujqbo6gsK7o6m6OoLCu6OpujqCwrujqbo6gsK7o6m6OoLCu6OpujqCwrujqbo6gsK7o6m6OoLCu6OpujqCwrujqbo6gsK7o6m6OoLCu6OpujqCwrujqbo6gsK7o6m6OoLCu6OpujqCwrujqbo6gsK7o6m6OoLCu6OpujqCwrujqbo6gsK7o6m6OoLCu6OpujqCwrujqbo6gsK7o6m6OoLCu6OpujqCwrujqbo6gsK7o6m6OoLCu6OpujqCwrujqbo6gsK7o6m6OoLCu6OpujqDNTsWjlCl5icYWi0YjiCwrujqbo6gsK7o6m6OoLCu6OpujqCwrujqbo6gsK7o6m6OoLCu6OpujqCwrujqbo6gsK7o6m6OoLCu6OpujqCwrujqbo6gsK7o6m6OoLCu6OpujqCwrujqbo6gsK7o6m6OoLCu6OpujqCwrujqbo6gsK7o6m6OoLCu6OpujqCwrujqbo6gsK7o6m6OoLCu6OpujqCwrujqbo6gsK7o6m6OoLCu6OpujqCwrujqbo6gsK7o6m6OoLCu6OpujqCwrujqbo6gsK7o6m6OoLCu6OpujqCwrujqbo6gsK7o6m6OoLCu6OpujqCwrujqbo6gsK7o6m6OoLCu6OpujqCwrujqbo6gsh1/qpN0dUetMTjAIgAAASaVc5S7I8Ueh9ZMCuyPE2R4rAK7I8TZHisArsjxNkeKwCuyPE2R4rAK7I8TZHisArsjxNkeKwCuyPE2R4rAK7I8TZHisArsjxNkeKwCuyPE2R4rAK7I8TZHisArsjxNkeKwCuyPE2R4rAK7I8TZHisArsjxNkeKwCuyPE2R4rAK7I8TZHisArsjxNkeKwCuyPE2R4rAK7I8TZHisArsjxNkeKwCuyPE2R4rAK7I8TZHisArsjxNkeKwCuyPE2R4rAK7I8TZHisArsjxNkeKwCuyPE2R4rAK7I8TZHisArsjxNkeKwCuyPE2R4rAK7I8TZHisArsjxNkeKwCuyPE2R4rAK7I8TZHisArsjxNkeKwCuyPE2R4rAKTSIjtZWucrzylXT7QbsjxNkeKwCuyPE2R4rAK7I8TZHisArsjxNkeKwCuyPE2R4rAK7I8TZHisArsjxNkeKwCuyPE2R4rAK7I8TZHisArsjxNkeKwCuyPE2R4rAK7I8TZHisArsjxNkeKwCuyPE2R4rAK7I8TZHisArsjxNkeKwCuyPE2R4rAK7I8TZHisArsjxNkeKwCuyPE2R4rAK7I8TZHisArsjxNkeKwCuyPE2R4rAK7I8TZHisArsjxNkeKwCuyPE2R4rAK7I8TZHisArsjxNkeKwCuyPE2R4rAK7I8TZHisArsjxNkeKwCuyPE2R4rAK7I8TZHisArsjxNkeKwCuyPE2R4rAK7I8TZHisArsjxNkeKwCuyPE2R4rAK7I8TZHisAirGZX2R4q05pAV2R4myPFYBXZHibI8VgFdkeJsjxWAV2R4myPFYBXZHibI8VgFdkeJsjxWAV2R4myPFYBXZHibI8VgFdkeJsjxWAV2R4myPFYBXZHibI8VgFdkeJsjxWAV2R4myPFYBXZHibI8VgFdkeJsjxWAV2R4myPFYBXZHibI8VgFdkeJsjxWAV2R4myPFYBXZHibI8VgFdkeJsjxWAV2R4myPFYBXZHibI8VgFdkeJsjxWAV2R4myPFYBXZHibI8VgFdkeJsjxWAV2R4myPFYBXZHibI8VgFdkeJsjxWAV2R4myPFYBXZHibI8VgFdkeJsjxWAV2R4myPFYBXZHibI8VgFdkeJsjxWAV2R4myPFYBXZHibI8VgFdkeKkR7WEqOPXBbZHibI8VgFdkeJsjxWAV2R4myPFYBXZHibI8VgFdkeJsjxWAV2R4myPFYBXZHibI8VgFdkeJsjxWAV2R4myPFYBXZHibI8VgFdkeJsjxWAV2R4myPFYBXZHibI8VgFdkeJsjxWAV2R4myPFYBXZHibI8VgFdkeJsjxWAV2R4myPFYBXZHibI8VgFdkeJsjxWAV2R4myPFYBXZHibI8VgFdkeJsjxWAV2R4myPFYBXZHibI8VgFdkeJsjxWAV2R4myPFYBXZHibI8VgFdkeJsjxWAV2R4myPFYBXZHibI8VgFdkeJsjxWAV2R4myPFYBXZHibI8VgFdkeJsjxWAV2R4myPFYBXZHibI8VgFdkeJsjxWAV2R4myPFYBFMe1hfZHirPrpAV2R4myPFYBXZHibI8VgFdkeJsjxWAV2R4myPFYBXZHibI8VgFdkeJsjxWAV2R4myPFYBXZHibI8VgFdkeJsjxWAV2R4myPFYBXZHibI8VgFdkeJsjxWAV2R4myPFYBXZHibI8VgFdkeJsjxWAV2R4myPFYBXZHibI8VgFdkeJsjxWAV2R4myPFYBXZHibI8VgFdkeJsjxWAV2R4myPFYBXZHibI8VgFdkeJsjxWAV2R4myPFYBXZHibI8VgFdkeJsjxWAV2R4myPFYBXZHibI8VgFdkeJsjxWAV2R4myPFYBXZHibI8VgFdkeJsjxWAV2R4myPFYBXZHibI8VgFdkeJsjxWAV2R4myPFYBXZHibI8VgFdkeKloxKVHfmC2yPE2R4rAK7I8TZHisArsjxNkeKwCuyPE2R4rAK7I8TZHisArsjxNkeKwCuyPE2R4rAK7I8TZHisArsjxNkeKwCuyPE2R4rAK7I8TZHisArsjxNkeKwCuyPE2R4rAK7I8TZHisArsjxNkeKwCuyPE2R4rAK7I8TZHisArsjxNkeKwCuyPE2R4rAK7I8TZHisArsjxNkeKwCuyPE2R4rAK7I8TZHisArsjxNkeKwCuyPE2R4rAK7I8TZHisArsjxNkeKwCuyPE2R4rAK7I8TZHisArsjxNkeKwCuyPE2R4rAK7I8TZHisArsjxNkeKwCuyPE2R4rAK7I8TZHisArsjxNkeKwCuyPE2R4rAK7I8TZHisArsjxNkeKwCO1cYbFImO01OxaOUAzZHibI8VgFdkeJsjxWAV2R4myPFYBXZHibI8VgFdkeJsjxWAV2R4myPFYBXZHibI8VgFdkeJsjxWAV2R4myPFYBXZHibI8VgFdkeJsjxWAV2R4myPFYBXZHibI8VgFdkeJsjxWAV2R4myPFYBXZHibI8VgFdkeJsjxWAV2R4myPFYBXZHibI8VgFdkeJsjxWAV2R4myPFYBXZHibI8VgFdkeJsjxWAV2R4myPFYBXZHibI8VgFdkeJsjxWAV2R4myPFYBXZHibI8VgFdkeJsjxWAV2R4myPFYBXZHibI8VgFdkeJsjxWAV2R4myPFYBXZHibI8VgFdkeJsjxWAV2R4myPFYBXZHibI8VgFdkeKLVrjCdDr/VBEAAACXQ+smQ6H1kwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMnlKun2rTylXT7QXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABHTmkR05pAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEceukRx64JAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARz66RHPrpAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEd+aRHfmCQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFNTsWjlCup2LRygGgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIdf6qZDr/VBEAAACXQ+smQ6H1kwAAAAAAAAAAAAAAAAAAAAAAAAAAAIbd4rxjTjzLdI5fPkCYQTOtb60U8IjPvn7lZ0YtObzNp8Z/ECamtqUrOLXrE+Mq/4jR/8ApCkVivKIj0NXE1eNbSty1K/NdBMRbnET6VfKpmJiuJjpwMNdQ5onUr6t90dLR9v/ACtXvERiNSPLmevGPmi6nGc2igAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMnlKun2rTylXT7QXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABBp3/171tPrT7MejmCcAAAAAAAAAAAAAAAEdOaRHTmkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFbWisZkrbM4mJifEFgAFL6laRm1ohk2m0zWnxt09HWfdHuWrSK5mOc856g2JiYzE5iWo9P2bWpnlxj0T+J+CQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABHHrpEceuCQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFL6tNP17RALjlt3ynKtbWn5K+frzyrWPx6Qdg4861oxOpj0QpOjunNrWmeouV2zqUjnesemWebp//AEr83H5FfE8iniGOzzdP/wClP/KGxelpxW1Z9EuLyKeLPIp4hj0B5/kxHGtpiW41o4xq2nHWQx3jijvGvWParFvgvTvlZ9es18Y4iOoUpqU1IzS0SuAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACOfXSI59dIAAAAAAAAAAAAAAAAAAAAAAAAAAADJtEcwaI7a2nXnb3I7d7045Zn4A6By/4yJ5acz8T/ABVuzT94Oocv+J1J5acfM8/Wx6lfmuDqHL52t0o2NfUjnSs+iTE10jlnvVon+P3kd8r9aswiuoQR3vSntmPTCWNStuUgsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjvzSI78wSAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK2vWsxFrREzwhXUvNcVrGbzyjp4z4KamnFe76mfatMZmZ7Z/HIE4rp23adbTzmIlYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFNTsWjlCup2LRygGgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACltWtM5nMx2Qit3n9sfP8faDoHFbWvbtxHg6tKc6VJ6xALgAAAAAAAAAAAAAAAAAIdf6qZDr/VBEAAACXQ+smQ6H1kwAAAAAAAAAAAAAAAAAAAAAAAACLV1op7MRNrzyiPt8FdTVm0zTSnGPWt08PSrp6dacuMzzmecia2KWvOdW2fyxySRWIjERiAyqMJlkyxUBgI1gAHOMTxAVTZak7tKdv5Z5Sm09WL8LRtt0nt9HVRW0RaOPwmOcJiyuoQ6OpMzsvMb44xPWEyNAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMnlKun2rTylXT7QXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABD3i86dazXrx9Dmtx04tnE53Z6ZlJqz5mraInhEbfj2snGMKOjR1PMpmYxMTiY8Ujm0bY15r2TXPxdKAAAAAAAAAAAAAACOnNIjpzSAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAApeczFIzx5z0j8cPf2Ays75i/Z9X7/ALvD0tvwmtuk4+f64WV1K76Wr2zHAF0czN5mscKxzmPoj7Z+HPktabRFaTiZ456R+PxwWrEViIjhEA2IiIxEYiAAUica+O2a/R/ykQWvFNTdPSY9PLgtoXtett05mLY+gEoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACOPXSI49cEgAAAAAAAAAAAAAAAAAAAAAAAAAAyZiIzM4hz6neuO3Sjfbr2A6JtFYzaYiPFz373XlpxN59HBF5d9Sc6tpnwS1pFYxEYRcRTbX1J422R0jg2uhWOM8Z8U2G4GvEcViOURDcL4MBqmBfDMC6oLTDMAww0RWYZhZioxkxE84iVmYDEc6NZ5cJKzraU5rbdHSeKQVnFqd7rM41KzSXRExaMxMTHg5JrFucZUil9O2dO0x4CY7xy073xxq12z1jk6YmJjMTmBGgAAAAAAAAAAAAAAAAAAAAAAAAAAAjn10iOfXSAAAAAAAAAAAAAAAAAAAAAAyZiIzM4gGsmcc0Fu9VzilZujvbU1YxbFa9IME9u8aVZxNsz4KT3mZ9TTn48ENdOtePatlcZ0tbVtzvt8KqeVE+tMz8VsmVxNZ5dI7GxFY5RAxRbJlgBk3MZIjdxuVAX3GYnnCgC+2k/VhnlU8Y+LDJi63bePV1bQtGrr06XhTc2LphqWO9Y/kpMeMJaa2nf1bQ5t0SrOlSeWYTF13NcNJ1dL1Zi0dE1O9VnheJpPuRp0Ctb1vGa2ifQsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjvzSI78wSAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI9TVikxXneeVW3vtrwjMzwiOrNLTmsTN53XnnIGnSa5m05tbnK0xExMTxiY4rKx2gp3ec6FPCMfLglRd2/hj0z9MpQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAU1OxaOUK6nYtHKAaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACK2vp15Tu9AJVbWrSM2nDmt3i08uHo/H3IpmZ+Ijov3nHCsfGfx9yG+ra/OeHTsVAAIiZnERMz4AzjyjnPCHoViK1iI5RGEGjoWreLWxGOUOgUAAAAAAAAAAAAAAAAAAQ6/1UyHX+qCIAAAEuh9ZMh0PrJgAAAAAAAAAAAAAAAAAAAAAAEOveeGnScWt2x2Qmc2tu8+duI9iJm09nGQZwpp+zHDsjqvEqUj2axPZEfQs0wtlmWAAAgDYFUmZ3bYjs4y2IiPTPaal60rmeTdLT82kXvnE8q9n6ouBLdTu9JpOyIraOUxwQ6OpNomtvWqaWJMsBWWTGcdkxOYnpKbR1N8bbetXn4+KJkzNZi9YzMdnWOiVqV1itbResWrOYlZGgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGTylXT7Vp5Srp9oLgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5dC86UeXfjWJxEx2ekHUMiYmMxOYU1NWNPG6LYntiMgkEca2nP1oj08Fq6lLTit6z6JBYAAAAAAAAAAAAAAABHranl0zztPKOqRxWv5tt/Z9WPx1ArwjjznjPpZPEGkW0OPeY/rLsc3dq51LX6Rt+10s1QAAAAAAAAAAAAAEdOaRHTmkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVtbb2TMzyiGzMREzM4iFKRmZvMe1b3R0+/xBeJ3RmFKTuzfry9H44x6VbzNdTbH/ZHv7fd9CQGsmcRMy1mYicZ4yCmlSaUjdxtjjKQAYNRa+psriPWtyBFa27UmeyOX4/Hal7tHsWnrafuc0cIw69CMaNfHj8+K0SAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACOPXSI49cEgAAAAAAAAAAAAAAAAAAAAAAACLW16aUcZzb9sIdbvNt2zR4z+6OKtNLjuv7Vp7Z4iyaz/V1/5JxX9sfj6UtNOKxiIwtELYRrpmBuJMCAAAAAAMZMLAqOYFphWRQBFGNAYxoqMAVGWrFoxMKV8zRnOnOa9tZSAJtHXrrR0tHOErhtpxM5jhbrC+l3mazFNX4W/H0jNjrAEAAAAAAAAAAAAAAAAAAAAAAAARz66RHPrpAAAAAAAAAAAAAAAAAAAGK6mpXTrm0uW2pfX7dtOkdoJtTvFa+zT2reDn2WtOdS2fBaIiscIZNmpGbVoxHCOBlRZUMsawQAFAAGsBBktYDAFAGA0YADAG5blUBJFm5iUTcoLTTE5pO2UlO8Wpw1YmY6wiiy2cpi67K3reM1tE+hZwbMTmkzWfBPo94zOzU4W69UxqV0AIoAAAAAAAAAAAAAAAAAAAAAAAAjvzSI78wSAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKaupGnXMxMzM4iI5ytMxEZmcR4oqV33823/pHSOvxBalZnF7xG7p0/Hb9yRjQZPJkFmRzBmj6tv7W+lIi0PVt/e30pQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAU1OxaOUK6nYtHKAaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADJmIjMzER4gItTvFaR7PtT7kGtrzecV9WEMzmQXvrXvznh0jkrDAFhXODdnwEW5M3dGAJu70rqWmLzPhHV11pWkYrWIcFLTS0WjnDvi9ZpFsxEeIqwyJi0ZiYmOsNAAAAAAAAAAAAAAAAAAAQ6/1UyHX+qCIAAAEuh9ZMh0PrJgAAAAAAAAAAAAAAAAAAAAAAVtaK1m08ojLljUm/dtW3baceiJS95twikTz4z6I/Vyad5nW2Z9mZzMej/gPx1QA05gAANBjYYrq226Vp8BXLr6k6lpx6sO7u1620axE8YjEvNnhGCtprOaziWW3rWtFazMziIedp2zqzeOGbcvSrN7Xj2rTLacN89Iz7wdQEtOYRLAF+7zttbT7OdftdDjtaKTXUn6s+6eDsStwARQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGTylXT7Vp5Srp9oLgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOW+a61omOE8YdSLX0/Mpwj2o41BDm1ZzS2PDsbbXm1bVmk1z2xifchrfPCeE9JWXEVrOImJmefDMNxGc4jLRRemvOlwtm1Zn4w23fMcqY9Mo9u+1a4zEzGfQ66addOuKRiGarl/xOrMcIj4VmWf4rUieMx8au4BzV71M4zSJjrFk1NWl5xW3HoX0qanrVifFDqd3mPV9qOk8/h+PiDpHLp681mYvmY644x6XTExMZicx4A0AAAAAAFbWikZtOIBmtMxo3mOe2XHX1Yx0W1dW+raK1idsx6vbPp8Gx3bUpEYmsx0WCrLWisZlLGjqT2RHpltO7zM/6kxjpBol0aRTTiInPbM9UjIiKxiIiIjshqAAAAAAAAAAAAAACOnNIjpzSAAAAAAAAAAAAAAAAAAAAAAAOTW09mruiZiL9sTjEpNfVms7acJ7Z6Oa02tE5tac+K4JY1NWkcLbv7QW71flFIr4zOfuQxaZjE845iCW1rW4zqW+E4j3KRe9ZzF7fGc/SpSZxMdmeDQdGn3nNorqREZ+tHJ0vOdXdb7qzSedeXoBOzMbsZjPRlrRWs2nlCOa7dObTxv60zHX7uz0AtfF7xTsjjMfR9/wXVpE7czznjP48OTQVj2tWZ7Kxj4zx+73rq0jFY4YmeMx6VgR21Ji0xERMRz4szXU1I4ZjbOYmPGFZ/k1PT9kK6dpjUrE8c8M/D9IVN9TVmazst04T1/Vnm5n2K58ZnEfj8ZWvSL1xPpjwlDzjjmJjnghUmb551x6P1QasX3brcY7Mdi3k2md2ds9nX4z9P0rxaZjjGJ7YIdObLt0426dY6REIbadbc4K2nSnHOvT7lprpGVmLRExynjDLWilZtacRHOWVWGRMTETHGJaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjj10iOPXBIAAAAAAAAAAAAAAAAAAAADJnEZnkBMxEZnhEOPV17a0zTT4U7Z6mrqzr22U4afb4r0pFYxAsjNPTikYhLEEQtWEaIqthorAyWskFJ5gI0AAAAAAxWV2SLFAEaAAAAYxZiowBUGWrFoxLQFNPVt3ecWzak8vB2VtF6xas5iXLMRaMSpS9u7X60kZsd4rW0WrFqzmJWEAAAAAAAAAAAAAAAAAAAAAARz66RHPrpAAAAAAAAAAAAAAAAAEWrrV0+HO3ZEGtqxp162nlDnrWZndec2+hcS02za021ONp7Oha0VgtbCK/GYzEzHg0z2vuyxWkTEcVhGw1jYBoMAAAAFBgISxrAAYoMawAAAAAAAABuWALRZsxFo4wo2JBNp686fs6nGvZbo6a2i9Yms5hxcJjE8m0vbRn2eNO2OjFjUruFNPVrqRmsro0AAAAAAAAAAAAAAAAAAAAAAI780iO/MEgAAAAAAAAAAAAAAAAAAAAAAAAAAra0ViZtOIhFOra/qezXr2yCW160jNrRCKda9s7KY8bcPcyunETnHGe3tXwmrikzqWznUxn9sY+9Xy4mMWm1vTaUqs8eE8pQR6OhS95vj2I4RE8cupDoWilY0p4TGceKZpGjAFbcyBioaM5i3hafpSOfS1K11tTTzxm2Y8eDoRQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFNTsWjlCup2LRygGgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAh1taKRMRPtfQDdXWrpRx4z0cepq21LZtPLlDLTNpzPOWAAAKzbo3HHiYjoCrYz0WAbifA28ObMtyIRX4tiIjlBltY3WivWcA7NCMaNfHj8+KQBQAAAAAAAAAAAAAAAAABDr/VTIdf6oIgAAAS6H1kyHQ+smAAAAAAAAAAAAAAAAAAAAAABya8Z15npSI98oe7V/1LTPYlteLa+pETnlHyNCPZtbrKwvSQBXMAAAAQ96n2ax1lMg7zGZpjx+wWdua3NiS+nMRllNObMtr6VN0ZlLtxo6uIjsj8fNta7Yw3GO7/AN7RPzn7lW+RbLAVyAAZaN1Zjq6NC2/RpbwQJe64jR2x2TMe9K1xTAI0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyeUq6fatPKVdPtBcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEOtoRfjGIt4xwlzWzpx7dZr73eA8/zKfubXdqfx1m3uh3i6IdHR2e1ac3mPkmBAAAABFq6UX4xwt1j7UGne+lbGP7V+2HYh19LfXNfWjl4+AJK2i1YtWcxKzk7rq+1t44ty8HWAAACDW18ezSePbbsj9QW1daunw53xmIQRF9a+eeJ4z2V9C2lozfjbMVmeMTzt9zpiIiMRGIBXT066ccI49szzlcAAAAAAAAAAAAAAAAAAAR05pEdOaQAAAAAAAAAAAAAAAAAAAAAAHDqzPm3zzyvpaEalN1rWjPZCneYxrzx5xE/Z9i/ddWtazW9ojjmMyv4ItbT8vVxFpnh2q8Z6Qk71as6tZraJzGOEo0GjAGzMQv3e0x3imO2JiUUT2dq2n7F63iOXYuDr1bbrxXsjjPp7Pv+TM5jHZPPLnnVtmvHFpn2sx+OCSmpmdtvZt9PoQdMTEtc2paYpbbzxMpItIJWZjOO2FIuReJtacceX2/aCtoiL2jtnj9n2I4nGpSelvp4fata8zeN3sxxiO3P49EtpXSnjM2nE5zaJj7lTPU6LVri1bxE88T+Px7lvN0848yvzW4WjsmJRVJtxxEZnEypbhaLRynn9n3fJJOlXGImY8c5+nLPKzGLWm0eKSYt9Rb+ERnjwzOMR+ODbbrV9mPjPBJq19W0REzTjjHYpFs5iZnOM4tGJ/H4yttZkjNG+22LTis9eyfx+OKSZ9m2pPKImax+O37Pii06btaeHsxiZ9P4x+JS61o2TXPOMCraUTXSpWecViF2VmLRmJiY6w0AAAAAAAAAAAAAAAAAAAAAAAAAAAABHHrpEceuCQAAAAAAAAAAAAAAAAAAAByd41ZvedGnL60r961bVxSnrW7eiPTpsrjtFk1tKxWMQkiGRCyNNWhVsSqVcVyzcJi0yrMsmcguACAAAAAAAyWskVSQkRoAAAAABg1iowawBlqxaMTyaKimlqT3fU22/jn3O5x2rFoxJ3XUmlp0rzw+rkZsdgAgAAAAAAAAAAAAAAAAAAACOfXSI59dIAAAAAAAAAAAMVtq0r614gFxzW73H1K7vx6Ff8AEa08tOIB1Ka2pGnTrM8oc19XW2zM2x6IVpmfbvMzPiuJrdOkxO605lczkVlS3NVa0KqgAoNYA3LcqiC2WZYA1gKDWABMxEcRWZmLROM47EI2JieQrWMQ1QAAAAAAAAAAAAABsStEqALRml4vTs5x1dmlq11a5rPwccScaW305x2M2NSvQFNLUjUpFo+K7LQAAAAAAAAAAAAAAAAAAAAjvzSI78wSAAAAAAAAAAAAAAAAAAAAAAAAKampXTjjPGeUdTUvFK5nn2R1ly6t7VrvtObco6Qgta8Tf/UnNuysccfjqkpNbV3ROYlzaGtTTpacTOpPvT6NfL0orPPtKqVmYhmWIpM5AQZaItGJjMM/1K+pfMdLcf1WYaEa9o9fTn014t/xOnPCZms9JjCsyrPHmupiatq29W0T6Ja5Z06T9WPgtNYmMTNpjxmV+jFYxe+paPVmeCSmrbTtjUnOn17YZEYjgTGYxLOrjqiYmMxOYlrj0bzo6kUmf9OeWeyfx97sbZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAU1OxaOUK6nYtHKAaAAAAAAAAAAAAAAAAAAAAAAAAAAAADImJziYnHDgDRFq60U4R630OW2re853Wj4/cDvHDGtev1p+M5I7xqROd2fCYB3CDS7xW/C3synAGWtFYzaYiPFlbVtnbaJx0kFgRa2ptjEc/oj8cv0BXW1tvs159vg45lLWl9SfZjhPbKKazW0xbhMAAAAAAAAzdADeSuZZETaYiOMzyBesTe22sTM+Dr7vo2pO6+M44QvoaMaVMc7TzlKAAAAAAAAAAAAAAAAAAAAAh1/qpkOv9UEQAAAJdD6yZDofWTAAAAAAAAAAAAAAAAAAAAAIte+KxSs4tfhHh1Sua057xfP1YiIEqttLMxNJ2zEY68F61itYrHKGwxpkCZxGWVzj2sRINAEaMaAi1qzmtojOOcJQWXEG+k8MxHp4LViIjglV8un7K/JMb+1JjdMU/dw+/3JNfG+tekZ+yPtVikVnNeE+DJjE+kxm8tAFZAAEvds+XP9pwiSd0mZ0cz2zMwlaicBGgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGTylXT7Vp5Srp9oLgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4tas6WturiInjH2/jxddbbqRaOUxlz989fT+P2JtCc6NfCMfIEgObW1t3sUnhymY7fD9QZr6+c1pmIicTMc/gvpaEVxN8ZjlEco/U0dHZi1vW7I/anAAAAAAAAAAAAAAAAAAAAAABHTmkR05pAAAAAAAAAAAAAAAAAAAAAAAcPe9SLakRH1eEyhzkznjPOeIoYy2JzwnhLGW4xKC+DDpnukfV1LR6YyyO6cfa1Jx4RgHNMTaYrWM2nlCS2nfSiN8cJ7Y7PS7NPTppRisY6z1WNHn39WZjs4wkmIvXE8YX1tDZE3p6scZr09CGl/Z4co4LfRu+1YtThM34brT2dGzOpEev8A/pVnibp5T8EG+ZqR2xPphujqV3TWYmszOePH3qsmImMSDorxmbfCPx+OxZDo2t6mY4Rw4c4SbpjjaOHhxajFWbpezeYiIiLcfj+v2MiYmMxxhkzjFv2zn7/cUi3ebbdGes8Px8HFWJ3exE58HT3rNuHZWN3496nd6+zNuqNarGvrU5zOPzR+JdGlqR3itotTl2c0HeJ4V9Le6zMb57Jx9qEdHCldtYxEItXjX4x9Ja8xaIiM9ePJlrUtG23DPX8YFT6EY0q+PH58UiLTv9WcZ7J6/j8eEoAAAAAAAAAAAAAAAAAAAAAAAAAAAACOPXSI49cEgAAAAAAAAAAAAAAAAACPW1I0tObdvZ6Ujh1L+fq8PUr7wZpVmc3txtZLDIWhHSLRCzIaIACAAAAAAAAAAAADJarIqsgI0AAAAAAAAwBUYAoKatN0ZjnHJcESd21/NrMW9eOfincEzOjqRqV5TwmHbW0WrFqzmJGFgAAAAAAAAAAAAAAAAAAARz66RHPrpAAAAAAQ6neKU4R7VukAmUveunXNpxDntq6t+XsR71PLrnNpm0+MriaknvcTOKUmfTwVnU1rfWiseEMzEcuDJsuJpNM+va1vi2K0jlWFdxmVxNX3G5QEZf2owzfjhbsWZMZFbE9FtyG0beXBJatqevXh1jkC2cqyzLRGDWKAAAAAAAGQGDAAAAAAAAAAAAAAAAAAAAAFolVsA2LW0rbqcu2Hbp3jUpFo5S44lfQv5Wptn1Le6WbGpXYAy0AAAAAAAAAAAAAAAAAAI780iO/MEgAAAAAAAAAAAAAAAAAAAAADJnEZnkj1daNP2YjdeeUIbeZqetecdK8IFxkX86837I4Vg1Kb6xGccTyaR9VXyadkTHolMXFtPRik5mcylQxW9Z9m+Y6Wb5uOF4x49iWUSjMmUGsMsmQblkyrkQABQAAAGWrFqzE9qXu+pa26l5zevvhGpadl66kfVnj6GpUruAaZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAU1OxaOUK6nYtHKAaAAAAAAAAAAAAAAAAAAAAAAAAAACDvV9mlMRzkEWv3nM7aTw7ZjtU09e1NO0RGMznKGIzxWjljALYm05mPmrPvWzw48WWgFIt1WUbE4BZemtenCLTjo2e760fVj5raXdrWnN/Zj3gjte15zM5lulp21JnZOJr4pL90vHGlot4Sm0NKdKs5mJmegMrfUrEb4mfhn6FqxW18zSYtjt/H3JQBw94j/AFr/AA+iHc861t1rWzzmZgFQAAAZmGbpWZiOkArz5i2I6QYjoCrs7po4rGpaOM8vCHLiF41Lxyvb5g9EQ92te2lm8548JTAAAAAAAAAAAAAAAAAAAAAIdf6qZDr/AFQRAAAAl0PrJkOh9ZMAAAAAAAAAAAAAAAAAAAAA5O8V/wBaJzMbo7J6f8utHrU304etHGPx4g562mnrTM16z2JEcTFozHKWRup6uMdJaYSq21IrzUnfbnbEdIIrFc4jjPaBv1Jn1YiPGW7759T5T/w0Bnm9a2j4Hn07Zx8GgNjUrPKYn4t3KTWJ5xE/BXyqZzjHoETZgzCLb0taPj97Jrfs1PcCWbKqbb/vj/xIrbtv8oFWmYjGe1qsViucdqwgACt520tPg6tOuzTrXpGHNT2telecR7U/Z73YlbgAigAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMnlKun2rTylXT7QXAAAAAAAAAAAAAAAAAAAAAAAAAAAAFLatKWis249I4o76tpzFY2+M/d+PQCdFfWpSJ45mOcV44Q4txibziecfr9zMRWuK1+HUHXWc1icTGeyWuWNTVva0borymOGcLRv7dS0/L7k1cdA5/a7NS0fKfsK21a87RfwmMGwx0CGO8REf6lZp749yWJiYzE5hUaAAAAAAAAAAADl7562n8Undf4Y9M/Sj756+n8fsbF/K7tWI9a3GPDx+AN7xq49is46zHZ+rdHR2+1eIieyOn6qd3090xqWnMdnjPX7nUAAAAAAAAAAAAAAAAAAAAAAAACOnNIjpzSAAAAAAAAAAAAAAAAAAAAAIe8a3l1xWfbn3JkFu61tabTa+Z8f0Bwx0a7Ld1psxXO7rLmto6lZxNJnxiMgo2lJ1LRSO33MmJicTExPSeDq7lEbbT9bOPh+PxwB1AAAAg73fGnFO2/wBHa5eVvSm756+n8fsQ8wD63oZiPH5tADJkGWzGLRzrxddfajMcpcdp9mfQ6q2imlSLc8RwWJVbxNZzXMTPSMti8fW9mek8G+b+S3u+9al4vHD5SqYpSa+rWc8P0+5blDZ06TOZrGeuFZ047JtHxz9ORFLRFufY2sxXnwjBNLRytE+mPx9CsxETG6MTHJFbEc5nnPNbTnGrTHbP2SxfRrnUz2Vj3/8AH0glnTpM5xjjnhwXBGgAAAAAAAAAAAAAAAAAAAAAAAAAAABHHrpEceuCQAAAAAAAAAAAAAAAAAEHetXy9PEetbhCGldtYjtVtM63eLWnE1rOISDUbC1VVqo0s0BkAAAAAAAAAAAAAAUtK0q4yLGDdrdouqi01VAARQAAABjWKDGsEAFRloi1ZiW9zvtmdK3OOMCPUzS1dSvOBK7xWsxasWjlMZWGQAAAAAAAAAAAAAAAAAEc+ukRz66QAABHqatNOPan4LuHTrmd9uMyC99TU1eWKV8ebK1ikYhtpwpMtYxatNlcsFQAUAAaMAaMm2F9PQtfFrztr0S3Fk1FaY4YnM5d8xmJie1FqVrSmKViMzEe9OzutZjivo2pqbdPjExnEqZxOLRNZ6S65j/8mI/L9rbUraMWiJNMcg3ybTe0ac8K44KzW9fWpZrWcMiu6G5jqqY0YA0YA0YAAABmOpmOooMzHVuY6iAAAAAAAAAAAAAAAAAANiWzG6uFWxIOnu2rM+xf1o5eLoefOeFq844w7dO8alYtVixuXVwEUAAAAAAAAAAAAAAAAR35pEd+YJAAAAAAAAAAAAAAAAAAAAFNW/l6drc57PSuh7zEzpxjlujIIaRMRm05tPOU1ZhFDRtJMxhGAAAKTE1415ftWraLRmGqT7M7uztSwWAYAFNW2ymY59iotNojnMR6SJieUxPoQ93041tbF57M+lP3nTrpVjUp7M5xjquJoMicxlrLQAATGYxICJu733aUZ519mfglc/duF71zz9qI+l0OjIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACmp2LRyhXU7Fo5QDQAAAAAAAAAAAAAAAAAAAAAAAAAHH33MzEYnEY4/P9HYj1ab68MZjqDzp4RiGZla9LUnFlQbunGGZ6GWZgF8xPZxX0dsa1ZtwjKKJ4r8wemOfT71S0RF5227c8k8TmMxyBoAAAK3nbWbdIy87lEPQ1f4b4/bLz+wGDQGNTV7re0RMzERPzW/wc/wD0j/x/UHOOqO6R23n5N/wlP3WByDr/AMJT91j/AAlP3W/HwByNrWbWisc5dX+Ep+63u+5bT7vTTtuiZmezPYCStYpWK1jEQsAAAAAAAAAAAAAAAAAAAAACHX+qmQ6/1QRAAAAl0PrJkOh9ZMAAAAAAAAAAAAAAAAAAAAAADl1tPZfzKx7M+tEdk9fvY6pjMYlzXp5M/wD7c9v7fD0dFjNjBuGYVkAAAAAAAAAAAAZMxEZnk1lKxq2x9SOfjP3CyL90475mJi+eMT7nS59K8f4nVjPGcY+EcXQy2AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyeUq6fatPKVdPtBcAAAAAAAAAAAAAAAAAAAAAAAAVtaK1mZnERxlBe9tXhWZpTrHO33AkvrVrwj2rdI+1SbXvExacR0r97IiIjERER4AERERiIxACKxjWTIKXrFpiczExySad98cYxaOcKMmOOY4TBYJxWl4vHSY5x0WYUVik0tNtOcTPOJ5SsAvTVi07bRtt0nt9CRz2iJ5xElNS2nGLZtX93bH3tSpjoGRMTETE5iWtIAAAAAAAA4e93zqWj9sY+ZpUnVtEW5RWIn0dPTPare0X1b37In59kOzQps04zznjPpBdoj1NamnwmfanlEAkZNorGbTER4uW+ve/sx7Ez2RxlkaOpafapmOt7Z+8HROtp/vifRxV/xGn+b/wAZUnu1uzUiPRX9Wx3WO3UuCSNbTn62PTw+leJiYzE5hBPdpj1dSfjGfuVnSvpz7Ocda/d/yDqEGnrxMxW/OeET1lOAAAAAAAAAAAAAAAACOnNIjpzSAAAAAAAAAAAAAAAAAAAAAAAAA5+9ae6m+OdffDn0dSdK+ezth6Dh7xpeXfMerPLw8PuWDtiYmImJzEtcndNTE+XPKeMOtAABzd8rmlb/ALZ+lzPQvWL0ms8pjDgvSdO+y3PsnqDAMAwjOOjZjMYInsnmsGR7WK8pmcJbzMXndOJzwz0R4zMTHOJzDo09SLxPZMc4XpKjrE35cuqatYrHD5tyZVm1vPhKOZ0o+tafRMyzWn2duefP0KxZMWJ4mto4SivmvPjHXtUtfEZjnC8zmQsVxMery6fc6dLb5cRScxDnZMTnNZmJ8JxlFjtHLp6145zuxzifx9iempW/LhPSUVcAAAAAAAAAAAAAAAAAAAAAAAAAAABHHrpEceuCQAAAAAAAAAAAAAAABD3rUnT0ZxOLTwhM4u9e33itc5iscfx8gZpV20jxXgbA3BaqrYZVdrGqgAIAAAAAAAAAAMFNS8UrmRV+bWVnNYnq0AAQUtzXVtAsVARoAAAAY1gDGsVABUGWiLRMS0Bbud5mttOedZdLz93k68X+rPN3xOYzHGBhoAAAAAAAAAAAAAAAAAI59dIjn10gAAMcdeGY6TMO1y69Nmp5kerPNYlR2YvaEbTDWEsUaMAAYDTLAF9Gu/vFc8o4uy87aTPSHN3SJnVtbsiMOqYzGJc726TpDqTm2nWO22XQ5KaU6OvWbTM15RPR1ghn/dR/T7Us8kVOPetTwiISXnFLT0gEHdPapaesp8Iu5xjQjxmU4ObTrFtbVzETx7Vp0NKfqR8Du/HzLdbymwo440KTrWrmYiIiea/+Gp+63zX04zr6s+iEu00cddCJ1bV3WxVJ/hafustpxnX1fDH0JsCOO+hWupSsWti2Un+Fp+63zW1P9xpR6UoOXU0K1tSMzi04nikju2lHZM+mW60e3pf2SiubU0qV1NOIrwmeKXyNL9kK6v8ALpelMDn1NOldXTxWMTwmEk6OnP1IV1v5NKfzJgctdCLXvETNds8FNTTvpcZ9qOsOjS/