From 86f79cdf424c5e053510099595a18bb188008fd7 Mon Sep 17 00:00:00 2001
From: ashwinmaran <amaran@wisc.edu>
Date: Tue, 7 Mar 2023 19:18:25 -0600
Subject: [PATCH] add p7 and lab-p7

---
 lab-p7/README.md                 |   81 +
 lab-p7/images/gradescope.png     |  Bin 0 -> 153964 bytes
 lab-p7/practice.ipynb            | 2315 +++++++++++
 lab-p7/practice_test.py          | 2429 ++++++++++++
 lab-p7/water_accessibility.csv   |  303 ++
 p7/README.md                     |   41 +
 p7/images/add_group_member.png   |  Bin 0 -> 160694 bytes
 p7/images/autograder_success.png |  Bin 0 -> 42243 bytes
 p7/images/gradescope.png         |  Bin 0 -> 153964 bytes
 p7/p7.ipynb                      | 2471 ++++++++++++
 p7/p7_test.py                    | 6205 ++++++++++++++++++++++++++++++
 p7/rubric.md                     |  124 +
 p7/water_accessibility.csv       |  303 ++
 13 files changed, 14272 insertions(+)
 create mode 100644 lab-p7/README.md
 create mode 100644 lab-p7/images/gradescope.png
 create mode 100644 lab-p7/practice.ipynb
 create mode 100644 lab-p7/practice_test.py
 create mode 100644 lab-p7/water_accessibility.csv
 create mode 100644 p7/README.md
 create mode 100644 p7/images/add_group_member.png
 create mode 100644 p7/images/autograder_success.png
 create mode 100644 p7/images/gradescope.png
 create mode 100644 p7/p7.ipynb
 create mode 100644 p7/p7_test.py
 create mode 100644 p7/rubric.md
 create mode 100644 p7/water_accessibility.csv

diff --git a/lab-p7/README.md b/lab-p7/README.md
new file mode 100644
index 0000000..2ec096b
--- /dev/null
+++ b/lab-p7/README.md
@@ -0,0 +1,81 @@
+# Lab 7: Dictionaries
+
+In this lab, you will analyze water accessibility data using dictionaries.
+
+### Corrections/Clarifications
+
+None yet
+
+**Find any issues?** Report to us:
+
+- Srinath Namburi <sgnamburi@wisc.edu>
+- Karthik Suresh <ksuresh6@wisc.edu>
+
+------------------------------
+
+## Learning Objectives
+
+In this lab, you will practice how to...
+* Access and utilize data in CSV files
+* Deal with messy real-world datasets
+* Use dictionaries to organize data into key, value pairs
+
+------------------------------
+## Note on Academic Misconduct
+
+You may do these lab exercises only with your project partner; you are not allowed to start
+working on Lab-P7 with one person, then do the project with a different partner. Now may be a
+good time to review [our course policies](https://cs220.cs.wisc.edu/s23/syllabus.html).
+
+
+## Project Partner
+
+We strongly recommend students find a project partner. Pair programming is a great way to learn
+from a fellow student. Project difficulty increases exponentially in this course. Finding a project
+partner early on during the semester is a good idea.
+
+If you are still looking for a project partner, take a moment to ask around the room if anyone
+would like to partner with you on this project. Then you can work with them on this lab and the
+project.
+
+
+------------------------------
+## Segment 1: Setup
+
+Create a `lab-p7` directory and download the following files into the `lab-p7` directory.
+
+* `water_accessibility.csv`
+* `practice.ipynb`
+* `practice_test.py`
+
+If you found your `.csv` file is downloaded as a `.txt` file (e.g. `water_accessibility.txt` instead of `water_accessibility.csv`), run `mv water_accessibility.txt water_accessibility.csv` from your Powershell/Terminal to change the extension of the file into `.csv` file manually. All the data that we need for p7 is stored in `water_accessibility.csv`
+
+To start, familiarize yourself with the dataset (`water_accessibility.csv`). Examine its contents using Microsoft Excel, Numbers (Mac) or any other spreadsheet viewing software.
+
+------------------------------
+
+## Segments 2: Using dictionaries to analyze the data
+
+You will be finishing the rest of your lab on `practice.ipynb`. Run the command `jupyter notebook` from your Terminal/PowerShell window.
+Remember not to close this
+Terminal/PowerShell window while Jupyter is running, and open a new Terminal/PowerShell
+window if necessary.
+
+**Note**: For p7, you will be working on `p7.ipynb`, which is very similar to `practice.ipynb`. We
+strongly recommend that you finish working on this notebook during the lab, so you can ask
+your TA/PM any questions about the notebook that may arise.
+
+**Note**: Unlike `p7.ipynb`, you do **not** have to submit `practice.ipynb`. This notebook is solely
+for your practice and preparation for p7.
+
+------------------------------
+
+## Segment 3: Otter tests check for project submission
+
+This segment is informational only and has no tasks. Your work on `p7.ipynb` is not complete when you submit the project on Gradescope. You **must** review the project's rubric and make sure that you have followed the directions provided in the project to solve the questions. The rubric is meant to reinforce your understanding of the project's directions. The hidden tests on the autograder will be making deductions as per the rubric. If you feel that the autograder has falsely identified your code as incorrect, make a regrade request, so that TAs and graders manually review your code to confirm whether the deduction is appropriate.
+
+------------------------------
+
+## Project 7
+
+You can now get started with [p7]((https://git.doit.wisc.edu/cdis/cs/courses/cs220/cs220-s23-projects/-/tree/main/p7)). **You may use any helper functions created here in project p7**. Remember to only work with p7 with your partner from this point on. Have fun!
diff --git a/lab-p7/images/gradescope.png b/lab-p7/images/gradescope.png
new file mode 100644
index 0000000000000000000000000000000000000000..a46c44d2a9b9b8d4b76a9721809d2e81754e946a
GIT binary patch
literal 153964
zcmYKF1yCGKv_1|)(BKl>AxLm{4VqxV9fHf^o-C3;a1ZVlTo+l~eQ|eZad%z*y!U?h
z_jT3OR8Ljc^i20T{haeWC+wSwJSG|`8XO!P<`)GSbvQVbUvO{;rKrenPkfgYg5GZM
zZtC)%;VQ?-58gV6)>6t+aB!d)^k-9~xBh!)1wA)7I70gWF8D9%AJ5_7UJJg+NNIW-
zAFsZb)SRV6K34^ss!4wMfFMiHrKV|!X4uWPlKiz|<!fy+*gzj#QUOkN05>Ko78ZU=
z`|4=H+(Z{1{yQ(02^CUW-VPjF`E8nFivQu@sm&`LI4<V4x8i`jC-LfL=W%%Kk03Lv
z>E}mTX{;<|Y+R}TS?2#WFFbT~bU{JE&XEyAHX8F0yV-!Ks3>kPgrOlF=aVJA6Ev-S
zxk~SyNqHCl&X>lcN;$g{msc1N-aq&`%tX7qGYI{{?vs`P7z}oHEsc04>-2#7?5!7P
z#2TGE)=zFP!YwQqY<F^?xNIU;{XRUb<oC**9>h}U$oMVM@q&Nwh2$_Ty$6m{%b-a}
zNa2feqSSZV|JRz`Qd3jAy1LYm14|n9>+8BY$sPopA1*B|tgXucb-&lcRF!*kx&mkZ
zUM}L)!C(2Oj7vK6Sz1~KJ>DF#+$peGSgrZsEUfiW`W9YyV?zCbL?K&{4xL#(O`}<l
zGW6Ghv-m56J$rfm&uJMQB)eX#P;re+#!`MqCMV~TPoD<O&yz#{ukA-OwqK2oj{dH%
zkHYX&r@<v}0D+Ra)_Z$pc6N4(0l(xaeGyH3uLxROTi+&xKkj=Cl8;ME3*H`xDJ#%4
z+JQoc?48KS40QGNhZ;j0O_;kO{b*v@*uR<zggkvH0_u9*JutPb=QXOf*U!<<_ZJWy
z#T`QzsREx@d^{ZbIN_9LRoI}@67*1J*8~aV|C?86XtCAc__(~IW98B)*L&LgGEmLm
zRS8B0<D>z3>;933i{ATz*@E=F^**Y~%E}smO{sBjTU=sd&{DmFX{90l!-D{X0+A3z
zFnLldEsb*g=qE50PyE~#zhgKqW#&$+@7_UnlRhUs^4sk&Eu2e(Dy%eW1duA*+(7;R
zRw^%zMnpu>4@F6zkZ_k%K%gg)MJK`n#%=;C?=})oma*5cPcNl%f%SQOcXVX0inz2}
zoJJoTJ>2eu1S&M8<RwjI?i>bvAlLOk#cU<bk?mZyv+Z-n_+F~r%c1`_K7Oal=>Pw{
z`*T+g>nh@u;&=>HEa`(kJzPr}c?iqYm%-xaw#(W^rR1CPF<bkS&K?K5p_17ZQGDFo
z+;JHh<w<rt{$+1JNHr2&6tF9Dh^NJ<qM}k=UoW*=e`Fb*XmiX<EDE4z&j=mp(h8YT
zZ`SZ2U4(y|klA+mdR$^$K~mDV1121h-zmC?Q6j29F-d!gY`21;S<z-{fr3$0mX;nm
zb}uV?vQ)o$b{4V=xo|pNG)$6}m!%UHCI#LF(~7luH^6NPZS}a0XSLaVnH?M)l(e!6
zZvKDvD5KdnTcv~D2D}SM)<NfWT+vO+l<=pFiz@;-EPEQNeEn<b_19LzL=6T+pz^;=
z1?QkGEG>17jj0%wl9~@hbuEC*X9^%7iy?K^2iuZnceirBIZlD9AjM=nv}Qj-^PBc(
z$Oj>lzj{2@G!}c=sQWGwr`U~Dwj~EOfW6q*SZ=57TGhSped8=M^rh^qtgI6`ztJx*
z9XEc?dDPcgWKtddDa;hDhHgtZi&fZ<=R)>24&lbxml_RbvTXkK>aaT6m^%fc7#~E{
zKAAgjBnR5rKCFP@s!?Hnmx}|%8bw&qlw#q@MM_%pD|*eIM`(MGH&E|-|C1%7ioi}x
zGXBmKu6*1Dfp2VF?B0r;?Ju`a0h0fXeq3Z+Xz_9?@U13^Pfm{5*<pc@$4`a*-?k`z
z1YXDC?yt5qG+V69RV<$mL$nUnZy4V#QTblyX87OC9%vDFRtEi4x%qBo>_Mlcy$4s#
z{v^Q1S3zAlQ5?q-z>hri@Yk>rC#DMlrA)Cu>?HIgQO;i8KBkli1qEecc|K0B^T&@L
zZ~iYjihSa%zFn}M2age)rKxzJU0Vm1*{DPLZfX80xwZ=WeOshs_#ylp%btD!VeL|_
z`k1u2b>ysh*tbyFe|R6oUpDq4@J?Ljk^uL<<tkLbO2A7%S6>$*f1yah_07wJF8YDU
zWK@>rOxsnD{0;#H3u1y0c6@YwjUgyB8<dzxASx!t_5Hg)xv(?pqL2{x{n5dq;anL+
z=>#xeNyAul*bnn?cb17rVw=n{m9{YIFy1v8oB3GV01JGmeeAi3fG!j!;o`0eWo$~^
zei3yyK`<1f3>&6@JyE=-+Kmb^_WAHTYU<){NT&XH&iR0w6hGu4*YwaOqjV-c;Z6eg
zt!YW{Shoh<o-7YPI4pxr52m2H&Gte80sPd*3dF8%ZWHBtJiJb87$?j1ecAq}e?7`t
zXrz&cJkj$)cDD!Uc6_vOj3gt@{*`?-fHpR0wfrIsv+;ih)o%b#|1zw)MNZB(>CKU1
zI<EXWe$>N=Vp96?V43>GI4z2dpVr-}xY;5D6$ZAQmNVk6@H`Rbc1tNG;-ah`j1?%e
z3|<j+@NE2a5?mMPU_^HO^h3gNXEp4-XSB_omC1cWTX6i-S!9-HRLT6p`_WT}Qg-;=
zq}@iJTW;<uP5Y567Ld+FT`dZ$L&f<S2;I(harF}8d(Xxhi$)<Wv#`Dq&>F9!cYm&}
z4C9^7fYNuDk&dTL10jy+hlZ<mY3Fk)*TsoIY|QwMP&~a3TU%T19JYXt&z7DJrjhqK
z_<EgMxmRtl{pp76=704b!&b-ZI`u~SIs&wCqBTE0X!9S1%+GL_(u}lnI;&HQjv;Ly
zMa9|CB+3r|j-PB860(1|^~&Jp{}((DC%RlE#5(3Quu@;}94Ie_ot5OW!0*KtUDns9
z*I6+AU33TK`KBQ3rxn)u^%2smr=v5T1nKa&tm_Ky@hV|>v8Dq-?oHr$egoL+(=^7C
z<K}UoIJUdo)lYCWCxR;v9<J|qGH@_`UY*ybdW=pY9(<1c<RSyIfgeV9$>ANajI{6E
zP{jK&x1j^ukb>{BS;~<CFYnHL`PTU(G0blmLgE0tk=wHxtDc7K<2DVs2)25O+{zKW
zk_}yZ7(N@jzV{}Nsjt;ZzAo6>52pfM{cSFu0=I~*WU}tKemR*?KOOgMn`qH+Yh19+
z4$QD1$J7tb1TD$t8V>Zt#%EvNX)|tga<eXK2=;40ap5<NojHb|wCVBTHwJ_kXsnK6
zbiHc0ou)*NU>p~1Q)~FX!M7pH4+Og8X2d!3ovR!;tF1<x7G*8qnphw44+dc34shu)
zOl|34{YkveVFxj)ksx6_H}ap&@vFH=G(*z0ty=K7U{Jg&_2XLEnzh+7k?Qxoq}X&=
zB#S246X!pZNMOIx`B?Asd{HDwRd$DsEEcu8%H^=cQVjydNo^5yXr3v3Hz>%YeVU(}
z(`L7}vVyQ~C|OFB1vE7Uk)PF-?pwnp?>(J3EJykKvun=X?bHL7X)4|=c6`>W@sy?h
z@emF@R3CC=K);{J^$m@P=!vDlE}`e^dAtEQkBi-HL<y{QAI<`1rVNHBC*eKo0mEE*
zikBP5rh;DQ<k3zgk!NseIm;m@ra*4QF2%}H%g4GS5Rd{^>g`$vj|+z-S(`wo`!p+5
ze>_IV{p+dy@t4mB*UG)`J>}^l3J%D1!7VXlen9g!eRWT*`Gx>oKCXL~Pyrj<Yl1El
zTtvdI@3<c-v1A&?w^GozbR}LozAyxKbT9FBm|hoyYAOX)n>U=ahKI+?YBrqW8I&#0
z1w@Zg+f$!XGkRN@@Q*_6-YJVvdFxxzUNQxCK=UqSm#qi~Looz!N8IIN*hh1Ne|?2c
zt*Q!P9|ouqI@@f9g!HTSn;Wg<a6Npo51Esu>grT+tX7Qbg~j3=zcLbdI%aY@&ji|3
z2#BgcI=DiG%+0<|$ti4&4-Co=@xhr>V*b);GwclsG26>>?%fmWVcAfNe9u&1kn^_R
zwG?~T=uON{?=WD5dy!ayRDHc%s~dSqD<68?PWXsbF^&<vA}nMgju>{}Xsej!TXo<l
zfvj+qvXz#M_Y#*(KUW-L%I{Hsyqsc2NC&r(31j;pV%Kw#uMfRfp`}cW4_`2wcVWfo
zsZ+Vlb7jDboKfbz7w@hd4fIy3TV^1LL-|~NCHYa^L8)HabQkSao^b;N$02AK(=#as
zaZ3PxysQbj#AdIL{#LoImeEorka4+<>r%}e(9xjNon@Kw1iecne<nE1d0L+V7W5N1
zJVo{Y8+htj-nlclb#}6fY5l`QzE)u952+`JOF=5KDy*z1ZT4^F)U>s>7C`?fA7Wnh
zOs>v;`O|p+V&CSP^U+0ZZd~v}?OL$^mbG=f*E&O1Iy?O}G9I#q^#%j;!l$Ai%1&;Z
z{%urI&xHvGct?9XdN6RO$({>n+cu>1wz3a5F^8W0>GSG&<x5H;#5w4AYzqr_0S<qT
zWHU<oUQx_gSkov$Et#4B_xXPNGs$_oR!vQfn&OYTYR-8=VzsI;d|pp&g~;}Lv0qw5
zl;fCvf#ZB?$&MVj=c_k8ju|5E#wunoD|$Kl?xi(Sm8juY=~RQ;@y#^S=h>1<sSPgk
zfe++YsZQg)eG$mET!kxJ#_vjNmhH1WPvTr}nEA_1BFaALKtJxv3QQQY8I;zCo?58v
zPb?8AM0e6mzphc!We9@<%JjHtvB)HxJt+_-v?ca6@I*|m&p{|kNODI{n;>h(?J!v8
zMzqYw<m;YALU>f0a;Z6q^z)Oc@5h+v18bwh)gM1%HIWLqUwP@UyaPQ2RI?8*d<g%b
zh#5;7or%ITvxIeic9Q=rK=PFQ63Rz|;(RTMI``a2DzA}Pf6|;6c=<u&tBA3?NK>b@
z)p8mPMe4@~k$J0<P&C+kH=>GuE0@(jL1tH%NV+7IhJw-J`)ew%-CXjHTkz!%r$AP{
z79-=1C+Rt}i!GeqU7HQRbzg{B&N#ViW6_L)J&Pv=)vwK2D;mGJIQ*EGzC*_Wm$nfp
zXqD>q{wcDuHZT8}N$@DJ+r?d#Gl^AWdDCeDtFvt$&fPI*MMuO>{j`nxSTsjezDb_H
z>KT{pCS>B%`~~Ot-5{_rcu)*KT6$J2_6vd8aa)aL$B?(nl=F4tGS;UsS$0i?u!R;M
z5^d)B+D5P5`g*M<n39Qsmd7j8YkL@0|5jDv{2F<{%cYwQ(ry)&e0ZwZlIN9dTvEaw
z&)5*Q@6saO(X%J3+8NISNdpg-9>m&E5}Tvm?1#km2dFK|n`fR>-k&Z?_W3~4Mvvt0
zA(Pn#tQW&Q%rY=KSZeS%@)UaihPM-9v<if=N_1!KW~YL!uJ78OUhc}==<!!2lC|`X
zu*i8OGwCSeCRg%g%V-xnJdT7*-5P>VA31q=UVO)m98SBVp2=#;Oq*ZSw=|sh=X+f7
zt^|%;mHvu$IEs6f&|7*bzU$-@yD!sN4d~1x+w1H^*=gOsZDQ>*xgcLn>1a@QRGGDS
zMT?I1u!LKfD2O0>gKl&lVf$FSYsOZ1eN+;WX~~M(i7S)2iLM*$8J#rdC@R}Q;+ckV
zF5GzwMEiZV6E!-Fjm8m@y&ZOOG;Zj+7JYPPM`%86He_aQGp=+Qq=Lic+kdXqmfmT}
zd4KFZ6XElaLDm`Kb!hHd7AFFse2&XWg2&uc*ZH9kBb@*fk5KC6*-G~pSxA2t0VizB
z@`c8^`EnzYsS>{C^NEY<TM-Ml9EPalgZ$l?%rIL@M^WYfG^QRKZW{04X;*q)5ZTJv
zf$U|?NBUGvsw{K<;iPG<6O7T)y{cp6UHhlx*3qf2DDY!3UFxL8Q~g{qk0|#Cn=5;N
zVtd;*OyOeuGw%KCEQ$W4)DKEbbI<o;e*BSjNm4#Ck*#2ROXR9{=4OAKu*?p5+P-sn
z<%`WwLVs-$mOBtwri?t>g&V>6Ap&ZnfO!46VNj4TARoe2YqJ|QSMba-dvBeQM}G2O
z^x8~fY`jEOak8j!NnHNu-ZewW_LXYAzBJ4+t1ZDZv?QW~3K^U9W6_1GD3+I(*J8y@
z9G(2m$6Yc3N7ng+!?3;mEDo?oZRusp<{_ke1w#npchnCfIBhPoU)M6ZzkBE7>pRRF
z)@(^rX*-F;r^WH`@Ng-NJ0J1MWA%{s#Z~yyRoSv&B9m2sh3G98QVi62@b~!!HHUlE
z3Fvq%9Zu<_y%+IVV!3R@rnt<}x6`-nS}!F>xIdg_as74$DLjJd;h4h?r#U3NPRlc@
z3@bQqYsb%B{Z$vrKH-&2cBM$r6G+cthge_R@t#~Ydm@Q<&hgkS9&55@bCJRvN&lT@
z1%b_zKOL=d?Tj{D9DkGW7A_$hR+c^fJ)6R1$M0#Uh~^!W9@sQ4_Dxqn2u;NQ1@(Q~
zE*TZVf;o<{KagAQ@t~fM{R4}HF9H?fK}h?%^W%mpGc!rkw(=R7W260;3lrO9db(u|
zX0x+aEaC#4ao=-5%FT-Ny#Q!FnyqLM&*9~OPU(?Z#(-M6^Rjw=Bj%eAr#oN9y8nAR
zk)|GFQF$S(Fh*GKJcmjbUJoT4ROlXO{MHW1`sPU;^ulJ+7D?nUoXf`aMeB4RrDIdX
z`rRY{JU=T7JEDmM53UIndgoDuao=Di1W@`!RKMvK>Hi~jh}z=IHU=S8J~#T%fPm?j
z(6zb9sM%D?m_e~+(2d2ULbfNX`1bZPsX-A10LRs^D<2ctT;UfAIZhy(3G!w_&Dueh
z@&0rldS!h*3cCOc30DjMck@4Mz`{6?b5s;QQ$TWMX2OYw=3xmVt$-MANTAO5Do`Nf
zz^y|-%IMWMp9Kp{eJnq6-?Q+Z{xkE5+lRjcQ!^_(#M=l)xGe|3-a3BYNHn4RfqVJM
zxiy(K!mrDZ0`iwxLH7^8*5<bl8*^`8?YrkYh%m8;3LL36?|-O;t|f0{om25(WjfG-
z{QNk_4vjc2g)f!*V6wy2^STzDy%*f%s=Coy<h5jE0>N}mgEzWKR~q`6c+u&ND$NqV
zC@YL;LL5fNWxB&U&VheeD9H~H{v1TrFYZdUE(~LWmOFZrFeI)|)+kS-A@MT+!15W5
zU>Q~7L|F%00}-<OO>o41o@SE-UBheeC@qfeI?BsCk)B~a5jpk#p!2QexbPT`^mOvT
z4t^(Q;X*5+B^$fQkq>RY?9*+98e46qlG_n+@y*>gN}RjMiIfxWXIB!UJDEW}!+yP$
z0aS%a)~)&)^I)zl;(H~3Z-x*vSUAGZ-wcfRF%(f_9(kaP^!419__{NlriBifCKTpJ
zx)Al4kjEv#oM$5f{rh|h5gqr_S#%20qnP@ihz3a^rDren6m;fC*ARY&9EWvD_bcbA
zwS1wWP|W2hHlW#cbl94U5g}&G@3x7>QRBJsMrSyKxv*dD6ltFCWh8+Df}#A(^Zp~1
z)aB?LKdar%N5TPKqg?gXrDy)DzO!mgRWkr`q14crXLJKE8A4wU=ChZo;_D}Qhd`K^
zekn4%_m*1V9d}9TDU}BAKIf(X{#?#^ZENG-u|)i4331YP!cE;KY8hDZmu$c|Bh6Y(
zOr_zkOa@>b%aLEg%>N*+^jhaG>`RyKc-5f+b{K4bs!w%{3{PrH%<i^o^U9GAx12%(
z_P)+(U4@NH#e#*y@H#&un-k`8&+?>$r{>=mo=8B+xG*)P&Tyd_bSR8mEl4CJw5XuO
zI<h3{eg8|?3;67`_3FGoVd_zGj4=QQJFbo4vYC(+@;u!cibs35{1)8qPiz_sRXH8b
zBy+iJA$ojK^j}%s?4jy@I_qHB^We8%2u(K0Dr6_XbHD{LWj<UHK^)Fj$-)Py=G%jb
zm*+=EmBG;KgYL6X)htmx3v%<x)!L4Z?2&i;bI4Nmukotl@mI|+b2=p3C?X>BI;XfS
z@pn2KGvb58Lp>(wx5e}VWzXht5soRoE{Fgx5o%`{9;nHEX(Z3Wg|Q$;!<OJJ{B^7R
z6Gd9A%Oxs1pQ95ea<wpfH4N4GahYra3ER^nsV@l6#ru(RzZ<c}=x0ZnLivnKgmP^~
zS#+*n!44>WxOBO<^6iZ8p~`m9QiSwhk0Uexc6`=b#U%2)W_oVEA9f5I7724$wWEz)
zzRXI3W*L$-ZMg>AMvxdWR96^n_W6|YI#pusP>PYVQz=e^D`K9jlc>JS73Q1D&!#1E
zaCBVyXL4JuAV&K6h?4TUC&s7DXNM=mkX4D7)gXSqozqI;8^OQT0|}DXz#mCRQ}+qs
zaByI;n)=8AeMHOyFkoMI54Z2{F2?TRy!AiYG~5`V(pK7RoC?6ZC4YEvKE9Z=Do^D?
z&AQbKMZ-+;z_xDA8PLei&E9;<{a5D!3*jz~X#8gX;DF#s8LH*@T|()3A7zAnKd~RX
zR=__h86oj!n0&QHNdrAES_!FjV@rwFA7h?smsRp6G3CqmdQLBe-(;8?{sgYY3_hFa
z2SvFt=E&n?s;mBCI+<yAOlo6%Y`^9M`&rnpyhlL{1wZQ2c{X^qs6kwuZ%O{>b+C8I
z)F&m0FtD4HW&~<ik57Q5!SiGI(pIc}mqkj})?c)msm6#w_w@I4pM};SO-dsH{cLa?
z{#Sg)CNL6)M<JU#jvYk2tK&_fV?Lj!!m!&k^7vUSHWbkkihT9>@O^1B@~&^>Q7XYr
zu&20u4mlMZbB{S$$5zkCjy6*+1wOAJuMHbfwWXA5OXwOp_RaOL!221l+StVk_EpM(
z1xY7C%aUz-%1}wOr1(qus6?OeBw<3wkYG-o<%U-oTGxm-fBz1g&s7tFG7?{JzH4{a
zLsBW{PhKDu0v<Ju!+mf5#oN;XIY*v{n!&<gazx7fxRr~u6G0F^pu&<&yTH9j8pl-}
zo!zfzq9`a()R-_jYoDhvUeuU|<_)Y87-w!eVE2ZQSjf>J0ULtoWVeIbdxX2RTKiIL
zH<oM#e|qav)7!UPY*Y<xL!)T&-)(3;32*HP7DM=MoxtQ}t~-((P(5KwAql8h$j=eO
zN%Lbt4EsH_hy>yvVkelYzhti@MG5!e0rmP^WAMb2>*$0o5MUa44<EK?ln>{Ql!Rc3
z*0mllMdUzp%T~B+RRouVtU$5x@1Ds$N-9xaQ8>r>`~-le5Hcv0p<$bpQ$LymkW6CK
z7{gClI55L1O=gZA@g$;7rqoKv*wCVp`kAhtvDW@BO=aj#j*GGqB0?IQ;jPwUNXyt5
z5y8%gOB8wiHQ}#ewDZhtFE?UUUbUMJc@63PX6{;+GfoQt3O6nuIJx)<9n|s}EudrT
zs!!t|ebK<Cy=-8|XWM}u-55;Bi=g|l^F2_P`e6qC#P>ryTEx#vS)K%zyd<8VqPI-V
zLYB0&n!wZTs!w~l)88X0%Kc*w1-o8BQjkoFz?YVUBeqY9O>4rNG|-oBp6`Oe_X}HF
zxF8DXPYv;G(VtiYo$B#KrS~wMX!Q`>C71L}R}Q<X3$e}6FMJ_@Bgse#fSJ-R_u8x0
z&)0;&%$C}kqSR0xu0jpyx&%YYkIwq`OK*CR?m5^#0VtC(ZLvKbqx!)sm@T6hkYaYp
z6aALa-uJ{`tsqV>#m1F<d`$m=w5oO#T3H?#z`sFenTcu@_PsJXg~-w@vzYGia2hFs
zh4h)=^2+JL`_HUYh5q0$%Ztc`bO=^%zEjcH%wGPe5{+QWJ%}`-l7Pb!D?+guo=aY)
zNQAKj?I82JI@;LMGRA;<VcKG5Fx|WM=9|1q)VgrVN^#r~Wo2cSVn&9Z&YEbOh~lb_
zQQ&ElJa~W@x0m2XCRP`*#$$XM$zRsMUCL=y7(|tKVn*c{+^Ujr)b~Nz0kg8mNGI8m
z4ut~|3+`6gB&6O|I6$VwYX6}S`})<EBcMj?Y^ZZH;3v(}MwMTV4)I15@}BgJ@XzJx
zsJo{pN<BZ_k4+|md2^F*uQ>N+@}U^}9&-B7g1@=q!PKnf;<QIWc`Lhai#_;dL<iZ$
zukQzY74s-u*3Fob`+@ppRUpLfjbll<xK;8vnA=~fV97X2zCMv&>>C)^KI?E=-Pq{1
zb`zIc20PTluP{SaDp<q9wuZ|gZ6DTC)Siii=zsXn862*Ry7{|_fuo&}WUBiAiB}z2
z?uU1t&l4{iHt9uK!W9+L@(GY0S&jEbn%r<}4){m$Wy1QG<CAi!8+x|s%NIFG+SBk;
z*3Cj|kkoET`5m+1oMcR)wJ+ysU~7^uh`}8cr|+Y5i<03*U17!}rv+V`;{zMHRcI#D
zFD3K~_i0qes;n~8ziSi8wgAWac&K+NnEPvPUrqT-2dFV@+u@I(0Hlp&qpQhzHgvVJ
zY}ss`n_82bgb5WA?@STWHBXSP1enn{Vf$ZMYVDR24)n%^TmtC`y~fvI^Twl$b5cHV
zAqTV%%e%!!ToqEdcR-VCYt5~0Yuo)k-w?RrM~}#{CW3o3yOme!C!sEFZN5<)WY^+e
z#kgw@vNTgwQg495rkL%0E5&#rH&aGU#%Q<F&>2hKe$UUKNWPZn9xhN>nWs-%y=;pv
z>ki^8SN>#^BXe{m3}jOnm0EMEW|`^6Ks(3UseKc~k_2!6J3-UUf)c&ES^8q|um5s$
z{`hNfm&iCL!r(is+ug6eC-;OZeh}CyAh*smbqcxdSm7-X&NYSN*{q~%G-qUwx?4H<
zG#QbKKyI%dYvv6%qohx+8%z(x$P@Ei^R}_)Xf&LnX!%=HcAW4+8MTIq2XY9jS%(}Y
zxJRNT(y)9HLdldDfA@-P$DbaX9@-{R)d|Bx(6kHAWq1eJb>i?GMI{}7Gw^+_dw{5{
z+ztclA~{li{%MM+u`$FWH6(vI|GN2oy>v(%{=_I>6K8rO>t2!4-o(Ajv@xTK!h3_L
zKAN9IH5eG!@&?eV5!zHwyIYD&%qm}_<p|?Dq#L)b>Z^fz!P1tjwCnC()3r-ME1Bou
z2PD-A2l+)9n&ne7F0npF=RcToEKUtMp!=E|<;3TFVjJFBRqR)vqICUgV^Tv@^AYbX
zCtaoeo&N8?r<l^s+W@MVj&>8HLvOGrL_A9C_S0RXYdQG9DD@Tsh(6Q&xX-{Xksou~
zza|YrHkv5aYqN7g3K;B<l=y+@e-b4bVA?Q^Rs^K#Gxu9^oUM0_!+AvaTPy1DKlJ1X
zW;z>??C>+%-27(+wCbfZ+oM__vHZBKVL}oe0-_}2g*@GSguV!S4kS->T$`T3wak3D
zd1?7~M`M08!)?hfE3~GVxNUTfRl1^)84?rd9|utIa{6@BllWv4a{6`B$O&TKUSoou
z_`=-^!(7s2MY#7|eMKu`k73S^8ylSH*oAmFX-&T5gL9QgI!PIMZw|uO{3w52rs^E~
zHiw^4NmoK1C`vNc?~T^Yp{5!FzVEYLns3t}e|2J%FWa-LKh7+O={#B+=5qVY;r*Ay
zpBN!=8mjzjJ^Hgj$s7(nD)EsgVUM1k-gK#KdUk5LNcC*ZdnXRp6?O?7zTZuEQd}hh
zVULUQyuX<}8}WazBmk2l{$a_}uF!|@M_E;_)E%b58@7PirlzM{ZtOPK+xoeGX=rG;
zJYGv2szYriw;UIU$c&NiH=n2yY}=bPJqx*iVb;3e@C3?AY9&7anA3G|r1W2ojVO8?
z4y=z3r`v)}k*iT}Nv-w{t&!3D!M3{c6K%nM{MFH*M<{fEpBiD#_Mq86mWc0pI>gy(
zU5|X-{@zzgR*Ms%QEl?rprkEk1a)j?HgOo!#dekoRV1$>uVA&X7IlZv0*;80Cxpy|
z^{<v;tZ(_NXexz$2oG`<-BEZ>bzJ!lWMkv-m+|=Bx8ypo&+~w?^}7a=2~tW5vGb#u
zOUrm2TjcX4KESLH+vLsFWWGELFNx!kwxGx12fRe=j&P+<C9)mW#Rsd#>*aWUovtXC
zJ;P!KQgrWr)Ly?G-l)a~E(_O<fLlF5UZBk6MpgB`p6EZSX96?v0SVf!!EUtX7{DtL
z)vpHRP)xrf8%}l5)vWA-!LdmH5V1@4<$#tur|}Fr3=Jev-cO^pUZFKPq8~*dI;;0d
zj_6q{k_y`&w^tNIx~+_)Oh8|cziho3c(N6v>~$}0w&0;c>p3=!4MSr*?<%6XM3?l+
z-n<+>4RDJk4KH}?GBJJnV2`VpHa0rhBW<9mlz1l3dh1vA_A(k>(n=$Ua7`}tJxi}2
zWjN}^;^}d4`x32KVZVikoHdmWH6y9Wd@34@S%yJhjC#BGc59V&m(l!;{ld_|8_XN$
zYiI?oRz&TBAT)1OQMzH4NBH1D4}Ehhk4*rUuVYk9Z>RfK3^n(cre~woZy#-^zS0G{
zAYDcw`V+W5OL3i^NcC{+XHNPyqNeqJ-#eox7fDoX*sM8PO^IE%Ja3pv5z6i9>DfHX
z2-#7H!z~^b^ay@E@A{cKE>}zvJj59Nq3u@7bM)sX2xeTZs8zctvztD6d36{Q#|_cQ
zIM^l#Gcve&TOMRHjxaAFbQ_Eic;?}UPuoJQ|BM+)a2Kp_o^j#JGDEgzg0^Z@NR6LJ
z1S#3j>`k5i?Uj^IqoBP}Kuy!3aT3na1Di&V@&*kQKtTfcha9O8&(XxY0{nYLiF+1{
zKif8uu2J)DK_OixR#1ohFZ64GAf;>of)$pHh&$(!uoaExUZHwm2jS@(NbSK)E8ARX
z>^X-h$v&r|^0__0(T?@f^(>JX8wGEI;xaLQjt+kQZ2#})N${491^HjM%#Agbrpf{2
zZjB$Rb9*x`f^v^SbR1vOwV1i3%{ACIT+f^_9P<4OY;$m>xKK<)Z*AZXtqy9wZO58!
zhl3HQx};?f$(V*OCQ=STQi}Op3w~1PcMMF~2)U38_RIgg*VAkCx9ERtqNn_=d)v6}
z@~;8YMowG$&n=wyEc=!I@_Tqc`6u1V&irLBvsN#8W-5Q67g(u5n;V#)V4o6EHzZ<+
z`gm=5gWX*|KhF{9+F#2HYk9pAyPp5RkzQULrb>3;C3$8GibCFnNPo2(8W=Qu08SUH
zi*Ns@fN)G4R5*!QRPuPTSIQP&a=h(rY@Yp%y27sB@`DiG2)7px-dLkoSWTYjnP9vk
za>J=!6FueOmi7AdMl$Y8f~?Ne-E%!8g@XNEJ%xy8@yw9!c>^;sL$6V5@l#N1QiB&u
zsxpB2o~2S?^KM;WNZz;EVcjd6zk2E47yQ&rz#u1e8J+QbHDH%ThnWy><|G6(A08f_
z)MYRk<esR;PJclczI^)G@Xe^5KO)gy+Zw2*BOEUj(j0TM(-tl)e@B~AdVVrNbf9|v
zCNkuhe{%R?h>5>HKecu$OCgY&$C*#oR+%Kr<YeXBm<v)~6M^^F#jwf{iHCa)k1x5r
zuECcK50?og&@9MOl#69^hBrye>ypu_ZMOH-Bw6dr#Ac7HL4&^g49P?B5n8h_4-dWx
z((H%3E~DF5;*cKhqv_5(!Rgi60y&y%9gnqd>6_jUfe*U1KX^PTM58qrU%M23*cok9
z-hQXp_yki>l$ps6TDAC~ABEU6cvXGtOtfCdPZe!s4eMH@ohHA=c``l2c;IgF?_1kv
z?c~E*KQ)MPD#8kBV4B}PJ7Nf&RNJim`mA2L<M|F4(>p}n)H3k0^e!_}P=;7Uyd{QO
zTePdBo%CZHRTk|pz*)$A#L2uw3X^{w6mBnT3)ING9y7Bw-~T49AS!v!6)chxe)Qw8
zoQ8wSdl5=|xWAcaf(lsKr1hlchuFkQ4RnnXcn-=w|G)>5kcG%VAJT#y1y(U_pM`o@
zvvtXdR;QP|O$WEJ^FkU}c!RSQZXKNo=B>AlmpHm2l(r|DvT7>9_`L`<w74$DLTH%J
zoSsV5!a$oAWq!yAx<i|N9FU<^H@2VeJDksnhKsuqjtWUROFthR!qPGwJuB*wN|JVy
zk6|;mT!S1$ZK(-Ekw0Y1Mpy7Qq`Yq{Xc-r<`+KdYB^9Hw&i)8VL<1f*O5pMKDp=Z1
zP#e}rD1!ZmWf`k)w_x4eQkOYH7^8mzh(QZSPtNhhon|!;|K~MXWQd$t*q3;Q;o}b4
zuJM|T?8^*kUs7wqu%jLIjEg5e8ohKifJ}G6*7zV~YR&mprO*F|VJpmICw%j08sDXB
zV__exF-TE)DK?7|L(r0yJ<!?Gx5hj$vSB&A+`k2Jt~yBYtn@e*o3y?by#BUkZSMIT
zz&G$UeBwWmMPQ2H2nv=?4`_D}r<bgqqd@LEV8ZiQtJ2Ly%n?&Rs_)9LTLt=af@xkF
z+vEknP52ZTFblYY^K>+h$le?8NprTO0swR61==`RND;p)=;&;`F<E+~<*TsYIOTeE
zILliJ{utN9(Wk+5kqdy>W;Ytbsu^(6M*HwoXB!YspH#%tQj}7K!k}xGl>|2=B5S%l
zo-yHs<*see;$;54a-VlyBGlC<4%CjG(Zcjf2y%0uVn0f7W=n5{DQYC%bvz2i0XH+k
z#*cJ+!_SE94QYPf&*^}HWoW0_+-fkDSa>5#VVvI!GU(pO;^Ec<x1XnJab0D#RwW)s
z$Tt>&yjlAthC9}u&)vRAu(Qws6yr0m6jKkrrbjYe{BI~rxYVrmbo8>;223XAoyGNV
z-`;;?-Y7yrVX_m4OZ9*^`Q0qC_tB7(emKtmhP2@$)~k*EiMjf|0<2p$0(P6u3u^BB
zFwRHO%l7|~3V^~Ft_uC_jkSNgNf+DJ^Nx0P66T4_Z^FM=9EW%2)2K1b{m0Fu9Ny}!
z9}Gf9dHMT#q|*~M8XSjA8~+9)@nNhjEfYmQ0eReeQj_GrJed+-SE9OPh931Ll)FRM
z{R#Fd?>(K}nV!Ct&@SsB`dWHcEk#{L$6F5l^UySw|6w!JPVH>?@t0xHe`Me3#1D`6
zuI=3Y@PvB;EEUft{F=6Kx~N#Nd}`F=gGKUezuWhA^ObDL09vl^z738>8yh)o2eRjP
z&rRL<ek=!mQ9Ikya^l*5_G#%j&*42v4pUOK0!@lFNv#(mIQA-gO~b%B$9UV{%j2Uc
zdFHnFAF<Dm>EO>jJtVcwSZO~CY*b6hRkitKt4eh{xq{q1_;6H*!snum06ve>KOzV|
zpD*<uq)?HTiB=IjsyxDxsh;-rkINBR%zDogoRya-Fj;y}sV_golYX2h_AyBJGD6l=
zw8oCQ-xa(FjeD6?mO|y?G6uY1p7%AbQT{<j8U5FSfzh`(RF(yn^ENwD5SieTed51y
ze=9|G?W*F#6@x&z@3*CsHuqwQ|1C7<I%IFATpw?H7e~mO-X^EfCwLgA!vlPT%l!_r
ze{Uc8b@f+!@66o<yiT}y-}>iIjt@{b=1$aI{VuX(pvA<>Fd}oX(zyJcvqdr)EF&-}
z?YrR&g_|QA5^fPXwK*y<<oU9>U`4C|3GEznhPDcWKO1;7M$nG5ZY;_ORk<)mB2)7^
z=y$Dh6R80sP&T)`f@qoL5wNMwX!n+9F8&(6oG-k>LgHRtHcm{jBkB-)Gem#A(8g-W
z=#8l^j+^3Iwys4npA8}u9<mHfajqC-q?x9Du-y@!Q_dB%yf>e|1W$&lpYdsh?dj8V
z4-Sa0QLSlnEj(P^=@L0!V#+j8W=?G8zV|MV;8E`m<n;f7YBoI4SDug^kWaJenqjCT
zps~ugzeB4n<f$g~^(mpbnWcYq038cL812Y|q5Ww-Z2_Dr*6NGVUi>Ad*O=~Z6~+Wj
z1G@*6b#;gh`-v*uEaZFxcUV0zkhi6vFmgy>{P5vsh<Y!x3?UBs$T+OfZ}a|Za}tXW
zoA%~Qm7j`53XEFXwe)_tOCbi)awQwm>JMQ@vbL1eNxik#sf<BNY2haS6us8h&%|Gf
zcbfgqlkyS;3&B8-&T4?$hwNWn&q53u<WN2D*+4}DvS8MvCs(=he>kLI_{$e0^UWka
zH*K78-0=z(6<Im6$-F*SV?=Kro(L2cnN(fI&}Pe%+vf7pQLi4m^Z7zgqidiUjlP#Z
zWt3>k(3g=2Zj_?ng<9(v{Rf5>9Qciz5bMvMKc9DmspjVbq(v_m=!gYvsIe$S{}g5a
zY*xV0eH#H%nZfnwbL({zKy=UqkR&H*gPn|>68{DiX{D(dsL)$tC4cB;XK{0b3QsBu
z^16$$p_8_xKiz_v9QZ3U1H%$>Zn3_teTrr1Ut`N3`FO(hm!#2hat-Bf%{-!a_2}y{
z-cn;3<cJ9yY5N_S3i7I^PK|U2Wzwp6#DCeRBjGs$(!C}KLT9%>J*r`5Kt}+vfF4eV
zeu)CkT~|o(&;@Rx3Q(4<M3|2SLAL-TUl950gbRTq#t!LehVI^eaMfmUjLP@%rbl|a
zXoD(0dx%ufUCUZA-*32VNVzwHLzRomH#%|2uBK%VTkb|?7^QIIXais24^L~zXlL3(
z57f?KD^iS{bVzpE!XyF9nS>!ZoNSksN2OLh;zrLQK;7gSv(&y}@b35SyvxGAc$h8W
zF4^#e_DcH;6AGh=H_Hjn5|UZgZST@z>V2#>6k-R4gftoQcEfvap<hL6Ld`pvcW7x?
zQ6oCCLb4lz>G)SEPcxCtkKyX$T|6Xsn}*)-LX-+uki)R5l;)t_$m=6x`67Opg<x0N
zo=xP<^sDgldkXy)W)${!A>rhL*6yb}3<%jOchUTVV>8kDda+^8IRb{l9sw=IhE@3e
zge5HfuLOy!69()Op>t*+!(&sEZWmP*0)Hmk?{y87PEMg93iDSk@!b$<2izJ?-0N{w
zx#0b=S(T>SdU`aC0Y&Ek|7;a!u85v7S(B|Jr({#hZ#euR<dT{-aZbC#u6_`AtSA<?
z^yAxM*(}tw6l>bK{d(3yg<hR6-|`cH%FG9bfW<H_9~7W8K1F0-M1XVMzcJ+<@5cPe
zQF?->dDaB@I#+89h9bLcbG2Z@Z>u+D&tkb{C*R~({-wrVNJt-o(F4B?DG*9{bK$~`
zLU0-T2@kWq)tjP2N+`+P)$^;}X5Wn%U6b9)F(7!fO>BcE&pBSEs)(VOGRT~65$;$<
z9;Jscj-I{Dw#<738iW!8%9SG5)9iFYs(_wX=9n8pwWVyvDdjbZzvTG-oUIjkAm{*+
zE~DQs_i6PwX5-<tFG6;GO~MgVnjcA@9JD@VyZk3IZ&(U9(Wc?&*G87>TWH_T_HI?6
z{$Kkc60HY;f}EZ_UE76mPw;wS7RLDg)t_G9)qvvSsUf`!eF2q@mZd7|nDg8M@~;CO
zvJUc4Cm)2o<MysIz>`^pM{UPKdoJd2;$%6=*#=ana3isVBVRs-l9<;Ur#<_%Ewa{r
z<s0z=!Bw78IlhOC(FOU%ict2b8i0g|%4G2i7X5M?uqx7M-;df<VZPw<7yJt}U)*SZ
zy!kZ0kGR*Y+(_E2d;?;^x<H2O(!Jvs>b=nMYRr@bGNfF3>bbs2O7x_dOH70JA>i8M
z`7P(jc^hvQzbZ&pCeevG_OolN><ewp3J&E-{V>v!fE+@Pi9XRbYD~W+@HOtY75+&F
zfy|tfr3LIzcYacH9j^M@bYSN!+da#_qN3q#c2Thdf9PX<Sh0xJh>cLyvYb{;HEU0@
zhF2th-hdjEx|wcbP$cpR<1Ej7KdI2#t&t^!k&l+xgi2%hpVX40-%Um+(Yk9(Pg`=F
z3B}J5NkC6zSGI~IR>k4&`)#UPhF<$l>-gZDt6H+1tITEWZruX!AzOz##w-VhVR?<u
z+jxnu!aY}h+uQ%{*Vhg8&_DLVD%d7KUV&Ahja#?&bIoYAxh6WhIS(eYK1IQ%uB!4b
zXECjIs>GaL7i5kBIxhL9DpI~rgJb**59+k8rttIq40cTdzsu-j;}UdnsvEQD*@=OZ
z%V2nG!SvIUe;=9@LQ%WYsC2fAUEc%J8a^wkm7k&*u6|vKF}u{j0a6nyCIwMz|7ed-
zb}gULY6c-}$56>l(j`arUj3)EwEsHe7nT)QYy=a~vf3o7D$2yOfGT|)gf5^Vj?YS(
zIzR;h=;6*a^RV1_>yM7xi;cN8uP&jy7pvY<6YC32+-_6I&sSFogvCmf99;yJdA~2>
zE?W<#kqwoY4xaZD3ZlmfybaZ&ljWLJA}Kk>)6cqFT@7Wr37}mdnl$a*^&O;{qe2;m
zQ@-3@w+fpH<>*bI*s}mDOspmWL-I|1K^_U_cUfriLAoW4-ZauyS)wkORFaf#KGNaX
z)*@T3BXB9)nsFdPmfXfAs~TBe=o%U{86Z`3nNp8qUAql(rNoXG<0t+a)d&0kiTWVo
zKf>Z^KRwZ}VMig2k_xh%K^O!DcpqUUYNzO+%zJdLhjbmfw_u;+=4y;Wne3B4wZ%ue
zT#RJ3A;&FP6NTd?3^)5tF!l`C)UDll6M1`QS2gPPMm!Df19S1ynm=Vzk$?mNJ17JN
zzWr~BO59Z}9_u!P*!L?15giz}?1txo{{xQyQ@7ngpw?Nbk?eL}6SK10{Y#yxsBq}M
zKkxeGseGA=*4paKiH`ck=4LCDW_MdQ$sn-$eKX$sGP*fFr`6hj-iE0=%&(zDTu3jh
z8|XxlDBoqZt5T3L$a9iDkP6!1_}%-73qN}Pjep~yf+>BECj(B1@kxFx?HuV4;BF9f
zO@`q!ei+(+xflpS8h)#K>0V#2QlQpB)JMT2Wtu-=HMp(C=ssQ16J)Pn2rkx1?Zu|)
zJ=$+*`1jJdmj$f0owlm~_uPA9TCzg5^^*(wR<Na3Bt?;8ptXkmsggY`VaTN2>G1;v
zhnFPLVwCGvobw0lAeNi#X>`fDJE`wF*3j-bvWUAo)Qq8O*;-tq>wwy58-X0X$t>^;
zC@?dfz;WEg-kO&O?;}6qF<Z&YYWTX`Y}#89mfd_+6pIV=)$)lA9S)t357m$&utQie
znKkkE_lrVax498+q~Buc0t1ZMeze(iSx+aeXES_S^7$oyoqC+&Em6@_HDRu{LAhtD
zOpihT1`tOmKceKY2>?U#q^c>Yl!H6E&SMk<uvnbzf8FKWae)-h7b)=9sW8sW{1w>-
z)~5A-837}W94E9bZ3nFt&rbwBKu6RVT*t~jKvujyfuJ9HOVsngF2Ri4jByqG>Sv+p
zrzThtjtrE!3g@2R3h)}tIs-s9CW1dM$6w%{ceXe3y7qQJ{#mT}*HtMw27ryJ?y`S3
zKHH6nO1LLElYJpI`G|J5m-Ky7<S>Bi&07eR%(x)uJM*ePY}8)Kon@UC4ycK?QQ?++
zt=Ddw=s7>r=V83}x(hb)o4jB)=Lp-ji`f;I&HlbOjk!jDw`<dhg%y00IRBNPYg*I@
zjvKAWEP<j<?UpX*o@xyX0`Qzb%HzXwu2$dk;I5?BvS;FGpw6!<AQs_dB$e;Mz&1pS
zc6#G}sLkWSWXhBDwT5d%5ecCu$R21#&JTeL7Jr7J2z@+tiUeUA)(OEP4>|H=fgN_o
ziQJR)r8U?^;Yfd1CTEm|mXpoSW5PP#$J5DZXCjHdyxY*<;ebPLM7bXtDc$j>MSDkF
z7?VudBUulCYvvPZJcPW#0dK4bmQC+ZcfUl9XFsE<$cDY;yvGm{fQkmXo!w$^Fyq6|
zLHo`20?DbzK@iufM88Tg5%6zmW8TlwX6RYwf7>{O1*WNmME@<sAV5Y&;2nT<I+Ybl
zGQr7HR2_|eK)b5-`_LXFiDp3pl8U<7_YMdc(G3fpzhY__h|~^=h(Bw3f8=IO@2P6(
zdWy=#7H;?!ZKwV*x=gCXl_KWvPy25+#}P4J>2ZH)s~$v8s`x*ELW!zQ7RVhUc*n6E
zTEN^dbSTi5S_7g$pkxyV@>-ewM@B5%fv=4XEQ*P1uWAb%5`&TcDuNydXim@_Mk)cn
zV?`aIJJlbJ?r48H?xEQ<(6-q-cIZXGC1n*GR|VcFRoy-Yl{}R4J?1Ci{E4Oevo~)|
zFVK{#igv!;C>^d&i(O}Xuk3nU@IU$YvaH3sj>kiHlAT$kZ%DXIc>jg+ZaWGo&B(+O
zunRi^#M{d$Sm5;~^rKSxBRAy_i$5d!gwy#k(FvB#mAM9WHZ)W$8Xk|1jiC9L!wg%@
zbh}zrr~W9iB?<eRyO;4;9FNN48BK?YxitkZXOCk*zDnlO{b|VAn;26z^;5G0$<#P)
zd*aXQeKv%qvyNAGm27dEB7O&bB8w4m*gfJ%cE>klSC1pv9Ib>f58*r*nNw>}%c-5_
zx3l{B!cX&Mw=G6S$WNnqBm=YyWq>O7qxl8D(9U{qUn2%LSzQAFuyxvqqu)@_58i6m
z%4XvrFG(}l?H=$Gbu5SE=V46#GJ&9|F9qz;sG{(!8~0e@g1KBIkHnd~HwS&M3>B!l
z=orl7gAQIMxi?BE(fSCz(aDqwUK4D;GwYb-`h_0QR+GhEZJ+mYGVMH~yUY?7ScV`h
zdd$Me<zGt*wx=FH>wvrw-1?cqPwVz3NKl4mx;YOPasq-V9pfx!geb4PL-OZYT=>;9
zzkBVm2$TEJU#C?5_KCxfGMs)3fj#FNfzs#!9cI7onLJoGOOrA(B3oP4JLK4E1*}@j
z#u7)LYS+~Fn17>wg*~PnH*>LEAl{xv%W3xjC%WeGZ{rwaH>S}}C(9=5#*Ys1|5K6n
zZ0h|}l3$#YIsvQaOM?VN32rMA1Y&m~mju>=B1L9rKnhN~xZ<Peu;KYl4+&_@?{XQL
zPxI!z1VC@E%b+4(UfL~#u4Otjmh_t*fa`L&F$CaW(F(q7kkdB%fJGq~CSxFQ|5z8&
z62Ar>;OLqZc=^>x_cc@SpWPv#;i!CN;D6}udjFh8iF!nU@kL;5(3E&vbC&p8=P4F(
z@u_i44FC4>X4b@x70tz;8k0%eYA-+t*2$`=Q*P_&aW3&q;AxB%l=#o50XR@7#3KZl
zRhc=uxn4q$ags2PmKpUspODbclxeK%D^!S9A&WGkC!_}_y`-+GZOTd~YHGJ7kv}5b
zFQx5=xE!<pp4<yJuCMVtGN8;;;`4=63rKbVs10`0UQ{t{aSxY}-xeW{Zx*388+~Wb
z2E!~#N@Zz|p~NzQHV?It#tiz?#>M9TjxR$I9qG30Pup3-G!Kd32y=_W^LmGC{TE&y
z+k5Q<o~VVj*U==H?{VAIu9ef>hgvk@h#u<Gs4juvIodi2mSQ%mYVK;2A_tEeMQq!7
zB>x(?&=uMEue_>uu$p4cd%w@v`D>)q%mMMoy@f6)rIWWnwd~ggJJz|VGQeI`Za%Q9
zN3Kac-pu(hL46)V!gh8WP-bqm=}CsT5f%rba!;nkB}om%P-Nt78$hRoz=)0m`-$jY
z=Lv2Z{d%4q3b8V{mcY%~>(NaBMO6{Imz;g%=6x5YF%q$UiE!{O!{Mi=mkC`cU!O~K
zj8w)Tzf(?zh=BD%Dv1!s=NCtBGk2iwpQ`?6ib8+TL1{*O+)2V+C}1d5j4I?FK-vi8
z)rl^01({$DK<E$eI}0c|{#QqvZkynSAC^CmFkgO#RHdyl*zy;p=qLEANQdT9i6+|{
zU8P8&F`)eFJ#@rPLRiCAIrzw^-(;UCFj7qb@u2tX%(1zmHa>=GFNpgdHYae;>MRF3
zKesZ;i0n2*gZB1UlNF-mW&XLESg|}UcH>iy{Txtaav~#OLs5}4QAM}N5c>6U0k-*9
z2e^Vyo;s^nAFprD=7;!FmicIx706mrGh2v6NBpW<YR7=`;YYo;s0)qD@5FpUOm@uY
z`sc#11&itnD$}bjJ1coU*+OQ7wsTziQP+_~S}y}|ylAkjIjkkO_rnWE6YdZ$Kt(J0
ziV48F^Ra4;(}79IOR*s_<RV(F@(!`FJHI6T5@uE24&$rv?HF>MFqSuC-Rvn#Hchtw
z`VbugJY&50R`%if=EW{wVkzz{zT)@2Mw}r1-4FuX8Ll~qdHw+pDy&0R++@w!kMdJ8
zzN*#H8!?ajcw@02<;~y6PU$Wd(VnRtKFt;Uf7HEYR9wy0E(*beLvRa_KoVSnOGuCq
zEQH{0!QI`01q%tT0fI~8(hW53!GbsLPUDTAmA&8nChtDq8RLxm<Bogl2fe5Pt82}w
zHKpb=pK|XIhP0i%``8F_q!C@3o595+4LM+3YfN~&GBnbB03(|KZC^oqHgu^0`w&;9
z>aI^BJOt#s`rw+Xu|uT9=jGpoeV1=zL4~_=IUi`v=UZq=1*Je(SpX*1MmX*!GOC><
z*2h*-`XqCT(y$~Gn|Pz>#Zr?d{9<W4sMbwb;%m{l;CE1Drh`=c#J>=++DfQCQgC&%
zk!-pOGmtAe6eerJN_GGK%tJa1eD(|lp{3sZv4&JLTU%si=0p6oA}-fia>0SD^1rI3
z)A(~?!*wGiE_N=x^~d=@1=eKUc<!e{)nd}!UF+D`i~tsO$wb2!03!nC4DbfwhVRZF
zZ1{!Z(Fheh*2?q|!r0ofNaAvmZmoO>_MULt9Htk<gSWP0jD5*Q$EWu0=kd2giv>!J
zE2;RbSvT1)6&dz%wbz7X)ys%gI%;@#gXrtYJqky=(%3j+HbUCSWS(*A+5IrGunBLm
zz;Eg6ddF_2-{0EhX3M@j>mZ52Yd(TxrGKTs_7tL>f?Q&pgyqfBl~nqSMhKy{1Jq&N
zt5*_#E{pCgW#Bebta1ngKTo<C#EDcEyJk}G)cRn|p?gN$^^`8GjuFA4VS%F}Zaa99
zROx1=kpVU(sv^kAND4lUEqpPjw#j8paCr%S_}H1A2{&qZM-RjrXVU~G@LG9ixG;<F
z6N;7{<aEDwfHIt>le^f6%WsT)0Ks;@&^{zz|6z#8B6i}~+W|jU%xJ2s1kbCTO`eyN
zYD$Q6x{vh8drN^&c6E4(LA@=N%O`}?pA>`h480n}UtM0c&WWfM^3be|FM<fJ+BHN@
z`d;qx7VKE0`afxU6qgP<YkyV6_mF`L`>gaHr)1$|P7}60JL<9i7=FrjMEkQf4eCBe
zW!UunL67h-gpC@Ie0(_A+Vd3H36FRmCG3qd#s|yoyW}9nsw7pfxpLs?6Bsn`6>)uf
zej-g+U+Wa?mXCCT2@k3ZMK3(`q<P<U7yMY<w#|3#veI@H<<1`oaaG^S&O;=e$nhTP
zJo%L*+@<&x!PhkG(5~#}${#bmQw^SM4E-*K-Mt(aQsoUcWFxhT@XG!dCO!9A$L}hI
z81L<nf?5;_lU(2KxWWTfZl!h?5ZZ=sFD!W(I>iLMa;hrvMX$A5Ny6Wx>)$_XEzEiM
zL5(-3VdmYL*N>N`(0F5$rQNJFs3P38n1zQRDub+5Re0UGawLElyEF7Utdk1=;aQ64
zY?JqJLpqsG{1wAl3lr<a)o9bnN_?;im3qIEvEHN{t=mFgUum5KMJ>7Og?7lXN}f<&
z*h-BzakO5~$Mn=Qp)(uHfC&12c-89-5WDlasfGx*_1INq1pcgb_2jK*yTN<G^qE51
zpbzPBD;sE6R17wt6R*;N^N?J}AH2u@p(DLCgW1@cqON^4R*hxcbE=5qwUSkqo}xJd
zy}j$WGqi6`#UbSo()_fm%unc`kHz7yYaIi%Sxo8T!MA;<JJtzL&dq#d4az<TtXOp-
z+GAgHx`oK>C~nSbIr~@_H9IO`6t0lKtYXwR)CPMZg#Dw$w*#S`eU2h;_9~EH3sQwo
zy~j;+xq39e!toT;;B6E8LVu$7VaY6E(5lFqOJ~KqeL_e-y+#B3JBtP^P3H2W4Fa7J
z^8@8O*S;&SB1h{W0G^^+0wDWuhJ;f?W_EOD)oW*V8WA4sF>ip)^CyM}2S-iN#pm%p
z7W;7#2>2et!*ImvWdZm~rrbXWQn8~g+#slaV&~>y$KLL_*2Fm};br4$Ya12k_p-c0
z1FrsL#f%z==#^cV1DhB&i&bd21GI~#p+ea#i<(vQotNKmfoigB`OGCJ+pf}q+tb6t
z*oDy4l#l%t7;DC|>={iLOY^p~^#QZ9Ish9)%d8H}1%%mRi^-i4&H}d2INqYB=mAo1
z>er3;Vni;(wC>4!Z_6hCD2CDidvH1xxW<xmDdg8AINkS~zlQC!b#-Zh+&EV{Y99D)
zGwfT=VNyc+qAK2A2=F;R!Mwe1G~b|EQSqREpl{+$#w0f3+R!bDtsHuJG&`~Te4|~3
ztHMRj<haD~`j1r%85i8!ZDNY%uT0`>F<!Eg{(2@@3)>~T*ViJ+Xsq+)&*Xqg;PHkp
z>B4Sm=@7J#AKkY@_ZGd4=u`00N=e`KzUfK30XZB5hvR!Nx=fyHc+`7~KStO&$z+DN
zFQ!*gEtCma3u(M8qI7NqfN@nfsf;cQN*Y93w}i=7V)In0h4P|&!!(iS_`h~cR3m+v
z%E_tRv-I8~)Tp@KKMx!=x$aS_m1tOSGip|AI%C)v8#7h~N!cSlgb#Fr0jh{Hemq;#
zpF>FOKO*bQmS1ZKT#8l<uL`tmsjpNR-U^tQ=|i_1{MlGp4U9`;n_Tspif#tm-jmu}
zS{6|+oF|e%3m(saIhwACJWrkoA!U$*G^tqG2hd3*mh*4<D>V2=muqB1g|?&dks`{H
zAg-s~pXq~*;h(ribgMU0G@+19;ozK{Ao&T1>y4139M-+b<AP8Oz5S@4klWV7AGzlS
z8q-P0C6E7Et^LUi=?cdjWvJ{&g@-F=*{$|1m%p7AQj#q`A?E&QC*6-!ei^5s50$&i
zopNE((Oq<{+IAj`>iSxqlw~Y_)?+5OPHqMl25ud;lo9(wYDZJ$&q+~QgeoH@nKsJT
zU<(d?8X-6o8_$u3&a8eFG?iCOO*Ooi#}(46yqcR>4@2yES>M>*;aXB3L_GsgpA|VH
z6d2_uvgWN*Gw*}oxAeav#?*)RirBPk>q`M})y$as=Qw9gbUz-s3%!YnE@||Do$=zB
z81a!axCc*3{N8w>t_(nMvWA5eanPOLcygb5r(qe`cP7KW7qNJ-AYu3LaM@#Z)g*`e
zD5-<1R8{Wk##=9guZNl21s7sJ!QAzY#Q27iig@aC0ZUisb17#Ew#qQ8dtCcv^jvE2
zACawIkg#2S^~sQ)A*k}UPa%N5Ei<30q_6dU5LtpV!ZKUhj$}{IwGT2&Tz3?+RN{TN
z%#!fgNVi)H{cGnG6hgMEEY}~34Di()#Vh?VS;LR+8@N}dIEyjVnjM1<?1tQD={|3_
zf{c^AzmM)8UU1Dii^BOK37>j2D$?rBU+gdDyZh0{6>B?{1q?%6k1GAr)3)0ON)oi*
zJ)fyPm4Lb0jOUJaX2i5-h<e4Lr?ghNaPXQJ?Y%^dPWyxjHPh6`#&ku^5t671zGD9L
zi}t2Qz7On}%h|3Jxg~54f8kPS8CI5Q_9HEqUD@SbU0II&YX3lENaJ;-DY77MwG4F2
z$6@`TN&rl+!<H+o3Zb_d0cbGznju(Qi7W}#y#Ps*@D{~ZeL`{}`&^dTOr%NxURYGj
ztKD#c@7Z{>K8;IrvlNsj^p>Ypn>qZp?C~MU1`OOka$)8oW4zdh;o<cJnUSnO<Y2ju
z%%Se}P@E!Eor(e){}+RcEtR&m@YM8lq1?Cv+u9xfC$~e^Pw}CBgSwTq6D@7C)ZyWY
zvGJ+`^#eyF{Yz`(FLjG_jC9OKPI*+tCnhEe^r5tlPR9<SJ76s>zVqm9)}RnSwyB_g
zGmc`Q#=_yySvryV+LY7p?h^_?Nu#Q}aVbgi9#+Q3%7%^6*UU&G5E%9zcUE*Jr@LH&
zoSPM?Sz$MpgyvIxl{6<pPV#;DyFnR7u_5HLA3lq81pc(T-ixXW_poBKG>#dApnuKa
zczAB`W9woYxH>1%HHoCdV+_CG-CgR7CxO0~3lR}Wr9Gpi)<&r~w`xku*OSE?k3dzs
zX-94=-X=EWqeP>N{AXfg4uv!O<G@tO?_YJzvJ4qdfjMicjgpY%$48^6F6uo`-xLO=
z68}<X|7s)Y63!kvb!A_7@1@)iUokSyk<hahBO)e_O-(H>d+H;<Souayt{s122*hQ4
zJHbmzN^0-wnlP8G56OtSzW&rHZB1hhZy6JF6kCPq)+fBH<@&gFR^?JH(Xx6K3u?r_
zKHTEdk!xyjGV`6(-RBwi$hLfSjcj0Q$_8mHC|p7QJ(L^uq~zo*+d1%2>?fjyfC!T(
zEG%+UGgA!0!c-m}Gf0bv#@!VT?b2gqy7_IoFC$78`1Slyvb<i66BQ|zl$5-MHoMC2
zT1{4c*6(ugi|Xy|>kJNa=RFw3p-oTeDf<S>PXMu4fKRu<<5K70x~A6F-Ri=zv1wUl
zg#sUtRBD*e1(XyTv{uQK{+bTp!+E2;y!>NO6Ux8<fSwD-MAEXdep@_&tJB~}0+5Ss
zQ<h3c>2TQ(znG;Xcx%b25qW%N_BsrQR=>XGu%d`XTU#4o+=-tP(}(!p<N+nQyW7)Q
z-K$rI+LNRh>U3Su?pxK#w=PcVsgPj{6O8Z7d5o(N-JaLri$zci66YM@yLT#|OZkz+
z{xe;G5%QyqLO(mh+a`+dnw`Z_OGv2H-UMiS7#~0GG!Kl!M2CRE*@`qkd<WJ}NRPh8
zu&^i$i-|ECu1g_axtW2%+Pk_aJv=UY`bg)*)D_|C-J>%^y3B|i!~PJ&IRcG(!I_#u
z{nKrMzbzf%ce|gU=ae3h<>kVNsU`ys$I5EsKy`F<|E=hUqw^qLXh`JA$s0f7M}S8D
zcgya34EC(8stSsVVhg=sVRqQ<FtISCM`_#I+IlS~$FWJ8vaiEXZfB=2Gf%|;PyL!2
zbbU>wN_tLEK@u~lu*mZbw`8yMUy7tglxTXga-7n+SaVuqDPx{(<U|i&N3J2-7)tkx
zO)UOa3{Wa_${o0$V`HPOCI##T{}z+7i;0bK(2Q%1DLmX(nk^}HGO+7S4z*lQMF2>D
z=w04UPj6wPyhM=}18j0;Mk|@uu~DCJqkpjXrEMAJ&|C^ZI<TRyb#~Gw+N9Ms(1s(+
zC0p+<gp8HXLI0dyp;St>vpGPNvf5rE2%`ITD2MjQ@z}xg>S@{xVR&O&(S;!fN{h2h
zpQ_kwnQp(NnrrmYhu+BF%yikXLNzuX4T};3D;pGSIk}p+XWh8Tf|gnG3`tMqY-eBC
z+GY&gA5^V+UFb=m30q%h@X{7EBV9)m|41Nlm6oQn+Mm?5cj55Sg~p2a*y>q#dg+0(
zQo`DYHHPCidAqbijDjeFlNT$2sgEnYI}!b^inT{0ZGA5j^u<y?*24wT=E#C}EGA7g
zRSl7n_T87&l{7Uqd-_T2()dkYB+W_wekWCNr==X&cqpbS%d7q4<N2y$i!u<mu-O3}
zFFeU_%7c?ewJy&Y0*@=TH>f<gfAVnXQ&kn%ZuE4uqDT2qwO7QVSku_V^^)@SnOKzK
zs=e!6(;4clDNgQr@H1Xsr|EOxv5b)e+uFpbZ9fv{-?R7YLK)XEPwW?>{&yRpi3Uu<
zpDmj*@c&Uy_QZ;kh{vmR=09)7kS$Ek<Nr4!*uU(GWtbNKgY9cSEj?ecFJHbaF7K8k
z{Nn2QcN<B6!X~Pc&d9(}q-VRjQRJi=O40ILdHlM1j*9aC@t*OwZ{L0vQg_8c`aSKx
z9#54A;M?&CYWd&#8ABu%j!*+AkeL1<y&@)gG_QV2)DK8Wf0^Wee-uzYVe8ROc*yzR
zf~eEf<nfj(R^JJEnSQ4P5c|lydq<>`mOf7O`@Ue}++4FFCqR(n{ZZFCE@j)CDF1c)
z5QG2z!v9x$3S3@g4c_Iit!*$qeTv0CIB1FW*XjU1=E6rudBz0+cXfMB+PBOb2OIlq
zOnjj(#Pull|9>mxe^|?srBwG_ZpGO+#OY*ZW$hhY)#QFp{-$DFLPp`>93>es5vO0T
z($uXP=DX2Rd%I9P@=-e^Pv^bB$Hi((Fe&Wu6e$Htab*0H&G5+&KU$_@W3v4+#Q^I{
z7iYu7#I(F-mf0Sy3xRiC9TZt1X;V?Hxd<5{7U?%j8Z#Oi1OY3_b<^ZV0QQ4w6%Q|i
zpaD5SIo_qUrLe`^{LB!5aTBa|rDfP1V|YZoayW06$-w>Wjjl>h|4-s7vw^@+2;>*1
z>6#0pxVl(KaBy#TAK+sMU-aPop>4A7ziD<vtJ?659<Z9^+_=FnH<_>7bj_qoxC7rO
zjEyDd@fLU)$j9J*N{O>Isjq0H2PBHt9NeltXq?UAPgSsEF8J_a=(#OKZ5<4@eNknJ
zO-#(6xW^Pp%UA~z_wcHDKY6cs;wFRydZV@~C=^8rUJf0Cejd75&rvc-c7M>HJ=>(r
zs3{G+31t6xlSrIz7X+>w-0;!G2r%_CYt4W5QRRfhw76yZuqWDBTQ3>d;d_}@R+oSN
zm2fxG^#HsqfbbE|g@$HrN94IHwVuz?V^-}NA`Cn_H7jH_H8sbp%dfe)xnNTJGIf0H
zgzNXfco@D;H7n9wP-_d@Ty^AVkgget0xH7pAId@Xv)s+4`6L*3{_dK``?UQWan*wS
zJuf$_Hl4<DyeM~~h|=gvcfU!!`F8*2>hssHIb~0$I~-z+4Gi?XtIX*KGlcUKhzOMx
zTDkmHseixcMUa9i4e!biXhzE%i|<BF0dx5($CKUNZh&W-h{D*oG$1_+o&A*Bz{Vyw
zK~1U76KBzHFs=1VJj<#;Q#Ok^mzdpxUen?3S7OuJGJ8=L>`b4V_%t%(OD!v2M=|LJ
zP(Q$4;EvnQ<$hYnau32Io}s%<-m+YyweXY3uJNuJ#{hb9#G*k{trv}ay_9O#Z>=xE
zDt@@jbJW1lBQGh*f1nnLJb+aG>9;K^+P^)&V8(<HVE519Sz@UsoJ>_=YM0CFGN=%J
z`DuSM^PIQ29{}`a*t#HT$e1ijrwazL3D>Pmp6(nXjC0_tn_S!~b&bddhv}z{!PuWu
zQnZYaG)$<5E)k6NeAZ#zbRG}v{7&e#YT#{2gpA{qS`1Ha4mu;G^mc|vI2%uwFv!JB
zo|Kt>Sax513Pg-yMN_4iNLAS8|52^k!jc1>eiYZau)fYhJZ_L_vD_no7I$SiSB{`T
z%_wcotFe)D>yUYv`5Oj1^J98QoNY4A-kvf@Pc%)CEU2+jq~^gd_R)ch<6#Z$_Spf1
z`o;3|^IaG-N(~LHhJ}2iuA0l=rGvba;RRb4ie8mNkQNZAx(T8CTYVl|w1DqU5oRcr
zyiC)QuA7MEh+nxgtp~rSc|^bIk*lx_<`lYMgjZN3kx_?_wL#eqL=2tceLRpQu(rAX
ztzDIIJ8d%yg?bt@atC9}&F;h^JujbnpRADykdub|92r4)>}l<)_Q9?YFN{?k-KH4?
zV8z;QB^t*pq#y(ZVZLJTp7+sdqQJ$F#YywsZQ!DfuWvIBj(&qDNw=b84|}%w<+4*G
z_1VK~VV49KRKhq#Sp_z33Mx7c6Q=WnIqhhSH1D-fe?L;>qmS3kDCISQ#}%fSVp*i>
zvGwW4<@OtBF5yK@(LV_qZJ6<>6rpTgam{L&K7J4Gbq}=1!hZ57j>}?qZy%^Fy-ooG
zE9u|ueJ}XxVx?)zt_NwG#jYtJmN=v3_7%qAHa180&<(OB+fPXX*VoWnceBeK0ryo-
zY4Mx5+31F3K{3Arl<HI4(uuL?=d2Uw)I#J+P!Y7)yXzqQg_HoS9O?cN{q*4e1O@|m
z3xkT}>QfgR<%tPCcgxuo%*|0%HhRDXqUlCbn>#c{>Mm>h+P<DWo~Ykqc=m{O^Nj6f
zo@=1%gYZ6PZrxC0!t9K5Wx3Y{zTHwLNEk-<=U;9nzA`x4ZZ4-)q4glkniG?TUx{YX
zEUn-%aQkP9L<pufw;0?knGsE_B;N`Xm}@Bh`(d3!EzeiY$6W1-*p*F}$y-d_5bnI*
z+WhK?MftGj=zvqGY$1To89yDqXo_iZ^5}9Nh81A!^SR#f`OC5*mhd+}%`rbTj}V9V
zxjdjQ23Sddw-K8BH}_hSy`b&Yb@K&Nylxmo<9lx@OzBz@9+MGp)^cbiqu4gd7znr;
zobtJj$eWri<YC_<j4qh6uKD=ejD>~m^Qsad4Zc=*xja7hNnymyUUM!wE6u7CqmcQb
z%ZBAZ|8DqF6O{!vwU-h6HOoiV=|EzS83tpbAU%Jx?goKub}B|N@7XoCjxNz07E3>k
zun~gD)S=g1kR#8dt8(o4i~S>W_B?S?Oz|4MmiDilPQA#F5=f2Zg^R226hw~g@%OBp
z@jJfSalCpR>B>2oy*H{1%TLJ9(2K#(q=-ghyh@_1!swsR_)g7Z1L-*HmQRoPW-M!o
zOB`7(C&Gbnroc#6h>(Q4*)8|p-p*{e?FKBVh<9!K<muP-c)ZJ?<JE@Q=5$|w&@iW~
z<gTjbxqLQkOMiMoI*=-KKVU9`c4LvaD_UJ({i#a^)-%J@Y`KkSj)zYqbor#5vDoxL
zcM!}jTKO$d^X>6Y#C6Me?>)dH{<{_37Cl1R-5j}pE-=&Ha8Kpy+1|Ghu87yyD~uvM
zd$`_rZcmZHcWKy|x270rGI%onIa;VJ2wZofQg+ssgrNB3ADZ|92L~NXHo_GK-zx=<
zumQ1Q*;GHjuQL^p%!tBu0jYvhpJOH1yxX?XiW*{em6%8%Tb%TxRFg?HhXu1GiCGI|
z=zKw42-kn8A#y%>0GB6wh&T=9@=>u!{$U|d;Vu&5=Ri8&cO1m0@Pfq!_o#a3UiaXu
zj~fJy%?~wd#aAJT1m-SCbYfhXDuMFW3zCq$ld_o4$w6GEYntB+RHJ0)gvpH2Bill|
zQw$Lp{e(r0wwoaR#a_Nb%oNJ7rGwoUI#|e8al{eu)t-hhtLIpmca)JMY-1$xk64}&
zwf4<z%-2V2Wvh<3cH5+cw8r>+#5^ZVYLN6wdzI)NIAX(YJpD6(oW~6Ro!rzy>gb2c
zvzcoT%6lVNbhjl<iulk4kOB27Y)0&FnF9{zvv<GzYET#Z@&U)j;+0?7(__ARyRl-#
zg3oDn@iW=~1T-bs_;d7%tZj=GJDeu61WXSk1%t6QZaNI)?clU{L;Ki(XOh{&dg_(`
zRE^G?aBrOZ6~j+g0aE&H54sx3{`U=W6ww~W-NqIxb>){|>Fs&c`(2K{5D0BpL{2XT
zqe&cWp_P$L_c_tAY&8I~US;$~T#<fs<@ff9MWzmWYIw?d9p8ztFOSV6dSu-iN7l}D
zU2Fm8am13k6QK=oqBLw(%+<Yg80M~Kxtw(4T1uq}^QuQU^a}Ce=VWT2pY!{6rWs1l
z#JeILXC!@0Zz40C{wX$G&>46pLi6IdMZE$}!wAx4I89n)`{*n9{UJg#(sOX#fICnv
zI#D+qo5a>Fqq2#1h4AnlK{MB3qbbya)4Sxh`PtA`fyl<5fj7@o#|;~>KYs9HF^_|D
zN{WqGvg_ch8CQ4t?E9PhH8KCz6PssNzqQz#7}1DwwEnTj&w7_uM&LGcI=V#}{~ZVv
z@0RJsLrGvYUt?6iAnROEE;pOyFZ#K`o*YlY&yQk~uvkqQPtMT<M$DgFe?s*Omd5n{
z&RlLo5@<Z0t-adO=f=fsh`Qcr#-L%LhwrO0-|n0UEcH926JhFT?34&WE?v%>=PE;`
zL262kQCQN;gJ_q~sN^o7wm?pQK+{qL!NN<&OPN!F#+*HVPgQef+<Vn4X<A#CefeJC
zI_t~X_RPgs#;wv>ip=u2&Xm-o15%$yj-Nl^F^l6zXrp^fhhb|6<7awn37Y989j$K$
zE*>b<2yd}6aQhGpkDMG!FAOePy4cbETOE(E9re`nmwR<Vr1I-N81#Q%avzp0b;j;-
z72$cWTcr5~zoeDSPO+th9-rQzhtVB=ab9us!eT``UZKMcf2k%azKRW4-9>_cE=hCR
z=J&pyph{8;uvpIy>Vk|sHzuf0Di$WF=B7e6z9MyXDCutQwwJHPm4P>pg5}HPV=-^`
zShYmCP<?AHW4YG#$VF<giPZNymI5=reYJO27l6YtQMb*kNR81jZb}Sa)w;aFn~i@U
zS*k+Usej1?bMeGZpgnGjlL5!gvd8$6&kIvacnuYyU6vTw<PNHJ%)4QC8M1TF?Zo&q
zZ!mmc`l@jWKyhvJ&l&iC?t8K=?GQ$*LTL&z=ANjZpZ#T^=H5&WE$(RAWfiBb8*UH&
zeC>49TE!Te9i+9U=CzmXR$;0`=CXws??&P`l<toqjvM?F#m=a=?>VMs6Tw2HLwmCl
zv*D~;_uJ&4x?i{4dM}HFupGcjYfSmnabJET`eUm}{X6u4%<k9IF{ON%jS~-5j-iii
zVb4mWm2eJh7$QcBh%cjUK7M|zZNIFB)<C4VRPJ~WWyZY_El;q{IznwKikQn1`BrLH
z?_s%Wf6<RddBBJy{)}76LzjSH7!8ayV2Y*Zsc||x?Y$9kdB8l3l|gG6AnUR?H;<jQ
zWENYL@ID3beOS9%#uZY<x=^*hU6jWVg55X*HzGqbCG4;AW^DF@u`;0;3s8N3yG48X
z%%=OThGwxEx}Nie`~R^bV4Gz^uoqf}cm^g58HdQbcO2I5vk?p8T~<rJNj!Hdkz4Z*
z6er$f#nb2rN42LlaAZTZZA^|sw*Uv@JsPlJtj+ZC2cyqOQd9U}`M3yoecxROV+)`0
z2!&u|!~9%&zBax_<-iI(?pc!R9)3Rj%%1n&zf4cv+4;u_(rtNJ>YY{^vd=CoLAGSI
z2AAc^Nf&h_A@aJ>1cW%amlQlQHImCp9E-`F7|PGn*IC=`+jq4YRa%&1UubE?+E%ax
z$D^M`yWD3^%t+$)LVf3VMOv&B=WH`837NYxx*R0{^b&Hj+7hOxoyawq#f2^-#G^H~
zPW-qQT=yUK!uJUp7vikZ@@8-8N6m^oYpPJrx71BG4v_#eZSzU2vQiAA*riK=VxJ{c
zBxVjI79dkCSCpl}w}R{KkO|g!5eJP3I1QMg^@+C;jhT!aC92b>(Y>Q8PLR&NDhOS&
z0wruY?S;gmq-NKa<%7qn5I0q1@I`wY{*jgWYphUQ==V>sXpRiJ2#gSsj~HEz(Yc{z
zq<45v+k0FEzR&^;seX#_sQxxLnO)rn&H5Evof)68nx(&A-_U$ujrpuADLgAmZ6^Yw
z8FcG;(iP9Pv*^iMkMyW44b?8lKquB>svA>+Z~dk==cww9oV~8FuS;(k6Fq6vx2J{0
zn{VQyhSv@ZYF5k#wBfYU7@n;P=#o2G9*}18n_C9&DJBv^%e}tm_pncR?B!DC56q5e
z3*;&9WD%Tj{Q(a<+UO*lwgnT&kJ822B90Ix5B!B|FtM^%PzC%VAq-*i03BL^=1?cx
zqcsPU`O7Cwt)Hlouvul$_BOL$Al8@#p%IV-^82O)9kTE(#}u=>+apXwSh}&!TH{*0
zmSR00RE?inu}^lku<H(Mm9Qtekc;lHSvTT*@3xkh)YLa}&9%KF6(kFXR{4xTRAg6@
z3d`u)+sN{bzupLVSG{*8zM+}lwI{U`KNhOp3T#ooZS&&z(Y?jTv78@o1@FG@g-2bZ
zAK0i*VjBq$HH8xEeXV$5YexS8zqhrm_rQ3Pqy`Vr05{CDTuUnGey6$gyyhfC@#2WU
zNVH{~ykRBj77y4n)b1iB&>MEPB^V~AAZa0KQr@0XJ&P8JGnY5n>~+8*asD%L6g8n>
zMwTi<0ZY`GR7@e5+ip1Rws%&lRbp-NPR{GbqQn60(f1o4(688HgfNpXX{DK2+cB`)
zBKEZ7t6@d7DQ<KzcD_FNzOZ?TVXm4+aKZ1_7)?j}yfbp5?8PP8HH99T$_(GDvt%~%
z8(1cSXZ^ln=6tB2cxhK=VOc#?oo9`Loj@O3r@kDYYW(y#aY$m}fPcB(^(%j2QJp?o
z+1f)|+_ys-XP|&p8<z6wTY*O55wfz%RCAeGQR`>(jR!bldc`-63}UP5)>h96>9)2t
z0AO?lKl}rKgVvjcDs&iFzI`k}&vQ;eJe;3Swq;a&x%yWsaZ^0Y@@2tcmIma6nYFm*
zq}yV(AoZy;A;z5vysl+j6cZ0UM4TJ7^p{|nHrPcuXZfh*g5>b~NL3Q#=NTFa1o|+T
zNkKB^vbw?>QViz3wAGX_vSu`gc2D@;KFT$imR^0FA*V9--STB$p4H?t)Wj+A>TuWR
z2LW6*3>D6M0nhGRFQ9g3xUbi+hiM<NlZH?@qv^))xmu&Tt+`93ahTCbt~JxL6lDLc
zABi>j+p8=m`;4@1-jY@Khz05Mv35#Vza*Av>2)%1_1rr_y%az$Q_QB@v_U*&r9Fiy
zbVV1cl$+1yBrPxCl+Bc?2Nuoyl9X4xpK-&IHQoHeu`d6}8{+COpT};1v2e8yOq9SQ
z7P;QU<waN)uBDYa>G0+a?VWQ6R|iH@v_F0J)kfRa2;B-?X;t%k@oB-4?oeObRi@7;
z1?{?`$9Y@ZAvB=tfuR20Uc|-Zcu(J;bS<|H?36jf_u_Fi{$})TOk_*`f_GHXR8cR{
zrD3m<>CD}yz8^n2i(H^f-m|4WjsVy0v8pWj^TSO%>nT417z?+}RPYlQ;b6+_$uWMo
zHK?2XTD8MQJ9vCE+}~@b;BjvG_Qz&ps-=!Er<mgrhZZ~{ZV$&e;moFtmy`U5GeRyS
zNpgu%t}J_en^N))n!!))%J}DlZS{y=ZZwAD6JHwjY0#OE8MT()J(9PrM&ViDI-TW}
z1bGwl)D`xxjS}t2Xwkc0Jo~Ckn@=ko*1p{+W&=4}Y@a4EPxMg1$>63<$<%K-Szs>+
zmVUI`+V;4U$DugI>8_5e3KCoP%`R`w0)z7)N=hI$kDaRLJ}e;J9Cab#bc`tLsTSJ3
zR+#H6nsrFQchRKdE}fi>d=s-+bMhq6+pE9AQp<v!3dCC7c+x3M+L~mfYk&u_6wwL5
zon31_Q`bmoa%_{!3&-@GW~FXq9q>nRv7GQOFGXT_iUxElos?BSv{AK#jy^wZ^HB?}
z*n6?1iE}BTqf!~^<74*1I={C(d8*!7_Hb+M>JwT_;fDr?74+Mw3K}3yUS3_^0+QIN
z@Yqpnylj)3g1QL%UV74|?Tojl9zeATP)TEcE+hxXjcE(I8%%H24ZWPs_f%BGoT)_f
z@Sv`X3M&9Y={Gf1RiU{;`nHOvi{A!G4JQa_LN0GMf}jjeeD1P<FGheGXNXCdu6Fxs
z<e3vmpzF3&W6F8w*EtU3!DA(3#bIPg=I`{+msq1wIoeOU(G8KA3@+O(bx{VRy!{tX
zHE3Ls3oDj1&QkRf3QF;r{4Tie4M8K8g7jM27U9`2S{_W}z*M8bqw`M(K{m|t7wc@O
zAE6QcEwa)XSDd6tN^SDQd(V<dt}`z1RLXJMF?MXOw$ak2YG|<+$YZuJkojv|3Ex06
zF1#tP@lq@&4ZKl)?u}L_M+WOhzgXS~B7_fgYn0y2T-6#(!&V4~{n(AD#yE%wpwGAI
z;qmHRQ?J#BNo?ypd;~VwIv0_1IBy`Qn1We4%<4ZslM|QeK!GrQBN5qnq22tDap|7R
zBEL89%z+Qt*L?O@<(Fyo#9jm^YmZRH+>m@#^ge>LAoA2ySq*z=CHfF43pb+dc&EpZ
zmwzmkB5EBx{O$?3PZEhYCYRa|IHI22(*6{6`6qJzWmGKt&I85n6{Ct%=f;w??e}D_
z#e&4$>^i8#eZrezLr78DhG{y*<&_dXE^3aItdnjJb8VsEie`MqE_cJpBYlS{4Qn<=
zB0sue*XJAC>%r|1{9gHmmlOim=L_YQ>r6aBx^r{(h~Ww&&Bn_B!-{mLP$kCRLA;v1
zQ>F@Q^(8y2Ej;>4znFB9@GBu#Ni9zy*Mo&nWqk3-yeO*n(NUto(;eek#+YTukeCcH
zf6juxnwQvosl(Z9!?S)PCWa!}qDN_#usy+R__(?T;7d$!^1iEk)oHq?9fL+z!r35`
ze}r~l`?MuVtz}!EFUOz*|5%#*dfw6d*xrZwVjm6l>;QS8JI}C{)&M?h;Ek|XS!s0-
zhLxX}FD~)2`Z#iW%P4d%JyICK8I~61ax&#y7oB^cEUwULUa@!EemHt<KP8Spdl@9&
zW#Cp*Mt@F^fY*&{aMl9BvpVb){u3c>p}vR#O_(Zs7ruD%<zd6#Fh|COtrwg)scKKZ
zKI-b;g2)IVyQS)@lyyeVjq~Nbl&U@MdmqpZ2YbH2Ob_lD5}plZde}XC={$5GO8!+`
zGp0bAk<%`<k{!;cdlMC6&?l#B-|=fvS=QO8;AFCOWzyce0yyU27HdLVb11&}P=B<m
zxMPGYr<%Av@0Ip&wHF~a)QfOFdFOCR<1p=oyt|#~a-&|yb}mO7C_t;Cq(o?m!qh7R
zGOs*SYQ2+){UW2%kHq?~SWY?0&67q9U+H7KjNQPdvij5d!0FJzhjSGqALJ>c9ZFNO
zf@N4Dsm?@5@9c2$!UVp+UU(ltdo}nf`Dv|}?yJY(B{?cFjtw^BQP4I6UM-K=EPn}#
zkU&ElXb13Yhl|E`by<pq%tv}Ke1sA!Z!G&<T6hP}usY+yK?Yl8Rj-@N9(*u+D8`DJ
zDRM5<Jm-Yo>*23*Aj7qOq~vaOYuM2*q<%QmcYb)b@Pl)&m2budO(b%jd3{AyH+{ze
zK$j7FUnT0W_3nMYi>wo$kMtvQ^lzkoBxBpfJOqugp<dfg=o=d9KGXFx8u*@XdfuN+
zwGPFn`LZT7JuRqF=RqtT=|_zmguYnivCz{}I@tLUb=tIQ6RcU{cm5N|)jS<B8_KRN
zWlP&8b!GAu5&~<~mLMcvlxo$OxczAFifl`ufe~`Lf79U`7p>7?2D?uPdfkfT{YVR7
zzq!Y?bg@x>2RBR(C{b!Go2tF#8U``zy=qi5dH-Pk5`GhCLnBN`KS^bksWJzKo6nNV
zL<jc^NlKb%v900OZ3-Xzz0WvWN{x#{B{MUt`B((v{n$8yqQs~1v0%ezjQg)0qU;pV
z+}9jsSQBu<*D)={IeLbTJF>oCH954v^o6d-6?Eh9^$p8Z{iWQ17;e2Qb@Vx;<|Vcl
zwkD%64`FCqt--dMjrfSKPuF6y>yJf4?fToHbUCh_MH16O3Z`g^Pcow0ZGG~ZiIg$o
zcW*l8P_!OCMffzr>t>>72sbaITtzDJf|ypmx|Y4U(Mc1l$2_h=c{Am^_WG}llia?q
z)U^~Wem5jgI>;wyjkez0$01Q3M2rwf*0=KwAUyH8)nUCB#_OF<FdxmM({uNw_CDny
zS*~4)i1BMX*x*L;;)wKcplrmKZ+TW{$K~}+i))3o_C|p2_$9-dYg$TmYmdW_fk~*N
z^J5M4&={HaIu|FGLeDpH{9NcdBm@CJhnjEi@A=I9N<#`zP=tfX*jliaMA>-kIUX}D
z)-CvTmm{ORh3ffe@^d}KVhq8N>OR|Z5ER79^gboIL_PUD1oge4Y}TtMNRM|(_wk8M
z{~AGJ<=Yt?LB@5{NoHtclha(8fcSJ5n&~Uq<ar8*e`|Hrj7+>*!(Yf*n`0xGDkcNZ
zdC^hU*S8Fma5BrAjQT>|3H7`V9}7&u$acH^TV7OKmEIf%JPZUm9FoDurX1c-EgznR
z(q%(3#Y3K5F<ui^5=SI(v{w-`^_@i=%p{g-g|8N?!#9KQbM)rG_4ZrY);Uw%{_MJ@
zNQfpSafz6+IZhoxyc(;?u7o`p{Jb^D-D{hdqJYmjlc3R97%w!`xNp_$Tg9_icR*-8
zJ`CjJFUUzrfkX6EAg+6>j3_P7(ESe{CVRmR7sv?C-*7fl3~*`vg{Rnr=2W7zye}vM
zPO%_FX_2Bp_m?7Y+R%r<N5A(v%Io=n!8e}gA$Hn(i6?C!s=&`cb_J*M{_>TjQ<Fhy
z5BSFRkfHH*G%nDfAlf!n_vYFj>PM!@R2dbMDH2da#m``JuK!wAF37Dv!Tq){f27dI
zD;Z5E76}ekfc6h8lii*3mW&~lup{mHCZ^8%5kAtZx2Dj0yFE2o$hd<!!o`I!{Q+{f
zIO6H!%O<Gy;K>s`_ip9-1jwAu=K@XdeRL|2B_09Jp`(tlUd3PVhD<p;WB{woenNu#
z`AF&(*&eY!+`MVPd_K;mphp?aniLVd8L>1+asBu|o3h#4xw=+%6lva;eRA9yPXiMe
z>WhX3W_8kkR*v^?lOT`3GBm7&ndqJmB@z)Cs1+w@<rJ`*!tV6I8jl`6<M!!HYT(iL
z!G%qt8IEVuE$xjH0g1|}9K!B#t+hn^3vM74_zXZ-GbHKAacKA)jy^7#t4BU(u_2oi
z-^mN5ql*A?q7rZ3d@5l^nf1Ifv9iLZ3i5BDm%)(H(9~eyIi5g6goo`*;s8jvoL*QE
zSG%;~rP~gn<MO?CpuE4mEv^9a+hUSD?+d<r&+0ZP|MPGF9+wGho*}X%J8-qCG97$8
z@tL5J&+0?CF=AWTX`i||<qn0GRs<EwrW>8#B^upR;P+X%^;<rWyx+H-z!|zbuy8hq
zk%q?5s!qnmV9GD_a8P$oJs_MV)fKhVYoMf;po);!AH3bn^I96{?UyP8(txoRz*tX>
z<}m~8K+>DcuMFs#?$e2hk~cSbwbb1`X*~N$YYv7+EiNP)I|@f1y!dx)5BwaD+4R*!
zmFpC!&1P9s&+s5UuQpd+Z?OXK%UYhE**iYI1v{Hz=!1jxP&xIf>6xPEpNNc?_?%r^
zPj_ZmSAg7ST6lQu-Z1mM)(JJrsl-ti$2XQmLixF{=$;dj70gTlnsA`tN0W&hJwz&D
ze>|@EwSrQjW-nOQ8G|i4++0Q~H`fC8K|gd(oR~2FBLMqNNIRej*ve#;ftLk^2|dYc
z!o0oE9`FWpq>$lJN&G$V_ocg2H)PG%x56E|2!L&0P=JgqlsGoFU}N?B#1qZ*85jF!
z&+cF0(ZmI)5q=i6UoG#&F_2?np?K1q_MJxkpz+AlZs-<C{~AtXbQi@k)pe-=W#ks3
zOo!Dao_=IC)s_B$KFY&w@^HGd6V2;<@9QZ@9~$xlIG=9~yf8NNnc_!&eC<u8E8DxD
zqpJ_9O?hgq7xE^MW)HyFKw2L^(~lp&TPZybL|>T+)#KEsO+6a6%lsVcfs4B>++R!d
zuNnITWTg6~?0h~{I*QWp5^|93l&R;w6LdZTQlfLVo>VMVuKb{ove*!=WZ26A{nq_i
z0&xxVu(xwg1fGd2!PY4zPk`h!21kHjHREo4H)hG;z~6$$Y;hjLb7dqyBW~qj(D%xQ
z*VQR;$ZB)>o?9J+^E$ly@J30z&tPZR_h!xbF1Gz}pxUCmva%zL{*|dumhvn0#=|2P
z?sAx2N4xu0)a264H~P!7{hW#6TC)>4p}YIAfw!0)?Y@eh-*#l(NVx=xhjm|Hxz8j>
zUuG=X+*DuGK(|k$RZ{ZKrN%bwmIBk`;^Ot2H{h*9jKAWxu&|;x5N4U2S}zrs@MkKX
zyP6-_H1gP$W%1}@LhN?dfg>m567(t#9S`1<v3IRR96%H26oe;1po9rl1{fk}Xv5$n
zjL>}Uh_)s!Y;(|wQC~RPLqj9UyF`9(jE;)yH)sOb%D|gw$wd~Kog?&Rc*$1ip_n0t
zOBIElK}-7!qLkeBC*W>`M&21BvKWA2&&i6DJXuzl`y4nCmc1=H*to|ZxxBVkSuQ-R
z=fN)|!QXA)e&4OZaJy=#bs}#a?KM!u!0E6n@GJieK;)EV$^XQMf!oK6RIxvNcz({}
zS7B#F7amsN{0DYqj-GO&7&J&YC&o8H>GF%hyom9S@7gC&(4nH|XOz-q0G|T*2?I0W
z$lqV}E^7a0>{#~p<7a%Nnb()tM(no{a<Ylz?}~7uwi_0kxP}VkOd?Bb&};eB><c$A
zt*lsTssYnK^nT;l7bj9(G#qiUvdW98<+<+7^va<7tNt-m!f~8mzbU)8u-t0_K+}JV
z<JU#OKcQy@UmoS=8jVaSATG~crhHGzcYVG9^P*<-Ct|JO%dVIMPXEhV!@YT34e&Ak
z_YWTmtbm)@;{G9murMHHr<Wn5&b7of0=Rjq1BeS5la1Aa+{eOjrAK)j$uT>EnwGK-
zriD%`UAWgy^mqp)8iBr5das7~^9(v<cn*I?8|d`&-88}!P+?Nq;<}Jg^DdXRaTfBc
z3u_TEH@>p(`GvXhAlB|AV2J+!)fG?@AWsdeFfT5@B^x;;Bk&Sb)>S!mJU)W=>kA+D
zWdn3Q>(QC|z9^|?z8_;U-6<==v68O$bkdrfl}mL+X(B&$bh5~9zsm|5$tQFZl+Xn-
zIT!y}A4TXyDrH7@TVIoA{Wwz~d~LUWiiK81^I~f*{JZ#_-7(_9v2&i^Z1;qQHMH8=
zbLsWG5L^S^yI8yq7T+eyd>dye+gk_mWQ+%aO3GwS%_)Zyf)qaU0$?SMd$04501(a;
zgy}fo+Zg0~zxWfu$s!D~)@5EOskWMgZ^wu)uGBz#Y`=7Vr>j=z9cU?<qet6G2(j+e
zRXiOj$tnhHvN&U#Df$lMoL8$_PHPv6UyfDrM0suHJ1eBENzhU;E_7*5Rj%TC$fiCc
z9Zg19_?q~R<K9elaBzcE^7baN#HbyAX^`D9srxq{=CLAGIo%x74<DE^K`dmt>~?~U
zbQk=#i{qKiGQ=Ap^~HKVI*JONlT?1~UO*9UcqOzO;CH9xcbkG)Lfy!8ANk!}**Ru9
z+Ysn-D`{V&H10cwme!EWYc-QoV#`_M3WxD0uzlHses-oPrSxi%J`mUxrtre+-74Ii
zD8jw{Bv53%fRR8tvlqdKN+%W;kbZ4)KH=jd%mN$fNotu_A#^wHy*Hh=fFIJ<H%gRI
z=GJ>NUen*%s+>{h=BpVf9=BI*Gedo-&c0G=8gbYe@?3zz4X{2dOtl{Lg0k$BpcQ}3
zH#b9*psw2TSLSc)*k^Zy$*7?$TU&h>n%b)Z9{jd}LVUH3P5T0ZGZP80-rgUrqWcP~
zLJUR7w&su`sC&hcm#X>H+bd(T4}aoQRbSZZv6p>_^O2vvzV`lZl2<Gz6@KV@E|u}o
zuYZCY0RzjbX!>5yYF<1E6Uqc#k!%og7|#FXFq%7YGckaNvQdpwnid;xzVUp<uGerM
zno#-)%}-(4XE_O{(O3M!wAyYx{CoBL#u{(JT^pN<<#_&z{iyS}BgkRj@`1y;QR8Jv
z<%Q{_;`E1+vjZk238QV*0nNIiu?iQT6wkh!uxoxb_J~9Ox=@-x&}ehlAbX`ev-zD~
z$t4RakBn#lTa{SXZ1~W!22fQ{?-PN8hrN875NzGvetT|wlX}oPd2B0k*RDS0v@9Uz
zdHwYIWVzVUdr6mYsj}Jr*_p_#i0^}gNKb0$5P~2FIJelCIHDpQ%^~f>bt8F3SyZ{@
z3=GqANA%=$?@_n+#KF;3$A!}rp)cxz$Qdg7+zto;*~R1j14LM-IglG6kZ4axb71>4
zk!H`bzh!M9U$N&!-otH4{cAE14%Jf#?}UbCR=;TJ;Xq54W7FFNp^!4Ojh5LG(p_FY
z%W%H_x(zCoPx9IFGA7vK^Ti+>gjQ1O%8;=kw;bYdKA>`sA?&8y&y9k5zTD4F;%yCU
z*U2s;jCE$dV;XG;*Zb{szI)m&zhbGO4r9Kj`DAqi&gCcLgt!z29!Ia5oo~CD4O-as
zDY5KTe)_b0_kK`;+xpsGdf57ikO&au$6aEngZezx))U;-1Z}g0ZDW^MxFecU-Jk4v
zz1UyTJxv?QljZq!i27yQ9ALJN{OQdXHy>plzqpFtgk|yY(amtc9)V}hY<B|;edkQN
zKsCAOqBGSpN_6@kpLD;Kac&YVyfa7^wYK<Np&<F5@}Ii-1uAmB_%-=F9Z!}4<?x}H
z3)|a;c|A?>B7?cz3gVG`9~l=L;K=tm4-uSFD*kxgr#rI;bEMrvnVnGC#5Kph8u@yG
ziQuZBAf1U3eA|TFXnHFaxz)9W7t#~YYfv{Aw)9Gp#pD!O@|v+0*4==^>vwr4xZx~e
zXPJPCbq!{{mm*|z<D*w<e`v{F=~y*BI!aMH-Z_G-prb>O37lL`Zf2_|hwjxrDBWLH
zjW3-kJvUQhdOmu|o}c%SdtZb$QyB8v|0-5#UN!n$Q0L7^bM)qYaKe$e&w6&r$43_J
zrwjlpr+?@%)5Dd^=V|Y2p+}(f&C~UMDLpS=xO7?*dCcyt&V`7!6)r2Ad?pV=_7~v1
z`M>>E$@j<%^&4vw<i2c8*i5l5#m2=I(%lg42PHeZE=sKepvw-8*3g{0*1T6&!yBdQ
z_X7i!{H_ECnVAfRdRHp-^n4BT3ZI%58W-5wc=49(gaNkbKDUe1!#cnqI69VBv5>1w
zk~>gKE>;N<wCYuGcqvL7bdS8+oURQTke*-;1P|gxBWy?I&?NQ)4bEBYvU9b^BkPKV
z6&WF?PtL$bo)(+!<?n;G0W4?GZxAPdqJh1RJWfqd4eI1*)M9;txc-K*Hq}Bg32N^x
zi>7ws<9aORlb7H-T*vBy6OOdiQzlw*tfA40Xt)H9Jb$PTN;Nj_AcurzE0Iy;tBY(L
z^bnhGZlXp7$Fo9GVgu4<+icbr>gl_sC(NcMJ{CU}Nc@bX&dglX!CS$>unB?3C^(8N
z;{DJnu(}`qt=9bqw))rmfwM+L6mxiekH8<xo{apc^0k{}_~xr2$X>QguA$Yt;{1%A
zlysd`N>97d*2ap8;t>-ASo2T+g>a4uIP-go(iL+LP*scHeBZv6&%Rpx7*{OdLyt#`
zOPTG_4uNmkv6v?IYfevdw}2O87RF1n<Xs}S?CZ#+U2$8i#BUx#o-}{S2w}~&VKy3C
z`e7OYI0b|@@q8(ceyOh9^;avk27+C-AJj<I_UFT2Dd%$)R6%j9g`Qq9)_SeV$L(%w
zR38AQ_JMOlNtJWATJkCD3_Doy)^bHlP|Yp^GCM~3m{?-r@(d4<z$Ln_A-1B+wgJ3J
z7d{?RGv%?1S!Qb1>l$vGM0Qgli=NA}o$0p{XWS&4!Ba6O9!=em@ak#=^vaAvgS7i8
z&yG+t<|PT)7mj|P2i+^<bkM}<c}dCmfPc*No6*@CLSD5QYjqij5ckijM-1i9xczUm
zJ*j@&T5oEQx$%RsVeNRWK#jC3@oYx}GLs)a*(-5xZ80~Up%*oL2BsF8mNdo#ag(&3
z`s&_C9Y4b&BRY*Un__%<^g9PK$#Qh7)-|r%cpL2U#)^$&++?C;EI%;O-kgZy_}nRc
z>`rS<!}>Z5_!uROfj@Kh526Hj)C?Dee;)okV<U&<;Op#=MtiY}j5c8?c4d6E@$;Og
z7JvyG^$inBb&;`$V_v#~VRF$J)<ss^t?4(1eL*n>9zA?GNzZAF#qS8FJv`hC`frXj
z-oKYS?}8s&2G;?e0Zg~nsrX2UaYWf7=3(^DT?eJs`3XGY=F0~t^FA~SHhM7_H;{fh
zBmzR!5G{UZn#;THa9fK1V<AkAaQLQ}=ftPS?!zDm&LR=vxFr9P)0**L0m=-3bsG3H
zD)@!yq5p>;_^+NRwCYc~FMbD#<2e8Fvx|zgN6?&W@Q^svUA-?xa<++v^CVEb$Lc`f
z_YHsErHJC!Z`s?QjQ?~QfCRa6GS{D43D8gPU;RT*{i|oz0eMkwYs*o`;O38L=a+lG
zKZazlp%MFEy+z7Mh;cS;xR$+rt22|JrtYiXitpEzsj|(zmTq?4mx#^?G!;+RT5!m(
zoBeKm%h5ak6-b0d8vhw10DoH$Qor`EaaBUh<~k~T|2c?f-E8<sb`hW2inVJW$S)i$
zfXaSVN&jxysmi}%CFtXX&|t$qg~xGuck)#$`?)YDK{vY|tD4(;h^srBfCk&h46kjP
zkh;UaW7xomsw%B_qNW?`45E9Kj*iE`j%E(vNBpO$va!g?X=o+oxYAew`$+}4<0@L7
zc|ri7;(gO>&rp1fp`qbX1vlV;D~fR=m4H?5we+e3FxEjWAQ<>h1G_jn9(|5a$IS=3
zjD6V-|Mh|vmDx%mArjn>75JH%`IUYZTm99*HM_gKJ%c~g6Mu<E$Os96*KV8nw_G+|
z`<C3|0Qrwo{=?M)dj5w(mJUFEkg>8TK3vKN@;}njOd5QXlPtA0DN0%TPWwB6fBLh%
z_}|N3it?wh6Gy%^=YW6zq4SOgP*->GWR7ZFU9Kp<`b7R$Y+K;j5Sz&Y;6K_{jZFb!
z?{seyvf<zV^y}(>7~ua+9ohd-jq`swto;eCx-GW>pt|5>cY=l|uj&4kkc)|jyfv#{
z>T?uh8L>~dK9@b*>2wL#A3HiEMMRv*KX@a=7;>`5o(DIIh;n&#vGO`NwQp^jUst-~
zp3#VXL`0A|0F^%O?mcgvp+ic7;%eJG{yUnQnA10j)<2tHg)YvN(*x-Gu1!M5rKNqn
zVWyi&Vi)w2{h$#>x&WYdlU|4kUB#?1_~gWSz~c_3+SVfmj6PNE!ZPoEr|W`MUQ?kw
zGe+2sfiGc}YqP$-{#sU{^W=P9V)ORKvh-yH^cFoDFWS^LBDw%#KmBfZ`n*nu6m$V>
zv~Nx|`?NX`Tp_H6J$DgSiM_@yOGYAUCAtxFSze|$6X(@!-<o~61ULx*aC~L7fXo8B
z){_mFj@qsm${@wQo%DzZmI+@8xA~4kCWg`fZ8Cph*8kH+6y7Mvwd-eP*%xV(G2aPB
z9p7~oTJ?1Sr99X03o=ZsnJ_!COUZ<AnF`iE04GY==!9{5K8jslS=}KFYKk^p_+Pxe
zcT`hr_bwU)#RgbGK)|vA0Rg4=A_CHpDqW=s0V2JIfT$=^RC*0XdXrv405<|k?*RgY
zA_NjTga9GQUGA-Wf4}dZbMLt0jB(dLFp{jb-a6ko=kv@t$sumUgSpfL#h-A~>>&ZX
z?QdFU-5v;szSw|S-bTF($PPB~VYW`9utmdV`0%G7ND<@aj)YP0=2WcS6Eyt#zCVFK
zS&aM5)ye@f={etZ<%CzS!n;MFzLH=b8{5vtYeB?`tA5i^$-EZXGg>C4_W?hH`I)3U
z0g*w1<nQR>+{W77+T}M&YmpON-(CuB1=v7$D}s6tv=V1A`+gJ6YY58MABDm<`J`DP
z&ATGO6d=8)@A4a>!oihp)Db`0d;i&$jO4?Jsk*{`1z~*T6_HEIsgitaFcu(jQ9*eD
z!~O|Ds#&exh$q;K#R0Y@-IpetKX%Kd#q9!CC(ZOmwnfzcIH^;;mMqWy8O_yJjm_wk
z_pNKS2_!O~u}t{d)1&QhR(2fSHr8kI_lRB;;(dC68@(d_^p8Aw>M@yGF#Se?;9cka
zlT8O*Mn?qSTRulM7AF)XA?OIekGj8E%IbkE;KlW)?Xe{UldL{u7T0u`H>=S)I_|EG
zY9$9Oj2Fg=piR$BAhN<4=PSZF6DHbjEbMuBR9fcWoOE+^3~!8%{uzO#7sU~7YU6jR
z+obesXj}NG`HiqC&E^D(9T1LPCWsW2;nhw5vj%T=WnU>XNFE5=+7?&6R__$c^QOh?
zq5qoka=si4aEX1P&IG#0B(iiUN}N{gBQcT#_U@@U@FY+V1%lAEZL;N;$Ief*Z0N#N
z))xS0E=!t<D3GIE?iu<v4#=*V6{kwsiLn%3o-9xO>VJ_HkTP}uQy5Ar)16W!cC4A#
zh1%rzEiYlik@SqS27hwbbo9#l%)jgrX~wi@Rb*zLT%JK?-DG^tq5Ra~0!6{^oP48C
z+jK^TGlSrk-1)c?V*sx(ct97eI<`G{@%-j<$XRwU*i5KVTp@7%>iWjy<!SPf`^vWc
zOZBUXc<uA(4UY}vw%_VZ3lreR#-&u=9cAVi%=OT9W1OLELMP;_PBuB(TdBLs$~IVE
zEe3F_^W#;f0Gaam*3@eTwpq(n|3xVdC3pzuaVvSepO{-@nI?(ps=~{W5u=*w_siBK
zAPmY<M?=}xR}%1)792hX?JM&5qY=v@1hbss0;cA6uEBQ2o-U!Yif>&71;Ow|H5{)?
z=PC-`zN73o`XbeEh{Bvc)6R7Y7yBP4wK83RYAdST(~<S@+A3b4n~1k>nJL+SNjLro
z9C2LiI2a6O9cfBR3K97Jz5e6JV^M0fo}!|xB|+3Gy+MV{z%PHi$dh?`Wc_dny%2ns
zL;kb`8yHB3loXT>00uvU_=2E810`?6SNryxqticwH)dX}=joj9_x13)KSscRGetx)
z0|hYZRJ3pS6&o5@?7lra<(uEah&sWrC;|7|W8LMTd|ur)uP**%n|t%v1mMc$>(tFj
zxO9QWg@~B?;jXQr6>EQ^l?%Y1UEns4xo(>`pVgD6yzJQ<8?3RBl;8g0H(@1yez3Fy
z0Jc8LcQ9ND7v>t)$+^>pVb>YDc?XYRP2w={Z_yN}i~J+4m!`6^oA~aIp>tiZK18v7
zgd^;01kW@>7uS7t`h&Qx_;Zn{e1&(Yy6Fzv-)Tzj-#6Bz3uv!L^rnb?u;Q^Wf0V7d
zvvkh(*t-%d!~09mO-vFRjYLdYSSHpgPIj?f2<_Q%uXwh+`l3-+w*WtTtxlk}yrS~Y
zGkSU-ZHFT6y0ky4J^Wf<gATS3Mu;&l9M^+6on}KcbbD8@2z|Rfk&xlreR~FsDhFUy
z-<!Lw!S~z0egiU8`9$2djH(gu8Hrq|jHGcX5<I*gQmcaY*`IHlI5~YGvfTz2=0>6H
zuXnarvaf!Oj@J!4Bs>AzhT%2kRp#qeJJaGj2eWiJ%<|Z2{pMI~{;YYTA}34HkP~~Z
z|G~v2nnwHn=yBRss)oeov(Zx=lXxCQxjQZw6#VcSa`uT~45_Gj{RzraL6DC6EXh})
zgUG}}amG1365ky|>)ovhDSk9J@Mq=}J5X?DS@j?7z~}~$AvtsgwjliY&z=77w+HDt
zgU^8_-QIs0j?LF=8=T=J;6`H?=&*~6h5d9QA|mHJDNScTMz~CWtacjJbYOWGX-RfH
z$*ZS6|J+XskcUi;i{9(_@$;#55S8(Y=d8CcTipbAeyT~doxojO7#k}FGQyJfRMIM$
zV5{Roh{w!^%M@rO3ERH}y-C#47IlE#LL>`0McQsn$&>cJuUg;T`|Orx^Wj6WqFPxJ
zQ1)43j9KMIx8&Bgy|i#6gxN}`Wq;R>^%FAbxdx}e2k6xjIn14tw?#aJts7tRtVh{P
z0MKE2du4LJfcJg<mRJb=xPa>=FI!NZv2`(QL*cI|O!1N!K(&A9{RMRAa-~zavK2e%
z;JlRAJwXJAi_0kMZv_!B0d(m6R5N|MJ~`fjttTEIX5k8Y<G`t7-)a*1<iFwp=N>=0
zqHu7im3D*`3&6l&ACwC2W+N6JwuRds6vglFcMJd6Y4=Gew|+%bAm4ZB*;^emJ`qGB
ztlvbq0@1L@0wOV#Hi_JBc~#!$ECUe5Udrq|Q_Tki<-W-jOm!C$VoZ#Ut#HI(u57l_
z?ypz%zgtCz(b8XLU64{#v^i0w%Dh`~@qFdGm6+!Jt2e{tPf~T$?Kza`Y*k-ZQ|w%V
z9=FvlUo0n}H(G4>FD`8U#IaBpNp*IMr@z{0hCtA@+mE6+@7_D{#W6^X9l-9|zJGh*
zf15`S%9`ry5}sZvs3w1Ohmnh+4PA8x?=oI_90J`}z{yHKc|fIUKelrtQ})hh;W8kj
zhakF+<<twC{zhv%%-0y&vtb0_)Oc~A{Yr)k=LuHzTALIfFAV!?YFg-&T;OWq)k@l~
z_i<n`xlc=DwXW`Y6X6_tz{JdfJlUznF;HygD*f7R1LFGyX|;7Y=}iUjxuCflT0-;7
zV{K9+tt=N)a_3|0ZRXeF!FRARrQ<Mu#yx<d{Lqvda|L<m%I^H`e&Tmg>{CSY9)Xan
z3h5N?Zf*-~DeGjhkbKhlCH8X>ip{!jQDa(sJLS;h<MUg~7CmMZQ3uzVm)?lI>k7FN
z<^eOu*~7S;?cvkW_FC_1^Ak#0)}8)1HlDcI$y@$pb!=EF|91MjnOCZs>Ccd4{)2;m
zcH3x7LqqaW^iY;Afx;+&`1m?WAnN3^GD{-6SVBUQ)VllBbO|e)xXUe|GV#>=_emjE
zfc}`b0_Bj&22S#E=E{pUy;K^+-fF@Eu6cXavy$EJeEn!c()$oXs>G9LRGMeYLrMv6
z3BB?uf41x(rP$oBcAJ#{`O(JYny?~M3~=VhFb1Aui`qljo`23vxPNXZCSCRievKk~
zDMKf9t~W8CA1~7lTC7!6u~WlO_ojBcrLfma*`j9j|FF?fvvw0QDYXg5!hvLsW4Jvn
z?Hj{{#2WDIV132eHxVw6K5QMu4rR=8$o@FQ!VkGl9N&u%bsgj&0L-Tw&vqP+>gTaH
zVyQ@C*WE}h=XcBNW{DaC(P0G(V+H3a2769lhPcPiH68bMMt$+T$eRsi=Q2~jiWVZy
z@QRke%n#nVq)M4w?1*g7q(5elxNq7wO(wgW6z+6S+Ef5^h2&|udK*PK(cq?@*~^R^
z^8Ec88|y>?(jIJYomQcXe|ljbJ|mk&|MrBw(#iHwQ1%Tr7Vd&GxUx3_pK<d-Ps`RP
zmFUoAY#%PWoWK0#HN$<eh=N=9bC1(qx=;J^g61>jd)Pkd9o;<cWDW7wjX=c>ho!W-
zH2-ctMY$ch{D|Il@ld>^6{@)y?-$Q+TDt&)jNNYOchIz_e(|2hkMX@dpr=Xu9F2fU
zef%(Iqnart<_;}qU5v(>D9&B73(k#QIeZF<>lTK0ecbJp9jSj}g|+&Uoax$Pw-Sm_
zTQTq*8SBq_)sM@rGsWQqxCW_&g7l5U_2#?)%GMLyV+#WU&PpR-F7nEBT7`k4m~;7=
zzUYs^I-{n=!*L$<jc(2Ek#4KA2QbETf-K|k5&P3A9Ujopez?KZE%~8NGIjil#gbfJ
zYOJJYP4>vfDx<RnI41Z}Lbe^MYH%UO7r#C;<GqvEeOJEH3L1kr3@$DWUVA#SxGOVR
zw-ks(I27+mtmLz}#TXj)#~_0<@+_<$3_6Hrl--p<Xyye!iY?L`-Yc4DfT3Q}xK{7v
z8|B*H9xmp})#NA}isAqln+#v6aWdeGTtmy!9|Qe$bwzi@3rxatB3;G?ocK~J_tt!^
zX+Zk5R~3D}Qh-{}HL!Pv+L5w*s;8dqj~BO}F>Rzsj7^kI@339coMaqr*?J;>Hz?^a
z9aeETy$=hR&tUiVj3Nijr4ws-h)&nH_jbghG-e7MI3Oc<A{Fk|%&*I`+n`3>Z=vE|
z?LV>_5Sp5W1n+^j@I3qIdrVVXZ`PZ)*sKDA)5<tyG>6xh^W9jvoO=SnY2LZw?+mN6
z%_BLH-QpSD!X_nPIY}ni{f#O2c*@jwI*33aB^g@)Mm$Ik!ld-djyJq^-IOd@qxrj|
zAW+DQo1h>~nd~sL!1zUkUEWHuDcA5#Cxh@ZQ~aNnm0@jTb0UOyr*F|1;;)hqVq8CA
z4B`wj4_+~Ww<P(@A2uW1nwPGQZX;|33RezLw<HoZ`;OO2n?a8LARwOB3o%UD#7c2n
z4&D=B?i)Uhne|?rEMk2GZJcP2a9wL+%q>9E{%#3~<|GLIQG_t=NyJrFD0JKE;btyR
zIHR`$<lS`wjeW*$>&EAxaRw;ND67RZ!xN3+6fqQBB2T*#k^6^TF1hHExPB^687lOP
zJ1UzeUtn*%TvN-p9JBOiaHAMFgCZS}W}P0JEuKom>(hv&zH5~K=gsfgkG1B1nrz(K
zW*46mR_N~a#m9zc3|*A`dctmkIp;*wXcqxnENC&c(N<{_UTFp6Hx>AhSq;=$7v+7B
zml1UR+MRVX>!kckYomR)iHAG_`=O+bF{D*7m>>zk=jBs!->o;OFf}9fWtn90Kl1;x
z*A3Tz@h{3VS?jCt99p_vYEfWv%3<6**`lV8fPImtGriGfF#R>yKD#x1ih(=ZK-{oW
zCb8A8)kFDHAhg)zOuID!7GT$7m_i*0OY!lR<j{s1OEydCWk|U<NBl=0&xL^QY@0TJ
z+_^FSB}YBYbWR#z*eiIGUD2N^5Z7-%biTNFSjA(kc-5;e?xp#|e1S2$eUoQ+t}9HB
z%tzfNP8#Kgnx_XMDgMf|YuXkCmybuyGJ6O9GlZ?LfX5rRJXAqZ-A0+5^6pp0^uqCk
zIBl#>$YuEQa4(H_WEC?mDhBmn^yy`EpVJvFZtpeLV#ZDr+^aek{%%Od6xm!73l*GM
zY!ZxcV8QD>915@EIUY03jZZWx70oT+uvq$ICCWH3-PhVIut#&$So*Uy;UTs>r}aM;
z(UXEZ9qs;5P1)e1`pT**;~X`H{9KpG)EXP{VxXesWy`(to!t)Mp;z)k1FUmFBQomV
zyWREyJDnTV&>d@z-a`#O&zZrn@2t41RvPc>Mjy6lAqqZNNvm`#SY)^7!^>)IkY$C%
z61dq=EAyR2QovT2u=s+K_jC{$<Lz#%XHroWydcCjS@;&QQfIS!@Iu^R_ju#}ZpwP?
z369ayBM)TrEEq|ej+v|z)gnm<4wm@ZjD~fiaL)*3jRRF~4;rox7iE8A>^0g#2**o7
z%7QJy9l`qe#GcX4Dw|Q574|VC-E*WWm+vyt29Iqi9{dhpUf6(*tZNhf6w>8&s1`MP
zj$Ry@EgfP8$E(n6^fg;MssX|`RigM;$LhL$3a!uqlULUF{+>A{R)eg2{v=48w{tR#
zR{+7taawm91j^KwTJQ7e`S$HIAn9Ux*2h^`Tff=Fd+wqvNGtu`mEy2=Y@_d(TxsEy
zmEM$R-Jy8-a>=DkHAz6+!BDxzLxiOgB4Iots>}I8j{57E!6=T?MCuiZHP1Th76Ly*
z0m2wAw69O(={M|}V{RnnsqZSmU&O`rsn=YY_QQmw3?N@sOB=`ZrsdJM=!`ZxS2X&5
z4QoWG(>k`}aL?P?4mTUEBTDBv`txO-!AeIbe~JkIi+*T44*c{|;Ik+&489z`HZf_M
z`5&TgGhWusz$PoFGn!9S)G+GCjkJVHKIjgkxZ5L?KmD(zoSW~l7_o=Bbu%@&aG|TL
z1WIE#8Gn~lRYmw_sK=ijOiNyXNEY9FHHD{fSf9)d&+xOf>7%N_xI~O3nVJVzJ}_RD
zD`1LM9PEiv9E;#GEi|_KbV#l!r;G?&dpnPMjClxrYYdI36a-xx-?CL-#Q=6bsZOf>
z>(}uXJJ4@ws2?!~8PDYIPQ*8PQqGxdN)Ck5P6Xg4Gy?wE(qNAhAIr_h!-VC^@5abG
z*AZ_0dg3fm1$5<CKSB(iMtBHWCln2*NTOCs&815z+K&l}dNKXt``}u*ykqnXWfm&#
zI&{BZ;UJE=muvt*?pDgAjrO_ibRagCmj`o>n@j3HtUV4oYCidI!!&`@aCnF-SU)kT
z&-qbH^Du7l6eW0Xkp(x&r-t=fU)`-=n?RVtVe$a+xO)^f)L_+EaPMH-*|UT75D%xi
zpj!?kR98|ZS)NTRsZKD1Hc2-?XMZ(XiSNLhER$Qd|K)^Fcf0_$I$*Ta%EGb6wfIcn
z?#OuH`k<5GjdadBK~~m7AT0{1Q3c@>Op-zx$C<-}8%+?0qP1><1Ah<iEK&782IKke
z_}$zfD)OmJTIsM}H}a?|`QrYeBEvu%F~)!#@P+kHdM2)+y&mnFsA!XE8SiwHx|Gr4
zV%@dLJwl%q;&ioJX12>2&_47$=)|waW?o8qys{lHFmkY3WnAo_lP~^gu`AvfX)ccC
z0D+GG$5h-)Ax}8sf}WJ8Eza@62SUT>)2(4GpK@0cz45D4%?<G|M)i2j_{)Qtp@J<<
zf&FgzqplbV*=OB4Cm0#<znq3Y8MzcnAk8Eb*z%-tevQjYHM8X~kIsmU%w)55g>!r~
zm!g{udrO(taDNNMxm!ZgX{ufce}ccO78HVEp?UnP51`Y98{CP{RuXqS5=fK{UE@-N
z_7%cpMuSSXNr`@4QlBdShRf0na{tJBkAUAm7H=fnuJAllez3@b-0onnMPmIcB3#Bw
zl<=JL0Y-+HU@b|EJ0kc|O{Eh07^sW+SnKZ>#eL>Nl?*~iu;GcdNm;>Hwwmh1wPAIX
zrGI>_o!#;V)i=D6(5#PQL}~~GTju_pZ#Y#<=`z33t${{hxq!#=znj;46)M0b`%k=V
zn`Q>|F{3LB^Gyo5$=jDFCMJp==DZ#@kXY-TEC*&zX5-h3Gk1*&^k*pS_UY!M=?Rr9
z16gf-#g$)rPRWtOh@&O$7u&6ZD)>!GmUn+_d>hQsJfH-Ynpc?vEBPswQ3CkF4kPI{
z@&MtpF<8ri9_1G?khCN^GH}Ug6L2FHc-FZxiyCKRQ>xqAOqF`r3G1At-jvJBQlOAK
z9EuK9J3G7ami9uREbktqVWIgIN$*LXm#Tw99-HcYDM5R~!zB*qsn2CQjK5l|skhj5
zd9CH4ngn>cI!?!ov?p5*0^PER=8}C%&CAQ1Y-#7?=^(3I*Hro~DnOuCjTfLhzsDH_
zO8evA?fU=vW%iUi3zopQwp?Kg6zeg{d2<ptE;TVtZT`o9Juz3H(o6+7A(kL!2{n+G
zoztL@%EkSPn|lx-wKLfw?dj8}t2W14qc8G-EXSyDfnT@r3jdt@OV&<wA$&9p|F(|z
z)W2&21bY7Q+CQ5g_|5;pmv0SDfw*SsOi4s$cj@KT-x39Q==)-iPOCH&w{2i0C#S3y
zIKA%G*!<}zs&5)j3i1v;XxkZ=oLs1O{=BZ%L|n6f_>EL?ubE#8veJsoc}kQB7!!=W
z3<BAA|F^{EhSLP~99W#=pk%*gQcSCgY$yozdL;A1E9a9S>XX~_rD@lu1Q|izh&54&
zZxlKbc{@hYP*go>Yq~5MoyMd7Z3~i`h4wf^I2mlgBxf(#ZZw=1t)BMZsPKA$=j_e}
z1j*l5oU6Sj<7_Wq0HlK?-8}_As4*$j;3!{q^BjHZ#gsqy^}=~-^_Y<Pry7m0w1mh0
z$D1^JYawwZ4>hmK*?h-1$V9na@5B_e@T5>wW8-JVE+;YEpr?nw)6v-A`uz@&KmP&f
z`SdMs7c-0V-e*2v?H<_{2YV!N5sin;*0POI6Wp3z9y%#kbK_KRUdC5v?z>Wb%0}|@
z=K~oGw$mWrKHs0X%#mAZb?Ki+((xZihv=Ql@4MQXcl12%0<#n(YCR`TB&)?Hv(xT-
zM|9NCuIkOv38ypReC(+s{ARXdV>RR;G_$0P*~JC+ag=f=lZ?;i{)LasPW6IjZkmQn
zA3SCdNs)_BPIEd6t*!U};EZkI)J!8+&$BmRlKbyGk08~|DF(NRb|@cLP|R?ZWORqV
zb`bTlz%)ecNc%)LDVRoE_Nm_D5v|*h;+BO#51?v+tA*<*p_!eHlgs@Lujkek&mLHZ
zwJy-js3<R-tk<O>E8Cu_fj0Me`)dd~FpYLJtHdo=AHv&O1E;8zZYt}Y)8kwnq6t{v
z*2XMz+3cL*zwOA`j;pPIZGj#d%Waxj<j!tS!HT(MQbP#T$XQ;0L4DW28w+)p6+hOh
zJIfp3p{w6{!hdPEPk!I<8|X8`)WPxN^2&X)3upo=AWUx$*+iy9FoX8K;YHaG2>$-Z
zp1nE=LhpRYd*UNY4E{*^ap9`qThQlljJW%x+^YL<6O9J%mB|^;w4++WNyqdcx|xd<
zORUSEk`WwpE1vN1cxmOSb6D=pol9P%_fu%zLppC-c<!2Lr@&&<2Wf2H<9?+A3J{w9
z9M+7Xp$qwIM<@yXlr8#xx#vMb2Nwn=CMILmH;GM(iY0HE!mT?jN0h>e4tPmN*-Iaj
z1IOqDwPZ3EQgy~}X|9ReuuCGWu^vZ#s3?P}7Y&+Q>B2r;mV(~a6rp3C7e9s0^CtQG
zow;)4eRmNaOHcHv1!s;c$afjBF6Zv#@w@FlgUr@GgfXz+=I*mt7rXMslZ7SKRWwd4
zH~hi|kx4C}p%1FNiCQjrgxddzas?L2K@6%JO5r8Z`N}%aF3*DBqxR-BA8em!xj7%s
zuk57hyI%Ol4+7jW1%8ju&>B|5A}`}uzZENvh?<yV{;`l}eGP%h3tF9MQUk*nktG=a
z@rh%qmC}N!?WXoV$jm@ATl2T?dDWfpqR{C^zR9Zn_{n&gm`9&h!k}ZUcXN!wa?Wq*
z3D{T14WL9jw%V^m_8E1h9Ylafr~Ef$th)<lXE7T*hAZIQ9~JI1_yzMIt-Glqn_nk#
z{(yV)T*fjPt;%1>eE<hJU5ial!S1h;CCpA4zW%X`kr-w#nW=Yc{xR&xOs$+ffY|u;
z#aufZ`)buQsKsMaC@Uj0h@>KKn@jjdjDUhAxw$}PCKkQ8F_Zg3-O=_NU>to`q8UE-
z&6~-hxz!821r84*s&)!fR?RT&Ek>VDJ#RqA#uvCpr0Z9^^t=#Je%wFql37~+VnBi<
za;?=l3}zT_aAZb#HK6oia9!FRiRv&55>?YVH$I#p_TX)s8>%NrH1AC7%*`2>iEBW4
z3Rx4)v^5U&?iXDfMq&)3OUuQQJ-R}RYTR{(jI=7(zIjuM)W+Hwdy5p4qHuFDQAh&V
z0OS5~L)s_3O$q3d9H}j+<Ig8>T9H@3=SXTUE(lcbQ{u)({7kVJSxgwekV+-SogcP1
zrSL_KIQ6M{B8I!<p<cT;Fh@`5y{2h2%9or6t;`#MVwPgbaWoULbI%>8U-R#*I?%pW
z?vX3v39<OR`q(0PJg$@RWM4AK;h`2I%NxT4**cNFysPfp;}vuCUaqZol@v%!-)C;_
z#Bb`aD-+k)hb*c1*z0LB3fE|*LO9-;e)UIQmb8DcPct2|cE)xkb-@yatb5v<<a+0k
zGiFE>yW^qLMdV}*I&tjyZg@b)=}nHuON>HmXM=vrWPPv2XoOU`R>#aG<k9|Z@^X`4
zHM8k6?NcX0V>o5=0H9br;u~~nu<{0A$fyEZLzBSEk*%4JRXkUu|In$3%}J9E)Ojqb
zd+N;8w6%Pklx)-4dl$vn3cerMF)n#Trb&nG;63-FF?KS2(FO(>F@~z0t=EddvVCc-
zS#_9}={pl~p`PS`=vWJznV#lYb8hg{Cf<GQXShZgbUJhQ+(N&=W5-ILu)S2SmYpk~
zp-S)%?|;N?^_BOV29uch_GJR<n3g@KxrRwSqpjX5)5Nrche}FjTbZ`lI$bF=7Tmz&
z&7OT9n{F=>4b7mZf|na>HIVUgx8Z@~8>}ZsAuk_w5+{><S~ft!q}wG7Q<8s;jMCjB
zc6+{WlXVz><L$lG>Eb|6w&J*r7GLvEGBwUC^Jj!cFefktJW*5BI|tp3-i`Rshm&;>
z_yw-u`y738-L>rWjGQB+Duod=S5vw7%8K)4*23n*jzT!tX{g@)8-*pWsmPJH<;Q9-
zenaIoZc?E9G#lKJBtRWEJ<kwUZf{Kz?NJa$7Syc=Z_<=nBgUM(!R#ERot%CH-Y~IY
zM;mCN({MhxJ*If1TH_)?p(T;xrK(tHDLpOfqdidj+A+|xZ=2KvdVWJTc=ZiAHN`w`
zJE!5@TX%XFO$AVsxEYh8nAR7Y#Zc$sM7-jCE4&N@x@vvcY~8n<OP%2|eH!}4kOy?N
z^+e9nF3&gGOJ{sRj~b4*|Ggu0FVKaM{g1V-O;(RGpe&1Ts>e8w;^1QbIHMYu!F$BW
ztA+f=Mb4AEb%fRKSYtqco!-T^EFXrV3V?L*dzd^M=z=%&u-%e@!z;{O%r#Gk)na!>
zy~;}$E7Ta=s-y!YmCBLm5zz-j)rIDjw~dM1M{s9U(ORT-k!4{vBZtDgWHV-uy2OTY
zMnFx*6rzwMPStdul&V)2K6}B4=`UgQ;@?lvF>#5E5TuL7p>ES3oM>Br+5$rB-l1!f
zJ=nsB$i|P@zEM$NjIX1Zh9(?qh5`LsoK)3sX<M9o9)_3*cDR`G=wKnHaSh|^G!Nr6
zB~|rRqEmM+;&x05^uI{o0Hyh9-UL~0b7!`hXfRmRKJ>!RE><7Lr+NS0UAF@HP0LDT
zYQV+H$N(8?(<5@BO_NDE*^CwKJATc*YhLxR8-C*1fH=yT;)`+a>`V8NjXmG=%&h1s
zBHgyiuHPAL0u`#)e{0J%L?|OvRaNb*5$ROA5tNkKa@H`%LX%z#!(q{8ApUD|t#jHF
z&NfzF{=Hmp6hb1?E;-0nxw)bY3ZJSXl2D<f67yW=zKYdDVEt}>xM|)Plq>^>)(YXF
z6}>od?7|lqrc~CAjBp+)c!Cneo0iYbBp%==6sG#mfWBFLrw=JMHcbB<{jre9GnJ2C
zKV#hy^Z_VWT3q<LisyHK?MDF%SJ1NYes8LTA-U1pwPB%}fcIAJ&%j+qTUq$74gmJ-
zYU5~;iLsYa+)Tz+=sN7j6R4bHG+?8Rhm@M#Bd{c#GO{_(lE1+$IP`kgE5ByBsJ_Ea
zBtoZS1IiRNEX&nbZJ(wyJ7!0GZD0Ur0qJsc+Z;Qjb1zB=`DHkVyvU@hZkbvFNle21
z^C<H3J~dHprCa@q`AD-s?+p%We#B+|abgR3FIAAqs>WG-?R(ddtf;~OqDrCqi*Alq
zr!Jd6zElQbMS4%3>!G<iJm)ekx38ApDd^qK)VRV`x3cKSGf7c$SO=`_10Y2%jJls+
zWK#IlCN;z@*b|g09i*sDxj(GvXQN0xEM5ac4_AETSoW5kwB*_SITS~*$3reo@R=NA
z`!#MM7h{vl_qvm-R<}pPxmHHs_D?>xKV0fP^clRD&N^)#&ctQ17fLHr<qgigePj(r
zl~$q03XQwn6!8Q}aZ+!cH-<W0n2zwlHJI8AuFD7B+hfQ2tQ92>TlceunYmq&8rWOp
z_QdL{iapEZk3XGgCX4Gs97PlVG}HsEFH!beoL4Y5Km9Wbfg7~)l-WnANYasjFqqsC
z)i>sU2D@_%w5|59x8sHgjV`9)xz2Z6!w}I$(uT_cmX}v&<kgnx_+n@$XN`S!i}mML
zll-Z)3RR$Ho58{M;wT`c7?xSe*{L2tC7_wo5~$gAQk1?Yh`wv8Myu*$>}5|Mb#cg8
zkCR~1&#8l>dmv4UvS^3H6#v(~SDWiF+rGJw$xkIE$p2M~E<8S#wbMc}Nwf(l%n01(
zLrMkT>+>L7CRab6yC-O|6}BF@d_Ag(YTbK)(;`>8rIW#$*L+=2*6Pum-F1rDS%Kzl
zw(2pHBExxq)Hr_c+e`RUg2s5*;YG0n>0yk5OQ)lVtIllg9l-fE>)V7hGn;G(tOGI+
z!5R;u(F9-_JnI#1dG^H@<Ag&)R+`+f1*%m`ePa!x3x5wDps6!1{r2pH3?$Kx!%qb*
ziFdAJcbbQm)wv$dtHg|7=xuJcXnJ&th$%);r2ll7YbMQULt`sj`^wRPUw}**H-+I?
zAl=tfYmW}wl4-|%qn}nmF<J{=xnQpI3_HyUuhMDj)oPp%XBQ??@P|i=<fE$I`88;;
zFaw)kR65uA&2s4w6{s~x>O(xxBDxTcUuri9bWQC4Uvv8Z$V%U=bA9cGAJZA^^Fa4#
z=P!Ky3|(52wvAbru+~c7tK|Nl7BIafT%%A|R{z0X2K!wVbUKk!i?@Eg!gBJrdZ#o2
ztZfAm@tv%Oh*abQFiS(iM9!xQcV46ScW+Rfh~u#*qy@ihpZ1GSamCy+%ZZcnYyQ|m
zVEP<>6_!Iud3MO6WAb9y=&{6`t5<`BB)E~VzxQ=!B&*^A2ccQ`3uHwUr#mgOr6G8*
z=*XcMJY^;-*Wxl!!VV7@q4f5Lw$Xd{$FUG*Uij~kvu>*I!hJCV^^!KjS#9C27Rqar
ziMcJ&u-nT!`$DGja{NEW|E!_TD(fVZ3WsVPqy#}B*?^0ai{X;uoKw4`$BYE7{7G2u
zSO4zx6PLo*Fn#fdyGB9f%9<HF46F&a5ZO7G=9=jKYN8UQF>TNsGUeSegTyK$ni8JJ
z^tpMzR?|r@fuN3-ON=Y|<AlrAym3WN$V2{(0IMtB&Lbnkl2lQwr<}A`y|Za~*+bOy
z`{BLqZ!mndT2#7V#M11XN(v(At<UQ8LNy2!0mS|Dbs7ebJMwk7JTjCRi;LP5v|qJR
zlbPLD?quYIOVau`@Ejn0H8?iRd7BLSGw!xWrwa>S$sbR%-FGaW9IBIsHpG9~i>$cA
zohKSE;@CV{=W<Q_-Csr?U#Yg4-obM7LR`s#=5lJMV>NaJ%@Rk$IRN)$Xq$#z*+!no
zSnx||4ZQVPaZ~2_E`5~X$lienv7iAyMJ#gUqG0cAax(QK^lkiQWzVx#^{WV(SL5cI
z{<g7|r1*_X3S`8c3#@z1eVok8L*1HpJ-orwCZa8=kScGjlv5zg2sVa|*|&k;q+qt1
zS^L0a(I~%>=s8kmVzp>VHLY?cq}4WxJ2MARK_MU2LHlt}k14uqzR6e>5?wVnP{UsQ
zF(IL%Vfg8#HAnjE%|BwI3|G@;G=aRS_MbXsXv$_6^kO*kAHhMRL#HTY2UgAnFXj*V
zO_k)HY4wIqM;6Ff)u{_W&;z>e0pQZ8mwgw;M{Roi{%NnH^N6AQbXd1i;uXDvXDIQv
zhD_W6nov@(+Qli3grzmlQiMm6UdSMwI+WB4xJ+cV#L~#&U+7>v%_qtNmvx-9buo6_
zx3A>i1uXf+lo8*wNnZatE5x%;GO|dYqhNCE=!|zuKv?VbTBdiWf?GZ@_hBW87V~!?