l1fTDdb+G/oEckTEjonu9bUjHC3VDfTvp+tHDrDWs2KgKgAAAAAAAAAAAAAC0Stp38rUifq24SjWnjGEsWXHoCDu2puptt61eHpTsNgAAAAAAAAAAAAAAACO/NIjvzBIAAAAAAAAAAAAAAAAAAAAprVm+laI59npXAccTmMty3Xp5d98eraePhKqtz1YYA0ZkAlnMAZXlMdFlK/yW6cF3O9gj1qzanDnHFICOSuazFqziY7Vr21NWYi07p7E1tOtpzxifBtaRXlHxa1MbWNtYjo0GFABQAGVvs16cPW9l2OG0f6ulP5odzc6ZoAqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKanYtHKFdTsWjlANAAAAAAAAAAAAAAAAAAAAAAAAAAABFr6Ma1eeJ6uSe5avWvzegA863db1jMxmOsSgmJh7Dg71pRW/sxiJ4+AOeFoljY8QWrXfeIiYjM9rupWuhp4m3DnMy4I58Mt1NW+pjdPCIB2zrx9Wsz45xH3+5X/ExFsWjEdYnLhi2O1u7Ij0p1KRSLboxPJBqd4tPCvCHJXnmF8iluM5njKueHDnLVZBuXZod3iu29uM4zjo5tCnmasR2c59D0QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEOv9VMh1/qgiAAABLofWTIdD6yYAAAAAAAAAAAAAAAAAAAAAABkxExiYzEtR31tOnCbRnpHGQQ3050eUTbT99fvImJjMdrZ19S3qaeI63+5DNb7ptF+PPGOCxm4lYjprRaOMY8exIqAAgAAAAAAK3vWkZmUepM2pnPDPq148PEWReM6s4jhTtnr4OimKUnpWEcamny3RHhPA1s+TbHRGkdK7tKM+tPHPblPoas2zTU/kj3x1Q19WMdC1d8RMcLRxiWW8doj0dSNSmeVo4THikVkAAAAAAAAAAAAAAAAAAAAAAAAAAAAABk8pV0+1aeUq6faC4AAAAAAAAAAAAAAIta8+pWcTPOekfeDbamZ26eJt17I9Ktd06kRum22Pans9Ck2jT05wm067KRXOfEFwAAAFbWisZtOILWilZtacRDn3TqW32jHSOn6g20zqWibRiI5V+0BABmRWbpmbRFbTt54M55M3zTUpMcpnbLdePLvuj1bc/T1VGEjEUABk5iYtHOPeli0WjMTmEZWdl8fVty8JSwiUBloABkbqTmmIzOZieUpaatbTjlbpKNkxE81lTHSIKak04XnNYj1u2PT96aJi0ZicxLbLQAAAFNW/l6drT2Lufvk+xWvWcgi7tSd9Y4Yrxt6ex12tFazNpxEIe7TWujOracbpzM+5Fa1+86m2vqxyjw6yDdXvFrzEae6I8I4y3S7r/wDThH7Yn7U+lo1044cZ6zzSArWtaRisYhYAAAAAc3eqfXjlytH2rd31JtE0txtXt6wlvXfS1Z7Yw5O72tGppxPbmJ/HwB2gAAAAAAAAAAAAAAAjpzSI6c0gAAAAAAAAAAAAAAAAAAAAAAAACmpSNSk1n4eC4DzbVmlprPCY6Jq97tEYmkTMdueaLvF5vrTPThCnblR1073WZxeu3xzl0ROYzDzHX3O8zE0meXGEHSralbxi0RMLAPP1NO+lfb60dk8ld0x9WXX3mmaRaPq8/Q5lTVczPKs/E2TPGZxPZhYMNZWeyebZic5rOJZaM+ExylsTnhPNoXrbdHSe2FkOZ3ZpHHrPJk754buMz2MmN1M23TE8K8vSzKWKxFdvZhBWLRXs9EkqrTxjDfatOMzkpG7nOPDtSxEV5KlI4ATMRzlEZaJ4THOPeRO6ItGY6eBmZ5R8+DIi0TM459kSDq0r765mMTHCUjl0bRGrHH1uH2/j0upGgAAAAAAAAAAAAAAAAAAAAAAAAABHHrpEceuCQAAAAAAAAAAAAAAAGTMViZnlDh0p3zbUn60unvV9mhbrbg59OMUgWLthjYStxoCKtErKRKys1oAgAAAAAAAAMZMiky57R5urj6tUyPTnGlEz8RcT1ng1FW8TGazmF4tkRYAQZLWSKoEiNAAAADGsBgDTIAAACupXfWY7exJ3PU3U2Tzr9CqszOneNSvOOcdRLHaK1tFqxNZzErDIAAAAAAAAAAAAAAACOfXSI59dIAAApqUjUpNZ7VwHFEzEzS/rR72WhPr6Hm4mJxaHPabUjF6THi1KzYqKzeJ5RJu8JVnGjMz0MWntwGNZnpxIr14tFGTOGpe7ae+83nlXl6S3CTU/d9Py9Pj608ZSilvWrHjlzdG2rFoxMcFN99PhaJtX90falBEOjMW1tW1ZzHBfXnGhf0K20p379Odtp5x2Sj19S0023pMZmMzzhRNoRt0qwkUpel49m0T6G3nFLT0gEXdf4pnraZTTwjKPu8Y0KR4ZXv6lvRII+78Z1LdbymQd1/imetpTgh0f5tb0wmQ6HG2rPW6WQQan+50vRKZDb/dU8KymBFq/y6XpSotTjraUdMylBDrfy6P9kyHV/wBxpR6UszEc5woi1vX0v7JXNq61PNpMTuxnkt5mrb1dLEdbSC2lPt6s/mU1tWtqzSntWnoyO7TM51Lc+OIdFKVpGKxhNMQbte3CunFY8WzTXtGLTTHoTjOrjjnu2rHLbPgpOYnFoxPR3q6mnGpXE/NqckscQvqaNtPxr1Ubl1izABUAbAMG4MAwAAAAABsSwBaLTp3i8fGOruraLViY5S4JzPJfu+tOl7N4nb16M2NSu4UpqVvHs2iV2WgAAAAAAAAAAAAABHfmkR35gkAAAAAAAAAAAAAAAAAAAAABTVpv07V6w4qbq6cT60Y+MPQcWj6mJ5xMxKW4sK2i0ZictZakTOeU9YZ7cdLe5daWGbsc6zDJvERnj8lFjkp5nSlvkbbXj2+EdITTW6fGbW7J5LsaxUAEUAAAAAAglsAKW9fT/vDtcmnWL94rE/Vjc6250zQBUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAU1OxaOUK6nYtHKAaAAAAAAAAAAAAAAAAAAAAAAAAAApe9dOubThHra8afs142+hyWtNpzacyCXU71efU9mPnP4/GUNtXUnOb249mVZlgL6EVnWrv5TLr71X2a2iOUuFJGtqTp+Xzjr2gpMYmY6CuY3Tjktz4A2J4rc58FccOZnHAF5244TMyjsTLAbE9ktyysZnwSba9I+QKTJSk3ttrGZbNYdelrUrp4nETHZEc/x8AW0tOuhpzNp49sqf4rj6nD08Uepq21LRE4xzxCK3CAd0a2nNYnfWInrOGxqUnles/F5mcW4LxOQellry8R0bX2ZzERHwB6TXB5lv3T85WjXvXjNpmOmI/HvEdoj0dTzdOLcM8pwkFAAAAAAAAAAAAAAAAAAAAAAEOv8AVTIdf6oIgAAAS6H1kyHQ+smAAAAAAAAAAAAAAAAAAAFb2rSs2tOIhBOvfUzGjXhy3z9wJ7WrSu60xEQht3ibfw03fmtwj9WRpRndb2rdZW4QuJqkxe3ralufKvD9W1pWvq1iFmKzojiPMtMR6scJnrPRa+bTsrmJnnPSEkRFYiIjEQlqyKYjGMRjopOlH1bTX0cvkmmFWWkc11I/bb3fezdMetS0e/6EoupkQxqUn60fFaJieU5SKzSs86xPwNPlWZiOcqzqUj60L+XT9lfktERHKMehdPlF5kTGaxa3ohlJ1NTlEVr15rWjzbbc4pWePj4JojgJfEXkVzmfanxbjCRkwrKOYiYxMZVis0nNOMdtZ5SuBqLRnOnEdscJSI9WkRaLzHDtWmLV419qOk82LHWXYtNp07eZXjw9qOsfo63HS8WjhyS93tNZnTtOcer6P0CugBUAAAAAAAAAAAAAAAAAAAAAAAAAAAAZPKVdPtWnlKun2guAAAAAAAAAAAAADJmKxMzwiHPSJnjb1p4yk7xx0ZjrMR72U5gh1Z9mc8sx9Lscl6xOayn0r76Zn1o4TAJAAFbWisZtMRHWUV9b2ppp4m0c88oUtp77btSZt4dnyTVxTU1Y1L8ZiKxyiZ97YtWIzMx814pWOVYj0Q2eKauK5MqWrs415dsfjtbFomM9VRuWZFbWisfREATE2vSI65n4JtTFqxE9FNOk1zNp9qeeOS1p4qiKkzNYzzayJ9u8dJaijYjLGgxsxurMNxxI4cAbp23V4844T6VkcTt1cdlvpSMVYACgACuJiZmk7bT2wsATr3pjdTdHWv3L17xpzznb/bgoy1WvpMdEWi0ZiYmPBrjisRyjE+HBatr15Xmf7cf1966mOpxd8nGrnpVNXXxiNSOc845fo5u9z/q2+CovqzNr10acq8PT/wAOrS0406Yjnzmesoe6UiKb+czy/Hi6QAAAAAAAAHHpznvEf3n7XVe22lrdIy5O7VmdSkz9WJmfiDtAAAAAAAAAAAAAAABHTmkR05pAAAAAAAAAAAAAAAAAAAAAAAAAAU1aTem2Lbc8+APOnGZiJzETzHRbulojNbRaemMOefZnFoxPSeADo7nGdS09Ix8/+HPxxwjn2ujuupsnZPK08J8VHYAgOLV0/LviPVnl+PB2qalN9ccp5xPQHEL2rziecc1JiY7fc0yMisXtnjjl6WWmcxEcMrxOIwlWL8IhHn2pktbhM9GIq+7gpHOfmHaBMZ8JjlLaXtNtsxGY7RW3DFo5wCXEzzt8uDJmKTiK8Zjn1WicxmC0RaMSrLK2i3p6LK1pFZzmZ9LQZOYmLRzic+l2RMTETE5iXIn0Jzp4/bw+73FWJQEUAAAAAAAAAAAAAAAAAAAAAAAARx66RHHrgkAAAAAAAAAAAAAAABy9+t7FK9Zz+PmxF32d2viIn2a8V9Od1IFizYY2ErcaAisWiWAL5FMrRKs4sMyZBozJkGjMsyDSZVywXGzLARWGMQ0BDek1ndThPTqtp6m6OPCei8odfhiY5qz06IstnLnpec7bxi0JYkO0jGRJkCYVWyyYFjAEUAAY1gMAaZAAAAAAW7t7NrUzw5xH0ulxTM0tXUjjt5x4OyJzGYGa0AQAAAAAAAAAAAAABHPrpEc+ukAAAAAZMRMYnjEtAcXeNHy530j2Z5x0Rc+T0UGp3WtszT2be5ZUs1yhOa2mtuEwNsAAMnk7tGmzSrX5uTRrv16x2Rxd7HKtwR19rUtPZHBurbbpzjnPCDSjbpxnnPGWWlwAAYCltHTt9XE9Y4I9XS1fLmK6k2ieyYT5aaIK616xEX05iI7Ybqd4050rYtGcckys0rbnWJ+BqI+7Wr5NY3RlMinu+lP1I+Cv+G0/zfM0W7t/DnrMykRf4ekRiN0R/Zn+Hp1t/wCRo2OPep/LVJNqxztEfFF/htPx+bY7vpR9T5mmI7a1P8RmbRiI+5s95tM+xpzaOqaNOleVYj4LGmOXGtq6kWmuzHavHd4mc6lrXnxThqq1pWvq1iGtYgAIoAAAAh1O71mM0jE9OqYXcRweE8J6Ds1NKupxnhPVyWrNL7bc3SctYsxjYYRzw0ysAAYAGYYuwFRYwCrW4AGgDMccxMxPWFq6+rSfandDGJiyu2mpTUj2bRPgu86a8cxOJ6wlp3qa+zqxnxhmxqXXYMraLViY5S1FAAAAAAAAAAEd+aRHfmCQAAAAAAAAAAAAAAAAAAAAABy3rs17dL8Y9Pa6kPeaZpF49anH7yiKRsTFqxMcpY5tAAoAAAAAAAAAA0AAZqZik45zwj4qi/dozN9Trwj0OhWlYpSKxyiFm2QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFNTsWjlCup2LRygGgAAAAAAAAAAAAAAAAAAAAAAAIO86lqViK8M9vROyYiYxMZgHm8cTOJnHOVJmZehr409Ca1pw5cOzxcGOyIyDOQyZbWOMZ+IGOGcpImIxivCJz72WtE24cuxscaiIqxMzhLFYKxj4tFMK3jK3GPFkzxwIjxPRu2Vmbo9IrY4NypubkFubYhWJ4LCEzjlzlSYytPNgKYwRmOOOC2azGMcYOArRkNBtW82Q0RN3K3rU+P49zrcXc/8AcW/rP0w7RQAAAAAAAAAAAAAAAAAAAAABDr/VTIdf6oIgAAAS6H1kyHQ+smAAAAAAAAAAAAAAAEWtq+XEYrutacRCvmaufqRHxn7gTotTWik7YjdfpHZ6eilraloxviPGK8fpZWsVjER6Z6riayKTe27VxaenZHoSMiTIzrZljBRqt7xSs2nlDVaxGpqTM8a04R6f0S0k1uhMW090cZnnPilwp5WLTak7ZnnGOEtjUiJit/ZtPKJ7fiy6LqzXKwCKYwLyrMAwAGKatrcKU9a3uSI9KN1ranZPCvoWJfElKxWsVjlC7IMtMMnmyeTWCMVWlUGTxjHVTSzsxPOJwkR1n/UvHoSt8e22pnjE4t1g3zjMevTjhZk1zMTHC0cpZbdlZi1YtE5ieLXN3K+aWpiY2T2+LpVkAAAAAAAAAAAAAAAAAAAAAAAAAAABk8pV0+1aeUq6faC4AAAAAAAAAAAAAIu85jQtMdmJ96kTiYlPMZjE8nNETW3l3njHKesfjmCS9c8YQ4mLbqztt1wkraY4TyZOOai1dfstWYt2RHHP48VbTfUnG7bXtiPoyyszFJtG2b39XPT8cSJ20zXG2JxHWerNVmnSa4zXERx9MpAZ1SVJtx2xGbT2LM0ZrGnbWnt+iCTSqXzvxN5z+2IUrTUiZ5YnrP3JNKsxXNuNrcZlJEehvGUXl27b/KF6acVzMRz5zK+6sK2vMgTOFGq3tFIzPyUViPbtPVbDKRiIiZz1lfDIrjjhvZLZZPIUiW81GxPEGXtjFuiVDflK+jM20qzPPklWLgMqMaAYCGgwaYBS0THHnHaxIrMAqg1qTEZrxj6E4sqOmkRWkRXlEcFnNoX2WjTn1Z9X7vudLbIAAAAAADJmIjMziARd5vtptjnbn6O1ndqYrN+2/wBHYijPeNfOPZj6Pvl1xGIxANAAAAAAAAAAAAAAABHTmkR05pAAAAAAAAAAAAAAAAAAAAAAAAAAAAAU1KRqUmsuC9Jpaa2ji9JD3jR8yuYj245ePgsozu2rvrttPtR707zYma2zGYtDrjvWnNeMzE9sYLBOI6a2necVtx6ckiCPV093tRHtR7/BzzGY6dYdiPU093tV9aPeqWOKYxf4DdSf9SfRyZlFGRPZPNuThIGSOpwjsMgDMmQSaX8dcqVvOM88826NvZiJjHSWTWY7OHYqJYnMZgVpExE5jHFYRm6OPhzX7tfOraMc4z8v+XNiZxPb2unutJ3TfsxiPEXHUAigAAAAAAAAAAAAAAAAAAAAAAACOPXSI49cEgAAAAAAAAAAAAAAAOPn33UzHZ9ylo8m/DOyfctpZnvWrPScJpiJjExmPFRHHFsI7VtpWzGZpPuXiYnklblWBjLTQAAADIAZMgAAAAAMaAADEVo3a2nWOuUqujXd3q0zyrCxnkm1NOupGJ59kueZtpW26nLss7JhS9K3rttGYViXEUS3KKa20Jxac0nlPReJzynKY3Lq2W5YIoAKAwGsCVRS07Zz2dqxzU08xM1meXJUXAAAAAAmMxhL3af9KIzmazMSiO72x3m9ey0ZErrAGQAAAAAAAAAAAAAEc+ukRz66QAAAAAAAAFL6VNSParE+Ll1O73pPse1X3u0B5kzicWiYnxJtHZxehfTrqRi0Zc2v3eNOk3pOIjnEtamLdzp7M3nnLpR6NdujWPBIwqK3ta1a9leM/YlRaMZib9t5ylFAAGNYgjtMzqVpE+MpEeni2pe0eEJADIAZAAAAY1Svr2+ALgAAAMaxAAFAAAAAAFNTTrqRi3zXBHFeltO2LcYnlKk8JiXdqUjUpNZcWrS2nwt8Jh0nLWbFg7BthoCAAAxoDBrFAAAAAmInmAFL30ZzWc16OrR7xTV4crdJcys0zOa8JhmxqV6I5dLvXHbqxjxdLLTQAAAAAAAEd+aRHfmCQAAAAAAAAAAAAAAAAAAAAAAAHLenlXxHqWnh4T0+4mHRelbxi0fo5+NLbL8+yerNixg1jLQAAAAAAGGgACALRAEQrox5ur5mfZpwjxll/bnyqz7VufhDprWKVitYxENSJVgGkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAU1OxaOUK6nYtHKAaAAAAAAAAAAAAAAAAAAAAAAAAAArFa1ztrEZ54hYBDraM6sx7eIjswi1dCul3ecc45zjm60OvqRFZpzmYB59efoSxwhXERjosAKzeIN3iIsrMNypMisnjIEQDs0dGmp3asTGOM8Y580V+62rxxujrEfY7NKNulWMYxHGFwebOnemJmsxE9WZd+tp+bp7eU84cMxNZxaMTHYCszxyyZbPLlPyZFeoMOPJsxx4NiMAzjHLkzM9V2TGQbWZwk2X2RfbmJjnHFFHCeLt7pMToREdkzAI+5Rmb37OTrAAAAAAAAAAAAAAAAAAAAAAABDr/VTIdf6oIgAAAS6H1kyHQ+smAAAAAAAAAAAAAABHrUm1M19evGv48UEam+sWjtdbjnHn6m2eGezr2rErclbTe2Y4Vj3q3mYpMxzwkpam2IpMYjorLQaIMaAredtJmOfYvp12Uivb2+lFPta9Kdke1P2J2a3xayYi0YmImPFojSLydufKvNM9nOPe2fNrXlXUn/AMfv+xIwRHOrEevW1fhmPcV1tO3K8fHgvKLRpWa2maxO60zxgVLwnjHEmqvlaf8A86/Jnk6f7IQU1piK7YmM2nb6Mr1iK1iI7Iwi2V/xHsxERSOyO2UrcY5NGCsgAEqNkBiKYxfzInnbbMfCEs8IzKOKzHdJt2zO73pWuK4Nww6lLRp68TPK/CfT2Otx6sZ05nOJjjE+h1UtupFusZaZqwAgAAAAAAAAAAAAAAAAAAAAAAAAADJ5Srp9q08pV0+0FwAAAAAAAAAAAAAEerpRqRHZaOU9EgDktNqcNSMdLdk/cy/qWjrDrQand6xW1qZrOM4jlIKUrE3znhWNsQyunMRFc+zE59PaaUxFJtGZ3TM4Xi+bTXExPiz60syQZUUrWfI2T0mF1Lexab/Vnn4fjta41KtW0WrExyFJzHtaeJzxmJPNmOdLfJtlfDEfm5jMVsZvPSseHNBa14rz5zyjqpGbW3W4Y5Q2tYry5z2y0BueDBFWzxhlubG25grM4luVbTwKyDbcm6E+tXpKt+TdD1r/AA+1L0RMAy0AAAA1gA1hACswxaeSoK3ztma844w66W3UrbrES5k+h/DTwjDUZqQBpAYzfXdt3Ru6AsAA5e8XnUt5NOPX8eHb8ltbXmJ2aXG3bMccfqt3fR8mvHjaeYLaWnGnTHbPGZ6pAAAAAAAAAAAAAAAAABHTmkR05pAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcPe5jz+HZEZ9KFJ3ic698dfsRqHod/d9SdTSiZ9aOEuB19yrMUtbrKDpABy980+NdSI5cLOd6Noi1ZieU8JebWeERPPHzBoGAYNwyecQBmOrLTiq0xmGUiZt7XZyXBasYrELRaa8+MdWRxmIiMzPKHRpaGMWvz6dkCIt9f3R8yLVmcRaJn0u0NMcen3e9o9qdsde38en5OqtYrWK1jERyWEUAAAAAAAAAAAAAAAAAAAAAAAAAARx66RHHrgkAAAAAAAAAAAAAAABx6P82t/b70yHRn/AF9aPzJlQQ20ppO7T4x21+5M0ENLxeMwszU0pi3mafPtr1ZS8Xjx7Y6MukurDGo0AAAAAAAAMaAxrGgAAxvdPai9+tmWnFZnpC/dIx3evjlYxyTMmGisqzGYxMZhy3rOjOYzOn9DslWY4YnlIOeJzCyO1LaMZj2qe+FomJjMTwSxuVYY1GgGAyQGmRTUnbatvhK6PWj/AE/iCQZWMViGgAAAAMpmO9Ux2xMS1mnOe91x2RIV2ADAAAAAAAAAAAAAACOfXSI59dIAAAAAAAAAAAg71x04jraITodbjq6UeOQSote81piOduEJUV43a1Y/bGUVesbaxXpCwAAAxW8xWkzPZCyPV4xWOtoQNCu3SiJSAAAAAAAApX+S/wAF1I/kt6IBcAAAAAGAIoAAAAAAAApq1i+nMTGeC5PKRHDT1IaynqtdnKgCgADRgAAAAAAAZxzBBpCsxjjX5Nrbd6QWmItGJNLVtoTtvma9WwtjMJWpXTW0WjNZzCzh9rRndpzwnnDq0dWNWmY4T2wy0kAAAAAAR35pEd+YJAAAAAAAAAAAAAAAAAAAAAAAAFNTTrqREW5xymOcLodfVmkRWnG9uXh4ggrb2ppaY3RwnHasydKuzGMz2z2q5tTn7Ude1hpcZFotGYnMNQABRrDINZkBGgcgbDJtMzspGb9OnpVjfqz/AKcez++XRpaVdKuI4zPOZ5y1Ilppacadetp5z1SA0gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACmp2LRyhXU7Fo5QDQAAAAAAAAAAAAAAAAAAAAAAAAAAAHDqX3TM9Zy6e8TNdC8x0cdrZmRFbSTLF9HT83UxOdscZkVFMdrMJr6U0vsnHh6EQHEG84yA6u66P17R/X7/ALnPSub1ieUzES9MAEepq10ozaePZAJFNTTrqRi0fHo5L951L8I9mPBH4zxnrILamnbSmcWi0eH2wjzMtmzI6ARHbLRluQDVYnq3ALRxWpqTo8aTwnnEqxGGX5CPSrO6sT1jLWRyjHJHra0acYjjeeUCpQAAAAAAAAAAAAAAAAAAAAAEOv8AVTIdf6oIgAAAS6H1kyHQ+smAAAAAAAAAAAAAABz6t73vbTp7MR61u34I4pFIxC1qa1NS00iL1tOekwrPmc7aVvhxWM3WqTpUn6sfBs2xHGto9NZIvSeVo+aotSIpGI5elfKPMdTMdYESZhqLdWPrR81Z1aR9b5Ak0fa1NS/jtj4Joc2hE0tWZ/7I9/P6HSxXVoADJawFbztpaekZZo/xU9EGt/Df0S2kY06x4QgswV1bbdO1s44Ai0eMWv8AutMx6Fr3ikZn4R1NPhp19EMiJ3Te3OOUdP8Al0c2Wi8V8ybYmOO2OX6pIndWJjtjKkzmWaPCs1/bMxAJGTLZlUQBkzFYmZ4RAK6ntYpHO30JNThoX9Eq6VZ43tHtW7OkLa8f6Mx1mI96NxSOS0clVoZbbMZiY6pO7zM6Fc9nD5cEa3dZzS/heRKnAVAAAAAAAAAAAAAAAAAAAAAAAAAAGTylXT7Vp5Srp9oLgAAAAAAAAAAAAAAAAA49KYjXms8IrNsR8TWn/UpaP3Y+bJp7d5jG6LzMfHBETe0ZiYivHimqlBlrRWszPKGGmWmeMV5xGZ9H3t7Fu71tGnM34TacqV4UjK2Ykqk0j6szX0MinW029M8Fw0VvwpOOyCJzET1WmMxhFpz7MQsKuDM+0qNBkzwBpaeEsicwrMgzPAgAbaVtD1r/AAUS6Mf6cTjjPFL0RIAy0AAAAAAAAracTEdWMtx1I8IaAn0P4o+P0oEvdpzpei0/S1EqYBplB3mma74iZtXo55jdiZtM+mcunX1JrEVp61u3o54rFYxCwWpqalOVt0dLcS+tqamKUrNZnpPP49iqTu+Z1ZmOURx+JRLo6MaUdbT2pQQAAAAAAAAAAAAAAAAAAR05pEdOaQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHNfuledJmJ6Tyc06d4nE0t8npAPMmtq86zHph0d11YrjTty7JSWvTWiaxWbR+7lH49CH/C328bRnoo7RDpW1K0iNSkzPXMfeW1LzGKUx42mOHyyg2+paZmunHGOdp5R98op7tSaYzbPZOUtK7axWOztlZRx20dSk4xvjrCm6InE8J6S724Qefur1hWbZj2YmfQ6+8afK9Y8JwgVNVr7UZLxj2o5w31ZicTFbduOGVmlX7vaI1YnsmMOx5+lWZvNK9nGPD/h2V1Y4Vv7Np68p+PJmokARQAAAAAAAAAAAAAAAAAAAAAAAAAAABHHrpEceuCQAAAAAAAAAAAAAAAHHWNvfNSPDP0JkVuHfZ/NVKsQAUWrKl9Ctpm0Zrae2FoXhByRa1LbNXhPZPZKRNaItExMZiXPbStozM0zanTthnG5yWFaalb8p+CyNgAAAMaAAAAAAAKas407eh0aMbdGkYxwhz6sZrFe20xDrWMcgBWRjQFZjsnk5b0nQnNeNJ7OjsRa1vL0rW6KIomJjMcjKDSi9YtO32YnEpomJjMckblWywAAAFNTjNY6yurz1PRALAAAAAATOIzK/daZzqzzty9CKlJ174/66zxnq7IjEYjkM2tAEAAAAAAAAAAAAAARz66RHPrpAAAAAAAAAAAHPqz/+VpR2Yl0OfX4a+jPjgE6OnHVvPTEJFNPnefzIq4AAMAUv61PT9i6lv5K+iZQXAAAAAAAAUj+WfQupPDVrPWMAuAAAAADAEUAAAAAAAAABw14ZjpLT/t1I8Wu0cr2wBUAnhGSOMZQBrFAABmeOGstHDMc4QaMicw1QAAZNc8Y4S1aIQZp3zOJ4WSor0+tXhaF6Xi8ePbCNLKTSYtv05xb6VwF9HvEXnbaNtunVO4rUzO6vC0cpTaPeIvMVvwulVOAigACO/NIjvzBIAAAAAAAAAAAAAAAAAAAAAAre8Urmfl1Wc2rbdr4/ZHvkDUtqTx3RSI6cVdKLT7d5za0M1Zma4/dOEkcErWE8lF1ZYFLacTOYmaz1hkzqV5xFo8Oa4oj86ucWia+mF4tE8piWzETwmMqTp0n6sHguKeXHZa0eiWeXx9e3zBfkrOpSPrRPoPKr2xn0y2KVjlWIBm+8xmtPmk7vpResal7b8/VnlDFu7Tt1b06+1H2rEroaDSAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKanYtHKFdTsWjlANAAAAAAAAAAAAAAAAAAAAAAAAFb3ikZn/AJc2p3mezhHv/H4yDqm0VjNpiI8UVu8adc8ZmY7IcVrzae1XIOvV7xW1JrEc47XLlUBJTTvqz7MfHsdujpRpVxnMzzlzaGnqasRm0xpxwxHDP47ZdszFYmZ5QDm71jfTr2/j5uS/r29KW95veZzznkpeM3n0iKLV5FaZ58lpjHYKytsXicZxMS9DTvXUrurP6PO8UuhrRpTO7O2Y94OnX1vKiIjE2nscMzNpmZnMz2kzNpm1pzMgNjEGfBnCOcs3QBzJbmJ5ERm0QAy3JfaWjgCOIyvXhwGTMAujvPFbd7PiimQXzMTmszE9YK6k11Iv60x+7irBIPR0NeNaJxExMc0zm7lTbo7p52l0gAAAAAAAAAAAAAAAAAAAAIdf6qZDr/VBEAAACXQ+smQ6H1kwAAAAAAAAAAAAAAAADJrFoxaImPFoCnk6X/zp/wCMM8nS/wDnT/xhIApGnSs5ilYnwhXvPDu9/QlQ964d3t8PpBTVrjTjbHGnGPgkiYmImOU8SVNPhur0nh6GVSAKDGiCPXnGlb0YXhHrzjZHW8JQYh/ltmfUrPDxnr9y3eJtXStNOfh2I/MrFYiImsR2YlqJUkyrM5VretvVnKzTmLRPBUA22mfXiI8ILV21m3mTw64FNTExi04p2+Iq8T7MTPDhxUpMa2pM/Vry8ZWis6nG0TWvTr6fubo1iKzMcrWmU1qRJHNXvMRMUjt3Z+S9eaLWmZ7xjsiv0yixi0KrQjbW909XU/vKszxX7rHsXnreRmpwFQAAAAAAAAAAAAAAAAAAAAAAAAABk8pV0+1aeUq6faC4AAAAAAAAAAAAAAAAMmcRmeQOeOOtqT4x9DWUiMbo4bp3fNssVoUvuzXbETxzOVxFMzPGZn0ditmzKsgMLWisZmUVrWt4R0WRFr3+rXn2z0VjgyOHJrSLTPBXIAvngplufZYDazwYAAAMxNvZjnLq5IdGuc3mPCEzNWDGiKAAAADGgMmSZVmQZEe1M9WgAk7rnZeJ/fKNfu9vbtX0T9jUSugBplxxmdXUtP7sR6ILEetb+0/Syc2tFY4zMqM4zbbWM2nlDr09ONOuI4z2z1NPTjTriPjPWV0AAAAAAAAAAAAAAAAAAAAEdOaRHTmkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAR2/1JmufZjhPj+n49Nr221zjM9jK121iM56yDYjEYjhEAAyRrFGNAGjAGqzp0mczSsz6FgFNSkalJrPa44tw48+Uw6NXXndNNPjPbbp96KtIr4zPOZ5m4KxvraLVjEx1XnX1ZjE105+EtVsmhHedWuI21mI6Z+90V7zS+IrE7p7OU/j0ORlojHH5g7ZnUmZxtiOzt+4rqTHDUjbPXs/Hpc+l3jbbZe26OyUk94rnEVvPw+8HSOXT15ia0mk8ZxHH7PB1AAAAAAAAAAAAAAAAAAAAAAAAAI49dIjj1wSAAAAAAAAAAAAAAAA5e8ez3nStnnw/HzSKd94adbRzi3NeJzETHKViACgtEqtQXGRLUEWroV1OPq26whzfS4ascP3Q6wWXHPExMZicjb93jnpTtnp2Sjm80nGpXHjHKUxuckgyJiYzE5ajQAAAAAAAClozan9odbltDprbdWJaY5NAGQABz99nGjHb7UOgBDo6fl6URPOeM+lBqUnRvNo40mfk7VLVi0TWYzEgg5iOYnRvtmc0nlKQbAJnEZBS05vWvxWiMTM9UelmZm89vJKAKas4p6eC/IAGWtFYzINR7o1dSNOOUzxlW++2nN/Vr9Le7x/8AlVxHCsfYM2u6tYpWK1jEQsAgAAAAAAAAAAAAAAACOfXSI59dIAAAAAAAAAAA5+9cI07dLOhD3qM6FvDiCVHperP9pW053UrPWFdHlf8AtKKkAAY1iAp/2x/VdWf5I9ALAAAAAAAAKanCaT0supqxnTn5guMjjGWgAAAAMBAAFAAAAAAAAcf/APEanpbMM/8A4jUXw6zpzvaMWmGYVljKcsdFlOWp6QXY1igAAACs+zbPZKzLRmMMpOYxPOEVYbhsQIyIXiGRCwoi1KzW++vxhK1BlbRaMw1DnytTH1ZTCimpTdGY4TC7J5CJdDVjUrieFo5wmeda00vW0PQjjCVqNARRHfmkR35gkAAAAAAAAAAAAAAAAAAAAAAcerE07zMzyvHD4OxTUpGpSaz8J6A5bT7VM/uSotSmpTE2jNazE7o+5MzWmTyUleVJQAEUBlpisZmcQDRTN55U4eMt3TGN8Yz8lyosAii2lH/5Ofyfaq3T/wBzWOlZlZ2ldQDbIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACmp2LRyhXU7Fo5QDQAAAAAAAAAAAAAAAAAAAAAEOtrRThHPt8DX1fLjET7U+5w3vNgbqas2njMyrbhz5smsxxZM5nMg2JCI7U+l3a1+NvZr9IIa1m04rEzPg69HukRi2rxnp2J9PTrp1xWPj2yuDI4RiEfeJxoziccvpSuTvd82inZExM+n8fSCCIxMTPJuOpjGI6NVBktEFOXBmFp5sFV5KzaZXnxUmMegGGG4aDMJNOJjMqxDZnHEEil5xCkXt1N025gTntkAGTCq6s8wI5pNLT83UikdvP0I45vQ7pp7NPdPO30AniIiMRwiGgAAAAAAAAAAAAAAAAAAAAAh1/qpkOv9UEQAAAJdD6yZDofWTAAAAAAAAAAAAAAAAAAAAAIu8RnQvE9MpVb13Ums8pjAKVndWJ6wi1Lxp61ZnlaJyvoz/o09GFYxbWtP7YxHp7fsZVaupS/q2iV1bUrbjasT6YU8mMxtteuOyJ4KJRDt1o5WraPGMLbtSOdIn0T9+EDUjOppx4590pHPOtHn13VtXETzhJ52nP16/NReQ3RMZiYlmY6oK30639aOPWOaOdPUryxePHhKbJldTEE2mvr1tXxxmPcyNWk8pzPolLq+1NdP93P0R+MLzwhdT5QRvtyrtjrP3L1pFZzPG3WVhNXDOOPRXS/ip6IbMZjHVmjOdKvowsElOaC/wDuNT4fQnpzQ3/m1PTH0QUg1WGo2TOIzPYm7rOe71nrMz75cupx9nsjjLr7vGNCkeGSM1KAqAra9aRm1oiPFDbXvP8AFT424fqCdrlnzb+tqbY6U4e9WdGszm1rW/tK4muxjkjRiPVvesdIs2J1tOeF90dLfeYa6xFTWracT7M+P3pUUAAAAAAAAAAAAAAAAABk8pV0+1aeUq6faC4AAAAAAAAAAAAAAACLXtisRj1pxPoSoO8xmlZxmItmQGKRa8c8T7mTa08piPexjWpGTKG1rxyt7l4turFuww1uVb32xGOMzyZNpmI28Mzw8U1e7VmsTqcb9sxKyFrl45zM5lq2tpW0Zjjuie3opExPJUaAAAAAAAAYzMRHaLaUfX68iiaIiIiI5Q1TLdzDSwzJNoiAaAAMyZBrJlkywCZVjjOfkT7U4jl2z9jYUbELYIagzaymKa1Znt9n8fJZW/q5jjMcY+CxK6hWlovSLRylZtly95pNM6tY/sv3bTxnUnnPCPQnVpSNOu2vKOQLAAAAAAAAAAAAAAAAAAAAAAjpzSI6c0gAAAAAAAAAAAAAAAAAAAAAAAAAAAM5Ay9opGZ+ER2si1+GaRHX2v0ZX2p3z/6+j9VgZOZtxnhHZDQABijQAGNAY0AYj7xqzp1iK+tbl4JHJrTu17csV4QgrTFYwkRmQWmysyMmcRMgzn6DbHSG19WPQA2F5mIjMzwUZS27VpujNc4x1BNpUms+baOM8MdI/HH5utHLI3UjFcTHZE8Px4cASildStuETx6Tz+S4AAAAAAAAAAAAAAAAAAAAAACOPXSI49cEgAAAAAAAAAAAAAAAI9am/StXtmOCHu9t2jHhwdTj0Y8vV1NLpOYIJgGkAAbErQo2JQXGQ1AZMRMYmMw0By6ndZrO7RnHhlWNS1J26tds9XYyYiYxMZgWXEETmMw1tu7xifLmaz7kU3tp8NSsx4xyTG5ySCtbRaMxOVkaAAAAYpMXrOdO2PBdqpZqkd51a+vp58YSV73pTzma+mFcMmlZ5xEms/LorqUv6tolZxToUnlmPQ2K6tfV1Z9ErqfNdg5a62vX1qRb0cG/4vHr6doEx0slFXvWlP1semF41K29W0T6JBl6Rek1nlLmjOnbZf4T1dUziMubVrGpOe3sUiyPUnMxSO3m3dtr7XOOHpbSvO085RtsRiMQ0VvfbHDnPIFZjdqeFUiPdFKxHO3SGavmV0829nM4iO0TVrX47aRut0hfT7vmd2rxnp0X0NPy9OMx7U80oza5u92xFK9Zb3Gud+pPOZwh17b9S1uyPZh2d2ps0Kx2zGZBKAAAAAAAAAAAAAAAAACOfXSI59dIAAAAAAAAAAAy0bqzHWGgIO6znS2zzrOFtP19SPzIqT5ferU7LcYSx7OvbP1oiUEgAoxrEBSf5I9ErqW4XpPpgFwAAAAAAAGNAU059nHbHBdHEbdWelkgAADAQABQAAAAAAAAAHHP+6ukUtGO9W8V3WdOd7ZhkwsYVFMK3j2c9EmGTXMTAK82N0+NPRwbgRUWwYBVuFsNwCuFLRstFuztS4Zeu6swKYbhXStupHWOC4AAACDL0i9cSrpWnE1nnVdHqexeLxy5SKlVtPBueGVLSqItTjNY6vSiMREdHH3fT8zUm08q/S7Wa1OgBFEd+aRHfmCQAAAAAAAAAAAAAAAAAAAAAAAFb130ms9sYc2lNuNL+tXg63P3jTtujV0+MxGJr1hKNUlatotWLRykmGWlAEUUr7erM9leELo6+zq2jrxhriifhhS0RaJie0yTOIy2qmnPs4nnE4XR6XGsz1nKSHOo2IW7t7V76nZ6sKaltlcR61uEQ6NOuzTrXpCxKuA0gAAAAAAAAAAAAACmpqRp7cxMzacREFdSLXmuJi0dk9qK8eZ3msdmnGfjJr1nEXr61eMA6BWl4vSLRymFgAAAAAAAAAAAAAAAAAAAAU1OxaOUK6nYtHKAaAAAAAAAAAAAAAAAAAAAAj1b+XTOMykU1KRqUms9oPOvabTMyrnMuyvdK+XMXn2p7Y7HHWJ5Y4yBbrLeGOS9u76laTe0RER2Z4r920Z1LRa3qx7wTd27vFaxe8e1ziJ7HSAAAK3ttpNueIy4JzNscZzxmXRr6sTG2vGOv3Of60iE8ZyNx2sA4Y4Hays+zHoKzwAljZhmMijMNxgBXHgZwspMYkGzZWZarPMBsSwBZjRQVnmsVrN7xWsZmUFYh6ul/DT+sPNms0ma2jExzd/dZz3eufH6QTAAAAAAAAAAAAAAAAAAAAAAIdf6qZDr/VBEAAACXQ+smQ6H1kwAAAAAAAAAAAAAAAAAAAAAIde88NOs4tbt6QCPSvERqxnhW0/JujGNPdPO07vmhtpxpzGyOF42c+11RERERHKEpABFMgAjn+ev9Z+xe1a29asT6YUn+ev9Z+xIorOlpzHqVj0Rj6GeXXPO3/lP3rgI50qz22j/ANpI0qx22n/2lIAhtpzp28ys2nHOJnPBfdFoiY5StMovUt+W0+/9QXGMm0VjMzEekFkejPr16Wngefp8t3uUjUrHeOE8LRic8OKxHTXmh1MRrWjrET9iVHrxi1Lf+shFWWttjrM8oLTtj6GViec85Rpm32dufatOM+l31iK1iI5RGHHSu/WpHZE7p+DtVKItXV2ezXjeeUfbJr6vlxEVjN7coRUpsjnmZ5zParNuEU47rzut16ehYFZABAnkKzIKzETwmMwtp6s6WK2nNOs84/RjJjMTE8pFldgh7vfdTbac2rwn7EzLYAAAAAAAAAAAAAAADJ5Srp9q08pV0+0FwAAAAAAAAAAAAAAAGTETExPGJaA5b6d9OPZjfWOnNFbUx2Ynxd7AebfU+Mr09qIiKzascoiM/Psd81iecRPpgiMAh09HFt98ZjlHZH6pwBFr036c88xxjDhx2xwl6bi7xp+XfdHq2n5T+oIs8AwV4cEVoAAAAHaBjMxHVKzSrOZmeXKEmGasVFsMmEVWZxGZZztx7Ganq46zhsWr+6PmqLZMgigKTq1jhE5npCi6sbtSdulGetuyEc3tbhyjo6+6Y/w9ceP0rIlqlNC8RibViPCGatJ0o3ZzXt6w6mTETGJjMSuJrnjkMx5Vtlp4T6s9f+FmK0AAt3eYiLUiPVnh6JTOeszGrWc8J4T9n48XQ3GaAKgAAAAAAAAAAAAAAAAAAAAACOnNIjpzSAAAAAAAAAAAAAAAAAAAAAAAAAAAKavqemYifRmF1NSJmvDnExINGROYierVAY0AGA0YwGtYANZlqA4M+3f+0u9wXjbq6kfmz8wBhkGjMmQOXCeTcxjOYZk4dAPW9H0s1PUluTbN5ikfWnAO9jRRkxExiYiY6Syk7LbJmZieNZmfd9v/AAsreu6vDnHGPSCUVrbdGfnHRZAAAAAAAAAAAAAAAAAAAAARx66RHHrgkAAAAAAAAAAAAAAAAcnec6etTV7J4T+PxydaPX0/N0pr29gKiPQtu04ifWrwmEioAKACC0S3KrQWGZagAAMmImMTxhoCG3dtKeUTWesSpbS1qepaLx0nm6QXXJGtGcWiaz4pEtqVv61YlFPdoj+O9q+HOExr6BHMa9Odd8dYK6tZnE+zPSRqWJAEUGNAABgZYqMmlZ+rCk6NezMJBUVrW0TxvMx0lYAAAZOccIzKGNK82iZninbWYi0TIlX09KunHCOPVa2nFrVtMca8m+ZSOdoj0yydbSiP5K/MZWc/eNbbGyk+3PuR6urqatsaczFfDg2mnFIzPGe2QxHFM6mnp84zxh6PJyd0pu1L6sxw5Q7AAAAAAAAAAAAAAAAAAARz66RHPrpAAAAAAAAAAAAAc/ea4xqxzrMfJur9TUjjET7k0xFomJ5Sg0cxW+jbnXl6ATimnOdOOvKV0UY0QYpqfVnpK6t+NJ9ALDKzFozDQAAAAAAAAU1OGLftldkxurMT2q6Vs0xPOvCQXBiAAKAAAAAAAAAAAA5+8Rt1aW6yZSa9JvpzEc44w5Ytnhyno6cWOSZqlbLRKstABHTha9fHK2FZnGt6YSAzBhoDBoAACGPY1vCyVXVrmk9Y4trO6sT1FaNBAAGMtXdWY6tAQ6dpxNZ5wWnEN1OF4t81+76c31N8x7MC5ro7vp+XpRE854ylBloAAR35pEd+YJAAAAAAAAAAAAAAAAAAAAAAAAAAQamnNZ36cZntrnmrW0Wjh8Y7YdLhrXdnUrM1m0zKVYlmFWRqzX+SMeMclotW3qzEsqxW9N0c8THKVpARxOpHCa7vGJbttf1uFei4u0IjEYhs2ilc2RzqZ4UjdPubFeMWvObfQgRSdSZtqR6I6J+7ak3pNbetScT4+KkSaU7e8zHZaufjCypXSA0gAAAAAAAAAAAAra0VrNrTiIWQWnzdSKxPsVn2vGenw7QbpVmIm1vWtOZjp4fBazWWVEfdZmPM0/2zw9Euhy6XDvl+k1y6kUAAAAAAAAAAAAAAAAAAABTU7Fo5Qrqdi0coBoAAAAAAAAAAAAAAAAAAAAACuym7dtrnrhYAAAFbWisZtOIc+przbhXhAJr6taeM9Ict9W1+c8OiszMsEbzUrb72zborHDgKtnmTKva0GfV+DeXBmOEw2OUA3LVY4tnlzmALMOM9rJzANZaOHoM8WgorZaeCsgDGxzBYGA12dypitrzHGeEON6WjTZpVr2xHEDU0q6kYtHonthulTy9OKZzjtXAAAAAAAAAAAAAAAAAAAAAAAEOv9VMh1/qgiAAABLofWTIdD6yYAAAAAAAAAAAAAAAAAAAAFb3jTpNrcoQadZxNr+vbjP48DUtOrr7PqU9bxldYlU1Kb6TX5LaV99OPOOE+lsopny9Td9W3CfCewqROMGG2kgCOf5q+ifsXR3/n0/jCUGASAyZJlVQlk42zu5dorEeZOfqRPDx/QS+KacXtExMzs7J7ZSxStZzERnr2rDeMbrCYiY4xE+kBFJpNeOnP/rPL9G3nzNC0xmJjjx5xMLo75pbfX4x1j70alRUjhFp4zK6tO2I5RPD0djbTMV4c+xltL3WMze/ZM4j4J72ilZtPKFdOkaOlFc8KxxlBe86ts/Vj1Y6+P3KlpXMzN7etPujotlUy0wvkypkEWyzKtrRX1pwrvmeVJ+PAVfLFZvEetEx6VhGgARbZqVvM4jOJ9E/q63FeM0tHg66W3UrbrGUrcWARQAAAAAAAAAAAAAGTylXT7Vp5Srp9oLgAAAAAAAAAAAAAAAAAAAAAAAIO9zHk7Z+tKdxd5vF9XEfU4fEENZ7J5rKzHzhsTmMoq3NhDQYNwwBvo59hg+tT+0AnrGKxHSGgw0MaArWsW1KxMZjPb6HTiOjn0/8AcVj8s/Y6W50zVLaWnbnSs/Bw62l5Wpt47Z5Tl6KPW0o1aTWeE9k9FRwbY6NJiazNbc44SIon7lafbpPZOYQL6FtmvWZ4RPCQrvAVFNSm+kx29k9JQVmczW0YtHOPt9DqQ6+nNsXp68e+OiWasVFa2i1YmOUrMNMmMxMJdK/mUzymOEx4o1tDhN48ctcUqYBpkAAAAAAAAAAAAAAAAAAAAABHTmkR05pAAAAAAAAAAAAAAAAAAAAAAAAAAAAVvOK5+AKV9a8dkW4fKJWZEYjr4y1RrLTMTWI7Z4/IVvxjhPGOMelBYVi8WjPu6G6FGsmVZvCkyC+43o5lmZQTxZZBWZXi8Aky5e9VxeLxynhKebwjvMXrNZ5SDnYerO2efXqAA0GDcGAEvda7tWbY4Vjh6UUVm1orWMzPud2nSNOkVjs7eoNGijGgCtc+daOzbH2pFKRObWmMZ4R6I/EroAAAAAAAAAAAAAAAAAAAACOPXSI49cEgAAAAAAAAAAAAAAAAAOLUzod63fUunW1tONXTms8+z0oO76k6lOPOOCxEoCgADQEGjGg3LVWg0ZluUUAAAAZatbRi0RPpaAhnQiPUtNffCs6etHLbb3OhmQ2uW2pNPXpaPHsbGpSeVvm6cor6WnbnWI9HAxfpXLMs/wAPt9S8x6VdutHZW3oMX6XEfm49etq/BaL1n60CrBzAAAAAAAGbKz2Q0A5I9aZmIpXnaUk8Du1fM1Z1Z5V4QFdGnSNPTikdi4DAAAAAAAAAAAAAAAAAACOfXSI59dIAAAAAAAAAAAAAg7xpzONSk4tX3wnAQad/biY9XUjPolM57V8q2I9WZzXwnp8U1Lbq57e1BYAVgCCPTjZa1OyOMJFLcL1t8JXAAAAAAAAAQzPl6/hf6Uympp11K4t8PAFhTStuiaz61eEroAAoAAAAAAAAAAAAi1NCmpOeVusJQRw3i2lbFuMdWxbPJ2zETGJjMIb92pbjWds+Dc5f1m8UUWWi2VbaOrTjGLR4I98ROJzE+LWys5YtrcNto7JTILTE15pNO2aQC4AAAAxoCPS4TanSUiK87NWJ6ipWAIBlk2gGqzZk2ypM4jMqGpxq7tOsV06xHZDl0NK2peLXjFY4+l2s1qACKAAI780iO/MEgAAAAAAAAAAAAAAAAAAAAAAAAAK3vXTrutOIc1I/0q+iEmpaLas1z6sfSj0v48dteCVYKW0qTOcYnwXkYVTbaOV5+MZManWvyXFEcV1J53iPRDfLiZ9qZt4SuzMRzmAIiIjENBBsLaf+4jwrP0wpClJvOte9JiMezGY4SsK7hFpasXmazG20c4+5K2yAAAAAAAAAAAi1tSaViK+vbhH3grrXmbeXSeP1p/bH3r0rFKxWsYiFKV2VxznnM9ZWVFplVgopXP8Ai4x+zj83S5dKc99t4U+51MqAAAAAAAAAAAAAAAAAAAApqdi0coV1OxaOUA0AAAAAAAAAAAAAAAAAAAAAAABTUvXTrutP6rTOIzPJwat51LzM/LoC2peb2zP/AAqzMMyI2Z4K8+ZMgorPNsyrIN8VlMmcAtMsiexmWAkjm2eatZyRyEarMrxGcwjFFongqcgLcVF1Z5gxaIZELAAtSk3tFaxxkEnddLzNTM8q8XoKaWnGnSKx8Z6rgAAAAAAAAAAAAAAAAAAAAAAAAIdf6qZDr/VBEAAACXQ+smQ6H1kwAAAAAAAAAAAAAAAAAACtrbazaeURlZB3qf8ATrTPr2iPgCuhGNKJnjNvamfSkBWWK2iLRMTGYlaVVRTTtMTstOZjlPWEu5FqV3RwnFo5S2l90dLRzhmxuVJluYUmYiMzOIU8zPqVm3jyhFW1ZxfTn82PmkygtS98Ta8RicxEQ3ftnF4mPzRy/QEs2ZlgAACmpOcacc7c/CF4jEREcoU0vazqT9blHSEjUYtYArIDQYyVmA5qxt1L168YTaFd+ru7Ke+f0Ra+a4vXnHCV49qkViJrpx2Tzn0/czje+Lat/PmIrM+XHP8AN/wA0zboAIK2tMezX1pWUpOZtPjj5A2tIrx5z2zKwAKxGJ4cp9ywAADJ5S6NH+Gn9YcupONO3odlYxWI6QlaiwCNAAAAAAAAAAAAAAMnlKun2rTylXT7QXAAAAAAAAAAAAAAAAAAAAAAABTVvs05tnj2elwce3n2pu86m++2Jia1+lCLBXjE4jtWZMZjCDYnK0KYiMdkrTFq8LRi2M4BoRPZ29AAj16ekZMxE+McQdIROYzAw0Ay04iZkG6VZnWm3ZFcOhHo0207czxnKRuMACjm73p8I1IjjHCfQ5nozEWiYnlLz7V2XtTnieYsYTGYxIIO3QvOppVtPPtSotCk00oi3rc5SqgADn1qTS3mV5T68fb97OcOhzWiaXtWfTGOjNixsraE+3f0R9qPK2hP+taOtY+lJ2tdIDbIAAAAAAAAAAAAAAAAAAAAACOnNIjpzSAAAAAAAAAAAAAAAAAAAAAAAAAAAK3nFJxzwsrqVm2nasc5iYBXJlHFuvCY5x0ZNsqLzZHaTKszlBnbntOPUM9VBuWAAANMywBuWDQVtWLRiUVotT1ozHWE4CCJieUrLTStucQzyqft96CszEc5Kxa/qxiP3SkitY5RELRIJNKkaVcRxmec9V9yHcbgTRZaLOfdKSs5BLlW0zM7a8+cz0hsM0uMWntm05+HD7AXiIiIiOUNAAAAAAAAAAAAAAAAAAAAABHHrpEceuCQAAAAAAAAAAAAAAAAAByd4pOlqxrVjhPrR+Pxl1q3rF6TW3KQRxMWiJicxIg086GpOlecxPqynVABQaxqAADRgDWsAazIAZblUBuTLAG5ZkYAAoAAKzp0n6lfksAinu9J5ZrPhKs6Fo9XVn4pxBz7deOyssmdWOen8nSC7XN5l+3St8m+ZEc62j4OgMNc8atJ7cMnWpHbl0hi65o1aT4NjUifVi0+iHThXVvGnpzb5B9OW1r6l404jEz2O7TpGnSKx2e9D3XTmM6t/Wvy9DpRAAAAAAAAAAAAAAAAAAAAEc+ukRz66QAAAAAAAAAAAAAAFNSkalds/CeiDT3aOtsvOa25S6kerp+ZSa8p7JBcR6erM22XrNbfSkQGNYiq3jNZxz7GxOYierUdZ22mk+mASAAAAAAAwGsBBHaNl98cp4W+9JE5jMExmJie1TT9mZpPZxj0KLgIoAAAAAAAAAAAAAAAApbR0786xnrC4Igt3SmPZmYnxlBWZpOy3CYd6PW0q6lfa4Y7WpUs1zxZbdCGsW4zWJtWO1sXie10YyxNkR5bFgXapFm7gWRa0ZrE9sLblbTmJDVt3CJZNlKz7EG6OoLZlkz1ltdPUv6tJjxnglr3SM5vaZnwTTEETa04pWbJtPuszx1Z/wDWHTWsVjEREQsmtYyIiIxEYhoIoAAAAjvzSI78wSAAAAAAAAAAAAAAAAAAAAAAAAAA5e8exqxeeVox8VInZq57LcJ9LrvSt67bRmHPbumYxXUmK9JjIuloYRFtOIrq/C3Y2YYqsARVLTNrbKzie2V/KpWPVifgpSf9S/wSZy6RFJjZxry7YWZaeEq1nGnE2nsZ5RW3tsrM/JulGykR29qsRundaOXKF0Rt4mcWrOLV4xLo07xqUi1eUueJW7vbFr6fSd0fj0rEroAaQAAAAAAAAc2N3erzP1IiIdLl9TvN6/uiLQCWWA0gCPXtMaeK+tacQDe6RMzqak8rTw9DpV06Rp0iscohZlQAAAAAAAAAAAAAAAAAAAFNTsWjlCup2LRygGgAAAAAAAAAAAAAAAAAAAAAAArqRM6doiMziXmTbnxy9Vy947rN7btOYiZ5xIOaOEYZkvp305xeJjKoNyeliXR150pxiJjt4cQKaF7cYrOPHgljulu2ax6OP3Jv8VpY4Wz8JSUtF6xaOUg5p7nOOF4mfRj70du66kRyifRLvAeVNJr60THpjBEV/dD1QHmV07W40ibKTzes4O9aXl33R6s+7wBSs4xLNWu22Y5TxhWLE2zGAYwYDYgbDQYNw6NDu8XiLTaNvSOYINPTte22sZl36OjGlXrbtleta0risYhYAAAAAAAAAAAAAAAAAAAAAAAAAABDr/VTIdf6oIgAAAS6H1kyHQ+smAAAAAAAAAAAAAAAAAAAc2vMT3jSjpEy6XLq/wC8rP5PtEqXLJlg0yMMsmRGTKlon1qzi3VYFZpxS0ceNo57uMwkRTXPGJxaOUtjViOGp7M9eyWbGpdSHOMSCNI9k1/jtjwnjH6EXtHr0mPGOKQBWt639W0Sr3icaNuOMrW06X9asSi1tO3lzi0zEccT94ieIxERHYETmInqNsA2IbMAqAI1jWAi1YzS3oy2OMZL8az6Gaf8dfRALAAAAI9H+KEimnwm0dJBcAAAAAFbRvmun+6fdHF2ufu1d1ranZPCv2uhmtwAFAAAAAAAAAAAAAAZPKVdPtWnlKun2guAAAAAAAAAAAAAAAAAAAAAAh7xqTSsRX1rcp6JnJ3uMalZ6x9H/IIMYjgGeOBGhbT07alsV5dtuyFtHRnV4zwr16uytYrERWMRCorpaVdKPZ5zzme1t9OupXFozC4Ig/w9Z0q1tOZrys571tpzi/wnHN3smInGYiccYyDgrFr+picRnHVNo6VdXRtF4n1p8E0aNK6vmVjEzHHHJIDk0+FMT9XhPwXRWiYnXr45+fFNMMVqMKRv1OfCvGY+hkyk0IxpRMxxtxkkKlAbZAAU1LbNO1ukODMzxmczPN0d7vma6f8A7S5xYcZnEcZnlDs0dCNP2rcbfQj7rp8PMnt5R9rqEAAAAHP3mIiaW8dv4+ToRd4jOjaf2+18gQraMf62fyzH0KNiZrekx+6In48GJ21XWA2yAAAAAAAAAAAAAAAAAAAAAAjpzSI6c0gAAAAAAAAAAAAAAAAAAAAAAAAAAAAItXT3RNqx7f0/jsQWiY9aJj0uxkxExMTxiQcYTWaWmkzmY7esNUYADOU+DQwAGGgwaAAAAAMawAAAaAxak9sKzx4R82xwBPWcraeIi0R2Wn38ftR1nhlfRnNN2Mbpz93uQSAAAAAAAAAAAAAAAAAAAAAAI49dIjj1wSAAAAAAAAAAAAAAAAAAAAh7xoxrU54tHKUWhqbo224Xrzdbm7zozafN0/XjsjtBcR6WrGpX80c4SKgAo0Y1AAAAAAAAAYAACgAAAAAAAAAAADQECZiIzPKEGnE951d88NOs8I6snd3jU2V/jjnMOutYrWK1jEQirAAAAAAAAAAAAAAAAAAAAAAjn10iOfXSAAAAAAAAAAAAAAAAApqacalcT8J6I9PVmLeXq8Ldk9U6t6VvXFoyDRzxqToWimpOa9lk6KKalc1zHrRxhcQVrbdWJjtWRWnybZ50tPylKAAAwEAAUAAV1ImYzX1o4wsAytotGYaivHlTvj1Z9aPtSiAAoAAAAAAAAAAAANBAABBeZ1dTyq+rHrTH0N1L3vfy9LhMetPRLp6ddOu2vxnq1INrWtIxWMQrfS07+tWPSkFRyW7pjjS8+hDNNavOkz8HoNXUx5u60c6TBvh6JiOhpkefumeVZWrp6t/qzWOsu8NMiCvddKuMxmfFLWlK+rWI+CwigAAAAAAAAACO/NIjvzBIAAAAAAAAAAAAAAAAAAAAAAAAAAACtqxas1tGYnsQ20b0/jndH7bfe6AHDGtS0cfZnxWiYnlMStWIi14jHC08mX0qW4zWGK0raM8Y5wr5kR60TDfKpHZPzPKp+33rLgivqTf2aROElaTOJv2co7IXiMcIaWgAyojtWt9bFozG1Ijpx1LW+DUSrxOrp+pabRH1Z+90aWrGrXMZiY5xPYgiyt5tX26W2/ux0XUx2jjxbMT5up81o1dWv7bx8p+41MdTJtFYzaYiOsuee9bqxXTrO+eeexFOnFp3alpvPio6/O0//pT/AMoWiYtGYmJjrDkxX9sfIrEVnNPZnrCauOnUvGnSbT8I6uab6upxtaaR0r97L2tbUrOpMYj1cQ3KWkhG6Pr3/wDJW8W3xqbptaOyVhNq4lraLViY7WubbMTM1tNZnol0fM1azO6tcTjG39XSVnEkzERmZxBp0m141LxjHqx08Z/HBsaFcxa8ze0cpns+SUABAAAAAAAAAAAAAAAAAAAABTU7Fo5Qrqdi0coBoAAAAAAAAAAAAAAAAAAAAAAAAAKalI1KTW3/AA8uJy7u9a8adJpXjafd+OxwwDRgCXu1K31Yi08OeOr0Xkxaa2i0c4ng9TSvGppxeO0FwAAAFb1i9ZraMxKwDztfu1tPNo9qv0IHsIb9207zMzGJntgHnxXrOG4jPBJraFtLjzr1QgsENwBCTS1Z0rZ+r2woA9GtotWLVnMSs4+7au22yeVp4eE/q7AAAAAAAAAAAAAAAAAAAAAAAAAAAEOv9VMh1/qgiAAABLofWTIdD6yYAAAAAAAAAAAAAAAAAABza8Y7xSetZhNqXrp1m1p4Oe+/VtW0+xFZ4R2/ESrZMsGmBgAAAGnpRrTut6kTwjqyYm2KxOJtwy66xFYiIjEQlakRT3em7NZtT+s8PkrNNWs8ovHhOJ+73ugRpy78Z3VvXHWrI1afuiPTwdbAcs62nH14+HFnmx2VvaJ7Yh030qanrVifHtR+RiOGrfPjifsBDoTNc6doxjjGZ7Eqmpo2pXzN82tTjyiOHavExMRMcpWM1sNVblUYAI1kisyDJU0uOlVdTR/iqC4AAAClomJ3V4zHZ1XAVraLRmPkspamZzE7bdWb5r69Z9MCpBSNSk8rQ2b1jnaAWVxbUtsp/wC09I+9tK21vV4U/d933uqlK0risY+1LVkbEREREcIhoI0AAAAAAAAAAAAAAAAyeUq6fatPKVdPtBcAAAAAAAAAAAAAAAAAAAAABB3qM6Wek/onR61N+lasc5jgDh7TGZiM4zMRkZM4jPTiivSrEViIiMRDQVAAAAAAHPrViNSJ7LRifx8yZ4TK3ePVr/ZDSZ2+1zZrUZqTOyZ7cOyIxEQ49Tjp29DtIlAGkEetqxp162nlC17RSk2nlDjtab23W+EdPx2grzmZmczPGZK036ladk8zMR2wm7pGb3t0xET9KLXS0FQAAAAU1I3ado6xMLgOHSnOnWfBaYzWYjmREVzWOUTP0tYadGnbdp1tPOY4rufu8zE3pPLnHxdDbIAAAAAAAAAAAAAAAAAAAAACOnNIjpzSAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAApqacakRnhMcphF5N4/bPon8fS6AHJMYnExMSOjUpvrjOJ5xLnmJicWjE8gDAKMGgMAABoBgAZgw0BnDl1MNZtjxj0TgCcRDNsdvH0txDQYVzacREzjnhsV3WivX6HTWsVrEVjEQgi06Tf1oxXpMcZ/HvTgAAAAAAAAAAAAAAAAAAAAAAAjj10iOPXBIAAAAAAAAAAAAAAAAAAAAADk19DbM62nzjjMLaWrXUjhz7YdLl1tCaz5mjGLRziO0Egj0daNSMTwtHYkVABQAAAQaMAAFAAAAAAAAAAAAAABoyZiIzM4iECZxGUM2t3i2zSn2frWZE27zbbTNdOOdurq09OunSK1jEAadI06RWucR1XBFAAAAAAAAAAAAAAAAAAAAAARz66RHPrpAAAAAAAAAAAAAAAAAAAVvSt64tGYQ4vodb6fvh0AI6albxms5WRX0Ntt+lwt0nlLa61Znbb2bdJTFXmImMTyUpM1nZb/wBZ6pFb13R0mOMILMVrac7b+t9KyAAKAAAAAATETExMZiUMTbRnFuOn2W6JiYzGJEBFE+Twt6nZPRLExMZjkAAKAAAAAAAANYCNBkzERmZxCjUN9SbW2aXG3Xshk6s6vs6Mem08oTaenGnSKwsgzS04064jjM856pAVAAAAAAAAAAAAAAAAAAAABHfmkR35gkAAAAAAAAAAAAAAAAAAAAAAAAAAAAU1Jmune0c4iZXZMRMTE8YkHFSI07RjlaMfFMhmNudK88Y5T1X09TPs24W+lLGmzDF5hSYZFbW2xnn0giupPGbbfCIZz1oz2RmEszlqQR5tX1uMdViePBHF4jTiZSwbqW214c54QVrtrEMrEzbdbn2R0WAbziYntYAadvYiO2OC2UdedvSsBeu7ExOLRylkW3Rx4THCWqTw1InstwkFwECeMYlSkzxrPOF1LezetuvCVFwEBbQtt7xNey1ffCm6M45z4L93jdrzaOVa+9YldYDSAAAAAAAAAAAAAAAAAAAAAAKanYtHKFdTsWjlANAAAAAAAAAAAAAAAAAAAAAAABkziMzycet3q05jT4R17f0dHeMzo2isTM8OXpccaWpblS3xjAIJmZnM8ZbHJL/hNaZ9WIjrMrx3PV60+c/cCBWebrr3K31rRHo4/clp3TSrzjdPWQee7u4TPl2jE4icxLprWKxisREdIaAAAAAAAADObztXT8vUmvZ2S9Jyd9r6t/hP4+YOST0cG4y3aDN0ticsmrMAu7tDU8ynH1o4S8+JxzS6Gr5epE/VnhIPQAAAAAAAAAAAAAAAAAAAAAAAAAAQ6/1UyHX+qCIAAAEuh9ZMh0PrJgAAAAAAAAAAAAAAAAAAcV9SJ1N2rmuPVrMcmxqb7baTw5zLp1Lxp6drT2RlyaVo25zm9pzOFZsSyqZtMzjTvPpjH0s05m1N09vFUxoK2vWOGcz0jmIsEU1b8qxWOtvuXjusT697W8I4QmtYroxu189lYnj4/jLqVrWKxisREdIWRoAAAAABkxmMS5KZpNqT9WcR6Ox2OXvEbdat+y0bfiRK3JlUy0wtkyqA2ZYADO793rbRi0WtEz4tT93/AIKY/bCVqIZ0dWvK1b+mMSrjUiPa0rR6OLsDVyOHzKZxnE+PBZ1zETGJjMeKk6GlMY8uvwjBqYgEv+H0/wA0f+0t/wAPp9Lf+U/eaYhVm9Y52hP/AIbRznZn0zKStK09WsVz0jBpjk2ampwjT4db/dzS6fda1439uezhiPk6BGsAAAAAAAAAAAAAAAAAAAAZPKVdPtWnlKun2guAAAAAAAAAAAAAAAAAAAAAAADzprttNek4MJe8VxrT4xE/j5I0V26V/M0q26wu4NHW8m1omM0meznDtraLVi0TmJVFgAAAAAQd5n1K9Zz8oRr68xOpEdsR9P8AwoxWoyYzEx4OusxasTHKYy5UvdP9vT4/SsSpgGkc/e5/04rE+tPH0OTbXo6+8aV9S1ZpiYiO2UX+G1Z/b81EOIjlDs7n/tqz1z9KH/C6k8JmsR6f0dOjp+VpVpnOEEgAAAAADJmIiZnlDUPebY0sfunAIazMxme2ctRxWa8rTEdCbWxz9zPzV1JTMa+njxifl+jrcGh/uaTmZ58/Q72ogAAAAAAAAAAAAAAAAAAAAACOnNIjpzSAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK2rFqzWeUrINe0zaadmOPjn/AIBDHGI9rPjHasyIxGIaoMnPZHzlJp6W+kWmZrnlEdG+RMz6+I8I4/j4II9OmraN07cDprWK1iI7Fb6VbTnjE9YBArurHO0fNP8A4emfam1vCZ+7CWIiIxAOWBLqaczO6sce2FJi31aTM/L6QZgrW1+NYzHZPZ9/uXjRtb15iInnEff+iaIxGI5A5/K1I7Kz4RP4+xXw6OtS+nS/rVyDnIndOKe1P0elNPd9OcZrM46zP3pIiIjERiIBTT04px527ZSAAAAAAAAAAAAAAAAAAAAAAAAAAjj10iOPXBIAAAAAAAAAAAAAAAAAAAAAAACDW7vXU9qvs37JhDTWtS2zWjE9XapqaddSuLRn7AUHPNNXu05j2tNLp6tNT1Z49FRcBQAAAAAAAAAAAAAAAAAAGTMVjMziENtabzt0I3T1wgl1NWunGZnj0RaenfvNt2pw04nhHVJo91iMX1fav07HSiq1rFKxWsYiFgAAAAAAAAAAAAAAAAAAAAAAAABHPrpEc+ukAAAAAAAAAAAAAAAAAAAAAUvp1vXFoiVwHNEauhwxOpTw7ElNWmp6s8ek80qPU0aanGYxbrHNMC1YtGJVi014X+al41dGM1tvr0mOLdPXpq8OXhKYqUUmLUjNZzHSVq2i9YmEGgCgAAAAACPbOnbNYzTtrCQEVpet/Vn4LKX062nPK0dsc1ZvfT9aN0dYUSjK2i0ZrOWooAAAAAAEzFYzM4hzW176ltulXhyyuIm1NWunHHn2RCOtL69otfhp9lZ7UmloRWd1p3X6ylaxCIiIxEYaAAAAAAAAAAAAAAAAAAAAAAACO/NIjvzBIAAAAAAAAAAAAAAAAAAAAAAAAAAAAACmppU1YxeM9PBHHddOI4zaZ7JmeScByTGtp241m9esRxZ5lJnG7E9J4OxF3n+C2cccR70xdc1+ExeJiccJ9BGrWfrfNldOkXms18YX2RHKDcVSb7oxTj49CtIr1mfFZkzFYzPJN0aKxF7xmJ2x2cDNqzi3LrBgsCt7baz17AZTjunrK6tYxWIWAU1PUmei6mr/AByC4EziMyApq+pM9Fva7K/Pgpa2cVnhOeOTBIreeUdZwsjtO6Y2e1aJziCCaIisYiMQyl9mrX804n7Gb68s4npPNfS0ptqRqXiYivKJjm2V1AIyAAAAAAAAAAAAAAAAAAAAAApqdi0coV1OxaOUA0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGTOIzPCAZa0VrNrTiIcWrrTqz2xXshfX1fMnbHqZ+f6IrYxxBUFoj5iKi0xn0qgyYV5Su2axMY94rr7rqb9LEzxrwTuHuUzGravhxdwAAAAAAAAAAAAAAAAAAAAAAAACHX+qmQ6/1QRAAAAl0PrJkOh9ZMAAAAAAAAAAAAAAAAAADJiLRi0RMdJIiIjERiGgIu8TMaF5iM8HPSbXrFdKkzEcMzwh2gY547tnjqakz4V4QlppU0/UrELgAAAAAAAAAACHvNc6Mz219qPgmR638Op/WfoBAFIzp1nwgmGnMBuAYADE/dp3d3pPhhFEL6FsWtpz2cY9E/qlaicBGgAAAAAAAAAAAAAAAAAAAAAAAAAAAGTylXT7Vp5Srp9oLgAAAAAAAAAAAAAAAAAAAAAAA5O9RjWrM8prhFacRl26lI1KbZ+Hg4JiYvMX9avgYusiMRh2d0rNdHj2zMw48TPCOc8IejSu2la9IwtRYBAAABTVvGnSbdvZ6Qc8zuva3WeAirN4jHstmb9tseiGfmrq857IzM8odOnSKUisdkOPQn/8qvbmJd6yYUAVAAAAAAAAAABy97ti1InxdTJrFoxaImPEHDngrM5dk930pnM6cM/w2j+z3ro5tHhq09LvUrp0p6tYj4LoAAAAAAAAAAAAAAAAAAAAAAI6c0iOnNIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAh1Y/1K8OcTn3fqmVtWLRxgHPMMS207RmY9qOnb+PxlSIiZnnmOsYUTacxOnXbywuhpM08YmeXRMgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI49dIjj1wSAAAAAAAAAAAAAAAAAAAAAAAAAAObV7pW07qTst7nSA4Z1NXQnbq1zHZMJaalNSPZn4OiYzGJ4wg1O6adpzXNJ8OQLDnn/EaPrRvrHTj+q1e9Un1s1lUTDK2i0ZrMT6GqAAAAAAAAAAAjvr6dfrZ9HFHOtq6n8VJx1x+IQdEzFYzMxEOe3eczt06zaVqd0tf2ta056Q6aaVNP1KxBo5a921NXjrWmOPL8cnVp6ddOuKxjx6riKAAAAAAAAAAAAAAAAAAAAAAAAAAAAjn10iOfXSAAAAAAAAAAAAAAAAAAAAAAAAAI76NNT1qx6UgDn8nUp/HqTjpbipa1q2zas6du2YjMS62TWLRxiJ9IOavea5xfH9o5Jq2raM1mJjwUv3XTvyjbPgpXQ1dKc6d4mOkpipxH5l4j29K3w4nn6fbOPTCYJBWupS3K0T8VkAAAAUABS2lSZzjE9Y4EUvX1b5j80Liopm8c6xPolu+f2W+TbXrXnaI+KOe8afZMzPSIBab37NKZ+MLVmZjM1mvhKPzdS3q6NvjwI09a/G99vhUwXtqUp61ohTzb34aVJnxtwhavdqRObZtP5pSxEVjEREehcRBHd5tOdW828OxNWsVjFYiI8FhQAAAAAAAAAAAAAAAAAAAAAAAAAAR35pEd+YJAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFbVi1ZrMZieawDh1aamn60TOOVo+1bTvF69JjnDsR6ujXU4zwtHK0C6hmMotSParExwylmmrTnG+OscJ+SLV1I24tW1Z5xMwhqTKt/Vn0Mi9prE+Xf4QrM21ImKxtjlMy01rd2KRM9GRWZtut8I6NrWI8Z6rMIMmYjnMQy04rM9FtOsRWJ+tPOSQVi0TOMl+OI6yvMRMYmMwirF8zM1taI4ZiMrhUilvWp0y3fGcTnPTDfL1NSMRpzEdbcEgvMq1rF+8UiYiYiJmcpP8ADX/+v/6f1S6WnGnXHOZ5z1aS1k6GlP8A11+SStYrGKxER0hoIAAAAAAAAAAAAAAAAAAAAAAAAAApqdi0coV1OxaOUA0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABB3i3GKZ4c7ej8fQncGrbOrqT1nHyBkzxmVLTmJ9Arb1QKcZTUjOfCENO1JScRb0CVkypM4sspfnAq1ZzKWIzEz0Q05ylrbETHWBKtozt16z14S7nmTM9k8XpROYyK0AAAAAAAAAAAAAAAAAAAAAAABDr/VTIdf6oIgAAAS6H1kyHQ+smAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZasWrNZ5TGGgOauhq4itr1rEcPZjjPzWju1Inja9vTZOAgtozSM0mZ8J+z9VK3i0zHGJjsnhLqR6mlTUxurmY5T2rqY5dS874pSM3ns6Jq92jHtXvM+lJp6OnpZmlcTKRDEE6F6x7F8+F+PvNLS1I1N+pavCMRFU4KAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyeUq6fatPKVdPtBcAAAAAAAAAAAAAAAAAAAAAAABFq6NNWYmcxMdsJQEOn3elLbuNp7MpgAAAAAcner/AOpWnZEbnWwHFmFLW8Xftr+2Pk3ER2Qujh7vMT3iuOOIl3ggAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjpzSI6c0gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMmYiJmeEQh3ZtFrzFcxite3/lNMRMYnjEq00605Rx7ZnnII8Te0RxiInM8Mejn+OCcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEceukRx64JAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFLadL+tWJ9MLgOXU7lSczSZrPTsR+T3mnCs5j0/e7gHDOrr6fr6fxI73X61Zj0O5k1i0YtETHiDljvOn1mPgf4nS/d7k86OlMY8uvyV/wuj+z3yuiP8AxGl+73Sz/EaX7vcl/wALo/s98rRoaURiNOvxjJo5p71TsiZK62rqfx6WfF1xSleVYj0Qsg4vL71acTMVj0x9jY7lMznU1OPg7AEWn3fT0+MVzPWUoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjn10iOfXSAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMxEtAR30aX51j0xCOe6xnNL2q6AHN5GtHLVz6ct294jtpPxl0AOf8A/I/bT5n/AOR+2nzdADn/APyP20+Zs7xPOaR8ZdADn8jUnnqz8P8Aln+FzPtatpdICGvd9OvZn0pYrEcoiPQ0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAR35pEd+YJAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEWroxfNq8L9evpSgOK+dP16zHj2MiYnlOXajt3fStOdkR6OH0Ji65pjMTBp2ia47Y5w6P8Loz9T3z96/laf/AM6/JZ4a5ZtjhHGeyI5uju+nOnp4t60zmVqUrSPZrELhboAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAApqdi0coV1OxaOUA0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwz3fViZiIzHXPN3AOGO76szia48ZmFv8Ha0cbxE9IjLsAebfStozi2OPKYZD0bVi0YtETHij/wANpftmPiDiZ5dtS2KRmXdHdtKPqzPxSVrWvq1iPRAOCO76tImZpPw4qxPa9NHfS07zm1Yz15A4HoaUTGlSJ5xWMsroadZzFYz48UgAAAAAAAAAAAAAAAAAAAAAAAACHX+qmQ6/1QRAAAAl0PrJkOh9ZMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADJ5Srp9q08pV0+0FwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAR05pEdOaQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABHHrpEceuCQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEc+ukRz66QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABHfmkR35gkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABTU7Fo5Qrqdi0coBoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACHX+qmQ6/1QRAAAAl0PrJkOh9ZMAAAAAAAAAAAAAAAAAAAAAAAra0UrNrTiI7VnN36ZjQxHbbEgh1O+3nMacRWOs8ZR/4vX/f7o+5fuMUnVndjdj2Yl3zEWjFoiY6SDl0O+b7RXUjEzOImOTredq901I1LeXXNc8OP6u+uZrG6MWxxgFhTU1K6VJtaeH0ub/Hxu/jnHXIOwc2p3utaUtWu6LZ7cYSd31vOpNtu3E455BKOSnfd9618vGZx636OsBTVma6V5jnFZmHPfvuy9q+XnE49b9HTe2ylrYziJkHF3bvGrfXrW1sxOeyOjvcuj3vzdWKbMZ7c/ol7xreTSLbd2ZxzwCUctO+VmlrWrNYiYjhOc5ZHfc0m3l8piPW658PAFq9807WisVtmZxy/V0vHpbZetsZxMS9Pu+t51Jtt24nHPIIO96+pp6sVpbEbc8k/dr2voVtaczOfpcn+Yfz1/r9sunuf+2p8fpkE4ra0UrNrTiI7XLbv9c+zSZjxnH3g7Bz6Pe6alorMTW09eToAAAAAAAAAAAAAAAAAAAAAAAAAABk8pV0+1aeUq6faC4AAAAAAAAAAAAAAAAAAAAAAAAAAAIu83tTQtas4mMfS4f8AF6/7/dH3PTAeZ/i9f9/uj7j/ABev+/3R9yPW/n1P7T9L1wRd2va+hW1pzM5+lKh1+8V0YjPG08ocs9+1MzitcA9Acmj3zfaK3riZ4ZhN3jW8mkW27szjngEog7v3jz93s7duO3K+tqeVpTfGcdgJBz937z515rs24jOct7x3jyNvs7t2e3AJxyx3yvlb5rMTmYiIlL3fW86k227cTjnkEo5tTvmnSZiubz4clK9/jPtacxHhOQdgpp6ldWkWrPD6G2tFKza04iO0Fhx379WLYrSbR1mcN0+/UtOL1mvjzB1jImJjMTmJaAAAAAAAAAAAAAAAAAAAAAAAAAAAACOnNIjpzSAAAAAAAAAAAAAAAAAAAAAPO1e861dW8RfhFpiOEPRAeZ/i9f8Af7o+4/xev+/3R9yb/Mf+v4/Yv3D+C39vsgFe6a+pqas1vbMbc8k/eb2poWtWcTGPpSoO+f7a/wAPpgEXdNfU1NWa3tmNueTsed3K0U1bWtOIiv2wlt3+M+zpzMeM4B2CPR1qa1c1nlziecI+8d58m8V2bsxnOQdAj0dTzdKL4xnsU7x3jyNvs7t2e3AJxF3fW86k227cTjnlFrd78rVmmzOO3P6A6hy377SsRiu6ZiJmM8IZp9+pacXrNfHmDrBBr95poztxut0gE7ztXvOtXVvEX4RaYjhCWnfqzbFqTWOsTlyasxOteY4xNpB64i7xreTSLbd2Zxzwr3fvHn7vZ27cduQTiPW1PK0pvjOOxH3fvPnXmuzbiM5yDoEHeO8eRt9nduz24UjvlfK3zWYnMxERIOoRd31vOpNtu3E455Q377svavl5xOPW/QHWDl1u9+VqzTZnHbn9AdQrS2+lbYxmIlXV1aaVc3nHSOoJBxT3+M8NPh6f0S6Pe6akxWfZtPZIOgAAAAAAAAAAAAAAAAAAAAABHHrpEceuCQAAAAAAAAAAAAAAAAAAAAAAAAABk8YnjjxaA86O9a1dSIvbhE+1GIei83vtNmvmI4WjPL8fiXb3a/maFZzx5TxBnetSdLRmazi0ziJQ901dXV1J32zWI6Qp3+8TqVr+2M/NP3PT2aETjjbjP2A6BFq69NH1p49I5uee/wAZ4afD0/oDtEGj3mmtO2M1tjlKcHnaXeda2rSJvwm0RPCHovI0f59P+0fS9PW1PK0pvjOOwEVu+adbTWa2zE45fq6Xj3tvva2MZmZej3fvHn7vZ27cduQTiHV7zp6U4tMzPSEH+P8A/wBr/wDV+gO0RaOvTWztzEx2Sve2ylrYziJkFhyaffYveImm2MTMznPKPQtp97jU1opWk4ntmQb3vUtpaUWpOJ3YV7nq31d++2cYxw9