z=ln@Ms81v$39c|+Ls6Miq&*=1G(Yx#8Hyn{3M~si_9+NzTKG8dlV-Ezv}A>k{A&ae
zE?vST5#@zMh4j+kh4s<goQ<It8>lk7?+^IHr(F+I+fifFvV?Kja(oQajH{L*6U?V6
z_z@Kxs%1zoVtdzC#8$LB31u_5lrEcQT^G+jw7S*fPOBKkXGP9e=NfpuRz_~x4(gMZ
z^4KkK2$Hlx9XUn{O1mn+hVr@iNc!LD2We*QltBAN^K@MKF(-L5Qwx)sq6|HV57{0K
zfJ#o4Ezup%8L{4}89btjHe7Al@y>Zs^*Fyr@V<lV-P6hOU`_kfSu<tYu=VZ!?_q(m
zXmNcPIH!Hl+1(+3!^@HZUT;KZxvx~$D#|QpeI=!nc;DcsVm8<C|GE_xjccd=aw};6
z?N-nqsl=YrnBls7|0|R6i=nvnDZ}$yH<4IWu4lP&S)h;(dpgmi!0}r7PhU!C^Dnop
zzL9zi$MB?Js!^SqpmEuw?@kPQds!+0UWe>OW~C`SG5d)f)HN;{ul+X{tW!SOh}KGh
zU+wKI=^SErF0R%tgfpVpeP_zg$aoFemO)wU6hpNK4!O$6waz2=%V*r{tk}j1i$4hK
z_Dnzyqt^oV*HEKn_5v0c&?UpQW@qHdbAgjJ5cpw+XBiKMA}n5x8AwQy$j#R|h3iig
z9E@xDeu&N`i;>sw9`@Tn1`k~=2un>3GA3U$#X)JO0ia$}BA;)<KUtAiYk)37E_CX}
zW~yX$&g(#tOKV&C&YAgQrDiS-kIVaRYO8(fmr-5>YbAWYpvx)<-)?`!x0A-=dw{Js
z=}jk=E!0GwW~7kaMB<yr(!Zp8LM^*n`E=`^R0g@4)cK}oUKmt;vhm@T>LJ|&+JgiZ
zCN?+{!z1vd>wQ`<=0ZO^sy8v{uxH-pm^5|mO#i|8mrp9+L!-ImU5bY1m;rB29pKGj
z-t+yX$VGJ7RrFca8rhT|DYJM-K8z|dPS4mRBOy&?^3)ruBZb92AM%}636h2WVQPoB
zy&pcBK!itM9YkY-vc`IEcw<LVMXv7>d~6)x{nVSvj$*D$C1!U>Oq?SYHn6f#dEt@L
zL_*bKS+9o$hSFH=DVaI}et}^{_!N1xpKheQc;`9B>Y-sHAJledwAjqhSirbqF;Bqg
z7DP)s6_rOvh*`mV2P2{zKY5yp7Z{_1_vo$Q<k#<nYRI6Fqw^rOa~4m>=wN3)%%up6
zVoQ61k-6aMcaj!EcW8us11m3x>sDNhNQg4i&oCHts0gi{KYb6q+8qKaW}xU8Yr3C!
zc&0S;Mow=1;CE@bqT^QY6+&Eqgx1hCZpJfdZM7#?<>z}77(U8aSJ*C^S_d3H&KC|R
zsngeDPMHM081b=2f1xbKuFVrw!kg-Z<6NE03pt&iP+?BKZ=DV@Y*Er@F98EyrP$+m
z`|6(bHN(G=$ZIZ`Qp!VU=aj7$b835>Y{nhD6<KiI!)j(t&argUxY*K62RG(B(*PJ9
zI`Vza<s;QL)f-B+!zp!EW@hF!PmqV?>n5YcM(*a*&L*WxP5ku)v}m=HV_u)DXF}Hj
zon0@Ub4})!EBJL~B@w^NqhnmEX{>X!Oe<(Ze8=#BJzl`18n!dEP{Me))XB9w$pUvW
zT=GdJfRDBG$esnwT?Ym6zg;P%gFnvs{%N;A*sG2~jN8wV#d8z&*>gsBwDmJ><9f&^
zQ_q@Zx24GEA|g6G_DXwpQd4GiSzU67iI6AfVz0X%t3Te&Si2ZbUgGo-<_R$y`Pg=R
zK5ntEG_s0MJuOYt(esMSFLzNg%Y?74r43s0Qv(IXt0Ltcq;%prNS3+$%}#)TTi5$d
z+C~~QOUIC;4j*AALfp3Y%i}_*R)1PYw>TdrP->I)<fQ>F9P60{+19q6cFRfD{l8Z?
zZ>5l9^%%SFbh+<_|A5fOw5-VnMpoA}16B2iHc<yJslWGyR-#Sn(#1b!Hq7hp9n3SN
zt#>PAmLhysmK-yBPWc5UpfjM8eY9x}zU93$&>yd}oJZ>mGg7vq52KK#4hoM&g`WpE
z*0>d`(^GX=5hCLAuc#~A6~yJ1jb^8AHCoU;z^rZUWCXY173oOH2;?QNk>{xuD}4%4
z>BAO$%@g5hhi8!tCwhr|p)LvYU7KQ_SRMiQQrIbL$ouaX9}$FTQPBpPy3E;N(sdrC
z6}y2wo#D?DIYGzXE1+eQYt{|wX%=Ew3jxonVon|A1kxon@GS?salOcR!=1(Og~Q#m
zlZolHV|^=Z0Y@|2oq(G@V51@7xPakmGgFZ02hUpH^wb)ShcqZmevc>4uf@mEx*pjd
zROfcEs`v+%^R8K`LgyBc9Zu2wEl=ypO6qE(LJsuBZs=mX71n8S*=_@<F?<Ri-{-$`
zTY3S21d`-X?YC*gCsLoR%22ML{E%efLRAA!;%CRe7RPImj(=brZ-4zQd`<({YDAG?
z&THIgiG3oVa3nnFz$K(7OB73_K~ryIaAn>)=jx?KOH7QT@T0@AD&bhVCTL=!I>jPi
z+}Q;sj(s}t3c9<!Mjh)RaT&mMt;E(#3lHtzIrddQ=83KMu3~P)<M5Uw_F_{jG^dQm
zBPw)*fkR6B4h`rYpD&Q==U4=~0y%l)S~;VsI~XI&g#SETqB-hi65j2#7BVAKT8nV%
zkGSLtIbXcoxK8A5?@@pM7c$m<9w#8ZlInX4KmxH=gA-?!F4FPmUE_W3Y*D5${rZ7M
zUlZ!r8qAufNOpaE{}U)I@`{9SMc1xR<kC~*#{0mjEEjj19J}5%QYV#h<G8c=#()}H
znAf8-X4vLdMPpbsQ{W_wp9zIM3?I%;tFeR&$XeuBt(CHgkG%;t#m|0F3D}I{li_VF
zEnA=IF0<`;8o8?2nqV1xgp^!MLlUh-zm=b@{?5plf3}*nJ3SUYiY!~}cbXonO(sWW
z?0uAh530ddyek;S1Cl&?m(rbNz4ku?e9d{^w4M@V<4vcJ6#sT(9~ffKzF|gh#5ECt
zVRvwe7ceqf)Qn#ZTtJT&?@o1!diI?Mr4>YTc_y~$=?Hcm#s1~B<JDB8^>d7{=JbZI
z2ij&NkWRp&+9nR&S4eCNIM~v=sL7-6FfY_jIldGkng(Ere_v8}#fvOV8JtlSp6D`k
zLY5#xgmBo@@A_DD;6sl3?zk*uxwO1xU{4-V!w*F=P~5tv@`7Q@>nvWq?~=j9lnj;?
zZ0}0IJhHAjVBrKpxT@bGL!(FXjHDvZd%4WcS3r$%VZsj*1l|Ai7~)K@c_B<eQrYHc
zmeKk40l|?Wb+djZof=OraqzdDv9xGz)Q~40bu4)r-LkQ6v2z(aTtlz!TOWGWt_K}R
zBNVG_b|!47IM4LKPYupSh0b-fpdY1Pw5=8&37BweR1<Q&F1|=?&>w4)WkCtZS+8%b
z>jRr>>=ETU_nfx^se@21*IlM_zme<bFN%yy8!7Jou(jzH8<h-7xf^T_R%G1};TA)U
zt$J-*(-rUC->L|<@u_{Sy<e`@ydTMLT2$~gtIazgHm}b-tHy22l8Uf@Iqma9D|Q#l
z%Q<8!kg(#0YCcm5SHjk~=D)3r9@s09_Ys-}Q)NxcgDGz*9&_!Dn=Za5Cb=fla$$Q2
zb9kQ65X0LTTt`0VaAT>3*kL34rHKKn*h*aj8xCfzhm?_=@K)d%SK91Nw8|<QbQKHk
z@L~vZiKLLbcASUh45;<<{4FJqK}zeI6?9&&6{!7fDUE|<p~Gw#E?NLx5b*e9fNf<)
z${nrls&t~zU?L`;Bm|ys5@5}DKK1O^O1O3MC#0|M$7_6QxeWu$tV^4Pq_0y)pr+Uh
zN8S_7H;fez>0rN2V&JAZzFg4e6G5A%A*;TIpup+p-t1^LyY}LSM5vIS#&0?k@WYe2
zahgiygBH|7xWe6JWV+i(cUxmaDlLa>37K?k7$#6?(Cb`e^k<gyKcoVsXK{eHE^|{i
z8^HKvR=;}VM_gxvKcsHQ8v)*-klY_(Ex(!#{CO^ND|f)TJ?-Y&MEXkbf3)zHN$w?3
zw2@cbjz=$Bsr*vYZ{`ee)1_2{(;$>dXPK+f_og1*K?}IU_?VnMWMnD55B%@5l^$uj
z`b^{G=e^u@i1->VZrs6f|F{=32m^>bg=?C)?`f`m?l<KLxb069XPU?HkQ}hOW!AI6
zuP#th$Cc?L{f`PZpC5oF9h}J#m!Jv<Po^bs($LE3ny%*f09V}<GuD6Kc<%LIY=PXT
zRN)PL@>@^B!jt^#O!?j|#?;1IWKp8Qo5TO+N~nD3W&4+J;+1}qs+Rn}V@hC#x<Nih
ziVOT?yrQjF=fOi~2j1g*rbs8=X|eeyQ3swY$NyuJXYKTHtgRGA{N{`cirQ#gWMUET
zaq4v936a0y*q?r(pa0%!iWQ+9x8XJ}va%RWUnHKU{9-Z#{c8Ola-;j-{{1f)7n@aH
z_as$)cg%Qh`v&NqMLW){i&D1Can*@}$tlu*MsE1@PA!Q^-;0K!&rT-{V{~F8TIA$(
z@BZVj*+X1Q^!fb?{o3=O*YLiZ%uZ`J`bB<1m1+9Q9dGvYr)~AvepJ(S3(Oij*Ftmb
zq73F|4>Tzf!%kjjq$z4-@j*}5w7g?g%0FgjJuCQD$iL+T=$al~$cLC;h@Iktx7ibv
zHOoRhy>=qorytUo_dq%!0U6EneOkZU@cb#js_oi}<JvRZ?s_erTy!Sj)_T(kU6p5f
zE~~DhqGV0hRH8M_-`s*G)^FY7-#3t2I6sukTztS@B%jY}kkc2b_NA+BiWcIZ&(>1+
z8TzlBF?=dx$mh9K4AnwOyE5n2ANPzmFi)<`*dBy-@|o?#4@k!JKkF~76TU?&m#K(l
zdySyp`4Px)tm`rTv`Q#B6vdaR_{=4%wm-2!y_fu>*;JmisTdwg^m|<E72F^4u$6MI
zKMBg|F_>-4^pkG#_a*h=97rKIsZ}rSLN>1~cLocez1QRSoxD<i+57UP`)azTNgq2q
z_<VFBxk<J?oZL|yc)I!*F^cj5X-}cYjI?<7iK+H}k;7*9Gq$_-M18pyIpJ1K@Ikt_
z^ksxKi%)O2=IC2hDwPS!5#sQ|pD-zt5Utfyxy2kS)E~M(LBquUXD<+KLru^!Z&Svd
zQ+HBk3m`3KJiES*Z(mnY?<CDaW>Br(Oh~?{?<=V#FOM&X@$kMuSjMhG@zXwQ*&lGL
zyOUcaf}Tkrii~487Cx?Un`fW=(Oe3SnS#7+Yf}EPCTbJAPF#l_K1Llfy`rA|f%&Q8
zVr74i0x0d<PpdO+c47BC;DwnI(?6oqd(3Ah$m46c`*Km&CQ19bIPa}1xqB()QK?qt
zp3=csyxMWcFS^MVZ+a%5UJ?;Nc}AaRyW*7y)8(8(Pn3l|CGFlaw9icJOD(D&%t0zs
zfhFkjIZmpd$a(8aCZU#9Gi6BSEm4-JcMjFSHHSt$tSH;!E=T`p^4;MoPb3}b?VU>U
z8EGB-g1T0|))qgz)AshwewL<w%20YB|Bc{Jm>7N;BHNEf>`?WfKjc-wiESJcA@bFK
zpz*qPbRl}&sl#!rO=tCJ+nHF6HbY7<O<5e`K_6nXp2a8{)5_;MrQf#2-1X*sB60&d
zc8cG|qEb8IdDpXpIAI~}WNcG?w_<0F^LmpnN4dSx^UV$4*uveK^|R|~0F~f`u6rXx
z>>{|T5s9aZe<O4{Fy=m=2)x7-vpui8P(?)Baci@F9Nw^)_g`o{C?idv0VctPZ@-uX
zk*ybo+wx>M+<p@Yj#GZ~)Bvg$+p*S@rGatgQo`@P_V^bor>w_i5QHf9c{(B8v7u=I
zV?glP36JysnyRVoCnh5VPP$eJ(;h34*q1csYiGSLSbZWQGGShg7aK%LYnQYgF~m*W
z)(DG}y8WCHed9CnjiiOd1Ds!bbi9rK%1T&z^VM}Oj`3jLM{B1H(EhIUq(r^icf7XK
zU4f)~6A5|oxGd)09`^r7Qxu4HxX4H|Yp9_O;ohfX*Wm$<f7{H(6fu{g`NQ3woU0I;
z328{a^W$+ED_^Cd;s$fCL=!i_;#&)<ru<KefZWa>EVpIH6S($L1ILj`|IH8Z=u7K;
z@|mU+^wX|z1j5gx-J!0S_e+O1@UwFxTQsb#G^>xAZuH?x>-kjvWLiGqVsk|ca~0dT
zj=T)+a0&ZjKuXAvj+*X&G;<6dszgK1%BVONM4!}<q$NxH54q}+Rl|Z%AKq~C9|~Lh
z1>Ehs|0wF$KSdK0(!{@fyY3W`es!^D0@#s_3=gvrD9r~RU6SG7>7q_JdnhD_@%XXj
zzdYV&anrGH_UQ0x^MYh@bX88=h@?*2YEV;y3xuFQ??OHM;Qxdb;K}s^g%xNahhGZf
zK%(h)8`fi1pi9oPjaln~eMh&hWtR92RP0#rrmgK<J~}%QX$!}Gp|UlWxf(#YnYyu@
zdx0nJ5!kPfZ6PJ{rZ;3;yA{rWX^DRm3-!-Z)yz)+cbJZ#=E2}p``3C}2>?jR*9J+2
zFsSve=)9-D#k>yse0sm_)L+6S<l?EHblB770K)Q9>-l|!#M1rz{P!iLp?_@hzferC
zbqPn8LG}$~KE#0enN>g|K%dqn3n8?(+}(@JYf`MRulUOO0Z=kvmoivnh^TcH?K$*S
z+z(mj^bgNA&&d1DS_nW|2Rmf{<R*`TQMlZ~awh<8p4{_9_zZ^xZ^<B_fjWK^Y2?nF
zHkxyJj-)oxVmK3^5+lEvX|Ad^Nt}x&hfQ!fP016Bz`Pqrju{n9&3pa0!0+6;#pq^C
z@US|Z2jI`bodG(+YH&H%9VKM{MlKNJBnzf#Eqrxh;CCnE+_e&NakYr`kug`a7fMlW
znSiw!5hs_A^u#!VcWq<%JW)c9y_-LI0nKUB-4G|to;Le)=xl|$i^#C29uE#iJt&{7
zbt`4DNzGo9^;zDtpt_;brPsXE(KW@G-~b|Sadldtr2-@BmWCOxv$K14<k`>XN)E{9
z22yNr40)C}mHcGSXNJ-e9ER)&8)(yu)<Mb}J!#iHhC!J>&iw}IK$-9N9PFJYWj6}6
z@~;2{12=C)qGkGMZE0^Nhi^Z0veLWQp@;I#B<uFc*z4fRm(WDbcz&l*Jw-lJtFo25
zQ(B)J%GyfCXQ(#}QXM)wY*Ay-%O<|sSOXq4IXHd!XwR@l^RnZHTUJN2EmpUs!nE9^
z*Wrv_FtjKb4TmMvNUv{RS0VgFXv>K0&g>knol^^GisPW|FDl__;xwT4sDDYhuc{TG
zVa-<6`iYi)4|N;tVoU@rim(k>XCRoktE<by{9Q+!t3uF^&uWT?&vi9c!swaCTOrD?
zME724F$1CV$lB832}k@oTHSf8(mo)tgI*?Jx4^ak-Ki_7?QM3)H>QvlfO2U3YWpQG
zDD%@M!<k<*s&w6Tx<UnrUNEjHg87s_EVGnWm4IXcw4pVh7X@<xKHFLVFI~8$oi0%4
zby;$Foznu3PkJiFJynQZN~ynPyOQzhH=kNYJt<pEjbqH-K3#e5Q47l2KmH>?km+we
z9CBjlrF(}-Cu9X5`9~dEJ`e46I01?~`!C7&lEK1j2G<09C@p<Dvu_^0>G)2~Mjd9i
zyHRYk*iijvOhiCfGC{}8(Z;`*#^qQQ&q>m5P7L2-tR3>G=YBc{iAaa|uA?wg7U8^g
z6@f{W{S8sbd#_G6?sW-xt4`UcNI)Bdy-P240lfOPtL^2@3OYC4npM*$eV+$_K-{7K
zF%4ekc3SDEwX0AdUO}3*KDE|m@Lf4F&s|ThOt|^LoCEEvzcyJjn(ZWN?=oFfimpQw
z<c1_&jR4Y$aiP(K)AvBe$DWbEx*qq|o>)p^bOiq>ZS!_Rm358Rj@E_?0L^oGpob!A
zB`l{2S*?vjlNT6~!S4YxH#__y+$#zeJAARH=jPEsY>dFcj&#5e%3uVdppM}wEl88`
zUuko?(5KWKAliTg%@T?RW90LWW1#u8^o-*ntNAuP#<3ky;@6s6(sybtv?G5qO7b&O
zKb5!W48{N@$kUk|amg$;`Wx0Pw~CAf9Lv{BX5|Bkhl2Egmzu-{{S+!WU4XTLsw$S4
z7se}+Kk-43S%MaIg<AQ#ePeUqT~{5nxq`Rfs>vUI<^WTh6R|Qj5P%jwy^TsW%GJDV
zp(Zo1wb1GM9S1wY>$;BDYvfP~kQzn&?X}*n%I*r=&i`Kgssp)(kvs~Nmu!;GpE}{m
znJrV>lF&N8iZUe5*>$o>Rq?34tIY959zcH9bF7XS%2|L{;(L?iEnu8?^lw5MRE>-M
zu=7wS9Juig<#Y>>f-G?KGTDpxO}08{RCD?ecIqd}AMbXo#CO`bV5qAhioC|kb&C=M
zB`g;_bk;A=sB-u$#38!^Z*!})|3u3n=k<V#n-@%&tdY={{{g3dJGkl_6Q~cc?WMuT
zKoJ%V3rmhtpLbZ3-tPCpLb@w~u-HozC0YNn^igj&A#s0^^MhdyoU?4eLf*Rqdd%^k
z@uAw0WUUkb(DJ!IIYhDjwBK_h{#}p%AG!MfH<tfRrf%^<3&3<^FVEHOe*2izgSN7j
zSP<&A?H}nm?+{c6UXsZFe%|8<?XX;%MsZ7t!&TG1visk2%mFj2IQQb~TNQy!?a~{1
zmjL1_cr9DiJXP$Q)2Rg0*5VNtlG=B++^=7D;*VVOhL@Q=j-n31*()|;W~X!wLnp3z
zJl|{>kK3jE;|6%o3+RcpuCG7logLaG1<L+k)V+6DlWD)MjfyaiB4Za2&~ZQ%DbkC8
z9i>W_j?#n>dO%77ii(PYiqb<70ci;>lu#7~X^GSTAp}JT5JC${fDqU><2d7b-&yaw
z_F8*?$G7=!4vz64Pm<@k@B4RN=fx*sK&(efGA47E>>^&ArU=QMGzz$=ef(X}x5qKK
zaT)9Yt76sEg+|RNd!>T>^$ee`389_=x8pyVC^5?u6A@XDJ3`RmqrA>vcw+F@<NdaA
zgXn3Wzu&&~#?^I9Za-B2S-|nSj-KlYXIv=8Yv7FgzuLdOY4<-9hEv=TxPJX3OYm0o
zsO9F_jE1!aDmZvoD8EXiv<+pBBNkp<4V3wJ^J(yMj_n5N(!G0@9-5q6bP7zoPIxY-
zcKBoLO44ox9mg+1DtuexPb(P|`vpsWIONEbaGSn%tYKg1>SX8WUh1B7E48=v<dcn#
zDY#!3URac;Rk0;lOVbM*xI5w0*)O*taQ1$;8@q59e=%7LdVBao629k6&KE3i{B7w|
zU}uVg?9KsrJhIJI;VtR9+ps19D;c@WeNf-Kr-FQP&q{Uag~oxfgL-qyvyc&N<nW88
zuZ#NT@9y{r#_oA<i@E}D&V@e@Bx0g21&6geG|dvUENQl^eC3}G-C!3bjIeawKZhdx
z>cw`_d7f3^L-n!b>h;M8TdLOHHTkDuVQ*YdKA!!)y5RCY2g1fDeD1__Yy0~PZUza7
z>n1N{-*21P7x&lT)~A#TlWv|3CA}Fr*?-(``!h@H$LCzel)#2>&uPh<4xen-RDnI+
zwVLM<tvgfi<!w7Pue>jpVsP6YB&W|5y*2()GiDHBbmuG;n!S39Uu-yypfRDwIvUDW
zJJF|D_Z60$!tz`jW%#D8w`gwajuuo=TN3<=fmiN+UZZv5!2{7e?yTdas+?cHXb0ob
zx)i$z8<tIylG<$HRs0#djg|P*AK>r{fEO?=QPpq3wGDZsEkEDQx#M{6tFqTkZ9bNh
z#Neo5?-@fktI~eow{}SFgvXcDV0T&xaVKNNQsk^O$D+2IjH}9kQ8eh9QJ=MKh6wCC
zw8|zqoq!jrN2pU)D&uaOq<A(uEe{rW&Z?aidlmI=_^8pN#cfY{7NlfE6f{HX!JGBs
zh$^Q}EL9nmEVI0r_@SQLca3-;m45W6qebr*i*gMjt-<)2yfJ=$@WXrY<tW#VNOhIT
z1BXg)A3c_!ka1JsSzIFBJVJqVT!U&`Gw}TWpX|3(wBv#B9Mdw(e<HtA&i0&xq<_45
z+|%C|N5OBP-x^t|9nUw=@6D7Vsm&oVw@RHOUPoI@Ut4||pQ_nE+4gy@^ENH;PH*aA
z43ZE~6t?VCeM_#d@UNj_XM2rLd_vs6M!vzR$jkSO=64K>I-QJzOGP!DpTPI4$LH_S
zI}v^6DUu$L$8%r!6O8w_+NAu8fo@|w$BuU6w5e$t0y_iypl{^xo=Oe}-?wMF|KAwh
zHCLfRygnqIB03cH)MdFEI0g<dYPM=_xxIM>0Qt)Z-X(dzQ}F>jn%}=064>959dpY5
zOsD#$1(g+CCf9sBUHth7tft~?!L~~~ub51Km6%Pbt<wv~cqQH6=YX>Q26S^j)}K=V
zpm$2eC0xqeWrk{Kv)7$&u#bBo-(*u>5iH?T9>()p*wtX<6LFU8nZR{xgu*&>tfH<a
z5q=D#)A#<C;T-<DR;&#hdv@|jQ<_Bs&WXlDQ`SOIPC2l{HIE)?IX;TCPeZRVMUCfR
zi=LvNC|Ip*R$~5b>V532Y6yNMejiBdAgFgs;dOx8uQ;OPKWr&J+D{3ZtG|zeB==ai
zG%i#{a#C+!<y?9I3q?P1!-Fa2-|ysJq6(%xYUAY$TXgpyceKa`^iKLjc86jSW$ToW
z3$Gc<w8fInDh8lct^B$ql3bVhN>I5NDyjT>@-_fW-ax#r=DZ0l-Swy!Oi~mXQTWBr
z@Ah(7=!%KQ+2wcb`U7ZfUBXxPz=&fOlPP^rWZye=@1=B+P{&8Oho1TQ)hw_o$3M46
z^xdaf_f`;t@@$F$*{u31$3>5j(Wt#Rt7Xdq6QVQelk%FTKtc>_xp+WDYEAFfd~+{k
zk;yCnq8M7use^>|C4!aeTAqD<YN>hAJ5P&W*tX;krO&mxt8CS%WpU38AOk+D{kz!8
ziWrG8ZNCG1MtAoA!WEDrw`qh+>7Zhc@>!AeYn59XTBRhu9lvZG;igoJ_O0hdl2fyj
z%<`wu2kf&;e>LpRI2ws@=>55No?(Nz`RQ^ds`@OSdv8Fw1iWgiJ^|YHNxpQro4kI@
z`F2FnJ=pY;5B%u@MjU?H1e0gpz32QIqKh}2Y%OcJoq+1w5++iR_cE_P;XR;1z;+`6
z^sUPYac^mTQ~+l$PV1s4@LN#kPV}L)j(fUs?yc6{FvN7w6db`%Bc~NAli6oNY>Ck|
z3@`Wo!>spt8!sIAV>-jq5SO-~r*ou*+lEaeL5?V!TjBec;9?PsWx$~zm3zUoKFObY
znc)#w&bO#kNH`NV<#Rig!xkP4n+tEk-)iO&Y<q70Bx&N|kw#sqC5UgAODOwEHe6Ag
zgL??GGSt}D8c)!Nuf4hM6TfHmVq$DLA|lTWo!#`r*HE~92xB7ea*X;ewOFvfK8<g%
z{IN&I=SELsOrF^yuHABDZ&g}ualPXFTeCkBrt1?<uCDo@-~(g?%akGYQ$2YzHIi6P
zzE-Dh{Ux`4QM~EE+Si7M4*C1*WY0gUx1>}`PJDY=DgKYxWC`7O8RsLB7Gn5S;zAi(
zlhD*ItTUl?2IIG^JT7RKpLenGQZTIzznAp7%IcCr`Rx&-Zo9r=GNN?gorriTV>UL`
zn9j2c^&#1<)~8uX<1{=;By3i{mifVT#ktJ|<2HN_lNW@(cbsy1oMFM}X%AHBg%#`*
z>YFUs|18h8_I}5iTE7Lq!P0f*jw`kWGKgz=8|ct@yB_J;;$yXPwet)}ZwdR<SfZ9C
z_NpT};gzdqu>I`GrB<Gz4i!nWH#Z6M!t2i*wHYHqGov`G$}^Ze3xa@tQZ5J#1lZaS
zMDCm{&5H7eqQMy1Xb-&Bw@R88Y5<%TrH-?98uC=Qh5|f~?~qpjk}5%1qZD4t)+$q#
zq?}G{|KerNNoU)Kv_!KxUiIZ!ad;1r$pcOun*LYOh*S?<`}&3DW6aYSH^E%7`n7^_
zhS0bT|DK}t0LBSqpo=<t_#+jYD7q=(R1(CA=~fOIc=L=JYW9ho2G>ce!YzvvDs$k=
zRn#Q2QsQ{|dIXA2$5Ig+K-A)Nvpl2o)n2o_YeqTBo_RmxTxAKvHu9zX^dN1+<N`{p
z>i`@B8PH+4_mxo-;Z<6cHl3BlOdHl#ZaK1B8hrjG?j|hhm0^sp6-UZ;Eg}wWmAh$v
zKF@?`-J9+^)~fa;cznOKz8NK2*tC&B8qF^v2K}a=m?zd2m!CuxNLu=$tK@eJ>}>mI
z3(TKMO~au&T827F1=Cx2%T!>A`$Oxm+B&KYglGlL8~{6Y$>7<>n8nEh_U^11(j(1L
zf1*WRv}kD<aHCC=zx2F*sIGFBXYRN(Kw=BCR^_kisktxx+N$+!ijtzk6#i)LJ}5I4
zd<g<TCu$iFq`TnWpi)#%mpwsE>a+C{-JLVKyiLiP)vG>Ju6v$Pe5p>wsNTh+nEHCQ
z9~DVPka)Q4bt{`u-F>k39Ia5pY9`Hu?1$_9N?do|l9Iib0l-ren0w`xdv$t;$Epl9
zd!o|XyGDk6k`Sze8Udr^>4WX_a-~c)2)4F*1k$mJxV^^6p-%gRlvCea5$*VdPgYWc
zEalr}JzAU1gX|^t2`#qAs1C!?Vs0Jd{u<sS2YvlY0t`i*$f(G^Nlhi;tY+Lq?DbN!
z);ognaU)8j2&Xx6*-e_e#v-#Pr5!?NJ*&u>j1?n8oa#3PkD`pQQ#GkNs}5Lm=ru3G
z@i%G8UR_$YgywdNI%2}R)`!ATs$A<|RJIw#mr#Nyvf#ZRU@<j51P;^cYg2pYX=Wi|
zak=D!PUV7NZ3sRBtAPj~2E8m#{4gP!5!W|Qt_QLBginWF+v6piyA9=-u&j9uv6xDV
z+4dz-^iaEXmEH!VFhfP<qq^g@Uc1lm>yp$r`4&T1BGAF-89Qk>f2%tnOk~bC)oTKz
z1mvJXt4r9_d*=tA7k9YLpO_A)GhbbbbwQ*QP}lr1BG_3^#v={GwD!b&x7iv<#7DUF
zL>7DZr93;NnxH@J3`xWHF1S-=1#LI>;8M|?G1gF9(IhE(Jdi7gc0Z2M>^ntZHMiXV
zYeRa^X>;}fFTX^|^$REgw1}Ccg?Vf+qb!KBv;K^ogm?n0kB|m&z;B09ojD$sZlyzg
z74_1zp$->j(uivl3JIQ(cTn{sUs7QAZMrP@$+GP(cawr#six?RpZB%qyYx;mVaqm6
z)xq67@Ko$I*3KHcc>fu9UCRnDfh?bh`<0s1U2v@bv(jwqm;hmad^i>AJ$Q(|vYq|L
zv%_jI*7h`AHmqV?n-ee+PW9W-8w4c|%-bC5zQ|wIWI{MbT#4^UUL1R5`eeCHznok^
zkX}$w_lz~GouDWN)QWa@Z$K1HcHl@}qm-=ec__PEP_dl4_il?Uf}JeWgSC7;Q?p`)
zfp&JS{W3C0m+7LfU-rf*S5UB4S*=QKMbVJ<ajUQ5W6dvDg6Nkt<|y@pr+WR6+9u|q
zLk#7CQ{Y3;427f1nol*$r!ks_;|Dz^BO>`H0lKmx=2*ItMm*|jPbpJ1d3ZjO+Lhpm
z6A5?753_?r<bXFk(CUt`da&M08<zjQg|~@c$6Dj#mlfZE<6A$gnxCtY=s2k)D${x`
zTi#lmxVy{3ZrFlg3(qnRyOvSLCuE9o-`AUG+ctx~#Bk3W4YnO-tPo(--p}pwu+PgH
zW@Lt~N4e-S%UU5lOp6#+a^%n0{TTraBILdjt-YrTid)z&n@kX2N-9@8Z#lr;pe*vt
zv+~3di?`#@><>KRPg=L0gkrzOW6BjuTYh8qzA>;Bx@@yT#h2eL(T>G3RyVhd!<K7C
zN4DPBOl<2$7*V=2ZJW`QGOSr3yzj(5N!8icvxv1T&-jFn=M}FHd5A9sql7Ee>A@dX
z6x7K+Bf(}T%*wK`+ube9<2nw_up+M|lcvE3#~qjdsomAKl6fpy?9jmnN`y?4eECJv
zlql2%ZB*#%EY!mo6Ec-Q>*7~Cyc&$sv|21Irwu?W6mO$qPxasXa($d^Tj%>yt=!AP
zrR^>OW!A<M1V{E}WAds}$%{{tL1rGQ4(rM5g($$AB9$5koH$9Y88_VG!=%Mdk9}XD
zfK;<}AGe+UHWx#0Tx0u{Y6Q`oh#2{F#Cdu!OB_bc*ZI(j6U?A(P<1GpCu01{@9Ban
z+CUEUk`M4`D8(|K3Ej^#8_f=OZ&II9X4>%qKpJ_V@~|9h#s{9-ns@bx$|Fd0F_b0E
zw$y3-oEb?=`2ZF(tnCO&)8mj%d_HVBg2j!@iKm37#0Ek8{ATe3MGy40dCP10dI~(*
z`gys)3>xq{Y@&&K9s=-xVapH?7q7|{PDb?_C#Qabt*GTTad-X1S_XTuE2oq;)Sv=O
zDCmF28bVvoRCY^`W8B*G$5F^ZaNIjs9vxuiYf*PDNLVxUG60rgRyEPdzO5)qzKb+H
z<3K?5RlRbrD&H{-nE_9XmlnqNLBTT0W!ykxt=?7P3z;>z93D73F9QiH`OEWg=1Ag6
ze8L;~=|fdS=CrRBNpJbf-FWe-QE;1PWIwU0RkgLvB;MWOvI0oxJV8Q!&audy74%9T
zX_=VSK!c_?Ek6nSUl*+nW!Edx*CKmzOb$E=f#e|uN(PvbnP+Kgt(v#MAG^X^$|o=C
zm5F6|s8YMG*4b<|%QyYt(#*p{*plcIGTz@oJDvEvPkhd^B$UMVQ#$#pA4gxQWZUKg
z7qfnT=~2G0N$3zgEvCoGZx+x=e30JbpJI6Rl*+5fBCBoowyeg+;PE&j#)Bji{JA^k
zPW0_q3#U?-;JMVW$>LL)(>Lsr%ZCcCF=CUHp|65rR28YJjeuyoZFQMne4vPD3{0rY
ztjgFK7<fMZerwN27?}qLtEMDyDG$(VLoS)V@D%pVY|>hIDzd~vs)6Z%-7SWqu*xq8
z%e6gQe>g2};ogTjjgEwCfCVI{L=q42i{r7q^-w%?DRm}<b`hppivcl`rb(FmSu^{Y
zWov%*+1K5_CcO#b@L0X9Gk`&Q%Ff#1jhh+6+<f}`7dApIN_pBZ0etm#;1sx}KM$B`
z^R+rp^}STq=hgNpkB^$NU)ki`5&+_Q1{eZ)W;pmx;ujY=`)Z6Eq)nL@Twr{6RUy7d
zJeCjnax5^q-IxfAb~nrSM4KrSg2fMe>bSDO>v_YZ?B<rcZDFViJ?dQ>jB(GkZR?&M
z`sh;UVqZr%x;K^)Vz8KKwa|uFf(*r1iHLiLcv`Q^jbu!(LDM?UDYplVM{cei3@jV?
zBtCjDhsWegCGhnG*x8pR5UO5kXntLpS^3<Y){}dl{ggG32z_N%>kfn0I~9{-<l9$k
zk8eLPur@UQi!^wwGO?-i4dJvH2%_(8MC9JyDTN%dey{qfROhr=%7goS`$7zqX@j*y
z+$iG5TjwqXl(qf3h&Qrsefb!Px!S$r(#x+@lw2H=(@|Dno?8+vtd7zO;GD;uE_R9T
z>lRY(b<K@ZSa04J052s)c-6V+s)Zylco!?LdWCVaQbX6Fg~Yh)1lzf89S*%}+sc<n
z)9T^p_F;WR+hVAsWqY?alwNhsDKF63qLC+VaOMLyOfP*t{&9y@J>2^0+`vs@O_p@@
zWS(}mVYjR90U~Ta+BVb3<QTDGHVav;3W?h(&nj*itewTgdvFatcAZ(s3LartVAvJp
z6wK>xkP1aJkv5~DS7xOWa%dp|M8COcYG{ISzW@s4`ky^>KM<6339OCrCh`3oDI0n$
zl_SX<T2X7m*tI5^F$EJDdWVCjlTAFtD<ZcU+jrA{<xIPW{DCKiOjp#covSz<n-B|!
zj+-csl`7BlXDB8sjVE;;3Na4>G~YS?x_KR(E64qV+><0`3D}s}lC0S4w+?H$q>iuG
zu<wg_Lm^GI5c@b1C6X-j3G6`jNyHw^xnD>OoEW(s@kp&OtNXd~p4T+8vVlD!_6DVg
z^ei!#Z&FC{_@uLQHFH;(WlAlDHQmv5-tf1<0Q%9F-W6^5`%jV=7wIxnIcbDJn%2_I
z^5M|gEgw=yXQh&rE2s(6fpmBUqVZDo8WV|{ZDb7-97m5$us`UQfpKUxr#TId5`Q9;
zdkHf~p=ug^w-U(^feE`;;sSKO>(4FYA4pSp7wp$np|OnfS!tyHN>7as;HECMb#=T(
zX1b<SG*sQ*I&iiNRvVnJA9Z<Sk2kfOWX^!}l@L>gUnlYz*PW*9fzOdb%}&~%J-@PQ
zlneGnU^}JTA*4`7#oRoYK_|jK9RMWchp(1Nn(LC#{yMV=Y3v0`#q7;3!W}l$q_Nr;
zXhxT-DC9o1A3SlpggLzZ;c3^0ldI%nHIobRanfbCKM9)U4IUodDtyDV-dyTsAS2nh
z6$a_+Q6Sv1_bsd*$=NqWDlXkvse33D`h4v-s<x%C@Ilji8r%6(YMe62OZ1W;*X%mG
zDx3HK&1MmGWpOT%5SI`Fg_LbEE>6T-WZe+st9^}*TP+c%sJIMe4;2gG%Va1wOQ@@1
zWfSUVh1V>Pj-tUl@~7&0kO{^zK}{Ji|CAYFO)ouw;Kla$8`?Km=2uOoJoJb9Elunq
z1gE*LDBBN)PZ#M*SKNk^8SO(KYt{UF_^DyNbQG0d4k5t@2C$>8o7{<~yX-_uaTWPt
zJ#A@WuQX7jNQz*@wgRDXj1h=rGfwA6FspH&^Zm3s^V5zIRa4f7s5e6FO>@8Q987XR
z%_`DmDSn^vT9a}F_)WP~$5&Rw^Z@Wg1siXJxU51L1DRi6$&9z=kuZST=Y-}bp(u5J
z&85h=RYgeGg~DHtGRBnYiu71RD34dvc*kOe5XvHgXGRp6P++siyU-kygnjQ{_Lk&b
z-q!ZqxeYq*nYJBAu$~Qbs36zC@}+6;jFt6yIWu2)vq1Ldch8P$zgS(ifmh!uwkp3l
zGngGO7dT_QFeI}$pHdZI?^^z_4`yMXC8(&gT<_LQ66=?jTMhF!K9p36LmSQ9^3;-7
z-I{2B9W?mm8Qo=TZFV*TZmLHfaqD3Uf6Q{yU#EO08}p`R6D!3fySc}K=qz5rIgg|6
zF?X2Fx&T{Es4fU~&#S(3-sjQ7hs9xkxu4E#lcz84Ufs&|g6FT{@IM-$()HxC(hL_D
z@L9ko`F+*(zdt5hJ&F9J-$`1HC%U+()jE@zi52X}aA0DhIqPP-M9Yp=+sap{>PJ5v
zB`ck;7+VbNer=i~Eb&_i{z*ax4Hv@CwtcGmCwnGA{E6%6<)I0uLfbM4*TjS5hRNgX
zU%#XU#HhPH?cRM79d403z<lytQRiU<MRM7CeI)qfyz&(KArq_jx4~2J!oEJ_lD*nm
z9;R+F)on6g%X2&kr|fj?)%2ri<Gb|T-(PvkK>)q^o*s*Y$K7bZujuTk-*S^|+_Wb4
zdP}sZ|MbXwP}?CH!f*8~>D*CU>RpSe0r~9yVtUrr(Y?ujJJvmV8|3=miWO-%p459d
zsh8CbQtVPfmpfkVt#CjY>qwgPnP_5x1qo8Odu4oHfTqe|Zhe`!^9Ko1xLp5P)>VhF
z5!lZY{DRhRXmsZpBR{RGSu?!mD*pP2hDd@Gk}U7Aw@B-~yh~c7P1()fztmw|2ETzx
z-f{7{JvnzLT2#l7CYN}5g8-{Iw&(QE9Uh|UITgn3r(9y5H$}rX+q`W~6VWgz)@;7^
z??+ybs<_MlMT!!K8<S5OnJH56N`sJIHim9~EUp5A-*MYGB+FNyr?qy7FD0`Sy-DZ2
zbR2zwul4#{l_xFRzDN^Z*NygQwp7ywH>6aPm{Arrt$>MQ_X=_EEQVjxn`4V%yfy2q
z$h#whB0dsb>%>X3r1izOD2C|I>jEF^H^OGa-}4?^Tq-`hz>q@aZS&+&H8sAsYB6&>
zFZ-l*%wMf;DZ75^ZEs4t!;3*koswrjEpBWHi5A+IvQ^#L^N1WI%IIUk5YMAD2b|%*
z$SN9~8RCXT^2P0@NCgT$-o3*L$i!YB*LZQO-fx}T2g%-52N&K)6|`T#>f=I`*XM()
z@as-#;cnV|hlE4<76vtK{>#C|gFno?-e3B2<~0X6%%?VYOfr@_ga(Zo0aWpbxn!dF
zDc06wzqNFK8+UpRKhrYj7lDr#ub134xzv^u>T|vIH01*r;-Sp^D7DmEQkg#^5W0HV
zT?8Jd@aq4=1Fzfle?r6!55Yml0tS9QiJo^bLDfs~a<`w{V~vgY+?>l1b%BrnA4KO`
zu2n1y*Ig~oa?1*Sb5Wk&WP8J^j?xd?xn+Y6o#v+tY>$NR1ntCs+yF-Io(GqD_cxDG
z?3Kwh&Ory_jwe2h<|lO-4O!8C&XgMDKP!#O=$$LBhW8thFrmEm(qz7aJg4YylDItI
zmPA08uh&;alA^Xb?8kidzOCY1<tI7n(YosxrG4NKkC69{r}(w=zT+2}$UTI3Ht#k~
zfp@v1TjavG^cUZ{m_o4jF}Z(N^b=oyoorm4Dh@^pk?easz!Q<hl+y4Mlp(who&DV4
zdid%YF!?RuB5!h$9`C|6{24~LXfab6MPGRl0BoGUKWQ$^$j8L(`_G9*$mV1poogdA
zabS8C@K%mj|I^KMaZ0S}!CO1x|JGeJUQ)YnRdrg$Z*$}@Vm+YI$%F^TpsE^p!h_`5
z2JSBl9?qwZq%|VMtC+BeuJezz(Ba6ILB2sR#466Qfw>8O>D+UZCiQwv`(>Ke>k;Y%
zNi!V}3)7pGx7b49gOUBlwKr{Y{tyw3B&&V)NJE3zHT1!5WMEv23NuJ#6`esH6la((
z6ot-Q2MI9K`dv4K$q>guPTiK8>Cz%4Z}PWy_5<KYvJU^FR`Ase(GFW67I!$$)$h~F
z4KBJvPs%WNQ233{JGmq)(p7%{pa0N3-m?(g<nU)=1N`QnG>{UTXews9-$jvU&RzvV
zlkj($f6ZG!e8A&R!vy#jMt(c{r$hw&=Y~e;PmbgN&@aP(9R$)5LxZF@`JR<_NSWy@
zp*2MQhG}L4H0yh6m#~m`f1PRo9I^yAAM5y36!kuz(bOYRk2K5X>7(AKI89R+2m^hJ
z|4p;#==5{%b-2|WDX?|0!jNBU`2vcV<jizU8~AXj?NIm8p<-6;jG&ZV+*Da*P?IN9
z=q5W_c!eA#(@$$htglvNB(1I}0K1HD9~ajP?!Q(gd*42H&c)JD>KGVNiNuK670g*a
z0MlQWRHTm%2y*%zffJ?8Qa<!NFDYHd6}MnLSfSC)V<UQNdY9s(2cQ0dgS@c?RY6_}
zte$CiLsN%Pwj5@6wS|o9tljbxPO8u7YEzxq(etBeAqH+#g1S_Y`mKql!+@vTFcU@2
z)Eb(kg`5q0G>Z;&!F{SmZRNV^yP@Fw_H*@eNNI@z4H?)25UZwPcm*~s1cd`qq74Xj
zbf(JCy4<rDlwD1N$O>-%=To=4f$NAZ^%AW3^U@H;%-a#zFI_4~5~>#KKm9tHmwa=}
z+nfsbtRzMEei($1SGch6#1bvX{pAVVFzMVAI1nHq9MN`#NgexBS656q<ze;EHr;&$
zA1@A7A3N3r&O=iNu$T>yHT#KRKB6`lX9b)JXa4+Dg`cxZt2+x?$lmBm*IYKsH}|t5
zSz$bKQz@zWAKK!N=O?s^R6Kgz^Z96`;!0;E)Y8Rd|H=r6t<G6r{rnjI`T2)I>WhLI
zf93#|&3tB6<B=$}3%)pEL`+TF!plEc(nFH2yPPQ+av=g;Z7?6t>6`@X%^%;{u0CP)
zGA(s$v-}lTf*|nqnmEz-1M_LmOn6Y(`5?eUBIvB7-*L#9%8(he?k4?dHD%7IlC6?=
zcxu>~bG>Rv<1So(AZ=h&+0~0+a0(1}^Is^8nZcR8@dl7#J@KOBx*8OY0JaH(6rgvB
z#;Mo-!zBR5*9@sAp(71vb1tg+Pdpu$N<hQwIobAoS-IfkKF=gSu3M<Rz^he_-3r<1
zuqQ$BY=4d@T<>_=Z&YA5np&M9F@}Ks=if7tv7+*JvB;rxI}O`D_6;Q5Tpd`w4g^Gl
ztXj*D2Xe^$1I84Xx^^0T`Jw^OOtzHu;ui?oZD>ynHOi~byqPHsx)h<9n}d1+))nql
zCM`fCW>H`0C9>8Y>>dNG7E-tLA94g=t^i?^@`3hz^@YCAY84O*XAhz~vGFCbUqk72
z4wWsY>u(T`3Ye~I_ldOAy4;&*-r4xj5ZhGWGC5xnOtW&P5h*nwxiQ2O7bC1O6&y6=
z#?7@?`G+s2G0h6&&k5hOAsqv6v)=YPwgK<XLq(eg4C@o}!6qDXCN#_pq!&pyZuAr(
z;2Mmf-{2hRBZN(@)oiGW3BG3OPB065#s~<pLtw63XTfd8OZC=V`tbV1QNEhVOB(A_
zk}KDHbqZG}kLd?d`Je+>eOon{FF;^D9hDtd=3)&MraB{O*VwGup=gb(|3F5fNYxCz
zuI<?M&yl{G)E<Dl=5M9<V*FgqU{GEz2>}4uMd@`M>I9pU6z6vj<wYC8)+D6)cS|hI
zIf}A6{7+ukyzZTQpVv|@wLe|=GRVr>W5c>8P5bus|EcePNLGH3kyz>KA^2Zk-G^w4
z(L#5cSuA#wj?R8sFq4E)*Tp8r)jcg%n)C(X1ly^ex`<NPlCKb(D6e^SRg^u|X_V<P
zIbP#G*?(pIP(Z2FQQ<dsBrLXB5%+Pw6nOcsvUL4tg|}h9-r0`C01`K2$Y<*0we0D;
zi4VxDyp<<)zr!s$;oD@H!pEK%^u1r=F&Nz@0jqfxd8PZn6I0immPYQH8<a)!*1Kyf
zwy1K|X8tQaoue;?PQ=ht@JpoMF%#piU-@EulHNI^=WRZ8Agtz}q?CU#?P6;ew^D;-
zH;vqeXmb$wZ+xLdsm>}{BI;~k9S4_BPD|viyu_FakhbCC`opojKP=83JcDmu;E`QD
z38(+|(^{O*-w}(uz*ctSN8%N@TmG`KuRQ@czm)I=oJ-4bI@ad6$wubv9dDR^-^h=V
zvlFL;PHTE4I>s^tuQL0cTJKx_!>-M^y?haBU_bItnKRFC%;N5=JlOZQTD4iiIZhoG
z=g6luGc|IC>(b@AH*r)6vO}E6BV@>kYP9RNn#j%UEohT7VW0ZXLDOXXVv^V`aC9*9
zbJ)%;v-1tcBg-0FE^T6;Kkdj2`gk$QTqDKe+Xo9Q1umTXON3K^iP}FP=3Hj@)D>7c
zPv|^LhHnXdOYgb={In9z*0}EvY|&Np`xb6fUe=yfc8BrE?&hEe55fj#@QCr5%%RcJ
zs0!2KZM%sjz!?<vNLeVDsH|frd%1XAUU4e7a%KZ6eS0VKUf+hN82=S3?lYC~exNG!
zl6A0J2a#eGI3}CMmANf?g_-=p<X06S!#R?(Sme5nAXd+0C}*8gg~z@ua!6_V%Iy=s
zAq{m;`$`HZ^b&x|BkI>$+-I@&wP#0uAx3`SuD3S^;;&@3luv^4gBtiaq>D4mF%+G)
zTF;nEyS=($O+E5m)dE&l+hVxpa^G*$G!X6Vbo<z0%9lbQ9#i>EY*ES~JO96gF8U$<
zRrbt}^@9^ClRKi1=px~!^E<m(Q;PD_dRKwYykR@4Ygf?{G&`<kC&OA!o8BW!dviN8
z0)5tw7%6$Ag`IilKc>%yJ|aW-d`W(8gA+9s=QOqiF@WOd-O3LUE;;alecs`w6JR&q
zp{4S5rya0_I0%fa{>ROn?6K;8%s&H+(>p;9;aY+mKFB9NEc%~pwj_ZeRYEgnN6Hs}
zA@MeX3oL}N?ZhtIy-bmZ#;*;-6`pzp&8N=~u%RWpvv;&ivZUr~d`O`!Irx)nVo&Mh
zy15k5vj=aBWk>46)P}%czs&rbzkaS{06VOA5iR20*&bxM*9B+2$0493s`kI;MA;|X
zV0S}MLeA=u5Hf|n?6;r%*vK%~we&YW<1a;b;<w>rYqfo=d4+$M)*{BTa`*#Qd@IBJ
z9oR?*%(2T*3PyO^UUNV?^)XBm7;8VonX^uxpV{5LpwW!-J1Eg3|I{@s0e?+p+V4#E
zpNCn;4sBfYgki)$jd-k_Ec;YnyY@=9a(@|oTvum$*t&S@4w11|T#&limd2eE*e%cP
zI(lDKm-$A-K69gFGVrMY+N3I(Cb}vM$?mu@Zlt(r=#DclaiJ06$6tM5Ps2&~md~4g
zT74<zO#?5E8sHL3Rd*<j96X%HiTv6gHLZROh5j#TYDq!&J-$h5bLRh))JmtwgRu4b
z;*|?$O@9~Go<s27O8j@Jv?}~*EA!W0!x<l4_>h73o~jL7`}T1kjeLDP!1qNU&Q56P
zvB|s5?4~eHvTQ<n=NWz6F+W*{^-H)@3;*P%1^c_+^AAfo@`q{vf7|0l)NL91e{het
zuc=Z6ZRqB5;_Jq^;*C+G+wo+k3(aDqFX8)9)>W**-LTBl{u4#O>f!9{O6@>XrhxP%
z>!Bz--OawksMRpvwAOte@JL++jSb#?tMF;9TUWi>lk*3AAwbQRR1O`xudp%e9#o1k
z1xyLl+O5Ah5G{^hz6PKfn8tcbWU%X7i@_=x-5h1N>?yN6;Jcb__#7dqNOPufXv)Za
zK}p?K3fsf%3fXqLU0a3Ka;?Vh#2nXhp0whsO4J-Z4;_A<A^*xs6)>1KG{9ggoN_DK
znB&0ZTv2^qLvQ2_)b)Gw%>4R(Ht(nXe50OPy~K&pH1C+|HLEZX&cW<ZMYONAeDA!`
zpSJ%qWDlP48?<G;2L0~FG^3H-1X&?DE=~ytQolqap|VT%=$drk5Wx-B#{k~LZDv7i
zusATL``6w#R{FqSV&0LLb)aWGh%U|-rew4s7G$G^3xK8P>iRNO%Bu9ZEz2Oth{&1_
z=sO+s@+D-`S8)hgGpo=VEl(^9u(~5<m6Yddk1(U*PMh$P0xQ-OzlgTB4(7afO(R6N
z>$w&>+#{h5?-Wscoz)h0b$rIwpe;A@uk-W2#VQ4R@(QyVf)j?I2&puz{ydOaeOeNj
z?bquqd2N;{9(?1YH?p%VvD<iIijbEjB>kv+RGIV&m!q8zM0*=!z!~AC1J1(zUJ(;H
zugIg|J-A|Bf3`Qz!esQ)E`zB0c3X8t$AA*)X@UIP9Cq&Y2p)HVfpd+Kq}N~&Jb_Fs
z^#|KFS19_OXXKqs?y`tKLx{f!iluWB!>m)8y_CU(s`J}8yl(=e*PCoI-OVsJ`!A#6
z%Zaa&6)f5wGzG<-9LC7#hNUgONK$^_Eyag4cN>j{2H#py&{!Kz4yHxnJ(wQJ<5H&i
zNi3^`-R~Uj!psaiLbXk7o2`nkBXRD#+}d{3S2(23q^zber`PrUj1N$wMB@g#nv&(^
zVcK2t8=@Ma1jUVUt6`jUPrq{ZL}JWv#aN;~7x8ha@x4a@!sK~T)c{ley3d+31^2d_
z<_E)oA0-i_D_seEPCBQP<(kLZ*pxSB1=r5Dbs;)CGn@T~6KN@Z4gi{*>cz)08mQ=r
zmw2t>v{L=<%TmD0V(m_3g(ewy<J*Jn`SpQW*>;6$mF!F`Dz7+MP<3C@hJs_so1#pw
z^xBNt)C6FpsSCW;n+H?q4SvpF%})$E9j;4Tz(CT_69X}>Q<)c!=b0A2GVmHQm9I;-
zFCe^=)skKU_#^?|Cri-`0_YPAoX3Gw%n6DOB`}8TevpVJ`->#9b4uZ2ng}o^%MW1M
zEDC$Vmu~ff`Y1QhGKeZTsvUjvbC)S>rvI$s=9&C=o|I=`4itCN+Ee$UVd%V=^|{~;
zvXS!I%xSx|OPKkBYtjn^%K_e<H+`n$q?QmF*e3rHy#2<2YWl0i;xO>)cFWZD%#f=0
z!J8(_(WXX!>32&Y<l7!u*_>A>*D~`9NUQ;*NU6i>4Yc&KQ20rSJr1kQ^gSN;-yD~O
z#@$CbJ_+@Ch3M$NLAXLLw&kzqU<WZCS%lp)#ndvGFnyAr+>L^>dsr!cip$Kf0j|k6
zRL@U;kc*U5hV$m*c=$qw-KtX@4=cJft3b4R-Ya0o_^sQ{1!UVfj0>Xv%=$_<j9IBc
zg!R0Rahae1!=K{23Mfm2Q{o&8=v`l{JBbbSqh5yH$8_rm9}!y?n`|@vdxJDyF1__H
z94s2PY=e@@cW~(Ua$pl5uWPVb&w@vBY?vpp)E}QO<Ni4*4GiNiqVNGMNtrxL4v)?X
z1<4%p7*5P})eI$DW;(R5);W@c^-K3>-@H(-HQ<-vJ*LR4wbYri3axdo67NXO6|$uo
zu<P0Ww&>wt_%KCD*5fW#o69ktsyb9Ac3yZ8Ia$VST^mp+*pr{L!njjUx57N`0pv%S
zm}7GH7qfm^XyMZQv5r+0O9E%o-TEBXVmc^5<nw<IGc0zT37>Ac`_~=mp3@!wKRClw
z0raKb)|b7n?KGgnRheg;)AeQN3(;DHhSUR7eQhfPC0#C6g<fH{gH_2L(~6d<|H`Ik
zgq%_|1%+nn%>_ZWn(_0f;j*)7InsT#ThIhCWc8qNAI<ub+fe!u6h8PunzZfLg2}#2
zTV9g<NU%_fQghAPJIy@n(m1BmY+&C{F{&}*Pi^W#w<5d8Pv$80$4pKFT*l53E&3|T
z5!*kHB$OjXs(ca*AU*w-y3CXsdWXfMhmZP5Th?wgyKY`2Aj6({avW=hQ`fUJDk67^
z_7z+t=UGHXt5Os3*Kv%enqmG-bJ^oss2+T>^5F6ljj@J~gU5z_tH0oBMmGqrY@H;Z
ztkL<(Q_7bMESgi%rG`;mO0FV3S6M$f6s!dm@}(-hu^_u`3z(ibWtL}Zxz7d<N%s{e
zu2z<TfNjctaBrpLJ4cOUIdS!q?R}l)cNbsAvwFc8IJZaCTmst2V^(N&5#vrMVdopw
zCQVh^CGS|WClp#l%Hw<PQCOyMLSXR#;w#y!GklG6CvR8EjvtO5FBOtgGxXKvVV=pQ
ztDD=$G2800p&eJvnF!?Y>)brE+`Ns&!59_M35>bZ!7sO88}x6HfxxUX#g%k>EHc$#
z&|mx}(OSga?IOScNZ)RkL>Qw-M^IW{q;PI_Rw$`62U8E^-7}n|o{{X!8Bq1j6s&Gb
z2{z3&?Ti~__7}Uxbd)P)0lnWGzfxlQTpggMp?K-!Wo!UFJDt(K+)<bkC?P&q<4rSU
z24CcDAG6N#9ZN6%nv+g=$NfOxd!W%K?q|*0g<r7R-V1W{S!w$!9bsZc>DY_5SA!V$
zfx~EY>0p_;B7vS(=M&q#yTC6e+6oi=Bpbi<$wei(z<$qC;jQPx>wg`ROZ>Lyll)ml
z6FUO899-D1*1jH^57qLXcq$h_GX`{|S=J3_*C(Ht&Z3{p2?5Gl^w+`U_>qbs=5)7G
zri$OJozQB?KS=i)(}cY!p;8apYeQ_(a!O8^{uKQs$uYshm~QzfN>$l@^=aM#&BUxV
z3iE2cmOpE|Kd;=V{Mn9B^I|<WPkD=(T9fB@aKyB<gE_rI$~W1m8miQ>xM$Z6M#hMg
z`?0aj2X8z*vX_OCK!tE0+aJ46eIb<%YZDF}{7|C=t!e>5iE11CMPgs4f$mJJg#@}0
z(5w^1nFdh=9}|NCSX*EF81LSDB<a1eG;5Si5G@dHKc1!ATnZx=CBI0lGKpEA6?n45
zstwQ_A%(2!=BAze;S+ROG2h%ouSX!j&OFv=idwCxb>ef@!<AbtEUQ|#Omi;-3&Mob
z)}MFu{bj_Xl0rmwSlNjz&!%)W11`TSeLH(%jJRHy$kKYPiNxL<vNmC~#dVZx9RgA{
zBj(%lYQa5P3D5*pSE1fQ*EY)oye7<`l~wd2nKj(gAaY>BE8b2-?tGuqa?(j+__dH<
z{A}|qa@{F_4y;Mcilt)B3T>`{GtO4U!)6Cxo-i#DL-O|@w&)z+C-o3wbcpqn!O3SG
zNt16w*0P$L9+yM~K?i+HZ}b|1#_Wevy@jJ?Ur|v1GPyun7if_~?nnPg{p~&-A9%fD
z`v>lr7*Vb4Db#FRO~Ncm{?#jg>Qf=bwP%rw4fV4d=irQY`RK`p+jDITX%atPJn=W)
zV?i3zR5yDBDne5rk%CdxjgYRnutzi0kX6fkg-sc@vc=sTUBo7yNkxCdkQ;I8lVuOY
z-R<gcn`fa-NP>z`E_`W^Pp$IXOM4U){RWae%=t|`m+q80npWKqqYcH6mEG?fdwjEy
z9G77x)Tb)t36RacihPUQQmVXZ{<J*;BikM%2TI!UTAdq~zNV<rcPC<o3K@w?*W7gM
zzhQoCZXckd9TkL>)!EZy!TN6|aJW54fr5LX8U4oA0%~2>V<8zg5MCx@Vx@ky95Pfd
zyqN0R7^o4u{G9+?QFM&zo^sLj8#%RLGDLV)IkPL}n%=`vFwY<c!8>l)QOuc3PpNCG
z-+@0ZW7SgqvOJ4I)NK4oW`3x{_^iHV<wqt(Dbo9T1s$U-DJkK=9!*Mv&5aznh*9fs
z+r}h%v1zW04{r8fEvEQ)gR@-P>6v56KReo_5ONg!GMzUfKu3(*bi0QOIN+2X`wxNe
z$elr3-ekRXN-p;tw(&x6?v0<cE&z27`S<fXUTjtpOApht_o7$}2fNv;hZPzXpSzgl
z?9mB;z@CD$=aUBjR;{=~))u{KGQQJxC^sspdQcL$t-%IrVmU^ujOJn+YnhZ(ZoVEw
z;WNuOzG(C$+5PiiZ~0L1Heydc0Gd~Z*TyA7R`YL!44#>P+ZaikpQ>uIXk!dJ)h6wJ
zC%zPPHu4~$5|WGP7*sl_;_O)h_5hh!Maba1*8G~al1V^+R(w8|nxJh%Orj+byxx@l
zT6^|DY5iBR?Tknz*MWIT6Su7BEzUmmNSdvMeZFTW6xviU(05W?+DS9e6KE|n(z=vy
zuB^)Rrn?CD<{F)sB;>fgD`34WhedTXDUF`;+ocSE$?m!pn>K`Pel|m>pNnoN)XjJd
zA$6$BLwSl4DP=A%^MYYBIZFM5B}R_w=oxDiM0K=!t1s<RJfP(G%FOewou!A_Ob#~l
zfY{SJ6br=q^f_PT)$Q=X`cu7xRz9i%<nv~bae>Tkm8Z;{_o{cH2rG_C;vm-(!i#*s
z+I!mm=$zm^znGC8jH+Y4aXk8y*a2IIutQJNrh4;o<EWM?^FAd^PPzS)qk`_*;|8^-
zY5JUUEo)`Fz$a2;HLhN9sY~Pw$(BQt(>wFbGF`3_$DCVA##WXI3WYYcm-vJd&dmFO
zNlX03xS%)7L>nm@l8Ph{xPvKS6;~DWEGpVSQjY<mW-GUFlmOI-dvBgQr%69)zOxy{
zQMk(T!@itJX>KO<Zju9()<-~TDfr-H>}D#x9&q-$tVJaLLt)*R#-{H{(igAyd?rhj
zGPk;V#@+vq2}-^T7nB}<dP!lFy&bV6=S*}8dG!H+a*z>7Bjy}<4tg)z;`&D#FACrA
zH=ADGh)DVW5sst<H#G?pJ-lyC%4iX*?saH_rLoC$A`M#9U6!?4*2S|utfl`35#X96
zo^5!K&aRopyIb@c7Qpr+Pv^rUY)FH>2hViBvVHFa)w6w@LGsC7Lz4rOPh_+R*+_K{
z@4<F_2<IN$SI&U{kmeg+5I^&KMVy+N0fN_Jz<SPHPCBT7u-{-(U2W3DWah&rP|rBL
zDzjjnP2B(nn*!<3!x*|ip<<b#eeLRU^V!jXjnjoNC2RYF%NT)5@q@vnt+lW#IVez2
z^W3&MC4Qe!*W&baqE%^7<`khIx8CMcGmqCslqlyu$wfYrPu_m!E<c%oM==EZP)JJf
z_%-=@dxtH(E;~|T>;MgdNQDae-YG<rIukt`w7uri=b@u2unwIyy^Sr7!#cu1cdcDx
zb#zKGm>nSi^dO|QhF2U*SI{KH&PQ;91BCZ*t&z9O<RM7Gf&ruHDIr=t0YO)i<a#l+
zJ)=W@zU64U+9c_^^mu6>sh7wGjOrz@RZ^hF8k%L?*vf}>30F&j#cd>kX7|gK4>Y)t
zq>;Ejvv_+H7UoW*>HJeu;qPS<w#Lnp!TqL`C+KgLdE4y*YI~q*LDe^!ae>2p-@5pM
zECQU|#~-MOo%~4?eWba5qsu|vpan;~`}(5b3?lCKxnkB35a1_%vIpT5-DCdU4VcV3
zf3!9H#C0Hg+t<W~tmE1{xFl5ea4FsA6LDHkeFK_!+7C6%Jrc+T!-Qp-E8|BV8GqgO
z%c>#(>6ik6GkOh@!S8oK1Bc_WKa@Ch_zRNGMb{gJ>6Z~)N_GQ1p#0gdo*P~ZP@E_E
zry}s!;n=ZDa|gJt3IbA36i5q$fDwRvm8bNkq0N7o-6WG`e&M^jTlgYV=KG}M*g<e0
zd&mS)nf$7H`DBoDV|JZO+umj*p~3B^ju%gAp)T3#ZG8jvL9_e3SJNGNW4w$FcvgM&
z7eZ!lw3=_IH*mz&TTM>7CuP2OA|&BQLPFQ)g;G!553~tO)Jc@Lr&(ihZlw|*q!RL9
zbhW;~Bvzq(K#J!tX&`<!ROo+me&aE@nz|`7oO2}glvj&Sn3NU68`RW)`<Y|^1yar(
z|G<s-^5Pc_)tvW!trIm7r*$d%FM0T-=7#E99Kna}QPO{=4a}+>uVnnCo%n)`Byc~Z
z)#QNjjlwC-Rjyl?vsdYN{>~eS!%<V(T+8TZa)Q`4RMesIJq`+QjX<FF*7yTHS0L5^
z{ea-y3CJWqC3hvH)V1hblQnSky;BL4CbKFS!v)XkzCaP@|IXxQEBl8ThX{CgcOP3)
zfnU(hIU@SUT*dA{6ZZDM6$VypbQ1n;SwPvgmF6cRG`<x;d48|**cjWSvS$#KwQXPi
zd%B4g&YM?%(;0B~$3fIXFo<&UOL~rs&o~M9OL@Ni83(fbJA0?`2YP3c)OWJnrpSV_
zOZ;e;D>8inBi81$E$4BZ;qsSvFM@DU)vJCs`Qx|{!o1a`t-R|9<wPBODsBW<rHOJL
z*_%U@wX9RhCsrF=eK_%|h;{kJuk@<f(6%VvC-`Bn*q5@-mksK@9#WoA$8|N~F7q<C
zQ`VXHD62oc`|0GV|DfGB5C6e7apPC6#|}!{O>`#A+AZ&ZK@DG*f6ih-;Jk~jpm@WW
zr=j^PV6Z&bS#oN7tI3JMlS-e=ZO-0Ih70`SfO%V=t8*N8*gZq>s#DosWi?d_opQ2H
zAT!k%?{Y=(_516${rdOcuGOv?C^-vmZ~+CYt-4^Aw>aj#KGDEbf9r1ebPxwo@2?Ln
zu{|w7H6JD(Xf0PLH08(KbQ!MH)oWuNs>WSU2YQcG&UH=4&qer6iSNGO9#XtFypuPA
zCEp(FzbSW|Qz}aGNF18URQTjN+<D{r-|~0=qEZka#6S|kis}D=A^v_x_AHnexwI=C
zJc;p|Ozgf@B|a9y&->jnaUH>X@PEeNAxjC|X6$Ga_HQ{Jewz~i7|nd*HXMCX)DQ&u
z+Afe{pVk<-D&FlA@Z$MOwp#)+Mme5V2p%r9v`uc!iF;HQnd}N7@nkt~ls(?Zm)e#*
z5NMq5r2m-3y?%%(--1C4y%4#v8nks<ug~)nf<783vZb7VLVovY)_DZHZh;tf`7NQd
z8q^9>*Aj+ZQ9LN2sX9sun^4j2^IaE+`DQhw<KzUIHSrPaivG65*TXs@ad?es){eVV
z%I6A3L!f#gBZ1+Kf3KR@1iGXTeRDVc8)@M3mY;wBV1)14v=PAi???lI?ckpFpW0{e
zubt`tYg_j>6yN`AzdYLD3yyR2J5}3gNmU(_YMVU3`U2nI49V@bE8kdH4B??a)E@td
zw|okq)HZi*Lxr6D2bVDao>k#r#iY6hFU|l4;l-zl0v_Xti|@5)A|YLebHuLMZ9*HD
z(uBkyFLv|dEfy*g4Kl6&;O_^&^Y=D)ZgZXwYkmJxb1hupI%r4iDl^vTd6h^X7JKFV
zg8uUdXLf~OmZru&GUVxVO6d9fVy&nNiHj;S-yW(@>pMUV;@8&?u~YY{z02?Hu%Blu
zrhsW|qT#lOE8iq=J-RQ|&-A3$h9LJ>fKExQXa6r7UG~gGSi9!t1KnN)AlkhyNDmKQ
zJ%y77HDWm%UbhXK2G}Ni#THt+gfSCs+l$*zX}l8-AyZMEU!2#Rw`n*kvpd>AG?1~P
z-c76XW3O_Bf4K<gjM3v-)1|jct_v{;ML@{)i4a>`WfOZ}-)v|@msP_Taa<?_^l#N0
zH;va?G|WfH`9w5Rr2M9(4QUok6<7@fIVbl*!|{=@y1kXGL9uG{9Nrw0<>j}sx!LO$
z811)D{O6H@HXF*{aworB<x!sy`FWbZ=C9gh4fmO2>&8?6PL*{=;=e7Q?2-8O99|>w
z%{qrt?@q*G>_VZB%4hpCh+dp(+raTM!iJ*{!JZ`L$Cn18SDO&{N*{zH`T4VqdAvpr
zs6a%<&8@Cd(MgPf9MA+h33{<~b^}xFqiw72j~@vxF?{H{e%O$*3v^h&*i+*dACbBd
z0^u`U=vVoGn=IVx_jsd_%n`|DF*l#19b-~p816pFy^bi|5#ys4_0hy`;1B+#t^1MJ
zSG(qK=4Htx3O@e-R*GRb=kYQ~G1O`~$o|(-4F2@YsK|F=JPWfMlH%{C-!pHgJ6gNS
z0*8&_4NeJ$ut-ygnJTq>&<9jKE%&6Fq6q*wGkKS=*T7q(YJE2cXfHNIr)1+?W3j@O
z$z#r<DsLpEpL7q<2J=C2BQ|L6iPA5j!TIKSmYMf$D*_4!PuOSNAtOLN<CkfYR8N24
z^w6X-6YRqWJU)MG%48ACuj=iex1O!fi3(0d190@C8=$Rz`*C5H(D9tXz4V;txX(4^
zi-y-`7Vo!kTln3%W8{ur9;_T-sKt*4)_IzG@1K5Ab?;+=)TJY(zCsd+JKIwCDacMp
zucw@@tSGhJ@_{*Nl-+tp2I(qSr%mC0PqO@M{N*$`B>e{@XLd;ItPKTm*UMh}1GXu?
z#xs^a+!0n|H$&GNIOZ^Dv_+fOKBA_a-{RbJmiE?N^XFftD`cs&OfRfno?V7b{&U&%
z{-*C^_MctgD?IS(n;Cqb=7m-rpi;KCBr7;I1hrqrKD(gcWDe%0-hSG@WMe)4j*UHF
zvJx~?gNC{+fDK~Cqn9UCH2{)&;m;I@4Kz99lp`f1!s66X=r7ky?0%Lo61wxdhkEEQ
z4RyzjwyhzFJHBr8TK@|T_4u`&JN_qqPJtx+ux9B}{25#r`<)+x`#N`Af{0S@r1y5l
zj<3WGEBJSTcKBu@)-jR^PUYOq)~Bs9fr{pl$M89DI5KG45agAHTzyVnt#vu|)-E<f
zeI_-ex6EfxHBNuMQa_&WP&&mvXuu0M?0r|BX&b`48Dltyh2$Kx4H+}jNm|I$WKZel
zC<aa@D@}Fq4-@Ry6wdHb34vCdxWs_hwZ_By4d|x!8y0d&wW2sb8-V|?oGsshf&RXn
zEl&rrm#@e7LH7&Yltdja>!{oDQ_<iE*)(gf>o1s3e?uPipPX+{^@#ehEc@ScM;lGq
z<EJgYfk)%o`!{W{Ud+hl$M+gFd7Xa##){wVsl0yPT5!4Hc7#Ec|HP*w9oDk;Yy?}s
zzChQcRt;vFV=k4WoM1_Q0b{--9BL4kh1@AJ)LKa}*1Xc!hS%#^CRJ0bEbRJ*(DgpQ
z!>}w_=QKZ|kb6Jx^QXPEn0i#%rT|^>=S*20Q{L!Srq0&o2SAB=F#j^p&kWI`6lZF`
z#K=fGF=auq#D82<mxw~^!-B|JUP;q$SLNjzUH)cOEs%zc>C+04J2X>3yy~1v@@SBK
zkf`0u?Y%ut*rSb~-JvmUr^i+LMl5ps`{Qj$YXMi2Xcbjg+_>yl=9b%`Ows4^G9|Mq
zm38G_vg`QQcuvCKmvlF3p8r>&mXke!;r#Lk{M=kezFpXq2L@3dxpXWt6JNLb>#;3?
z-EmUE^B97{%)@5J2W9(wNA}J<+v@U-8s*1@))-jzdObElZ(w?wlV_Y;(*2xusA2qI
z_Un@CtxC=QD%MB6gi*lzY}Qm>Sgv7H^@QYjJ{VhPUvh!sKk42)({?Cuf)Qa_=)O-Q
zW$86!b<LzqK!8|&oDn$|utwIjU=Tpd>jW@JPgZ}3f>9=nbjZ`k69Ibcxsk*ZRveN?
zdsTQo+Nfhf3`C;V!WZhc<Ro~!yMu=%tIG#^mh2|1#E&p|5>MYYo0apXNo0L>I)W`1
zy|MWPZfRqM52+dEdW~lqxD;0J^*nRmz5TMj=xI==RQgvRQ`RJ6Amg5ED}OU%QlLym
zowoqlt+=>UI~Efu(a9M0liF^c-47RCa`~0w;njxFUQQ8WJ>Mg%FFZ@|Y~5bLN}TPJ
z+Q8L@j*92^QdClDN55!Gc5<s|z+-I*u7E<-EUNim<h^B7TwB*Qhy_T103o;rg1b9}
zU`YrN+}%C6dvFWx65QS0-JQZI+}$bq-22?z=RW;*fBp5_WArzA^!~xAIs<AP>g==k
znrqIvR^<U-2|?;%>ct$jPRk^>RT{aG+pk*G=$*y{gA58+)=&+=9)ed^_e@^%X%I|w
zZGHkkfwR!fhfu%Y3dj#aGo=a=bEr5O<U_LT_Z5BBYfUG1YwghZKc6l`8cZkaE8x3t
zl>C6^xbzggaUVVQ8$RFPFTQ=Mcd1#q`<|QTeD>lBXjh%7T4Qs)Kl+M8rK)uZ=xluj
z5hpfTljPjL1DgG!7Acx;Neh|`s#zHi&06eF7DQLsJK5kj;Z6mlyJh~_yB5@TvgL5-
zjVCIy8`rjy4YcN-XPNZIV>i$DTosUI3{U@Ar4H2VwdX2Ih1}JtnF~T?=*RF{8tMel
z8|iH8Fg;Ju3{7&LeABPmctFh>fnpQN(0yeClUMtvIVomy*!5p!(!al<Irhw=d--SK
z+Am|<q4X}`mYYk-L6{N=={oPxYooM+7(XQY2l~4Fo4b}n7YbH~{mVM`n*(Q1RHV+_
zf#ZTfa70K|VhzQ(>zJ@!?D^A;gS%Gl(nVs);_i@D>uf+e1+9HU)0?FRji$YOZ`hd}
zJxVoF(CJ~HKH@6SqInUh$bHC)&*X9FjW9#QGFiLD;jqe#%lOrKW>n~L_bJPQqf)06
zDcudyK;&|6y&V5N?_Sd;$YM;w@&U?AZsbf){BU)8I&)Ysu_*z^@w*RHxi1tGw06es
zUnt2dnizV`hxr0(E?<+Mk_iclt0q<qD&cQ&5me02zt!3-Kvj6tzbo{<g~M$J+R_mH
z@$>iaDo2NcKYc!2eyOZ5141}$%S0rlAq{+m7(^D#74yqb3{TW=CiXmTA>IbRdbl1X
zNjO(=MJ>{W@C!Op4PD7waoGuZ5hP6Ow2v<^g+xRRzTaP~8l~U0bCb|?K0Btna~qYk
zjA^>^@JF0DuZoKNW5mM2w*TWT@bdqYXGCg}UtQV9Iz08FY;JD0FONuC6eLVar}`;H
z`|tCT{vMgU2b#B>gUu33(@KttnjQiklAyp_!h!zb5g`;_-dlFdV4w+Xmg|8-d6|lw
z#>H{Hta4yakmuUFXQ*3_^Pd*3(%I`^;?}MNY)vr)Ex`qcrl9g}NGLd=$$|Ykh0DJ)
zla#Gk4O@DJ_{WaxrB9YSy}jh(ll?78ZrLr0mN>GX1ffw)&Ecz3tc_@5J?l0tTE4lG
zJdmn~0|9?1#)1(VXiI2*F5f%TZ0_`GQk1IE1%()r^{mmR6o^Hy;eS79yRZ`(FoUIc
z&Mn}CD9ET1JX~yk=f1O=%dY8^%ZSJJU1p9&Y4+#~IQU$nna=~I(P2N(a7EM9tjGGI
zm;H{DoLm$_FYWE^ea^`06%_dQu$(vsdx8PRtUI@*0Ot*!zbIMn`h%nR+JsklLaXje
zfm=%~n{$RjvsFSrrI4RL8)1zYHNUArQ6h-n)^mO&3;>x99od7oC5KnbvB=sY#QL`B
z(O3`Nol7-QUv^ar)@dL5G_d^CTp;AN#an!Rq%_)Rf45TVVqZU36w%9o@=e28(vEXW
zqwz<zUf)Ec0a8tm`uXVF;gkn{pvr$(P?p%5ua4C_#*;Uhh8`hR+}!)B+k=f7CV|AU
zhhLY&QZ5=yC1$#;&{-mbaWxv-rJKG=DlDF$ELflH_N^GOI20aXO1$3i4?1h{t*5K`
zY+(PWBEc*_xB7y0@VW1ud{4it<-DwZ(MgSil)^DH($Vi{LjQR9&h~a}!*6#bm(Z}8
znE<$)fFfHBHV5k-!A8N*M61>iTE7<w&2|;TbS0nMmiSM%GTs@l)CYlVTouX`Q6lUQ
zLlcGl!98gagSPKSXR^FgnfCAE4a82@<#6{w3IT{vZJ>vjB0u=3SxJMAbF0CWYs!o0
zVN3K%BO?R+0Xekbi6U{d&If@o|I*Ua>+|lPflBMU-;hGUao~IVkqCU`SbJU?et53|
zFGR@e&XtNYuBen^y0btY7DQq2;0`vnqmSDB+mZP!gnat#U?ityW|d_02<AY%guvU9
z-ksU~+vNw{#%2!YK>6e^lJJouzGGY44xR$&e+`)zq=ShJ3rSQ}99p{*L%MsKbuL$D
zhQ?a&iTQtQb_M7sBf>?5riN+Nna7;e*f4IbKT}9Yk%yreq>OY1td4c+>8-{O)dNpW
zfvwSuCW_3cbN}$bF8?-vL%6b*Ic4C}Blsf1npEvB<)k(C0qudu<^HYa-M#Id(gEn|
zK)JykUlX#=3KtRFJ%u6g@$!WBr&czqCVse<zM$F7!=q=f&Q-YJmNT_f);-F2wzo5`
zwUM~^bZwo|stSd`oSmmc9r*?b<su`pp92eb0R(p1o|*`hywxy7z<bk29xhFgcio)I
zX9hXhAoXIz67JCuw-!Jti@#PiE<35llqf%1^Y{^tU$8hkxf5c>2kBGhI~zcBZr-Tx
z0hkvp>$1QxzJg*iCj#OgF?@s65OCVX!<Pld(Eu(-iCRmsiJ78(Jdq?L^SQK^Q>&TE
zdD%^b*MuFhKD165az^q+ijo#D_PMy<?LruCALgxb57`xFkE%2Ec7_a|e|6z-?zK6Q
zox6*K6NO-!&1QabFBRR}K?hT;sarC%rs9W0f(1p7{gCP%j_?#qG$`jhpO$Y<uLFqJ
z14P?M+A=;^DlITUeRZLJ8Q2LW@}r>;r4$jL4eAWMqcHvz<SKVP3zy-D`r}G|^awOE
zT%H{~G=`1os%ZDuikaDTA}b^yI~ks7dx6C=u9gxf$v06LgzW%v7qO^FMLcb}I+9N;
zp&k4ZlJl#wY`rQEd@?*`lX_XTaC^B!JU+XKa6u|QXs=5BkWzW5w5i$nWBj3sbUPJw
zyjn;&bnlrZxA_|Akv0>#i1(&r)k=}E>u_d>nTbmz&M572ux%5k8}fBX`MJ^nV*|3}
zg9@3@I<6C6gc??^cpD%MO6#G8sp+e#IxVSOg-YKZWOgdz-;Rp44!yPHNMidgdbxNq
z0Oqo1K$wbq$}Rn64Qvm?;acI(^v{^jH@o0-E&=>o#`nbBfkA>}a|XI0ZRt<VAK*&@
z1eZ|-TLt0A1m<C7B(QW=gTOYalV5o1QM(MEq|**|>sI6EKB_lKWA$zn+IaLNAP8aw
zOAYd0fFH89YAQBQ3!(?P(<!vZ+-$i#+^pD$%xADp#-0?@Y=w;&Qu-(b-B7h|dT%Xn
z5#7!=o(Hs_m)MIo8_<MWobhM1!7Ca#SC3GSEaw=_&*q-y^Qk^RmP4U_Y98MqaXIr~
z9D!;T)rJZAY~V^67>w6+A*nmyBfrcdQLa>zG;+n+Bjlq6Pbll6jfrRCv4J;}{Juop
z`!z3>%Wtu9H;<maONRy%ypDIdVp{Y29*QG?e3g<~VJ-1y17ntqZj;$fz~QaG81hF$
zMXb0|Wk38uR#{;FsBak$q2kl|FO)C4trxV$B;At2nS82aPL_)a!^G|K&j}4<4V1jL
ziVHFm5O7b_lXN!Cs_dhVj<q+Zy(%V@8^0CN9)g40yVgl5p^;eKzyI3DXxyh9_hyRw
zlWH=er<Kx3!*Z0@d;GB@`sl=l!Fpjz5~83$WcqEKE$*3{#MnfRy*UkGHNjPQa!uGH
zkLr*;etnRYOX}DAkzPZKhc`j4@=MaaIn!ZdzxMboljt=jSxI6lR|i=s(h-pO+#8F^
ze(!Yo?@6_jw3MOB{4K?BEpiDCkJi^WNLhJmI>gn~sp-0<lV{&Gi!(N#-A+~NS1SAa
zU-#${HuWFMpsx)L^CLXqIXLa<NU9iAAn#)YOKXLDNu=_8&sRaZGUe?UEp1FWQEJB8
zN{}SvbA~yPtp#VD#*gRe8L6Z#tS(|>z$43sU*UPICKi_#Ote_=h92HTA%72cZ=EjU
z+@G`V^?Rh<$LqmRsT}j*fo~Ci#uqkp3)4J;W#0CS-%_SWPb?gYuFEuPf(qTe$+S%0
zXhz<D`q3EIJ0V9|p(FjOx8=5wj*&h*t3-*_nSc~YDLJS`ke~2jGD7cB!q@H~h~&Vi
zOe7=Gm8?O^B=9Z-yI9MYveB*wZ41x2sbPq@73=(MZtHbz%8pWsYhTiJzDgGSJ~y`t
z-^w5H$i?=R@ys+n@ujN}QPHh;$56y&hgk$aHSCEB{6#VkFPC<<%}8}0+BArGjBlQh
zJDy=<|Eh?pS@B0!V%~V2nWM8C!ytQOn}L}K3XxAAOjCaP$80wQ0s&Iryix{~X)IgL
z($x==TST=*mYSu_NeNx|6yNvG4QfQoiWhOuug!xUHJ`Cn>rSJ|v(uef-ae(f!c#Zh
zkQ{Zt<l>t4vDGlTbC#+hl#zC(r(p{`+;AvS%bFABAOCR2fVGI~d0~Hf@L-pd;+PD*
zMk5O6@eyqgJ1fpfN^DZumm~uDlT<sYulD4qA8CRT&ly-4t(pVpvo0}h9~8K+2%6#I
ziSazyi^LadX0)L9Nf-A`zQYQsg|mV4@N%zlFJ(M6qU~HUnNRn+IPyajvqn6+#%qzg
z9eP-__u&IA2p=00<Gougs<*OY&EEJN2dbK^<A{FeB$ZsvD{kWKBx$Ge$?|{FO#~@L
zlba6hEPjCV3~7TO<gZ4<$vX%U%C;E`pL$^}$4q7i^O$wDNc5Q~JlwR50FWynKgK>N
z5X040wn&Pcy1wR{0b}2&$^Q@tOd;e%#VL7y6orkwq69&ZW0tIraI4M<Km3ktFh|c0
zzoziT`<Bu#;=D-cF++Eg<c$t$ex$7*%VH)l<JP_pCjZ3mAP<lB;sK9+Q%miL%LQ&^
ziC>?h;vIVZTkoz^Pht+57e_LyJybvGG?f?yUR#R5Det^~{${unj_fHDM+V{WXh1Gh
zBV|d9NZ|<zShQzKqEt!=X_S)M=MA$6Ky5Gj#p{OeoKKHOdJ9q@3ZTGn9Xn&=ey-R9
ziuBETMf>{Rk2>ITtFY|eJLNru^-^u$+E>>R%-6o>WRx}}xp{qP{+0x*4^*RopGbXo
zgDZJm_f4(g`bu)td)*#A{axv5r{qiJ$Yx9x?9riOZS>p1&<;i#eCB7%{S|k_Q!AvV
zS3KDE8b(IAo9xrM21r~qV`eVBpMlu3?=|$i<0%>tbW^aVh|ZSP-<ZXm^PX#V<TcXB
z_(p{IzsN_S5P@QJfyyMkT=4!Z08E=Nr1gbJukJgEgZj~?#Fghg`yhim$%Y-h6fy6r
zY6(<E2JJ=X<<a?QEwsPMLAX7%%NtW^eOw&Nz8PdVTBbz&tkAQEwzifQL59oZ$Sp+a
zv_Muhq8GI@cN7UzJRxQsY#=tA$MzyIa69V@ZJQ43E6U@3W`>8Jg8C7`-Ui=eVO7*`
z{1owOsS}=Tk|bn>-n<_2NW*hYkg;TI!bB6OcZ5q-x(Z@7JmU5Gy&Qg#gu4@2Q;5;#
zNQqbYnG;qu+JEhnNvglS-I?V9J6$Mq&R6Hpu!X%ATDfdC)f#nCi^m{rBo&F<!;Q^2
zSUfhSNrap(7It<u+2iE$D2{f~6YT6QLAJB;V$11J$H<7N2lD|<C2vD{(3i{cDs{hq
z>}aBvzqgqQ&GS&IW7hX!nmshgW>M)C5}hGx(wn|_gQ9|W1D~ocI2?~?G$?A7rQwWF
zbaU!N)XRK2N#*4rj<nT%G%!uMBFX(!g0Xsh2-WP;g5v;60*gL6??S;#KQVSvgh$!J
zB##DtjScA!CKRx#PPtK}+o&<F5*coz-5#=->6EspC~nlS2h93E4zRXYTB!%AY3te&
z=H}#8>Z-)_9~6re36)}Y%D7TtKzhdAMg0TZ0gMn%lrDisL{`1lt~;b&gCklbc(0-;
zIg{BcXV`!P7T6w^ZZ&f-5~HtItb*8uKfHF}Edl!X=!f)(@9gz-*eVRlWniXAbd&OM
zl{?U)g#Js)Fh8NYjmj8jhVa}++dyf#tCmVZE3J#QRgGxhOR^+n%jGMXxKrgCH8jCD
zKUJ3R?T5dJtiE!Nh;eJfjl<@|Pj6n;MZ@L&G-su}!3|a>)gGtB0>9}ex6*Rhk061Y
zdNYN7G4mS5Z0tkO(`*{ES}W}D`<^eq&&5SLUe}O9#(Ch=`o66EXxu|&G%;L(7t-Ak
zjmzakLzw!cnwc#-k-N{ulMxw$)QZO^GP-Em7>KNDQJ^a`>-eE;CE;N-AP}D)y@l7V
z^GEvjknB*cO^F)nou6pE$1+y}ec+wv@<CJo8u)1KaF<GOvAnwC9l}FWzCu-Q&srq4
zH35j*fj*T}W<wQjLo}|;FkIcfOYMEB(g>adRilT31vS34R?vqsM403^7Nm%)-8H{J
zy7-akbjO0sg5Q^RrJ0Ye9Lo>pWrpwF{rC{%xt-Zfe5A!Zygq|_`$e0vEaDCq9HAuf
zUE6a!_-lG96+Jxq2S$1tmM%;~Rw^*|%F9e5dWp85$F*jUiqSj3$(&XhwdaqR;%+A#
zH&;FQzM37IV-y=;)YYyTGbQGO2WKj(@)o-179VJBn#g`cKL))ktbw~92-=ZCUMf|)
zRpc+w*Cwm`$X;Qfv0cqpGD}FP(Wug~j4Nsi87I1%ywQ&BXuJDFGe%;X*w8tIiinF}
z#_O@Ho4{O1e?^Ct$ZW|Ia716uv12!=4;L07<Gd#dJ0n0i67gEU4X=0>zF@1l7B*~%
za!53}f&sJ5JyAbLhq19s4ss(er;F#mqs$$UTg(rzON+Om3m*j#hTl^B706e9fy3-p
zFY5F`IS8$!CN^JyhjqE?m^NtBoo-&(wbMefGhLBAnn4p%5C-u5Hzy$1YQDYgor|Jg
z!T6Lg9ET~Sc_b_C%=iT_<f|&PU}-<zOre2QM8G0KXRDZGN>fZ;t?FDs197;Kf$nOM
zo@t0b6)qi%EiX;qw<Ou#ToI1T`(<A1&1&a@*(z+ter`L_p9^p58m}e>r|>-w7Yr0B
zRAV|grfWpaQr<31I6I5&e5JFGwcS2cR?}=^7<3{1!0^QcztQE0r&Jm7l}59TsFJ1{
zlg8N84B_#Wdb#DCR2FkERFTe}xtV%O>cngl?rg3(XA-MwN}C13&CrJhcc4s6NiDbM
zUDWUw?Cy#X;@6j#s6Q9Rb<?y9Q$&KmK;_&)XZIdbO*I-<^=voCqZLmmLeQPsQ{<O}
zIFJ0JZ}^_a^9(1S>6tyPCbb4CS0@QN4VFj8MYj?;Q09*X?Qs13L{G0wa%&Ts+*F($
zP+HTM@i;`rpEQ2DLYh<hS}Jv*>S<mgi)9Oy%jnDE842P=+g9|(=`|>G?;N@PSR@#q
zfqQ?I)LDgJe)A(Kl6ohLeKf7wkK$lfHPHwKmx+yRTLu$)Y0>~;=)6nJ7S#+3y}fxR
zsw*cmZmU+lS0#old~RgH92WOGn@s19TFz*QITvN=FLRaBUJ_w0gUZkF<uAFh`0EgS
z(ckd)Uwf4fTpPUGnK;G@C1EziMTUQDsj<b&(-jN4Dc@t&9?S+d3dP_PsI$k_J!H4v
zaL`o&z}TlcZIIiGQ)uKThgTdYi}bKfi92Hh?df`wu1odS7}9ngP&H;IK6$!Qis<cX
z(NUq@Pp+Hyx&T}njV4d6>Artzyy*l=@UH=V8ha~>zcw7l!MdJZbIMhC)NK>HIy}1L
zpv$$jGXi-xJIio&kEH|>-=9RLA4K8oMH;|BF!`O2cZlwmuG(}zOdOUMTqTNBZn)#n
zFnUcEz+~tViu@=rTM^P|xDa?@O+rTaoW_b#1&#;*;CXF*h~b$OFq^hwC}czbki>o_
zACFLBEloo~4-ra3vQC+3D{FT=2sK+>o~wW9a_{)9mmi_cav|^#X=kf3B=&;ri=Gip
znIDIyrt!fHvL1G~w#MLV?zpzsgx^*?DFs)*;TyDM3qNeKV;lrI|L9{3jZIuuB@MaD
z5x>_~IOiBvZjdKRpFg47QVtloPe-;v()Cb?+)J^(rhA<_%=F6trS9?ejw_#!FQxQa
zTZrc*;la(zvxE`?E2o=)5R@1-QlGKsyDf3IX6;e}$KxD6+;Oez9W1sRW7)#WO?mFr
z0fCTCpO3d37m8}Zls?t&!ouY`woxf^H|A2WrLv8*#V*x1Y17fKodTQt7}bZnx*4<d
zn{Fe6OBQ1{MS4Gfy>sAr4aDPhT9vxwSdd0I@1w<zrh;6UqJ9VLRmVPQ{r;<}G3wQT
zHi-Y{=sdtZ#`~RtQ^~T;bcDx=%_boFd`XdGCWbNAhQ|E66~^<#fQ;o^N6sPE2*tO1
zd83_0pZ5lNa6Ts%Gjh}VMEXvmy#*JIF3`dxzYAQ-+>1+$%0Y$<W-xyNjp`HoSdOkm
z-OKxfu@l2--O&k?{1Lf{%lwXV{)nDapbK7F7Fi+Rhb_K{lr-U)D{~NxyAP%m-~~|<
zO?6dw2*&bJP^Dk7OqPVU)qAD(gV-OIqHt2hqmLx-fAkyIggSn9_y2P5Ry16e<>4AF
zumw?`=7nDGgEu?oKFflNuG}zuU@#$6t7Vj-F|@<|L3Nd?e@=j_CA<X^Lm(5#{NXyk
zi(5X+sI1a=3JP?{I)UQ9qa$E`GXMRc*Z^r}UXqh2YmVJi(n=-If9083+Lc>e?48){
zx>!-K+x=+cD;~$*yFmucjE{c}EDg8Vy{y`Z*I6zlWZ6CY)bxQ5{}N5$$(hJs;EwLt
zYT`>Nr9O~Sdsd|D7|jYWz{<M~_3n6wXnMrxOPEQ&*RI)3(G51<Hd(-0vn3`aa+QTw
zc!B;}`C93XVQH{1U=L@?Tn%9<a(L`KVXl3qHC|Dc!%~C`^OXMF8-YJNK&L80(O@-q
z>{Os+rEy)>|K(}3PkHHN?$wz60resry0ROmOXI>VN|5#87*}`#d(lsqL#u{1fBS=t
zfd}7Hw+KygL!1zco0Lyo!?D&}b~Lak`_mmEs5ky<E%z)LkM`Z)61QjrZKLX~I1NiQ
z86t%BMG<PuLxkLk0*r*81aU&vc70IHD(uuqUzKT!0tsZMdPl15QZ)lRH_|586@T_y
zaubYFT0I6!ej$C#v3vK1W=$XEn<L8fi6bSrY)S|lvFlXCFY#oD+wxVxv!g<TN-L*T
zkMlB;O4}^3(qQ`q(DZh^GKg{o8AX`aN=qXymr78;y~j$dk0G%AMoawl2H5j;j35`6
z>lrDQ<(F^AV}jNV86VOv@{UjZv14o*Mo|<jhQM<qS`CaqLbjwf=Bq#-0_yq>xkO}Q
zEIlpyZJkLNcG_MDJPMnj6dLr}^GH${{FMgU*&x&%*=x00S}D6jHv`uU*SQD##kta>
zKyl*ZAb~;MvXwqv;<J|r6>e82<wZIH&|^2kO&k_zbu>hawN~*9?YhfSgdp$&WxB|d
zi~W{^<KPH>5)BMBb)BrobY=So$##EeZH3sEP{}_#@@qPf&(UI$B%yHPd^Ucgy+2qT
z12Uf!(s8OUs2J!ndqGg;Xw2horai6$sfbWjaBRQRz3Au@78I3BIFIC{nY`Z6+JDXH
ze;qQv_>gBPDAfGp*JVt~|9B^}Q1OqGe}33P=zsm||9_vUB*A2DwDZ=AADAzw-Q6Ow
zOxTr+*O7=Uxn4r51g}g)EN`4Cz=3QZUvE@SQ<N0v;1uF}Vh?|kS*$6(!iZHI)Zfx%
z@l^bSqo{B_yrca0y(xT!14W_7G9L{!R<S$-ug9C`Pcq2}FCG;gOHL${;FVEOU~1K~
zgT*1rdc6y68p4hHzBSpqq<AE-4@U&$tH|RlL5<AT3ii}iLxfN^NWWXPjb0yZ;p1t;
zlCg(&``SOI2fECi9#jHywyszxV^mZC*(VF;sG7GE70c)|f*&lti_T|2e>hB8#Gxy8
zsjQ=bYH=kg-ht{aTOLN1D6D^UThDEM|L^P04E6@nF@4!Ts+8>(N}+LBYOE@t3DFZm
zPk^|@u|~*EaoBCkij+mlM70>*Krf(o3nx|=>*T69Hi3h<O(0r+%IMNLr{8cUoZ8rp
zwA=v3$L@h?MKi8-<|;8<YdpMyjy%`)XEg^pWTo^2hSm@B&mSgJUzM5-i3do1Xtt3g
z6As}POC&EnVIA6J-<#7CwlFyp3Y1+D6~!r*8>BmbQ|A2{*SyNLzk2nOC-E{_L(6P2
z{!<F9wV=tEpCPkAK<-Wb-jmwD(v2T$n<nnU(8lVyrHO|WV18pQ;JACN3swIG-J7`U
z&FH`<n%rsIifUX>7DOzcP@%KHefUFu9XvRC&Bt3bxDphxD4ecA=Jwk&Q?DU6w~$8)
zl75m82I@YlRmd;pd95OA`KtLSf2W<~d{;<65qNZ$GvZElsk5hU3B`D>us{iIBrLg-
zWGDNvjMs(Kx>egqejF#1p`|CtLOd4B-g}6#zY)WM!|8F?nP<dWj(7#bBvNZKC?_t4
zU(EV7S-~<DQ3}fwCC1hG9h1~t-l5qLT<G5!D3qI2J_5oSO>U1Y2+l3-O_2bixq)kP
z;MzTbQ{m31B`X>9dlDOmB|hzH$OSfv{A{}M1M4@NHu|xIfjjzN>OB8mYS0z<kfD^w
zO}|^qQ2SWK^?zL$XA{AJi_`BdED`yxfdAI+#;=XTcfRwM=bBhA?FD}FH~(RfjXpc=
z9Hx$(=xK4aw-Eb~%l~mE1)VJ%2T{a=ZFsFEOz42F2KjDxgJmYxR&cnS5lU$Ab|WHH
ze$@;oLP^>dqK6EV3ynx@=7AEtxS|+2aZij{?}sAxe)4DOikziR*VT^FM8yu&R+@yc
z|Gj4AHS*gzt1DayQQ4rK_<!7I8lHcp1Ok<`;#3Yv;0W=}(U$mvLg~-_jzYIlX7v3A
zy^;x5-F}!!j0KCvk<A`(ebpDiE7tqvc69W<@<()UX9k~*${-)MIFKRg&MUarTu84g
zb3Q#O9T2)lmxQl7zNeCKDhAO9(&;A7lxX!8i(Hocya{A%Muy4GMIH)C4wGK70;s%W
zJ&QJ-pq)^?pmQS5CCxavIcn#JN>-{YOI2M^He6MWQAW3i*_g5--gP14KZxMnm2N1e
zh2f(PZAp_g2s~~#i*|M#U8{obsM=N)mWjmJK9+lJHVKS+(zTO_4vfziZqLJ#$+%#w
z5ajAuB{Wq-qa-+GgHtPks6p01Rm0NLbJ&l)y$9i1bvTBxW)h!6$p1*0nJ4=$P@EG@
z7!4(TP7KXBW1<miG0p(xWzmb4(3zI2;%CQQfL^mPq|;$%HB^MGwtn4YohD3^?8cW2
zGQmmHLn2Qo`3KIeQ<nTYqXpcJL1Nf;h0oedq$oZ?q;iv7O%t!|rBt8Xvbh73xjHiR
z&*-Dl1&P-=5bW5YKl6{cx;JP^GL=-Tj3pJTnHi+9>$i`GCKxHeeV2$QqyvbL5&mKo
z5vU7AiP!PLs&R|5xJEMJT$-FlRVe!H6Y_FS4zytA#AV;!O6hFsXRDv@Qdkz=!_NQU
zQ{=xR3z!$GMX-~sWeiD0igm44WAf=vm_b%||7^cS#4!NHVR(<6z_M3&9hx}GOTXh*
z+w94#becNa{*Set^q_EAKEJG}`he4tgpv~B*b>uqd+1WmXniL8*L^86GAs}2JQo#;
z5OeE(N;BzqT%S)>QKQS~HL}U?j4Q+Y<LE@OG7$0nva&7cLWMYuzJGS7kr7bBzQhC*
zg@%rEpT>aewr<%rx$M1#-P^32NGho%ckXA7`((Awx{bsiy7gQV2HXbElY~6tjF^R7
zBV%c6X&Lg%j_MLWuZ<bIA_;Z;4yi*+qci1iBJb>{BgV3&8w9bgq(0PBsWAww+O@r^
zvXz_UsWsQilpo$@L6q6&9oU=?EBj@0A_|1mABP+0kIBu(ylOl;26@E#@|U`Ru%CYC
zk)t(!tLl6AWz}DkG@qt^%QLGP_MAaOMhjR;6zDju)T2G+WCz<G&9pNpNV=fP3xS%(
zlKt9KAZ>W-z+=S!425nG;l1d2W1aB?A@{T#lolNomv+@=Q&`f15U$RTAJ^8_sOAze
zANXaj4|{jA`Z9r1la-Qa2NAcMdZ9QF2Dg@Eoz3pEPxlwnHA+^;)q9BMb3_Oc1RW`N
z7eDJQip)<y4M_L=g#OnMNW%RQr*bo$RBiIT-89Y}=XD-2^B!1w4ZKCZy2x`)POGHd
z*&i|9;0qzHtJWjF?G!`@<wbxBD{MyaLhtQ-?xjvfgnZ9H?Ml;*A|eVy|0PnRpRb^O
zA-w8|YE)Ty3Q_Ai?W(Ifb6Yh+t1~6<l}h@NvZM|OP*8|YSvb1sIaMFkYT}^hA}HM{
zq7z&1XkI-(jCoEJiXsiCVTT-68J&&dTMgQSu^zojQ+e^-rM{1)?dKiDvRy}FP~e0;
z*%?w$cwV4Ph7&8P6`NVFx+gr3&@JP1pW8UqgCs;m>R|svOJrcj%!rDF#VD5d+8aku
z7p~F%D43%}bpRRkl1zO4GLcoe(Z;X%qYB>j^)-vc{PzNtDvE1DF0V(Qk9=3kh@iSF
z@jS2BEXj&+J|`DvLWGo*4VD@^jro>FMwi^LfhIobr8*XeMq{b0c&--W;)(PG7hP`Z
zt-5M)_E-Be>)GL-o49yp6<vb@cOA5$>Vs{Ol6}bNp1;}!z-fPC84|?!Ya3Fa=$n$(
zHapkaojO3*Xwau8wz9h11z|4AIlg0Ll(uML&ol>+gA()gg|t0+4iXZQ{#sqNIqriN
zZ!LJEC#14O_~9DoZ1lVNY7LSgqlVAHT-nfdRG{`%@a>F~$N2Lvy|T31n}mr^yw)F&
zfT()$KcebP79QJcy3);^u8t0_CdGWk61?Ul7gFFk-<csPEHUgIj)a!$5`}XW^)F2b
zsIw+RZ5S=GLg@joKb;;q+RA+US!QX0uhyI9x(>sD16S7b*v80rL6@o5)|Vv6kzW!Q
zG*+UCVtlyn4VV^?h7(yZm13Bs?hGkLV}H?cprbDU(BU8P7>nt2`7gRK^>5$uYoSC%
zMd$0u(c>AkdMETuz85H=0&MY&rme1fB(+(7J-3&rwj!KPo}0kS&qZKnN01%gbP0az
zoh8E?4hzM)+OV7ov!KecxL)9v1z@K+!%O?|g}(^FTDLMt-GCFE#%LQ+^V&&s!3$ej
z(l6Lk(!8aFfEr*arPF2SNJ%r#d!d;A9V*D+vR|C{`f42aC7~SH<JJSe)qCiC!L&Za
zSnhE_0e4#`yxeHNzEJ;?Wh|v5@zA^>P4RvJd2>fgs3hsyRN~AQD#Tqsou76N-5?ou
zv8L~o(?7#(XS9EqhiuWpz~oSsa&qbnXrWo(CTGO$AgtTwtAz(89-w;5wohyDNI65K
zmnl-s#ULDCrtU9y1j^S@61I5vU$1h;-l13G>0YO=^lfM=+e@`t3t=H4Z{&VRs{k}n
z7~U@}WvzLIvTz1(Z(|@*ZiN`ab67}rLVOV_oKy&MN7DS((onnR`oy2)B^6KoLa@W)
zIy*l;*6P0K)N+5Z>hVnIaIzTEg7BIISWK+%zhd#&?`8lKKtc~&Pqo&Cz1Iy=Kw!2y
zPPsKN+0fLme)a5%Sz|gAWspse-f<GY>LyH-b*qkUoJRP--{`OhW5vj5PftopV}%U$
z`+)$y^JN$rkkdW3R%T=qZ)*YvCSxmv(R{I$kdg0!Kq`$VZ2944;7VlN?y+CS_!t~A
zM(IgEr`Bjg4q0F%=+g2ed|h*Cdp4RVh}zPb#-e&nEbzl9-35=#zb$0i-Sw=ujqD86
zbV9-pe&5^rEWmSHCs$XSnp5%IZ1=J=4Y6lOueW`sM^s}<9asRIcsJNp#6VF*8ciF{
zTLgi6Z_^*HI9Vt1=E$5*N_1F|5&{D)BTP9l_YY_!hmA-mHn5+eOZ)!^;=f*lfD;O4
z)N(|J;09oI2((<Or+CiI&hBs9qGn?H1~GvD$F!TUknI}?>d+!3ZOj57*1w+=;8o%K
z|K(?pWSO%huy5@XLsLydn9ZIrl^m9M2kU$0Y0qzM(Kx?`o)C5$6iBN6p?2ehFeF4~
z)|#mtP|}pd3=FpDLy8Ym3YYY{;z-rprGKXifFmZblIwqkcYU+QUE2iG?o{=B0YJwW
z0GhOZ@8Sj0m4XjCG1R6tW8Gkemx0AVZ(|p?kZ-u@v15j8;)oPViWOfieuR&thf5y{
z+eUyxmioukLXQ;$v}zw{47+bhshzoerm^&9?+f_!tt6pbZayfFK?iCzCE~`(Ti@Mv
zO1gjk-(8hLcx`ieN9K?NO8d_OcL~H@<%2q@m@q=Tcs==GmF78C+;kO+(!1NM#Ox%2
ztT9?qjv|MzLSPJUdJMGe#elQx%FB|{F}p_}hfo7*=2YM8nxNAghZlgLMPC9Y%2JJ@
z^rgk!?)b|<aZ=Jhq2Y^vK*PP$-_VeiU7=K`=)VCD6Uu7wE-o85i=fc{y|gJf03e8(
z^c2JAQyY#XuD-$NMx>k+a9;q4u?169H;!UBbZ>+btok-sZIcsP2p+mHRW9tIhvogZ
zqh?Xi`S^K?9ex&Wx_U0jutrrl;+p_s=0l0zOC}{rBWJX&^g84ZKe;Gwh!FP-e<5EU
zWzrLus7IsOiBEq)>Z9^$LN~b=Fj#IuhldtJCtyFs4mlQwg~lOWWZNnr%R-sO#Uhz2
z_xoP~2kZP0OHF-!j$2Q~fdl|`8GUG(-ZS&IN_oXg1Hf7(u2^NGfzF`-H}(Y|XFA3+
zoEWFrawj-rWtmnUcQ+M(hfM!aS>uB`To@TVj0`>stCN-9IFA{1rd|`7shxG=?mzi-
zslpTX(Ekyk{>J2!(g}54`TG4u(eAvhm(5ttJ7IT56<7G+gSz|B9MXdB3m^vidted*
z7-XP;t-FZvgeJ>bm|f);%Nj)=C-FLHvPw5{EAWcvH3n`Z{DCr+mMd=%-FkKf6IFzI
z9LreGM2zR_Gn2wrrR$v|Gor^PGn=0tBGDZsO#*{&h>9GLNJEqj?GNUdY0=$jH~BXJ
z!WpW7y6b$y5FCA@hD@r5uy>Cl!DmDu0f&6wO)BAY5Yz0wP$1}o_Eq9*a*THEHFC^6
zAO;!w(xrJt{(Bb2Y65cTR_VaL5G{}3HJL~!^TP)m7F(9tla-*%BBhy{<1|`7KR`A~
zXkx@NgQa~E#CDl{$?T9rD5G}V4CwuKpL^h(M<G0J-z?|}E0&)n(|#;TIGYZYP}i#l
zMpjgv9mIv1O5B00FPY-ZmqP(X(WdL!jbPhj;7g<(g+Nz7<B3TF<thm3RcZsk!|JYj
z`~DU`HeW#yhePjP?~HC0nkfSkw?F00j~7u~1cH&JwetMPP;x!*wwrsP=qBURX6WzD
zKMTRtvmKoUcEZ8M+Cb*ja_BMXv2cxP%Sft+N7-JM53a4cy^jUVQN!x%TL?cw!{!Lv
zESZOC=HjBTBrc&uMCUmWsw6l0GsoiCqgil;z&i3iE)ySWq{Y>ORaK_7YdAj9167%g
z)df@-#B8;&0V=jX!_3i%1Ko;^JXgmloc_=6`R$?=nAH&Jj$rA?6z2ET!0i8jF11dz
zKf1SnJnd6eZ*jo9W;ZJ=iCwK=&8q-N{H1zljn=v%O@J5O&#I7sl~>ZlSeA5-XLxrs
zZ(VJ<@X>-fzL^y$SmY5=TcW17k&k|>J+Ib3)bt}iadpF7>MTgkV7Zj-RY-6-t39X9
zXuQ_9JIyYu$inwbIFaxjB9YW4Da%gr1Kd_SWJ}v#r4%FudCp~wH$^XVV>u2~qV3H}
zhO7LMagxw4ii4pn_bPo2?sT#m0@y<kwO4?e(Xui_Hfl6rx<T~5gKhI#Z)C0{(^q4b
z27DCun)+Sb)+h$)pX4B`e{+`3#V(ep@MP~DejY(<L>~?5?tI)LI{K5fWQUzwRpZU8
zut81Mhr(xdhyR**spi`Ibtg5>RzPi~ErIq{%4qHP-lHIIG@9P!iNz>#!*Rp}4qM*^
zlql+{2bmQiw2+A>onf~N4L||dzL^tZU}z$`0Y3I-L_iU`=w%UJ4_|Ed<g6v;{xSD4
z%^%=7Yijn<q1TjL1-%1*Qp$9VN?DLM@=k`Qd+Aw-v)R<~sc1_bbJJ<yMriW;psn1P
zu-V!B)x}f#i!{FiB1&a~I)b?}Gmj<h{NhEKJ%uJ}o06AvR!bkGq+TyA(_9b7|BEdX
zzS6+OfwvPWxBiCbqw6-q?JT;+0vD;qw(Rl;y4OckJy2SW`v4c#i7xkXJHyX?cN>|Z
zK$?7TXWyq)SKT)fod+Q;hoFrhkKud%38y8t2uIGIdK>6Td7n1z_Ru)p=_~3K{ImT3
zB(ndgzYI!|H1#070<-SP9Y=_^V4!)Jmv3K4-V`zMa*~(m4PBFe=?P`<MayZ8{u;h~
zi$`;#X~(odHi`D`<iB8h!ouaYG&ij91P=g({5cd})ID0oIDS~kq1`W9lzzl`D8AkL
zwA6;J)q2mfbkLN~-wOzj;fO~<dh<`?^}Uqgd<5^9v2Gq}I&GI-3eAM#m^?ULcz)Am
z7B5&v4c9$s<Ft1sy3XC}W+6^TXL*1^9HJU%GdiV2*YisbH(#>^kB7s`yDr@gJ`H8r
zfEsKvc&)l(d3?*GOEtQ+rSlhC)<{y`KlsE?jw@)X91y)T+Bwhx?cU_jC(+{4HPITU
z-uL~HKFLLQdyuPP72bYd`&;_AA9l^eGcn9D?+-eiLuE$?<ZcjtrPeX7gd_$<q!DY|
zE#-FKtz;48twS{TXT;NPtdx2N^lS>ibaO4gij#k{WLcI+ASZ@=O3mE~q?*I4j_t?H
zk970pSb(ZM^K@Uqc}3IpkXocnMaRxv1WF5Mr7r!E_N^mfM4Et~N*m*x2IEl;8t&Z2
zeOmvl(L!@hb%+JMJA~R`Y2u7F($1K;RI|w+5Oo83{scZP&;{)^dFlG6trec1)*lV!
z)0^x*mp(vjpVk-qg-a<bNq1=b8uS+p)fuQhbT!(aZFIGugBr|Y2U~Naf{e@|V<8jO
z6$n1A0@<~A5=+;V9xAm2C#`qz%}IFAPVaTV6vdi#L?<mz6ifJc&j;2jbyLCNGu_0E
zg7cVyPxtsNRh2SLwPZx@^_2HiAuZ?Xj1gMC21QrT!K>{(FNm8juu@V}$_=}SZ5rI}
zg4H?mC5-qUE~CH8w}OwelR4RPR{!s1fx@=7v?8}s)i|#@%k$D{Id-XGEVH&pB86t_
z(p_rhp|zRYj`9S@gg@mWoDTaY75)G!YX1mxb<mllEn63e=(QnQMvb+$GXqC>+D*Y(
zD3V)sK|(QZsobCl%w|LkEg5=;Lpn10(mv#E)2|;Y<C`Srg~7Cw-ad@%8z{$D5(<Az
z7ou##8g$@JXguV+OH4-z{kbp#I!o^#{J3a1ayr@7B2#22Ne6mFn59|txZB4!-rFOu
zs}N~QXKmPF+V_k9er_Hv3B3jg5ZddB+r+;e)Z(0eB5oKXSHq}qKCzrG*2zPH3h}&%
zfVjVyJpzT#33sB+FQFQZ?rbD0Sm!G(em<W1Wk~N#kPfN-z%AW(wheaQatV+&(AMn4
z)8Etw$FB8#A%v0wr0*Em!3XwjHZ3mw)<Mk2TrP;|tpxA-njg#F;}Up0H(-Ao8~7aF
zb9sT9&Qq|&S~W5HAb{+4$;>rl(_VPwxe*X{aJr45!$QRv2vwd?rVO`FtaKc?<`v%G
z>ID6)21%|A<L_-_!wJ8>PN*`>p_73C4wGux<2kay9mZQddZLp@uch!$T=A|%Rjug(
zLa_JP_<><6r?65+X&tAWS^;tv;PW$2VqX7(s?4+fkY|wqhhBEJp~loWM5q%$5g*3S
zH_mx!&1SylGon_fv)ntfJN=6v2zm(SN;Sk49XJe!6GJG8J&~a;7CRflF*wYnM3(lQ
z_%6D^h~ESRCGJL5?jG>iWCRZGj2>1dCJ!7*p@!d#|K8PsqrrQa#5=zir>47#y1hld
zE&P1y>iS}Nh<Kp=FFNl$K-I6;`CZn-`qJYJa(Y<Usu_t6=0y#!gSCwekGbdP%DW^`
z1q;>0^*4gOvH(>%OFI=zx`V^amRs9KP5&DX`_s*rxQ|a%kK~to^D6MJPc81uI_)G|
z%4O>}sRR2-c*~2mUHu-61G1C4>7)|%9)w2f{fyj*j6Ug~A8vHDzXuW|(+8Jo_MC5)
z>@F}sk=?iCFXnME`nm}ID$TLJoc?S+AMIn!*cuFoY6if7!sRPb0AeL2vB3Me#q_jr
z_q{%5NRCkB)gN|-^p-c?hR0!>JUNl^=@Bmu=GKB3G?+yi#7L)9L(gh{<}qE>)NS##
zZ7hY@%(0tIkH7Gg#MEf=Pv<NXFUnoH%~(Y`S6+^>(DDGRJg$eI?_j;?qVFUF`~`fm
ziCjcVDZ>@u%EmOCsdhXV{-q$-A6F(wM~qrstz^%HNA1w_)|i$ik!^*2P3#S<!Qbso
zG63b3^%J})%}u$6{e{iej0nlqe^)^6(*(?<@V^w~`ikZAnsAv9SMH6nqfI0Kk(7F2
z&&P{FIkuHyHpC$YZFr^%r!_UIKS-w^`QlJ{2pZUAg!U`4SiGnJSKqs5kZIopneq0q
zckPM*Ady2<4{l!{Z9^T38c-#=(g=ka*s#Ca0Iy8~%8)bnk9_y`CokJ%hxt=n_o9YX
z-Rm_FvYc&t8uAY|vs<U;9d4nT@fr^XiOqu6%#@r7#5W)K`=<1_tNs*E|HQ4yiH(f*
zOOe1n`>maxi5sgGwbUfKPUQ+;@lFkc>E2Losx|cm%p<oC!zMMDEL}=!_o_oo{S*Si
z>TQ0>Z^}uXi|E?uUv&q!D;Xer$SefjIm+D}3wwF0%`1!pSHi<PL{j#PgI=wlWpodh
zat6zmkQYvSwL@6B+74GLZL~WKpL4TCD=TI-^5&Jmj6w=vMI+F;Gs@(B4<#I>0!jRf
zJj-W67ZN~s!X!_SG*W+SJ5DqPWaW^8gY{n;M%<%(EAsb%sF?j*hy3w0|5KL1?l3h=
z7T3;(Xkx?t!jSL!R6cX7W+RSt#51C>p;X)jOuX1=57OY-eAnnGUoh?UyGp5^ikMg~
z><|tsujs5SIuoF$P<4UCi#x#Qsm<&<9>W#B*@bYnNl7*`y0}zRWS2Ov%a5Ky-^26;
z5Ty#~pchg<H(`SGN=la0{!$>@Dq2*GOrhF!1w1>UdlK<@b;v!3lm}%o?cBuLSZWtG
zizptRMrNJeH=PXpsYu=2OcMqSTgLw>Lgp+jqIco6TJoxYI!Jh=5~ezEm<=>v1?qJI
zPR>WnJh>09$YD;H+}t~-J<qv1^8v&<hQp3rp6i*7Vq2a6F(q+ltiOw7SlMz*Tg|=z
zM>PX(OYzN=J>?p(Gyz|tw{PC$#6lVQ7mUkd@UE8_1H-N9DcT=yqbh^rQ&jt$U{Uy8
zFU=O_n^aVEP8U)a$K4+<1xMm-yFr6Bmi(L8SnK!pVC~wU(T?cHR~q`K6~&`ktv^N{
z9EKX)((%erM<HgQcox>%u9Mat00h1tVoSCuFQeWWt9i@ELLQzacY$?#_B4StmP}<$
z4|7I3q!csG5wskiSg)x&x|(^QG!s{eeiMs$8B9`6Jwf4fDyc5PiCxz}igmL}$p}fe
z@pKC|DQol9=nL1KJ)zy?&KMjh`i$Ymat`|yk5i1{51qIESSzeCXdaf~>Y#u=uIBtg
zSjw_Ag>ioRZ_V$qX^7?@Qg65jtCePN(BOp<!CA}V(j2xGvdfET!Q{XQz@(*ArV)EV
zi2Zh6GwxZl<3GRTpo~sdREPL7Y;$F!7|A>BAr74JBGg=l2TUM>5X*Z|&5*l@GcEH+
zEX11}o-0Hp;;_B=Fa=*aAMb(uhYp^k%%LE!8Jj#z6st0USV=$3bf&Vduj>d_M=OhB
zR0S~?D^Jc=kYH@EyA`8v8Vf~+#p$5KeK(&#*yIat@*BOhbI_t8v<muKsag|9@1>{8
zb;#A%hMAHG#k7@My)g#vo62`G@QdH(uu80D^~HC#a8p?;rWJrTJ$e?-M~zemK~N1;
zITpM7H3#*&@2Kp~1~E09EjsM@rIj4(=WII~HFyEP1x&GjPF0DuwS$=2iJ@|G<+Aap
zaimZS;E2SfYATb_tC`^-y=ADJd|`dK5dh2o1gp<+IirTGEZ0N+g<!5oO=<Li7V8Wo
zy8tHLYBIZl!0wKZuI@+3tJYl#TLge^ZTlRYrA>qGT%#dh;-2ER(HIUK{26G*s!iG*
z0QVym9i2~^G;2-I($>&mmD%aj;cWRkpW_psrHh>{zT;Sw{~(;|GGw0MZ_BkjADwTZ
z{5^O@4eNv3Ew}G%Sx$G9r-(Q$m%1@hi9Z~vCao1DL@U6Z&St+SvwkLOXq`Wf_Pfyk
zY(!t-(RSQ&dXbBAyI+@XO-CzN+O*ZK+59vjU%Z-1I=6Usqa*V538w8m#CxiN+vd(%
z&j<OVOFlFv`ZW4hc!XhE=h-1$)mqhfVF4!*%3<gj7JYkC>f#p9Vgx~F!W}cq>4S0~
z!+w$hS>-p;aS$C9EllO$^FG&f+>`&sE3<{U;-I`nzQ8b7S!R<n)N}Pfa3~PDwW?v4
z0Xwu7m|}NtRS5Tn;IR?-0LGN~0|v#>2&%Buf@Um`lk+dY_7$pu=4(&QyLlFTxLJYJ
z8l7&HA6BV3`OE!0Dd?)3uM>>jJ2-4f4;W;dFFz3%e_8RzrH$YCVUyP5VbsIeSFZBh
zwGe{6=>iB-Wu$n)hbja-i8^nQF}jyV#%`S85Tw)EJ+Ys&c@>!*&&{`-x|#&(swynV
z|Dj8*>o3QGelqa16taz=$f1#tik(V4tfHc$`eDUtRg>dH`e~7q4Gy1!a)8@@Y<qJ}
z#0B0^WK6X699JhIpx^bevxo2NBg>cC5aNRQMvc!>`YGKpRz~3Vbuya=a#}^*^)d;x
z`BuW_WRBQ_z!TIncgIH&e|5o!lympn1FHl!XBx;-E9{Pq?bdbCY_YF6nWIWnYh?v~
z-Zw2JlZ_#EK|x|EgM4}qN{!(rAD7XZ8Gu>+Jsf8Ni*AglsG~q~g^W8kcU}qASkrf~
z3-{PzR7nt*tpN6uD|}W?9`<&LmamjY$#_P1)zY>=1O-bzr{j?+-9lU--pmnG{td>b
zy9XvB;{|xhnKx|!tUUd;=%CzYgl*Wz*q7NY_?`3t8J=$v0rd`{|3d&30$rR|G>6V;
zl7e#Kp<0ZDN1c@*?ixn7E3=Z}Wm2qi)deH&tzF?339BiwC3YbE=xBcFWys{f)xmTJ
zj6t()j6L9q@&#h)+ncJfp+l8*P}qS@Q!WbLV0(TXl_WtMm@(^Y@gv-O&(%b_h`j8h
zKfJMCC+^DWNj?n+ir|Q4>RnJFy-O`pdw5pBX}t}KNQNpw0F@(MZ=H6RYB$xKp6EFT
z*K~Q`Y57i!?G}Y#nZE`KT#aSOW9LU)^(T`lmrc#qKXN0T1GWodeLFekwpaJ;1}&>w
ze7&TI1QR=-ad$aYr5iL+Y4kwllrO3j8Rd?BN4^&;AQAK3zyNXb7LTsLRtccg*Q?Js
zJP|TLCLL!8obyr6YqD8(1ZpE#0lHZ04KZgAK^F-5rSYPsrlU{_Z<krV{l5BZAnEua
z4I}c5U>9H=qOv@-!tVyT7h)Ym_6~xvT?I^;$zlrQBtNUkh&vzi!dEM)eVOg<f)&uz
zoG<4_w=VLG$8AoNOkUGsY=cu$8i|k+Q7lEQ=i%YXl+*S?J_c24SUVhkiA`*3A@)EN
ze5w_(^xPlD<-=M+a!+?6V2?fF5|aP$hXH$Ij$9k)S$cYHUT8jr!M$UHo?cE=G)vJx
zX1Y9y3iuVVq@)~g+e|pw$>&&E!#wq6iTGkJXyuzs?yI6`zC6C7{ZrkM#P}3U^E9pE
z#7?cD;rTb?lzDE$_=s<?LJqcR$Mo*+##BilMH3eh$-xHd>OsPAxIREyl$M)+QIn-d
zWfrV`OM`)h-O`Hl`Uhv#IMU76f(&_sK9Sn~&+QDzzQ~aO#|8(SQ83QDylByc+)3#`
z0UX;uMt+p`|GQ`CJ^@)JjkUQy3OUg8{J~{io5cOH<~HqXdB=N9xI9l!q~-V1w_Zor
z?SzCu!eWwz`<YdC+JWBeNhBwhMWrErI6XF1F4ooj&ms^1kUQn;0{=?rfVMOYU!Q{#
zJ~E)m)P?z|NCEy-Sy@Z~8;aVH=M!qFBgdu}K?DGdXrYZJ-1$LJs8guWbh}8m75mHb
zrvEeE3;zF#_bNq9=6RuWysviC8u*7&?W+QQ{(p}MvoiZ24p^}bvQQ+L@#7;o{-;<l
zSzPlYoFQ3V9)!<k80#lTuh`B+`{Ur=FV}um#{ivA{K7zs5E1dmvJGXCP+v8Q8!($J
zYx4(9ZUFhc=8#|}Wh2u)50P&h>`c_Y77nP1*U6fc(H>O?W`7v6ZAp$Pj~d45dUwVz
zi8xz4C0yWt$X=`UJ8<%}0j4xXy)=QiLb!jBU=z!|P~T%oVFcd=UWQD>2r0(B56MZh
zi1|ZW`aypTs-}bEZ(A;MW$2|7d%J-^tEdMCnm$?vh<m19i%uA3W>hVk9+iIVa~*Ti
z*??&J72R)3F8{E?lnT**cyd*!V1XKVL*le^@8OowbLg)uoI*+K@gs9j<Yt%gb<nim
zcF1&jRP1`lqj|lnl$1;3VF78U>eQ|ZlX9s%vVS}N<=6hdad*~nQSIyg2SGqVLZllM
zkPhjVQaVJsySt=8x~03M8>G9Np}V`g^S99L-tM!{x#ymH&$)m6<`3t!mcuZ!W-;sg
zJkRIz{xB;il@wAU(}<z9inav|JUL*Ru{|=g`rxp75qPD!P&iX~g<ll0YfR|AZMl%0
zNMzo?&%fc(Ica|EI(P+AeIp_7lDZ4x?z$~!*CbxA_-wKH^I8Ple>eoJ_Yql5ZT#sl
z<tWt9=Ex-Y_0#B|qZq-+-E*gslWVANLVW_HyA5HNw<lZz>`{%3-eS-h_Joe+DM^wk
z{+E+6a_vT79;R@&k<6AVfEJZq5Pz-i<pd5R)sE(}^Yuz4t+He__83nSk>(lqh1{{B
zS*|vSDD9Ms%nTMQ;N4dO<+{w7X0L5fVX7twyqhD+3+}W|>$}5ri$2ot>vItGkEZUA
z&aTyi%rkQcv9P|D!2mS{=4C{>*0;ghl-N88470H1xL`BmP5I(Zi`Gv#-o63vJgh0g
z3+od2BF%>6(8C3(gk#p1^t!pcFW$(^lV2a7F(BN{GO)bkO6^)0Q^wPN5-d~mIFz5F
zwEA>AI>M(O<p}rCGm6J`BwXFzy!5c^ni49s*u(19>s2Cs(5pvKP8y-FnyiK9>UT!)
zcwjPKWrzyVC^|q1?EpGF?R53Rt1rKN+wF-0<E8Ab=cR-fie7Nz&wW`;2{>gbIdT<G
zCcn7DnCVX~BY8f7AzQsEt`Pdg?w9b7?S3)^l&>fwH^6=Tij3iP;yNApk|+&{wdvg3
zTe2WeQ{4=bg34c%m1H#;7>6hTMCpM_#}cIg=M9OQGi^eTg4xAMzS_a?Xs<<<atZgz
zDS8Q`hCom><%*>Q)hOgIFFlK$7C3<*AMC)<q;#(WOR@69EEoKq7nAp}T#$GE^AQfl
z5TUDL^^Tgn^Mu}>dLQAV=n4gk$`2zYGm+iQ{uZr=)huzw_z*!EfNxC^Blvv++N7D7
z67M9*Q20GlC!$!4(HC%|x45~9(;iJQzBpPA+~Zo;B@<N=;Zg_!A?T&CZrl6$3Bz(#
z-lBA_fiavA86sEt9GV%&Vm&NLl>4f^D2|!*2fut@cUJ#UdhA{WVs&<Pxz#APC0^2f
zzgX&L)ssWCxCX&6!VB?A1QfE86qbK0%}^AFbj-wu6Q&)};Fj5~An=g*eO^NQ$GoJS
zw4DJRBgJyzb%*Zi1zbCIM>Z_>)-~WS5{?;|x(%liR&ccWCeEJWt?%JNX5WX;)l(Xs
zT-Vu+GL3>ZGJZDQ`|?2dTb*aJn$|ak_L{GpyaMCz2}(?i`-vGEg02o@PF|mPq|QBo
z;bN3KzRb9miB5?7GFGg8{XAVmAPSHb%)ck@FmZeq;Xuubeu$*+6LS8gOt(>?K}{Pc
zP4mOvVnn?U{OF#lI47*22vDB>xaGJj-hKBO4WXQ(0N3y~iyx4u^qZarC@6zRbZ}s~
zIU-;apWztupXnfaZv+iMx~jh>75nW=#wz&xg*<C#j}I*RRq`*#8F+rOCs4l<qQ38m
zbp0qZ`fJlOz3KawcE_(fAD&%{{;xm%AK7CvnB6;kVbE^HetjgoF_BB6;(Yw<22c_`
zeR?#?;3{7{uh|K`zu4U7Z{Xh!NIg%2(LaZC)MzKk2|9Xh5?*<F2nH>9nB%2gBNJHo
zVskuwP;AYm3tyb%Qd63cM@ATqb@J~B?@0HI6?>n#;7;471H6K%Vt-KC%kvw1k>Eti
ziqRnJ^ZL3<`{RsiC?uo^ra!$=lcpf$*XUPw4$NT@p6BzJUU>Bhf$P_t9+fiWv^GO8
zS60??45v&ET%(E!OsWQ#=5xy6DxKLk=_>*GR$O7~LBstGTE4=!#vS|OPEH5Z{o2C}
zB_@+5gpH}H(!q7e^POzxYL)kzcr5DfgA?MqIvPhz^Z2_L=4I(x8q<fWH)!5LxNRG@
z_kr@N;yml{I3d|P{($NU?@zC?dqYD77nMRKKn&**t#d1k)%FyMu|iq%a4=WUA9~Hl
z1@o0DChAxY4h|!^isO2JU$bdvyg*Ke=$I6Y0Dz6UthZUm`K{U5(m>`}GQzi3&kQxW
z9QNV|Ck)wGyNwp3@z$1)BFIbfU&ehYC*4+V&+2sP0iBu7Vp4l@1#{Nn@&NL+kuo2j
ztXf(yk>5^S;O>LKZ?a9gtj&dmta5`3JBKvE@q&rOYFK-FdxP!#!^5NI-*lVW@;Z{J
z)kQ_zP|m_Vk;V6Anru`#uX5SGnFb^6!*!e~*J$}}Jm@xUgr7czEw;UP1}5dtyVz`(
zE_v=rdW7#CdiCU+WB<-k>zypE{E~zK4ZXahz@t_5iQ$wFnBw-w^<EqH^+vM@9H0Ar
z*KY284#i9PTk&S#+D@4#r6#D(3>*#4eLR5;a>-LSk>6_PT<#c19U4`Vlnm{~SE;k1
zgui!sp(+~f!y=ur<VV-uMW0Ee$U?%$XXOCUoqjziftZZp>7lSspN^u69#}3%@+nn2
zVh9GOH>Im^j9A)ybm;Rv<(JpxZR-Q4cvMOV!?t?-{+$9&aMf_ea*E09L7%N<Xpw$t
zb(t|mpt5kdQ~4VkHa51}gI;<&vK4a*xo<Eo<lAzDLgGwD17IAuaLwEI=Q(i1{!+vD
zQbC45^}}p`6<$sJm%oDUte7Y!+#L(9F(bLco<<J)t2a8JIPWK_&Tgl1OazS$I9p@+
zu%LF)5c@T_el6Xe({Don;)Cn{slg~vvH2xI$n6ka@5omLkxpYz6mWPo&_XJ+*$U{4
zVN9Bk3u}(Eh9(Aa+3qynCb0GtV?DpdxfuduW*uqHlvI7a%$0q%;d|-DkFhx%lNoAz
zSu*wXg>oISN59P|Mj}38werQYU&K2f1gsMh4y78LAJo;FB%;lc#?ulK68I1$4Ta*a
zf@uO9Xk)Ta>@|>3-FXv*4KZ$_ieW|f3p^AmsNVXex&)Q$EeEHEl3X%jD2|Iu{AuY$
zMTiaga&8B*s!bL1F5a`(XBzu%5I(n?g7KVTo?<wxS&Gx`LlbS$k@+ftv`H>x9aBsv
z@BNz;Y?+v1CKYo(Qa&gkz1`i-Hihab#3|cji}Z;y_(5;a3lO>&=mEVZ?!QyMsjSmy
z(D!c>Z^jH7`c`D3apEvM1tx7R(|FFV)S2SE5>eN*QWy;|oXALnyOO&ZZ=ICWeJ|l!
z`EHiD8d2o0vP%yPh9sP9YXGAeaDi+FqY!$a-sBcp8lZjd$T9uwM$1e`!R;h{sNGTL
zk$mX8#df@$i*A9)L;*-7s)-C%Uwp30?Rz^W1@|n$)$Y_-%ZknmGRGA1M@@*~j8t@^
zY^DYGCF6|0?QZNhPg?4cjqY9G(b$S|b!vU}bt`+LSeaqZUuB{a$S*XYXfTkQ5~-dX
zU{5O>(~OzR(FMIUj6&yYhi?uzYTz=(swjFLTP%nmq1fw-Up!xwPLt@l4F5~<*e8i4
zv*$#s?65aVOf+_7OyJ(BJjbIHc~w8-i-&GimAQxYv-(dh$yr`$T>#e9vyyONVQwFK
zeGd7hj?5slDPI`^@|ngtWMUqn>Q|GB$gXo7h+~#uOXDW>4sLpchBuBex4)j;O%FUT
zpQC1=o^Dec)UJV2d#B%B<tH*qIg50ZoC}mVq*!cks072bbN5vLfugd6?<DdG%+PL&
zor5`?*EJJvLo&{?*3Jh-qo^N}%8&i}zq##<ds-O?KoN8%@^4v@LQ~qX(|VtepT}q)
z#hz>zrVt;Gi$|hCrxL=A#l(`07s>dJb30&9wVmM7?K0Jg5#Q>Jk58SwdcMv*BR*xB
zA|LP_@b&3F@&pbheWxO1*Tl-1Xe~Fto!yB-_6h#a!v(0vYy5xZJei3JNYSPz`s*UH
zKTQC;*9&7YFh=C!gyb>w2z}XJWC2IxT#LCthc{2y@C1eqMq)SKV1_#KD0cayBCbMW
zn2F|_<uLy{bp8;zeutdx2XW;z#KOm}<SQ^pUrmdBw-6K5Zti(1pla@Bc;XiAGSN)i
zeW^Bl;?!O3Km_+FfRNeXPewccOJD2la1C7j*_qNQ;|Tu0=e6UVtGF@_M(;N!Z#Nym
zgK$}O9))(xH!?*=Qc8jlKgIUFrX+id$JZYe2OTixa+m7XeT8i70wuIpv5G;@((o!=
z_!kpVs-HLbLJr?EDk?JmqP}?Y<_rS};lqP~O{uLNQ4FO~sK>KTi@|(a@lq;^=&Bue
zn!TlJn#kQD@`^!uI;#dCNqq>9*dx#(gvaQv64FSGgC`k8o#nFQ=K!2sgsYl!{#I^$
zgS15sGc1oWd0`}+X&lKk|DF%B{kJqN^<a>%m;JeHq?`)X*;P3DE`w=dqM`5|^DY@k
zO&k>YF>lP8DUE0dL%pm{6D?q|Oit4Lf;gZ_&y_IgMjqC|$(7EzAUU!xLhKEHT<iEg
z3_esh@j|?{S0#>>ghm6dL(p1*f8(;tk#G0X-21n=?1Va5nJB1D7&+}5+VJUYLJH=K
zS}og)`Bt6B&VBiRbJ<C|KoUepMl-%{G6D+XVt}L(8R1p8CH%+PNm$JUEM_VS;;7k2
zqbm4%?ft>!zCM(c0X-uAU{Q<^EC4~~!xY>K(9ZZzDi<~XxpGm80sPn3je`zWAoR!s
zNgq+<Ma-A>$-wjoKMbT}q@fzY%W(e)%ej8R%06&qQEn;mV-?jsS!5A%<FV2|C?;tM
zBvn?EO(i!)gEK9${E#%JWh-XcS=v>U5$33?KFijYjMLmu*rE)cx)pS|VXV|8i}96S
ze|6UViDOc1nPL%a1N&=5c^rTOI>DgP9s-oE^a-{K{g+1e_ZkHYYzc0^D&5CqYO)^&
z1OF5CUB-{fP0<r@zd4o$@(qw;)4tMzS3vjp!LCSkETGyTZ|C@}t~A}f7^!&5BBs0`
zF>g9U<zpl?T;*JLT|6SoemFVEc^HkG@$4>pg~8*70;J)7Mo2DeB&#H$I&DfH)|fPS
zhU)HKeVzO-6qYeuycz#TC8cCHp4iV;p3KYdOOc4#zcs7<-6k{8c78sPlcVqmSX=*g
z%X%aCu$8s*{qE=9hkK(x8G?R1-}3>oUt8QIL9deiqX0<?Fi;_M7Nn!Iw3KM+hj$K)
zBdqOc*_f-w*)bgZFkZ`6@B&rCd<oC4lMAdqkX>tf4q5-=!h4?vAT16yjf<Dhnp8y{
z9hjV0#dr2gDF)oG->Y=oQYvKc8=V6}=8Nr49>*Jy8$f;(Hl}3TW%lO0G>U1L{^Dmr
z>El<bw@EirsEFo-YcFR^OWf>#jey$>5{@LKCs%Zyzx*8%p)^v~8)02DRGI3C_8@gD
zNMKEksfe0VF#nEJ_}M=j<WM_5Y&a~`SJfDv`vCXkSxYL?^1*El(SaVfponTQB%UJ^
zEQ>wbXxV;Hb1wh8ce8E)V=0Rg;O7xJ&S0ek@fw${_G8@0kvd~s`c4itRa60@0hz&q
z$Dt{;!cieMJIo3dMk(dd!gDe1F_sO2(_{Ix<|8nUG&__ltIBUjdQHt4Nd%R9l;kVO
z1DjI`e<3daIz<?yWVXD+zALpOsIJiW#xR8w3@+bY+)_ddR8~3+-b2t_i`!okQU@od
zRt|8__1yZ1;t^Z}U61_+vJZ<1P?2K;$Vs#8WutOHE0a<nSvJ#W$fHHNd+~&M%!ZH1
zwnxU&(gLKu*=={Sh4lHLUOX)&m%O%)o%ZFD%)>%|sdBZ_`L?>c92o4U4VC^F_z|wM
zKMefD#0-Q1cgp_LEtcbPuHUaAR<<*+_X6@CtYn<5uYFw<RSr5>wN~Q!wdS3(3>W94
z6R@!tCI@hi8S~td1f}h27{0hI(88`QEv@$GEsu&QOH12a^kJx`W#`6~YzQ0c0(6#4
zf7AtkRWyycD+XqOW30e<`nfa>5S%`5UUt5~Rqdc`chpvO5X0uh5~m)?-+kFb)PQ#U
zj7q60pzQT@vGchY`%D3Z*y_r{?1nzffqoD$>^rh7P;LksWxH>_z|*8PZZnmuT}8lX
zL|x9)&wSF48FUYf`z}@l`<$ch%O3Za8KzYUB0q423k-9TvtSO{?%w8Rs0ehJ<YINR
z%-5PS34r2=I!J;t0j3)j+RE}s750h2JUGLMd19R%(s1Oxm#_cYa*cIv@$o(pT~E3C
z?57gd9<#c~E_pKjJ@OZ19Yy9KD)xbrz*^L$__##!#ljY7S_74D>`6gqu|va4*d`L?