J3/8Agr/b7JQd01qaNdSbTzxiI5zzB6I469/jPtacxHhOXTS9dSu6k5gFwAAAAAAAAAAAAAAAAAAAAAAAAAAARz66RHPrpAAAAAAAAAAAAAAAAAAAAAAAAAEevNo0bTScWiM5SMmImMTGYkHD3fvOpfXrW9/Znwh3TMRGZnEQ8r+LX67LfPEvR7zbb3e84zwx8+AOH/F6/wC/3R9z0a2i1YtHKYy8ry58nzM8N23D0e6W3d3rxzMcAc/eu86lNaa0nERHR093m86Nbak5tPF52pM6uvbbOd1uH2PUiIpXHKtY+QLDi1O/cZjTrGM857fgrHftTPtVrMeHAHe5+96ltLSi1JxO7CTR1Y1tPdHDsmOjO8a3k0i23dmcc8Ai7nq31d++2cYxw9Kve9fU09WK0tiNueSXu/ePP3ezt247cub/ADD+ev8AX7ZB192va+hW1pzM5+lKg7n/ALanx+mXPXv2pujdWuM8cR+oO8cFu/X3TtrXb2Z5pKd9pNJm8TFo7I7QdY8+e/amZxWuHT3bvEa0TExi0e8E4yZiIzM4iHLfv1In2KzbxngDrHLp99paYi0TWZnn2OoAc/eO8+TeK7N2YznKtu+VjTrbbO60ZxnxxzB1CPR1PN0ovjGexIAAAAAAAAAAAAAAAAAAAAAAAAAjvzSI78wSAAAAAAAAAAAAAAAAAAAAAAAAAAAA4u9a2tpa0xW+KzGYjEJ+7XnU0K2tObccof8AMKRtrfticN/y+2aXrjlOc+n/AIBvfNa+lNIpbEznLO5699S1q3nM4zHBD3vOp3qKRwnhX8fM7t/pd7254Zms+IO3XvOno2tHOI4OXu2trautFZvmvOeEJO/2xpVrnjM8vx8FP8vp695jwifp+wHaKampXSpNrTw+lzW7/GfZ05mPGcA7BBo95prTtjNbY5SnAHLqd9pWZisTaYnn2Mp36kz7dZr4xxB1jImJjMTmJRa+vTRjjxtPKIBM4O8941aa9q1tiIx2R0Xr3+M+1pzEeE5c/ebRfXtas5iccfgDv32/wu/PtbM58cOXu3eNW+vWtrZic9kdHR//AAX/APL+xx9z/wBzT4/RIPTBBrd5poztnNrY5QCccde/xn2tOYjwnLp09SurSLVnh9ALgAAAAAAAAAAAAAAAAAAAAAAAAAAApqdi0coV1OxaOUA0AAAAAAAAAAAAAAAAAAAAAAAAAFNWZrpXmOcVmYef/i9f9/uj7npgPM/xev8Av90fcf4vX/f7o+53d41o0dPPDdPKOrz9LTt3jVxnjPGZB6Hdr2voVtaczOfpSq1rFKxWsYiOxDrd7pp2msRNrR05A6Bx17/XPtUmI8Jz9zqraL1i1ZzE9oOfvmrfS2bLYznPD0Ld01LaulNrzmd2EX+Y/wDX8fsX7h/Bb+32QDqHFq98tGrt0oraOUduXVp79kTqY3dI7AXEXeNbyaRbbuzOOeEVO+VmlrWrNYiYjhOc5B1CDu/ePP3ezt247cs1e96enM142tHZAOgcUd/jPHT4en9HTo61Nauazy5xPOASCHvWrbR04tWImZnHFz179bbbdWN31ccvjxB3Dgjv2pn2q1mPDgk1O+1iv+nGbT15QDrHBHftTPtVrMeHB20tF6RavKYBYAAAAAAAAAAAAAAAAAAAAAAABDr/AFUyHX+qCIAAAEuh9ZMh0PrJgAAAAAAAAAAAAAAAAAAAAAAFNSkalJpblK6HvOpbS091IiePHIOTU7lqVn2MXj5K57xpcfbiK8OPL7nT3XvM6tprfbE9kR2uoHn6Xfb1n/UjdHyl31mLVi0cpjMPN75s8+dmOXtY6u3ukTHdqZjHP6QcffLzbXmM8K8IT6HdKeXE6lZm0xyzycvea7e8XjOeOfnxelp3i+nW0dsZB53edGNHUiIzNZjMTLq7h/Bb+32Qi7/eLalaR9WOPxS9w/gt/b7IBxaP8+n/AGj6XrvI0f59P+0fS9aZiIzM4iAeTrfz6n9p+l6et/Bqf1n6Hl6lotqWtHKZmXqa38Gp/WfoBwdz/wBzT4/RLp7/APwV/t9kubuf+5p8fol09/8A4K/2+yQcvdtDzrTmcVjm7tPu2npxMY3RP7uKD/Lv+z4fa7QeRpRE61InjE2h6ta1rGK1iI8IeVo/z6f9o+l64PP/AMw/nr/X7ZdPc/8AbU+P0y5v8w/nr/X7ZdPc/wDbU+P0yDm79qTbV2ZnFY5eK2hbutNON8xNpjjmsyi77Ex3m0z24mE+l3PSvp1tutxjjiY+4HN3jyp1M6XqzHvd/drzqaFZmczylDbuvd6zi2pMT42hPoadNPTxp23Vmc5zkEoAAAAAAAAAAAAAAAAAAAAAAAAAMnlKun2rTylXT7QXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB5Gt/Pqf2n6XrvI1v59T+0/S9cHF3nu976ltTfWK8PWnktWe66dK1t5czjjMRlz971Jvr2jM4rOIh2aen3eulFois1/db9QedbE2nbGK54Q7u//AMFf7fZLi1Zi2reY5TaZh29//gr/AG+yQU/y7/s+H2pu+f7a/wAPphD/AJd/2fD7UvfbRXQms87TwBz/AOX/AM9v6/bC/wDmP/X8fsU/y/8Ant/X7YX/AMx/6/j9gIu7d287NrTMViccO1PrVju3dZrSZndOMz+PBvcP4Lf2+yG9+iZ0Mx2WzIOXuuhGteZtPs15x1dOr3PTmk+XExaI4cefzR/5faIteszxnGI6uy9opSbW5RAPO7nqbNeIzwtwn7HR/mGfLrw9nPH8fNy93rNu8UiOuflxejqW08TTUtXE9kyDh7tfRrmNWmZ6zGY+STU0NPXtFu72pHDjHL3LW7lS8btK/D5x+Pm5tbQvo43YmJ7YB6Hd6W09KKXxwnhhK5+53tfR9qczE4y6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAR05pEdOaQAAAAAAAAAAAAAAAAAAAAAAHF/mP/X8fsX7h/Bb+32Qp/mP/X8fsX7h/Bb+32QDqQd8/wBtf4fTCdB3z/bX+H0wDh7tpRrau2ZxERmcOrX7rpxo2mlcTEZ5ov8AL/57f1+2HZrfwan9Z+gHD3G23vERj1omPt+xb/MP56/1+2VO5/7mnx+iV/8AMP56/wBftkHT3P8A21Pj9Mof8x/6/j9ibuf+2p8fplz/AOYWib0rHOscfiCXuH8Fv7fZDm75/ub/AA+iHT3D+C39vshzd8/3N/h9EA6NDumnOlW143TaM83N3rSjS1cV5TGfQ9DR/g0/6x9Dj/zD+ev9ftkHRo6k17lF5mMxWcZ8OTh0aTra0V48ZzMuulYt/l0xPSZ+U5c/c7xTXjP1owDqt3LSmuIzE9cvPmJicTGJh7EzERmZxEPIvbfe1sYzMyDu7/8AwV/t9kqf5d/2fD7V+/8A8Ff7fZKn+Xf9nw+0E3fP9tf4fTDm/wAv/nt/X7YdHfbRXQms87Twc/8Al/8APb+v2wC/+Y/9fx+xF3bu3nZtaZisTjh2pf8AMf8Ar+P2L9w/gt/b7IBNo6VdGs1rMzEzni8zW/n1P7T9L13ka38+p/afpB67zO+f7m/w+iHpvK7zaL697V5ZB6Oj/Bp/1j6HF37P+I4xwxGHbo/waf8AWPoV1vI1I26l65j83GAc+hqd2jTiL0iLduYzllu6b7TOjek0zw45Wv3Gf+u/wt+Psc1630dTE5raO2AerXO2N2M444app2m2nW085iJXAAAAAAAAAAAAAAAAAAAAARx66RHHrgkAAAAAAAAAAAAAAAAAAAAAAAAAAABzd+pu0d3bWfx9iP8Ay+/C1PjH4+TrtWLVms8pjDy6WnR1LZzExExOPx1Ba/8Ar95nH1rYiYjs/wCHpxERGIjEQ4O4U3as3n6sfS9AHk2tOvrZ5TecQ7o7npRTExMzj1suGn+nr138NtuPwl6sTExmJzEg8vX050NbETPWJelpX8zSrfrHFwd9tFtfh9WMS7O61mvd6RPTPz4g87R/n0/7R9L1piLRi0RMdJeTo/z6f9o+l64PI1YiNa8RwiLS9OYrpUtatIjEZxEYzh5mt/Pqf2n6XqasTbSvEc5rMQDzNOs6+tEZ42nMy7p7no7cYmJ654/c4u62ineKTacR1+D1QeTaLaGvw51n5/8AL0tWYt3e9o5TSZj5PO7zaL697V5Zd9qzXuk1nnFMe4HnaVJ1NStI7Zd+l3Smlet4tabR8nJ3P/c0+P0S9MHL3/8Agr/b7Jc3ddGNbUnd6tebp7//AAV/t9ko/wDL7RFr1meM4xHUF+8d0pGnNtONs148+aHuN9utt7LR+PtdneLRXQvunGYmIcPcome81mOzMyD0wAAAAAAAAAAAAAAAAAAAAAAAAAAARz66RHPrpAAAAAAAAAAAAAAAAAAAAAAAAAAAed36u3X3cfahbvOpFu66UZmZnjn0cJS9/pnRi2ONZ934w4Zvaa1rM8K8gdldP/8A10xEYmY3Tn0/dCvc9Sa6GrjHsxuj5fo660iNKNOeMbds+Ly49jzK2jjMY98fcCTudd3eI5YrGeLv16W1NK1aziZQf5fXFL2zznGPR/yk73qTp6EzEzEzOImAc+loU0dSZ1r6cxEcs/Yr3q+hatfKiN2ecRg7nTTvqTGpxn6sT2pO++XXTilIrFt2ZiI/HUD/AC7/ALPh9q/f/wCCv9vslT/Lv+z4fav3/wDgr/b7JBT/AC7/ALPh9qn+Yfz1/r9sr/5d/wBnw+1T/MP56/1+2QdPc/8AbU+P0y87TrFtStZ5TMQ9Huf+2p8fpl5+j/Pp/wBo+kHoaujpRoXxSsYrOJxxcGhSNTWrWeUzxelrfwan9Z+hwdz/ANzT4/RIOvvGhpzo2mK1rMRmJiHP/l/89v6/bDs1v4NT+s/Q4/8AL/57f1+2AX7/AKk+zpxM4xmfHop3ae71pnUmJvPWJnH2N/zCJ82tuya4b3fuunq6UWm1s9uJBF3mdGbROj284iMQ6u5Xm2jiZ41nHwVt3TQp62pNc9bRH2Je76WnpxadO26J58cg5f8AMP56/wBftk7t3WNWm+8zETyiD/MP56/1+2XT3P8A21Pj9Mgk06Rp6cUrnEdVwAAAAAAAAAAAAAAAAAAAAAAAAAR35pEd+YJAAAAAAAAAAAAAAAAAAAAAAAAAAAAR94rv0L148sxhxdwtjWmM+tHJ6Lyr7tDvFtvszWeHbw/4BfQxq983YnG6behve86fe9/DstH4+C3+X1ze9s8oxj0/8Lf5hT1LxHhM/R9oK/5hafMrXsiM/j5OnutNnd6cszGeHi8/hq6tYjhnbX3RD1geZ3vUm+vaMzis4iE+nfulKxHszPbM1ni5e8RNdfUif3TLsjuWlMZi1pifGPuBx6m2NWZ0pnbE5iXV3nWme7UxPG8cce+Ce693rOLasxPSbQp3vTimjpbJzSM8c9eIKd2nQrm2tMZzwiYmW96nQtWJ0sbs8YiMcG917vTWpM2tOYnlEpbdz0axm17RHjMfcDO4ansXraYxXjGZ+bk9rX1utrS7tLu+jG7y7zbNds4mJ5uLQvGnrVtPKJ4g7v8AB6O3GJz1zx+73PP1KTTUtWeycPYeV3i8X172jlnAO7/+C/8A5f2OPuf+5p8fol2f/wAF/wDy/scfc/8Ac0+P0SDv17+Xo2t2xHB52j5c6uda3s8558Xf3qJt3a8R0y4e7addXU23mY4cMAn1r91vp2iuItjhiuOPyRdzvNdeIzwtwl0T3LSiMza0RHjH3M0+793jUrNdXNonMRugHWAAAAAAAAAAAAAAAAAAAAAAAAAAACmp2LRyhXU7Fo5QDQAAAAAAAAAAAAAAAAAAAAAAAAAFb2ilJtblELPN73r+bfbX1az8/wAdgI9S9tfWzjjacRD0e76MaOnjhunnPVF3Pu86cb7x7U8o6OoEHe9SdPQmYmYmZxEw4u7eTFpnWnhHKMS6+/RM6GY7LZlzd10aa02i0zExyxIL94t3a+n/AKeIvHLFcfYdwvMalqTPCYz8Ulu5aNYza9ojrMx9zdHQ0a6kW09TdaOzdEgp/mP/AF/H7HPGtNe7zp1zEzbMz4Oj/Mf+v4/Yi0O7+bo3t2xwr6QS9y0a2jzZ4zE4iOjteZ3XV8rWjM+zbhL0wcvf/wCCv9vsly920POtOZxWObq7/wDwV/t9kqf5d/2fD7QSTpx3XR1LaczMzEc/+PFx930vO1NucREZl396ibd2vEdMuTuNorr8ZxmMQDpv3PStXFYms9YlxaNp0deM8MTi32vUmYiMzOIh5Vv9XXnb9e3DPjIOzv8A/BX+32Sh7jpUva03jO3GInkm7/8AwV/t9kqf5d/2fD7QV79p0pNJrWK5znC3cdKlq2vaItxxETB/mP8A1/H7F+4fwW/t9kAh77pVpetqxERaOUR0dPc/9tT4/TKH/Mf+v4/Ym7n/ALanx+mQTgAAAAAAAAAAAAAAAAAAAAAAAIdf6qZDr/VBEAAACXQ+smQ6H1kwAAAAAAAAAAAAAAAAAAAAAACt6xek1tymFgHmandNWkziN0dY+5kx3mYxMasxPpeoA8/S7le1v9T2Y+eXfEREYiMRDQHP3ru/mxur68R83HXT16WxWupWZnHDg9QB5etoTo1pu9a2eHydXcP4Lf2+yFP8x/6/j9i/cP4Lf2+yAc+v3W9LzNKzaszwx2Gno941PYnfWnbu5fJ6QDzbd01YvO2ma54TmHfqxNtK8RzmsxC4Dg7t3fVpr1tauIjPbHRP3vTtq6UVpGZ3ZdADl7npX0t++uM4xx9LqAHmX7vq6WpE1rNsTmJiMu3u1tS2nM6ud2e2MJgHH3vQ1NTVi1K5jbjmn7tS1NCtbRiYz9KUBz957v50RNZiLR17XLSO86Oa1raPRGYekA86ndtbWvu1M1zzmfud9axSsVrGIjsWAAAAAAAAAAAAAAAAAAAAAAAAAAAZPKVdPtWnlKun2guAAAAAAAAAAAAAAAAAAAAAAAAAAAAADztXu2tbVvMU4TaZjjD0QBx967ra951KcZnnCGnc9W1sWiKx1mXpAOC/cbbp2Wjb2Znj9Dp1dK2tobbYi/PhyymAeV5OtS3Cl4mO2PvhL/htbUpN75m2PZiZ4vQAcfdNDU09WbXriNuOa3fNK+rs2VzjOePodQDn7pp20tKa3jE7sprVi9ZraMxPYsA87V7rqads6cTascYmOak6feNSYi1bz03Z+16gDn7r3fyo3W9eY+Te9aE61YxOLV5Z5JwHm1r3nQzFa2jPHhGfvJ0+8d4tG+J4fujGHpAItDS8nSivOecpQAAAAAAAAAAAAAAAAAAAAAAAAAAAABHTmkR05pAAAAAAAAAAAAAAAAAAAAAAAcvfNK+rs2VzjOePoW7pp20tKa3jE7sugARd5pa+hatYzM4+lKA4+6aGpp6s2vXEbcc3TqxNtK8RzmsxC4Dg7t3fVpr1tauIjPbHRL3vu86uLU9aOGOrqAeXTT16zildSuemYXv3TV21mI3XnM248nogOfumnbS0preMTuyg7z3fVvr2tWuYnHbHR3gKaUTXSpE84rES5u96GpqasWpXMbcc3YAi7tS1NCtbRiYz9Lk7x3S1LZ04m1enbD0AHmV0u8amKTF8R+7lBbumtFpiK5jPCcxx970wEWvpedpTXlPOHn+TrUtwpeJjtj74eqA8/wDw2tqUm98zbHsxM8UndNDU09WbXriNuObsAcvfNK+rs2VzjOePoW7pp20tKa3jE7sugAcHeu7X8yb0ruieMxHOHeA8ymn3i3sRF618cxC2p3PUi8xSu6vXMPRAU0omulSJ5xWIlzd67ra951KcZnnDsAedFu9UjbEXxHD1c/YV7tra1t1+Gec2+56IDKxFaxWOURiGgAAAAAAAAAAAAAAAAAAAAAjj10iOPXBIAAAAAAAAAAAAAAAAAAAAAAAAAAAA4e8921La02065iePZDuAQ91050tGItGLTOZhMAOTvXdd879OPa7Y6ubZ3isTTGpjliM4eoA8/Q7pa1onVjFeeO2XoADztLu2tXVpM04RaJnjD0QB53eO7akalrVrNotOeDp7rbWtu86J7MZjDoAcXeO6TNt2jHPnXogmveJrtmurNemJw9QBxd27pat9+rGMcoy6tWJtpXiOc1mIXAcHdu76tNetrVxEZ7Y6O8Ac/e9O2rpRWkZndly17prRE2xi0TGIy9IB5c6feNSYi1bz03Z+12d27v5MTNpibT07HQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjn10iOfXSAAAAAAAAAAAAAAAAAAAAAAAAAAApq08zStTrHBw6XddXzKzakbYnjmYeiAPP1+66k61ppXNZnOcw9ABHoU8vRrXtiOLdXTjV07UmcZ7VwHmW7nrROIrE+MSkr3G3lzNpiL9kdnxd4Dl7roamjac7ZrbnieK3e9O2rpRWkZndl0AOXuelfS3764zjHH0q970NTU1YtSuY245uwBF3alqaFa2jExn6XNp9z1K6lbTauImJ5/o7gFNSs207VjnMTDm0O6X09at7TXEdJdgCmpWbadqxzmJhB3Xu19HUm1prMTGODqAQ940Y1tPHK0cYlxxTvGhedkW49sRmJekA86NHX177rxMdkzPDHwd2lpxpacVr2c56rgOPvehqamrFqVzG3HNP3alqaFa2jExn6UoAAAAAAAAAAAAAAAAAAAAAAAAAAAjvzSI78wSAAAAAAAAAAAAAAAAAAAAAAAAAAAAOLvfd731d+nXOY48XaA5+6aVtLTnfERaZW71pzq6MxWM2icxCYBxd17vqU1t164iI4cYdoA5e9d2nVnfTG7HGOrnpPetKNta3iIn9uXpAPP0e6Xvbdq8I58ecuzV0q6mls5R2cOSQB5vk6+hfNInPWvH8fEnT7x3i0b4nh+6MYekAi0NGNGm2OM9s45ufvXdZm06mnGc8Zh2gPLjT7xaNkVvjpOYj7lrdz1otiK7o65h6QCLZb/C7Me1sxjxw5e7d31aa9bWriIz2x0d4DJiJjExmJefq901NO27TzaI5Y5x+PB6IDzrf4rWjZaLYn8uHR3Xu3le3fE2mPk6QAAAAAAAAAAAAAAAAAAAAAAAAAAAAFNTsWjlCup2LRygGgAAAAAAAAAAAAAAAAAAAAAAAAApqxNtK8RzmsxDz/wDCa/7PfH3vTAeZ/hNf9nvj7z/Ca/7PfH3vTAQaOlP+FjT1IxwmJ+bkt3fW0bxambYnhNfu/EPSAebavedfEWracceMY+51927vGjWc4m085+xOA5e+aV9XZsrnGc8fQt3TTtpaU1vGJ3ZdADh7x3W86s204zFuOM8nR3bzI0orqVxNeHOOKYBz9707aulFaRmd2Ve56V9LfvrjOMcfS6gGTETGJjMS4Nfulq2mdKM1547YegA8uad4viLRqTx7cunuvdp0536nrdkdHWAh71pW1tOK1mImJzxV7roW0d+6YnOOToAc/etC2ts2zEYzzW7rpW0dOa2mJmZzwTAOfvWhbW2bZiMZ5pNCk6ejWlsZjokAAAAAAAAAAAAAAAAAAAAAAAAAEOv9VMh1/qgiAAABLofWTIdD6yYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFbUrf1qxbHWMla1rGK1iI8IWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZPKVdPtWnlKun2guAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACOnNIjpzSAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI49dIjj1wSAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjn10iOfXSAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI780iO/MEgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKanYtHKFdTsWjlANAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQ6/wBVMh1/qgiAAABfTvFM5zxSedXpKABP51eknnV6SgAT+dXpJ51ekoAE/nV6SedXpKABP51eknnV6SgAT+dXpJ51ekoAE/nV6SedXpKABP51eknnV6SgAT+dXpJ51ekoAE/nV6SedXpKABP51eknnV6SgAT+dXpJ51ekoAE/nV6SedXpKABP51eknnV6SgAT+dXpJ51ekoAE/nV6SedXpKABP51eknnV6SgAT+dXpJ51ekoAE/nV6SedXpKABP51eknnV6SgAT+dXpJ51ekoAE/nV6SedXpKABP51eknnV6SgAT+dXpJ51ekoAE/nV6SedXpKABP51eknnV6SgAT+dXpJ51ekoAE/nV6SedXpKABP51eknnV6SgAT+dXpJ51ekoAE/nV6SedXpKABP51eknnV6SgAT+dXpJ51ekoAE/nV6SedXpKABP51eknnV6SgAT+dXpJ51ekoAE/nV6SedXpKABP51eknnV6SgATTq1mOUsrqRGeEogE/nV6SedXpKABP51eknnV6SgAT+dXpJ51ekoAE/nV6SedXpKABP51eknnV6SgAT+dXpJ51ekoAE/nV6SedXpKABP51eknnV6SgAT+dXpJ51ekoAE/nV6SedXpKABP51eknnV6SgAT+dXpJ51ekoAE/nV6SedXpKABP51eknnV6SgAT+dXpJ51ekoAE/nV6SedXpKABP51eknnV6SgAT+dXpJ51ekoAE/nV6SedXpKABP51eknnV6SgAT+dXpJ51ekoAE/nV6SedXpKABP51eknnV6SgAT+dXpJ51ekoAE/nV6SedXpKABP51eknnV6SgAT+dXpJ51ekoAE/nV6SedXpKABP51eknnV6SgAT+dXpJ51ekoAE/nV6SedXpKABP51eknnV6SgAT+dXpJ51ekoAE/nV6SedXpKABP51eknnV6SgAT+dXpJ51ekoAE/nV6SedXpKABP51eknnV6SgAT+dXpJ51ekoAEtdSInlK3nV6SgAT+dXpJ51ekoAE/nV6SedXpKABP51eknnV6SgAT+dXpJ51ekoAE/nV6SedXpKABP51eknnV6SgAT+dXpJ51ekoAE/nV6SedXpKABP51eknnV6SgAT+dXpJ51ekoAE/nV6SedXpKABP51eknnV6SgAT+dXpJ51ekoAE/nV6SedXpKABP51eknnV6SgAT+dXpJ51ekoAE/nV6SedXpKABP51eknnV6SgAT+dXpJ51ekoAE/nV6SedXpKABP51eknnV6SgAT+dXpJ51ekoAE/nV6SedXpKABP51eknnV6SgAT+dXpJ51ekoAE/nV6SedXpKABP51eknnV6SgAT+dXpJ51ekoAE/nV6SedXpKABP51eknnV6SgAT+dXpJ51ekoAE/nV6SedXpKABP51eknnV6SgAT+dXpJ51ekoAE/nV6SedXpKABP51eknnV6SgAT+dXpJ51ekoAE/nV6SedXpKABP51ekqxqRuziUQCfzq9JPOr0lAAn86vSTzq9JQAJ/Or0k86vSUACfzq9JPOr0lAAn86vSTzq9JQAJ/Or0k86vSUACfzq9JPOr0lAAn86vSTzq9JQAJ/Or0k86vSUACfzq9JPOr0lAAn86vSTzq9JQAJ/Or0k86vSUACfzq9JPOr0lAAn86vSTzq9JQAJ/Or0k86vSUACfzq9JPOr0lAAn86vSTzq9JQAJ/Or0k86vSUACfzq9JPOr0lAAn86vSTzq9JQAJ/Or0k86vSUACfzq9JPOr0lAAn86vSTzq9JQAJ/Or0k86vSUACfzq9JPOr0lAAn86vSTzq9JQAJ/Or0k86vSUACfzq9JPOr0lAAn86vSTzq9JQAJ/Or0k86vSUACfzq9JPOr0lAAn86vSTzq9JQAJ/Or0k86vSUACfzq9JPOr0lAAn86vSTzq9JQAJ/Or0k86vSUACfzq9JPOr0lAAn86vSTzq9JQAJ/Or0k86vSUACWdSN2cSt51ekoAE/nV6SedXpKABP51eknnV6SgAT+dXpJ51ekoAE/nV6SedXpKABP51eknnV6SgAT+dXpJ51ekoAE/nV6SedXpKABP51eknnV6SgAT+dXpJ51ekoAE/nV6SedXpKABP51eknnV6SgAT+dXpJ51ekoAE/nV6SedXpKABP51eknnV6SgAT+dXpJ51ekoAE/nV6SedXpKABP51eknnV6SgAT+dXpJ51ekoAE/nV6SedXpKABP51eknnV6SgAT+dXpJ51ekoAE/nV6SedXpKABP51eknnV6SgAT+dXpJ51ekoAE/nV6SedXpKABP51eknnV6SgAT+dXpJ51ekoAE/nV6SedXpKABP51eknnV6SgAT+dXpJ51ekoAE/nV6SedXpKABP51eknnV6SgAT+dXpJ51ekoAE/nV6SedXpKABP51eknnV6SgAT+dXpJ51ekoAE/nV6SedXpKABP51eknnV6SgAT+dXpKttSJnlKIBP51eknnV6SgAT+dXpJ51ekoAE/nV6SedXpKABP51eknnV6SgAT+dXpJ51ekoAE/nV6SedXpKABP51eknnV6SgAT+dXpJ51ekoAE/nV6SedXpKABP51eknnV6SgAT+dXpJ51ekoAE/nV6SedXpKABP51eknnV6SgAT+dXpJ51ekoAE/nV6SedXpKABP51eknnV6SgAT+dXpJ51ekoAE/nV6SedXpKABP51eknnV6SgAT+dXpJ51ekoAE/nV6SedXpKABP51eknnV6SgAT+dXpJ51ekoAE/nV6SedXpKABP51eknnV6SgAT+dXpJ51ekoAE/nV6SedXpKABP51eknnV6SgAT+dXpJ51ekoAE/nV6SedXpKABP51eknnV6SgAT+dXpJ51ekoAE/nV6SedXpKABP51eknnV6SgAT+dXpJ51ekoAE/nV6SedXpKABP51eknnV6SgAT+dXpJ51ekoAE/nV6SedXpKABLbUiccJbGrWI5ShAT+dXpJ51ekoAE/nV6SedXpKABP51eknnV6SgAT+dXpJ51ekoAE/nV6SedXpKABP51eknnV6SgAT+dXpJ51ekoAE/nV6SedXpKABP51eknnV6SgAT+dXpJ51ekoAE/nV6SedXpKABP51eknnV6SgAT+dXpJ51ekoAE/nV6SedXpKABP51eknnV6SgAT+dXpJ51ekoAE/nV6SedXpKABP51eknnV6SgAT+dXpJ51ekoAE/nV6SedXpKABP51eknnV6SgAT+dXpJ51ekoAE/nV6SedXpKABP51eknnV6SgAT+dXpJ51ekoAE/nV6SedXpKABP51eknnV6SgAT+dXpJ51ekoAE/nV6SedXpKABP51eknnV6SgAT+dXpJ51ekoAE/nV6SedXpKABP51eknnV6SgAT+dXpJ51ekoAE/nV6SedXpKABP51eknnV6SgAT+dXpJ51ekoAE/nV6Sj1LxfGM8FAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAH/9k="
+    }
+   },
+   "cell_type": "markdown",
+   "id": "b4db4953",
+   "metadata": {},
+   "source": [
+    "In the first stage of this project, we will be simulating Pokémon battles. Before we proceed any further, let us take a look at the Pokémon we will be dealing with in this project (let us know what your favorite Pokémon is in a comment):\n",
+    "\n",
+    "![pokemon.jpg](attachment:pokemon.jpg)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "e976c9d7",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# Who's your favorite Pokémon? (OPTIONAL)\n"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "17cc1529",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "## Rules for Pokémon battles:\n",
+    "\n",
+    "Now, here are the *rules* governing Pokémon battles:\n",
+    "\n",
+    "1. A Pokémon battle takes place between two Pokémon\n",
+    "2. The two Pokémon take turns attacking each other.\n",
+    "3. The Pokémon with the higher **Speed** stat attacks first.\n",
+    "4. On each turn, the attacking Pokémon can choose between two modes of attack - **Physical** or **Special**.\n",
+    "5. In addition to the attack mode, each Pokémon can choose the **type** of its attack.\n",
+    "6. Based on the move chosen by the attacking Pokémon, the defending Pokémon receives damage to its **HP**.\n",
+    "7. If a Pokémon's **HP** drops to (or below) 0, it faints and therefore loses the battle.\n",
+    "8. However, if one Pokémon is much stronger than the other, then the weaker Pokémon will **run away** instead of fighting."
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "a56a978f",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "Throughout this project, we will break this down into smaller parts and slowly build up to the `battle` function. Eventually the `battle` function will determine the outcome of a battle between any two Pokémon.\n",
+    "\n",
+    "The first thing we need to do is calculate the damage caused by one Pokémon's attack on another Pokémon. To accomplish this, we need to create the function `damage`."
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "e6002436",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "### Function 1: `damage(attack, defender)`\n",
+    "\n",
+    "The `attacker` can choose between two attack modes - **Physical** or **Special**. The damage caused by the attacker's **Physical** move is `10 * Attack stat of Attacker / Defense stat of Defender`, and the damage caused by the attacker's **Special** move is `10 * Sp. Atk. stat of Attacker / Sp. Def. stat of Defender`.\n",
+    "\n",
+    "**If the attacker wants to win, it should always choose the move which will do more damage.** So, that is what we want our function `damage` to do. We want this function to find out which mode of attack the attacker would choose, and return the damage that the attacker would do to the defender.\n",
+    "\n",
+    "Use the following code snippet and fill in the details to complete the `damage` function."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "467574bc",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "def damage(attacker, defender):\n",
+    "    # TODO: replace the ... with your code\n",
+    "    physical_damage = 10 * project.get_attack(attacker) / project.get_defense(defender)\n",
+    "    special_damage = ...\n",
+    "    if ...:\n",
+    "        return physical_damage\n",
+    "    else:\n",
+    "        return ..."
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "51ca5b59",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "Now, let's find out if this function works. Use `damage` to answer the next two questions."
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "25e3c9de",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "**Question 1:** How much damage does `Feraligatr` do to `Aipom`?"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "35157c2e",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# replace the ... with your code\n",
+    "damage_feraligatr_aipom = ...\n",
+    "\n",
+    "damage_feraligatr_aipom"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "2c77f214",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q1\")"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "c3719cd4",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "**Question 2:** How much damage does `Lucario` do to `Klawf`?"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "d1f0aefd",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# replace the ... with your code\n",
+    "damage_lucario_klawf = ...\n",
+    "\n",
+    "damage_lucario_klawf"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "091d0b55",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q2\")"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "cf7d5ff7",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "In addition to choosing the attack **mode** (i.e. **Physical** or **Special**), the attacker can also (sometimes) choose the **type** of attack. Before we figure out what type the attacker should choose, we first need to find out the *effect* of the attack on the defender. Each attack type offers a **type bonus** to the attack damage that we calculated with the `damage` function.\n",
+    "\n",
+    "If the attacker chooses an attack of type `attack_type` against a defender with only one type, `type1` (i.e. its `type2` is `DNE`), then the **type bonus** of this attack is `get_type_effectiveness(attack_type, type1)`. If the defender has two types `type1` and `type2`, then the **type bonus** of this attack is `get_type_effectiveness(attack_type, type1) * get_type_effectiveness(attack_type, type2)`.\n",