zIBYHjlPpT*#{PZdZ<#~PABCabyHdMc%d0rFZ0EdkRw_DO;9TW2%&HN0o~z{%bJ^VA
z_1GF^xO9CrOT_1XA*Kj80p6VJLp5AG0>c8r8b<4Rl@nN4-nwe*(T|ODbGQ$+gesf#
z0Btf(yvSZ|iAg334jUeuO?va-AkwfdsHs^s3SWI#=d$+F&c3<7Uo6r&5ediR#{H3z
z_@pPL%bjPx8;(S&z_V78ypG=J{e$filnbX@sCX_HT<5<1FelrQKCB~g9i5CD#YA@Y
zH?LM>!2eWfM?F0X{bKVXA+Ev|0NfblR{dZjN5OGNM#9k4KY)=5$o?&0WVi5N!N?{5
z9E_}!W%xqeaSVW0ADny+Mr0>@PVI7v@%(&06g=w-h4dMTd;IKFd5inGfO>O}N0GX%
zADkT~Yh;9Pg{~;iU|DYT<(k>e#hjj%@hB8gLsB51FO?V{3gCq_Lr4(n=(vT}a9$DY
zJ~i_7<!W2%^*r8EC?8I2xqrQWmsE$_CXN>nag4doVUArIetc!O4sBG8`gW+v>Eb*-
z=0JZ$&USZpd#q!7xPg%sN`1KgL$4f$w`}-!`NDkKK!Yxg^F*Z>l-Fa!bC^&7o%RS2
zk@3}(=L5<zz+~-~>ko@r8SS!uY3Go#VSps28w)yA{x6xwe0%?hdHe+q%-fUQ3)B(R
zJmACA+1uSbgpzBv>_v>P81pw>6~c+AAI#u3o!Y1HXJ-dy=1l<2Tv!I`>c5nBQh<7A
zEQ<=&y`ylQKUDN5bEaIJtin`|WJ7qzmPr(rBk%0w^swl(ZEvBrI{^C5JmJZp;AYjg
zNkIwPuMJ&*oM3dCcPwLu7f!k*)fock<-0T`^TKq@lxLSxg>zY|9T;dwg}{exs(r-x
z#$4YuS{<*G+hlyqSbMA(h7@i6W>wgtCJJvejSWv@o+#pwb8ZvdnzGZf#O@dm=H#@+
z$C<j@n$NZVo;P?Qkfiy*atX@b#M9XOY}tax&7uHmx#^?vDlHf0#1rHQ%>q@goRlfc
z3!VlS!f%$cRrBR4eOmZVoncOrHIW{o<Al^)c(7xIP0|REi=x`SQ`=W!6I?50_xhIZ
zd+49bRXEYFK~byqt(-})pI~<5E(wJbphu@T-oC_UcjSW-SB}svWqv>a_r;zS<(g!c
zZ^$4|t}(d@M^OXXIDoYmQlTqddwkU}Q0<vSL2%m}ma=g_L;r5F4qBf?tg$HtHGZ45
z2V|ME>+`AGFckd$ym(n}yqe(?#|Xr;@O_QqTR<i(*ibLNO}9dh{HNw8S=RDo46{8I
zw6bD3?Nb{6al(sO8)9VpOIfodK~3f{i^dZaVE}hU>Q|r~wjE)^Ig2A0oE%f*-TRzj
zMWwJFE@<!On&!y=ghw#=ib|kK_^|rZp}ARhy)=#^Bh91Ixhtl`?J;R6a()^qNGskN
ztF|p1moCkc6)O{Xsx?(c;L~ZaHr(z}PpUKH(NXjt>Sovp@DL>=b<9o%lSi}APG)A<
zC1ssk&%{piulDkS85zrwly=f(Gly4vbNb<ISjl+sfvH*Wxtx;DqGSb~|Ggob2UrAi
zqTr)P=7em*cgftskOln7s>1QOExX;@xGCMjy$x~Iws?<jrn@b=Q6ztX;Ic9U&fKq4
z8U>o(U^{GfF#eHLVHo{{+p>_(h98Emlm6@%f8NB5^Z|L*T2vSf$g&C6O$go9n49jM
zQL-B`byZ;48D+?;30HNc@3tuvy%vgm&#2_pA5RG3`oND}nAfF7h)j2H_(ip8Ss(eg
zs?GOp#WPQlDvgJdQ{=mh%&GW&*Lp2kx}7PaR8ZH`l8azQ!|x;b!q-qO_nco~8QaX=
zU9Li6_cFWfz@nL*Udgba6~cr^hBql=E@2yRiW`#>ndbr8KJU5&d&H^i$g~}D(ap7^
zYQc>;!V(SdVC=y0c_;DjLc*6M=hzkz>!~uZTmU|F%VyO4)Bp+Sfftl-%)VF+k8o%R
z^4z&BG0_d|Jj?%>&ssnV5;13e{H<faM>aIf5?=Mj6w}M;A~YW1;^y&k$yvnXKPlF<
zKXf!n>U{EJvEVPyAdpmGw&=IYn>r+cPwZ`MlHT0d887+Z*3KFPueY+~UI?h3sfoB~
z71!YJ5&LGax~!GAm^J?jVO`$XlrEV^EwJ7uXefdiFN_1Vkgs)H7w!}G$j?&(TxD*6
zu3Guppe>SH2`#jVd~Kr4YOZyNr^;kBce1Hihcf1gk@23oVuTgEFt3t>c^?0GAs`Nl
zf<4w&)fZ-p>fm^Lj#@}8deGI0K%+l{Uga~M+V_Ry8a`QH6QOdXFtc24tQ&;DQdPwq
zWq8LMs7W%Ut~!hx$T2gDTK90MU~uPa?IFq{bTgQj94e{`sprs7o&pi-NO&$6xPTwU
zPktW6%j34IeYubFr?zH9C=40<v6}7WrzS6J(l?z!PDR>Sa2uo0(owg5lE*q}!%ma~
z+4jO^vb>No&rnn--!3vZH5SIiLB}$hwbh?!mROa*Ea*pl>UN-Y$?J@#to|gUQ}-v~
zrE<5lV*d8X3_?dKUGaV^Z5cli;NCIfs6@bt&@}tTMAe|6ppnOAI_GM%O8?CFGW>p`
z6c$*%3TUoIQy$tFe#LfB#!zB{oA4XAhw7LwQsIyvy9Dt<FYL%oZ`Ar8llCW&I#EPY
zQ7U#>3}%2k4jU4zkdMnksy>T}%pFT?8CiD8rNs2?Hdn1HcwJ)z3#c*WBR{q5DbsQ1
zzv>^p8hNp*RM{h9pcpa!@G(d(RRVYt3l-I3pYh0UT(sBcXM4BM11Sj&qj=fhOg6oz
z;L8A}!L9%(CAxuWvruc&R3Cm3_z-|;Pon%^G?ua}v<6iSMn1{cHTb}6izV1WTa!sF
zrM_UOH83(M2_cj2YvlZUwBv&0#8PKmh~N7Hscf4MxjLzY#{pf_@3rE}^`>6HGUazn
zDNheJR#C-=GfFDRg}crrIV<&7uwE2PyfMw|s?AlGg#auu#l){LM3u0}w%OD=26->$
z{a!K0SfU2oY<$iTa_GZkkf<m}u2(J-DfhSLr=fYZ3v*X`A;>(I^LQTMPLGFrl*|;v
zOjk0q^>ELF;_gGPT^O^x;a>QIeVs`1r{mOJts`wA>t^v!-fr1_6k*Pm#*<J@hmIbH
zh#<TEDN8jo2>U*&;r8WvQJ~$<`;m`l_M(#?jmCj=if@NQ(8{grZTlCn2;Yo|I!t{p
zZuZCW+lTUfk7j&}wN=@J0qrEA`8;kd(iGbH>kcj7PR@GsW2m(}`B%Y%rRuyGe8G})
z{)awbh0*k~kPKL(rmnyux}~5YxYM-+CLFKxUB|c8hDBfj9s^F{vt6cdnp0~-*diY<
zjkJ@Pq2y1G*1sHjhBIoY?hPPRBS6e<k)j-{N}WA-Ld`d)hAY;eYKI}{m<u?(kCB}P
zl}Si2%s3OBpzd$A3E-2u8zCqadaj$M$`IETPXs#(8|_zBjw~$0UM1<0?=z7t<2=8D
za~#<*rBzvM8Z%y1Z92i6v<Q|MwI(};lae}51`#3j;6aCfEl(qg-)2_d%&`MTNsj|(
zFqe$_S$dU=5TgoLmLu*!JyQK>RBMYp_o7iTZ8%dE9;HVV6F)R_ZHo=VMdu3yZ>&(<
zmf{{(*A$AkY^>HWjl4Vv0B)B*naO-w)htI@k&1u3K*M~-B2S@4tRH1(W5abBgQVE1
zjcnCYX>j+B%GRb|bCpe`v$r?gr6<hW+xw;mtjO=zE73MOSa}{G+Wc(wiMyZeLABYd
zT=P`8oOr4CQt4zLBOo$SCAz}-8S7=)TMyQLi@0m{*ayCB$==`SHj5;|MoUw$a1Ey6
zx6gN)cP>`t!Y`o3w33=!1+N~Gpkne#9<^v(GU$iF1^F%HzyO+@3cOhIYouQVo8L|i
zpfVNU1$YFJ*f&RNJ>hPsB-+^o<!yW1IAGv6d|bG$YvBZ7E1rX)Htj9I<4Bs7!2tHM
zmmW>zUn)`)!;l5M8c6AFg@;PAqu?B=-cRKjVFd%`1f;RDI3u?7cyS~!RB#(}_PQzC
zaPS?|h~u*syzQcMJIut&2J$P;0a3IAB=FtjvAb@TzGmAehez1Jk^$M{`g3=3?U`Kb
z<+1Sy4A%Kx<hX5`#SLK^8xXlsmB<K|$Kj1j^^Ask(YBRz+t2be#Koa@>e?J5zI;^y
zMy0z9O}hnI%64ITv<LBg9d$&yppS&QUc+k6_zBqb!^u<jTAzH2^!#IoD}Y?-inX(A
z?C607#J+?kr~7ms<E8q@H`}XG3uGRpA@Wr&CiCEe(1KP^;X*+1l+!4Jkgoh|Ci~ua
z&EgG|q0>pMmQcZu&)?3I;0lVaI-~M|T~C!6`lv>^=1*6&OqXVth>EYo_wYM5f67yc
z!{-v#!ajG|lV@g`UA)hjbptaii}PX`lZn1)`|#aZJ2MjL_xih3q`2-Y#Lw;ulB9h#
z+Fc+Wz-oOz=f@qsi-M7sicJd)FjW9p=OvTI0@&rbiuJKq#tTOwAwQrP{I09)|Fsyj
zit{~c`CV5jAM!nes<7u_AksStm`=iQ&V%T5X!rcs&#+scAul^Xo68%7eFR2Rqk#>u
zI?;E`tqNR{`spGc_g)?AYOjA-#l<RrF}daN`!_5A8$tgQ;jza?4Cix}$t+T8eS>VJ
zr)X2?iWasnRXw{a-1GUq#*bq<t(tJDP{f4JhCx$V7W@928aG`J5l;aCF~bv%P!WbR
z3ac*|8a@6OeJG)#?-1zx)8#swC%76N@HS}c-vLuM{Ia&xymX%+99RA{k5MQx@jp$O
zbi7{4C^^?>O_XN*v|0nlRt7NT%d$)zHADGRO*4S;W}KBhACN3hVg^UQren>aOeg4W
zhY#$bC2OOY+l~nUQ6P^y-du@Di6#xMM-axzuw?)vy~dwICi$z6<GQTQJZ$YH;nDp(
zLsNVg4mFQN9g#|2fxoYyL>~WK?r60E*-G@+2~)Yz1wP;F{a+_cjbGu)Cw~u+DJU%4
z6@J<8R+;o|{cS0F67R6X%*h?)CI+I=q$$Dl?8c3N9`PvC>ZY_s1lTVhNHrVK3YX$r
zAb|{Zrj4cR?Ea#aK2jPJZtv5I9sp}8gC#`m><HsN21WEfKz$Wm?dHFsSk!*nJj1Z<
zgKvI;)Kae{(%@;SF7U7L9Qn;gic~48@lYVue2j*}GlK#c<#gp-m0D2$nPl-c7^C&y
zEm_16ZVT|a^ugAm6rOmB^v`BY)r3YlFo_Y2G+D3jvAJmEX8Tci>S|=O=myxB`UN{D
zimP2KVK4<B!Z9#)4(8gEts_af<{rjOHPHWOP)B~78Eig`#~t0BdUFz@AG2;mSn4lf
z#v>C^{3!(U#?7NUecs4*yan<d-v7vVuwVIa<vYl?(&Z{P1j+kuC=%==soG&cz7ze2
z5fAdul`>a$d&F*$KCAtAXpZlY<KH|D>S_$d6d_y1E<gnojI?0>-_muh{W%q-5W%TL
z9oSQ8z<E}S_oW8@^C(BHfigDsI3K3i=fgDY9jM=>mwvkyhZv=vj_}<|e?mE$pgjOJ
z8`bzQA(8nrzM9);zW=5j_zaarHV=3+!Q3J7$2OeJ#_$^kkG_10J-@POh*eY2FHK~S
zuNdoQH|%sx!Jq}@z$`>kvB^c^F~&N`mHL3K<ws&up_EZnq|^1MVw=~R^y^@Cx~64k
z9PE5-*OXf4XN*T4mpJo%vwHuG?z1#8K$nOM>Bw0>Q=@sS0X>O3z%W@)VMFy{Z_uO(
z=DFradb8UHc)nqG0os3b<}~!yE16UVE7r?Ls@Iy_U0~7YHG!IuI$Sl2hwzqk7p=ZW
zy~fNB>Vw5iIbPBq+y}6klZ$_8)D${sfU*DO3Jyb=#Iv)y>{1YNZCsLz^H);(e}n0G
z9S`tv@=jqtj?uCTtm3L{`s=}hs{SGKfgBjy`>n188XlPn30+3HJcAp7)ItaQC=&x#
z^aR650jn1ueh??+30RAiMEq}qp$**cz6Ht2Szj<3VeVh9Ko1w8=YOgnzwe;{&(F#E
zRqH6^@qMcsm>m6C0NJVY*Ps6Xb<d~?*~qxe)F~EINLUyIAUi5c*AU{eMpY5T%-R3#
zPy=^+c@B&7q{k2F%~_UAI`QQWRhPE4uawM@i9t5TQ%jp2c!F~8V6d^VS6NFn8U(u&
zXD=L2<N&RpZ21$7Tcjk%0Hl_A&q7=JfOuxy_bzwYXIp&<j5uz)Q_BmXMA7svxX&w$
zBX$907f(ZG%fQ?`o^-=4lz&uPmyL8%5GK)m``rl<vD3{H$J*Kz2gQzht<|R@=$A;W
zwlLww?lwCRsuv`0uTLZuPj@x)GUl+~pcg)K<aZL}`%pGhYc6^x`u=^WOOLc#^4fI_
zMxz!FK=<E#)Ib$hENwhE#Uk?!i<)=YVr0&b8nBgk6vyGIw*6`==~nPdfm(O=+O+j3
zb50!+ipiT1ZgWI~Q}i=B<p9pEhnu8Kxu)z>uljr3el6|A+X}BmZ@|8GSr5WD85MdU
z0s@VZt=Mub_62PtA4QXI7ZnDS5V?5bS0cppPRBAY?#`3$Q)T>7qdBNiCv`zf2~2b0
z+wGJW;J`6qyoz5)<QNqnC)eL0A`zj%yx!~;5xHB#`ijF<Q2qi0_+WdlKKYr<Yg{gc
z9cJxr_`u)oK4>Q&2$;XvTzWkN0y}^O<18Iui`dP+m}$<?YscZ>Hl`)<Xtkv;iYUW4
zMEA&Y^YxiGc&=m%EFO<)JMg89=``}^QR#e)2riUN-f+>Vnf*SsCG+sNx0frjqXmk)
z)(a$}fqX;RZ~CJ`Is;<pEKf55BI8g5xfV+IP*Fuilzg+7a9=D#@qQ!t3fhaM?2fks
z_4!<^kF7!`zY+d(-6;RTM=jWn8ydW*!ti))<IJ6!g3?lx`Lb{)Q(>_OLZo0^B<1MO
zcl|4<JcW(g!SK;Q4RrG-c<!4&0xxUyex{uc?%J~7LY5QXdjiVS!3g28qr)?S-~#1h
z4r{cdqoa{AMWSv-RRFrA$#wrhR_bpgr2wyBn)MG&>A~^PtA~-KQAJzmw}!)xNIrRD
z1xPOdNO}f@!E_HsqA~uYp6?q!+wdtVPSyIR{#s}G`4I6kJ)oQV$At5_Z*b-IPyW~b
zogAf>k3gbg7~O=<d5C_)rZwFrQ%(I?Idv#A^pf*XB5a?ABfRLo`S5kcS6yyW?FLUH
z+q7dWT2*6)wM}Wq-`B&bIV-;kVN(>!3=RyoeB<M><7GXv%40F;p>Z5e-ze}E$!cx*
z+1p_;9ffSyUX4kx<IW+>J2Rm@etfw#R$i>VQ-wyg;LdZP(0hN~Ob;StJ#)yr)byBA
zphF^^E3&7Ly}rPAT}|@!F<}E11}~5<p74BC4JdH5lzIZFyO6m!zqT%fGH6^Umo>e6
zt|`X?h0dk&%q%9@G;|&k5@Sbm{ll_zG2CFUu2avq)s$71O-2EF&MFa}=o%dyq?hnq
z8WXbpuZsA8jqdxiO{i?BnbvQ?gfF&UT;A67Gmonzq~Npbw$y7$9x$&?Mp65%PCXB6
zug9GXMg;C*ZK@EfxC$@<!>6yWr|7_!t$1cW^ui>7xwJTuAP5SU$p+15aY5a6-{v4Z
zQk<M4CamOyPTXR7{tq+!dgyg5oP|lFek%C+xYN9zY3r}JyT2`aOiD)9+)n9RX>~~#
zge&X;U@@{}-;U+VsfJrKewe{-B%~pCFOud=`uuhDFq+Mn6?bdw*}NkY+LJiO-0uR^
zGQLS&03@28plY{<!H#moj7p*Kxgo+j59t_{#AwQgGZ->W-2=*i9FQSWJve%P1Gi_e
z!Vg171ib`;uiBf401|u-Bk9H-tjkNn<?y4azYlM3yL|m$=HUIA-u_U2?gnKIwrS^(
zuRBMptAe?QAGYDKW!I0>;1(vX-E^Qsia;Q8j@@9ssHn>){2v*WVhq++0j!&Hsd^n1
z#QDnRa5RT0F0td~<1y2@m!&G(zY3JG?)_E&jd<Di`#YU?kYDcK&A??&iFMakcY*;_
ztXY-cZBrC@Kya@X0kd}CpIuWn#d2CK0HnfI<;{Rv0-YBA{L|1^@o!L}RzrKF)~c8R
z%^m@#=;(R(U9FR_i?eAQ_E$XGE-=|2v2y>3vZIqxgL69S>a^v-_Q0n9yxeHo%iaAE
zM#!y`(<63FhPMqx^+f=mPWcgpHq_4ed~ah${`(1+1AJ6!|CVo)rHC`f>K9iRSxGrv
zPwUMNQwOEw<b38o=5b%-7A{QhH?-_IITW8ag0})I0kNd6x0&!bBl*Uf`a2pTJs%6(
zqd`C{;4aqHSL~YCz&fV(&ZRK*W4=O3fR%Z_RzlNNU)<rlU|hYGxp&47EM{MDH9$2>
zk{5Me6cc@n3Q_bfN<B~c!P&(LE8oXW^&fY2t+i7*U(<#1jPD&75zgreiL@MGE0TU!
z4wlci>-M4^u~d5gK@W_058$+;@7kjDR`!CZGeq0`3-4ipkeCiw5T|!orkLjWos$Iz
z(i<Euix<F`<<fDNYR_q8fs(Jw8EnVFxT-fV<*ib!<r;{$uqZPi^41$+aWXTp-Dh#1
z5Kvgu9`3)ZJ=<e@2V(Xu-fswo*N#>lADVDcsfJV+|GacetGTeXlv<!)Ak7V3i*p!D
zL1f(37spi0z=8o_k=t8l9pvC%A_EB_%N52l&(Q%RpIT~X_?vzcigX~%B-03w?rc>m
zinaV*zdhT(8Ni=?Oo-L*YxwTi1JVO-F}#Zyqmg)}c&my7Js{-oGx%LhcjMc;IUX!(
zz5hfi_#u?xP%pp*0mE;8jk2--85XVS8q)*wo8rO-6?gM6q#AW$aWClHtKKsL)@3aJ
z9AL0($!qh3e@Z-@r`Ar|B<$w!$3I*SK5IX@cXVr&IkfPNy~vJ7n<%O+IkQy3y6~Gy
z1=#Nhr~(~8$5hz3nBAs@_Q{fE>$)#!^!c?zs;wyt)L~Ty-@T<cN1$p$lJ^?aWZ#4T
z1E2>wyYpJ$x&s&6OV~U=ihpE=gHiIrxA4zUEM!al=m*C$>}*_fH3mhf_aZ3zIUO|R
z-y{QIeNP7X#_UXayd1JT@)-W~wtd&VGviIdwrmZauu~gy63#Ai@TU6ILXwaQeJALM
zf>@8b#G=in?eS^ZEhGJt8w_Jp0#bC0{K!M9Y*5IcwUkeuVqEF_J|J?-k=UvGwm8f7
zQFHLKF~|B%XB3_FjIY*4ll6Sr(SzEEsUx;ux{9%YysbHZcmYQ~Ov051bLo%7tqt@D
z2fK9YRNk`d@i0&`(lF?^7G`SBLganm5qxKj6~7ZdU=b?*ZO#As{;1H+E!GtdqA`aI
z8H|y@L)6d%qm`hV=nc4<+*7}wRpTttcc3#_4I2`e&J(>~ntecJDg=Z+{_URsufmX;
zP2wL+7_+tZ$d{LwW)>Dwiewr7_OcS7s`9I#-;2PF{)c{fN!CWr)mDFZ52ypk*uB`N
z=28dpg5>}t=}Vl6hq2>B!287HWVYcP4v_A8xZDm2$lV~LSgpTnEg#Ub3Jj<2-og-*
zHkt8%2+xRg`h@b{iM<5|e`cy_?b@ue4*`4=rwwU>(>C9k>y$MBSJuw5eOzyAD}&<M
z=-83^rh?D)ddt2J0TBrn&c2}=fKBSMNv%-_h_cMqtjK*%P5@<^u%P^Yfj}fU=s_8#
zb~*)#4eI1R*6CZ=*vKl-F36jXXh&I<zcOwk8_8D2I^7<XRwNIJV_He-?G?GKV7Irk
z>ul)#l>lDNUlV*E=puUkJnk$*<DDKlY9PAz{ydJGAOvf-+5z-@-&?Uce(T+uv;zaA
z=fKotrw!Hsc41`!2Jc)TYuQZK<4RCGsabJejE6@Oi5LObT~)x@y;C=_!*3=3-9(+V
za_&)y6{W#gR#5vhOaN}fhUG&-7h${kd?*M<a66I`h|KO{lcurUJJ*}8W*`p2bVKl}
z^Q^5E_KCfu>|a~SGK?YLwn>-FaxDDMNH$Hl%;8hV^SC8)%P%%AqXvL5Pb%y9!{j5C
z_}mWGxxxbZGUkyyPlWqJarRqo#8Q{d0wFf%M?qycgPpUY#<Y=P4)DUV?P;>X_@B?6
zFrO(aFYd1T5+D^e52m1^c2IVlZjX<aopx8_MBoZ@=l&`P?qrR0WhA~cwr|4Q4hgkH
z4RyLsDe!dBw6QRA)#bJAoi2iM#uZ)M9eW4G(?JpK?;k~-7AQ+^-M7>O|2H~KI*)Q~
zX>n$@twK-Ib@n~){X^>+jb7Qavh`NlZ-*yew7vN4SI#x+n;ruD7`53RkjOxmbz^os
zb}bgiGjPtn!Ny5>=l-(o@#0VGs_6Hc6dCy!&-^QH2p}dj;u%JVy1kYgY?fI$FC|Oo
zS6z(VEO)2$_6EOB;IAzXlN7(yr+;90R*n`HmK%I1RGBq6IQFvWXWE|*96Vm@JoH`G
z2jm|;k1v_6si1**-#~;bBL)5KZ1w2G<vCK!;Y?A1xx8G<Dc|Ovboc3rOpy9=qOx7G
zHkLhQD+?2cY_qC20ub}6XU~bVYuLqT4$nk79hAT|zJpCQUEa1-hUjg)nfOmNn&5y$
z-nF43n7yzWP`=R~u3whiUw@uoWt`jFGb@x$;?e!mYC9Es>XKX~PJc1Go?DKIJXw}~
zeU_>!hrTtMpIiP22>N)yq})x#xCepnE@+trKh>TUBWJbYeBi63r)Gi@iG<$)g$6|u
z6CSm=Jgc+)4Q8)T5RWqtczNbdb0pXO+x15Hl3GV#<o5uCZlF?hn;$oAygXiC9KYe5
zv=#hQ2%Th`bv8cUYkk4NDtp+<QF?eCOoPc*<osB>E-)>9U$AB1PcLG!IyLW`946T{
zCZ_}IT|YbJ_<JrOM9Jk2+_=t(hT7t*Qf5R6=yi`X|6aN<OkD%H#@r=$KR<iMeNQyN
z;L2M68sjh)0`t|e^b>|op-K=C$ygG8`c?MsRR{i=u0s1&6lL7Qtkm%!_|Bq%V+u;G
z-7lTlk&ainWriRf)HJ8E=h8LSXLrZ7{8Om;(PW;uL*k2e_Z?qIsUkoQI+!CBv9m{H
z+z|@}7w7FLp*uXwdrewxgF-)#9fUWJ6<ClzrM7ZjdN`f}v852w@$ylnw^;h}@*M;%
z*Ada`r}Ea;Bn|VmW_xSOX?@V*eYoX4NF{hF6QO;H>;9beERi`#9vH{h9z!rH!xC&R
zaNaodi(I@h$g4Tqv)*1l-BiWG@hH+)CDX|ZXd&;mRy^33+?c0F=Q2_v@u+o&VHUs9
z=ZxRMq1n!N={X)GDWcDyR3&t2<bJu5*x(wLNk3R%YzR=inur8}^`ko!)!Mv0=bQ>@
zwZiA&82RrgHu`V6_u#GheuDQd>?FeP&fz{u^b^&p9a7Wz%v>)fqNA{2Q=M+9H^MHW
z(>kJWv9M__N4~@WgNL<;OA5yEOhNJpiHYz`C;zzE{!Em+oDN{tP)OVn4W`51REv16
z#-IYmK#`N&o{<k_bxS=#4uV{J8o~P}!-?~@h`LuCQDrZ9t(W)RF<u+gME>5}TLX3X
zXLoZj8oe$VJ^!g1mx+KmTSY?!vg;LnF~SKKHW!x&>1l+e|EE$=q8`}s++9evnk|cZ
z)x+v)&qG{x`$yYS<;!UYQ3IKpy7Jvq^V4X^P;gQ~r<l(3F?j{qgLTGi0Xyek;Kcl$
z>PK>!w#LodJ#WajFxU8e$EV7$4@QTQ%oQ*yU|jvU3t%?Hl+SYE4*V$igdbRa5na;<
zM?_9m>%2P-U+LyL*f^34(sy`SNc@@Z-MCe`0yfT5l>{L-uDMQN=IjXJxJXPw);~_z
z=y6e@y&zpTD5Bt{47wa_6pPNnw!EeL@N6`(1>x!zIVGW{`?mblfEZ$vH*tqNcsA1T
zCmb{z+WjDdPG{HJiDU=wXzKnO3y&?_TSaO-z*x~^p{kJtdd%_ptj{qtz2D>0S@YwV
zSCj>zXO8T-dGx!1>IZK+88dTs7Z!==?6$U~Zj?s;A`|UicGx`9F5@rEo5nagGxD=l
zxkpo|I0$?7HOZdt1%O_HdR=plzuWqRnR&$BQd#%XUaSm9Qrw=BZsDHO276bbLZHz5
zQ?lEUGDSJw-P-oX__@Bam!md-R>TNvN`$lv+AUy=4gqgRY&{QpXr1-}-qYQ@ADvU|
zzu!5fTdZ<W6^UBsfC@DTLo&QA4;i2MYoKDNbw??^`H>QQb-9t|3pLb2{sV?x5#pnx
z!UX^^Y?im`x=9|1e>x%gLb--`yp&p7fB2{P^d;j<AxI!K6+nm*HN3;KI?3ACcv1VJ
zFc%FEdYr|IjJF@$2z>;#Fv+P1+Ic$GXGeq1RD6AHLE}!l^qAmGv7)>lyBtVCF*1}?
zsPalMFM1E@NsaOXfBS6#+>6W%9R7~$n{Z7l$?*Y1w<!e%gPeUMl74mnjKpr|SU{x)
zNC`(G2Fm#b#3HfNNcD|%5tE;H9KYkn7t_-1!h50T+gJv3V(2@pS*bkiRZwzs@n#hl
z31fC@p%@*xhbs)<IX?7X7og5;9)WCOfOrxhN>jrzG@Koq$G|^30hR<zbD0+CW*es*
zMb<HZZ_Gldb3o%e@9OBtNwux6!!rFIbs#D8%H5psfJ}%cPAA{*H_7T_e*VthK2O10
zs4STl73G#{;mgO&X-4N$-wL&2v|7HSM!}*j4^!dpoX(Ea<jF3!)BO)mE`n*a*0flt
z&Gc84YLl^pId*n>A>1|a2;)9r_v9nGy$Us-%5_SXT#&5Y8>xLorBe0TzfB9#|5#E&
z?z2Jny%3?0r9X=;mtP<wo9X?H#Upr~c<wV#*ve10ITV2ukJ49BAW_yOj_nP2F?==a
zfcW#B-CmCYu`+D!B+`9jawP0KVBMv~ZNE1qW4AUuSh8cYbjQ)AqcmJ6uGI#Q$AVed
zaGj{sYB;F#9w5@Mkb(GfQJoF^wMTbzmbXR;l^WDl3T`t<GxKJyttqrXQPymReC4J9
zalxG5UdM0vbux#SK&@YVyyeA`%P`GOOYn+g<2p5ZR9PVfpnk9r>1OihkJ`m_C6K<3
zL>zd}FJ)x=nO*K|q42whxFhRDsa>Hi9cQVC((&Oo{d)!{fh1W!qmR4M?(HOx6p8WQ
zRUj<yYHunkCv9Fl{*^|RAHPgo4>S42_3Lz`ui;xoPFAZ&OQAlU0~$e+I=<W2y>#}X
zSEu6=iVBX1so}PgNKo71B>{H6<Nva_qgPfj(EjR$^sAo{f?0mq%L}CR9Q*?5onvoa
z3c(8Y#{|i+-L*D_VKCc~;UwHDM3N22bqs<BDk&X|E)ZO3uaM~U%q-%i#yAjF6$s<#
z0-{tb%lS)0^E8rFTW_)GgJDN(4kw|r>E_=Vs>iO$(d6TG_5KvPPUMbQ_6yCcJ)P_>
zVt`@Hy{7H4o#AMnTP(wlne>PsrCTKxp@(d5vEgQ|Z@P!YY>sTHhi0Dw9dc!@d-AJ<
zmLbG(6>P)7(_91pxz%RJNs?}dD6cdp%9GtG9Qrxzpa?wi=7kUm5#MY6x!eyd_6+*&
z;sVaD@0Z&<zcXofCT+n)u^bxHojCxR^G9dr&aS?;Dy3tQ+yA9__xDsA<;%6NOF|rq
zUjQTQf#>+^7BJOK;l~}p2s{H*YA=0hA6RR6h0b1=7pRw_+#x)!20uFWe<$#?!IUqA
z`Nl_G)#6fz*Z&Bl2!;O+JIn#$vsI}C)RoO(Wbns=_b>neAl*~*MboU$8>gg_y*U^U
zur!z;%rk%f^E7ubxKQKRqmj@-;G{_nsQkYOx6yZh3S!T?v>khlHI_1f&vw=nX-tzW
zi^o#9n`K`*xLJ=%*D@Lc&|=AI6+Sl`Ub(8$Ga<Y&Uho63+Y<BHL2yR~KXuD*ss2UX
zG9pi_;^O!OGN4m#-)H->iruZSbQ*c<pcOJ%W};j+8cnLcBb8YICx;1T)V9s;v1}?=
zm`JgGvz`KBW|L<OsKf1Ftc!(rpbAGt=4(~y4TIHhmLVQRY?HeedhtCm;hnOK{&Ztn
z#-AopB_La9C}cU^JUpr#nLbzK5Ctb;=zIK)lYyTFZBK8g@vO?B&BjX;<vfryeRsGM
zBGcj|{cE-b(yO5D*PyWIaaoF`vh<P;{_eUuhkI}<y>-)5L9%?stCVtH<C`kYnn6p_
zwSCbma``jGSl&wDYF`~4rHfiL>#{-f6xM%XdsxJn*7ouU#Xdm6<QW#>#vN5Bhl@)8
zvdZL7mRiLd-F?T;rf_4AgTJ&t3QbAxwL)o<F_svZMZ0^)=XC)d>v?Fs!`03X%gC4l
z7gM&{Y4EWC@XPxhOHVZ>XWUrcG^$y%$wHp)sibss@6Ryf5omU7Jz65v!=^>_nbM1H
za`?v{cpatldAr(Azk<~yX3om}0><vM8h`b`7jQNF9S?joaZkg=A2~yjZ*u0r@Xoe_
zxe)Lg2TU{7j_YUXipc4d_!s(%GdN6UDt$><xm>5p-ZV)|2A$Un1Oj4f`N##7ZU0?P
zd1moQtFh<X=i76zT&7d5h0fO)KxwgBtq8x<Ha#!Wb~PKj6M*A_C(t@VeIUGqXOXB>
zd{arw19i(j;_3&p<ulYONH4x<XA>!ZAg?z%f)xy9)2{1}s@B)PYmu-k2(R9IgN||G
zl&6Vi-B*I#aq>1;?WUd{V?IwM1FO)Ea_X+|e3|Z@p|2jo?hwlHSmB^CdH?&7FZ^;5
zwW7+x^yj;!JP2KldmXTA8md?3D=OV#`+}f2k4qq+gAitGWx-Was0PNuUsLSetZy*j
z9ayJU{W$(;W_vtpvQA@OBS~W(C{VmjKelBX>gj<N0dTEP#B@d1WkB1Vpd%L+{YQ!j
z%it*s%6J@{!yzK4q8rf5-VbL4XC!O4C>><&=gqvqTYDsmJ{BvcBKMf3%TYZbq-BL_
zV_5j4Uhd=eNcy+gTg+ijsGg5K4~*CH%U_5?>R)?#skN-VWXar{#9o~f0W}6}RCUU7
z673u!%5UBNOK@A3rZ#$;e+IW@ehpI4ZUHlsu^@YPxYbia509(wE_)oR^+99o>7R0^
zs&_QB|C&3cE;^w2psKW|3Ia}TpWroEA+x{m^)6k`_8>TO$aa@6lIDb6Kcmu|kSWu;
zy21cSvj={#&3+Tgd^X1ZuI_o&WMr_YeBr6dq*4*2?$0DP-$8HUyxn;9?L3j*_Df9H
z%b3rEpXbk=_USD5sw_dq$XxbE?3v4Ywq@!iKE@wyHIiPwN(Fh>33g|Fc#4AW*yB%v
zkyJM?kaNDV_hj2inB8>xjo^{IE~?^lcAoC(%%p2UL;*G5P1onW*&GnB3&eLZO6Bjs
zzTe&j8y3FKMZmp}GRgbMyYI-skE3eOa}Mt;Ka6%`01=yDYG6X|c0W@#Jo}chNU_54
zRUNZQcs1Nz@LGXF%G@qn4j;jNjtA3+oE&w8^O3n0=v}2o+k0DA0VghA7sF4b34-I5
z^%^L*X}dUAHeHWu=1olNQ$=fRb5t`OWO97gnM#NiD{r3#zA^Y1kciI7w{7$CwlA&g
zsZ*tlBF8{Zpa9!#uX!!ao~E*F$`_UGyP^c>i?@{p8rpT{_e3@UI(c)4^<%dLaV!a6
z%Ey@`08=1??W%>fvs1`b5XL69i?+4VMC<ONx_c}y-lt|AAgE=fruumG4)bPo-9VzO
znswGLY+Cp%8ftc$7ezRH$bVUI+OSw{7V~!dtVZS=H%~>>lg_oV<%+WL6wQv2+ueKC
z^#hmg1P<>+J=@IbmKF#2zEkw`mh-bu9LI;(IUlbuIX2?Qdt>OmttbQZ)~Bu$GjZ=7
zM2iLCC$F27!oHCz=2c$J%*q=AOUNWk&^ERHSqcBAs{)4)L^<)(u(G-7J+c#UQ;r0Y
zD21{$k+@ZbaUTm*^4Fp3Qt#n0avU#@a?XhmvfnMPkY{GtvK1Ockmnlrpkm&y^3~jm
zA3MwBuJu`g5-La_gOAsHGTWb-44iY_eP!~hOB0Q&$g=EUlgWPjIPl)!OClD{yB2|f
z580hxw#GJ1w7EbfXHjV)>yDOrg&J#xMH-r#C`ius>vhJn#p3BgpH+sMf+^?80aKF*
zLld215R2NL>NIC^fT}9!COyN-SmR9NpnPTWs00(EcBPQAp+=J9ZGZgfYh6Pw&@pF*
zy@<wpwd<JD5jrzRo_<eRi}jb$pDn5gPDCRVotfoA=E8-~sI86r9c*8}uaPy_mJXR=
zv5a2EL0YwRmJXAkV?9W$I?yb2-=RKr=$9Uv3}{oi7CrY?`NFDpJ@S~vra|*4PjwKq
zj-6>%NbCgl=y6`fwa_94tc|nu4A=LQy%IBFe4ms$v_<en_(%m_gm~}pB8<@o2JBr8
zQX0n-X^v`@Noll1w(ZxC8??GSdy|i|WO|St@gXh@q;g|a%L_<4x8r7`F{Q<9gFXd|
zQ@GUFc6(#aB*&zBJYF8^2Ih4ialAh(s8kdQMcAq;B%b@OI!8@jDh$V-?sQd)0-0Ze
zS|5s7!bJ!Av}7|V*(M_K&f**<N=4pDX<QOo_E<oZFB<`wUoU$nvE83*j|@4*WPK&X
z`g$BaV;}0Y-g;VQ+as{<;zaj3sum>#9J>+MF!cZ{HhXnrFGZIU+9(Ovzk}^O>m0*^
z-Yhrb3~D05ff*lSLUn;2kyOpe03^3iJIr{2<#<nA<eW`^0RH`;6lf8Xhc8frEl2?m
zwUz-w!s@|skd1cgB?pOmDlzg*$`_PCTYS%)=*S?hF8bH8++UQ^=HqL=n-CP*Rx%OD
zAlWc%cWNjvJJTWcws6F?iGSkO(t3KgD-eYr6FPSbsTjq6JjqjP=tM_D6!v7Q!iruX
z40g+5+?xXbV7<aABw6jPmxa)_<E1i*;CT3+FZcUG&83S+V=U(#pVvx92IEGtDpdu)
zScXX@NtBC+lC;<sUH3m_wz)Ulm~kMAeVyUWWXM#ei(hssK<0E4G+5=`K$V8XQ{uH-
zYL-$m|NUJyqIklofi<eS!7Yr~)4M(at0{;DGjshG&IV;x?;h?7_2c|#Mg)Tb!@ng3
zfA)R*`#&%k;A($tb>fqP?^Y`ab3^>t$E_go2oucpBn|S-9}mLUf^_|Ha3A*Jd*Fk?
z{qdg|kbizY7_i@-3U~-N6b~5s9}lI2dDQsFRtV3-tNVF#g>wg^`MCiGriJ*Q`jrBR
zJttyypU71ADJg9f^In;<7-w*p*}s)Ot8}8WbjW01q~CL0t}$vg5CUoSZzpzr>Rq2{
zC~Y-97c%Au`G3s4c{H1A+xM@nvb9xhRTV{d6*adMMMGyZt$Eg(XDWsgv+7`M&2!9Z
z9)lPXs;DV32O+dd5HUprF}zpz-o5Yrd+z&ve$Vr~@A|D@{<D^>T-SM?*LfYs@%?;{
zQ*RrtxmPO8^?k|`#P3)^<@$BWCS1SKv_l!U`?Rc(Z(KrSj9O{~+KwMtKVr3g%$5+o
z?g5_)tA}81r`jg2ZkV%;Pm&@mM)X6QP|x}*s$6n~a$4R@fEBb_ruh_#%9z3!ubKB{
zA@EFRe$)8JaGJcL4f<x8f@3p$Lb|l2Rf~<SHc)4i(G#IgmrS~xM$O>NZI$~uicIH3
z!&7!ovn4k8C5Yv^QFwn{W5eBZG>GL_y{D<d3=`#&TZ<pIv*|q&BcH9o8AmtYe0F)b
ztTr*;Rq$mm!9r?{`DCP+GM~%P2ER?L@7S)t8GE&1i)A?1O~q8Xr-KaC^%-0uLfwG%
zPC&a{=T>}j^k{PmSf{KOtf3nJtQTH$drd0=vz-{@0(yEYH5XSFC({|EHLEP{b3!$Y
z-{hgI{l+T$N;Ah)dm;LRb)DiTt!BDo)|GKn4}%FODzsbou4ANOL~ScnFdW*9|6H>J
zZEuC#T|ZP`V!JuiAg@%{G_y;*HReoaWn;-x`E`plJH6*=5XH%@nyO?`1@Y|Hq~_=O
znGb7s3ahj*)KSr>d8j2_t<F}TO{#6@x~I8)D~)t(f`=b-50g%<W{|_ixg)ZTPi<n;
z=3SrOhgk4XR)wvfmyg`H%jzE*=6q*7Pv0&zT|Bm~ld_2hH{F=LqWy>m=5#La%vQ&D
z5pJSMT%yCLHgkHJC(KjCs#`BJhP@v%L1}UsqW8+BRX=mHj11(~^=oG~QhtNVgB-`X
zvTwF^|ELHCGesqtDH-5b99QqPd^q>Tw7}blNk?+VUu-cUxy_|>tv(>HScc+gaqdn6
z@u5Wsfm?70q__~kF~xK1U9)%3<)z&(Xz0M`(vj98`d$y=p-<;=l<TSap<j<}>-<}q
z_0cbkq8dsMD@6<;e2!lh->^>!a6+v^N^n`vAF=5UUvb8MYd$NEn9SJY>kr`s32~;t
zSf3Uf!ox;g-Z5n6OWs@rTpGi$lqS;`kELB-872fv-9Jh^*yE);;F&B@)VE*PM6flp
z-m)XMtYvD7YER2hK>nD~r?nD@WOeK`h3jxm{fEpEkN@!k$&o7aA;%9>+u6&YYa21A
zK4YgVaFd_PRzWPd@}wDV-4U0m4me)QA&rVtA+jmC_!pzc#rst^_K*KH)j_?S$7V~q
zqocxKnrBvY%+U+-aZVr;XPUD!OP_MM)y#2}MB|2PY^vtpF^{g=i(m8KqZKfR+)5Gt
z=5z2vn@a{{of$VLa5N=eoJYk?m@kPdhXw|w7&x1*b<b)v$fJf{);3MvH2fk}B3Gpu
zdtngYj^nY`5e%cE>YHE1ZcI>}^L%4gGb?fRUr2T8;OkINn=0Nm=DcSAJ$NAP3);lw
zvp3q(CnY|7-y6xS0&&1T`!oDnrsZn1K_9)OPHQhu?;N+fKotk$iX-@5siOIW-%rH8
zVQ}-Aw7hL_f+eGK*AksnuTyL2ltp}SGTYh9=3dY!-BG6lF6>NBf$@t3K{410Yn<CY
zLxigyygt6x@QKIZELV1a+m#EDnCmvZd{sY09y5I~XIN%1o%UpC&i|Cr!Keob9q}^5
zmLJZ?5x+}Idu?J1BN!W{bgURio!S;g2>cx-hJ}&LU@Oeqoyf4y^7O1ZslP6rrXlM$
z8gq3ANo`l?^PKMZEwsy-D3Lg9R)y?dpPcXgaT(XHV#}|`Of~O`f5iJ+z|A#pij*0m
zGfS}}J$E7FK`$=YWa=`vsvCP%QkwTr&W@LuTkp=qw%dPCoIk7AIT6njt(;sVLn}3V
z`M(@3(0iPy(_~6hp8;Z*{^aR1Qx5qpV0Jl*+daBUWUKAfr>#Hdpw*|4n2v6vxGtPR
zjIizex}&R}DJYpKj6O`l7A+_xrFZ^Y5~VN6*n360=)&VE@1<Fefm>~zs~jw#>PR{M
z3I>xpoi%vo=zDgDb&SiKECEfdZ&q=XTd!2%M+SD!k*^oU=|dxbe}S5fAA?VA_=F&A
zrYMfa1SS^yF7D48@Rd8v$KSpu9AFva)Y<M}D!dii#(2?w+wVSIW^}|e9>P~7;|@x{
zT7_)$31OU)OrFj($y*%@RzMO%X-`5RYj5Mnb~l?e&c=CixJ%g&5t8p9f;>?Nx3YJI
zJ*Pa7c+v?9LCM`kYni!cTfnHmd)X87oRY!fwsMFWfK#5_)>ey&T7I#X56th#7)R08
zhTIc8*I{GiliKZ7g^&K1#^?j2{ur7D_H+smUIw=-M#C#aGdP>P9Hzd!-?PS<I8Qd}
zj+W@?V)e>K%B@xB`%-$h+2noW6NQf+iYd%!p4`OOJHJ^vT8TIyJ5})O7HmoSuI3+0
zrBK&aCm(S$auyhkR*a^S3FL3%w^B*iin^A7Y2U^YXE{^jveY-tN12FZ*^WAT_L0Jh
z1Me-{xh<6=Ru<jjcz^EYaejZ0=?N&cetAr7KMd-<V!DP<EHkckGX{O1o0BBqp<5mC
z0!9rU@26)(q$RZr<yLhJ+Cp5!Xc`*R<sg%XO+Y9tc4SnNh^GP`6GAZq4Si)>K}!E`
z-)WLw^V5`i93DIQ$Njg?2hq4`0i7@gTQTO^VZiBf-^RwI8sGtQPyD6qb5t%0mD^@6
z=6`<i!u}MEewl$X<#1-&g(+qV?ru*lH?4DRne-glEJ*WM-m>pEZ#F=ppcRNC-=4#0
zDv(aedhC3lV+?4g1Ghlqcofg}?=A5oY1~vSnZ!&Uq2-`UoYW>Bg<7ce>;ztCA=Pok
zw%{Vo;Y!JSue5T?zWSgi!5)j^lyc*ozmm)5m^lTX&ZKc8H(WgST;*3VNAp4B?OE<I
zesjNUSxHCx)*5v2{e!(?t)kfeEY2MhZsJsnaU3$!CGNw}HOTggl+sF*Rd1rYkbcG3
z1~dQYLSkZLorC0P(KBr(FJi$_%bs~cRJa!Iu8-5q{_ds_I8itN8YiK6mNE>|;-Df9
zs0W=c#|QX~U;QYw^xQJ&xxcMls9{ft=5&}`d~!gHmRrHs+4;t~Aj_h>Wbi)*vLCu=
z(zJ#>`A3Wx<T2Uo84+N5bB0d3Wj?kgM<q!wcaIEno6zEv_ZxQxDeyT`MwYafDVtfZ
zBfrP-YmT?N8ik2(??znWqjhvNgOp|Z=OkScH7!Q-YgVUpcHe4SUQkc9+bvGmTO8Je
zS&$vnBLE+No;u{wYjnCFP0;CZnsr^#=4q^v=C1ARg`#Xl)~APTf6V_?o{1J$Xf$B6
zNS8UNag0(+5iio|R+2lI4ZdyDoI2DEOOx6*R;$EV4W;_LieMG7p-xeDEFDHSL|cwF
z6lGt2Z)ozgd%y;nY73QJWNwxs9pR?Gc|~0YsmvVggksrEqKZdHs2{tWkfKZqpAce9
zLn8eyV;Rm^K~<a2%rtIQ>x`%W+NAEuvWRGXNqi#z@_QckT1QtGp%4!C__6rx0B)cA
z`P9Xy!G60_Fy)lPg3_7_YSUB+cYzwoxLCK?=|m0RZ`AGH3OiinW&hhA$u3R<_tyOP
zKiVAZM*x=>5;ff$?|)WmTiCFAaTUO73#^6w#b1O--SH2R@m@{0u<0L~^?tilMTLx4
z1#Ev)G(x!N<9v?}Zqt_>qsiv^M=Een)>ON=*5#9T27>y+>%mhn6_v5~yzerj-+^TR
z;k@nWCp}Yu+0eJzxZrh&orX{*1I&!;U57X3y5f0^z3O>)WrF(Uw^y;Y)a2@ZSh0DD
z8E`b_o+rTplQ~@n(gAj0m^DG~0AcsByhIxlJ)JbMc979@Lmzd8{q_!{?LKx|^1Vi9
zm*e0NZ{x-rJ4xs9uP)kECNk4ry&^`9`%J`1f(#w7+!X(|+<Ks5P}v#JBu1}o$UIB`
z0Z}^R&dbkqR>%yHYDf5`QB&e1HnxlGFsk+OLD<#;WNi^|j<+98mE5yfzQ}m+ydhQ6
zB}e?(v(-Z1>JTO_*&p@kcYU<X)uH9l6whI5uKXCckp4K_Q!!9VL(Y5cSw^blblF27
z8?{l>w(YB&Pwh9r)+0ph;0y28-9TFuYCNzL7(bEyz@W!^>a=zrQw@0(Gfc#%T4vs~
zuI?8^#mUuUft8Vc{vWB+?A?(fL)CUOi0NaVYg>~8zwcomGA-7Jo%W;<z3r&c8GDwa
zDp)kFI{jUY;(Sie;(R@>_JA+&0JaJ*$@K+oeQ;k;N{^tlS6PnKnsOkmM;l>{E$YS~
zEJ0bs82*6isHUFFZ<E1!y3X_<(^o~ZMAy6itZ8LcpuA7)<n*MG7=>5@?13)myycNk
zMS)wd1`<D>wF>E^c&_G95633Ba(7L@eGB7M1ycIw)2v>Q<20hRYIwEZ1IBmH^gY^N
zpkJSNB1HQO>gK$op8adRi<Sv}^Nt7l@_@|`$bENP`LLsX)2C@#;WdRsq-vsY)sdMJ
zpjcKP#UA^Wi?%+FmDc16LDB@NhW~$)O8z&p*T}1hOBudo9R$wUXr=D@W;sbz)2@fh
zdz9t*T0FmBC)di3D1BAxkVFc&$+nt{By+ST{1V%uWz3W}8e5+Z5m>6Je)SF<LryPk
zS%v&HNHlIfKq?+6H7=q0@qoRN5uvtT-*np|cuZ_vn6#(dVr*U>Jd*br+d^ccz7us(
z)sj-$*Qcx7-p{#A9-S=*UnDt}Vi&{hDqd_)#pt-!cWXKj9=-_u$|_O0w##!oWcb(b
z(6DkHd%j~(;Qb_Vu=!-mMPl8~M9njyk*6Pdrzp|uL)KIJ4NtcZWmO$;N<?<=XMKI<
zUn{@Nm-w-THHrN*1qlYW+Ad?Waa-lDUS-*eZ)-K>vzQ0XK#izpYh$>T0c+pFE(6$#
zcLmUfqe#Nqk~{4JK|g$=S@Yse#PyU0<t}Kl^0FbG;$#2Sh8!*6+j_-*_1<ItmG(f0
z@t)KR)7c%ywadeCY@8)N68KL>OP{sgi#y18CoY)Qs!h@0HV4b-1)nU)@`EF#RPVkt
zja9=1k>6tmjOCk~=;YSuDC<iSRw=~u#TP5?-(y?3PI)@J*GjlpDc?<2ccxxU0Y6{m
zUxTj;AL4JWb1^jsYWvbf-Y#c~C9Zl0WZ2$K{`%>;?yu|wsLezHciTZ5U{vhA`%#`Z
zefZLsqUqsyP0=|zdeD5<TbR&FIiq@CP-1xIgc_;uGGbMT@$xKPLu|C`gWcfpZHA{J
zT;Gv6;g~UZ{Y-vWA3KN!`xZG8E$Uig`noWN;exlxT9YWT3wlla(8q=KahhegU0xz%
zNPI8?=oOip;W(tlD7izp+GQ8g1d`$_2k(_Heq(-qyY1Nw*+zLMH-z1Hq|T>Do3bsy
zi$K^iVtFp|-AUP(bX(2d7&^^BNcZpO{KR@8qyZ?G5Q2*rn$}LXTsR79i=1&iP|^jj
zV!m8;6U4s#LW@z*$%91q9Y{4OTAcG)i@!BQdJk1-+aK&u%~m)eP{B0McKQxdAYPUJ
zkL47EZ10M394WngKqTLH7%QxIS)#;q`BOyt4=t;{Yi77Z4m_hX?iLN!AVxc<o2D+=
zcO*tN5)uxL8eg_x-CuTa%9J9J<ZzHew+IPS_7d{8lbT{bEy~M`Kg`2F3Cv<H)Myl8
zjg~oDkWD6hlXP6V=IOPXRz^KOEE$CCeBG^0o?hXe_Eyf2^VR@Dox#%;`}$0j0F@X8
zaw(2;w`zMW1`MH1!V!nQCzDL~ck=`$o2^T*?&RNT{3Kt7MlcVZb2@ERW7TpDao+T<
zVY+=EuC`6r_36!=$YT5GI-;8yJ)1dE!#~cZEjp8oLCK^$=()Uraae@d+B2T<?NR9R
za9(iHHyG^aFw?WnVm-1FM^Jfbzkm$C4b4LR)`BB0*Wx4$d7em*%;MvEb-Ypjnlqk~
z7m1N#Hp5<&7U0lXW*^j%5;Vx3(Q_qfi~V}N|0mxVrTyHHbuUUuy_7=<L^G_Oknk#i
z6UO2FaupsmxqztGg3!epLzgA$)JR%)k$*nfN+|9$>BZpe3Id*`cgv38mAbxinw|Wk
zrV;+cnK4aXSu^miN!42>c*_wxzh;NySoPyc@5L<awfXK8)o14)CrI16)X#qx{J>v<
z3s~pg+k~^m2|JfZ=!ISQh|(G&X5304xt52*xy%-tP3BDArcYGEMOw}A>mPY08|-TY
z^-E{#uEU;hTxg*V-q0;GF%%>F=xI{?Ox`ka56*heU=ZU!ENPdfMMZwT*f**bE<$EM
zpG>H@O&e6fCnqJ?>7ODB;Uk0{178T$hxz(cpHK|Eto44LHh}cTxB7u|Yk#zBsjROm
zI<+H_N5e||1HT7(i8;@Y*kM)u8c&YX^!c$B@1qf2xDW3A^yR3b3M@=dcXTLTHQ9)Z
zYs+x+PtX6iGF7~0(CrVdJ{#BPYA9GGGS@WdMT_fuymQ*Z9SZonY|VJ=EQ1zK{$NTW
z<mPczHTwAH8bA%>B~Y?X&cJj0IrjE2YHL8tUdJoRQZ3W9yHl!B#bza+cQ;F38N8UD
zsC<v}|Dnt&=kvf-{qTE^ReWa5r*{^<E!12={pQ!eV_=PnS3c>Ee`bL53+OExE`(Xl
zK^=UZMOgacFhqayCu2m;;V|s&=hGKGjDwJ<&VJ)~A#YKZsNXULFLKnI$04Ji4L=!N
z9!HdgUlc7J%D+aoi=oB~*`D>kWu1yjmzmqvh{q8>c+m!(m*u$Y@JVUr=<H3>NTV1!
z?VwaNbyftFR(ah<mA&o^%sFQ8Iirq;k;Dgd+<&W7;gtBw4t(?N7aY&~iE3qGAJxGV
zKlDR<ALx6V9(NURuzeXiin|KSz|@rl?pihN^hagvZ!cMdmgDd}|F%kjf2RKD*j~-O
zIj_clAgh=nVLLV*l`07N0G!J=0?G4)i0pvNE|nTPV%4sW$6uDpf8)=qk9vhgfP8I6
z+>G@mg~j~#s=QWa@a5#2^Xcl{OAG!-*3{%f8@cusJSvIm*lUId%LmM?wyzM-8FC}U
z{v;yO3@|$nVonDRx47<iC0e=2t<SJ;5Is0!G|!k(qi3uXAQWm~1tN<rBA_16D}peu
zGvNQOIeyhwWt&qr?<hdVtRAsbYT8FQP>gPHJP30~p=9T78)9*ml1C^**pzA7R}-c+
z84^pWPVH`JkUnB(BpRL040h?0kzKt4U2;Sr;b#|olNC<g4Dm;FTinji>6ekTlsMAZ
zBeNpizvBq?zSv7msI86F;rfw!ctKoXTHLx}Te-mVWLxj0O_pN4B8!1F2}|-MS=Q@&
za(RWeeu}uYyK#QA&*qK2M&C)`co@cQI+ZmqGoB|gu-;-A;ev`1B>({}2$a^|K#?re
zB6c;<h?`HTbKkcP6?4f`LHEPuUOg?;gpNr|AnOmfeK*bbx+IRq3YifjKz6y}#l{HK
z@081ImWj-2w^L#dC!&ffvD74r>0O)^Q$hMiHgP#T(ZKVJOcsGbiEp!6Q<y?vD9D#2
zOvHJn8Ku}Vaokk<+*jjpyurTrY~B3Zg9WZ_VZI<A1n=A7FCx91rI9rPidW)p+Jb)z
zISjt1{8&l}e+y2!Mn%0RI98Cj8#Y_G|5bPTvywzTBWYJ)Ct)LfqTa}UExi*3y7J-J
zir6~aZ$LNzvlVv3*~{U<>j!D@5HU|W`9D@&>-^%^_j6KUm<#-rfQ_r3@cAMYUKRU|
zH??S(V@PNWQsIjYA+>tQM&SEO35LGC_60@*+ttS@w@A{|g?YqxZUvyWi+-$-h(*jS
z-ap<Mnd_VLKwla0o@RMAqd}Pz?<-hwyUKjS&$Uy>|E6VXqm-k)sv&ZScubD22H7e;
zW{x^A)DD1_6t1mUQLvvJ7+WO#tH+#~TFSo#=PGWsbE|rQ`x^yyukUtu_aUf}Y}qim
zy5hjXa&|0r2IW)nDM_BAY?_{_q2=xa8QV@B+m%p0zZ^Q<5<*-cd9W4Igst*B>}7I^
zsWq&(Y&!h5B7Hbw-{N_c%TB4lkLLNRw}`(;uUm^4Map^A;b%<f!5}WD(Xr_vXbShM
zR$I%hgQ2ixpih_6`xXAl>HG}^^w_<^Y3W(NyYglg0Wuo=ni)ftZz1;Yz|QJB{^MKk
z8AxXWkscqPpu-1G)Yrl=Tcb#Yyncw6<GyB%)440_;c{+IvEHj%<l=<s#JsUm^9mpj
z5xkhVB_~$w0W>C#!Jtf)PcSS^qcEGgC6e=LmpvOvXN?~;zT9F=y#-E`-~F!2@xvLH
zSGBjbnqPVR<jDMLv~QihCd=0(O@;o9!eqmm(eil_U${9pXe_tMi#U<nJ&YWjsIi^a
zMBf3*pt=r=&(@k-$jbu0HWK}$UePT&(H3jhmVApAwsh3?v3Y;FXsL<U_E3V<9SLuj
zNV*D&SX<g<E0rry@1+Jr#llIHZR*oZ%EQM2AVB-^48S&}zz)0c#iOdsji?O)QhEc9
zuEi<M_C43rC(QfR4~Jc`1u_m3&Cg=d)!^1fa3f!$^lEt<3bF><O8i~J+28Ii<-IGP
z`{(Vt6>l~uc+T*`@dCc*i^DEGr}arGYh&$j6q;(rZ>#)pU<Sv-S2Aj=fZG6~g~B$z
z)+JNvA-Md3U&vPQd_o4PHpg7;dpgpEfxxorLlR}^f=+J#zG=o<<1zB}%Na}CBe6Sk
z>LzPb?L6sV>w0k@z|b;=PD(7mr5Mn!nCwHq@}dTbe=61Y=&X(xbZKT*2CL3Q*4>k-
zvDL4tyqOl9nkYWN7etvr&y-l^7We{;#Lq1_2If*>?0~6Z`(%sC94&7+=*g6fkd=nZ
zWNT6`l}Rq*xK8z^>C4p2SLP?xSamz$sgf1yG7I+r1YwY(dTH{Wb;P8nvjD*%zt`@0
z(kiMdbF4mswE+ZT*DEW>uP!^CD6@fPq)F+wHSc<?@7$_aTuyW{ajmg&EjAPC0PkQY
zb!C0OzXq#O2yaw$iQ_Kix{6{lmO{z=F<7B3u+4F_x!8_61vhdn8!8ixPq%c{#rsl*
zAFu}Q)yf}P*9peo$Pb);SuglFu`ckU8zoA5>7WZz;`ctbCrPLt^fNGZ{2-@z*4r_V
zq*pf3$cY^}%0yx<C9SK~y|!9W6#MzHeuk7EW-+kU=M>9reb|WP^4Q9yG!bHk?W=^E
z{wQ6?>n7U6_{aE~)t05iEXuKRGsm&A`nKWEFT$o0^H7;GB~BC7LaGbGE~+_dDH6T=
zCqIA8Rh&+I1UwA-OJ8Gszh~3yz#sSk4@0|i+2~UAS)<J^cju|<$1>oBr-=RC75sd6
zhU&?5Ou>WDZqafxcy%gnTq!Jl&7#J?LXm68l!%=qv#A$=?aSIf+)ojsj*lBWer^8l
zDXyc&vr9ff@YxrC??b0cl?=4zSy%aj;)RFh$c?HzQ$7`cCWPhpSogf+S=+zyWYcq_
zlLRKHKi<7?@b*73J(yL6O^x5>+;U{@BFt9hE(gZg;;LD@qQ*Sug?63s2hCkBO{N&#
zPkFjnDaY2GLH2QYQxB`y()Q*}!W)f@y!)nW_0XgJ@sEOrpDHIuU9);VVs1djN?kN#
zTG3K!4Bw8;DHfR*x_EKT-l{<ke<nLRe~{EfrPsw^=x+_zy5PN9cIuJ6U(P&a3v^Jc
ztefHImZkQT$#cr_8@rD|4y&!Zi*cN?dndz(At<lT4nCl~@*ZDdZdsAQkeL?w{lzeH
zC=J9_(`Fzx6F{FqEvLL)TjX|jt-p``K}!{$soRH>#w{f?8*}5TcW4XMKI|qiKqnn7
zQK8*7+bscR!PI1=7tAc<js}q+tyRMg(`kNs{y0+Ub01R9VvE1{Sy^#TMFqZ&&${R4
znu6O?5ckT96XgiCbK6Akw<VTuy&Mc?j+g|7nlh3maEpVZfy<AyS9g&Q-z+Dlr4}2`
zaX5G5j}V}d-O{>Z?e@5<Ft;Uf|IJ-i)JxMsI+Rwk-52vqJ0S1v+5_+ISW=3)c!Lq_
zZrj^P)}db&kJ$^|sk{;H^Iz>%Z_+Oqrwla~^p)Eyoae4Eefd&QukwStRsZU?()7nU
z{#xwBYFoDJINaDjsSD?iwYk{EC2Lh9djwtsj=VN9an(3{;7q@dMV)Y5IH?ga{*XRn
zuDe{=FqV!UC<k77SJUO5T{?jnHLNRYXN-zvJY+9KrB}Csna`*TsE+?ePEQHo*XR_A
zBL%XC2+#+t{CJ-=5oP}kG?p%<J){t68M3zv#*ZP|={+|+7BSgoVJg0G!U+`UatYAA
zz7R`y*A}lSHQ)BJDy7w-0-sq=!liaJOF6eC?|Q4R*J_1b#B=E^2&Z^1>olX%L34H2
zWxcmc`*^Gu$c#XMtYum4FJawNYKfA_NSBo?AGHLnYCEk2v}_}@mv{S+<khb+p0inj
zhSbQv@eNDy(zc?bg4!q>lU13^_&VR@*p3#3D+R8X4qQUh9le}%r#D%&8K3X<qzM&<
zzX@B4qH@DXt#qQ?WZx&4M;BrK>IJq*1^whfX0%-oNvz1HUzUAm!XRy)qxkdg>BXJy
zR~a&KwXZ&<gi7Z;PZqKD|NRS8Hs2nJ*3ORwGP53MMp1Bqa8H8B+kRS&vP%0;cwxo5
z(w;=g2-E}{7!8H9y5qmvhqmH*j1!&e?rt$~+#o^IMyzPKWxdoMZ?Y&2b6-e?ls|Z{
zl=f_Y9(>|<4_xuPCUhu}KU!5=+1<oPCE-RkD->c>(L8_=U4Yr2w%P3&6*O#4{(S0^
zn{h~q4x-s&?t85QDsa`=ayYT9CsU*;oRyTuF$BbzMYr1Kz<88kJ!yr%>+Xs9p7_D`
z>87Q!qvpIr^uB6gy6y9wPq$=WUYi4*05U=MZ$z9%df>&@$9fNAM6>oK{s_nJJ+TNm
z#pz;aXCAoOPLW-T<Agly5L_Or4SS=O@k!oN{%J-vi%y}*WAC!J48?om;JVDa{yqNu
zrp#u2iJoR~&$v?y-HxHnxcndzj`o!LrD}$P)H6C2S0-vox?!+*kfRh)!F}9W-892}
z9_E7<Et{(DcHS5VuLlK~)@Z>pEWajzcA8=KFnfw<zj?h;zr&cim#B$Y+^$iD1+NIM
zQeHU=)PgVdc=fDM1j#r;rAz21w9Dg%dadNCblxYZVe`F(#rYLgr0Z!zV+g+rbqBSv
zHDC*L9E1{_=-^^t=R}u1ZL*NA^3T~gNP~RorQJ-!6qjUBEuCAr+4S}B69OL;kQo?^
z@Xsl@xHdHtSZY+3I$DzN>#AFBU<L;-jIBjn+5^ei9O8UPtmEXig>xEfUWl`t^6A%~
zH#rbxGdx!3#GhdrM3gx}zI|M|`ma7-3rCb^em{GqlGI=eWa7W-dv}-~pT0CC;q5uJ
zM$jWvQD(-(gpMkMr%ma%v1d>w6V-&332-B9mCO*VAyMHpk<&q*jy;)L;{YeR)<ItG
zUpCGh@7+R{ywLVPBr*BUm7rnvXi*@(TV~nof;_xUWkO$xjgTtUj`_V}saHl}67JkD
zzFKG~>%R~g4nM}iJaVh8L&2Lku+RdDrG-YR@Tw9Pj6BIu2Iyi_$7yG734XVkDjw%q
zO5$WU`gH0gz8wk3?uE1>h<{j*i(}8SeyIf>L6lf{$Pp=JnFe#J+6$Cbp^xVBgoFj4
z)Z7|8TlTzga}*mj7`|_d^R9ge!f-u}IH#NQ0e>a+Dsrj5Lnd&|PohI+Mq$FMown$x
zVo=?v-m=6Dx|1^Igw1K8XIiX*+7hy}Lz%^^`X%r9?Kjk|V&}G|7g&?Y;pJNWHY<ob
zt8=d{4_@wSkq>_GjJ^{r@nzXR`f!!kHUqNW?ur~k%KM@-Pmm0S>RrYP6#^>UJ5&TU
zqkq)!y(EvfctbTZ?-Yq+;=PPxZ9{5_#`Pmi$i88q<^>ZQ^Wm#=8J6RbA9{(Gn1neL
z{S<s=v)g@_$Zd7gQ}}F`q*xJb9f3$u7+Cfs5VzwB0?U9zt!NB3s@s@nE9xqNgzX}*
z&DLo|q&Je}e`iCeWpnJ@0mAKLhQzqjQNQ<0iNWA+^W6!(E=eD)eA>Pt5XC9nQe7Eh
zQ+Jm>i3A96%KE9D+?@CNlVPKwY0dZK-H#TRm$$!1v=B17sU|`&ag}(~b#&X9yMO;l
zTtG(dH2wFHqL&i7k;2v|qC9)_wX&OcSEQ^X5-Qui#Mqz)@@5upI4%e;<M#DLCMq>B
z`lUIsVG-j2A0L1Av>aVdZSgCTf0t6g01g;QY-t*uFSyiLWyHv_c;nlaWbYRr1w#88
zV$jNVMyA?&IF7icC1b1b#>aJ`=gP)3X3u5APgle<it#X|)go>grgOtw-r8#nBcOl(
zBxzxkAN5MXV-IE8V$$z0GN#~qq%e;r?sD!e)!43h{Y=_e@Ze^(M5n%--GDi!&c2lW
z!$<)K(=|GdamFx)l_&b;HlY>V=<uqpR31mE>6skZr31KBKfdpiL3Mo2wQz@_X7jBL
z$}OWxmna~Jd5-nEgDF^oNhV0D>dp5iU^8a~km$ih!x@Le$x*3SCfTo)kpVWDKRQPp
z7i0Q4wh%Ql=)m3kiqYJdIL_5->+=2p^-G&?OyzFhwP}=E#T5~RbO+mV6`iF#gz#MA
z!P`!THO0>omSq>x(a&mZ?BXS)B%mZvlxrPDDcUJ>6a7;0EY(z@f|F{=ERT-QFE=bm
zC(3ooxGvQ6Nddc%Zj7;uHtx*j{Rfi=ch~giJu|73lI5PpT6#GKw;m@5=5q(6<O)b2
zU~J7Fc~uvKA#x>dFVNg-$)zUDZv6=oNy{U}FG8ELos!ZYt0qnKO)sdsjM$p1S7X=4
zTa4>(I~H%(*J(+4bG_6)_HAovID9uCF~GFpX+DptEcUkE%Hf@kzSJ^T8&ow^7jEI>
z**NDl-wl2rSdc-A_nLt@CLK^72ri_X^9;+(Tp<AG-3XQb8MER#KGd&{7i#gw9szwO
z|NO8HC#=i${7F7=^D$Fi?JILA(bD8izZ<k9B0-H_fB;p5$^bbZnO1+%j+%W?tlKL=
z&&!+jYd388+LvBK8+eQ+>G=Pik8CJS8A9s=y_Z$P{(qoYo&O@<qFs^MgMp|<0GR^L
zb5-0b1sh;JE;s-FOBFo`(R;tNVC(iA<R>esZUz)yZ$U{%s0;PeLNM|@BN3locv7sq
zP{i9i6a#ekBmwbf!5<jVB>Lm6>$ahwnu`+^+1S}$+Q25q$H>cN=9R667PnvddxNBS
z$4movPrFj;Y*%<1fw#@SQj*8;QvU);(lf}L-^^6FcJ<Cb2v@gn=V{)=So_*qvGp4d
zs1CYBKzVC!8<>vdn!c#duAKB-%Sk?FDLSk+DKz{Gn6$)Cq4vYhsG1;plAbkCFZ{I#
zXnsPS=AO;-Vg8A)oiOaa9!k{s6S9mwH-`M}6K>=t0>IkuHW8`SReYA?^%rXb>0Y+(
z#9Dpl;|#RmE3(a)!RP;;HY!)Jcnq8e2VkyBrX!;B685!c@SJqBrJCmZC4>Gn8O2c*
z*6nocPhc{~`a9kF--*d5X}p;YqRM=(t$SY_7e%;nrlA?$p^%*|WlMpL|A9;eiS#r+
zc>LsK$v<w9=FkBMp#=HXhqYRIV?0#vhz&Gn<!8pdI1zh7vW-8v_Ej^(rGo!coysNn
z4X@QBbDDyE(v)bpRM*8pB@qr<ffN2!uX+{bFnReuS*rWdgS6fdCp8oNmg!(Sf2&<c
zE`rb>yRLXra_f^bDZX$O^tn(I&0eQ?L(NTm*Kv00;aooJg)teb`|8AhP^xsWrjA|z
zcd5z#7>0Avi{F#rGGaZnr-#4N>bKl)dnaC8AOjq$<-=*^2a}V5awngZ^Bprcc9$J3
zo%-w`{e>1i#C~}zJ}`P|vTwS)GAB*CxwPk=*r9!?(KaFJ+&O8=qnPrax{t&wF^d6T
zv{lsQ>8GL4{{cNIZ@Bf1=*ydFu1M@OO^3MT*1^}x0LbgdSm9oz$Z+#TwAin8-7p0}
zvZ*WM$qP=?*B!_zU$5Nm&CTz(O?)N*4bm;%UtlC#g-r&fan2ZcZY2W67ZJtuPhOgF
z=a+{0m3Aj1x~&+{1b*n|*Cn7rbwzU*pZJV-nu0o1Nm6Ftr}lnvAoyz1d4DFqOpMN*
z9(}XRb1ZE%W1L_4{UYhb+Q;}c>6y*%%AK}r^&gi(jgZg2GZ)ZUss4|CV<{bpw3;6_
zx0mpT=U<;Uu#nB71v{Ycg%h+Po!d?$r~bw=i=U_I^tr{Bt@70Xr0FI94bUW*pKt#k
z<C9LEe`pfdVKRkD&H0PRHihnkvP+sogX=HCY8u)cTt7^r9I>NFziQL{g-(qCsz=p*
z%$soG7r0j{YQ2;z^a6h{pDTOkpjA)D@mE_$X@8A+>*I$se>g9EskF@M1$lv9mXqV~
z2Z~Td<)wRGC~Vd8W%qj+<_~H=e4qxa7-lt9$FUlIf)q>~%_a3b`E`ozD6QLYBBxU?
z6SW_-VyH$#@>4xq_}(~C&VbEUJNgda3)I57@gU2r*l?#0C`)(z<LwM)3<f8{k#R)s
zK4-S6caP4E22%R|v#VV}Vs6u0t^vkzdC<z;Nyb!x$;gTR)-t_Gxxy+i6TKA;^|aql
z&k10zI-Tx4iQ2v5ceJpJ{2MlDbrAqC8fPQ)3&3Y7WL+ZA3^Y6{O83#uJcu+u#!1yF
zesrE<D!W7Hp;lQ%eeyU)cn;O=csxmD6jE;Mne&EyAJ%>DjDf2-@9^b)*nP|VTGJ1=
zuJ^H}56LD8K-11`NzNh6u||QPzCNGRoCV2K%G#Nyyk>SvDX!9LQr5F3$X{j*o*awY
zr5VyY_-c&WcFi@wl#y0yQe*0V-+yiI!%5o1{W_)#7gs=^MdmVwWX%IG-5(18pu$t_
zig~Ln{xEsKFHzQ|afY-TO!d4jBP~E?u%=!V`B|=V{148It|#P5iWaaS9SBi6dpn%D
zV5UIRCp<<F3iPY|X~GGGKeas*MikXMKB@H^PuG+_4ULHz5GW84jjw+D)22bg;gmWN
zdG)ND@~h*mr!HOm^EKJ<;7_xL=wq7X3j@E_3=Pe{*d#6tl$XH%Vb91r`7`EFQurtI
z2YmIxKao1%um5PfxJh3bA@eJ3yXx6@?8;QMshp(C_eTffuH{nB)5XiW#l_AgdJdTC
zeD{SuYw8(pkcw*JQFan^t?>9R2`kmU6}a7T=v#-06VwI_Vw548e(Hg@w{uR+o3q+w
z%NU3LJ@TI0%H{rDqCVCP=>nP_t;;Ac(^G$l3)D1M%do(nU|b%?9Lnw0y!6dKiU=3f
z?LjbkuEZfS%Y)Ge#-4!G?EL2MY^O&0-J+sf61V5mTx<PCRjBX`IWL_EKJ^4%)l2oP
zG$y9WCw@6if_kTN@>RFSwU35YL6EJHIS_e?%Ds35bWw_TMd%^*&7L`#q+=yKDBf^=
z1+|ogdYuxT2|5!ha+5o)Zwto}N=E7*m8h@?E{5L9g?Z1&gErQA>ek{l<#i7lJrCpy
z4d*&n3;9*-SI~@C7Nxf{n!J|ED7fLy{<P`DA1QeyXhiC#82N)oKms-fG)5*O0nu!z
zzQ#6U>NZUSunc}#I{u4%=7}8pk06Lw8t;F`XWE=-v(C+l2M{Q%bRc5CC!IH92LGe)
zWBY+e%t$A~^(X*Yg-0dy+MJHr_b3H=#me;VEe_@yHCVlOX@SFkLYaaIVy-pu+)Dw-
z0zZjqfC8TV{!gpVJy~a5<71>~a>XTeSCtz{D=fN=wd_Fus<7U~<@ImvE`;4%)@hm<
z^7#Q`Oe!}7{5O9vaO|j;JnfVZ9DKkj>+!X2w0YYIM13SCV$!Gs)y&M3utkk;KUbTD
z+r4TyG=M)S87m(w(k`s^$Di#_Q!o#7nauO2Zo@&xXjs|*8AK1+QxN{LUi%I13tQ-N
zNpb6*JS|=x77mV*6E5c@b=IQypZ){PT>S5VnZ`Z4P27QQ#&O~kofMpZz59G$K7>0!
z2~*!-c*H6G$XX?7%na|BewSr!o0i7J?w_R(rNW%Y;p0PJ`8Co#jPrJOULD-_j*h+p
zDprto)-eb^F8DzV+9V|~JQMG^od7iD<-6$^Qt67^4`1kiH>mjV?NTQl;}))q+kOm<
zY%qSyH$L8?Hi3U`iH_xsSX~{s?`%{z#LvuU7dp%@1Ef1k{r8UsW3&sg9nI0ghC_A0
zv|@=TX&MIpzOpd!f@K`briE(($r&GloBZ(_{x@wR=@5shHb<K^4mu^}`@1Be>Q@ZJ
z$rj@#$|~%jxz1&#V6H1hK(TJcMRgNQljgtT*~_2yKcz7bQ5kZDH2_l|i171zAEQtN
zT|nvXid*XlU;F$om&;c<v0L6$YqxZP{J$eH0Xd_uSidAO{Gwo<^bF9==}1<yWUO?M
zRlCq`k-mMj^d)n``*3%K(Kr^r^?~1!^FO-d_8j&+Jew=haNOjo40G>}<x%#7i8}!J
ztmx@5=23rEy|OCpmU_mmhyLbVR$Y?_va{Dp@U_qF<bjzr?dU5qPHaohr2x$he<blW
zpqz~`z@#t|xn}!wcl4T}35p2)XWoX-*6254-<~80vY*e!yg55K!{vJqDPr=e$rbq!
z>%B6<U7|M`z-K2r3zrvU)qNs{Bo`2+cL^1qXj9HnLiXF0X1E!5G-qxBadJnbWUOqI
z=sdYRVW#OY(Zk}q18pJC#%bCS>WIsf5$$5bvc@LQ#gM22Qg__Q>e!es+|``r>}fEB
zPq*-i`ay12XkDbo%>oaPq6@rRLusz#RjcE0?T2PQy6Wt=Jph7G^bNpZGSdA&8B7#Y
z-?de_zg|8KwdJp8o^i>$_xY1C5+oXYcLo;q7lb*j&k7tz{MSFym|XWE{rG+7G)+U^
zKbPQN_P@hzwJ}Tba#3^B-JeO`H<l6s5HlueO~w#1EvX;UqMfO91=3PqJO04@-3Seh
z;Zx;D_jR0+&9BfK%&FB~&YPzi<o`VjY5D^Fr@9DShW-g4!#rOiAl9$dTfu5~aNKsc
zvEp`CzWKSA8y^yvO#||54?-?8j@^6AWVle?vj5YIC$W9r6cEdtKI~MSaU$+MzO`J^
zW{SVDfC-}Udjw&u!3X5|HmL__8FQcFcy#uHAL4o966fEc$ddpRd85?pAx^L9H;VHk
z2zgPE@vxh5eKn=@d@hHBTOoTUr67<ZI<&|nW>LAmTtmSaYLT8eU>YJUYz`m1;T1KX
z@4YegPg{^E6OfC^9^*~#zhF^U!l2f98=w$egU0>FzE+`-;9BRmg}jmlPNf1uMC0%Y
zWS@rvZ$VtN!mYTG8q^wT=tKW9r}kEm%+OSDxW@R~qwTsa=g*DtJywN<Upz_|`qOhA
z@=vSs_I#S3GEDU@3L*T7M0UapT8sfGvhKRu_r~if&BqAL71{ixdcT%m20cyony=db
zEqmTq(wcVwB-!?E(brFJR)u~o6gL?FqSL(<%sq1fb^3ON`KkNqAig>M<>~RX4Z^z3
z{=`)SRc8WMZX07Bi}CT$tnLW50j)uaH2X}pP!S1GE2A4P=gjNP6D&mLtWB}|L_@B!
z`SQD(xXpp>^xKOBHmK=^nw-Bm^<JQRPPfGeW?~-?E+k)LFR~83YMmu^$#vHbpIWQ)
zka0WlI0f_{yn1jkKTMjn5=2_H_6--zIdgNQMR8|qX$c&Y|CyFQ4oQas-8S?6{Y6Gi
z1^fj0!Gm+&DL8x3(@{T4OIDIYlOu8GU@S&Q5+9&`=6GSXzml5U!NbRm_^(s0p^)oz
zA1NAaJRs=KE_0*of%&NeHYFeb8)$>pUG;1e*<Zudun!nDQybbk7=AyAwUC_84-U5<
z(C0jHyi`iNj{JnY&LBJyIr=nZwpjYc<!4Vuo7ukH@6>P7p2;(;%(czuso6fRA}NH4
zAChXTsimWv7ABPUPZ3WEHTtyo7N6Pr4(%+qMh0{zG1QA%3``zAd+?Ak0LP(o_D4E3
z6G3peG0A4$S3q2a08KpkHq(zj${!nMUmh1*l2me`J|%N~+)+IFjkv1s>O7)H$vowX
z5!%?7b&y{DJ_Y80_4~W#Z=bndFF$JQl(LZjD&SW|taUybupnA>J?Ur=(_XM)NWJ&$
z!FGY8hxcRG#u@$wxG8pFk~N!@COs0z;&8&n%g=Ij(AalOxbDi!oJo-SlRQo6)p<uT
zzBt~y6;Qt(p2EUDu>0M4sPU5oj~O|tkSU-2`kEMXNf`meHpPJHGL((>(&yld7`O4{
z-&WSTw&ynv$%|CkrBynyo5-puE)PLQ>A2$Mx63Ia8_mwcS0FJ|7gyB~ekC937D*u2
zrG~&v;Wh}70le59<RXwIM9LxTZ?&P6-)MLkj312A2A&W%Xm_<+5MZ3@<_{gGi=2w>
z!1wm~5d6kyU6&?a^WHKZx_L}g6B0@1n3XepCvatVGcjB$g0a^0)79F3)S2HZCue62
z`kOx7AMp?>)tb*wJg~SBt?*)_Uyza*E7ki>lzob)RwntO#oEU&z<Gg*|8I%u;kj$O
z#NiJ4hm0(SpPM)0lM~lu&T9Q}Clln~<t?)-(f8R^ynltEL8_s^%;f1wkhdB5Qq`1?
zR-R}YD{3F#CS0A5n3l0;#`AdgKH`rTme<@S{j0gJwiN&9Z|*+6(8>Q+nyTW?w1;i7
z&Ltt`**>e{PJN|0`#eVS;{ngx!D+zBK=(%*fHW;a|3&A{6`NVUL>=$dZ$W3C2L_|>
zWd;45m|&6yRt6fnHq*!A_m4gR!0TsOJOkWNQQ-hkB)U#crPn@-t)+<lS?UdMSQ~1S
z&awpTFVcd(R&40>=7KG!fuJIW-yjmSE%VvLQ<`;F?A0{t1D|rWCi!MbQLkk}wT<wb
za&!`_R9G4LZFub*Q+3Nc<nJv4hSZk6SpHTg>a$Rz_^89qpeblKp7@8I@9KR>yVZOu
zG2|qf@!w^o!4#v^)!aPHt(Shs2<cSI2PDH~yPm`}G?RM_|9_g4zD)sRr&NJXC`Dz`
zT1#`@ktoo<CtFk{IDk6SyKQK|y)*I0zB23JhC}8y(*hmh77)j2W;fkeSL`XH9S>>7
zJx6JSPK-Yv?z5qN8KeqWkMt_D?)>qkR+c|x>m_f2<E`;QzvO=!nt!qD#|L?tmi?pr
zeO2Vfv5e-Qp!fG?=*1elV6To2LB~X4LG$K3St*B{Hwh&|kUA$9G_tcQj-T9-&h2Rl
zV;9t}O?Eb}vd-NL+^gEd`Byk33b<lL!{#>l$-80-*V9XWim$#)H>NSo3B`}hasfvc
z9P|+UeMA}P;!;~KWUlOe+is;U6S_+nvm4*4*s_V~x|k>p#rnQ5(ZC%4&F1ruBEe(@
zq|wyK7v~Mz&k;cQIEs(sbHrq}Y*WjP5_%e&9zs|IFD`7W2)1DJJ8t2dUK#cMZ0=H5
zE@0Z@+~W7MJ;I-#AfeX(EA+HP8yW!bN{W!^(Sv?h7=C$L(YNT{>Rn%lAJjchqF}vk
zrzhOx^wnfQjj)?5=r1;@3c<#XgmkEGtt#f~z}&4{M(~E9Y0^u;BljqD#^0Q3VL5H4
zobTOKdxwp?qNDfl=}PdO`uXLD|8zc)D*wy$@n@T2GYvqGS|YE;6q{^ZaOv&%Nt239
zR%-Yku9;1nlthE{ZLVm}3@Vcab%ttZ@Dnts(S?eJOZRSaNV`5OpMvY$zV>Q#YP{hf
zb>A~GRVrMsYui~j&+SEmC`*wdWUA0a2D}&{Fzm6=$5!v1v*q%(ws$k6-QQnVLIB?t
z!>ylr*JmoRcR0JfOXn(g;K5(})@;SgKjg#1c<S<Z38eAikFGVCh!@ni9;vz;x*shA
zAU)y27qV|D_!Vw;s1yT2JI8OU)NVytplfDvd}Ak3;HQ~D5$B`Ld-|=MsznjenYwK^
z@LF?g^2-Lh1Xb<;4t^_`7^#CWd5`%Ve=gwL@H1a<4=X!i#c?-Lz4(Hm3c!{Oet|12
zne)sHw^=Gmg1aC5^f9FBR1|SmRr$Jqc?xK_g%5V`T1RU_Wpddf@Q$qwgY2>gLjJcX
ziX5#{bA5@tCB!+o!(m(WV#mwO1C2BV{atsw9^8UAR%EVO!UY*%+VY^@)H}2Wz3);I
zF9Ws_*#l=pcXeT_Qidwqk~ar)5iwQsu?mL)Z$PN<4%LY)_wEOe_ffVt@ckz3^C&n8
zM5kRYryqUAs39QAXcP{>T=+`fY=8iL(Pe{!q=4mox9c5rV2u(s=-pe#Rw@<_R{R#a
zd?{%Hsfg#9)z<yR)sG{96WYLs)s7#BK*ujH`0TiB#|W}|M)f3#%+>8lOu%~e$_D_u
zT+zM5FSd68H>s@uUhRUIS<a+nv5;n~e*%u!{3MdA1d#Rw^vg}yx7*&bE4+;T=|c3^
z$WeJL7(vQ-p`w74u*i#s-pLMAO>|gYBk9)bsZ;lV>U!Ra0j2M?3klc>g~it36N2XD
zrKUeU90WwetFQks!(GjYPQO#m%W<SL?ap%1EGr9}s?%}dW3f(7{3Ta|wYt|RS}yLu
zz<2%UB(3xNwZ2T~S1`S?Z!gcNLy!4GB>!^~calzt>eZ<4s<6Yv@-+_QLg=N{!lm8P
z<?c%^DDO9#-0Z9HfV4)pt%y}dl9RxJWAQWi<s~_}i36!(qlas1&{9uqJscEUe8q6m
zuzZkyMgxO*n2DC4X27jJ1{m(XoiyQg#?zkdq?J1&?eeEqEqaq3AW5B|QT_Uv0i{rW
z^?@Fdv}rT0>~v|%;Ni827=@?rAB0JM=RT^&+jJcoFlOu}V0oO?-V=^NqXuhtNh3AH
zjO{DitLuT=Ery51jvpt1xqC@})`5yLEjEKy1KS8-!q&YbtQPh;HUR%PK{S6ydt(yr
z7=w+y(SqGILO8$*{Frk!ym2p7m87E)_a$slLx7*yKJ;sU+HE~3uH~X$R#4;A^fUDK
za?$bK&80#($%&@HwAXmc9Y7UI6}^d*HHvYCfw?udVgdKIwf=4xO}RR~5y!7ntn{jy
zt>Ou4WkOe2SWRwwO;wxCj#+Jg1-~|0^-LQyRa_<_<eb=LRF4sX5hhlK0iV8u{#1Z9
zI`wfz+En^LAtYjq-NThBY`(uFeZqZQ#_JC%G+DAjf}U+Hm1w+m5F57V-Gy>^)>JNn
zHYxL9V_X@UmKht~^V&FGU#Qq#JW8H2&2auOx>5rkUJy){hMwh8SlCt)^p3u=>`iGY
zHqWkJ<=!-(ChgsuK7=CnT$YZv;113|)-PV(R&y8~D>H(7*3fyZW<HhQqbocLY$Ojz
zo_{=TmJO}n(Js90+*aXW(()#=h2YB2^`dSGz!fONLpHc#761@Q%S1LgK9F&f=zPHh
z%Jw3299m<p!639Z$4ZS|Lkq*&Pr*f$GeBUyiE3;8#6IPkEeUIsa7G+ZU|O!b4)9V4
z6~)96W+qTp4@(dB!Vss6W0{7x$3Uz?qT^hmNDt7uYjYlLt01PiY9ct>EH!#k%4xE6
z8R)aM6cwfObyrjhOY!~j`}8QH%oIBK&!#-H;xL~zQRf-%l0BA^os-G^j?C-W21wFb
zZiRyCj&LFU=yY}||JX$5J?)J`O>Dr#u)(AUz$SUBKf0C1yDXG*?>@&DljgQ~JB>5X
zS%oeyur}YWkl^R0*Q^Y{c=@-iONX)E$O5{Y4FEi=-RM|<D$MCwIO#}qrg;$c(YV0w
zR(%H#fTh)q)aif1_gf*#XR1KT-S)#`1~O|S$yuBG<Pu^)FMZ#<V|8krkRxYb7~&G^
zGS~f1>xCK9I*WXu$mP&0U>?1R@3jqWMilFmW|^Q!NKY)_HZGc!bhMjKg{9u~DeiZZ
zGDPyNr%8t5j{a8E<7Xa_xG$+~hUv>#B9xK>NPrLd;E`W55X%%9v_0tgDEZ1~?s@bT
zh3sjR7t>k)hy8n7+s0fFigVhtE0Dzx{bvu*Efk?*yO%98yQg8C>#m@^Rbwv{ruH4k
zV?ZWzr6-ox{vu|@5*>U8B8+d3HxGC@Wd|!aHgD%XN;(|du`#Y2k2jZ^k5UX!Xs6Q(
zy*1YxD^uh5J^g-|FHViYRie<PGV;sT9nXdM3@k>XQ->}k{ItJ_=m;o8D55)@NS-43
zE_Me_{J}GR=_Kj{M)YEx>}Ko*lfQ^YQhMe~;|m!Q=yGuH0^=tAMZjw%$%mEJF6fh8
zxJ&6S(w;K{jm^n-bgp6?k2s1m(EzAP?*{;l0_1-SG}4Juu0(>3K>@~1Dt{4;<&xNX
z`~K*%Vq=6w>hVw?@Vw4o<xQa7UGATLF@S00%iekk7?}V#4=(TfolV{6kXN$8P!Z5m
zN))_TD+v#u-3dI#slZktVY?qX@g@Z<^(WORpXg*@+k0<DC%4YL(_t_q%*khAW~_81
z+p?{<HC5Q0`O4XMF#hw)KD{ZRG<U1sOSi8ka7|QO)$nEj?i<W*zmV^(@{X_uMK@~!
z-JI8EeyjE^n-9#Jk}(A$$@4<`B~}|2r-Tezof*otb~nSLB8CqeP5?x;x^bN#q;5sf
zO!%|2@*fmvNEaTJq3eQ&Yew(lMDz<HxmI!Nt_OHta^Qlwtmj_*n;7<7X8s3ay@C0E
zuc@bGJ$TE(K8b<uueX@*e&-O>dzMrna@%V85t)q?yc}PaB|9(J=m=7~ipF$nZ^-)W
z#ZxsJ`I`S%b?+V3<hq6XVqX?yD*`IbWdQ}T&^vaN-a@3SNDG7(I)vC8O{JHBNKb%B
z?*T<RBvL{QB!nIaB|r!PLg0L?=01Dud&anToIB3F`6FXM+V_6#edm0h`I`wkf>Qah
zR!VsfQfn2T&}<GUGxWc7KmI+r%1vJp9e+WIJU(Cv*yfX0#8qa?vkMKXmIi8_;?3Pj
z<K+RfDgoE(3oY^na979M=j}oj3iMnoqJ4u`14aXQ`L9q;R8SqwB*9WuwlCWi@4M(I
zbAS<qN3QMmx}o7QvUU(<^4Nu28Ip&@lj1KN5p8`;PAUpcoSg^Ei<HNkwqR^A;AFx%
zs&Zu6cZM}hywfpFFROuleDz%9!Ew9?jinG4D4IX(RSQFG7D37&=9oCTc%Iq684^L7
zSD0*Ea(zP~pW<uJpbDn%)WXQw9fKfO;`Df1K<wM<X6QZoRJZ-g@w#te$BdVKS;zc`
zpCDT_GTO#dhRrq&Cg~4CzkF|QmO8CYhE}Q1k%E7$@jdx2{ud{b$MZs>Tict3n3Bd#
z$m^)Hykr|Ugxk=k>uHG3wJI<=L#e_f)`WO|bNND-MU{2h#ud{RgH$u14hLmSaHYs(
z@;%C)t~qyb`BqJhnM!dfau+*Vyq=h*R^j@iPQ%CMrA~R;{*^lQ5mU;PTQE37V%z!O
z??y!#I^z3~yuxUUh=FoEK;JNGd8Oa?3F2Er*<LY_LDI`~s<>I+=@C`W<u{vaBWe(1
zj_Pf|E7lS;+<JufxRwrA)wcvTlf*L-ESF8^oIA*Jo;i#%#XeJ<8_F8N-7j%y`z)kJ
zb<*9RrtI4j=Y=f{Ik#=8r=%V6AODgna#b&i;urjFb=RCmz%_VtNNx!YCy^q}@5UXC
z7e_KjX4&N{5IZWr8Q<d-wW$)rQpljAMh~hE;4)%()%>S=(;R^XlPFM+5cgv7h4)bS
znk#tbrB_A@%mifP4tdB}oMs{jhSHl~U{hGq*i~WWA+Z`F;EWtNwOQ9?`STOAZ;g4Z
zWWgU)Bca1(Ory4EY*&pbX3;>o2hgOA)GS5?Dk9`Z2dB$t%T7@3yku@vX?wB;s^PDj
z;a82L$Xoss9mzzf{?NwlFopG!{nc03_bSvBrALaY6#|CE>Gv>kcF^h$feY66_wkAL
zZ@of%y0NFRFT+a6!9TUYs9YBZn7GP92oQnG=6Zlc2e2I;u1^rD%Ur|yT-$;q`VzvQ
zq;*9lVCuasJUF)yZKLapT(Pc#L6(+J3>3j~EGcBYiH^ALRCv+)2Kt_q(WfWdSj*xx
zCx_>y%KrUwTPsbsfT%j_*JN^mBfYcXRhu(XnIYM9(ejgxS5bS4N(nE@w=(?$Qpj(B
z!CdyP*aw($y#}@Bfdd_th+@QFD!v|;j3V~Tbt^%B(Ck0%HqyVci0GAcSxlRmC4ZZg
z+pYn7{yICn*d@6l=;d~yR9cPSK>0~y2f|p~pqnS@$_Nktmk?kf56o8R?d6B!u70H{
z=Y)o_3SB{GG9T5Ivk5PsE#BYi=RTnR``B^_u$jE8xHV(y#SMMVVbNkzE<sm&8ar8F
zc5W%@nB2djTGC3dv)byriuRk9b%1_wyR2q181?sLQ~Pkq4{;q!GQzBRqG_pLi=se#
zG8p07V?DCxz`&_GB_6l+E??Z@k7+y7+DlzQsn7eY%8Fo%msVlW8$3U+kg(guYk*Vp
zOAGicB9xOT!Q=Mq0ivnww+XSY1XmyoR}CF~p<3=SQ=ZvLZv3~<T`>duD|C0{>^{iz
zy4c2BkLM@Jns>%7{tJAbT;&6cZib9p96D7<((cSBB`J<sIkY7;?R|v?=Y76F{k~1i
zfGU2Ow#u0-tLByuntizzT0_aY!Lxew^goP~6ODEPJO*#~k0&-{wcXgmlZo8VBm9>c
za9g+kM^)#kY}Jbs{%QwUT(A8TbOUJv+23@o)%?OSo@ku7znxEb{_leSllQ;i9{(lL
z^6Q-9`TskL@qdv{`adwr|Ac^zxc?2`8P@SxZN17SWR=(x4I+}2jq5v;(fU>usGwLB
zWDpfQQ0A7Gq5>mnHfl%pe4Ic`P0%<%9K2E9b%mP-FRD+SV`a9-VDI4T<gYP9w<tEr
zQyJ-vX6W@Y%aYJKO%b&_K(3BZPQ+Ll`j<g-T+yK3_iSn}plkkIx%Pa0xoj(P(=Ekz
zdh7FNo!DZ=O;JuJCdYLcwq;HMmdwc`qQS%(hVhJ`47vZ7RXLQ<;ZdK}`lyM8Z`n#u
zQSqMo-WHuS749`F#P2gZWlSMw=7~)W=r^4{O)lU$H3rnPlmZEq-+%chm|p-HR%4~F
zzBCvwrojp@gs*SzTd!Xc1>6@H0wWfDOjwAva)`pUnJ4g>X0OQ*q(J36h?|&=774jJ
zcJl)+gRq4%d3gZf|2WT4Dhv(PH{Q&tO+*`l>fLSX@h<(9MV#rkCMP+tUHjG};Iu-U
zpqV;$sTb3+;+#Wj5%#kk4e$SlkX|R}{UW<__0Cqv^3^)l63{nlqtX`6Deyr`@?10d
zb(Y-Cx%rxJCi*hg2$@tSKTL8Wd<unw09=#fkHaB_QGWA71#NbQ6`=FIe~_+pfBLt@
z$@~E#9+Nacb;-#1LJ1I*X-2l#>_FGvXB~HLU+_p(FZb9CS&LQC6|Bc!B~@VmhFqnp
zfiES?s4w*vsRmt~xaivJ@k1Cx8ukgxR;nuKNfTCr0B&!^G4^D$zS|w9mRLZ;{0uD+
zMzQ62!u$n9{WsW^%72GlWxFwf%Kkpa#P$8>vJ6wzAMUDm5orHOyKI?z^Yvj;c@ohU
z?UXi^^-?#U4#>dU>9avGy~WQ>+fb=xql$X;HEf7Gy40&fPynC_RmnO~1oMo(UICrA
zG6%dCgtpay3IU$?w*S5xDV!D3(PkCcx)bpvPy!CH!ae}5F2W9_Hz!d*4kmX%Uzj5!
z@zYh-r%Sz7q5-o0e+zk)6hj&cR{&qyYFJAB370a<eGjm!Jgr0ws23CEW@Z5@8i1S{
z1OUdDcQ*W$X64B=?LK|m&1IZl65x8I2D&4X)U>rD#RzH1iUSXFJOtfN{qj|Of&4%9
zRmhw^Ak@9d<v<^(e651{A+jHrsc7;vto{Da&Hq0DS9|AIkZP>230F_9uDd32JMchR
zUiA_Uk7*q}SL(`kpBt(nt}uaBOL8O-FN=_hYh>E+JKR=^06)=SOAJ&IHnkG8YD~ab
zfooP~%jeP$DEeV!tSad2+hIO7$ZEe?Y-cEgLB3t(J^AC)R}bYe>U`lno5Y^1GObGn
z2zT;u`CSg*cNfYlUX)4EXK&>eULIwwe?OD}qb-kV<L?3hvFPk}=_Jme2f!qI!P^?D
z7996ZKn7JaP*wr-U?8BfPQN@b-Nhd2#@FL|Q3|fhO??+mu7CAZa3$Yz`23k{$a=g-
zT-~SDLnUx26Pu)IBg&Y`W^2RqwSc7GI|3S5g?SBB1xL~Q@~7QJlOEVB*(a&mzgowt
zw?>x1X9j0~?z;Wr^-Ov_HAh6n`=@MAI_f^Qb{ifg9xj%}K&*Gim2Fb@iT{LCj#C-{
zZ-}z^uYoA@0alHkFGO2#_nY796n)-ouKd`w4js8cfpbI$u=Y8d_se=#<gWMbz_X02
za%F?o3Y4JrZFY!);CXtkEuThaipo*iC>OA!DL{$M9u{Tp1@0cb=J=H$lkKEs<JN4!
zzO;}VRuxcieNL)L7lZ&Xx`f<j0gKY(=cWG@ZxwstcgomMA%sXbuUo`jVFk@w)Ntht
zmvy}Cc%J-lP;CjP$0gb|=zaGH{m1N8X#ERk73fWKbhqMp;`^5bv-cnLvCut$ulL&~
zz{mm=m%lH8|KbAt<vaO*6PEnHXNLYy8Lp8c_}9o9Vy6~9*w3SNXBHO6lKyRN3{;l_
z6}@?p5lOiZC+I+RVDcan<25^e4}O)VO}St2s{NRZ<Dj`4DR(n1G#?9;9wj-n50>kW
z0EHTG08)^oiAddMYpAQhP;l-mI=QsU+W|kaqLcg<hUnQ~xdIi}h3$zl@U#)>`PPRT
zDvuJxYUcd5q5ObYw7W)da&ubEFB4_QpT)5%HP6;dbW>XZCjiN!1Cw}+ppt@@)kfmN
zC~&Q?)-u}$%A7D<EZRJ)7;tOZzC7@<s_r9@mviyz42;We3dvdbh0G-NWRd$jS^$9A
z|LmPf$<b2u__6Dz9T6`bH{IPoCqF_GlBc&h`NARww)1PLn*o)N_{6<~w-gLg-x2d2
z!b%xGu2<Y{kCuxEWEm+B92t;goSvm!hAWzzBGS;WErW0bGy-wALlOFA&Jlh`Xx8#^
zN0LR;K>-sWM?w|^gp<|QBT#awMXa>Br`1QxF9C0dxXv*s^TPc2b#-)3ux4T7>nP`i
z8iuQ#TmGPQ-m-hVpyb$CSpZ4=oyNat<<{_DJ|9mpKk=U!aQ$)2D-dc1`8qfch>$_b
zcA)}%()nt_irqC)>Us8(hEu={JoP=VL%Q;WfUzFNA7M7}F5c7Xk|zJzE&JZRyi;Tw
zB_hfm4<eWlx6AewXZ!%gft(5!iZ0veM6z?|Sly4eMlY9nF$E{uk-E3fJOg({L=0lu
z>{@bNGMs(gsOGm12$@ftd<ZISfw#xXy~ZZU>O0|5yn-cxqj9(9;$>w3^QsW-9lEjV
zHPIH`0{z>YVEuM<%n*Q_YBFmk3_~|;2OqKX{5dr-TCI!({lKx-(??D+8~vs1@-uZ_
z3za<`#-@d2-qeml>EyYRQ&Wo@qiUJiI)aD&<4yz9EtD$8o3!xOHd)!$-Vu=lWU!2y
zK7Ifa09Rqe7}$Rok%}fhY$+^hh^qUU$;Dsno7ECT-(w{W91%uKY99hc<a$fRTu$Sr
z^g7|3n@879UU4sdWw51V*U9bP`=v`6i1{I$)yS=7l3b8iic@{>Bp!q%R{_!F+sDrn
zfJn}UR06dB>W(<7iEmAmsp$$w)<9m$M5JiAj;h)@Az_;x?OMwl34C*_or}kK5B7HR
zx0Kl<@{??>Of4vQz<~1FfTMF+|2R6TJ}tdTxPLI5c6#mLPnIo~tGVWt4YOUz3x^%j
zlCeY0NShZCzojr6U=E#j6?fpx;a_OIR@i}*M)4FVCxUyvO(kW0ko*aFPvHahcRJK+
zxm_rY&cbL`5Qo^+L5W(IR(-p4XqwU=J<}474mz%PK(aDoR7xbpJzF;6LDS44KW?rC
zbpWcPed|1sVt$7E(&<0oUxF~J%5^ovx}B&Xq_qL`RqvPc5TXG<qV>1RnkALY02O0N
z^#N}o#N0x4O?K{w|Aihkw5>-0kiqh0rrMc1^wqcgfJ-)Sa#PdJ*Og$VNaLJ!?02hE
zTe8<rQMIAsHm~nHEMm0g?J!rZOD9{fo0@L^x}Q(`jDPo%A+6@n<ItZLcJ86{XG+Dr
zG0Qrd<;Ejhp!Z~Pk^TCon~f=ey||qMXRSX-P@Elb;kZ#Mz|S?e%s{%@E_w`_Tbd3|
zlbWh(?4=!<%kpI@EWOPE6&oF4&H4O6-r6Q`QTpTeXVxm&qcjt)>f0ojl};quO|Lu=
zeNM7_aAM{%Z8IOJ7bNuh`xSGbW@WF25;ZMm$~|DgXF=-u@8yOxR0EdZ430kBY4|Ep
zYptQXam5#~50>utR?M}uN!vh2?HwAl(b_2bzE>R%9VpS=I=)%HUGiNMwcJyQ(7>$6
zqNb{h#hrm-MEA=id)Xc2f2Yf^@_*4~ZqPJdZ^3X}4SkP(Cqs70xk9iTDSreP2nDg%
z-xt2T>d~dc1ui!MP-(!ovZz)&BR<~XUdHk8H1MTfH9JFNC0aFn39m`-t4!47P6rE*
zE9f<lVt(SHHF92QZ5jq^TK1vP>Aeyptp_~emAm$p!D*L37)uiL-nK7YN<=XG#>0E{
zOn@$HvXK`sM=opmBa0g%V^?NrihXOGqsI7hE>l>W`ssw6(=-rNlwKd7)IW(fWY`{%
zHo9grKcDLq%rXOztINIQKt&$%e`Ul7X`Kqr`xVNcLh5~CthVt3{2leCL+vSmli~jT
zgsuiX-4o7o;`2^g2n;aW(MQaoPz#q5_5SKQ_dFZC<4V#+yp0zpR>M`$*WDX-BW+&B
zay!Kc*cvc0m#t6vi#fD?B;nYuwoZp-hk#W3)OJdc5s4&x_Or1{t+Je!Emvnw%jK}<
zM)v>!j8_28r>aJEaJZD@M9c01UGdNqRS)f)`(Vb^0XaOX+e%h!i^D5ErEZ%yX8Gh4
zrYovc1L-jaXQP|o!&67#b;C-OVAHS{%!e!76uBXD-$MW3w$$j$p=-uv?J>j>e{R>x
z)g9{wN<*2iJ)k*w+Q$1U#03vm@buJMeq2?xoszP>T#K8IY5lke?5mF%FDtb%hf%Fv
zFw<YbQ8-tqe~Q~ZI3VpGnew~ML70JNA{Pnhq6OM1SA#J#{B!fA#LW^r$8#djjmykp
z)+sOy0D`57b}P{bT-%+a)cEMw=lh^>rB!!^m|iu#PE(B<0@KmZNc3Qm?+kRI)bsul
z%sA~IG0lP;cPmk^yownjt`gMu=V=fdc`;8C@b1P+$5folR3rCWBIl<*okLtCHp^JW
z$T=OJ=t#qd+5*UBvxY#Z?6A`Rg_;Jv@harbjepWVPdfT0>uO5jh<u>Zd{pRxB1V6~
zcWmB9HDn{9T~NBvTE!dkbNQZS`LtnEnkJNU4tz&NC2Z3g<9hlXN$-(e_N_1bBQFho
zF=!d%e;(O%;MLlm%Uv^_Z7pAA_%AYo{e|Y#e2mz&D<9oMH`A*97fwy!kycRv&1B_(
zyOVYPVNtE5@sI>=(p;V1m)^%#$vy2BC9C_A^^8_q-|`Q@uHg2*i-&FiIlVal$g7<|
zi=mxmD#ea4>PuWo<AHN$klYxUl{z4zOoEqG6@Up6Aa{T4w+Pv3HW}cKGS;<PnJ+>Z
z4Lj^4O8j6r7(_Ar&V?N-pJ;il%6`)}wX!#=E8+asp~lYo8n-4L00vBmGsTKb;N$Uo
z1A##O{&gVC>Fb9M0w5;{F+V-lwI2eQbrc&(kGV+=9{svDn`=k^Jr+xRkg~rv>1gNB
z(Pmr6!U2E^HMqjRxHupnl=EoM!3)~`v+hxSqAH;`YLIhcBI~b`SkrSA>HuC?k>@y|
z&GBw>X+s=n-msD+BE5XqW`Q;p-hn%qB3ShLuxd-RjYaWU-rtho32r8^i?oi%0`*(>
zJ@jYT#S)vrPp|<ix63fpAEDU&F_WEQ>I)ED%iHM1_VEon9X%I!Iof=^cGO+(q4_}g
zr@!j{>3xZ&<?_Y*V{CIz<*K|+#lwVq+C*mZdYxi4bbDYQB(*Qq;9}T^WA`84;%uo7
zK3US1t2cgq9X~Uqw3(rTj+3nN|KOF7|I-$)fq9*}5pUD!+AFB%Mh<OK!Qak0FhPkM
zmUU{&H_aLKot!;Uajsj%)PPjQX6|iEHQWYjkgz~7-+z^sc+UWNl1MKSV_#78tGDG)
zjaVU*R6ot(UHiBl15U?&g<W@Z03C#+XBchlQmg<^?D_Uz<-CahCg=T$C}~`pH2p7(
zl5J0ojrhA?m=gI@&XesC=Z`yfSlFGff{hz}RS$%o(%9^~u<dg>9d^ts@?8C3qg|w%
zMXZdgAX2XEk?DiNu(n|Z*z8_4568S|>x$0A;`88g5k>yh8+)#ss=ju4SXighzbbdH
z<Ds}lAh}R(qOSKectu3<$0qJf-Lmf%*ay+k9~9gkzhZm48K_j-U$;u`4Vrj~^}CAE
zx4O~+E;Mf&Z8~QD<q05`W-Uz!2n*$Kz3$Okhe{pL#ZDcCqfMuQTgM-AX+X$4*<!*k
zHE}$FLGgBIpBkB`EcYX9O}3mivrKagUH*iXEEjKp5B!ShGNboP`BbK-!?|sI)R{~}
zzgb=Zbgpi%;7M8E&+Fl9*L>T}jgZ~~lrk}iT>8v-UI0=Zd3>Sfm-a`xmbZT?D1Ij{
zSPqe|6aXo<t@D12FO(qmo2=xMO1D}cRw(%Tw#O1DHEK$|J0vQa?D1cBtplqof?wp<
z-A4fE($=gRqM*pLQB~%C#T^-ljnl5iuL(z+C6wKE#$k6@G1tG~7lkeuHN^RD!sj5{
z)B#3qBGVa%ybuMA3lfkfd3QhEvC-iAP{h9wvmd)Id#(~5h#x8L5+)1s$yF@o$))y?
z)8AYadDvmHwa{WB{Aop&X@Iva|E?l*M9TR5a#e7bAJ$%h9dRK`6jYkv_gy0H<DKS5
zIwC@?X;j>ds~}VLK4~m~HneF^fDrO+We8d(dDca>-n7mFs*ubw(5-BvjyZYx%gpnx
z-&2O>LIB2u^1TK>!ho-8pscOK=Rz;5kE%h-2^x1W3#V@%gWG5{i7G#!dEuRlYll7U
z><FC^e%sN&J#C1}UqR{c(h>1AdHbbDvZQPQow&Z$G$+@|o|nK1ynaa;nqB(k!j3w~
zjH8+)gIiH*UNxH9S(9&33>hm#uDiGGj6HAteLBq)xN)Pm^wTouiZ}puPgQEV)Ttv0
zv~3sTQ1!~@vN8MjULsWj+`Fp=Ro>%9iJzMk5Zsei^FLoezb#Fad>sbZ4c+rwD^qtA
zjofy=cSJnItuCoB^iP<Z;?`OwbOGL;j1zgy?7T;)@D(u)={ql(0!CkJ1Ls!lw&-$J
zNmVT}6{O)=7bmL{8^8@_mSy(nM^lI`0Hde|+SjRVKG1u=LAcy97%K6`WpX5?#Jg%J
zY2zh52K}jC!NomF?RYdiWQA-2U!^Fm9M>=Zvj20G&rtGW0uSbbm)lP2HtIzZz>j1J
z_oD;SzbOt^1r3_>B3EMlW~0hZG`y;^)xz9&#30)|6={9DYr3qfYWT!{=o9<>Ft-J}
zEXuyEh0CDs%l6=2s{3xLM<BUKQ4h2#ad5bjEfR@j6)e%(?04ak+4KDfq`fWRktxI&
zk%su562I-vfaCL2sE*t>3Dc^>WZkT9jR4MyFNLk8G6pa8-FLf+M0Kof=8Z)UAR-!E
zA5VsD(q1zl^)T!<3$@u(hpJ2*mdwG6^17Q9neFsw{pmM5P;jmz4&9`$KP&z|^Q?cN
zb$h&0lmvo5<BWDxo^!yFxiAVQO7jFJqa_k;m9tfnl>)Hd^NCwZosNRU+Vbip75t6!
zgXf&OdmJn)9%h*5TcA(B?BWI)YzGIXP9bQZ{lZl9l<+M3?fzxl8Wg)Uj)MxpFbIIP
zicMUrLrN=y3sVMap*0eQTg_`J-yohgb-HS_BBrQck%KBt_)-14MDc{8qM~=6*lT|W
zt>8kS@td6N<=Fq(XFG8179bzfJ#U^7K9st`QLiJ<T?gWP@`}>e+L5cKEN;(j#Z^yJ
zmSwfZ`W@c&knq0~A9GG_gB2}%Ukhzj;czl;ni;MoaqkMP^%LbBilIz%%$KKw0A8mQ
zs_?me;0bi16-c`2DL3rCNaZ@d19)F3C&qg6H>ObElf{fajA_M-;nKEaT%bo{1ZN}|
zO0CE5&Cw?f<MfjyA8(~9`<h&i6fT%)2lt5bo*Yy>^Jfy~{>R0A1OBbMq4oW<6S{8K
zD(~Na$hFImfY?-Ei=7T?Zeik8`c<U2ek`2mon6&?!u)Cuo!$6)5V+Vj**;}V%E_mk
zt8g_1mux|Wnf1ArinI^pvMVqtzQpxd-f_XUH0oZo{uS2q1ec(a7JEe=XadanS*bXj
zt^WgdeAcp0%IeaTioy=s5x|>Qte+Y_IxrzMC0^lc^!USflPZY-_hkqoo=g0#_Kss3
zx*S^m)thNC#F=6MzFiVs2y*zbb>eou2hbF9?K$P{y6v;vQpW<#G<gdk$6JPYU|gW%
zK%u199S}HB0@veNMKo#|r9XQ}?=A>~Pu?J1QUMA@eaqud_Sau}$RSt3rY9vL2;VG<
zYo5B6L;*BP1!!|c`$vVa>J2Jj;LCcqZO)?#UMeLuWP2c!i1d{~chj#szv|-bF4AzX
zZ1<n418R={N!46yUI6cTV)|(3GYR{?m@|9-KcHW>`rx)PK}eNg^X;?yH$H!>zmuNe
z&wt=ocz7ynxBIrhW6dhuDP(Y-umU88BXvRc?+Rw%{lk~zOpJ(N2=||%0{?7qI8`?6
ze*XHSUvn-Gk7wfDORd6?S66=3lL9{wzI$)*O@J)-YxM(sr|cN-diJ?h*T<@~?Rf%#
zzoGx&#k{VO`D+uONO%8diT5un>i;3>_H=K7I3ffGc&F81%ek^NT*0<U{_iaYHr&(U
zm(mCP`Jct%zwCeiI|uM#x<5)wllI4v4l+xG(Y7<H<iE1O!&06&=FD|Y{k-dNaqNZY
zqoL1((?jDs<es4S;Q2fQtAE2w?06vb_Yt%9#UXp!ZtnAWJhK-W5#=xZw8Lt0mK0lI
zW--xfx3GaQ#sQx^^v5SZ;j^Ffd<pwISzahb!>Mc`3^?G6=5ZobvzNu5N<ZB%k5mb?
zeu*NiY-lRg)%Q-EXaK#T?W<I``Qp^uB+~Hb!EON2$)pn1V5w9)^4Pma^I#Y?iNg+A
zJTwexWbU#~y)<6p^3T32ywOQ~Bc0lI&Brc#AD*WWqOR32F|D4a|BtNI0BVn6>@GAD
z8r=kbkMQn~-^-=_)40M@VN{6S`Wud>ISITR`NzvoX#Wgkdz=2VMPjA=j^S?~Af`D_
zQ{BD8Hi_8hLrNV5N;A__0}xZx`@z4_M!-isHDxL5i!DNVM!~iU1t3Fz^EYNyWD9cn
z;}p$8E&u%9_=AEouN&P5&-qPG89U&RRzURN{nwTGBz)$NJ+WT8a@j6d<mESt`Ea|Z
z_m-^y$`+hh;t0y_obG^){xhmKPQ5duk9p!zIq{6yPdTo((Z@G5{O@Q-iT3sHn)hC)
zj7(k3H|e*Q0$0CEbw}jbVhi)%RdxNj+qa*e{IFR#H0-V5(fuT;Nnlc<r&*kYCb<gE
zluW3Vb@Yzs+%JMu*EsG`kg~iMNQREC<o~duUi=Y)AJlyYbjkeVVXfaf^es00(4AA<
zfY2u$y$;Dctn=4pg0kX-H#A_kV4-QK!*-zs718@QPuBPq{1^mkD!tY{)<>?@LJx-J
zX6Fp{6Ma`i|NOG;=TpZlq<p3po^jSUVj!QC+$-<g*1NklZV(ZfnC)L7!p=X~v<Ocs
zag2@>x|BiRQw*5iPgiS>mP)w&objuy#35C)^hm`Y{_0-x1l?E#Q+z(Nnu=^sl8zb-
z_z;te+4QFrAclO9Nyp*^3x^8N%u68zSOGL#5Ef)gF_%a?>|uxDby*cSQz+&XDQ;T$
z=BVOLDN22BT@3ySIK7zOS6Wp~nY!4`B4k@y#CE{+lFOUVG4*(ah6Fep_Z?WP+$egi
zc~=T8_rpMpI(ol!dG*W_>A^jLiZ(*$cPX2|3o)Ne9IL6T$dgyORuNIG{ChEAeN2r7
z!@pKLT9ul?P9~c6hRmaOYs-7}6HnH4MDI_@xy4&&O~CH{b5D8RMxlxGE*XMZjb`T&
zl_;Wf)^(XivhU^q8CIhj%Lh&;2MU0&>8Y;N?>4)vr@#5M%xNf$6>*kVSqjH&RIQDV
zjG&H#K>nqbhWx41d7DHbf6mUkwqBs~A58%avu|9Al<kY9-fLHc&hl8#t`9&Gh_&yC
zJzA5H(T9VxwCYz~1T-X5X98C^Yf*wWYl8$;gG|eOh?1(G-(Kw~UCs<d+9*g<bCb&d
zI<^h5IWg}BsiHv+ptp}CW-=-V$mHu>4@T|~Z@VfZlm2o;RVw(Fg|D}rWX>o{RAH%2
zGl^x5@So1Oz(>w-7oZ%DN4^T;BtBiA5Elgzq5J!?nR4q{2=O}j^Fhz6WY085_5QE$
z=V9o|YTsb9I@cG{n6-$FBIN=~sR>oaD(|J*sLyzQZ=9U9jQd>Shl=cwF+oiHa;W%V
zRqSU9D?MPP=pe!aRL{DuADH<Z$2L?PAXBVN=j&P#tKHZfM<3TI>^(ZEWiP}n7(b&c
zD`tHol|lVZYbogrSnBQ=<GXT+#P;470iVPk3&kcuL^Kr6Er<{fZnju`O@vWQ@zsn=
zF$bA?{e(}FsojGS<cbr0dw%1IC!8^UseYO5@nf*#xd19R-N1NH3<Vy4imd?Q_xVf}
z2nuG|lGKMontZhb0R{h$$MCxnklL<Lhk#X|{ShIP#u|gUg_eD}59Lm2t+i<MyzK?L
zrLFE#V`Xqu^RD<-(@xa++b6`~#qu04*H2wyOd+hi={U8t?oX=j#15QG6HNwfP)4o@
zrK9c@)qdQ6;PlNm?o?ySXKz)Ef%Dw6{q)s=2fpG828}|O39Hl336P(=^~t{9EYeH`
zFdiA#+nSz84`uu=qw7M$GtLe%7={Fl$_xr|U`Lnk!!@Nw!aU{P1$9h%;tJ_OnJ^5S
z<~@?>ppL9&-TO^s%)1;+mDs3VxTxXeVZ10T?o&v0;KbjIH%btztj`!2w?@aq@!cuP
zAP+B0s?3}pC(Js5@#ZC+xq=P??&Z+EzMDISy&cRn;{(0!pvyP1ZOX42*-muPv4`Gk
z+%x-WPyFa>38ArDvrrQ#(w`mpfV%dCqiXV+lS%~|ewK@ilBKX{X7vMJko@8maneB$
zsJHhZi;~K3P~WRs?2+}#&;}LaK7a4is0^d~`G;Wnjf|0#wU2WKA>XHK5~BL%xg#g5
zTcOpn-(5xo^W5i7S?EQ~pbGsU1x|75){9BGRs_#vkun%*w{IG@v#MH*;$EZ8wUUon
zx!gO<mUJG_WbXUdLx{JjaPkrHT=%Zg_KG<rmIa^(DyKkShptA>C#$wVd1P~s3e1Tg
zD$D&~s6v*IhFz+tL(wIe%+m_4@p`?D;$3ELO_4$sOWy>(uAMmMWzEDUr3bo)6|Jzn
z=xdwD>qa+bzs3Ik*E$Aysp%vo@597W(B!5lyFj9PZWA><5lqi>{P=)zqQFwte9M}S
z<^54g+M1p=smdH1T&CjdiG1#yCeJ_TE>5i^=r0|+a5oJAij#nD8HlwT6X$)3CXMpZ
z#7)xmZj~tK-f|gB|5g{((;#Ofka6na%}D4Ee^*1@M8oqQUrnkNW%WqxPGcI|>Fn+<
z^>);j);vLB=5;PdN%QNM@q~|<Jw!;76iUCScYTH6FaOg;al*&0CJ&`k*(SZ%QtmvU
zB<?b0i4Vs69V9?v3_ZJIrt*bz%o`<CJoMgnR1a)%4Qyccw{K6#i~Cp>sR=?B&TrYJ
zN-nvTz`hv}>LjhT4hL!9q$o(N5;^Iq?}n7L)!K>iB_@U&bPLnkAYqn=v8lkE=Eq1v
z3`+(Zn&)j+n3qeoh~>JagodBU&}t`V)PoPP&rZ$Sp)?r=OW_@2Ek}5%#?}aoh=f%L
zXZE2?ijsjLcN|u(E8qQT(8I_lROyj8BV<0xe)+S~Z;1;kBe+m+NZ0JwAcz%zU4PLB
zy6V^$1GT}<71HER<thZ`00@Kbv?!4>om`$!vH9rqX(D5N;?*cFa1h03D^_UiUh+_f
zS4l(m%;F}>7n5Cz$-OavcDa1GTROG>7BrY1UmVODP4HTGuOAd_Wo$0XPS`fe&k>^J
zhXS1#v1JFd+I@Wss;;K=3e`KM53PDzexqeGLYL;1^kje&b?eGGOqXiC)9EbV$g_Cs
z+Zsa!5d$%;H1p#c1)^vtdLAYeR?i=j`t_9n=vz2JCG{t-905j7dBWfYf1wS$uDV31
zV1eS>aKiQ2CPD#IqdLcD_<rV)VW|maV^SSyzVU(g<oe2SVd?#IY7&bzE{p3aD7(j5
zNh;L9(34uZClto|XbAps>nf&Sle(5Ba9gOazFjRTdxAqWG^sH(QN20OW}vU9Ue>0l
z1<#b7c15PC^pb-mvpAUiy&7IoOPg`48Zu=)tyl#CwKb4NStnGg@6H+V^XY+@!{CQ(
zQW)mGDN&W0H)*SY9|{xKJGdlrB9F4QLrb`mCOVksk;6xPz|as}J+Yz|k|RY<Q5sSE
zY6q|5nn_Ps$y!tD53cVH%p9TFzm&kqJ@88<1r8~3KWnCKoX0PaHJK}@8<b+HhmpUB
zhBd<#v{l^QCe-<Hh+WG1+U1>nH|@zZl7Br8pEHi=Kg+HS!XdelR#Qwl#XcvN&uz-+
zM#Wq1;c$N}T2gIG<AY}*p87ICu@2|qs{LF&)ilRm`y;Tll9mtcy>58VNqljil5>dc
zSG%#-Ty6Ei@lF}k-%TsQ3B>{e4xiO6m{L+GRM(GpmnJv;6i&Q6tzlu?oz*xSl1Dly
z$R~?&<^`QUmQ$9#8(|Z828~*McNH?R7ojoX6Xr@$x_MN`8e1uw?Cuf_aIY_fU9|Sa
zXykik><!eUaq}!wE3oU-WSx6MymAU2c9nE8T`uPlY4Y8rVldNju;<NNDZd}CO7TCI
z7)N!thLmV8lE|C6Vur_E4Q#9w<FO)gcMDQj$atiAv=zfN+P;1&9gKwTjp(hNRUphs
zRMZ&f=DVw`JQwrUDq$`cNQK&i>n3INZF19x=I?`(v{WC~cV!oX7A5#3R<3r^L=yA-
zFo*k1>vf|lpr~9K{-fp78(o$Hs6HbCWgZ-@c3PdN6pG(lKkQ+otLU7Ox4R%jO6=l6
zFWil;4r^nsc;FrT8sENMzUnZi93%{5cDOgnu9`jjY2>7kohjbeZGss%U71!3Decxm
zi4$`eHSErgGYa#!yvnLHV}0*cW;vG`X+Z6q0ukAY+KNQi(5xVe(+^SC5`WtHav!+H
z{eByGdTFf<<p7irw%<MxWyb{fX?&=k&a1HNTab|~b*bu|-;21(ja=lq2f43ULcLRS
zhC->=AJT2ID*f`)0<S--2c!6~-jP~A4`mjv!Vj{%-+iU_$ynE#7VT-Iq^aal5W>ri
zsl8IB*{|lHWf#$>TQYMYnowe_dEZl+^#<&sdN30kM1Wyb@!j9ZI9T7$!bAUR=h}hm
zJfzUbp)}s-ucjjORS4M*qasY?{9LZuk~=|o$Z0-9{Fqf%j85fD^t%37JOlK0Zxp1N
zALq|4&_9L@p_v7wb{UITaYBh}Yxlq8+19uC?+wW@OcXu2kWJ$_FBJYpfjPkh>=eER
zN^~m1O3xHy#rT%gb5=_vNHl^w{jv<6UcDcOSIxnH5+byy5G&+sLukKgF?c-ltW$Xw
zy7~9b)!!RO=jRMkGlViSvu2c>U1qOCHNM#CZdvE7(F%>z3`F~Ks%akZk8iXJOed*&
z7BMY<&;ON=ZjGC1va`TL&w3`|^T|BgD<Z~`8}q`Ll(lD02h)`E_2+dnx{w+Q6KVLf
zm+;HP)<JS?<e42=F!9Qw&!s_0w$`aX6&W=nNkN}V=W8#>e8{Lv;&g|95AWo5ERQNl
z`zjYFiFqbJ3+o-$4+hraf!{9E2XDoLMnt9Ml~2`_ST*XX7Q0oxS`YW7J@X23xM`qJ
zMN;eMU$<X;@xp61T&-~RrttEu@QU#TORm>&>C$>CmFv3f`7OvPd4hj=l5UE!s;Gk7
zv9s5uitInGZ_G#UDffFNW_v70$6dT51n2+uf{}zLVzt$lja(z22pWxcv7E=&CnX%x
zI<r}-luI?jXprnmQfDw$J<G56Msi`xeaVfic8u_`<eL2X+Br@AsX=Xf4-BTX%bHG>
zX12JD9%dK7_JyBhh4l-f==_iGwQ$E{<<P|~X+I`kZ~}59LRUV(#8obvS_<X5NmGs%
zfyeFymh2JbAZY>Xdna-S%qZmSO#HAORQ03o%hP1`^>LZ*zAer-Cl`8%_8te5Bk+2E
zy|p=Gd-;H5j^?#o>eW!HJ|}0o#pdC=74BhKpbMF2PN-g^c<tl6IPTU981ng^r}_&O
z_$x}n+z>bA!swwimEXw-YJsQN=c5XQZzbk@w<dcdZ@c;w-z|H=VC_5ISn3k3l%cjj
zlEZ(1X{~RF8a;bIzx6VRj<^{zU!)9Y69ng4kzj$@V49qcxc@xzyAx@s!d~(G!{4rV
zawbJ7N|0Ar-%xXHkOzt=c0AX@ket(k-Y4v=^K2_b{RD_eqh<8A(2nPbdSP8xF6wVo
z*{9NOR>df_GE+wJN%HC#mmqU^s2FaLzKloq!@Q?c{CSiWkS7T+?3EJf;FX=#g&`J%
zi!tEaOhKbAZ=kh(Dee5HS7q)dQ4L#1{|*2h)cn5HOAWuRORAXr(vREHcZFu#e_rKE
zD{MqH4pcov`z7TW)pgc>o!8ac@pQz+?yzx<lCA!IO^WZp=B85RI?8sc)X$ANj5S>T
zid7c4{IT5A@~E(%a|@~V-O}5U-2x>yT$yno$z**iu>QNmL#5(#s9P*h&Rttje!RR9
zK}#w=hV?DZ)}~U!U@@=}y72k-t%L*da|w^@P3bSBJtm*rOM%xeac|_A8+HX0=M2q|
z?@*+&FB>YHx$ob}zuGmEVv4u;iJq7N(_09*;*dnF4K3K8W{RDir1rkkauj~{GtY%;
z_=BH;MVar~H}jT3)DakTzFYBXx^wT!x^eR13DXf*as_RSeQ!Mg?8QP9MoFl9rma)0
zmAu^hWBT`?CR0jo27h!k@c22ZZuby1AN@GdT-$GBm<=DP+3;+bJLXJ3qz_9CH%tX?
z^^6*DoiIr6_l49=MuKrz#d&SBn`K_qWUWJOMbL-z6XW3Lr>+kl6x>i~pENn_@#9Ji
z$AhF(U|g9rz*wI|C2JWl9k+5PoWf=fdsux?mPzxl%`tw%Ml?0Eoo7wC3S)Ur@?&Wl
zgspYARDovRCeWx)O8?n9UehvIuL$qv<4RTR%IA~tEBAU2-<pbCVbe*>jm6_j_?CZV
z0yo8R8te2HyTNX1V^_lk+$n1-qCop7*3Y4RbmKMnnpNBllm!XS`)7D~%KpBh!B)~n
zMz)MqHban`yQt=Uq56)E#*gCcVhl1b9VSFqbE14F$;r<dd1(xlr(2p`ER2>$^xZ1y
zDyGW&kYAj78U;u$T6zNT4oSNYDX@~;D65*ceU*iU5!6qMx@1tO!BmvW^=BXquSttn
zeHHvt<j=Ck=y`U;b;!zB`3miSx#r|?TrbnH7)MAd44G6qS9pP)>hWZ$z0{LpOB$~@
z?ZB#xIFnDv&EsDl1*bYJkiUPrNm&s9b#F9lY8rIZF<)n&H#kT$Fp5todw1Db=JyAy
z#IW8~pm`mA;={>WAM`Pj(Q~n>>AjIAmi|>%=&#}l!H8#?_l0ssLGHx&i0rb*A-~0S
zc7I##f!KHKR5DI(HMLY`NXY=A#`B@z%$(-+OVCF7A>N(IYcNjuV4l_d!6{}#-8?f+
z(brW7JhCeo=`m>})AtQtWme>8K~t;E*Acltwo&`8*S}`mr6xV*bL8xg$`|46gZXaS
zywz99ahKd#184}VdAH0VKJXEL)*gG>v{<1F=NqVEa?cyG?fDCv`Bk^@GY+%0yBZK;
z%ne?<RP~o;o!BK~oQrOtPSozE10a~)+WGf`rt2!32`S=#woK>YDZJtu-`OWE@zeK9
z{`~nFgFW#oIiDf&#4%p_z*;DyGB0-i&4FnB(9RTs1^DJ#ToMmSK7x8Ie|CB=uU!q;
zn4p%)jIXM9>DJ7<)z)D5`1SPSn=5nVcq30aczc}D+fMD$3or7~E=<Mq<@Xipfc3>;
z#{J`uBMs&H^QBCi{c+#Ja@_CHR7FUxEsK;?Wr4`Mh+#ikcI-)3*KuFO*goh*V`9!@
z2I%{4rrUy~Ubl=Y>b5uAwdrtBakXS}@K*NYVhw3?vr<kEKD}3U8mm_?@va?lzbKhf
zA@tp#iv!QL6;ZgwF6csKvu0}M?&!=|OZ!2bhTded^_zO6qE-4%t=;~Dcpkdpkd(SU
z41(8UUJUF;&T~Sr_9=`CmKW-NR>V81**)WZ{g41vS!KCr1`6oBpj(xnL*jGS>4;#>
z2t)=Z30`grRjn`y>)8R<G3(<6k@@z6(qGXnHRCt$t9F_Cp8n49*hms>2j{;MJ1>+i
znyj8a_A;zORj9sDEZ6J?r<{Ad_T6pB4boOw6KJDBFs-LaO#!-o_*`f4!i>RO>&a{#
zmv^K%kWbSCgtb6UV-CCnmT7u2RP&WoQ<_4aCPrwje&6N|nkY}IUqe?J-pa^-cbpgQ
zLlaXRI^CCXcLzRfOk1AFJn-kW+#oQuD3#T-Q1k5y2$Q_zk?-Fe-n#%j610HbN2rPO
zcvD<CUs;#4DHdp%>|djQJv^!8hGa*DF(OTcSO3X;+=kWigd1C_SJFT__-oJG>lH^?
z3RBfR-i<#CJryc3phpidM!c;0GL*NQWiB5%`xx{}qHYsN=@Di!kS+Y6FC|O$7(s_o
zws6lyy8D)g)}%;qCP!1_0H`Ne#`Wy(fG{v4S5n%k_uEUkInK)xM6dYT4CHRh`rGRd
zXsbb5eWn<K7gf^O9Ir|ow@7m}sSR?8HImJ$m8<0qy6Tv&h>R;1@|us>7lcAQFV>`$
z<g1p!jZ9VhK{5BTRm-oZMIMZsv(Twa_UZeCAZHjDYkoZe)3A&IVWHCM?7^bmcX;vi
zeIfHLEe!OrD^Y$1Ho+8)>Wmkh{uBBY?h$5QTROaT|GJ(iJm1}l>w@d32@#REy{8w7
z>Mmdoj;jmX%^&DRQj*Tbxyy{JKbPsC|7aI~wy*8-=W3j95C&?KR@C>SY){sieH3=2
zNFvhJ^n9l+^*z@9V-Yi1z|!i=XIr#bp+1`Y<m}P$2)A6~`U)|>Wgz$7?}mbpYLyfd
zBTqRrSwfeG;9a0^RW#c*0`w4TljHkbaiTD@d~Ga+p;rNIyiwqbJvb<+Qs|4=%{i0(
zuNTEz5y53z9{X7<Yu!dgUM~#yE*yf_oQqE))0r)jlWHSF#W;U&S$ZE4CW;K^nx_R*
zjEffGxJBib${%(9mz(e{$Fep`Bw}cUnUGXM2Wc(-iEW)WB1!f~;(<Kdx$pc?r23dv
zi?$9f)yuAOi2&ATTQdggjce4m+e$y#@?dP*Co40QBN4M_W3tl)9-its_q^LL$$2lN
z<Wlc7*Xl)S%MX^H-8vK_UixOn_Mh%fKRgk29%1%G;`YuWch{P@NXP48t5-)1uKg}2
z-F33z!_l4S@YdsRuSlPJ+U(*CX{jl}Cmy_aB@#KX$T^4f_K(7A4&sTD6eTJR*n(^A
z7y5VkTcM5HJ0faX>PKPcNisp}NLvBT@;my%t~Yd9C%Ll+#p*WJ1wpSp#-qO1845=R
zEMJ?3HMaDJI9z+ZQeS8@GNQ^S7B@B)7*sUihUtG=ytY(}xPGM9@Z_Zq-=HLOuq9@z
zQ%AtomkvH7v3REkU5)U~%i)yL?+8ousT1qV@4cL8qz#xA8EHtapbH0s^ezUe`koIi
z+FZCXr7}|w{v_SPhTIG|4uN62f^x_uak-is)mnC+RcJ_*Ynd1<+Mv#>ebpeYP*jt+
z-jhgImhCYba{0EgxjBEh3##Fp9e1g~EF-a2Rx{ZiZ%&Wr6Kd^z$QwG|zoK=Ld)cRt
zx7v)|?m94}VWYMFb&KO>O3={=VI`yvuDMS=oIA{23yEw`y*e17SyO#W&cOH8q`at~
zO%Ay(X!%}-#;Uq2=mWIYZ|v#n*^^XQo&xNtZGJJ%YwV<k>XZou=-xNz{^<LvaIo*)
z+XI53_4VhCZP^dch)H0j@GSRa^)=~b&O+63z#M<@HHZ^s#OW>(@@)wjtI4xOv#7Fu
zx0u3ms0?o(Cztt{gWmV?QNlmv6walLoLp}8s_j^XVhbb3E>*SY>2>uLFZesl42p3+
zsxxZymzv|=9Dh^3B^rx%LV4FBkKF4rn5$aO^M*GEHl=8VkFo}ZOY>|j%>^M^3mZWN
zY5h4^BiA2=$cTY4nIFuN1hjl8f4D2|HkvC@z>AVCRDv^4uU8kjNw<Gw79a;iLbWQq
z;Q9A$M1#c6I3B2z892sbd0n)(b9EQMq+Kn%uWwu4BdXS%(xh}!>mv7UsH*gt<Bu_l
zB0XZR^)VTs4lq5BRIy6c+)@yA8^|d*qT#;wk>N@aV#Ms!@Sde$;!g*=?Of$>9Pqff
zF2|CUKkw5#(clNpcW-K@1*uwBpHY%ub{oCe(=TM6>x?Qp5y59;xiJXuzf&wr1%FVt
zDt9R<+s8i^o!ZeZbMd2woT*~4o38=C@UB<EVXT>nFtd+ZHYy)-LMYM|gLz%SRx#Dj
zBTf&QgUx3aqfVM>KJpF;F*z3+7l#3NZM=EM&Ry&4wnpbr%N3s<I}-KtP?+w{`+Lp>
z&8fkj!Fbqqs(DU)sbY3b^IR&3`#B`>A!U$|FRp~-oijXjwBgUqzbna~ydl-!&l`n4
zKR6KHyzi3Crs)0$;TO;GHyl}-#DPaBCWh=2u8|K;eXEsRc3i6qV#LOmYV6>iA&l)y
z$RADQ5u<iLv@uY*^a?^}ByrzEgd*%m-<~*FIz5v<j?r9nX21O|3G{9G<8js`%&+P)
zwb{qZwrU{KQn+D!Oa*brqau2vDdHU~*;fIA3NU&;_nQCX#-8_LqozAVVlcjjG0tlm
zCz`A6Y-mX!SU$5{>Zuc=>OO(Gftr`o4nKSdD9EkPoz%;f>CXL&Ty;%#O&wKn0~D3m
z-#=9=UOtnSVPN!|(bwO?_bu)^n-gHp({go(Tf)jG2v|K+ySVG@7x^hxYxh7tc#BJN
zN%N4EF+>Xrq8|-uRCjdN@7>$izpezGt!(o0y0!B!Ec*0|WcFQ$vtOS4Jfd~Y`<>Iy
zfDmnJE~6B3SiZySoP0t@Op1EJx?kc-EXHh3Nia9_lv1UZ^Bt@X);xcpM^-_zO3#qu
zbPll((?*glYP0)u2W>wm92&LSp?*>OT+}i2=w^sOLZgcInPFnq78awWkQP&dA5ePw
zYoO^t2lK)Y+&Sg<o$r0h$BLZ+31A$*wi)4zm9UKy!O!;^Hxzxrqye)Tg~^+<t|`Z|
zvin6gLO$02`oSwF&gSk6kXNx(_K(YUS|xD4BKqQPwb@GjWeIt2kUMlkD&yIaH=^5n
z?^rI6SOgeKQ=3qaxBj0uTtfLT0rrnCzkBTO(`@_CEBD_2!xaPOntRW7|5c>-KGLmx
zSUlJ~?$zFX&u6YlUE!cf9?$bbMfe}_xV%~2@zIq0sP~aHrRdCqf*b_|qJEY{YIaiH
z<P-RF2zULSUc0s<&5#(3aUM3QcomXnDRa%c#L00QM_Nl#g}-u3OuS0%J-7FL<Qwr*
zDoxUgjdyvh?*3Isc&Z>liP6=>Ail@vH2g5~-0?B7%bo9%A9FI`&Yh`H_k6a`+Z~xF
iM)%z{@QUa<HH{$hCdzxA4gW&|xp&*(R^g2Y&;AF}k2Gum

literal 0
HcmV?d00001

diff --git a/lab-p7/practice.ipynb b/lab-p7/practice.ipynb
new file mode 100644
index 0000000..efa2ab5
--- /dev/null
+++ b/lab-p7/practice.ipynb
@@ -0,0 +1,2315 @@
+{
+ "cells": [
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "abc3b06b",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "# Initialize Otter\n",
+    "import otter\n",
+    "grader = otter.Notebook(\"practice.ipynb\")"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "c18a96f5",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "import practice_test"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "c94d1b64",
+   "metadata": {},
+   "source": [
+    "# Lab-P7: Dictionaries (Drinking Water Accessibility)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "b20b5975",
+   "metadata": {},
+   "source": [
+    "## Segment 2: Loading Data from CSVs"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "1351a1b8",
+   "metadata": {},
+   "source": [
+    "## Dataset:\n",
+    "\n",
+    "In P7, you will be analyzing the data in `water_accessibility.csv`. This dataset has information on the **percentage of population** of each country who had **at least basic** water supply in the years **2015** and **2020**. You will learn more about the dataset in P7. In Lab-P7, you will practice creating dictionaries using the data in `water_accessibility.csv` and using dictionaries to answer simple questions. \n",
+    "\n",
+    "For now, open `water_accessibility.csv` with Microsoft Excel or some other Spreadsheet viewer and look at the list of countries in the dataset. Data for each country appears twice, one row for the year `2015` and the other row for year `2020`. Countries which had incomplete data have been **omitted** from the dataset, and we will **ignore** those countries in this project. You do **not** have to deal with any **missing data** in the dataset.\n",
+    "\n",
+    "The data shows:\n",
+    "- `country_code` : the unique country code that consists of three alphabet letters\n",
+    "- `country_name` : the name of the country\n",
+    "- `region` : the geographical location of the country (does not equal to its corresponding continents, but follows the administrative groupings from [The World Bank](https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-lending-groups)\n",
+    "- `year` : the year in which it was subject to data collection\n",
+    "- `income_level` : the classification of income level based on GNI per capita in US dollars ([The World Bank Atlas Method](https://datahelpdesk.worldbank.org/knowledgebase/articles/378834-how-does-the-world-bank-classify-countries))\n",
+    "- `pop` : population of the country in a specific year (in thousands)\n",
+    "- `urban_percent` : the percentage of population in a given country that is urban\n",
+    "- `national_alb` : the percentage of a country's population that has access to at least basic water supply\n",
+    "- `urban_alb` : the percentage of a country's urban population that has access to at least basic water supply"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "8a9c84f4",
+   "metadata": {},
+   "source": [
+    "### Task 2.1: Processing the CSV file\n",
+    "\n",
+    "You should first copy/paste the `process_csv` function from [Lab-P6](https://git.doit.wisc.edu/cdis/cs/courses/cs220/cs220-s23-projects/-/blob/main/lab-p6/practice.ipynb) so you can read the data in `water_accessibility.csv`."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "0aa089dc",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# it is considered a good coding practice to place all import statements at the top of the notebook\n",
+    "# please place all your import statements in this cell if you need to import any more modules for this lab\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "f3e22f27",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# define the 'process_csv' function here\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "8f280cec",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# replace the ... with your code\n",
+    "\n",
+    "# call process_csv here to read 'water_accessibility.csv'\n",
+    "csv_data = ...\n",
+    "\n",
+    "# split the header and other rows into appropriate variables\n",
+    "csv_header = ...\n",
+    "csv_rows = ..."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "5e520cfe",
+   "metadata": {},
+   "source": [
+    "### Function 1: `cell(row_idx, col_name)`\n",
+    "\n",
+    "This function must take in a row index, `row_idx` and a column name, `col_name` as its inputs, and return the value in `water_accessibility.csv` stored there. There is **no missing data** in this dataset.\n",
+    "\n",
+    "Your `cell` function **must** also typecast the values based on column names (similar to `cell_v2` from [Lab-P6](https://git.doit.wisc.edu/cdis/cs/courses/cs220/cs220-s23-projects/-/tree/main/lab-p6)). These are the expected data types for each of the columns:\n",
+    "\n",
+    "- `country_code` : **str**\n",
+    "- `country_name` : **str**\n",
+    "- `region` : **str**\n",
+    "- `year` : **int**\n",
+    "- `income_level` : **str**\n",
+    "- `pop` : **int**\n",
+    "- `urban_percent` : **int**\n",
+    "- `national_alb` : **int**\n",
+    "- `urban_alb` : **int**\n",
+    "\n",
+    "In addition to typecasting, your function **must** also handle the `pop` column specially, by multiplying the values by *1000* before returning. This is because, the `pop` column represents the population in thousands, and to get (an approximation of) the true population, we need to multiply by *1000*.\n",
+    "\n",
+    "**Important:** You **must** only use the `cell` function to extract data from the dataset. If you extract any data without explicitly using this function, you will **lose points** in P7."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "7eb170ee",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# define the cell function here\n"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "2ac78cc5",
+   "metadata": {},
+   "source": [
+    "### Task 2.2: Verifying the `cell` function\n",
+    "\n",
+    "It is recommended that you verify that you have defined this function properly. Open `water_accessibility.csv` with Microsoft Excel or some other Spreadsheet viewer, then call the `cell` function on different inputs and confirm that the output matches the values in the table.\n",
+    "\n",
+    "Move on to the next section after you have verified that `cell` function works as it should for the below test cases."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "738e08d9",
+   "metadata": {},
+   "source": [
+    "**Question 1.1:** What is the `year` for the *5*th data row?"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "9ceff330",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# using the cell function, retrieve the year for the 5th data row\n",
+    "# replace the ... with approriate values\n",
+    "\n",
+    "year_idx4 = cell(..., ...)\n",
+    "\n",
+    "year_idx4"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "4ee7c603",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q1-1\")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "31c636bc",
+   "metadata": {},
+   "source": [
+    "**Question 1.2:** What is the `pop` for the *6*th data row?"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "5fd64707",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# using the cell function, retrieve the population for the 6th data row\n",
+    "# replace the ... with approriate values\n",
+    "\n",
+    "pop_idx5 = cell(..., ...)\n",
+    "\n",
+    "pop_idx5"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "c4eaa4a0",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q1-2\")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "e28bbe8f",
+   "metadata": {},
+   "source": [
+    "**Question 1.3:** What is the `urban_percent` for the *58*th data row?"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "d67929d6",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# using the cell function, retrieve the 'urban_percent' for the 58th data row\n",
+    "# replace the ... with approriate values\n",
+    "\n",
+    "urban_percent_idx57 = cell(..., ...)\n",
+    "\n",
+    "urban_percent_idx57"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "b63f6c2c",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q1-3\")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "494eee74",
+   "metadata": {},
+   "source": [
+    "**Question 1.4:** What is the `national_alb` for the *59*th data row?"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "612bda10",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# using the cell function, retrieve the 'national_alb' for the 59th data row\n",
+    "# replace the ... with approriate values\n",
+    "\n",
+    "national_alb_idx58 = cell(..., ...)\n",
+    "\n",
+    "national_alb_idx58"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "9216bf53",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q1-4\")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "de8ae2c7",
+   "metadata": {},
+   "source": [
+    "**Question 1.5:** What is the `urban_alb` for the *59*th data row?"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "0f35a77d",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# using the cell function, retrieve the 'urban_alb' for the 59th data row\n",
+    "# replace the ... with approriate values\n",
+    "\n",
+    "urban_alb_idx58 = cell(..., ...)\n",
+    "\n",
+    "urban_alb_idx58"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "bdfc467d",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q1-5\")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "408bd4ac",
+   "metadata": {},
+   "source": [
+    "**Question 1.6:** What is the `country_code` for the *60*th data row?"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "83a670ce",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# using the cell function, retrieve the 'country_code' for the 60th data row\n",
+    "# replace the ... with approriate values\n",
+    "\n",
+    "country_code_idx59 = cell(..., ...)\n",
+    "\n",
+    "country_code_idx59"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "39252810",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q1-6\")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "d6b88bcd",
+   "metadata": {},
+   "source": [
+    "**Question 1.7:** What is the `income_level` for the *60*th data row?"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "a9821b4e",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# using the cell function, retrieve the 'income_level' for the 60th data row\n",
+    "# replace the ... with approriate values\n",
+    "\n",
+    "income_level_idx59 = cell(..., ...)\n",
+    "\n",
+    "income_level_idx59"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "0fe25c06",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q1-7\")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "9a33e216",
+   "metadata": {},
+   "source": [
+    "## Segment 3: Dictionaries and Looping through Timeseries data"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "e647279e",
+   "metadata": {},
+   "source": [
+    "### Task 3.1: Creating and Accessing Dictionaries"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "0619cfd2",
+   "metadata": {},
+   "source": [
+    "**Question 2:** Create a dictionary mapping each `country_name` to its `country_code`.\n",
+    "\n",
+    "Your output **must** be a **dict** where each key is a `country_name` and the value is the `country_code`. The first five key-value pairs within this **dict** would be these:\n",
+    "```\n",
+    "{'Afghanistan': 'AFG',\n",
+    " 'Albania': 'ALB',\n",
+    " 'Algeria': 'DZA',\n",
+    " 'Andorra': 'AND',\n",
+    " 'Angola': 'AGO',\n",
+    " ...\n",
+    "}\n",
+    "```\n",
+    "\n",
+    "**Important:** This dataset is different from the previous datasets you have worked with because every country in the dataset has **two** rows: one for the `year` *2015* and one for *2020*. This means that when working with data, you **need** to make sure to set your `for` loop in a way that will let you process two rows at once. Thankfully, the data is organized in such a way that for *each country*, the data from *2015* appears in the **even** indexed rows (0, 2, 4, ...), and the data from *2020* appears in the **odd** indexed rows (1, 3, , ...)."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "8dfd0aa1",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# replace the ... with your code\n",
+    "\n",
+    "# Initialize as an empty dictionary\n",
+    "country_codes = ...\n",
+    "\n",
+    "# this will loop through from 0 to len(csv_rows) and increase by 2 numbers each loop\n",
+    "# i.e. it will loop through even indices corresponding to just the data from 2015\n",
+    "for idx in range(0, len(csv_rows), 2): \n",
+    "    # Before you populate the dictionary with the key-value pairs,\n",
+    "    # use print function calls to print the key and the value.\n",
+    "    # Once you have verified the output for the first five lines of data, \n",
+    "    # use the dictionary key-value pair insert syntax to update the dictionary\n",
+    "    # Don't forget to delete the print function call line of code.\n",
+    "    country_codes[...] = ...\n",
+    "\n",
+    "\n",
+    "country_codes"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "b4f6379f",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q2\")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "59349301",
+   "metadata": {},
+   "source": [
+    "**Question 3.1:** What is the `country_code` of *Ireland*?"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "fbc1cc74",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# replace the ... with your code\n",
+    "ireland_country_code = ...\n",
+    "\n",
+    "ireland_country_code"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "6b05afe8",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q3-1\")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "0303a44c",
+   "metadata": {},
+   "source": [
+    "**Question 3.2:** What is the country code of *Sudan*?"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "bd47e2f5",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# replace the ... with your code\n",
+    "sudan_country_code = ...\n",
+    "\n",
+    "sudan_country_code"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "3fb28427",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q3-2\")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "2e014f0d",
+   "metadata": {},
+   "source": [
+    "**Question 4:** Create a dictionary mapping each `country_name` to `income_level` for *2015*.\n",
+    "\n",
+    "The first five key-value pairs within this **dict** would be these:\n",
+    "```\n",
+    "{'Afghanistan': 'Low income',\n",
+    " 'Albania': 'Upper middle income',\n",
+    " 'Algeria': 'Upper middle income',\n",
+    " 'Andorra': 'High income',\n",
+    " 'Angola': 'Upper middle income',\n",
+    " ...\n",
+    "}\n",
+    "```\n",
+    "\n",
+    "**Hint:** The data for *2015* is found on rows at **even** indices. "
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "59a07a28",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# replace the ... with your code\n",
+    "\n",
+    "# Initialize as an empty dictionary\n",
+    "income_levels_2015 = ...\n",
+    "\n",
+    "# you need to loop through from 0 to len(csv_rows) and increase by 2 numbers each loop\n",
+    "for idx in range(..., ..., ...):\n",
+    "    # Before you populate the dictionary with the key-value pairs,\n",
+    "    # use print function calls to print the key and the value.\n",
+    "    # Once you have verified the output for the first five lines of data, \n",
+    "    # use the dictionary key-value pair insert syntax to update the dictionary.\n",
+    "    # Don't forget to delete the print function call line of code.\n",
+    "    income_levels_2015[...] = ...\n",
+    "\n",
+    "\n",
+    "income_levels_2015"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "eae6e56a",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q4\")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "9bb241de",
+   "metadata": {},
+   "source": [
+    "**Question 5:** Create a dictionary mapping each `country_name` to `income_level` for *2020*.\n",
+    "\n",
+    "The first five key-value pairs within this **dict** would be these:\n",
+    "```\n",
+    "{'Afghanistan': 'Low income',\n",
+    " 'Albania': 'Upper middle income',\n",
+    " 'Algeria': 'Lower middle income',\n",
+    " 'Andorra': 'High income',\n",
+    " 'Angola': 'Lower middle income',\n",
+    " ...\n",
+    "}\n",
+    "```\n",
+    "\n",
+    "**Hint:** The data for *2020* is found on rows at **odd** indices. "
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "ec6d35b8",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# replace the ... with your code\n",
+    "\n",
+    "# Initialize as an empty dictionary\n",
+    "income_levels_2020 = ...\n",
+    "\n",
+    "# you need to loop through from 1 to len(csv_rows) and increase by 2 numbers each loop\n",
+    "for idx in range(..., ..., ...):\n",
+    "    # Before you populate the dictionary with the key-value pairs,\n",
+    "    # use print function calls to print the key and the value.\n",
+    "    # Once you have verified the output for the first five lines of data, \n",
+    "    # use the dictionary key-value pair insert syntax to update the dictionary\n",
+    "    # Don't forget to delete the print function call line of code.\n",
+    "    income_levels_2020[...] = ...\n",
+    "\n",
+    "\n",
+    "income_levels_2020"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "4cb3ac26",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q5\")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "97d671ab",
+   "metadata": {},
+   "source": [
+    "**Question 6.1:** What is the `income_level` of *Zimbabwe* in *2015*?"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "11cd8c43",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# replace the ... with your code\n",
+    "\n",
+    "zimbabwe_income_level_2015 = ...\n",
+    "\n",
+    "zimbabwe_income_level_2015"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "3c19bf0d",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q6-1\")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "b31a09ea",
+   "metadata": {},
+   "source": [
+    "**Question 6.2:** What is the `income_level` of *Zimbabwe* in *2020*?"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "ecce349b",
+   "metadata": {
+    "scrolled": true,
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# replace the ... with your code\n",
+    "\n",
+    "zimbabwe_income_level_2020 = ...\n",
+    "\n",
+    "zimbabwe_income_level_2020"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "e336e2b8",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q6-2\")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "1b653489",
+   "metadata": {},
+   "source": [
+    "### Task 3.2: Comparing data in odd and even indices"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "331e6f66",
+   "metadata": {},
+   "source": [
+    "**Question 7:** Create a **list** of all the countries (`country_name`) whose populations (`pop`) have **decreased** from *2015* to *2020*."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "3025c600",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# replace the ... with your code\n",
+    "\n",
+    "# initalize as an empty list\n",
+    "pop_decrease_countries = ...\n",
+    "\n",
+    "# you need to loop through only even indices to avoid repeating the same steps twice\n",
+    "for idx in range(..., ..., ...):\n",
+    "    idx_2015 = idx\n",
+    "    idx_2020 = idx + 1\n",
+    "    if ...: # check if population in 2020 is less than population in 2015\n",
+    "        pop_decrease_countries.append(...)\n",
+    "        \n",
+    "pop_decrease_countries"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "0d880a4e",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q7\")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "82c7b9cd",
+   "metadata": {},
+   "source": [
+    "**Question 8:** Create a list of all the countries whose urban population percentage (`urban_percent`) **increased** from *2015* to *2020*."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "852f6ee0",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# replace the ... with your code\n",
+    "\n",
+    "# initialize as an empty list\n",
+    "more_urban_countries = []\n",
+    "\n",
+    "# you need to loop through only even (or only odd) indices to avoid repeating the same steps twice\n",
+    "# and add the country_name to the list if urban_percent is higher in 2020 than in 2015\n",
+    "        \n",
+    "more_urban_countries"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "652c4cb9",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q8\")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "a08a32d9",
+   "metadata": {},
+   "source": [
+    "### Task 3.3: Working with Nested Dictionaries\n",
+    "\n",
+    "You have defined two dictionaries `income_levels_2015` and `income_levels_2020`. You will now create a *nested* dictionary that combines both these dictionaries."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "7b837291",
+   "metadata": {},
+   "source": [
+    "**Question 9:** Create a dictionary mapping each `country_name` to another **dictionary** that maps each `year` to `income_level`. You may hardcode the years *2015* and *2020* for this question.\n",
+    "\n",
+    "The first five key-value pairs within this **dict** would be these:\n",
+    "```\n",
+    "{'Afghanistan': {2015: 'Low income', 2020: 'Low income'},\n",
+    " 'Albania': {2015: 'Upper middle income', 2020: 'Upper middle income'},\n",
+    " 'Algeria': {2015: 'Upper middle income', 2020: 'Lower middle income'},\n",
+    " 'Andorra': {2015: 'High income', 2020: 'High income'},\n",
+    " 'Angola': {2015: 'Upper middle income', 2020: 'Lower middle income'},\n",
+    " ...\n",
+    "}\n",
+    "```\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "af3b24fd",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# replace the ... with your code\n",
+    "\n",
+    "# initialize as an empty dictionary\n",
+    "income_levels = ...\n",
+    "\n",
+    "# you need to loop through only even (or only odd) indices to avoid repeating the same steps twice\n",
+    "for idx in range(..., ..., ...):\n",
+    "    country_name = cell(idx, \"country_name\")\n",
+    "    # initialize as an empty nested dictionary as the value\n",
+    "    income_levels[country_name] = ...\n",
+    "    # First, use print function call to display the 2015 income_level for\n",
+    "    # the current country. Once you verify that, delete the print function call line.\n",
+    "    # add the income_level for 2015 as key-value pair to inner dictionary\n",
+    "    income_levels[...][...] = income_levels_2015[...]\n",
+    "    # add the income_level for 2020 as key-value pair to inner dictionary\n",
+    "    income_levels[...][...] = income_levels_2020[...]\n",
+    "\n",
+    "income_levels"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "3fc64163",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q9\")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "7c9c233a",
+   "metadata": {},
+   "source": [
+    "**Question 10.1:** Use the nested dictionary you created to find the `income_level` of *Cuba* in *2015*.\n",
+    "\n",
+    "You **must** use the dictionary `income_levels` to answer this question."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "0c0a8465",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# replace the ... with your code\n",
+    "\n",
+    "cuba_income_level_2015 = income_levels[...][...]\n",
+    "\n",
+    "cuba_income_level_2015"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "8d43224a",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q10-1\")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "581a552c",
+   "metadata": {},
+   "source": [
+    "**Question 10.2:** Use the nested dictionary you created to find the `income_level` of *Gibraltar* in *2020*.\n",
+    "\n",
+    "You **must** use the dictionary `income_levels` to answer this question."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "633781b9",
+   "metadata": {
+    "scrolled": false,
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# replace the ... with your code\n",
+    "\n",
+    "gibraltar_income_level_2020 = income_levels[...][...]\n",
+    "\n",
+    "gibraltar_income_level_2020"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "0b9776d8",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q10-2\")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "11801822",
+   "metadata": {},
+   "source": [
+    "**Question 11**: Create a dictionary mapping each `country_name` to a **boolean** representing whether or not the `income_level` of a country is different in *2020* than in *2015*.\n",
+    "\n",
+    "The first five key-value pairs within this **dict** would be these:\n",
+    "```\n",
+    "{'Afghanistan': False,\n",
+    " 'Albania': False,\n",
+    " 'Algeria': True,\n",
+    " 'Andorra': False,\n",
+    " 'Angola': True,\n",
+    " ...\n",
+    "}\n",
+    "```\n",
+    "\n",
+    "You have already created a nested dictionary called `income_levels` which contains all the relevant data. Loop through the keys of that dictionary and combine the data from the inner dictionary to create your dictionary."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "7b919e60",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# replace the ... with your code\n",
+    "\n",
+    "# initialize as an empty dictionary\n",
+    "income_level_differences = ...\n",
+    "\n",
+    "# loop over the keys of income_levels\n",
+    "for ... in ...:\n",
+    "    if ...: \n",
+    "        # use the dictionary income_levels to compare 2015 and 2020 income_level\n",
+    "        income_change_boolean = True\n",
+    "    else:\n",
+    "        income_change_boolean = False\n",
+    "    # map the country name to the boolean\n",
+    "    income_level_differences[...] = income_change_boolean\n",
+    "\n",
+    "income_level_differences"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "4ee8c425",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q11\")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "93ac9ecf",
+   "metadata": {},
+   "source": [
+    "### Task 3.4: Binning\n",
+    "\n",
+    "We created the dictionary `income_levels_2015` a little while ago which maps each `country_name` to its `income_level`. We will now use this dictionary to create a **new** dictionary where each key is an `income_level`, and the corresponding value is a **list** of all the countries from that `income_level`.\n",
+    "\n",
+    "**Hint:** If a given key is not present as the keys in dictionary, you might want to actually initialize it with an empty dictionary. A pseudo-code looks like this,\n",
+    "```\n",
+    "if new_key not in dictionary:\n",
+    "    dictionary[new_key] = []\n",
+    "```"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "4e6ce90a",
+   "metadata": {},
+   "source": [
+    "**Question 12:** Create a new dictionary using the `income_levels_2015` dictionary by mapping each `income_level` to a **list** of all the countries (`country_name`) from that `income_level`.\n",
+    "\n",
+    "The first three country names for each key within this **dict** would be these:\n",
+    "```\n",
+    "{'Low income': ['Afghanistan',\n",
+    "  'Benin',\n",
+    "  'Burkina Faso', ...],\n",
+    " 'Upper middle income': ['Albania',\n",
+    "  'Algeria',\n",
+    "  'Angola', ...],\n",
+    " 'High income': ['Andorra',\n",
+    "  'Australia',\n",
+    "  'Austria', ...],\n",
+    " 'Lower middle income': ['Armenia',\n",
+    "  'Bangladesh',\n",
+    "  'Bhutan', ...]\n",
+    "}\n",
+    "```"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "01d85153",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# replace the ... with your code\n",
+    "\n",
+    "# initialize as an empty dictionary\n",
+    "income_levels_to_country_names_2015 = ...\n",
+    "\n",
+    "# loop over the keys of income_levels_2015\n",
+    "for ... in ...:\n",
+    "    # find the income_level of the country and store as bin_key\n",
+    "    bin_key = ...\n",
+    "    # if the income_level doesn't already exist in the new dict, map it to an empty list \n",
+    "    if bin_key not in income_levels_to_country_names_2015:\n",
+    "        income_levels_to_country_names_2015[bin_key] = ...\n",
+    "    # append the country name to the list\n",
+    "    income_levels_to_country_names_2015[bin_key].append(...)\n",
+    "\n",
+    "income_levels_to_country_names_2015"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "92a471bc",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q12\")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "26613d73",
+   "metadata": {},
+   "source": [
+    "**Question 13:** Create a new dictionary using the `income_levels_2020` dictionary by mapping each `income_level` to a **list** of all the countries (`country_name`) from that `income_level`."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "2ddcdfea",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# replace the ... with your code\n",
+    "\n",
+    "# initialize as an empty dictionary\n",
+    "income_levels_to_country_names_2020 = ...\n",
+    "\n",
+    "# loop over the keys of income_levels_2020\n",
+    "# and update income_levels_to_country_names_2020 by appending each country to the correct list\n",
+    "\n",
+    "income_levels_to_country_names_2020"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "18774dde",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q13\")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "013d9a9a",
+   "metadata": {},
+   "source": [
+    "### Task 3.5: Summarizing Data in Dictionaries"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "fe5e5aea",
+   "metadata": {},
+   "source": [
+    "**Question 14.1:** Create a new dictionary that maps each `income_level` to the **number** of countries from that `income_level` in *2015*.\n",
+    "\n",
+    "The key-value pairs within this **dict** would be these:\n",
+    "```\n",
+    "{'Low income': 25,\n",
+    " 'Upper middle income': 44,\n",
+    " 'High income': 41,\n",
+    " 'Lower middle income': 41}\n",
+    "```\n",
+    "\n",
+    "**Hint:** Start with the dictionary `income_levels_to_country_names_2015`. Your new dictionary must have the same keys, but the values must be the **length** of the corresponding values in `income_levels_to_country_names_2015`."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "030b86ec",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# replace the ... with your code\n",
+    "\n",
+    "# initialize as an empty dictionary\n",
+    "income_level_country_counts_2015 = ...\n",
+    "\n",
+    "# loop over the keys of income_levels_to_country_names_2015\n",
+    "for ... in ...:\n",
+    "    # map the income level to the length of the value in income_levels_to_country_names_2015\n",
+    "    income_level_country_counts_2015[...] = len(...)\n",
+    "\n",
+    "income_level_country_counts_2015"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "f03f9888",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q14-1\")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "9d5980a3",
+   "metadata": {},
+   "source": [
+    "**Question 14.2**: Create a new dictionary that maps each `income_level` to the **number** of countries from that `income_level` in *2020*.\n",
+    "\n",
+    "The key-value pairs within this **dict** would be these:\n",
+    "```\n",
+    "{'Low income': 22,\n",
+    " 'Upper middle income': 43,\n",
+    " 'Lower middle income': 44,\n",
+    " 'High income': 42}\n",
+    "\n",
+    "```"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "d43db4d0",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# replace the ... with your code\n",
+    "\n",
+    "# initialize as an empty dictionary\n",
+    "income_level_country_counts_2020 = ...\n",
+    "\n",
+    "# loop over the keys of income_levels_to_country_names_2020\n",
+    "# and map the income_level to the length\n",
+    "\n",
+    "income_level_country_counts_2020"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "768b351f",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q14-2\")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "beb6ea2d",
+   "metadata": {},
+   "source": [
+    "### Task 3.6: Combining data from different dictionaries"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "fef61793",
+   "metadata": {},
+   "source": [
+    "**Question 15.1:** Create a dictionary that maps each `country_name` to the population (`pop`) of that country in *2020*.\n",
+    "\n",
+    "The first five key-value pairs within this **dict** would be these:\n",
+    "```\n",
+    "{'Afghanistan': 38928000,\n",
+    " 'Albania': 2878000,\n",
+    " 'Algeria': 43851000,\n",
+    " 'Andorra': 77000,\n",
+    " 'Angola': 32866000,\n",
+    " ...\n",
+    "}\n",
+    "```\n",
+    "\n",
+    "\n",
+    "**Reminder:** The `pop` column represents the population in **thousands**. Your `cell` function definition should already have handled this conversion."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "aae1145e",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# replace the ... with your code\n",
+    "\n",
+    "# initialize as an empty dictionary\n",
+    "pops = ...\n",
+    "\n",
+    "# loop over the odd indices of csv_rows to get the data for 2020\n",
+    "# and map the country_name to the pop\n",
+    "\n",
+    "pops"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "b4aef3d9",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q15-1\")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "300d21d6",
+   "metadata": {},
+   "source": [
+    "**Question 15.2:** Create a dictionary that maps each `country_name` to the urban population percentage (`urban_percent`) of that country in *2020*.\n",
+    "\n",
+    "The first five key-value pairs within this **dict** would be these:\n",
+    "```\n",
+    "{'Afghanistan': 26,\n",
+    " 'Albania': 62,\n",
+    " 'Algeria': 74,\n",
+    " 'Andorra': 88,\n",
+    " 'Angola': 67,\n",
+    " ...\n",
+    "}\n",
+    "```"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "e2c081c7",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# compute and store the answer in the variable 'urban_percents', then display it\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "3da62fe1",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q15-2\")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "978bc4e4",
+   "metadata": {},
+   "source": [
+    "**Question 16:** Using the two dictionaries `pops` and `urban_percents`, create a new dictionary that maps each `country_name` to the size of the urban population of that country in *2020*.\n",
+    "\n",
+    "You **must** round the numbers to the nearest integer using the built-in function `round`.  To learn more about the `round` function, check out this [link](https://docs.python.org/3/library/functions.html#round).\n",
+    "\n",
+    "The first five key-value pairs within this **dict** would be these:\n",
+    "```\n",
+    "{'Afghanistan': 10121280,\n",
+    " 'Albania': 1784360,\n",
+    " 'Algeria': 32449740,\n",
+    " 'Andorra': 67760,\n",
+    " 'Angola': 22020220,\n",
+    " ...\n",
+    " }\n",
+    "```\n",
+    "\n",
+    "**Hint:** For each country, the size of the urban population is just the `pop * urban_percent / 100`"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "528640c8",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# replace the ... with your code\n",
+    "\n",
+    "# initialize as an empty dictionary\n",
+    "urban_populations = ...\n",
+    "\n",
+    "# loop over the keys of either pops/urban_percents (it doesn't matter as they are the same)\n",
+    "for ... in ...:\n",
+    "    # map the country name to its urban population using data from pops and urban_percents\n",
+    "    # Remember that both pops and urban_percents have the same keys (country names)\n",
+    "    # So a single for loop can be sufficient to access data from both of these dictionaries\n",
+    "    urban_populations[...] = ...\n",
+    "\n",
+    "urban_populations"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "5ac2fee4",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q16\")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "f0aa7a87",
+   "metadata": {},
+   "source": [
+    "### Task 3.7: Finding Minimum/Maximum Values in Dictionaries"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "56afff02",
+   "metadata": {},
+   "source": [
+    "**Question 17**: What is the name of the country with the **smallest** urban population? Do not worry about ties."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "1c72ab99",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# replace the ... with your code\n",
+    "\n",
+    "# initialize a new variable as None\n",
+    "smallest_urban_country = ...\n",
+    "\n",
+    "# loop over the keys of urban_populations\n",
+    "for ... in ...:\n",
+    "    # check if the variable smallest_urban_country should be updated\n",
+    "    if ...:\n",
+    "        # correctly update the variable\n",
+    "        smallest_urban_country = ...\n",
+    "\n",
+    "smallest_urban_country"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "2ecf8d6c",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q17\")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "3d68a87d",
+   "metadata": {},
+   "source": [
+    "**Question 18**: What is the name of the country with the **largest** urban population? Do not worry about ties."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "541fca56",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# compute and store the answer in the variable 'largest_urban_country', then display it\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "b1036293",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q18\")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "34a60617",
+   "metadata": {},
+   "source": [
+    "### Task 3.8: Adding additional data to nested dictionaries\n",
+    "\n",
+    "You have already defined a nested dictionary `income_levels`in q9. This is a dictionary where each `country_name` maps to an inner dictionary with the keys *2015* and *2020*. The corresponding values for this inner dictionary are the `income_levels` of `country_name` in *2015* and *2020* respectively.\n",
+    "\n",
+    "You will now add an additional column to this nested dictionary."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "b47b88b7",
+   "metadata": {},
+   "source": [
+    "**Question 19**: Add an additional key-value pair mapping the string `\"region\"` to the `region` of each country to each of the inner dictionaries of `income_levels`.\n",
+    "\n",
+    "The value of the variable `income_levels` should look like this:\n",
+    "```python\n",
+    "{'Afghanistan': {2015: 'Low income',\n",
+    "  2020: 'Low income',\n",
+    "  'region': 'South Asia'},\n",
+    " 'Albania': {2015: 'Upper middle income',\n",
+    "  2020: 'Upper middle income',\n",
+    "  'region': 'Europe & Central Asia'},\n",
+    " 'Algeria': {2015: 'Upper middle income',\n",
+    "  2020: 'Lower middle income',\n",
+    "  'region': 'Middle East & North Africa'},\n",
+    "  ...\n",
+    "}\n",
+    "```"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "002bfe6a",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# update the value of the variable 'income_levels', then display it\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "edb4964c",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q19\")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "14a4af04",
+   "metadata": {},
+   "source": [
+    "### Task 3.9: More binning"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "75996b30",
+   "metadata": {},
+   "source": [
+    "**Question 20**: Create a new dictionary that maps each `region` to the **list** of countries from that region whose `income_level` was *Lower middle income* in *2020*."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "f373083c",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# replace the ... with your code\n",
+    "\n",
+    "# initialize as an empty dictionary\n",
+    "lower_mid_countries_by_region = ...\n",
+    "# loop over the keys of income_levels\n",
+    "for ... in ...:\n",
+    "    # find the region of the country and store it as the bin_key\n",
+    "    bin_key = ...\n",
+    "    # check if bin_key is already a key of lower_mid_countries_by_region\n",
+    "    if ...:\n",
+    "        # initialize the value as an empty list if key is not in the dict\n",
+    "        lower_mid_countries_by_region[bin_key] = ...\n",
+    "    # if the income level of the country was 'Lower middle income' in 2020,\n",
+    "    # add country to the correct bin\n",
+    "\n",
+    "lower_mid_countries_by_region"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "aad9a4ed",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q20\")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "273e0384",
+   "metadata": {},
+   "source": [
+    "## Great work! You are now ready to start [P7](https://git.doit.wisc.edu/cdis/cs/courses/cs220/cs220-s23-projects/-/tree/main/p7). You may use any helper functions that you have created here."
+   ]
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3 (ipykernel)",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.9.13"
+  },
+  "otter": {
+   "OK_FORMAT": true,
+   "tests": {
+    "q1-1": {
+     "name": "q1-1",
+     "points": 0.5,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> practice_test.check(\"q1-1\", year_idx4)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q1-2": {
+     "name": "q1-2",
+     "points": 0.5,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> practice_test.check(\"q1-2\", pop_idx5)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q1-3": {
+     "name": "q1-3",
+     "points": 0.5,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> practice_test.check(\"q1-3\", urban_percent_idx57)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q1-4": {
+     "name": "q1-4",
+     "points": 0.5,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> practice_test.check(\"q1-4\", national_alb_idx58)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q1-5": {
+     "name": "q1-5",
+     "points": 1,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> practice_test.check(\"q1-5\", urban_alb_idx58)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q1-6": {
+     "name": "q1-6",
+     "points": 1,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> practice_test.check(\"q1-6\", country_code_idx59)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q1-7": {
+     "name": "q1-7",
+     "points": 1,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> practice_test.check(\"q1-7\", income_level_idx59)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q10-1": {
+     "name": "q10-1",
+     "points": 2.5,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> practice_test.check(\"q10-1\", cuba_income_level_2015)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q10-2": {
+     "name": "q10-2",
+     "points": 5,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> practice_test.check(\"q10-2\", gibraltar_income_level_2020)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q11": {
+     "name": "q11",
+     "points": 5,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> practice_test.check(\"q11\", income_level_differences)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q12": {
+     "name": "q12",
+     "points": 5,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> practice_test.check(\"q12\", income_levels_to_country_names_2015)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q13": {
+     "name": "q13",
+     "points": 5,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> practice_test.check(\"q13\", income_levels_to_country_names_2020)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q14-1": {
+     "name": "q14-1",
+     "points": 2,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> practice_test.check(\"q14-1\", income_level_country_counts_2015)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q14-2": {
+     "name": "q14-2",
+     "points": 3,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> practice_test.check(\"q14-2\", income_level_country_counts_2020)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q15-1": {
+     "name": "q15-1",
+     "points": 2,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> practice_test.check(\"q15-1\", pops)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q15-2": {
+     "name": "q15-2",
+     "points": 3,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> practice_test.check(\"q15-2\", urban_percents)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q16": {
+     "name": "q16",
+     "points": 5,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> practice_test.check(\"q16\", urban_populations)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q17": {
+     "name": "q17",
+     "points": 5,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> practice_test.check(\"q17\", smallest_urban_country)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q18": {
+     "name": "q18",
+     "points": 5,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> practice_test.check(\"q18\", largest_urban_country)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q19": {
+     "name": "q19",
+     "points": 5,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> practice_test.check(\"q19\", income_levels)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q2": {
+     "name": "q2",
+     "points": 5,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> practice_test.check(\"q2\", country_codes)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q20": {
+     "name": "q20",
+     "points": 5,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> practice_test.check(\"q20\", lower_mid_countries_by_region)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q3-1": {
+     "name": "q3-1",
+     "points": 2.5,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> practice_test.check(\"q3-1\", ireland_country_code)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q3-2": {
+     "name": "q3-2",
+     "points": 2.5,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> practice_test.check(\"q3-2\", sudan_country_code)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q4": {
+     "name": "q4",
+     "points": 5,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> practice_test.check(\"q4\", income_levels_2015)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q5": {
+     "name": "q5",
+     "points": 5,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> practice_test.check(\"q5\", income_levels_2020)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q6-1": {
+     "name": "q6-1",
+     "points": 2.5,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> practice_test.check(\"q6-1\", zimbabwe_income_level_2015)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q6-2": {
+     "name": "q6-2",
+     "points": 2.5,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> practice_test.check(\"q6-2\", zimbabwe_income_level_2020)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q7": {
+     "name": "q7",
+     "points": 5,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> practice_test.check(\"q7\", pop_decrease_countries)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q8": {
+     "name": "q8",
+     "points": 5,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> practice_test.check(\"q8\", more_urban_countries)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q9": {
+     "name": "q9",
+     "points": 5,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> practice_test.check(\"q9\", income_levels)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    }
+   }
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/lab-p7/practice_test.py b/lab-p7/practice_test.py
new file mode 100644
index 0000000..462fdc6
--- /dev/null
+++ b/lab-p7/practice_test.py
@@ -0,0 +1,2429 @@
+#!/usr/bin/python
+import os
+import json
+import math
+
+
+REL_TOL = 6e-04  # relative tolerance for floats
+ABS_TOL = 15e-03  # absolute tolerance for floats
+
+PASS = "PASS"
+
+TEXT_FORMAT = "text"  # question type when expected answer is a str, int, float, or bool
+# question type when expected answer is a namedtuple
+TEXT_FORMAT_NAMEDTUPLE = "text namedtuple"
+# question type when the expected answer is a list where the order does *not* matter
+TEXT_FORMAT_UNORDERED_LIST = "text list_unordered"
+# question type when the expected answer is a list where the order does matter
+TEXT_FORMAT_ORDERED_LIST = "text list_ordered"
+# question type when the expected answer is a list of namedtuples where the order does matter
+TEXT_FORMAT_ORDERED_LIST_NAMEDTUPLE = "text list_ordered namedtuple"
+# question type when the expected answer is a list where order does matter, but with possible ties. Elements are ordered according to values in special_ordered_json (with ties allowed)
+TEXT_FORMAT_SPECIAL_ORDERED_LIST = "text list_special_ordered"
+# question type when the expected answer is a dictionary
+TEXT_FORMAT_DICT = "text dict"
+# question type when the expected answer is a list of dicts where the order does matter
+TEXT_FORMAT_LIST_DICTS_ORDERED = "text list_dicts_ordered"
+
+
+expected_json = {"1-1": (TEXT_FORMAT, 2015),
+                 "1-2": (TEXT_FORMAT, 43851000),
+                 "1-3": (TEXT_FORMAT, 24),
+                 "1-4": (TEXT_FORMAT, 100),
+                 "1-5": (TEXT_FORMAT, 100),
+                 "1-6": (TEXT_FORMAT, 'CHL'),
+                 "1-7": (TEXT_FORMAT, 'High income'),
+                 "2": (TEXT_FORMAT_DICT, {'Afghanistan': 'AFG',
+                                          'Albania': 'ALB',
+                                          'Algeria': 'DZA',
+                                          'Andorra': 'AND',
+                                          'Angola': 'AGO',
+                                          'Armenia': 'ARM',
+                                          'Australia': 'AUS',
+                                          'Austria': 'AUT',
+                                          'Azerbaijan': 'AZE',
+                                          'Bangladesh': 'BGD',
+                                          'Belarus': 'BLR',
+                                          'Belgium': 'BEL',
+                                          'Belize': 'BLZ',
+                                          'Benin': 'BEN',
+                                          'Bermuda': 'BMU',
+                                          'Bhutan': 'BTN',
+                                          'Bosnia and Herzegovina': 'BIH',
+                                          'Botswana': 'BWA',
+                                          'Brazil': 'BRA',
+                                          'Brunei Darussalam': 'BRN',
+                                          'Bulgaria': 'BGR',
+                                          'Burkina Faso': 'BFA',
+                                          'Burundi': 'BDI',
+                                          'Cabo Verde': 'CPV',
+                                          'Cambodia': 'KHM',
+                                          'Cameroon': 'CMR',
+                                          'Canada': 'CAN',
+                                          'Central African Republic': 'CAF',
+                                          'Chad': 'TCD',
+                                          'Chile': 'CHL',
+                                          'China': 'CHN',
+                                          'Colombia': 'COL',
+                                          'Costa Rica': 'CRI',
+                                          "Côte d'Ivoire": 'CIV',
+                                          'Cuba': 'CUB',
+                                          'Cyprus': 'CYP',
+                                          'Czech Republic': 'CZE',
+                                          'Denmark': 'DNK',
+                                          'Djibouti': 'DJI',
+                                          'Dominican Republic': 'DOM',
+                                          'Ecuador': 'ECU',
+                                          'El Salvador': 'SLV',
+                                          'Estonia': 'EST',
+                                          'Eswatini': 'SWZ',
+                                          'Ethiopia': 'ETH',
+                                          'Fiji': 'FJI',
+                                          'Finland': 'FIN',
+                                          'France': 'FRA',
+                                          'Gabon': 'GAB',
+                                          'Georgia': 'GEO',
+                                          'Germany': 'DEU',
+                                          'Ghana': 'GHA',
+                                          'Gibraltar': 'GIB',
+                                          'Greece': 'GRC',
+                                          'Greenland': 'GRL',
+                                          'Guatemala': 'GTM',
+                                          'Guinea': 'GIN',
+                                          'Guinea-Bissau': 'GNB',
+                                          'Guyana': 'GUY',
+                                          'Haiti': 'HTI',
+                                          'Honduras': 'HND',
+                                          'Hungary': 'HUN',
+                                          'Iceland': 'ISL',
+                                          'India': 'IND',
+                                          'Indonesia': 'IDN',
+                                          'Iraq': 'IRQ',
+                                          'Ireland': 'IRL',
+                                          'Israel': 'ISR',
+                                          'Jamaica': 'JAM',
+                                          'Jordan': 'JOR',
+                                          'Kazakhstan': 'KAZ',
+                                          'Kenya': 'KEN',
+                                          'Kiribati': 'KIR',
+                                          'Latvia': 'LVA',
+                                          'Lesotho': 'LSO',
+                                          'Liberia': 'LBR',
+                                          'Lithuania': 'LTU',
+                                          'Luxembourg': 'LUX',
+                                          'Madagascar': 'MDG',
+                                          'Malawi': 'MWI',
+                                          'Malaysia': 'MYS',
+                                          'Maldives': 'MDV',
+                                          'Mali': 'MLI',
+                                          'Malta': 'MLT',
+                                          'Marshall Islands': 'MHL',
+                                          'Mauritania': 'MRT',
+                                          'Mauritius': 'MUS',
+                                          'Mexico': 'MEX',
+                                          'Monaco': 'MCO',
+                                          'Mongolia': 'MNG',
+                                          'Montenegro': 'MNE',
+                                          'Morocco': 'MAR',
+                                          'Mozambique': 'MOZ',
+                                          'Myanmar': 'MMR',
+                                          'Namibia': 'NAM',
+                                          'Nauru': 'NRU',
+                                          'Nepal': 'NPL',
+                                          'Netherlands': 'NLD',
+                                          'New Zealand': 'NZL',
+                                          'Nicaragua': 'NIC',
+                                          'Niger': 'NER',
+                                          'Nigeria': 'NGA',
+                                          'North Macedonia': 'MKD',
+                                          'Norway': 'NOR',
+                                          'Oman': 'OMN',
+                                          'Pakistan': 'PAK',
+                                          'Palau': 'PLW',
+                                          'Panama': 'PAN',
+                                          'Papua New Guinea': 'PNG',
+                                          'Paraguay': 'PRY',
+                                          'Peru': 'PER',
+                                          'Philippines': 'PHL',
+                                          'Poland': 'POL',
+                                          'Portugal': 'PRT',
+                                          'Romania': 'ROU',
+                                          'Russian Federation': 'RUS',
+                                          'Rwanda': 'RWA',
+                                          'Samoa': 'WSM',
+                                          'Senegal': 'SEN',
+                                          'Serbia': 'SRB',
+                                          'Sierra Leone': 'SLE',
+                                          'Singapore': 'SGP',
+                                          'Solomon Islands': 'SLB',
+                                          'Somalia': 'SOM',
+                                          'South Africa': 'ZAF',
+                                          'South Sudan': 'SSD',
+                                          'Spain': 'ESP',
+                                          'Sri Lanka': 'LKA',
+                                          'Sudan': 'SDN',
+                                          'Suriname': 'SUR',
+                                          'Sweden': 'SWE',
+                                          'Switzerland': 'CHE',
+                                          'Syrian Arab Republic': 'SYR',
+                                          'Tajikistan': 'TJK',
+                                          'Thailand': 'THA',
+                                          'Timor-Leste': 'TLS',
+                                          'Togo': 'TGO',
+                                          'Tonga': 'TON',
+                                          'Tunisia': 'TUN',
+                                          'Turkmenistan': 'TKM',
+                                          'Tuvalu': 'TUV',
+                                          'Uganda': 'UGA',
+                                          'Ukraine': 'UKR',
+                                          'United Kingdom': 'GBR',
+                                          'United States of America': 'USA',
+                                          'Uruguay': 'URY',
+                                          'Uzbekistan': 'UZB',
+                                          'Vanuatu': 'VUT',
+                                          'Vietnam': 'VNM',
+                                          'Zambia': 'ZMB',
+                                          'Zimbabwe': 'ZWE'}),
+                 "3-1": (TEXT_FORMAT, 'IRL'),
+                 "3-2": (TEXT_FORMAT, 'SDN'),
+                 "4": (TEXT_FORMAT_DICT, {'Afghanistan': 'Low income',
+                                          'Albania': 'Upper middle income',
+                                          'Algeria': 'Upper middle income',
+                                          'Andorra': 'High income',
+                                          'Angola': 'Upper middle income',
+                                          'Armenia': 'Lower middle income',
+                                          'Australia': 'High income',
+                                          'Austria': 'High income',
+                                          'Azerbaijan': 'Upper middle income',
+                                          'Bangladesh': 'Lower middle income',
+                                          'Belarus': 'Upper middle income',
+                                          'Belgium': 'High income',
+                                          'Belize': 'Upper middle income',
+                                          'Benin': 'Low income',
+                                          'Bermuda': 'High income',
+                                          'Bhutan': 'Lower middle income',
+                                          'Bosnia and Herzegovina': 'Upper middle income',
+                                          'Botswana': 'Upper middle income',
+                                          'Brazil': 'Upper middle income',
+                                          'Brunei Darussalam': 'High income',
+                                          'Bulgaria': 'Upper middle income',
+                                          'Burkina Faso': 'Low income',
+                                          'Burundi': 'Low income',
+                                          'Cabo Verde': 'Lower middle income',
+                                          'Cambodia': 'Lower middle income',
+                                          'Cameroon': 'Lower middle income',
+                                          'Canada': 'High income',
+                                          'Central African Republic': 'Low income',
+                                          'Chad': 'Low income',
+                                          'Chile': 'High income',
+                                          'China': 'Upper middle income',
+                                          'Colombia': 'Upper middle income',
+                                          'Costa Rica': 'Upper middle income',
+                                          "Côte d'Ivoire": 'Lower middle income',
+                                          'Cuba': 'Upper middle income',
+                                          'Cyprus': 'High income',
+                                          'Czech Republic': 'High income',
+                                          'Denmark': 'High income',
+                                          'Djibouti': 'Lower middle income',
+                                          'Dominican Republic': 'Upper middle income',
+                                          'Ecuador': 'Upper middle income',
+                                          'El Salvador': 'Lower middle income',
+                                          'Estonia': 'High income',
+                                          'Eswatini': 'Lower middle income',
+                                          'Ethiopia': 'Low income',
+                                          'Fiji': 'Upper middle income',
+                                          'Finland': 'High income',
+                                          'France': 'High income',
+                                          'Gabon': 'Upper middle income',
+                                          'Georgia': 'Upper middle income',
+                                          'Germany': 'High income',
+                                          'Ghana': 'Lower middle income',
+                                          'Gibraltar': 'High income',
+                                          'Greece': 'High income',
+                                          'Greenland': 'High income',
+                                          'Guatemala': 'Lower middle income',
+                                          'Guinea': 'Low income',
+                                          'Guinea-Bissau': 'Low income',
+                                          'Guyana': 'Upper middle income',
+                                          'Haiti': 'Low income',
+                                          'Honduras': 'Lower middle income',
+                                          'Hungary': 'High income',
+                                          'Iceland': 'High income',
+                                          'India': 'Lower middle income',
+                                          'Indonesia': 'Lower middle income',
+                                          'Iraq': 'Upper middle income',
+                                          'Ireland': 'High income',
+                                          'Israel': 'High income',
+                                          'Jamaica': 'Upper middle income',
+                                          'Jordan': 'Upper middle income',
+                                          'Kazakhstan': 'Upper middle income',
+                                          'Kenya': 'Lower middle income',
+                                          'Kiribati': 'Lower middle income',
+                                          'Latvia': 'High income',
+                                          'Lesotho': 'Lower middle income',
+                                          'Liberia': 'Low income',
+                                          'Lithuania': 'High income',
+                                          'Luxembourg': 'High income',
+                                          'Madagascar': 'Low income',
+                                          'Malawi': 'Low income',
+                                          'Malaysia': 'Upper middle income',
+                                          'Maldives': 'Upper middle income',
+                                          'Mali': 'Low income',
+                                          'Malta': 'High income',
+                                          'Marshall Islands': 'Upper middle income',
+                                          'Mauritania': 'Lower middle income',
+                                          'Mauritius': 'Upper middle income',
+                                          'Mexico': 'Upper middle income',
+                                          'Monaco': 'High income',
+                                          'Mongolia': 'Lower middle income',
+                                          'Montenegro': 'Upper middle income',
+                                          'Morocco': 'Lower middle income',
+                                          'Mozambique': 'Low income',
+                                          'Myanmar': 'Lower middle income',
+                                          'Namibia': 'Upper middle income',
+                                          'Nauru': 'High income',
+                                          'Nepal': 'Low income',
+                                          'Netherlands': 'High income',
+                                          'New Zealand': 'High income',
+                                          'Nicaragua': 'Lower middle income',
+                                          'Niger': 'Low income',
+                                          'Nigeria': 'Lower middle income',
+                                          'North Macedonia': 'Upper middle income',
+                                          'Norway': 'High income',
+                                          'Oman': 'High income',
+                                          'Pakistan': 'Lower middle income',
+                                          'Palau': 'Upper middle income',
+                                          'Panama': 'Upper middle income',
+                                          'Papua New Guinea': 'Lower middle income',
+                                          'Paraguay': 'Upper middle income',
+                                          'Peru': 'Upper middle income',
+                                          'Philippines': 'Lower middle income',
+                                          'Poland': 'High income',
+                                          'Portugal': 'High income',
+                                          'Romania': 'Upper middle income',
+                                          'Russian Federation': 'Upper middle income',
+                                          'Rwanda': 'Low income',
+                                          'Samoa': 'Lower middle income',
+                                          'Senegal': 'Low income',
+                                          'Serbia': 'Upper middle income',
+                                          'Sierra Leone': 'Low income',
+                                          'Singapore': 'High income',
+                                          'Solomon Islands': 'Lower middle income',
+                                          'Somalia': 'Low income',
+                                          'South Africa': 'Upper middle income',
+                                          'South Sudan': 'Low income',
+                                          'Spain': 'High income',
+                                          'Sri Lanka': 'Lower middle income',
+                                          'Sudan': 'Lower middle income',
+                                          'Suriname': 'Upper middle income',
+                                          'Sweden': 'High income',
+                                          'Switzerland': 'High income',
+                                          'Syrian Arab Republic': 'Lower middle income',
+                                          'Tajikistan': 'Lower middle income',
+                                          'Thailand': 'Upper middle income',
+                                          'Timor-Leste': 'Lower middle income',
+                                          'Togo': 'Low income',
+                                          'Tonga': 'Lower middle income',
+                                          'Tunisia': 'Lower middle income',
+                                          'Turkmenistan': 'Upper middle income',
+                                          'Tuvalu': 'Upper middle income',
+                                          'Uganda': 'Low income',
+                                          'Ukraine': 'Lower middle income',
+                                          'United Kingdom': 'High income',
+                                          'United States of America': 'High income',
+                                          'Uruguay': 'High income',
+                                          'Uzbekistan': 'Lower middle income',
+                                          'Vanuatu': 'Lower middle income',
+                                          'Vietnam': 'Lower middle income',
+                                          'Zambia': 'Lower middle income',
+                                          'Zimbabwe': 'Low income'}),
+                 "5": (TEXT_FORMAT_DICT, {'Afghanistan': 'Low income',
+                                          'Albania': 'Upper middle income',
+                                          'Algeria': 'Lower middle income',
+                                          'Andorra': 'High income',
+                                          'Angola': 'Lower middle income',
+                                          'Armenia': 'Upper middle income',
+                                          'Australia': 'High income',
+                                          'Austria': 'High income',
+                                          'Azerbaijan': 'Upper middle income',
+                                          'Bangladesh': 'Lower middle income',
+                                          'Belarus': 'Upper middle income',
+                                          'Belgium': 'High income',
+                                          'Belize': 'Lower middle income',
+                                          'Benin': 'Lower middle income',
+                                          'Bermuda': 'High income',
+                                          'Bhutan': 'Lower middle income',
+                                          'Bosnia and Herzegovina': 'Upper middle income',
+                                          'Botswana': 'Upper middle income',
+                                          'Brazil': 'Upper middle income',
+                                          'Brunei Darussalam': 'High income',
+                                          'Bulgaria': 'Upper middle income',
+                                          'Burkina Faso': 'Low income',
+                                          'Burundi': 'Low income',
+                                          'Cabo Verde': 'Lower middle income',
+                                          'Cambodia': 'Lower middle income',
+                                          'Cameroon': 'Lower middle income',
+                                          'Canada': 'High income',
+                                          'Central African Republic': 'Low income',
+                                          'Chad': 'Low income',
+                                          'Chile': 'High income',
+                                          'China': 'Upper middle income',
+                                          'Colombia': 'Upper middle income',
+                                          'Costa Rica': 'Upper middle income',
+                                          "Côte d'Ivoire": 'Lower middle income',
+                                          'Cuba': 'Upper middle income',
+                                          'Cyprus': 'High income',
+                                          'Czech Republic': 'High income',
+                                          'Denmark': 'High income',
+                                          'Djibouti': 'Lower middle income',
+                                          'Dominican Republic': 'Upper middle income',
+                                          'Ecuador': 'Upper middle income',
+                                          'El Salvador': 'Lower middle income',
+                                          'Estonia': 'High income',
+                                          'Eswatini': 'Lower middle income',
+                                          'Ethiopia': 'Low income',
+                                          'Fiji': 'Upper middle income',
+                                          'Finland': 'High income',
+                                          'France': 'High income',
+                                          'Gabon': 'Upper middle income',
+                                          'Georgia': 'Upper middle income',
+                                          'Germany': 'High income',
+                                          'Ghana': 'Lower middle income',
+                                          'Gibraltar': 'High income',
+                                          'Greece': 'High income',
+                                          'Greenland': 'High income',
+                                          'Guatemala': 'Upper middle income',
+                                          'Guinea': 'Low income',
+                                          'Guinea-Bissau': 'Low income',
+                                          'Guyana': 'Upper middle income',
+                                          'Haiti': 'Lower middle income',
+                                          'Honduras': 'Lower middle income',
+                                          'Hungary': 'High income',
+                                          'Iceland': 'High income',
+                                          'India': 'Lower middle income',
+                                          'Indonesia': 'Lower middle income',
+                                          'Iraq': 'Upper middle income',
+                                          'Ireland': 'High income',
+                                          'Israel': 'High income',
+                                          'Jamaica': 'Upper middle income',
+                                          'Jordan': 'Upper middle income',
+                                          'Kazakhstan': 'Upper middle income',
+                                          'Kenya': 'Lower middle income',
+                                          'Kiribati': 'Lower middle income',
+                                          'Latvia': 'High income',
+                                          'Lesotho': 'Lower middle income',
+                                          'Liberia': 'Low income',
+                                          'Lithuania': 'High income',
+                                          'Luxembourg': 'High income',
+                                          'Madagascar': 'Low income',
+                                          'Malawi': 'Low income',
+                                          'Malaysia': 'Upper middle income',
+                                          'Maldives': 'Upper middle income',
+                                          'Mali': 'Low income',
+                                          'Malta': 'High income',
+                                          'Marshall Islands': 'Upper middle income',
+                                          'Mauritania': 'Lower middle income',
+                                          'Mauritius': 'Upper middle income',
+                                          'Mexico': 'Upper middle income',
+                                          'Monaco': 'High income',
+                                          'Mongolia': 'Lower middle income',
+                                          'Montenegro': 'Upper middle income',
+                                          'Morocco': 'Lower middle income',
+                                          'Mozambique': 'Low income',
+                                          'Myanmar': 'Lower middle income',
+                                          'Namibia': 'Upper middle income',
+                                          'Nauru': 'High income',
+                                          'Nepal': 'Lower middle income',
+                                          'Netherlands': 'High income',
+                                          'New Zealand': 'High income',
+                                          'Nicaragua': 'Lower middle income',
+                                          'Niger': 'Low income',
+                                          'Nigeria': 'Lower middle income',
+                                          'North Macedonia': 'Upper middle income',
+                                          'Norway': 'High income',
+                                          'Oman': 'High income',
+                                          'Pakistan': 'Lower middle income',
+                                          'Palau': 'High income',
+                                          'Panama': 'Upper middle income',
+                                          'Papua New Guinea': 'Lower middle income',
+                                          'Paraguay': 'Upper middle income',
+                                          'Peru': 'Upper middle income',
+                                          'Philippines': 'Lower middle income',
+                                          'Poland': 'High income',
+                                          'Portugal': 'High income',
+                                          'Romania': 'Upper middle income',
+                                          'Russian Federation': 'Upper middle income',
+                                          'Rwanda': 'Low income',
+                                          'Samoa': 'Lower middle income',
+                                          'Senegal': 'Lower middle income',
+                                          'Serbia': 'Upper middle income',
+                                          'Sierra Leone': 'Low income',
+                                          'Singapore': 'High income',
+                                          'Solomon Islands': 'Lower middle income',
+                                          'Somalia': 'Low income',
+                                          'South Africa': 'Upper middle income',
+                                          'South Sudan': 'Low income',
+                                          'Spain': 'High income',
+                                          'Sri Lanka': 'Lower middle income',
+                                          'Sudan': 'Low income',
+                                          'Suriname': 'Upper middle income',
+                                          'Sweden': 'High income',
+                                          'Switzerland': 'High income',
+                                          'Syrian Arab Republic': 'Low income',
+                                          'Tajikistan': 'Lower middle income',
+                                          'Thailand': 'Upper middle income',
+                                          'Timor-Leste': 'Lower middle income',
+                                          'Togo': 'Low income',
+                                          'Tonga': 'Upper middle income',
+                                          'Tunisia': 'Lower middle income',
+                                          'Turkmenistan': 'Upper middle income',
+                                          'Tuvalu': 'Upper middle income',
+                                          'Uganda': 'Low income',
+                                          'Ukraine': 'Lower middle income',
+                                          'United Kingdom': 'High income',
+                                          'United States of America': 'High income',
+                                          'Uruguay': 'High income',
+                                          'Uzbekistan': 'Lower middle income',
+                                          'Vanuatu': 'Lower middle income',
+                                          'Vietnam': 'Lower middle income',
+                                          'Zambia': 'Lower middle income',
+                                          'Zimbabwe': 'Lower middle income'}),
+                 "6-1": (TEXT_FORMAT, 'Low income'),
+                 "6-2": (TEXT_FORMAT, 'Lower middle income'),
+                 "7": (TEXT_FORMAT_UNORDERED_LIST, ['Albania',
+                                         'Andorra',
+                                         'Bermuda',
+                                         'Bosnia and Herzegovina',
+                                         'Bulgaria',
+                                         'Georgia',
+                                         'Greece',
+                                         'Hungary',
+                                         'Latvia',
+                                         'Lithuania',
+                                         'Poland',
+                                         'Portugal',
+                                         'Romania',
+                                         'Serbia',
+                                         'Syrian Arab Republic',
+                                         'Ukraine']),
+                 "8": (TEXT_FORMAT_UNORDERED_LIST, ['Afghanistan',
+                                         'Albania',
+                                         'Algeria',
+                                         'Angola',
+                                         'Austria',
+                                         'Azerbaijan',
+                                         'Bangladesh',
+                                         'Belarus',
+                                         'Belize',
+                                         'Benin',
+                                         'Bhutan',
+                                         'Bosnia and Herzegovina',
+                                         'Botswana',
+                                         'Brazil',
+                                         'Brunei Darussalam',
+                                         'Bulgaria',
+                                         'Burkina Faso',
+                                         'Burundi',
+                                         'Cabo Verde',
+                                         'Cambodia',
+                                         'Cameroon',
+                                         'Canada',
+                                         'Central African Republic',
+                                         'Chad',
+                                         'Chile',
+                                         'China',
+                                         'Colombia',
+                                         'Costa Rica',
+                                         "Côte d'Ivoire",
+                                         'Czech Republic',
+                                         'Djibouti',
+                                         'Dominican Republic',
+                                         'Ecuador',
+                                         'El Salvador',
+                                         'Estonia',
+                                         'Eswatini',
+                                         'Ethiopia',
+                                         'Fiji',
+                                         'Finland',
+                                         'France',
+                                         'Gabon',
+                                         'Georgia',
+                                         'Ghana',
+                                         'Greece',
+                                         'Greenland',
+                                         'Guatemala',
+                                         'Guinea',
+                                         'Guinea-Bissau',
+                                         'Guyana',
+                                         'Haiti',
+                                         'Honduras',
+                                         'Hungary',
+                                         'India',
+                                         'Indonesia',
+                                         'Iraq',
+                                         'Ireland',
+                                         'Israel',
+                                         'Jamaica',
+                                         'Jordan',
+                                         'Kazakhstan',
+                                         'Kenya',
+                                         'Kiribati',
+                                         'Lesotho',
+                                         'Liberia',
+                                         'Lithuania',
+                                         'Luxembourg',
+                                         'Madagascar',
+                                         'Malawi',
+                                         'Malaysia',
+                                         'Maldives',
+                                         'Mali',
+                                         'Malta',
+                                         'Marshall Islands',
+                                         'Mauritania',
+                                         'Mexico',
+                                         'Mongolia',
+                                         'Montenegro',
+                                         'Morocco',
+                                         'Mozambique',
+                                         'Myanmar',
+                                         'Namibia',
+                                         'Nepal',
+                                         'Netherlands',
+                                         'New Zealand',
+                                         'Nicaragua',
+                                         'Niger',
+                                         'Nigeria',
+                                         'North Macedonia',
+                                         'Norway',
+                                         'Oman',
+                                         'Pakistan',
+                                         'Palau',
+                                         'Panama',
+                                         'Paraguay',
+                                         'Peru',
+                                         'Philippines',
+                                         'Portugal',
+                                         'Russian Federation',
+                                         'Senegal',
+                                         'Sierra Leone',
+                                         'Solomon Islands',
+                                         'Somalia',
+                                         'South Africa',
+                                         'South Sudan',
+                                         'Spain',
+                                         'Sri Lanka',
+                                         'Sudan',
+                                         'Sweden',
+                                         'Syrian Arab Republic',
+                                         'Tajikistan',
+                                         'Thailand',
+                                         'Timor-Leste',
+                                         'Togo',
+                                         'Tunisia',
+                                         'Turkmenistan',
+                                         'Tuvalu',
+                                         'Uganda',
+                                         'United Kingdom',
+                                         'United States of America',
+                                         'Uruguay',
+                                         'Vanuatu',
+                                         'Vietnam',
+                                         'Zambia']),
+                 "9": (TEXT_FORMAT_DICT, {'Afghanistan': {2015: 'Low income', 2020: 'Low income'},
+                                          'Albania': {2015: 'Upper middle income', 2020: 'Upper middle income'},
+                                          'Algeria': {2015: 'Upper middle income', 2020: 'Lower middle income'},
+                                          'Andorra': {2015: 'High income', 2020: 'High income'},
+                                          'Angola': {2015: 'Upper middle income', 2020: 'Lower middle income'},
+                                          'Armenia': {2015: 'Lower middle income', 2020: 'Upper middle income'},
+                                          'Australia': {2015: 'High income', 2020: 'High income'},
+                                          'Austria': {2015: 'High income', 2020: 'High income'},
+                                          'Azerbaijan': {2015: 'Upper middle income', 2020: 'Upper middle income'},
+                                          'Bangladesh': {2015: 'Lower middle income', 2020: 'Lower middle income'},
+                                          'Belarus': {2015: 'Upper middle income', 2020: 'Upper middle income'},
+                                          'Belgium': {2015: 'High income', 2020: 'High income'},
+                                          'Belize': {2015: 'Upper middle income', 2020: 'Lower middle income'},
+                                          'Benin': {2015: 'Low income', 2020: 'Lower middle income'},
+                                          'Bermuda': {2015: 'High income', 2020: 'High income'},
+                                          'Bhutan': {2015: 'Lower middle income', 2020: 'Lower middle income'},
+                                          'Bosnia and Herzegovina': {2015: 'Upper middle income',
+                                                                     2020: 'Upper middle income'},
+                                          'Botswana': {2015: 'Upper middle income', 2020: 'Upper middle income'},
+                                          'Brazil': {2015: 'Upper middle income', 2020: 'Upper middle income'},
+                                          'Brunei Darussalam': {2015: 'High income', 2020: 'High income'},
+                                          'Bulgaria': {2015: 'Upper middle income', 2020: 'Upper middle income'},
+                                          'Burkina Faso': {2015: 'Low income', 2020: 'Low income'},
+                                          'Burundi': {2015: 'Low income', 2020: 'Low income'},
+                                          'Cabo Verde': {2015: 'Lower middle income', 2020: 'Lower middle income'},
+                                          'Cambodia': {2015: 'Lower middle income', 2020: 'Lower middle income'},
+                                          'Cameroon': {2015: 'Lower middle income', 2020: 'Lower middle income'},
+                                          'Canada': {2015: 'High income', 2020: 'High income'},
+                                          'Central African Republic': {2015: 'Low income', 2020: 'Low income'},
+                                          'Chad': {2015: 'Low income', 2020: 'Low income'},
+                                          'Chile': {2015: 'High income', 2020: 'High income'},
+                                          'China': {2015: 'Upper middle income', 2020: 'Upper middle income'},
+                                          'Colombia': {2015: 'Upper middle income', 2020: 'Upper middle income'},
+                                          'Costa Rica': {2015: 'Upper middle income', 2020: 'Upper middle income'},
+                                          "Côte d'Ivoire": {2015: 'Lower middle income', 2020: 'Lower middle income'},
+                                          'Cuba': {2015: 'Upper middle income', 2020: 'Upper middle income'},
+                                          'Cyprus': {2015: 'High income', 2020: 'High income'},
+                                          'Czech Republic': {2015: 'High income', 2020: 'High income'},
+                                          'Denmark': {2015: 'High income', 2020: 'High income'},
+                                          'Djibouti': {2015: 'Lower middle income', 2020: 'Lower middle income'},
+                                          'Dominican Republic': {2015: 'Upper middle income',
+                                                                 2020: 'Upper middle income'},
+                                          'Ecuador': {2015: 'Upper middle income', 2020: 'Upper middle income'},
+                                          'El Salvador': {2015: 'Lower middle income', 2020: 'Lower middle income'},
+                                          'Estonia': {2015: 'High income', 2020: 'High income'},
+                                          'Eswatini': {2015: 'Lower middle income', 2020: 'Lower middle income'},
+                                          'Ethiopia': {2015: 'Low income', 2020: 'Low income'},
+                                          'Fiji': {2015: 'Upper middle income', 2020: 'Upper middle income'},
+                                          'Finland': {2015: 'High income', 2020: 'High income'},
+                                          'France': {2015: 'High income', 2020: 'High income'},
+                                          'Gabon': {2015: 'Upper middle income', 2020: 'Upper middle income'},
+                                          'Georgia': {2015: 'Upper middle income', 2020: 'Upper middle income'},
+                                          'Germany': {2015: 'High income', 2020: 'High income'},
+                                          'Ghana': {2015: 'Lower middle income', 2020: 'Lower middle income'},
+                                          'Gibraltar': {2015: 'High income', 2020: 'High income'},
+                                          'Greece': {2015: 'High income', 2020: 'High income'},
+                                          'Greenland': {2015: 'High income', 2020: 'High income'},
+                                          'Guatemala': {2015: 'Lower middle income', 2020: 'Upper middle income'},
+                                          'Guinea': {2015: 'Low income', 2020: 'Low income'},
+                                          'Guinea-Bissau': {2015: 'Low income', 2020: 'Low income'},
+                                          'Guyana': {2015: 'Upper middle income', 2020: 'Upper middle income'},
+                                          'Haiti': {2015: 'Low income', 2020: 'Lower middle income'},
+                                          'Honduras': {2015: 'Lower middle income', 2020: 'Lower middle income'},
+                                          'Hungary': {2015: 'High income', 2020: 'High income'},
+                                          'Iceland': {2015: 'High income', 2020: 'High income'},
+                                          'India': {2015: 'Lower middle income', 2020: 'Lower middle income'},
+                                          'Indonesia': {2015: 'Lower middle income', 2020: 'Lower middle income'},
+                                          'Iraq': {2015: 'Upper middle income', 2020: 'Upper middle income'},
+                                          'Ireland': {2015: 'High income', 2020: 'High income'},
+                                          'Israel': {2015: 'High income', 2020: 'High income'},
+                                          'Jamaica': {2015: 'Upper middle income', 2020: 'Upper middle income'},
+                                          'Jordan': {2015: 'Upper middle income', 2020: 'Upper middle income'},
+                                          'Kazakhstan': {2015: 'Upper middle income', 2020: 'Upper middle income'},
+                                          'Kenya': {2015: 'Lower middle income', 2020: 'Lower middle income'},
+                                          'Kiribati': {2015: 'Lower middle income', 2020: 'Lower middle income'},
+                                          'Latvia': {2015: 'High income', 2020: 'High income'},
+                                          'Lesotho': {2015: 'Lower middle income', 2020: 'Lower middle income'},
+                                          'Liberia': {2015: 'Low income', 2020: 'Low income'},
+                                          'Lithuania': {2015: 'High income', 2020: 'High income'},
+                                          'Luxembourg': {2015: 'High income', 2020: 'High income'},
+                                          'Madagascar': {2015: 'Low income', 2020: 'Low income'},
+                                          'Malawi': {2015: 'Low income', 2020: 'Low income'},
+                                          'Malaysia': {2015: 'Upper middle income', 2020: 'Upper middle income'},
+                                          'Maldives': {2015: 'Upper middle income', 2020: 'Upper middle income'},
+                                          'Mali': {2015: 'Low income', 2020: 'Low income'},
+                                          'Malta': {2015: 'High income', 2020: 'High income'},
+                                          'Marshall Islands': {2015: 'Upper middle income',
+                                                               2020: 'Upper middle income'},
+                                          'Mauritania': {2015: 'Lower middle income', 2020: 'Lower middle income'},
+                                          'Mauritius': {2015: 'Upper middle income', 2020: 'Upper middle income'},
+                                          'Mexico': {2015: 'Upper middle income', 2020: 'Upper middle income'},
+                                          'Monaco': {2015: 'High income', 2020: 'High income'},
+                                          'Mongolia': {2015: 'Lower middle income', 2020: 'Lower middle income'},
+                                          'Montenegro': {2015: 'Upper middle income', 2020: 'Upper middle income'},
+                                          'Morocco': {2015: 'Lower middle income', 2020: 'Lower middle income'},
+                                          'Mozambique': {2015: 'Low income', 2020: 'Low income'},
+                                          'Myanmar': {2015: 'Lower middle income', 2020: 'Lower middle income'},
+                                          'Namibia': {2015: 'Upper middle income', 2020: 'Upper middle income'},
+                                          'Nauru': {2015: 'High income', 2020: 'High income'},
+                                          'Nepal': {2015: 'Low income', 2020: 'Lower middle income'},
+                                          'Netherlands': {2015: 'High income', 2020: 'High income'},
+                                          'New Zealand': {2015: 'High income', 2020: 'High income'},
+                                          'Nicaragua': {2015: 'Lower middle income', 2020: 'Lower middle income'},
+                                          'Niger': {2015: 'Low income', 2020: 'Low income'},
+                                          'Nigeria': {2015: 'Lower middle income', 2020: 'Lower middle income'},
+                                          'North Macedonia': {2015: 'Upper middle income', 2020: 'Upper middle income'},
+                                          'Norway': {2015: 'High income', 2020: 'High income'},
+                                          'Oman': {2015: 'High income', 2020: 'High income'},
+                                          'Pakistan': {2015: 'Lower middle income', 2020: 'Lower middle income'},
+                                          'Palau': {2015: 'Upper middle income', 2020: 'High income'},
+                                          'Panama': {2015: 'Upper middle income', 2020: 'Upper middle income'},
+                                          'Papua New Guinea': {2015: 'Lower middle income',
+                                                               2020: 'Lower middle income'},
+                                          'Paraguay': {2015: 'Upper middle income', 2020: 'Upper middle income'},
+                                          'Peru': {2015: 'Upper middle income', 2020: 'Upper middle income'},
+                                          'Philippines': {2015: 'Lower middle income', 2020: 'Lower middle income'},
+                                          'Poland': {2015: 'High income', 2020: 'High income'},
+                                          'Portugal': {2015: 'High income', 2020: 'High income'},
+                                          'Romania': {2015: 'Upper middle income', 2020: 'Upper middle income'},
+                                          'Russian Federation': {2015: 'Upper middle income',
+                                                                 2020: 'Upper middle income'},
+                                          'Rwanda': {2015: 'Low income', 2020: 'Low income'},
+                                          'Samoa': {2015: 'Lower middle income', 2020: 'Lower middle income'},
+                                          'Senegal': {2015: 'Low income', 2020: 'Lower middle income'},
+                                          'Serbia': {2015: 'Upper middle income', 2020: 'Upper middle income'},
+                                          'Sierra Leone': {2015: 'Low income', 2020: 'Low income'},
+                                          'Singapore': {2015: 'High income', 2020: 'High income'},
+                                          'Solomon Islands': {2015: 'Lower middle income', 2020: 'Lower middle income'},
+                                          'Somalia': {2015: 'Low income', 2020: 'Low income'},
+                                          'South Africa': {2015: 'Upper middle income', 2020: 'Upper middle income'},
+                                          'South Sudan': {2015: 'Low income', 2020: 'Low income'},
+                                          'Spain': {2015: 'High income', 2020: 'High income'},
+                                          'Sri Lanka': {2015: 'Lower middle income', 2020: 'Lower middle income'},
+                                          'Sudan': {2015: 'Lower middle income', 2020: 'Low income'},
+                                          'Suriname': {2015: 'Upper middle income', 2020: 'Upper middle income'},
+                                          'Sweden': {2015: 'High income', 2020: 'High income'},
+                                          'Switzerland': {2015: 'High income', 2020: 'High income'},
+                                          'Syrian Arab Republic': {2015: 'Lower middle income', 2020: 'Low income'},
+                                          'Tajikistan': {2015: 'Lower middle income', 2020: 'Lower middle income'},
+                                          'Thailand': {2015: 'Upper middle income', 2020: 'Upper middle income'},
+                                          'Timor-Leste': {2015: 'Lower middle income', 2020: 'Lower middle income'},
+                                          'Togo': {2015: 'Low income', 2020: 'Low income'},
+                                          'Tonga': {2015: 'Lower middle income', 2020: 'Upper middle income'},
+                                          'Tunisia': {2015: 'Lower middle income', 2020: 'Lower middle income'},
+                                          'Turkmenistan': {2015: 'Upper middle income', 2020: 'Upper middle income'},
+                                          'Tuvalu': {2015: 'Upper middle income', 2020: 'Upper middle income'},
+                                          'Uganda': {2015: 'Low income', 2020: 'Low income'},
+                                          'Ukraine': {2015: 'Lower middle income', 2020: 'Lower middle income'},
+                                          'United Kingdom': {2015: 'High income', 2020: 'High income'},
+                                          'United States of America': {2015: 'High income', 2020: 'High income'},
+                                          'Uruguay': {2015: 'High income', 2020: 'High income'},
+                                          'Uzbekistan': {2015: 'Lower middle income', 2020: 'Lower middle income'},
+                                          'Vanuatu': {2015: 'Lower middle income', 2020: 'Lower middle income'},
+                                          'Vietnam': {2015: 'Lower middle income', 2020: 'Lower middle income'},
+                                          'Zambia': {2015: 'Lower middle income', 2020: 'Lower middle income'},
+                                          'Zimbabwe': {2015: 'Low income', 2020: 'Lower middle income'}}),
+                 "10-1": (TEXT_FORMAT, 'Upper middle income'),
+                 "10-2": (TEXT_FORMAT, 'High income'),
+                 "11": (TEXT_FORMAT_DICT, {'Afghanistan': False,
+                                           'Albania': False,
+                                           'Algeria': True,
+                                           'Andorra': False,
+                                           'Angola': True,
+                                           'Armenia': True,
+                                           'Australia': False,
+                                           'Austria': False,
+                                           'Azerbaijan': False,
+                                           'Bangladesh': False,
+                                           'Belarus': False,
+                                           'Belgium': False,
+                                           'Belize': True,
+                                           'Benin': True,
+                                           'Bermuda': False,
+                                           'Bhutan': False,
+                                           'Bosnia and Herzegovina': False,
+                                           'Botswana': False,
+                                           'Brazil': False,
+                                           'Brunei Darussalam': False,
+                                           'Bulgaria': False,
+                                           'Burkina Faso': False,
+                                           'Burundi': False,
+                                           'Cabo Verde': False,
+                                           'Cambodia': False,
+                                           'Cameroon': False,
+                                           'Canada': False,
+                                           'Central African Republic': False,
+                                           'Chad': False,
+                                           'Chile': False,
+                                           'China': False,
+                                           'Colombia': False,
+                                           'Costa Rica': False,
+                                           "Côte d'Ivoire": False,
+                                           'Cuba': False,
+                                           'Cyprus': False,
+                                           'Czech Republic': False,
+                                           'Denmark': False,
+                                           'Djibouti': False,
+                                           'Dominican Republic': False,
+                                           'Ecuador': False,
+                                           'El Salvador': False,
+                                           'Estonia': False,
+                                           'Eswatini': False,
+                                           'Ethiopia': False,
+                                           'Fiji': False,
+                                           'Finland': False,
+                                           'France': False,
+                                           'Gabon': False,
+                                           'Georgia': False,
+                                           'Germany': False,
+                                           'Ghana': False,
+                                           'Gibraltar': False,
+                                           'Greece': False,
+                                           'Greenland': False,
+                                           'Guatemala': True,
+                                           'Guinea': False,
+                                           'Guinea-Bissau': False,
+                                           'Guyana': False,
+                                           'Haiti': True,
+                                           'Honduras': False,
+                                           'Hungary': False,
+                                           'Iceland': False,
+                                           'India': False,
+                                           'Indonesia': False,
+                                           'Iraq': False,
+                                           'Ireland': False,
+                                           'Israel': False,
+                                           'Jamaica': False,
+                                           'Jordan': False,
+                                           'Kazakhstan': False,
+                                           'Kenya': False,
+                                           'Kiribati': False,
+                                           'Latvia': False,
+                                           'Lesotho': False,
+                                           'Liberia': False,
+                                           'Lithuania': False,
+                                           'Luxembourg': False,
+                                           'Madagascar': False,
+                                           'Malawi': False,
+                                           'Malaysia': False,
+                                           'Maldives': False,
+                                           'Mali': False,
+                                           'Malta': False,
+                                           'Marshall Islands': False,
+                                           'Mauritania': False,
+                                           'Mauritius': False,
+                                           'Mexico': False,
+                                           'Monaco': False,
+                                           'Mongolia': False,
+                                           'Montenegro': False,
+                                           'Morocco': False,
+                                           'Mozambique': False,
+                                           'Myanmar': False,
+                                           'Namibia': False,
+                                           'Nauru': False,
+                                           'Nepal': True,
+                                           'Netherlands': False,
+                                           'New Zealand': False,
+                                           'Nicaragua': False,
+                                           'Niger': False,
+                                           'Nigeria': False,
+                                           'North Macedonia': False,
+                                           'Norway': False,
+                                           'Oman': False,
+                                           'Pakistan': False,
+                                           'Palau': True,
+                                           'Panama': False,
+                                           'Papua New Guinea': False,
+                                           'Paraguay': False,
+                                           'Peru': False,
+                                           'Philippines': False,
+                                           'Poland': False,
+                                           'Portugal': False,
+                                           'Romania': False,
+                                           'Russian Federation': False,
+                                           'Rwanda': False,
+                                           'Samoa': False,
+                                           'Senegal': True,
+                                           'Serbia': False,
+                                           'Sierra Leone': False,
+                                           'Singapore': False,
+                                           'Solomon Islands': False,
+                                           'Somalia': False,
+                                           'South Africa': False,
+                                           'South Sudan': False,
+                                           'Spain': False,
+                                           'Sri Lanka': False,
+                                           'Sudan': True,
+                                           'Suriname': False,
+                                           'Sweden': False,
+                                           'Switzerland': False,
+                                           'Syrian Arab Republic': True,
+                                           'Tajikistan': False,
+                                           'Thailand': False,
+                                           'Timor-Leste': False,
+                                           'Togo': False,
+                                           'Tonga': True,
+                                           'Tunisia': False,
+                                           'Turkmenistan': False,
+                                           'Tuvalu': False,
+                                           'Uganda': False,
+                                           'Ukraine': False,
+                                           'United Kingdom': False,
+                                           'United States of America': False,
+                                           'Uruguay': False,
+                                           'Uzbekistan': False,
+                                           'Vanuatu': False,
+                                           'Vietnam': False,
+                                           'Zambia': False,
+                                           'Zimbabwe': True}),
+                 "12": (TEXT_FORMAT_DICT, {'Low income': ['Afghanistan',
+                                                          'Benin',
+                                                          'Burkina Faso',
+                                                          'Burundi',
+                                                          'Central African Republic',
+                                                          'Chad',
+                                                          'Ethiopia',
+                                                          'Guinea',
+                                                          'Guinea-Bissau',
+                                                          'Haiti',
+                                                          'Liberia',
+                                                          'Madagascar',
+                                                          'Malawi',
+                                                          'Mali',
+                                                          'Mozambique',
+                                                          'Nepal',
+                                                          'Niger',
+                                                          'Rwanda',
+                                                          'Senegal',
+                                                          'Sierra Leone',
+                                                          'Somalia',
+                                                          'South Sudan',
+                                                          'Togo',
+                                                          'Uganda',
+                                                          'Zimbabwe'],
+                                           'Upper middle income': ['Albania',
+                                                                   'Algeria',
+                                                                   'Angola',
+                                                                   'Azerbaijan',
+                                                                   'Belarus',
+                                                                   'Belize',
+                                                                   'Bosnia and Herzegovina',
+                                                                   'Botswana',
+                                                                   'Brazil',
+                                                                   'Bulgaria',
+                                                                   'China',
+                                                                   'Colombia',
+                                                                   'Costa Rica',
+                                                                   'Cuba',
+                                                                   'Dominican Republic',
+                                                                   'Ecuador',
+                                                                   'Fiji',
+                                                                   'Gabon',
+                                                                   'Georgia',
+                                                                   'Guyana',
+                                                                   'Iraq',
+                                                                   'Jamaica',
+                                                                   'Jordan',
+                                                                   'Kazakhstan',
+                                                                   'Malaysia',
+                                                                   'Maldives',
+                                                                   'Marshall Islands',
+                                                                   'Mauritius',
+                                                                   'Mexico',
+                                                                   'Montenegro',
+                                                                   'Namibia',
+                                                                   'North Macedonia',
+                                                                   'Palau',
+                                                                   'Panama',
+                                                                   'Paraguay',
+                                                                   'Peru',
+                                                                   'Romania',
+                                                                   'Russian Federation',
+                                                                   'Serbia',
+                                                                   'South Africa',
+                                                                   'Suriname',
+                                                                   'Thailand',
+                                                                   'Turkmenistan',
+                                                                   'Tuvalu'],
+                                           'High income': ['Andorra',
+                                                           'Australia',
+                                                           'Austria',
+                                                           'Belgium',
+                                                           'Bermuda',
+                                                           'Brunei Darussalam',
+                                                           'Canada',
+                                                           'Chile',
+                                                           'Cyprus',
+                                                           'Czech Republic',
+                                                           'Denmark',
+                                                           'Estonia',
+                                                           'Finland',
+                                                           'France',
+                                                           'Germany',
+                                                           'Gibraltar',
+                                                           'Greece',
+                                                           'Greenland',
+                                                           'Hungary',
+                                                           'Iceland',
+                                                           'Ireland',
+                                                           'Israel',
+                                                           'Latvia',
+                                                           'Lithuania',
+                                                           'Luxembourg',
+                                                           'Malta',
+                                                           'Monaco',
+                                                           'Nauru',
+                                                           'Netherlands',
+                                                           'New Zealand',
+                                                           'Norway',
+                                                           'Oman',
+                                                           'Poland',
+                                                           'Portugal',
+                                                           'Singapore',
+                                                           'Spain',
+                                                           'Sweden',
+                                                           'Switzerland',
+                                                           'United Kingdom',
+                                                           'United States of America',
+                                                           'Uruguay'],
+                                           'Lower middle income': ['Armenia',
+                                                                   'Bangladesh',
+                                                                   'Bhutan',
+                                                                   'Cabo Verde',
+                                                                   'Cambodia',
+                                                                   'Cameroon',
+                                                                   "Côte d'Ivoire",
+                                                                   'Djibouti',
+                                                                   'El Salvador',
+                                                                   'Eswatini',
+                                                                   'Ghana',
+                                                                   'Guatemala',
+                                                                   'Honduras',
+                                                                   'India',
+                                                                   'Indonesia',
+                                                                   'Kenya',
+                                                                   'Kiribati',
+                                                                   'Lesotho',
+                                                                   'Mauritania',
+                                                                   'Mongolia',
+                                                                   'Morocco',
+                                                                   'Myanmar',
+                                                                   'Nicaragua',
+                                                                   'Nigeria',
+                                                                   'Pakistan',
+                                                                   'Papua New Guinea',
+                                                                   'Philippines',
+                                                                   'Samoa',
+                                                                   'Solomon Islands',
+                                                                   'Sri Lanka',
+                                                                   'Sudan',
+                                                                   'Syrian Arab Republic',
+                                                                   'Tajikistan',
+                                                                   'Timor-Leste',
+                                                                   'Tonga',
+                                                                   'Tunisia',
+                                                                   'Ukraine',
+                                                                   'Uzbekistan',
+                                                                   'Vanuatu',
+                                                                   'Vietnam',
+                                                                   'Zambia']}),
+                 "13": (TEXT_FORMAT_DICT, {'Low income': ['Afghanistan',
+                                                          'Burkina Faso',
+                                                          'Burundi',
+                                                          'Central African Republic',
+                                                          'Chad',
+                                                          'Ethiopia',
+                                                          'Guinea',
+                                                          'Guinea-Bissau',
+                                                          'Liberia',
+                                                          'Madagascar',
+                                                          'Malawi',
+                                                          'Mali',
+                                                          'Mozambique',
+                                                          'Niger',
+                                                          'Rwanda',
+                                                          'Sierra Leone',
+                                                          'Somalia',
+                                                          'South Sudan',
+                                                          'Sudan',
+                                                          'Syrian Arab Republic',
+                                                          'Togo',
+                                                          'Uganda'],
+                                           'Upper middle income': ['Albania',
+                                                                   'Armenia',
+                                                                   'Azerbaijan',
+                                                                   'Belarus',
+                                                                   'Bosnia and Herzegovina',
+                                                                   'Botswana',
+                                                                   'Brazil',
+                                                                   'Bulgaria',
+                                                                   'China',
+                                                                   'Colombia',
+                                                                   'Costa Rica',
+                                                                   'Cuba',
+                                                                   'Dominican Republic',
+                                                                   'Ecuador',
+                                                                   'Fiji',
+                                                                   'Gabon',
+                                                                   'Georgia',
+                                                                   'Guatemala',
+                                                                   'Guyana',
+                                                                   'Iraq',
+                                                                   'Jamaica',
+                                                                   'Jordan',
+                                                                   'Kazakhstan',
+                                                                   'Malaysia',
+                                                                   'Maldives',
+                                                                   'Marshall Islands',
+                                                                   'Mauritius',
+                                                                   'Mexico',
+                                                                   'Montenegro',
+                                                                   'Namibia',
+                                                                   'North Macedonia',
+                                                                   'Panama',
+                                                                   'Paraguay',
+                                                                   'Peru',
+                                                                   'Romania',
+                                                                   'Russian Federation',
+                                                                   'Serbia',
+                                                                   'South Africa',
+                                                                   'Suriname',
+                                                                   'Thailand',
+                                                                   'Tonga',
+                                                                   'Turkmenistan',
+                                                                   'Tuvalu'],
+                                           'Lower middle income': ['Algeria',
+                                                                   'Angola',
+                                                                   'Bangladesh',
+                                                                   'Belize',
+                                                                   'Benin',
+                                                                   'Bhutan',
+                                                                   'Cabo Verde',
+                                                                   'Cambodia',
+                                                                   'Cameroon',
+                                                                   "Côte d'Ivoire",
+                                                                   'Djibouti',
+                                                                   'El Salvador',
+                                                                   'Eswatini',
+                                                                   'Ghana',
+                                                                   'Haiti',
+                                                                   'Honduras',
+                                                                   'India',
+                                                                   'Indonesia',
+                                                                   'Kenya',
+                                                                   'Kiribati',
+                                                                   'Lesotho',
+                                                                   'Mauritania',
+                                                                   'Mongolia',
+                                                                   'Morocco',
+                                                                   'Myanmar',
+                                                                   'Nepal',
+                                                                   'Nicaragua',
+                                                                   'Nigeria',
+                                                                   'Pakistan',
+                                                                   'Papua New Guinea',
+                                                                   'Philippines',
+                                                                   'Samoa',
+                                                                   'Senegal',
+                                                                   'Solomon Islands',
+                                                                   'Sri Lanka',
+                                                                   'Tajikistan',
+                                                                   'Timor-Leste',
+                                                                   'Tunisia',
+                                                                   'Ukraine',
+                                                                   'Uzbekistan',
+                                                                   'Vanuatu',
+                                                                   'Vietnam',
+                                                                   'Zambia',
+                                                                   'Zimbabwe'],
+                                           'High income': ['Andorra',
+                                                           'Australia',
+                                                           'Austria',
+                                                           'Belgium',
+                                                           'Bermuda',
+                                                           'Brunei Darussalam',
+                                                           'Canada',
+                                                           'Chile',
+                                                           'Cyprus',
+                                                           'Czech Republic',
+                                                           'Denmark',
+                                                           'Estonia',
+                                                           'Finland',
+                                                           'France',
+                                                           'Germany',
+                                                           'Gibraltar',
+                                                           'Greece',
+                                                           'Greenland',
+                                                           'Hungary',
+                                                           'Iceland',
+                                                           'Ireland',
+                                                           'Israel',
+                                                           'Latvia',
+                                                           'Lithuania',
+                                                           'Luxembourg',
+                                                           'Malta',
+                                                           'Monaco',
+                                                           'Nauru',
+                                                           'Netherlands',
+                                                           'New Zealand',
+                                                           'Norway',
+                                                           'Oman',
+                                                           'Palau',
+                                                           'Poland',
+                                                           'Portugal',
+                                                           'Singapore',
+                                                           'Spain',
+                                                           'Sweden',
+                                                           'Switzerland',
+                                                           'United Kingdom',
+                                                           'United States of America',
+                                                           'Uruguay']}),
+                 "14-1": (TEXT_FORMAT_DICT, {'Low income': 25,
+                                           'Upper middle income': 44,
+                                           'High income': 41,
+                                           'Lower middle income': 41}),
+                 "14-2": (TEXT_FORMAT_DICT, {'Low income': 22,
+                                           'Upper middle income': 43,
+                                           'Lower middle income': 44,
+                                           'High income': 42}),
+                 "15-1": (TEXT_FORMAT_DICT, {'Afghanistan': 38928000,
+                                             'Albania': 2878000,
+                                             'Algeria': 43851000,
+                                             'Andorra': 77000,
+                                             'Angola': 32866000,
+                                             'Armenia': 2963000,
+                                             'Australia': 25500000,
+                                             'Austria': 9006000,
+                                             'Azerbaijan': 10139000,
+                                             'Bangladesh': 164689000,
+                                             'Belarus': 9449000,
+                                             'Belgium': 11590000,
+                                             'Belize': 398000,
+                                             'Benin': 12123000,
+                                             'Bermuda': 62000,
+                                             'Bhutan': 772000,
+                                             'Bosnia and Herzegovina': 3281000,
+                                             'Botswana': 2352000,
+                                             'Brazil': 212559000,
+                                             'Brunei Darussalam': 437000,
+                                             'Bulgaria': 6948000,
+                                             'Burkina Faso': 20903000,
+                                             'Burundi': 11891000,
+                                             'Cabo Verde': 556000,
+                                             'Cambodia': 16719000,
+                                             'Cameroon': 26546000,
+                                             'Canada': 37742000,
+                                             'Central African Republic': 4830000,
+                                             'Chad': 16426000,
+                                             'Chile': 19116000,
+                                             'China': 1463141000,
+                                             'Colombia': 50883000,
+                                             'Costa Rica': 5094000,
+                                             "Côte d'Ivoire": 26378000,
+                                             'Cuba': 11327000,
+                                             'Cyprus': 1207000,
+                                             'Czech Republic': 10709000,
+                                             'Denmark': 5792000,
+                                             'Djibouti': 988000,
+                                             'Dominican Republic': 10848000,
+                                             'Ecuador': 17643000,
+                                             'El Salvador': 6486000,
+                                             'Estonia': 1327000,
+                                             'Eswatini': 1160000,
+                                             'Ethiopia': 114964000,
+                                             'Fiji': 896000,
+                                             'Finland': 5541000,
+                                             'France': 65274000,
+                                             'Gabon': 2226000,
+                                             'Georgia': 3989000,
+                                             'Germany': 83784000,
+                                             'Ghana': 31073000,
+                                             'Gibraltar': 34000,
+                                             'Greece': 10423000,
+                                             'Greenland': 57000,
+                                             'Guatemala': 17916000,
+                                             'Guinea': 13133000,
+                                             'Guinea-Bissau': 1968000,
+                                             'Guyana': 787000,
+                                             'Haiti': 11403000,
+                                             'Honduras': 9905000,
+                                             'Hungary': 9660000,
+                                             'Iceland': 341000,
+                                             'India': 1380004000,
+                                             'Indonesia': 273524000,
+                                             'Iraq': 40223000,
+                                             'Ireland': 4938000,
+                                             'Israel': 8656000,
+                                             'Jamaica': 2961000,
+                                             'Jordan': 10203000,
+                                             'Kazakhstan': 18777000,
+                                             'Kenya': 53771000,
+                                             'Kiribati': 119000,
+                                             'Latvia': 1886000,
+                                             'Lesotho': 2142000,
+                                             'Liberia': 5058000,
+                                             'Lithuania': 2722000,
+                                             'Luxembourg': 626000,
+                                             'Madagascar': 27691000,
+                                             'Malawi': 19130000,
+                                             'Malaysia': 32366000,
+                                             'Maldives': 541000,
+                                             'Mali': 20251000,
+                                             'Malta': 442000,
+                                             'Marshall Islands': 59000,
+                                             'Mauritania': 4650000,
+                                             'Mauritius': 1272000,
+                                             'Mexico': 128933000,
+                                             'Monaco': 39000,
+                                             'Mongolia': 3278000,
+                                             'Montenegro': 628000,
+                                             'Morocco': 36911000,
+                                             'Mozambique': 31255000,
+                                             'Myanmar': 54410000,
+                                             'Namibia': 2541000,
+                                             'Nauru': 11000,
+                                             'Nepal': 29137000,
+                                             'Netherlands': 17135000,
+                                             'New Zealand': 4822000,
+                                             'Nicaragua': 6625000,
+                                             'Niger': 24207000,
+                                             'Nigeria': 206140000,
+                                             'North Macedonia': 2083000,
+                                             'Norway': 5421000,
+                                             'Oman': 5107000,
+                                             'Pakistan': 220892000,
+                                             'Palau': 18000,
+                                             'Panama': 4315000,
+                                             'Papua New Guinea': 8947000,
+                                             'Paraguay': 7133000,
+                                             'Peru': 32972000,
+                                             'Philippines': 109581000,
+                                             'Poland': 37847000,
+                                             'Portugal': 10197000,
+                                             'Romania': 19238000,
+                                             'Russian Federation': 145934000,
+                                             'Rwanda': 12952000,
+                                             'Samoa': 198000,
+                                             'Senegal': 16744000,
+                                             'Serbia': 8737000,
+                                             'Sierra Leone': 7977000,
+                                             'Singapore': 5850000,
+                                             'Solomon Islands': 687000,
+                                             'Somalia': 15893000,
+                                             'South Africa': 59309000,
+                                             'South Sudan': 11194000,
+                                             'Spain': 46755000,
+                                             'Sri Lanka': 21413000,
+                                             'Sudan': 43849000,
+                                             'Suriname': 587000,
+                                             'Sweden': 10099000,
+                                             'Switzerland': 8655000,
+                                             'Syrian Arab Republic': 17501000,
+                                             'Tajikistan': 9538000,
+                                             'Thailand': 69800000,
+                                             'Timor-Leste': 1318000,
+                                             'Togo': 8279000,
+                                             'Tonga': 106000,
+                                             'Tunisia': 11819000,
+                                             'Turkmenistan': 6031000,
+                                             'Tuvalu': 12000,
+                                             'Uganda': 45741000,
+                                             'Ukraine': 43734000,
+                                             'United Kingdom': 67886000,
+                                             'United States of America': 331003000,
+                                             'Uruguay': 3474000,
+                                             'Uzbekistan': 33469000,
+                                             'Vanuatu': 307000,
+                                             'Vietnam': 97339000,
+                                             'Zambia': 18384000,
+                                             'Zimbabwe': 14863000}),
+                 "15-2": (TEXT_FORMAT_DICT, {'Afghanistan': 26,
+                                         'Albania': 62,
+                                         'Algeria': 74,
+                                         'Andorra': 88,
+                                         'Angola': 67,
+                                         'Armenia': 63,
+                                         'Australia': 86,
+                                         'Austria': 59,
+                                         'Azerbaijan': 56,
+                                         'Bangladesh': 38,
+                                         'Belarus': 79,
+                                         'Belgium': 98,
+                                         'Belize': 46,
+                                         'Benin': 48,
+                                         'Bermuda': 100,
+                                         'Bhutan': 42,
+                                         'Bosnia and Herzegovina': 49,
+                                         'Botswana': 71,
+                                         'Brazil': 87,
+                                         'Brunei Darussalam': 78,
+                                         'Bulgaria': 76,
+                                         'Burkina Faso': 31,
+                                         'Burundi': 14,
+                                         'Cabo Verde': 67,
+                                         'Cambodia': 24,
+                                         'Cameroon': 58,
+                                         'Canada': 82,
+                                         'Central African Republic': 42,
+                                         'Chad': 24,
+                                         'Chile': 88,
+                                         'China': 62,
+                                         'Colombia': 81,
+                                         'Costa Rica': 81,
+                                         "Côte d'Ivoire": 52,
+                                         'Cuba': 77,
+                                         'Cyprus': 67,
+                                         'Czech Republic': 74,
+                                         'Denmark': 88,
+                                         'Djibouti': 78,
+                                         'Dominican Republic': 83,
+                                         'Ecuador': 64,
+                                         'El Salvador': 73,
+                                         'Estonia': 69,
+                                         'Eswatini': 24,
+                                         'Ethiopia': 22,
+                                         'Fiji': 57,
+                                         'Finland': 86,
+                                         'France': 81,
+                                         'Gabon': 90,
+                                         'Georgia': 59,
+                                         'Germany': 77,
+                                         'Ghana': 57,
+                                         'Gibraltar': 100,
+                                         'Greece': 80,
+                                         'Greenland': 87,
+                                         'Guatemala': 52,
+                                         'Guinea': 37,
+                                         'Guinea-Bissau': 44,
+                                         'Guyana': 27,
+                                         'Haiti': 57,
+                                         'Honduras': 58,
+                                         'Hungary': 72,
+                                         'Iceland': 94,
+                                         'India': 35,
+                                         'Indonesia': 57,
+                                         'Iraq': 71,
+                                         'Ireland': 64,
+                                         'Israel': 93,
+                                         'Jamaica': 56,
+                                         'Jordan': 91,
+                                         'Kazakhstan': 58,
+                                         'Kenya': 28,
+                                         'Kiribati': 56,
+                                         'Latvia': 68,
+                                         'Lesotho': 29,
+                                         'Liberia': 52,
+                                         'Lithuania': 68,
+                                         'Luxembourg': 91,
+                                         'Madagascar': 39,
+                                         'Malawi': 17,
+                                         'Malaysia': 77,
+                                         'Maldives': 41,
+                                         'Mali': 44,
+                                         'Malta': 95,
+                                         'Marshall Islands': 78,
+                                         'Mauritania': 55,
+                                         'Mauritius': 41,
+                                         'Mexico': 81,
+                                         'Monaco': 100,
+                                         'Mongolia': 69,
+                                         'Montenegro': 67,
+                                         'Morocco': 64,
+                                         'Mozambique': 37,
+                                         'Myanmar': 31,
+                                         'Namibia': 52,
+                                         'Nauru': 100,
+                                         'Nepal': 21,
+                                         'Netherlands': 92,
+                                         'New Zealand': 87,
+                                         'Nicaragua': 59,
+                                         'Niger': 17,
+                                         'Nigeria': 52,
+                                         'North Macedonia': 58,
+                                         'Norway': 83,
+                                         'Oman': 86,
+                                         'Pakistan': 37,
+                                         'Palau': 81,
+                                         'Panama': 68,
+                                         'Papua New Guinea': 13,
+                                         'Paraguay': 62,
+                                         'Peru': 78,
+                                         'Philippines': 47,
+                                         'Poland': 60,
+                                         'Portugal': 66,
+                                         'Romania': 54,
+                                         'Russian Federation': 75,
+                                         'Rwanda': 17,
+                                         'Samoa': 18,
+                                         'Senegal': 48,
+                                         'Serbia': 56,
+                                         'Sierra Leone': 43,
+                                         'Singapore': 100,
+                                         'Solomon Islands': 25,
+                                         'Somalia': 46,
+                                         'South Africa': 67,
+                                         'South Sudan': 20,
+                                         'Spain': 81,
+                                         'Sri Lanka': 19,
+                                         'Sudan': 35,
+                                         'Suriname': 66,
+                                         'Sweden': 88,
+                                         'Switzerland': 74,
+                                         'Syrian Arab Republic': 55,
+                                         'Tajikistan': 28,
+                                         'Thailand': 51,
+                                         'Timor-Leste': 31,
+                                         'Togo': 43,
+                                         'Tonga': 23,
+                                         'Tunisia': 70,
+                                         'Turkmenistan': 53,
+                                         'Tuvalu': 64,
+                                         'Uganda': 25,
+                                         'Ukraine': 69,
+                                         'United Kingdom': 84,
+                                         'United States of America': 83,
+                                         'Uruguay': 96,
+                                         'Uzbekistan': 50,
+                                         'Vanuatu': 26,
+                                         'Vietnam': 37,
+                                         'Zambia': 45,
+                                         'Zimbabwe': 32}),
+                 "16": (TEXT_FORMAT_DICT, {'Afghanistan': 10121280,
+                                             'Albania': 1784360,
+                                             'Algeria': 32449740,
+                                             'Andorra': 67760,
+                                             'Angola': 22020220,
+                                             'Armenia': 1866690,
+                                             'Australia': 21930000,
+                                             'Austria': 5313540,
+                                             'Azerbaijan': 5677840,
+                                             'Bangladesh': 62581820,
+                                             'Belarus': 7464710,
+                                             'Belgium': 11358200,
+                                             'Belize': 183080,
+                                             'Benin': 5819040,
+                                             'Bermuda': 62000,
+                                             'Bhutan': 324240,
+                                             'Bosnia and Herzegovina': 1607690,
+                                             'Botswana': 1669920,
+                                             'Brazil': 184926330,
+                                             'Brunei Darussalam': 340860,
+                                             'Bulgaria': 5280480,
+                                             'Burkina Faso': 6479930,
+                                             'Burundi': 1664740,
+                                             'Cabo Verde': 372520,
+                                             'Cambodia': 4012560,
+                                             'Cameroon': 15396680,
+                                             'Canada': 30948440,
+                                             'Central African Republic': 2028600,
+                                             'Chad': 3942240,
+                                             'Chile': 16822080,
+                                             'China': 907147420,
+                                             'Colombia': 41215230,
+                                             'Costa Rica': 4126140,
+                                             "Côte d'Ivoire": 13716560,
+                                             'Cuba': 8721790,
+                                             'Cyprus': 808690,
+                                             'Czech Republic': 7924660,
+                                             'Denmark': 5096960,
+                                             'Djibouti': 770640,
+                                             'Dominican Republic': 9003840,
+                                             'Ecuador': 11291520,
+                                             'El Salvador': 4734780,
+                                             'Estonia': 915630,
+                                             'Eswatini': 278400,
+                                             'Ethiopia': 25292080,
+                                             'Fiji': 510720,
+                                             'Finland': 4765260,
+                                             'France': 52871940,
+                                             'Gabon': 2003400,
+                                             'Georgia': 2353510,
+                                             'Germany': 64513680,
+                                             'Ghana': 17711610,
+                                             'Gibraltar': 34000,
+                                             'Greece': 8338400,
+                                             'Greenland': 49590,
+                                             'Guatemala': 9316320,
+                                             'Guinea': 4859210,
+                                             'Guinea-Bissau': 865920,
+                                             'Guyana': 212490,
+                                             'Haiti': 6499710,
+                                             'Honduras': 5744900,
+                                             'Hungary': 6955200,
+                                             'Iceland': 320540,
+                                             'India': 483001400,
+                                             'Indonesia': 155908680,
+                                             'Iraq': 28558330,
+                                             'Ireland': 3160320,
+                                             'Israel': 8050080,
+                                             'Jamaica': 1658160,
+                                             'Jordan': 9284730,
+                                             'Kazakhstan': 10890660,
+                                             'Kenya': 15055880,
+                                             'Kiribati': 66640,
+                                             'Latvia': 1282480,
+                                             'Lesotho': 621180,
+                                             'Liberia': 2630160,
+                                             'Lithuania': 1850960,
+                                             'Luxembourg': 569660,
+                                             'Madagascar': 10799490,
+                                             'Malawi': 3252100,
+                                             'Malaysia': 24921820,
+                                             'Maldives': 221810,
+                                             'Mali': 8910440,
+                                             'Malta': 419900,
+                                             'Marshall Islands': 46020,
+                                             'Mauritania': 2557500,
+                                             'Mauritius': 521520,
+                                             'Mexico': 104435730,
+                                             'Monaco': 39000,
+                                             'Mongolia': 2261820,
+                                             'Montenegro': 420760,
+                                             'Morocco': 23623040,
+                                             'Mozambique': 11564350,
+                                             'Myanmar': 16867100,
+                                             'Namibia': 1321320,
+                                             'Nauru': 11000,
+                                             'Nepal': 6118770,
+                                             'Netherlands': 15764200,
+                                             'New Zealand': 4195140,
+                                             'Nicaragua': 3908750,
+                                             'Niger': 4115190,
+                                             'Nigeria': 107192800,
+                                             'North Macedonia': 1208140,
+                                             'Norway': 4499430,
+                                             'Oman': 4392020,
+                                             'Pakistan': 81730040,
+                                             'Palau': 14580,
+                                             'Panama': 2934200,
+                                             'Papua New Guinea': 1163110,
+                                             'Paraguay': 4422460,
+                                             'Peru': 25718160,
+                                             'Philippines': 51503070,
+                                             'Poland': 22708200,
+                                             'Portugal': 6730020,
+                                             'Romania': 10388520,
+                                             'Russian Federation': 109450500,
+                                             'Rwanda': 2201840,
+                                             'Samoa': 35640,
+                                             'Senegal': 8037120,
+                                             'Serbia': 4892720,
+                                             'Sierra Leone': 3430110,
+                                             'Singapore': 5850000,
+                                             'Solomon Islands': 171750,
+                                             'Somalia': 7310780,
+                                             'South Africa': 39737030,
+                                             'South Sudan': 2238800,
+                                             'Spain': 37871550,
+                                             'Sri Lanka': 4068470,
+                                             'Sudan': 15347150,
+                                             'Suriname': 387420,
+                                             'Sweden': 8887120,
+                                             'Switzerland': 6404700,
+                                             'Syrian Arab Republic': 9625550,
+                                             'Tajikistan': 2670640,
+                                             'Thailand': 35598000,
+                                             'Timor-Leste': 408580,
+                                             'Togo': 3559970,
+                                             'Tonga': 24380,
+                                             'Tunisia': 8273300,
+                                             'Turkmenistan': 3196430,
+                                             'Tuvalu': 7680,
+                                             'Uganda': 11435250,
+                                             'Ukraine': 30176460,
+                                             'United Kingdom': 57024240,
+                                             'United States of America': 274732490,
+                                             'Uruguay': 3335040,
+                                             'Uzbekistan': 16734500,
+                                             'Vanuatu': 79820,
+                                             'Vietnam': 36015430,
+                                             'Zambia': 8272800,
+                                             'Zimbabwe': 4756160}),
+                 "17": (TEXT_FORMAT, 'Tuvalu'),
+                 "18": (TEXT_FORMAT, 'China'),
+                 "19": (TEXT_FORMAT_DICT, {'Afghanistan': {2015: 'Low income',
+                                              2020: 'Low income',
+                                              'region': 'South Asia'},
+                                             'Albania': {2015: 'Upper middle income',
+                                              2020: 'Upper middle income',
+                                              'region': 'Europe & Central Asia'},
+                                             'Algeria': {2015: 'Upper middle income',
+                                              2020: 'Lower middle income',
+                                              'region': 'Middle East & North Africa'},
+                                             'Andorra': {2015: 'High income',
+                                              2020: 'High income',
+                                              'region': 'Europe & Central Asia'},
+                                             'Angola': {2015: 'Upper middle income',
+                                              2020: 'Lower middle income',
+                                              'region': 'Sub-Saharan Africa'},
+                                             'Armenia': {2015: 'Lower middle income',
+                                              2020: 'Upper middle income',
+                                              'region': 'Europe & Central Asia'},
+                                             'Australia': {2015: 'High income',
+                                              2020: 'High income',
+                                              'region': 'East Asia & Pacific'},
+                                             'Austria': {2015: 'High income',
+                                              2020: 'High income',
+                                              'region': 'Europe & Central Asia'},
+                                             'Azerbaijan': {2015: 'Upper middle income',
+                                              2020: 'Upper middle income',
+                                              'region': 'Europe & Central Asia'},
+                                             'Bangladesh': {2015: 'Lower middle income',
+                                              2020: 'Lower middle income',
+                                              'region': 'South Asia'},
+                                             'Belarus': {2015: 'Upper middle income',
+                                              2020: 'Upper middle income',
+                                              'region': 'Europe & Central Asia'},
+                                             'Belgium': {2015: 'High income',
+                                              2020: 'High income',
+                                              'region': 'Europe & Central Asia'},
+                                             'Belize': {2015: 'Upper middle income',
+                                              2020: 'Lower middle income',
+                                              'region': 'Latin America & Caribbean'},
+                                             'Benin': {2015: 'Low income',
+                                              2020: 'Lower middle income',
+                                              'region': 'Sub-Saharan Africa'},
+                                             'Bermuda': {2015: 'High income',
+                                              2020: 'High income',
+                                              'region': 'North America'},
+                                             'Bhutan': {2015: 'Lower middle income',
+                                              2020: 'Lower middle income',
+                                              'region': 'South Asia'},
+                                             'Bosnia and Herzegovina': {2015: 'Upper middle income',
+                                              2020: 'Upper middle income',
+                                              'region': 'Europe & Central Asia'},
+                                             'Botswana': {2015: 'Upper middle income',
+                                              2020: 'Upper middle income',
+                                              'region': 'Sub-Saharan Africa'},
+                                             'Brazil': {2015: 'Upper middle income',
+                                              2020: 'Upper middle income',
+                                              'region': 'Latin America & Caribbean'},
+                                             'Brunei Darussalam': {2015: 'High income',
+                                              2020: 'High income',
+                                              'region': 'East Asia & Pacific'},
+                                             'Bulgaria': {2015: 'Upper middle income',
+                                              2020: 'Upper middle income',
+                                              'region': 'Europe & Central Asia'},
+                                             'Burkina Faso': {2015: 'Low income',
+                                              2020: 'Low income',
+                                              'region': 'Sub-Saharan Africa'},
+                                             'Burundi': {2015: 'Low income',
+                                              2020: 'Low income',
+                                              'region': 'Sub-Saharan Africa'},
+                                             'Cabo Verde': {2015: 'Lower middle income',
+                                              2020: 'Lower middle income',
+                                              'region': 'Sub-Saharan Africa'},
+                                             'Cambodia': {2015: 'Lower middle income',
+                                              2020: 'Lower middle income',
+                                              'region': 'East Asia & Pacific'},
+                                             'Cameroon': {2015: 'Lower middle income',
+                                              2020: 'Lower middle income',
+                                              'region': 'Sub-Saharan Africa'},
+                                             'Canada': {2015: 'High income',
+                                              2020: 'High income',
+                                              'region': 'North America'},
+                                             'Central African Republic': {2015: 'Low income',
+                                              2020: 'Low income',
+                                              'region': 'Sub-Saharan Africa'},
+                                             'Chad': {2015: 'Low income',
+                                              2020: 'Low income',
+                                              'region': 'Sub-Saharan Africa'},
+                                             'Chile': {2015: 'High income',
+                                              2020: 'High income',
+                                              'region': 'Latin America & Caribbean'},
+                                             'China': {2015: 'Upper middle income',
+                                              2020: 'Upper middle income',
+                                              'region': 'East Asia & Pacific'},
+                                             'Colombia': {2015: 'Upper middle income',
+                                              2020: 'Upper middle income',
+                                              'region': 'Latin America & Caribbean'},
+                                             'Costa Rica': {2015: 'Upper middle income',
+                                              2020: 'Upper middle income',
+                                              'region': 'Latin America & Caribbean'},
+                                             "Côte d'Ivoire": {2015: 'Lower middle income',
+                                              2020: 'Lower middle income',
+                                              'region': 'Sub-Saharan Africa'},
+                                             'Cuba': {2015: 'Upper middle income',
+                                              2020: 'Upper middle income',
+                                              'region': 'Latin America & Caribbean'},
+                                             'Cyprus': {2015: 'High income',
+                                              2020: 'High income',
+                                              'region': 'Europe & Central Asia'},
+                                             'Czech Republic': {2015: 'High income',
+                                              2020: 'High income',
+                                              'region': 'Europe & Central Asia'},
+                                             'Denmark': {2015: 'High income',
+                                              2020: 'High income',
+                                              'region': 'Europe & Central Asia'},
+                                             'Djibouti': {2015: 'Lower middle income',
+                                              2020: 'Lower middle income',
+                                              'region': 'Middle East & North Africa'},
+                                             'Dominican Republic': {2015: 'Upper middle income',
+                                              2020: 'Upper middle income',
+                                              'region': 'Latin America & Caribbean'},
+                                             'Ecuador': {2015: 'Upper middle income',
+                                              2020: 'Upper middle income',
+                                              'region': 'Latin America & Caribbean'},
+                                             'El Salvador': {2015: 'Lower middle income',
+                                              2020: 'Lower middle income',
+                                              'region': 'Latin America & Caribbean'},
+                                             'Estonia': {2015: 'High income',
+                                              2020: 'High income',
+                                              'region': 'Europe & Central Asia'},
+                                             'Eswatini': {2015: 'Lower middle income',
+                                              2020: 'Lower middle income',
+                                              'region': 'Sub-Saharan Africa'},
+                                             'Ethiopia': {2015: 'Low income',
+                                              2020: 'Low income',
+                                              'region': 'Sub-Saharan Africa'},
+                                             'Fiji': {2015: 'Upper middle income',
+                                              2020: 'Upper middle income',
+                                              'region': 'East Asia & Pacific'},
+                                             'Finland': {2015: 'High income',
+                                              2020: 'High income',
+                                              'region': 'Europe & Central Asia'},
+                                             'France': {2015: 'High income',
+                                              2020: 'High income',
+                                              'region': 'Europe & Central Asia'},
+                                             'Gabon': {2015: 'Upper middle income',
+                                              2020: 'Upper middle income',
+                                              'region': 'Sub-Saharan Africa'},
+                                             'Georgia': {2015: 'Upper middle income',
+                                              2020: 'Upper middle income',
+                                              'region': 'Europe & Central Asia'},
+                                             'Germany': {2015: 'High income',
+                                              2020: 'High income',
+                                              'region': 'Europe & Central Asia'},
+                                             'Ghana': {2015: 'Lower middle income',
+                                              2020: 'Lower middle income',
+                                              'region': 'Sub-Saharan Africa'},
+                                             'Gibraltar': {2015: 'High income',
+                                              2020: 'High income',
+                                              'region': 'Europe & Central Asia'},
+                                             'Greece': {2015: 'High income',
+                                              2020: 'High income',
+                                              'region': 'Europe & Central Asia'},
+                                             'Greenland': {2015: 'High income',
+                                              2020: 'High income',
+                                              'region': 'Europe & Central Asia'},
+                                             'Guatemala': {2015: 'Lower middle income',
+                                              2020: 'Upper middle income',
+                                              'region': 'Latin America & Caribbean'},
+                                             'Guinea': {2015: 'Low income',
+                                              2020: 'Low income',
+                                              'region': 'Sub-Saharan Africa'},
+                                             'Guinea-Bissau': {2015: 'Low income',
+                                              2020: 'Low income',
+                                              'region': 'Sub-Saharan Africa'},
+                                             'Guyana': {2015: 'Upper middle income',
+                                              2020: 'Upper middle income',
+                                              'region': 'Latin America & Caribbean'},
+                                             'Haiti': {2015: 'Low income',
+                                              2020: 'Lower middle income',
+                                              'region': 'Latin America & Caribbean'},
+                                             'Honduras': {2015: 'Lower middle income',
+                                              2020: 'Lower middle income',
+                                              'region': 'Latin America & Caribbean'},
+                                             'Hungary': {2015: 'High income',
+                                              2020: 'High income',
+                                              'region': 'Europe & Central Asia'},
+                                             'Iceland': {2015: 'High income',
+                                              2020: 'High income',
+                                              'region': 'Europe & Central Asia'},
+                                             'India': {2015: 'Lower middle income',
+                                              2020: 'Lower middle income',
+                                              'region': 'South Asia'},
+                                             'Indonesia': {2015: 'Lower middle income',
+                                              2020: 'Lower middle income',
+                                              'region': 'East Asia & Pacific'},
+                                             'Iraq': {2015: 'Upper middle income',
+                                              2020: 'Upper middle income',
+                                              'region': 'Middle East & North Africa'},
+                                             'Ireland': {2015: 'High income',
+                                              2020: 'High income',
+                                              'region': 'Europe & Central Asia'},
+                                             'Israel': {2015: 'High income',
+                                              2020: 'High income',
+                                              'region': 'Middle East & North Africa'},
+                                             'Jamaica': {2015: 'Upper middle income',
+                                              2020: 'Upper middle income',
+                                              'region': 'Latin America & Caribbean'},
+                                             'Jordan': {2015: 'Upper middle income',
+                                              2020: 'Upper middle income',
+                                              'region': 'Middle East & North Africa'},
+                                             'Kazakhstan': {2015: 'Upper middle income',
+                                              2020: 'Upper middle income',
+                                              'region': 'Europe & Central Asia'},
+                                             'Kenya': {2015: 'Lower middle income',
+                                              2020: 'Lower middle income',
+                                              'region': 'Sub-Saharan Africa'},
+                                             'Kiribati': {2015: 'Lower middle income',
+                                              2020: 'Lower middle income',
+                                              'region': 'East Asia & Pacific'},
+                                             'Latvia': {2015: 'High income',
+                                              2020: 'High income',
+                                              'region': 'Europe & Central Asia'},
+                                             'Lesotho': {2015: 'Lower middle income',
+                                              2020: 'Lower middle income',
+                                              'region': 'Sub-Saharan Africa'},
+                                             'Liberia': {2015: 'Low income',
+                                              2020: 'Low income',
+                                              'region': 'Sub-Saharan Africa'},
+                                             'Lithuania': {2015: 'High income',
+                                              2020: 'High income',
+                                              'region': 'Europe & Central Asia'},
+                                             'Luxembourg': {2015: 'High income',
+                                              2020: 'High income',
+                                              'region': 'Europe & Central Asia'},
+                                             'Madagascar': {2015: 'Low income',
+                                              2020: 'Low income',
+                                              'region': 'Sub-Saharan Africa'},
+                                             'Malawi': {2015: 'Low income',
+                                              2020: 'Low income',
+                                              'region': 'Sub-Saharan Africa'},
+                                             'Malaysia': {2015: 'Upper middle income',
+                                              2020: 'Upper middle income',
+                                              'region': 'East Asia & Pacific'},
+                                             'Maldives': {2015: 'Upper middle income',
+                                              2020: 'Upper middle income',
+                                              'region': 'South Asia'},
+                                             'Mali': {2015: 'Low income',
+                                              2020: 'Low income',
+                                              'region': 'Sub-Saharan Africa'},
+                                             'Malta': {2015: 'High income',
+                                              2020: 'High income',
+                                              'region': 'Middle East & North Africa'},
+                                             'Marshall Islands': {2015: 'Upper middle income',
+                                              2020: 'Upper middle income',
+                                              'region': 'East Asia & Pacific'},
+                                             'Mauritania': {2015: 'Lower middle income',
+                                              2020: 'Lower middle income',
+                                              'region': 'Sub-Saharan Africa'},
+                                             'Mauritius': {2015: 'Upper middle income',
+                                              2020: 'Upper middle income',
+                                              'region': 'Sub-Saharan Africa'},
+                                             'Mexico': {2015: 'Upper middle income',
+                                              2020: 'Upper middle income',
+                                              'region': 'Latin America & Caribbean'},
+                                             'Monaco': {2015: 'High income',
+                                              2020: 'High income',
+                                              'region': 'Europe & Central Asia'},
+                                             'Mongolia': {2015: 'Lower middle income',
+                                              2020: 'Lower middle income',
+                                              'region': 'East Asia & Pacific'},
+                                             'Montenegro': {2015: 'Upper middle income',
+                                              2020: 'Upper middle income',
+                                              'region': 'Europe & Central Asia'},
+                                             'Morocco': {2015: 'Lower middle income',
+                                              2020: 'Lower middle income',
+                                              'region': 'Middle East & North Africa'},
+                                             'Mozambique': {2015: 'Low income',
+                                              2020: 'Low income',
+                                              'region': 'Sub-Saharan Africa'},
+                                             'Myanmar': {2015: 'Lower middle income',
+                                              2020: 'Lower middle income',
+                                              'region': 'East Asia & Pacific'},
+                                             'Namibia': {2015: 'Upper middle income',
+                                              2020: 'Upper middle income',
+                                              'region': 'Sub-Saharan Africa'},
+                                             'Nauru': {2015: 'High income',
+                                              2020: 'High income',
+                                              'region': 'East Asia & Pacific'},
+                                             'Nepal': {2015: 'Low income',
+                                              2020: 'Lower middle income',
+                                              'region': 'South Asia'},
+                                             'Netherlands': {2015: 'High income',
+                                              2020: 'High income',
+                                              'region': 'Europe & Central Asia'},
+                                             'New Zealand': {2015: 'High income',
+                                              2020: 'High income',
+                                              'region': 'East Asia & Pacific'},
+                                             'Nicaragua': {2015: 'Lower middle income',
+                                              2020: 'Lower middle income',
+                                              'region': 'Latin America & Caribbean'},
+                                             'Niger': {2015: 'Low income',
+                                              2020: 'Low income',
+                                              'region': 'Sub-Saharan Africa'},
+                                             'Nigeria': {2015: 'Lower middle income',
+                                              2020: 'Lower middle income',
+                                              'region': 'Sub-Saharan Africa'},
+                                             'North Macedonia': {2015: 'Upper middle income',
+                                              2020: 'Upper middle income',
+                                              'region': 'Europe & Central Asia'},
+                                             'Norway': {2015: 'High income',
+                                              2020: 'High income',
+                                              'region': 'Europe & Central Asia'},
+                                             'Oman': {2015: 'High income',
+                                              2020: 'High income',
+                                              'region': 'Middle East & North Africa'},
+                                             'Pakistan': {2015: 'Lower middle income',
+                                              2020: 'Lower middle income',
+                                              'region': 'South Asia'},
+                                             'Palau': {2015: 'Upper middle income',
+                                              2020: 'High income',
+                                              'region': 'East Asia & Pacific'},
+                                             'Panama': {2015: 'Upper middle income',
+                                              2020: 'Upper middle income',
+                                              'region': 'Latin America & Caribbean'},
+                                             'Papua New Guinea': {2015: 'Lower middle income',
+                                              2020: 'Lower middle income',
+                                              'region': 'East Asia & Pacific'},
+                                             'Paraguay': {2015: 'Upper middle income',
+                                              2020: 'Upper middle income',
+                                              'region': 'Latin America & Caribbean'},
+                                             'Peru': {2015: 'Upper middle income',
+                                              2020: 'Upper middle income',
+                                              'region': 'Latin America & Caribbean'},
+                                             'Philippines': {2015: 'Lower middle income',
+                                              2020: 'Lower middle income',
+                                              'region': 'East Asia & Pacific'},
+                                             'Poland': {2015: 'High income',
+                                              2020: 'High income',
+                                              'region': 'Europe & Central Asia'},
+                                             'Portugal': {2015: 'High income',
+                                              2020: 'High income',
+                                              'region': 'Europe & Central Asia'},
+                                             'Romania': {2015: 'Upper middle income',
+                                              2020: 'Upper middle income',
+                                              'region': 'Europe & Central Asia'},
+                                             'Russian Federation': {2015: 'Upper middle income',
+                                              2020: 'Upper middle income',
+                                              'region': 'Europe & Central Asia'},
+                                             'Rwanda': {2015: 'Low income',
+                                              2020: 'Low income',
+                                              'region': 'Sub-Saharan Africa'},
+                                             'Samoa': {2015: 'Lower middle income',
+                                              2020: 'Lower middle income',
+                                              'region': 'East Asia & Pacific'},
+                                             'Senegal': {2015: 'Low income',
+                                              2020: 'Lower middle income',
+                                              'region': 'Sub-Saharan Africa'},
+                                             'Serbia': {2015: 'Upper middle income',
+                                              2020: 'Upper middle income',
+                                              'region': 'Europe & Central Asia'},
+                                             'Sierra Leone': {2015: 'Low income',
+                                              2020: 'Low income',
+                                              'region': 'Sub-Saharan Africa'},
+                                             'Singapore': {2015: 'High income',
+                                              2020: 'High income',
+                                              'region': 'East Asia & Pacific'},
+                                             'Solomon Islands': {2015: 'Lower middle income',
+                                              2020: 'Lower middle income',
+                                              'region': 'East Asia & Pacific'},
+                                             'Somalia': {2015: 'Low income',
+                                              2020: 'Low income',
+                                              'region': 'Sub-Saharan Africa'},
+                                             'South Africa': {2015: 'Upper middle income',
+                                              2020: 'Upper middle income',
+                                              'region': 'Sub-Saharan Africa'},
+                                             'South Sudan': {2015: 'Low income',
+                                              2020: 'Low income',
+                                              'region': 'Sub-Saharan Africa'},
+                                             'Spain': {2015: 'High income',
+                                              2020: 'High income',
+                                              'region': 'Europe & Central Asia'},
+                                             'Sri Lanka': {2015: 'Lower middle income',
+                                              2020: 'Lower middle income',
+                                              'region': 'South Asia'},
+                                             'Sudan': {2015: 'Lower middle income',
+                                              2020: 'Low income',
+                                              'region': 'Sub-Saharan Africa'},
+                                             'Suriname': {2015: 'Upper middle income',
+                                              2020: 'Upper middle income',
+                                              'region': 'Latin America & Caribbean'},
+                                             'Sweden': {2015: 'High income',
+                                              2020: 'High income',
+                                              'region': 'Europe & Central Asia'},
+                                             'Switzerland': {2015: 'High income',
+                                              2020: 'High income',
+                                              'region': 'Europe & Central Asia'},
+                                             'Syrian Arab Republic': {2015: 'Lower middle income',
+                                              2020: 'Low income',
+                                              'region': 'Middle East & North Africa'},
+                                             'Tajikistan': {2015: 'Lower middle income',
+                                              2020: 'Lower middle income',
+                                              'region': 'Europe & Central Asia'},
+                                             'Thailand': {2015: 'Upper middle income',
+                                              2020: 'Upper middle income',
+                                              'region': 'East Asia & Pacific'},
+                                             'Timor-Leste': {2015: 'Lower middle income',
+                                              2020: 'Lower middle income',
+                                              'region': 'East Asia & Pacific'},
+                                             'Togo': {2015: 'Low income',
+                                              2020: 'Low income',
+                                              'region': 'Sub-Saharan Africa'},
+                                             'Tonga': {2015: 'Lower middle income',
+                                              2020: 'Upper middle income',
+                                              'region': 'East Asia & Pacific'},
+                                             'Tunisia': {2015: 'Lower middle income',
+                                              2020: 'Lower middle income',
+                                              'region': 'Middle East & North Africa'},
+                                             'Turkmenistan': {2015: 'Upper middle income',
+                                              2020: 'Upper middle income',
+                                              'region': 'Europe & Central Asia'},
+                                             'Tuvalu': {2015: 'Upper middle income',
+                                              2020: 'Upper middle income',
+                                              'region': 'East Asia & Pacific'},
+                                             'Uganda': {2015: 'Low income',
+                                              2020: 'Low income',
+                                              'region': 'Sub-Saharan Africa'},
+                                             'Ukraine': {2015: 'Lower middle income',
+                                              2020: 'Lower middle income',
+                                              'region': 'Europe & Central Asia'},
+                                             'United Kingdom': {2015: 'High income',
+                                              2020: 'High income',
+                                              'region': 'Europe & Central Asia'},
+                                             'United States of America': {2015: 'High income',
+                                              2020: 'High income',
+                                              'region': 'North America'},
+                                             'Uruguay': {2015: 'High income',
+                                              2020: 'High income',
+                                              'region': 'Latin America & Caribbean'},
+                                             'Uzbekistan': {2015: 'Lower middle income',
+                                              2020: 'Lower middle income',
+                                              'region': 'Europe & Central Asia'},
+                                             'Vanuatu': {2015: 'Lower middle income',
+                                              2020: 'Lower middle income',
+                                              'region': 'East Asia & Pacific'},
+                                             'Vietnam': {2015: 'Lower middle income',
+                                              2020: 'Lower middle income',
+                                              'region': 'East Asia & Pacific'},
+                                             'Zambia': {2015: 'Lower middle income',
+                                              2020: 'Lower middle income',
+                                              'region': 'Sub-Saharan Africa'},
+                                             'Zimbabwe': {2015: 'Low income',
+                                              2020: 'Lower middle income',
+                                              'region': 'Sub-Saharan Africa'}}),
+                 "20": (TEXT_FORMAT_DICT, {'South Asia': ['Bangladesh',
+                                              'Bhutan',
+                                              'India',
+                                              'Nepal',
+                                              'Pakistan',
+                                              'Sri Lanka'],
+                                             'Europe & Central Asia': ['Tajikistan', 'Ukraine', 'Uzbekistan'],
+                                             'Middle East & North Africa': ['Algeria', 'Djibouti', 'Morocco', 'Tunisia'],
+                                             'Sub-Saharan Africa': ['Angola',
+                                              'Benin',
+                                              'Cabo Verde',
+                                              'Cameroon',
+                                              "Côte d'Ivoire",
+                                              'Eswatini',
+                                              'Ghana',
+                                              'Kenya',
+                                              'Lesotho',
+                                              'Mauritania',
+                                              'Nigeria',
+                                              'Senegal',
+                                              'Zambia',
+                                              'Zimbabwe'],
+                                             'East Asia & Pacific': ['Cambodia',
+                                              'Indonesia',
+                                              'Kiribati',
+                                              'Mongolia',
+                                              'Myanmar',
+                                              'Papua New Guinea',
+                                              'Philippines',
+                                              'Samoa',
+                                              'Solomon Islands',
+                                              'Timor-Leste',
+                                              'Vanuatu',
+                                              'Vietnam'],
+                                             'Latin America & Caribbean': ['Belize',
+                                              'El Salvador',
+                                              'Haiti',
+                                              'Honduras',
+                                              'Nicaragua'],
+                                             'North America': []})}
+
+
+def check_cell(qnum, actual):
+    format, expected = expected_json[qnum[1:]]
+    try:
+        if format == TEXT_FORMAT:
+            return simple_compare(expected, actual)
+        elif format == TEXT_FORMAT_UNORDERED_LIST:
+            return list_compare_unordered(expected, actual)
+        elif format == TEXT_FORMAT_ORDERED_LIST:
+            return list_compare_ordered(expected, actual)
+        elif format == TEXT_FORMAT_DICT:
+            return dict_compare(expected, actual)
+        else:
+            if expected != actual:
+                return "expected %s but found %s " % (repr(expected), repr(actual))
+    except:
+        if expected != actual:
+            return "expected %s" % (repr(expected))
+    return PASS
+
+
+def simple_compare(expected, actual, complete_msg=True):
+    msg = PASS
+    if type(expected) == type:
+        if expected != actual:
+            if type(actual) == type:
+                msg = "expected %s but found %s" % (
+                    expected.__name__, actual.__name__)
+            else:
+                msg = "expected %s but found %s" % (
+                    expected.__name__, repr(actual))
+    elif type(expected) != type(actual) and not (type(expected) in [float, int] and type(actual) in [float, int]):
+        msg = "expected to find type %s but found type %s" % (
+            type(expected).__name__, type(actual).__name__)
+    elif type(expected) == float:
+        if not math.isclose(actual, expected, rel_tol=REL_TOL, abs_tol=ABS_TOL):
+            msg = "expected %s" % (repr(expected))
+            if complete_msg:
+                msg = msg + " but found %s" % (repr(actual))
+    else:
+        if expected != actual:
+            msg = "expected %s" % (repr(expected))
+            if complete_msg:
+                msg = msg + " but found %s" % (repr(actual))
+    return msg
+
+
+def namedtuple_compare(expected, actual):
+    msg = PASS
+    for field in expected._fields:
+        val = simple_compare(getattr(expected, field), getattr(actual, field))
+        if val != PASS:
+            msg = "at attribute %s of namedtuple %s, " % (
+                field, type(expected).__name__) + val
+            return msg
+    return msg
+
+
+def list_compare_ordered(expected, actual, obj="list"):
+    msg = PASS
+    if type(expected) != type(actual):
+        msg = "expected to find type %s but found type %s" % (
+            type(expected).__name__, type(actual).__name__)
+        return msg
+    for i in range(len(expected)):
+        if i >= len(actual):
+            msg = "expected missing %s in %s" % (repr(expected[i]), obj)
+            break
+        if type(expected[i]) in [int, float, bool, str]:
+            val = simple_compare(expected[i], actual[i])
+        elif type(expected[i]) in [list]:
+            val = list_compare_ordered(expected[i], actual[i], "sub" + obj)
+        elif type(expected[i]) in [dict]:
+            val = dict_compare(expected[i], actual[i])
+        elif type(expected[i]).__name__ == obfuscate1():
+            val = simple_compare(expected[i], actual[i])
+        if val != PASS:
+            msg = "at index %d of the %s, " % (i, obj) + val
+            break
+    if len(actual) > len(expected) and msg == PASS:
+        msg = "found unexpected %s in %s" % (repr(actual[len(expected)]), obj)
+    if len(expected) != len(actual):
+        msg = msg + \
+            " (found %d entries in %s, but expected %d)" % (
+                len(actual), obj, len(expected))
+
+    if len(expected) > 0 and type(expected[0]) in [int, float, bool, str]:
+        if msg != PASS and list_compare_unordered(expected, actual, obj) == PASS:
+            try:
+                msg = msg + " (list may not be ordered as required)"
+            except:
+                pass
+    return msg
+
+
+def list_compare_helper(larger, smaller):
+    msg = PASS
+    j = 0
+    for i in range(len(larger)):
+        if i == len(smaller):
+            msg = "expected %s" % (repr(larger[i]))
+            break
+        found = False
+        while not found:
+            if j == len(smaller):
+                val = simple_compare(larger[i], smaller[j - 1], False)
+                break
+            val = simple_compare(larger[i], smaller[j], False)
+            j += 1
+            if val == PASS:
+                found = True
+                break
+        if not found:
+            msg = val
+            break
+    return msg
+
+
+def list_compare_unordered(expected, actual, obj="list"):
+    msg = PASS
+    if type(expected) != type(actual):
+        msg = "expected to find type %s but found type %s" % (
+            type(expected).__name__, type(actual).__name__)
+        return msg
+    try:
+        sort_expected = sorted(expected)
+        sort_actual = sorted(actual)
+    except:
+        msg = "unexpected datatype found in %s; expected entries of type %s" % (
+            obj, obj, type(expected[0]).__name__)
+        return msg
+
+    if len(actual) == 0 and len(expected) > 0:
+        msg = "in the %s, missing" % (obj) + expected[0]
+    elif len(actual) > 0 and len(expected) > 0:
+        val = simple_compare(sort_expected[0], sort_actual[0])
+        if val.startswith("expected to find type"):
+            msg = "in the %s, " % (
+                obj) + simple_compare(sort_expected[0], sort_actual[0])
+        else:
+            if len(expected) > len(actual):
+                msg = "in the %s, missing " % (
+                    obj) + list_compare_helper(sort_expected, sort_actual)
+            elif len(expected) < len(actual):
+                msg = "in the %s, found un" % (
+                    obj) + list_compare_helper(sort_actual, sort_expected)
+            if len(expected) != len(actual):
+                msg = msg + \
+                    " (found %d entries in %s, but expected %d)" % (
+                        len(actual), obj, len(expected))
+                return msg
+            else:
+                val = list_compare_helper(sort_expected, sort_actual)
+                if val != PASS:
+                    msg = "in the %s, missing " % (obj) + val + ", but found un" + list_compare_helper(sort_actual,
+                                                                                                       sort_expected)
+    return msg
+
+
+def list_compare_special_init(expected, special_order):
+    real_expected = []
+    for i in range(len(expected)):
+        if real_expected == [] or special_order[i-1] != special_order[i]:
+            real_expected.append([])
+        real_expected[-1].append(expected[i])
+    return real_expected
+
+
+def list_compare_special(expected, actual, special_order):
+    expected = list_compare_special_init(expected, special_order)
+    msg = PASS
+    expected_list = []
+    for expected_item in expected:
+        expected_list.extend(expected_item)
+    val = list_compare_unordered(expected_list, actual)
+    if val != PASS:
+        msg = val
+    else:
+        i = 0
+        for expected_item in expected:
+            j = len(expected_item)
+            actual_item = actual[i: i + j]
+            val = list_compare_unordered(expected_item, actual_item)
+            if val != PASS:
+                if j == 1:
+                    msg = "at index %d " % (i) + val
+                else:
+                    msg = "between indices %d and %d " % (i, i + j - 1) + val
+                msg = msg + " (list may not be ordered as required)"
+                break
+            i += j
+
+    return msg
+
+
+def dict_compare(expected, actual, obj="dict"):
+    msg = PASS
+    if type(expected) != type(actual):
+        msg = "expected to find type %s but found type %s" % (
+            type(expected).__name__, type(actual).__name__)
+        return msg
+    try:
+        expected_keys = sorted(list(expected.keys()))
+        actual_keys = sorted(list(actual.keys()))
+    except:
+        msg = "unexpected datatype found in keys of dict; expect a dict with keys of type %s" % (
+            type(expected_keys[0]).__name__)
+        return msg
+    val = list_compare_unordered(expected_keys, actual_keys, "dict")
+    if val != PASS:
+        msg = "bad keys in %s: " % (obj) + val
+    if msg == PASS:
+        for key in expected:
+            if expected[key] == None or type(expected[key]) in [int, float, bool, str]:
+                val = simple_compare(expected[key], actual[key])
+            elif type(expected[key]) in [list]:
+                val = list_compare_ordered(expected[key], actual[key], "value")
+            elif type(expected[key]) in [dict]:
+                val = dict_compare(expected[key], actual[key], "sub" + obj)
+            if val != PASS:
+                msg = "incorrect val for key %s in %s: " % (
+                    repr(key), obj) + val
+    return msg
+
+
+def check(qnum, actual):
+    msg = check_cell(qnum, actual)
+    if msg == PASS:
+        return True
+    print("<b style='color: red;'>ERROR:</b> " + msg)
diff --git a/lab-p7/water_accessibility.csv b/lab-p7/water_accessibility.csv
new file mode 100644
index 0000000..2be44fa
--- /dev/null
+++ b/lab-p7/water_accessibility.csv
@@ -0,0 +1,303 @@
+country_code,country_name,region,year,income_level,pop,urban_percent,national_alb,urban_alb
+AFG,Afghanistan,South Asia,2015,Low income,34414,25,61,87
+AFG,Afghanistan,South Asia,2020,Low income,38928,26,75,100
+ALB,Albania,Europe & Central Asia,2015,Upper middle income,2891,57,93,95
+ALB,Albania,Europe & Central Asia,2020,Upper middle income,2878,62,95,96
+DZA,Algeria,Middle East & North Africa,2015,Upper middle income,39728,71,93,95
+DZA,Algeria,Middle East & North Africa,2020,Lower middle income,43851,74,94,96
+AND,Andorra,Europe & Central Asia,2015,High income,78,88,100,100
+AND,Andorra,Europe & Central Asia,2020,High income,77,88,100,100
+AGO,Angola,Sub-Saharan Africa,2015,Upper middle income,27884,63,54,70
+AGO,Angola,Sub-Saharan Africa,2020,Lower middle income,32866,67,57,72
+ARM,Armenia,Europe & Central Asia,2015,Lower middle income,2926,63,100,100
+ARM,Armenia,Europe & Central Asia,2020,Upper middle income,2963,63,100,100
+AUS,Australia,East Asia & Pacific,2015,High income,23932,86,100,100
+AUS,Australia,East Asia & Pacific,2020,High income,25500,86,100,100
+AUT,Austria,Europe & Central Asia,2015,High income,8679,58,100,100
+AUT,Austria,Europe & Central Asia,2020,High income,9006,59,100,100
+AZE,Azerbaijan,Europe & Central Asia,2015,Upper middle income,9623,55,92,100
+AZE,Azerbaijan,Europe & Central Asia,2020,Upper middle income,10139,56,96,100
+BGD,Bangladesh,South Asia,2015,Lower middle income,156256,34,97,98
+BGD,Bangladesh,South Asia,2020,Lower middle income,164689,38,98,97
+BLR,Belarus,Europe & Central Asia,2015,Upper middle income,9439,77,96,96
+BLR,Belarus,Europe & Central Asia,2020,Upper middle income,9449,79,96,96
+BEL,Belgium,Europe & Central Asia,2015,High income,11288,98,100,100
+BEL,Belgium,Europe & Central Asia,2020,High income,11590,98,100,100
+BLZ,Belize,Latin America & Caribbean,2015,Upper middle income,361,45,97,100
+BLZ,Belize,Latin America & Caribbean,2020,Lower middle income,398,46,98,99
+BEN,Benin,Sub-Saharan Africa,2015,Low income,10576,46,65,74
+BEN,Benin,Sub-Saharan Africa,2020,Lower middle income,12123,48,65,73
+BMU,Bermuda,North America,2015,High income,64,100,100,100
+BMU,Bermuda,North America,2020,High income,62,100,100,100
+BTN,Bhutan,South Asia,2015,Lower middle income,728,39,96,98
+BTN,Bhutan,South Asia,2020,Lower middle income,772,42,97,98
+BIH,Bosnia and Herzegovina,Europe & Central Asia,2015,Upper middle income,3429,47,96,95
+BIH,Bosnia and Herzegovina,Europe & Central Asia,2020,Upper middle income,3281,49,96,95
+BWA,Botswana,Sub-Saharan Africa,2015,Upper middle income,2121,67,88,97
+BWA,Botswana,Sub-Saharan Africa,2020,Upper middle income,2352,71,92,98
+BRA,Brazil,Latin America & Caribbean,2015,Upper middle income,204472,86,98,100
+BRA,Brazil,Latin America & Caribbean,2020,Upper middle income,212559,87,100,100
+BRN,Brunei Darussalam,East Asia & Pacific,2015,High income,415,77,100,100
+BRN,Brunei Darussalam,East Asia & Pacific,2020,High income,437,78,100,100
+BGR,Bulgaria,Europe & Central Asia,2015,Upper middle income,7200,74,100,100
+BGR,Bulgaria,Europe & Central Asia,2020,Upper middle income,6948,76,100,100
+BFA,Burkina Faso,Sub-Saharan Africa,2015,Low income,18111,28,50,80
+BFA,Burkina Faso,Sub-Saharan Africa,2020,Low income,20903,31,47,80
+BDI,Burundi,Sub-Saharan Africa,2015,Low income,10160,12,60,89
+BDI,Burundi,Sub-Saharan Africa,2020,Low income,11891,14,62,91
+CPV,Cabo Verde,Sub-Saharan Africa,2015,Lower middle income,525,64,85,92
+CPV,Cabo Verde,Sub-Saharan Africa,2020,Lower middle income,556,67,89,93
+KHM,Cambodia,East Asia & Pacific,2015,Lower middle income,15521,22,68,89
+KHM,Cambodia,East Asia & Pacific,2020,Lower middle income,16719,24,71,90
+CMR,Cameroon,Sub-Saharan Africa,2015,Lower middle income,23298,55,64,82
+CMR,Cameroon,Sub-Saharan Africa,2020,Lower middle income,26546,58,66,82
+CAN,Canada,North America,2015,High income,36027,81,100,100
+CAN,Canada,North America,2020,High income,37742,82,100,100
+CAF,Central African Republic,Sub-Saharan Africa,2015,Low income,4493,40,42,58
+CAF,Central African Republic,Sub-Saharan Africa,2020,Low income,4830,42,37,50
+TCD,Chad,Sub-Saharan Africa,2015,Low income,14111,23,44,75
+TCD,Chad,Sub-Saharan Africa,2020,Low income,16426,24,46,74
+CHL,Chile,Latin America & Caribbean,2015,High income,17969,87,100,100
+CHL,Chile,Latin America & Caribbean,2020,High income,19116,88,100,100
+CHN,China,East Asia & Pacific,2015,Upper middle income,1430405,56,92,98
+CHN,China,East Asia & Pacific,2020,Upper middle income,1463141,62,94,97
+COL,Colombia,Latin America & Caribbean,2015,Upper middle income,47521,80,96,100
+COL,Colombia,Latin America & Caribbean,2020,Upper middle income,50883,81,97,100
+CRI,Costa Rica,Latin America & Caribbean,2015,Upper middle income,4848,77,100,100
+CRI,Costa Rica,Latin America & Caribbean,2020,Upper middle income,5094,81,100,100
+CIV,Côte d'Ivoire,Sub-Saharan Africa,2015,Lower middle income,23226,49,71,87
+CIV,Côte d'Ivoire,Sub-Saharan Africa,2020,Lower middle income,26378,52,71,85
+CUB,Cuba,Latin America & Caribbean,2015,Upper middle income,11325,77,96,98
+CUB,Cuba,Latin America & Caribbean,2020,Upper middle income,11327,77,97,98
+CYP,Cyprus,Europe & Central Asia,2015,High income,1161,67,100,100
+CYP,Cyprus,Europe & Central Asia,2020,High income,1207,67,100,100
+CZE,Czech Republic,Europe & Central Asia,2015,High income,10601,73,100,100
+CZE,Czech Republic,Europe & Central Asia,2020,High income,10709,74,100,100
+DNK,Denmark,Europe & Central Asia,2015,High income,5689,88,100,100
+DNK,Denmark,Europe & Central Asia,2020,High income,5792,88,100,100
+DJI,Djibouti,Middle East & North Africa,2015,Lower middle income,914,77,76,84
+DJI,Djibouti,Middle East & North Africa,2020,Lower middle income,988,78,76,84
+DOM,Dominican Republic,Latin America & Caribbean,2015,Upper middle income,10282,79,96,98
+DOM,Dominican Republic,Latin America & Caribbean,2020,Upper middle income,10848,83,97,98
+ECU,Ecuador,Latin America & Caribbean,2015,Upper middle income,16212,63,93,100
+ECU,Ecuador,Latin America & Caribbean,2020,Upper middle income,17643,64,95,100
+SLV,El Salvador,Latin America & Caribbean,2015,Lower middle income,6325,70,96,99
+SLV,El Salvador,Latin America & Caribbean,2020,Lower middle income,6486,73,98,100
+EST,Estonia,Europe & Central Asia,2015,High income,1315,68,100,100
+EST,Estonia,Europe & Central Asia,2020,High income,1327,69,100,100
+SWZ,Eswatini,Sub-Saharan Africa,2015,Lower middle income,1104,23,67,95
+SWZ,Eswatini,Sub-Saharan Africa,2020,Lower middle income,1160,24,71,97
+ETH,Ethiopia,Sub-Saharan Africa,2015,Low income,100835,19,42,82
+ETH,Ethiopia,Sub-Saharan Africa,2020,Low income,114964,22,50,84
+FJI,Fiji,East Asia & Pacific,2015,Upper middle income,869,55,94,98
+FJI,Fiji,East Asia & Pacific,2020,Upper middle income,896,57,94,98
+FIN,Finland,Europe & Central Asia,2015,High income,5481,85,100,100
+FIN,Finland,Europe & Central Asia,2020,High income,5541,86,100,100
+FRA,France,Europe & Central Asia,2015,High income,64453,80,100,100
+FRA,France,Europe & Central Asia,2020,High income,65274,81,100,100
+GAB,Gabon,Sub-Saharan Africa,2015,Upper middle income,1948,88,84,89
+GAB,Gabon,Sub-Saharan Africa,2020,Upper middle income,2226,90,85,90
+GEO,Georgia,Europe & Central Asia,2015,Upper middle income,4024,57,96,100
+GEO,Georgia,Europe & Central Asia,2020,Upper middle income,3989,59,97,100
+DEU,Germany,Europe & Central Asia,2015,High income,81787,77,100,100
+DEU,Germany,Europe & Central Asia,2020,High income,83784,77,100,100
+GHA,Ghana,Sub-Saharan Africa,2015,Lower middle income,27849,54,80,91
+GHA,Ghana,Sub-Saharan Africa,2020,Lower middle income,31073,57,86,96
+GIB,Gibraltar,Europe & Central Asia,2015,High income,34,100,100,100
+GIB,Gibraltar,Europe & Central Asia,2020,High income,34,100,100,100
+GRC,Greece,Europe & Central Asia,2015,High income,10660,78,100,100
+GRC,Greece,Europe & Central Asia,2020,High income,10423,80,100,100
+GRL,Greenland,Europe & Central Asia,2015,High income,56,86,100,100
+GRL,Greenland,Europe & Central Asia,2020,High income,57,87,100,100
+GTM,Guatemala,Latin America & Caribbean,2015,Lower middle income,16252,50,92,97
+GTM,Guatemala,Latin America & Caribbean,2020,Upper middle income,17916,52,94,98
+GIN,Guinea,Sub-Saharan Africa,2015,Low income,11432,35,64,85
+GIN,Guinea,Sub-Saharan Africa,2020,Low income,13133,37,64,87
+GNB,Guinea-Bissau,Sub-Saharan Africa,2015,Low income,1737,42,59,73
+GNB,Guinea-Bissau,Sub-Saharan Africa,2020,Low income,1968,44,59,71
+GUY,Guyana,Latin America & Caribbean,2015,Upper middle income,767,26,95,100
+GUY,Guyana,Latin America & Caribbean,2020,Upper middle income,787,27,96,100
+HTI,Haiti,Latin America & Caribbean,2015,Low income,10696,52,65,85
+HTI,Haiti,Latin America & Caribbean,2020,Lower middle income,11403,57,67,85
+HND,Honduras,Latin America & Caribbean,2015,Lower middle income,9113,55,93,99
+HND,Honduras,Latin America & Caribbean,2020,Lower middle income,9905,58,96,100
+HUN,Hungary,Europe & Central Asia,2015,High income,9778,71,100,100
+HUN,Hungary,Europe & Central Asia,2020,High income,9660,72,100,100
+ISL,Iceland,Europe & Central Asia,2015,High income,330,94,100,100
+ISL,Iceland,Europe & Central Asia,2020,High income,341,94,100,100
+IND,India,South Asia,2015,Lower middle income,1310152,33,88,93
+IND,India,South Asia,2020,Lower middle income,1380004,35,90,94
+IDN,Indonesia,East Asia & Pacific,2015,Lower middle income,258383,53,89,95
+IDN,Indonesia,East Asia & Pacific,2020,Lower middle income,273524,57,92,98
+IRQ,Iraq,Middle East & North Africa,2015,Upper middle income,35572,70,94,98
+IRQ,Iraq,Middle East & North Africa,2020,Upper middle income,40223,71,98,100
+IRL,Ireland,Europe & Central Asia,2015,High income,4652,63,97,97
+IRL,Ireland,Europe & Central Asia,2020,High income,4938,64,97,97
+ISR,Israel,Middle East & North Africa,2015,High income,7978,92,100,100
+ISR,Israel,Middle East & North Africa,2020,High income,8656,93,100,100
+JAM,Jamaica,Latin America & Caribbean,2015,Upper middle income,2891,55,90,95
+JAM,Jamaica,Latin America & Caribbean,2020,Upper middle income,2961,56,91,95
+JOR,Jordan,Middle East & North Africa,2015,Upper middle income,9267,90,100,100
+JOR,Jordan,Middle East & North Africa,2020,Upper middle income,10203,91,99,100
+KAZ,Kazakhstan,Europe & Central Asia,2015,Upper middle income,17572,57,95,98
+KAZ,Kazakhstan,Europe & Central Asia,2020,Upper middle income,18777,58,95,98
+KEN,Kenya,Sub-Saharan Africa,2015,Lower middle income,47878,26,58,87
+KEN,Kenya,Sub-Saharan Africa,2020,Lower middle income,53771,28,62,87
+KIR,Kiribati,East Asia & Pacific,2015,Lower middle income,111,52,74,89
+KIR,Kiribati,East Asia & Pacific,2020,Lower middle income,119,56,78,92
+LVA,Latvia,Europe & Central Asia,2015,High income,1998,68,99,99
+LVA,Latvia,Europe & Central Asia,2020,High income,1886,68,99,99
+LSO,Lesotho,Sub-Saharan Africa,2015,Lower middle income,2059,27,71,90
+LSO,Lesotho,Sub-Saharan Africa,2020,Lower middle income,2142,29,72,93
+LBR,Liberia,Sub-Saharan Africa,2015,Low income,4472,50,73,84
+LBR,Liberia,Sub-Saharan Africa,2020,Low income,5058,52,75,86
+LTU,Lithuania,Europe & Central Asia,2015,High income,2932,67,97,100
+LTU,Lithuania,Europe & Central Asia,2020,High income,2722,68,98,100
+LUX,Luxembourg,Europe & Central Asia,2015,High income,567,90,100,100
+LUX,Luxembourg,Europe & Central Asia,2020,High income,626,91,100,100
+MDG,Madagascar,Sub-Saharan Africa,2015,Low income,24234,35,49,78
+MDG,Madagascar,Sub-Saharan Africa,2020,Low income,27691,39,53,80
+MWI,Malawi,Sub-Saharan Africa,2015,Low income,16745,16,66,86
+MWI,Malawi,Sub-Saharan Africa,2020,Low income,19130,17,70,86
+MYS,Malaysia,East Asia & Pacific,2015,Upper middle income,30271,74,97,100
+MYS,Malaysia,East Asia & Pacific,2020,Upper middle income,32366,77,97,100
+MDV,Maldives,South Asia,2015,Upper middle income,455,39,99,99
+MDV,Maldives,South Asia,2020,Upper middle income,541,41,100,100
+MLI,Mali,Sub-Saharan Africa,2015,Low income,17439,40,74,91
+MLI,Mali,Sub-Saharan Africa,2020,Low income,20251,44,83,96
+MLT,Malta,Middle East & North Africa,2015,High income,434,94,100,100
+MLT,Malta,Middle East & North Africa,2020,High income,442,95,100,100
+MHL,Marshall Islands,East Asia & Pacific,2015,Upper middle income,57,76,88,86
+MHL,Marshall Islands,East Asia & Pacific,2020,Upper middle income,59,78,89,87
+MRT,Mauritania,Sub-Saharan Africa,2015,Lower middle income,4046,51,67,86
+MRT,Mauritania,Sub-Saharan Africa,2020,Lower middle income,4650,55,72,89
+MUS,Mauritius,Sub-Saharan Africa,2015,Upper middle income,1259,41,100,100
+MUS,Mauritius,Sub-Saharan Africa,2020,Upper middle income,1272,41,100,100
+MEX,Mexico,Latin America & Caribbean,2015,Upper middle income,121858,79,98,100
+MEX,Mexico,Latin America & Caribbean,2020,Upper middle income,128933,81,100,100
+MCO,Monaco,Europe & Central Asia,2015,High income,38,100,100,100
+MCO,Monaco,Europe & Central Asia,2020,High income,39,100,100,100
+MNG,Mongolia,East Asia & Pacific,2015,Lower middle income,2998,68,81,94
+MNG,Mongolia,East Asia & Pacific,2020,Lower middle income,3278,69,85,97
+MNE,Montenegro,Europe & Central Asia,2015,Upper middle income,627,66,97,98
+MNE,Montenegro,Europe & Central Asia,2020,Upper middle income,628,67,99,100
+MAR,Morocco,Middle East & North Africa,2015,Lower middle income,34664,61,84,96
+MAR,Morocco,Middle East & North Africa,2020,Lower middle income,36911,64,90,98
+MOZ,Mozambique,Sub-Saharan Africa,2015,Low income,27042,34,51,80
+MOZ,Mozambique,Sub-Saharan Africa,2020,Low income,31255,37,63,88
+MMR,Myanmar,East Asia & Pacific,2015,Lower middle income,52681,30,74,88
+MMR,Myanmar,East Asia & Pacific,2020,Lower middle income,54410,31,84,95
+NAM,Namibia,Sub-Saharan Africa,2015,Upper middle income,2315,47,83,97
+NAM,Namibia,Sub-Saharan Africa,2020,Upper middle income,2541,52,84,96
+NRU,Nauru,East Asia & Pacific,2015,High income,10,100,100,100
+NRU,Nauru,East Asia & Pacific,2020,High income,11,100,100,100
+NPL,Nepal,South Asia,2015,Low income,27015,19,88,90
+NPL,Nepal,South Asia,2020,Lower middle income,29137,21,90,90
+NLD,Netherlands,Europe & Central Asia,2015,High income,16938,90,100,100
+NLD,Netherlands,Europe & Central Asia,2020,High income,17135,92,100,100
+NZL,New Zealand,East Asia & Pacific,2015,High income,4615,86,100,100
+NZL,New Zealand,East Asia & Pacific,2020,High income,4822,87,100,100
+NIC,Nicaragua,Latin America & Caribbean,2015,Lower middle income,6223,58,81,97
+NIC,Nicaragua,Latin America & Caribbean,2020,Lower middle income,6625,59,82,97
+NER,Niger,Sub-Saharan Africa,2015,Low income,20002,16,45,88
+NER,Niger,Sub-Saharan Africa,2020,Low income,24207,17,47,86
+NGA,Nigeria,Sub-Saharan Africa,2015,Lower middle income,181137,48,69,85
+NGA,Nigeria,Sub-Saharan Africa,2020,Lower middle income,206140,52,78,92
+MKD,North Macedonia,Europe & Central Asia,2015,Upper middle income,2079,57,97,97
+MKD,North Macedonia,Europe & Central Asia,2020,Upper middle income,2083,58,98,98
+NOR,Norway,Europe & Central Asia,2015,High income,5200,81,100,100
+NOR,Norway,Europe & Central Asia,2020,High income,5421,83,100,100
+OMN,Oman,Middle East & North Africa,2015,High income,4267,81,90,94
+OMN,Oman,Middle East & North Africa,2020,High income,5107,86,92,95
+PAK,Pakistan,South Asia,2015,Lower middle income,199427,36,89,94
+PAK,Pakistan,South Asia,2020,Lower middle income,220892,37,90,93
+PLW,Palau,East Asia & Pacific,2015,Upper middle income,18,78,100,100
+PLW,Palau,East Asia & Pacific,2020,High income,18,81,100,100
+PAN,Panama,Latin America & Caribbean,2015,Upper middle income,3968,67,93,98
+PAN,Panama,Latin America & Caribbean,2020,Upper middle income,4315,68,94,98
+PNG,Papua New Guinea,East Asia & Pacific,2015,Lower middle income,8108,13,41,85
+PNG,Papua New Guinea,East Asia & Pacific,2020,Lower middle income,8947,13,45,86
+PRY,Paraguay,Latin America & Caribbean,2015,Upper middle income,6689,61,97,100
+PRY,Paraguay,Latin America & Caribbean,2020,Upper middle income,7133,62,100,100
+PER,Peru,Latin America & Caribbean,2015,Upper middle income,30471,77,90,95
+PER,Peru,Latin America & Caribbean,2020,Upper middle income,32972,78,93,97
+PHL,Philippines,East Asia & Pacific,2015,Lower middle income,102113,46,92,96
+PHL,Philippines,East Asia & Pacific,2020,Lower middle income,109581,47,94,97
+POL,Poland,Europe & Central Asia,2015,High income,38034,60,100,100
+POL,Poland,Europe & Central Asia,2020,High income,37847,60,100,100
+PRT,Portugal,Europe & Central Asia,2015,High income,10368,64,100,100
+PRT,Portugal,Europe & Central Asia,2020,High income,10197,66,100,100
+ROU,Romania,Europe & Central Asia,2015,Upper middle income,19925,54,100,100
+ROU,Romania,Europe & Central Asia,2020,Upper middle income,19238,54,100,100
+RUS,Russian Federation,Europe & Central Asia,2015,Upper middle income,144985,74,97,99
+RUS,Russian Federation,Europe & Central Asia,2020,Upper middle income,145934,75,97,99
+RWA,Rwanda,Sub-Saharan Africa,2015,Low income,11369,17,57,80
+RWA,Rwanda,Sub-Saharan Africa,2020,Low income,12952,17,60,83
+WSM,Samoa,East Asia & Pacific,2015,Lower middle income,194,19,91,91
+WSM,Samoa,East Asia & Pacific,2020,Lower middle income,198,18,92,92
+SEN,Senegal,Sub-Saharan Africa,2015,Low income,14578,46,79,94
+SEN,Senegal,Sub-Saharan Africa,2020,Lower middle income,16744,48,85,95
+SRB,Serbia,Europe & Central Asia,2015,Upper middle income,8877,56,93,92
+SRB,Serbia,Europe & Central Asia,2020,Upper middle income,8737,56,95,95
+SLE,Sierra Leone,Sub-Saharan Africa,2015,Low income,7172,41,58,76
+SLE,Sierra Leone,Sub-Saharan Africa,2020,Low income,7977,43,64,78
+SGP,Singapore,East Asia & Pacific,2015,High income,5592,100,100,100
+SGP,Singapore,East Asia & Pacific,2020,High income,5850,100,100,100
+SLB,Solomon Islands,East Asia & Pacific,2015,Lower middle income,603,22,69,91
+SLB,Solomon Islands,East Asia & Pacific,2020,Lower middle income,687,25,67,91
+SOM,Somalia,Sub-Saharan Africa,2015,Low income,13797,43,49,74
+SOM,Somalia,Sub-Saharan Africa,2020,Low income,15893,46,56,79
+ZAF,South Africa,Sub-Saharan Africa,2015,Upper middle income,55386,65,92,99
+ZAF,South Africa,Sub-Saharan Africa,2020,Upper middle income,59309,67,94,100
+SSD,South Sudan,Sub-Saharan Africa,2015,Low income,10716,19,41,61
+SSD,South Sudan,Sub-Saharan Africa,2020,Low income,11194,20,41,70
+ESP,Spain,Europe & Central Asia,2015,High income,46672,80,100,100
+ESP,Spain,Europe & Central Asia,2020,High income,46755,81,100,100
+LKA,Sri Lanka,South Asia,2015,Lower middle income,20908,18,90,98
+LKA,Sri Lanka,South Asia,2020,Lower middle income,21413,19,92,100
+SDN,Sudan,Sub-Saharan Africa,2015,Lower middle income,38903,34,59,73
+SDN,Sudan,Sub-Saharan Africa,2020,Low income,43849,35,60,74
+SUR,Suriname,Latin America & Caribbean,2015,Upper middle income,559,66,96,98
+SUR,Suriname,Latin America & Caribbean,2020,Upper middle income,587,66,98,99
+SWE,Sweden,Europe & Central Asia,2015,High income,9765,87,100,100
+SWE,Sweden,Europe & Central Asia,2020,High income,10099,88,100,100
+CHE,Switzerland,Europe & Central Asia,2015,High income,8297,74,100,100
+CHE,Switzerland,Europe & Central Asia,2020,High income,8655,74,100,100
+SYR,Syrian Arab Republic,Middle East & North Africa,2015,Lower middle income,17997,52,94,95
+SYR,Syrian Arab Republic,Middle East & North Africa,2020,Low income,17501,55,94,95
+TJK,Tajikistan,Europe & Central Asia,2015,Lower middle income,8454,27,76,95
+TJK,Tajikistan,Europe & Central Asia,2020,Lower middle income,9538,28,82,96
+THA,Thailand,East Asia & Pacific,2015,Upper middle income,68715,48,100,100
+THA,Thailand,East Asia & Pacific,2020,Upper middle income,69800,51,100,100
+TLS,Timor-Leste,East Asia & Pacific,2015,Lower middle income,1196,29,75,90
+TLS,Timor-Leste,East Asia & Pacific,2020,Lower middle income,1318,31,85,96
+TGO,Togo,Sub-Saharan Africa,2015,Low income,7323,40,64,88
+TGO,Togo,Sub-Saharan Africa,2020,Low income,8279,43,69,91
+TON,Tonga,East Asia & Pacific,2015,Lower middle income,101,23,99,100
+TON,Tonga,East Asia & Pacific,2020,Upper middle income,106,23,99,100
+TUN,Tunisia,Middle East & North Africa,2015,Lower middle income,11180,68,95,100
+TUN,Tunisia,Middle East & North Africa,2020,Lower middle income,11819,70,98,100
+TKM,Turkmenistan,Europe & Central Asia,2015,Upper middle income,5565,50,98,100
+TKM,Turkmenistan,Europe & Central Asia,2020,Upper middle income,6031,53,100,100
+TUV,Tuvalu,East Asia & Pacific,2015,Upper middle income,11,60,100,100
+TUV,Tuvalu,East Asia & Pacific,2020,Upper middle income,12,64,100,100
+UGA,Uganda,Sub-Saharan Africa,2015,Low income,38225,22,48,77
+UGA,Uganda,Sub-Saharan Africa,2020,Low income,45741,25,56,79
+UKR,Ukraine,Europe & Central Asia,2015,Lower middle income,44922,69,94,92
+UKR,Ukraine,Europe & Central Asia,2020,Lower middle income,43734,69,94,92
+GBR,United Kingdom,Europe & Central Asia,2015,High income,65860,83,100,100
+GBR,United Kingdom,Europe & Central Asia,2020,High income,67886,84,100,100
+USA,United States of America,North America,2015,High income,320878,82,100,100
+USA,United States of America,North America,2020,High income,331003,83,100,100
+URY,Uruguay,Latin America & Caribbean,2015,High income,3412,95,100,100
+URY,Uruguay,Latin America & Caribbean,2020,High income,3474,96,100,100
+UZB,Uzbekistan,Europe & Central Asia,2015,Lower middle income,30930,51,98,100
+UZB,Uzbekistan,Europe & Central Asia,2020,Lower middle income,33469,50,98,100
+VUT,Vanuatu,East Asia & Pacific,2015,Lower middle income,271,25,90,100
+VUT,Vanuatu,East Asia & Pacific,2020,Lower middle income,307,26,91,100
+VNM,Vietnam,East Asia & Pacific,2015,Lower middle income,92677,34,93,98
+VNM,Vietnam,East Asia & Pacific,2020,Lower middle income,97339,37,97,100
+ZMB,Zambia,Sub-Saharan Africa,2015,Lower middle income,15879,42,61,86
+ZMB,Zambia,Sub-Saharan Africa,2020,Lower middle income,18384,45,65,87
+ZWE,Zimbabwe,Sub-Saharan Africa,2015,Low income,13815,32,65,94
+ZWE,Zimbabwe,Sub-Saharan Africa,2020,Lower middle income,14863,32,63,93
diff --git a/p7/README.md b/p7/README.md
new file mode 100644
index 0000000..23df7bb
--- /dev/null
+++ b/p7/README.md
@@ -0,0 +1,41 @@
+# Project 7 (P7): Drinking Water Accessibility
+
+
+## Corrections and clarifications:
+
+* None yet.