+    "\n",
+    "For example, let the `attack_type` be `Bug` and the defender be the Pokémon `Charmander`. `Charmander` has only one type, `Fire` (with its `type2` being `DNE`). In this case, we see that"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "1eef5547",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# the effectiveness of Bug against Fire is...\n",
+    "project.get_type_effectiveness(\"Bug\", \"Fire\")"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "275c2cd1",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "Therefore, the type bonus of a `Fire` type attack on `Charmander` is `0.5`. On the other hand, consider a `Fire` type attack on the Pokémon `Bulbasaur`. `Bulbasaur` has 2 types, `Grass` and `Poison`. In this case, we see that"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "cc938f00",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# the effectiveness of Fire against Grass is...\n",
+    "project.get_type_effectiveness(\"Fire\", \"Grass\")"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "2029c9c2",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# the effectiveness of Fire against Poison is...\n",
+    "project.get_type_effectiveness(\"Fire\", \"Poison\")"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "3bb03fd9",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "Therefore, the type bonus of a `Fire` type attack on `Bulbasaur` is the product of these two numbers `2.0 * 1.0 = 2.0`."
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "800edc48",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "### Function 2: `type_bonus(attack_type, defender)`\n",
+    "We are now ready to write the definition of the `type_bonus` function, which will calculate the type bonus of an `attack_type` against a `defender`. We have provided a code snippet for you to work with. You may rewrite the entire function from scratch if you want to."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "0a9c69a4",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "def type_bonus(attack_type, defender):\n",
+    "    # TODO: store the `type1` and `type2` of the `defender` in variables \n",
+    "    #       `defender_type1` and `defender_type2`\n",
+    "    # TODO: replace the ... with your code\n",
+    "\n",
+    "    if ...:\n",
+    "        bonus = project.get_type_effectiveness(attack_type, defender_type1)\n",
+    "        return bonus\n",
+    "    else:\n",
+    "        bonus = ...\n",
+    "        return bonus"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "bb6f7e8d",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "**Question 3:** How effective is `Poison` type against `Rayquaza`?"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "1dbb287c",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# replace the ... with your code\n",
+    "bonus_poison_rayquaza = ...\n",
+    "\n",
+    "bonus_poison_rayquaza"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "cb7c6cb0",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q3\")"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "3639caf9",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "**Question 4:** How effective is `Bug` type against `Mew`?"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "5fc80c91",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# replace the ... with your code\n",
+    "bonus_bug_mew = ...\n",
+    "\n",
+    "bonus_bug_mew"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "3f081412",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q4\")"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "1e8a439c",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "When an `attacker` chooses an attack of type `attack_type` against a `defender`, the damage done is `type_bonus(attack_type, defender) * damage(attacker, defender)`.\n",
+    "\n",
+    "An attacker can choose between any of its types for its attack type. So, if an attacker has two types, it can choose either type 1 or type 2 as its attack type. However, if it has only one type (i.e. its `type2` is `DNE`), it has no choice but to choose type 1 as its attack type. For example, a Pokémon like `Weedle` which has two types (`Bug` and `Poison`) can choose to make its attack either `Bug` type or `Poison` type. On the other hand, a Pokémon like `Magikarp` which has only one type (`Water`) can only make its attack a `Water` type attack.\n",
+    "\n",
+    "While a Pokémon with only one type doesn't have a choice, **a Pokémon with two types can choose its attack between its two types**. If the attacker wants to win, it should always choose the type which will do more damage.\n",
+    "\n",
+    "Let us consider the case when an **attacker has only one type**. (i.e. `type2` is `DNE`). To illustrate this, we take `Magikarp` as the attacker and `Charizard` as the defender. Let us first ensure that `Magikarp` has only 1 type."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "c0c84df7",
+   "metadata": {
+    "scrolled": true
+   },
+   "outputs": [],
+   "source": [
+    "# type1 of Magikarp is...\n",
+    "project.get_type1(\"Magikarp\")"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "7d125be6",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# and type2 of Magikarp is...\n",
+    "project.get_type2(\"Magikarp\")"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "197120a7",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "In this case, we simply take the `type_bonus` of the first type against `Charizard` (the defender)."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "dcce3b23",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# so the bonus that Magikarp gets against Charizard is...\n",
+    "bonus = type_bonus(project.get_type1(\"Magikarp\"), \"Charizard\")\n",
+    "\n",
+    "bonus"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "21425782",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "`bonus` should contain the value `2.0`. To calculate the effective damage that Magikarp does to Charizard, we take `damage(\"Magikarp\", \"Charizard\") * bonus`"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "b4994deb",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "We will now consider the case where an **attacker has two types**.\n",
+    "\n",
+    "To illustrate this, we take `Weedle` as the `attacker` and `Charizard` as the `defender`. If your `type_bonus` function works correctly the values obtained by measuring the type bonus of `Weedle` against `Charizard` are as follows:"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "6fca50c6",
+   "metadata": {
+    "scrolled": false
+   },
+   "outputs": [],
+   "source": [
+    "# the type bonus of type1 (Bug) of Weedle against Charizard is...\n",
+    "type_bonus(project.get_type1(\"Weedle\"), \"Charizard\")"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "0833e89f",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# and the type bonus of type2 (Poison) of Weedle against Charizard is...\n",
+    "type_bonus(project.get_type2(\"Weedle\"), \"Charizard\")"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "ab22e4e6",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "Clearly, `Weedle`'s second type (`Poison`) causes more damage to `Charizard` than its first type (`Bug`). So, **`Weedle` would choose its `Poison` type attack instead of its `Bug` type attack against `Charizard`.**\n",
+    "\n",
+    "Therefore, the effective `bonus` is `max(0.25, 1.0) = 1.0`. So, the effective damage that `Weedle` does to `Charizard` is `damage(\"Weedle\", \"Charizard\") * 1.0`."
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "c81702a9",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "### Function 3: `effective_damage(attacker, defender)`\n",
+    "\n",
+    "We now write a function `effective_damage` to compute the actual damage that an `attacker` would do to the `defender`, taking into account, both the **attack mode** and **attack type**.\n",
+    "\n",
+    "The `effective_damage` function definition **must** invoke the `get_num_types` function you wrote during lab. Create a new cell in your Jupyter notebook above the definition of `effective_damage` and copy/paste the definition of `get_num_types` there. **We'll manually deduct points** if you don't invoke `get_num_types`.\n",
+    "\n",
+    "Start with the code snippet provided below. Use the `effective_damage` function to answer the next three questions."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "1285d758",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "def effective_damage(attacker, defender):\n",
+    "    pass # TODO: replace with your code\n",
+    "    #TODO: check if the attacker has two types; you must invoke the relevant \n",
+    "    #      function you defined in Lab-P4\n",
+    "    #TODO: compute the bonus of the attacker's type(s) against the defender\n",
+    "    #TODO: find the attack_type with the higher bonus\n",
+    "    #TODO: compute the damage caused by attack, considering the higher bonus, and return it\n",
+    "    "
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "d08a5356",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "**Question 5:** How much damage does `Pikachu` do to `Weedle`?"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "756d5f7c",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# replace the ... with your code\n",
+    "eff_damage_pikachu_weedle = ...\n",
+    "\n",
+    "eff_damage_pikachu_weedle"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "6d6e5bc2",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q5\")"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "5c3d6661",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "**Question 6:** How much damage does `Cloyster` do to `Lapras`?"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "ed49723e",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# replace the ... with your code\n",
+    "eff_damage_cloyster_lapras = ...\n",
+    "\n",
+    "eff_damage_cloyster_lapras"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "95a6ac11",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q6\")"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "25005b6d",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "**Question 7:** How much damage does `Charizard` do to `Wailmer`?"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "e2244f11",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# replace the ... with your code\n",
+    "eff_damage_charizard_wailmer = ...\n",
+    "\n",
+    "eff_damage_charizard_wailmer"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "64a032cf",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q7\")"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "eeb32631",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "### Function 4: `num_hits(attacker, defender)`\n",
+    "\n",
+    "Now that we have a way of calculating the damage done by the Pokémon during battle, we have to calculate **how many hits** each Pokémon can take before fainting.\n",
+    "\n",
+    "The number of hits a Pokémon can take is calculated by taking its **HP** and dividing it by the attacking Pokémon's **effective damage**.\n",
+    "\n",
+    "If the defending pokemon has `30 HP` and the attacking pokemon does `20` effective damage each turn, it will take `2` turns before the defender faints instead of `30 / 20 = 1.5`. You might want to use the method `math.ceil` here. First import the module `math` (remember to add the `import math` call at the **top of your notebook** in the cell where you have been asked to place all `import` statements) and then look up the documentation of `math.ceil` to see how you could use it."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "0b9a186f",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "def num_hits(attacker, defender):\n",
+    "    pass # TODO: replace with your code"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "46231a30",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "Use `num_hits` to answer the next two questions."
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "f32f65ad",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "**Question 8:** How many hits can the *defending* Pokémon `Garchomp` take from `Golem`(*attacker*)?"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "dbaa9fcb",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# replace the ... with your code\n",
+    "hits_garchomp_golem = ...\n",
+    "\n",
+    "hits_garchomp_golem"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "89c89f41",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q8\")"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "9e338547",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "**Question 9:** How many hits can the *defending* Pokémon `Mew` take from `Shinx`(*attacker*)?"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "dd0f2a5e",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# replace the ... with your code\n",
+    "hits_mew_shinx = ...\n",
+    "\n",
+    "hits_mew_shinx"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "4eaacf1f",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q9\")"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "33dd2e73",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "## Function 5: `battle(pkmn1, pkmn2)`\n",
+    "\n",
+    "With the functions we have created so far, we can now finally start creating our battle simulator.\n",
+    "\n",
+    "This function should take in two Pokémon `pkmn1`, and `pkmn2` as its parameters, and it should output the name of the Pokémon which wins the battle.\n",
+    "\n",
+    "However, it might still be a little overwhelming to code all the rules in one go. So, let us break it up into several steps, and implement the function over the next several questions."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "8945a9da",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "def battle(pkmn1, pkmn2):\n",
+    "    pass # TODO: replace with your code\n",
+    "    # TODO: let us ignore the rules that have to do with Speed \n",
+    "    #       and Pokémon running away for now\n",
+    "    # TODO: implement code to check whether pkmn1 or pkmn2 can take more \n",
+    "    #       hits from the other before fainting\n",
+    "    # TODO: the Pokémon which can take more hits before fainting should be the winner\n",
+    "    # TODO: if the two Pokémon can take the same number of hits from \n",
+    "    #       the other, your output should be 'Draw'"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "6cccc6e1",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "**Question 10**: What is the output of `battle('Haunter', 'Rhydon')`?"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "640f9ac5",
+   "metadata": {
+    "scrolled": true,
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# replace the ... with your code\n",
+    "battle_haunter_rhydon = ...\n",
+    "\n",
+    "battle_haunter_rhydon"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "7cc8baa7",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q10\")"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "12036300",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "**Question 11**: What is the output of `battle('Espeon', 'Raichu')`??"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "269689cc",
+   "metadata": {
+    "scrolled": true,
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# replace the ... with your code\n",
+    "battle_espeon_raichu = ...\n",
+    "\n",
+    "battle_espeon_raichu"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "c02aedbf",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q11\")"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "8d8407fe",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "The function `battle` seems to be working well so far, but it does not quite follow all the rules that we laid out at the beginning. The function currently returns `\"Draw\"` if both Pokémon can take the same number of hits from each other. However, when we look at the rules from above, we notice that the Pokémon with **higher speed attacks first**. This means that even if both Pokémon go down in the same number of hits, the Pokémon with the higher **speed** stat will attack first, and will therefore land its last hit before the other Pokémon can hit back.\n",
+    "\n",
+    "In other words, if both Pokémon faint within the same number of moves, the Pokémon with the higher **speed** stat should win the battle. Go back and modify `battle` so that if both Pokémon faint in the same number of moves, the Pokémon with the higher **speed** wins. If they both have the same **speed**, then the battle should be a `'Draw'`.\n",
+    "\n",
+    "**Warning:** Do **not** redefine `battle`. You may make a *copy* of the function as it is when you start working on updating its definition, but the notebook you turn in should only have *one* definition of `battle`. So, you should **delete** any older versions of the function after your new code demonstrably works."
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "cd303ab4",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "**Question 12**: What is the output of `battle('Garchomp', 'Hydreigon')`?"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "ac7a11b8",
+   "metadata": {
+    "scrolled": true,
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# replace the ... with your code\n",
+    "battle_garchomp_hydreigon = ...\n",
+    "\n",
+    "battle_garchomp_hydreigon"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "1ffb5e6f",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q12\")"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "509f8ed8",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "**Question 13**: What is the output of `battle('Gulpin', 'Mudkip')`?"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "494be289",
+   "metadata": {
+    "scrolled": true,
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# replace the ... with your code\n",
+    "battle_gulpin_mudkip = ...\n",
+    "\n",
+    "battle_gulpin_mudkip"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "0d52c1ba",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q13\")"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "78c3e619",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "One last rule we need to implement is the **runaway** feature. For example, consider a battle between `Pikachu` and `Glaceon`. `Glaceon` can take `13` hits from `Pikachu`, but `Pikachu` can only take `2` hits from `Glaceon`. Because of this massive difference, `Pikachu` should choose to **run away** from this battle rather than attempt to fight.\n",
+    "\n",
+    "Modify `battle` so that if one Pokémon can take **at least** 10 more hits than the other, the weaker one runs away. The function should return `\"<pkmn_name> ran away\"`. Make sure the function says the Pokémon that can take fewer hits ran away.\n",
+    "\n",
+    "**Hint:** Even though this is the *last* rule to implement, it is the *first* thing that the battle function should check. Also, here's another reminder to *not* redefine `battle`."
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "cd7fc4a4",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "**Question 14**: What is the output of `battle('Miraidon', 'Eevee')`?"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "a8bf381b",
+   "metadata": {
+    "scrolled": true,
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# replace the ... with your code\n",
+    "battle_miraidon_eevee = ...\n",
+    "\n",
+    "battle_miraidon_eevee"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "b7abf2b8",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q14\")"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "03f27a74",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "**Question 15**: What is the output of `battle('Onix', 'Hydreigon')`?"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "aace7ec2",
+   "metadata": {
+    "scrolled": true,
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# replace the ... with your code\n",
+    "battle_onix_hydreigon = ...\n",
+    "\n",
+    "battle_onix_hydreigon"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "e0c3e04d",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q15\")"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "efd725ec",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "**Question 16**: What is the output of `battle('Chien-Pao', 'Tauros')`?"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "e2300992",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# replace the ... with your code\n",
+    "battle_chien_pao_tauros = ...\n",
+    "\n",
+    "battle_chien_pao_tauros"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "bf32424b",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q16\")"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "9ebe0d29",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "## Function 6: `friendship_score(pkmn1, pkmn2)`\n",
+    "\n",
+    "Pokémon aren't always violent. They are at most times quite friendly. However, some Pokémon are more friendly with some than they are with others. Trainers need to know which Pokémon get along well and which do not, to avoid unnecessary conflict. Thankfully for trainers, there is an almost scientific way to determine how well two different Pokémon can get along with each other.\n",
+    "\n",
+    "Given two Pokémon `pkmn1` and `pkmn2`, we can compute the **friendship score** between them. A high friendship score (5) means the two Pokémon will get along really well, while a low friendship score (0) means they won't.\n",
+    "\n",
+    "We can check whether a pair of Pokémon has a high friendship score based on the below rules:\n",
+    "\n",
+    "1. Pokémon from the **same region** gain a friendship point.\n",
+    "\n",
+    "2. Pokémon gain a  friendship point if their **difference** in **stat total** is **at most** 20 points. The **stat total** of a Pokémon is the sum of its Attack, Defense, HP, Sp. Atk., Sp. Def., and Speed stats. \n",
+    "   \n",
+    "3. Pokémon gain a friendship point if they have the **same `type1`**.\n",
+    "    \n",
+    "4. Pokémon gain a friendship point if they have the **same `type2`**, provided that this common `type2` is **not** `DNE`. This means that if the two Pokémon both have `DNE` as their common `type2`, then they will **not** receive any extra friendship points for it. \n",
+    "    \n",
+    "5. If a Pokémon's `type1` is the same as another Pokémon's `type2` (or vice versa), they do **not** gain any friendship points for it. They only gain points if the **corresponding** types are the same (and not `DNE`).\n",
+    "    \n",
+    "6. Additionally, if the two Pokémon share **both** types in common (and their `type2` is **not** `DNE`), they get **another** point for synergy. For example, if two Pokémon have both their corresponding types in common they will get a total of `3` points (2 for the common types and 1 for synergy).\n",
+    "\n",
+    "\n",
+    "Define the function `friendship_score` that takes in two Pokémon as its arguments and returns their friendship score.\n",
+    "\n",
+    "**Hint:** You might want to use helper functions you wrote in Lab-P4 (remember to copy/paste them into this notebook before you try to use them)."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "aec30f05",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# define the 'friendship_score' function here\n"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "35eb8977",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "**Question 17**: What is the output of `friendship_score('Aipom', 'Zekrom')`?"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "7e31ff07",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# replace the ... with your code\n",
+    "friendship_aipom_zekrom = ...\n",
+    "\n",
+    "friendship_aipom_zekrom"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "b976c5c5",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q17\")"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "fad045de",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "**Question 18**: What is the output of `friendship_score('Voltorb', 'Thundurus')`?"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "81219b1b",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# replace the ... with your code\n",
+    "friendship_voltorb_thundurus = ...\n",
+    "\n",
+    "friendship_voltorb_thundurus"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "6c6f8bc3",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q18\")"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "c2c848d1",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "**Question 19**: What is the output of `friendship_score('Weedle', 'Kakuna')`?"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "1701037a",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# replace the ... with your code\n",
+    "friendship_weedle_kakuna = ...\n",
+    "\n",
+    "friendship_weedle_kakuna"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "2d4c28a9",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q19\")"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "b6456bed",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "**Question 20**: What is the output of `friendship_score('Shinx', 'Shinx')`?"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "10dbc959",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# replace the ... with your code\n",
+    "friendship_shinx_shinx = ...\n",
+    "\n",
+    "friendship_shinx_shinx"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "34c9516b",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q20\")"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "4771ae14",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "## Submission\n",
+    "It is recommended that at this stage, you Restart and Run all Cells in your notebook.\n",
+    "That will automatically save your work and generate a zip file for you to submit.\n",
+    "\n",
+    "**SUBMISSION INSTRUCTIONS**:\n",
+    "1. **Upload** the zipfile to Gradescope.\n",
+    "2. Check **Gradescope otter** results as soon as the auto-grader execution gets completed. Don't worry about the score showing up as -/100.0. You only need to check that the test cases passed."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "76ace34d",
+   "metadata": {
+    "cell_type": "code",
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "# running this cell will create a new save checkpoint for your notebook\n",
+    "from IPython.display import display, Javascript\n",
+    "display(Javascript('IPython.notebook.save_checkpoint();'))"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "47850e0b",
+   "metadata": {
+    "cell_type": "code",
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "p4_test.check_file_size(\"p4.ipynb\")\n",
+    "grader.export(pdf=False, run_tests=True)"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "da0fc746",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    " "
+   ]
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3 (ipykernel)",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.9.13"
+  },
+  "otter": {
+   "OK_FORMAT": true,
+   "tests": {
+    "f1": {
+     "name": "f1",
+     "points": 4,
+     "suites": [
+      {
+       "cases": [],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "f2": {
+     "name": "f2",
+     "points": 4,
+     "suites": [
+      {
+       "cases": [],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "f3": {
+     "name": "f3",
+     "points": 6,
+     "suites": [
+      {
+       "cases": [],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "f4": {
+     "name": "f4",
+     "points": 4,
+     "suites": [
+      {
+       "cases": [],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "f5": {
+     "name": "f5",
+     "points": 7,
+     "suites": [
+      {
+       "cases": [],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "f6": {
+     "name": "f6",
+     "points": 4,
+     "suites": [
+      {
+       "cases": [],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q1": {
+     "name": "q1",
+     "points": 3,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> p4_test.check('q1' , damage_feraligatr_aipom)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q10": {
+     "name": "q10",
+     "points": 4,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> p4_test.check('q10' , battle_haunter_rhydon)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q11": {
+     "name": "q11",
+     "points": 4,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> p4_test.check('q11' , battle_espeon_raichu)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q12": {
+     "name": "q12",
+     "points": 4,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> p4_test.check('q12' , battle_garchomp_hydreigon)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q13": {
+     "name": "q13",
+     "points": 4,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> p4_test.check('q13' , battle_gulpin_mudkip)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q14": {
+     "name": "q14",
+     "points": 4,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> p4_test.check('q14' , battle_miraidon_eevee)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q15": {
+     "name": "q15",
+     "points": 4,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> p4_test.check('q15' , battle_onix_hydreigon)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q16": {
+     "name": "q16",
+     "points": 4,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> p4_test.check('q16' , battle_chien_pao_tauros)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q17": {
+     "name": "q17",
+     "points": 4,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> p4_test.check('q17' , friendship_aipom_zekrom)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q18": {
+     "name": "q18",
+     "points": 4,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> p4_test.check('q18' , friendship_voltorb_thundurus)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q19": {
+     "name": "q19",
+     "points": 4,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> p4_test.check('q19' , friendship_weedle_kakuna)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q2": {
+     "name": "q2",
+     "points": 3,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> p4_test.check('q2' , damage_lucario_klawf)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q20": {
+     "name": "q20",
+     "points": 4,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> p4_test.check('q20' , friendship_shinx_shinx)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q3": {
+     "name": "q3",
+     "points": 3,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> p4_test.check('q3' , bonus_poison_rayquaza)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q4": {
+     "name": "q4",
+     "points": 3,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> p4_test.check('q4' , bonus_bug_mew)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q5": {
+     "name": "q5",
+     "points": 3,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> p4_test.check('q5' , eff_damage_pikachu_weedle)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q6": {
+     "name": "q6",
+     "points": 3,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> p4_test.check('q6' , eff_damage_cloyster_lapras)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q7": {
+     "name": "q7",
+     "points": 3,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> p4_test.check('q7' , eff_damage_charizard_wailmer)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q8": {
+     "name": "q8",
+     "points": 3,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> p4_test.check('q8' , hits_garchomp_golem)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q9": {
+     "name": "q9",
+     "points": 3,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> p4_test.check('q9' , hits_mew_shinx)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    }
+   }
+  },
+  "vscode": {
+   "interpreter": {
+    "hash": "f08154012ddadd8e950e6e9e035c7a7b32c136e7647e9b7c77e02eb723a8bedb"
+   }
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/sum23/projects/p4/p4_test.py b/sum23/projects/p4/p4_test.py
new file mode 100644
index 0000000000000000000000000000000000000000..b97d8deb67321a4f978a97d992ffae3d9b7b8f9e
--- /dev/null
+++ b/sum23/projects/p4/p4_test.py
@@ -0,0 +1,252 @@
+#!/usr/bin/python
+
+import os, json, math
+
+MAX_FILE_SIZE = 500 # units - KB
+REL_TOL = 6e-04  # relative tolerance for floats
+ABS_TOL = 15e-03  # absolute tolerance for floats
+
+PASS = "PASS"
+
+TEXT_FORMAT = "text"  # question type when expected answer is a str, int, float, bool, or tyoe
+TEXT_FORMAT_NAMEDTUPLE = "text namedtuple"  # question type when expected answer is a namedtuple
+TEXT_FORMAT_UNORDERED_LIST = "text list_unordered"  # question type when the expected answer is a list where the order does *not* matter
+TEXT_FORMAT_ORDERED_LIST = "text list_ordered"  # question type when the expected answer is a list where the order does matter
+TEXT_FORMAT_ORDERED_LIST_NAMEDTUPLE = "text list_ordered namedtuple"  # question type when the expected answer is a list of namedtuples where the order does matter
+TEXT_FORMAT_SPECIAL_ORDERED_LIST = "text list_special_ordered"  # question type when the expected answer is a list where order does matter, but with possible ties. Elements are ordered according to values in special_ordered_json (with ties allowed)
+TEXT_FORMAT_DICT = "text dict"  # question type when the expected answer is a dictionary
+TEXT_FORMAT_LIST_DICTS_ORDERED = "text list_dicts_ordered"  # question type when the expected answer is a list of dicts where the order does matter
+
+
+expected_json =    {"1": (TEXT_FORMAT, 19.09090909090909),
+                    "2": (TEXT_FORMAT, 20.90909090909091),
+                    "3": (TEXT_FORMAT, 1.0),
+                    "4": (TEXT_FORMAT, 2.0),
+                    "5": (TEXT_FORMAT, 25.0),
+                    "6": (TEXT_FORMAT, 5.9375),
+                    "7": (TEXT_FORMAT, 31.142857142857142),
+                    "8": (TEXT_FORMAT, 9),
+                    "9": (TEXT_FORMAT, 16),
+                    "10": (TEXT_FORMAT, 'Rhydon'),
+                    "11": (TEXT_FORMAT, 'Espeon'),
+                    "12": (TEXT_FORMAT, 'Garchomp'),
+                    "13": (TEXT_FORMAT, 'Draw'),
+                    "14": (TEXT_FORMAT, 'Eevee ran away'),
+                    "15": (TEXT_FORMAT, 'Onix ran away'),
+                    "16": (TEXT_FORMAT, 'Chien-Pao'),
+                    "17": (TEXT_FORMAT, 0),
+                    "18": (TEXT_FORMAT, 1),
+                    "19": (TEXT_FORMAT, 5),
+                    "20": (TEXT_FORMAT, 3)}
+
+special_ordered_json =  {}
+
+def check_cell_text(qnum, actual):
+    format, expected = expected_json[qnum[1:]]
+    try:
+        if format == TEXT_FORMAT:
+            return simple_compare(expected, actual)
+        elif format in [TEXT_FORMAT_ORDERED_LIST, TEXT_FORMAT_LIST_DICTS_ORDERED]:
+            return list_compare_ordered(expected, actual)
+        elif format == TEXT_FORMAT_UNORDERED_LIST:
+            return list_compare_unordered(expected, actual)
+        elif format == TEXT_FORMAT_SPECIAL_ORDERED_LIST:
+            return list_compare_special(expected, actual, special_ordered_json[qnum[1:]])
+        elif format == TEXT_FORMAT_DICT:
+            return dict_compare(expected, actual)
+        else:
+            if expected != actual:
+                return "expected %s but found %s " % (repr(expected), repr(actual))
+    except:
+        if expected != actual:
+            return "expected %s" % (repr(expected))
+    return PASS
+
+
+def simple_compare(expected, actual, complete_msg=True):
+    msg = PASS
+    if type(expected) == type:
+        if expected != actual:
+            if type(actual) == type:
+                msg = "expected %s but found %s" % (expected.__name__, actual.__name__)
+            else:
+                msg = "expected %s but found %s" % (expected.__name__, repr(actual))
+    elif type(expected) != type(actual) and not (type(expected) in [float, int] and type(actual) in [float, int]):
+        msg = "expected to find type %s but found type %s" % (type(expected).__name__, type(actual).__name__)
+    elif type(expected) == float:
+        if not math.isclose(actual, expected, rel_tol=REL_TOL, abs_tol=ABS_TOL):
+            msg = "expected %s" % (repr(expected))
+            if complete_msg:
+                msg = msg + " but found %s" % (repr(actual))
+    else:
+        if expected != actual:
+            msg = "expected %s" % (repr(expected))
+            if complete_msg:
+                msg = msg + " but found %s" % (repr(actual))
+    return msg
+
+
+def list_compare_ordered(expected, actual, obj="list"):
+    msg = PASS
+    if type(expected) != type(actual):
+        msg = "expected to find type %s but found type %s" % (type(expected).__name__, type(actual).__name__)
+        return msg
+    for i in range(len(expected)):
+        if i >= len(actual):
+            msg = "expected missing %s in %s" % (repr(expected[i]), obj)
+            break
+        if type(expected[i]) in [int, float, bool, str]:
+            val = simple_compare(expected[i], actual[i])
+        elif type(expected[i]) in [list]:
+            val = list_compare_ordered(expected[i], actual[i], "sub" + obj)
+        elif type(expected[i]) in [dict]:
+            val = dict_compare(expected[i], actual[i])
+        elif type(expected[i]).__name__ == obfuscate1():
+            val = simple_compare(expected[i], actual[i])
+        if val != PASS:
+            msg = "at index %d of the %s, " % (i, obj) + val
+            break
+    if len(actual) > len(expected) and msg == PASS:
+        msg = "found unexpected %s in %s" % (repr(actual[len(expected)]), obj)
+    if len(expected) != len(actual):
+        msg = msg + " (found %d entries in %s, but expected %d)" % (len(actual), obj, len(expected))
+
+    if len(expected) > 0 and type(expected[0]) in [int, float, bool, str]:
+        if msg != PASS and list_compare_unordered(expected, actual, obj) == PASS:
+            try:
+                msg = msg + " (list may not be ordered as required)"
+            except:
+                pass
+    return msg
+
+
+def list_compare_helper(larger, smaller):
+    msg = PASS
+    j = 0
+    for i in range(len(larger)):
+        if i == len(smaller):
+            msg = "expected %s" % (repr(larger[i]))
+            break
+        found = False
+        while not found:
+            if j == len(smaller):
+                val = simple_compare(larger[i], smaller[j - 1], False)
+                break
+            val = simple_compare(larger[i], smaller[j], False)
+            j += 1
+            if val == PASS:
+                found = True
+                break
+        if not found:
+            msg = val
+            break
+    return msg
+
+
+def list_compare_unordered(expected, actual, obj="list"):
+    msg = PASS
+    if type(expected) != type(actual):
+        msg = "expected to find type %s but found type %s" % (type(expected).__name__, type(actual).__name__)
+        return msg
+    try:
+        sort_expected = sorted(expected)
+        sort_actual = sorted(actual)
+    except:
+        msg = "unexpected datatype found in %s; expected entries of type %s" % (obj, obj, type(expected[0]).__name__)
+        return msg
+
+    if len(actual) == 0 and len(expected) > 0:
+        msg = "in the %s, missing" % (obj) + expected[0]
+    elif len(actual) > 0 and len(expected) > 0:
+        val = simple_compare(sort_expected[0], sort_actual[0])
+        if val.startswith("expected to find type"):
+            msg = "in the %s, " % (obj) + simple_compare(sort_expected[0], sort_actual[0])
+        else:
+            if len(expected) > len(actual):
+                msg = "in the %s, missing " % (obj) + list_compare_helper(sort_expected, sort_actual)
+            elif len(expected) < len(actual):
+                msg = "in the %s, found un" % (obj) + list_compare_helper(sort_actual, sort_expected)
+            if len(expected) != len(actual):
+                msg = msg + " (found %d entries in %s, but expected %d)" % (len(actual), obj, len(expected))
+                return msg
+            else:
+                val = list_compare_helper(sort_expected, sort_actual)
+                if val != PASS:
+                    msg = "in the %s, missing " % (obj) + val + ", but found un" + list_compare_helper(sort_actual,
+                                                                                               sort_expected)
+    return msg
+
+
+def list_compare_special_init(expected, special_order):
+    real_expected = []
+    for i in range(len(expected)):
+        if real_expected == [] or special_order[i-1] != special_order[i]:
+            real_expected.append([])
+        real_expected[-1].append(expected[i])
+    return real_expected
+
+
+def list_compare_special(expected, actual, special_order):
+    expected = list_compare_special_init(expected, special_order)
+    msg = PASS
+    expected_list = []
+    for expected_item in expected:
+        expected_list.extend(expected_item)
+    val = list_compare_unordered(expected_list, actual)
+    if val != PASS:
+        msg = val
+    else:
+        i = 0
+        for expected_item in expected:
+            j = len(expected_item)
+            actual_item = actual[i: i + j]
+            val = list_compare_unordered(expected_item, actual_item)
+            if val != PASS:
+                if j == 1:
+                    msg = "at index %d " % (i) + val
+                else:
+                    msg = "between indices %d and %d " % (i, i + j - 1) + val
+                msg = msg + " (list may not be ordered as required)"
+                break
+            i += j
+
+    return msg
+
+
+def dict_compare(expected, actual, obj="dict"):
+    msg = PASS
+    if type(expected) != type(actual):
+        msg = "expected to find type %s but found type %s" % (type(expected).__name__, type(actual).__name__)
+        return msg
+    try:
+        expected_keys = sorted(list(expected.keys()))
+        actual_keys = sorted(list(actual.keys()))
+    except:
+        msg = "unexpected datatype found in keys of dict; expect a dict with keys of type %s" % (
+            type(expected_keys[0]).__name__)
+        return msg
+    val = list_compare_unordered(expected_keys, actual_keys, "dict")
+    if val != PASS:
+        msg = "bad keys in %s: " % (obj) + val
+    if msg == PASS:
+        for key in expected:
+            if expected[key] == None or type(expected[key]) in [int, float, bool, str]:
+                val = simple_compare(expected[key], actual[key])
+            elif type(expected[key]) in [list]:
+                val = list_compare_ordered(expected[key], actual[key], "value")
+            elif type(expected[key]) in [dict]:
+                val = dict_compare(expected[key], actual[key], "sub" + obj)
+            if val != PASS:
+                msg = "incorrect val for key %s in %s: " % (repr(key), obj) + val
+    return msg
+
+
+def check(qnum, actual):
+    msg = check_cell_text(qnum, actual)
+    if msg == PASS:
+        return True
+    print("<b style='color: red;'>ERROR:</b> " + msg)
+
+def check_file_size(path):
+    size = os.path.getsize(path)
+    assert size < MAX_FILE_SIZE * 10**3, "Your file is too big to be processed by Gradescope; please delete unnecessary output cells so your file size is < %s KB" % MAX_FILE_SIZE
diff --git a/sum23/projects/p4/pokemon_stats.csv b/sum23/projects/p4/pokemon_stats.csv
new file mode 100644
index 0000000000000000000000000000000000000000..68976ed15907eb09951350c570beb280f4f75901
--- /dev/null
+++ b/sum23/projects/p4/pokemon_stats.csv
@@ -0,0 +1,982 @@
+,Name,Attack,Defense,HP,Region,Sp. Atk,Sp. Def,Speed,Type 1,Type 2
+0,Bulbasaur,49,49,45,Kanto,65,65,45,Grass,Poison
+1,Ivysaur,62,63,60,Kanto,80,80,60,Grass,Poison
+2,Venusaur,82,83,80,Kanto,100,100,80,Grass,Poison
+3,Charmander,52,43,39,Kanto,60,50,65,Fire,DNE
+4,Charmeleon,64,58,58,Kanto,80,65,80,Fire,DNE
+5,Charizard,84,78,78,Kanto,109,85,100,Fire,Flying
+6,Squirtle,48,65,44,Kanto,50,64,43,Water,DNE
+7,Wartortle,63,80,59,Kanto,65,80,58,Water,DNE
+8,Blastoise,83,100,79,Kanto,85,105,78,Water,DNE
+9,Caterpie,30,35,45,Kanto,20,20,45,Bug,DNE
+10,Metapod,20,55,50,Kanto,25,25,30,Bug,DNE
+11,Butterfree,45,50,60,Kanto,90,80,70,Bug,Flying
+12,Weedle,35,30,40,Kanto,20,20,50,Bug,Poison
+13,Kakuna,25,50,45,Kanto,25,25,35,Bug,Poison
+14,Beedrill,90,40,65,Kanto,45,80,75,Bug,Poison
+15,Pidgey,45,40,40,Kanto,35,35,56,Normal,Flying
+16,Pidgeotto,60,55,63,Kanto,50,50,71,Normal,Flying
+17,Pidgeot,80,75,83,Kanto,70,70,101,Normal,Flying
+18,Rattata,56,35,30,Kanto,25,35,72,Normal,DNE
+19,Raticate,81,60,55,Kanto,50,70,97,Normal,DNE
+20,Spearow,60,30,40,Kanto,31,31,70,Normal,Flying
+21,Fearow,90,65,65,Kanto,61,61,100,Normal,Flying
+22,Ekans,60,44,35,Kanto,40,54,55,Poison,DNE
+23,Arbok,95,69,60,Kanto,65,79,80,Poison,DNE
+24,Pikachu,55,40,35,Kanto,50,50,90,Electric,DNE
+25,Raichu,90,55,60,Kanto,90,80,110,Electric,DNE
+26,Sandshrew,75,85,50,Kanto,20,30,40,Ground,DNE
+27,Sandslash,100,110,75,Kanto,45,55,65,Ground,DNE
+28,Nidorina,62,67,70,Kanto,55,55,56,Poison,DNE
+29,Nidoqueen,92,87,90,Kanto,75,85,76,Poison,Ground
+30,Nidorino,72,57,61,Kanto,55,55,65,Poison,DNE
+31,Nidoking,102,77,81,Kanto,85,75,85,Poison,Ground
+32,Clefairy,45,48,70,Kanto,60,65,35,Fairy,DNE
+33,Clefable,70,73,95,Kanto,95,90,60,Fairy,DNE
+34,Vulpix,41,40,38,Kanto,50,65,65,Fire,DNE
+35,Ninetales,76,75,73,Kanto,81,100,100,Fire,DNE
+36,Jigglypuff,45,20,115,Kanto,45,25,20,Normal,Fairy
+37,Wigglytuff,70,45,140,Kanto,85,50,45,Normal,Fairy
+38,Zubat,45,35,40,Kanto,30,40,55,Poison,Flying
+39,Golbat,80,70,75,Kanto,65,75,90,Poison,Flying
+40,Oddish,50,55,45,Kanto,75,65,30,Grass,Poison
+41,Gloom,65,70,60,Kanto,85,75,40,Grass,Poison
+42,Vileplume,80,85,75,Kanto,110,90,50,Grass,Poison
+43,Paras,70,55,35,Kanto,45,55,25,Bug,Grass
+44,Parasect,95,80,60,Kanto,60,80,30,Bug,Grass
+45,Venonat,55,50,60,Kanto,40,55,45,Bug,Poison
+46,Venomoth,65,60,70,Kanto,90,75,90,Bug,Poison
+47,Diglett,55,25,10,Kanto,35,45,95,Ground,DNE
+48,Dugtrio,100,50,35,Kanto,50,70,120,Ground,DNE
+49,Meowth,45,35,40,Kanto,40,40,90,Normal,DNE
+50,Persian,70,60,65,Kanto,65,65,115,Normal,DNE
+51,Psyduck,52,48,50,Kanto,65,50,55,Water,DNE
+52,Golduck,82,78,80,Kanto,95,80,85,Water,DNE
+53,Mankey,80,35,40,Kanto,35,45,70,Fighting,DNE
+54,Primeape,105,60,65,Kanto,60,70,95,Fighting,DNE
+55,Growlithe,70,45,55,Kanto,70,50,60,Fire,DNE
+56,Arcanine,110,80,90,Kanto,100,80,95,Fire,DNE
+57,Poliwag,50,40,40,Kanto,40,40,90,Water,DNE
+58,Poliwhirl,65,65,65,Kanto,50,50,90,Water,DNE
+59,Poliwrath,95,95,90,Kanto,70,90,70,Water,Fighting
+60,Abra,20,15,25,Kanto,105,55,90,Psychic,DNE
+61,Kadabra,35,30,40,Kanto,120,70,105,Psychic,DNE
+62,Alakazam,50,45,55,Kanto,135,95,120,Psychic,DNE
+63,Machop,80,50,70,Kanto,35,35,35,Fighting,DNE
+64,Machoke,100,70,80,Kanto,50,60,45,Fighting,DNE
+65,Machamp,130,80,90,Kanto,65,85,55,Fighting,DNE
+66,Bellsprout,75,35,50,Kanto,70,30,40,Grass,Poison