+
+**Find any issues?** Report to us:
+
+- Srinath Namburi <sgnamburi@wisc.edu>
+- Karthik Suresh <ksuresh6@wisc.edu>
+
+## Instructions:
+
+This project will focus on **utilizing lists** and **managing dictionaries**. To start, download [`p7.ipynb`](https://git.doit.wisc.edu/cdis/cs/courses/cs220/cs220-s23-projectdesign/-/blob/main/p7/otter_files/student/p7.ipynb), [`p7_test.py`](https://git.doit.wisc.edu/cdis/cs/courses/cs220/cs220-s23-projectdesign/-/blob/main/p7/otter_files/student/p7_test.py), and [`water_accessibility.csv`](https://git.doit.wisc.edu/cdis/cs/courses/cs220/cs220-s23-projectdesign/-/raw/main/p7/otter_files/student/water_accessibility.csv).
+
+
+**Note:** Please go through [lab-p7](https://git.doit.wisc.edu/cdis/cs/courses/cs220/cs220-s23-projectdesign/-/tree/main/lab-p7) before you start the project. The lab contains some very important information that will be necessary for you to finish the project.
+
+You will work on `p7.ipynb` and hand it in. You should follow the provided directions for each question. Questions have **specific** directions on what **to do** and what **not to do**. 
+
+After you've downloaded the file to your `p7` directory, open a terminal window and use `cd` to navigate to that directory. To make sure you're in the correct directory in the terminal, type `pwd`. To make sure you've downloaded the notebook file, type `ls` to ensure that `p7.ipynb`, `p7_test.py`, and `water_accessibility.csv` are listed. Then run the command `jupyter notebook` to start Jupyter, and get started on the project!
+
+**IMPORTANT**: You should **NOT** terminate/close the session where you run the above command. If you need to use any other Terminal/PowerShell commands, open a new window instead. Keep constantly saving your notebook file, by either clicking the "Save and Checkpoint" button (floppy disk) or using the appropriate keyboard shortcut.
+
+------------------------------
+
+## IMPORTANT Submission instructions:
+- Review the [Grading Rubric](https://git.doit.wisc.edu/cdis/cs/courses/cs220/cs220-s23-projects/-/tree/main/p7/rubric.md), to ensure that you don't lose points during code review.
+- You must **save your notebook file** before you run the cell containing **export**.
+- Login to [Gradescope](https://www.gradescope.com/) and upload the zip file into the p7 assignment.
+- If you completed the project with a **partner**, make sure to **add their name** by clicking "Add Group Member"
+in Gradescope when uploading the p6 zip file.
+       
+   <img src="images/add_group_member.png" width="400">
+   
+- It is **your responsibility** to make sure that your project clears auto-grader tests on the Gradescope test system. Otter test results should be available in a few minutes after your submission. You should be able to see both PASS / FAIL results for the 20 test cases and your total score, which is accessible via Gradescope Dashboard (as in the image below):
+       
+    <img src="images/gradescope.png" width="400">
+
+- If you feel you have been incorrectly graded on a particular question during manual review, then you can find more about the Regrade Request process [here](https://piazza.com/class/ld8bqui1lgeas/post/105).
diff --git a/p7/images/add_group_member.png b/p7/images/add_group_member.png
new file mode 100644
index 0000000000000000000000000000000000000000..402e5962e3e54ce8349f60ccfe4ce2b60840dd3b
GIT binary patch
literal 160694
zcmd43bx>U0`YxD+;10n9gkS-J2M-V+xVyW%L+}JmaCg_nEx0?425a0M8h2^9JLfy+
zch8-gnyRV!XHu1Px}n&s*=s%T`##dY6y(IwQHW7qym)~wDe+b5#R~+}7cXAjAiV-!
zxlDyL0}n5qmBfW#RE)jd2cEn(7m^iv@uE5k_0bR>c#iBKq3QhM1wQrPzb_?~s7_zJ
zcrK9qDx~sF54sGm@kXBHg+o+cON;cEW@z{E@v$9jaT)ldYw+FQe-ikQ!*th8_s3n2
zz@MPCo2N{lvE}*s<&@<%;~Q7EL^Val2^5M;R3~TW;%a?06`hX^lp?b40<naVC<33D
zIo25wBEr&$MUY@<Ob7b^y!@}PVf7FH^Z550v5Z2_*#7H_?Oor9{`LAl|EwCcq5<FZ
z?^kl{S@eSc^MoSs57+O|P!y{-6w@EJOvhJNR!nLfWn^X7Ye9_~YGT3p|5=ORzt<x3
zKF}AXo>}DYW&in!dnDmW|MLWi;u8J;SlT_prs@CwUL>D@{|_rA{Qu)+%X4%6iA9k(
zr0ndNygj|V;=ui^92`O8xf@2BL`1Rv|NNHjpQi&G2tP5|vE6A?)6gz^-u_tuv(oWs
z%8M7NyQc~H+z&}eX0*6nT^59?&~RQ9jwkbb43#$6&z>y#-t|f<i%?pLm8wlRI$GD;
z)$dQ@v2AVbR4iAI_RS=W;Jm?N;ov0WG%!eVJM!@GkbJL+Ok_^PV{sZ96c!p5W_Y$Y
zHwUL(PqeqMc%fD2uQbo+yHxAJ5Z+TS+}$I|D{XCSn_OCvD=eG$EPctSU9XUblq2>-
z-|$vOPL3unf|8jTGs{$_FghAbQs|$X3G=h+)<z>fY7kV#$HT4l-HqIe-(u|vzS)~B
z05$I29nLx;BdhJ;hdMd&x44ooHDtxMwzf3fESL@#g_9!21$*A(Y-||D#9YfoiacOO
zCne-TW=d4u?2cQa$UjX_Gs?&q3bwjGg7R{jJSSpv;1Gz32=ns`Gn>5W=&0vM1~tBC
zk)OvUR6%4A*o}>eEcat$aWp=EprYcV9avaO-$Eo45Ku7tkX-ircV@+Lr+|-_+dfWK
z^0b(Ilnu!F;o545{`2S0RD$=<f#b&S|Ff4tF>eKUws*E|HL9&HqjP|j%~jj=Y{wPR
zMvzg`ywA-kG_$lq2?&j4+nS!4d><DrmuQPbhm5RjY^;Hz)^0wvlX1w&&CRpy?T`gF
zQR10{$OJ<c7F;Uq*D<_k2WTtxt9NN%!@nL0r=PVkvY>kZeq;fQs{127?!8~of1L~t
zC8D^L%os94937RJj~Eu9l6ph0r)p$JN5?BD#8%?@CGdL#HiL>)8*hX4Dx`bkI^Y3#
z$0|6&=->bQ=fqYd;(OZ(R{7n=OQu~zo$fc36f`8vU>L2ftq9HKc}7MXxVWHvwQ>|x
z6lW)AO}K!w@)u5QY|>`q3Gva~KKn*SPB;mnf1(Who{?bm&=c~%M}5y8JT|`Sc_b|C
z>1ko}DIt*fi>8*{V(;B_?=u4{g^->A8N8;X-LcthWWMRu&A18Ms_&!2e*aa~phRqL
zMQ)A7b^37z@07)-SS9P(Cv@nEzNDOQU$^L^x3>z$9Q%{+6h6~jldti!UYpg?Nmi@;
z+TsQ(KDYOM>*m_i51)IcG`^dKHn02+KeebQS6d{QU=IL!9Vq|C8o%L0hTY}&c}{yS
zR>T}KzB=(YK_tN1ssp#eooJLrB@<KaIJK4@SYO70WhA9xmsh22n*)_(WW-ih4-Iy+
zO6s)EX`Fi3-D7r}#~I>oN5=~}l$u~*^K#69Y+nL5{KJcfjdJ=S%q*UZ?lHHXP}OSW
zGYq*%0HLlPa2+qxR#sq@dZy^5wzkDY|AxOyRAC$=R*hg{SxLQ;#{BTqFCD>hMGQj>
z;bd%=TkUWc<|E;uzre%ec{?*d<SN4@wp8E|H3@@)QZzM}T>UD6lkD>d1I|V~UIHke
z7zUg5&Uzu((HUQD>{|DGT)*SsU|p!-y$Tn!1C3%@!tMHcAu-WMEW)U+MNF2OjmGTH
z?U}rOM`7V}Ff={gG7P_qqJk&cWuMLGY=bX~Oo)u$y;i)$d7~TNiWsO19q&KThZ2i`
z6rE5BrwOe-y4#=Z*4I;0Q=7zwg-Oe(s3?5-4nt3<n}keHDkyv1oWYfLu+zldfv*^3
z>L;dX>D~?v4<8BodS4xv%kDCjK@8FJKUA{V--kawddurWZ^>bVe=9{qmjMejBi(@N
zJw3|Pm)PDyJW>*`>jPDLK|w2G7&<-;&G62scAW+G1B+ij8Y_0pvUsFSD%be%Y|_xe
zs{&IKop#sZ^(orFiw3Y3mM@I3*>rR$>*Y48-Lx^3vFLVv;!eu@?V$S(*f<9kR!S)c
z*%c+c-ko2(#0ONhIr+amL9bfetsCt5T+h0*+hH<j=*2SSTBatZ9uN23vIBAI%(FI&
z&Azjd#~FO`ggl{R5Cq0g?_aT11xKGcn0fGUM4{^}MUwD@rhWnG{Vh@)ViqR(abd%q
zD{bW?BL;za*sgKkJHj5K$fJHm6%|gbW|tOl7;p6QC>J`Qg}6Z*eRt59nNK1`Lf&gZ
z{h+(syMmr)@85AJr;7b+^9V{Rd@+EX<2^Lk65!)BJ6-gr+G+>%^z4qO*V!EF`1-!2
zS0>%l(b*J_<gKyB6l7jqSEijknoCSeLM_!2uov*6HNwbB-znE(wcg)=4MgFwpiuM_
zCOk|23{$Qxg$j5h0dEFTJ}W*kQR!mt&;Df&?0(VZSXh=)r9p6F^;y>bBu!v7m5&$<
zJ~~=VO1<5+@qU0%vc`zzMOaLkH3z{bgg#k5hrnR$!^2ToeC{XUxG6-8Z@0H^`MvPP
zcr~<@YtxX*JVwHa5F6~tCo9PlF8wHhJqcc@W2cq94|5$K18deB2Gsa>-{UbH99&M%
zOgYc&jPkd*>9&1iWoBkhSoj!oppl&XF`Xw)s$^x{$Hrz37h4#q?qeZ4ElR0{0xqbl
zs>2Uo{u#+xgwZN@-r^SwMtK=^XMHrh5*)I6d1i>-4hBz$<BxrjldGg(Sx-q$R@afi
z!M-0bF){PJyH6!1DlRQ?tEx|oN%TG08$76b0efcQ_ynD=D=jTD_g2D5_)nc+T-6Ut
zYD2}Wv~gGCzlAZJ)j0O|m-4#fZ|)WqDlVfCg-<0hSI+(3FAC;ZtoONnOwoeBmu~g;
z5o~F8JDHXQj*qP7e0T3_N}A`aZyp}#S62bTBDl{9s}BFZ#4Fji%+la-b9)X1I1acR
z;#g&+M}L2|+8SRg2}$XIG-oTkJ^Oe3urxyA`i2^R$(Ju*rj2E+XMdYs)_Dx6qzTlF
z{?Tev4Ql+hS)mI6fw9@hcQ76aSFAf5L<a!>rQuok<w(*t@$m0xiJY8akh1F9h7b+~
z9xG)<MQm)my2De$nm69v-1%QT%eSevf4mfvl9GCxk+EB@!{c*iq@<M?J~DE6b1a)F
zxSB6bP_uA^h|y_Ryqn^#^i;Rl;7<DK=SQd8%l+HluU2l$-1vdx&-FHrSC@e<^oVH)
zi5(M-C3;@3XK3R-zI{k}o56*FarIk7Mn+D+<7{IM8TXwa8fB4e09cFC5dbZ+PrlwJ
zGH4vIw%}IXH<4`fyAI)z={zF!64y8hc?YdQ#=O4QHf#ha{k*E6xBmccj^DKX&!p-)
z;(#BiKd|oAqcfjIBO<m-TC~{NIgc%Dk52cM<1X*zcQ<P4t2F8?Ch{lp44ovNpSCi>
zZ7(k+5Z<#hSi>So^9tpoLVpo0Rg#+|vpO1SYR>y<*UO{`c2tlp0hlbW+x*FU=nbEj
zR~nP9K{0j!VowRpXqx-e{nb4=U64)M4V1^{jx9dlIs{{BNktw@hUOxroU!cUez}Fk
z`YD{KN=xGoXnF?5(mghxd<MTb)eMh~E;suL#;<a{Gmucd3qdEuBF1L*yuTD@)|+ld
zib;$SqR)&;;c=T|(ZCX@b$03>&qUv6Ng7fY(cOL)rIMhfrjw-k<=@>cQY7CaaE6LT
zC2kIhr(1HlFBwfEsL&(DCY9YT1%{88;wDRFn)3Q>2Xpm|TOnOTBWN@fX8;=31;6rx
zhrXWcg@WTu3kq6Xp%V2-v}A|nyL#>I4r)4$zPjSdaU(%CK+}<cc)!B$eNXr={LS&x
z#=W^YNlS0-AB#){om&mX4|QrrJUyu|F5DO7D@c}W$+EDfD9jKU=D`;fX1cpajf{LW
zWNT__jQ=VcLPY2?^N0KKu2xwFO~v_V`;&nW46jn(oSo3<@zJ`)jUzV6Jv6c%x*nsY
zz@i~<A6dsyo4euj?Y8vKpGK&Sm?lw#81C+FgPK~Vm7U%pWn$HY^~%aAGRbzqRK)gn
zQF0pU`Dv#b75r<rn`6dvAKG~yQBil;qkx#GDFL2Pj6p?0&G|=Z>Bt0;dWOu*inFt5
zbebHrL@6m;Sy|J-KnaAz#`N^X_I5I4WRJc+1uaDZ0Ux3i*8cwTf`a0=GlPXW?I~yo
zHd^1)v}J{j(yOZrYS<!%CQ;OCu187cLcEujF3QTiEUY^)kUhxWrpG6#tLb5c5i)#`
zX{b`b#?8Yw==s3tgN<`ePxac3MpF>{v2XZqIrPz87Fcc(K`vfW9ZDX_j>c-NEG#6E
zk=E5M6oY@xeJ*`^T3^#^cMZ!6@RRuLx<A=es(yHICD>A50h!Nebm;0C*gcIT-LNrN
z=ZC?H%+2iPn%F;la=F^*1CUh1J~lY^77_l4`y19+g-;rnwWas$19Kd>)nT*$X>(v#
zE`!(p-i1O)$VyE0<Ni{ebwNSF4+;v>#d=d_+PCo;h?ru1{lZUA{9f0G^Kp5`54&z|
zRU-JK>0nmWv7@OZCVtPejlBw8wVfRmD?EgN>fO0&T4wzUjVc3Zl_6BRkCui^z=v24
zPTYKV9;k}b87iL{_`G^T@q+K~%TC^uZUEx~AEYwLEKCnp_2^0=UjFp-BrPR%O~!XU
zF@M*)(&ov_OBFLc);HsNRAZ{k=kgBy&(FrdK%ia7&o6L%OFDVd-c)_&7e-J^PN4D3
zuB|=S7E*6-z8V7HOS=Q?eqy<WV`dse#aY+Rm;;Hcs(5;0XJZGd=*t%O!-E;8ni>@=
zRR=8kmWR`Icy=?i{nacfQDELxH}rds2!O$A|F+0ES{#lKH66LRs-<4OzNJS{;mN7K
zl5TCQjSWc;4{==`&Q>3i=+vQ}K2s{%B04&{&QaSO&<EO&>B=fwI3y2j+_&H3l=U20
zM^xY71*z&@pMEcR&(03^yfiflm6AT{?pAB{Oo+{r=M=BvJcx^@>g<6lRmH}=kd@Q3
zwSFj$6c2oxmuJrJ`$)x7Ro42p-r^%O=C5mPY}714Oetwfk1sNA*SWjnhIv#ZXnm%p
z_B}n%wRNV<aJ9Lwq*~VIYcXSDSdgs)(zo&O^fxxt+I(Rf5B(ffx0m8k22(-Q)CzQ<
z)DMD!&<e)u>%)~+3Pqky*`l<;;hq%+L$;jXe57yXd|;`13fT;d=!YTN1C@@BRSci4
zJ~Jb1XFXif#nU!`kRX^|0a+mf90I;~wdRYFq!;K&-)<l8%+=ND-8tscV}1znNe^d{
zrm9v!pJlbg`Ul3d`08zkR~AsmBIJ%1kdaY%z3){Ht<%!*Yg-@B!U&k`>=q#vN3*rG
z3>pa8R1Qi<3so=s$90-w^%cHM{_2d5*2W~0A>^>?3MYaJ5xt|MsJ2=c2F7zPW@h?*
zFJM$v9*7`Ws?;AfP#$N}Wg-_8$oKP$)U5giHXZ<4Mqd}lA8g9Ss%wX*Tie5T>}E2A
zJh8@frlNhMhY&nALW=cu6(tUuIFG9_QtsCZLLeGo9U6EcO;yg^oQMZ>&y}aAXCAQQ
zjG$k?Qft^Gi$S1oX4VhuQ$?hQv+gI;zxXu}RN~{;Kwt^U<wn0O7<d3U;bMvtjo6gj
zk*M)*z1c$Qa+#mFSaV{ZkmhvtmzHTG$wtXO!YPn~ru&QsJl#*^sQ*pEJc&LFw~p`&
zJVjPA3v%6<k))MUirei^Y~E%IH4KFBmzR?!CnhRtfIiaH=Xl-dEi7!jdd0x&N^EU|
zCQZG&yLx`MpHtxKGY#VRxksCv8fIX+mXpHSSm&AUcrL)EG~h?PziMIi{9RY$WTcmQ
zbmL>@^E144{b*FWs1iE84@qWS^t$qo=!R$y4=!Dwfh#9`V!edBS<TG}HD{VGGOCRY
z!&o}~<3>iDLPO>JU_+iMJ9*!~qahfBe!TSJl%}R0OjLkXX^WPs5iBp0zkdDm>_UV`
zlgIG&5L`hGI;wH`si?!LBLP9<uMA5|5BtY&pf?|#JbHh!iv;h12XCpUZM`2714mvr
zHkoT`c6EvuAr=;TQqe@ReWD8M96E_4L5veMH5C{1iv*9+Fd(wDKlC7eSTSK|k0rWB
zfHsIGCcf(Gq645`Tv>K>`cL$hI3w}?eh0uB7^za2;p@uEN?cxE$r_?QJ<&*l!S&bI
zl!%yi_Lg8WcB6^OKgplXMo175SHHiYFQy;5UYUr=%JN$}U4QlJl?puxZ-#)?=~`r6
zT@)OEo*W!(C9cj@oOsmKRvTV8Mn=sG3p_kLP{XeX0cY1eh__;BBrM<g=LTLe1fDlQ
zAccjc@WFwfy<o&<j=$54Deyuv;97o4m8i+zks$gidBeeBrhf+a^ssyGDL|NHC8Rtr
zH{hWrVZ5nm($Z36$t>#^vz5@7U2HVUa$;giI_arqaHbF?^-5Q9n1Dn5poDZS*OW10
zNDD+6=%N&cX9ngjM;FkuIPJ~R<<c73?(LT+ec@hvSlgQ{tC+c+yi5z0C!AGR;bpTt
zs9@b3EW@Y5JT4~_$ZU4_HCm;}GNM&~KEwAA8{7ZPWu@kJy#*ge-u_KemNM`U`RvA~
zX@ShnX6KjNbQ?Q6-Q~`gNT;VG){77cxyaOtE-pGrZ7G!VFLJTMTIzMGiZN!^YcHH>
z(^7t&pEc1^y-{)3h*Q^jtU3_zE@^6tNW?!xPzlfS^B9Pn6c#pJ<vKQqPh2^@W~u~f
z%rrT>%gU<x@<wn%<_IBJF)4RU@BOLF@bS+l_JQJFX4C58Y3}OEU}_3J;QO=-Oa>Gb
zO0Qn=d0zQz)jD+}nZyxb=M-w!g^mq1AMPSrYs{7}o^sk6giWJ0ZsX!EF1NVz;o;5Q
zlj`e7?mC4H4c+e_$kkODFutN>K`xMG{^(8o<|~dN9Y_m5fOWL{)j{{rhyhFMYI}h?
z{B5AA3I1p*wa%uYQlrQ<D%#`5@l&mcmM3o=%B6Ws=2P9LPamxVg<qF=!fwuP+#Q|s
zVtq;Gq`sM$L^0_eSkl8&+mx4&uB<T9(hdyI&Mu6|=&B~<Pxrzf{2cz%)Odi&$(k}U
zm`rG{J`2>kdjy2;cK@$rWMq+@?<Hg;&oEJd1~@t<HaFJlyRGBzkypnnD*y$=;V!@z
zR^q0?u~_)G;vz@<1ZIi;`BL@y5TKrq>epFKE;a2F5gjHnvRB^ABfa7zO^W_gtjnh+
zZosi`Wo>P3<ypgDgxT`y8u@LdC$HT@+*i@BdoK5f?k963T>x6$@Al;v&EI*(bqRE4
zY3d0q4S9Mz|ColZ%11}Z%ZiDqmIU!juOA<=JFevNMP<3!ShpE3AJ~?v?;q~H<#jci
zNwg)>)KsAf#ImyVrPG5vAE;h;HPkmG!|WV+cw$mg&fmW$wO)d|nA~ssT{lnp6`G8P
z2X}S(4wD0&>ru75RL$jp>dB|)r6mOg^2;C4+}zfKZ<-2PTHbPzh506!jAMw)1+U>B
z_79wvl02!Y0npI=K&M$FdWkeRt0{{fx*iw*Rq3^dM_7u?P2lV67x*eBwzCxnI5;dA
z`)-DYr#D`|tE;slb_m~ld($GI`~PssK;U6VL2a?H(11Xm;OqIoBQoJxt8~1)XAhYR
zIYR-Lm)zH+G8m94-0jT^X}Pfy6vVHlX5Ed6@hbN9^(=Sr@Z#f{)b7yj+*~}{g+C<$
zu~4JU4LSX$Zb$N!==H9P-D&ziS$MeQC+nM2#kSgz9(U-%-hK)pF{f(f^VQGL2;1`V
z@<M>>ofT6O7S>i~=jE)gI`|4d-_(>cKc9MV;Og2pV}XZ<m)YK)S15bPZ`8YWcTvQo
z!Qy?sH3o+Ouq|O<N4ZUQw>ld{<i&T3UTKK-^~Fp~lnf0)bz5hsK2lN9zn=^|i7tn#
zA7AbRWJ4_`qI^c^&(KtU)1jk_-G{lkD)rZ#<vE2k+9x7Y-rm4qjiW%S_Nk;isPB=8
z9dfe7W4}FQUSD5qX(_wX^(;RD`J=&N+@G-6P{gS7?V>B-wzt;|XAsaJF0~7Gw{86%
zqtVjHmlmHlH03CIw6t3?>X{PYX4W>zs|;uLDB;?)&E>~ZKjj1@m=?J~hIhw#s@>I{
ztPU12BmHjdd4-WUw8HH5@zXMN6_j$R=;;*~r&vRCb06zOt-jYJC;O6;ma-2GE#cx+
zczM_YQ}Q~{qKO$&;2!@fU5&s>%+%{PIgpaBT_~)cii^R16yX2BQ5O#m9~xTFs}qh~
zkF2yOibGC&cQo6dmMnpc^cfvx;r5#GqcEhCsV(~*C#`sV)~bxq52+G36)JAVh^(|0
zWm{b%TwovZDk(LIiYn027o$Lx=7|}*zo%DKg-0vU1Yjq{!Np;xq<8==Sw2ioE}vI>
zrS<M)t?N(8j+1wl8EHoPxsw_QyH3a9iLa%(u%Kvmrb=2!uid%DEvv(~{BSv5HW$>$
zP0gW-<h?q9hv+LH;GwB`YgXM}uQ@+2l#>&yDzsY&aN%_}Fi%1rzpbBHamtM?UW2oh
zQ5Cw<lG2MFw+>bjh$@?<o-fJ-p{f9Hpy;hM8K+(;)9f-)|GUh(3OdmP?xSX;%xnDB
z?y?z-dGq{8L@yfb9z_Oh$Vehi=zatVs@aG_*+EE5(Ax}vfF-@Z+WbKHU@%v`c_bdS
zM%>)Ut0z`8WiFfQ@;ph+syGqR;?}jX9D+7q?<ZJxQ2F~bcfumz{?fzc%8G=)t*1!N
zmE?1yZKWOqmo30P{K`}Q3=k^MECXwu>D{jy)38e04>bOij@ROqW^mdEtb@;=X<VQ(
zlS1UiaitgdzDtc)Q#(iYvvx~tM!#)bNiIk(2)e%X|H_Li;@4{*5*CR|t*9|ORgg%+
z##T*=2}<bXrh?Qi>||$0J6;|8psUWPqV70;md!27^Vz)oRoxRDO>+VC(peqNV_Nl-
zW^<tSynz#bH#UCuxGgH2xHzt(<yGffi)63MrJxb$kQcg}CJ)cRxIQt9ol*k@CC!NL
z+TJ-lL~>LFDQ7jiZ(ukyC4s9K#YX;J4KU~K7H{s;TM7w9CaL=ab18?L8>Rj7!sYR@
zt^O*rqa#ZrE!CEv->xK0-ND{M;f|Pd>G2JYvojclC;0ocij%y&@7YXmU&9p?IZIDc
z5||OPU|YX*H8ha5r-C<X*a)d!zy9hsEmH{k{U#K}Z}V_L@Vgowalk7R?^UeeD7i}4
zS>&^GVfdWZtrTStakx1fVc9_=4UL)F^FIB^FvGLJ^q`!c+?a&EzLM}p5dsepk&o^p
zb9=}4%S(GJ3sCvpavdpZMp&uW?wGK@e??{{$3xn)`u5h2UWdE9mXy^qq<opr_5HHe
z#J-EF>Gn(*0p`KfZdeN+c%JH`j7;KaT7%U@?meQkvT}tOzt5e>K}pF}f0Uo0`OOHV
z9&*C*XY!B6XD?3i7%L2i`cnr#FKt{MnKUAj9=pf;>!Y~CS=w-7ytnwAhGXexwPqgo
z_mH~s)ex~fAyLjUjdde)bNA<`n!5}3+S;TFZ7%O~lf|2pvyLHb;l1Y{&EX#(i|LIM
zlj0M)wt{mg#TpKywR^wq?wXUY>FX&9v}xbWbMhOik(ef=EPH*BlxP$UUcB=Rp`v!1
zm|FehtukXpJjBI`pq8fID=|JCkkBX=$OX3YD?J5$cwSrk;o~_2{r>7yrGer*U%j>a
zi9NrAgub}>;(;ovxg07IvgYaP!cUMzEQJ88<@S#4lTcTf+34JFtELx%&kz`*@>Dy_
zT|nn&#X>7T)qA7;CCwJjvZI9@*bm&ItX6N>ZY36QG6c1}Tf+^W9x+Wvv6O(>@Se;5
zQAz1H74@w9p_@B&PF=aM^95z9Yhb_cP%H-NAc{4qhP=WnSL9!D0f^*#i?hOttQ>;R
zpxTRGuba1d#e%fdHnL_1;=3Cg6)mU~7~VEq6@u0Pk<-vDli_LH6ATP+UCT6W`Cs{X
zJk(p<>JXrS9=0Q!=H{?ipGACavoKw5EDn&HnD6;vJ%4iS^&@wL%M5$t>5BLF<@DR9
zq4w>?rx#~n@Q|6Q`RwzwxuT<^lNCKz#+avyf{sjCUA>!`vU@IeQuNyT5x>*vTB^@!
zPvN4L2HNp#RBA<`#!RJ=n=0yP@aFEWx|#wO9(D@1)pR<Y@&P%*)qYR2uq~iix{(Sv
ztQAWqJ(fPOnox)%Ryc-S9u6qxr}o@pQ@*ygrb1$1ou19&_c$M|H7Cs!0KiYP-q&Z;
z7RFjdyS^qz$a6kfZER1@U$Z}HdIc%JmXn*d`3poKJ+c17U^M0U=%14E55#1gBSXz$
z?d{4Ef1nrU4Fb&_cU^5w1mi)}w3we7EQ-pl%L^D8-)~?MR-Nx$9Yv8dwK_Qt#D$FW
z^MhPDMi}fXi^%K}p4WAIzb7m`LZ_)pVdc5To40qj+JLT>Rs3;XaUx2uHI>iwyvC!J
zudbGCu4T5%Hcd28)K1`=ijopa11IxJYmju2@`D@Z{%lb|!Zs9)JIkcotM236Yr<B!
z)LvRp;byUzsHfW!jm9@y+4OL!Y4Mc`9DpS(TLIwF*W24~dzXPrOImOe^P-{!=!Y%{
z_#Nv<8C?c4tn7Te4hG^J9BP*(ptA5hpA?6g9t-SME($Zl_(Z2q{O>S1AqgF74q=td
z3@zp6<0N_Fm=m+ihHOzhd@Zz8ogant^gvGd0Ya(eGjKI$&dxpL%lWOJ>5CCS+)#er
z2%1OOGKWfv;+3G~TNEiNgUZRK#=%+;(79LH*vMf#Jna@v0ebUdwXHUBL}E&U>tlD&
z-kgRNnN><?XqceSU2c9hi~GW-NHyWNJ%e2Ve(sge_sz{uLPCzJ@*EI&xz^LcK?pBz
zcXv0HsIZKTmQrlnco~hNj#6xDW`%YhLyxC~lvF(gf`NhhQ2dO&y}LQ3q8=3*AuA;b
zjOsWaz`crj`33o7x-Dw#R`bz$Q(sQua&z;4n}Km|UCKPc%p991F$sx!+|Fhv$IF7g
zPmk(kZ~n4M+L{&?u}Q|=RUWq=_(l6VZ*Ot!ZBV5{WoM>`lebS`FvD~cxzSM=F<Jk>
zs4*xvHa1RIsb3`~mQ%Ut>3Kw;b9HPsEu3q?Udt92z^JZOYpv}zX&(XJmciknIhSLV
zl!nmo`01*bu*U$AHD3D4?9N5OZ0&*T^O_nHrs$*?Y}|sU0e*hUDdrE2ewAbnBwv-j
zM<x~~rlvlhKoMS3T>AaJ`_sLBK^`8P&Q40_7sXVZteToZGxh_e`o4~iN_v?e$n_Cb
zRU=m)KxJjnlPuNg==iOiDUqouqPp_8lRV9blQD@j{P*Src#4wf2z6=3w)~^rxs7E|
z(V0~^x|c8USgV(E-&Y=}zn&KTp0=nWlmjXoVdZVEAQ}A`j`pD{KRcUjag{bYIxS5>
z`ypu$YBQ&}@%VVIYKX*vjBF^-J~%S6canDWiN!=sK_fXK1EwtEW@ks_)(RWwqo!)~
z^tgg9xSo}1zAX>r4h~{Be>&EC*0#1*x9bKM=N~gQr|as9bocOSXjZRGegNv)bRqim
zs{>&rD|*BT-WEc^i<w|+As<~`b<C*W;b`>5h9j~vD5$7{-uIWY<nA*n>LJXHd9@d9
zwDR02B9W2H4>z)Sa{h2dIVGv-v6CwNHL&-F6cikI3Ag$AxmnNr;z$(JBX@m$c7Bhi
zox|pm^YcN}ed4zIqfOtK-U(os6-!9{LP4@2=Lp7A2rv}mBB2lvu*8m0U(o}0gv&Nw
zq+I5`&GrEtE{*F1`@6$OybjAc*`H}+x{7y#T34_vHA_oNBPWzc4g&0_ihx?kLMjUb
z2O~ch7c)CUOPyQB^FwlaVq$t~v&nM5orqXfFwm{=wKNU%&UomCU<r4CfLm@76zGzl
zKZ%N(1rP7|D3`>NLY|vTJV*7CtxK2O#O#C)t#d2y`-{l0aGIJPhU>sBV0KLK6PO41
z^)@u*^*K<nzkg=9jJMq}zhH-!G~A(iK}-L@z$}tV@y}mpfA)bXYa|qfaKE5jHgDqi
z?!Mo|T$yL?3)$+HNliDImKK|^aHOIlMoisrRkQd+y{q#f2D<&S3b_sak9XA6n2#_X
zDb#K6y%T*6Eh{Q!dA+J^CW;9)QR*VlUUL$`fZltG+G_|zVLCQ8HdUx%ud#7PyMbx7
z@vJD=^l(<c*&_~+>L}N|-JBeM{S2+)<f^PI@^j0d^#cTH?sgR=RX;tTRRJi&x^`x^
zPw%_`O3%43<KMgis>j9JJiE5ngI33y!ZcqL`OWdla-%E>eeuEBmfmvn_VzYF?sY(n
zSW-qF#xs4~Tnh?G#N@;ZGuKFMKxWP?b9f3kbAL9In5}&djT9ZvQ2AO?Pa3CZCy1sS
zPJnj!bL-(_)b{l6-_X@ZU!@oN2LL8xkg~jRqj_shUx&iOJ8omU%FR7}b%9E~^$lIv
z)6DGa73J<*r;Br=&CR|wuIO^~vZ`n-Dw<iyGzLa5iPwX^w}^$W(95zM$axQI5WA+7
z@Wu`QS?FJj2OS+l?ZuVv#_=`lhwn*gEk!xi?@k(?{GExymF<t})jPh#aeQ{Iv{CCg
z>6@w^z|8V_X5wWWRS<Q30I?p1V9=sIg|7ZyD9o)WQBu))gY&dV9=f%=x!Ph0+bkvE
z3Fc9zQRMlfpAeVE_uP?Cxzb)xc<6S#ph^h(r4N_Jeh3NjA>_2|E=Rlx3$<#Rwnu98
zBjR&zZg_SlXz(Ldao+8MyEW<2p8!~-&o1{Cl#~=?nFL*3?%qC{q$#XY((-;V;`Br@
zdyS%5VEi63GHUAUn{92?DDOAe8r&UUCn5qQC8{8--Cc4sg*!jKDrB_=qjz~#4znSc
ztn>2<^uW-?oFPzYt9=d`&cMLnu_?!qN*+OcdQv9;><|?dA~^@ik<Ws(d-SZlM+-e;
zr3Y%9jG{`sN>N(j&KLeRfY2<@AQfM%2GEbAzJ8JPt#^r5mQaBh5mAD=O1gui#~ZB9
zl?iPfxv^mPlg~Ifz_Ah|CRQq*xov9F-Q2AF_RRr0S$TE_?D(G263pyR%A=!oRMZ{4
zeL~e>X?A3dKXf!Zl+5<ls9}JUz+!f9xi}qcvm|Y6h0dD28ghBLI<c@YGM6k>LXr_S
zys*@oUG=96{A=c1LO}sb?gh}w0=Aq%vVaeCbRK5bEf;HDS`R-Hun1;nXGRA{sKVma
zMSmLx0unzFugl)|mx%J2-mqiRhr1U<kFVhV3L~4&MRMEU<l}NOSK=Kv?N&Pc&NoCq
zP$Xzkvojq2DOR@J-&Zp;Q&H;qFgScuSM6~MozEDE;t@6j7Z-a)l3k%AWf#u7Sg!hZ
zgA|LH^jh!MUJfXo{rUxHra#63-xNTq>*=j%#?kf&Xx4dLOsQ7_Ix_5Ze>jOqI&sP4
zau4&<7hEi?<j<bJf5%VXS<lX`+V}DDlDHo=f7?V5x4^-8|2Dhe5R%dA@@wWpB~XL_
z(e*;D?0ejgJf$jb721z%HP#Q;WrhA<R5dmA<c=4XTi#Ye{9*OJyK)`b?_5<?>5KJZ
zH#QW4%Ahtix=xW@D*+dOc`tRl)twK5CSGSd=;`2$#fHjf^m2eO)%smTcFelJUyk=?
zz%9FZRCaU}Z*3cIYZEw0JB0o?#WZr!yF2DZed^4z0<NE_=q8ku!#2^ABQDa^7OB==
zVOCV?&9#+Zb@@-0w9o?-ov23>Xl}0c@nnUS6o(AC*2FY_-CtHhf`zK}{OZ0gHa2=~
zcQZ_0%0EmbQb?leyyJA@nNh?iAP<=G1)ajt0Ajl7`4YU&Zca?fCi0WiXE>2@dT+dC
ze^Vqvbzjrf{f23yMZX!ju+SF__O&U0u@xBPWog}kiYagE#n4gR`WbDyS3VXS2WNBl
zMn)!ZUDTmUT-e`MV~*PW=5%Bv2La*C!{gQG&-``2HDL4NCT6}7VE_wKt)ldv?z`HR
z1#NzasY$1lfvO4h#QZ$&=m;AsD(=NOAd9gRq2-mdH`nFoqex5pC@TpJ^tPfPpUKI1
zzajiKI*iH|&hklSa8#E01Coqv`H1FK#S2GYUw%zZ4aTx9ONBonpbwS3y})q<M1o~p
z9H0-iDIxZkL_!HYJ@@?;7JxQhdhqH2_q<c7D$|sd?_7Q6m6SCVbC$XeG%NL<j+a<%
zkC^=A4XMvW4_s)Bn#P=>Y<Wio6Y}D|lr%$VXt$a{o&2j;0)4$-c1rd10F4+Zd4{w$
zzpD-XX3T)*#@OZekFv6$*vZY#PTC(o%G$8gGcoW0g@e5;Zb%nTlU-fqQeF~SR^E>Y
z=ao2wk8WR7V$ef<HfmzRA&f6qnU;Z+l%6XMuq%~@h@Xv%4_&#q%q^nBT=P-D9gv<j
z@0mOOev|I2SCW<j?Tsy2%`TQ(YhBB{ZuuPVUNF+X$05eXCL~?}NIt@lH%!E`dTNm6
z#fSA;a~1{~ft8+tfr)vKn;1%fq1B!(`(a&{A0OY&$@yqgZQ00zf`sgGw<9a2mRMAI
zQjo?q8Xf^gSwBGOk5g8@A>~6b#}5B?ch}_Msn_g!xHn&`MNC{ZmP&f+?C3~zaCmWc
zrrYj%xPGxqXK7jG`vIIG9tG&IW`<V0j?<v1v9ZwebI8ulG@B}7AGi-*tl4F+Q+KnD
zP=NzZcR9WF^ISz~(QZTRQme<+^%2;(zmwWP$dF>7CjW7shlh47%kSpQSjwuz-r$`k
ziW0)r5nrSID&P;<p`mf8R~}ZueuHIUZAp|B{bKfI8GH`P2`Om<Irr)9_As6CfE+P@
zYEt>WGHkn2T+y*Qqm3VW+Ke9<rt<RT4`7BCCLIkAA6(pcIgR0FV5vC|U<O&$kvaDU
zKv6b3z&ru<4}T<`PRXaF$N#=uyGQi&2QIB%hgVW^EY6D#U)6*K*V`(<+atX*vcKHM
zXAS$JBZJoNK6|npP*UyIJ^FAHmCnO%HdjRfyPxOdb%OFMkwyj#_Y9NZ61X3B!ExhP
zO@wjTfl5Fh2Ekom<%yCRa2P?(<3x3}!({Avk6p*zTGxnVTt5a0!c0B{a1ZZQ@?Jo(
zE0bSyOlT}Pos+t_PF<Ya_|TI$?y{i--QCH~%;5F*E$6+jMMeGk`t`?8pG?1g6^@Oa
zEHM@lVJ!c>wbc_FH*IP%P=A7z7Ne)&s)>}<7A|8V+V?s4ecqH(h;|*`#xAD3oZL_a
zv@<`W-p)_ixiQ}f4a5J9Gx{j!5dF)uv&;#_P#hfHOY}ASJ<5h5gp;dEd?jB|NxSQ%
zu8sv2bS9oHQ`2KXFKki*b6dOqr+2~<-+Cv})3TWm%3VbRgUCC)8ENQqi<Ix;(MDv4
z2e}>BYa$E9$kUGf{a-o2UrpRe57eubJwwB#CA{r!AiaNHF#QgE4R5@;2{@)2IJnID
zr;+{UDWU=!2~!^NB#SjsYGhA68wzLsx~doK?Wy4kd`@l^)upv}#oO+?Iq<x-l9OY>
z`q=nHM7ZQ!hFcc092|}P0Wa-vW>i&}mm1AL_St11iEV(STv~D`7j&_j)zhm#PwYtf
zZbeg+?^0#=psaoll6+KZMT_Ppu*TZi4*EffT?0l&t)+?B+LlB@7MRDSke{I^5s{WE
z2}sq_5)x9fvlF(n!w<-zqHiu!rezoH<62)w|CRI-04@^7@-krZYi(^zf2;8;IIwpE
zgVfW)5)fQN@(T*^-<&!)3Xu(>30_n=>CzSVF6ktrk}%RU28Dh+nJx}%_WUL$rsC!%
z<tv~PT8BqOk<-r0o9pczjgj_q6ioMlPBAGu+0?WS<l}WN_d=t*K3;_YJz{CYXb_?A
zdqg)AX<21QnXx#80qKh=1DUC*hKHP@qNgFnn->tUNKqQyhqAqC<n!7FM`c`slkz;c
z2EVHM+Y((BJv|IQTg4VPTp8KBc6)U34O4~8gbcpYurL7D1I^94+k=+pBz1k_A|g^>
z@8bPpA=f9@)#ahckwKtrDzU1%$v&<+e{OauK0L~GAYW+^kII2PJVXDK`J1k-MkXc1
z#{*^j109bCV1$BZR6zo=qL{e^pRapD%IoSD_x5AHI<i&+Z7vE5O0%b@fX@{@3%7=b
z#<%M&FyI@E#UcplO+8}+3Z;k-EHFPmWIRh;Ox)dOvA(>3x-5MpD5ipx7icg97-)CP
z1A2zJ?EQs>r&Uzc06oKN=nWAaU2Fv0V@fp}`yp_eb&PqqdAgKX9UTD<z&eTX5HJ+P
zfy;=L?hIRzhvvs7CjrM^#T)&(g#|vIE>9a?cfAH1O>0t8F6K&qfB)3snxU-Bl)K|i
zaiFzQR#KKlLw7IJUoEy>OkdKGC?;Zta{wbTgutT`p#ffpxfFq?CmkIfAFu1B$5p@R
zvFe;v0_K22T~+FW%d#@@@vNR0CBp~Npwivz#KfvBig9&J%)u9;K@4V~g+kR*gv(>b
zQ=dHD8m=|0F9kYFOW8`%9Uu@$y}>TJ!+IbR+Qrr>nwLUER99E^Q(nd!cFhRAfTq9Y
zwyHv0tA(_wTeqS?@`_4PJ3=rs1+LDof>sj&Q+5{z|1`l^oRH5$_s`NK0y;l2Ga4Jm
zp7ZTfhRYtrIKXiUW9^{SL+Fl+W8|m<;APD|MOwqc!N@=LcX(5<m^we42wnn4b9s^5
zK4g4aMoHqfAZd5c?P$PlkGpf)e}s58CoU$`O2%^mKIEoA#*B}28G;h(87dV#L?6KT
zQM}=>vriOYRcFJK9H;g<ZNu|LMbYBpZ5IgXe@b_z9%?btndfmxwxV@j<zz-)!_1k<
z1pHF;6%=%oaBvBp*XG0W%*RVhOJuTG@R@Y;OYF#*mRb`sGr=Z_4+sck0?rlDij6kM
zHbj<mb3K60>2{4VezbCaab|92-r;NSw>`G}`1lGH*BDM$w-N2n%;azP`^VEh)W#R!
z(cueZq&a73pr3*RfL9$);zXOK9g&oJiE&BphwA~h57)>1Zqtk7>RMU|6<rdb_}<}9
zGt<n=jqRqZD;MgOTLk#^kO@=WEpt=zRo~0#kB7(GeZvE#IVJs$bP|E0V!>i!m(a<C
zx{n_inB5&=Qc|yGzX5VA(0b3+`>pm6j028+m%6%n@-II)-tstGZB}Fe{$@iiNogtH
z+pVt~rVji~-kYBAJWa{Bfumk-Cwy+7Sb65>ve9+2V`Bw<u9UQ-q;y3Src0k}fw&1C
z{aDG>DB{h<`33sbWn&Y=^K)Hp?)y*gH+t`!wXcucogUOAzP{E`7cm^Hq0%d?%=0=L
zv#qglbE}Um#6NUue(KY2^YJ<X8#fO5TyESIF1L*7w7<q<o#t9=Bo?pBjoD3mQUz?c
z+DAuMCMIr|2dW<Uc?hR6GE3`gf5g<>yejona7xteW}aC+XO|09M3Ph0p2$&`CWnUx
zqu*Ta78DjRE>`8VCCqfEuoqMPHOF$;|I6^}z)AnC=@Txijz&lrA6>PzU`k)CTACRw
zHvE8Tl$dnlcQ(SxjirQtc>u>lU6RVZO@PM}5}fJt3}_)r4#ERtKylpe{n})qBU(`K
z<XF8+x)SFOpImI+>EDck;-H_Apl`5ySYDb9qGxQ|JQIlm4FW8FxZUj23PBPo#tFqm
z*$^1xvGp_1?muJ+a;PYlTi11b5M&y9=tj5NNa`AWc5Z2~e=E>SqtZ^Ptt#m_9WB(>
z>}J|FQPY~+-8XYIl;MRv!P@%yGazxKvpT*#OeE{%e@rQz&FE-$1gOrXm;gk(Wj_ar
z4gpF8jCVvePEK}9fOYUhK|uov6$3hDeHks}uc}M`{Qj@$xrh9B=>0|NDSklz74Ea~
z0yj@nleN1I$y}*C5TgLhyK*|8$=~3xnaw#kvYzE{ZMDdgMUe5@IIQ|cUo6#?3cP&!
z>~c(|+e|+=91<9`;(crIc#4fH77@%WA*{3k+}ibEBuLM2&mr{sDkx*QL^SMS;qo1c
z(apipB7yypoBdqxN}aTW#@s=<cH(%}YLo86A}0A~-#eqZ??1|2T>v*-#cB%!EoF;g
zpA-;f8APVmX)sPJsTn#I3IHhUHW)(|_OFPj#Rk{3;vDQ^?5#K0ILDA`Wi8M9eTJlF
z_k;ALEOSF6dS-^*%f7z(tHY=A#k%R4;o;%KRebSsA2_&*<#rDHd$c)Gmf01s<MWxZ
z2qIeG5k4LPzvt6uc0RA&`zr;`WYih&^Mjxl9pCGkc*@eD@<ep|=nU#H5|{FfWTXUM
z7c07;2|$QGv;0MVpR{SJP+eP5G4AhAlbkFAx-a;G{^P7BE9k7oFIfIdXDc29gjru8
z+ufcX`L6+MR6DMB_z9E4wzW*O=i7Xxaa2+tb#LWLz3cWP{LT!f?#}jZQc_YJ2-0M&
z9w02NQB7v%ao5C<#9mvY_ED#Id_Y}EX=DG;+SE*}((`pF*d&wNkEtX3`$)MC0ZHUH
zA`^_LP+pI9Z$-z6NLP}z3VJr))U-6YZn5uyll2vv##R=uNqC*EW%PVkQmKa}ihcuH
zzCJ%c7a+TkG1s!OXMOfWdxNl}*XXzm3<!&<bwK7NT9B2;5|AkXE!M`|5;^Y529?Gd
zazEXN>hM#tEmm2%wx;G%yP-nsx2lxZLi5q07#cAeA1+N!Y6ALkNds!GkrC(7JipPO
z>>L<F9$2vDHeh!gn(>xrBOIjG(Pp}ng`JU*Fg_veV!6+wJ_~qj06NCU)wNh9@Xs^r
zEgu0k9=soE@%{-bVL0G%2H1kM>2EOjfAWPOim!p9RK0za#>QbKWOU_H*k+icdkuE7
zz*`>cD=0ia;*f1^Z9V$PC|QNp`7<)nO<0P}gSU=`Kz-IO01+V3wXXLB+;&`uBkJAe
zQ6^stDeGq7b-qGza*_%~`6ZbU)o5m7hJb*016_!?LZH=9&{I>ZX*LK<iNU5r8&Qo_
z|1$*%PJ?HYmQaxR`jwl#v_@H2VZ0tGQp>v7FYLU>O>=_j#e<ZxETceiO)*VZyDpF~
zStt-ebhoeUF5yy!K{q(`dqWP+nR|x;n!I6QF{;Vg{ISi;8VaqSUmW*1H(6S4kq__(
zX75?oBl;kFRuLrCYd#VI^S)5P!Cm`QRSl&5GF!i$?Z6)LLeLbI6tb0oLi~5X35w{*
z*c`_f%j>lh3Ybn7^0%z`g1iG0Q*S6`Xr>@fu)Tfd(Pq~l^1zU2rDwaKrSZAN<FKce
zz{CNFJPcMW6VIGT%FD?v*SO0M`1%-p$4;i&f5%5#1ZtEJI@W%(PcTzkPCf)4=5t*4
zZV-aYhA?p2At7VtnN9zAeZp2-3udtJb90<_08EE6Y8tm4V;PI|4C*Q>w*~p$zruhB
zgE|(r=44I}xGP|$BMOT$@X5Xo@V?kjya(bpE0khoOTYJ_Go>bTt>)u^?;k*jhP#eu
zF$^*^zaJp@f6|k}g5bgI(K=;wCNdrfWa%70pI)BY&!wyRih^A7<ABHHs($}$@8GH}
zt-;L9ti9e(e6$puAcKkiJw1&SdbhA}8N(f5hmRu|FUl`ETCF*ns3Y;Q_5AF8{fU<|
zal}@uqlOW%ZvqZYd3_y7rN-UCSevAA{~RCBJ-n)0@*Gx2BX`Ma2NrVxb6|TJl!hd2
z(YU`g{qx;SJe@p^+-H6h335`>m6O%SpTyldif0pn$a5Y<_cxtc<15Q8t1T{;;H4%&
zzywIHCBH{*Z@?@qN62xooxz7I9%01s{7=jWi35XxAj!Y=@%u^}=E)L=+wITUla*?+
z@iNrf)}_(K(kR&|aNd9gsJM&8cMJ5yPwb(c8Xf-zAG_M1e+0vJaR@y4yS65k%O_at
z>R~A;D5!DoGCyA56ZSzGwpgNXrj{7hv04UJ_H;eO@EV!^W3e*5k5GOEny&*KsS*-$
zv2O@=*Viq3H$dx8F;74^3-qJ6ua_o*%;#vDj$C}e!QK5f@N7PgmVtrZX!zfeV_*0<
zaCmqm6Eiby9MH}R`wIhJB2!aSssbjRPsH|9ZPhVFILsW10qNmo#W@o|)L||QPgYjC
zblz54WV)mL-Z6k27UJXZ?VHkh!yi2to3gyx+JfSg?C)Ph@Wms7|2xk3WA66$im#z^
zwW()6EDXq#0yx98(r9L8(tDuU!Sso^yu4t0w^AQ7L*S}!8CDuH0H7=|d<u;|Ndo5`
zh;>}Q<#}9!;D??aZ-%rDMD|lrMK=NH0q1pfeR`(Z;Ik;cJ6=^@t6upQu!oMoG_UMS
zeRFejkIKsA(*@lxp7=HJ-H1OPlB~&(R=n>Vci$SZjD5*j?RX<+DG44s;_EC6{uoJ&
z{$HVIt5*QRA~u{v$Hp)DY@L=BgxRjPrLns%40eeSpHqcMlJr~+tA8EnAJJ}lJTE6H
z3>E{*eeMp7%2%M>W6Jz@!*5=n?Y}2mxVw8tHmgDpM*qSfyU5*TmP}DG#&xmbh{s7n
zMdMpfXu{i*0h?@cyHYY2rV1d98%4$o?W!$e;Hr2&-Jb#|T7dj0o>!fYSA~4kOwEXc
zV+fJ$4CXAqk7~88r3lLt%Ton%eSgEh;L*__dHWNDD??2JWo6~tkMvA5%!2=HQ*=XK
z=iI7L1dboXAOF+tJf{`;1vcg2b4=KL`X{vh|2`=Gz$~(-ZutC9T-*=!S|7qa=SKuQ
zswo$@BXa~R)b`?TiA2EU=Gy=7^Xyi|XrDe6vj!52%4mECLh}@y|C1Q6QyF4&noEJV
z`hC0QLZ(M%^@<{J&H%U;kZA?tk^qqYlWFxiw9?VCGEjN_e`Z=04TS{s?BF%&{*`Hc
z4XhMI=2!U41|;7vOaCWNZzViRuXk;3go`w@S(zSp`<dn+jQ$r;|39Sgb7&M)v|6vO
zRnxA9z3g<FHjiDC^UdB(PyTmsU-rAA4o*VsYf3;yT9-s-k(|V~a{Ql53nS%p(6zkt
z8v~1Q9wzx++AF9ZN2QY%k<G^?WQohpp7x-<<KR0CKdL=LbnABWve)8xzQjfptc;yh
zvT|d0*xHBtu(+eGZj~6Sspq>kp_`2A0m`R==W{r!yLcXFe9ij5KQsWi5<N8!Cx1f7
znC-~}?Rzz#!>Ih+F2~b+lh-l+$BoooF16Zn$wXIl+b8Py$$eW#OmF)^G7YoxXVqT3
ziB+zauvoLT1{TK;U%3DJ=zzUS!^EVHn`?!H#EiK%_44W*nj6;6-My)hfU*UB-5N8O
zBD<rj1(!)KEnbtY1nOtx(=#y|YNfl>mzu1OOiT;2RR&hg3%l>0br3{;W@V*{$wsuB
z4&(ppvkm(C5*StD;{5ixboKPe1csAkC@3iYFX8+J`G#0JL62bKQel1WDB@CCvb;Z#
zsjG~rB5Ms6v|~exuCr=tQ&W~OO})&7tX(1^F*6}KYDqdf-i(ifOalBz=MS^6j|<mq
zbq;8k#%l4}7W<PHpRC+wB4W#v77MkL<lDRt-s~|@GR2I4K$HA=Xl=*XIXoMU234x9
zy%uP-E-Y^Qw#K4IMn+#3%F^*g9v79G&XO>sdz{ZzLsE&Cm&4;~rq+t>oC;{?ZYEo1
z7f<wBPItEX>@kU0S@DQ8)hwev`<zl!Rb^zpOnD95{z{(KeG`L0*<G5=`=JtZJ;7DS
z=l;>C6CCzQZH7{mb4UEx@2V3``>E$Bz7vWWi-czv=dqVifA6{GAEBwB>}b&Uch=5*
z)YJ_E?W-Oq_xrQsdd)4T4$js?bbm^3c<9n<eqYw}&0h02KP+677N+OM|J-xtN|NPb
z&hWcn<KSCVQ6@?B9}#k7{gpx_W<`AUhJ!)yd1Fz%?l`phT5t1lnrB`G*u;M-yZ`f%
z6(Hog>~AUMMTZmSm;nHPg_TGs?{E4-%pjIyn66V@Q%g)+=+}tp&B{QJAg7ht$xD=2
zB}<<9Ol(77{k29Sz-F9<9x=6hm=-U4YE}B)OIbyAcsrq^ZtUd7Im}_QM_*NWqg?u(
z9P)HLV|~C(P)W;;#o?3Z0tp+~TsDsJqp8fm-`*NcD$VNgr^TnR7Kms0CPJ$Ahfj{q
z!wAh%7j$$ITJEJK-g(yy3}+t$Z)`bSrg49X<%xspRyms-8lp(rVl~9je&*(kfnqVc
zkPS&Rs;cka$Q9Uuj4$h4#;d59Zb>wIeH%o*VV?55MwOSs+97zC#_*A8#qlKA-lg}}
zjvrC0PB}5L?dVp3QgB>HIz*K-YY*we7klSnG8!`l!iK7~&c@`W?r!Xi=90m||Hau`
zMpdEpZNG}rCEX<@UDBl@-AFe`Nq2WDCEY3A-Q5k+-3?3Wt~0s!^WN`%zML`6`LaLl
zvE8n<=A8eyuHPkK=diQ8&aN=&JuFC1OIT1dJGzUBEmgC>INOQfI2wE92-V!|I#>uE
z$e9*cN%m2lAMxvF3IDm6p8sKrL=`O_#{S_WnjikxFRGdlLWosKRv85)SivtG;&tcd
z-S&N!uLAmaNm;i)Cl0nhR}MvGA=y?_T~qEyF=~J8+n}>O6MTeB^qY$l{0l?r*|nG$
zpmRLF?6&hz3V%-6-o8pDymofJl1=7quhiNmPw^8S-Df)vD3bgDse_s=%Puy!_<mA#
zi)3Cl`+U-ysK+FR20YhyK8=)ymHv_-z?!aGA<j0gi>hRGBViKrv5)d`zP+&fC_i2?
zAChTquq|rLV2_MUMaJhFG}>Z#kJ<lwx!>G!wc})e-$HR(1&ILJ0dKLOsU}=o%9K?x
z+MrZ^YJMKt<;a~+4|}WOc17lk_Ii6Yu<Ve&GFW8!cH1&W(uuw?u;J}-BrnbY`!A}=
z`6B!YqTE;WPv{#^8~Tg;c)yDlK76BlSJfBzK~571C#)zr6aFw!6r5zN+FU)s;dY+^
z1KV+R8ztj#F$uz2yR4Dh?P8yYmWV&<1m$V-Qlo>`sHk`gt<j+gT;e_qj+`9eySG8!
zhUgSCsv}6yvaY5{O~t4{@~!qTu+-!fKT}SV(zhFb)$cf%XW*ur6y!ixAWb!RQGPue
zk>QCw^UK#)QK3j#LV;D8r-Z*#h>n(4EZ8R)zvwvX?XOdG^xgw?gSL<Cl>Yv92#6Ai
zQ)#>J3TvS-r{QX$7A3|8PJV_RSk1>h_$X^Z8%lEvi{<6Et-3Lw{Oco_!d(s<$-97X
zHVfgfB9)s{YZ77lp(PlM_?pi&-Wp&d7Ug+$6&k<rA=NQ7@8_g_%g7&=-JP4$FDdo|
zaeDs4eh?lPu$i9*D{oJeQLw8u3`wd8YBpg7E*5blnC(ZLC$XN|hDb`XZ_$$28=_%g
zPADmc%Sh8O(qu+?!lZ^se$ggtA_c#i);eEx)BRw?5a-W<9oM_0UY^>XVq{ftszSEP
zy(>X=^RK*^`5bK|Mn~xx&7|hJew)0<`i7@46_YZ&1u4$im94ZYTAg8M?08x6tzZg@
zf$)F*CDB38(0HZJrTY#q_v)a}^%Uj#9zv}AXv7*qNzU2FNmW=~4CxJWqSh85^HceZ
zn^oOi(@Q{>99;U#)>H<YuDDA&F9Z=@5-y~jl#1fBYm=3wL3cOrLEX*TE>Uz6R64dg
zPqC3cL>Y-d8p;dO)hLf~U0*P|mh?stbu4Y5imMj73)1SBPx!z7$Ifx;Mg4p8@<j5e
z1Z^D+kdHk0BqbyTuU(9BwuFe)Y<_GNheCY$D#fJ1Z?EH%hKjH{3`e)?UZqd==g&9J
z&c6zYgAE2~=;5S8RpMhei#$Je$b!dLl#2QX;*Vq7*{db}ZNK!uT$=gB-9Osk^gHUg
zUB|q^!i;)@hAb<k+w-XE_uZRRbf*{e4c{eY$%O;7I>x#P(j$8-7;q0<XN^Pt&G~uw
z7SPjkDL@Q<c4M4>D_32<d(81!N_@6`yMM7N^(C+Q*S%jGY7s^$D^>JGHPy8q49dhW
z{Ykfrt5CS6^O?A5Nqn^EDD=pfcHzxmN>k{%QSlL#Q<e|i+h5dWIKYA7xpwWz%Tqf%
zh{TMDitY*S{z%0CmX_p~fzL%>PR<vM5_MrJYEP6?&hg*H7Y_-LsqHQ4_tmL>uNLz2
zYn5+H^SnsklFsFXoxlnnMfh{k7MKe9Q&W~Z4vlTRGj&GCoG!C4^LR%)kHxgyMqz9y
z2QETdMw)dvs#=r(R+s>pk&Yc5M~I0dy1@j53m%3_!s7c(9X`XSwpia1SB#Y7SLgpW
zJ8gc6Saq`+i;b7@LOIQ=tTnypLSnC(oYrBsettS>M6Z_a&O0c%)<7*4r=fzK%F9Sb
z&(rp_rcMwt-caA`bSU3zP}=CelXHhNHxp@$I=aw;YqH!LMmzlkwCTYbs{P!H@#Ql8
zRp<9VAoqjHw)D+Q&2A(sJXTjwtnIn8+PqBUR06*X`PrK+!SIoz*N9pFtG>J$K`EI9
zFMfWZ(0u=(o*;djv*}{$VF9<AVtBe@R{m~xz-QN_gf99ytS_$TnReqiY5XFNq>7HC
z1wzz10)u6L81fm={(X2}gEz6*^GYe(5c>MS{d2{yU!CKtD&Nz~vRcVvy94cKxAC!K
zA|hq7#&a+Cn%wvDz3ca+IT>|atauB*)K#Q5eNih)Qz{k|k}enX3aM3zFaB$4a=JCN
zdojxdK1XtPYPb0a`95PNg{Z=_<)q-KiM!m9nyGQ#vs*m#AvQkqhkSUuTa=C5N%25p
z5u@_`*|gGRD=nMj3txo`<^m+!iv0e5b0R@@HbGQYO;0PclB_nf(_(dA@*;5^wdqe9
z@mYCZ*dGO2rN2^z9nAeHspFm6>pz2Sl%NeV8ji<^&$hj%P?##dzqfEIo291>g{1Q2
zB}dLX1aX!(6dhSK5hPorbNO9#2E~QX>;<~Ok-g>Q#1Uv|X&ErsOh`)V1j^-#VyRTY
zk$;}y%qLiB=a7$^xBDxHk{8nX6|{UG1*ULs4M8Ed+$qHIGkJLI?5F+dh4Fo?9s1(`
zPv%zUs-<%fBY0gqM~Bp3|Ev7||4Q!4{7<VWy?(wu1a$jTpP!XF;TDVG#H{}5NAb7S
zUoo+W1Uz^IXufUV-vD2cqA8ICFfc>@fI;W&1%!r<K|1G=Z%(k{<Yep*#P^dB*orYS
zGGYk}tLDWf0*zT>VP$}*Fu&Ua&wJL&>}>z!WDO;?2CuO+BN35e^T_dWSeaCPW?c8?
zX5i?Vot}8R?_byU^aBwmK`J-Kzx#H3h!X6@TUunbo5e;-VfMRVQ6Rd8J*^IoXyfBQ
zby|_&QJLuI{P<-hhP097dJP)gTsj_oQpGFr_78y+T2@#bekbaI5F4*Sw-*T*3@YK8
z?(gqsk5;_^#9~=8YaFb+VK4tK&vg3Mz=vOi{0LT0PDVXk)%ozj+u#N0(scOw(po)J
zlhS1JCc)B~>L;EM!taf(ot@6Sx;oB8bHd3&Ev<i$Zwmi2=Xy&2&-}henu?%Qan&Ec
zsPnnwB|DD?UwLKZ32S}P*zll2OnhE$QKU1Nkh~BS6cneSrKL4s*6kjibACMEU$W;B
zxAIR9j(<?xX^de>bRy=jbh3TxCax+5M++vKFq=S<HAyW+iuOUQ+4hb@k+5>y<UN|6
zUOwx<jJk%~->HHPeSPN9;P?(_5`tvlVCjJCFksc2b-7j~wgm%dPEO9^H_C`rr-(pt
zEup)VYqtweE*kaO5&V4_m+C)$(j^rXOwT?%+-o1j!Nv|e2`w((+#T)d?(5<L<E@Mg
z-H#t%#t?G6K7=e}zEaFfb58V<`wfU;c4w!$gedPJZ{MMZI#t)E@p$qPt^!mMn@Xv_
ze~{4IVhl$#OoCoRLxVNde#IWf%vRuL^aKhlbDYswg?BbeiFrRs01FF>wVM9F*D`yi
z5f<py8*bQ6Sa0JPH1fw`=nR-gb($^@mU%IRgn;}ObX!ezPM;Jez}O9EENwZ@%?bDR
z3PSUa^vxT>6dgI;iQKUK?{KjfyRosc9yU&6BV$LphLmKCGC4Erd91UAzkY3i!7R}D
zFD)$rFOnLM)8DmL5AfS4DgA~11|6M<Ktom4WGPqL#pUM0?Fy`FU%!40rfU3Ny`e8#
zTt9L!I9&Yx{vD7~`oCG~cXo9}$EN;)?7%?##o}OMswO2?;4giw1%^1voE&D9rXtC^
zOQ`$%9|HrH+S=u57enz~JbK2R)L|ls@TjuVvYb=1I2c%zAsC5jYQ|;S0SeFhy#dI4
zY|q}LsE7nD5WSTIKyL*Z0^k>L3&STz$3!IXIvfoDz@VEo|Jr51N|x+p%{(O|p@8m4
zR6GKNgGOTSX*sYZraKl~r+uNjV353%XldSE!@TaMqA)2e8XD-|+TLCCx_y1;e$(s%
zW|{}9MK}g12*}bh;xr6&Z0zs-V*y@b+5P&BDUa9f`922Kc}<1SGTeo)Zz3Ln5YN1_
zq`amkQu@Ha000nf6*)TKMbn%=I3YZbX28|-lnZagVp6@3E>$RcGr%^5`)LH-W1Y_w
z;&i)jB}3+CvwnNAc6<zeh=W6e3Iz^X<0cFE_~5)22a1uB(d^GP*x4x;C)ApZ|6(_@
z6m(Toys-Na6Cdw&d+V^hGct+8lvZOt?-Napad@40eX#x#PZv3x9pib#c&}8{`Ia0H
zsrS+kR>g85CN>p$A2gZe{Ye&!x+83H^z)8uA9TgwD57$>+BZf^OYM0)7V2$;?yjgS
z7{HCj_I0zT%IM-~+H7jAL$2xjo(ZR{tfl2&ny<Y;nUMBA!_U0eVqrL$Lt0hr9l%Nr
zeyJIh01tCSLR1{~8_ds?ABFk&&kzv+CP>dtQNcpDh9i}?%Q9#f%##&OYo0gyJmAD)
z=jLvWi@lTDb^LQ_wTzHM88!}9crSRrh)9?M$cNmgDC9y8*Zzocp&%I&!4)~3Hd`%+
zDh^JaI`jD{n@uq@cGZ%Gii*}!Mlj9|{^5fOn0i=eyIr@_ii-UrhB-OFx7iLy=p-VK
zwq<W`LqkV*I8{m%^YZjV5A6A0<Qt$I<M;3&qyF#6>-XxZ-3hC5xp}WYJT?`w=`S_;
z=?WDvu}ldKZB8M~zJC4MT+sRV(Advp863<v{Y>wiH`lDUFaNMoVeEA70#zE*N_}Kx
zB2D|)SWgeu8^Y$hz43(l`oaqjjQ9xa!*wBC;M`FJ?7}Fq<I_`#?;&<}b^s{{=tVXx
zEUKt6TMenpz^?pdVnTO>nUj`k=QxqgO3*z6`z|dcS;I#BM`@h$h%vfDb+rgGv6SoP
z+j*pmb5o<qncsVWhGRZEJsDk1^y+PAr^xMX#P$4i?CUpGc6R(8?iu++#l;z06dGEC
zdILOA?wa;IIAL+IsU86TFvneN4k&gM!STuQyGmGLzyK7GCCfSIszZ=`>EIO73&jmS
z(77s>p&`j4{E>?GL2i8F%03}*7PB@toL!v7%0nqS6LrmXUy%EBbPN}=z5M40JdY^L
zu75bIb@>@u5fUn!FMJLRC{h6`0x=~umziwwEpA>dh7uN`AmY`QyRB9a=3=$V&)_G;
zOhLg-3BBX#;N;|J=NI#Y%_LCabhQ6)7j${FS|y1Sp0<|B%t^x6KQu-%mG=|uL}S%Q
z=Gt|^t`xtp5F8=E0$eHA4@k&2Q8m~CNJ=t8fYC4*i5B@8ILx%#8U{uoh?UI2!RS#@
zy4k>f#m_>o%;BIkt)3iMGcy7FnQ}G0g#yjrYq7EAI{Nqa_6kXL?aj^AMFLYohfx<D
zv9NF!=NI#`b3Qs?7W)2##9(1vI5_B0ka9Usrt#aUl=8V=7B|&#!hiNX4-JJZX#&<2
zU@$~YP`m{-B{_NKEf}yXPF$Uyoe6q9AdpKSAb{&Jn~0EvB)$KNh5Zy_4CIA$wcr2e
zkp<VuE_-#G7vO7vSI4ib^8ht&`qop5l$?RzYvDZ*{o)2Od`f#J*vJ4wClD;@G`Ypw
z50@2Z+e4Nbyw}!%&d~92E|Pu->P8&rQF3?K#@_J}axi%CHEpmXFg9^|^=X>dNx=Pa
zsYs*FrYk7gNP74{`%)AI|9ytjQQ`JGgOl>cRW$K?W`g}qorrX=htq9fx;1bgnaBa}
zweO!xa9dn^zsyErw$w8p9vnV6N>@iCU}P-Sdj%8GI-H+v3QX5mX?!-frvc|tBHx3*
z4=24Jkkd(TVZJ!upJ{Kz0MhI7(W&b9s!zWX+01&ehZ2VA>MT1teD#Yp%RdN<7nJHp
z+zt-*7i%=eWSP|(q1@d8^U3pN%bwY`xGMMw?tQff9xCcj-xN(78yoOCq6(RVJFU(A
zo(qqWn4iaJ?>G2108L_7(PLMOpC4%IULFn%51t;Ma9f`msEfd;mFMTfp+moZt=MKI
zeVG~@9B;M4)zm;k^DdN_r+P+LO&Yvs26T-|$gN^;Q)R%w=@oee`$Bw0#LibiMHP;G
zRz)y`6xrQ402ht<@?;-1DHj(7pQfr<zD1a_?Q2fXI{*6mZ2#AI)l<_d!|6I^<w(F8
zC{4^3SiNvKQ$hYiWP4{@tI+{iT*9_!=xN`!G(0qdY9tzmsWS<b5mY~kwSfL_G)vUF
zJOg`EG*s7$0!}nLqdX!h{}XW+CI;Hgx=_J?hh(4HWQ8^j0Yt0(<*VDvy_55cL+~3x
zHjjm=udnB+vnneD65A+rJR&VkO~~;+M)ZKcQY!Ef-ba#yvtne0bRiV_>+Nd$hj$<J
zZBKzzjX*m}J+}O!s7J;-T}S-mOA$b0RV$;({}Ic;N)>o9N8S|i9qwHwxGei5Q32x-
zAYv3ICM@~g6LjQ$t7{||=TU**XX@cB$x>|?5`l6tv&nMfj4mD`6Dn%4_267Zgcm3X
zL4gc@TNUu|6F^w->lYFX`Fqx=!COQC{=6dQ$HyRHq9J3kI#5hJ;{E&z{H%6MwLOmZ
z#PTLZk?^}+&6O1t6jbHjjQaD{8Y_NOG^ck*fJgXrBaZNYFZ%Q=jE8u30RxdNAX|xs
z!^x`WVxtR5PhTCJia8gu`rXK0M8_x=9}{t{_aU#Q_Hu&Tj`R#jL*D+%DwuLTIX&(d
z6Ymf+QF;+V!I~(Ao>fr8t>H#TC!nnzUZ;UxKF;*_FU1FuN&r4_p6bUY#=5vURKX83
zvalRQdj;6HCT4msDaFMlvnKbm8}Qi6Ds(MA>ghrF54&=Ks0rLA1KIiCzb96(gw6p)
zZnHK<oP)h%_>YjUe^OjO5YJIJg%gSo^~=S?>(p42xlF_n6?=_El7rd`>;*xgyf@jx
zOV>;NmLj{bSW`j$fZ$F0f+m^YM{QfvjJ&JECa_8RpNl1b-1DtA3_cpGAD_0TC(Fr+
zJ&%^Knws}dS%pu(@(aUMU0k>g0KIQ$c<^nai;MGuhWdm_H8>To0|GiKBX%$Du7DYn
zEYSxTc!3!)Y_WRZ?CTdfRp-se2LR1vEy|6GidwpNSH)HqhSErH^}IMfAv1g2gFrCe
zkkY<|G6VFmtgM3hj)kNF1MOCiyMZDV3KVF`8<^KAjrPx5_Bvt#e{lxDIk7vdtgI|@
zI^t=pk08Y#aJ)S=oNxpeO|fb0Dhns;+cC*O2}!e=@h^|E@IY_k`FNkp@1{E`_d?7^
z7RSkH?gs4Cw*nGcnjF5w#LEu#&$&Tx=?D~&QTD)J!ih)#i8mXR7k&r;@q}L3tIG_S
zn!r>Flsl3mMLQ&z)n~uSCeF>LI|H^76wV5X{r*g}0v8%5#LJd`jkyEuC(!RJC8`LY
z|M$xFe~b&fyc#QQZoW?}DM^l>9fU^YY7C=(ctAveJ3c#$jscr2^s$M_aW&xg9=5i(
zX#mZQIgr}KC(D37FUv;hEzw!Lk`pRwNV}^pXed9cs^ac|8?fAIU8i4{kk^Tkg0Fc-
z`$_Ks6wMEy1k^x7Lr)U)XbenRumf(?GVKofnWTn>22o_<r6xBg(~6^yX#ku$&&wUz
z0<af~ikebs#O!RWNoo(hvZ`aC($5%<2ouTr0f#6wFIEfuEWj><g@fT|6Ylw!>@1eo
z3E&j(t`49L^Aml}y~?r*8q8Pt=By$zJ%IrgY_Z2ihWu>i(tmY!-UI~1HpPn&EVMmk
z2zZG7rX{C4yl$`qKQW5re;O)G7{{LPAN_9ak5C+n^V*)kuZqw4kx+z|lk6>2It5Vz
zK0c7f^YAeKZU2FhZN<uE4M9Gn=<a?7&rs1KB!4AB%vYz0sVtWI@L?^eOxq&u@dhB}
z=+aX)+6|O3v1V_~S^qil42XgxOsUC|nx7*ca&r^gA0N?f5AiX8xb;a>UAb2!OUDtN
zDT}HQ+yxqmN#VpiG5%q?YC*E;Y4Zy}{8U6s_mh})3;Z-8OqKpfqn4Ht35l`7d6U3*
z`ICg@le~884jmJaIijQrfbN*jZlfC%4zUDZqZ3lxfxYP3poJ8j7O}_e{?yRal_yN(
z%NKcox{d&atJ@(pO1YT1`#t!&GJgO51oO&MeEUC5I&$*YC#3-Mb$R(Q?KYIKPzpV+
zeD$X^ey|T$oi}a8nc!qTo)}3U+8yy5W@o!M2jbGw>*JfM=nzTZEr*CGAiXOo$Ru+k
z0*gZ@CMI4tx4A?haR3)YV^Wf}x0u)cMH|W4{^6{(N&b%`wdCZnWR9>Y-ws{50`qJN
z3RMSVLF}z}KMNQ?gq)4_4OQBn2E4|%hxvy)Jyp4d!%ER3od3h<70?YlID|cqWmF$;
zoWZiIG~qibyU%})!EZqd>M}VIiI^l4j^~}3&Magh^{syrfjbh$f9{}%qGNR&GDW)o
zm#NP0GTLcQvRCZOQF{M|!aty2GS3UXVST13|M$H!m0;jE__zFm%>RFr<!>pUCscD+
zVn2-xGNRO>{{81>QYo{E^dh88r%W&XdyNhE5GB&xmShJ(`j<okEZ_Birm_be<Na%Z
z=r6~1I{Vf5zj%6Z@{afa`~jnpzNslp0f62FPq>)G8CrY-BQ=A}|4{SKQN_i_l;vY`
zsglB|ntL*AY@!DQ*8tr)HkqT4wg|G?D6JwHLb3B7db+gu|DjG(prtf9POqG7rj2M&
zc6XEdg%r`T`;Ba4P)j3+=~B?~-klW1TM<D(wK%1u$WwE~Y<X=h>;fGX2F!CdSEsJ0
zx3NV*Zr{`r3o1@Peb7{GHa0YbXxH-akjtR?!4~S{OCK;D8%f|QsHx?MRm_>8eG%S+
zwY9yNq!CIa0CfuX5@J3Y4Sv+&g3gbj2D<bA(66;yJeoXr9f7o!4xo>TwVFnf_=L5U
z<0SOKaj*wH5TJ@@ZyE3trD`u*00$}^Ii>K3<uolf<@OB$@0^=~71F`1m+I3?^o>=^
zd0pf>68_t*4MHLu(V6x%A40TCBFlU$X1%F=ps^p{KTooQpQ*?f<@aGYrS;AYcAvh`
z_sM+*lY3(QpKr!AlUaL4F*q2v=_jF!(H(xT%CHXj5162f-Rd<<$;*ISw75RIy14p$
zWs>?E9$podG&&}xFCS>fL6_S4^05hpL_$U!k3%;@KA8iY$Rh!+?A)9Zwc2J`CxXgY
z;D@@tu>(~wWTI7Q7lp|G^=l#l?v{r&X7{y>9=o03AKxRqXO{{l>7_<Uy*?{$0lzF5
zEMA!}bOwh^D?zunI;*LvSv%v#kkL{Zoj|yO1uk=PpF$g(ka(1qFO!0)jFd@s!w~5E
zXBEE~vnIYI>p)H8S5lS(sP|WW$fU(~lWEIXSlfPg7rWc*HdmM61DhBf#E%P5{{SOP
za`XrG5+^?HvT8pwtAq$09|22VUU|OOs3b5+U067vC3>^t3pLoW++IR*vI_9tV4g2L
z@=F0#$KX=-X$+~Te|o$XK+7-j@in+KFhL-?P9I_Bx*A+uAa+FvN<Rn@O@E;X0_pqp
z#qqoqa>~EAw6~NM@IO`_AHn<uvQ*j<667YM)L%vh1_NP83#v&;N%#bk;$q*w!vQF8
z2L%%NxB)?lnlS}vx>~Fu-BAr^z_O4Cas~GNf<{86!&7+)FwvpRbmQVzy>7SW4^@(%
zG(1fDMkD=Tt`6tz#&SpQYRxT5vby@t81(ahWlPQQ8O<H%*zM$G=X&05d>S$PfYrYN
zgqL~YL{5K?$9-DvKHx3!@fXaOs8`^mAt9WePBkl+*w<8(<^Z-+wauonOv=^{7>({e
zmjTBEG@MLUfSnE`jYJDx?Lf}Tn9j%l?Hm`KJ|yfXulo)X=H^D^*ASzzeY43|m+%lg
zy^lTs=6HH~THfCes`%=e2?4jgegN;#bNW~t?RJHT7y@)#0xaA=%%R&$1Bp<!efZ4c
z=xbQn?f~sq+f$%VbLO~9SM9+RIqc;1O*sthJ~g|NUyb^|Z^JM!q*y;#PfLqj>B|+>
zKt#0CSp}eP)0HwCM>~hJQ+!T$|Jp#9SVgRnM3!#~YTx#OW^DNM6u?G-T<;RHP*N6#
zoGL@@0@?zgv=eacmji_Es7}DL&=wY_q2X@Gug9hGszvaHg8I@MHmNx4{P3tHkLD*~
zfr}rOTTqHZ{`{~9<b)3Rv%U^|9j)*Zl=&R4uFO!B)ppk3L&Na}^(owNWhAv8u2&vj
zxn7l;OdmY-q2Aow{HM{V&CSf^a9HB9@)A_3{Y}gZz)b9hu~X;O!w_@Y{oM!sy<mRF
znZ0AR$!FEYo-7<3%3mInjE_N%ePii<g5MMmo;YQ7bmqv${+Ji+ucAJJDIaBOgRRRF
zB(eM(u835sJ7j6Tf6pXA*zk52Owp=Loo-Jl^VuOTtn(C=cD6<g8jTLC#53&D{A<>n
zE-&#Jx#-R3122^MEdphdj;Fg)C4{Hf;5u#mv*7z;Bur(F<G~9iXBP+DGdG9vAQuG~
za6o#*gu;Z3j;4g9WWjtGv>Dvb;ED06DXZlqiNf5{U#9vdn3(wLz{-q)Lx4_fX=o(#
z>FY5kKQ(7O`;<c@=vzA9(PD#xT;O_8j;0iW8Sh=$)7@ie_yq@bTgu3CrB1p_ZWcc{
zm{yXKhU_DiT7OsOA}WOB9~Er|5_CX-0d}Z=U=RTTZuQJK8O`f3k<Fb_bD=(6=C@z<
zLC?uPMeAn+L9*9Ku4eIHR?<}XL|Ng3Xe442`Mtb6;surlJp<j4VUe(<HgWU-MHPO&
z(ePm&l<5eW<MXTf+v@pu_V-V0TqMfoil=9yS|UZuxcmJB=%i87r{0^sxIS~)8Qji{
zrUJz&_T!dAxh3MOY@v;W#7We2f!O6Wjx%;FZ0r@6dt4Y?uofq%f9sR=G=9Uz{y<)P
zdGs@dKN{dqr8!>!Na{iAB6+TiW#JQ!1&VH)#eCiFB;aShj){*2!{2P9>i5>;H>ZD+
zfkQIe*ho&CL1J_82nVy;W_C1G=keq-s0loy!50piS2l8Tuq;rb6#gP4RIf}u`_u+i
zIv5-hOhHNUxhPG<pl@V^fss~SdDP!6%-45NQm)~k_3RH3Q4=z8KfZ2Mw%@Ofx9Bf`
z8=>{?THaNpF}46NwTP8@;yW#<;)jL?I(R~g{Pe*t0Y(;gto6b>LYEa06B{$CM6{=S
z$<<m%NO}agS=h_e!Jw0~^j22%3x>q?(v0It(lo~IFj#f?o3bVjLy2Uj6sNp+s<T|1
zn~whY1`a-sjm`;2Tu->Wva-rzwaw1jmX+nbe$NqD(M%gp!6`EsF=?R3CxC1W7f1zL
z_%U9e!9T~N&TsLPsIf74Vl9by8|s^GV4>yN@aZ_n9)A}^AB#(8k?1kwf?X7s=VMB2
z;!R6PeEMpm-Fm+~F0p3o?M??d7bA|P=4zvrRn}22SktfadiuW<$<JP;BBw(P_taI=
z!4iy#h<QExcFDf+!^Kl9`)5zjM;xasP{RKH?nSMA+0)epNZ^x$N-DBx0(Qr5H2vk-
z)bZ;r9j{J-k-<>=QMUU-^3UE_9q;s2PUf}g#kyiMP0*C)-+<!eX7652OzwAQcZ^8Z
z$r)mGP5C)0Lh<2#TVR%*&B@7`v5_H|lE{ls>t+Er?~<nd+^>iT(rl2m5~T(<ZM#1S
z{q+7+Zc_vp-uXOGyqNNW>|K!v(kJqc4K5K*5U2zIb?jCQrl){s>w)J9@&$7E-v#Mf
z85jpFC00aw)s|p$50E`#0~9mHqlGTw0Okf<BlRAS8$-NKnfDe9^uGYVP?L)U593u8
zc<X^}4p+%y(zK9T$Wq(VQ3eI4#nvejQ~C3-(Vp%c186wYnQbu-zs&%vTKbAtgi^?~
zWZa;{)43UoDNI#Tb`y*88l(<p=*4rr(x&xU5p!u@Eh#Asj|1ruuA#o6gM`AA`1WD#
z@%}O^sE$N{kkkDd*hr8rE*c6SQIXqMB>~mf!fYm-fTeTv@u7!+^D##VpzWUZ!oVrI
zvTV`sMZgh}|GoeB;{)u~AC)t&d-Zo*umI(DZf}o-yim><C5H%tVrKH1MnGw@7Mv*Y
zTv8{6oev|mwSUml(-Xzn9jdeHctc1`OGCE4eW;<>?QMo?$;hJ_1r|*5h>Gm>qa#C`
zzb5xJFSHVmkB?2vOn@~k%JX5qhpHPkDB$4m00ADppdcTBhaM01Wr(#DBjTyGrmD2v
z2UwjBs?S8j8Pe-s^u{x(aups-$1!VrVHIMR2-~Ww>xz{p1qb_cP2+fuJU-4h4d^tP
zbDMjd&Q+A}uuH~+%m;<p0K6Cpd2KyVq)=ZGB?x{sQj`L265=Is0QCe8x<LN``I}a1
zQqqiqTx>KVA}kDPN+raw@7^A8O(8$y<Fg~a&plc!>dhkmnf039pakG<1MIcEqg4>v
zb8P&0ceDDOQ1kl;+6!=U9+A8n7c|uH2&!4wIKcB7CM}j>l(ovl$9g(Ggfp{)ZI>$*
z&{he!xz|HHRtx9A&e`gI*2_uiEn#s3j48lm0_Z$u`JQ)HErH&M@d6zD03n8?BB-c<
zsNy1?v`Bcj^$Gbim?17yd=W8<%Q`bQ*9Y-e`3)e702~Cc>EO28KCP%S)~)xvvIGkG
zkYqDw`|5}Y&`_3E9jZLFe=zk?E&;=`<rY2%V6M*2&d=s)uK`DW{*NeXSJtom>_S)+
zM(wuIk*-%N<;N-tV7RI?rhOS6ZY9W7-Z<|Y*>5shj^@&_4Qx&@m-}{y9S?v(6$QQ&
zF=CVeq~1TUSDWbQw-<YAvvkm05m#SjZ~?wV>tW}?Z9lPwZxOr^4@)y~7hZEfUat@0
zrl6qYMh4BM{w}jmvx8}1L`;el>x(%y$=MPI8;5`s&?UelBI>j`F@d?~Ftl75U7b}j
zKE9d?doH=y=VH-a#;hO|x6|8cSn9l0o3N9nWbX%MK^!LF@bIn8F)Z=R2^#@hGBBJl
ztCfC7%lHUZ{5vgfqB6-Mtf*<sdUrmrKnTG0oD0LJr^cysdr)T3vDpdn^8>4H_{_|)
zQ_)Om-@!phYD<VcYpd%aHg1qC?(Uv3k*Dv9yLCc~d!mvo0j}<ADl-eV*!XnW+kD^H
z&{X!#%PdhOm@Ffb`(g#d-JP^HPmA`s@nZB&CRJUr{@!I?Hxv>W7u}hauc8=Htu5J!
zIWrdWXQut513rR25y-4vNmqpY3RQxh3Nr5qG-2BfJI;GTbW@V9_*IWXnh1(Be@dg`
z?ORz5tdla(u)D9dSBIWEg_B4Yr56}j1V~kW?&(EIXZ?{Kz4Dj${P67N5C{A}Vv{v}
zKTkv9CKH5U=flm*%Pl0q2Gpb%?3+SF(_@S`mgbo~@9(*B%i7EwpE5`RPrSZ;qvX-*
zJ@(v_HD)e-0xX@+D_GIEth-wEp;vB;`yq(jP5qe#7uH}x|4no>%_p|Y)wG1QDLclX
zo{Kzj9ix{lAW0>_!?-htfE$a9Erl9Yr#atv#NgxEU#%kn7j!~wk+`?UT=VI2lZ~Tq
z^NCU>iWR0^U8@{1ixkW4W-M1>a5|Xd-ASm&(h*(O&c43V=RdBoy*O8`)$<5yZPBCQ
z5-C2C<ac<9%pIVbfeQ+cA`UCxl6HVfMN!ogCYq&?qv%I+5sTCnZE^nEcY;NwgYb?x
zyQ@&lXbua+gaoGZDjePp$zCe)w`rLU4pIdMrfX>>?;gT|A;rTgP$Dd~w1AW%V$Ft~
zi;hTk!ns<02J)_+k+2XEg1Nk(rE!-aye2%2+u~@;`SKukn_y;pXBU-#>o_QqN)0a&
zP`F~_;)XSwkJk#Kfwy%`tBJ>|hm}buy{Bq7;_3we8uuarQ+IoN$=xO6YWZWwnK5&F
z|K+Q@MKv|N1C>_IsMLszwe0b);H|Y<YEx0{zShH1#bE|d5OC50bb8rR1HaomdOd|V
zYXmjVkLG4~5--92E_@J?_Ik?X_WB30zzWcZ=n7xKy&JGwoCUdANp-f+=1{avhrc_%
z;EbX|Cgb@U3JQxWLHN$Q-q4&75P4%}_CzdzQ>K-glJu5>0`Bf*B|`!W8^v4q(bJqf
zCM^m)>|*WM^z=HD8G0}`s3gNaed@OME?sWw3MTdqEvC29(YXws@`9c?hGj_JiX0Zq
z8d!+$NbNmzI?83zZno@0sW+keVGT)NoJS@W^gQSc;5=Fl8j_AeaY|4*TEb)ZxV<If
zUArg$0hj3&l~?xD>VtPqK|yvl<~^ZCQqq88iy3fmqz|63tyyWn9@c^in;9jYnURdK
z!?ZUgGPc2WaR#7rL_|ah2&zHai>@tbgNs)w-%>H6SoW_!3Q}{Hwd7z4l02Q*8Q1<@
zRheyq1AB3t$GX#jA)M1n+bw7wYZdp6PM7*bfT#|-Q=M>noGuhhdD*ebbMcyR5gq+a
zv-9R{Aw%-yMB76;D&jpKqh^a~U&kvs8r8gC%}XH8h-x(T0hFOhPaP4-@pVVn6~MyW
zRjf`B?sM-8#Uv=mj)i6S_3KP{VQg(~Tw1t{oQa9!sBE(c{!9TWwV8z_86z#itI!V>
zY9q}*m@F;JHI|zBrj?Y|rH&Diy#1i!c?r>iNPMR|2Z1$TPg6(<t5<K*L8-91daA1r
z*7Wtouc$)do^E>eCYW$2&Qt<~6tL92J}<!79mATw^Obz}=LB(gm%gl-%g+w=0E#`S
zQrEMDDapUh$xfMG(CGppRET^1g~fc8+tEoDbU=zy;7}Pblo>IqA#F!S#rO|{TB&a|
zH2_o9Yh*7fsP1YwCuChwF+#;#>!nU9K-(^PoYou3KwYA`i>`J14Uuz+>ppc+&5gyW
zkG)l0EON3El}?7rdmj@NgV3AV3f`BgC2aSPYoA6gA9&xzf|<+YY?*FqBnt~KD#?-)
z1Q(SP6%&iGiuS3f_*NoA88oRNv4`>6YFfpKQ_F&AjxnVjv^;*B&}MgfTKI5`GC&%^
zWj2p~tzJ-2h`+Zl`dL&qi4(R|b<j)^c@&}kUC^-3692h_Mi(|H)E*ZrU6x0Q3ce{)
z)6mDpFQfkLD%1@qSD(W=A`&c}tB$;<n)>27H<&q@r`o1P6(|D#1AeP6<U;)g*wOpV
zl&qhJ=r_dy+M)krV}F7Pz#AZb#h?s0(r4KU2u)kj-cL-Vl^6v1SSfs#_h4V9Y`*j&
z9)W1Frp<aQA2@_#o3wi^kYq`?UWYWfxs=Y=UR*44S}>GYrndc_&4oQwh)CDb9e{9C
zU;W+P+~l?S3mNr;4VDb%e5$)Wz9cFftl?wH$SUBr{k<m2l-A~Y#rT%zAV`Un#<)~7
zt;YVOId<rX-=#RKz+wM-0O%$vZttNUKl(_{lmzerVp<4^9Y!?B`_XA|nEZ41I1V_b
zzzSU9wdklvmPyBH^}+D}Msz9bjxTj%UiN~~VCu5wtmUHV(bim+q{>`NdAu$o<V}LV
z$6|p;5GTrI#LLPsLcZ6*2#8Va*4{;tHeDiHJG(lK4t^JmGC{I3XUZkIWn%VAvYI~S
zoOEUl(!(YWT6(hw-2sTAqbZqG2OM8Fx`A+GvZ0}DwWVou?IUdsN=uW|YK0}yAp;Uz
z4OfHGh(h!Ks1TJOojVw!feMkq`!TM*+n#&h>SyH>CJ1QR{OtpnJI1I)ESwyHnAh+t
zp1N%z$%`i~ccI8gVjLUi+mc{f&}6eiI52R!H0pRU!vNW*Fg)5}01_xlnisVWYg0eK
zl8-Tg#qRbRKHJM_ZV6=4jOw&;cy{;4BI2B!DYeqTT%N6D1%Y?1GYtc~&35+^{0%)n
zeuS7&<)GtWX*F1%fDAP?hFI20P<rse(|~?qU{$Oh-s_~-65Jfevu4}A0Tk3`8eq(r
zruD!@VSYHeDGJmKVp1~ttIA+)eNd9TZnb{uat1U71L;r0VEr4<=zb4rcH5+)1CbAt
zle6*ftMEDXyM6cB4sYPY!hY&heDljM?+0zc!Bfu2(Aa9dn~Iq8Tx4n!*ii@}%n$xj
ztJ;-LmN|W6-PEeTc?;NnRTEWqw#pXsNaS~Q=7tyJ?S)Ng;V6)MN9?%l)oQ>iPYpux
zw0~@N+^_tRB@%7QalbdKM2iAy0PsUmj)-2Yx5c8%{#5(xU0J!oB?OeQ{Vc(fVybO+
zZc>`}1rM+bd-6{Ys#Sd16hy^~r5d%GU!;*0K*C;|b3F;a9S<uN%&0%;gd#EM+34&x
z|1OuN5lill60keN%_9)@g>YImmsd#+i5csZ0I}V~#o=&hC@I?^I<n(<>t>(A<fLQC
zYJP$C4bQQ<6V*L*P)YG>0|qu<xq})1AJ~BnftN3VgVBILReeki4Df0k?>N5E3;^3A
z{=t3+i?2n;^h&tj9T4zcS<Da83Yx{2s@K1ffq#dUvf>s_1PEjWIR)R`=nf0M_I0Qr
zT~4zt&K^3N2Qe+*@3X1K*An&@K$|UA+vXHYZPS(NHUav09-~$YuR~I1t3dXYI?nIo
zFa66yW<9xK3Q_1_(e2AGYYMBu4Q%eZN^Qi&leiP$rFViXsl7X!)9V_rf}ZNx4;gCx
zDhg_Xl9aXxil``+TKvQ5WQTVkGpKZ>!Q*;(UoAS1K8-&}+u?E6fqsWxhX-J$w$E^)
zCSy~yp5NB9FbDnii@(E^A+z*qJTAkk&wjDJ*_>?SqIZw>qC0IG7%Td}>+1(7KDD8W
z7O{lms*P|MGQ9mh(|>7b&3?19-USS^tp1IS0`=~R_vwPpmSzN)*f6sJukOzG=WFP)
z+e>-?$VC$Z>0DaUy}mz~PSEQTGpdjD9J_Q?0TGN89Aq#5zFJRHD>_IcX)no$O>|Kg
zX#`zKJr3m$=}zkQr}@KKpj!a+2=oR&=yLA*5n^_Oe((r1Kjgz!uEkyVBy$SgUZg8H
zP|Kq08C-7Bv@|Y8h@+UrGZJv<zPS79p@1H>I9qb0yBv2xBEdY-)Fj=O#t)dMc7=Dr
z2w~sLoo-(*`Vtr^Pr=l(J1kvOR?!Jz(SvscT$skYJK$^X&u}nP{_s)Zlm1CDw+IZ3
ztagj8`zk5o0d(Erg=mLvjTBXM2#Vl<;B^O>Lr1>B2m_n<hdPC5xi9k1OAc5%Gv$|H
zNuL=G0-Q($JoIZ)zu6Y-;{hTTh+G2lBcP?9I|HAXA(1o|WzNf%yH4(b3b%Ox32%Kk
z23~$52^ruI1CRGYiw#?`Pxc#P0Ra$pNEM3D?>J{YqrAq<kk09~^c~G0%9~-u^E|^e
zh~D7oNlHwu#TlM6_3`u%0hh0$>GbGQtr3x#ai_Sxr8$(BF+if6npJC>Wh5D+#URLV
z;NDn`qmz4h*wQLn4B<*BsjJ@}-+T%8sIl3W;JOhnSUU%(3XIV9x>v1Vw&-B0GV+1j
zc!F&r<j~XgJsmGE7k%;1Fl6|+mvfBnMB#r{x)2N>-=5BWCCjn~SC|~R@*iEgCJuA&
z+bHwTpY6|=sei7^$q=)}U1+>?*k8!p42DMh10h;74x&JR<$3`GS(Jxzo#Q0Go9YrH
z<t;5y4q0~9DJdvBuTVyXX3Ac3H--P1AM(_1A45rb#c~2-V}+h&3Yj~(0URu52F;<b
zG^Z2s@kY}45~Xr;^W1I~|Dt>o7q5rK1&S4rC<N5X<m5^>@3FlJ5`?RaD)1%TFOE$X
z7TLg<R!)A}PFYGb1*920>tYuQV}E33<~BAa=NV)4N&v4H<KMr&P`+S+LT%x$y2e<i
z^D~VZ3QugWL-5@jPdgA+#0b{qu>qg*CfDQAlCIODexctx%41CHE-a2&&8`c9Hlx+?
zO6HRSy1DvCnKXXq^*_7Gago|~8s!|S)a>$<Y;0Z2i%nk^9gD4zLVz%>E}RJDCq~aV
z{&@{5(PFo2BT4Tzbar`ZX{8#wJCs(Rmp{Z)h<M(EA^7{bvrgaG2QE4BX;Wh9k3NIw
zR5`g314*F62l1+A{5(<U=n7G*w*{1AJ|L6%>R=(P#YVte{BjPK^ra!lSX5gl!xnbA
zxm2D357ky%Jp5eZr`2>ZK0ZEcS2>I@g)@5n*uip<?}Kw0(s_;+dW?N^yntXa=Twkj
zVz^14Pk%@3P4d#Ff}~n8fbV$o#VUSy5mfzf{tdJ_;q^Q`916(dOO+3cPe(w69~$zU
z6+uNY)YkSK5rUUO4pTS#=Av>XEdqxKf9mmc_exO0*LRhuQoRE@Dk38zs1C<1$k2Ne
z5{row9UJFkB@MD1{|T*}f~xthJ)A_PEwX3wZC}NK_O+@?qdGo*6Q{+-b(<3@BUNrm
z=Eq*P%F2T$FBN||$(ZDLSf^xDTG~JKC38m(O0h9Ks%lODj6cQOip$HHL1W;l6w~%o
z^bN@VXjE6HDJZaxR(qx}k-$cq(h6RUentTd)T4^5&E4Tfo2M1GzMp{liO2J;GYf}l
z&TGWeR3n=|COYJ-S&7b=QLB?hv&oH`i=LkDj@lKQe9e=<@?t1)_>`nY2U;R6HX5-n
zWV&<v%0~gH*xE2b;I5*=mm#Ki-m)&-+^jbt0C79PI<am=xZhGr9DoGFjfI6@zTdq?
z(SLt_K^NYI+*NES31~&pX_2ERZ+!*5V+zC4h~4}oK7II*QB#XDJd&T4*QS%5S;zwl
z6ri>iqLP{O)J^ZA&O09t&9(TR6qkmEkCvHLFo4!s3g3z*&oUkm+6f>6)`Ud3aaK!j
zF!2FWc!EN@MQQ;T;2my{6DPZ<Wc_80XUn*2h@6Otxu}{ArHm&3V*KYQu9i@Oqd4e{
z$6L?xRcm<qzRd%GtO@WignAqH&vS3RzWU3Zz2uB$v@G4}?JZmt9bWhR`JTza#%|L@
zYTQJMsw$(ryfhC*90L_SDJVVHmg;Oaxv1Ih-uYo=8D+-eNUIt0G=LWf8(-#ncegO#
zmS?M2Q*L%$yH?7}K+X>Y-IlRtDB!J)fVCVI-wBL<gQKD#CnY8RxIUyb!3K28n+7?C
z6g>qf{cj}Iri(&M`J1@fKL!mWyS%`T$RH-v4DXVL;lkTMN1t1af56LDbciJxeRn;a
z|L0=2EnFt=CxO7m-vCL!yUT}-zpZO+N?I@|36;7lDyUbv!Eb;9md=X~|G30IrKd+Y
zVt#osdGmMs+QEKgYI1T)lCtKJ*;{<E4<B?-is$P_(}L1tfTm?wvoYIabtPoB6dnaJ
z%eH)AbO6jsv#9<fka(=^WydyqlpgkUXJ56}LqppNNBItiIBQ3VpweQUem~viCskNf
zh`@0t3JAx70eqzJbxEMpuihJ9&Jg0g)Ej85iRfEiq|5BRizR@ytO|GyeP}AI)c=m2
zo<0JgR@c{k(y17EQu%XN;eb*uO<*OPlTOIPqy7p89F)U2#=2t93BvoS+G}SQFet<s
zPQW{!r~G{*St8Vy){?)3Ohr#&U}S)afwQ}RsNu!J=i$D#qp72E6@)s%{)42}$xOMv
zh`7&8EO9+UXeaRf-mB~%lYhgKxlrDlS-TmJ9T1%VB+Dr*y3dZxipi!(G`B5(wVqt#
ze3^n%cf`}`+yDZ|H#Rl`ik|EM3~c+F9bg~^SA${P>By)_NZLRac#QvMeR&{==6&2a
zE2lpu&^I-x_Phz^L?v!@J9i$5%0ZKllsifKV-4hK^$pzVsL$Qm8&j$SQ;C_4qy#|P
zK`P~KdAJ8adl4!i3LlX^2*GT0aUtUIND39&Sy^s;IEKdo!C_G;QKw+fmy|DLt%|#U
zcsvV_fKXVF?=LFcLrp0!ZVpbX5cylN*(3Mn=2O;6X1p^ttIs=fii()&F~y|ROji$g
zQb0PoW!T0a0K2I0MfuxWtwB!Cl#&uCPLgZ4;lf1BjKAd+ls=w@S?Dj14}dcYFpfY;
zcm<ibK)ojgLB!-=^#MZ?+*}3OJJL#O(2ihUu!rh~`Udk2X`a5q;7@{Aw1adXc7UQc
z*VJU5;(!LruLH1c{2CO{+vv1=q4G+rv!~WtAHt937e!>Bx^`tlbN8wxMbsr!B<bi`
zquyr~!MdY?Vb}T{0UDM#<pUa+&|1TRx6{p}kMX+acJDrsyqfymJBoM5izNSqIo~cP
zxnNX@^bW11WnO(p1JS$&ziVoVxh;}@3SPwJgMM-rLXpq|;(5WG6@L1v+VA%A;q1vJ
z{LSq$l#s8-E2uzZ+_jSxpDbY*Jg{p)o(D4y#KI<C3Tfxy;I<}8Bi6*?^bl7tCj<II
zY*vKy7Eh(~hfR6wpr_jhUR)of2xJkUodBN<V1-*RF$0C%9W1m0#)U7zHyZdK&G&rD
z>+tm@+a|GJ^R46#Ye|hiZ8-7gg1Q;(Q5x$Tcsy(h=1+3~OgU&o@8DNS0XK-!mepC6
z<SetpOz_sS2dm(EhUdb>CfO=ABRY<&TrhD}g_fOxot!Ns=^9N$o)R!1q?BYWdSNUu
zv9`nq%LpITBVptK`PtwUhh}i7Zf5-E`~tCv`ehvG*N|#CRoWZIMP!*6$RGanp~`vE
z)<}#T<kQk55)dr%a^JjuEhld7iJN>Ut(tR+ijo^ucmo6DetTN8BQzro?I>>)mNxEB
z+q51pEjgAiSUA`IMNHw7f{Ntf*({T%Ps$x%8>t}oMU#pth?fR#7D11PMk6naW9eP4
z);6eCLv~*JXz-p!MGOy*(iR9{h<#DJR-SQxdhxv1kvp5M1m|M=ETP+9KFdfdMfEV2
za0%jZaje?nKzCR%lBU%(n#9*&^s^H#6B~q`yI<eKiwuWJAG-Qv6=Y_{CN=;w!e{&U
z;^Q+@{;~iZsmem6ItH*c!2KXYr3S$A>uf+x+npyyI*=W<zUKJ=M*c5u^g0SdV~>cR
zmlqFtvLKzr%G5v#9a+5&Bz#<f1^_sm23t#toGhQU>rykQe^r2-^aL5M{%VWG4B49P
zsdM!5WGLPsD&IlF+UkC9duS6-AH{t~d)Vu(1R0RS$c;zaT~#w*)>8x9Kx&0SBv9as
z->8-E*mQ}860mH5X+0PmpQ0k@Ltp65g8Wv?g{nKi?es8rZ7<`zLuLK;V-qNi(6EFR
zbUS{Irq}&hjgO0zQGoOG^fU|@#PN&bsqCB8-`D_oUnokt7MQj5Pu(YL<>jsXt`aJ3
zYL)AvI-fK(Wksp!cnKWQxL@Yut%C1B@r(Sxz=%auK8CryT)F_T0m|7b_akv2@3zl8
z+-<aasTqix9fIZHYO~i77zGq>0<rXqX@DNbOQcv^WYPcq26x_L>&+dbFWVN#iEp5b
z>%tZvOn;q&zu-k03gPvfVtV)8y=@K51)M<X0?InMoyOMLw!NaDyQu)gjK9VCoDd99
z%77V{shLScDFHy&85kO{u~wa)p6Nw7RI(pq`T|eP0r@*p=d~^P8KJ>rc<O`8SFjna
z6a=79=6H^tr|#ny4KMFoUb`2x-8nBM4^k6kM^>r2FTdEWt*we@@Uip8^7CWc1v*Jf
z?KJfReD~?q!RC8kAmMOPQwy(qK@RfsR1zQYO&Q?Wzm7EgP>b#v>J}EhyMVZC4kwNj
zDR*$i4#F_LT<5UuC{!xu4FjKvg=T}oZQX^B@0(i<^r&bLD5%iI>Tky1#3`pgBz@_y
z$OEmV?U1Q~?(Z6*K3EVcoyeuvyCH17xb$`I4M^J*^ng+G5BMxKs@=e6G5!hn6Zu<G
zG|M$IW0GWIY9?*m_j-KAFJV-tfvp1O>JMy{s#5|ptHY8%C`R<K?`lChr3!<l*y+6-
z2>}5JrBF5V&U~6<L1STQX>`c4RV-*=z=a7XI9%JRxBtsW`-L3@W3Y$B2M5Ceeje70
z2<sIdyX{U?kNz)xiD~Hy{FjcSgExpcBT2}0t69cU1n)iRUHVr0zkPB2N%**amY0Y@
zZSiQu-Y4W}%UYSb=mdv?n9OWEvvp%fCP?pm4oUpBN!|IF$ExIW=fbVVz3T1VW2VwI
z%4hRPNEiH)8|Zv1zg_*6pUmsT*X0M5-2L9Y%fuebE4Qm$r7QdS<1AD!eGu*f_);u(
z`x_^AMji#56*>SaE6jbfHKnM$wT*KDnQ*v_DX?w~Ph<&$Am@*th7ka^vyu66i9B&c
zOhgL%w@Tn#9u<Pktc<`YoOJ6hKMy^}!=RE&EClG*676O#P9~CYR&K_Kd82+(F4(DQ
zMarj%bg^qo#&khJ4n`DOL|!}z=yZ(T(Lmcz-!g|4TXS<u3kypNVH|?^U)=dX3=*a$
ze&cfJk{*id843$u@2fUhAg0g)x+m4k%E0tbM!mguxiY}T<BeZo3cCt@owi{A_p@Q)
zC;buYC7o7}Nwe;9n=0c^M%NG?lQlnM*|75qf-4eF!fhr4W{@rT@y{Be_Yp5er*eM?
z>$)h6r)hpqp^jEzX71<$)^qjni9r(4RDY)5IkC0$Z*mZ7*YdKOUsKD&3BTLgN<vXB
zr)kHZ!9+Th+P{l^u1ua_{@_%sk(ZtEfeP)@Q)qB-@R&~9=l`rFA|rpPqfWo(`~{Lz
zG0-vX&(5XFTvMdg6->`S1~V}aX0O)L@>-w4P*Tm}OmS>!1-b)PEXZmGD(`w%*Y7`q
zD?J^79QVp{!QEiiQrf{`wf)8OB2teMG<_7PnYq7gbq{N&L*l`|+FlzR9D+TP)@1e&
z7<e`Kn%k*(wcLEgT|k>yRR~1WJ~3$Xc`ew3Nj9x0``pYr5ie)4Dh&fAJU1e402`Ie
zLYpC-o2)T?u82r{c&hg>NHUG!e)s;fiX>v;iyWnxryLR~z$9<@lE>fRX$N$Q&pHYs
zuLzVMPE4A<!Bh8TC?F~pj9eUs;(%tl$<2+Lk{X$a`M5LkD>nOMQxwQ$AZE3niXf{v
zIRP)HLR8dnC9A1+kuqSFm8J0+8X6H35g;D2u$sJLS7-5h=|+$fNa6u+a{@hS+@4OR
ziiOI_i8K{@1mx+5Cf@@5gQh3V7G-@V7?ZdU@7Kve+Xqb9nT&Ge`6_O7W~KPjh3j0P
z6^C<V5AE`#ng-L80?-5wv_mzOs?`0Rl}!&E2Gg1dJV#PU1s%0asZQ;$nJ2H?R~d>A
zZkLT-HwQ5lo3?g#nTp5on{qnu80ZG)x7H|v%8pwZG^E2qg}S=>X%MJ)3p`-gnxsy>
z)3h2pnLa2xa)ABDFquUqz9&LtowYWftNV4k4@*UbPsc~~g9Gr#5-sJS-ZRQ47IxTB
zTa^;Bn8>NS!eD~M*K0>;NJ{1d?EAkB{Yl%LCd;?oD-Xv#K}Y!a)*Z?ja|9}nu!5My
zB$P%j4Rvj8p)vOSTH2(~t=WTK+scRHc@CDWNFyR-`;E?k=hqN!DW7n;MdOQfSoSO^
zMZO-5XMthYuUtB-vE0#Q0iwUr1>gMDS?k06WsiCV=tLtfCqR=>xq3yiO4v=AJ0$+}
z1BZ$O7MPaRn>-c+vid+n{Y5;#V$FTU?YtbYL_7ZQvMVYTObPa{M^E}bDO>0?d4l9;
zMf6V$${;)Uz(V8Z=DM~_YgUnI8%VNVD@;@=VdfP4F!Ec{e-DqZ^5?1HyIl0zcSrW}
z8`aIY+pZ*t%dk4|={sLvOX*a9$D+r;!CI~}9IA9VV^$4(a~lGF;%X1CE0}SSWOYcu
zc~ILo!m0Tjrkh{3x-v01IopJm`u{NYmT^&cYa1vAA|)c-($YB~AR*n|DN0C7H>iL}
zcMYiwF{E_2bV@hU-Q8#5<Fn7+@9%s#d~q0=`LAAgT-SBWk`GS<`nBu%g~Rp$rq7)^
z8#EtO%`pQ+d&f<7psR_WrJT!41%QzkHr*@MK93rw6J&7b+%I6+*|7{j9%W0W!a6h&
z@}T&bjL&Vez7AB&7PMR*s?7L$8cJpeN9u3bG>Y}f3OoHFh4p;u>Q)`pPe;l@!1=V%
z$e2y2`ZPzY#98kJax{`OqOnhsqWlY{=me;qe;d<?Fr=Txq=8$1g$Vzp=>)s_?#**P
z?$ZV)9qkIMZnp{=G@rJx!t*vZa8=6TqqW^&wF6Q?Ov3Rtby)ag?@v2|o|74#{&Pn=
zf=B+K^!DlQ$mLL6q2b6bgHW~~Jsn+<vz>W*77()4`6KRXZUU-oVI;qr-`<sw(_o-y
z7I5C)*fN%x_4?4!+3kakLAE>Nk6|@gLhG|_PW;f%mr=iF<*cft$<UA$nE^nxmXnNS
zfV9#kvKPdf?*2`)+u7OsY<PlN13?~*<}E1FG2Y_+&~goQAdNzi1n4NeMg(OC?XPF`
zPHyA<_p=HO<P1s?q!ELJP@=J<Ydl&mpqoZ!)5=VeL2IpBr)}L`U0s?avA`<jXzK3H
zr7HZe+qo!^E*>5_B{lXN+|b$Qp_0Sj9e0O+0j}V+XZqtZ(QlZTfVmD72cw%t3-2a3
zBRDV56I5yOwEdQu3l>kU+vUnuOgC#m!FTp|3owwMFRLinI$zpG^0(J0{GpuyG@3~S
z?7Kj0ug%?Yv)-j|Iv~CMYrxl~rDYO6=h2~xlRfFh*tb&sJs=CqImoRTS(ssJ_!I}L
zWV6E%oX7xZnZ;~Cb?mnxl#ynx*aUbR^v7*YpKx;Q508LcCO%9Ao@S{i{DKzdetAj4
zZx5w>+c8*~p<QY+{`0Qa0M0`I&{9Kf3YA_Lmf-#XO2f%|4PU<ag9zvDRPk|E^_4_#
zD$I8Y5S`JFkMFiAjTG`eP)G#zzqU{7EblnB=B1$HbrNB~Ko5YL06x*x*|H42S$;l%
zL^D6rn5;4D1_A-(`+mvWco-P?K>5aH@y+haGUDQ)Y0q?>?GV5>$Mq*R*tgICu>YOD
zav0gFdYRn2vC52b*UNL@WI+jt4iCNEF>quYbf?R&FU=oyH{v;0;5j+5vIBIx$W(dM
z%iqA?hYSy+5Cpp`kczY#GFx8Xlw^fdP*RuKY@Xm8;t3&x>rv3NSu`Hiy=Ui|Pu(aa
z!&U}}<=O8SgUN}kFcfHT%q360)`^e*p`WJJKhRhPR)oqYcX@ze1kkp+T6>m(^PrOL
zM3qYnw5=Kc>yVH&kdE62#!_#3?%1ug=`AA=i2!k%7A~J`F_mbIc!(MMjnLg7eX%<@
zkk_l-JMnoC9EQ(1t~mD*hDG%pk&?gKNu{u!1{)I>cpxmn*zEWKZIO|Y!BbVmOu7?3
z2+Hz;Yhnp~_(Q9;iRE;iy(#|b$)TL2tS_chh)!TecI9~Y7*Z@Gf7`GJw$Uzwi1@HA
z1RsDbgnP5K_kt3Mf*bRID1Gr;E8fY;89p_uu{jn-_GjW0@4h!wYODY)iFDgUu9$=z
zQm6HILq2(cSY8O2oUjs3Yk0$g2BF`G2USTGgstV|AA!j`%fuYb@b&BEoIY<;*(6T;
z1u9HT!^kHfevSD{mAhE{;?Y(<ECze&Sf}Dk#Mh3mSD!x*A03_fb~VP9XJ+OdRgA@;
zpgew`18<Sk78k#B;qLY#BeIkfX}y3VD=^dP144W&<3HEF$}_(sB0NIJ{k@uQQfeL(
z7l%iJhf4V<Ux%TSAzV~wbzu+)m@GDZ`v#N+04KsvjU~lAKexO8)C&EF7{u5ZKOi8;
zPdHLE7Myy-rC;?s37`BIf5sdQm<onJJ3!T+{-l=?>2wZeW@gro{wr6O`!s+V2*f)d
zQEKt<@VL5yh~@ZMm-QBqxT~tHM^)+QR^|_)R_CAZD6o|&IzxOU+WHe{$i5AeD%v|l
zWlZ33K5df&6bf>tF-;Ww;Myw>{Q3EO(Pzk28v{CS;^MYa$eYJ+KhFv7BFl7ks-8#@
z;u0i8C5k-LBCJrA8SY7p{~u`m&+hK243T!I-bb})jvyJLqrQxVg|=EK+*SrtE$p)!