+67,Weepinbell,90,50,65,Kanto,85,45,55,Grass,Poison
+68,Victreebel,105,65,80,Kanto,100,70,70,Grass,Poison
+69,Tentacool,40,35,40,Kanto,50,100,70,Water,Poison
+70,Tentacruel,70,65,80,Kanto,80,120,100,Water,Poison
+71,Geodude,80,100,40,Kanto,30,30,20,Rock,Ground
+72,Graveler,95,115,55,Kanto,45,45,35,Rock,Ground
+73,Golem,120,130,80,Kanto,55,65,45,Rock,Ground
+74,Ponyta,85,55,50,Kanto,65,65,90,Fire,DNE
+75,Rapidash,100,70,65,Kanto,80,80,105,Fire,DNE
+76,Slowpoke,65,65,90,Kanto,40,40,15,Water,Psychic
+77,Slowbro,75,110,95,Kanto,100,80,30,Water,Psychic
+78,Magnemite,35,70,25,Kanto,95,55,45,Electric,Steel
+79,Magneton,60,95,50,Kanto,120,70,70,Electric,Steel
+80,Doduo,85,45,35,Kanto,35,35,75,Normal,Flying
+81,Dodrio,110,70,60,Kanto,60,60,110,Normal,Flying
+82,Seel,45,55,65,Kanto,45,70,45,Water,DNE
+83,Dewgong,70,80,90,Kanto,70,95,70,Water,Ice
+84,Grimer,80,50,80,Kanto,40,50,25,Poison,DNE
+85,Muk,105,75,105,Kanto,65,100,50,Poison,DNE
+86,Shellder,65,100,30,Kanto,45,25,40,Water,DNE
+87,Cloyster,95,180,50,Kanto,85,45,70,Water,Ice
+88,Gastly,35,30,30,Kanto,100,35,80,Ghost,Poison
+89,Haunter,50,45,45,Kanto,115,55,95,Ghost,Poison
+90,Gengar,65,60,60,Kanto,130,75,110,Ghost,Poison
+91,Onix,45,160,35,Kanto,30,45,70,Rock,Ground
+92,Drowzee,48,45,60,Kanto,43,90,42,Psychic,DNE
+93,Hypno,73,70,85,Kanto,73,115,67,Psychic,DNE
+94,Krabby,105,90,30,Kanto,25,25,50,Water,DNE
+95,Kingler,130,115,55,Kanto,50,50,75,Water,DNE
+96,Voltorb,30,50,40,Kanto,55,55,100,Electric,DNE
+97,Electrode,50,70,60,Kanto,80,80,150,Electric,DNE
+98,Exeggcute,40,80,60,Kanto,60,45,40,Grass,Psychic
+99,Exeggutor,95,85,95,Kanto,125,75,55,Grass,Psychic
+100,Cubone,50,95,50,Kanto,40,50,35,Ground,DNE
+101,Marowak,80,110,60,Kanto,50,80,45,Ground,DNE
+102,Hitmonlee,120,53,50,Kanto,35,110,87,Fighting,DNE
+103,Hitmonchan,105,79,50,Kanto,35,110,76,Fighting,DNE
+104,Lickitung,55,75,90,Kanto,60,75,30,Normal,DNE
+105,Koffing,65,95,40,Kanto,60,45,35,Poison,DNE
+106,Weezing,90,120,65,Kanto,85,70,60,Poison,DNE
+107,Rhyhorn,85,95,80,Kanto,30,30,25,Ground,Rock
+108,Rhydon,130,120,105,Kanto,45,45,40,Ground,Rock
+109,Chansey,5,5,250,Kanto,35,105,50,Normal,DNE
+110,Tangela,55,115,65,Kanto,100,40,60,Grass,DNE
+111,Kangaskhan,95,80,105,Kanto,40,80,90,Normal,DNE
+112,Horsea,40,70,30,Kanto,70,25,60,Water,DNE
+113,Seadra,65,95,55,Kanto,95,45,85,Water,DNE
+114,Goldeen,67,60,45,Kanto,35,50,63,Water,DNE
+115,Seaking,92,65,80,Kanto,65,80,68,Water,DNE
+116,Staryu,45,55,30,Kanto,70,55,85,Water,DNE
+117,Starmie,75,85,60,Kanto,100,85,115,Water,Psychic
+118,Scyther,110,80,70,Kanto,55,80,105,Bug,Flying
+119,Jynx,50,35,65,Kanto,115,95,95,Ice,Psychic
+120,Electabuzz,83,57,65,Kanto,95,85,105,Electric,DNE
+121,Magmar,95,57,65,Kanto,100,85,93,Fire,DNE
+122,Pinsir,125,100,65,Kanto,55,70,85,Bug,DNE
+123,Tauros,100,95,75,Kanto,40,70,110,Normal,DNE
+124,Magikarp,10,55,20,Kanto,15,20,80,Water,DNE
+125,Gyarados,125,79,95,Kanto,60,100,81,Water,Flying
+126,Lapras,85,80,130,Kanto,85,95,60,Water,Ice
+127,Ditto,48,48,48,Kanto,48,48,48,Normal,DNE
+128,Eevee,55,50,55,Kanto,45,65,55,Normal,DNE
+129,Vaporeon,65,60,130,Kanto,110,95,65,Water,DNE
+130,Jolteon,65,60,65,Kanto,110,95,130,Electric,DNE
+131,Flareon,130,60,65,Kanto,95,110,65,Fire,DNE
+132,Porygon,60,70,65,Kanto,85,75,40,Normal,DNE
+133,Omanyte,40,100,35,Kanto,90,55,35,Rock,Water
+134,Omastar,60,125,70,Kanto,115,70,55,Rock,Water
+135,Kabuto,80,90,30,Kanto,55,45,55,Rock,Water
+136,Kabutops,115,105,60,Kanto,65,70,80,Rock,Water
+137,Aerodactyl,105,65,80,Kanto,60,75,130,Rock,Flying
+138,Snorlax,110,65,160,Kanto,65,110,30,Normal,DNE
+139,Articuno,85,100,90,Kanto,95,125,85,Ice,Flying
+140,Zapdos,90,85,90,Kanto,125,90,100,Electric,Flying
+141,Moltres,100,90,90,Kanto,125,85,90,Fire,Flying
+142,Dratini,64,45,41,Kanto,50,50,50,Dragon,DNE
+143,Dragonair,84,65,61,Kanto,70,70,70,Dragon,DNE
+144,Dragonite,134,95,91,Kanto,100,100,80,Dragon,Flying
+145,Mewtwo,110,90,106,Kanto,154,90,130,Psychic,DNE
+146,Mew,100,100,100,Kanto,100,100,100,Psychic,DNE
+147,Chikorita,49,65,45,Johto,49,65,45,Grass,DNE
+148,Bayleef,62,80,60,Johto,63,80,60,Grass,DNE
+149,Meganium,82,100,80,Johto,83,100,80,Grass,DNE
+150,Cyndaquil,52,43,39,Johto,60,50,65,Fire,DNE
+151,Quilava,64,58,58,Johto,80,65,80,Fire,DNE
+152,Typhlosion,84,78,78,Johto,109,85,100,Fire,DNE
+153,Totodile,65,64,50,Johto,44,48,43,Water,DNE
+154,Croconaw,80,80,65,Johto,59,63,58,Water,DNE
+155,Feraligatr,105,100,85,Johto,79,83,78,Water,DNE
+156,Sentret,46,34,35,Johto,35,45,20,Normal,DNE
+157,Furret,76,64,85,Johto,45,55,90,Normal,DNE
+158,Hoothoot,30,30,60,Johto,36,56,50,Normal,Flying
+159,Noctowl,50,50,100,Johto,86,96,70,Normal,Flying
+160,Ledyba,20,30,40,Johto,40,80,55,Bug,Flying
+161,Ledian,35,50,55,Johto,55,110,85,Bug,Flying
+162,Spinarak,60,40,40,Johto,40,40,30,Bug,Poison
+163,Ariados,90,70,70,Johto,60,70,40,Bug,Poison
+164,Crobat,90,80,85,Johto,70,80,130,Poison,Flying
+165,Chinchou,38,38,75,Johto,56,56,67,Water,Electric
+166,Lanturn,58,58,125,Johto,76,76,67,Water,Electric
+167,Pichu,40,15,20,Johto,35,35,60,Electric,DNE
+168,Cleffa,25,28,50,Johto,45,55,15,Fairy,DNE
+169,Igglybuff,30,15,90,Johto,40,20,15,Normal,Fairy
+170,Togepi,20,65,35,Johto,40,65,20,Fairy,DNE
+171,Togetic,40,85,55,Johto,80,105,40,Fairy,Flying
+172,Natu,50,45,40,Johto,70,45,70,Psychic,Flying
+173,Xatu,75,70,65,Johto,95,70,95,Psychic,Flying
+174,Mareep,40,40,55,Johto,65,45,35,Electric,DNE
+175,Flaaffy,55,55,70,Johto,80,60,45,Electric,DNE
+176,Ampharos,75,85,90,Johto,115,90,55,Electric,DNE
+177,Bellossom,80,95,75,Johto,90,100,50,Grass,DNE
+178,Marill,20,50,70,Johto,20,50,40,Water,Fairy
+179,Azumarill,50,80,100,Johto,60,80,50,Water,Fairy
+180,Sudowoodo,100,115,70,Johto,30,65,30,Rock,DNE
+181,Politoed,75,75,90,Johto,90,100,70,Water,DNE
+182,Hoppip,35,40,35,Johto,35,55,50,Grass,Flying
+183,Skiploom,45,50,55,Johto,45,65,80,Grass,Flying
+184,Jumpluff,55,70,75,Johto,55,95,110,Grass,Flying
+185,Aipom,70,55,55,Johto,40,55,85,Normal,DNE
+186,Sunkern,30,30,30,Johto,30,30,30,Grass,DNE
+187,Sunflora,75,55,75,Johto,105,85,30,Grass,DNE
+188,Yanma,65,45,65,Johto,75,45,95,Bug,Flying
+189,Wooper,45,45,55,Johto,25,25,15,Water,Ground
+190,Quagsire,85,85,95,Johto,65,65,35,Water,Ground
+191,Espeon,65,60,65,Johto,130,95,110,Psychic,DNE
+192,Umbreon,65,110,95,Johto,60,130,65,Dark,DNE
+193,Murkrow,85,42,60,Johto,85,42,91,Dark,Flying
+194,Slowking,75,80,95,Johto,100,110,30,Water,Psychic
+195,Misdreavus,60,60,60,Johto,85,85,85,Ghost,DNE
+196,Unown,72,48,48,Johto,72,48,48,Psychic,DNE
+197,Wobbuffet,33,58,190,Johto,33,58,33,Psychic,DNE
+198,Girafarig,80,65,70,Johto,90,65,85,Normal,Psychic
+199,Pineco,65,90,50,Johto,35,35,15,Bug,DNE
+200,Forretress,90,140,75,Johto,60,60,40,Bug,Steel
+201,Dunsparce,70,70,100,Johto,65,65,45,Normal,DNE
+202,Gligar,75,105,65,Johto,35,65,85,Ground,Flying
+203,Steelix,85,200,75,Johto,55,65,30,Steel,Ground
+204,Snubbull,80,50,60,Johto,40,40,30,Fairy,DNE
+205,Granbull,120,75,90,Johto,60,60,45,Fairy,DNE
+206,Qwilfish,95,85,65,Johto,55,55,85,Water,Poison
+207,Scizor,130,100,70,Johto,55,80,65,Bug,Steel
+208,Shuckle,10,230,20,Johto,10,230,5,Bug,Rock
+209,Heracross,125,75,80,Johto,40,95,85,Bug,Fighting
+210,Sneasel,95,55,55,Johto,35,75,115,Dark,Ice
+211,Teddiursa,80,50,60,Johto,50,50,40,Normal,DNE
+212,Ursaring,130,75,90,Johto,75,75,55,Normal,DNE
+213,Slugma,40,40,40,Johto,70,40,20,Fire,DNE
+214,Magcargo,50,120,60,Johto,90,80,30,Fire,Rock
+215,Swinub,50,40,50,Johto,30,30,50,Ice,Ground
+216,Piloswine,100,80,100,Johto,60,60,50,Ice,Ground
+217,Corsola,55,95,65,Johto,65,95,35,Water,Rock
+218,Remoraid,65,35,35,Johto,65,35,65,Water,DNE
+219,Octillery,105,75,75,Johto,105,75,45,Water,DNE
+220,Delibird,55,45,45,Johto,65,45,75,Ice,Flying
+221,Mantine,40,70,85,Johto,80,140,70,Water,Flying
+222,Skarmory,80,140,65,Johto,40,70,70,Steel,Flying
+223,Houndour,60,30,45,Johto,80,50,65,Dark,Fire
+224,Houndoom,90,50,75,Johto,110,80,95,Dark,Fire
+225,Kingdra,95,95,75,Johto,95,95,85,Water,Dragon
+226,Phanpy,60,60,90,Johto,40,40,40,Ground,DNE
+227,Donphan,120,120,90,Johto,60,60,50,Ground,DNE
+228,Porygon2,80,90,85,Johto,105,95,60,Normal,DNE
+229,Stantler,95,62,73,Johto,85,65,85,Normal,DNE
+230,Smeargle,20,35,55,Johto,20,45,75,Normal,DNE
+231,Tyrogue,35,35,35,Johto,35,35,35,Fighting,DNE
+232,Hitmontop,95,95,50,Johto,35,110,70,Fighting,DNE
+233,Smoochum,30,15,45,Johto,85,65,65,Ice,Psychic
+234,Elekid,63,37,45,Johto,65,55,95,Electric,DNE
+235,Magby,75,37,45,Johto,70,55,83,Fire,DNE
+236,Miltank,80,105,95,Johto,40,70,100,Normal,DNE
+237,Blissey,10,10,255,Johto,75,135,55,Normal,DNE
+238,Raikou,85,75,90,Johto,115,100,115,Electric,DNE
+239,Entei,115,85,115,Johto,90,75,100,Fire,DNE
+240,Suicune,75,115,100,Johto,90,115,85,Water,DNE
+241,Larvitar,64,50,50,Johto,45,50,41,Rock,Ground
+242,Pupitar,84,70,70,Johto,65,70,51,Rock,Ground
+243,Tyranitar,134,110,100,Johto,95,100,61,Rock,Dark
+244,Lugia,90,130,106,Johto,90,154,110,Psychic,Flying
+245,Ho-oh,130,90,106,Johto,110,154,90,Fire,Flying
+246,Celebi,100,100,100,Johto,100,100,100,Psychic,Grass
+247,Treecko,45,35,40,Hoenn,65,55,70,Grass,DNE
+248,Grovyle,65,45,50,Hoenn,85,65,95,Grass,DNE
+249,Sceptile,85,65,70,Hoenn,105,85,120,Grass,DNE
+250,Torchic,60,40,45,Hoenn,70,50,45,Fire,DNE
+251,Combusken,85,60,60,Hoenn,85,60,55,Fire,Fighting
+252,Blaziken,120,70,80,Hoenn,110,70,80,Fire,Fighting
+253,Mudkip,70,50,50,Hoenn,50,50,40,Water,DNE
+254,Marshtomp,85,70,70,Hoenn,60,70,50,Water,Ground
+255,Swampert,110,90,100,Hoenn,85,90,60,Water,Ground
+256,Poochyena,55,35,35,Hoenn,30,30,35,Dark,DNE
+257,Mightyena,90,70,70,Hoenn,60,60,70,Dark,DNE
+258,Zigzagoon,30,41,38,Hoenn,30,41,60,Normal,DNE
+259,Linoone,70,61,78,Hoenn,50,61,100,Normal,DNE
+260,Wurmple,45,35,45,Hoenn,20,30,20,Bug,DNE
+261,Silcoon,35,55,50,Hoenn,25,25,15,Bug,DNE
+262,Beautifly,70,50,60,Hoenn,100,50,65,Bug,Flying
+263,Cascoon,35,55,50,Hoenn,25,25,15,Bug,DNE
+264,Dustox,50,70,60,Hoenn,50,90,65,Bug,Poison
+265,Lotad,30,30,40,Hoenn,40,50,30,Water,Grass
+266,Lombre,50,50,60,Hoenn,60,70,50,Water,Grass
+267,Ludicolo,70,70,80,Hoenn,90,100,70,Water,Grass
+268,Seedot,40,50,40,Hoenn,30,30,30,Grass,DNE
+269,Nuzleaf,70,40,70,Hoenn,60,40,60,Grass,Dark
+270,Shiftry,100,60,90,Hoenn,90,60,80,Grass,Dark
+271,Taillow,55,30,40,Hoenn,30,30,85,Normal,Flying
+272,Swellow,85,60,60,Hoenn,75,50,125,Normal,Flying
+273,Wingull,30,30,40,Hoenn,55,30,85,Water,Flying
+274,Pelipper,50,100,60,Hoenn,95,70,65,Water,Flying
+275,Ralts,25,25,28,Hoenn,45,35,40,Psychic,Fairy
+276,Kirlia,35,35,38,Hoenn,65,55,50,Psychic,Fairy
+277,Gardevoir,65,65,68,Hoenn,125,115,80,Psychic,Fairy
+278,Surskit,30,32,40,Hoenn,50,52,65,Bug,Water
+279,Masquerain,60,62,70,Hoenn,100,82,80,Bug,Flying
+280,Shroomish,40,60,60,Hoenn,40,60,35,Grass,DNE
+281,Breloom,130,80,60,Hoenn,60,60,70,Grass,Fighting
+282,Slakoth,60,60,60,Hoenn,35,35,30,Normal,DNE
+283,Vigoroth,80,80,80,Hoenn,55,55,90,Normal,DNE
+284,Slaking,160,100,150,Hoenn,95,65,100,Normal,DNE
+285,Nincada,45,90,31,Hoenn,30,30,40,Bug,Ground
+286,Ninjask,90,45,61,Hoenn,50,50,160,Bug,Flying
+287,Shedinja,90,45,1,Hoenn,30,30,40,Bug,Ghost
+288,Whismur,51,23,64,Hoenn,51,23,28,Normal,DNE
+289,Loudred,71,43,84,Hoenn,71,43,48,Normal,DNE
+290,Exploud,91,63,104,Hoenn,91,73,68,Normal,DNE
+291,Makuhita,60,30,72,Hoenn,20,30,25,Fighting,DNE
+292,Hariyama,120,60,144,Hoenn,40,60,50,Fighting,DNE
+293,Azurill,20,40,50,Hoenn,20,40,20,Normal,Fairy
+294,Nosepass,45,135,30,Hoenn,45,90,30,Rock,DNE
+295,Skitty,45,45,50,Hoenn,35,35,50,Normal,DNE
+296,Delcatty,65,65,70,Hoenn,55,55,90,Normal,DNE
+297,Sableye,75,75,50,Hoenn,65,65,50,Dark,Ghost
+298,Mawile,85,85,50,Hoenn,55,55,50,Steel,Fairy
+299,Aron,70,100,50,Hoenn,40,40,30,Steel,Rock
+300,Lairon,90,140,60,Hoenn,50,50,40,Steel,Rock
+301,Aggron,110,180,70,Hoenn,60,60,50,Steel,Rock
+302,Meditite,40,55,30,Hoenn,40,55,60,Fighting,Psychic
+303,Medicham,60,75,60,Hoenn,60,75,80,Fighting,Psychic
+304,Electrike,45,40,40,Hoenn,65,40,65,Electric,DNE
+305,Manectric,75,60,70,Hoenn,105,60,105,Electric,DNE
+306,Plusle,50,40,60,Hoenn,85,75,95,Electric,DNE
+307,Minun,40,50,60,Hoenn,75,85,95,Electric,DNE
+308,Volbeat,73,75,65,Hoenn,47,85,85,Bug,DNE
+309,Illumise,47,75,65,Hoenn,73,85,85,Bug,DNE
+310,Roselia,60,45,50,Hoenn,100,80,65,Grass,Poison
+311,Gulpin,43,53,70,Hoenn,43,53,40,Poison,DNE
+312,Swalot,73,83,100,Hoenn,73,83,55,Poison,DNE
+313,Carvanha,90,20,45,Hoenn,65,20,65,Water,Dark
+314,Sharpedo,120,40,70,Hoenn,95,40,95,Water,Dark
+315,Wailmer,70,35,130,Hoenn,70,35,60,Water,DNE
+316,Wailord,90,45,170,Hoenn,90,45,60,Water,DNE
+317,Numel,60,40,60,Hoenn,65,45,35,Fire,Ground
+318,Camerupt,100,70,70,Hoenn,105,75,40,Fire,Ground
+319,Torkoal,85,140,70,Hoenn,85,70,20,Fire,DNE
+320,Spoink,25,35,60,Hoenn,70,80,60,Psychic,DNE
+321,Grumpig,45,65,80,Hoenn,90,110,80,Psychic,DNE
+322,Spinda,60,60,60,Hoenn,60,60,60,Normal,DNE
+323,Trapinch,100,45,45,Hoenn,45,45,10,Ground,DNE
+324,Vibrava,70,50,50,Hoenn,50,50,70,Ground,Dragon
+325,Flygon,100,80,80,Hoenn,80,80,100,Ground,Dragon
+326,Cacnea,85,40,50,Hoenn,85,40,35,Grass,DNE
+327,Cacturne,115,60,70,Hoenn,115,60,55,Grass,Dark
+328,Swablu,40,60,45,Hoenn,40,75,50,Normal,Flying
+329,Altaria,70,90,75,Hoenn,70,105,80,Dragon,Flying
+330,Zangoose,115,60,73,Hoenn,60,60,90,Normal,DNE
+331,Seviper,100,60,73,Hoenn,100,60,65,Poison,DNE
+332,Lunatone,55,65,90,Hoenn,95,85,70,Rock,Psychic
+333,Solrock,95,85,90,Hoenn,55,65,70,Rock,Psychic
+334,Barboach,48,43,50,Hoenn,46,41,60,Water,Ground
+335,Whiscash,78,73,110,Hoenn,76,71,60,Water,Ground
+336,Corphish,80,65,43,Hoenn,50,35,35,Water,DNE
+337,Crawdaunt,120,85,63,Hoenn,90,55,55,Water,Dark
+338,Baltoy,40,55,40,Hoenn,40,70,55,Ground,Psychic
+339,Claydol,70,105,60,Hoenn,70,120,75,Ground,Psychic
+340,Lileep,41,77,66,Hoenn,61,87,23,Rock,Grass
+341,Cradily,81,97,86,Hoenn,81,107,43,Rock,Grass
+342,Anorith,95,50,45,Hoenn,40,50,75,Rock,Bug
+343,Armaldo,125,100,75,Hoenn,70,80,45,Rock,Bug
+344,Feebas,15,20,20,Hoenn,10,55,80,Water,DNE
+345,Milotic,60,79,95,Hoenn,100,125,81,Water,DNE
+346,Castform,70,70,70,Hoenn,70,70,70,Normal,DNE
+347,Kecleon,90,70,60,Hoenn,60,120,40,Normal,DNE
+348,Shuppet,75,35,44,Hoenn,63,33,45,Ghost,DNE
+349,Banette,115,65,64,Hoenn,83,63,65,Ghost,DNE
+350,Duskull,40,90,20,Hoenn,30,90,25,Ghost,DNE
+351,Dusclops,70,130,40,Hoenn,60,130,25,Ghost,DNE
+352,Tropius,68,83,99,Hoenn,72,87,51,Grass,Flying
+353,Chimecho,50,80,75,Hoenn,95,90,65,Psychic,DNE
+354,Absol,130,60,65,Hoenn,75,60,75,Dark,DNE
+355,Wynaut,23,48,95,Hoenn,23,48,23,Psychic,DNE
+356,Snorunt,50,50,50,Hoenn,50,50,50,Ice,DNE
+357,Glalie,80,80,80,Hoenn,80,80,80,Ice,DNE
+358,Spheal,40,50,70,Hoenn,55,50,25,Ice,Water
+359,Sealeo,60,70,90,Hoenn,75,70,45,Ice,Water
+360,Walrein,80,90,110,Hoenn,95,90,65,Ice,Water
+361,Clamperl,64,85,35,Hoenn,74,55,32,Water,DNE
+362,Huntail,104,105,55,Hoenn,94,75,52,Water,DNE
+363,Gorebyss,84,105,55,Hoenn,114,75,52,Water,DNE
+364,Relicanth,90,130,100,Hoenn,45,65,55,Water,Rock
+365,Luvdisc,30,55,43,Hoenn,40,65,97,Water,DNE
+366,Bagon,75,60,45,Hoenn,40,30,50,Dragon,DNE
+367,Shelgon,95,100,65,Hoenn,60,50,50,Dragon,DNE
+368,Salamence,135,80,95,Hoenn,110,80,100,Dragon,Flying
+369,Beldum,55,80,40,Hoenn,35,60,30,Steel,Psychic
+370,Metang,75,100,60,Hoenn,55,80,50,Steel,Psychic
+371,Metagross,135,130,80,Hoenn,95,90,70,Steel,Psychic
+372,Regirock,100,200,80,Hoenn,50,100,50,Rock,DNE
+373,Regice,50,100,80,Hoenn,100,200,50,Ice,DNE
+374,Registeel,75,150,80,Hoenn,75,150,50,Steel,DNE
+375,Latias,80,90,80,Hoenn,110,130,110,Dragon,Psychic
+376,Latios,90,80,80,Hoenn,130,110,110,Dragon,Psychic
+377,Kyogre,100,90,100,Hoenn,150,140,90,Water,DNE
+378,Groudon,150,140,100,Hoenn,100,90,90,Ground,DNE
+379,Rayquaza,150,90,105,Hoenn,150,90,95,Dragon,Flying
+380,Jirachi,100,100,100,Hoenn,100,100,100,Steel,Psychic
+381,Deoxys,150,50,50,Hoenn,150,50,150,Psychic,DNE
+382,Turtwig,68,64,55,Sinnoh,45,55,31,Grass,DNE
+383,Grotle,89,85,75,Sinnoh,55,65,36,Grass,DNE
+384,Torterra,109,105,95,Sinnoh,75,85,56,Grass,Ground
+385,Chimchar,58,44,44,Sinnoh,58,44,61,Fire,DNE
+386,Monferno,78,52,64,Sinnoh,78,52,81,Fire,Fighting
+387,Infernape,104,71,76,Sinnoh,104,71,108,Fire,Fighting
+388,Piplup,51,53,53,Sinnoh,61,56,40,Water,DNE
+389,Prinplup,66,68,64,Sinnoh,81,76,50,Water,DNE
+390,Empoleon,86,88,84,Sinnoh,111,101,60,Water,Steel
+391,Starly,55,30,40,Sinnoh,30,30,60,Normal,Flying
+392,Staravia,75,50,55,Sinnoh,40,40,80,Normal,Flying
+393,Staraptor,120,70,85,Sinnoh,50,60,100,Normal,Flying
+394,Bidoof,45,40,59,Sinnoh,35,40,31,Normal,DNE
+395,Bibarel,85,60,79,Sinnoh,55,60,71,Normal,Water
+396,Kricketot,25,41,37,Sinnoh,25,41,25,Bug,DNE
+397,Kricketune,85,51,77,Sinnoh,55,51,65,Bug,DNE
+398,Shinx,65,34,45,Sinnoh,40,34,45,Electric,DNE
+399,Luxio,85,49,60,Sinnoh,60,49,60,Electric,DNE
+400,Luxray,120,79,80,Sinnoh,95,79,70,Electric,DNE
+401,Budew,30,35,40,Sinnoh,50,70,55,Grass,Poison
+402,Roserade,70,65,60,Sinnoh,125,105,90,Grass,Poison
+403,Cranidos,125,40,67,Sinnoh,30,30,58,Rock,DNE
+404,Rampardos,165,60,97,Sinnoh,65,50,58,Rock,DNE
+405,Shieldon,42,118,30,Sinnoh,42,88,30,Rock,Steel
+406,Bastiodon,52,168,60,Sinnoh,47,138,30,Rock,Steel
+407,Burmy,29,45,40,Sinnoh,29,45,36,Bug,DNE
+408,Wormadam,59,85,60,Sinnoh,79,105,36,Bug,Grass
+409,Mothim,94,50,70,Sinnoh,94,50,66,Bug,Flying
+410,Combee,30,42,30,Sinnoh,30,42,70,Bug,Flying
+411,Vespiquen,80,102,70,Sinnoh,80,102,40,Bug,Flying
+412,Pachirisu,45,70,60,Sinnoh,45,90,95,Electric,DNE
+413,Buizel,65,35,55,Sinnoh,60,30,85,Water,DNE
+414,Floatzel,105,55,85,Sinnoh,85,50,115,Water,DNE
+415,Cherubi,35,45,45,Sinnoh,62,53,35,Grass,DNE
+416,Cherrim,60,70,70,Sinnoh,87,78,85,Grass,DNE
+417,Shellos,48,48,76,Sinnoh,57,62,34,Water,DNE
+418,Gastrodon,83,68,111,Sinnoh,92,82,39,Water,Ground
+419,Ambipom,100,66,75,Sinnoh,60,66,115,Normal,DNE
+420,Drifloon,50,34,90,Sinnoh,60,44,70,Ghost,Flying
+421,Drifblim,80,44,150,Sinnoh,90,54,80,Ghost,Flying
+422,Buneary,66,44,55,Sinnoh,44,56,85,Normal,DNE
+423,Lopunny,76,84,65,Sinnoh,54,96,105,Normal,DNE
+424,Mismagius,60,60,60,Sinnoh,105,105,105,Ghost,DNE
+425,Honchkrow,125,52,100,Sinnoh,105,52,71,Dark,Flying
+426,Glameow,55,42,49,Sinnoh,42,37,85,Normal,DNE
+427,Purugly,82,64,71,Sinnoh,64,59,112,Normal,DNE
+428,Chingling,30,50,45,Sinnoh,65,50,45,Psychic,DNE
+429,Stunky,63,47,63,Sinnoh,41,41,74,Poison,Dark
+430,Skuntank,93,67,103,Sinnoh,71,61,84,Poison,Dark
+431,Bronzor,24,86,57,Sinnoh,24,86,23,Steel,Psychic
+432,Bronzong,89,116,67,Sinnoh,79,116,33,Steel,Psychic
+433,Bonsly,80,95,50,Sinnoh,10,45,10,Rock,DNE
+434,Happiny,5,5,100,Sinnoh,15,65,30,Normal,DNE
+435,Chatot,65,45,76,Sinnoh,92,42,91,Normal,Flying
+436,Spiritomb,92,108,50,Sinnoh,92,108,35,Ghost,Dark
+437,Gible,70,45,58,Sinnoh,40,45,42,Dragon,Ground
+438,Gabite,90,65,68,Sinnoh,50,55,82,Dragon,Ground
+439,Garchomp,130,95,108,Sinnoh,80,85,102,Dragon,Ground
+440,Munchlax,85,40,135,Sinnoh,40,85,5,Normal,DNE
+441,Riolu,70,40,40,Sinnoh,35,40,60,Fighting,DNE
+442,Lucario,110,70,70,Sinnoh,115,70,90,Fighting,Steel
+443,Hippopotas,72,78,68,Sinnoh,38,42,32,Ground,DNE
+444,Hippowdon,112,118,108,Sinnoh,68,72,47,Ground,DNE
+445,Skorupi,50,90,40,Sinnoh,30,55,65,Poison,Bug
+446,Drapion,90,110,70,Sinnoh,60,75,95,Poison,Dark
+447,Croagunk,61,40,48,Sinnoh,61,40,50,Poison,Fighting
+448,Toxicroak,106,65,83,Sinnoh,86,65,85,Poison,Fighting
+449,Carnivine,100,72,74,Sinnoh,90,72,46,Grass,DNE
+450,Finneon,49,56,49,Sinnoh,49,61,66,Water,DNE
+451,Lumineon,69,76,69,Sinnoh,69,86,91,Water,DNE
+452,Mantyke,20,50,45,Sinnoh,60,120,50,Water,Flying
+453,Snover,62,50,60,Sinnoh,62,60,40,Grass,Ice
+454,Abomasnow,92,75,90,Sinnoh,92,85,60,Grass,Ice
+455,Weavile,120,65,70,Sinnoh,45,85,125,Dark,Ice
+456,Magnezone,70,115,70,Sinnoh,130,90,60,Electric,Steel
+457,Lickilicky,85,95,110,Sinnoh,80,95,50,Normal,DNE
+458,Rhyperior,140,130,115,Sinnoh,55,55,40,Ground,Rock
+459,Tangrowth,100,125,100,Sinnoh,110,50,50,Grass,DNE
+460,Electivire,123,67,75,Sinnoh,95,85,95,Electric,DNE
+461,Magmortar,95,67,75,Sinnoh,125,95,83,Fire,DNE
+462,Togekiss,50,95,85,Sinnoh,120,115,80,Fairy,Flying
+463,Yanmega,76,86,86,Sinnoh,116,56,95,Bug,Flying
+464,Leafeon,110,130,65,Sinnoh,60,65,95,Grass,DNE
+465,Glaceon,60,110,65,Sinnoh,130,95,65,Ice,DNE
+466,Gliscor,95,125,75,Sinnoh,45,75,95,Ground,Flying
+467,Mamoswine,130,80,110,Sinnoh,70,60,80,Ice,Ground
+468,Porygon-Z,80,70,85,Sinnoh,135,75,90,Normal,DNE
+469,Gallade,125,65,68,Sinnoh,65,115,80,Psychic,Fighting
+470,Probopass,55,145,60,Sinnoh,75,150,40,Rock,Steel
+471,Dusknoir,100,135,45,Sinnoh,65,135,45,Ghost,DNE
+472,Froslass,80,70,70,Sinnoh,80,70,110,Ice,Ghost
+473,Rotom,50,77,50,Sinnoh,95,77,91,Electric,Ghost
+474,Uxie,75,130,75,Sinnoh,75,130,95,Psychic,DNE
+475,Mesprit,105,105,80,Sinnoh,105,105,80,Psychic,DNE
+476,Azelf,125,70,75,Sinnoh,125,70,115,Psychic,DNE
+477,Dialga,120,120,100,Sinnoh,150,100,90,Steel,Dragon
+478,Palkia,120,100,90,Sinnoh,150,120,100,Water,Dragon
+479,Heatran,90,106,91,Sinnoh,130,106,77,Fire,Steel
+480,Regigigas,160,110,110,Sinnoh,80,110,100,Normal,DNE
+481,Giratina,100,120,150,Sinnoh,100,120,90,Ghost,Dragon
+482,Cresselia,70,110,120,Sinnoh,75,120,85,Psychic,DNE
+483,Phione,80,80,80,Sinnoh,80,80,80,Water,DNE
+484,Manaphy,100,100,100,Sinnoh,100,100,100,Water,DNE
+485,Darkrai,90,90,70,Sinnoh,135,90,125,Dark,DNE
+486,Shaymin,100,100,100,Sinnoh,100,100,100,Grass,DNE
+487,Arceus,120,120,120,Sinnoh,120,120,120,Normal,DNE
+488,Victini,100,100,100,Unova,100,100,100,Psychic,Fire
+489,Snivy,45,55,45,Unova,45,55,63,Grass,DNE
+490,Servine,60,75,60,Unova,60,75,83,Grass,DNE
+491,Serperior,75,95,75,Unova,75,95,113,Grass,DNE
+492,Tepig,63,45,65,Unova,45,45,45,Fire,DNE
+493,Pignite,93,55,90,Unova,70,55,55,Fire,Fighting
+494,Emboar,123,65,110,Unova,100,65,65,Fire,Fighting
+495,Oshawott,55,45,55,Unova,63,45,45,Water,DNE
+496,Dewott,75,60,75,Unova,83,60,60,Water,DNE
+497,Samurott,100,85,95,Unova,108,70,70,Water,DNE
+498,Patrat,55,39,45,Unova,35,39,42,Normal,DNE
+499,Watchog,85,69,60,Unova,60,69,77,Normal,DNE
+500,Lillipup,60,45,45,Unova,25,45,55,Normal,DNE
+501,Herdier,80,65,65,Unova,35,65,60,Normal,DNE
+502,Stoutland,110,90,85,Unova,45,90,80,Normal,DNE
+503,Purrloin,50,37,41,Unova,50,37,66,Dark,DNE
+504,Liepard,88,50,64,Unova,88,50,106,Dark,DNE
+505,Pansage,53,48,50,Unova,53,48,64,Grass,DNE
+506,Simisage,98,63,75,Unova,98,63,101,Grass,DNE
+507,Pansear,53,48,50,Unova,53,48,64,Fire,DNE
+508,Simisear,98,63,75,Unova,98,63,101,Fire,DNE
+509,Panpour,53,48,50,Unova,53,48,64,Water,DNE
+510,Simipour,98,63,75,Unova,98,63,101,Water,DNE
+511,Munna,25,45,76,Unova,67,55,24,Psychic,DNE
+512,Musharna,55,85,116,Unova,107,95,29,Psychic,DNE
+513,Pidove,55,50,50,Unova,36,30,43,Normal,Flying
+514,Tranquill,77,62,62,Unova,50,42,65,Normal,Flying
+515,Unfezant,115,80,80,Unova,65,55,93,Normal,Flying
+516,Blitzle,60,32,45,Unova,50,32,76,Electric,DNE
+517,Zebstrika,100,63,75,Unova,80,63,116,Electric,DNE
+518,Roggenrola,75,85,55,Unova,25,25,15,Rock,DNE
+519,Boldore,105,105,70,Unova,50,40,20,Rock,DNE
+520,Gigalith,135,130,85,Unova,60,80,25,Rock,DNE
+521,Woobat,45,43,65,Unova,55,43,72,Psychic,Flying
+522,Swoobat,57,55,67,Unova,77,55,114,Psychic,Flying
+523,Drilbur,85,40,60,Unova,30,45,68,Ground,DNE
+524,Excadrill,135,60,110,Unova,50,65,88,Ground,Steel
+525,Audino,60,86,103,Unova,60,86,50,Normal,DNE
+526,Timburr,80,55,75,Unova,25,35,35,Fighting,DNE
+527,Gurdurr,105,85,85,Unova,40,50,40,Fighting,DNE
+528,Conkeldurr,140,95,105,Unova,55,65,45,Fighting,DNE
+529,Tympole,50,40,50,Unova,50,40,64,Water,DNE
+530,Palpitoad,65,55,75,Unova,65,55,69,Water,Ground
+531,Seismitoad,95,75,105,Unova,85,75,74,Water,Ground
+532,Throh,100,85,120,Unova,30,85,45,Fighting,DNE
+533,Sawk,125,75,75,Unova,30,75,85,Fighting,DNE
+534,Sewaddle,53,70,45,Unova,40,60,42,Bug,Grass
+535,Swadloon,63,90,55,Unova,50,80,42,Bug,Grass
+536,Leavanny,103,80,75,Unova,70,80,92,Bug,Grass
+537,Venipede,45,59,30,Unova,30,39,57,Bug,Poison
+538,Whirlipede,55,99,40,Unova,40,79,47,Bug,Poison
+539,Scolipede,100,89,60,Unova,55,69,112,Bug,Poison
+540,Cottonee,27,60,40,Unova,37,50,66,Grass,Fairy
+541,Whimsicott,67,85,60,Unova,77,75,116,Grass,Fairy
+542,Petilil,35,50,45,Unova,70,50,30,Grass,DNE
+543,Lilligant,60,75,70,Unova,110,75,90,Grass,DNE
+544,Basculin,92,65,70,Unova,80,55,98,Water,DNE
+545,Sandile,72,35,50,Unova,35,35,65,Ground,Dark
+546,Krokorok,82,45,60,Unova,45,45,74,Ground,Dark
+547,Krookodile,117,80,95,Unova,65,70,92,Ground,Dark
+548,Darumaka,90,45,70,Unova,15,45,50,Fire,DNE
+549,Darmanitan,140,55,105,Unova,30,55,95,Fire,DNE
+550,Maractus,86,67,75,Unova,106,67,60,Grass,DNE
+551,Dwebble,65,85,50,Unova,35,35,55,Bug,Rock
+552,Crustle,105,125,70,Unova,65,75,45,Bug,Rock
+553,Scraggy,75,70,50,Unova,35,70,48,Dark,Fighting
+554,Scrafty,90,115,65,Unova,45,115,58,Dark,Fighting
+555,Sigilyph,58,80,72,Unova,103,80,97,Psychic,Flying
+556,Yamask,30,85,38,Unova,55,65,30,Ghost,DNE
+557,Cofagrigus,50,145,58,Unova,95,105,30,Ghost,DNE
+558,Tirtouga,78,103,54,Unova,53,45,22,Water,Rock
+559,Carracosta,108,133,74,Unova,83,65,32,Water,Rock
+560,Archen,112,45,55,Unova,74,45,70,Rock,Flying
+561,Archeops,140,65,75,Unova,112,65,110,Rock,Flying
+562,Trubbish,50,62,50,Unova,40,62,65,Poison,DNE
+563,Garbodor,95,82,80,Unova,60,82,75,Poison,DNE
+564,Zorua,65,40,40,Unova,80,40,65,Dark,DNE
+565,Zoroark,105,60,60,Unova,120,60,105,Dark,DNE
+566,Minccino,50,40,55,Unova,40,40,75,Normal,DNE
+567,Cinccino,95,60,75,Unova,65,60,115,Normal,DNE
+568,Gothita,30,50,45,Unova,55,65,45,Psychic,DNE
+569,Gothorita,45,70,60,Unova,75,85,55,Psychic,DNE
+570,Gothitelle,55,95,70,Unova,95,110,65,Psychic,DNE
+571,Solosis,30,40,45,Unova,105,50,20,Psychic,DNE
+572,Duosion,40,50,65,Unova,125,60,30,Psychic,DNE
+573,Reuniclus,65,75,110,Unova,125,85,30,Psychic,DNE
+574,Ducklett,44,50,62,Unova,44,50,55,Water,Flying
+575,Swanna,87,63,75,Unova,87,63,98,Water,Flying
+576,Vanillite,50,50,36,Unova,65,60,44,Ice,DNE
+577,Vanillish,65,65,51,Unova,80,75,59,Ice,DNE
+578,Vanilluxe,95,85,71,Unova,110,95,79,Ice,DNE
+579,Deerling,60,50,60,Unova,40,50,75,Normal,Grass
+580,Sawsbuck,100,70,80,Unova,60,70,95,Normal,Grass
+581,Emolga,75,60,55,Unova,75,60,103,Electric,Flying
+582,Karrablast,75,45,50,Unova,40,45,60,Bug,DNE
+583,Escavalier,135,105,70,Unova,60,105,20,Bug,Steel
+584,Foongus,55,45,69,Unova,55,55,15,Grass,Poison
+585,Amoonguss,85,70,114,Unova,85,80,30,Grass,Poison
+586,Frillish,40,50,55,Unova,65,85,40,Water,Ghost
+587,Jellicent,60,70,100,Unova,85,105,60,Water,Ghost
+588,Alomomola,75,80,165,Unova,40,45,65,Water,DNE
+589,Joltik,47,50,50,Unova,57,50,65,Bug,Electric
+590,Galvantula,77,60,70,Unova,97,60,108,Bug,Electric
+591,Ferroseed,50,91,44,Unova,24,86,10,Grass,Steel
+592,Ferrothorn,94,131,74,Unova,54,116,20,Grass,Steel
+593,Klink,55,70,40,Unova,45,60,30,Steel,DNE
+594,Klang,80,95,60,Unova,70,85,50,Steel,DNE
+595,Klinklang,100,115,60,Unova,70,85,90,Steel,DNE
+596,Tynamo,55,40,35,Unova,45,40,60,Electric,DNE
+597,Eelektrik,85,70,65,Unova,75,70,40,Electric,DNE
+598,Eelektross,115,80,85,Unova,105,80,50,Electric,DNE
+599,Elgyem,55,55,55,Unova,85,55,30,Psychic,DNE
+600,Beheeyem,75,75,75,Unova,125,95,40,Psychic,DNE
+601,Litwick,30,55,50,Unova,65,55,20,Ghost,Fire
+602,Lampent,40,60,60,Unova,95,60,55,Ghost,Fire
+603,Chandelure,55,90,60,Unova,145,90,80,Ghost,Fire
+604,Axew,87,60,46,Unova,30,40,57,Dragon,DNE
+605,Fraxure,117,70,66,Unova,40,50,67,Dragon,DNE
+606,Haxorus,147,90,76,Unova,60,70,97,Dragon,DNE
+607,Cubchoo,70,40,55,Unova,60,40,40,Ice,DNE
+608,Beartic,130,80,95,Unova,70,80,50,Ice,DNE
+609,Cryogonal,50,50,80,Unova,95,135,105,Ice,DNE
+610,Shelmet,40,85,50,Unova,40,65,25,Bug,DNE
+611,Accelgor,70,40,80,Unova,100,60,145,Bug,DNE
+612,Stunfisk,66,84,109,Unova,81,99,32,Ground,Electric
+613,Mienfoo,85,50,45,Unova,55,50,65,Fighting,DNE
+614,Mienshao,125,60,65,Unova,95,60,105,Fighting,DNE
+615,Druddigon,120,90,77,Unova,60,90,48,Dragon,DNE
+616,Golett,74,50,59,Unova,35,50,35,Ground,Ghost
+617,Golurk,124,80,89,Unova,55,80,55,Ground,Ghost
+618,Pawniard,85,70,45,Unova,40,40,60,Dark,Steel
+619,Bisharp,125,100,65,Unova,60,70,70,Dark,Steel
+620,Bouffalant,110,95,95,Unova,40,95,55,Normal,DNE
+621,Rufflet,83,50,70,Unova,37,50,60,Normal,Flying
+622,Braviary,123,75,100,Unova,57,75,80,Normal,Flying
+623,Vullaby,55,75,70,Unova,45,65,60,Dark,Flying
+624,Mandibuzz,65,105,110,Unova,55,95,80,Dark,Flying
+625,Heatmor,97,66,85,Unova,105,66,65,Fire,DNE
+626,Durant,109,112,58,Unova,48,48,109,Bug,Steel
+627,Deino,65,50,52,Unova,45,50,38,Dark,Dragon
+628,Zweilous,85,70,72,Unova,65,70,58,Dark,Dragon
+629,Hydreigon,105,90,92,Unova,125,90,98,Dark,Dragon
+630,Larvesta,85,55,55,Unova,50,55,60,Bug,Fire
+631,Volcarona,60,65,85,Unova,135,105,100,Bug,Fire
+632,Cobalion,90,129,91,Unova,90,72,108,Steel,Fighting