z!3NRV=7zEq<T1))p}Lo!jnne-@?fRW&}<!7F;_}`o>oSi9_2OX#{VKJLGeR^`r3!m
z1dPtl2!}>27h@?vF#r0#PcRx9j5;G5_GocsWo3CD<i^{?78l-ojy`oLXk#3)gRDxt
z{BK=Lnzoh}N_u+fHgGR?K8{F?OH5Wd7yafNA0PkqYud->>zye|x}YS6evDsa5>!|m
zdwHqzu?%<|;5>kM7SLAaq<Be9_53-7?u48U@Twvu?_ji;W^{Cb%PNJ8%&w)WIzdK&
z$`}(F`-qYk3Vr)Mraz<DVp`c7(Y-VmPGQiy8X@~%G^*?XAo)}}4C$x@G9+SRhy+N;
zQk}2K$yvW=z^Or{Z3a+O1ok*;J|Y5$L8xib<FMmLu*Hy^bW2K^!8M%b`@y8%L1%2d
zy`#9kR6|uyuLQ+JMMd>84)jt#fvV@7QdF3%-Q6G**HM{Lz#JkD)DNEKZ45C{ah7JE
z>HK8nfk0>kNX0?TjBnvo5#XS?W&)%yqqIzKeHFw>=>N#29m$5E-O;6%02kp`QOs`i
zL)Y_jmf7)UFnB@$uI=jL@>5idPg_ewTGHig3gd|^4OSb_rmOYvBuPqoQ(G5P_62IL
zgt-WiUzAz$<p9fFg|3St{!+BP_2TSOD<0Z4dScQ;wy?UmIbJ}5T_4^AQmUvK6zhib
z^G{OgE2jFIo72ijgTbBzH9($-3-EfMpg+#;Q5})(>AT@~Re9ZBZsq6a`*LHXF+=h~
z5T3xvmTogq>_;f}7$R+})*;AK)rVKe>09ez%s0<Yqmq4oy|=uAgMxaXg7wFhd3-H`
zf)eyo^x=Q3uI>J^$WLz@oUiax!vU~xqD03T$WIuO&mRQZNtmt%_w*E!?f@i<*QZZo
zJ2Pd@4!&0{kDd@tHjr_1V}yuDMMa<^W5~$LI~^Vb2Zn?wNCOBvujjh3*XvI}3A)y7
zNG(Qfy3W&yOaLg4BpYZB{Ho4J5cC#_r7(VXcL#00x$WCu+@ezfan9^vH-MZ3!1{YR
zY2RVPB{CXb0s=tC!*>Y=^ko2^ym4RvV6{y(#tz2{#M|4z@zn!;H3DiBW@7`fgs<U0
zK(YhWDxqENCzzN3b{dcv@H)F9$Sc=rmyc=-_PZiJeujl()uF5=b}2D{*T(?lQlZ)R
z>4wMWe73<o{LdJX4<Ehf)CNTdR%MePE&j5##k0{Bw4JX7oI2T)jZshF5a(3@=wJt9
zBHx_i975Zi*N2x*Cp{tV&h`ffKSf1x`%~Uo>$>}-ivw6u>hALDSYNZSjE|doDJBS8
zt|}z{s?u}E_y5OU0BS<_vQ<I#)Ncz^Sus`Tpe_M9$(^bAOqhp!28djDPP;0P=*8H+
zpH{w&Tp9R@2DGz|a({UKr8+WUm$O(1L#E<h1AVTFs-l1lxE81>EPi*k1^5N55AQFo
z$|uv)QwZZy8No7YoHsy;cp$l-n34d0&H@xP#>%>5D<Bom=V{HP0u~|%K`9s@5COzl
zoSu$`XS@XD?vxt03~>1+PgbnvFp0?BJ?s0|AFP%d>f*6YZ>Tb;f&#uetPj|>e)jWp
zKS~=~H+tRJ+B%}GlciE~0(hq2+y>kpkRM+Z57p*1E%=;7+^JHckFK>rHiVWK|BHUS
zdRpW$<o*?N%U@}!JI!WaLGogDcB+i?uQIZ6QMg(EBuSoL_`~iH4ALrCy^pF|-#_DI
zwl+umwvum>Sln<)kKjT251I7NaesU**Sjs2@E<XyyZ3s#=eAq_m%Pbhp)S|+UsA-t
zh)ix6|M|avv}+;ofBz`GVdQ79x{}iC5DH&HzuK*dsi{O+u249f&I6QexT^pXy+X;%
zmV77W44%A}n*RNTTnL0{2{&B|;4XmDv-Xov{0RdyhdVxv*T}6%Z61NX$R8Ju{Ad%p
zTE^VgJ#bqEwd%U@=s-(tzvHp|U8KEY_G|y!jqLM_!@B>utsZ}~`QKheK*Nk~=4nj+
zXF%47{_DU73HIgPlZ)G$1!F*SBS=X22Xfkpuo!-SUG>SoPY3NFTu~5+l*-M{P7_bO
zpU3oyzU$=LeXg;wxR{+j1|6)#qED~qNcl@4obNdaV*(XrViOZlQ)g#qfj*L~oZNg#
zcBQ7e_!k%_nQg#2ec<5m!+&<)ZTO07zKk^+^kGO)BB4mO@xs@L>mqSeIRcg-8OchQ
zLlaqDVxZ0nVrwAGlnp9J4LvT?{I^Hhes`3xUR?lW@uo2v<=ii3r#S?K5+KngnaDo)
zHLorvCbqgdKKlh89-bvNz&kUt4+3oO$PwBg2zf#(4Fs)u>&zjK%OwBLSI!xjy&ZiB
zB+ObG91b%R<M4tH4-UX-U?tR_a{vB)BWpRdM~llf&Oo6DuvR`vF>sUsl_;R+5m5y&
zYyTf#c9MI29mkfyy)#4E#12RsAmkZB%$c3?hTvmWIFg;PSG=#WA^HzecD(;g`eX8i
z!rB*yaSO)4%mNih9f2T@EfCECb>$hlx}&rN9|E8^BjVzZN16&)CosSh_;<nFNO}Jj
zOK8Am$@Rd=tn&m!&+;#Akv#Uke!kfR=nu{f;eg&xwSx=L*}X#lehBy_U8y#2N6%ce
zq@+4IbaWp1kTX(onvAnHxurJcp)x}3_TFfU*h+N*B?dsE{(nFB_?jssEDq7%F9O#v
zd9rLsS%Wqp1fd(mA*o()a<XzpQ*kMpYfmogRKyk-2wMI64(efAPSl)&N`gRR0#XA9
z?mB?FWZy}dSVsfZ2vC%7(|O1DzDN<?)#)4vwmplC%$`7RQHlhDJUEG5O|-#)U&W|Z
zu~U~$nc(+t$G_bcIg`CnBK9V0<arW0>mEn1CKRYgiHi++8v^+?j^!Cb-Fgz%hKnT=
zEdFkb#_3(&3*0ThPxyQ^>(1hg)LutflLE@7!~MMk`vp$7diwhMc1Sv|lkO)cf579|
zPu@-KUln|UmIsF`si={RXJPm>rD2qk^27}bZOrex+<X0+DXBFWyJly#!h9$b++jC$
zZoQWaK?G5>-JPA=d~Ob>pB}`hsX0_ViGfC75))3Q$bUc-6Vvg!y&hj5;?>rMHNhrC
z1kR}h*lf318WbsY*6nNtWo0@Ng;SQMPzmoN{PR=mKB#0kES@!&$<@{^-PM&nE33Y;
zq7B{F^8js;yHePof~X|));R9YP6Xk(S65zDJ8h3gP`X!FpKMMX)`$g}C?w)0hVLCs
za8xI~gy-c<dT(i3dkL7W-u5QT5XwTgx0lPzj?KAESG`#bcEU|`pozP)#l{`9sRL$z
z8-eg1ePy!DVtr;*vcISH^vqUHE+os}KOh1#c}g8nBLaJ$AY;(tOiqozH+w&T1O*sr
z=cQq~LuS1d+0?$bMQhX5Zh*+dkMx8ymx#=5f3oaQqaZ#JN-E%b(AVP6EH4ivU_1nF
z*Go)mFo<97?>1;yPXj%Y5>^O~Y`u6Ws7kTJZ?^;nF0Q};0|k9#WOQ_J7)bx?mzZIh
zk(*`hCi4MoaY0`njLS|MxUeZL{_q1#C8f-^Hu|nERV#`PM=6d>g`~Bu-$JG%hU^Jk
z>goW;#fFSr5E{A^3OG{SmUGr-<~f-;(lOr%(+V<aXc?w{P=liq7^6Gjdu!9E%GB3q
zTl_oq;uGSDuU1nZ++NvFjK$SDJAuXw4yyL{3O;?0{KQ{GzoeuDZZx$vT4w-xl_JbA
z*6V^K-A%6+y|n)DZa^E6L|@&GX4JoRc>E|`FZb%6N9p8Q6p&NVY&8LkhhW&V(?(Dk
z10JHIr>CtgZ3<xm!g!^5mWsDG%}wkmK26~{sPB{xP*A+4Du5WIS#%byj5f4?)!^iq
z-{Sxl5;HR0FPQqu$<o^EhNZ@Nb$L}~*=D+`<lU}5NT0D}$x}=4=<a~7L@6s{FD++<
zlI?CR!Lrj>t(tv*fp;e*&uN>Q_-?ME=mp;$7}=RA>v$+XQ%hvEvjFlROI#$|+v|+v
z2X=PX?x*toJ+iWL870sGRT*eRc+ypOf!-rP`pA?A3zGjO<JMIS!|*q5fv100(#J44
zqDAA0s;VV5Ao)0OFDF@&AI4QIGBRBYi^evlrlx%GfOn=83WaK^WO=cfMJAU)fb5%$
zY^^8gy;g~&yn=>CnAi0vqYkL~Wq;9(NE#;5#Wy~AGdEp@YSOp0xFg`w_>uZ>6{Lj)
z!h(&8H2Y?%L21zLADS~Yj_Kyzz1@8F`wL4&?^gTcUv~jI`Qelws(VcpiJ)`A{6ljp
z|LC#7VauG&*iQw_RVY;u-WgwU9bqzy`*c69HVffOxd!qHgT13%5dONrUK;<|Goim-
zLlEFfE;gkJYmYKw?GOj0mb22|S-zK~rJ_pV_qH~A^Tyclb=GFH!nOOcw44G9d~+<b
zFn9Bfg$xOWs+y`pX(@XmzA0W*xDaCg!)_8uY3UO?dj<xU{=Uv{b`Q_WSR(F!Zr+u}
zqoiyiwg(WKpdz+1h1&g3f1l1t$w@JN9(D6MzyCx3?&u9Z7MTK>7tb0H4}^{^4HR5^
z?{5^!wVP-pSGgEod_G^w9)ksJdQAWgNCwRYW)41!O|lv(0Ulo0zC01y&{Z7l+E+m>
z6O~pBjy&_dt1EJL(X}Y1p$P(xQz?RyYL04w&*&J(C9jw0Lr628MA#>qd)R4D!X^w*
zQiZLkqKGMIxf~6itMeMy26q~b9-JGc4>7gm7l8HRfl0z|vp$#*go|80ce=|`n8(OW
zM{eA~Al0W`8^2Vj*&qN!rg$rqfQ}>x4FqWvU>8`;ury#}<Kp7t4f*LCO4f^d*`4KE
zo=gozBK<um_r&jlUAI%aMwbm$hX6OsWjRHUFMxwXMD!F}(kVs2JvQpH+8#MkuWYej
z@RWFbuBCN(_4fMZQPihz^ZgCCW_m_j-8KtLN4sPBlsp_X3g`PZyS;L9VaczGw!>yV
zi{0P0vUIkdl+}x#^j$?UC^Dk!JilIL5<zl%b>#i(GO@K{ch2I>Gbu?pS*9xr_M5pa
z>;$*xLQai(JX@rfQ(s5r@UnF-JQC&#i+FH(GIhDh6-kw_G(fbA`co8ait5S9rLxFg
zX7i``=0tbfe@hX<-9P*jNLDa1QToVNe6boUXeiLB@Vs`Lw;I|QX%iQRyqYcIFa<=_
zwh+QHuU3=;x8424qr5hs0c=mb8FU7Xz+v%nYbPg%0F9;PrP8uekO?MwG6FL)GPSSL
zwX<-z&@)^4G(i1#5kZZO-mGmbiI(@b1z(%Ye*U=x1AL8e4}GicA=4%h-ZGF+#>K=T
zAS8VqL%Z+{tME+!*8C)?(6smD2>+<}3bFl`_s3Rlp(SH}hmsxd`9g!+L<N?FySsbH
z_z%0|dBGF;)U$-Z$Y+k#k&)li>mE2NnGaz>-^_GPCoLUqPFOU>m7G}J=I2(mk|AM)
zGYtA0kY_2bMjlYnRR$H{;>t?#z7hUAo}lEnv(uWmbmU5exOq05$I(6EzekgBV*{Xc
z)zs7owso)+KMsqSQ#wXM*Yh%YCMW3`=w|A@Q@fW3wF>vnuYf!SuM(MzwziB2B`u3W
zWRs$b8qTb0OiV_6&*$c55HMBnM?WNdH4Z}49#DXt`c{}Ok~;UXK1E+i3faE}6CPrT
zzWSS%r%qRIh@HcyrFo5!9NZjBP90*szK>+;t!zA=JMjE7#vgHqMn)j)tQ}o_Cib8b
z9*;sQzx|IQ5&@U5>B-kozn^m@?ua($=I7_-1O^0kvoON!He#DMMdSwcS{9e_mL%Fl
zReZ>hRo=Y=#4hs&H87_pa;Y~5?x%G%6c2=_^3L11(;w`j&gKAnp%em9Q&a8e3tC${
z!C<9=gu8Ww0tx<1pb;^FcA!Nj@LthKwr9??@3DW6B>%mpCYiCks>?OZWHkd8Ztept
z;ZT$>B3N|5V@zeCqoZrfJ+qa0IXMX&<Y~Y>s6+?OAFyd0z6-2c&oK7(^y$~Wcom-b
zJS+93w*VzW&~!8?*%;F~|G^i@v5khRHl!~B+>w9BVU)taE_a+5IFV*%>skFNVxnRv
zyE9Y6KYzA%b_(v9DNEC<$?B*Kb<WOT#dOaOWqMp+SC}&Ecl7n*h~j5IG1#oQ;XMgj
zzrA!F@<F%_?2_Jini1R1z{J2r=UJzwp)u4>$T~2>u{%i3MxBv!Jm<u~K<`(mtae;X
z(92y<U{lNT6sxDqVr;M`zv*q!LR2JsadF4x#?tS!>@*>=_ffT1S3zTiB@>oNI#U8W
zJ4^|fb3H#r#l=@vW@?<t_$kPo4<h8G<@k^1yt#L#i?$~nhkqC@wX@R*qzq4Y_sVHY
z2lC43$%S}$uv}h5iWt%Ia~y7j5M|w7D#)k|{p^tZ(%RM2SMPc2WvGN{CTl6&ypD?3
z!M|Z{QNzO*HFSuAlJXFVBcTTnS?vP9R9EK&c8w%*r}BHthpsFwN7#oY^N5(2+c0v;
zLXC#XER1B)c&MqFfYFc~lT3n5=yvuK`9OrvdN})Dox93uUwAYc8Zxr`{%1P6gqTDb
zLLdO6+Oo*Q_i}CQm<7iS+4VlGwx*;6nnQ1P{=nPYoroxh3Z7c4yq)z}Fm{FPvFH6-
z<gA?r#Nw&3G3AP#Yl_`s;Y%;*?3ck}X&h=--g|fRx_1w=zrhh+h)?pl>HRyFgxK!B
z-nzBLp)3guPd)y@1CUB?=uh&xp;+jK50!Ba_k$I~1eAlUlL8~z={#Cbt3Rcr_~etE
zALPQajoyvKc-*6%s~=)#Cw+8w>%7bkZ)zG9mzJLFXlxv4d=6N|9-g5gVGT~3v2)k%
zliJ#P!6B}%Qf`N`xPkTIdNW5!tMIsdmfvm7eDfzY%>{qu?l$D}mI@P9$Fjbt7!Ed`
z>(M3)1Et6+%D0`jinsS-9rqbg)MEPc6Pq;*J3A_0@<QfZHXI^>^^sEi{jJR@sdC}M
zv)<{k8Uxa&&|hsX1g>~mgM$F73T%B~1Ul)}l%IPpAD(O2%m#lAe9NBjP9k*J!tE-Z
z)s6>MWhjN2*?4&wY<c&iBeU@!JQ#IUdnk3x4^2kpOvBpXBx7Uif?OcpLwd8;88xu?
z!LBP0uA)aw(n&5QB{fx`C*>EGDnMNULKAGp(=QLI;-X?Q7UTe0x)TmxdT;GjpI%oN
zSX>OqDR5SxsP<Y&=!2%Fn%aoz?5qgV6Uz;=j_%F~1Byu~bZHPH^%c1W`SFyd7I0ip
z=N-8^6$$|kB53VBpq3w$NO<Yeh7e$3Kco2iIiM6)US4jsU;K9+9ETAs82{PF$xjxH
zw<W}&JAz)aeo>*Re2ED$W$$-to34?5($ElJU23M1^7CID(;A%P;9yg{d#604>|R+-
z*U{jy1+>?fh>n(Q7i;)<BMX;6Od{;T1EAB8$CNKQ*gR~x)uEJLS1TJFoSR#<#Am1b
z_H&}WGcXZvvlOTkdemg%LWv+3LxwHz-X2&`UY=$8KKp^(Z9{GxcoNddri2)pC?^(+
zPLa_%UK9;#!CM<Ek$ShN^j^*s-nw5dS{$bt`Wj4MksmeWr_)vG?i4&gqWJ#3gVt-m
z))i<LAAM2}RFIymvN3Q4;z@vbK2bt+{rmpclEFdc143;)s3iw2E$u<q$_H=+XA|#7
z#3tCl3Z-cO42!_?h4TvLW1MsmR;qQ@-YG0XOac4(F<_!N*t$(9iO8#uf&)P5^{4(-
zGC_9}U{ck7c~Zs-q4bxOf74O2iitVJZMiYOpzQ3#4_1p#o$dA6uUUJ++s}P&e(j4S
zytW?wO%ME?Zw;-?%B)Tcf|Is-b8oZ0UlmV5SyL0aHLP?M0(mAH^qCK}G}kZ$^NBd#
zE=?0~AYz@PrtiF6%z@~Od>PP^Qyq!^62d~qq*pXg`+#J|7!?mP2@iQ%Ul^;4IGa!|
z0o7t0&1(4q#IIvCRFiIY8_IiK#QJ!h*Pp>Zfh$$y2il+RBBTvr<}sR?TFJ>xL>p+H
ztw|wF>{r<?o_cymT8$Z8-oO8VAvb4--|OeHoz$mmZ!(5w&?+4edytn;(e`A1!FhCW
zy!m;(nVOnfEjk9=oP;4x5EgEh-CYh-Y#baU^fMTG7I)5nt~RGSGB86euU_G!eMt+$
z_e?XEbhT5L^>_tZHMBx%{!gP2o~wgk0-$@WdfkYH&&`C_oWi$fmvc$4F9cChdwV*o
zZqI&2V6|uUrPeI=^VfS--10gdc_(rM`v84ws<1d`<KWoh?tb~a+#Q<4D-~)zS#Q<<
z>6((?Ukh5dl_MS<6XP%Di{$qOrJV7bl-*mbXOey3E~@i?(x-DFCo6n4R$_wMXN8kP
z--L@r)}NbimAQXp7Gl=v`6>SW;*~L=Ga6c(Yb$ET$3`eAs$w5p@wocH9XaM+P%~Mz
z&(?vP*Qg<^=JKJ9%|n%MQO#F>Hy!p0i$#OD>CJ*&RTj%tTznFz&5EpNa-4zF3wCz)
zbHwvF&q5s?Z8!IjwW$&f5aNkSYqXDJF*Y)eSQ<n`4Ms-?`OnMB(=~Imgrvv?_sdam
zvrr}Um|+Pf0-q}{kNA9c>Go)SMgpU7uHN(f0@7qMH3BXD1a;Ul{3zI2<+P~|luYOJ
z>ol0OHr|`g^}L$t?J*DsrWw`Q6=^}i2^W_fBt@XA=)4=+z_P*k6w4~LLH1+sJTcJD
zXQlGpD$&dX5t9&7E?J<v%{!?G&ZzTTjor&jm1~Tdq~wMq-ZJ>NT7(6R!?-^ei-U4}
z0~!M1$i02`?_b&vt6UF@3vJ}&(50lMq#R4iwwG5-W;24o(FcQ3RY{v^X#qV7?>D~>
zJ0xEhDW#-<)n04s!SeB?NbR2$n-(PuUJ#D3?Xyd3i?=l`wyO*dt~r!|!^T7|8Q=_s
zvhMLR{p|j;ka+39i!>z?0v1Y1t9>b{F`GGD2MVm$j{HPi@5BAzW*n6M_job?&tDU>
zU}fj$Gto24OUvPi_5$4+*^rPCRW)k1LO~DBrz{WdzIzP@UVId<%XcAYY=5xNe)rx-
zc@*&CJ$AL*pPt{nRr|$-;O^hMpGJ$X{|w39FaJOP15F@RVfVgJqGAxg|CcYyo#nQ6
zb`*t{Pb73?g1RutcI`s80davzr{s$~=kND6WVo2GX*Y=2j3hmjmBFq`E+~vkO!R*9
zJUJU^>*z{J(NzXi6vpM|dMiFne*fls#c2X6-kPZAHvHtM$%i>K)M25e?6UFG90(!E
z50709CBAan$}#Q+VAM6vVGUj7Vx!{?q?;Ru>iQLL<@y9c@A<6>2jIy4Ufg589kt@w
zU=a6zBPspM9bteF^tKca+%`6%h_<zLwc;3L@}`cy0FGOxQ@%A_JJIvgx9{StHpBk|
z2rHoq2=H-PDyk`cD*>Y;APPP#l+H?ug)l34;O9LYO&35%=Wvk@n!s-V>pST4ufHKK
z7yrA7IPDi?9T;j^e78eEC9DQ8Qoq<<Q2F-G4`|&DHp1Hgy<RO_%ZB!xjOMA|knYv%
zqHQHrQ7enKQpC2_aQjY%WNS1>p5h3S$etG+iPesavlekKWo4?LVj1XJ68ES2n|pC5
z+AMXW!egZ3zJ#HHZtbN|XTr`d&X0l2`jBF~MMrpPPY=M-@}l28@p&6(OpHcwYPIbJ
zqxofXOO%S<^<n_!rDtI&dE|&4j-@=cf3ksc^Wy$m9<EAw#C3zxqJD*IIBh5K{G>{F
ziCwcQ2?Ub!Au-w8gUq&~?=e_eF8x5790K9&sd4x=q$pvaF(zp+2ORu=pSWaf1R~FF
zT2o3>N1sGa7&RB(8ahH)pObU=FdyM+65yv?IQ0f1t7r}mI;aOls8lEFpiEj?933zO
zz(Wh3xA%5wE2)RlqmdDT9r4=})FZ0;y|}o&?8nn8*3s4B5{8cng3+Xy$%uD79B}RE
z?g(C=s7TT~recQnx$zlkGSbmR$s;&C{quQgN%=mO7ax9<Weh#{-LQAw-G4`q{O6NZ
z@9A=LIvB8{>#s0=i?7nibaWAy*!G^cpRRNI^@qvI=zG229k})6^O(U9Onw!ck}5-H
z{t@c4RS~qh=0KvHk|fqgt&vn|ysacSM{hl~ib%5>NeJRm<w~0xJN0hl4LA2Q<@7?U
zjg{+R#c%s|@;^_ls%sdaqr}%+VRe$9O728Yvot`k>YDgIf(=@$5Wn6)5PwW|*E-%Z
z6nQl@NZdqMpMf)_us5LTN~&C57Df5<Ry}N!U>U#E5t60ytkm)ln4>-GOcE>?RFJ|S
zE1BEq&#ckbOm+KUdOU{|)YZKvoFAc~TzghH1A7Fb0#>E&sWtQD2HP{Fr{>{w6IyN`
zFdVCP+vRo)jW1JgeQZu{l@!&@3vwH5FY+)8_?I==Q6*fWJR?<F7Ox!_H$sC}k2pE&
zN%+j#ej83hq12bBx^98DG<YmvuQa;*B;3q(fJF!*+IYWgDv<c@`Xc0?JHNm43WK_^
z&ji;&y?ZGxX6M>`eL<le-EO1a=*V}wq(1gtQRw;13wU0d3?~yCpT+Gl!;BnLsK;T8
zWj`kAOi}|8x7q3REz!nS=Jzy7JaaZD$m(hLDg#f_%pq=+o1_&?Ub!SAWu7!O$XHDc
z)-$vB^gx<W>WQn9vksTZf?&6L$S%K-nEq=$DR^92GCY)7M!M_Q@aL_lq@;yrf0h)5
zHI6skc=rA^l?v;E?^l!j5*y-&@`GGwAg^_w>pw!+m2)wIMb*`TfMW8OM@N8jPkDfW
z1{=ETAlTXMxlHi97xXOY<+YIu54a2TpB(KP8V}7(2Qm+{FS=tWs(6r06%TXAv$?of
znz&iI5hjm36iD@EV2t1L;Q1-zlHvs_F!b+ON1{DSwl2ypEp0rDr%Od+9~((8p`w!P
zHE?mESvC^S%24D1#AE8?Y77!O)}Ip@=X4`RT8wTA!a$VQfxCip<QG`zq<>B$AL#nr
z$b=S1ruBV(#JVYX*HQ-*0>5*Eoh#$%6*BmCiGdgI>Df)AwS0HG2hH4$;933=Iu1}0
zJg{4Hz@q0#$}Uxvc_8A6j?SCwNueAGh)T!9oDXe<%-<EkVvLqWq86kQ$omRB>VIDG
z^PQaOdZZ*Z7I?L&(pQ@kKB(bIt#o(aznQ7;zi%IiYQbiopm}$1&SLZ&%?bZq=s#04
ziw^?#Rk-C-#jI*pn5s+N7ITn?eBA@f2t+==E<d_@#XIv5V47{k2vmyE`8x?U6t$JL
zwW_v$lfEVnpRAugmk~GgLQItFa`-hmQ}a7<-%|iNI7r{^!)`~aIup+iT3-H`oNwfV
zwLB@5+@1nDa!O{WBeyiS)rMP{koGI<50$#r55FSaofiCW>|f#)=(oz=GJVVWz5os#
zt=qd>R4A#ly8|#mkBiIGx%l1<oj5aK{g&D5G|7gGWhFL7MyjhRE{r&7`ZJ*$<20#W
zqgP;B^TXeo2TBhK5O}!kp9%=xTy6H8*J{t+hLTD5^nDNIqUwB8si~Qt$i6tZ5t3DZ
zIp<rSn&k1@dF{k;&<-@{-k%0_^z=Om`Pv8?wDiUz=%3d7PRB`1(C;%ze7`=hP6N)r
zaeRVyW0)x}_JG#*JDa!K3{4su>bO7e`Ekp5id0WCFw)VPas(~E6QI2O7GSGt!U62w
z^1zMg8=qSDBiCnGT9cm<(SIkuzMGo|U~cIDJ%soO%;;iE9V|@<Z`F1S>6urB8(Y5Q
z>g(@$EB1L+9Z^v;b1Zh`Tc}@rQU4<DppFHwsBa|jitX1j!#<!Ft($>~pBmWgY3u0d
z9QNoRL1jB`*I0?gZa0CcTq?Z#zT@lvSVLb?U0YkN6&t#nx<Mwftzq{P%*j$*tg_Vi
z>P(uFA8FS3W=J8FexZNPNDFXAmSt<*dR|{WQ(2>Sxm(i+ym(kvdK@Hm=@p*b$^1K)
zjC&t<M_8OJne%g^-vxNl{g&D@y}jA&lewLJ;#t19Fp+_Do4sHsc#5AxQ79Dm9-2@v
zn`B6tO5NIjwry&MY)5Wa)rxdmiTO-ZSxFuoHd^a(K5Q{dOL*617Oh3sW1mxRR&PIU
z$xfB;_q6a4Ggm-04mkx(784fjoo)CXhT3;sADiugsb(J?-m$WhQ2U;rquyr%w!`Js
z;-z!5$l!sU$LCbpxgxWc^#(Xf1J7Q2diK`{>pE>apS`|6=M5ADY~}$Q5g064-w<_)
zNmx=}ep;Ws>u*|=a)gHF^#rG>eYZQN;S_UHK%b-@pK;sj1Akz_u01OZ-kjL=juKSp
z?w_%{Sqd3=!-q9ghguKB8N^Wi*znO<;z%zW^e20NUd??((z)R$fZ}t*=Ni$6OyP9&
zzx=dYghVV(uUb_E36dfcFE`Is+za*S;n`=l2Y3JiA7xksOHej&4VgV?)m1*9Xg}pn
zy16tosx);zl}qjarL2@;zGiI=sjaze$=<u>_ACwxWJC|{*p}Vmc+SoglM^1T#ckZS
zmg4!VK{k)|AwT)OG%M*%x4|#}Yh7-l+iTXln<bo!UqBtc$8?ZbO_$3_=(yjRd!thk
z@sY(Yt%2F&n!I`--dK_Oh(kLek%5j5k$eB-*v|171LZpwy6n*jaGmc1)3dG1e08PQ
z22u+IO@RezZo^U-8uE%O?_{COqI)#&+X<0fX$3~m*EFnSIZ{5Skz!+2mgb7#$$xCc
z$ATL(NKdX#R#S)Tzpl(#%#U*Am5Y?-l&xfDKJ)Mrwqs8&*iAe?L=;r9ftM|LHvC>J
zdDrqt4F@L@HroWO)nO$}$}eaE3etfA-c>L+k>-3HI4-bR>n!?#h9<^8&c0Z>62ibU
z8^F<AJmip(p|rQJdPN%3@|NAItn4@@CgE#*vp?c~u}ST=3jq#|&gJ##ow*$Q(pBaY
zS{GkXoTu-sR_zw0@14E>_0E6-e#a})C>C<e_>>!;!rgf9n*`_i=Dzl@Qvp|DE2Gq<
za1Xoa=+}i@2=4{i47eL>W$@(C(FY~}vE~pEl3z=-b$_?BU)8JJTil-NFDbDww^*OP
zkQCsN?gGh(SIMXd18%Kv8>~O(1O`^bX(&oQPHg#OK7)lSwB;yU8{EBkje~zyS7_rV
zg`9j$16w-S9J_t|_$k`>LxlG+zDr90$cHqAD|dBXAHL!zE?WCFH1nT(72){_?{j_i
zzU6|$!<wfA6RN4jnIPhx%f_~(tNZ|1fCKE7Pga{pa#Ki2-wNPhn~|CsspS4KeSsr{
zZ*Ft<a4YXKRw|At`HH*r`$v5fgaP`5i3tD?ubZA;E5)Y-w4Xy6S*dUTK5}*vhh<Sl
zlGycROUjKm*_uK50UU_|bf!DtT=us4??s9rv^rSeqNV6|aXhXm&`=k_tn8y8+w;z$
z9^qpw=54}_pHj(9)T1bqp?{2jV2e+ZvgGCz2pnJW)MS2<ufT|F=eu1%gh$CgK;UE|
z=Sir2vNn?_9ViF_#$ZHpChoR6u;Ew0=TIeOf*4+;VdWd;<?wcol;vj9Bo|;Mrry4U
z#K@P*TI<iwW6{=Ym6@-67c0SK(XTP?j{5z3Qk|J^Ao%n5?{W>-;^sFEI1Kut61Tgn
zsTib!eOM*%QIO}tyWVT5&5%i7SXj%8od@RW$?>uK-beW$|DQ`sh4q&px)Lq_fK#aV
zXm?>PJLkKwX#juE1;(GI4Fr_3>9@s&S4PE;Pa?9>nQUwj`J)k-npT*tDLRXY@M;Ku
zZeN{~kv5+nmj}kqOux-YrW_b~ki&$Yw&H;-S!`6)l=IQr&I2U++?+ML?Z(A@`I}3d
z*M{?VDOTCk0{Ay2rr4P|5c*@FXRvUo{g{@f9uh*$jZaEI0CJST&km619BN?wPn)zr
zn_^Y;Q&d$&X|-Eq^*m?NUK1W17#YZGUtHc?>!G1#i#&u!4a?F(9XDs|O7K`t9Bj`W
zw<n7zB~Bb1x5r9Wo$vTjTufZ#^8iucQ04SnT_Y|w2Ea6*kg_&5jjBt?SR6tjAW3b^
zp5TDYrl_TMO!cxd*UvAp#NNfo2*`1JBK&Sywm&p6O;|U;H)A#9GPy?jGh|P_|K<!Z
zqvD(y$UkW`coX<EDZVL!t~<~WGp0*&B-oyxvlV`SwWP~uWtGkyQq%=f&UPEou5rxv
znF^*wnhw@_5B{PdHV6H>;5j+G?(2gF?V-taF8e3fm#;|shsQOa?oGO%eNcR#oe<F3
z<bA`l*Do07={dx~(dn!WK-7^9PTjH1-@gND0B~a?pmM>%UNdF6KPty32P1j;d6}(G
zn|#{kQ%{Z$8JJj1rKNAqx>*411gPtM?g9}Oc=JQ}DoD-)%mlz*4A)n|*XN^XcVBs|
zEi8$$pL^U4nf5!8z5K8+=Uq5m84($4VrWj!LMxFv7mo*aZ@mBsSI=zQ%FSXsDDt?3
zeW7{Hpv(i4nmXMg&v(NlVY2fX_JrL2{2Du5_9<mHR1omxLL43KD7eL(PDpu#<*OX7
zd3ka`o{O3jTLUI6=Xjh&PTu$AiK?F{fE~@5_D9l0xL57&7N(^M%^DBBv3tSB<Jxkv
z4f6vS1aDHFw`L}p0IZRG%xwFT_yC%mEJr;hUa{k4;quDPM>X{91yio7lH2vWDf*>Q
z(z8nj`WKbXyYi-G80W9TQwhUvuDAJgYGtLRbMgRpHLRc3^P;1xYp`m&apgmY0{VF;
z&Xw}UQychXA2kE*>Q1^u3lhf8xB=atcR+^cYLaYa{ujC6oe#S`meK%3#s35?SSQQ6
z$QmVbLj-xWmY0(*IIg>;rI>a`HhY#j4PNreNO37!wY(v~G*H}=eD9zP3DX$={4Lrr
zA|k`s*yrLD?@6o@KH8&mW$A4^9K73Ni?PKl1*DU0zTF@e-Q=W#>B^$R!UkUn3mPig
zDE5DV7SwaAAm!L+P$hiOD=TXvpYT0B!`RSVy3f(p0oH~3DlB+<e>HVvWMqg&HlEi|
zSl)UEtTo#z-HQ*XOE}n9<u<8+==nlHA-0q=wZCC&)BS8oiijb%D%D%Sb!&Y3>dL@r
z*E+KspNIPS3rQ8dnZCBnpoj>qIOcwX+V_S;gmq2a0!6XY5LX!A>2^s)IgQOzso6?<
zQxL!enF)|GmbMOTS>ECIc)323D6b~Dk;-mO4F6FH6NL%eT_!s3$jT|)_Dm&mcK+(y
zNi8vz%6&+w;QDIzmr52m?!w3*(syAhUkuHxM6enE-H2=0llUy%FX+CVZgfaX^*TF~
znVWTnhsXc^&DsmV<3^*ZKelKE8?L&fdG#b<E8^4{uonz;1jy)1mc#j%r-!Jh4GDs&
zgg?$(VNw9n@hmm|Y^@Wk+Sm7CRHyFE@tEp8yVAsbD|0tDoW%Ts%$1cb*#cpw4sxKX
zapB9W%Y1sVJq3WT47e;OYh#5VNW0*A2sTBqz%)Aqa(A{+=NFfh)ARz2>%Z8QCsh=1
zr`}@Y3trwV7Tw>FqGlm|FE2}BVP^>mHDhDkpyla&ows&&cG`p>Fc32P=1?Ke&slEA
zxbrh2?2!!6gmd^&cHK~AkJpnV)rCRI`lj>hJTfw}fAb3rnf_|7*m&tF9V@8axu5E#
zt<fv9)YiEj<u62vSVb{Hb?~*rhaxP9UWAmgD#8Yjd24&8;Dr}|N!mNdw!fF1&U0>I
z(?3B+56&}>8}A#8M}=BmH~XHvxyX2_uXtCSeKd3u!((_%774@DWQeR8LbpvdxX+y-
z71bBOv!K)Aj*M&>yWSh>e7AmHbyRdAnR}wwP<uGoU_{HxEPnQ^dCCT_{}(N1W?(nZ
zhsBM`-djp)iF|{q%MHJ)LFJ2h-=DzVH0V#Iko!I~K;R(T-_wMPD`F5bZHCXzp`kIy
zYV=j|2O~X;jh@dNE!2INS5l9BEFG%Z!0sXMPjz;7;Pi%YMSXDkz{(9lci$J@W7~df
zM1@b(VZ>g8Po#3$+uhSCC8w}El<t3*nr?Z+DyfEkSpyMKkZ9L@U*%&8YM&9{Yiel@
zm?0x8>j0#9ho7{sSC210Dn?;mo<nI#dSqyMIjHjxmLh<2RA(LomOkz*r1RIvXeJiW
zO0KScQeN&LEDWNDViGb8CDv<it-ZY5Ofn_?z^s2p0m}~5qXgM0S`TC}p$BW<-@b#x
zf`etbb#yx0syUneCDg@DuDfDTP5U#4lAoHrszS7*bRfLDdwwqp)n^NYdhL&e<d)fJ
z^RO}r?k;%>f<j&^xh!th>Z3$i{m&*cJ=ry(baFUPl{)A1_#7=yM^N=j9qY-sU3L4t
z`c<CcZe24y&y1Mxm7!-4j(X;%Go>_i^ORE8Jy18ul5*NjS%RpGflmKwY=;A5w_0Z+
z56aq`o>;P5l7)J@E!)urL&;{K7Yqz^AwK*pEu1yLru5}15G6%1Sp21tNkKuqSI5(l
zi=k-I<z=gC_lh*RCic(&0)Rq5#Z`vF>>mKt=dpl{8)R%|5(^4u^&xUfEiY|QB==4F
zfb2CWwLrn^HanQXfyeaBvSD}5KwnF1S~Hc;Jkz^`S+5$OK#4~i3I*c~i~PRumOe{u
z_Uz}R(->@jiP?lnU)I{R_2L+y0gvt>2Q)7%5Rw)qpaArKpp1<3)(pdy><WtkDKI?5
zrV)OVRJv?K{c<f-rYZ?IMC~3<LFE!>Jr$~fqwtke<cF*0$%JW%X^;^Lm#szqsxNZN
zV*A}Mb`*N8HNsvAQFDzHy-zKJH1hC4)<iP%jr(c7oU9Z9#5hor<Ka~EZUbH?=B&E)
z`1450aj3Tnw6HuO72DR`t+!#!>P8B)g`4^%W3V+bh~s13D^eoryP{O6H<IQiUHZOv
z?lEVoprt(MX+^Teh>XmycC0_@M3I<W1b?1J6Re@*KHSg!lH94ak`B!J!PXAfl>N_H
zM46*uPOq9H8*MLAy`30Xk|m9gq1j$FUl54Qc9eCPz;CNRvi=i!JCqLePT;w{w2eaI
zaWr6eYd+C37#lq(*L$g=to6D}b8UkUs;%pKQTgnF9506W)CGlJK)?jnQz6=oYQ&J@
z@|49DaRDO--1BG|$%mO)I%ekO^qMDX{V9|+P8nEom9D$9>$f*LFWt+d>iCmKgxpM4
zSZbW)@cF9^`rX)m-xlZ}W1#6)Ilyy@4*(WXs_%0G2VCUgx%L^DeQ@C2p?54#LhIZ?
z&IEp6b+B*J?PzblpOW(Sm7USABpxo|Lql2`TAP`Y)owZ!a5+jApLhA4c9L5=9`AZz
zi_HclsAPV<YUH4z2KitZA!8RoV)zfweo_)EE6Q&!DzBB4WIe7xdj0Zf?R6xD200*=
zD<lgxn6E3_8BlPawb8~xQ)VY?3g-7uh<UL|@VM>P2CU1=0e129`g$=clGxHxGJ#v5
zEe`PsSqhsgJET+v|C}Tj)bK&MwOtz+Gw`C*1odrR<ZmM26B0^OPqo2!?nSbYzkP|S
zqis?jakEKHsO>lXtIcYv1E~x>xw(To;lFblPs`4^I-Mt}b2Z%ET_X&n9b)m_W%92j
z1*m%6WiUQnq1rXIo3?*JPkwu5ziMukSeG$nX<tUxgYm}w27dn|hLHQssHc1O9TtOJ
zN@4HXs}+`2z~co(VjM3T$s4ZR18YOKukD&Qzt{x@#gfgAwYOOptV%xei3pFWx*C|h
zcM>`mOsWv)5;a^qz3hKdsp+7%!mo6e>md2|D)8N9`{|A#$VH_kK0YVBxm-RhX2f-@
zYOIXk4cpRr*<1r(frzTf?7Wx0ecfEA0D>i!4IfUX*iu12m$K78VxFj<bdJ-rykufi
z$@qES<amRuf|An8Na@AHb6>sC&{;D47lYkBGXp==n%I?T;R*7by}w4)wWQX8g-pTG
ziv^>GIHF>P-w#AV0Xezmd#{xRnAwzcWOC2NXy?AFGIzd#nGWhPOodT1<!5}0h>DZQ
zQTvPQB6`%_A;<4_5#6#36b7S6ns7ncDH8KDquI3(g*<d;J&=%%PP$tEVW{teM6|J4
z!^;CCvqcOf{CO|hP)5|$GGMS`J3G-7<O%EzjNLmMknQKnhf&MPqaF9odkBp+aVe>n
z;1UFPA*)O8LE*^_Zc3!296v7psa-H;R_3Irj`K`3!6d!8>UpMUMivOERq0GTZcovs
ze!<M!Q0nlpF1<s;jKNdH;=$r?-%7ia&3mR|%gZdvQBxi~2gm1LqVaj94q=ZVmGN5Z
z+1dO70Slw8FBp%}MsT7f4d-p9!HD9saHy-P!O0#|+PJoaCw%38(xPfqgr>dcod}RJ
zElB8r!2#!&Jp}WOPt8PxKI{!bEOrFkV0o~m>HMjZAFT5kYoP2WR%9gc_7-&a7Q}EI
zRl@k)4q&ylNnPY|^71lR0m`66u13+su$Qq~%$u%!agfELEQ^Rm4O^C%Qm}DYdk^fJ
zKVkRlPjg;;wH9%EE9>**uQt8O&02B^&0T5%#>Kn=;Df;>TE+?>X5vE}L6E%gJCK)Z
zHUQ8XTg#&uEiWnZJUs8_;{m=h80(Mt-93Hs-91Ny?7qPDZbYI7rL5PR_%YI(FDJ)Y
z4pYWQ8sBdRq-T-M&NmRdoG4c?uLydxX~>AhNOSplw4=!dk148-Y7C{7Y`oL3@5-T<
zV&k1b;E9fo%FoP(<z~v8)={ufzJtMI^fbd6IQ^82w2QH$%)X7CalVcrmOrF?F)=b7
z-0Xo)Z7gT}OYuwb=h{!1CU50U#PnR`<)i{$#jXW&&c7%5S^_Y5oH*FQL=Ve5R*MtD
zwPaQpIn-2!%wFHJzuo(I4@*4k$>S$CPTP|J5C8BXBLCyZXU1a%*X^OeSFHyAN*CJc
z-oWVa)poxi{Jw-jGOxpeuU`TIM7@Y#lW~+4BMi8IspVF8=>POA1?Q{t)$PkuKYwK?
zH2x<oH3^?5RQF<Xdur3`x=i*3{cw0j0>Qb(!A5Ul!_KVSj^A+A>E1lLPQ@b#R~HKn
z`L{~g&ymi6iL_0vQ|p-yi}9ei!^cp3f{3?E1yWXC7^Hb~)iGDS+8P_wv8AP-YdwGt
zrrCM2KSt-&*cFyVr(TevntFLj`OWTznlcVNywq?rg@0X3Yxvg}oJbu3*PB<4(a)Vv
z6Dqhxl<gKzwpF7#qIBzQ7k>?9bu;Kcxqs(j+pgFjW=7Q4gQ|(ij}Sg$C{g>D>|Tf!
zmssq4SHsFeceXXSTCYr(@p{gaA&mLaq@D*QJSWnwIHash4SO@>Mb65|*+apETF1Jv
zNt|@<yps#FR<Ah*wP|q*tt3KgFRg&cq@=*w`^m=uNI#&i#sIQDj4bJPAWeJkR|Lp!
zN!uMWYpC_|uQ<23FK$E#=07KzsCv5h<JSn&gs!!<Ehbz&mU@!TpPD+qAX`;gNlEkM
zzzziHRrKoeny-=;C~^?KR)KlPfA;J_Z_h)9Hz=Gq>=sf#f;-=!u|lj2F(eOO1K+U-
zsI$_#UtZqaT!xbJ+Z`C0X-y=p58?Ht$e~xLf|8xU1*w~v0S>t&%0s^|p~Son`_on1
z#KBVQCZ-ieHy&nmaID)K_p2?fcMp8lv1r--+OoX{voIz)#7=Look3-ap3W%v3w@Oi
zl8}R=q|5VFkk9s4NP6jT<)Z((DH0J?)C7yNQn$eSO<HJdY%-_}Mh*Mx*EKf-YYD)e
zLB1VOBQS0b`$PDgYae0I#HDqQh^33WxdB9Xdw+6JU<ma{{eD2*et}rHj4X*@y+Rl%
z0C9ENKkrT9wI=2X642F{FD|U7IF3RIOBTpaOZ)L=MK*T8JRVqZz;$vetvIc-_vZ|_
znwXjSwO`|hii0ESeF}V#kD7GMbU;ec-qES;dm{n@S@~Js(bwT<OzXNlw6)f?$6{Jl
z0iJ?N*2|*2%W7(_)U8lydUoZ)2ApRgy07oLaeFS*A2MW`56oBP{@);;i=K6BwtaMt
za(pY*#X<)H?%NipZie@|=5@x>hg9%F@MV}QEPF)N5L@S1Qg1igMhHp6n19`um6Fn0
zcXR%h|6N-fEM-dt!lz_bNxP}pIiMWzp^0kB+TgRF-2-6*N4HGKv6x)i+C*Q_A}r=4
zJ5OH-(3!2)d)f=!)+XjNB_Cs+z1-D)xN>RpXywv7ookL}<&st)5<}{6c2K0z<MwU#
zQ19uS)+}DnDaKwzi^uJ@^UeM>{}}T%`#XK-!!d>`%wg4Q5WcrB@u<rri<ubqxJ5TT
zUHwpnkxoHHP4HkVnaV)!sX9pXx?Zza?Hm-Px>gMn3AGih<ng&O=KgrozEwDa9kVvA
zaZ_)9xR-CCW73ljbzq^`61?>XW~8zUWKLB}Eo1Hw;C1xcnN2>QchGk>V4L0`%YU7@
zIwy{pxBwaHSmHAg1--@g&eU${G1Rtwa|>^N?+q#0;ZYX6__2^v7%rA3*rUJrFBFZ1
zlFEv_3CL-g_~AO-6Kxl`$fxWUhChM<cx+R&sW|S?*2ri88988ba?=0aJ%FIBUclR0
z6CzvH1Nayriz1$+wD6~R673j#UqR9zn|eaLP0;Bv0j@>(yVFlk`aZuQAa6DD+L+Z*
z(c*c*^#v+tAS51`0f$lGBhm%;udd?afqaPB$n}({d@Ua7XnJnQb4~FVot<GjzuG&8
zb)Pa)0=PrlDS?pF=Y{WZ;(J=SGCFEZxj)hZDR~P)N}~Elt*oAul!#VBUrvjK94*8p
z3`BD&b<xrNwX~4EgCBMv?JKJeo6;(Hd0$@;`56C6(uc?g)qx)AobFhS*C#_`H(v`O
zK-R}Wkm<cy;EcDNLv+|-0a)Z|=&VD62#xJNokp=mxzhA=>%>FSc6LB^Qf(wj+pBI5
z%ctqb0Qd6{DVC=sXd0dKu;o>=+#ItPb!cyvW3Z{0O{(HYHnGOA0TGwSOuaQ1@%rJC
zCc8Lv(v_NeqSen~lpzDKDbLSow5wss4!92V+ktUxR8%Go;J#RYsbTEs7&2fUCPxmC
z;e-Lz0So{tCiM=)4-Qa(^UUfvxn(va{)A-m{n1{_p6x6IoX@5AOfHZR&RpU*)}+}I
zKH2`F7~<cjmaKNf66!35855%MSvb7zsa;rTE@sDZMKsHN?`p~+BWJw)F<vraz3nZ>
zP&$Y53{#DA$)!Ivt@#T&0&_DJ3A!cWB|8UUNp+>y1U1s>O%(B>20BQj4JTT{Ns^R4
zSnuqm124wM0kgP!aircdto~7TqQeu=8B9hRd$YOvzKf8;y2)pENd>sSyz?`bF(+cq
z_m>yP{?6OHmG-M`YPoJzRZ`_|>cZr=7i%p*N8aNAe{vU-@}C)K6z(6G9ba<N{9q|g
zm`qKs)K|cJxL2@u5zqAPIYZWShC~hR=J~-EB9Ui{t6P(9kQZs{F9_8-=ZWj=eY$hc
ze>MeZJ4F%azbS!#jfuz{RWz;OoBwv&-13ku4*&}41n?j+s<pZXea>z91zyjv{vX!f
zI;_g|Yt+T17$BkoA|V~p4bmbdEiJ7eAgy$xqM(HIq`SL8TBW<Yq*J<ckEyQpt>6B>
zz0Wz<b>=@SE|EFs`@YXJo-yumkN(jS?dmf@<!aKmvzBl3cXi!n$Mjsef?v!b59Hiq
z5%{(oRef)w10;w|j;%1)KTuLDaEoXfGz4f25=ys?Ra9%IF!2k@eWpx&SHHsZ>BdLv
z`vp%09qsK$M>sVZ3mua9xV@vKjN=O7qe8v0V*h}}fn&YrgXCW*Up-~C#SA9$x?dP}
z>r`;Y94@GD^hSrCo$5Bus|(Z=ujsY3HbuMy;}VXNa_?pV<4F0u<K<DNsOWODT4Dj*
z(-=>}jVd0KK_)rfM5^6;i^iLlBd+E$?em3=;ue}eaqm0=2tu#r%{Rt*mB@4c{N;6b
zC?q%2pzp0U(b7JB(4!%)939-u$VjI8y12;I0fY1gRSGSd*Cg?&2~akk=12am0ZydH
zMyL)}9=`0o{p9+rXxoM-C3CIO8qGH(3X+l+Fo~0s6OP8G1WQkxwrm#*@8Nbb@*j96
zQCLk~wV>oKEBDgb)0Ap%msftGq?*PRjrTG8^AcX2F6%;hnc3zJyXj_dP7(!;T*tCC
z|1ZohjwWo08081~i*$=TmjP85GeROUQPYZ7R8-_<KZEgtjvbh_WoP=(V5@fuVjLC~
zRTD*3`W%rkePpC#e&SqG9nlc-@EkUoGp-+R<2?q}t#DmgniMk_W4;ClgL6;bKS0^F
z-$qJXY`#$<mWgmGIx4boZZc>#*qmzK3D>!|Fq1)<<UXUis*JFzvaclC-Ip(aMpP`0
z<_A4h=t(6SBMq&<xidCCW_&&<Ri)|pgzZ+dWMLl+kr%T~D=bn{vg^=#kiSkXr<ceX
za|#9Qk5J47wnniPgtEiRo5SH+7(RW$BC0<xZT1C_FPRn<?>ji<60oO5=9nwGwEw#x
z2)7LJd))4BsPz2$QuOrF(obueV|9)<7c^E%*VHzA-9O>E#0gmOpPs8^6OUF1Mw@>H
z8i$e+CnD@&DkTL4o{zScS!w%`m(p74YhH&_n|WuAM8<axMd5*g+aA8<UmV>d=UUec
zupyGP>#U|m<R-|HnvpXk`AIzXznm4x>K+{5`{?ofD_lEEbS~GUkSHgI_LOs(47(hU
zz^%1I?`E-Vf`<Wm&22<H(~~%Y@~QNMQ`u^6YHdkT^aW+=HaOCTmvwW<XY?-}7M0`S
zpRFz(P8Jy*S61QfuT{l~V;YkmQ+Un>B_>^;_e2Js2O9@hF7phJ>ZQ2B;y^$ylf5>t
zBBz^x&nPzRuzBcwzWCS-heOqhjt9L?`$}W$rLgNB0bX9I$#eIi5$D%m)=P<e*nZT$
z3qQMn5*H1CT<qQ=PG~q$;9YS;8`m;QQB3XkPPTUaP+u>6xQe7ckw4&Uid=(GiejVl
zm!237!r8dL5}zkC$O#({)*jxhii&5~X+8=<F&JKPdOkz~CmT6h$P0sV)i{H7io0I@
zu~%~xujy={T%#15pnrOGrPJ={(cE8ChaC@3NCAGbxD{D@?fNws(j}d$K~5zgK*Pbo
z03}toxDn?_%4Co$%YzHdTD`I=dBBx|IB>oy+4JE9{T3pC>$9wPDQ77n>Va`fa9uDq
z4+Clb@z)FJs)J%&o!7AV8vSsau}#ry&b2AT?XjE>nl0)%A~^#xpERpDNLhG2s2qgR
zQ&<kV-$z?82q49#;aN!oHBk@Prda76cbhTaP`JlaP>WN?1wDhLmm@C9NK(-nuh`3%
z_d`qxkc7QtwYZUqkv#V_IRo3|W1S$`qT6MOzM~~eFHM-D_#-=vS+-;hej*rnxhy!@
zSmFx>M9iw&rvn3jCr*5c1fn`_>p@AMxY;ww!D5M2v(ok_RD3>T5b%hK$8(nMjk~=c
z+1A)(sG?cltZMLMM)~NzcLFoKp6IafToS&W$?{hb>d`Oe_N&tm;=7AWQ*WOkFWg7c
z-<RZv7F3@%cehvO=EYKx>GQg40CvJ_Bj<y-n6dH8XOuGVUpM7|u!Dbo<pq8LayN~m
zt>|<{K)t@PM?zKbnn?dsOV`l&RlX-N_>Bp_u|s1!g?Q*q*dKg(;$GVhvVuE}`5PIw
zw*#azdiCeetn4Lr`2TMXkSGxHZ@dMYoT{Or8Xg`GIsmcwz}8W(O~#a2wF18iD+l8x
zzS&o0J5wpB4PxtG>=9b+q{lT{d<*%;Mu{5FG_NaH%R?q#kZ@EGAj+iK9ka-s%c!q1
zGne#s4=)J<3@ccs`AB6x%-7^S6X{UeUpv<@{3DvPWroWGf+<u_mS$NjZ6K{LBKvwO
zL+?t@*7hR%N6J56+r4kn=djRZ8(w?OW_RX1J7A;5v71{Z1}FHm<b-ml2~b|ypAEt8
z{eTZC$=3&aHZ&>0?1~XB@YKV@UIk2SK)a@DENz#+oAfLYl#PZda?4yBuwnw@XsgLr
zy0p3}`T1p=w}#d!1yxIXLS`2GsSYn>%E@raMvLSwqmPik>nmI9W3e>(?>Ta+Kw1(e
za@FR!m@jsj9*v2X53eI1C3vm>6<J&MYM1s`By{!lmoX_hqVy)ZRh=)++Y43=JIh>S
z^)A37*6iWmiwt+&Y$gZ(8rO`3gom||d9t@TghoP~`Kf}!=af5DSwBTMZ73---h8ZE
z&ANx%F@%S=u5<7cmni0)l%S8-gV*bbrsP6z?*eZ$O$MD#g1FQSMoZFyVZ2DR5%T}1
zJTOy#s<ecx`NzW6#HNpRS<(RF3;($ZEBwQw@8REii(IM%9<kC70K!+&e$*nO;n@-B
z|BU&rd$cC~F2-r1POy?nSJ|$z<pVC^i}z$0$`==V)UxXqwk<p^=a=>C+`x-ZNqejx
zDCPI+=Wt`gnaWV%&O2w?pxfBE*_kQvnHgfK8Z?O{=N;RI7w<(~e()eL^GUcmZ3cR!
z7_MsYv4E50hXu{{Y$cqKHIet6Soh!WqyM?7aeswoSLpc#_fvx!J#vqqZ$!-L`~=Sv
zWkAG<6mx3Wb?@X1fKx9eC5L68p;eBIq<j~naTu02GU6{E$x9+2J~<GBwAlrgfB~_F
zlwET3q(^?{9cA^R0qM=wi1(K&BCzff_r|oM){8ELB5vf_1?#ddW$^$GH*mS(+qKto
ztF(cAPgL?bSgA0`+Y`~=eEIvi;z2%u8yCD=+nzeU>V%?IHRoPyCABRFv%1st;*zJ`
z!EK90K4k^%@QBFFjJUc$V?F_#kcdaxqK~xxDt302&_^u=hJ-66ud*nu63}3c&y+`)
z{%<`}3M!qIMp~twC|Fq*dZXQ|2<u)t8tRWK$Y?Qed><ez!95IAV!81$#P(aP5bCQB
ze?Tp(XQDRIla%C%R5QTANx`kuzJgMR_Gb|qNY6+koG3Pd>^ZWIB!C@4*ipTL+uV^;
z=B*+V#R>Q7X6npm#>2O>!73^PI7WoAoo?7TG0I9^a9nzqMITM~UR8r2GCU_aAt93%
z-&K;SNyBNnDUY~@pzt+@L-c;*-bQep7`YmJ)k%1lm+`IDKL%!1zVp$Pl?Zs2-1?*L
zfub2dLx`h0OQr*dz&AN63$68H+xkU}%qmy){K<VuoYH`L7H*EQlY-ln+}v<%;90@B
z>>dxyor0SDQ*E)iyCx=Vc!BwNOG>xvFn)ioA}G>4{Zh_Z?jRfXgWI(d$}buRr~72w
z-!(w&?}AJrV9GkHIEomzTrJgBxhw`3{Cz^!SY37O{npmrrG`2~{S%jkl=RPQB#mp<
zDlVpsToq}LHI!u#^$CT`aMzojt{0_vEuT}lRRc@ie9F&?zFot+rTWkmTPs2TDa-&@
z$Q74S$s2|!0q$!gxR=HAPx3*|GFurdMQs@`s&c(_YDW-baKJR?(J9eDi{%!a@s@1p
zAd&fd;TKQ<2rN`C>ZW$)Ye3^Rg@k;~s|`DkVtA<oX@+bqhRFiSD+AEwcfmZArBfED
z`9ae4E2DM=C-g8(2i`{R6~s9QZ9e!!o!{!DnXC9ekP7weTE3^8dtve5l&d1ev19>)
z7iFGOfj=Csg2I>SZvNvA0?y?h=PsqM-rMOActU~6icj1;cDFb%YZcBJ-gN3L_wJUK
zr<8k$gT+8$+p1+a1Re})^+(^I2*V(0785F&Nq)CYWQ>+ABs*T(d1P$5es<Q)v?lhx
zXHGpO!POa#8Y+nT7CMHhS7p|BK4Se|`(Y7{`x*R#0PpRPkI%bGj8wll1cDx)J0&#)
zBYKoIg{M4rm*D<w-NLS3;@QQ(z|f$GP+>z*+NPz^GsQ*>HnBg~Uu{8?4XG{%-(hQv
z4yMj~4T8HS8EH?%ul<u9_<oC*hH6`Je<Gr#MJS(zOfj|jaXx#9k|ZrHTI-@v=wHqP
zf~8*`%g9SerMV^`bXpCceUg6ti@ifG^C(5Pf|}{|R6}3^T;lp9Bd1}z*x8owU6j1>
z`uZAU4_&s|V@mZF+OcJ0+2X~q^N1E&e94yPGHx7G&gfl9F(FqY{p65p(qW*+u1ol=
z8=18RJ6lDGK-ZhLSV=~NVyoLYzb{EU@`Ue4R`t+2SfA1}2oal_ogs!VZ1~px&u$Oz
zWTZ(+T-B@jx{vpraPwFuxVlycCym`qh<g(n-*VKqhj+Lxw>~bmWKCE>f!&#)qZpda
zWZF6c^_uUud_t%OsJ<#KkZ9|WPM_TM>6_W-6H%3^t@fsoXfV{b%qUY@m42Ftt~-x|
zi;D;eh)51kXmy0O#F&=uN}b5S#`1@rf6nc+&D~bz{ac5{&evopaq!X|3k%<dJ^USQ
z{CcDR$AdJu3Wmk^2Vx#1kkFNy&A*!%u(eoKYtWTUr=y*_gA03!(v6CU!kL~j9C6H9
z1hyh~aO&&s(pus2@QCo`#XySK&fI5(CM(mLv$WdK*r2bEIbNx*B-?2&hNg*uW{-`-
z@;%$LI^wc~fUocJK)q(>8FQz9-2rz+NnoIoa<Jr$g~ezBP3?B-8?s7<?3TfrpV2b$
zjEpgCY%8#c9GUo}Z@z4$qnTK-l2??dZ!NwOB8(jp8lr+Q$;_zQ<o@ckSu(B9Cm@)e
zRL8}*W@*h{9N-ctytQ;2d8@#ys~H&cHUiFwRr({7!3MT-O?20CKp%8ghcsIk&<7f4
zRaDnE%ML=<akvp}bpjXBTBKlmy;|~hXwlLZM_B>3vwl&H)GrB-n7wO!uv^Dlcu0Bm
zMoN4EvpDZOzfeXve7Je=+)O{DEG986yy^2;wSe(yOJZrRq9J?^hBNCi@1j2L3OD}c
z1u5CXvqc@Z1I<+vJ;4-1!OQOQ3Tn4vqJ}0X<SDG-*9>ZQK0E$Us90)7GWXvP^xYxB
zQv-db0#4354gIdqNhu_Z!&sl?d6)IiyUAr89mlN~KD2CkSH)Z4g?8uj&VamfZstMq
zNl#!;i=-Zd84reTiu;Vd^R-W3cXo)KT^dieJ1fy~Z3SE__nWc)>*V#_;P+RDLX0Bi
z;tpLT%O*1$%(S|rAJ|y%j7(D7!p1s<^8^e~Jx}RLp#!-jE5j0ahRid8`;}%qPJF3p
zA8Bd6H}@qZ6_8Pe5=k~cW4_GufLQyac4*>M!P3f3>u`N=JGH5!Pww*h;jTi46<&OL
z7A-l0jCMLjcV_0#v)oYiMS>W|SDsOU%1`oM>>Pw(rL?qG`sCK@Cv6`%e_Q&?*vo4r
z)un86d-%v0U-hq3Bq<HdwFka>O{dmDJ&7DND+NE7lr*Nzyx-JBOV>q5<j><4wR8CW
z)&#5tz-CLxE*a=n+kNBWuNYB4y+76bX@oZ8j^mLve%*E9F2TH0z;o^RT%#rmKGb3;
zD<O8)%o2Sc(^@-1ljbZ3dy$RFHSbsd(XjVF6V)o-;N{95F96eGy8#uI^?+wudnt^)
z`ol_t+NW1dca@=dkNnV|eVu{-J%EE+8=J%V&)tnrDWmEX|5TAzHT(ZUvHtR}GmwJU
zgww+90@hICkqXOccCOaY)4Y+Cye!k<cz#<kErh+?%Vz15Xi+ugIXm&Q9u;{lj_0&e
z>ejc}Z(g~#Z8WoG?}mEWb$w;@`!hTtNyZx2Q@=MTmW;nUz~C0x@QO&#B_=qAr}gBH
zI04UxgRHjMu~kx8#;b@=**89hhFF!YoSZO<hz;}&^r$h^E^OyE)cIRUU|0iz{p<Dc
z-evcx;qmCk++B1xZr&l!c#p=4Ten}DJzITgEM)lh!03NwiGTkz335ZzjlBRRAm5y8
zU3kf}^Y1C@WR}*EM^oevt5*6jk-nZCE~H*svM$eljFCi?_2)OEY&>Tk>^-;WKiZSl
z7JJTomwepO?8F(7uzKaT7Ma{UY_Nml-@RnrpBk%H(%<Jlbu=|SR=rNb0mC=>WdFgI
zQBZ6kVL&XM=L75GF)4%2hLG{`sG_o#%krU>tqexAIWeQ3-B~@l0yPxI{=Dpo|0lNC
zpi0?EZ+n|KHKpehq8aE@=jl4GOqF)cqL%~H^(LjJkO$BlZPCA?&NzFx9kkG?s-)7h
zq*8AG6W=IxgA=@?dZ}`%%Ei{#_mILXF>3WU&~wh`dg3N{uG#ZC^VYB4Rd@@|Lr`S~
z)Ot)p+VtnUFl;uPU0-1jpTfdXcI&i?c+zM((r+`{>y(tmuS}_dE&RXR(ilEJES5AD
z6MOaYe(AkT2U^<u(vi$>ix4B1_kJEPF7-yco$ey=rTquC@(_RP(H?pi|Nl%2bF+}w
z>e{Ri_`)xy^2KAbIXU=JSLeUbxpe!USMv+TFm9`v3}vv2{d4P~uxI*i7Wf1PZe1SF
zg3g@3yhXK_tS^GA%PXp=DE`U))ZkhPdio?R8IVs^*dCXF$ETNC7SvQo5*YH*rzNjv
zpf=z?TW>PR3G%k^=u-fl1=q*a>J5UV1!B)B9vpbax*lzvpILMSQdaD(Gu<pF<HpCs
z+U_0523(wKG@?CHB5)R%QKs|BbH;-MY-}6`twIkaseUnV)Lv_`7^{Y1=k6^Qq{96C
zczEF_<(yAcuc2Wi-?%kPJF7k`1`UzF`(`|9xzjI1&LSj&&iE|f&pyEv>Vi^+`uW$d
zDdxm+wNR1y>VI=fSUfd;CO8-&CL#)pPPftK9zvY}i#RqoA_5UEkt!$&i57n@?@Ik>
z{ReKD>QZO=MXzkkj5W%hyFdQ?Y&(ki8%%=>kp5P(al9^S`M&fuo59D~t0nbxDn4QC
z5)_JgKLuXBG2hqNMog@9?A}6N?wg?7P*ZW>PCb)8FHlhMcG~4(bJ)V|=uq&@-s)n0
zDprS!&39Y<PGLkNo$0rxy1b^Qo`M3Q(_{22t@p2A7M7Isl70O6|26U2(b}2XGWj1E
z>u1X^V^yA*)IgFpwaVQSoPc6E{u6G;gI5X!G;opZ8)MxR<_x7{q#0$5z2zhmj7>gC
zaz?5ulIxu3vy(%Iz{!&Ih@j!o&V;!+hNo5FUw?qvPEXJ}jGcuLaNQshG}nE>ZZg7d
z=?<ik#`!^F+LtiK3tinW^k0lcMLT`@(zP`3>a}&H^Yr`hPuHSzgsb29MzB)mTQR0e
zMabaGnZK1CG}__RcqFPeJkj70C7W75s$p!VijEG>AaWNMo>O^8z=tZ;W*JuK$AdKb
z)wlfYouAw+jux=@KM8W2nRG+tj#SCLv+8a7-wq+CPO~53`i(;WeZOL=2rKI7_u;}N
z+reUFMlyqz*1FuiGI_t;%H=(Bff6aIa>J`q6<3iouC6$KA|>VVzV6Z$Pa|1bGSb47
zclv^dhjW9m0y_Um=Ss@Rv;&q^6UN@$F%r@IqJffXqT0=EDoc$bH8nF+yvEf8!O%O{
z&FwPv7e{lbd-hKd8CE=-Zv#n>`<3fYS>39Wl4hav{})di2`&_lxWEhsut~JldxLHz
zT2SvY&19}&=Pw9$-u7gy4ACYIRa4Q1IznC>Np0<kZw($DE?Ac1b2@G^7($eGn{&Z5
zvqo1j7bs8>^iLn6J&g$OR?GDtt#Lix13iX32309=V?Bp#h8gJ@J(MVQF#!8V;Nye-
z+PYkkwB5F#l)C2OA~H1xuaC)q2Z&rR$-8T8B=M8$dU$wdro~-W5sIgGLPAS(gz~aJ
z*z?6uxC?RejI;CKyQddViTW>v93{n5dKDm3q4y(w^RM5;X&>ny;FOIwQg#q2k^9hj
zN%#r)G@Q!HLPA0f7XYClOPh-7n+~(8KAayMuLzf(2Rp@*u}LrG1hVdr=qgVbUtI+Q
z0)TL+K}SJ<$@I??-%W!fbB&#akULm8q~FJ2zBwQl44Kf@79u4zz2VuhOyMOZ3G2-l
z9$q+{{^^rPAwlp^X(M#xzs=NW4=en`g(|D59X*XstE`l<Tfb98^HhvEyiHvo764xT
zFa7<XqGn1+Twu_W6wONe31jwJ>FAnO)f7A`181}9y(P}Pc30AyTO$I)qM|~A3hn14
zr$z=&x1>Ns@f?es5HLZvleLPUD}$Y}Eby=!*ZGr14rb*ub0lMy#zbY&rxzv^1diQ<
zwp|61+_;CT8X6KpZ#({4j3P8OLu$r5S)<n|ZU+W!qochi-}-f>h%p6Xi9^HBdeik1
z2Xc3w7F!>b6C>`8%@AW9HstQ1>L;7X5lS?-QXap3%`!VCRyxTTli0$Q@h`er;-ali
zmH%WNMPxnB96EqtcL~~|9{-?3=iv4`v$h6~YijN7M3KOY)#jhh5=l%gjdE&Xpxtyf
zgj3_ltE2V2BzxLxy0F8rx*u5?@=3@|65kzSeo^B1<LkiXRuN<K;Pg)tAiOX!97r9q
z{du%fZZkTVi#x%Yt!-xd0u)d8c&(_Q9b_yGy4tfya`%Y@Wjk9EI!%2*_Tv#kCu&Tt
z!Ntp4F5(h+-NOs!gl1%T2VotKoWPE|Iu<IpjnZWa(IhlzoxOc)UC#Eq!<Mq$yq51*
zk{c!Z-eI}RPRaVasv6Pc)azDD`A3CIGmd+$^t4ZHR=+|+_w0SGoC~mxL3=t-Q>gLs
z_<$RmM+r#1Aeb5m5*T}^EwMRWV;k#WKRDiE(Er{D`o&#h`L(`S7$&mh0>w(?XP6@{
zhmxG0RjGTT6kw7a#jGqY<NJS2{I-;nvRcw3ih}zBM!8zlnf<UT#m#&|muP5PuF7Pd
zTN0fvE_#r%*$LOGpte4aPBP%>W*67c(5Fm>QFm4ZS=|!q3W{!|e_enA6~aSIRvVtk
z_>>IV%5+*fDVA{54<96&n`3Vf%yZc1#aCBn!eAUcwjCSm#chJF!CpFAnyFV0$ch7e
z)iL7mW-ZA*uR{U^tWen3lTF=eIV(VtETnzrtD0mk$jeolmGBPk#3G0V4v!9P64cJw
z3Jc+$d|db|oezXSQeNe%ymejh8Id^d`9|^JOUPpu@{1E{?r1TYRG?qLyr>%y74x8q
z<XmNl&Ch(CBSdFEo29>-lG@7@apc>{QI|7+;(F)|-!v23f}5cE7D?)wl$hL*z{<*q
z`a}u3p(O2!i_rY`A=D2w>9hK@KTrV~0U`*IoH+yi?E7@$I5z{rqKjv~<MEQuoTAs9
z!YJ-9-p2^0`9KZVyEw0>Cm0lJu!Fe!h8cLsakSd%G{I@ukdZ;Vd-1uiN1I6H>$@pr
z-u;1R`u|BE`s4kJJ`^$R7q8AjgoXws78e&o#!f`ik%xo7CO8;7F+YSqa{8qS9UVE0
zk=L5yoSj?1#m4FWWDp(^wqyPJn)4n#C+XXcj3Cm!MBi1z{#Y~yZU&jW2<pv~dhg&O
zc2#O>svrqN4&O0X38SUcM!#nF1j{DhpwZO53p@d`Tq}aed_JTN{lcNQdcJePd2Nbj
ztX~)kwuP>-k6FS=Kgo!FCKB@iN*Y*%-lYL=Nhx$6KfFo1H+rFiCev!m1Z{Wu_&C}4
zNy;beyb`vyejGftqa*m1HJSaW+GO%NhOSj+4I%5Jo3F{0eP8{QFrWIBEDzOLsKCEF
zjE4t*!gZ!ja)StB+LZLTXJaIJ{mxBUlvarFjP#|VI5#{NaGPFB6u)xmid%*4&qF%Z
zzuvtgx^(FT8imgE8tJ8FKuwq0+HYuNFc0I_LF(f+UKJVawzGpY*K(PT<74AXe$Jq!
z3$iFY*Q#>d>7!AIpLD;XvA=qY$S*x7MMYEH@%WqjN~uL?Fv8fx$YuWLJ;FOBuA`g^
zVNs7{HMh4rOV`E|<zC)749DYn6&Dp1)tRlKR3{^(9n-huw9o+|Oxnm9kFB(18Zq&=
znaz^3%_}yoNnhi!sHJ73qrkw5$>lwEmM7%Ss8w^e5I{aVArZ-CK6$n<RVymfR&tr7
z1e(K{4i28MVR~`@u5zIeSMHpQ#mW*9RIhn{GeNi&@0UWt`F&O!3&G%}hVI^XCbXH4
zITjb<Nyw?G+o5Mz=~qtH)TewggOmFp-vQLZe-pE$%(!fH_i#8A1XW-9s6SG<9Mt?v
zxsa`-q)l`a%gF2ny~0H)^^wF#EA!X#FN|3w0ET!Fp)MdN`M9+cN&t6_^(uXwTP{b0
zUsL&t{gU>@K;SdHpl^4d8IOFw$#@utxxF#;#WFdl>eR*U+(q1vh}!`v@9o%Gf|d?M
zs7a+B1-D6X>H;`=nP5;89L?fq8bS64fkjvDLhI{}*;L)-gH0F59ecvNU(VNSPA^_e
z{Y+qJ`Vdo{3cAS6=owthCn~o$NXzatFHKDsfNwJ?IoU6kcYiQnPd-0i$9Zq~y_{fj
zOHDvdNy*@kZ_o<?YDbD@-TV}pu!pRjI%Ss7;RTpH*Y>=T(aR?vXy&!b{Rt>=$rvbp
zf<U+0er+seP4!aQX@Ib2M+6TCCBx4jg6C0uZZVoBhl4tqzhWF7%wKJ;@7~Xbo=<$_
z&Iq{ZxStaEd)o~A(&m$VWuMOnZQVq#rp-xL^<rW%_2(E@drzkB*#owBoeQ3n^`ZHh
zQSJ1LSw~RYQnV~&*ts4N@g^;>Hl7OA1g#<>Qa&s<K8c<$Dkvd~#3C*|JS<4<Tgt+%
znf`$Z@2e~32JsnPj|F3(zayz2Av}HH<M*wege_Kb88dFg;(0K^%a^pRt>VeuiY*T!
zB9xV_W(r4G8F(uRu5VpPw$n(@D0kd#kCb=t6%p3)NY2V$_)^BQ^1bw544+dkpC-z5
zN|Cu%NLRVGm)ZR6tcdn7;pY;>oe*+?9@cH&9gZatx&YphFJ_USOZJeVaMtHSsE%(P
zaT>2Zv{=7}9U4rpRy8u(`m6f#3*g7Nfvy4Fy&dh5g7Y7+f&7CWlo3?o*n0$=X(i8M
z-tXtMXV;5=w3k}9Svb0S;cH_SzuQVRf1j$)jc@*0T)InUX|u1+>`tB;Yp)%p>)3Lz
zr?9pTE7#}<xY4oOxB57kBec?`L6Sx8dEo4-rre*L>X&=z2!J=kj;>o66*0H=$-WOn
z^U-PwKhtd67vF2gU#_3&kJ+!$QO7lWf(VUec^MWe<>&FdIAN=R^2%A4;vi@P77BWH
zb)Q0s4Z5=&Z(|kjwxZ5E9#K%2et8K(1#iK7gW2BP5(SyuE3!nbwDe&!+*@Ob$5S+)
zU>%1RHQAK;NoSspCyEt05sqo|41`nsC3bE+D<M${32>)CeMgZYK5)F9A=FXs=F-7s
z-2~s$)~nn`OA_Pd%>%>?k8iE%4?y-P-LuaFitk05si3&{RTKxDi9vvlpNvEQy#^EA
zMRFdgM~~!H%ylQ_g6HOzcIarzxY^uBS<Sco*j$efr@R*;Q#!*1O_dVAv668xh4ztz
zU6uZ^k-gHrl<qC&GycG3pnwHS83)^~#`!FlKs9pxgc6jQG#YOAUn)6f1V+6pTU!w_
zxMWoO+1oI>t!+>)`mnbs90D3XIay7|S8|#LE9D;fFnu#wdoram%ctPoBUiO+sbbc6
z!a!B}h2F~X@Tkqo!pHcqb$B8rFCQDtcX+zHVsRZ2fOHRWLN%xBFHnlh?(OLctkiV2
zNB$x`pm6tW6UcAA823-%k6*nJs$QvyYD*`&$59L^O9-Y`8lk~7QX}WY>3lu3)9U>|
z7naHsbuxud#qr%>>M=XDypaCfUvVF*Jn&}M)bif1YF^vHl#@tkEk?;LL1>*Gl~XJc
zpMJ0ZE;-dd;=!trm45NE+Z@MH6PKX#)RY8c_h7^G=EZ9(DIN5Bh392Xh02AyR+%Ol
zCfc6czbmj%Sv6%$Il)x~GB2QW)n{$oiT&O}MpjPFE%i?YG{8p6k;`+Tyh&+>xtBb=
zIyYz3&LwK!)qej4z##KU0Kh5D;w*|3V(ZV1Wo0?3jbh~4ow$z8a>UBi?5!^K$Dtf;
zME)1R`GAv}iJYyv6QuwP8&_uTYE!|}kql$C52(t7-Ts9C<~J#znySm%<M_1t%+1{L
zniH0y0-F(Av~pv8ThDk84;4R0u9Ec<ABU)@zQbW(r6vzUl8=_!xAY#>L2RNsE#U6k
zCRE!fDW=mF%L{8ub~)x*sUch$<^01OUPLJh3+p`cL)O!Q0djAA!P+{cOc{b>UCv?Z
zD{ZaZ|JRJ(P=CA3=(!kF04;m6&^RMyYseY{S$g_9=xBh3ODfc+$xdr)>g4L~2?=!=
zj;AN1R1=nHev%oW)+~~jl-!Sv&E4ORQQ=`koB8rS4fVo2yQ##VGLt|<zYYFR-_ToL
z^aFlGL=z<?7@@7EL;$#vfz)b|9_7sdGaJk1&c+u27b=GJUr(U-Q1me4ii@||{PHaj
zGb`THqM>4AW>ing#MXJ2q_YsLtjxJ8rQEtO$T?mk$;__s2BsgxV?BbTf6I_EKE|DI
z6h|XG8wbUmx2HvNh@$RBDk}6fHpEa;)&t~tV#%CR?0ou~R9REDRwxu2Cme-xDt)pZ
z*RVYj)&4f#LdC+%M#<#aks(aG=|q%}neu$HKDdR{Y^s02I5VS}jEF1;<PpekyUg5N
zgO49W<D}R>m}0J3ZBgwq%Fp~)d#k%(xSo0=j{GDnI@MUn-6t-Ze&_m6Um0^xRM6CP
ztJ$pR#W>i9s@DWwm6M2q`cZ$}8};}&oZ%W=q6oFH$!zbkrs)uDGi8o|7!$xTlVZLO
zIp&uEwE3SrrjREGFL{u_z}^DU1iF-LlI2I(<j6~NxWmHA?21X7SEmzpPBiV}zlDj&
zI}9(^V47FG@)$#pR>sZScG+WRr^!z(&Nk3Oc|Qx$NuSFqn|v7x%K46jh>#M}=Q0?x
zRZ!q*uFXKpl*>D#f5CFbFM&+#%WfC6sjz}2Yc+w)MwAkPjo`;tydH4Xgg2o4T~F`1
z%O)8sS7~>6YZ3(|C`KBGhs*Hsb-%M7F#jK1e?QgqB7gOqSr-*g+78`kq14~>!hx^>
zWPIA@=EyT%f&iVB6(wcz56HV{=j1@Yy>-IdPZJY{jGCZU8Gfqv^S5?Swg$DHl2S?~
zcW-YCAG*7vDH|pfOrRHiz<ikOB+ZWa!Nw>g#E!`(zC~_nvpZkCHw~s1TxVxn)1ikp
z{{L82ASa^*ntG?}8s0@EbLzXdSh+YT-8MKmU_FQv0^4E=7RG~-QBP5ku1`l|*YR%0
z24f@55i7?AXD6kn$A#^3xegZT>L_n+{HqfmsSmVJ1Y$O$W*=8o>3W{ss<}B%WPt6t
zXjoyH@)OOSj8DDe^c5<W4=Qq^_Fe9zC8i7vmPA&)4uyU<r(5x#hSh-10YZYRC*OOE
zk9(?u+>PPx+0r7BOIj2Ztz%_R?}dh&r(_O}j^ucM*0#5tj^4N_E7P73pyy#{XUKdP
zOkI;iBjRZ1M{|4^cS9}A;q;YJgGseufN8n9W<0U$Ao&hhdsMYD-(G|8m8vMM7Er+j
zg{1*FP>`e}o(m09+h>?J#=f+?U_E|1TK3dh--;XTL*%^*tG+UW(h)iFJC@UhwWT?y
zE(`Nu>od5Ka^AJ;_vvJ*j|CMkTz;*pSh?@<b_`|RZgKv(`PhqZW>E2^7c8>VT)!|Y
zLVKl728lA-JG&Yf8ND!P-0yeHp{MFq(a_LQ3m+bGj6jJ-x)-B6c)e#`-}9(alv*um
zzD0^L;|d>EW+f&qED)7Dj0<uWl&3UEPQH3On7Tzj49$W$Q4iYN3+QN`v@Up3)M+^$
z9jHArMU7;rf1$pJC%woU=T}_yDp>OAbG6|DVW)EZyDq%8x3~K*JsDeG9_<un6m%hs
z-L=$`MO9Pdl3HQ9g2~pGluAT*pY9YYpaq5I%hI$-qDrs18`mew@0=v1RYpZk50ASj
z2x7LEho24iN7+#O?G~=g&-J*|())}JHXpkJ1vD!H8f73mH(f4Ye{FrM=x|H%oL>O9
zdTWblZo<2Tv`MYPh0%kO5{zOOZQ3O+^1YWMb&f?{gQ?%4cvclQEUASL+baLaItw_z
z?x(37K5^$=XUW_8*4R3skXnei8EZf6x$krt7^XL+7d9dBM@pyoKzraaoI${M=Z-a9
z(h-HM@Gsc9f_^WyGp6Z&+a#-APR2X3Xms5ay?HQ$zQkeC8B`d1VPKf5Z{Ub=*i~*E
zWYG<f2r}!osgV<32wHPdMPYJ2)<9Xe;0-4z2*nlZG2e}S@L)dVj(Bovj~em&)r9XK
z`|9Kfqi)h;8UC{SJyR*o(O0zcdV3Wd!Jy6AwXs>+xl;Ep>Et~T&|Z$Vu8{kQPVWOk
z`1Q)yhOQ(#)rwX*VrAF+Zv9~Ixf0N+ra<p!&eVAK?a(hDoFA+l)vm5cxh8(Z6HSHN
zgm>nbSLr=W-ju{v=j1>;7lbj^_&lH8v&~+L)PZ6eve4hx0it}<@tG2OL(adpeNUJj
z!<=<{iryl*&W9P^W%uTD22V7q?lq*cQgAgZ8~8@Stxa8q*I<C$;)%1fpgnvW5E8IS
z#6tFfKI==;`;K=v-c2Z9a_xj&pi&&7)AMZg$@%8iORyn;#?n;prF1GUw~T(s<igqH
z)xj93zv95nz2OR0N@O&$u_+XnglBq#`aVTnefQ?Y80Jy1DQ!u9K#kXnx5N4M_d26M
zfd?*?Lvn9)Y^9G6c8~=1Lro+XxQ<~k<C=(Rlj8O~Z1?=<x2*Hu?*!!`!7m*c28Z@4
zh>orXv(H_OS<(p`^d}87S}}_=I6ZH2Qk_D6*~sn+<Qo!zHcE7m#%+D{O)xmxCt{g)
zkAk0oZxULm2Uwg5x+=WBBELNVm66Zl50~$zW9@M%I|(WKM|sZ&&P%Tpo?#vE|0>gE
zfB3DY^sS&FuKlGyIv;gcJKsd!GbkwPNZ8K4^YYG`j5Z5FDM%lY&^PfO{K2&F66Tfj
z(Kmm8r6><Ge|-?VVm>m1nLATJ!oILL|JJ#~)b?%QPT^S%#-f(!k3XLS37>78J?AvP
zMcnyczx3Kk3^F=;gFuok6N1K-VaWU9C~<$YZHLJxV)vXp)@X$x{y)DGLif&v-U^g1
zs^8^s_F%~p-=H8Y2TC3N;{P;n3tXKwG@B_w&S6FB6AI(p|MUEH$J+m&lDBXp<Heq`
z3{;fGSO2BzPG01H{e5AZ=@Q>b?SihE*-r%C_85Id&lP;dCo1JDTZiGomC{8;7iV;<
z1q=KHo=m2$Rn_3}$H=ljsh=aPaavK|2uj$pghi`!Z7t}?;Uz6yujdDB)!^I*wm({h
zY6+!f2BZ1*D5$&yNJK=npRa_Xx9#pgtq>U7|83>*cu)=zUvqpxMn-gKhp*-O9F(zf
zE^h*z^w5b^d*E%;ex|<3K-Z_sgg<}Ql97Ra_isCyUuy3z+(9PB!LcD_Wr2YTudpn1
zm{e8I<4AbAzlvC_v*9wrPCBCabIJV*$mN$Vv3H$#CWUj=|2C{aw)X|`W`P)#;C_?}
zo+n}La-0Xm{8sp;P1Q~lGns6QH;wfLpV&<H<qbS{zpPc`5-H2xHLs&H*%r%m5L_Mk
z_0H}MfsOst&t5MNb8}1kkejoo{jk%m&~Ru6IZakphJ}6}5D|g%A2PAj`SOv1v5Dzf
zkLp{+zU-}<>4}Hhe;_RG<APrfjZV2o$ImRy_kh#Onb(R<r8wZnl=lxAePE_i8>R}~
z=-RQ~$Od0+MDf~e{`)K+ZeeknmgXMMmB$jSW<D}-mRPiQIb#VBjOIxpA!lo;DlPFE
ziQe!B^4P^}71X3^+F~gljia_x(zf#5a*Bqu%^cbnKVF1qYvd1&inKBp*yRS+4%^Si
zLU3rFGQU7PX(6DEK*a9<oDvk@Ut}w*xgwzevyRCt8~4`aaO}x#ISgl(W^U0)2+D>}
zy)c&5SGd3{qu<}I(<UFF8pnDKa^gS(6|fCjQKWiQz<ba7{_b93jf$dD0$QcKuI&J(
z_&%PAQEtRRSwsR^^DXO?$Uci7S)|(6FOyTSxXw*pQIQE7860>EJqb6F8^^EL8#~a-
z16Ye6aaYi)>6HtI4Ns{NCV8!iiGz#j>XP+}XmT=YL!-|+@7H{9JZN@$o^HXcx3MwQ
zw)1B3F;Awfyo19l=d6kl3>bP=sO~;C-rhyRS$fn;N}dM%Mh5=WNYL2#>^#FI)I*BY
z%(ns20h{ez&&+K&lrPuaga`lktBVmyjz{xx0y*wJNPlj;ZUO0lYii+ooH^k4jF;;B
z)Y-!4aK86ykjVT_d%K!g`m@5=I+5YKHr>j~iG}K)Iu|DWt_Fo5*1Ab9&FdN@Cnkt3
zFAVf`solPPO$|?)s#i%oRJK$B-tI%`q~d`5#~AcRMt=joOw_jip#iVii=AVF{SmR^
zI4CT?$-b{w7$N8d7xbN+9AwkOKqRaZZJI?NqaJZunrGh0(YJbF!f8fEtzBvB+wm7*
zr0Nhw_P9F{iGA2F&exge&(D0@J%S}JCs<h<n#OfOiPF<*cF#r`HM#T1m8||nPnk?B
zBdv6Edr22toI#7lN2SM{Jl%I~Ik*y;b%Z6<6xFN+Wb{!TF3PmmMYW;X;)K*@W>?|f
z8W?YTr2KXbpDN3v5!#YTazSkKVJ=y8P9GZjEVDwl%hA}nx|9&1ev*mj{5I?ynHlpC
z%{`I$8|rp$8Y1kNnrTeb)mySgr$|YX*2(({4r_t?A5Ect1D=wX&zn{u2FEh!AnZ!@
z^9{j4A~?iFk~a(|cfDU24vvXtQppmmO;;cEz7`KXd1xs~N4MftNpbfRx8dSd1|&kN
zwuI^c$Jzmp2J54c4C6JH8iEM|RlgG>)ZwO%4{tnuKbyU<DuYY_oWl#~yFU_0Nvdnf
zrza&O<YoD^(A;PEBq_Jl-R~iZCX$j&&z)yDG_u}kswu1ua1oTjq=++fA(|U2cw2rs
z`c47`T`mcEsG>q$jw{}eUU_+F-2ePog3Rv&Ey^@9#)8d6_R}&4Rgb4Pg=o2Z)yL0Z
zTRpHEEkRt#b2gu_E+~!Vci{=4;H8jYO@F}#sfKrt9(522m<}YP|N89Z|7t7tL7G<n
z^c5pQQ+sp8bU$0K_m3wepA#j|&jsRN!g_m+u-b;7hu^0AV?K1us&g77WW1Y(gv+_j
zjPZ7KjR-R(rGB!Sb%N}lWKqrqDAAAP%}lFNvu*Dx8lJJ6&0ifP>I}jPB^tvD9WKv#
zPH#kGls>4nJgcuCjDx+^D*1pz6CP-!9UNZKfxq^B7w|G3_dmfd5DtV(2}`t+EO^pD
zyJsL5JF$gwhZ|HfZAe+L2a(hk8P5@bJurnU!7>88fL~naB)@$E%!=h>XIt9TCNvO=
zP+iq~?9U!8>|3X#s1!4_kCpO5>f$ZbWXkU$HwQe#AfZ<ZDL(j!__KXgp~d46FFD<z
zC*=hKu2wN{(URe7X12a+&1dC+B)1)OTy#3v^k~J!yf|#W{>ZHqBR-t>Wa8s%raT&X
zK##}&e7rAQ-*ivV&Z5M)#MRtJ#-@GcRZJ1KqOuTa>6ee~^}*-5Nb5cFa!RO(HS`a2
zvy+iQF}sD7mtwfJ-B<GVc@)1%TI#~mrX|MN9a?%ukb*P!4W<S{d(o)NkFT+#B>~cw
zA6sC;-pv#Wx>WGOQsd7M?@mjY2A2o+K>S~ks~uNz%oGzO92&z%b}YfYQ={Lm7#Ku6
zp6C~pUiQiqs9Xc**b6VH?=wcU-167YFH-I=Kts=XkTCw`3rGKlIsGIF{FWAqa4n^q
zK>-7`JrO*T{!&AcVSy1iu)}2WFd87%5Cber=?=*W=kysgw2**Ko#$XxFZ?@`6ddAu
zS|eFGqVCg(t?|1P!&(Ir=dh?<^-CK3PR&bUbe2J<rYq@{8yma-@s`=jhN#SFEF$2w
z{U9Sp{~Z~2SmcRGse;rRa%e%e-Rnz}PM@2d?Q$E-21H%o_V~C12pzF;g!Z<jCc8eA
zIsAXkHAzMCj9iD3XT&?Q)bjG@gUmAeI2e?3vtv;n49)kOn6k5qdbpB$N%kgGDt#Ik
zQbU3d8tTE<lEPUaXZct_>lc_cA`YjB`tAVyKnaY7oxLrx@Y$OZL;|j3y|wPxacHHI
z@~<~xriNB@G}3o~RF1JX`~x^I(bk8O81WbaN$yHe>TQbDmkUFuI{7g&vmN;Tk}x@H
z6J<+=b}lK2zp~PkhMb<4c~_~rVH<4BbwS*u?y3AyHxw0^Ai%i?&6-f>m;w23_T0)j
zrXo&g@2f5(Wv%T`$3#xov+nccA2hnTHNJ4!U-Bfzb1}nc$c`o1^05Y3AwV+I7b%QU
zCk_YYrc@?o{?jWulPu>aZ0p}YMEeo1yKKE5X%c8AJ)FHy<DQ2M${!v>^p)uGB9MWB
zt@qmiqGccaq@67hoX`IXG3B;VR+ho=J#0lVM8OoGjVUDqM+2&63ePkOxcT3Fh>5St
zZ~mG0W5|acGT8}HS~l}jT2s3$qYt4oA!#AP;_;6tEscwMEA{hRl3sp?<4*!ZR=`j^
z_sYaLP5=J2|H@Hiu5^ffYHfR9xe@^>W2bTBu;F@9*pk;CxwCwN)PBDk@tEV(^)g%@
zsk|0L1zkB4jrQ{MI5NQ3ZOvec^>vR>6FCR9VPURZ;8F&oHw(T(>P#FgxMPlsncY%`
zkU4=i*kvzCdYbMJyh75<fRjqCmuM)NuVqAXF^P)K1&1oehIl|{sUsK7lB;FGhw^g7
zBP;T#3p}W@<Mge=x$~cm2(+}cw$y89Xg*G2iW;dUd-bf?n8BBrm6n-aPf77uLSk-y
zPFYFG=Ppn1Y9V)2??R_emBV(fUZd;z3RA(U%e=I!(6=(F&?Z+HHMFyGHcna(SV-#_
zrPL+v_b?U+<ZJ2qn_uJvDV62xADbcO=V5MTO3O`{G#bWgm-8tgpg5Tl+!tv{v!L`F
zzju#-9}R^>pl;hj>$lQz;)q@v9GNLRN3NZ*r??x;989I}+V`%Z4LK}D<wS@HsY$r;
zieJQ#DSzoAZ$u+Eli>NFj8plIhN8={!^e=f@x}2hA>@s^{GWUUPB%Jgn>GNHPVm}-
zuCa61Ip^o1hkxaE!@>bUT_W@ON)<1YfWuhth>DtQO!JEo{P0V4BGE3^T!ndWYO|{k
zW~X8YnVKILs`$i0%2YPP1^b@7iZVw}HZ_g3)<=H>$$&P<8Flbi$3_Jyf146XqFAf4
zZKgi>RF%K<Jzzp<zm&W*_xzQ$U~H!yr_-Taj92Bmw<&kH=Z*@gl{L*(o==?-s50@p
zj14xp?seVDDtCMOsqOm-od025%*qP`p}99-mcn8Q8U6NEpZ(acu3oZG=a6_4tm%4s
zM10}GENorKZA<+V9OpXRue`vLRu<D9%+<sr#-<oDKRM2Y`J`~}Xs&+to~l>?<^+L+
z-|{{TXz_Q}5fr3#__1CiTAm?q@-pz=R6q9xlpl%u|HqE(t4wCYmp$-D9F3RZi-%>E
zwh_G75XDS>j;;#~6xjXI;nC|hiH5#rZeD!8lB~_hpC*d(B3W(O%j*R>Z=V|Uq46#-
zMh)!;rGkI0^9(v8>Iy54*BrdtceNSKYjfuL>^CdLRS6K*RXN%U(p21YFi>J;>IZh<
z-F>iX17J^|nW4$*c*4XsZ+yQ>lk!cMl1fMbf+|-jaIwE1QPlWo(!a<*Dn$9oLs>QM
z=NTK%I^SnW+u9T-rsG9l-mJa3RyV{sr@1!owEu{eZONLBdu1i}F7v}%!nX0fv<wWC
zx$*JwN(E+6X>X!CY>Cf?c<`fNQJXXQX~TIf@CtQ8x{@u^ICShB?8v;TjP}4yWrLsl
zljw4WVrSzpz;m>DdqIwv?>=igp0WTfCt`Jfr9bm|JKX*UpcN|3)?vC^C~-BG@|m7~
zF&J;zu&|&6MI!sp{r|Y<Uc^KdRNH^2^|HImn$@9zdk!?ot4Cu4;oGoHE{=8h!F<c@
zVJygb!dk7Y{3OXrsI7=gyJ2qAwc3t}<mc}FInG6+7dy3YF3`uj`k_Q${c}=?#-7%<
zkUO5y7kR31g4uZEgxP!x<+y}ihdf4M+Y+KewiMNK=)PK{zbW_=->*5;|H0PkaL|r5
z&$tS*qU3a3hD<8J>+6-ee<!PI&p~7B-n2kZgAgwbb)kA_3dNf{!7;A<oF%8^JQ5fJ
zEG&MC3V&mHD9$?oU<Vyxw$al|c9;$RWip)@m$lQe?SIYX%3@lzrZGyL%4nmWin3~M
zwF4V1lb>v9q%UH?gH(8SSuXDi$r*Cc47}okzS~Q0HZE*~VG)X1X-g-9C?SM5U?44;
zmBJ^k-;<P89K!-FIjB-fWTrUvl>0aL_Chqxh4f(|B9&KC){jfjO*xytYNBhol_3*(
zR^iw`)b#}9n;kBcoTShD8+-*yEk>WJXQWqaCnPBTuq=atcjHzE8|mj~71pOm?r%^y
zJ@rhVk&G8GPXqel{zw>{zf0D<O8LV`MQ<?x&NB8A;|LQsjA+#2AuC(kin9vgQgfVh
zd?Gm^p|>y<Xu7O{6Zvr-9)DVxEdN!1epY0n6#f93Lks8!u3*uVLzR<)lK1p@>zm08
zZ{07C^wVu)i9r<>Mb*g%FPa|kR>%l@mJ{Ijl-<6~CvdK<pwL=t!AG?I{2>Zt&}=|5
z3fd}eO~&XoCD2EgtdAeZ`uQbBk5@8PhjHtBeTtvb*O`nhF>mi^Pe!kzo0S;o>-)$z
zp<?9rt7e6Kd+XZ38FA0eNgxMNa<ujJ4`Sdak)E@<GEp;}!q8yG%a{8|-}Oltr(jtm
zfC$b%7$%fGPF(?f$WvUbrM0<xNtP0#WoW%dWiy14!wPb$gRcBej1g=LjTSXFuPuA}
zy5f+(94|+`+<I75C;uruPiDx7&Y$Bp=-vh!Hp5sP97=EBw%<Jtg>nw+oy>4qLnHyt
z9)uSfOB@s{M+sB2Mn=SFX_X3SAUFa`l2chZRZ>#geL9V>h@LAH6hwRuw~6qEOAR}V
ze0+cq?z3;p$jB%RWjwW69fINB786w(Pn7!lzdw>(p1W_Z&=0oCzWzQmZ!cSrMQvKa
z5Y7tf`WF#4OOJN<X15QasN>{E$ZdPHle{trcYqC);@NflEc`xukGgD-a4)YcsH$ss
z1P7mNhU&ol;hhza!CO$#af{`b%5gnw2?0438XB6%(UGq$CB`*OIY}9qgzmS&te{Ux
z3Bw4}t0Q1UFF}b#DLV%a_RXT$azY~_2TF!92*<(Q>uf$whMLvZo<0?&^c*z$mLX<N
zd;Y1nZsF*|ptzXMKT>O`?@&>q?lbb07lv2Bw2TR`iGzt65FkF6J)bdN2LTKdlJ}Dz
zfy&#q=L3fM+Y_0LJV2lO!&+hU2@g+lP@2&=yF1D6(+I&oa;6sYImGX8upchW%6ikM
z#3PR+ke_$P2wuNS!a#!;5Y+ohyU+vb|J89nV!OIpmW^p8Itm8+i*I|0ad>%!?yd|M
z!q8oAhW08aJK7`#HD#OmX;Bz%C(c{35D=hL>4QB{V4|un=8@_tK1sw+K}ku>@1UTm
z@TkS#g){Q>>!cv~6<DbZo=sN6Y;)kafxkgAHja;@VN@u$^~skH=}W*sWic@5VckBt
zcoCH?F(C7#+N~zb$EP$j)T-1xe{-{xm@iGYP%Anr4Mj!!*C_8$RV5!no+6mM6&xH4
z;1$dcY8k71o|PJx$IMKTlu*z!(2~(Dpf;=h_=26Gp-`odaZQ!4FNrq7KZ+3h_VnzJ
z4T)HRElbN;q58T;(B)G2eWaC+d8%T|S#}Q^0~7=}_@nu5vMDNV@iiwmy8<-sTdp?S
zB)_#hzuGoudCup^PD*1`*A+jD7nljAc}SI%XjLGB5oa)0A!#1w<gP3&OSZ(;I4Ua&
z*FM(K`EnVi_|&+pYxmrRsohP9i0AoDg<ew9*0!(WCIm7znTT^k`rk}cNl=xkDOhpw
zRv6$vlyzSJ?LGK=JR0C|w$v>0T{J%aA%PL=YXW^efuy9*GZV@CN&facJIB+UUvr_P
zRE@tC;hQk6uOz)(T~h-Xc3;-H{Oi|1tsVFEDvF6wQSe21g*FGi_h}2>oH5JJ0uy_M
z-HM958s6EoC?+m0H=JYNix@xUvmkQdU|}!HFL1;s%z`-5%t&H6I5cR*z=T(K@rmBW
ziy)(2H8UmRccEoslKX5~Hs;n5L%Hi#^HN?_N(yS_G_|@P#6{)JW;X4`Wup~>Lv{B0
zRqq%W%q|1lq2=S#p;c{aZY)`!^xnw$B}H<IN0t4Q(}HZ%_Ch~j42-hd80taPwMw?O
zAlyzlj8JU2&1BknF^Lvm8sQP(qnYnzsujXWxn>3^6E#v(bsU~-SMxji?*%Es$V0Fl
z2Q5787t@AiA7&B*F&4$+dV*{+VV%9T`*S#G?5e{Xc@Vi*J>8fKh00PNPO~txWAVec
zuPRqtd<kIffK=`z%xx7KHJ_}>O-g$lA%b(q$XQZd-BsvqW}%g>xw#?+33avI?_(^A
zwF3Oh!$h8WYQww_^<CwQx4->k<6iE!#GHrO0v^|IT|+>Zc(%z+dJ_g-0s<Ku8{+{t
zfUIF6SRh4^fTriSXFET;g>TxBNzhqsOCmYhuoluNLc&XQWiXcU8fIzVV80Cv0|VJI
z^c(P~tB2bJ1hhp(_3i8k@H^h8rBx7@n1e6(l2+~3Kd$95wYHu%X*qFf2!CYJNqsfp
zLO_LplZ92XwT<uf+E}UJ*_XXgogP-!#oG)I@kz$cU}$zyNnF>HZ<WXIA}O;e8Av1F
z#t_*&mXMeCsHZh$W{WOJNPxRSR}$^G-@<GwI4vw1t{Fv8cyOS?c7`hh2FBD~;$&Dx
zU~gIb{8{Ox&-Ch#XXeKEd()`<%2$M^8eq0BV?#rqE89PN+2YfCSWK<CX+N&*QeoXd
z_66h;vx*eE3da2n%`-g}OQWTOCs$fpg62MblED$RM4$w54s^s33%Zos&$Yl@^>(#_
z*`cN0cVSXeklKW0<sA6=<|Vp;TtA;r@tA$}Z;TI}Ys=qy`nEK;(lIiO=i4!HtLC-q
zRP%w_-s=ko1r5#8^x{FyT<gBsWc600#aM-%9E>SCY9!7^3%?c=6ap&M?6fTGx}=eZ
zS~6zKUtasg@Tu+8Vy?Iz)-McXZ>hGjhDC(=;PdQ^&9&;d?T>fz+D+{5TkLEG8Y*kc
zKZjugd}tx{x@r;O$m5-ga<`hy%alKH916<4-@Loxmf(Nm-CYxj#w%1+RRz&8sR<%$
zUoQ>#3T#MPYmVjjrutsL4j5&g!7!^R>W54&^RC8;B#%a3+xhG1&;K|69kUcgO5O2W
zTR0My9~L-YWh)oKN(z&fva+&VgZ2|TTDn*mwM=X;2hi%V%l15R&FMh*#2JhNXmvf=
zlz7G53>AJDs(UgMs#C2|)HKw!G1(egqf^QVeLg&y7diTon-TK$<}>U?;V}sb(&I;g
z*f2(eo2UGF)4$cWMLut1v|+KWIo@v`sBcPpZjqaZ%hac&YzWD{_JM(+u2-u~0nl}^
zlg|ZLU0PE1%zB79_nW&!dycFux<OmlV0Zjycs?Xp@4}9#R6q(@1{#|5tSG`BlmMCd
zvqdFIGcyK<K<nv{90X$a5$y8T<sli%VljcO`O8$;CYVqd-@4h<d+g920l^P6+{7x$
z-V4-aZLhEnXEh(oH5rV!i#J~Bq&h3s#BiVXKIlcSEm)O}eW?>MW61WH;Uegl{yQK-
z;gS3w+3%4veQByfi_Vx2_4S7zKDdmH6EM=z^bS1=Vt_5Q-kt+pLl`XS4IUnFH{J5V
zpui;MX7FvDQ;>iz7+_KqNa(0N{}*X*8J6X`bq%X1N=tW1NlObzNOw2V-AXso(%s$M
zbW0;3(%miH-Tj`rwrj8bJ^Ok7eEhf%j{}73yv~|)j4{XTA)dmMvcAg^q+FdVWV71m
zbgnA6|M@+>wzlHf8ctrG3iKQA>X*9_0KWR7s@N&{{5athRcP%enDlZZBfuxR%R94D
zt<<kGNL&Oo=*$7)#7NlV<27`2&>|s5QE@fU>veop6|>V%dZh6&8Fn-f?10EB)z=rs
zfeQ{qK_X(-Rh2G!G^Gj9GVFiNFwwx172S7Av=+8Ed&}(gGN@1VvK&6V>n(9-ze1v<
zv98x9iA(QcqXJGQ{(3k5r8l0@$;}p{08Yuxr4{S%O*y-v2gHaz@Y4u6Bzrmw+?65c
z%z<OB#6Op!i*ZFotvi7HnM64cm}9M?VU}>%6VdX7{i-NkxsE@kQ4%pUG`tf*KvtKL
z8Cc`k*%618lovGVPBs7$CrNR!;Gp?uHNw&9R!=oFIZ;`LSB!E>O7?wS5fzM#q!dh?
z>W*%GE@6cJV<AR;-MtMUXigChD*$*>)~g+H6c!ei$M4_IBqmP8#xl}iKmwEHR1^fn
zKtuQB=8wcA)Z)tOv;ETv-TIN@i}fB4CL%AqTf2Jtxg4&J0nslv0&qZu*OZhdrslhZ
zXac67egqg!Ey>D0f4JwQq8k_o%^IpevIO*aw*>EM?G7}7GdFrtN@S}0*^dyjuU1J8
zTcD8}87*!9KU$cJ(g}w~=1v?sdI=)~P5S^@f&nN{vR<u^b9IxHl*k{&T`-q$bp`gr
zpppGn{eqXmV^k6nQwy2a?bvLcmb)tomivfz?f%lK;X?MH*b@&H5pK50!$aSk#>7L(
z{@jj-$9f|D{;s&M-`9+&lpGow)N*+Vzpw6Z>oW&O2?FM5_KU>0*oa{TC?5&|7p*dG
z@?UF#m%{gqVKJev%}YI_73eGnuvXc-${P;X^$kH9Z}rMr2XH6q51d(91q+ph#iZWI
zFHsW`<2XI0@_`@6moYtv)oW!;RO2ola_g%lp58*L&a-_UP*c%Tv<gf*ftYn)iFIsJ
zM<*<k1hz*^_-s>AN!5;oG(QP)HK~~;2#PhPW0)a2o8CYrJdt*P)AHHh{)a}cJL43u
zMwEi%QMVqG1{c31t=#9qxLRbK<mjlg<Iu$YET{uzuxH08mQ9?UExZ@>LCJ<13XL8k
zR#d$mle}`?s3dAY9FVo1z`~u`+C7Vkg8^_TIIA|Vf-pf(@{rIVo3d&<8+$~Tqf9c;
zh`Y6VZ>G8k$Z~MeaMXUcE3d5zhW`~@6=h`=Tj-cxzv7tTdGm&f{73hKdlyC8Q$Ii0
znOq|JgY{Jf8HH0KqMx9552cC8{(Qq=Do6E_qXcM{4C)$|H&x`+u6M6&Mxd?X%n^-N
z!--cjE9{!CK!K!4_1GF{!c5cO|F72N#ylq3^#$8iFsLAik**2e-33L0pxXx@f}^<&
zaQ2ie1}#2Z<woX(!=CW-9mB!;IXOBa5z+w?CqK^!T-F5Wb_c^*po3UXL4l}V=dT7&
zuzE25-&AN~8!BxC4al6(vhToI2HL}<g4V`%W&%t{jQF(0xj4L-Zl(VSV_l5$9TV~@
zcVvv%fI@w#I6)ix6aBkgDaS4^oitNOexyFHgub);!UjR=yhOj?wh5I=EGV~GI%N>&
zy3;ap9|x-?r@0k$=QCix^0*@eUTMHrbIBbG@aRz&ch0j@vsj71uVVfMOa&Wj%FqRB
zgqcZUJ_`;F(909l+wDm?ZeHk73=(V`WLOQ&x0$AUpNvjzy3nTrSg-IEVA*IjdQ0yP
zj-c3rN^p9LarK@b!1KR}EU7LiC{$i-#EzL1dCqq%i)&!P)!84Sda-2!JdMkSM`l1z
zjt>oa)6Ol+QIYohvuqnDgALO&BdUiP)W6{?yQ5}Sn?LpiJ8K?qzr_54uiPX#eqZ;8
zkC6vk>>$5w>M1c&;J^HBA@2eh09z$E1?#sDobEF3mE6aDAY&5Tz@E&3{+0P}?Sw!c
zy%k#8;6v|4&-k~`X-0k3EQ}d8JIlJjT|TT^<OaA7X4PA2MFaFo(&*vp(=j}7r>JQ8
zx4S)|`+vIIiy5nB0~Z4H&hxN?d5?*g^uP{Z{X^C5VKX<Yy$zQztnd!6YZccB%^ycw
zj?3_{EN!|<4B)>4I>$<3()>0j?@C9tLp|q#e-R!VJAvL3{;RMEe0@`o{IAaN_v5$8
zx>nJVariN@z@%0(DXt833`Y7AP{qo~I-c=dO;*Gg6vf#D1-+8j8my4?A?v_3HQgyF
z7~WEX4GbEfr^VMkc#TIxQgn(?j1UY|W<AsNc{G#%;az2-JSd^e->##i6ynDRps}3%
z{6VSI+xzRYU*<8u(LfFtR6v@VnOV&@eAT%*&&rc}_LnEQ-G$}xHOL&*5;ueYb;%R@
z{+~4-pKHVr{mpGNO=KaItBRy!WIzZQr=aw4hn|fh^B<m99BQMy{PL=r+*II*f1NEF
zmPO*M&elwY-;gM;q&VI8n#&ppok7b_QDsTnTuLWwY#`s;ZS$I|N574aj2tkGRTcEz
zdR995_)$4%=Z4MCrz>=^&y^Tzqo|}j*{C*JhW!g8%-i`4t{`@kzIX;rO&xm8T~6oI
zuI?z%Hl{L95|`cfb-nywjso90(}Bdp;qKM+G>gM9P>A|9)Y1cEm0>cT@Z=HbCZmFa
zI?&$I(dq-&aUMFrkTIVSuvSZvmDaGbGHHkl3Mwly-$rYOe?9*mp~K_O20G;&a~y>2
z0p&x8P(@%*uP77z7|UkWOEOibXV`Vgk*`|C;<lXXo*5XNlWXLY<|Hbwpx){qPn>C*
zDF-i<&Fti%gKp0XpKxK$Kbh8E8IS?*D5~SkQ8^|ocnihq$ezG9Yv&~aJqrtRenwW3
z6fv(_lY>5wKeo8EIIMH8t?3}1WBhrX=ompP=0oYAM3!)&dgtdr3a)bT_S(AN8tq@J
z^Ct;%S`0x%B4b-|T#P3&fFd(qQ?mh2(H;b)dQR6JXItm(Ok_RK>9zWQ7-bXt^sfQK
zSl~|FU7=#Dlv0n*Bn|AC?yZhDvQz)7ch;FMvh;E$sC?Th7>6s-fOB_VgFI|NadlS%
zQHvqO=;LwoqTlF4Rkla+8{g|*<k!93)ZN`V8*Ge}@4k2=e%bxo@K&svQA(gEs<Nvt
z8~QKy0gQ(u>~BXb{d9ExUwU>GT%2DfIl!jcJek|<zt=**EKMi?UpfY|9a;hQdZR_B
zb|L)RmII8?!+o<AUa7PdcI%s>(inY%u(^8855s|5-)hHM##u^NYyoZd(Uk@g{vo1=
zVQlEbTkF0=(NTv%t#@-BDR{4F7rA!|%bRX)gj;HHhwE7uskS>OL4~D(YEk0|3SykN
zk>}g3_*5A%aV1H!7}C=GF|j2+Vq%fUt3^^XmA}=2U{o)F1GW%Rpv=E%Yn5MSzJJr!
zP9*a9^Mlt2V@k3BU!^%cea>E=y}FjYzBZ&<n*TQ=EvbUtP~jz?Q(8hveOIxe%x5p8
zs^}Y%!C)61u2T-pZcn)RlLoImN|%wx?w}Y_golPp!f2Nmj3zEGn)6G_5lmo9`EBC_
z97tnmF;(0ClBU2BN+=37v(*Kd%RaaGzs+UAKvG`*+gnRXE;cGI%22Uv+O}R2@Q$$+
zuwUyF<!L!CT5>A_{UWWcEv4GU_0d-2l$6xAMr|s10s<-+n1^NDZP<u_VVo28bb+Z9
zZOg(Nxe<6cH>l&+BX9!3s(_y~xpD$BlxzmzJoYs-I1U*e28NBlJ&lX&A&J!@?d!$z
zLK7xv|MGVqP2_FK-@V0uJzym0nS&OEjfF|eIM4mN9wI!;KrwUl0Tnp^8tfJbWhrE<
zv16-p9D%2;U;1zZile^o(y+${XC@mv0TVk1>ZI?xebLt%gCbn+gZ#GR%)1Tok@}wm
zuPVP^rcTs&wZ=yaVSewUrlX^wCSeh05{w(RWvv8W!H8c1&=MkOK_w{%$@qLlVI&?`
zo;q!sR&U&pf?PyI8=B&BKJZt1A_3hlBG@rHVjW%0@;}_DR5!6_aFgZ`;X?aGezl+m
zCcs7n3+S4Jqim!f2TF>8>vWqb@XZIu+3W6}vznT$N}sZLIl$-sF5_wXO#Xkkae-cc
zq%10tt=f)t=h1O7T(&2svg}+9*e31&=7=Zz_tT=I`d5z3L$-^9u_LjhXC%ZXV5{pQ
z+u5BrpyQNJ0=!YtKadDhPnmBw2QyduaWu@sAT?nUkk`svC%L%MnNmT(?@zb>0_f_I
z9_wE<8cvJ6|00^7@FsoSHniv)7|4yZ$SS-!o^(bC%S%7>(|I`1{6!>3Zr1-MFo3(%
z(XD#ib>J{DR`AzxaUotcu^t8C#e=KLhbIKN>ubQmkNf>&PWqHl#nIQVskf{)jMFnj
z1G~#rq;<1^%Io9}<GYrs?EK8zk*LlVEp{yx+2(I%RSh|I?PU>YQ3>%W*b#~EzAeZq
zzK>XaLzV#Sd*vRc{T+ZzzX#OX+Snk@AG3cts3|F!sbEMmp=?Q>+!Zt(DT*tv%XhaA
zWgHoyI);T#RNEj}Y`NbRMUP8TRH=RVF)j``*Xr^#F59Q#Vu6DjQQ6J)LRz4Eu3?v0
zW#*`SceN`&=*u0{TUcP}&waCZTn7|<ly}b&Y(B+BN3R0^uB(gHbsGx!@#;R?v#zZP
zKk_40>^y>n08wcYt)qQzq<N>S#pS@`H9c}QILS~Usv{U@#(Lp2x*6MGq~HFLd%wiP
z;0vTRj;j7cGIIL{7V0u;=Wo|L+PgkRp6pEx)+ebhz{6}CO@;)<QT9?hax`p1%*gc(
z7Cer?J!$OxKDAJAl8{2up?q^jfv^yG$rQFq<4N{I(orZ43$ob8rbFmkJyN4rFK(w-
z@?U7udPtNuFNUQRotYwk20;XKyMTILOOrR6eBdgUiK(0JA}u%Pj{Q{S4YCeA%n!Ul
zWTtoT3{>em`G88{!EM72xJf&2)88b*bd{@s7Um8t%u>C*ZfJMQfXSOGf`{Ys1_g8Q
z_SVS3bHP&5lHL8-%e!Lpkg8|}9`)xef;qyn^sZ@KWO=oT4jL!Z%<3!7DU&77c)Drn
z66Y4Z-vJ}t?=bwe6r_);-kX?EIw2rf%&WD%`pwTKwGU5>WLke0{@vfHck$-eyL&{4
z_4o3Nq|XvO5Cn#~$NVnJQpxKeSsO5IYOAO)@IRlzwo_f^darL-E>&Dqa15$VK>S{k
z_$G#omIDUoi#O87=pWxFLKGIk4j^wK4mi33NY2D_Vs2_Cb~cwUQE*-cy8lwFg1`Jy
z7#_O4vVk*9YX_5n4_HtG55ACaUNa~?VR<+(4y3=unnbzqEX)+=*e_q=s}7W8R&vxu
z&n1WZ)KcDYMX#>@qF&=$;M1Glc>GxoSG^q1fZ{VwIqUV!l0Y2Ql({O#4u4|AUc2|j
zpU3=;DXw<S4;zaNTTuawyx1GLe!q`jAEp1Y(*5=CL!7@K<NyCR{ui-0AS!_E0O$)U
z(%Z*2GMW9GsC`8E^4~Kfcbe)5`ou26!*SaU(gUTYoZN_ryx9x||MfHnkYaD4gun!c
z0H=fIZ#(j;CJDgmqv7<F!7aU+mTA3C74$qq0M#)2=XF@I(chM=5yn_35Du}HH%B(@
z<WH=D?7PCcjrmvV@lfeNp)DKz0QF53BX+I%KzyJ7r3~*;vn(@`L~kKu@mLijt^7)w
z!9?juMb++56-~c7_0bPF!DmlbxxtU?O?w+WXgT_SQqk7HP$)atNH9usT6Ee-aR}{5
zDLrVcZ19`pJx=heuXSU7ATvgau|%?GV!j@TI5g`}L^s8g`doQa7?rDnoe-WwHXgHh
z=cem4Br)X{>3vNU97jARk44Y_g4pLJUw&Gf<8+jQta8IzDHKc{(p<4cr&G<`V~yYt
zsqR61p016iY5M$6Z?og0aWvcg7TrHp)@WceM->+}uADNcm~CZ4)}j3r0$Ax{S)pfU
z6f&E>jAcvTUu(!q?y)~Ck=I`<FYE0a<c8UvIC>1YBCu@5D;uAt;09dqBtFQ!cj~Cu
za^O@~9mL`AQkxJG=5HVG!I<IC!FGJoIzi$wCn|pKV2!`B6r-%<Ot)UbOFF}BHT(wC
z;kC@<)TM{VKGW!=7N=P%Y?9;zpBsY9$$I}74W9_{6VFH7K|w*Hatr`7JDeuPFf%oc
zOm5Dq3C$}keoyw2@7LI!{Z9KA>sK+dl*?4y4A96kM5<O!kGg`RW8{q*nQTfLs*97V
z_Y@X0IJR-1B>FXq%=4}BKLmv}pb%E-_Q30DaEUBPN%qjwyO_BCB;tH-MuNJYy+C{{
zsE>~6=6vZuVG~puTZFg1ysxjrK5X{F{KD}&LV&=s-oba>^8C!=y?3@;=Cw)wNii0R
zZu7qJuaR&Y>PR}pEP4f$wGzrPB<JRCcXBGh`<r||sKv_OHQZ)hmUZ%0I<3KkauVeL
z$?ntS_>h9UqD3roTBBY2;BbeGaGV<I8N*w5?B65&^+8bjy)ik75+<tAzYmMUE0npl
zZ}+ool&h;~1xYIJM+VlB-hoe_O~jF)o{5k~29?XYW^9g&j-FOmiI4|%B(8Is`y_Sd
z)Vf@uuaQP|QPcO*)1Q@<XN}A&$jG{{-8X$oUC?{iwD~5vyksFTJz*T-Y~x^_4C(5M
z<L!=#iI(V>4x{^P8nEWTV*6{w2_N^0^RS=ZjD_*UV^vtL?c*P@t0oBgR(|yp$jys<
zvLt$R$UfaEy$vIP5j1WhO#3RY=q)?FRen&??&AUd{DRV!l*Cn23%yD1WoYzJ!c}=S
zjhN^pNrUP@mv9{eecjwV>6`{iDz2Qy8v9`XxG_r(b(K1`83Ci*$rD^+ll-h5OA9Cj
z@AZf$`K7In|9(|yahfWJ`wN6^Q7gjrPDLp!gB>HzC#{Q!{#p^QWmEESe7zcv<xn-;
zaP>_4TvB--p(ex;v$H+t&f(LjG7QM}n<O$f%^XRA6qObilvc7b%5I486a({x?5vE4
z<jD${CyBPyWIDAw-=x}YTqDv;A}F$iv1puS<cdmjEOM=Q4XTG_<iY==D=B(iT;fNn
zt~%Yh0Ld?4Y{`s9<8?#$(fhA=_<}f_D3$kcv~KiG<;mH2(mHJ-$M=UlY#Vp=lgF!L
z$BxB<(U*KWCU!A785tbHdqT^1SF<$|5Bg9Nl{M~{E>q7uWkdo+k=fYt(ARNywiCBR
z{nL)AdsqqQc-FEmjI0nm2ick*IJhYaM@5tr-ME<BE82S>e`ZzYmzQkH&JCo`eC2Ru
zkb`b#M^FPL68SP9i7)GbH_4mTD*kHA|9zVI<=SmaNSl<Gn-{r`lSW8QeSL}FY1tSJ
zMz4T$i{GS-s+O>|xrD?N&03Y0Yox$`jx9Yn^VVlB*~I<vK<tD<Y-A*cvfDyeIS0<(
zLJpBB%HH+G>OxRP&=0AZddIEYx*+pl$qOy+i|!?;lyjC9INuIMMRMosx%1M2q9qn{
zPNyjm<%5UymZxWZgj~&K6}NYHJd0A|xnf=ZSp}H|Bm0nU&Miv1*a^eyJufq(tb=<O
zw&k2pp4t6U>#_bN{$MjBIbC-$nACXSdxqBg)zmw?J7LENxxxQ)LehiVyvWO^Mki9Q
zVnx5ndD%83yCh&!nV(BjFQ%+>(tNY~`ShSwi(Z4>X7dZDNjGwLfC4eJPE>w<MriSz
zrE6tEyHGR3T3wS>Q;X?LQG{ix%%GX)Xp81`E^A!F!${q>pC$Zrax|8J#P14xq7cu)
zumKToSe+o!&YmIT@zZHydb)+`+dT;X?H22EBtra%NJkdpShOg4{+r80Kb*MUrRebq
z+wmquE{!m1P4ZZgV^h<Cyu62~NIvp-f4r_dF`~cs=)>r`{qfURsKSDZ((<#T6Zh5M
zOiY6Zbir^|TboU(3c!|Cn8=z+NNjpznjBC<5M#M!Y{}4SCL*OOYN-knGcKehE-uVZ
z^0g>Rr)~SP5&C_WuP3r{b<T#e;ivZ+dfrJf2&%B@5Y$HKu#;0Aq22U;rdxm9txbWP
z95IBH+}t*Xk%?jx<NTs5g8FPx(#Vl*DmPjSJq-=2LdD8#)wZ^`qFQ6UM~rW~Bd)Fp
zlX-Y<!gv<m+HKFOf3;t%<NrM({~Q@;`saTSsztAI+V1uTjwV#hK0Nkbb3sP)%G51h
z4VAE9j^;Pa00V?sdfcE6#))C{K!GO_wq!ya^?oxP(>Y`auG}%>x#^jWv7I(GWv{w9
zA>EcrHGUj>%c?0O0D_WPVGVrRAL&0o`iQxGxD5qS(B1b`KK7j_QE6kJfHWZvzd=TG
zG24nkcTSE~GRN64;9P@(k`j|3bLT{av3%ICVb&lY{ygZ5Gk*JALn?E7edoZjk2fe}
zBJ%7s7-soF>Y|DUo$mV8A&o*2Lkh~$F~xia)t;u~<FyKzAu^=fZzq~->(~oxMN+bI
zbLccQmH9^(r)djo-{iSXGUZe3x(6pTXLLT|6j5RuTkP$@THlu92^O`z=Ig82-tMXA
z$XAV_y~B|tbfF-@Pnm^?N-o=HR8_UzMtgnmpun`SGnM!Xjycs#{cK?RKVoUiIwpK7
z)hO{A;{gx5?*8`bHW7zvM>c)6-e#k@#SM2Nr{eGPYOM5aqPo-6lxAp<6m?ftMRfG`
zRfup~>BvFnQ%(EOeO4$$AC1@Ar%eR~r4J|D&k)rOd>SZXIv!m?tIgz$E4pTUSv?f=
zvbyK4S^CPA!!l0lUz?O_&CYEYp3;;8!S42q%>Ffbu*dkht!wwrNATvMG%+HiMwyn2
z5>oN&Y-5>rwhzzAI&{mY=IiH^81yO_HD~J(#8{d54BvVF{7Q}Kvz%L=x<FbBEslHX
zilPM0;ndv~2Quz+HCH@*W9mZ40>1N%h&o%B!|U$Hif4A!jn1fCZjeulGK8%QjZRD~
zh561IhogncrG^F!^hE4A$_m-BaY)rQ>t(Y|QBN}51%^0G^*()K5T*LjSF|?h9HmkO
zq1-8d$jkf{m(1@svHrdwUvS}GuUlzY2MtrJ6loIpLP&tFic>zQ?B+sh0dbI)+T!O4
zf0m`k%>@IKTYF%A;xJSb4MIqIJTP^Os#~jz?}|cZ6Dy#`^=+#hc4*<YBW=mN4S@`X
z*q&@+vC8RGRtCbMT32>DI&PVmzDHC~phaPOe<$2tO1`!>cH{__dy6J4m*ZYVLhAj@
zG(FZ%Rj^rX{Ehb3fJKB!cNVmBtGyiyGi^w4*nGYF{sR7#rL4gkJ?6lz+XaTX?ewY%
z9y)q}z!On8sP>5cy~I|<wd~c6wwi%Xfmj9QNj6r^(59~|X?iBUS8zho@r>WKR8>`{
z#!fqq_|phEjSaNTtqc(h8`P!^(a>+v-N{&ZkSvc%7Q*h%(^f!qv12%BV*not9pfW3
zpTKVW{ShkF5C7}v)E~V*x<|@vmICN#GF$u9C563(5SX&^i0#uaG9I2sjDKyeYs%ob
zGgy9$lt;=Jfiv~$kN^;Egr8_0!g=qd(EShy!Fl`Td+%q@nsXIt!e$XiF5-PY2?ayZ
zh?cCK>y3@)wTQa~VTv|3CkdOJn)ZmK`A<7`CHg6DE=8kBF9_egXz(~tvi7P~W#rT*
z9n+gTM|lLog#I!X2K>Dx$jEhkUUkHgO4xhs4#BvU{niOpv7*T*c}<Mm;j`Dro(0#}
zP|9?DIIJUc={cp?k}2)jY+aolJ>;cDr-ow7F*gh*g3m(NV{td=;y1Z`5Ou+OU5}2H
zI6fkCDJaNf?3tI>62CFDUcPd1&_UOF9v6;@Q8!z)(`e6nEoEXiemlHkr{7HVn2WY3
z6lu8!Y2ucQ@z~bdTAJ$d$Bsc;8<+k;q#L5l`}~?33~oKWh6_3!%7ul6!*0wM62T#&
zQi~DFDwY=S@8JA@Z|kATY^(bTvaeW8UO6;eucuI>R26FXC+BfDXpe2IGb-v!D@rW)
zN_pU`2+9m6=8Pawk{Toj;O<S@+_p$;2+yM8dV#YI=WJUoxVDidF218v2G5I-0fBtA
zw$5k%JAl1E0kNo1t<!gXgXmr^HRqOaS%r8FwRhbvFQ9v`X*yO6LS7AP0o@>HBb*Wg
zU-_kg?yE7;9OOU0;B@haZuyhvH$i0mI!6o&N)MBy7+PNfY^$q|Dr~YVWEQh7FAbL1
z*^T7n(Xmztr#82^4whO`VX3j`d-F}rtH#Ew+1{j&Sih#F=Cr;(weq;LyBvdf45YQV
z9Ha&Y2KquM8!i?IWE3^<kEe}7T!Bd-YRou3U&i6`cp=a3?8Rhvlt&t;!^*iuGq1Lu
z34}`Ph0{f|8xUW)b8{=yKmV?K)XeWM<?Dw?!2G2!S7^=tIi63c$K~T0D3;S@WOwMF
zmj-_w3}^Ch-KSUN6}22P?k)`ihh-<VD^=K{P=pXpSM%S&HI)-YqdhpCjo^BY?)CLS
zXvQvHU-n15rqt-}F*UW!9huj$(k`<b$!3Ro?#}8|(Gr6mQ<zN}D^kMcNMv*=`6?nA
z4sP~z+Nc}`CJXAxg5%YiGA3PBMcL)b=I~(iRc>ZMAk~G!5e{z4Leq`DasK2t&!ILl
zIE*PZ)jON}TZ-8l^tf0#-&7)Chl~*f5x8h&urf8>7Df2$@rixzN$~n;r7UMgqFQ@j
z0G?u=UVBGeyt;N<L5b(Nu;GFF0g}CK?nu70T$zWesM}q{rQ<V#v?{hYmyVz!C?xi>
zi7JU}Y=)z<q9VT}lm`7vN4teZwc4UI@odQKS0n-+f}cAL`~7TOb8|&BH0Ct4cdo9t
z&ykwbqV?1Bj7%0db$}D82MMsono;w-H*h$ZZ$KevJ|0)j3noOOt*WlT;n45;`QAH`
zEV5Nov&R}<5o?^o$F=m7-n;)j7ii?GRAhrKqo|0F|MJb;AQESsXzTsob2HUar1d#z
z$SBJQJ0vSJbFPE>y)0qI&l`p;I9To`XT>4+Lq?3CoQ#4V)PVYeC~TUnJKKx>tyO)-
z(jLQ7LN4dp5Cl<sAST=OSadTov21ppW(@87IkWF}^V4R14B~Qs+5WxD_=>uecQ$f#
zB=qh?T1u0Ers54#5+UC1{_&fi8Y&-dH_G)Wx3*{>lUp4G=yl$gIUMAFew6QnmR|y4
zzrI)mtBx;2MoXIB@%nVh-8}`mMJkQU1;~KysFi1sj4vis)POMJqUHX2y|8rT8K8x~
zy5F4zwYD}FTZxnIrExnQANV5~t*z$g=La8Nq;cx`)pMXL<-zT8+P>ywQ&tz>iNVyu
z+uVkoZTh$dTU!3<F#Wwa2F;K$Ez+K-gs5tzt}jR2EZBne_6R-SFqW_w3uDT?^=+tQ
zX*{KerluSjnVDZPRy1e47nip=uKnb>@?+S@2Q8J&X1#T#^MHb^wJ|JjgZgA6>PMF`
zZ;SUqr@-&k1%QkTy;nXQIob~uE`owzZEPR{)FpvE1v>5ASWH5Ss_Yrr*(<e%DbT%)
zR8;q0Le{F!<h`rk_4Or(5FAZzD=CaM)z)Gf4Z7=7ROC-h_3iF9T<jwdFdN60mS!~H
z`%){rgEtPu!IY@vwH)j@28KccLiOzITRU6tuWsAgEE?<q8#(v_9*@D+*v?`v0S?o2
zdpj8)PvoJZ;`o@}VXwf-IG)?d`g3V%V4&D$jyOudQ`j<&?|wjqMxv*S<M__OXhUkn
zS#f+^=G$VYzd3&RzBz%VB}Q>mh{#Qru5Ke2S7#_zMn;J{H6tSniC$S8CideHv@aoH
zNQWmUCr8~q15zSVQextTrKM@i_C*<<?*$YTz-9Gq;xkdvi#`8HAf}8f)#5oC<Y``5
zkpB_p@X0nfG^ha;AA#1>?ds_3A|v6ucvh$5t_=PRorh$eLChB-BFL=I)3RG|neTVz
z8!`rtvV=l#+2umo>s(iaoRwn3@+c}TX#FRro%#-!!eKb!INuuo<W-qbgj&U$E|&g}
z{Q*xrM)_>TK)IqquD2H=U{+>c*YcoGK>;$n1_(sVKU`J0wL-eBtp}U`9tzIF0;CXB
z!@j+frIX{6(n#>6Trv7z0z-<63)R6Y0yPA{^?CIh6)0WLlT0<&Gcn=O{_LML+us1t
zU}m5JBSq;BU@{Wx>0vEVWpW%MqK1RBLPEl&rq2I9Jb(!MrDOTd<1QyBquhQ?OxVRm
zPWyB9S-Hpkr?N_>-NW1`B>e5q>*_uQ1Z<Rk2&nVWBE{I*-h4AlBi#r;(*h0|x2C4<
zb&25MlDS$PQ*(HPEV#x7U0-E0@$}RkWaRd{Ta5k`xMv^m@J1>taBy*TE@EP0wj5O}
zRp4D<pJ}Q$PR)#r3{2RA>c9a+MCj{lCtu$TOnN%k`>S#ip>G&K(<_XK3(Zn!Q>Slp
zD7tL$pjjK99D6=+yhh@Om@^BVC!{Xkn^E2Hq4USa>RODl!sYd4m+_;bsRQjs_}_3#
zhCA$v!HW#3vjH}v%&e8wnx!TcF)<r1E=(tv!YZ!JO>OPNt!z=b){51NiZITny{n`c
zK`~3>ixX+o)SNDBHwW~pO^K=8H|t44+-WrU+7=dux_s-Nz6l9=4V*DDawDVTEG(>a
z<{`GAA|ubp(AmZDO>etg$b<~?>(ZjWfqr~8Q?$y;_^76)I*5t28cvKMC~(nguwE-L
z=ru1c209}o0?zXVVM2@h<K9NECj~xu>32VZ5gojt5q)MdL5cgPi-c$Jr>ELs?>=aV
z8nGGY)x;`6g;ALEjNq;EGfbsa)THMD_>W^}%h=>o-5d}@y3Z0C<6Bs8BnuZ77Y5aN
zcz}HZ6N1d0nu=&|52o{UJ>CLjf>1N5RWZYl{!Y3w@(LZ64b~74bcL)K4ZHeUziIbo
zi#l5nQ@pAx+N~^9rbdH}eaxCPPZKe8H)&o}%yV<tUi#JCbL%AhC8xT2<RWA{G4a6t
z%3y2O3cNSx_E=g`2xQD_0!zk?pI=!o#51y@VtZ!B%KpIc$9in3dR$_}`&X9ul+@Hn
zN5|JKc02CZ*E=BxjVnBkA3^i(nuC@DrLJJnl-}{l(H*QOI~d@`bXb=#z}WGoRiAJ>
z9R{(;vpwRh0qo5k`ede!^%TxRp39#r^eymBwvguL)S?c7(3q?g{1ZwAME@0iD=jsp
zA7<v+74<|}kN;fBFZrb7yp9;fH8f01##3%@wO)~M`t@<+v6VEmGC~qL4UEjx)s=<)
zlNF}Sfk4xZi!0vN&X!2@n9~#`$b-k4l#I)5z-G{5y6iD`>3n^RmVy9nER?XKT}LDt
zDQjo4rt{LX0s+i)MJYtYvi%WXI9$g@mx}{=xKtE=x4Uq=o#y+~QEd5Kw3uku+i~R<
zf_E=EpJQCX<DAZKq<Ne!xM&g(07vByH^agXnOWUxO(H^2e`l3Gsjt9!vaY6PN`<so
zK^!4+FDkl)#dz|yVq2*Ue%mJzA~5L+Jmt>L20{M<B#j<OX2tP)`}1H*c`tG)5ZN4_
zoogQTP-Eog>O*2<F_a}ike5Wt$v8ABFDpw)MM+%FzMegOZz7*rS68Q(Mu|y5fp4+5
z4f5Q1$+BK>QkStySp^4`=4CN)5dHN2y6C=BJqaXI*6NGcu+cFwOP77Hu-955K<(R3
zr`1Adm#>3a#mvG)@J@R_UFNmKU=Je$tNUuLbyW$@=f8(_TJ;)>zH)eU)PnHE4zoV_
zT11$R>8H2Hr}RvWZ(gKwb5V2N{4Cew%LwnWh)GJ*Qjp7p=V&ZO0e5oQjF94v$S<*G
z2dE*-sI7|bF~zS8p2VO6ertC2A8Va95Y4?-A2sua&)+L%JjDxV!lb`HowW+tBb1Vm
zlrAkSb*QQ&5%uJiQPq%Kf3Id}D5-%TV;qwbCyaFbY@dRBeRb{1*`=~!Ux)%JKf5`@
zQ|vXRiLo&_O`Qo!MQNl4`^+sZ$*(>Vv9K_wXXoFoqyeWMZg1%MprBrTA56XF6(+)W
zhd6I#QdKmS5z<Hgu@D2i4m!tve$<5pVW_Y@ubQA>lgy@`&M?CVvcY%*C`pOjhI)IH
z&Fya^b01>b>m1Lvf%!2mF0PrW8R6<W0lVGy>2&3_vvV&7?JFxa{pLYrz+3<sGPv_f
ziwc%cu1pdV{H0T<UQ;nLF?a%*Yj4-LpX>7tla>q7BBV0VV)r)tcv?gs?LU6Bvj*zf
zn#%HkFM(dJT|OZ{C@2oNJ`%BW%}>rIU7<XB#G=2p>N8*aX=|oBu%JMQn}>quq0bl2
zh+fMc>y5UOOgJ#b7FT6wBqyh1h$t@lpr8gTZY3<p63_t-qSG4&9gVJ{!czbKR{IBT
zkA;DW*di&|Zxl`5_*%6v&$OkXZf_M76@ZwJH9&yp;r^zZ$*4;+J3Eh%-A#>O!)+#8
z^rNf&?InrRqsr_en%e<<;|CD8b{*+h4or+Na#IFyqh(u!o}b&Kx|EF8Ja)qQrYN5!
zc0qXQF7YQ5cI6@G%a^BFKe3&+CZpa-N@7cz;dnKyLNj4gQc`+#RgO)}<m6=_bDx4t
zLjLxxj0t;mY)nd>BLf{nd2Wr8s_Jy#cYSc_>j?*^^D8%8?0FBOi^qnO{)BrfES1*m
zv>_!gAJtU6cl+~ai&W~^<Y-ne8V2Tr)2<4z`&M|{HSadF+Rd{&&q+n34Z_=OUOUPD
z;g*Nczz}p;U$w-<$L{Wx-d<x3j!(+d^EcB@Hddk{9YaDs>cgL&QG^n3r5^e9XOE3R
z35TM^#que(-`!;#&9*$;cl^}Wva(VUo8fUgUR^{Y9O&tmm6gR_I^c2m0q<-h#~B}!
za(7qS(tNdDc&ZMU&Z}s5mWWP0RyQ|lG)SJC9e(xW$B(Ft4CIK2GX#VoENM2jw`hLQ
z&}CxaP+pSHlVf81`EqM}Qv!>N<Kx`h5p7661GVS5Gyz*E9SjG7D?9Gc!Pvw^n~}Mh
ztBlS<u@PR0G^(Cn<fy|cdaSzoJ6BQazjD*T;N~m!xH;WZ*x2Lti0ITz)UPE695#Vs
zwq*bS{<)L|5pZ#h(C*w?@$|lP+r=jtm7hF#2v8eZfPYvz=yOdKvmJVkb_)`|=}k_>
zv$MnxbYths`A0$=9AmnE+kV#wEeB3^ZD>43llXaIcL1KLPH&>ubZQ^$_7$@Y*V3$~
zKDC|mmhhA@Hqky^jz5ZO^b7AS1Idp(GMlL*La9W2+x9Nx?U=)B0(vvF0PaRdhPt9)
zF(wh;zEzmm$835l(iD<%2O&CjFP$UbX!`v=z+`xQk18m#(lcqk?k;^3_7M=>(*GV3
zUliPbqD8Q^FS=IaaId)vN{jD~W7t4CDAH)2cu=-v2?gn}2)4CNp()B2a4}#RPeR=7
zr=v~%$uc$By5=rrICY05S#mugD4rozAcJe%w?8!c;BsXLWw8ea2k1&o4wHg9PvYv@
zkf0m{v~-j`!EAE3<H>_WQ`5mKB(~x478F7odM3B*q|O_gb+amNNjnx|4AcAFoJl}>
zc2nhB$sIaLr1u!&<`*sw^zKY`zz-oA=ElbLqSCAs<QHLajMbbGi}_q*x)PxN39r&R
zT^VhenTtatvdLM{$D_VlC2nrh;&DdIx_>6g^qV}qOOW?A-^;s3R5UDyrKYCq5PE)n
zDRq7nRnQ~T5H+CtnI6TQ^Al-9w&RX?Zz>`8%tGJ0Z+7WvQ9En3`L)jzNS-@eD-v2N
zzls3xTCA_<l86HmMvxsR3uQ~=ZqAXX_by&GYu-Y~TRzne!8C&V`R=*pLNaRqx>`<E
z6{%C4%&d}6@0Otz_Vo^)j&GZo3TBfkPD~)$eLArHX$Roj&7>7G1D1~Ix>0T)+DTRG
zV>o}rVjhS6h*rk@$J?GW{{UiAO=J^HuGVrqxtpC6)fALmj;2+S#DXXsk#rpHmbs@R
zPmW(P$)ypp|1kT^6_b;_s;_g^^Bn?kzOV9;`9(@#g$`qz+z(i$2(c50zKZw|9I^~2
zSSpp6TPnDRtiaOmF!h2hO#IWuF}0fJ+H+3MiP0NNXY2Q7C}*l%fpM+qr#(Mg`5QuQ
zjs!BLT+&26ancFk3t#;S;O=DIowg|a-P5j*o}=<l6wfu0a8poM=6^h&2=6*oC=hV5
z3kkv0%PbC-sCPz@pPR!=MYGb=*EO0srU`ula)mRWw<QJJLx{v>#ODLK_16w^QNEIr
zfPRuQlzp7kujFV0M(|ZW>O-+bw&~COf`2oQ){T4kIG0}er)Yr5l9zTdw4T~^5Dq;p
z4|m^Gb}yqFdvqpa^5;2UoDpvMK0DaIBYwy34i@8#>d6P1Vm89ty^ojZqP<uKDM2pb
z$Z1h5Z5HX}fLIyVl;r0(eV>{FNvLt&K<Ybw`XoMI!07Uo&U=HpjGEAhP&&Z22+OyR
zbiFRjF7sRzvHsrQKZ&voJ<Dl7GhM9u3bMrV#@h^Eabi+we6spoad(8f+UUrT2%u-!
z>HSHI;X^DWBv7p@43xj5mS{Rgss^=R8Q)&2?(b90?-IkT>CmcRnx_8)%l9~Z>XkN-
z;+K$8TDkxT`7z>qtHJn_*+e9wyqcil1fN&K9aF{#p)+rh4oV2zX&?}q;u8CsvPfsF
zN?FoduHCkxVnV53Y~&l8ZTq(hBD97-;d}wg4_Lbop{Fj-*r^Ht?9YOL5MyUY3gB^a
zb{?brAY9Rr|H@H{k4y)l7H;q8cmU^jyhp}1EX?C$;-&?cnX!-3{BR~Grbx4D%Sw)r
zvy?OP@`2Uq=XOKTrR+jbJ3XevcC3b42BoK6ZL0FGqzP>8?L5Z7V^nLK+^c7A)z#!x
z#l+M;oH>znZX4S!u+TJQza?jy?`$>UokZe^RZ?byeTLyTVnsjiu=PRAeSh1eRUMOF
zgVQB7HFv_{A^GyEErGl|o{IQ+O$DP(wnun!T48a?mbRg2j{5i^PEE=?^X$S4j}tAg
z{{H_)PaeNHeXPzlHUU{-QJ9>RSIs}zN^!(qGSodDEm9?vj(^kDS5(++7>*>K0Uzyi
ztU&h%`1HBX_(Mr*7UW@x!;GYy;-j*$rG<r{1SaJo9&O}{UEF3Wj!k@{P`}cN?;h{D
z1{88lQ@!raat><abAWayuXFDDqnl~3FLr&oOn$Dw&d!T_`HDEkSW+mP6!DYo#Huxf
zhAiiQP?u#f0N3_tI+e7bb9l(H8Aq6ZVFx29nVD<9)EMiC-BJ$ZD><@@qe;LHO6wU9
zb>YJ^=+qBYn|Z303k2M*9YY!VUQS(}t}3tw90wl*{zS$Z?t)2$C50KHWCS_snYTi^
z$^IdG>5mZ=VqL4oSqu^Jmn=5E!S|WuL%4W!;rndyxYK%<;y1T26_uD_3H*M%0Ca0b
z^8l~<tc>vUNT8H~Jaght`Oq!bHZZp9E4v~wgH*cyzwnsRVoYO4P6%E?a8M*A+wB?s
ziAhNv){R8ST(nJi^jYPqG-ev}ycBsGA2hn3o`gePDZu=D%iEZ<HmGalSdvpjPfmnh
z;ACcybI~>H+K#b|DYE}!7cH{}WC7zuSqPylDao#w8Dl+!?di1$>1Q5O<A^3()yFk8
zQ^)4H#(s+tWKfhvjTZ3q)mFxJh^;L`wOxg{I7dzPA9^x#B%jCe!ym>2ygIHEz)>hn
z?RK4_L1Yif#KL0<Fk9*~?oC~bVj==cy_sUhpGlT*uuMX4AJ~4r1t>3vdzOxWoVHiQ
zeyXnMNmHLKq(;yvCuU3`<m1WD{QMV!nd-Didi7!*2ShEhukY?9KiSwQeTv`^mK48R
zic0b+@yl(gR9E_>BXv_^BqI&3ZYDSWu*dcaN;`0DcFfGD)f`Tk6x$?!VuoMy`;7g+
z5`^}yJchg8!F|hZ$d*tcvpgG9$Y?T3N_0guc_U(C8+xy_X6tAfi#4=MigK?n%HU=`
zoGq0=iH4Rz0vi2L;Hzrzm$pCA+^T)B$LM|x4&EF3lrx}PwsONY{A8!-?ga6;@n^{J
z`!}(upj6nfMH#oE2R%JKTipbCB-VzZ<JY14><V%8r?p3uV{U;3k%#eiLjEjU6l(4j
zLiJFdW(rIKdk$Hm>GsUrz@q=>>nG>y{Yem2pK!jXUa>75;ENQ3#Z(#FQX>f(bmTUM
z-SIF~+r87UxaAD}y|`1~yPbTctLxZAr<u?@AOpGtT_aOu`-g?@*`+#z90XT)<FP%f
z2X4b$D-~H~Cg=1xgIP{Grzfq_8}}t^M++~KEwg7u9p2;`irP5pHkRa0$ZW*sW5{fL
z+|SOzLu^4wMbpw$mmimTxJXf7ymQH{0DEaj!h=E?BS=w3^?rTdN_w%5rEgqASi`&D
zut9wmXq&j5PfT?Te0g7UxKZ48+ISQ~tXbc+e3MvwRM3<V2_#r==dG~N$Z?;T8`Ox*
zJ>|4!zBQH8l)?{-(@;C!$r<vVq)Xb`DowfbDwh&(q-VHj9f^IZd7SU5X<ATFkCPZH
z^rO>KgU8`ODoaL1LG`NFm&s$XiDjf;?=Kcnj$MoNmTj9=IcD_uhj)#{*d#!<GE&?A
zXm;+<e)Kx~X4FW1E_4yJm@gjtewgjp<wSq!+j=equ6iK^Jb}($6zfVP4J6!+E&NqB
zi7Q#}BpU_A<%&wN!omz_6orxDA^6iH7PdD%G*peLjt{1;=I(+CrCGhg^mGKvn|zv2
zh)hlEqY|?RmL!hP$p)28t?N*m{F&L<w8XzOy~I_NktKLL^>Fv|N=b;ecsb~4i@yfe
z{`!)s0hB1tn4ys=H;^)AlGcIrZ0gSCYb5IT{>bUaB$GTmY5RDcs4uiVEF>j_T^tL_
z)Nw#xns*a=GD4q**J@oRQI}QzrU!eM!WDS|g*SXy$geTyS6Bb*9?%ix`X2OhyJTiY
z?J_tdgiN%<(Z!{mLW}4P11mYZo3N%%UG=jwdc1#S8<GFcHsp7jqyIl--PZTwog4bJ
z#Txy(${3cIGl{nz^v6jpVQ%*$X58nY3K-iiA8-G~qJkBB#_m2~iSuDU<rIzTPJ*Zu
z^RTSkuG}@(>+>MNKgC{y<&4aUn=F^Q=C&qw=rQ9D256W+xVqx^c|L60CI6@X>KYFK
zTzZ=?SQKM?=FF)I)69V3G#2Wbi5XAP*?4k3efv@G%WX=$mcP->PWqjj0^DtIq7YuW
zf4=8?jS@iCzm2#1VPaC};U5nx3j)?bi8A<)3W^LW6ZC)Z(Z8a2|9_rBK12L}q>;aY
ziA~~vjOGRL>C1meet?AV1;AH-|CZk$Tt5Feb%FHm?}hsNXOMLM1<U^H&#IsV_#_Ix
zpv?Y@Zq);7#sA5+>InQ#wPLhlejPXOYZQ%U!jr*yb!@?B;81Cfo!Io$91O$LGdcVs
z|M7aDKhe+6SC1m_duABYojV0fg4(zA!i>7TadgCW4262G0D;Kxo1bwfMsmkCNn|L`
znNH$<Jcq7DR4^>hM}f~6cCaK}crd;fKboH2xp)v*t6^*Rxa4F?%R|BcmdZy4v>WKk
ziU41EJg^U9cwGa1zF0qsPGM4t=DRsO(0;1>z1y#swG9~ezuwT8v`*u0z!J<;^{`vy
zh)82AL+&5#vwVw(QqIRA*^Vlw9`wy<KbNHf?V^=6&lj2rH$t#b-?=htkzQU79V7@o
zE0uJY5>FA2G0w^Cv#%^4UoMb0fesL`-nPHI$jAd>Z0ZRdxEh+Va8s1xd5kVMC&{Jd
zbt)m&#ULP^$ntPTDD&?Z%*`uVd>Cb3)M=lGmJ6E2+S=q$Rgn!i?@C?xuWHk>iFt{h
z-s#I5dXRFv7YX-T5N#(-C9zrM8Y1(-BENWgsQTf9L}VZX6O;EKdASMzJyuWge;@7$
zRGz;N_aUagnevWp>Z~{T4R&{@DM>)UHpgsL9@doAlyH^r=?y9)d@1I``g`z}SY;}M
zWG07`luxL8;v^Bho=EmDo56f~5&^WC@*qVn3X$0C9vS+QHR9w@oPRoIkryU)jB~ry
zrp&d6H&<i<_55c1<cfmCGJXe_BT-#$O$}W^DLJJ1Zg~@?J~7cZ20czU3(CzEC>I#M
zK8wnzL9FI;Szce)qEBf;A#C7w<gS|juX0l#%HlF21`4z68zRLR?y<)&8J7OA(_ogJ
zgMB0=fnhLty)%F;;_vE`X=o^%Zh(jnU0GR9buVUIK}$NAaEWzDMLDcz8%S<Xt;Q_)
zX;b2UNGq*;6d|wD8J-G2G{m5lc0R@tAxDl$)y=gs{w?T)fPk;(&Sm9YQ>UYI`3%9i
z&yUg<iK_E59`_3x0RnBZiYcpHqzv?I)kI-HEcwrkIz|H0)-=3px9v_s33%17))%3d
z$whscZPV)fuSVr{AXG`kAn<w_aLI>EDJ?>ZlFFN2(le~ElWl`7GB8M63^{hN&(f2g
zk5SgNe|Vn@W-P$6;blAs@I@R3iy||VNBqNJj|9ECg2yuGEMdcFFk({WG}SqOw2N;u
zNE^XXD~l&>_MJMrlaQwL6~i-Emr{IR!cujcSP6_{VPgZGnT0xjEQAKWLha*6T$TUV
zmIvqd*h3B`Mq|T;|KaLoge8HQQNK-j)q?Bc*Y+i4QZa=$UpjOpkB`vV*dAP$7LRL&
zrvZ3VRvT}_5Yhf&9$YM<<WT~z0{VO2jE$5Jv4ObK3?<0S5#dlYhf`ij9l-#PmWESk
z4$PA8D_J3($1zHBJ+zdxB?YHA+R{0*D=<&r$Oa7XdJ{&Y?U<P)ZQ;tOS}>1|6@>%`
zQB#8plo(Q4j37*zLlovSC_^~byAs#h5pndhwN<b4{QhdAuB@ypK7O<IEo1AgZ=o_j
zy#}x%VH%ob1MvFWcfm4gUMqi}4PY5@f$I>YLkjI?m!{pv(~q;ja{(Yj`UKaWf|i|~
z-XZd9X^u`WE_$%t83@k&=fke{dVE0(@yp#J!hvLNLfos{!(pqZ+><6Abop18#kfNC
z9G?8Hic_>Jt`SGQ+qk&EC%lE-ZFgr>_@SQQe51PeqLOL8*usvPqb{L7Db|&Zi|nm7
zvkA03ewxFYdr?H_{u||O3n)z8tfV9|u%xGZXgfoKwbo6H2$N!thFjfk=u$Wx_l~<~
z*=q4Zn;`5BZb*zo#we*F&D7>7{dgRFDOo~mHM-?02_3!wI}oaO;S*24pF5T_o_)cF
z<W1+t$1kmH<!*Bf3(I}KT?kYb>kD@`k^pzGbouWo-Tx+y)s3*6fLeIrI-sCT|B7Yn
zpy8{SS%DEe{?Y9hhSM@#IWYQO(}IvHyK#jX^e$TJyY*99D;IxSxH#7e<8J1~jEl<3
zh4~wPj;y@+cW=!V5%p^Cpt&EUOpmdo=?%%J{@3gld-`sMV?@CW^F7n>c;VVn!S)V>
zd0Wq!LK9lKdvRmHt-?ZGO0!qnj*5!P`#FNM&DIE@&8BbmzTVjH-<~xb*qhJ8vi~*M
zx!bikiu=2-4a!)*q84Y%$yBb;=4O4^t6e7dod-Q2Jb3q2`*8}=DDVvsbyBna@QVd}
zEn#3+^J+|*cE_AjBfUP?uzPzv+{aW@=TXom`Qv){1P)dRbv8ub3m`_3NGxxnK39cT
zdE#N$a}B{8!*>&R#9NRgX|E5hB?v$ICPW;Sx(Ow69;yoU-Za+32ndNX^2oBv9_{aN
zS?uMc66;aEzt%yNCc51Iu9b8@wPUbRcCdHW$>w_Nei)>@qNjOx-n$vhTp;6eb}N+n
zc~D6y*Gx%%i3X49lfh8m-GS@j@#VKilb$5=?<V__Z;sl?>|E~&mFZyx_kIXRNxsH_
z!FF@A?iJs@dZ#RoOI4h`YHDzI9?U+gsZnlsGy=2Wtz$Fl>VH?Ji_mwAi;bLi@|lVv
z&F}nSBFfUhH)f4A;5t$BOI+(<Lz>6U-f999SWS3{MgVMIbUUBkp42=!JD->wmABmc
z{sQxBNhsnfFE@=Zqf7<pOA1hS9SsQKmtO&kv+L%R%-C8lwyf+MTGiUap`(>CU9y~Z
zmy5{TJ@uL*1egfeX#oMD=JOHp1p<O2QBegYTxY?2?Cm@~x$~Nu2fTM8RCwqwd21R>
zrx`0Su-MI~a?B<<?zkSQU!=Uz`4Wc-!6xtW>FJik*6zTJrOQb=?axcQ|8$yv%fqhC
z)-9p)>61C%lLQJPm<0V)Iw5aCK#`|e&b<iH_gj6`bO6I<)%Mucr5*Y$rgMG$$JdA{
zZ$EL<1XE4o2+UR+4FcZb+tCVy24vy+NTcfoJND-^q(J0^*J!_G$~Px`qUCP%<D`Z>
z_gZZRpdAOA<v&!E4+^9FPkMUuGZ}#aAd-5+hH&uka*Yemx0fyy9u$*fw{sOUvBRzL
zG-`zHebm&%qPZZ<63X~C(3ecwj=G{j3ovXuQ554svpzhIw%GwsY}hdwd2i@%5(>_+
z-9X&-F}TVuV+M$AsR|MBJb|it%1lq_jyG82%XI+|F(!Ur<_X0M2oCUcqJ|3!TW~qJ
z+DMgGKDh0`c=~ISP<r@LCVX+q;(nDaoIX8#=H=#bzqPki?lQ~TRFh@~-aAm+5S>Wq
z`5{@s9DV;jq>~G1>CM{O0KFeTAn@iShqs@2X9CCtZa<yAjv<Rms$_B<dH-5XNopV!
z>UoXTbQ^q0e=>(1n4Xx;Csij3#+#hIaie6SDuJ{2>|a8)!^FhI*_v+XTqBK@UFGBs
zPq#keX*U<t&vXsFj3iZh@l0eXmSy(aD>JyDauVS-S3`T&?&v4|@hlc<Kmh=Gjsqj<
z3mrx4W%kvwby&UP;}QvOFbI>l>;Og*x~S4_mOhf=nS)FjkXmE!jh`G}PNApK1R_}g
zwUMpa--qQUzbz=ZPE^BRY=P-JMF8r+QP`6Xd`+HsO_fK~GYK`pWEzuQLEXRg%|dih
zlENDN8Zo2aHsrTh%gjPCV#_M8&_|YdQhCFbH4QWKtiEK$oS_1Q8K}&MfB|Fm{a`_*
zcl-6%g$iT*$`1s;(ZM%JEWBJYxT?P(os3RW2C}uG0MyD{$ta$edZxO3nB<R%{2xQT
zo1X`g22P<`V=xb%E1eFzdgGLm2ne7n?Ii<m&Ma?eM8;D5Qai+!Ehaj)XE7tVn^%kQ
z{CcKXedsbjJ|2Qfp_Y)efr$~B0|XF_)+^97UQe32xx@SDsg}Rq>-zP-cj{thV!&Qr
z8!x{|Ks)yECo&!(<!F4tk_L<5oAtaioJJ7r-D^fpc_wsLPDU=l?Oe^wrzTX-F#?j3
zd^2;`4YzPTnq{VrDNV1U+t%_6>>QDJvt)*jGQ`3A(2_04_z|=108Mj>z-7LNVqMWY
z>%diLnU5qL=)hcA#$<7|@ir@8h6n|e)I{Vw{ePsrWmuQrx9%$-ASDV)r<8y+NP{#;
zw{%D&AtBNY((nbOySuwVy1PrdyX#E+#rm&v_Fj8m*LmYBy@cnP&zxi4<Gw$Gxvnrw
zgbd3+mumYm2-x8r{9p2%OM(6qIO@_JU^8B?XT4gz=BzQwlmA@n7pI08x^Iz<x-DD(
zZl%T3T1UqcihX9f;jRN$b>69nFv7P2j6O|)yX1?9BudeI0Kdr4N|@HC&Gp^<qAZaN
z{cGSu#C`b^GzJxF&yL!NH8sI^zsfy{PuLwHrztBteLZq2g2Uv*HlGndq|pGdlr`$K
zkz}k!%lXO40u)l;1F=%3UT7Cj0wx{;C1oZ#xs3={D`+OGi6ddONMlOdZQH6owZ{tA
zQ&m&__L|nKPs8y%5b>EM7QNf*)a(qcTK%Qdr%y^!&;4R)VmYJUJ)Tk5Y$DdwsJOGe
zUx$rhX<%Z}&u%+NmX%HI6^g|~1V-CBXo)XcfFm~!Tc-lD-Lq0vX!>=09xKgfn7L*<
zR^431EGU^J6Aql3JY2<gvpFO(yxma18kQU6918T91TIO0M}=_ug@_^xo3@^i^WK3D
z=B9%xL1di+Wm)y%RoLh9@$r<~`SMjh7`#B+**jqlFu8o@(XGA5?+!X?GLi3<ovU{~
zKuErr{0_)|Nd0ft_6CgnQqI%zuuAjL0~rX+ac}P!yGiXla(Xg_@X_}enYXt$b2S|u
z!Zecom<EFrp;yQT%Gw1RhJ9{0OSvcwHVE747>~h`O$P18_*i5;VV@+!=TZ-?BN?Pj
zwYGsw*I^yo6TS>$mlD#-n8*5D5Cj0k%mG5OH(1z{=JTl|1w|u+bX2Kmd!4<$1~N4o
zaqPBK%q|KanrA{^e9BmHyG{VD`(jzJAG#M7s;a6wKF8DcK{`P~0^BAwkFTSdEpNKQ
zwpFAFI!I#@_xAzht51Z{LQwEhD*8zfF-hs(Y)v?}A1;$qHTe1{w47~u-hCM_)tBSr
zcsv>gM`Yw3KleyPtK6Lo6o}lj;W}T;Hib0Z_HXo~A>6r0RF)q1qC+Rp<bO+GKf5k8
zgD+IC$8$U=OLJ{J-iw;fXcwn|XIH7*nG!O}{t6UZ|2!(3S%)O!JX2)buT40FoEHHh
zyxdMtDs35mcg!~JUh|xm`v%Q>FrashMgYmh(Y&`~kv56M6a{DL@OssF<8$i5<?_x7
zYf%f8#a;c$*xn&~n+OO{dO@?)`+!<^m_W17P{=*2AOXmH*NZMLW|Ng#bUr@wA?_NU
zSM~m-lbI4#7WkL>$)&fE_*(VXd+(#&Nymz{`+gBWA4nqPt=?*0IJtOp5zkwud%-HC
z_&P6hka3*JsGyoGHA-GJH7iFy*)PQKT-Lv{7kIqHLW;xMe1;!5bDw}lkXy`Zd3k#I
zfR?}ei|vpu&h<^d>2{cX)$W^>O+WjK-g;kOv2B)bh{{MOeL`}qgN(V6^NAE%d-CiK
z-{sr_O&qOG3FIp@bUKQ==x@OhK7jf>vs5*V;ke3T+KS|j2X=E$-vDh<cJfUo?Bx|c
z$JaLuLJsL_I85&;P^Incj^jzha&vN2V&qp2JYwXt`15G-c%|St!+jGA_Zt&9yBj~q
zZ_uhh!w0FJzg1^p0bB3RL^F1`&i?aT2Y0PD^v*zH>0F4pjb&r1uI^^1GEHA!JvWzB
z0=qzx4C4YX`%*eJb~i<GMcz*uq{k3TDl1ip%PDNcd}5Z|UO2BqNRBEOWpYu1sn@+c
zxS%v?)>@^<8Gg5FJ(m}eLppv>_g()!`>5~YGtSPonO3dt+37UB>r#(*fyl#;0a5&e
zt-BqygU6czm5h+3f&$kU_*cq`uN4(T@m{}o1Sz*-#C)vq$op}>rbbk5aFD4nom|mr
z*(VU-^ofc{ODewR5ksR&V)?Sl+N-o}WOQ$Huk}f2?%n<O7HSI#`{z_%(BJ~D>*s~6
z*P&-@R1e~T2e3_Dva)wO9g)(ggw?Mwxu;sLqF5JEa2O-XWAb_!hDJOP47yZtOiTzH
zE=O{W%RoP&k<DfEau3(@3;wsF?}pL6ZRT5GUkm)rk11~IY-UD<bjI+`possfMV0sN
zd^Taz=yLeBMa?1x3s)ZLm7J>5dDB5-UTz@)@KfW`HO*~Zcu@jJ;VddI^Lw6Mmz?~3
zWZr8nhh=Z`JLPX8x+UKqv|QI#*9tUh<dio`MC{{!>0aufG)12T_{YY^GLMZfD=pVF
ze-Q83;~U&ts6q|idvt8nJ#ZmGL;&;92{<+&>ALj|4a?{*E@y|cr)+<`7E1zW&$vmJ
zIzsAMAp0zEuJ)DYi{>V}rJx?Io&}YoPyfzjn;Zo7f#3OLD=WPSeGX&)@<^l<V=rN?
zH$#c^O3yZWy8Igr_bv9ESRx`y2K7@**1GjJR2`b^r;uX5C%jERy1IUTJ)JC^w_bX}
z9Iev0;<GBKgp9{a@P4cW+os|<4BQ9DWaKiJ>lZD9$d|rxH6l+`tFHp+8t-ncqkTU@
zW*;_^KneEFLyNL6h!IyH(o`t80~}XiY0IgA<AtE?U)i=4k>%o-KE~_98{3Nx`+(bc
z_3Zq8lE^+>7W4Z}!|jA&aG70Pd^k}XgoQ`3zw{#CmVdRYr6jK$HGb{nUgqgpA}jq+
z{Q*U9$u%3@gghpM*?4z~RnsL#;>6Qar=8Ajzwi5@n`-{s6q!rCg$-3%#j~wSvnD*Y
z<dl@75hS{1O$k(FFT$a?rdvoLqDbUpg4`hlpx)D<p$XWZb1zjkg2a!m()>03`Z<jn
zV`}Q=7I==t;nSX;!kX`vc2?SuX}Hl4e#-hykTNIdRY{zCjWwGn7MuXjRwzP%sDVhS
zV_!Q388$YKutuW<VG>ejNVt=no5A8WqgSv--=mmD+CJ0uz1Z_4VQe*+E^W7I$%Xd~
zS+}6_;w0aK=E-KaJiR6yFWC;RswM{K(D+%{d<y}B3DF?_*w_R{WJGA6h}Absto0r7
zOi&L$`gQ&Ndun>49MSf4%cg+`eY)0obY)*%NlUBgBuXpS#AKrBY{D^5DG291^11G|
z7s3M)LJWicM`0x;ft}^YTFW6yb4S3H)8+On=I7?p!sey{@HC~peUv80LVX!Be5wwp
z5``Q}T58=_>Mpceire7`=yD4>_g~Nz+5M#R%}wTqkYwe@$2-HL%K0g+uEp_%lebV{
zQwF-=Q|#j7p<o}Rt>)&$#70L%{Cv;CBCCSD3N;R#q}kC}M)dQBD4`;ZocL=&<>@Qb
ze2<}*U%!A7#=uO}K+j9QGi@)RZ7ew+^y{*@rBSX3^MkX$#}Ob@^$7E5X=u!s-qBYf
zdO9S(PZ3SGY?9Z&$NwzQHdD)SY@h;kRSJ%4PiY?evw|v3wK9VZx~30t#7%{b_Ye0M
zP0qg088|IlZbNP^EP!?Q`uZA}r(DkaS&QvXQ>Av?owB`D&?@WpZop{!EeZ~8_@+x%
z*Q0hV3TX)G=yY+h2bc(sgb4|@W!BeU+kl2ymJ${hM}nwKPn$j*Jd7|hJv3M@&xgJk
z$to%-Ia)ee0nS!!aILp!e7HXl38r`TZo5rEr%-CVAYjHi&t6dzshc55Ew08ohd$QX
z$}CVrhlIz#BZ3N&N&82XGPuSLn~@xY0ubuK@+rM=MHWL{w2+`MFf5CrSkR5D1-ZyR
zxjnI4zC5DAWrYmrtC)Er7N8)w&vZp!B*5(^*XM=HU+&E+sEQ%nOLEoQ(P^BlvRelt
zqv+I){iX%A;d30e(0u+($jC_A&3V|5XmA>_Cb@hhgfbe;PbSI{A*su&Pkr;Am~WfD
zbst>BKJeV0eAKUKp)~+&C^Q~!W=it>2u0c-(~t8iB=3IHK+c0aic`PXb+C>wrBkHk
zsJ9CX4^Z0U7Mzs_>_&Q(6g3*oc8aKTb62s;JOj1Pw>@AR3j}yx+Mb<h?agGQ72Hki
z6y@b+-&)^0fv^EoV<T;FaD7Jy_3|=*n9+PsWQVY@2yhl^s?S|lEl!y32rA8RxZ&J(
zByfI)+f@a~W9&Vo=fQyvz=e&9$9}w!tEhy5AtUCZvmC`~mz$kE1XIh$*>ts)HHkq-
zFm~^{V!E?^f3a6}`1vk@bz#Xe`y~`7EQ`}cFI_ASPO(;+4~l2f{hKhO8&qB}UlieU
z$L7v9uvIPw`{V2%JoE(6l}>*FJ5O7qGmsM6oSeDm=fL;3RGFSxIRR?)L~ajAF;ek7
zLYjzac3zf&o}i#m!|m??ndowOTg1-);#nN^UV96td{FVrAU`>;AvFFeigW2?W@}3o
zbWPg67&2`KI0qxg$9KNZ*Dx`zQ3?8F6(t9IYMt(`b2G%XT#njx8XH$cf)G{eCR)c%
z4|C+f@wB<rg2JV#YsFa62$3@}$P^{@aH5(Q{>BY(sXgx|Jm=KqunfR(4&d3enuTNS
z?(23xU^<!C6x6r1HPc7{{`XyN?BTJo)s2-C@F0O#v4WWeAU3lkq7S=$P~<5j+{kIv
z%8gn#hr4rfWQbpZ6o<HknEOOy<#z`AX6uz$mi5fcbSfgpkkZn!JW~@uKz?#n{Ho{6
zba9L6(gzd$$BXG>pJmfeej}Tksf97QPgkcn|6r%{sPy1sU!&B41t53MCayzxrKH5;
zSWPFoQfP{PR@*%^R%B$9rIAn~u;C4Cy1C8W-p0<TGNGe`dOP~^`|(n`%-g^pfi~r3
zJC{lyr_Zpkv5<>PK$Is8SY{Q~`CGN==<G0~E+-7Jh$$$^^xZ0KJ5z>Y+kYGQ394Kz
zw=6bT5Kdz{r23l6%FE-f?n_}Blzb`<!7<aK5#``yJG^valwl}unHn0JZS#Bw3yhz@
zYpL*C*72#NqCpwq>MC;uw;W={@a$i|-{UWNO(#RIX<(oWon#Z8xsgnejbb3$e+=rb
z+ecxsRL8R>Cnup`uTq*PhS8<Iw6s))w1@5;fN9&W%-hAh%mya?jKt2o!klGGHj>*r
zfKEs9_fJmzJtFt^U}vx2piHd)7s-zM@qS@p&D9n7pjav@fQ=Yrae$9mU*9l1zP^>8
z4iz=W#GNs&pidV_`0~bN8Bv<wq0YS}inSEX4S}Dmpw4b_q57rj@k}gB6CsZTswNx?
zZC*A#%X=^gjEG&1phm<JD=CiaYKr%v{_6hb;pTi61V`{YDTM#L$;Uq&Dk-t(n3(Bh
zHmrcp8HpoMD-SCh-o%q5CLu*{bZls7a<r_pIGRz1A4I|Ci32R{zFuvwglrMLis89A
z6u>n#{j{xTQIwhriTDY3!f<pXGyZ|KYT_)tyRfrmqOvfBn3ImKDf>sifm&>gN=#fp
zyY3Wzmpe9~w#%W0yC)_FSAGK_ADOqL?0Q;VV~XVgqGHkycZWKr;=L@?N?!RIc^NtO
z>#eXRF;05BF99%w%Y5!a%jN2Rd;GnUQs={!;aw*oZ*bKm$v+G9*_jGrM=!|DbnT3E
zkNzN)*O7r4gJA;iUD(HmRNe)IB0<p<4-yQixrh)vMMZEVK}s3*F#?|Rhlxpxh-6e$
zMU{kwW!2pzY;J;N)s)v$LlF@Tv%QHP0!S7Cm}@`+;|Ywx(Ki=+@W?|GBO~L(CG<>y
z1nnmAsbTamDY)`{h*$uma`q|6WL2yJ#3j7o-kCc4x&=il0yV45!=vks5&al4iuux!
zXz(lh^JmS-c!RLk>rNH+Wd#*y?Rm<MF8==pOuep=KnMYVhrlmPA08VfE2kvP_*zLx
zGx28(0@FDRoK2t_H-saK6WEcDdwRqt3&Xmk+>*4Mo$r8sJ!X(=eRbmm2e+FmpdDv@
zM@?46{$yX{5^s6&%2b_DCB&z;HXx0}FWA1ehL7ya``O+$5@L32ate5OBV0;K{gJ5>
z@VM~Uth{#FB;USTsB>+~An4dMkSOhBJ0;|*&OdWLe>}BfRi|-;N%an1IvH%N4G%LY
zDk@H?I}3PbZ(-Y;(*65w4Uv?vS}aKPe}fNb|DBx++ET|jxZv-?*H+u$SU`LQ->_RB
z>GE4K#`Ql><Vm<<>?~AJR9^HCJUu!sr)MHz_wn%o-^>L%I>=yxpa}44r_6w`taN{u
zTMS6afvL23JoY0~U0s!D>>rbJQeL7Hx>9i9P{nZQK<~nK`zrSI^!{ajU(Lx<c~gT%
z@H|gCj#*4z9^GoHr$>j?d~9O8Kbm8_I$+;QW}&|w76;E^OAh1|tgWrV#JPFL3m10F
zB|fQv)9!E)RKh}V)o{eYMqfEtNdqF15~!s#>TIdk@13LRD5>kft{)l4DkLch@><D{
zfOa5*0+IS-Z?DiBStqMw5V29zRLMyzpcy0(YH#1WUW-aEXa4kbj~x>OF6%qkuR(ZA
zZzo&cV?uVp-|_rQsmf0K94SV4Ubb{j!OE6NuY&~E<G%bX#U=NjxOBT*aTGHD!&mSf
zxVe}bWtP|1SC@}X4-bFPN>Uw?jG3Mmkxs(!7lhH!$dZm7`)YF=%+b*c;v_l*jN(1L
zzTX|oA|n&<@%khrbbqf{EYzUm5*7hRjm>f^(8O%iQLQea!N91GOP5FH0|TV!^eg%@
zm&0e-*@7J%GoMt0@fkeo+abMcndw;q?#X`W<6~o@CBfj9B?9*}IxadrJ!8JwnG-}8
znu>?ohrfcvDe}n~nWAlAR7>9z)14bXzpDKO?}G2ObvIX+zsSfT-?8x;T0G$pyjwYk
zhwb*~J;yNz<0iW-hzAM4rouTj-A+NFRcFt{K^qLXO}dtcKm*-M5K8#hAo1wrdBLBc
zE9OAYtmvRL!OD9-H8r(qWLRa;j)(&0N4U=c>;EFSGnoj358^s@trtuR&w&MIS}^bC
z5PSAM2z`ESZx1EO$-Vj4R5a+o+k3A~U<fNf|Ml<<MHg=i#LXETV8vCuV+EesiiG^u
zU+r#`Pf4L)*<C8Wu9z&Z9c9UEOwj>_Zo0lf>8E@ZKE6R%I9*=yF~WbW8-EgY(sE^j
zXkie5(YfmT{YF$37n_$?w~w@lIKJ{ItQIZiCt4z2(;Fi=Wks{jt<S*GBt&C$5TLwp
z2vYHA_^VM-`-t557ew+zuT*ic8rTe+l;Z|KKkjnqKFAug<rWaJCJ%8$c}8V0t3m*^
zW-n!A4?!q(Xp{4Q<+=E&pzLyS;kU-ewEQd-Zw&tIttK33BHY2FF4Q|>uJ=nw{A@Z#
z<Svf-!ftQRyT7QVu8Md94m~ZEVmB9F68<}+e;h5_S@fFczks!uE`+c)@%!RJpHrZ3
z6=;D*UPe2{Y=L&wLK2f!+D=Iz$OhoL+_d-4eA6F#l*fWcJ83(F=@OX7=RP=8TVjgi
zdeUkVV}-?@c55}6=H_s3@Xi6I)p@2s+QFP?{loBW6k-qc#9i&|bdSTt(95yX_Z&Dl
zg-VqPjX9|2HalUw`{`sioHfBmhdtEP+?dwNL}+HQRYuVPoUgJ?zuY$QUc_we6eX~r
zk`O!p{Jj$OvZtp99M*vJ3yx_J+NgR%0*X;Ew}nlksiOp3AiB0jUGX@TMz1NF2Rk>`
zu1*NCrG&EwTY;hI&(^n{WqDglu|8F>13VK?Q3)ID@2P?7Nebg9dV|kqwkcjnb<3J1
zm)Tye!_uy*(;RptujLJ}b}9pRod45{4}2NX;SQL5Rr$YDrBNUD^~{gPA(3tBb1`v0
zMM;4+-Y1D9lqxXU=2K^1tuhV#*cw0lj*Cm;IIZ%>DkW^rA~{Wqt81<%#SM#obrzx~
zHhr-QP4iyU7TNfk$YVDuS4g%%xcwVgU~@8aXWkj}*zfoxr3It}(^im!mg{m{o1(nq
z-CC5PbX;a?>YG=HbQ*P)<fM9FO$)YnC@Ctlva$+bS3d=bDPs8J#hL1tJs-s0qMEkU
z%E07++tS}f<Y08I@WR=z8z~GWU{XnUR4DnBZ`{}hC=BsUz)LGH$(RAwNkB;$K)1k1
z<V@b#MhU*D!NP6F^w&&amedjt&>M+sd}T-1lp3#xX1}Hn{1*i8zbVwlAyV}e%{8$O
zj5-Exv|T&}8d<@=CXVCKq$1C<#GmJpUQ+}-C%yzp3x3RPYdoKOA|BMLg1G{x$Hr_9
z?(aZ3>&!~3_gBpFdc11E!EluPFSBqmDQF@TpAi3Zo{bf)MMb$-ZC>OMy3#Y~&G*c6
z{<bb<3_t{kD?bTo?~ICipWIqi7&9~4tobs1JTRlp(@A?iAM*2MKSvKGwbVc_?)LA@
zLjhyOf4u*@Ga_?cnc{hQ5UaABe5J3bjQN2QeW$0Orz4b+^=R)sI)wP!vi<LwV_W@+
zG2q@n*l@AX!D0%Bij$r?a>X?AziRhqowj<|UEIG&#N!37$h~}fK&gsDz5m8`>o4fH
z&6SbTv1Y{vd^^B;(07JhUcD^?6KPKOH<OGxyYLZ7wihuP*>gRUd(8m|b+*B$;buR5
zgu(aLZBG+N1UP#I5njMC%ZV}w3@o+6iGc(<#hZL$z))5h(+CBk1p<=&GhJZtMrwI&
z1_l0qFv;{4?7)6=9Nq_lbO7&vW?FPt?tD`j!s`NB{C{*Mdep!A`X@))|17O%XCeT%
zlVzQyW3aK4$J(#PZ2RM3mTCRAavi2CXYEKe;H`1)S2M}J-_``_uUEtHQWF<1)u!w(
z^Ro+5O0ht+0R&1qYHJM~MwYW~{Y(4dFQl(F?|_qM=_Kf&DR{7Zn;D|0sD;{JynAT%
zB)R_)kw=%40~#MtD`4z0_4YQ9Tti8T(OA8O7h{^t#D~^Vn0W8#H^Why;vcGHr@FDM
z|1Y6s{VO<E(jW&n)Z9Ed>lj@`7o$yJMU?cn>+8>%Pn-6ZmzdQsR?DqSzxRox*FPk)
zvAS2Fi`fE2qGJFEa{!(eF|MFIHts{wUNn8uz!4>m8QzMC7?77Mae7*_xA+#cMW?<U
z7l#!tJoLL71AqRBNC;j2J6G3-!KzV64%+c@c5ZfVxueOkl!JdjMn#NE-O|kTX5GU=
z(05~XqA#YSb3*?`Gt*?%>P?<@+5CoYi(+Pbc6-bSF2`7bn*VM9qI}rikFLV3g454>
z@5n@X`>>gtb$UI>)L8~9(S5ZpkHc#oX6siDK7)`LqwCmr0|xScP-go=5lp^8PM>?M
z9Ty#3$IDf~$pNDd--y9>x07LEVqF6)*m>rg9hTbsvf<fc5@Zn(IG4A;F_HbEQq(FR
zIY>z|3IF)_Z;jr?M2=sC7?Otsw`U`fEo~wq>7<&HKgilw$A)+sg%f3I@(Nx)^9I&b
z@&B}Nwi{b>+C$4C2DBgBT3uQ1`2uT3{Yr%*{G{3SPQwH4^15uBY4!@MDmJ$K8bSNt
z&VQS;Y#VA3>i`5z0jr*mR=ppy^WR^qs)FyNMn3@=U8!?}<rxkQa$t2X4R;e`0Ma%N
z?p*$tF1h56Wr;%^u7Ocs>=IM^<&+0Yz|P7pSI9{j9aCTvo~iwlVi^;NV)hf1Q`N`-
zq`&+;as3LDpUmQ)F8%u&|I<P$_ad&paD{c^5GT7_qUYVu#-HcOQ0E5MKC37Yzk;Hy
za@H~<jY6XThyav4{2KuPDhE}bB%hEyO~}R<9U%zFFU{wFL9v}_FXPB4C@f6rFnfg%
zONLsP1!d%u=1qp@e~Y-4_0ArePt!ieFOi4Yr-$De_n&G2?4apH|8|j0s-6AN(g}yH
zbL%VD9dzS8W4s$;*a4nvJU8!ajv#J|=-AhM=l@CpXw=sK?=k?P`R3V8QIQOwwdsNt
zzIo~$tv@~vay~L;RBG2OvH$juV}I@O8-s7161L`EigspuOxvs<O{`3?TU1S1GGl)8
zOLj=}KSpqHRerT<WWJ{J*^!+#_G-V^!DS`vFb~9R`NBWl?z9gDra}WF4e1L+SJb-0
z<a9PR?TExojL6<*ojfcf<0vKNBkwnmHcW)ZtD7mG#q)>>g>byz<_<k;m(d_D4rpwo
z@E;+*WGe5JLJ#OsXfGxM40E@0hWo)a|G#noM)>oDvBVew^98dF*i7WqD-{W|$$CsA
zdL8J`T<Wa&-kRg=Y)N{U7MHsZQs}UllB{&|xB$FoQG4gGdu3_t_Iyef@Mn2C`9kny
z6t$Fl^H_&Rqi`-z&R*{J$Fa(nJtOvhrYd6gj+T~OtUWrW;#S4im7ke~@M!8GTv@Gi
zbbSBTn`M*N6qu$S;yGF87PW+gynD7Afw~-}RA}?nrrfCEo>Qntz23og_s2{1{k8`h
zaP|FucXr@%kDd8az_%wm<$%bnvZC^vtyOC23jyVg*bc5OP+i@7!pkEKr3rSn2PN_}
z<kzd;AM64PR@3EvUEzQ?vXlEGcEHKGABRoS^1biX_4ZB$t`;2Vj>rDfzQEWixq!$j
z%9b!yJYup|_YUVuN8osPnYYiYTnU**S@W~=u(^kNM~0sHuSG`f@!VYGaI#wWe)LMs
zjO#`KnT0nTOwPm6eq}yEUVsd1CIJX}AY#IAevXAohbHrxx=iRddG>?R<#>91JO=??
zUHR&ycnW-x#{1DxEzTR*&j~+W?a-_V-_3)-2#x*N2Rar-MGX{5agvqKRfS1)c3HA-
z-{t1tuC>NA9W3B%t(SZ`W)AlE7kuNM{#WqQ;M6~_N346$+bki(?_Ew|p~V-_3AX6u
z?HoZo!3<2K*Z;xGtoHwdWftyoD1XlT>;||ZWgfyK!%yZsU@cK4G9Db2Xw-hbd~LgY
z`IXhskSZ@Kp2zVUki!9fL!oxjL&FW<eLiL6Zmy8qalqHR1>5)JIlB6jG3YTSOKkz3
zo4`d!JAHMQ3ZQMbvU33SI?@{`g}lw(tstgB4Pd7}6o9B<OIkr>apIwzuIXfKs(an$
z&jM^_LWb$)+}EA%)R-Wg+vMmx4tn9;9}E(XE3E-sb2UOPL=Ie)KyiAra8LC8GCO``
zB;g_P7I@?6%Pe<)5iUAK?W<=_U*AIkV6Nh8s?C>6zwdkF4meal-Px`n=F2I_mKdy`
z0H)cPj4Ae3Q*I*<2TA|pv}A5x6!5hF6e==zHjeRbTy6?`nMA;2d3%mRE%4c(Y`UkX
zm?YLjJ)yD?Rc1qkuCW|srgujmbisrkig42$yP8J>02D0e_G55>ad_OC`Cz!&Z1YHG
z_zvbJzkg0af%o9l)P95bC;zG{R;O0{0Kby@18;lXW5nJ98r6G|Y_-&t-<qFlBR-b9
z&t`#ZwF30n2Otj2;=cc)*>rD=FJ0Y9OGz^ix`T7L@+$L_Ck@~6I+p=}Ad6q1>FQLz
z;k<};+YSuansB;&^q>4`=-pvVW3u&Pk?+`QI7d0&3%R+%z6WiQsw7u)3sZ4@@Y<8o
zr!3|>gZ`w#OMgqloXQx;E`uwfMSN8k$ZdnKxu>?aqUoM~$e}q_#X3V6V`p+3$Nu2p
zVOmhxVsy?MPjQQHNJh);4qR<QhL;;0#SC9C0<;=&I=!j5xXJU!GyVY^9Bm|XT)L%<
zJvXiwu9<<Ut-B+?#TEqUKTQ}uUUpAkg^Dcri;IKB(>FYcNq+54bm?^k>@cAs&%5Q;
zne<mFnINdJ$ygO13@SndD`!hoOKX7BH#`2FH>n;Z<7t_goOqoHO}F7brZJZarhh}J
z$!n+9uS7c|ocvbggE8R%Wdl4SdXy4<hD<t%1HQ)!=B7NxFd7Ac6CY`yPhYwjcZTrF
z)o7$ilSP`tptu>(<Ia6$g`%8b(30w#U<|QV-gMT&MFW<BR=d`xrL@j?qEOlX_TRfT
zL(Ld2e(ctbseCTv5C2+-u)f|kb~GkRyyyPcccQFE0KdNMtmpkyMQB@_AEK^6Dn=-r
zW1^48-TWo+b|ZFddTSZN(WOBQ?=OK*H&%EKYh!!bW$&9C4I3>I_=@PNZ$;Qfu>iTa
zAXp@@JpN0ReRIr>s0C7Eudh`6Ar^y2L|ATt|JN7MoFnL^cH#GLhQh~k-1RyI061?G
z`~QHW^8^`^p;0KiV-imfCub+nMNOsE8la<^0S)E~2{8oo<%Naf<=H`A-wfZ2eQ!q>
zD;VUYMs#uj8hL|1@smcA%YFcFy`f~+qz;<(3-v?+6AMF1o_7J$K_^(w%tgshFv#ZW
zjrGkN?`{sZ)IN@+gT<{kZ^3hS>huZAIxKLaM@Ci!!MlKlMn`Bpn7(sQ_uFFH&3+5_
z-a1_)Q5#o_e=+;|yaDj?DIhTwE0}0$yJ8l7;;X`-Qa@StJuP^rU`56Jii%WxQKd0{
zwHJUVJOxzcRH<y4P?1rPH;J3Ot?OhcrX{a8r)OvGtq+sqXCbX$Xz&o(Y(nY*>Slbt
z%9<i#u~EMlkjosTiNmkBaMb-}*i{h8mSx($0v``sKH5ucvDb2PRPShmB}LtKLb+DR
z9m^{U2Uy%j;X8ffjXph9iy_3T2d2pBkS^e6jHE>k^0H?fMm1<1cB3)ZY)V{htMQS4
z=z8J>U`AEGA_@}7&ip!X5MbI1hu_!J;!hq;gTK;9FwIU9j7ryaB~^!phpL3_#14L6
z;Q>L5hn+I@h1y&AGET|%%rbrpYIy0AsVQ!?cXsRII!vS}k5{YoVW1hAlsNnyib~Z!
zaN+8OArF12*1iN`PlMu8BWz^vU1+E2<sRazrzg>EZ{7l%tp1Adb&CYsdbo#Y_c#(K
zv~NI7oPU_}>C&;=XQ9FuQ*TzAZCjn5VFnYwa%=khXt>1yy5hqVYJoI+l8!kkvD^(-
zIh8wgDPu7SgKLlBm5TB4M+)F$-syC#dGAGyyYG!=wW%(g(o*n6^ZxuQIi9&Qag5fd
zXX4Tc>@aqAr)Io!*=-2~dLz`(*yG>UfHCo~#%Nz1;$_mn&BafrNh<b4&Hd(6v^%Gm
z79rs^T%<Xgvj{w{v(EXK^*7T6k?xwx_xSE{-9T3xQn1?87Ba$`+h97d+Paa>adyA+
zZtxMV{FxdI$Ie*Hp#W{l=UsrbCdB&z9wm*l9tg>0pWb;^e#dq`?J{R<WAG0%d0ZAm
zmf-)x1*ckin_}WV4M}C|e(29OGp+`N>KIl=W<0PU#CU*jgyRh(S|!`ic;vfnECRVF
zHKI$5ZYW`RY?DK(>#&QIRxR|nA6h+tdytfJ1?>$7w?lzA2fP|7NvC-G{XP5lQ1#_>
zG!7f+Iygh9V6<tkFZQsoL#o&Pxt6zEF#N9e-H`~%{KpMHH#TjrH;~r#9}<XtJ$7HZ
zjYqxv^kH3}h>zik8M(%+c4KL+>YK3B9yQA4LCR_Qsh3mz1j0Fbgxoo!@KN0A^m48*
zv|r}$tnW$?z6E=+bBt$Ad$**T1LJpWC|>-m8`v+-#yJ=l*nYGvVbeDgH=g*8R}G5U
zc7L{IECxcX2nP>1^Y77B)|Og5yOY}b<^yY1-CT1-z~_d(Z_wS(j_&~__mYsPZbqu5
zA8QWM!j0t|g0hyuAv}!loi5sr6uoL(@FhWsTFv0wH+v!26DbHDih+VhV+)+6g4hG4
zRaVcOB-_0u1_&i+Cknc*Zk3V1RtlYCnlGj3tWHGzdTxZcoB0J_4XNL)Kma$}2DRCn
zkMPaS1OdnD0O9#>VZo<(uF(hIg}CLi-~mJ;AQYUT8fgMS{_ev3@-b0Retcc%q4?mn
zF&VXTjg`_7r{<+)(dW=w;1{`KFV)#^{_-oBt+Jal#a=YE57x|bZPd=$ZDLx@qZ%(e
z3)7|nblJ)GPQ6QY!XA}}&PCbz=^sy<-(ERvcT1lSlem&)!<t1;B15^3Z@E!Eejv|-
zbGMnmBzxwXIm4|p*g;Y*ZeZfwq+fAwS*UH(SulOcjqDwI(}&M{FY0@)4KZ}0{qS3+
z?^!~GrbWS*D{t>rKXC^UaJSEH*C4UWJv}j}w-3bny7>#iq$G7S?&>l<eQ9fy*!LG=
z43xKKl(Ni|i`7Omn9vqMf-9$dQ7x=vQ3K#**VNG&N*B`$Yppgh0oGy9ve0M<wAcu%
zFSey@w8E#DPzs26DlRFH5cCHdi{wrlgl^&IvR~AqSlRB~%}{-LM*4E(mr-AF+hA_R
z2zA|SQhz%oxUz$bb=JNxClL@hzKgWJWrX48#t48#8R#1TCA^2<t^Jn0`WZvm*VCnE
z&0A@89<BPQhFOy<TYp-NR*wRF_TtWR0`V5?2_Vba7==iL>_)?N1re5AOptI-+<XGm
zylVUmU%k{U;*jlj7)cMG;la9L^gFKDRw^p$<x2%6MU;~>Z_>H(jn}Vic9}*3fWK3O
z0gi|S7->SG>sEGF1RO5FBv}=;PeZ8JXHT~RM6Qh?%jFI(!nJP<UobTfhWyGB{S><2
zcXmljJiWQ`bh)eT=s@W^Y%ql}sneYuz#QQ-$}c&B$>J1)i`Wg7e5cP3<{e4i@SB{n
zVlQ#H8~=`G03HL&x7zn5KIxA5#xzY80%Z8R<Rll|#}=56V&Kqc06FuLY2r(4&<)O&
za;R=bQIvL=Ywo8y$;mb+W`H&bH<~x0Q4u6t{ZJ|HK`DVaw}HNDka)F;7p{1-f!+N?
zM^E$ph?J4E(zi;`UM>njWhd(ERB%jCFs&0`9`82N2aaM(s+bTms{C5BVhWDRk%B3C
z<&B8v^s-w61Q`)J$$8Z3Q^mCkpJdL-PA{9QjFn_w;90XBhbrt|@v#*jywj3;co}-s
zpme!uyK{hi8_8C0SHv|*%)T2G6a<)_hi3ru=qUgtb|o-!s2`DKs#6r|e2OM72Zmur
zFW*af>en6KMgQp<zj@R{wpo{aOeV^Wfi>ynev#<FRWW^a)Ap681?aa5G)2g`tZL%N
z3JRCPTi)1Ru8Kv6&8u2PA=y=0o*<7-?9JAlt>UO8xLEoL6BwmxalYlPtvC&)535sm
zkl3f0t(@+~j3nAqZv^FULtDwQjh(OO6Sb|&XcM|OQ20jaV=ZCme(a3C7E$QCL~{#G
z$Ln!dLPEzOr*s0SBr=v#%f)R_QMFiILcLCt%Y-5!ty%GAJ|@o2PJpHeg|5yNntr0M
z&L8qxUHP!zgG8Da?^^UQ1Ee}ooxPipous$0!UGR%rGpc}wopuSZ2|k^N1zv7LQC3p
zDx~ao*)VB*a#AfirbYQREw5+~A;gDnCFsYqbyI8tLeN`FwB%)%|C@xx4fUA!<reNc
zy4TTNK%w%nsY}k|evR|7$+wWAtBY@lt2T$eds>wd5smxHXe=sk`XcJvv<l0px=NPf
z-we7>C4h}t29i&PTFTKklx8zrpiu!l2<-te0@2=1=P~gbs=%Q7ysGrn--hCOb?;*}
z0O~9~TFnyZ_0A9+p$SOPTwfcq{m0<bnjM=bX~6)<Djr+1(n+|*mnnJ+y&n^muZbeY
z$brk=diq_uc=+)Ww@>d&|2bHS3^zXc(ZVR)?Qiv*L@0FLOOh$=eW@BX%x)LN8>w3-
zE6e;W-<=xjIh!-X&@f@OQ4FS-m@(zu%tw3By)!g0oE#e$vt5ULMd&79QSbF^EL_Fg
zB5W?vV78-mQtSS<EEn_o)vw(~iWSF#!{P8dJGk7SAA#v7Yehf3Iz%yP-l7^pL2N{E
z3Z1f1o>Ss|y3RGY|LS=>TlFR7LScXxld<{nDyrC$A%&VHs!YAI*>dDAbV?|}C|2RS
zt6ep~^7w6r>i%z{&<J+0<Q*NPSqELz@2V>4Q_-HK6bf~=x6I!!YvR~YQd4Z~q2NMy
zhGea<9a8A-obQ1pw&--7!xa|s@XYFyw!!F3h58i%zo7FF&?+W<yy%;F@SC7PaE9&Q
z(JvrO&F&>*r~M}`o^1#6Ou&##u(|y)!!a|rmII8YW_RPRDrh3m{j1p2=E3v7POJCu
zkcEQklM2uyV*g9-J=OcGN4O1}HJHdvh*7Dx+`8aDv$?ZX!_LVhk`NLcFnhETBH(cD
z5nw1`yW{2nO3jOpNj#^oRMb=#e*Ea_8^|0fNQ>i>s#>u3e{95zsR1CBmjhx_r{E^<
zV-gO0$;18ASD^N%SQ$OTIOci`)PT(9c7ZQ<64Ysnz2TLWljgzn2ZHW&w2vQwE%R{r
zv)2&1+u$P^*Bfkr4gd(ss4zK}e|0Dj-Qt)?;q%M9s~)=KHJaz)`Qc_kN^&wc7~C8J
z5}vm#ylj`0&-sLCCqW~WDN8D&ROZ6gfvVfK!v5~M5o4DGDi*}R=%s793L;PZBfs8V
z>@&3RRs!9SJ}`<~49#y9IM)vZq>JJ?NWNbhQ7Mawy+s3>J3E?7L3J*FP#c2fH&@${
zSJY`Dr~+UA=fHYGQxbk`#Q%_2AL{yhq>$6M^Xofa*_yrnL&E!kzKt9~_|gkzE_R+b
z>_>YW>wo|t_T0h$@xcx;!J6|WsTDsl*Uve19Rx&DaMuFg>OQE<^ck8Z&mbVp=z604
zP+>ZlnAo&+fK7fAH!>Mapk6ZXAPWi$pl%TXn<O>a(FT$spuvD{5NK_zG`TF=u8%!I
zA3d{PAH;sY?IN}AKhJ5NMJ`KL3lc})HXWidqI#7w-{69v3~r)Uwe6AIdimFVetBnS
zxethbiv`ms0yIU-LCsqhaQ%AJWxO2K4_Vd^%zo_(Dew8iHl<8TlhTlsBd;xrK~pZh
z5_XiiNk`9EBxFt=h9&`MWmR(MVrbkNe{F2)w39t^c;wM3rK%Rr_|DFpQqoH<(Z8N;
z((vpT$BreoW~M-ml{We#7n_;r9(!@xqZ}Rg{P3SC{kk%`t?uI>{=gBbghBH#F2Pfm
zQM6}}<@)6@63MgnP4zfS<bG($GCCm(v}KyS6G8?gX6X%ECfdb8{+tFWzS6NB$J)6K
z-<5EXnl7!!mMBbgV6m=ORu&&{;Pk<?@a(V73Gtvez(~Pss7zDHp_tkL!t6<O@d&3!
zcgAaV*1~}?`1IR#lgfiQ?~gAFb^tYB)_dlavNB)~Tyk(bm4yQ=)>x&sRcUc5Mim8^
zAswsoeVYB=@d5+&VYCYMQ6b(GdkmD!8MeN%y*kcza|4SubQL582zNdUf^Ri}%Wwc}
z*WK%?nfdvh_$i+FUh`gN;ED`Vbw}quD9*fke}nA~KK2jZt&hFrL@%=~(~?nMld1Xm
z5%%?(^8O;Ai*R?028^FSOE3A4IY^N<3|<N<l4obXE&;tJg+6jz61=~~>{%aG4!WSE
z{En2^^i~5p9M0jEzSK1_X-$}J($o=okZS8c<v7Sa7d_sk1SnO=Md+{kxiJqexhLF0
zf4|i~Vjk5HED7*b?EeHylz^)0wS8*w=Mb8=aO~k5ePUALjyhX%a!<%d{E+?k*eySp
zM5KZQPbP^?U!fsBrw4<hzgPu4eN-z~<SYT6yUJ)L-|X*jf^YAlO5)shU&cg_^Yfgj
zu#X&zoJW!bohHyP3k&|52@RDpg|qx{zBe~LKRjB;L0JwT*e1>zY2VjPYWqT)P)E8u
zHF*46ZA76p&~FGhzP5h;^-L~VO&W8ALLqmM#5#ap44-3tziUwiZNfo+oa!=Nx=KO*
zbsh%2a(W0V5$^VB9Dfn8Y<V)KQ`J`Vk#{#H`bpWL2a}c&fE0@!1p6(r@;mh^%QJ{=
zMlg(Xqc((tGDNV}&z8mGQ&xfVsyXAV04llYkmFNycGxiwrM`?lXD=Aqn>SF14<&yL
z+v5KtDDD%L5!!TYv~&H^YxMbVN155D5yvw#3<R1~U*1QK_e{6;jE|6WFf}ADit1NH
z#U}wk*xJFaaA#sIby5B9y{81Bqeu=p7_AXxbJ0gd*+WT_S-NDGEczlQjAN`_ayhJh
zbxxkbni@uOZwKM41}x$*`lI9{lLTWI7uR(8yY*<rk`UMSig7Msgf+twrUt|fz*s^F
z_-_Z#8@`9lu`+h<JxaKgPta@7$z`de?Jj<*a=4kKBt9CC6~S?6`0c6Z`7XPqTRA*A
zko=6$RGucA0aa3rg7Ga3nf_wQsI*J>l;o3>P=Q?UoYGu>^AKIpDxU1n=`7UD#1J#o
zJ@B%1Ky{j9IsLmGEF~R+)cV#|y2hLRKeAJ?@sw#P-QNk{iI3Ix)-IOxl+w*&DkbI#
zIerKlG$-lJeRE{u+Hgu<8J7F|!Xj;vA11HB{X&LV1u^{gt5*dvG05N*zmZT{Uw6gh
z{zxMu$6<4O32GKGZ_6M)v1@e!$7Fk(gLVK2mP%w7z~GhxW7zQ+stdJ+*!aLPZ}~b*
zNQU>_OuY+t4hHRdJGD}mHCb16y1tYAD!W6svGEXTw7Zklk4o1E?yKhzI&!^_2_IXB
znzexwq8T|NY^J|3bdx5+x7TMs7XiJD&cv?C?fCI~xlC7c1R>(p-UUemM{N%hF&d)=
z(WTSj#aC8{+4}fDTa}h9@bMYLzlJ@A-kkXybXw{hU7tw@6M}}pw+Svx@tuBnS57<^
zp;SRwXE+qg%f;Rz@iW+PQBu^8{$~~C{ii6PwFtsC6T%(sk*_nx#}zPO^0DF~b+R))
zr&xeR1qM_A0}w|rUx&i~6{DdvDLKMb`mCa2c{AhHs_pByg3^B`Q#m8e5w^~+gUxMu
z0v}?jj9hhLnf1~9j5;r`mzoOt_Exo5PMi=M-aYOLgb4r|9f^sFDvvwI!Gm1VL%Npa
zlO`XO^*qq6TMORB_$u+uYHL_sJU8?CDR8q@r;fAQ9K<|#!ikLa0mAqV9Y<YG6;X|N
z+yl&m2!%MKFrSUZFg@OBI_JTXOd`ZXjv@7dUQ&8^Sa1v}cLm&7VD|*PbBGY5dYvs2
z4`zRYI7Egf9@ar9TBq?BI*%6ebC=afB2*);91L<T!XzLrUw>g7Z2h3D{1##I^>lyk
z#3HNB2Mm8c9Y#9T>nE*`m8KzKE*WMw2%l{3palEGi%6f7%?k{XX5$%j5%+)$?a398
z;ViK)9UQ}7r`Q9h=O&V-&ao@h>n9Z6<}~rp*Xq4Q;{=qesovBvAFC)TBGj)|)jrrb
zgoQrt97Ch+pp(a8hhy-qvC(0)UP#{evWffifQ2cKTf8bkQH3aygMv$JvKSy6r-6<u
z0M+SN=#+c{SVNH9>$&Ej3V^D-OirKb_$8<;?%87!9uZY$Fo-Juz9^}I1#m0wYB`(g
zBUC3eb%fZRRIzN1zbR-)O4<ginoqaAPAePPljsYYy%02gg#h}P^rkz$qrB5k(EH+R
z@o8WAWw#?AA5e-2wGZ^wXP4He*ZRNuApOVP<t+Y}&{IYd-Kg2?DiHSlDR$7kcZPV(
ze3S$JG$J6mmsXZ@+5G+m?tPpK2^|z<d}3(OBw&U{@?E6a1FA5uAY77VfcQl~SVJ5L
z)yboW1FfWM_v-}fYYfaza?)mEF!!!qCVE(yk?M-X;!MXF2&#At9Qz-F5%5J#w#L?1
z1Ufw(!s5pv=Q4hkqgjWSHa5?q5opn>U7`hssqx;1)uucCm`(?)t%vuR$eJ|;vRck;
z)k3`+rq!Idd79oeQNqnUjcL}Iu^I<aK0Iuycx{9VYOqs1y;o}#tLqXcNS2l5nP9LK
zaKW4i2agYj1{-!um+d6!odpGf6f9`P14_6rKMcUBEynX~n;jJEFGHj;XkykmPhGxE
zfUj88@bpzUyl+8|tZWLXpHZCdLCT0BQL|5?_+X?a;&yI))T4@4v-aCL7q?`=!9DxY
zi8oW}O$BJ2WdY<(1(zlml@}>2jqun+cNTZiA+}!%Kpurb?;B0KZ8p2wH=A9DhY$Z6
z6`jU-He}opDxeoiXToPHxOBMCaB3;lhlMfM&*-b@;m6e`M1mR?CQ=pMV61mQ{s~+u
z!J>WyKC8^Ag+z0c_dP)zR_x=a>Kl8_lLQFhf(JY?n<>entZl)#&U0YDBJp6Dh1oST
zL)~34(=!qs$QgU0hG=d5jXaEvoc+eSyE^>_dWvp+^oPIwDrRvLQ53VaHs7TwjH`8a
zJ6P&6i$7&Q4Uu9v&di8&Pj$(8lzVsvxcd}7coruvcA+1F_S-4OxB?qer-V8-v-JZf
zVLcZQJ(zJP$~wrxwBb^3DTbf)&^aEE@a<;XU*;X!dlp#)vW&T7hy%~y_=wL(YRVc_
zmB){#Qd#+nM!k*4h4$1Opfd61e}Z9p5ElNm!Ij+8En*^#Qf|9cR$Q8KgX`e`N7hgS
z%W{b}HgLN=-lv=!(qV=_fn$}7OuDu;ETGE_X4iPPqjv7<aX6p9o68yb%q~>%{8)&_
z6jqHQU;%U_ruTYhMj-6@XfcnPuZu~D8{9jU>K6u^6k7x}aoPquKR%OAbl_3tY0-mG
zB%3cbp>8KcB$sW5?u<BuI3}Bi4G8d}yFRF<S1EuOta$C`){9JA2}l!L9Uo4z^$SjC
z;ATCLwtxs~eVDTVD*_jc8oAj@LbsI_eEMz&3uPCBy~)j)uqM5V2@Zo4-Ja+b=*Vr~
zl-DG18DEN;P~nl7%>$-H566}-Eg6~^nBfSVSS3#LQ!4L%`WDQekaQS*9S2tpf!&1L
z1a<in>t2(L2kObz;x)0p`cgEAo(DM#BJ4MVbyDm^tOFC{&%ccPDr-CXQb_9e@S=(N
zQCL`vp7aT3WQF3zLOW9J8&I%}?fms%qeIAg;HrKty4<t((IeTt7DG5Z5jTG@|A=FM
zYT;se2)16TJX6b?YjBdE!hAjEy@f46!Q)Nb*Cl^2w;CUNU!Z~1|CuMI{V8YrZZx@C
zr*FMOS8HG2Y#YfNM#x9I^S5O3og1v2Lj3U>+}}md`Om-06(g|U=ydz3bLkP$Pirrt
z9?Z|4WI^M@A-e^{*bnzy5#@44mG4G>E+T9QUW#>xv%ygyLrn!qISuFG)dy%EY`Hym
zI!>pxZl}&7&CT|JQ`V}<rbiWQDEyZJh^z#$)WcEHuwn$P8R;NUuPaB$s+fKM+w#(=
zV`@n4{Z&B`1U#O;d8zewzNt@Q@q?B)X92y|+?<4dg&5sCx7T|TYQnE_Ojq0W^pUM?
z57_QiMZied?c8{u=e((j&55a+zK;dmBLDA?r_`@9fJcI%P9;nRx-0;(W^b2m>Ef@b
zU(|MnEzsHC3iC7B957Ao|9(xqIcwYap%~QeweQi2lj}rKY;4cY52s4a;>OlFg!pOF
z17ddPy=Ju2Z0JR)I-WAwn2NE!fzY9rmi18xI6k9_XEB=zCUo^`<F`t-GSbZYN;Z`S
zcp#LYyR69pzIp4E%uO#1^dys``1@TG*!Tz;wDonMD8ks)9Z>naZMt5+e+6b%^=&XL
z3l51q>3Rm&EnQ?Q<1{65trr$$8;s2pPg?ip1_Gw|X1-`}IZbaa@kkR136Opt6_X%|
zVe6C$aq8UKk102IhDv&Z_M3Fii=3}*ceaDkGyFG@eO=F%JpBBFGLl3ynne0|Wghnx
zR~<u>%vJ-D%q&sTu~~WqU@MwkvswLopqHLz&B-EW(pU6f69><vgg>lUDU2&9<_N|K
zrzEckM1h%#O{oe3LDb_1$e%WG9j0ag95t%yz(HwVhA{EffsuiZ;SA%oh_GzR2T~g_
ztWg|cYP7b)w}>(MwW8wK5iW`?$CbtBs|$s>IXO2QR{`mle|GEVb3$}#_0jB=%3X#@
zVKUF`)x!pS>+WFc?3j`oJZ1+fEE*A*PD6!lUcuyY*V`Sac0A()eErpL`0wHE=Jf(B
z18(LY?nQX(;a=0ma@zI#5<(P{XMl2YDj-*E)7ud=M793xqXx<d-FUl1hdF;9D6(Sf
z^bopz8RI64D2h5@=wZ%6UxP6}tpWmD6RkAYKz`_^0+p;@1Zz%7c{C@I{NTZ$m>pFq
zO?0}{N4F$G?o(W+*x2Y$Ln=VfNruaYmm<vhDRDaO6{N}Lg7=)f+xPPtuimpV)wjjY
zy%^Uvqn%1ReTX_D29j|dfMG86QBaR`8bbo;J#|%PJLSF_RUaz)0tD|(^wmea0xb|_
zb~jrhQN6pH)i`H55=q7(E<a9%N<nsc>9j?u%U{o0k5U0T>hyL=yYz=!08}HiO~NVJ
zd;y)dMOaCkr3wE;0ZG&vSmoL-x7o6KG|ji`>#tw!PSuY8I6{M)LSiEaAP1t?tz!Wz
zOpg@rkjS)}NWk-5tKKa4;G)X2{ZRrq8Zif*yAfb&o*rQn^-;;>@0CqUHE^Q_^mlNe
z^EC>H1;3IktR;_9Q&J;&fhZ;gMk)KkpPO^qKCKkDdZO_CeqnwJUIoz5x<?~I0R)D%
z%KS%KE)E`jX=>v+;KkZ-OX?m0`jS2dCJ(PwU}Y^wL{r>PE+aS367#wTc<%o~X?P8N
z$^ICZ$1`V3)cx{3%aPDn$lI$6=B9cHFm5w%dT&Eb_CS|mkd|K*>Q5#C7grqOe{_EC
zBVA3x@*hOb`wcjU`la8Cwa#_mvV<S-XMU9f^uIG7d-gPej-HN*@rC11+*Y6s3$>`_
z`G7I3{UrK|6JC7Ui2VD0wcU+X{z!Q_04-I&*x7GiA%{gJl(hPO$a&aBXg316OHkK2
zt1lg~X0U^OGn{E3;8Vlp6vq`_oU`RBg1R2@+Cr;VPFfzx3Pc6aU$UO7v$YwNiBvzw
z`@IQlr-i>d!7Rw{Q&Zmc)zMsg)dwTfU@&3pM3lsrt0JTSGjTBwcbgZmOtw~yfrp+3
z*IZsk_PkpQegx@cufNZ?4&XaX2$B+P$#{f^#>yS8cXK@NfU}NI|H`rH{;7A9!x@UW
z=TB3KL~d_#XXowBhQ8CHs6yuPNs5@w9Bqq*`j|&-rr^-bUTSrK`|6sW!Nl<wuG`4T
zUB`zYnMWU-(k=JUvu={AWbKC(ffeCkn?G*0N5zf+jD7fP<^sl!7?+|!b^-d*wx+C_
z9W@IB7bSt!0+NePal>ePbha!Eyb2=$O@3}s-3#<J{f#99N$%j}|JRtsQGY}ye06@!
zPpjqvD5gU%)l_Oy3)h8pZ!N3bJ2-$-6ohu*XOOWrw&t5H0((Ro@a*WQNP>Eo-zB^%
zcj~b|O$)wSTVqh!`pi|Y@veZlTen2L;0qil8`-)+QixxDTq1yRTnz+n7^2{c2~!6Q
z4%9|P0;1cnjG`&*D}0px4}@CQFlhi~xZ`(G)X@pfw=0fXr_<lRiGyiZ$)2QUW^(3;
zZQ~7)T4)7LbP}yjj{<At@?jo~L?8LpWe<}sj)POND>gs3H}DI|^?~TqE<7@kwE6x_
z83hOJew;M#-W5|IcyKTHkK69`Lr}LqR(@T0WAISAz)zLLYBF~_972FqMOc%RaCLv5
zwCF&~W+b{Xn3_rfmlg^BSz<6ihwR;)NHZ#+!~GSu2)zaBGCU{SqL}3VC1cOM_?s}n
zbkdm3?HdjmI#~X{_Ty*V_<F_Xf!S}PfzssH@)ygMlmawz15*IT`3gKTFv?L`Ro<3_
zfyc7AXlw^|NdDh3pFll7V}dc;CBL}@j_QD4l3>1|9TO#AcyGeUb?p->ByR4<8R^{K
z|BXL*r<x{{oc~MClo!kOVf<Yf^WoLZ_O=2Jx8l^_$l1roa2EmwYR7=_7y1}Tp8C%4
z|6!N~dCmWH^8%*T{|tofzH#aE_^oU5JjJDbq%Sbm@yp*0Jn-ZH=}*aIJ-(YiPyf#!
zsNJ*RCmDOatM%`!jYpeTLhC<M2p@mI|L_00!SHgM^1n~5fB@%e&g}A{Z=xo<t?=RD
zutFh3PS9k8!u5_|bMNL+IL{vt%*^nj=meBas1xAzxRWwr>^2-3ADTPgMufLUqM9dQ
zCIW0Dx{X0Fi1fWU>2rg1x*$|!OZ@CUU0E_LU~2zwVV^p{e5cXI+Wrj(Tb*kH2(&4p
zPb2XVn*JZg-ZG%eY;EIJ0g+Zx8l<E|x&#EIOPW93C7sd@(hW*VNOyO4cXy|B*I77w
zcAR&g_q_9AK8)jxJkPV%y4QVQ*Y8qLl~3tdhGwg6<S+_|4u^v%%cxz=FH*$7_Ls5j
zSYNom_@C70q}P8n-bYE?UU;|2kLnK}l>jzd7>^rmVSeH=kE&o@p6_JQa;3&xo~h#V
zesq5U@Dp&AW-XO>4;p1#XQSrJMNONrR4A+3QuTin+6A)n{{ubNPX7;mqp~#mEH8y5
ztKAf2e}MHm-IMsC<`G^=aJ4F_T+$f13-;{)+<mL~J!(2S9&W6Ye>B{K$cOZbkn3lE
zzmmtd7CO0Kwk8#No6@`tW)zQ5ePI0nKMw}8|2P}CjUa#!4S4EasCt*}r6>?;Fxk!C
zWJ_dyY;CvCr1Ts#jolh7$cH*FGNTU$u<7;fnz9bmHMqV^bpha%Mo6s?hOw-wn!Kv~
z^6r}GujnY?7I_>Te8jB<b7Np2S!@{)GRQFfUaASa1pssz10y+GuN_?7upH7Dx)~kI
ziw%4NBHa9D<Yc-S7!l=w-3e-5@Ui{%#R+C#RWBxRXd7r(n4Kf+<j5K3rPmziqPbC0
zm$DA18Rp~yN(E@10GpWOG&}Np=CqO;Fb%rHwVnMew)yKQa(gNPKEB>??-MLz;HbTs
zD3=-b|Hgi0niyAk#Z(F)_P6!5YtlR#um)VT`_yp7munh?|GwzXg#Yi&UcXmafZwa4
z=F;1uh)+wCo%e1n3WH*E9m&>G=UieprtY}p2896x@%%t~0)Wya^IWB(0al`c;AN3D
zJoa~IBK!Yk0dgD~`L|y23lV;NHTy5|AXOVUiPE3!a6VqS{$ASc|10ISG8=%s?k|pa
zJN7xlAvid0)w<QAX`XsSk3OIMnl06dKMljBNKyNYyb7EiHf5!e`g+5mCn>^F(n=q}
z+qM!D4a}vge?BF<eSZ0dSB*qUF!a6B>Cbc}4Y67AMfV=#w3G~eQ(aY6h_tdAl1K%J
z1FV;ome+F?prmxaM*bV&3|_b}@Bfc|r)<k6p-__X*SGk1z~u|Jwe3GmZ<P{pVE=M{
z`(E$l`q8OlJzrRR(#whR0Yf3GHPeTe;=pcbd`xaLYdwZbm7aroexPlx%0-GPyo!?P
zdf?Vn#goPS`_;A|Z?ehd`fXz{-_!E%yhEfkg}K8ZeSLfgfNhJEXwbOsaMbzrT=2V#
z>FKpfqekJ6MNrT1|BdGz=K22>>|ywMn*d~xw97wckj$MQK>r^IsUbbBmETwnuYl14
zAc^T2oB!#zSpp+4)_%1$T{DL*$Ei%ehb1@;xF6j=voi$y%SWUqhd@xMxeL^j9YCx3
z*H-|ehmHw`d`T7OGNBwLQAD(NhiT8eB~o{MIY4xXT74Y6!SZ*1YA^lYZkt}QosY0?
zyzPx@{f)U$tasU~Cl6JQ(r;0v1=fks0|AFwj!%TLvMxPo(7L=V1!N^C_zD8f7qWxp
zQNg;o6#fcIeEbsECD4C+`GtlEi`2!v6pN0O;=j3!^TmnnU5*-`c;U?lKu<{j{s31V
z`xH)>m*8>#O~=fUh2;BAab9s&XKZZ7j8_C9cj#(O9h2&-L*PUh#+jIy{-Yg{o+}pd
zF}U@|67$!D%)!=gYP+?}2A3$TBg6ipVtT%_?s4#)!YWuf`FUvsHR*uK2pE|zw59-(
z`4ciiqqR)UaD(|D-{Zfqky0o^!1*OBMud9gGjiAaFF0g>znnt+Y0ERE@H+9I1>snc
zkM<L_B#&`G&SM^{3Vy>|nm(WVT!|*;(H9f;AHJ9d0LPB@xu*J$|0i&S0QZ5eW55_S
z2?*5q?ZYkmxw-}?R<z6r9iD^RrW@_WF|{c8Ps`j5xcfAu_~ondN!mGpGz<`74kE`x
z^fB!+FvI%ZQlWqI9>7%4rOY42(vFc=RGb*!Ha5&Dk<ZR!`KJ{oePQN@!uMpEu-${T
z)O^X{y$Mj9h(!UCC}8;p5BMf={Kp?IWJ7^~r6P7U6)b=(aFG0Eh5<w}s-RW{K>K=^
zUy$k)EI&T!@>TPoLRLtVniLi=QBE#?cW`&%Z0txTWq2n%=WeWK9%z@AM?!uLk=D3z
znu2jmFCs6#49$%N_9qbYB&ec>-?JzoM!?k63~=7)L_kfhK3lynK4vO|(fse07ml=M
znJGNDTnH|<)cH{@DxniCcL;J>^tjvsGM8z3KJFT4)Y_A&SY`Ek|D=YoE%U8xoqv`2
z9O^ojmh>W29esJfF6eISC&rwuLhpLBD?&1J=MfIddH<Y2S%us2jkevif`yvJ1Wt6=
z@)#JLvVlc67m^FegS6D9ODFtkW^OkZ^o%a80X1>MQ1vt_oya5ryZEl{lfyK76=YTh
zl5gJh!HsT2d{OgzE@yQ6&lY_H3@q|B{m`Ssk<l?vJoySyHJw%eZ@3_~V(=ZM@yizg
zk!hEF$H{aZ0+4<=+oep^w0Fbj8r&Dn=8XU(PUu7-9JjOmCC3tFzRHS=UXlhg6LZbQ
zZDXu|%^Oht1_@YXAdqSh6gGKQ1c=vtNQf#dbH0CECR{kKXU^ifBDS_JI;-nbPMr7b
zF$&)sHBY@M`ERw<v}8xII#FC)_kKou6azC>V7pa$N&j1_OX^!uV^@N?Ewy^Wn|+>6
za2cEIPues-JJfsjS;TNG@dv*U;(McNvQK|%*Z<`6=PAB6-i5BJQ5>6?7nMMi3h+y~
z@YHy1a$rMGZamh+%M}#sv9YniIBc&;iz){q5(x|$H4`%Jp&IF_NY1S0>a&8F-uac<
z$P67*4i1NMY{bTP>iz<c&#t)4SN98IuYQr2thU+t)%PwCvf>ExQv1HTP85Zwdnq~F
zP1NTF0p6}}jxzPnENiya=T}uq(`(Vu3*sVmRy^eSSxv)pR;zO`Abw+rB=OhU=0;SE
z`0)|hP455eR;Goa0UH~Jg;_m|NVM)>I&2S6<r|>{g(uJ&-`&@mQ=Oi_@kW<bQ9(#9
zE}nM^EJ8OoH@{p%fc`hJ(bvm==4SjWrSHE0*k}agC&u&d&ip(kpeFj_s0W2_?*#s5
z%)MhxQsVAE^QHI(30!FNUzrimL$KF@gJ*(~I4$daZQ0j|i<gKoXT1Nm;eK9h|6kMV
zHU7N}J2L`%{E1*tbz(%DGlhO*jI1(h<c|i;)31;CBZM=u|90v5_L&sKL6ubvO4?+5
z3~pMn4UT*>8ASa+{m*O1&MvU34$2fE8d_Dqrr9k$Y<nDi{^OVbTOvk^fsl=ALK^VH
z+U-yCuctmdVVfsTcIm)+k;SC#-ueu76WC<ruCbqSjvw7fY9J0ChWx?9q;w)Z<`p-*
zFtY@jH#Id`{$J~iZN1baR8-3w{a4M+a)8(5zDvsS&J5@p!5oSTfga4ci5jyE!8}p!
z8WJ8IX?@)H17PD?(J^olM7q4Gmz|ZSz*u=%+a0bT0F0f(L=^toFoY!^AM+WvJ`df-
zDezgXB~_q!`tqJ!yK=6VftKu4cu3+Nu<yj=sn3s_F`)2Ou0(TX$1p{U2iU^Y*zICE
zb3BedkBKC9rsO`_Lp-xrpUPF0!z<<<iV**-IMLDqnC0#59T|ve*G1VVhhCY`d3B7$
zvN0#uW5hS`On;O@AqSEMxo2XrwCX0n|I>qbbUXum55Q-!rNH?YV8*fTsN^{Tifdy;
zc1=Zv2u%inttJ_zCu7Zz?*h1<$Z@h4?DowRHyL;+#|i8f@e(r*Hj51aWL%5;eTzi+
zW!reSk=(~8(c|RQ6b45D7^l;4cs%z&IJd?2?1ZSvzm$Ph1Nb(M@t}Qj$wGU1J+gXZ
zwYGt82<YX6eWVHCsQd%`J@V~?U~L0TY!;K<Kti<xRiGBoqk;ZimBlSv87%i>yzcOi
zq%wtNV+?Le=%^1EI6XmxufiI2&vw3b316Clr=VN;_yAHU#_eoRPtQ(CQAPA@nZ@5j
zb@PM}`0zvLMq<DT10EYt46=NFBp*KBWJM1;ACcG~j~&nnopttS<aZ|<aZ&j)nB!UM
z&j&c)TVJkqANPpnF!60Q!khVWp2rba9)&?&jIh3W<4hqQMnzPvZC_hy1OGb}I2;&x
z*uFRPZ{%d>D^~<zyAj*psF|YwUg&=F{rl4>FkqJX{;p~6)f1R4jO{1zXu5V^2vgQP
zTK&@AX`G*(XOz4K28h%1LnXlE5@`Y64z!JK-meB%$6#p5hZ@o}!@B5=Jz^`y;*$%K
z7yKoJf7Ws%8STT{P%%Y0d?WCeLuE2TjdqRVf<*=ZIFsorX*IQLy)}zdVA(STmXuGi
zOK2O!et2#^D!CTrT<nz4l$2+r<Z`vZsIv_3=ij3pRv*tWP;LVMM@jiXbrWbaJdDoE
zjEc}*UBf8oRg8_Gx`B=dKvSR1d<1T?$5ndzwjP@f4c=$-9pIg>b^v&Sgrt}kX}Nn!
zPR+Hd($q~ns~aHngIRxc;LGb!_Q$c=N{b8Kw&XL`!9c}4cU;Y?*acw8S!=341&*8%
z3>fk*(#mNIdnEf|p^JTzt7Cg}hxFUjH{8imWHVmZkMvc>M>e~l)~<b8+Eu=b{7)`1
zg+kz#BMSujx`xfBr}}FM_pe)$S`cZ-?z|o~8W1exmPdP0y}qVY+UiO=pZ;fdT|T5o
zkIO_F!0Y|K++(!LOAng?mZ&X5K5fw+K>s5`!~ARf41IYOF0cg5D&VaHs;lsq+L1_O
zk~bv4vqIC?*Y)PD8*n7W=<6Fq;yDP*9}5GvE6H+Z$PybaHqOYPEgu5-HuwqudhYPa
z=+Am=W=@a?#$tkTiIag0AdTxi-KuJ2Lcv?r{Jk_-1GEP2_sz+F$m_fN5-r9unzolt
z&rJW$GUgI3Z0}_t_;7i6GKiAQG2XPwD<dG#KHaPZW@zzZv94FcLIC4u55zSfI~O3l
zynX?(Bp?=T&^6wkOchJE8ox*}cwH^O(4dFl(%As~H&tXYnX&M5SFQLAE*cV!7~z}-
zKD?%nCIS`vML0B${WSrOMib@Q7!#~V;RN|f`ojSD97#p06#W`)Z6=AIok!WMc`yL2
zGU<CE<Y(yQl^42==?dQBY@Yxk2vC#d6j0<86k`?TlpsoB!0}<AW#Bf~fX|>MEpN-L
z8^JUD1XG~B&AG-hE$IE56pM1^@^UaZ00`~1q2>@e^<wSilfh8<7hQBTr0azK-pY<&
z(jP#eJGHg-yI6#i&nE%4yU%NCT6lEB2C-hCo8`BRQ#s3g3t6rZikK&u-i*_=%b^(W
zVRKCX@N^NMjpi`cTeMQBL3HT3A>5-`6=X2*z6nnVs-g!J4}X=($2+&j=hrwc2J64^
zBOeaxkKz~9icEJK#0++ERGuM}$d8SiaaZwV=AmzZ++3}B$xILv8-AQ<j1CXF-He+j
z4_*-<wY+M#FZ*~#*%;yk3Ug|^gKy$u%Yo3it`9!daE@{H%%r7Ry@Y;6H%IIc^Se5<
zb9Ceu+(q-o9|=P=;bFf(qA2jBzPupvA{~~UL^xt#Tes-E94}DQTVD?w8=g@AV7@T$
zaA)4ic_2=}Ixsmq3&2;y17_Zh5505^Rd<n6+*eCb56xcD(b4ho@c`EHoVtZhQw9U<
zW<-pfH(-eD;)ICa5YId`%E-W!jtZg^qzv(mO@Xvdl#3aTQ6^EtaA*docdqr5h>B@Z
zw~4+xaaixjjVK}`^8srQ<4eJoH+>k*K-}u+GQ?_V2Zmeg80a6xwv-T&&avzkXGTg!
zDKPc6M9P5_a=yfL)?>bw(<MmmIcnkFgz&?$J7dGw_5h&5(l6&;rw~}4pi<4(rVyZ-
zn^0qzA-PfQ&9EqE2qC~r28ORgJr8rt=<%m`T<oiVTE>pzj~KkDHX!IUGBbPBW)MW7
zH(rfaY9w>ywCFc7SoUO82LkjZ0SIH6DcEOtCgtwE08iD+jNLerd4)V%^EG>nso(r{
zd6gHi$5*;7*plAnG?wC;INlN^gZoOs_4ceJE0P38U_0_g45?9iTIuqYkId{0n|(@l
z12-iR430BMhl=Ck89T-S8F}~mfLFwDlje2f#&Lmyy`z@c3LNRvZdZJ2IwTMnE;X*;
z*k(!|xAh)iNr3m^18h>GND8-dhm%X`G>!!&R2obK*U|!|lC=lms{|S12|=(ZTS~aV
zOWo2xUA=l&lwe<K(I^pmwa%&40vrd%yn{^|`9QI+Ul#I7@;a{hj(ttc)^+>aZ|2t1
zE^eXE?jLeQ4iG@<Px)nWc20phP|yKu$@Vch8Nelj)4C`tmjd%~HxsGMo}aDgeqm=5
z&_-<l17mA1Fb$y9P!b$PPWG8vqJPc|_~fXhuwk&Al))Jk4P12Z9{?OKjQ6>do)Z7#
zX>e9EYt)@gaK-P{3V<OI3HttPeB!!5Y@AEh+vs9C?m3J`{uSjh)3p;JcI*%bS-qA9
z-Cwvn1O%_rwa?@77#4*Ov@T+R`|r~Ns9)q12-L=wAf$S!)=d%+Oh9Mq>YDvTYxIl$
zz@6iEe1HGSerCu=s4S~|@Ff63J#okYa2}Hi@dxkjuF;g!KFWU0HXmw1v+o*cX+X3v
zPrkGLz&H9*C_$Ht>m5j|AVH(;oz)!ITW}czmq#(muJ(8OE}x`U_3RJkIqwH~K)T7!
z&JMMP%Na<@@Cr;;p2!iQDJaM{-LpV3`C@uEd~*OOWlhdnmPZRb4{KV87%2}d*&)h_
zKp?UQ<gAZ*CcJ^bV@oi;OdH0<)Ycm)hfulY?BQ;s<)nKn77%oa^Au(-A+dW&uMe(5
zGJ4BYS16`Xtv9Hy$(5I!=FM`ixf}Qn2YE7Q!#cmB7f^!|FgFdPLX-dx2eAPd{gQ56
zc5RW$YVW>0u0JlK(lRv?5%kG~;&A5XY0P?YoZ<jq`B&itANgl5B;_2Bd~_qrFn|%v
zU-jz)n<IL~GmTWeK&;i-_m2YX26ASei+EX~J@LMYepg<#Xn35rrAlHHFd!HvIJBN5
zu>H*s&2L`T?xjv3KeHtVo+{VtF#U2v{|E#RQO&z_J2-@6XM@1FRpzFo9vK-Rp?20=
z83V)jS;~E1=j@!q&;j8Sdpn&9S=av%El*%FN^6y31t)H4>I2!n1Zon<q#`ghwWeoL
z7X0~=iylO2L`TOavsq_kXN!o*S_6LEd-D@-zU6Y2O76?G$jQk(NU70i&&7fhsOU71
z@v;nE7&AV-5fK*2&MnlaFnoorOvX&I+7eA2wphc$w*}dFulZySju94r_p*;<PN21(
zX-+zll=m8~|1YnG9+&H1GWUwvqjOwkgg+X^>^x+zT6-UFzAiLthP|DQ8+yH=FD_fr
z4yRp5-r`ESTKXIN%dgm6Kg_#ju8KSzBIrCnc(N~2et5CiKmFs%Sd2ZCfSB3adC;Mz
zmfz`nS_(bLe99~@`eNbC2apO5<)9i!p!h{?rLH5R`&itQv;Q3R`e{*K5=wygvWgrO
z^@yE0>19#S!%KxiodY?c%md#ZD>9J0e%+n2nCW`k+!kg_ZGZ4>up10=6ToT1z=aV5
zANQ$(T%VBcYx}3l`PBd*J1+Hl-7GCVJUnD*W`-F^$X(q%*0c%6XLh9oni-Q<t)Zc$
z;lc$JZI<%#es(WBkc#bD#>f4xAJeNbZ=X?8X_ijgWx(Gb_fgZ;J`jy|E=U_+oH3Py
zFe?3M^z|rAei^`c>K%X+<#Tvcm;>s6oA%M-=3s10baOc~z;E#eJuDB>(cEqY(w!4>
zfP257UlVwrfN;ucHjm@DjXL+m<*pSaY|VlV!PCn$KR=}j<b4q?L7~66gKgqE1o#6`
z^bTqLd@S_`>0A9GNr@`2Wz3(r<LUz~;gq*`%Sw!!WLMTQmm5LkoE782ez(etZdwiy
z5Di?GhVOy*`+>vKGm65Ld>?j*^ey=yn&)2;E9Unr2-wB%QSnkVV5Y1e+1bOKgqVU6
zLu0oU#3S8ik39FOH>6qzpvtU|u4ZQ{DK|kFA^091KtQFs4-`#6_gX{!G75r=S|Ymf
zR*s3ytVlrr^{>q?5s$#9=jahdaBRG%oY-qdv<^@tfPw>x??I7p5AWHU8yVs0TFO<`
zQ4X#b;Gf=XH7iEry<}53>?AHcBYQIRBzx#}wN1)LI(6E|>x{N29nDw!1C-_NBS1u&
z7>L`{Hmbi`GWTmO6pqSrZvr{SkAe0&Y7mzZBM|s%XXNjTQ<-ak3tIQqqJjARwA(_Q
zfV=h|@!yi2hKV5=zQ4ky6-2b4k{zE*&doW~5}Os(rzMe}y(gEAR8npILZlOB`|BU0
z0lU4V4P7ltbbki;Y<p~n>1oygZ)|~mbyM#o`1Vyj0G|xMP$nqxA#CoeRqc8(o-9}y
ziBXi>GW-&XPyfty64;|EN{Za6`QM@waJgKAo4gI4gqYZ_52SRAEuo{MV@NEvje!n8
z3`(^&#<CA%JqYS^)63+Hg-NQg7wTN^LMDbUv{GT0{K}UK;`6HXW-AWvFL*XizFWv5
zT@jE7;(-^f9@~ba>%QNze+^{h!VcdheS85C{zH2HAWfet5Vx3Zbj!Tm2I7|LBVXG`
z+Qt+#1RBXpe{?Xay8_VtH+bDea>S73kmK!k2X5$>-!>O}=5%$L$-q7h*#WeT$2$lI
z8jcj9-P8oQ>S`#}pkp@Ed*fY4|AaO|=@ULPm#I>|^mYImau7lNlXSX`#CC6%jKcA@
z7W5EKUs|1p`$axOa!-T(QS?Icr3=ftk?F@Tp+;4oemT}ts?zp#aZ@sUEDpINggch-
zfGc>(piJ1uPfqh!t-EzfbecX>5JG_N6)D^)4y4Zr?7Fts(dE$F5zjTOse&KtUG@J>
zYrN1psag`f9?a9m-6c%fbyjT8Wc<MB6{8`o(E0`JKq(`pI07w;t?&9~u9r`xSel?2
zGtK<$uT4la-hwQ4hT+jot8@}GJPdg#+WkkhVGT!wth7pGLNeo6doZcde;e1RydlQN
zP$&zUGSkxh6d_&{7q^2~J~vV6{7hC2ik~*oI|26ca$dGmW)H7P`R3tz_c~w27;j+K
zyzXhGHECn`;KT3DWZ98X2+hP89NH2Vtu<TeX<i<o>s|EyGB@?xZ?|ipj;p=c_adwU
zG~k1LWj&qoD?{h9yuCeBp4*|W*9YPd2)3(f<7o@RsXMt8zR_AP0;bIcjPXy6J<ZG|
zx?x~(l|TwUN)wcZJUlJWKfn$7D;Bp>ox-BiOxr}<>N=#Z#p+9-<b4UrX;~Ai9xx4p
zJCV&8oGtu)vl{4w@YmHT*t(hA8$7R87MBpe?}dE|9EynlOlQ`^F#cWq54FQ)D8a)>
zRd?ULEVcm5uIqfg(SkM)1r}BAdUFR~m+A*Ina9Dpg3~YNalp&0E-CokOJ;7vEcXCt
zI-!d-6(EZ>#MC@DNL)&-@qwbs^4#7k@x5WubH)6UhTni=G*==s_1H+wE}Bj!m6q42
z)E~Uqc<xKs@8+LNb(b8@DM?rx^Ah%q^Lu5G9Ks0&NefUX=S<IdB+{WeJ8xZZW_LfI
znHjv}ak_YlrFRAU1dpwX^L&BmnJ3X(qHn2H7SF0JP-MJhWEo`{nS1zXZ*+{6m3fs5
z#+W2vESLDCecku!FFtI{H(Ndsekk0e7eIe{<-&8|H^{hfHRoZ^ldQ!#qa^0nY5qba
z=mG&jAuMKL|2idHp|@}!i*TODd4FU9BiB3LlL(1nVQys<azdm6QGp7E+cY}q7@8ex
zzt_v_>1kW*Aj3s`j*NbPaF-b#4kxjW))DlB)jGqXC}?oAlZ?D%=DIv{*zi0}uz4_N
zXXh~MZO*A)hWPg)<14EYT02V*mFwl96rdK*sX5pUMCn>R0>t`mrzgbTHQl($+Yf5L
zhM3MF?^8?Nj!|B?+auV$dkn6qk+L$A<O*e#8~oX>$uIq?s}j$3syL!2fNN7y4;`c7
z;Jy4ygfIE&p5rTP<Qz4)`U7Xzn*C;ql_D{%K!%@SDtK3-PeNMY3oW2m*K%Q~&JR@^
zBBmEt!h1wN;T0rOg!sN~TdY&+e#&U#NUBlkH^7EznRD2z=3On)s6o2*lk1#LqV;z-
zk9WK&L?d5jQVNS<#l#j@v#q<K>}uE16#o2KmWPO{(CQ24sr`X~j_Hl(;3hTITXA~}
z!=qeO0E6nDRIK8Rw{V{PC?zHFi#{tkDsHCxBBnTH`7JJPi39=9eJS&ow)XbI#fH0q
zpe^T3!k6IZ?wDy=>DeAVM1hSK+K*q~y4>Cw#~+NkKqk>)u{WC!IKTuKg)EhB2D0^E
z>Dl6n(em<l7DoqLePw#96oW<h^Ka6J=piE65Ry)%9b9-qvUbfrTt))a6p^F!Pwpa_
zxs-1=qGQIa)V(`in7ODK$^VMT%PUF1(>>`G1=A8ioO&e-#CKW+nJ5Nk^!0J&9^v`n
zB7AoG(gM9Ov1L)Xt@scD7*gsWc{R1(^{p?4GFRkvzP<&)FrUmnW3B3C8yU^jaEOr0
zx-|tpZ3X-*7=hqGw%4GDoI$@uWf|++>r|_CJv}9zy`Qhml!*H@-W;zY=!@7&LqnDG
z3de8C;n>P5r>6%aI+}Fu`9VH~mX?O|%|2|h^YL;=u%GKgB27Q#%jBrC6F<VA=c}|T
z1FChe<HHV*Hk19h31#fprs$`vPEH!njyW7}*`k`@v<SOuOsAg2ciJ!V#_Wlgv85c6
ze)_~7cy{BDmdj$QT<v;iKtSLjmBhqURzD>aufF{>g#|QgI{|*hwczrmbsvtPD6h`>
zL{S5d0CTKl+UfiNOZ^1-H(`?Y9hOGZe2WwtRIJz?zR|&m1z(kdjIr_IXr=`^`|KBP
zV4qHz{G@;9B%3REN_>bi4fI>*4vz5TqK}{WXZxSShS7V<3KGoG2N9mfBlr|`tr2Lk
z!O3+dD^ZxO6t&`#GNLk`>hsRaCPX3zTRB-6#Y$J}{m)>2rq+;WRw+rz^9Kx1rO<GY
zs6iAIgye(A?A+fGr@W<Y&CdNY&n(U_Eg~(*LeCmMxwC5_V}^`3wI0nXeX*@wmsdr}
z{f3M(JMU7PUXCDCh>r^X_&A@W`Or==EK*kPGZAjOkK0pCHwjx?;jyuailiS^j61u#
z%aQbnl75Tw+{te3iw{#j7&AIL2<sp2wXtGbR#pg+3ExqfCFr1h2n?QgJ2iYvFu6L3
z9Z1&rtaLf6;Rd(D`$^RCx>>`GnU($rQ-P(@Sum&lIU##0z`8Y${IcLfj&%Yru-P+d
z&D-KcY-7L&t%anFjac=%)(e)gv=nO~sUGYq2#lqXn}ZtlmQZHVGpl;wjd>+=b6w7w
zYinyCx(99!1WO3BS^mb8%8E4TT;j#)Joxm9P2$Hhd(Pp71s<ZM!cv3o2*Sf(yP>j~
zHf3dVF|<x@%Y0MV1o>I%Z6Bq~*CWVwa&o**&z9d_x;~>_0u37z=UWpBinqmt?8gUz
zSP%7f!KyGo!>-b#`~E|v`GKEx{n;$65O}Ez3@)}vmv)2^=!+}6v>MRIiPtUh-xJH1
zFOnlqtR^`69o<ICVxRXy^OL|VjYOBzO<=z4qNdK)ousN%hDMu0!R}dQ{U9M?Y&oly
z?GKYzLZ7i=V`*uoHlNnf{GD8;A4@f7-AWlHD0kVSL=1jbbwXB5dRkSAhl8ZP%3-qf
zcqgZ6DvK9K`FbZ9?bp*PEOmbVQ9fw8j7mPP)W9Q#5g2jsmz<#wf-sbDRH;%T3KX1S
z7IViJ+{;^EMLhEtlfXyM?YbduXI8L(xNHOG4^aKH7YBvb)+!B#!(iv~E7sv+F&&Xn
z<Z;?Yh1*eUbWxF2bD8x;`pn!hVb_`?&zLEdDS3exEI3=GAKdG7fQ|k7quo{*akBI2
za9lLC)<gGdr@3l94#7EO)NK+$@^U;w;xi0q9%xc7^!<>?G=j$R5o<+iGHt?Gj#=th
zI$t7RR>)4AxyV6zQ8;ks?(R`jGs}I4p3@P6b9QxoMv|Yu%Yjc<Yj;8(-+yo1i`gj>
zxpX`9!Xjs?t&Jij<?{_2jku!9tm(GQR~f5gBtn<;)b#Z9EVh;&QAq_%REwyP7zHz4
zUS+|KH&|HB4(HBSWOJz1@c$U0r8Jm@WrSQksh<tk@@I$0g?|&qs6AI*Qd>TwpM_qu
zJNV>d&S94xr&ep-9Wb4?*UmwYC@aBRED*}_a2SSy;^0Hd5;%=f-17imMcf;OXR0kI
zT6K1|$6@^T`;UT!*Jvkh&kh7K8ZQ-+qT;P@V-`PiLCt22zdz~iEeS+0^?9!2S(4L3
zCw2K%jRSU27=xMX+r#M6x3V#5a{jK8q|Y+_`m9XzD9(ZQ#iexFIqo;h9}bjc2Uip8
zoT$lo?33=kLPV(A6k3<pVxuX$yGGho-p%<hl)UTceL*QA0(XS<#q?tg&3<fRe6M4}
zq4DOhdU50WAU8MlWTD?a2pF2a?q{|1_eanltRQ4Z%}L^R%E-+({b2ZV8f|F%)Y8rl
zTuJf*0_HrQ2?t@b%Loekjs*k+Adih>s3$)82nV<PN*M>I#afKIt2Z|{XJccNzXs$0
z5mdLsm5+_XP|&=il^E<xV6)3RBnv`BWEvk|uE=(#R&#5*z4dHqu}l+crRFon?Np5a
z{$8bhX;w~677Y!HRe$U)I|Py={OOa5>}XrpTdH@+uA9rvy^uVR{c#-oLK2x3il;lN
zWldLiDK#4#+jBVELQ((*CgSh#j<HD*`qw~k<Joq-h`i5jKSD=yx#WfwbMR2$F&G;e
z@#dz?e{#s;X!!16AbDeAd=Q@txj}|o@*7e>=qr<7`_P!ep%r;6d{lIA804fh)Rpyj
zlN(*WPVI)qH#{9|StcM#l$SYOKD|JU(}(S)q*b@nJb;C*CwdC0@oqEj#LhW}PbTE7
zxoG(@`%3CUgZtsf;Gnj4ne9NS$P;P~MhPJS3B_OZL&QYXl+0F#VYSk)PA*(aclY4F
zF1UFSm|Wf+4mQO0!*0=G^Y~AUg@ZJ>UB(ZU4-PjR?8Z|cTSGHAZv6ZTuGc#eP!5`j
zlW*;|Mpi$5wQw3u(Ixz>AP<q2{gt05D(UI?(sXkmQSMmYTS!1}bE5^<CMZ9D?c^<D
zu%M1Ln{;t8IKw|1noOBwaHXb}l;mUxzU+L3iAq3_97Re@Oz+tCErg#6^wUH6_+t8#
zAMRUx9xFlV94ac#N;76=7GG+s-5s-qdR!1BF~0avlANsRbbLyw@k#fxNGp1LocPr%
zS#t5u@(LLPm$wND{C>tpOvt$8)=t4iCB``>V{C25ZT^e**Sisg2ay1gqb;h8^MQOX
zGASAZk6@u0PL`43H<#n-TQ;Rj*MfyAX+W~0pr&@lSYakC3TlTB4N2m*OtoNyUqp%T
zcYTSjYi2A8j`7J!9%LkWSzvNzprWCwv3+n=`s97st>vYNr_NTT;^hGaQfCI$Yiur-
z`M=shu(8QtV2+g|Pr~#)^3u~u%i!>w+823lr%OQ=j|6i$re(MNlT1pS?~CXk_8EdR
zCR39-BV%0WjTjcI0(x*9rbF%%ACG)cxrOc|Cfjx^2C?$Votk>9Md_{YiTg&$$#IK*
zg9{4wjG%po;D`Hq9uWoq3yXNIQH4`#Ue2-L*DRn?$}S+NOmf<A{iq<V1=UE*Kufj+
z`5M^oIHb9(14C+v8oH8p<=l|ykG&mAPC>@i-y<k1LPkb+;o4UUKA&ka0T!?4ZuMOl
zl6(yX6XTOSBHyCZM>CaX!j7Ux#5Z)sc0o9Z)9@?SH+<Hj0hvgZcXN8hlB3>xdmIBA
zPgw=y<KnmKzE|RZ^Y{OO^qS2wOOLshg^7LHZf$gE?Gt(8Z<cnWvs3Jnh_PA9+A6jW
z%tm$9>zbx&T`gQq4!*cJ?YbG@lZ2*drxq4-<FH=XlRj@rDGp2bZmKez^p70Jh{}31
z#{WqKD@D<Edhj5ku&^v@Yy-@tc32wDp>tDL{P_JqY1iJ~j#XPF{+iJ@XowU(FwpJj
zC_6j<ZY?d;rYvi?`kCAP-Nn2gN;C$Bz4JK)#4C-R+7yDw8_jN1Trsh(1r&Hsome_$
zrhx(ElDV3iWY-&{q%Yver+rfbW|IsfBfz346iTS^u<Vy1C@3e8YfZpzhv-@WsV>Pb
zp$|CfC3FL{ta?`4og!lXV+4fdRA2()mypm(HYhH}PcE|b)9F;8Q5W~MgHIdX9tx7%
zsGf9g`j(Z&BbmH#d(`<H3RVWAe-NUe-f+`Nh*ez`cH*VX;`9(sqEAj<iiclnZM`gD
zlkmYIs+>6+!#x&bK<a*?Y4-&!HahAvDFYM3s)>FHQJIJYSaojR(WjTYQ0D$a-@XYE
z6CWabIK7_U>2pyQ5P-Q2da2Blf<P0mj=<u_&tY^<1*vYYQ8vA$ejL|<>QiHqlLsuS
z*XG_?Q-Sna<`7Z!-y1w3CK^R1-ou(XTSy*-tvqVguVW(C%B`Z~S^`DJZ#c|c?k+Z^
zHlr{P)Q-YEnV6lC&Z6E4#=$ZLH-fyT?w;<HfVi&S?tImfPlC!d4Gs5g)z%sZ^SFmg
zyp9SAm!$?mA^5Y!PWFO!cG4o<;5B7KCFSasS|1-1r4Z2#nsA3Nh=GOAfX6m;Fp&>(
zg}O$_NadoVK>$?SCjpFPI=YW6C0*_bc{Flhvx;ctOapN*v|KJ5r`wW|6uX8-(@M$(
zkYc`EBadf?BWP5VZ@&cw0`OT`72%XJY_GD@IIK5|cOxOY+Wv3oP^dypK?Tf&%=Rli
zJze1<L}3w8KF+*{!&Z<})!pCwrC2%ZJv}|WVcE2#<f7BpAbjSX^ShfvD_Pq=YZ?4)
zDA&F47n-j!x_nfpo`H<Of%k36$X4GN96v3+(gdyzy?Vy4Y|2HZYI$87royY!TV2yn
z)fqE;b8~2$11=}6C_H!fPT;<9c6N4HVfUKTt~sxxxWDE2_@p#`MXzRNCc-p$V$Yp4
z@@io$yZzU%%HQ)O^Xq$pL0KSA=H^h#Ye+dCdwN>;$1_^nv!@&!D9Il@T!b<3qLZS>
zwOz!uR#sM8sBz1NuDyvGi#}WMfqGttpMQ$D@TYs!6BfV7r0ML%eMQ%gNJzHK<u{=O
z;WX}PsjI8g{b_QfA4NVYTbLitK#*|HX;@f@*?&a2I}*?V<dP~rL4LZChukxDI>UsL
z3I%4Lv<Mj)XjV#ca&lTSKy6l=G$woXIMDjD<wc6yo(iI{)S})NZS)7L?L!W2Z+Q0@
zYuM(sUNa*jp5?t8&>-*D1#vgvO+E7J@EJa-ONQhare@@DXq_6Gsi~>Ey55~IV+#lf
zfK)af8{0%CvxKT4s;5sDFj)`g1Es{%hYd>;6UH=H2=d!ibv{BM>|j0%5f7@)rko3k
zNPUxV642-da*;?&tgQ>@K`&>~O<rDZiC~GUgn^;*_aX{1ieGIHHO=j2PxSW;i->X`
z7<PletKQc(j%Kd+`!^S2y*-+hZBbFBvG3N`){U~Vo4NC)Uc}a-y?!xhreg$0fsTeY
zO8B1WEfe}c(}sl-28OhyB{zj+8yQ(Ma{lItV?S(ESeQH3TcY=eM!KYPQg-SKix2nl
zaY+Nq7F|#yZEZ`>Ti%c?D}8-amAm`&sYSF0)bsC5NR&Rc!BV2fwJs`$b)AC=4(NC$
zMrH%L@0X^f5_qI?KosNh8W{G2qT3G_4GkmsTY%_bpEpZ)SC6rwA=}|@p;SxDQUZ*C
z0J!4L)!3VZQ+LSFLMIsIT(arvFUQZzoivO4lHdFpRA1=brsJP!u$M<g6+-h6WSIY?
zdU%&dsVD<kc3GXlt1X`JS~xtEA7fSviuL#RAKpG4`u5_I8508oUtfRX%`Gvg2yD7u
zc6LYNcZ4KzSgtU^!p2@K#Dlk$6Ck?#QG{1|c-rkj&zcP+gEInogidyVT^TY(^W8@r
zc!YpJ0JSyJ*6#521^kU=X=(5^`+p1Yw6395Gd9)YEhs3+U=h~fA?N0POG^5VxOrsG
zxyKt0R1lul72jf;ulx`RR3Y+bZ`oew<mBeY_9ezgN0NM>B9MHcC@w6C?0gKQX#<}%
z+$K)9wFZ;mB;V4KF}IAAr04B5uXZ*|CF|?zO(PTjZm=<mU!~UoElOr)q|?(S$tB-a
zG_(}e%csk9felIOAbatL3!>Tm9Sj2a?7N&FEZ7qIJ9+~8^?BeByj)fyBgBJ)73&|k
z_nz1@jEzNgYc};awF<VkQ&LlbV?;(#C4P>guI<pBc=_>y1(HsckZ@xXV(dV%@s{!(
z<&WP>?`MaL1)9nVTLB>H&mwXG2~0Ji5qW#5mdNw3Xh@=TbtzPkC#4lk@pZQX(_i;>
z$FO8@KrMY?miKm)!`i%o)z!a9ACr5Y*q}8|C99*8vw|^x@^yhi@&g<~+OQ#EP0jh3
z_#rsDVBPM{S}zs}S#)2>pPCsJ`#y2>vS@JoYxQ2gO*kMV9?K~3qb2*%$38HC$dTB(
zPVjJZkh-Fsvm$?Z<-8cr3a;Nir|%gVcPlY^y88#Q)U!b(E%D)z4jdd@@B&uOV^sV<
zHUsm~FSaL)^bA&U3<7d;Wkp$A284tqjyju1SI!Td_MqXy&nF>odz8Sw!h|C~nTUgf
zV>Vw~x!XzjaC>vmnUaD6`euvEt%uev-|2Ixru+fK{_lN8!zuskkF2b$(J0C^p&)k~
zLA&#$yBi%eRN-;4V)lepgMoxvo9u=LbwTB8e#Oa3%v@A7G!-U;0X&M#uJ7M99&XXh
z(o#!CT&7DdG9+DCeYyUXikI?k_xe`vnF;bHXd3Xfv=Y;jle4t+^t4Y`d$E59e@d`+
z2Olm7v0J8J(>U21Ao1Tl9r)V@M(A?_knuC8&sX$*CUu_FJ3MYiE-qZU?QLzRHntQ&
z*gD20d09U{3PM0E?HUF;G>^+QDNP=zx3}3|A%W#>X2t>L@`0Z<{%M}Me)}jYpE=cE
z(fgzz88VnHiw%LuHSpVT%scc%Z6hOx{S0`y6aTk?;WObQU+#1Kf^HpR({#k>NCD_N
z(y+vwGJlbf=G6iZQ??^CHYzF|{HEUj@tZ7wE<dT0n(Ey^SC6QKRAF|$PXst^X5!+Y
zU=hP&z-5W()a;*e50BsKOFq+`0`T$P{nLQAllJ(ZHAVx!=J<zw_E$OF@^yN)ZS#bV
z3;A~X;<z(}QB5$E#E1P?`vdesEg>32L7q%94QXU7NsH5Q<UMtbH}rH0S8VbJU3o>i
z#P{s=L~bX9LQ2fzaz0_<UJ{M!x7@OxyzB9+6XRFDT<ln1=^FFAc{69RQLZ$5Z16Fd
zbCh4qU76o2POJW=U{vLcM5`oth|V!I%h=zNGU!iZ$RD#}&-}e`jNtT4imG2%64$KO
zFwZL>0WTXVC=fm%aQeN@Z!to=`bXc&mhE3qLD1&ohF{e)M@k-aLnkcVofAQhtsQWv
z=-smXymG;GIW+Euy|SX?hgdpB7^R|MMaS`mnP+gI&7{*)PbR2hRh1~W%CNUM4WT2*
z?<9R~-Ryq#TXD$my>OkZoz1oMba9(gLv3w2bzvmG(wn(%3V+KALGsmp+L8eHLO)pR
zot>qcwC5-(c8&#gHO8|V3xwiv+$~e2q?B5_M;eKyg261zX*tQV;gPH(BPk61pci4E
za4168m#j-a*I{v38WiPjuskB(J>NTr$Xu@JH<cH(?{;^;o#%kohuesoN-)_G|F3nn
zh2)s<x)S`5lpJb9ZaFc%^;r1qc3ne}@pdM0rJ51z7L)$6A+EPSz>g2Q?ciOJ)|Pi{
zp4=rrA8jYw^F#a<@aYp1Mifv+D4Xa*oz5c09O2;HBOaoNiOjLscY`LrQL9julr?vW
zep*KAvB$$ZT?{Pg8?IP|Fex+)<`LId2&0OVhL*HbGYB!oyKJCJRcfPp&|2Tgx5jFX
zG)rK95UMOkLaK9#9SBdd^kOQbIfYe2a+Pac4omwy_$SrwjNY%lUQ4XM>wB?oHxVxG
z6j;C6HRPYgdbGTlD826#^HgA+3RD{jkiBW9`*j8h&QIJTdLcAfWUzeCO44tc;TDZ|
zN9`=6m#M4<)A7t+o7D=CsGgsYltb%^IPB)UBU1D}2@~{!E+ZxNJ_v{klepyVN_?UI
zVyGq^3cr$|nqG$5nek`+1e68T=V%S3w`>ZRrcb)?BalYq{;&%_E0XCN{BE?7)R53Q
zN$`n4wUK$-u4xiqsXLl?#UL&s^Q_INj6JO*tDE|hLAqs?YED`88-=U8?^*O2`k=WW
zH%#3_N!f6+x80T!v+Ae(Eg&F*k8Ktw6S6)oe=p_b<F~?l?P{|&<njDiW(54(0lhuI
zpa0!}XF>btQ+d)i+UdXQwM%q>8({TP>9GvYP*U#H)gxci4aficA#%Zn5S*PJb6Bnk
zTN!R~OARJEUBIUj$KKt764l*m%1pItiSQ*6UhLKG-t^#PVI>nQ&*hiZ1Ox*Y=QpWo
z)+Z;#NCp;arTP_-XzUX+E!wNG8WrCLY@R0AwN{vd$hfsKf_T;kr+sh~pzD<UV1g?U
zFupjLfnlXlC95K2YaOe$P6-=(W(du8(tOb1rTjHaf`GtN`RkfkLqkfXIX?!I=Y>C-
zIq4SK;gUx|1q&0~hZg@*19SDdtkgU_jM>Yp=L9DZam4EJEk6`nCT5s?*52Wx(ed2n
z>aH))Jj<>>brWlyRz*0+EO&YLZ=<P+pDKFKoOFi3`1ynvO^T@;@O}=fkBkhC#u(${
z*V|lgRtwKDGv<0clj>(d|E`hiBzBcmL;QT|_9z@m8atcPq1xKc$(xkyBW-4bq?E*J
zJQ+3E^1JW7J<AZiBz*><(_f40=kjS;PXF-9V^GnN<;~ia_aSe`Qj`l~t$dj|oRv!6
zq0B)(1JxoEkuz2P*pP(C%Zuwf#?lG3n2N*shvyGynrh~~E4(Bn4pGrSfsjbxlNmv#
zAZ*Hhjv&+$bRiDtnOV-K>L9%81S9-@Op=A471S5xMqeiuR}>K$L2=a^AtP&rhm%^!
z$|xJ_YW^(DgxwD4>Crpc<bU&yJ{)h?=_KP<HTxcl(MRJ0F2_$LYJ!rIW~fcH;O6I@
zK8^Pn(&<eibodEjv+q@bXD6||g-)QF>d((ZNXB`I^Zq14OWt8Dcx*3ArmL&NB>TG#
z!R*gE;@ks&PEC#O>bk*o4+Y2cc5687h4bx{?J{3`#)-lDT9efBrZ&Ut(!@kUXqaE=
znUSbfPYq{vG9{b2nxusJ;j(v>VDn+S#42<~$*bPzE^mT{?&b842`KQrbs-OZK1`x~
zOXEHB`^#T1s5QdMn)~F6?ESl*g)!&RJs7WYTl=K@6O$$Uh8GwY*epYbH|vD9C7eno
z3WBZ<KdO^lcR%ASom{;FS6v1x<$xYJY3n@>Nj*~uSYnDSQR*(msPOU6a;X7Hk=pNV
z<mFDp#Nd<NYMvKEwj~f=F%2+GC?ole9=#B?!)MJbQ-UZ+3KSfjM89V@qBO;b9`l^r
z$v8|%&7)ybbC!&;C__F&e>~(rFX|YX75qx!)#FId&6oHUHx>Mv7nLI}PMkb4otHgu
ze2S#IC*YI%ld%?V($}XP=omOW7^YJdwDN`@h{EHO318vUR*`9?i(YOlgLZn!$?=p4
z3*{?UXc&hp9Y5soEh#yZynvFD<tC4G_$@;t3{VHayKHUad_h1!6<}ayAs-wk$ntT?
z5+Cg^RINcz>e3$}y@WI3<+RW9n)q@T0cVqOru?CW!`^;ye^#sV@5h^K%$A^0sNvg|
z5;}39RMa;-W7pbO?PhlSOq9ylIL^*!Y~zFWC#dAXoa}eGIepaB>@E-I7Y_*pdL|sX
z<7;=&s_*iN+}z{h>VnYa$I?R-4{*<Qi(@lK2TV)tT((d5D;DnxC#+__>00how@1@J
zM7k$dslgp_936dGUo@9W1g<b;+0r>Lx|s+}bYpY#SMM<_bk2X%E#BDSnuJxIvW2NA
z3dtjASy%h4>sct1*RQw4+E~JoVM7#bZH@F+*SA(yu5scVezn7_>*>OddHt!34x+45
zAi0{eYs<XyHd&A9u<6itn0SWV`h7nFv9fn2HGgK>uXMe_&|A;8-fS`QF<5$&n91?t
z!?t1htyJ9rv{{Lj6#+ENw0Iop*BBo&GdVST4jLv?ybmU-+Hd5Cy=}%kp>MsJD4nyB
zl|$=v^W%konwJwiUIeZS*6Q}Q`Vco?*>%j+fTjNpQP#@i4w^k%pFZQfC?}WY*3R&^
zy$0RcjLXhIzLY`Vjq&i!K5Ym@UPYyiN-;dz;2Z0%%LW#vGc()Po&Ts^ZO#7o#y(-$
zo4z}DH3O-Joztt4{z8>L?e<OGnfQ7oC3iNvT}NlT4Mzj4s<{ky1oU)0*BYy%O5DjE
zhY!Y~l0W_Z>5~UH1i?Wh2QEAE^3o1t)_*;x5G%|tU`O9EG>(AF*PPwl78$n{7UAU;
zfMDB^3&F883wKZQa=0~54_se<cma<pz9;ZT&oewd@hK}@rKsLaN^U;a#6XC6BiU3z
z0{8sYTX`(J^Ye3*7gd(a&#LiAy>DVYin_YMmY-apPWxd{*`RFFagB_G|1)RyWW`?(
ztZZ#A!I8i`D~UI-yZVy=(PB1SV>))9lz!j*{?7S+NpuJc35x1f=jvGTxwfGE-V6?M
zJZNK7C4`jp)Ld+QrLp3wbM#6p&rkH9ChcA3sc{jXn6AUc=e65S-`O}Szf2Iv&KP@w
zVG9NU+No)^S{tf`C=*Rctv*Xu11xE-kkVJEiu|6b3?o^093GQHO$A>nGCU&k@NWBP
zX~`jfe^Mb)r>C&IykKYJWS^5-k_c|t`wl|QA%ujybQGvZaPV-%<t=4QOf>!dKDkqP
zl7?TaG(YLWF5F)>A7`Y5kK*CYAW$_UgQA8<t$t>H+_pFnAzh?zH@eJ_>o|fp{)Lo?
z;A#HEV-tFa^JC0($5h8anwT&mD^m$0eJLw`&49yss2O3Weg+UeL{1KU+#e=>p2*#;
zec6_xpw0J`(-OxtW8V;iy?Uq(njya734cPt8)~}OFqA+A0)!EiJzY60F2<fv2Lb{i
zcqUY|Op*S1>0^1}Iy7fUKC50bh#htGtHiJ3(4|D7zuVNrd1|X0iO^=QTP4q3*No(d
zl0hJP)gAADJUNi($WAf)<C}A|4>Kx-_K0X*SV+VR?KX)^y>A*$Gj}HY#Fk=VPgTVV
zo(<T;KzFVMi`Jlc;Qoe=6#9aMZGwl0=ncn=Q4e~=zWWb<|6kSBnX!sk+A?bVe2Nyi
zYXM;|2|~L!EY9z48A-v^0%fq=YI|fQA_9z+BWFTvhaA)Wfv(`K(j@A;(~I`N!_vQ(
z9|umbLU)1QxSZ_OWJYd|aVjSf4SUMU*#IRqC1tzj#DpczWq*ql2nF&gD_iz06${8p
z-2~fU-pU)GgjmmTRTs!BDQo%g1&TywmY!XNQUuQN>||RThIAWI4Ws-GCN%&|QaKj<
zJ>Q4=9ZAJk|NQaH-kR6?nOSMQI{_sW8u263ro5b!od8WqMQN_eqWPu`&Wgr_F^0y7
ztN%7PZhh-DI_euX175A=S9EmXDP?i(u9AFbH3h2?9&?LyJ{z;9Iy?syNuJ~HIXnIg
zvHe<oD3&?)_9f))p{iCg%D)iv7JS{FDW}c^lu8}G$fWA8mY_^?F#ZZ{uc-Jnn8R8O
z)UgiTw@}Z7A1fmuD_zzXme(-)bGDw@Uhm+nFewYmI0uqZUcCu3w+|Oh^=&ocTE@bg
z;2mTjSMwwuwpzJm!D^$SqNB^ti;9hi`B^@<*wZ8|Ao<&p&m=IHVne?Z>_Rw5<fS)&
zNJiD$vy+t*uKesBbZi;}AMlk?O_%rNV>Uyd^ZOoOB1y?cD9`CC8EZeyH3`aQS5r-h
zI>f;_5CW0Xy3#19rgt%*D2oUPfWO3kb!42jqEb{==ACSUEF>Wx9d%0Zr$2sqf%B)K
zQ19iqX`ptDu^RjmBkdXee5P;f)lQU@zI4jw2+H$aL?R!sRU{Xv)?vJ=uy4<KCFmtW
zEZp5Yf7|&A+<sIALwn!7yWJVHydmD`B^OWOLGd`cx)nO2uN_ECU>Y-C-Mh+H9H%KP
zm{~gs^i4fhL{P&%?dU#km5sc(w|1Ovqm*PxgXU*gF0f1H#EyxmvOYSN_VW8E0+p=M
zyDUuqIyE&o{AF@{!^4M~M!j=BSOjW@l9F%o4XfTLcvXX@<u#tDl?7%OSF)H;NJ|Rw
zk|NdjOqYPr9j{MUM2|!BIzlAGCs~~^kABQV)y`i<W3g$Io($)K4o$NBqGeG^7PV2m
zq(x@2X!}KY`dk7&h3lk(!j0XwC`3d==5nyr2{^1TtW->Myh=OI-_Hyra%PkAWr?v#
zM8d9bZbq6+8X6il4LTA?Dc9__-q(r<=mpoAWKR5T1~=dS=Mb!HRw!EJTi|Z)7nl!D
z*9WUj0G4FTGRt~;)ckNi{8{c@wr((E=@8})t-OM~1IdRmzQrLqMX7*h&;UrTal1K=
z^kXM$FUOPARX%>z_%Ogz$NE|Ru5|iDFG(oe8#E~eGBeks(Akv`4OrTHzoVXB?)9B`
z*x$AC!}s*&8h<et`oLwep4>LKN482XQCZ=`4~FwjbO~3#lSes3bDrbGfyGSD;n?lK
z?gqOc(ly{or){4sfLCXg0xsJp2{7am(v1ltsEtLPfgKVN=J)s#5t42ZuiaP<B{fat
zEMao<YIYhaLS1Vdi_2<^gGXspNYL0EB#n+{NMPxB9GH4^za^xj2Mgk+=3cN7|GsUl
zt^P%ZXEwi1;UQG`&>8mAJihW1zqEhCkHJk16a-Ky#c_=^^cx77|Cd$@ZVC;xfdNB$
zdg`$>pSY$8dX$MJgl(>AOaJSZQmNK{dv9A?8xj3XTb^$#vgo(!SFdp561vhy)hNUv
zJUStDWr()o)=c!p5uy`b-?N6nP0}j(q(*dP8_f@bG=Uu^FL(K#dt(52jO!A3<7Q?z
z>3*0P(Qc(+CMW)oR(jvw<2x7XU3ED{%#Wd`OW4tV$%Ev}Z-NNxM5D^0+w`&IVZW=$
z7`d~1CPpwV9F<Q})G;nPI3q$7%%1MP8`!74DG>`Wd5(1N7@m7Zl+y`ObGeK3R;ntd
zjA4<H7}XPI{9(a}goJdFO0p#KuOVefPhdy3_GA)L9p`5WD6<mVPL9)<<*(x2>R2J2
zpI+GZYndN_T~p@A258KpxL&9k=;J+}gss`=VNae|$BBI6l^fb^I{H5Ehgd(?p!wtQ
zYagp;f<yC^e_*Gy>|z6M(yvTs*V{@d{VFy{XnMfs!De?dz8A~|d{tI=*XNkfANKZX
zzhA0;E#`a5;<s9CAmvp4qTB#n9jy!v<7cBsGwGH7fJDZ~)iB1FeLJL3SCr`lr|rR}
z@bglM*+Br8-+21%Sm~d-iH_G3hxMK6%e=2s_R*zEK#0+}w<)y#m*IHl%N8msqtFc5
zy1pOCED&(fAkN+66(1{GX304Y_7a!=e~5d_s37}p-Pb??0a1~X5&@BxZV;4CNoket
z?vfG(Y3Y*gl<pAeMmj}0rJFqwpLe}$@3q$1XN)t(`Qj&s!X5v6&TC%3YX)3s#_5%T
zJ*Z1z%$lvi1D{Yc6CIH_?2$`uSA42g62IAKdA#?lM;fa8%tdCTQWf8v^Kaz{eh<gB
zH}XqaL73*3J+uitd$$?V=KG;eWU_%Xf4}Z;>CkQT?o5s<8azfE>fG`J&D@{-!gLtY
z&`UA1%Rf3`U3{n}uGOej<|=7|Vt+GS!qRLw-*`;rpzRcljK6$((TSiO92JimSokhX
z+0stLY4w4t36z5Z8yjfYLsqGUgbdQo>RkrXRrc4bnZET$WfYi$sg4)@_v@8ElA$iH
zfx&5I<F=oay5NU?Jt7HL)7cLDd!Q72S?i24W*uDdU~Vh4kR#k>y6B!Nyf!+c!{+Bf
zO&~=<Zs8|xt+^q7QxkTNXs)f&s#SiUH=Axh|3oInv2G&!c%UFFgu8s&j4!QZ?`XPC
zp!Ie>vhA2XL4$M8!`?(Zf^nx6s$l+Tkr1fgjkh-MtUf$RP7W2eU+J%L*1BS3!s*)`
z94D=1*qcw;*0$;53-Ov;r!vhs<R>LYzm+vFe*>w&WJVk-j?krJ7;0*hk!7GR-?+H*
z4%^d}tWJ2P1%+=}a$-^6{+#VrtwQoLWkhJyVgPj_qoaNE@I<QSz+GJ4X0TZ|#M|4<
zEQi}YD8dX$eqbD)a%d)`#W+5U_~G<M_S;YwXKYM@Z_Pr|5XIL|!-Ya`xZTACW&lt!
zxD6~D7=}=FSy*`*Ev}8hwE$;gu<|g1^Wbz5UWu`#tu@))U-2blnW9fd=CPol@q48i
z`ULvcoQB3DM1&%wNHj*q%I#^s0PhnAY3RK3cE3j8^f@Gxr*5hsUEVIF1ee<vsR68c
ze;TD1La=<E?)Z>kZ;z+Kl;}P`CWRBqu#t_8dR#?R)I*~ox4Py4@VSaUeh2`c(&|rs
zj?|#hT#-Kt0oz3pGlY82-6}k&#<3qiz3FQ>RByb06bL1DcIhl=k_%ym&S~FNm>RAF
zrZZAQD4Hx<?**^(%?bt3KA|=uD7))ITPCmPht>P4(d{}SE>3cCn(U!VM)e?ui}_5c
zX35uWk1r2rN*ew=@{lNp|L3XxfU4Nh*2)e}w!{V%wS^nB)f)@(#C#1Rbj*WYU1rnI
zf^`^hmJJL>?Cn>FRK9RfvM2~BDVdG3CRWK$argP%eh{f;U0e)zw9Ij;MiFf<2zzl&
zoN>q=oR^#V?s~5sr!z7>gV9*Fg2io!Gbtnok<NLgSfgO~&wNAL_5Fo_Z%aW%r}5RE
z(Me5XVO<i_y7r<Pq=@Wj{`68&mJ@zB_bM*=eag{KwN;tfG57=$5|2Yf=B5z(Y^Ch3
zG1&DnV$;d|kRZr|j_Von=jX=0FMSA}_Vja_|N7ulxCL_BOx@&DS6rCl1rBOnC#H(1
zM`O{ulga-9meR|E%H+fqx)DBV#C^pSm2ah<iZDDvSf0x}2R3J3bf=6LFWe*-m}Q{%
z{SnQQV`+;m9uOKEjp8LOP&n}-pXaer9!8oYNdm2!@!HTv^58Xnl^Ns~W!~)FZEcYR
z=G*w(qlbZ!ul2jW^6;R$yDN9-|Byx9*-`$4=2_|P=z;y@Xy*A=a?eA#*gFh;PoI!_
zw(X1MsG!%WH1Ixr_Oz9NRC%AS@t+%qdvW7T<J_yNpp|-yjm?OGA=5B##^2bOkZ)LB
zJz2Ju`qED>6;o!c^<y{3m!y;*Z<W)BhTiUIHxHIqx>h(?^Sw!UEvH6~?yb0-9nh^3
zXPSH6hC~nv(d3Ir!W&&q&f1+D;8nOo7%$#AXj%-d)?VEFG_?Ohn8nvs(En7DyDAfS
zbYPBf>mJdf%1cjQ_?>>sbCNwQ&zqy2^P7I#=MRf|=kKlr@A8;G;-t$9k^N|m*hl00
z0!?@$89Kt`%wp(D8oP&TRSHe&x~d&-FuHpQ2-@69TS4txS%7{B)YkMz#4wqH!<*}2
zYsu{szH5b>6-9B$sFF{dOnVee6L?>f^NBU^K1sNHmsD(i?B2I`(?MhS0mv-~>WU|)
z8BVnWiMzrb_tg!zc-&sV?DOhn^L%HybkeCRJFeLSeU2BOqsX8?)mo+0WqyXQ#E;X)
z>0l`>knMP*7JLZ<lSm1+pWWgnL51DsF?SaaM3`y?q4tMIZ2NQ{93#hw2z8yq;!#Ci
z6KZw{Q$57beZ)k+#EctXwkQ^*bKMKAkLbPN01L$GSPP8`qStJ__r%R2os7}des$#e
zktIDYD#%M|>}-J+!|we22w5C9xG^)|y-?gsywKL&zSU0qw9j`>9n6I%<HzZhgvk1u
zXTYHkN58wuy>Amb>>LeiLHxs>cnQt*mXSEPH+Wpc3pdwC%dN9s=W@XF$kMENZ}VsB
z-i9@yN)e$JE5v0ZZ@sUzS{sEAxJp1XY5w0=@tm}6VLRiO;jBgZRdhntYV)Lu)c2GI
z-s$O!byu$|(5jyZ>I?{`>&nZ?NoNef2W9{w1I6=#LRGS}Quwtm=amlLJ6+usrkhmn
z(<9hIp)>Je#iA3F6gytatM&2m6;V)C9e*a(J=(x8^75sWkhi>&lC<3Cn5YN17$gzM
z0^;HwZ&rs78Fl-XtYqB(x4~ewgcHws-)vpHGo9-yTfg=WTc(__H2-R;>v_|R#SnY9
zi6!Ej|9Oa(xF%v+Zf#xjMyl(^WIG+zo1P_`@6UN67}SIW{4%kw*`7t8%d><Zx1xsk
z{Q8#D?3zLu6|K*C1Q<!WI90J~S4L&&NkbgyK_ZNi{qM(UAFO<NL@s1-eKrv?HCZ|$
z#KHp~lBMfbyV=2Abdl~^LcuOmrPZ3#($;0?@GmLWE@4JvT#bp1cHD(@<_{m<zrXne
zH#x6%urntd^^h+e<xi~yr_RM_v#|7i_X4j^z=-v_mg7u53_|=dAn4o+3|`^i+Y5bs
zOYk`>UU%3H(~!~G!ocv8wUurF{&RU=a&j{5#3UgMLru!e2e)<i%R{8@%^LZMe~(sy
zAVqa_^!b4wYp?Q+2BwJzB)dZu6^)PEk3B^Cg>a%l!#CnS%lg`RQ76moT2fkU2`Y2Q
zrLu2XK>}(B_4_fL+b&^2_cp0jqbSN9Bcl^iu~zRyhZdaXP4UJuo4OxzvQ=Aa>{M)r
z*K<yucg4bcZdtAhhNFcH+4EA%w8r5A<D2d8V4|H{vIoxT+R-Yd=Q;ES(XgAjw$b|r
zLI35G1V`_Vzx_Wmx$4d{*<G&5k-EycAE9F3B@%r`hj2dFJrKtZ&nIH|OnL8aubec9
zK86L6Xg#Kkuf7}V9Wd7MQj?jFjgwWXO{Ag`&G2*{wnX_w`LrRPRR+qdzF6B=Rp#T7
zkQ)#_7N8c_P)lkmer-ti>U-|&iPhZOyICjRp;@I}YFw=r2j7*pU9D8cdg{h(m++Tx
zS%sgs^Sk!^m=<F04lfbnUa_9l2B(F3nMDc=;$>vEX3=>fSTzNG>qDWg2OqIAOLQA=
zT3Xie?m~P(exbXSiAxO(w_ygJeCyA7dhy4`C(qT6)9|jPEPbQ6uhKG!ez=kR!5Am}
z@zjK@t#Z0o<Ogd0Z5XDe+QFTce9-kZ4Z~a6pU8lil2Y{6jFDlC4&2Z~UbJ}>v?h<8
z)5VsA>uA4#s!3G5A0B!GovquYs_EHvFd2Un7ISRUYKA7U`FBBJikPr?L6LuJn|Mp>
zBhD{zyUM={6Mz2n9m<8ZhV8;)dFloHcD<~$;f@=<Npv-*gQxvcyb}epK&vPikM00?
z;w3=WPy~gz^9V!bU6O~ffiX_AT?8|>q?cxoi%+TN>dyw#?vuHLPV5kF7FVZV&*TIR
zpiPRIAS4z+mTu3;>zD06&}qE|%|l`B#S>o;?Gkp=BNYwyOc7QuKU1~QA<pU;9G1JY
z>>v;HPZK64jEukOGi9cKEC}=exc4sqb28<g?`>{vd3pNCCAAuS<WhPvQo#}qk7Boi
zimIO>o@^#yQt)H4{+z7+M)#B7&P}y|@ZWY-=O?EqzCP2taqP}V`NVYJ_jMNLU8-$2
zelzOc^6^2SV+?P1zK>r8Q`0Gx(v}YGcamvz=H|WqKfHGQDsB527=+pX?H2`oq1(v?
z`IB!UEAteSWBqI6iP*GrE<8JLI{q67@6nh}Tn>edZ4fa&eN&~^uaM(p<V2qRznQ^!