+633,Terrakion,129,90,91,Unova,72,90,108,Rock,Fighting
+634,Virizion,90,72,91,Unova,90,129,108,Grass,Fighting
+635,Tornadus,115,70,79,Unova,125,80,111,Flying,DNE
+636,Thundurus,115,70,79,Unova,125,80,111,Electric,Flying
+637,Reshiram,120,100,100,Unova,150,120,90,Dragon,Fire
+638,Zekrom,150,120,100,Unova,120,100,90,Dragon,Electric
+639,Landorus,125,90,89,Unova,115,80,101,Ground,Flying
+640,Kyurem,130,90,125,Unova,130,90,95,Dragon,Ice
+641,Keldeo,72,90,91,Unova,129,90,108,Water,Fighting
+642,Meloetta,77,77,100,Unova,128,128,90,Normal,Psychic
+643,Genesect,120,95,71,Unova,120,95,99,Bug,Steel
+644,Chespin,61,65,56,Kalos,48,45,38,Grass,DNE
+645,Quilladin,78,95,61,Kalos,56,58,57,Grass,DNE
+646,Chesnaught,107,122,88,Kalos,74,75,64,Grass,Fighting
+647,Fennekin,45,40,40,Kalos,62,60,60,Fire,DNE
+648,Braixen,59,58,59,Kalos,90,70,73,Fire,DNE
+649,Delphox,69,72,75,Kalos,114,100,104,Fire,Psychic
+650,Froakie,56,40,41,Kalos,62,44,71,Water,DNE
+651,Frogadier,63,52,54,Kalos,83,56,97,Water,DNE
+652,Greninja,95,67,72,Kalos,103,71,122,Water,Dark
+653,Bunnelby,36,38,38,Kalos,32,36,57,Normal,DNE
+654,Diggersby,56,77,85,Kalos,50,77,78,Normal,Ground
+655,Fletchling,50,43,45,Kalos,40,38,62,Normal,Flying
+656,Fletchinder,73,55,62,Kalos,56,52,84,Fire,Flying
+657,Talonflame,81,71,78,Kalos,74,69,126,Fire,Flying
+658,Scatterbug,35,40,38,Kalos,27,25,35,Bug,DNE
+659,Spewpa,22,60,45,Kalos,27,30,29,Bug,DNE
+660,Vivillon,52,50,80,Kalos,90,50,89,Bug,Flying
+661,Litleo,50,58,62,Kalos,73,54,72,Fire,Normal
+662,Pyroar,68,72,86,Kalos,109,66,106,Fire,Normal
+663,Floette,45,47,54,Kalos,75,98,52,Fairy,DNE
+664,Florges,65,68,78,Kalos,112,154,75,Fairy,DNE
+665,Skiddo,65,48,66,Kalos,62,57,52,Grass,DNE
+666,Gogoat,100,62,123,Kalos,97,81,68,Grass,DNE
+667,Pancham,82,62,67,Kalos,46,48,43,Fighting,DNE
+668,Pangoro,124,78,95,Kalos,69,71,58,Fighting,Dark
+669,Furfrou,80,60,75,Kalos,65,90,102,Normal,DNE
+670,Espurr,48,54,62,Kalos,63,60,68,Psychic,DNE
+671,Meowstic,48,76,74,Kalos,83,81,104,Psychic,DNE
+672,Honedge,80,100,45,Kalos,35,37,28,Steel,Ghost
+673,Doublade,110,150,59,Kalos,45,49,35,Steel,Ghost
+674,Aegislash,50,140,60,Kalos,50,140,60,Steel,Ghost
+675,Spritzee,52,60,78,Kalos,63,65,23,Fairy,DNE
+676,Aromatisse,72,72,101,Kalos,99,89,29,Fairy,DNE
+677,Swirlix,48,66,62,Kalos,59,57,49,Fairy,DNE
+678,Slurpuff,80,86,82,Kalos,85,75,72,Fairy,DNE
+679,Inkay,54,53,53,Kalos,37,46,45,Dark,Psychic
+680,Malamar,92,88,86,Kalos,68,75,73,Dark,Psychic
+681,Binacle,52,67,42,Kalos,39,56,50,Rock,Water
+682,Barbaracle,105,115,72,Kalos,54,86,68,Rock,Water
+683,Skrelp,60,60,50,Kalos,60,60,30,Poison,Water
+684,Dragalge,75,90,65,Kalos,97,123,44,Poison,Dragon
+685,Clauncher,53,62,50,Kalos,58,63,44,Water,DNE
+686,Clawitzer,73,88,71,Kalos,120,89,59,Water,DNE
+687,Helioptile,38,33,44,Kalos,61,43,70,Electric,Normal
+688,Heliolisk,55,52,62,Kalos,109,94,109,Electric,Normal
+689,Tyrunt,89,77,58,Kalos,45,45,48,Rock,Dragon
+690,Tyrantrum,121,119,82,Kalos,69,59,71,Rock,Dragon
+691,Amaura,59,50,77,Kalos,67,63,46,Rock,Ice
+692,Aurorus,77,72,123,Kalos,99,92,58,Rock,Ice
+693,Sylveon,65,65,95,Kalos,110,130,60,Fairy,DNE
+694,Hawlucha,92,75,78,Kalos,74,63,118,Fighting,Flying
+695,Dedenne,58,57,67,Kalos,81,67,101,Electric,Fairy
+696,Carbink,50,150,50,Kalos,50,150,50,Rock,Fairy
+697,Goomy,50,35,45,Kalos,55,75,40,Dragon,DNE
+698,Sliggoo,75,53,68,Kalos,83,113,60,Dragon,DNE
+699,Goodra,100,70,90,Kalos,110,150,80,Dragon,DNE
+700,Klefki,80,91,57,Kalos,80,87,75,Steel,Fairy
+701,Phantump,70,48,43,Kalos,50,60,38,Ghost,Grass
+702,Trevenant,110,76,85,Kalos,65,82,56,Ghost,Grass
+703,Pumpkaboo,66,70,49,Kalos,44,55,51,Ghost,Grass
+704,Gourgeist,90,122,65,Kalos,58,75,84,Ghost,Grass
+705,Bergmite,69,85,55,Kalos,32,35,28,Ice,DNE
+706,Avalugg,117,184,95,Kalos,44,46,28,Ice,DNE
+707,Noibat,30,35,40,Kalos,45,40,55,Flying,Dragon
+708,Noivern,70,80,85,Kalos,97,80,123,Flying,Dragon
+709,Xerneas,131,95,126,Kalos,131,98,99,Fairy,DNE
+710,Yveltal,131,95,126,Kalos,131,98,99,Dark,Flying
+711,Zygarde,100,121,108,Kalos,81,95,95,Dragon,Ground
+712,Diancie,100,150,50,Kalos,100,150,50,Rock,Fairy
+713,Hoopa,110,60,80,Kalos,150,130,70,Psychic,Ghost
+714,Volcanion,110,120,80,Kalos,130,90,70,Fire,Water
+715,Rowlet,55,55,68,Alola,50,50,42,Grass,Flying
+716,Dartrix,75,75,78,Alola,70,70,52,Grass,Flying
+717,Decidueye,107,75,78,Alola,100,100,70,Grass,Ghost
+718,Litten,65,40,45,Alola,60,40,70,Fire,DNE
+719,Torracat,85,50,65,Alola,80,50,90,Fire,DNE
+720,Incineroar,115,90,95,Alola,80,90,60,Fire,Dark
+721,Popplio,54,54,50,Alola,66,56,40,Water,DNE
+722,Brionne,69,69,60,Alola,91,81,50,Water,DNE
+723,Primarina,74,74,80,Alola,126,116,60,Water,Fairy
+724,Pikipek,75,30,35,Alola,30,30,65,Normal,Flying
+725,Trumbeak,85,50,55,Alola,40,50,75,Normal,Flying
+726,Toucannon,120,75,80,Alola,75,75,60,Normal,Flying
+727,Yungoos,70,30,48,Alola,30,30,45,Normal,DNE
+728,Gumshoos,110,60,88,Alola,55,60,45,Normal,DNE
+729,Grubbin,62,45,47,Alola,55,45,46,Bug,DNE
+730,Charjabug,82,95,57,Alola,55,75,36,Bug,Electric
+731,Vikavolt,70,90,77,Alola,145,75,43,Bug,Electric
+732,Crabrawler,82,57,47,Alola,42,47,63,Fighting,DNE
+733,Crabominable,132,77,97,Alola,62,67,43,Fighting,Ice
+734,Oricorio,70,70,75,Alola,98,70,93,Fire,Flying
+735,Cutiefly,45,40,40,Alola,55,40,84,Bug,Fairy
+736,Ribombee,55,60,60,Alola,95,70,124,Bug,Fairy
+737,Rockruff,65,40,45,Alola,30,40,60,Rock,DNE
+738,Lycanroc,115,65,75,Alola,55,65,112,Rock,DNE
+739,Wishiwashi,20,20,45,Alola,25,25,40,Water,DNE
+740,Mareanie,53,62,50,Alola,43,52,45,Poison,Water
+741,Toxapex,63,152,50,Alola,53,142,35,Poison,Water
+742,Mudbray,100,70,70,Alola,45,55,45,Ground,DNE
+743,Mudsdale,125,100,100,Alola,55,85,35,Ground,DNE
+744,Dewpider,40,52,38,Alola,40,72,27,Water,Bug
+745,Araquanid,70,92,68,Alola,50,132,42,Water,Bug
+746,Fomantis,55,35,40,Alola,50,35,35,Grass,DNE
+747,Lurantis,105,90,70,Alola,80,90,45,Grass,DNE
+748,Morelull,35,55,40,Alola,65,75,15,Grass,Fairy
+749,Shiinotic,45,80,60,Alola,90,100,30,Grass,Fairy
+750,Salandit,44,40,48,Alola,71,40,77,Poison,Fire
+751,Salazzle,64,60,68,Alola,111,60,117,Poison,Fire
+752,Stufful,75,50,70,Alola,45,50,50,Normal,Fighting
+753,Bewear,125,80,120,Alola,55,60,60,Normal,Fighting
+754,Bounsweet,30,38,42,Alola,30,38,32,Grass,DNE
+755,Steenee,40,48,52,Alola,40,48,62,Grass,DNE
+756,Tsareena,120,98,72,Alola,50,98,72,Grass,DNE
+757,Comfey,52,90,51,Alola,82,110,100,Fairy,DNE
+758,Oranguru,60,80,90,Alola,90,110,60,Normal,Psychic
+759,Passimian,120,90,100,Alola,40,60,80,Fighting,DNE
+760,Wimpod,35,40,25,Alola,20,30,80,Bug,Water
+761,Golisopod,125,140,75,Alola,60,90,40,Bug,Water
+762,Sandygast,55,80,55,Alola,70,45,15,Ghost,Ground
+763,Palossand,75,110,85,Alola,100,75,35,Ghost,Ground
+764,Pyukumuku,60,130,55,Alola,30,130,5,Water,DNE
+765,Silvally,95,95,95,Alola,95,95,95,Normal,DNE
+766,Minior,60,100,60,Alola,60,100,60,Rock,Flying
+767,Komala,115,65,65,Alola,75,95,65,Normal,DNE
+768,Turtonator,78,135,60,Alola,91,85,36,Fire,Dragon
+769,Togedemaru,98,63,65,Alola,40,73,96,Electric,Steel
+770,Mimikyu,90,80,55,Alola,50,105,96,Ghost,Fairy
+771,Bruxish,105,70,68,Alola,70,70,92,Water,Psychic
+772,Drampa,60,85,78,Alola,135,91,36,Normal,Dragon
+773,Dhelmise,131,100,70,Alola,86,90,40,Ghost,Grass
+774,Jangmo-o,55,65,45,Alola,45,45,45,Dragon,DNE
+775,Hakamo-o,75,90,55,Alola,65,70,65,Dragon,Fighting
+776,Kommo-o,110,125,75,Alola,100,105,85,Dragon,Fighting
+777,Cosmog,29,31,43,Alola,29,31,37,Psychic,DNE
+778,Cosmoem,29,131,43,Alola,29,131,37,Psychic,DNE
+779,Solgaleo,137,107,137,Alola,113,89,97,Psychic,Steel
+780,Lunala,113,89,137,Alola,137,107,97,Psychic,Ghost
+781,Nihilego,53,47,109,Alola,127,131,103,Rock,Poison
+782,Buzzwole,139,139,107,Alola,53,53,79,Bug,Fighting
+783,Pheromosa,137,37,71,Alola,137,37,151,Bug,Fighting
+784,Xurkitree,89,71,83,Alola,173,71,83,Electric,DNE
+785,Celesteela,101,103,97,Alola,107,101,61,Steel,Flying
+786,Kartana,181,131,59,Alola,59,31,109,Grass,Steel
+787,Guzzlord,101,53,223,Alola,97,53,43,Dark,Dragon
+788,Necrozma,107,101,97,Alola,127,89,79,Psychic,DNE
+789,Magearna,95,115,80,Alola,130,115,65,Steel,Fairy
+790,Marshadow,125,80,90,Alola,90,90,125,Fighting,Ghost
+791,Poipole,73,67,67,Alola,73,67,73,Poison,DNE
+792,Naganadel,73,73,73,Alola,127,73,121,Poison,Dragon
+793,Stakataka,131,211,61,Alola,53,101,13,Rock,Steel
+794,Blacephalon,127,53,53,Alola,151,79,107,Fire,Ghost
+795,Zeraora,112,75,88,Alola,102,80,143,Electric,DNE
+796,Meltan,65,65,46,Alola,55,35,34,Steel,DNE
+797,Melmetal,143,143,135,Alola,80,65,34,Steel,DNE
+798,Grookey,65,50,50,Galar,40,40,65,Grass,DNE
+799,Thwackey,85,70,70,Galar,55,60,80,Grass,DNE
+800,Rillaboom,125,90,100,Galar,60,70,85,Grass,DNE
+801,Scorbunny,71,40,50,Galar,40,40,69,Fire,DNE
+802,Raboot,86,60,65,Galar,55,60,94,Fire,DNE
+803,Cinderace,116,75,80,Galar,65,75,119,Fire,DNE
+804,Sobble,40,40,50,Galar,70,40,70,Water,DNE
+805,Drizzile,60,55,65,Galar,95,55,90,Water,DNE
+806,Inteleon,85,65,70,Galar,125,65,120,Water,DNE
+807,Skwovet,55,55,70,Galar,35,35,25,Normal,DNE
+808,Greedent,95,95,120,Galar,55,75,20,Normal,DNE
+809,Rookidee,47,35,38,Galar,33,35,57,Flying,DNE
+810,Corvisquire,67,55,68,Galar,43,55,77,Flying,DNE
+811,Corviknight,87,105,98,Galar,53,85,67,Flying,Steel
+812,Blipbug,20,20,25,Galar,25,45,45,Bug,DNE
+813,Dottler,35,80,50,Galar,50,90,30,Bug,Psychic
+814,Orbeetle,45,110,60,Galar,80,120,90,Bug,Psychic
+815,Nickit,28,28,40,Galar,47,52,50,Dark,DNE
+816,Thievul,58,58,70,Galar,87,92,90,Dark,DNE
+817,Gossifleur,40,60,40,Galar,40,60,10,Grass,DNE
+818,Eldegoss,50,90,60,Galar,80,120,60,Grass,DNE
+819,Wooloo,40,55,42,Galar,40,45,48,Normal,DNE
+820,Dubwool,80,100,72,Galar,60,90,88,Normal,DNE
+821,Chewtle,64,50,50,Galar,38,38,44,Water,DNE
+822,Drednaw,115,90,90,Galar,48,68,74,Water,Rock
+823,Yamper,45,50,59,Galar,40,50,26,Electric,DNE
+824,Boltund,90,60,69,Galar,90,60,121,Electric,DNE
+825,Rolycoly,40,50,30,Galar,40,50,30,Rock,DNE
+826,Carkol,60,90,80,Galar,60,70,50,Rock,Fire
+827,Coalossal,80,120,110,Galar,80,90,30,Rock,Fire
+828,Applin,40,80,40,Galar,40,40,20,Grass,Dragon
+829,Flapple,110,80,70,Galar,95,60,70,Grass,Dragon
+830,Appletun,85,80,110,Galar,100,80,30,Grass,Dragon
+831,Silicobra,57,75,52,Galar,35,50,46,Ground,DNE
+832,Sandaconda,107,125,72,Galar,65,70,71,Ground,DNE
+833,Cramorant,85,55,70,Galar,85,95,85,Flying,Water
+834,Arrokuda,63,40,41,Galar,40,30,66,Water,DNE
+835,Barraskewda,123,60,61,Galar,60,50,136,Water,DNE
+836,Toxel,38,35,40,Galar,54,35,40,Electric,Poison
+837,Toxtricity,98,70,75,Galar,114,70,75,Electric,Poison
+838,Sizzlipede,65,45,50,Galar,50,50,45,Fire,Bug
+839,Centiskorch,115,65,100,Galar,90,90,65,Fire,Bug
+840,Clobbopus,68,60,50,Galar,50,50,32,Fighting,DNE
+841,Grapploct,118,90,80,Galar,70,80,42,Fighting,DNE
+842,Sinistea,45,45,40,Galar,74,54,50,Ghost,DNE
+843,Polteageist,65,65,60,Galar,134,114,70,Ghost,DNE
+844,Hatenna,30,45,42,Galar,56,53,39,Psychic,DNE
+845,Hattrem,40,65,57,Galar,86,73,49,Psychic,DNE
+846,Hatterene,90,95,57,Galar,136,103,29,Psychic,Fairy
+847,Impidimp,45,30,45,Galar,55,40,50,Dark,Fairy
+848,Morgrem,60,45,65,Galar,75,55,70,Dark,Fairy
+849,Grimmsnarl,120,65,95,Galar,95,75,60,Dark,Fairy
+850,Obstagoon,90,101,93,Galar,60,81,95,Dark,Normal
+851,Perrserker,110,100,70,Galar,50,60,50,Steel,DNE
+852,Cursola,95,50,60,Galar,145,130,30,Ghost,DNE
+853,Runerigus,95,145,58,Galar,50,105,30,Ground,Ghost
+854,Milcery,40,40,45,Galar,50,61,34,Fairy,DNE
+855,Alcremie,60,75,65,Galar,110,121,64,Fairy,DNE
+856,Falinks,100,100,65,Galar,70,60,75,Fighting,DNE
+857,Pincurchin,101,95,48,Galar,91,85,15,Electric,DNE
+858,Snom,25,35,30,Galar,45,30,20,Ice,Bug
+859,Frosmoth,65,60,70,Galar,125,90,65,Ice,Bug
+860,Stonjourner,125,135,100,Galar,20,20,70,Rock,DNE
+861,Eiscue,80,110,75,Galar,65,90,50,Ice,DNE
+862,Indeedee,65,55,60,Galar,105,95,95,Psychic,Normal
+863,Morpeko,95,58,58,Galar,70,58,97,Electric,Dark
+864,Cufant,80,49,72,Galar,40,49,40,Steel,DNE
+865,Copperajah,130,69,122,Galar,80,69,30,Steel,DNE
+866,Dracozolt,100,90,90,Galar,80,70,75,Electric,Dragon
+867,Arctozolt,100,90,90,Galar,90,80,55,Electric,Ice
+868,Dracovish,90,100,90,Galar,70,80,75,Water,Dragon
+869,Arctovish,90,100,90,Galar,80,90,55,Water,Ice
+870,Duraludon,95,115,70,Galar,120,50,85,Steel,Dragon
+871,Dreepy,60,30,28,Galar,40,30,82,Dragon,Ghost
+872,Drakloak,80,50,68,Galar,60,50,102,Dragon,Ghost
+873,Dragapult,120,75,88,Galar,100,75,142,Dragon,Ghost
+874,Zacian,120,115,92,Galar,80,115,138,Fairy,DNE
+875,Zamazenta,120,115,92,Galar,80,115,138,Fighting,DNE
+876,Eternatus,85,95,140,Galar,145,95,130,Poison,Dragon
+877,Kubfu,90,60,60,Galar,53,50,72,Fighting,DNE
+878,Urshifu,130,100,100,Galar,63,60,97,Fighting,Dark
+879,Zarude,120,105,105,Galar,70,95,105,Dark,Grass
+880,Regieleki,100,50,80,Galar,100,50,200,Electric,DNE
+881,Regidrago,100,50,200,Galar,100,50,80,Dragon,DNE
+882,Glastrier,145,130,100,Galar,65,110,30,Ice,DNE
+883,Spectrier,65,60,100,Galar,145,80,130,Ghost,DNE
+884,Calyrex,80,80,100,Galar,80,80,80,Psychic,Grass
+885,Wyrdeer,105,72,103,Galar,105,75,65,Normal,Psychic
+886,Kleavor,130,95,70,Galar,45,75,85,Bug,Rock
+887,Ursaluna,140,105,130,Galar,45,80,50,Ground,Normal
+888,Basculegion,112,65,120,Galar,80,75,78,Water,Ghost
+889,Sneasler,130,60,80,Galar,40,80,120,Poison,Fighting
+890,Overqwil,115,95,85,Galar,65,65,85,Dark,Poison
+891,Enamorus,115,70,74,Galar,135,80,106,Fairy,Flying
+892,Sprigatito,61,54,40,Paldea,45,45,65,Grass,DNE
+893,Floragato,80,63,61,Paldea,60,63,83,Grass,DNE
+894,Meowscarada,110,70,76,Paldea,81,70,123,Grass,Dark
+895,Fuecoco,45,59,67,Paldea,63,40,36,Fire,DNE
+896,Crocalor,55,78,81,Paldea,90,58,49,Fire,DNE
+897,Skeledirge,75,100,104,Paldea,110,75,66,Fire,Ghost
+898,Quaxly,65,45,55,Paldea,50,45,50,Water,DNE
+899,Quaxwell,85,65,70,Paldea,65,60,65,Water,DNE
+900,Quaquaval,120,80,85,Paldea,85,75,85,Water,Fighting
+901,Lechonk,45,40,54,Paldea,35,45,35,Normal,DNE
+902,Oinkologne,100,75,110,Paldea,59,80,65,Normal,DNE
+903,Tarountula,41,45,35,Paldea,29,40,20,Bug,DNE
+904,Spidops,79,92,60,Paldea,52,86,35,Bug,DNE
+905,Nymble,46,40,33,Paldea,21,25,45,Bug,DNE
+906,Lokix,102,78,71,Paldea,52,55,92,Bug,Dark
+907,Pawmi,50,20,45,Paldea,40,25,60,Electric,DNE
+908,Pawmo,75,40,60,Paldea,50,40,85,Electric,Fighting
+909,Pawmot,115,70,70,Paldea,70,60,105,Electric,Fighting
+910,Tandemaus,50,45,50,Paldea,40,45,75,Normal,DNE
+911,Maushold,75,70,74,Paldea,65,75,111,Normal,DNE
+912,Fidough,55,70,37,Paldea,30,55,65,Fairy,DNE
+913,Dachsbun,80,115,57,Paldea,50,80,95,Fairy,DNE
+914,Smoliv,35,45,41,Paldea,58,51,30,Grass,Normal
+915,Dolliv,53,60,52,Paldea,78,78,33,Grass,Normal
+916,Arboliva,69,90,78,Paldea,125,109,39,Grass,Normal
+917,Squawkabilly,96,51,82,Paldea,45,51,92,Normal,Flying
+918,Nacli,55,75,55,Paldea,35,35,25,Rock,DNE
+919,Naclstack,60,100,60,Paldea,35,65,35,Rock,DNE
+920,Garganacl,100,130,100,Paldea,45,90,35,Rock,DNE
+921,Charcadet,50,40,40,Paldea,50,40,35,Fire,DNE
+922,Armarouge,60,100,85,Paldea,125,80,75,Fire,Psychic
+923,Ceruledge,125,80,75,Paldea,60,100,85,Fire,Ghost
+924,Tadbulb,31,41,61,Paldea,59,35,45,Electric,DNE
+925,Bellibolt,64,91,109,Paldea,103,83,45,Electric,DNE
+926,Wattrel,40,35,40,Paldea,55,40,70,Electric,Flying
+927,Kilowattrel,70,60,70,Paldea,105,60,125,Electric,Flying
+928,Maschiff,78,60,60,Paldea,40,51,51,Dark,DNE
+929,Mabosstiff,120,90,80,Paldea,60,70,85,Dark,DNE
+930,Shroodle,65,35,40,Paldea,40,35,75,Poison,Normal
+931,Grafaiai,95,65,63,Paldea,80,72,110,Poison,Normal
+932,Bramblin,65,30,40,Paldea,45,35,60,Grass,Ghost
+933,Brambleghast,115,70,55,Paldea,80,70,90,Grass,Ghost
+934,Toedscool,40,35,40,Paldea,50,100,70,Ground,Grass
+935,Toedscruel,70,65,80,Paldea,80,120,100,Ground,Grass
+936,Klawf,100,115,70,Paldea,35,55,75,Rock,DNE
+937,Capsakid,62,40,50,Paldea,62,40,50,Grass,DNE
+938,Scovillain,108,65,65,Paldea,108,65,75,Grass,Fire
+939,Rellor,50,60,41,Paldea,31,58,30,Bug,DNE
+940,Rabsca,50,85,75,Paldea,115,100,45,Bug,Psychic
+941,Flittle,35,30,30,Paldea,55,30,75,Psychic,DNE
+942,Espathra,60,60,95,Paldea,101,60,105,Psychic,DNE
+943,Tinkatink,45,45,50,Paldea,35,64,58,Fairy,Steel
+944,Tinkatuff,55,55,65,Paldea,45,82,78,Fairy,Steel
+945,Tinkaton,75,77,85,Paldea,70,105,94,Fairy,Steel
+946,Wiglett,55,25,10,Paldea,35,25,95,Water,DNE
+947,Wugtrio,100,50,35,Paldea,50,70,120,Water,DNE
+948,Bombirdier,103,85,70,Paldea,60,85,82,Flying,Dark
+949,Finizen,45,40,70,Paldea,45,40,75,Water,DNE
+950,Palafin,70,72,100,Paldea,53,62,100,Water,DNE
+951,Varoom,70,63,45,Paldea,30,45,47,Steel,Poison
+952,Revavroom,119,90,80,Paldea,54,67,90,Steel,Poison
+953,Cyclizar,95,65,70,Paldea,85,65,121,Dragon,Normal
+954,Orthworm,85,145,70,Paldea,60,55,65,Steel,DNE
+955,Glimmet,35,42,48,Paldea,105,60,60,Rock,Poison
+956,Glimmora,55,90,83,Paldea,130,81,86,Rock,Poison
+957,Greavard,61,60,50,Paldea,30,55,34,Ghost,DNE
+958,Houndstone,101,100,72,Paldea,50,97,68,Ghost,DNE
+959,Flamigo,115,74,82,Paldea,75,64,90,Flying,Fighting
+960,Cetoddle,68,45,108,Paldea,30,40,43,Ice,DNE
+961,Cetitan,113,65,170,Paldea,45,55,73,Ice,DNE
+962,Veluza,102,73,90,Paldea,78,65,70,Water,Psychic
+963,Dondozo,100,115,150,Paldea,65,65,35,Water,DNE
+964,Tatsugiri,50,60,68,Paldea,120,95,82,Dragon,Water
+965,Annihilape,115,80,110,Paldea,50,90,90,Fighting,Ghost
+966,Clodsire,75,60,130,Paldea,45,100,20,Poison,Ground
+967,Farigiraf,90,70,120,Paldea,110,70,60,Normal,Psychic
+968,Dudunsparce,100,80,125,Paldea,85,75,55,Normal,DNE
+969,Kingambit,135,120,100,Paldea,60,85,50,Dark,Steel
+970,Frigibax,75,45,65,Paldea,35,45,55,Dragon,Ice
+971,Arctibax,95,66,90,Paldea,45,65,62,Dragon,Ice
+972,Baxcalibur,145,92,115,Paldea,75,86,87,Dragon,Ice
+973,Gimmighoul,30,70,45,Paldea,75,70,10,Ghost,DNE
+974,Gholdengo,60,95,87,Paldea,133,91,84,Steel,Ghost
+975,Wo-Chien,85,100,85,Paldea,95,135,70,Dark,Grass
+976,Chien-Pao,120,80,80,Paldea,90,65,135,Dark,Ice
+977,Ting-Lu,110,125,155,Paldea,55,80,45,Dark,Ground
+978,Chi-Yu,80,80,55,Paldea,135,120,100,Dark,Fire
+979,Koraidon,135,115,100,Paldea,85,100,135,Fighting,Dragon
+980,Miraidon,85,100,100,Paldea,135,115,135,Electric,Dragon
diff --git a/sum23/projects/p4/project.py b/sum23/projects/p4/project.py
new file mode 100644
index 0000000000000000000000000000000000000000..9049467939630c4f655b528b893019bce3d57748
--- /dev/null
+++ b/sum23/projects/p4/project.py
@@ -0,0 +1,85 @@
+__pokemon__= {}
+__effectiveness__ = {}
+
+def __init__():
+    """This function loads the data from 'pokemon_stats.csv' and 'type_effectiveness_stats.csv'. This function runs automatically, when the module is imported"""
+    import csv
+    f = open('pokemon_stats.csv', encoding='utf-8')
+    raw_pkmn_data = list(csv.reader(f))
+    f.close()
+    pkmn_header = raw_pkmn_data[0]
+    pkmn_header.pop(0)
+    raw_pkmn_data = raw_pkmn_data[1:]
+    for pkmn_data in raw_pkmn_data:
+        pkmn_data.pop(0)
+        pkmn = {}
+        for i in range(len(pkmn_header)):
+            pkmn[pkmn_header[i]] = pkmn_data[i]
+        for stat in pkmn:
+            if stat in ['HP', 'Attack', 'Defense', 'Sp. Atk', 'Sp. Def', 'Speed']:
+                pkmn[stat] = int(pkmn[stat])
+        __pokemon__[pkmn["Name"]] = pkmn
+
+    f = open('type_effectiveness_stats.csv', encoding='utf-8')
+    raw_type_data = list(csv.reader(f))
+    f.close()
+    type_header = raw_type_data[0]
+    raw_type_data = raw_type_data[1:]
+    for type1 in type_header[1:]:
+        __effectiveness__[type1] = {}
+    for row in raw_type_data:
+        type2 = row[0]
+        for i in range(1, len(row)):
+            type1 = type_header[i]
+            __effectiveness__[type1][type2] = float(row[i])
+
+def print_stats(pkmn):
+    """print_stats(pkmn) prints all the statistics of the Pokémon with the name 'pkmn' """
+    try:
+        for stat in __pokemon__[pkmn]:
+            if not (stat == 'Type 2' and __pokemon__[pkmn][stat] == "DNE"):
+                print(stat, ": ", __pokemon__[pkmn][stat])
+    except KeyError:
+        print(pkmn, " not found in the file")
+
+def get_region(pkmn):
+    """get_region(pkmn) returns the region of the Pokémon with the name 'pkmn' """
+    return __pokemon__[pkmn]['Region']
+
+def get_type1(pkmn):
+    """get_type1(pkmn) returns Type 1 of the Pokémon with the name 'pkmn' """
+    return __pokemon__[pkmn]['Type 1']
+
+def get_type2(pkmn):
+    """get_type2(pkmn) returns Type 2 of the Pokémon with the name 'pkmn' """
+    return __pokemon__[pkmn]['Type 2']
+
+def get_hp(pkmn):
+    """get_hp(pkmn) returns the HP of the Pokémon with the name 'pkmn' """
+    return __pokemon__[pkmn]['HP']
+
+def get_attack(pkmn):
+    """get_attack(pkmn) returns the Attack of the Pokémon with the name 'pkmn' """
+    return __pokemon__[pkmn]['Attack']
+
+def get_defense(pkmn):
+    """get_defense(pkmn) returns the Defense of the Pokémon with the name 'pkmn' """
+    return __pokemon__[pkmn]['Defense']
+
+def get_sp_atk(pkmn):
+    """get_sp_atk(pkmn) returns the Special Attack of the Pokémon with the name 'pkmn' """
+    return __pokemon__[pkmn]['Sp. Atk']
+
+def get_sp_def(pkmn):
+    """get_sp_def(pkmn) returns the Special Defense of the Pokémon with the name 'pkmn' """
+    return __pokemon__[pkmn]['Sp. Def']
+
+def get_speed(pkmn):
+    """get_speed(pkmn) returns the Speed of the Pokémon with the name 'pkmn' """
+    return __pokemon__[pkmn]['Speed']
+
+def get_type_effectiveness(attacker_type, defender_type):
+    """get_type_effectiveness(attacker_type, defender_type) returns the effectiveness of attacker's type against defender's type"""
+    return __effectiveness__[attacker_type][defender_type]
+
+__init__()
diff --git a/sum23/projects/p4/rubric.md b/sum23/projects/p4/rubric.md
new file mode 100644
index 0000000000000000000000000000000000000000..f8f5536d7439560ccd477dc9aae0a2950604f823
--- /dev/null
+++ b/sum23/projects/p4/rubric.md
@@ -0,0 +1,122 @@
+# Project 4 (P4) grading rubric 
+
+## Code reviews
+
+- A TA / grader will be reviewing your code after the deadline.
+- They will make deductions based on the Rubric provided below.
+- To ensure that you don't lose any points in code review, you must review the rubric and make sure that you have followed the instructions provided in the project correctly.
+- Incorrect function logic loses points in manual code review - for example, incorrectly ordered branches of a conditional statement or  two different incorrectly ordered conditionals (ex: battle function definition)
+
+## Rubric
+
+### General guidelines:
+
+- Did not save the notebook file prior to running the cell containing "export". We cannot see your output if you do not save before generating the zip file. This deduction will become stricter for future projects. (-1)
+- `import math` is not written at top of the notebook (-1)
+- Used concepts not covered in class yet (-1)
+- One or more functions are defined multiple times in the project (-4)
+
+### Question specific guidelines:
+
+- Function 1: damage(attack,defender)
+	- `damage` function logic is incorrect (-4)
+
+- Q1 deductions
+	- `damage_feraligatr_aipom` answer is hardcoded (-3)
+	- `Feraligatr` and `Aipom` are not passed as arguments to `damage` function (-2)
+
+- Q2 deductions
+	- `damage_lucario_klawf` answer is hardcoded (-3)
+	- `Lucario` and `Klawf` are not passed as arguments to `damage` function (-2)
+
+
+- Function 2: type_bonus(attack_type, defender)
+	- `type_bonus` function logic is incorrect (-4)
+
+- Q3 deductions
+	- `bonus_poison_rayquaza` answer is hardcoded (-3)
+	- `Poison` and `Rayquaza` are not passed as arguments to `type_bonus` function (-2)
+
+- Q4 deductions
+	- `bonus_bug_mew` answer is hardcoded (-3)
+	- `Bug` and `Mew` are not passed as arguments to `type_bonus` function (-2)
+
+
+- Function 3: effective_damage(attacker, defender)
+	- `effective_damage`/`get_num_types` function logic is incorrect (-6)
+
+- Q5 deductions
+	- `eff_damage_pikachu_weedle` answer is hardcoded (-3)
+	- `Pikachu` and `Weedle` are not passed as arguments to `effective_damage` function (-2)
+
+- Q6 deductions
+	- `eff_damage_cloyster_lapras` answer is hardcoded (-3)
+	- `Cloyster` and `Lapras` are not passed as arguments to `effective_damage` function (-2)
+
+- Q7 deductions
+	- `eff_damage_charizard_wailmer` answer is hardcoded (-3)
+	- `Charizard` and `Wailmer` are not passed as arguments to `effective_damage` function (-2)
+
+
+- Function 4: num_hits(attacker, defender)
+	- `num_hits` function logic is incorrect (-4)
+
+- Q8 deductions
+	- `hits_garchomp_golem` answer is hardcoded (-3)
+	- `Golem` and `Garchomp` are not passed as arguments to `num_hits` function (-2)
+
+- Q9 deductions
+	- `hits_mew_shinx` answer is hardcoded (-3)
+	- `Shinx` and `Mew` are not passed as arguments to `num_hits` function (-2)
+
+
+- Function 5: battle(pkmn1, pkmn2)
+	- `battle` function logic is incorrect (-7)
+
+- Q10 deductions
+	- `battle_haunter_rhydon` answer is hardcoded (-4)
+	- `Haunter` and `Rhydon` are not passed as arguments to `battle` function (-2)
+
+- Q11 deductions
+	- `battle_espeon_raichu` answer is hardcoded (-4)
+	- `Espeon` and `Raichu` are not passed as arguments to `battle` function (-2)
+
+- Q12 deductions
+	- `battle_garchomp_hydreigon` answer is hardcoded (-4)
+	- `Garchomp` and `Hydreigon` are not passed as arguments to `battle` function (-2)
+
+- Q13 deductions
+	- `battle_gulpin_mudkip` answer is hardcoded (-4)
+	- `Gulpin` and `Mudkip` are not passed as arguments to `battle` function (-2)
+
+- Q14 deductions
+	- `battle_miraidon_eevee` answer is hardcoded (-4)
+	- `Miraidon` and `Eevee` are not passed as arguments to `battle` function (-2)
+
+- Q15 deductions
+	- `battle_onix_hydreigon` answer is hardcoded (-4)
+	- `Onix` and `Hydreigon` are not passed as arguments to `battle` function (-2)
+
+- Q16 deductions
+	- `battle_chien_pao_tauros` answer is hardcoded (-4)
+	- `Chien-Pao` and `Tauros` are not passed as arguments to `battle` function (-2)
+
+
+- Function 6: friendship_score(pkmn1, pkmn2)
+	- `friendship_score` function logic is incorrect (-4)
+
+- Q17 deductions
+	- `friendship_aipom_zekrom` answer is hardcoded (-4)
+	- `Aipom` and `Zekrom` are not passed as arguments to `friendship_score` function (-2)
+
+- Q18 deductions
+	- `friendship_voltorb_thundurus` answer is hardcoded (-4)
+	- `Voltorb` and `Thundurus` are not passed as arguments to `friendship_score` function (-2)
+
+- Q19 deductions
+	- `friendship_weedle_kakuna` answer is hardcoded (-4)
+	- `Weedle` and `Kakuna` are not passed as arguments to `friendship_score` function (-2)
+
+- Q20 deductions
+	- `friendship_shinx_shinx` answer is hardcoded (-4)
+	- `Shinx` and `Shinx` are not passed as arguments to `friendship_score` function (-2)
diff --git a/sum23/projects/p4/type_effectiveness_stats.csv b/sum23/projects/p4/type_effectiveness_stats.csv
new file mode 100644
index 0000000000000000000000000000000000000000..88ef8fa3517506241ce3682310d6c13ab825fa7e
--- /dev/null
+++ b/sum23/projects/p4/type_effectiveness_stats.csv
@@ -0,0 +1,19 @@
+,Normal,Fire,Water,Electric,Grass,Ice,Fighting,Poison,Ground,Flying,Psychic,Bug,Rock,Ghost,Dragon,Dark,Steel,Fairy
+Normal,1.0,1.0,1.0,1.0,1.0,1.0,2.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0
+Fire,1.0,0.5,2.0,1.0,0.5,0.5,1.0,1.0,2.0,1.0,1.0,0.5,2.0,1.0,1.0,1.0,0.5,0.5
+Water,1.0,0.5,0.5,2.0,2.0,0.5,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.5,1.0
+Electric,1.0,1.0,1.0,0.5,1.0,1.0,1.0,1.0,2.0,0.5,1.0,1.0,1.0,1.0,1.0,1.0,0.5,1.0
+Grass,1.0,2.0,0.5,0.5,0.5,2.0,1.0,2.0,0.5,2.0,1.0,2.0,1.0,1.0,1.0,1.0,1.0,1.0
+Ice,1.0,2.0,1.0,1.0,1.0,0.5,2.0,1.0,1.0,1.0,1.0,1.0,2.0,1.0,1.0,1.0,2.0,1.0
+Fighting,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,2.0,2.0,0.5,0.5,1.0,1.0,0.5,1.0,2.0
+Poison,1.0,1.0,1.0,1.0,0.5,1.0,0.5,0.5,2.0,1.0,2.0,0.5,1.0,1.0,1.0,1.0,1.0,0.5
+Ground,1.0,1.0,2.0,0.0,2.0,2.0,1.0,0.5,1.0,1.0,1.0,1.0,0.5,1.0,1.0,1.0,1.0,1.0
+Flying,1.0,1.0,1.0,2.0,0.5,2.0,0.5,1.0,0.0,1.0,1.0,0.5,2.0,1.0,1.0,1.0,1.0,1.0
+Psychic,1.0,1.0,1.0,1.0,1.0,1.0,0.5,1.0,1.0,1.0,0.5,2.0,1.0,2.0,1.0,2.0,1.0,1.0
+Bug,1.0,2.0,1.0,1.0,0.5,1.0,0.5,1.0,0.5,2.0,1.0,1.0,2.0,1.0,1.0,1.0,1.0,1.0
+Rock,0.5,0.5,2.0,1.0,2.0,1.0,2.0,0.5,2.0,0.5,1.0,1.0,1.0,1.0,1.0,1.0,2.0,1.0
+Ghost,0.0,1.0,1.0,1.0,1.0,1.0,0.0,0.5,1.0,1.0,1.0,0.5,1.0,2.0,1.0,2.0,1.0,1.0
+Dragon,1.0,0.5,0.5,0.5,0.5,2.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,2.0,1.0,1.0,2.0
+Dark,1.0,1.0,1.0,1.0,1.0,1.0,2.0,1.0,1.0,1.0,0.0,2.0,1.0,0.5,1.0,0.5,1.0,2.0
+Steel,0.5,2.0,1.0,1.0,0.5,0.5,2.0,0.0,2.0,0.5,0.5,0.5,0.5,1.0,0.5,1.0,0.5,0.5
+Fairy,1.0,1.0,1.0,1.0,1.0,1.0,0.5,2.0,1.0,1.0,1.0,0.5,1.0,1.0,0.0,0.5,2.0,1.0