z;PuGA?4+ZiaH^3e{?I9koz{Dkx%0o8!OT^yS@g+_Qc`BzDE}cb!w!X;Ud2HS^^6|D
zG6nq3FlzGVa=wMkh!OHTNhpN>%G^1p6I*S5pk$g94&!`uj*9Ef&d$-E%D#5HoV*;6
zGUtaIwOOntNRyQe3=Al`-8wx>#l^)nr6#}axMckAI3OnLXmz|QL|_q?7D%^6@%@Ca
zrTG<lNee7r%4OnTlAfiC6<MHrx?hK4`DM!K&C4(HWYmM(3qvd6#O8}hyPR0mmPI8K
zPc7Hu@oL`%`$R>hsy!%X55RdyLLV*}0RvnKOlu@s7@PAxlaNps^r1A6Y0lb5b1WQg
z@7G@_QL3!5I<gttI8!t%H-1sbwmbe)G%Pz=Yvp$+XdVW)e6pjKL7A0lFx0cdCo<H2
zDy&dAGH0+-=6Yj1qWZXfzh>el9w{yN?O%gGUjE=8RyBEJj~f#vV#;ogr>4p;A{Yiv
zK;;oT_KLEyn)f>D`sRH0xFc70zW{r1;B?kF{rYxz`<MRM$5L1wN(!<n#~`%=_XYG9
zVKfVkMv>k-fB&MQA~ruA*0<ksjmK7n{5>bYAtcnqa=VA@6B=5lgamO=U`$L%xX>-m
zz^J%0puif1&av>Ittgh|gmf@aadFO8aYHv)^l@?VN=$2=&v`<H(&OJ)vJpD&;d5FW
zELGWH%L!JCvisg}753og=Yb$k%4K~3o1g_3zKupUR`A@L<7)(i{RWg>?<Z@}gkpDp
zkNleHMfcztc7Rv)jss`#c3~1DV~o%+t|9Af0urr=V3bwz77=D&`eH%Bx3^iDq98Sp
z(jhW)RGCdwKp~EJ(uk0$Hh(&+o^L}crey4gar23`VAQDYI^rsa<Cc6{ceu%9b52B)
zPj_n(t7Ad_74y}>T~MxeyJ*eIB`mR?2)Dz@`_q&)_eZTL(Zi?+oUeyQCI(x#FqxU*
zb%x$I1}^fe(9n;qt$|N**m|HpkwI#J)ukd*Fx@-ZJl(f0O7HRk<bbQX3e1XN8?vsy
z2G94=(Gj>0RcXUlpC$FK3i-LmLmC=*@sc-F{z9EI#&bWL3^Ft2tU0F>-`u?$$<8iU
zGgimAWye+DBI|jCw}C-!l${M+ls7Mu+}-6H!qVbB)<`A!Ey7Q9E!mD;&g^3=IgPZs
zYpB4<2Rgmxw$44m!jk;qg(dseq0(l@j$P!xS605YoPBf6_V4rtFYVEaUISgda7Sne
zLF7F;qK_hS1%`%fMo|$F(-s_Ulq-|bvjr`?o6BhagC#bPbwa4U&lmR!E{!O*NhB>M
zv2qh!HCXW>6pf!Bd`Xm?6L=wRWyRVNv$9(sHIZv#MqCyHA9RgDBhPO?0>409qCu_X
zG&58FN_rhq0x1<Ducer;2-crR7}jr#wm&#VR7S&lyr}wp_BTJtBY3QlsIvHuj*|0l
z4BLM%(nsasX5{27{ql|y^Dcc)zpU&_w-=yhM04Y)FtRY=Yip8J)mv*PSC*+Z;puAW
z+1YJOQeZrmw)Z@Wv|e9_Ru;4Y0vSdI)uHUjwO=nd@Fzg+9~h31yR3%2!i|?Ip%{j-
zP%#sea7j#4#jlm)hfki&X%htAy%cSvv0E6%aK;W~kl7=L_=&PwsgA%I<+OHh<jisF
zPUd<um&Z>3XVOC5W*n;{Qr{W)Mt(%Tu?qH*$dV-aU%&V<Fj|a`uA!P&_+(eTzMuS*
zCtl-~dg>FBtkE4;Z?oy@^cHYlr9_GsUJnfY9K~$$DWxXC%t_j(K7v(;i<Cd)r^v@E
zA(D!+(j8PZ8FNf1epmkkJXO_<5Whm6xr|nULnkI72DU8`hRCDq>eRc+YO=CDMJIE2
zG-t8QwcmgvRMf{O-_l$JSsuZZ4L1_}XMs-u8qILdiCp`64}*8IaLz^gPAK+WSgoj1
zYdq#Ul-KBe*3HEw+Sc~40M6DPB+3rdDMS}u^S2ks84@P~kNu-XYz1)QA7<sf?p`b_
zBdD}>-E1XasXgGgqv#$#amtH#Ju{mXOm`=E%_>927Pxv-R8(xN@)n!LDvnWpcfypb
z_t*M8U;>b$5<NIyASFm{RonN2F*VBLdg#XP^u{6d)FQB|b!8}$R?_Hp+LwH3H3`3w
zfuJ}~r0}k2*1;}XPS)_%eyK~jWO41^pwOZRx5FFfzUyeKI$3GtbAR%EpQ*c)5hzJ#
zcjzQR02ll7Ti7zjhIXPeLk<BXe9EI{jU!}!cTwLk<4Y=-2SvFjTFCO|JyK9oeiK*h
zb~j@!A}0BBGD3A!XX;kBNFQzmrGWsof{Q(c{En)CwS=U3L0sm|adNPb`oZzxBZjA;
z1B{q<6SiSJyxk1n?zyN4vpnWGGuP95D=I3>Ex^z3zH<%3KfL}}UbecxRa3&)SeK{Y
zw(eVt-bn=gxq4-o#w#Qxwi({@)3l@vcI^fPJh66gku?4wE&!4fwxJIvq?aB13-3hp
z!qU+p?~cb-54xiId!P4w$~EM>pGvvb$HL%y$(k4shQ4Xb%bl#w%EC<>ZkkKlpJHWU
z;#!^EW~2UuPex6`>DcXd9a%&K%;4Z8@k2%Rk7u`B?ZBNW=!6~J(8MO^WGt0fWdPd<
z{ub;!buSA&`FPp1x3jY|ugabu2a%lD*xe-z#0N?u_NuG$Or8&Tdyu_$Tn4eQl8Nw*
zK)`H>Hy>g)RM(&R0BTyCx;nW(zFX~~+{;?GKRQT4si211^B6%C5g+WcduRtR`%>s@
zKuW5=TIp(3u%=dUD|3*&`+X6dN?KBH#48Y<C(eC4G^YKaB&V*ftVBUaM#E=VUK{Eb
z<P$SK>p6_o?+5E9{y!Onm75<BEGvO|JIF=q?c2AB{8XyX9!N)~B3G>=+>ATl;5~Ss
z`jCz;9jxOI-!Nm&>G;+fq%+stxPU{4R_vcpQgUdHGGUUXz~pdq5Z!L`Avv#WeYR4t
zc&dNc;O3h~P&G*fM~0tJP;S{(fmL2VBg@ff^w(1x>ie|tL640d11o)qjBEy@&xb_=
zeS4!xR8GJu3_9CF8DwNy_5C!1W&8VQs21DE#1NVtOvZHH=m`4XdzYnJ?xLou>a;>0
z&n6kg1fc1z4<>lt(QkvW>DsFpBA8^XUO6~dy+18SM6JYN)DqaSx~j|qC+|ZV63rlA
z6nqr<{Kh!CT2Cq&Z<v8s`nSH$1~1FK2E!(+)%;RhJ-dUuba`Fk7Uw3H`jK?$gX9cN
zo@X02TCd(pV#yCMwGWrqRbuk5Xx32liHqnz{+jOIWY0t9U}v!9?Om1Y#ba{ENAQOk
zo9kqG{oD^J90QTCdCyS;mgpDR-~~!k_AA4{G^eAKxzkAbHk9ahb@n5w4Xyq%Y2wn{
zbrJq?Jq*i?`SYn&BEoCoC?ZB!M4p=eAfr$RUm~NFOpI#P^pEGk9P2CYdRJGtt&`oQ
z9o!9WYt!F%(Lb*Kd?dp0yk@9_=|{XZy}BR}EuviL?$=s^m-dpPzLPTGe1gx)am^`K
z2_36(uqzLK>6iTc{NxuhGBP53ZlCWYD=IIXuFiffJUohsu06`kuENipmc;6aBM1rH
zg!=5vcD*BpMWQx?O34s(pQXr1jAnn#j)t3;?B?t}jEt%eALe=zes-HmNh&B5>t`}w
zK_?STO3~IrdfNxJotbqoRtwb=VR4a2JySY1X*oHo@x@*^+Z$H!P=Oj<y^=$}dH70^
z9T)d;NMuw{y$jFA!*P$d+o0+t*y5dpBqV0X>=yn|jzE215jE<TBt*Pc?##I)uBfc8
zt}65Bl~*d!rF1L3AN2OAf<*j{kGr)5qt5He8m~6%&uOWr&eg8RpZD$3S3dKpACUdg
zLPwS1%p-gDj2Z2@#2OJ@tVV_D5YUy^<GdV?H7q%I8biL73G87Q-$Z-w4EJFwmY3OZ
zKm2OYOrTfZFR|}Z;43^^Z&)HAcRGoGUq@`{zuHYjrL;e3WPO8dn7p<MHTSKiR-YXj
z@$=oCxfJb^v%@iO@9ML%C6sWF1urWFkzViqDaM{2PiI(Hpol+wT+c@*{49)?xM0-$
zeP&g|LbLyRwb{JQxBk=cZrAy35ZR4mw~a;?=n-JM;LBI=j3<#!7;!KTkich@q#!4A
z*`WSG_?5}4^QnGsdVxLLd(4rs@Y`g(T17=AD>pN<m+6Y^L-LIuf{*iFRUHUPNzHUZ
z6~-rL5?FJVT%c(>Rm&@_Xbb+k<osgy#KbKhpHm@!q~-|))5#bpxTE8x)&_W-xvOzy
z)6OjC+D5y1&(EgokNNoA1H+yk6kbKoO*?*TtoD$O3Ppn#3MDo=l?errm*z|3<p6ak
zoi|}moosq+<fzD(l~MCAV$w&7gH%29;Ummy8qVo^+M(m(MY>gpNAKRo%D%eB-SU0D
zFrFyX^xAR613XTNNdCF#Bl(OcR494#<5NW=4se+FI6z5{bl&cDc?#1$?dv=1UDE{O
z)y=&3m^N0drFFDitLbOKZGyaj5oVz3Evwyt{Ib^`xG&|yz!2BYGkjW88J4&Ol^<B4
zRP9cl2`TNS1q{-}Gx_Z}Cw%;v(b6i$7-7*}X#()D2AzXz?Di_`0jb9Bsv~aPK@G@0
zv;v_>%eyDp4oyHC%?mq3`tE33rZ<mrZIkw0HPxRRh_=%frH>i`hdi&@V<cY*N|XpG
zXCzw`WnjqXbH`7i%ro0evWD&ff&BX#k1NBp(m~NoiMOKh(*dX7wZULI_;oT~KUx8H
zJt(c&;V92w-6ipm8qS_?7a1NI*3;LMlT$c~;Zo`=dY76HL}%9783-<YdPTql&>X!9
z(r-_W=#bot2@VT(=k_Z7KB?X<<h=FZLCc9AWQjEJRS&{|(NH1R=&pmu+Nl>x2KOjp
zEwU`R<jJ8o5syZ#%RB!rFDk_nmu(4K>PI@vM#EB5&ilJzG+6WVwnRMRJG(<tqfumN
z04FqRJ%vU93?eP03ZPO$eT=Z8xo2V4&AGpRYPD-HgUQwU$tVyB4ISJ6AR;p2Ra7()
zr?t=h2A*gxE>Ph2#}d4ZO9+u}A-l!j?d@$i=k>h2x4FG9UmhF$K6cS?b#3oo31^PK
z{e$rfWfbGUz>%%DZZt;7T`iffw{5Oq9eIF-?`{TNswg%FW-%U@R{U7A*>y9vlar~o
zAJ452gBLNuz?KumGrJXDIen6h&_hP56Hv%oZI8%~02v?dnHYE794~a1Ved8+H+~^Q
z6}t|+sWWu{>YoJ*SpuE@@?oKzRSwsUv?i|b2X~ppFFU;%EBzG+Ah&!Joo}Q<AY!!N
z@7MKKI_ZdTBC|YG!JD)Jrkdua?Y}@t4ie7em5o~Xp1$j_8tmx_jEg)3f$zN1CANDZ
zps=LGgvZs4CR*Ysyq?^G;mR*&FM$^?zJJSpRfW^#^m~+f#=NQF^ZomfC9{3&ma^yM
z>yUM;=9lIVI?bl*$SfDmOcx}%)h42CH%iJ>XXW*ZK4oKTmS4>(WZ+~~lvRuEEnmO{
zc&)cDYVFrfwRiLI%OsPjTJ!+HAH)O47oK*M?fP)zdJbnAhr%zVMqx>_fOTyt*J*6z
zl^7*ZMg`U==M%6w?0^-zGg&0?J%8p=4n~#NYY)fCa_bdvg=Xd=pE&Yedq#sr|8B=$
zBKqMQ9vxKt%AU@(>;NfW>0Zu_lpI81TShTUOBysZnQNCi`@r#1W;*oFF2Q$(9O&C>
ze7hGAo0>CQsYY@3{LcGa7T|LJp(_V?pE7Vn4LLcSLF1JbMi(9unv<KsZoWPa=aNRb
zOErX3Or31FLRxXY2Z*X0bgEAxZhvZN@9sA7312cW6f223Uy;Ye!qzCW(C#ZUpIu#5
zjfo`!i#HEaj(%nq9^L~UfX4uuq%>G&4UdZy(dLkoRf&!ZCHvqnA}suLaR-u*Dvlgv
z_ye=Xkx{8BP4FvFrvm|~3=IoaLL(3r<&f^4B}++WVqyx+j);gT`Ybmqzq~Ar%wOFD
z6Yu&hCwGabB=?pnR>mh<4SP8p9;M%#RNmMdEV4r>#w{e?M|G4rT$nb#X<FhR;9P2*
zy8Go$rt-PM+slD+I9T~Q@b$w#M-#-2;%M2i-Y;w;{Pscu&m@U5AS87E*2OvTgaUVY
z<@qCG_VV2-&H2<+AX>$XO0nZ!XvoRQNh#WHj~2uH1e+ESaxY0AC6<(cM+4YT!O$9U
z$a9|Uk)EL;<*Lf8sEBJmKAv)&oBNe28H0pfTvCM3W3_mAenwJ2SyuF^$O<rDI0#5d
zo<m*>4dvq!z?|vSt8bD2u5><bpQt?Na>SAppdD}n=4xYa;~dhV5Ce!B3ns~>-U|sR
zMMM@a79cB{+iz6gBsATS;;la<x`{}{?Q&APG6W_w?}(xp&ivw?j*jcKXGgn})i8po
zlb>G7MMQ|e!EJ48k#_u7{{89ukt?Se3M_5~FRiO|s^yPzy$gDQb>EpOai>pC*X^}g
z9~U9h@QR4QiIqh6`!H?BwyAuZk<swCkEpQltB7b$smPyCZB_?9V!+&~!@??t!KLbg
zWE`sblD@cFdtS(n4{sK3e`<Y!oB(HATRV}LCn+hpw}9X+)85~|8{eb4Ro=RVY_3uw
z{yfKg^XYiz<h!fVGOtv*I>uvKUki(faKj$$qt!^C;NXmcf=@*|NMh~5g@tfI5P6-W
zf<m=9oyv~;Qna`r+vGC7fD$KHMnmJAjY&=d5}#Xyg=G7sHFzm$*C!jj&8~w^?yIW$
zJ%A9cd-&%w2rhuhe`0X(J4AGV*4}hCSuS+Nu=r)iT$wJJSwNzq3cj)VPN1m?hMMVF
znGKd?X(<!V2Y38w{-F?G;(Igg-=<S5NZ1Cu@6u$ch1rFdYc*P9=;m%21J=sX+8D;_
znwR(N<*<{gdi(1--iZ$}<!F;SL!Oj~f=w?QqOmq6<+)%zt22soW3PwGp2AWkc<3V7
z21NNDR5tBkCDQ1OE>~Sr@FE!*s2t9aBcm3_1dkd_6Mu@l!toP4?)hPzT+A%*CQbD6
z<x9R4b-d`tmxjvXNs6s)G=o2u!(4w!cZ+tmT-Z&za#YOg2>y(ub0!a!_R(CL?qD{W
zU?Eux43TsOi_hch>fVg)nz0BtKP`Q&ldIUUu<dL*iRyB6zpt^QLz(*8JAfpPaTb@<
z*qtAEXkVy&@UIOt818m3{bzVF9w7D1M9TxGn)6sr7^V^@q-Ivwb;V%$UisH!2=ke+
zYK1CsIk^Ft_x4Jl^yzBpZj99OvJkt;Ro{<pWOteGC>IL{-B>$01@LBh`TDCGNY%2m
z$A@Tz1;o+Kaon3KQu1FWm-9<Yr^!5+<VT+auylj<c}eKXQ25tZa=YzFyeL(e8GSDQ
z%$*a4epfJ_f9%(5$D)4tbpXOb*N*4HlbQptu`q*1S(uraJUzW#cTe~CJ=_nRTr~4n
zPxld-b4otmanP-^UG3T21SBTp`Sa(dQ(ax{W7Vca?>ihA?>+PwLMg$+raeGJ*s*Kr
z7#PM`_Z+`x)O?#jCNMm0c@)u<F@W3gf@JnX{6CaZekAJ=yjK(+t*@PmoDSh8n4ABG
z5(PrO#%$J(2HRI$q@`cNI}spc0~2%5aX6i48oop9`dk2Si<2&BKq|b4TEl_FT0~%D
z)(lHZTG(6L+`rnlN#hIy-xpReE#k=#;7*BYf?%)eFDrM9pfF4}xX>F(jlZO^cGh3b
z<d`DK*#Gb`z?(I?dA^gBOUw98L3jUlaGt4#Q&=hb-?2UMCeWJCVg#dM#-SL^y0Wy)
zUjk4o4aw~AQh)r$_~A@ie1k3H@SyQT1srgulhrCOm5`4i5(g;RDWi!@a1&VFhR0@t
zikYO*x-$w~%E^trekj-#RYm5eSoiO}y@Wan=cotCG^SwG4+2Fpg7uYu{Q!V=dcx#y
zNTtMRs>~d~?Vmr_a+R{uzdUUoIjqZ7y9iq9UjkfgF*YnTBq=dFJNe7AxtCI#|Diyc
z5=A!x@-omnpv4d=_fqPEn0O3_E$tHGQ0r1@OKetFMo^6(>5DR}$to~l0gIy*?{e+$
z50F6X81kFpAtfaMK>25l=mB>2YlmCy^6lYLxV$c(a%hZz=wZoIa|F$jh?`qiGM<)#
zLWIEMj>8Zr<%Dbw1EURzjQ!*ZCNf=b>rvilY76ia6Kta+v046pOK!XVc=J8+>GW$~
zmjh`y!{7>CIMpgJ;F-5~u#aW4`1ZXom~xr*@6i2@13{t_PrT?O&x+*4M0e3@78dWM
z)J#!r2fys`w`w`LbQ*YAxaB>a#s$9ZP-8eeJ#cSR$_CdH`&g@fSP}^Zc!>U<4LLN_
z!pP<$-KHVl&1qSRD5;DqXe|>Jl@+(vYb7?tiX5kSteKgGvF~FA+p4YTZkYc084~uY
z=5;4bwr<wG{oqr~xwo<gQ>bu4#Ise$L(S$$+N5Sak;@E?e1pu^+YN%ZSxy~(AB%sq
zspZRGVMC<Vh+r8XY<n#&EYmPJTMHo|okawv09neVhAPu83{0rFypd|l%uJ3HXB$f_
zxJ_wcAy*s-fnLV0_O4I$kB~G&u7{r=(jDBD?;VHaMnN33RE8WaY;3~4YW&Esh8c_E
zP&q6=+laSsB*FvVWwwoudYqp!HV$_2yWSbW-OXklzu1%MSzo#Xn4W*}*RdiSnw#xM
zo|gy(+)Pl+G7=~G{tz1MROH@mrPn8Qz|sVipI6cArjLDFTVRqu<5GKkIgN6_{{y^k
zkNFwG@K&zZlH`*F042r4VG<G4e1@o`#S7{KUjvg7z~~Nm#7`r}%qEf7mW1>^nI<V<
zR-P$sT)4I|`XG885R^9&p^$53T}vq5YN+|xr^wxjFhDmwL!vO)>O0562u<#d=mf#a
z_$c>#Z+TA+n}3b33TTp>m@6e`WLKSU@j7<JXU>>?Q3#d{zk|)|axAEAOfy2XOZ~?J
zh_cjoZK@CaC|)G=j`$(1@IKu4k2sjD!Ug}5cGS*%*E@Lmz;6WD;+HLn+m4Rtg$3mo
zrpxF$9vB5l%BD)&-wjG1eq~4W;5NSS+;KdM3c9+99ygqI!xBWjNJf8L@75vBAI-ty
z{W-B8HbK9Mx+Mxj2pX2JSC5zqY@TDmJgr@da1@P@K{{4B4QVmUu!s%W=)yE$4H#LM
zlp-xwL7VHVa)*`iCKz3q{yWH8ytoAntp~<zHX<%nTT9?Q7^-=leZd-Xmk?11TkYXD
zaG5+4Tj;PtJgG5hxA4}735a93Ytf*-!fVx?CCAd~lb=kZa#?qOvquK$w+_&!3thm=
z12j)x4URp<Ma83{0vD2<{zJ!+ZV0pFw{z~8#HS`9zyzK|*>3SkWDwfDgqfL!yF}ok
z60_U}=q`xAPtycEuC>lYB_j?GpO7NB2)+<nm|qCF_wKS!TMrD3EkEyLcV_nMw8Rn>
zt#Y$Ihh3Pkc#vF4+4hd?$}3d`1!0Q@uH)a}Q%`?%_bv&|8fFLqhUHhH=4KfI33weE
zf-#K!B!KFIv3&i)wyB_JVYxMtxH;B~@o70AY`#ZCP5C%QsmY*{0lwF1g*g5R3C0LP
z&eG@?q;I-PV2v2uS)<1ikEnKv*IV5u3zhu+0hnot`Usvu4dW4hc_s-}>!nd<;h1u}
zUZ)P6dNG^fvFO#!J+-}UjPaY}+fYxabfkeaDg{l<AlYRT!$+u<5Iv?u6pxjVXgevU
zf*!c817;)T2XtqOSeIw0T8NtJ!CGW3e(mAg!shva0Q?Va!V<0Rv0ukXNGYxwu<u$s
z7(AGwR!VrBC%orM07;tQti4KUaKs<mu8thvT}wpJ`Z*A1gc3pL--u2rOy;hyVb7C#
zE1b#;Gc%i!3m#WoSB`O`C7yZOk(pmb&B91fD1-XmtETsB(Pv;!3a>Bou}$&v=b<bd
z3pw9kx<2f1nedQsc75U4l>|6Qo0x;@stSjy@+PzAv)^K}kLkPNNkaq`;?=b1eC+}=
zQ_r_=EePki7->k|`{+VJ6o(_$F%=GRsIrB#CaNj0A>-^oJHKQdD_kJi6*qDNv=Ji<
zWd@Q6xns@82IVn%Qbcqauh%S(U-3mPZwdrvHf$B1t{Y-%KR{G$h~22Q0`dE(QGX-I
z`L^oWg1S}m5TYT_=noD~+D0FUaCp#8n#htb%++a17Urv;PvU1Tvdb{nj|Ugkeck!o
z9dKS^K3}EZ7~PrdHp%nP0$wQE5@_LAaH)2|y?3F)Xx1|b8IGYbE}WJBMtPEvo}oXQ
z@)Gen`HI~xIGwN@?K#%QSqz85C8tbaU%UZL>4Y1_jqJXLEelPWSgeKY|C1oh?=0{$
zqAks@5|`i$g3)*6gZ~(PD}nk-`O16*mjp37IQyB6NN-nvbDHbvA(%KeEq`?L3Th{p
zjF4w!XWok9R}qP9LkZFr6=5Vrd8NHt@qIx)Tu~-0$hS+lu||UX!bE#ng?ipuPW<mE
zKx|({n>t9cGcfBp#z<SUu^yv$jSNcNi#)zs*%e1R@lBbEnl5k7qUf`V4Jy~az&^I_
z{|4-f?#{;wj|I5NIGryCQgaP5tIxQz9_4NR__;r0;oHpqD-6pOjPY>n4G_jY55E(B
zC+#Kf-MbWzpGzuNlm$0sEXW9?d&7p{e|~m;wa+op5KoBqgHezEgNz))7F{HPhLDo>
zgrg-FRym=1b$##XAY>y1&utP-@YvvT(>~#uH?cw}*03bQq&^VAaJ;L-(Ax{Phg^6<
z;B!-tJI(c9lXi}Gv)rl2Kkh!%)PEcT#-~W;HkThexIFPrHIU9wy(C@M=G{Me+-sae
z9b$hnxVyDXc`@#VY_uP>NDCq#`tK*FptQFStHx~AdjE-fIHCYH8i=UbUzc}dk@;^B
zZ%5Yao+a>nN#PriJ-%;<k=Cm->aP$Kf+8V)C(f$&dSS54S3&=R0oMEeBcL5_L(;<w
zJsB>FyRZ9}z-eKhLRK6THc?i#Yn>t=Dq2|BW?>Q7Nk=8p()vJOi{Aj*+1k%blN`hk
z>BGk!OvR6tUg_S))WX7)7U%}_t_6m4SeP>Q#G$KE29h~p!M9|8HW?XKy}yYcFf#j(
zQSQ&%kod36Syv1#GO`q$j!_QD>*tv7WlA2CQ;<>c<>`FQII#@2dY|i~eAhQrLtPY;
zTk)k@h^%UMTIN;OD<g}athAMs2;`Y%#;!sqCeLnfqBa|K13v%YfCJ<GlGlx#4brsa
zvc%Ny5I^0Pq<;P1pWR0gkZS&bhLoa4ApA)U(l3okk<7x9RBMgQ#I3EqHc@*DePreK
z!vi-a*<ev_MBR7W(zwL-+GLQFtIcjtN%zgAMVhd7MqgCMH_JQaF;;#Xd;$8Kn!v0W
z@BmRWs_2ygMw<$qP@SQkaA$W&GNTr$#;0-8X+9%A3E6E+#wc5Ek8K1llp$$37NT@1
z(P{N*t_wIj`Z-#)^Tp0NYhNgc_*hunFJd2TIKNsas{e%8!p%P)h0H}_no0ir9M#&I
zm>+D40=jjlD7QU@l0=WuE=z!FW)CLo4#dR?e^jxK)<lT907f6GoLitdr*01Xf<RC;
z6zB1W_lw|MI;*nuXwQm&I#Adt&n!QO32=^unD4~|#nlcehMcrOsU!D;{F!1Mno{a7
zJq$*fhMYX|cIj*XHUyF)BYQ}}x^O^Ko8WM>L?Y`A>~z$|#vWxM`h=`Id_KiHcD6&S
z6)Gzr;U4nSRLBdxpS4GE=pFUA2y?VVoEWsEtva9Yha5I{8fwcAtm@=n=Q?OC(_6Sp
zQhYxng>hzNyS)v<hL(OBBi!m8BOQGd>~qHfws&I6Ef*KC<1@?4Q}!Eb&0(z=6stPS
zht`$uK*^nvlu-@{zRvb}Bww|xf#CP|#$&1MY}uB!X+Dz`aCxBsB|KT@g!yk~y5;n~
z-hPcU_~wso*Pw~?-ln#)1X!58y*FqyiRjYAz_GN;yJF+bdVu*{PCQ1`I_;85qsz-B
zG&P|g?_r}SUvUvn4oxuElR5FfkxTOFrtI;@4}Zf{R=!bOl;<VcnQbdmUm=ua*~bT%
z!N_G);m-DIg59DIP0B1TTZJEGzv<IG-o<XApcwsSsnrpfurd`*^5k%D14E>I1X!>n
ziH@6@hJq<+lOJy_3=B2$_%|9uX#)EnN>6@Mt)A4PE9g@(*DMNTZ^1OE4?^FSP)q6Y
zPpC;CtFeqp)?%N5^|=Jia6Rj4YlvqV!FG5bnfi-7u#HSCet^l-!oUwDbcPaUhBtk<
zn^kXGKSue8a)xJ<{w~xkJ&_zQN0zFvVAy4+d_uf8R(l?-^HgWpUm--%bIdU+Sj*Jl
z>~Orv{mc+pwH_Wzp#bmeBFM`W!xua0*QQnWfdo0Y*=544N>r^4O=sKg$_+K|*Wf)%
zUiJj315lkOPpDUYtFLMPoFz$2;$|^@&q}BT%@U9y>RY>OP8*qLsDBHa*U2fTNn_1>
zsn5aCyRXI(9vD&#`L|7)1nLz$sfnLHEfk{L)NbUaq&qQ_>J5!xU=#B8yi_<{O0sSz
zmoQ{}b@TJwuN`J4*)5A3{cieHS%gP=r%*arnSZP$8h6_s_d&%o(K|UF?T*P73KqB$
zanFhj7kBs}pTA6~BHKZ4#f?1-cZ^w^cwXF1YNt`NvBoTxz}L8y{@V}dM_TGr8|oRZ
z=ti>*EDyh@0~)jQ2{o71E)4!o@a~C`i}O_MG2WxTPHAxq6&d+Jq_ECp^G;bjpE8G;
zx0$fINGq6FOS&~ExrQ+aebf|n6HKA4?yf)6MyjS=)fmKuS;jOK>rw$fW<sg|&Vvh7
z#@S2QW??YLm^R3Mc&rj;s)&^cHs#)OzMSL}co0?rp0OofU$;xWHrDgBy#jqnw8Xid
zVdhNRw5>^KKVWKaU%7nrl~6e4^6|xxF`hS8R=LWyN$6G|gB-;&@#Sp<D^QhGOvKtR
z&-%i+xj!i!hoHt&PSwC$1uRIHjm`SV@2?QpE4$D|b~??$ev0)+0+3UbC9%D|!41xZ
zu>Zn#Lcr26Ea%he6ntN5ZVLHOJEb==19A=D=4Z2B<T|BS)`hR(iiOqLS|9ZBfQquf
zyR0-vt?)`K*)LQck@)Gbo2O#SXL;_ic%<Ao{0E{Xmw75`L)mVunDP_IaLK@ECW+7f
zR#RUDa~JQgzpHfVNtSpCjtk?X?EI=vl*_a5CU^|%TA5cgK0Vp_L3L3$45$GB0{p*3
zO~G@U@4;kwJJtl%&h8Jzb{f5*BgrdDd|L{kAXMSBUN7W~s446-z&E*xBve(EuSoLO
zHVN6aiHt)2Z-hSx>88pGIIDuGC02K4d#yQ(>d8xi%U)=Qg*uv7LqMr~TVv>D_oKUE
z(CmKRncO;jF2Z+pk{_A{xf%kqg?}1ike-qm)%5MzxqST<W~*{eG5-E%JkKR^Ty5=a
znty3~MpZSOE9AyK-62@=OL;_o-Y*o-HufoTD?RP9p1AQi1P)6IeEQ$j_Kc9M(zfI9
z|Imr5XV(#6;$<af8?l)^4Bc=A7>D6x5I$8i^3s>A(117C13xh5I3Jn>zI{5Xa_|1%
z4;$wJOU(teMDMbrC*wZJ^VkDKnK`06&jg#)_qI{|K0Jl2k762#1qW9Pv@$x6AIrTA
zaECFD?Z$;pB9$Siqvi1evIoq*A+F=DpA2WnCg0fuGh{*6MD^5d8l$hf&!mNsPCk9`
z@9OL(C;OL{_3naQDlLPKTF2kJ6Iv`hsw{{enNeJiV{Y#?2eXtCBRv)QLKclmy3ga}
zJggDu*OV95X>o#vNIa+bVPsfp;-!+f991{=5#gOO_1h~;1ko&f*Cy@ER{2>=ffl0S
z7ucu@FClz5(fQX6hkW_zfU@Vq)}a&S$2-dx@Hge|=rF#2R3>HU5_6%2uXV9pI;w*=
z*l~@9ON`+a#zDJSKr3DQ1L9F@>ho|C-~N=lMZ80q@A@~2?@t*{_wOYwQUdnB)mY#z
zL1BZx49yl)6Bl)FdO*WP)S__%oFM<IgORFxs(%+QM@1EGSrmpU$_;GW$=&#uE&2|B
zbzd}5fKvCYzzcyJTy}xMab0s38GQ@)G4BiBCgRaQvBM-I%Y@*u+s&Fb*)dI{z`a15
z3r95|eaWIP>B6Fd3f_#BlzsaK7YEEsa!V@Me*`kWHYQv{-BQ;f+8g%vlv4@twt&Dx
zw&Zd!dFg!NKyKEo`7a2P7s+nj=sp35RCT;$ym<);e9vFn@1@f-8m&Qkfk8mY{|_P;
zrJko4A3DUpQ9YKx#>6B$P9ofSJgcor%Q{`}0sd>bp#f=uwRb}<)9<cQVbcx%7)*tL
zJHTuQ>FcpgPX;H*>!Qt|_|T<Q_p}OVZns&VaNMlifCDEzv5Pn$Fg9GM;W??rz|^G6
zpA$=({7uzr&dl~<z)ww^SkBfzFb&qXc8GX*u1I&pi$>qmgKuh*@rc}&obp6pG&sY5
zvQ$j*Nn1<sgtEtTm+ji4Mj!e2QOcz1^G1vYMH#sAr}!~F!cZnNDSo4zGH)QSe(D<B
zWQNyR-_0O%EzV1fk<6CP(!)}QlN&oO%IVww)_yy$OmHZ-*<pP2-8Uw(_{^c7GnN-_
z8lt}=NEf%{LoS#)I}K;@pl`G(imG~KFYYM2-Mv5?_LfQT=7yk9UF3e%`OKXO#bYGz
zibg!VfJmT8=4_{8tF1mFw8IG54-F0Sm9woak7ri$AVN8^GHb<?UK5_XFIX;8eGCjX
zXPb=~u4noah-kz+UBZ`SW`*h0D^AW#q}_DLe3?7i^)NC*P<f?ADnCT}$K?A!o#7&c
zGChwtV7kDbaY;=3AJv_Xi*w}aKdSe{FY~wKxt8Q9i&lNHK9IDOwlT5g`hcO?WR)(9
z*E*K12||Q6wgPID3LCz+yy8=SKbnWBAhA0~j=pvi9XCCf5A)*((A9<`BZ~j4bU3L(
z{2KGY6QYSh7ABB)I1m@o_6)D><Hq3Va<{yC`M!eeU$R<G^=qa7T~qr-Kg7{_3w)SZ
z54j_$cM&tFo*cgCnrCK$Tsd@y>%ST7)PP0Zf!V#Uk1sJ5In_$V>-vO^+Nr&zG;mN9
z6%@(IzXXVh7YuBNi2~rm+8d**$tU1Z6&KG=NSGO{b~JnFa!Y72_S?J}1gJ8@m-g&7
z5CTFeI$CA9N{nNz6zoj*FXk^rNIvx%v+(W$;&u@!E#NFIE&KtJPQq^PwjvWQLtMJY
zmoJ}p01o5$Z`8P+44Jz@**_EUW{ANjp&%Yb`yuJ0kB>hKy=5$0vB#T_FPAd(FG!{w
z{kLkUhTpWcy-3MBz7m<z_q>B{n!c}3oqmL#p7q$=i5l{mvNI{E*?R|viwsG~4xP?A
zKS;Bbu6s~)xqrZmX&ccQz>(cn36lCM_MnjhN*X9GZjv|6F=@Z-c9^ikty%_WSqztJ
zT>G5Q$B*n%u}8JBoDd?b&0_u72yOBXL?MGG<-}lH2aTEe2~37CzKsG0bnpD#yVa^H
zaFoj05A-{kP8Kn-#?Mbbn^SS)ori=hg4NBiCbGwpv7F&M9xCN7&bnuoUY#@d?_*`c
z=)?8B@CUP{DtmyRAr`om=M>@Z7d-X<4Sd6UH!ey}^(B2%o3esTFr~pGN=nK>7cHNm
zo;x^r%+CZQG}0|csNl@lPa=uDcaKEHt1cVu(~mjKc+zj?D=Qg~?go9X!hhg5IM*I3
zFV8Lcfw`BU=O?NaGP3s@1<0i;h#WYVP=0`;@Rc1f9#UV2o|W(I?(sa;W^<y>&eh4u
zznY1ho|=9~<v0~cFS`!Ox*D!$hcMd}1}XM9hC^OfMJyAp)s;RPZ5Wb~FJKEzps5Fe
z9UnfzduO~JsBy7ttK*ZmO(P-ocnJ|v1qv&;cDaUwbrLc^V$DXnyZhT$z6Ft-=6nBB
zP^JD))Q&_1kI|Qzi*qW}H0F!QyY2<@g?Z2@aCwOsT61UR1_z(9x0ZOztHlO}q~zri
zQ&9+DGAlOD)Cp>jHssFEf5xI}Z_8*YJ}G%bPLq<87_1zq(wX}9KFFhvy+Ms=H;dVM
zirl(&f5@RA4k=URWIoBt9FTu$SncjsQh2NAnJU&UyM&OE^}8qsD?x{5@)xG{hE44N
zRnn<fDrjiXk<e5-H2LhMdga0fOkv6QG>n|llm^!{TF1j_zT(ke>yvhz?TQUQQ+Vik
z<TE)ai)=0a)UKqu_7^wGS@o-OD+<!Yx6#(0HtK-5hdC*Ux;jol(;w(qy7Yfg8}BHi
z=I_>tNOG5!1*cqC_DHZpgDRF6h+=I_qKj9=(o9QF0jE=v$1K*M`kz(Df6pxg`AGc8
zw{-xiqRcb+6LnTaMNwh!=g)HaKMNUQ21Taiwi=umn-(B-ezeVA$vsUz&dVhb{RYhr
zOYhd2g75V!N~xcjo)^B8|DJ1zx+y{*;gD(2dRPv-X_SQST9@WFx7%?|x}KeR2?$(N
z(P>hDqJn!xbtJp?5z!lLjv8)&7RwP^^Q}ohN)fw{b$wF8G4%XM5NTH#rmtsLuWn*i
zhwsSo)BQL`?1o78^e0r1<tKe;Q>P*cUU=%(W$<s>BZh^AV~2lU)GJo~m45ygUDy}t
zYWMHzFe7}Un>}&xBQEfbC~bcHLs(LOPWJ}QDae&@a`)soPXw#cwz9&x+OFI$;kRpj
zKndY_@dtUywE@*P_VzU4Nh#wNZ~8UiSJBnYwY72EhMdx8e9H4_RM@VS<~ecANqdV3
zz|hF*y=T7jSME%Zn2Y|ulRG0*v*2-+ACwC(C8B*{Dl{~!4JACWR6Kt}$2YA%9!eA~
zEiJ6BxXv&AhK7dDrV~G{*PT1&EG{;GMS3?wBhCwZS35OaPp5WQ%x=o4sL5K+|7_aS
z?H1lkc`Y>@pS_9<A6^!tDVO6j=U`)WFbqS2aGeJtDT?j7<??{ylxw$xrP%qS0ihdS
zo=DxXT8#RAaQs6uT3`(n-D{qcwExy<V5mP9&S#J5*)+5Bn+|<Mhg)SMUEI@&)<=WY
zvr4fUaC@A1DVW*}8rj|GTYC@{X%ofZ)yBG;CG%2&WwqTGrz-Vg{H63~{56gC4D-z&
z8`9zrvW0mlW1sJ$DvKjLro46--t8Z+rWzp=xW6*m38qH)Ec>yR9@s3k1rX>yUYJuw
zLr%0Y$W2Z(f2$BR?E5t2qyPH*NXu%TS6_jNf+ShCfWI^jLJTP-iQi}*h8-H(DhF+-
ze%sBa=2z$p5I%BofGQ=eDoVu9Y_~3~#ORJi-}cIKVq2?*&wLw0WV5LnU7m}VG<Ioj
zO>T`6PBOjv_gv$GXXFmY;Fg6MF1m*YyDF`Rq-_*ed5C3Lar1Cb&v;RRt|q^Qg`_$m
z#p*K&<Fx=G|C5y!!#6r528UarVquF*ivTE`54Ka)=HIcIwkW?Kq3DhStga4Y?0F{%
zm(&otjLd}pBtt1{;Mt_PwjSBWs#Y5Eo5yp~7))L_EXnJ!9FF&1aaKCV#RbOAEeij+
zN&j?Yj|(bR7qB1P<r{4Fqy+5UOM{`%Y98X?g!kXyjrtD<Wi&BkA>Sh=E>*UlnmTX6
zQsA;WKp}&4Y_zrc4pzt$C=ctbxP1w{1Cdt*v0&R3y>j`9t9TYh0i=P1Hiv}!<Eug$
zRIs><T`}K)^bTaXYl6G&B|Gd5`y}H;@gKY7npcx?KG|!2f1bFzb12TCCc#IaSCkyK
z{fJ4>Y-I)V7DKhPL+5@yjMh*H4h&)LYw;Yo2Pt4E&60A4JOpD8C2~Zt24NLrq`-w(
zylG`2BNHj$_uB`Ha)kLuj4}-wX6iTJ1a=rDSA`3ZO54Jky-)H=k;C`N8F1J(L(jU|
zc_{Ruw#;{S-FyfMwfz4HP?OU?zU139zFN#}3HSnra6uNFdK0-+Yx@?br1)6i&AMrX
z27zW!?U*JW@obJ0ah=FSf8U>AOQKc|>^)-_4lk%4j!w1bemNCuqsaGC!3fafm=y2N
z3~;EtQr24H{;xTaE9p&-ZU#;k=wpyV^oE-zc18Jx!V|k)XdVA=J*awi|6j+d;*BY<
z%0VI@NDUX3tqg0-c>6UYaiQf&Q(IJ2#nI3$yjBrW5z(G3l~|47F2Gi)-WF`Ni@{%^
z%rvy{@!geUPR8*gXiH@53)R-Pmir-WjQB!8Kz{BQ$lfs(VY0hfEv;}0rC?(f)r7<Z
z|MZD^Q1647zQ6dNRuvWxm9HLqAnu>-U>HGG_)P}~14=*5001(^V*I3Dnd@hGdV0o4
zAK*d?XlFD%Kr9|~$no}epFfAHZSAT-{iOE-VPNa<1Xco@R#%O)7`^M9t=xEsG6x%g
z02jEm=XpAl&V9T;R5+3xh>ry8TB=>n4jcXOE)F<=tAv`H>PP<U?VC2aNR7`5?0vQw
z661ysuiTyc_qLi!ryAVM4gjm7qcA>^_iT*!^eUzmT2xDU2uTJ##H&h!ct{mz#r|<f
z9<{BClJV;!PmrtLwB!WmbVd^g^dIH?NNiT+Mcs!)QgBEjY=1`n%T<L!S5U|LJ23eG
zOLk&=rgCE&)^{<AcYjH6J0~spt-=BoEI4i7H-en1C0rB}KqSmamN8&yW*3d|YaujL
zuFx=4g~lBj@~h{5<He<t7MEH5d(@nY;(ogM)6|c0+udT)>g~oOzx{@K0;A%|MRZ$)
zYjDa%TEs-g9z>_kFX%9BINV%7w!_LzNH^k<j;AzGHj|YU6)kHdSiTEJ&6L!X`W4Dn
ztz~qaXPCvofid{;pAqmvHv+RibzF)4ZfEf3<;%`({g%<B#N=-}Ur$Y@at#cxaUE#Y
z8l5@e>gxkx1s<KoQl2MO<_leCBto!1h4)p36(mA>w{u&pzET!^51V!R?6=|5LgepG
zhqE(Z>j&t4yt5NH7-!N0CS9k7dp7d}x@YsBvaJD%GaxUIxU|wJuk0H8PNN+9>Vp`L
zl(ejs5+hvvIE`0}yW8Dnnd!sByppkfy?yRm``EOe3#aST^@+jvmWBU#=l;kbIRA;L
zA$=s%l*^56rwCpH7F<08Kis!2hvu*41S#R=zNRtU&4ctLC-VWT6%IuCQDP=i<~@A;
zI7~%Z9H`Bc#^*d-zc7P`sdb=lKBt;~Pc3Uv^bwb0W^f4Qrd`z1vL8MDIr*l#){(Cm
z`P@8y?Hue9tt-)I?l{>hgjk`mc@O#-)Z_DG-Ld#dug-81BuSrI0!$w9sb?Co%T?%(
z4Vc7`6R@nsDC*OCGCR*)UlDJX1^guMCtn*vdKs~x2b73jxL!B<P(_sH+rvelP56{p
zE=W=yQUZ_J_qFhswl;W1g>OkXkbkl&zqUsr1Ri39dz7N05TxW@bejHBV%KkaA|xan
z8}9GN87wS<?vO-aTf!o7aWQ6H7bL+)Yt0o`6%+HB6!UdhNT~ehaM%0zToBFEI@>J9
z68d}%HW0<6NfLa?F@9?Hr95K^kZKAF3NUC$SnpQ3Un@Im82O60xL9XO@W(xha140B
zH!@PLTgXb=^@tz}!Bzp#`Cx;db#d_wB|yDq)?@-r;9v{%$^suNHYWC%9}Y1wZQSQ5
zhpiL)vY+tOOcxzFI7stoZN7%h1non4zWsWJ6XVm8J62ZThevPIv%I&MaT`oWpFxs{
z*@*(zsQ!{7;oj5)C8gmn?cV{roavvMDqN2D5F8z6X6*h5VyB`TC)vk;j8!(yp|z6k
z8?{Hv%2&JN&W_oheofDh>fA$fcG|3UWx5|KMyWL0L0#m9RY;wcS#_7tAi-2Gb8NWy
zM$J3)!9g_1Pv^(=1Z*X_xo5CrCQobuqT4zNxJ|mAI1anvKgo8Rx`Ts3Mn}WgS4N)+
zv70;OAAjp!-$3{-h^d(0mYD@i>|$CLwpdoyAX{f4GlTvo_Rm;(+!mW#Awo&w?^{Gf
zd-aNlD;xqaenQq@w2E@W%%GafJ-eNw|5ey|$5Y+^|G%p;lS)}-BqU^KhY*q-LT1R0
z$ezgxh0G9=b*z-V3)zl6vy#1KWE`B|^U%0Hzw2{-KmDy+dY|!rzn;&><9_!bz}qQw
zl7V0GYyPS6BxZB-(F+}X9_LC<zwz&wbKF>YK7DK%%A6{_-N~dRyVlK{>lK6N@dIL~
zuBt?szwWzwnG2cC;Z4fh+X84zKIPcLfH{%iC0&o5<j7_uGt1syT><(j^+0S)nSvdO
zH`ajNP-bFqG?6VN8h8wRX0m6$SrN`2#kSJwm|7l&YGRbD+x?`~95F~9Uw?EgVRR*z
zaV>?8p4V;nJB0Efx12RJ)P>&7n}j*f{)#vb^JGm?Rid~r6aqW$&q4Bri=s$MM_&H9
zq)c<e>8m#~GqSEeL)u}2K0%bc&iNPdv886YHxj*MAc5-S<3qQ4QgFu1+~EDMWxt}X
z;lHkl1oDJaq1q%|#0~qHpvIPdxBUq~#^gt+{9r|!^sLw6MIqv1lq18s`r2h1n~7y{
zQnRz1fqI~+Mbc4AzwiFY7`96PQKgxf=TUz8j*j-&1-b^MN3&kk*_wJHG<+O{tdzfZ
zL}X@WqAb6+L@bhtRRfm^3j_+sPDFJWaN(agrM<W5L5lW0e!aS*AOTMxN}4y@^GH<4
z>9p$0_FjIU_6RyVJq5kRS8w0uX^kmz+rKkb6`vA89PNVzDg*DR@tZ<oD#dyF)1XAS
zx;3jTL>b32-zOtefm@fO^)a3<h*E&=met<GS<b+LucBT?g8X=$x)%NIDhhZno^1`(
zOWnC+vsO=i!PfbtC&-pqgn%A`dQ=R-@TmfG_>eX?H9MfU#$nc0mCOT6Jl*M52}vp5
zYu8K=>Bw0AE}&q6&I9U{ijd<1IDLCio3IyALud_%#`@LoiJ^wdT{f$GG8Ny6=zTKL
z)EpeEX;fh=u=oM@iQ^1^J&J#|we`Zhx7{Qk#AtG2TCQ<rWsfLg5MWpv?@mu^i*Iaf
ziXkJH%P->PWH;e53)=DiZ!>kB-C#^$8ou<GpZ^YE&wmiU4fy+5G+(Y;RW2Y?)8Fz=
ze@jBuTcKRCwH{_A$q-kZg$CUMdO2Zv1l``GcN&_=w@3}H(P68oY9l8LwOk6CZB|zi
z-I>6_e@<|+FG~x`yry<?$S&hH1U?OLZ{UK|GSDOAIBFgb@@zQ)fn}jpTOLY=bD#Z1
zK<za>-*>9LqvX+KQ?FH}w6sE6M%m5VcWmOyQ1Da;G&x;0wQ0DWq1?A8Q}PP`OzWSs
z^F-)#CeYO?Z#x{-(D~&0WJGV#feE)?3R6QF>BjO!j=g7MmTsJ9HvaIHp?qALA%_s^
z9{Ecoy!{Qg<nKnlPWB1y?95+ZkM2qnl#9=TN~D2liBT;+i=7?hUV+R4I69CPp<wd0
zVQUA8;z8?=*Gs*<GjeU*@85r5S0*zD&xqA=e+*@`^LCfkTX7HQA++U~Py%vPv0DZ@
zJLca*ftq#9V>*4VXo-7N48YJ>IQUat3nGVk+I7n=rMuA<9J@w0)q&cf+Pz6XJuR6^
z|It{mwASV|LJHJnJa0@ZvtdC&m`dP6UtqyAs|yLZQT_WU64=re#PWLVt+jobqRb@<
z4Q0yAz@Gi6?yY)5ORK#0x_O-1KkG56608Dxy!sfE-+q$RQ-d)TFqefiuwA{%$U^UP
z<IWu-%N&An+?hC#;kb@h`v9Ucmr~FcF`jZ=G5CVHF{v}E@GJe=P-VrqNW*ZpxfRVJ
zY7?f+PLZ(VfX>*?{dSzg1@$sJ6yl?4>)Gi(CvoYTZ>cSJw6{Ovx^9bzuR^4z@GAw+
z>z|XBQC6-rm1t;~F&Sx2onC%kzU#_);|}<lvP=f3gcB5!I=&|Drsh=cfW89b9`f=E
zrVzA;Iyt;j*}f;e+-7V`e-~b$J)j~g-`etdV${5Ee-~xdFY>kO7^nx&Pz9$aBh+=2
ztWi~7^F>y9F{jQ2Klk6ZMDJ4*QaZ0}aZt>=tr|M2g!@F3Yl|J_F=b2-&(8<z?kFCC
zMaOtc!zaC+WNEbaNB8wD>tgZZnI&qE>&^@6*3yl{9_Ym~hp<@BE~=e92NUryQ9eF$
zSocHp8JYnnN(rm5J>=6%9VBF3U2odv|7YNx&E9H(;Ad=w5tb6@rIm%C#%5e@Cm(dS
zme73!eZ=xOWKw$hT7innsC-l~YU5Xxh-YKs_APmmc!!1lL~+Bj^08#(FF%uB;K5C6
zq=A8--_4udy}g|#*N9f;j+FbozN|2^y*&-xig<6Iy`AX<VFm^8y|uY5SG4tJ(J-ss
zmXYR{i-uy1>$jnj^%hxp^-|WRUXb&zD&1;WW{^Mb<9#(w(BVlT4?oS5<zuOml9jwx
zBX|T^Cc@RW;RPGMs+oLRO8_8pN6oW2jt~cuDxBvf%=l_K3KT-mHj#}s5!i{dq}q4|
zR`S|q40fh~F6ogU?0vcwl?Ti1vw?oN>T_b6k6)th^Cu+Q?njn4uwGN22oM26RLV@!
zcRq$2paQr2l3@4_9aLqz<<ncVR+tRGXtu0Mt3Di%+)kfck5N|marSV#Jtq#V{LeAH
zm9D(dDx{kwyE@NOS}c6|*|Q+wg+=7}_sd@f%UIPf?wnul*sZRv5ZOCU-GoC(_Wr@J
z0MVKlBIgqvQO^C^*_~V;{Adn5+XamkDF_%ms!x?O41aK#t+BTp20_|i18~!aPeF{m
zMSg#+#Czl5nJ=2S?*8`6gK6(l3tNXNb0^4ov+mi=C3s+NJS1}N(}$CrIPZCbOWt3)
zYxf`Mt-KM1b76?%ISM#;+{7;f@e}PaA(LxgY;kZ1B5Bqw--99~?$w{%{`svPIn|^h
z!u=Ls3CS<&8U>_B!CQaDu~F=xIid-)N(u?pk9Ij|5}0XB&raHb8{tB;Lvqxwe;)cV
z0;N=JVTPR3e1cpv>vbOjJkZ)ITC%F;_`(UxE^9`hNDQGeGBSEW-E_v8l!N?vgiMs!
zB_^K8@Haa0qB`!7LS82K>GLUS|2>lJ&ph+1$e`A<;YiN@kKT@&W?e+vG-|ZuaqTEI
z5j^|`f~*AmDguB9kT?jzZ_8yP0!NNYU|}g6j4upnF^zT!Y?DCP;8zAf&#mns6i-CS
zlAWr(LwopPqVd*ggn=_0(Bo2N$%XWfCv)ZIZ7z&b$A;X<&<Q|}QHVUA8cLA?>m&F^
zLB*Dlv0f@V4v<uOdZ9h2QEGQ3oam-~1yqI9)JLB`Z%!eLKi_2P!k-Pi270~FMeB!^
zKK}@*ue6<wuyQ6Le((Ukozh*=T}JcJ!w{Rt+y~H?lqC+|lt3+Z%624&`)4GJI(u~!
zerL*q2bjCv%=dAa@Fo|^!Tbfpbh>Wny}dUVg%d`>XNKMrmCJm1$$LaPot*q<d6zTi
z`rH{{nAJ5kiClals}Igr$c?|P*x;zSM9b^sSX@>b>cr%t6>CMqNqd0~pqoCl!jLF{
z^G3aV+$En0jh_wQ#l550KHi_&p3TevaOGF~)BE&MZCz?*b)n#Cm$fPQn%miNZh+O$
z?ChL885ee?KO@tX5T!_H(mG*bLBUxV??fgd%R)f@rnub0?AQxIt2f-vzk|#jNgzx7
z#`h{c4J#OE#y&4ZLGc(MtKNO}=TyL+>IUmxXCC$5=%Ujl(=du-iL~_AO&Lc0h%0e?
zX^0vd%;Cx=?alXvi+LEY*kFc_uoyzl>avcc;p7CIgd<)?NK6XeOzVnElLdF*5j<GS
zSK^I7Km<b_?Q{?zQQ=u=LmZPWESR;cH^A@e>D_m3j$FLJOGwQlt5rTcDlLKK1E($=
z`^6Z3Hvw!23;YTSDCVqQMn&OePJf5}1y^qFovto(GxJ14U}F`gP62K*IVHJ47`NgA
z<P+wSeuWf%u(`y-O**CCQv{{6-*24?uo1w<X$GTj_Y`n;*{`SNO({j+WfgI1$atqC
zaNovRbRXoeFz`;tr-8Jxd&QO;4C9;_ysMBmjZ^oQJXnMU^E}&lyW3qy@5jXXN54W`
zDX4$^e){h!wZXFKAgkiYW`4WPNZtOh+zcku%a0+OC1F6RGBI)Mp`MnCqE?G9`Quq4
zqU7Tn#Y+KEG~FJMq}WixTpYMgV1v`FnO>u=tzQsu2(6iX_c(r$(^<>(!2>b*%c?9B
z?k!yCG#YAo7pw1lI2ni%*j}>K2eFcIQOSpfMwM*`)7A-;=1B!5W+a4#g+fd?$-jW(
zo&4z%%+n4>wY;qC0zB}5(`u+=T=?~z?B)BUS90Ec`4P2=6P6mx&O^f?Y#ghUB!>j?
z8vM#H@@-+I{(pw~kagQb26>!?=nWKHQ#tk`I=?qmQiCOr86to@jwfYuzp_uIZCqML
zMmbss?1GXyBxOF8Ua(G&Y>C70iVwNoI|;uZlikAd*eik{Q5|oraI0hXq-$kC;)nEi
z@pN8^nQwdbl_MiQlB^=Yh9lggQJKvq1*lJe#t+cfE-A+)M~6O8jo_^o2QzqEQ9}DS
z6|>cVY{9@YiPCsFQEdtz$STceal|)Hju`>xQK{AlePR8EvXWCsDo=rKSn)#3vu-**
zkudo-7M2p?Gd##9ql}(sBvHzdDFT57pWcl-YG04i3HgX}+jL5*CpR(q0t0<^&Js%U
z^U;y|Ry^U1qES(y@-0aJ##;r{oU(8CX0zJ|yEWY(|9(TS%inHj9rBocT^Un1#eagH
zULdCaIt>FT&keGoeF|*`_x1zSCpQh=LaH~tiCIx1=b5IO1NZue+~-3mLS^zc236qr
zLBYrZk=Vo6scd4)a8Q%rw|(PTu0ra<^M9_X4dI=qd^Ou3mviiUBO#*xAcXbvcgvwK
zD_$Ao^5A!0t2GQpQd9Gvj(8ap8YO64Bz5b~(Qcc$`StE=kUS8R(|Nftn(9ooEa`|F
zcUc(OnToUyzsM?>7ouupZo%|Le)L0B6BDa*WTgHBc0?@_;#mEs$Ybt>L@B*efPex(
zQ9*|7ux&#(REKGI%n|fr*Uha402LmRe<9qR-AbX6K5=8Gp|_!N5J^t@ovP6DI&PSb
z->nIO0N@9Dmm31~;{E85`V%!`5^`xv@%I&-nlqS|=qGp>P%-_@Bw~b+Fjs=^(ebwn
za!6jJ4!gRh!}P338}`UppkiXe{bMIT>h5>QxOk^bO$tAMQOJ4iJYwX>YZ@qnU*gu#
zkd&8Eie@qk(ymX>%AVz$P*G88%}A$8P8k+BZj_vY%+8c)MJBGk;0jEEd5~9(5xIG`
zZ;j`RrhFgmdL$#u-N*>=52k?_D=f0}u97rML$(p`yO*#EJh2EkHr1YRiGzwm;?hyw
zyoU$bFNhK1W8iz|CN%eHJ)I*U>i}GG!L4D33Ct-VuF=GWKe4E$yMGH9z!OFSXcGMc
zs-O42V*384k4ndb<1gU^4+ep^zRl74ro$tgFCS&+Ki&Py%xsktX%v?^-h=WL(pZ?B
z&3`<YrL8OAR<`JX&MX)zq}3>)uU%1=Nq_M@ezmhR)K=0+iKY>-8dUZ5_s9uCBP{Go
zz6dOVN8M<7f3?D@s0!O(Cioak?^Oy;^F(O^P%ZUMLvoSprN3=)a~YZ6<s?R{-P2Ok
zk+i=dbOHlXw|p7%a?I`9ao2&m0#X;^F)9y3i15;>hJZqi4=xToyd@_G2lxjEKMMlI
zTeP>|SIXjpe(T>K_cQ*jL87KElL(P>cGfyY@n$Urm`<l;6q490ADE+Jk0bxJT(VHS
zre<y%b6ne`bWfjzS(u?~#NtYX$5Max{P%(A`8e&bHZbW@42j&HZK@r$)Pg%2LP)^#
z^5r@U;fUCnaxn=xIaqy1NC|;T6aJfH2jSL|Xn(v2sfru_d;kw);_-V7ei|^<xe2Lb
z!_f6>1%vu#-fsjRy--~E8^WLCf7L&$Ndl{L#Gbp%E!)Io7b3K^_>fJKkRyWsXMnb5
z&Hb*=pO5!-D%}Nq4@I!VJ3lq6NBM;XTpY26{JT;`!C)sn5fEH*;D4fH%?WC`Ectob
zu!%hd8-Y-EI&<bM<uJ61oZa3V6=hz~!eyPd;F^o#zCdHmO?Tx#7npCm^Q(<4O$|1A
zyAK)~&TF7`0^T@a@IhJl)LoV@IkW!d#VJg>m(3e#WIR0y2nTqWqjhXNuHEK*TTA~N
zu;m(&wl+H~RW8BL>F8;yF=wWNyyjLUJ!<{uDa6^_FgjFQM>rI2bgQRM^(ZOjQFrEY
zsr{YyCo%tb+MoBhuJ_%prdSOLEIQ`r!0>FIoG~{MJ5N|nO3ZKbKK)vlw3+80xs%tw
z%AGV!2>!MhJYQpYv|MdA*|+r60hgT$uaW{v!j_+LJ0tLnMdz%4=ZRyLLn98t0I%Vs
z2v7Q<Q5Fel(-8BdB8b+|R1XpKWC0930D~aR41s9Gocxo`*tDoV&<a{yWl4Ygs{?O!
z@`YrkVP7sh)wo81B{OAWI*5bYWj5wW9NiyZ6HAT4`GDI2oVorb1JIbsm?=pfqJXiB
zdzaa<KencxpSC7wO-v?0tHf5dJ3u{acl8eZe861H>u>r(swayTAOUyz;2S$iK`n<w
zRtFoe!PnO>&&9GrV*L(8wVr-|1=T~6vSK*UhFG-yGq>z6_-)cBQ}*y}i_o0SGzZ58
zjr4bxyD1ZaH!73tn6QfN?09LblV_g$Peo?;Wu2=_mSMlgg4I6t^p(WqBsB3r=t-0x
zi85zoik+X8GEOE{3y1zkQ)cE-gCuNIli5t(cfRD&@flZ{Gm|nT&G3p(YXvpoHZn7(
z8}>03-8+63?p96Xyw~NV&8)-jr~6}N<#MD>JtgmQJozF~sB`b+2Hzp*ACoB<==USv
zAij-{&(!oVr*T*&M6jjF=|iDI>>oZCi~4BTdVE)hnG5mC{?APCuyIIg(Dspv!I$^_
z`88COx^5c$Y{_^6;b<kCj#)g(Q;xDs;36_S+=w%fNu7d~yPV@X_jZlA4y<8#aV3)A
z`&?vs=<Dhn13>}Zyp7mHcyTV>h2RvaASyH?;NwwC+*YWX#g)4-(~CI7?>U0K$WnV4
ziWeQ1r|uwejJN#!K23@d#bV(Es!u**`ctwo?o*<~YO&p@d-V!^){%`<C?fm`B%a2L
zc75l_`w4k43ftVkK*+s1&Gwxi2pBmKHI7_g&4#17VtZ^>ZTYR4MOsnWL!=dq9_WTk
zBMCBkAb`3m#BzAb8-8|1rLqwYtfJYebzW}Zrh(&P;;P(UhDvzENgTrD)jfsSYzXb*
zWlw)F4t|uQ@N-tf#E5Osv#t@Mjvh=Lo|fP7!J^(>u3p_6<zCs2)1VIPYyWy-wfNu`
zCTG>-kcGvFt*oF*`!Or|$F}VDv7T$ttMn+hb)T)&hT{RDBgxXD2Xe9f6rj&Z1{Cti
zuaW(LHJXRRes|WeF7{2|up|tH*(4*+!*M1<*S&mYW#psiDdFwKb~s=_&m@oc;p-bL
zhn%x+o9*00=bhC~PEGXgVoi;X$I!Y@b5)I)KxXnx&FnJyH96NvC^mfiG;)g28DlC?
z%%n6%G%>rnFU*XbFt(JsKJ2l*Yb-1h=-&aH#K?$n3ju3`wu0x?N3l%F>1U0)q7&mW
zdN{?RC(DC?g@S+)M(l#`fhT1}9#-}KL+(@3r@zjlVxXMphEjy^qjiK{b?$*m0fTV1
zXgi3t=d9rB-oRwq1Fb9nb~b(AcKK8=fb#b2P435nP*hKItG4BDfp+bGufM=v!$@A*
z`q7=&DV0@^#OIPsaezQI<$Mf!RI5$5Z~6bPZVXfh^{4@88}PdPniu0{`Ftd31s0Tk
zpoT>v!$S9a&~t#Mb2?dW6`7^Z?S{=yca2d;TuDP*^yLEEoBwY`g2U>-%t^4cyIGLH
zuMte=B@Nr6|5>9UGpn4b)~$Uf*V;yzm7RHoS%x@~ivElK5f-r-Knr7(2H3iaJ%5x2
zJrOkP0N?;)Z!%671X}jW>>=1s<?#38_E#*7XW`;=qQh}kGDM6Q`t#FqP{*KofH7%4
zxOo$tB>A|TM^^bz*M-0V0QK*$YNm(bY`OuSL+nvQ^YD&O9VTnnonyP5XIbRzrOR=%
z7E$tHq%ypG2<bsFP^mY7n^Y&SV};MZ`1HeB(qMCgfz8T!4d<rmdJmMLZ(!KQE%=(o
z_|w-*A-BJCg{b}9uTwfN8QZ+@@HsYUkS|uOI6zIrQjOPiN-#H<E};#LM9<X}ljTHY
zcHgrz6BjyK4^y+Brw4@9n?DSun482KZa!JLI2=l#K7cnjM0gJiA3uNE?eAbB=L|%!
z3)ux0u#Hn&${5`culNhJRWo*Au<Dk=Xsj@Q35uLjJvRLMm);Txa3{L!_I;XG%NuxF
zz^P<~DOc!_V(zJ!BlIuNI>vnUdwns31(oRbd9yVUk4QFM`IIj}%J#U!NV6=9&V{1|
zXaR+B@!zhtvDjM=K&U0G>dh*m@1g-0hUd8Z80?xAt;2Cm<=T+vJ25<jkPQP`$YEPA
zZIu$Ffo@-CltM=iJA26}yo2v4MA(iZI`^Gh?I)-`*qwym&slrXE^_JXXdVxm{@C)0
zqb!kVEHs&P%TWPT3By;fa@tIfRN#C>wcbz&W}2he68chMrE9N4g?H*@gObOIox_`A
zTz65Of&CaW#)>$1o+8*^(ZO_CH|s~!=)+AaAtqKvasfkJc#KRwfWYj5+`Ebdjz&G)
zFi1*0)ZD66E&~AO=L7P3%5U~GX?)zmlb><v4WljMV~IuB@GxqZ)Qh&<X!B_N8q4E4
z3Wk@J3~lZ9Sdf&Al^P)}7}8)>fpJ~ynOVs8aO1du8|hPg97SbcCfwx#YG-b05^~iE
zC4`HATUvpE9s%`xcxe>b{B$`09u99o#Z999zRb~m8A*XC7=w#VDxHEp&@YUz74@tZ
z4^(!TM#X`1oYopAvr~oH^>Asw{`JUsKKgR-f8_};GwlX=wrgVEBBhkuyjk#X_{KFm
z<2lj*qUT{&mQLx27~8Ct5y-lBs;Wr#RuW<42&3*tRw{N3ut!=uuzNpykwUN9ZFPA4
zmkZtZF<0gYT$zfKd)vC43tGL?>!Ga=s$UV*HKoYVoFTp-b6W>kML(&km3+zT$U`RQ
zh&0(%afGIwRe4rvYHC*bYl}%@;*IN6s-CCksNX-<Na&Igh$=`;e)9&B5D{VGlY>=;
z?A<-xAO^xWg&dr;ap`{_xcXm7XiE#Vx+N4$dWM*I<*VpzXMw2Zl-mi)DvD(Mu3O39
z$5q3_5tqDoihq!}EFJw#kLlAeKta71p1I+j2Q7Oc!V&GV%|&I{V1Z%jHjG)Rfo+!+
z91P)T#=jKF;0w&7@7)Lqn^)PrnW^3#%ds;*OE&>AKZZ&ia#qR+NBm&-?lLA`!43FA
zMy-W!xzL6sI#26!@WSsz^lfJix{Z8QBT(Y7X6iWsQZG0Qdi<!^{V*;Y)iHkSKJZED
zIF=GVm3<h9reIZzX{5MsnCtku=Azs~s9fhN#NK9NCe$t|wh0J}&-mimjNT>PeU@Qj
zxg4O1X}(6^1@-tTlunSWjHiq_bNbcu%j~t)F|0JAswWz+GVM;ad|zCPGR?f=@pvkS
z0nb{+=QPx=!COmaR=7v~Vr8o%+VmqzH?XbMJB{b}$WOh?;BId()$Vcvd7(Wt1{(H%
z6Vxt5HCH%oE-8H6`@zmvT%7FPch`!OCpPYNr2YIzMZ+tyt*fkT3{t8WyN#{+D4>Fc
ziG`S&LUmY0rMIE^wo<g3Qma1Y?nWPcvBX8|QQ7eV8mcKHV=am;IQN5+iXwE!NWtL_
z!6nFzROvs1K{V_%qgrB(O)Wtqh*$i9t#aFFV0RmqG>EsUy!{`zj5+i2B8Z8l2ESAv
z3$=k<OLBPlGsKlU@DgI^P5aBSRyz;d3z5CYfCKFY(+0HqVDNb?E4(|;F!&P0$Jtfj
z{cIe>Qhr2gyn=yh($=dzv^F9qr-++}qvzqS?O&r$g0}WH*Lpm*FS#1eE9FTJG_%ut
zeKXj1qqxGr_~0$qn~D(f*NYJKupWp8Cd(ayDPTH-<g%yBxaB;z5p;dVkhf%{a^vt^
zy@>RAsRi$;YH~TO7pLE)4Pe$lV`CYeBk4aMd;2=tf^mgixHLIezwVact<k`siEeA&
zmRC4xq?Nsnj{`l=pSS(aQ~i+c?u^q9I&m@m#$svO7jj+rt8CXxb!*1d$q9(go=x)i
z7m|K{;`s}512aODqF-YCTAlmj(5}wP-K8=BHmmk^-yjh-1mYp9y|u>t)Q_4z-Q}$X
zE(f(fJcGIrg^3kO>E?$1?V3|*``c-D)Yo8FGB%PV^^2W@NJAcGD0^kWmbPuyOp@`9
ze>9eNY#NkLw+f9RPDyJnSdG0|{&@bbXd9oHs80NPq}hjOe<eFud^wJ{#$oWazjrTV
z#|smq{D=|vJ$=IXGY!uBTXLgayx9wv5k58W=zo2`@$RN+D`8C*Ps?i*suYPm7XyA$
zg{H>TALjIB$y;|Pl>P44s7@eQSAhC@Vo&sd$^*vXT=5g>+fFF9IIb?r6;vrpGi56O
zy}>2z{f>KS8bFPO_R%+9>VW#}OqbBpyuB7=%1?Lt!SnltjJ&A07uVn{c`DsNqECCW
zHw-jljUKGc*C!w;x!i+>`xAukiMWLC`ABVANeTN<!uc9r&~J}9X}dxjX)xNO@2?*D
zqR^w?$D4cK`8;?1{(bdmnc-a{qlOAnz9UTTs|y2>+GVX;#VgCBB5$4ryw$h2S)E}G
zR${lUnsIMYV!v5c;dg3{nfXFfvy_y$WYrZitR%g2&z~x>>%$Mo?mUTApz2|bW2k00
zJwNlMz#c2ad!hby#pC8L<9=mCo$KeqX_#pArc1iw%%h@kq)IQ`PjJ(9HyPa-_j3--
zow!;1WC-s<A9zmBwCUWswt_~ZH3W++gxucJ(#V}C?>u?beQ$rb)Oi+}7F>3g%TVI9
zc3xRqLP5699qQ;K`AhZ72``#Sg*-M3Md&p{a8P;_=bw<BxR%VzFRpdOny<$%N4JTz
zMc+u@ELdT3`rH1GHRIvVk|7GMp2QCIP4A$iJAYwgANkng!ei4K+HeH^NK44yd?%*&
G^#1`nq_8jm

literal 0
HcmV?d00001

diff --git a/p7/images/autograder_success.png b/p7/images/autograder_success.png
new file mode 100644
index 0000000000000000000000000000000000000000..7fece5968bff83153462f4aa12302d1bab25702f
GIT binary patch
literal 42243
zcmd?Rby$@B+WifZDy4{Y86cpfgwzm92na|^3Ia-Z!w?E0DIp-z&CuNg(n!NdGjt3w
zbPNphUflcM@$9|tozLFC_xHYkcsRpx;4pa2wa&HH=llk%ypScnMsp1d3yWA@?&(V`
zEbMwLES$%L_`p~0kcA2Ze_=bml$F9N>Ze-=p5U5GDoJ8tl}21Ye~kw`ziKC^<A{ZI
z`~Kx0Z26b>cCfHA<K>@9s=FC%B@utqXm`h$?{~=DXHr?>Cu5Sif#VdXelPI$r`v;a
zl9rT9#kf|b5-LA`?v#Z+vX%cK^Jq8{i<ubP@+RTWI(4?TTQ`U-eV@xIe)exJEAmxf
za_*i&r@%MeIUR!>2cEbdZ#TLI!N&&NkO_RNz5BgWeEYrASr6vZ2$|oL1-YkS<bel5
z*Td+6r>kkDci)pOh(30CPbT#(s3V+A>f`?4_zfvSdj=X2DMIFcX%ksO<~H}Yo0s22
z`d|AdWeAT8-1|reR$QTuh8bcih0j6^Pf9b%+^jJ^&Yf++h@GJfAH{jBi9ws;4}K}9
zp{VIqQ1QhU=t8>jc-HemtuQh0I;DDh)O|!A41%VTl7n!&aNB^~PEFC?tB~USl=Dq<
zl&6BjQepMzBr)x%NRILuPbUAqtKo_ND@<jv{>`R3s{|BU+2^H3k#-ux0n5u=*SLve
z)P_ZCM;HQgfyA6sNpX_C`cN8RAMiO5WFAiQ*vNPC$Pkm|a|kg!b=3_VK{i1I&}UGH
z<LbcWKkhiw2`ais&0LDI+s_ftGJBDjttqzqzGwri-K3Yai<s32X8;vdH628uV8!6A
zPBI5~m7NX}8R8CN8Jo>qRg067*9g;rowSjgQICqYrnJOFz3Y<Iw<hYxBJRJhk!qn8
zq2i|!q^gB)jLOgOI^~ALOD*G`-@AztVV+3Eu!^U#YQWBp@(dl9r9Z0OswfTM2~fr1
zc6j#eS-w^T17ZZcLx2bpaShzgnJ>X5QJV9Wq8e}OG!qv%T&5wQ+)fbIKp(7vw5ngk
zrxxe*e$7G*B*We*mh5@$5`a|7n|AOtgpJ?7IGd1<9*yc`)UpMBNisA`aP+n-LKbvU
zic0KcP-{ijNP|GTTo+P>nAzh4zhI{z;!U@jSxuk)#8(Eo=1Zl=P>gP$ZpDK<(l;M^
z>miUsH22OnKm4NVi$XH`I~>#KV?J6gHIt{thWzNreUF^JyoEwbFHIa#SsWOMe>jEJ
z_%$7eFyF+hU%!Uin!4l30r@f0r%dUlWeSQq<=Ak#yy6=XXHqJjGVYz$1MhFK<5_PS
z^%{*DO&cvW2Z<jr^AFR$IieRzCHQ2;H%W_YXNOHd;{iU%$RDPSv=f`6ohv%o2|}xf
zeG_tjDfSrL^y)meI9K^#Bj;jW!EpFpDS^}8RyFM8Y+DU}vF!@81)u3+g4MYtjLF>R
z(t-|{_Qo?J5UY$QV2m<)V7}GjD<uZi65xX{+L?wFH)dzY#X$rNCLVqhR6bmX{eVur
zWm@r+*&c$PiNGM{18*2GYt)bh0qar2{)7w$!&=@gqcGkk+YX{eu=@rh`m>KqJLn>#
zt`rPzgnlq@B@vMjCrUoPST;lm*Fy^wp^F>IvnjhQ+=lz1TB9wI59rI=@oWc+3n6Mq
zPt4h2+w-^KB)MlA8$a`)9!oczl~(&LcKz{CI$jqBo#A!phxrBSP^%W4yNu^^1hBUH
z?cr0OS<6nGM%cz!qd<sd+oHGxt@h@6#b#d4sP9Ixa@A@rDX8H1gavex`ZFu*_{Y_E
zHyXnAO3pj0tb>(j9Tbd#4<w2w%#EX<Eg(WPYR9bSs%`3_iJJR<*XOn^Q`2CC_t|;8
z(U;;^vDzhW_6v=H_@L|?qCu;>$xNcs-*$+e8BcCb1TXUQ`)odIkmOXYbhcdJtA;0Q
z*T0tjp4fQiN^{z0>l3}B$%eX65OFndU~F(ccQfwy#|sA4p4mLgxw`aWI&z5iA$iWg
zw_RlB-t={@drc?HT&%N)J-ztu;`OEq3u+lM`Y$`?2IpI^4j8dEP`sYoPqvryI-W2m
zpMB11t;3A@3`XSyZ;809@s>)W#ZD`W*UO$Jd~JjA5RIC^qoTT8utcT5P<c#Q2iq1H
zB0C=s)6wtrt1fo38k`PAoX4v-z>F7=m|aF^oy4b=Ag1N$BJ1&8BS#I5g^L6}a^%mk
zGagDwuyk_O!|!PrG`tOtZUyP3-(@cJ^Vgqv{bik)(;~h)zka@M<9u9Z(tGJHB0?Pf
zZY%t>w)#pBzd>ytc&hAKu_%<=vkEa=2?4L(L3+Z^MpN7%ZBXF;IXaRkz-F7egM93;
z6DBwsi1b#5cOshg<O#*<U9}8%G+o8&ocB#Q@gT|t_eAu(D;cA&ksO{ER_DJ(#wHN&
zwXvUmNwj$hs?zL^Zv?MSn8SiXLSU<mZcIDw1!b($_Ccs}5#)i%%Uu?1iy6LwT%BYu
zu#i<eCwU^NCuEs`MOl+x#7PCdzjxh%QD!}!7y;hBuFn{WbJi;5=-g~kT(1QlGxRJ3
zURKkU!T^1M9`8JlKgYJca`cedmdxApSQETaXe8q9adUX`fwl?3U3?S#4E#kiKBq1+
zSfv8xA<h63K5^uuZjqc9>*VR&_q-dhndrG$A{hf(f7H94m4><Txx%_>*Nl1th>`}6
z@*(PR{Yhwug5TNWTrb=Pk+;6LXE7JYmH|gD`uaVy#6(Z@;<*FupjkLb<UI8<lgrjb
z25~c^hbdY1-O%<m(1l55D@Vo%_F0LlumC}g(XkO|E5uNJwnwHu60}0Cl~yaP=e!(?
zpj_?8+djTcqh(<KLD+dEbhi9n8~?T8@fNq1k1g>nxp;n_+MkW=p6KXqbgl%_aDfU&
zOO9^{VEIF)s>gE9cXTBu;`~&fcrAULrEIx6@&zA4zInad4~MRx85@^s`svr;D@R4M
zLQZnTO}jE67Cuflj#ixH{&*t2W$Mibb?%43dy*4XxI%WgGg~|I#SeQf7Pv->!TYp_
zTpXIYA~yApbaEyJv6q8lPru<^KajjlCFX{I?emT5>GWea#-lgrd5+>8!R$7+KmD0^
zeQYcDWDQoIzUpmqyy`<TG{N_h`;Ds6J|pDjxtxA@xyg#x`I7wB_wRloUvME`2Kv5c
zg>9vu?!$g)XdpfSSKkbJVjv%BHCxbhQD~cYe8p^!J5ng&<TFcA?p&bH500Ez%dvcA
zFNB(3U<Z-VuIpS5$huSmC3vx(qF!0;5WTZm4J~Bl0K3DzQ8dQ{?t$Ik8s10~)EGe3
zRnxXpgjB^E?K8yj+^6(i^FI9evMw#SVj&El!x|ZD+M}>OxM<;sXaS!Dq2BB+8lv-2
z$N+*7hKf6x{3?+hBpugfh&qU59?_2-t!IFvd_ng+pmFYO527oTL529>y=Vkvwui*?
zqh0VFua%WVSRC}^nOJl6QbcZhd>e7fCL9jtt=Ds3j?MS3cj@-^o?}bKMjcZcj)Hiu
z>ZS>55!48Q&RD_e$p)3rx4hTyS0316H0uTJH!<bOM0P3o=yN8<R4W$DL`oj`c#_!Z
zl-4%=J;iK+ETe|2azgsC%XMed=W<kd=9^1MqXj`F@&-wkxA>3dWd^8hytZq<p&J#k
zK>@yAzuZ;UTP#R~of}tZVA)Ev^jdm)1s+aY`N!>Z?3Qd7$7`x+&q5HbAm<h~#d-Hb
zy2w($4PwYw!^ieF{jeE0TC3sivc)z^(&V?7sJu99V7j$NS4ynfKQ*TiSG*?~4|qf^
zq#|}c7ciN6{$Z>GbHRvFZQRRXJY~CvQ$f78x1MM-9Q5*HQ3S4fSA3t^I(2@QC9_i1
zuH(f835yx@DD=sL=KDc#ujK`#>9rYAX=i<?j|IjL=X1GU4cGi6s;2r{yCj(}ym}sY
zHLW!WHgQ|D2Fvx8o-2fy1m;zs#dSD>Ib{T{`nhEKxx!?FV<+1@@0u0=k<65RP0d`&
z0^cn-O;rU+7bAx_oz(<-(((!DZR}O<bM4(0SncuQ7+PEE6)B$Srcr@W1<F0}b#Apo
zxp}W7Hi)x>`Suyo^gB8@I&j?cIRU=l`H6^H$rwK6#=dSfB7kMxm-&4NBDDHS8_~p@
zHDKh^GSF@hq*knnwA0RHGb-tjZ=PgX`xyH`lW72Yk}jT?K+@%N-gXtkPBD62GX{QE
z4G#JCu{kV`^qA_!*Zz264Qq4@=>ch{HT72r4v}{Jjn-?|a!hvvj^Nau#&4mjvjHm=
zVN4~glq)Yjd?OSslz(*>_`!iIAdp_Mw8aQp+M%Czv=15=Y=TCMAMtoEVa~b0d5em6
z2&?w5{0OLldwWFfExKt!nz_i;t?HTVu-Uj|ua}tn6tqM%1C2ZWC=~QOgh7!x<f<l7
z^mdajdS9?9?czt|)Ka|p)24$q@-%!AqVpHXXu;{!ro&!7lw2+G-udV1^k&Jcv<1T3
zP5UplEYLX`kOSnPm5RVgBlAVwb29BlsZQ`rg*+yK%X9gjgz`7dw&zb6y%5J>!x=5j
z?4~_fvB92a>&hC|-QzG@ux>ru(5!zm`&F4Lr@_=)$E+`0()$`J9L?ui$SSVV-Ff%v
zjN#C%+LA7&#qf%hC(-Z?Ydmtk^JgjWV;0Hx6#}!E_#li}aVnqK2JyH0<4sjQMmLG#
zhYQ0+*1CsK+r})Py^)ms*U9s($PeO6#B}i=d|(?5C*;a@^xw1Gmd1I+6gshd#>_#G
zush))i_IMb;yc)wu&}*mGGq8PFbk2)NsQpm58D#5pa4b@@WEa0SER@jU;@dQ(LZT9
zi8jR4y}~3Ra|bZXhWWcDod$clf_iW_^q~ic5c7rR0{;$vy)cpnw2h7fqqV$WIZQ5f
zd*Dal5L3l`fV<%^h1S#CUP%HCRTp!Ptv2|Yb4RuaEt(T3`)paFy2SL<84sMQe_%nm
zTA}zm*2)om8X6v$8=j$V46-9U<F`Er7HY(Mu(yRqOh3tEPgg%E*MOtGOzx#%67Jyi
zTm_Gn0uOaku-a1Y^6f`tnB3B?&1iaE^IF1RLcduW%XQz<pmutxaAirkm0vdK*nQyp
znQsbRvx;#nJ`Q2RAPID%`_R;um+$DOuExa4E?Wl)IEVc3f&$qn+gLG<<e%!`gJYV$
zdLSF?Uhux7eVcLe`MkJ6*-d=TU83m$?I!DjEm(Z9Ql!GXKwv2O^D5xZDj<|#_N}TL
zcRAky^SUse$!3Xvvys1=1Gx=U%qbd<|E@IZyRSd^qnf7bxFh?nSuf};1)~bz!zVn?
zh+S(Ca=2In?4kJXZp23PN9cj3&yhq#ctq^b_1OYi4hbi(8clmU92};TkLGV=(esQJ
z0lu&ac3X-dQ6o3zPWV6)1pGMJ#>jVCJJwh;g1SzWw0d62z#yXcTV9yYU^B%S+1%P$
z?tH68fO)0>2-9#O5`ID;YA?6q7|oIgy681OU<|-_p_Wiy3u&Q(&sVkgg3rL{xPHo<
zTb*Il8LT(7{l+^;K9)Am-kQ~4ZZxSC9BQ^8TYe86=RwW~Rettu;qQ(u#c`m*gBU3~
zF;RwM10y<p!(KCUe1wPfRcm5!)^cL<P_yeOHc9^UehxSvn#iQQ`D~G^xM8JGV64cn
zSPXBC^+X!)WcA~me_w^Q(G{HHs~5}Q^HTez5b5V9jjTNc!V6E_o;J-d2OoWue?wVJ
zFD`8PrO1ShQtB1?GlR~4w9M6DVzY6>^WnG(>=bd+PmBtL%=gIGLLS)JVd2|oZ#DwC
z!8@AAF78(da7#%2l`u}Mb0w??%E0CBVmbjPN+gq#^IGfZB^P=f6mVAo&{*#}>)u?|
zZs{jNkNwr6Y9hQlJ1<sj4-79@-;)hLe!ICxMAGYpIbA)xMoJ)y6<)tcMtq@xckak1
zqyeNDnd`qs726a4=M#(nUN-VCy^^x(_f|}@me1MLdtuM*ID{bdG^uU}h$%{e<VS9w
zjmpF|`yvjJ&oOzTb@`Q}2ULPAnogGw6;!x8w!as1p1^?&D01^V4*P#DEK+VcUo7mj
zc#&r*TzOplwZqlWM_z1q^Y|R1F6^C|RJWh~8ZiLklhPl`9*^kz<~o3p>N`P1BaY8}
z^u%~C2GHYn{>e{#5cG#T`8lKJ_(bYpewS|^n6s}Sq}$;tNW)RHaHse?wZ{yx#r)Dh
z9x3=E#)y--&HLM97d2b@4Dq4H9LDP=`wErT7|VRrAZ<Q)AR_<%u~@2bmGvsTFVu><
zK7}5X-J?~kavv?8c6-{f7&S-$%3VxsO>l&&fW%xzp%!lzIYdS`WJw^<ljtdpY7%<1
zc9yt9du%>N*3-Pb3%}HA1e(tXJq1~`2b9BLTHb9yd=q&-mr1)HXuzn}ih{=zRf7>M
zhq3R#S>oVMH|M#v8<kloS)ZPBd;N%Hi^T@07FhQPQ)av-5mdz}KSZ0R8$^PTW<2qw
znO<FF+Z8<89x)CC;=F5NKg=pP*x6s+#V64e0~eQ19+s!%?jsvl;oXewjHpOd^BEjz
zc=^d?<Amgi9U(lN&czP5PaP3sP;_N@tN2(6G&v7sO#=I-V#0Xl?-GG;kDxTKoI0q2
zqAi_&WTa@RC7(o1?nYxYp&|3sftHR7AkNWk@kC7hU}{ro<@1?ZyQVMJOXpAWjb{W$
zOI;D?w<cQquh&Viu9@L9rZOJ9Z;}+wDA-9xB0Y5I3q5sbE?oDWsM8-xescvbzpC1T
z(3wjwqJjCb-*i@#%TpHIuuPpSJ61GGpky{9E~!M%FQb2QSPW~hE!5<=K%W6uH@Yx|
zmycvDSzRsVoZyga%0LAQKYn%CUUoK`2|71%-Wk8a@7=C78Ua7AO({EVa6HmK)WV#<
ze}x$a=Yvk#4iQKeB~`G;$RmrX3r0(7AD@Mql$UH)TQ(lc&<Y>zu>OlpT>6sZTB8}7
z!hKutv55E1GGq36)^XDXN=2nT1q0g3Z(Kn@OrQZ|Qe}Onrkh6?WFn$(lE%4J)^h`g
zrVktPMaNZ9<wv%7?lCSBvj|d!n4v2fHU*JBI*ix4V~%~CCDHr)iH)$Ic$E$vbcgN1
z$9cM7@JG})b2%u#dGgma>c$AyjrklKhAzn7863t@U)<;QwC}9k6UIo&t~%1`rD=V#
zfrs)P0Etzrq8Bh1$~mCpSxg?rZA%vMg;qRIQxPmT!*5kXG6+6g#k}%H1=1egOP9@o
zD{NC3=;&=yH*QqSTb|8x82|D%!lLi~aJN<YkT^&r6n2`0v{7N)#h=*~B(*(C^#~E<
zCPj=4KrL_s&O%EUM>X0RHK#CVogVk2uL{YZeyw(>KaP;e+weTvGofv%FZ~`c)P>)5
zy=bcYu8kVH&Sl?(R+53cB&adCMY)k8OFog*OQmsuU4+Vr&No;=U{;clIbkld^lZwu
z80PuROhT_S!t3dyuc8|IQ(_{J3?`pqeNR}9f}r#HD4Xr!0S8Ec0fUAH!Gb^sX$qll
z6`0(ek>k5j!PruXq~0o(hoJ&K;#eg&o4mXFCO?9=ySX69%@aSDWwV8%z77#UUf6`*
zZSIJOY|_e~^x*J~mQ#el1R0Yd5!2Q8o;`bBOam_hWpJLO{26H@)S$Uq&o01^i1&og
zei-KKaA4Mf7y91#<2Gb5M>)?>Ku@&NV^v8IQas?%rt9pZ?rnJ%lE2A#VZiwIwC5PQ
zNZsY=lW$kHOCm+seTy|L2`y3&syXuT)?V-~dHRS*G*0M^z0w&;ejfqf*~Yyj@nM7e
z=a^SCOCLt^NN3!&dfJ*vT+ds$F~J=vwnkjG+cU@cV9dfxdWO1v8}HQRA8^lCNF15Z
zVV9q%Y~X$Eb&Hs992#gvyhy4@<R%wCEft?UtVQlHgR++;44?|<FX~<Tg8k@wp-)X5
z4>hb|^eHs?*%7sBj9pLc5iwv^@d-Bq=J!wSCul|JzBC(hyDy&TvJpJDdv3qT0U8Bq
z5E^$X8$g$o9nocJl7((Q<-+itWSZS>_!uN!u{kX!s%b3W7Gtz=AK4+_;S6$91)Je4
zeZXN>7O&rpYLJ+ja6L?UOkPr4HJ^o1mz^y-G@+49XgutnN-jdGA;Dk^$M49MUU)zM
zGW~n9DB@p7`tyZpOdh1@EsF6iJ^@@f-34l|GNZZ2hF;tink$ZPa9JZhOgS?c3A%5z
zRJC<hiW)u^$c@l*k2T1PJ*d~j=wUxTNBHOG`)H)poX>BZ!8kzZU=+;OXTzI8MOpMr
z|Bzfc@TwqKCXAl<vHOBb^7>?2M%^h2``x1W$pvYy&y0s#pcB*s1+9WqBRG5ZWBcGk
z98G@SD1`aKm0BY`nYeSm3rFKCd*9(5UZ->54fq6lY3)W~Cz#P)&D&(-HoDc}n?<`a
z+fHJQa50@G^aP1w7{2&k?^;u(Svb9Ci)e3zA&!^@^Hc+#M++|=`-9xPQ*u^|VTqNj
zG_H5V7E`)`Yxkb+;J7<5c!!?K%}h;lZ;HA}G-AAwT428U0a#>&VNR7t0QU>o$qt*j
zPE<bEv{<)ik!B%gUh^;`1*2Gb9J**20hOIOTn8zhzLVB7A(;C~tA-+&Y;IVh4x#jE
zkVQAFXfKlXvd-odZS1OoOht#OMSMp-gBM~c_9pj1wz-dr8}suU2O#2l1q=+X)fYP7
z2|zp8Nk{plVC^s(y?l7-D%dAGY@|P>sVD^<0;-jc^)`FT`)F-8FWO^&N#1*JZ<RHC
zJwWn7x#HzVf8u){_|TV3itwuc#hw3?&D8G(sc_i0Jt&}>%oACuq51<hN#`8ElY5?n
zVZdPeFZX4ycm`}H(owNr5O%+ITo*|{WziGm7Ci+z^4`g>8YiKSH{uTN7hbPu{B&PI
zz4gO&AH};L&2_El^}ckF5R(%>&fTqI*`^bFMW0`!$z?O0E9|m1*O`3<oysa~+H^z5
zsK8(f3XibP1Y#$Pt-a+}DM8uF$0lmQ8Mbthf<zodRtixzzV~c~@=Ro5Y2KcgPq*0P
zVoRf2T((e$h!Me=rOqflRW)5me-fy8WgsB~$UGN2Z%WDiaMYo$r>wHo$_gNWeAr*f
z<0!8A9&x{R;V^(e11j!4y7RhK{jkZ~2~8&D5a`%J;we^Ed{<J>%r1cWF~NlHcac7^
zd!7;94MAi}G8Lx$`UY~g^^?5zA;I5pL|gX`vX$~1((fcF4|*y+@z?X}b4D*DAR0Yk
zgUr(E)tvh312!`iyFc!yuZpSV<kQ!?<PCqm8!eo8c-NFNNAw=Ce+6HjR?L$g24|z3
z;E+clXp%FZ!3$M&w15^|NN&pe6s8qD(D@m*ttGkq`X~LzVajpufuHR^DV?dGk`~iP
zYhJksPLY}`BuAdWzxMBGKyF^Y&Gn*TY%sMLURbO=4RSR5uKR4wl3c`EZz;)J;rW3`
zbE0hcJsU0#g_ZK!{O386ub2jy44RKi&bM5Bod%dNXJ);FDFSjK=DiI{Oyx<+Wa%bq
zJw$V-6OOAa`&UO8m)T8epT;-Y6OKI5*H2i#ucT7Xdv%0|<mJkG&lP05m>Q{GVwnuA
zcrA+9yR}(l$h`MhO0(Q+$48B1$Z#Q&v*1y{18={i;-$N&i7_m9e3<FCbGg@Zy*(s+
zJjL^QY=AcfTBP&wFE~LDF1tvmNfz(hW-RB1Y?%S3#_%-c{2*TQY7LLcK~IMs#g>Sj
z1kz-gw!oo*WZMvLBnJrArUQv5@up+;C@8aIu9~%dNQZWl8oEC_T$|LG5iowwm@&GO
zX!|q8g}U;f$prSZuufkoQFJ0g9`DeoiqAK;TuB?f@)E8aNTLzJ^(rRD6)=N{_%ZWL
z;us>j_yzaRKBgwecN4k213Io&Sg&!R(x&Z+-9L&5nQS&B#Im!q_e|vFCePHL!D$HS
zsj$m4zH6A($y*5$4jYrzJAcRZ26bgcUmr|M(J5znHmj&_t@`o$$iwocM$Zj3t6CS+
zjuscO?=!*J>di)BlC;bB-dVZoR@G!Xt`2s8*ea72``VTV_d<B0dZ}kz{kGC?Q8xHG
z#2XqEK|>m<bj8A(y3|lf?^!jAMvr%jsy7fXCoOKpKfFard8U=AV&5^YzeWATHY>mX
zgq{_i+BzTKK)tDPgD81AU_MdI)n=9`xr-U+nE)|^*|v6j!dW11s!ZSTz9bNtAe#G=
zx_Lhv^&h;(TFSWzo2pvhvtSE|BU!5Tm=Q*+5q-XKXilyHJsqV4F-yXq(dO!v-g&0k
zg*&16#+dE6Wud1>fhf7*uAJf0yDtg21yQ>`irnEzLi0H!1n&H>DM^PAz77%&;eyRM
zf2{cX;tfWUJw*JJMk*2n%@RhopMva7Fc)l4`hY~_==zBKVi>hoozfn6=6(l1yS9DH
z%$vKkM@mmp{b97zsz<(`{2nkCDH0Vum}1hRL}2sIFWKm2_FI45$p4^llY`_8OGbEb
zHk~L^A38BANIn?2L!LS;8BjsXL)i7EXwz!2%DzsRNZ0TQ-G_#eN|OSF5nUE0@K7wq
zwW)#k9^W?}mo;CC2+?#ALQRrrMlY3t(cZvte5<-gZQjva9iO~-sN!?bWWAEtliC^x
zs(T6u801{ML?gU$?5mr#y+;yHudU^Bi|%a#1rO`UWWZvhE4(l~MKr+)9iKB2dE5Rb
z6W<YKqDcJJNb)ihl`?Z^HpfU2Ev^@(4&RXAwHO}F;cSS)te>Ycr+&Vcq62BmLq4AK
z74Mp+%|`xuk{i7gGPm3qILLHwyLS?g>F2QC*z>74m3N)Vnyj>jAOmtyec4T_Mhk4-
zSFCSXU-8CEwGO2f5zs*rYU?L}jj;COZC>DRM#K%of40(9Mcql-x)#f{d@bVoa7aPq
z-M8(EuPC1hWi5aQH~?Gh&R6u}Lc>L3wHfgul$7}%sF|>ZJApu*u={?0!6l**>GW$P
zk~0$zxOBp~p8q=1QE8k!Q}*nT;}L8=JeV9dpCOADDU3jso5Nys%A-)g99#($kDTiY
zuPEPoQYd`M1vriKcp0*Rs&V0(&CsMLMtA1wDjinWh7c;wl^*tsGO$u<0+0ZO(+j6z
zsX?_jlC{t(FqCmh?#yLtbaMGer8ucl%64b=O<A}QlP#4d)%cftGg$J|>1v(f`O;@c
z7ZhyjoE#=Wk~WSSvH7!AkDk0OGN|5;@{6k=;;*bkOrP#sTzq?CF_tXm^N{&{g(x6*
z96)7J%uw<PYo^XgH2|Mzt~v3p0mx0|aAQQ4m{CAc134u-2K)z@3z=`0jG5H21?ZXe
zNgjRKc`<U|0?E^EA2(U{m6I#8THiXMru}I@cJga?j}aCP1J%#HtZR+gbdsFnR4kiH
zk7193%=3@8HKc=xhN450XX@T9#wk1<@XUUpA>y+2GV87^i?hInY!BxPcR3o|cjhmP
zA2`N{A(~&1Q|jJ6qd!8YqBC+))<sSBkyU4VkYbjUh`W%PV*j4j0uiz-u9CCl!jM8P
z1n)-%0}+<O_fP$Heg?aq+bWr#=4%Awg;282TD~0|14<y)?UW~c^M!W~D*JvfTb>|7
zcXN2u%_PPW_@646tC}Y589mbsUl*o{n(rWoczA)D&z8K)YL)!`8WoEpm7CAebZxiS
z_XFA5=M(rhvTf<UJH61-GV_ophuM603Jr*HuPbZzv>zD78OttEJ>;l+BMs-?d2v9!
z-xvvd$k+gnkv@nM%Dis*gXy`U(JII3N1r2piDXG<YF5xoDxvbSR>fXRH;bN3`TQCs
zT9ANP{Q4ukD#dyp+nQ}*kbt<*Qy$03$7ucOv`$Nl1J6q>3$DMFve*$i#6jz*QGsm6
zZj6YvE$P`6t^rdhrWiDiI?@W{0#i#nyCJRp>*onZGI|eCiRU}9TIvx+`Y`LeGABIG
ziJ_-v=y!3d3iVJ(l?`mm0?6fk6xnkL%9F4QzFB`q2*#mi0qn-ZYbZUl!9*tPWoLu<
zU2Ci<BBA&9<e+7xXP=egn<N);Cj|~D(JI?Dfue2nzzuG;_c;XxMY}KsUckYQKVDt*
z02i0-@Z3zfrz=KxF%{>ok&AjwkD_4k7QW;wBI8T^21!us<bW-Fz-Re0vnw$V^5~lV
z>#wFit6goqKRp^N>J=I<lC2Tp@x4Y>!1Ffa+r6+Yn;*BwoVMvE#jWG$5kvQ0pjXu3
zBj){UP1mg`vuft>VsKC#WbW409(3NHa}GqVDi`SGA?NjN$6#3%um{}Xe^uA$C%B#L
zC4yRmmHEaYcb+_tz-krr+@5Zr7X2)Z|H+C*w0FAn6W=khsYKY<tkr<B-9?yRl1Q}a
zotAIwtyo>k_wDK^mtimQx#+vdbAs*jwck8NPdtU$iXXNs%MH2?;j?QM$bF{Zl@uUP
z(C+arsVUpL8NiAp9Hw;tYRZBQdDFm19%{n+;v}zC(m?6ZC31Qpw6ygT35Q4xlP?v&
zW8l~8(m|5g^jJ99dm%r<&}TX4E<`p>YB|cRVS;8m>jK@ak^Qt|xkl}HuF+vu<ATe+
z*EDVIWG8Ug@zcF(czJ5ltpfD)a|yZ*z8`J*C_a9<D$wT)`+h%|BFG!-F8y0uRs60Z
zxD_Jt>RV~cv0`BO#eXMgOcvR#H!+cF9Y?~jX^3aC!4Z@Z>00L!szD!`aR4uA3fk+B
z(+YeO2&gc9$--w@CxVuq*Lwk^h=i{bgQXzsMe}-VvfczkN698CqTUf7!j;qyFN|jc
zbWMNaklqs!Pws5;tI;(oXj<>{!gErmVsJlNo~e(1x7D&cTaVQ2R8CezSS7!Ze$^)L
z+dFP(wQa;A@uDkSvO8HXzDO|!+U1MQfDM24Q}H0|ifL$U#X2I&b#69VAr3(iJuS`s
zLy-vT&RE3dY1>yM{a$gBIynyR|JA))q+~2q{(S?Zwa+lnn7dd{A<mfceaiD}Z>@O_
zvku-KVj0xJn(U}4HHkh9_l3ot65umMtgk$6zHmDYrS7hx$l@BFC{nrlvS_D<sj=(Y
z6MxO#OlQ^iYU~%s4Gsk>F@lSTB|}pJCz67twi7a`J)BT7qG)%C50QEcy_ZTxC{OS^
z1krx-(r3NLD*7*SiT{>4(*(@fO=2~CMcl_ffA%D0$U>xHFhqM8twtva{rR~1;FBTw
z>ypZ!@s=+pFVH?#cekc0)hy$<#!#Y<z3UhgpVN6S`Zm1Qer=>1<%Dz3KI8?xNIuEd
z)a9rN1f=@E-on<f)$sdZ8$b1VccQ+eWmjn?iGU6IQut)ICd)f7L*_55WiBQz8^h0t
zX}Bfmi}Q9(<P`P*_$=QrMf?&k%=dtc*ZB}KKWTkp64b~rqC~yKOYXB*o|5NHK$1&)
zc6@A-{<-mf1Gx=*ck8SPFOnIz_J*~NQXJ**R8f`UwDFx)tbr2I#&^-|#kq1T<Oc?7
z;Y^e%HNJ_6FRgqq&*S_w>A*F4ng6s~lS-Fx+h`NHsLn3;g5|gQw}+4;`5&)sxNdBa
z9}j#>*wMU!qG@nnl3O?`D|-rv9DT2+eWdGx&Jw{=(q0iznF<pRUvbCZz0#CeHaU*O
zT2Gd|IPQy216fDj9*B2OlrR%XVS3uhozU96U%uL}v_hT@>e1*C_{i<ONS5tbSI0Y|
z@HMxJJlljWvv(vGZ#Kj;o1sR)G%Vk6=sqnf(9bn}ARhUl!0dDmolTbxZDZEg*2Pyv
zT@f+tmOUsh#@-{!{~>hx`FnFhEWMerL93b?i_*(>>&cVSIOFXp4cn<~bGM^S9+F?R
zZpJCd7=PWF$eT2X6HENERn!t#$tQ$7-~6LzySrRvH`_3{rxaAfou$Zqm-7}{$>*ep
zBOl1p5kR|oPL&l1_bR`r_>r4+O#jbFT<V)S32#FA$iHjY*3@qa)8k*S;kFW#y#-)p
z$54I}VeTttvL7J5PSN8wWSQ+uE*tN!qI@D1SSeGbLFHyjpBfVCCez6%vvte>#_MO!
zxWiUYXuy`o`+9PmTwj-fU##0#-q)X6`IAI~UT|9dhQPI+?>V6Lmnvrv_6N_BhmrS0
zOC7SBf?ON*wc>^~Gn(I|)zpkb?|k^g*RgFe(B;md;oN}~vTv~{xKG0&{Oubm#;Ewy
z(gU$8MDWd8$9=P%rzF%5%HHj8J9e`7PYcFi^ILpLChh5n&?0czR{Ro->zGZ7!vu=;
z4Z`|2G>+WxZ)hBrSuiP=b|kNKrQhooBUNEHyPq^1_;^lOM7RkBx9#OR&bO$hy>ecp
zyr8k|og1-^3Sv$YEK+UxbbXtJHikko<+p8IV~KY?BYD_pt&*dDrJcNS`)kH#If6;u
z80@kQ!9<kVmC3=$!wrq~RLRLOD%>}`S}p=_r`GCUkE43#A1oym(VJ)xEIvRB79i6a
z_LpOs6XrvKIljPc>Bfv?i9<ZV19@bd2{=7A($Qfux_`JdoW-`?Y32LB>gNcQ9w=&M
z>j+ZK-PqB8)AtnqK&3-lKCy_?onSjn$>`?2W3pae@>bi~pp751y5$>WEqbq?`mHWk
zr<xh;h0_+*zfiujgnqjpy<MkJX*s0{Cr~|1RPxSfZc{_yPTrZsMO~Aaq7rnmDx1Ag
zQpbyF##-W;`9?U-$d$r#ccLo&;F<6g1-oPq#Ul3qb#|_ZVt@0?qkO}6c_gli-*QP9
z#Srj!-lHjEknG;Cv7@V(SiK0Py}aRYox~JGyX+~yUd>$RV}G}*_Ma`LmYah@LvlRL
z#;Mj}(@#7qgw^#64W?^Uoi_(tB9!ow$dhg*@xnho<kl?Sf+ITxhMV+7DqT(;3J0V|
za?VQg+J*#4x<n`slm8-%%qnf2D|bPAz;aw|L4iyDUngHVZ=bvKgZt?!Ee9AtU&y3h
zCI1*6zr21g8qWGf4q3a2iy1|8QHSdpfuywA`Nvxs8$o1IeBbz7#y38D(_hX0L4>o3
zaNZaNCYMWQ6+M2^HG6aR-8S=tr{ap(dnUp3N09YBDUT`GmtbARCAvB4FFAtNF9Dvs
z+sl8}vggLq0(rHq+Khu+wg=LH{}MMXRG@^F>k3+*I|Q$}4~*tnbQbC7J1uo(_M4&Q
zCfeCZ<pY?u6cH4r;bpS)<L?%Xe;7ksn;0v=w=|%AFhP=G7ek*z*wViJo60i{758{&
zg7gDC7kIgI>ESbd{GnFM&dk`z2V}FtyWyC^^@oO)?4?G#3vHgn#3<AZ3e|?@GiPbg
zc;AFC7l1_;aVAGedFkb%mON)g9q!qC>ge#M03yeRj5R0YnyY7ngrP|yx2c!F@K9>h
z2>!d>(1dFFX<jn=);A<L0|Ut-f(gp;7iRQ$f9mE;svu1N2|Gv8J4?3RcxD62UY{dt
z?|nCN;98)LPfV2>J~p~WojJyHAVyb*bwVd-7HTjN4@n0`lQr)GuK<nku@*GM2z7wS
zN}ei_eDqC_%lb5snNyLCy!YevXW(eYroB&yp-M=dbsHf_CU0I4UI5zSwOIG=%rDe+
zuKz0FUIxI$h!!hzEDrO;5>#JSQ#BENK7(P!12$y5YQ`u}@qird10Wn=l)9N|I5Cdy
zVo`*r+F!AzMTPi0aMhD$SRm=A60tSQ`t<43aPlYr8~z*L8R)(~AK0Ej+lB>@g!)dX
z&a?B)+^eF+eaG{0M)<XV6XViwH{ROdK!Hy59b1;|JfYu6DJ9NYQo|gg9#_>r($yQO
zbzEEe?lO_aptLXw_$4v#mC)__W*5~@*9|0|^m1{H!JipS6*9;gF0r9sd?)A7LU_83
zO*uQWS@U00y!|P$<i6Bp4EQHXClJ4$hLf0t1-}v0KQr2x>-783@-tnQtna@bS_Y%d
z&u>ZpbIy+Z_1{&!R04G)7p$vmgm#6g`(}_9V-*PlD#A^rU2dCAIB2=r#BM)H*jxBr
z15bc*wLC+h(`=0l9tUSk@TJc)ed+sadbu|c#6cdw(Ie0W`{3cL=wK{J@@FP*p^>ol
z_a5)$RQZ1@9?*82X|?<_qIdhTUG?KG$^bw2NzxX&ib45aPdiAj$DH4r&d&XDK{D6t
zp)kS5gks<DYpr(&ni@P^c?-paj3f3=x})XCBHV?E-`!xv<~0GA)&?YCJz*BXzwgQW
zx(@KFABp}<=pbHz(23PL<r(mFi{X~{w(TSy&!ftYe{Kpt<<_E7opUdcu+mwg7u0i2
zN`BgPHnhSz;~Zx(R#n(UnvMWeUWVD=mS{xPM*+X4D}w@dQm+v7*bt6=QX&b4k-lJG
z^zI%tUz9b+bHmJX{j{5zdh_;@9-k>3a0}z*H_{1n)X$Ob%i4WxwjHo;Xb;I6o%T%d
zF7x{(0xD)ImVMuA%(ZR6bPFt^MUnh&-E6UfHX5*b*n0m(qU+xZEDJ*EY3|Wv6UE=W
ztksl<>S`Ph-a6;jy=ttn&p?c)1u!OF6J`}=`=xvH?`imFTDO@Vl7M^o3PfLTKF23H
zKt_GZ{A-3T$VM@W@3*tbktmzz|8%*waK$EHmt;U4IRgnKp-!)JUQhRM*~ktv<h&t<
z1h&Ao#w!(oJ*tG!i2_EpdZA_JcVwAK@{Q@esz<pvB1(EzI-9QJ#{owX>4@rDREOl`
z_K)JGuU_Ke1uoEQ?4;$}5;0B9+n!aNRZY1+m^|FJ;wx_6#QUzxI=c(yPg;g(-oO3O
z;G0`<nxr9A*D$39ywdx=`qSW;EyI(jn#O{ML)Dr0sCN`ux<vZSmm8x7R`S`C@Zb4~
z2Do9vm2|8(f3shU?|uCz{ThuX*K1S<v*N0gvuSqR<CpMt!v8?Mrv9rQG1qDZHC{HP
z&^Jd^1a#@~PprRQgva)zV&jbNex(r$I1mnO3X-P8`mLNYG-l?z`~L73TdIZcF}y9I
zH7W;!r@-b#E`xr3{*+AUj!6uS&wd|jgfrvItZTt!oklg}T{P<%PhKiRuM2*OL)BFX
zTo2*-V=xV|`z$1CFPxhHIsHB=v;uoGX^||73Ek7NEi3REg&#)#c52Y@K)QDEtLLc=
zFu3oVY3AqVKFCm0eY->@H}}0{hEDZhb9M&vQ)sQ3FrJ>Gh<8NExLz{ywmbYUBrUtB
z>OtFwcVBeivyF#rReJTji$?Vf^V@A$>;MA)i=-(faJSEY?N5?srL6iva`^UUj?aD`
za-GlI36574@=|Z-O3!N__u322y-AxxA=Dk^b=RB8+O;p?t@X1-5QTRTRiiQ$J-toC
z&r<EwCa#s{OAWF4!i%ooYUo7l)1O`1H}?hd76XcIRS#UMCZJ(m>6;6t<5hVxGWU8V
zT;p4<?E@T((T8G;F=33wB%9L-56Q2tC^F(p_^_)sS|@TAf8ljomq><;6)HT@4@H#+
z=L5}P$jH!I{ac(^4$aK2YY9w=!HN%;#kKWx+=E-9U2)fGo$k>7E}|p~y>2h@=lSFx
zy_+OKbEwVqc&UzM0oAQRY;LkQWv?1a!I&6$cuSuv;$S^<w}VK0hQ*y~*nN?PqM&BZ
zrtCBESvH+Y3xat2fu}^fL=34G3%*v2btL5aAy&fNY<S4;ja$0+BmwuZ-_dPT-_6S|
zD#2Hv0vMk)gx^LUmEdA0^u{I;Pr9tnwOnX$S2Z~ZU31T|?9_(6wu-!<{duf1d%D*X
z*=yG^o`$0-y7zILN&AVS&yJ*+8Xv7NO-aE+vOyId1#6qmO35a-oZl&0WVJh~O{@;7
zXyoRJ8^am?f{kA(DqC=$Vo>$9+tNgwEAmBlB|)brvPqX7<j%W};!)0Fezb5;!fcbv
z45G-y`ld7Wjq;y6w>EF<y1FI$nq$BzdbIzBb1S`4YWmrA+HS_#<0dmwHZjF%Og~?L
zstP6kF&{{2Y4KQ+{}@!_vn0Lz|6UFE@A<ZOn}gg#5~g!c1Afc5RggK|(otFY8@7!$
zkOIHzzPzBs&FZz$(hS64QzQ7<wb&p1<FB#4in$hfIIO=Ev%6zNcK?yGl69f5>qWy?
zV10VB(mdi4DStEoz>+2DXBYbemeOMYW&rxK^l6NgK^=`cP;Ct&Rs&X;hYqC)yQ%xB
zMK%vVdcO3p>E#|j+We{H3<R5of_RsDSNc3gbW@CFpFt{;cIXSt$(^}z%R*XDuR6Z#
zNi*L=W!uTj9uD@XQ{2X}n7du=tVQtby5$|k!`ViQwMgc=b5&A+3%lbn%jcXw2`o{w
z(?8+OE7t+Nbg}P|9%hmgiS~Gwkg=&s;PSO*ylfm<f+W~td<L_1JPZq{n29s==0EkK
z)7kQ&P-ifk@dGf7nPV$`D{s{}$%CCqo_F`}U3*{sqG1tiDf~mL@cBdS2BBR8>3}Am
z>Lzh}OmD(fTZ*(|dqb(qVDge60g}p(O^gKYtjX=3SjnB9_b$!bUr#7+<P!X59~US5
zT=q|ZlCV)%;s1btJ9>F}YcA$|1GNDPGK={#)41OA^k(Ky2_xC-NbNkL-$l<u$lbpq
zctq1p1J>iIxBC+*Up1`*0pLFfnWTl``+0CrQA<qyrsDZU`QfM?4P^a24|hlTS&Ljk
zn2>&Fc)I!V_C<AvB!NuxX0Baqg3Zk-fGVPDvq|EXgp)d~FI|ag|EKFX;o1^?mt5Is
zp~FOFZ{?IH8E2d&`Y{Xslqw|qKYkp#ejamybPiFvKZi#9%5yjW9kpW`^c{-q>-ReV
z62GJ3G6Lam1q}CpU(5xmrJwS;-3cPPHSyRjzSe}oe4Dn%mxf<qfWUOI6M`e+%JSo>
z{}XwC?8ubo>Oj8y1Cm8#ARM_0BqImPJWpjtQ<T(!*3j_$J+3#Ub*e-Ar&~JA<Zt*s
z2WL$agm7?h@wn}UGXd?Pj@iwU=N)G}EkZ5}?^A^7mSF0(1l^ASV_dLSQWkLiiqV%7
zpyy=cQ!iKmP>j6Ge&LjdQvcbd4`Cb;<$jQgW5m?e#_#ca4uw=kJM_2vx(6nIDuII*
z41fe0j5p0h1j`_%vulf9)!ZvxC?Pe<#Mye(gEes(;qhTxzXgD{d|-d9f;EFVy0)xb
za*C5)bR2rE<EIvhEHlz+iz?cfN_HLk+M9GaiL02Xo5(zrUf8JpZp0die{Aa#0plni
ze|eh1*UqN%<)v#l9AY&xWl#8||CP$_r;LFfXl4Cz=Cg0OU7_gq6%w;6OYb+SVm5gN
z^b@G`p5hbj5T0<BnWfv_dSFtJsiYOxfOEVva;qSIiNRmT%=o15?5*t4>{tCD!j)@x
zuZc!be0&trfJ6RR@qZ`4WT4EX)M1t#{FG3^`N{5iJFrV~i9nj^C7nYyef#}jNmPtd
zaz4H{{9p5u=8{DzeABtKaLntezdK>%MLo||z~?pp;`aVK$ByW8tV}%8Rfi70q~DGg
zQl%I77=@0YazUP&N(uZNc>`(?tut57g{Y=XXTK_~(l@~tHFhl#?{IgmLJ9+Z^Z;TN
z+cHd4SXnyzH}cB|`(sDQV-wnU@S>zw^<K3<SJT!<(BtY0YqSJQ#I4tGrlK-wnSynl
z5aX)OZ{f2*z0d>5+a+#Cpunfjsn^x<^{$15C9HOT6?Xo_akNOx^IRL)#&GAf6l5_w
zN`&N({zBmSS3LZ!5L2?~`IITkC980-`U`Jo9|<&cBh%7l$ML<MgpxK-bu~wpKO9s+
z9+Cfs{1LR`y8f@^mrGF*`S2A4Ey25bE-1=k?^LL463w0~+FOSMbX)bviMnxAI%mMz
ze5J|obGciDwn=WCn4eC6dbEQ#+Q!@amlF?W*`*8<yToiwS3BFJlQ(o<rtjnY-U23&
z&IUi0yY9dD{olb+MvD~x0|F=@rlbQ)m?OhG!ot>M2k;@4OALi*c!LU+TqCo4Rf|m%
z=;q$S{ct=OIp9XIi_Uf!_IU9|kGxd@E0yc3eIXi60)O;)lJ#r9&n#DrX-ofO<=iLd
z!KZo_eG`z4iN<<Nq5YuW4Q>&3J=5&OHkSaVNBE_>tcruj0eZr<SoEj_e#@6jeWS43
zA7ZM1*UJ$E{EuEv;CH>;e+;P%y*$CkL*o)v^ie#L3@TUlnfwg|MRj(iDUB#swfw+K
zMZl*)xWv)COz~bkpEniOY2MSrD(kw2S3PrCIPL%!_5$<IMwNdPLivNq!&|$Rm;yGa
zXPay468N3V8&6z#-MsVlU*#<S@q+H%8S}6G+&`aInvqV|MD&ND{l8o}HRk44K4Xp#
zxGfy~rw$KaXZjJhCj7vx>54ErQH1E(-u6s)#nGG_a>f<1$g0eu{|9L!I<|2n;KO#1
zav^$tv^nNvYHW9dn!EY#Tz%Kq;3n17(9$RYef>R>X-~i-G#W>F5}G9h&kG`34^5GU
z6V4xvin!C8_knHMvMv!Dfb|j!jy%rjQ?A?KgaNzT-i!b`BybpZg<N@^{B6iv@-+@D
zYZJg&cYDY-BYMtpa3VXM9Pb!`8@xI~-%NcPrd+qu%Ee{Va?^`6c=LfylEZAc?!k99
z3XG@06HUjSM0@AG;xZgz0!>$AFGA*1Y#GA9ZqZaJIZk^sQ{Y^z_n85|J2FdXtK%Mk
zTViSb*U!=V_uQWOCXiZ!o)}dfN$&R#Wx&!97KaNRVfiLOBtBN`Yv0x~*J4g(0OB%(
zL2<I$GUq3!VbP)cTa*(>AXW&~f$iQ}^1Zq0-a5YA!tEqs7j^o{>f>U$GzT4O5h8~O
z@6#V1C2gs}c2gg3T)Kcq;yX98{<_w2n7B4%uSDsL12q4+ZDy7`dQK8ntjx&oHO{Tk
zXv?S%dLQ|1{#$9QLBx9YV|}w$+a?{bCU7p7z5<n1=`bzO1i56i{{mn-l6L>YTnb~)
zHO@cyJ`abXf3dV%`trXlde`N~fQ0k1rCaE`D|<ff)+MqlI*YSI(x9+6p{J2G!t^Ne
zFMB(`I;Ka-Jo^HEy)NRCAH!es2KlX;4<se_vMPdOATicte;RhW)R+Ayb_vwqXr8#}
zCjqzEoXa+?&iVU$1+zf=|7rf}<v#~qmUudk7RVv81y;QpLrpjY2jZGdE$p2eb3hQ~
z?Q!_>SL+v7<<<IEtRHgu+QN;JKWgE%t;d9;0TcZak-FjqK8|_FN76z0os^HB_lTH{
zK5*{c;2XvVV)W6VNZfTT0T&SP?gig|lb8y;NN4P!ABzmC3E=DKPt?gvPfs6IQynf{
zjf>j|3=h|+wM%=|XftzvJLZ9h3vwH5N#|sQ+Z%pOD`B0bbcRWeqvQ5pYGMs{AMeIg
zef2D;uabk0q-x{F_6wraEBKZ~lMh(sP3ou0+W$7If`j7xD==m}Q6kXZg|fA`w_j4t
z06MDWDbuf;m(S<Zd39ktm^_Y%LGTC(FEH6$mk5d`Pr13N@eh@E9?M*RWHR%stw(+j
ztdR5XJMka}Sn`29mJ7vz;+(`f8dmz-wok^W;3LkSMSgX_(rv&pX*y|7wBTWLD|orJ
z_{UJQn^|&M!IO<uBE>D9#b5oS6pqVK{uY@@+(QHz`0coJ@WsL%XPXf{tw(xM+V*YE
z<r$67sF~_7$wZb^;zE6>K`aSP=FCS)2^L3F^MERSVYd=6MQC9$UAWZj`Xo=s)qlX}
zO%+Mw);zpC6wpUpm&uR_f8`wr*Ktsal?N%A{l~EL4#!_>?`A!ZXApm*zdN%0%l_^y
z!CzfGsJQzJmWk{5;RarE=e4#k&t~mgoyXSyI+z*n_B=&G_i3VpA@*C^#g1^LpCVT@
zwN@CZd_}Vp$+6ECm-)=@O=-q7$(h$n-IuF1{wDGNuL5r~bjI@Rn3dq~gPGwT-2bG@
z<L(kWTISklxfx&v44D?dL2eKMx5D7RPONl{zjkRnJza%WbVq9dIHwbxCOKb@k{ZBF
zIvge8{C30lyX^xOt!mq1Em~q?Vjo4Jvg-G)#?KzOkN<+Nq{1?OkFNyQ)Y$NRcJwvZ
zPM)oh2jKR5`&T`R*<>R_NCU5Wk}Em?n5R}`|9@5I2RPsZ{srt|X7uGrfPxWpL-wj&
zB4=M>*3Pk#+eL<#?_O@z{ZA8k#hHx0?+;6L|FiV_v!%NKPzEYML1zbWBHT|hpq@Rq
zoPiJMsVg6_XE%2R?~ef}pIouYnx|d#6|ZnwzLlG<>wl(#c4+bH*8#7DYz-#&h^6)7
zU$VsCp!{^f0`gj>fMr-}IRk^0Pw2~EhM`H*(c!aj4dB=*7rZe~vcJ2N;7#tW4&a*P
zm0M)lwu3@`RmA9Lpcs)NW>R|s^Ux&0@|VD=pr3QnxrOHJu3f=LMjUTJL~aRdviw=?
zXYYqw3)FrA<AvlbYiE+2NqW8{=-#jVY<p%1ix4Tjc(a7Vtr^`E;~&2YVf5X9N(lc6
zXp_X#cJ{eO(yqu0y1^3rw^>d*bA#AfY^klms<D5E+^i%cC5Zit=Fd;9@xh-If61IO
z693G0!au;U0OTgW<f;TKcJ}q0+J9mHPIKTd_wW93U)Vh|B=GB|f=N0};2-o*)0sPb
z7~G0t=n*kAppK#jf?KENPqGX{^tc>B-K65V<`!nsaoDuS^Z1go?}Bxx_u7q&l8>ah
z2_8A!+-I0(FK2LLn%LbH4K4XQTMBhPy(91BLWHhHQlEwN(f8tZU7ZNf9LNTUoRGh_
zq|j?6dvoruz%1jo9rvVWBLqO}MfK|SRn~{zWEz*Nhu0KEvy|m9(*K|mPI{jG-?e|&
z|C)wVPvvr>&L=BNcur*D6$h|Q9yPlBhc&#gnryCjV!tAsS-<Rozk51)Z_4<h_F))3
zzC6*Fb(+*Cxp&5iYbsTyv%`QpPx2+W$xg|6V8VrmO3O%ZU7_uY>Q|WoBGI4Ae^_4#
zX@dz~qfQ+pdG*V3LWHHT>(8y|r3fHJ?PjV1+U7&xkiR_>wHB;uV1ZRE)p*d$tdGVS
zz#{1)9om4%bM!L$1R_ukpbxz40Q(lpcwK-ovFJGg>CbY^FRSE@gl3bMap>>$QLnq%
z4*{gDu$9%69NP2`lBbNqUfP%2d6!#y8rCxiIIs}80=Py`i$laM%FOk^_q0UJ^yY{S
zjXR%JfH@gBg0&8I*;N5G^vnOJy|awUa$mc>fP^#x(n?4O(h`ESAdR#L2uLXnQqm#a
zT@oq{k`mG-UD90&(y&MY!Slbt+Aeju*V^y9&p6}w(Jwy3@jUl+U)P-TH`%USd7nS6
zY2}TpW2_!;Eid4i#6zX3WWP<bI*@c_29^~>`O023sQX1M1*(@TEHsBe-cP#S<pZ~Q
zY!2r*FqveHbIZgb4HAun<$5*Z!*|H9!KgJ#{4{E}g)1)ksdEUJD3?1?23+&o5PA9R
zL;VD{N1t{Xu*;A|i9Oyo4y-cg=Ssd&HD?bjGzAFTbgCNVz%G*=vq)!kA8wFREjszs
zI>N5oFO%p`L5joC_--1!sMnS)Iw@LCN!6AdlyrE+fxq;grlMc#si~M)E2}k#)%B27
zHWN~D2Ol&`AlV}<7&*eLnqnt6J<#J_aFOojj&BDpu@-7cyzqWUR=r09KtGhdzF;(n
zo43R&eI#o|jQEylfc*~>d5jSC8Q?@L-a-?43!IAOuH%g%2)pgpzJ`S>f{m8OD&C=N
zfmJ(Jx75k$VOtnMUX=-ZlQ1@x<-S}Yhg)T1j=mLynFW~_W$-GqHtEx~J$NT8L9Oh{
z0{Sa)VI?nt0`hT?!<*-!!#?2B0Nx~`s}hO8Lo@O2(GrI|)21hiyiz~djG#0F{Ilva
zV_E5R@?Ff&L^8D5*e)ITAD|Q8d+m7R1x4xH1^cbnI^2b>{;3>rS#tt#2=A5gj=eE{
z^l&dIx`7v&&7?g#*=U}w)XNs;uoZ#s^42s{olZaxN1QfV3&|IYr-Bz1J{63}3W!OM
z@Z_&%X-E-V<g!|heqFw@HP6ZPxJMS!^ngN0wtyhuQm(*X23FFZoNF&JURt1WZ9;(r
zl2xAO5FdM52K>jJ3EWYaS>O5{_Cp>Sx3W+>0e<zT((o@xmJh{A5MPcKz(}WfN;Mjl
zB$nRuD1{`$4*Juh!e{XE&g{n!(}rDvV(Hmh`|P^ewGA<E@gTvfqC~F$z(fi@08a$D
zQ0&2ucRxH=2*IEllV}S_?KNkgBjv*vZBPb!AGdK8Y69^BAK2XkRn=5t6y3d8ig(fS
z_0Q>pTtgl#^Ag(hOEe-mrCaz4v*!^8fs3ZtyH)~mG0ox?^0>7ydY=XeuRHmQ92-(!
zAzz?#eBr#Ad<7OYE+E6SthZ0Lz;hvP;g&mZzz0z$5Rk9EsZ~r#{hsNWqiroL&#gxI
zMtDzj5^+Lat}|-FX4*O^rJ<1R%o!GIP?MkC@~*&`LzDF5?m?;7%E7qC#Lvj-a!7UR
zC(hq`>auK$02g+(w7KT7p)!?a!xJ~l9G=onrp>PFGNt+}lL+jCigYXYz!556x%yt)
zTx%y)x>I3_X=)P2Q^r6dZlyL|xcFyO&JaTwIDQvFXs?YhCD)$~(p+-EBwW?f9X~sP
z8A@jNF6UHpBMh!--T+aX1?TCwS97V%yyji#fa3sfq?uNZhj{Hmk(h}|bDV$<n^lOW
zY3AsC>*a~(y^kv4$V92-^-o{LAthRytF$cB!al!C`LUGLvCKwXWniEmJ`&IE_zpT`
zH@X2|L|N#Re7PM{fuXqFnxv_=v(3SaK8-lC`33aJxz^8@JFVCi_D=Dl2R+OxNUpHv
z7Qs~a;4BbXFdQJ_#i;tjv&yvkM(dzM<XbQD4_zhpCsxeJ5y*-OzFtJNYPeW}$SB!%
zQ(UinM=WQtL+KwM#6xz>yPvTCkFB-O0uj%J?tifh!0UdgnSkPDm17Kw%bK_0^J{><
zEf>X2C9U8Ubbfp7%1mrk^7c*Vo$Oc^!$><&2moN<_rr|*_TCj-vBtm1e9M!KpWxOX
z!?!P)^ojrzxD13si9o^I&yR9L_YL$#k258e;1aR|5%b$ocpN4QfI7Xd&3IOMl19hH
zV4+L~I9GN7210+FSL~=X+dm%lE)?xdtXiM~F?8lf`V)@I5MBR*gvG1ho?ZUaHi?c(
zkQaBqH(&ekRw!Lw&sEF!d4#-1(Tjs=L75|E{nbKX@`2#pZr@^m3lGtm87enuV41OA
z+us8uol3hsW+}K;#%xl<rNtL<$SkK<n1>5SRxhjQBBWs9MK2h%_0d!1jC>m&ht|8X
z!ZnnqG9aA*w6mupcdQ~72U7e9xpcgpFg7}IpMt>N5bvkJ-lCta{JC-yx3L`SLvg}~
z=Vk*eZtQtgQX^+HSptuX5CbqOj6zXFOVJ>Qj$Pn;(M4NSF0Qf$9v2nXe&xj;1Z`w!
zME#Yt2Ru9rfR*w*;9B|1%+??ujD!VMxnpnVG};tbXJ=QH2p3SC>va$XHavLTEf=<g
z?EvuIIQV?mt4oOUrz?9~h~X2W9O^6uRK_{9MGB1Ek$O3NY2sJPV67b+Tlg{q-?%t*
zSnIjl#MyZ-pT$dqel+;xh$9#iXv^$@S4#DZ<<;Vh@mNv~+XTb2&9{nj>le@7#{v%~
zJzcMu=)vy3aIrAtyA<#D4RiZfZ>mt<O|byD>i+I-Od7f#2yZe`$daGCDGV$_A%$Cz
zx22wp5)N^n`H$LmB8GO5l^h)W{c-eS0;&0)9c!M!dC(%^Y!z}GJ^)~YoKdWMKwBo{
z(36y7-@+Xes&H}Ab;pg=&-;+22~DJu?nc717++R4h<M;6>9o+7ukCwzo)e5y8S6ff
z^G*liooJZ==CNxMPIUMEQ{j;a>Rsbqc?N#{1PE$UUx|2?#a!kUyn8QrvWMz=I^<W!
z8Y=6l-BgxiL`s+F%QywcYP|7Q=kp}GL((&6{B;!Rh9Vi^QL5EY&Fe!^h8e<Q5VX@l
z>n*vYEp;4!xTpcZE#1?VkTa95Vc-<PCE_Pd;?1ZmS@2A@Ou^o{6U9<CBMt=DuJ$-<
zzLO>?DJ@{hLcpNow4cPZ*E82!*gHjsSvY|SvK?f)9v%XUt6FC9fTZGwUtyW#1d`(2
z2>fsP55XR{mUizr;I5Iqp5JrhK%>$`UA)>=tB`pcw;oSt{i0Mb7?OHi14%Lze4!fP
zj2f-`FO%pTp&8{i@RNN!O`cQhGR-<pJ2S@(yew5FfmQPrz+4lktDy4=_mR=iD4YaN
zFiDrDCJQ1SLG*)_)<=Py3c;O4h=T-rM=|qfcC!yhYv#%fQb+)x;PTEQo{0=NL1HUZ
z5BG4$YdUC-H3pDm%@(+J%7#?~F3pXjN6nFJ;u-{o(7i{)Ynx}RzO{_9g6yKuR;M~l
zZ~z=_LH=bgp*$5M6T&yxyUQ*wY|m*@T&0nsid!2x6*O|Osa!{B0+l=~!|${z0(VE?
zc)3+<o(*aAK63D|B!w5O&YSUyC~1yM+%0?zqKT{Va*;(=R<5%iq{rTp;)!Ah0pphJ
z#3XB+f0;YfJ>)vKp$|=B8>C)sT{(Q;%y~(Ik+MQjMea^H359o#AhF7`Ew&}JM8rv3
zp~;d-idjQmi47sFqj#f~C*f|16)4;tV_qAend6H@<^iw7V-|l`*tl%tOv|~>!%isR
zo&Twk=D*+<iLbw+R+>Z`d0F;QT*9ixrlCj)kW45u+DNdeGwW{z?b{HVOKJ4jeR7aU
zR6-PzUhfxT#jid*P$A?-4aL9gPME}_iGY^*+ym<80B-F*AgMtT!Ug+F^GWmR^Lcv+
z1<9-mHi74#TRr^DHrXLJ-wqHQIpuG7%-&ix2bCLTj-emSfsRJdFaYSiypFw6K#>FX
z<6bmuII23Z1NGPGwjtMHs-Z8B6yAU$-cZ!Lzi(h45M6t&0pQ6lAQog=u50ofRB!mw
zfs8q1I&n7xdif%FU0sBPCHx*aO+oYdbuCC|gY-7VBC9NCFHFH$uLq5*AmJCrAbK)|
zo}{=QpwKmslyR-3x}gfJ-c(f@ji>x}Gt$9WPRNk&|I=>Nt58Brh4U|)5p@)u!GC@;
zx+eVFW5<|_U0HF#W=h?>mKC77&Xz<)P*%XGH4X0#4}z76+%S5Xf0crfY?&ZgB8{;p
ztru(IkH;}GTuInl($o)dZ0~HG>4n#|0$I710yJ{TNt&mY#Y@OT+XU1f)42lSHrPgE
z&?bx*$qFRY9`AQVR%v+?-{Z68$Q$MCnMxRzHa9L-Z;sBPN0BXPd_7o&o+XhiOuF~#
zB<L*!1-)BGM3|J$MUMv&v5FL#4t53wG=18J6hI}6gogI7W|3v7bAFc!i&@eI><jG`
z({+zV@d3Oe3#0_j`5#f4<vz`k<Z1FJObP7oOI~JO<u*$a-X(b*I2G%>{Q5@NN;?8e
z>;!6dEFv2Il!p4nV=)bcGO0_jy5Dv0UWbMd>jC+G1e(&VgxZZ<w=-dE;**j1hN5k6
zJ_iLvA*)l+{qszgW{lGc8uDt1KpmD0fhW-i#JQG0J3!R30wHfP4y2P{+NlK)u@h}0
z`}f9?3%h&0lw6a*YO#@ve1@{ui-)5t)C{-DOdykD%thEyVIN)tH>Vxw8kwW@f-H;^
z>>s1y`KgeRlOvQ7LQAb5UknNFKDeLr#19UdNKx{MXWQ$Uzf7dI2u6468~Yf`V;OJG
zDJ$vqPievHuMyo<B>8?Ty2ovS;l2c-;i?V5OtLNi@~#K_DRRWcT%!-Re8LpwiyVpj
zcRhk4ct`l8CE^YdJUbfulu<Q;Ys0PxeBO-4<=!Cq1OYBc;pO(?x2G@Yy#V>{B*Zq!
zW{)TCbQ$_3Ci~Qw=4c40i3>_t9FzIj)LT~a+wk)h<}#04ed&;f^GXmSX-K&fYHM`R
z8CaO!jYOOwF;6FrH^j(cZU4af8hcgcpu`n0OvJfc-=;B}*~ijx$0b2u(iqq`aBtX6
zmT%EVp;-pTet^!l&}%MG%IFQlt5^mqoYs@7(3k8>y&|k6Y=uNU=i|#^Nr?~@bhK5_
zy)+Al#;!C{uMWf9|0DaQn2A@qlqt56%Z(J7sHkRxMe^DSg_7Rop-R=XGxmsX^M<f7
z9ak)9_}M2q>=!KSsjjU`9GMI3Tdsu{WIxZ6P~{*uq}mtJS~70K>x*pP4=G?0y7_X5
zWfUA7xEVJ|iXU6tBJYJh_Ck&Q@_x}$hqU{Fs)pUA>F2GX8zU?D0+zTl&0vL7F@1mS
zeIwC+)#3R|8k;Ji7kt<GCRb-8wAs=sR1By;(sDQZqnMn2pm-hW(&fBG*CiY}gWd=k
z(PFbz8_3P!jrQLojsS-V=v?~`&84eJsYD8@D1aaVagH(oek9XkT99u?u3O->>}#z}
zG#xShbO;=|wDH*jvMfBaNaTTf^BxMlSQ$)cX%o<_mv+Q9nt+2*2UE4&sd9fyieoQ7
zquGU4>yy<RUJHo<5$eH#*pLt-5*R)}fd<n3^8l-5uXSLp2*lTfLyd>8aGi`e!4WR^
ztj{AZc~FNG90`l<E98ZdHC^wS;pDiV4l=oi+|V!sL2a4mcj9L}uVZpxDH$WhxWJTv
zUqYs86azr=m^o{~tEeicjVlC`HIo>$8I%_`j1z{7sA;BV(aV=aml}N=S%dIf7F|`0
z-n>BUssy%r1N(l(vTQF9bDIon!!4Qz>44(T>41ImiSSoBaik?#>eZnl3BnJbjmaKq
zt@#KpGLLgF9|X67w@h{jJ4Vt&p|Q!c!)>JEz8~>CSKWqGd_ZzLqU?q1(pd&cxl^`T
zk-vAbV*~b%h<V_2gaa;r7J-CnkaqiiBeJ;g@QhX$sXCWq2yc9XXwbWMhaQ;tBpa@n
zXEmFlGSLh)SpY358VMObM6gl{)s<^<x;Xc4^qUh0=MHxot^d<wU58^iwC<>=re;Mf
z<yIbVwTr!3QB{rNvq0p|eDZ|src!b_2w7L^>)zFP=eJmCPocj+Ll>?BZnjR64$!d<
z+e8~AwxFV!+f4g$nnginEZfAa2H{*v@?iyCrE4{==f-WWbGsQH<=?m<Rm@8C_tv97
z9qe{i4x^V{5Q5O77m`LZw3~2L))R`_qNuqSLENkls8|=rNs*4>S1`%;4zJ0Lb!Mwp
zoLb@M+m8+TrMsjzKt{V%(+qI*)e72!8F!SyYrj9rqWB^_jFk@;uBN70sn{ZC^LQkh
z8SVCBFuQ5_VS_MT!*h@rqYJyPSxz$z%PzoYuh$WaGnmIC8$e+gT_r_ec<e5r*sCJ|
z?yI%u3WZL=r{j-S%F41ilu+e31sUl?A5dPZnX2U{ud*9uAHTn;yZ%=6Bfx1{jRD|e
zHsLi%s%1x^<(OA7DevGUUE1x0Y)$Gt!*L@Q$ZDp*haEe|3?giY3cxjm=F;rCPe;Tz
zA@f=kyr862-I~@;3EHW)8!roYf~(ilUZnG6Y@QN}B~_{4>afffNEC6pSPix}rnWjG
z3F&n$kptl0x63m^H^Z)-C0i{rI;DITy>jYgG+p4zCpD=8RId4@xp}`%dk|o|B_gb(
zCeZ9z$&+^-X7~?O1gZySA+A>kb0p`zh2R&|?9Jk}<`R7p?(yxI!o@9RMp%cp$Y^&b
zbVS5U-8|Hjn3Qz=!_}OK!#X>%4T0;1)Y1OV>T?qUu0CMb{~P<#aK&J_lnoe8#-VTG
z3&>0nLi+oJ-RS+|^_o`4xuk};F(n=0n~hRKgkTE(Fqx1@iwlo`djT(5W>@-B+elei
z&4wW6F&<LYRJAIpSZ5$;JP^~Z^;P6>&Ku50MJlS&$->{C>5c}X?ugs||3lrkhdL2(
zs8dS>RO6ug>Nq9$pMj)L8oHu#R;vff;gEy?qVNr2uMUo2%J?T`AXfdn&5wv9GmwPq
zeLkK~mMIPk|C6H=8rIJQCwEtY4<JT%Bb8!U7vLQs%p-(*%uFpFfM8g2V8Qx~EM6M^
z7@@2--E;@ppB!~2F_0un91(3pTTH?|q7!PBg6PG7Vypltwnrq;I0NCcQexdM5w}vG
zDFh*JSdl-#qtD=d2gd<(49qT`QZU%7N2K5h+;*akRE%vROI6)_yiwXMi*y&yVRNi}
zODP5+H09OdUHI2&8743Pv5sV1;_#a~((fMWH2K^ukz(>*X3|2zYsi*ZM^t0=I6l!a
zz*3ZP&$9*nE$_zJx&(nTQb(AcH&?Hjx^LNbwo{XIpRr2|yNY~`aqrQBTS1vAaNQpB
zAaP{5My=qN_x;116-b(3_F}=(vBtiQIZVkQ4gK1guA{%WP(d_gOnl$0%P6gseUw2*
zaxl_^M&-@Cp@vsKWe<7q2Y`fwK*moXkTIJf#rx68!yH<G=J1*`J1iQ^q>f@x1UAB+
z!CM)cMMJ;5+DTpFhV~>7xpj6_|2mUuDt&)4lkjH#*-TOeA`%pbI^l#UctJC%-E|ao
z8qoW8v}2{y0!aYpv`MAh;bFnE1l|WCfD<CvgXXs0&>FFS{zOFDXm%Vu3`gmXfsBf4
zW@`e0l4J7bwNsXWy{QvJrm>tmHxfaB*B8-;0=szDingXkGVa<{m0zt($2!t5lwm9N
zeC;U--k(!V<r`y<3Cp5YPzJc(9)e;SdP~7)A=$4X2izg7stkHf%p^LE#G@pr7py|>
zQtR$|-2w8{_s+FVwS*jjT-jpjtB42{Hd_JRAf7@_;KFyo^;R)O0tV0Eg1WjS+Fhnn
zAbphxgS6RAK9Huq2S;j=bOb<JyYg3#li-X>?{6(UJIuXP!jLjqlQ$f_?>mjcVjD^&
zI>6+}N@CcZ7IFbdiul~^1x%x%*bdRJ0n^y^{N*>~CY-EEuO;fcl-xZ|wx<StHFubL
z{W8Ud4x8nMGmhgpj_{Tf00`N{LR&C{EXcmR;!26!9H`I46r;-s_aH|-rW?x(x##81
z6j%Le8f>2Fgd%66AvNXaFP?$Uz*lz;>sIaqjIrAyhw8o_vOk9ZD4+-xsj+uoHP{#g
zJWeYRw}+zD*|Phsw>AN4Z=WlBZTh^@0R1!?8NpMVRb&?<;+r7>x>t$aI_^H`#ZN5N
zM@)WIC~!sh0RhpJY~0&9&kBO;O7eJTc2di}PAIo6k9Ix6FIv)*$7UKEfEt`;pBAob
ztgf#4kjy(fW}e97c?rG7O;r}akgY=%n7!L(G-yt|T+wbbWFc<f`JI&Xw`WwHZ^!?u
zViE!y{{#LA7ZLx)u@Rad2uinUxCA3DJr{w0zKG!qaR1K5oGRJoQy#_L$N4XN!0RbA
zNxbN+rqn2nkYBVkm?bl583wL`pQ4wG0@zyMHUgDF9;x?){^m{ZmK=>{%7b6r?-<R6
zeB+Qzm>xwU{6IG{FZo6{Vi^7J>P9&drA%Tle}%LH@UGrLD(l-?z)T5w7{rn6cu^lV
z0c+qH(^G@yp9~FealaZG+_vDsinLyV1_l#rq9uP?YIu~(JIX{R^_xln=ooT&l(cRu
zfLvU^JjX>n(R?E)^9?7dMq&K$)OhN7^74jP8Iwi}M4rvAJMK1c<pC6Et1&A$gL<PL
z{tF`on3RUZjw?%fW!G<?210_$uol%E+Z8t5o@71a(`{r(XE^6wVr>4sH3^tLdv%q*
zp6`BtEdAxGRKvRm!i1p(PjaUcUOET<tB}O;qp7s)A`%2g7lU5*>44XCZQkO?*E=GW
zm!{>3fJywjt_J*Q04Jed`qiSujK%iXi&8&9E}0&-C5vUT(aEM{nnRAIqlBWlu1Sie
z0pK00FF@|uBKbm^0z}6DZc)nS|7KC5{NbWh|F+{FsY&c!pdYGy{{eV6T<QXwk{p1a
zZpo0&5TfGq_C6>7o2!yp*GM&*QBIc9$ZMbk+|6~G-njx8i~`$n^p33XjfjoLAoz5f
zfoPtXZ4Zhfl<Cgj{78$hIzZ#7n+@e_97zUt%`oVeBG)~GQD1Z0!1J@Cr#Cki5Tn=X
z<-fe|FEdsM*E6Hy5}>nrN1i=0ALjheYz?)2$}Zo|BC%nyZ*F-gml;oouwgqs%iAuV
zMKO@jI~-a;B1=~@ido?bbdQhPL;wHl((n2jYSLYc*nVKmBf%lTC1IcB|M?(d|Meh>
z^G(i}C|4#KdMS_b7)ss%XwhsMDSgXt8XTnH@7Dk~Q)hz(suGtM`UNEj)ByoIfFpU|
z29#+%1f+b>U&FQF6i#YFURsOU<EjXvAxz#K%$DGSXLalI1rPTJ7d(T%yx>8%KnUEi
z&(qAU?41C2P5a<eV@w9)jFif9*%^!Sk!`yBZ&kuMT1jRv>?F`6pYN@#ufljK3G7M_
zwgTXK$apr`Cbg^UBiYh5hWAGRaZ#s3K_f$g$e+SYD-@PgmbAiZhUBAauS%7H;@#RA
z(8oqdxV2rrz3p?L-zllEHky_zwfus=#}xE69}br!Uq|Ft$ASFo4}K{yA^vw(rqRRF
zBl}5t(7ckoyOd{&sFbUk#`nhJ)9xg-x~=tNkqKU@0wign10V~iN$3XN4ZR67t%;%P
z>M8~X1|^;{YkK@csi`}{>M?f5gsH3yv0?o&n<;+3Rqm%GwJS$M&w^6N<vsu8zB}mN
zS|}rN-B}sQFxPIps4JvV%hP}|ugrc+>mfp0H8PbXcz6|F9S9!#f~5MSG;!&932L7Q
zAl62PB0$DYZFUPRwBFlzYyXY?&i3xCxFZHB2`a-z#6j`FB|LuTWewOr-}A;=plTR+
zE6Qy*m$K{e$V^PVR5H>7=E3FkL{kcj{ba@y)(1X*O5UoVfJK?g2QU}w;ElfMOb~Ms
zY$b6l1IJEzkqr-s@;(8DwC)HQ(H6vVu69gGE-x9m2q52>&p*rJ-fjScdLH%SOcuyp
z#j|T5$OLY+iQAa#>MEg~S2EkFBHL-7Y46#DQ6kl=BpXVzW=?PALCpcsX=5zV3DYMt
z>x(;b%9}X78sPO0aRQD@Yy5b9s(f}ZF#Lv1HHVBO9bc`(6I>I+z6ef@F@bFJz0E<#
z?m#`2XycYMyzTcc+{xp|h%^^SYoY};8HyHct}<%%@psE)V&T-pc*?DM`CPpXnSx7z
z>QwLWS9_DYA8I@JKNP${Oe^|s#C-{s^`qq0Bm03PV@<#k?g>1{pc-kED_is3;zYE6
z@$DBUL>6cT+Rk;$*A3`VZj1%^pT0o=;@HhAFgat2)Ph<0K>3u;8y8=r%Wcz`M(5(<
z8s9hYaD)6KZl0_0L=@TvaMkruy?pukwpW>9k~W-gUm}gYgMM07BUoC0*p_20r57!3
zy_9jU34WosQogmIIENvx0`oe=#jhI}jbu!xj{*HrTAoQ3`MSkRoaokf=D3Zn&gNZD
zg{Ew;>+aCD;b2@m!mfFAyJ`gGY|$vQ+dOSU2yk!|POLv%58&8xJm8V5nk&4>hcoS5
zHQsjI;!@ZLwYUTm;Ef^8WqM=E-O}ub8@!~{mr9oyY&1Q#20`sHiT-;;#H*5^S1j{x
z%h~?i7Yc|DH`EMg0ZAjYY>e6bDVM`mx^o)VAm||T`c&%D2Le<F%mJctI;!n_QGm}&
z>Qmce;?kq3n|DRX&?x&ylG788tuAobQ-3)5LnpbW+OH3LjGuYIJh#L-fnSxDh%X_4
z?Z$7eO+#j1i1xr9yvLlJQX~GZd%FG@fDb_UnFdQrAJNGkUBP(gKMpV<8Z&M<99UzT
zNanTTW}BN`Spc?o6Wo?Iw4Z%)MU*A0Ubz?464`I9?^Di36Hr<ssjQl6!aNLDuD_^I
zq&>)>$Yr6!l9;sH%5zXfx(|9^cIQGUGFKFpGfdRW(jh4RF6o*YnH~DN|4MHhd&Y*Z
zZ*rA4hi?87Rr89$U~Y1VzU%~zO}O)r{nKDO$zAjV-nT41^3@#xlng8j&4Ug>hv=#U
zNlv;;hJz%)Yc21X!eBgw=BDh8bIJ#H`d7tepY7skuwCPKlp@y=wD_pbgSmAUcq8Nz
ziZ%;#L(mt52bhLk$8Ova9AXuXlGXqYaoY)mpV=awY@bav{r<}5StMIA+9#wFRSIZF
z^p5qISG%3oO*Bi)lWTbj<7Y;U%7dBJRnI-u33!(4NTL)a>c_v~$4bZD-caG0nkpF^
z9#P5GJ`-DziJeoua~mRtx9I1~U3J<>Hn?{WDI9kp7;h&VJXsxND{a;&Sykhp8Rggs
zNKc2+?=|Pp@a8}P$kNix%v}(k8gzR-d3sf`FCv3_Y^=$^KyHU%`pBf^t3UjOG0qQt
z5KGpl^SpS!w}*FW?kU$kY9UN9Ep8$VCHhk8k^yxzFn7QO5C)WI*js(tq7c0_l7DvB
z1LpAm_#XAG;IyI?^kc#4c#nc>Uxh5!`gQa$kQstQ#)%wQ#G})Mz8Ow$ENKDc5VD8k
zKCU$N{_T@q^TOQ|&Q*S0llX-d=j}49OFwo&eDa5DMS2WJKAx)g-<gI-+0u-;bZ^TH
zBLKLyF-{L7AmDi791kVU_mU;PrF)>?>`89iGe)kpjNUYD0$deycrv1$otm@oI!&zj
z(e1Uu2y?(z|AYb^H~GOzt(9ktGnHK(kKsr5JV1!Le*-0o-mh|BxSaj#5_O2#NDs&Z
zpS*d0cOt<T$eu5DC4pzJdB)yCc|rBuiP#kO^_2IW*hIuWZT|1x@>;cgB$vPiG8Jwu
ze`zp>gBxuXyoIJbDxsBVH7wCS{aVqR0+=}TDyKK6h)m}XcI=ZKI`qYyXzD&Xlt-Pg
zoH8Jm6Dcc0DOS587Flv$O(tTFe0I8&GB0S~d^vf{b7H@8jJRmJ&p`!d6l`e$#Usp_
zYbSr{bppfq)IfGJzCIbr@BQa`TF`sVrrk0DZyu@`gPFt{y#3I+Ei#$mE2O@G%~5RW
z$<eY3o9@8nZKzH~lA?!d_}pff?)_yZ(Ytw)gQtM##09t)a{`5+K&r@W;u^&4Rb)_`
z2Lccm4Hqq!QI+fEh1L&0yz0Tf8TsW^FAf=X9FVr58b7=4Y~X5z@<q?@lyu4n+zwT@
z-$~zlFqi(|T~`)J0z<s|SjbQTfMx0t=;yQbKPulb_qbq>g)fB9_2Aq92%{*1W6+WG
z?Q_|d=p?+^5W^l~*=H7;Y_EYj-%Yd5p<xEm)8^Q<Xr967_@(CBO_`vTP_is<{S3ub
zKtFIKLA>UUtMgo+a~d-5*-I8@7jsLDJr}s&0Iydz!eZq&tx~c1Gxy#Y=mSeHR#s1e
zFu+hWc+$P%fya-15+L|h`gej&?#%FE`f{iKf{N&~=y<SI<P$$|9fCoHvP<DZ%T?ho
zmn)S2&T?f)fuD7zy{8fMu<WkXjLWC0vDo|104up7)FTKHfphcaY9};=goKi^MQuQk
z*RHFzp{f%P#Jxp2d-Q=-bN6c8%+9NyTFGUyKLmYe;Ip#*m4Oc$Tplh?G|=_${0#gS
z9Z`1PHTPK!cx)>0WEdti6g2^voQJG*iV6zJTrW)5nsm^)`armDka~}aKZy*Kk`21U
zp%-08+oAfIoey>_4Yr4;>Rt$YmBpkr-z@AUxKq35-!?b!;Nqc50~m=!BnXQh830wq
zTtHo{k~E1yHVt;93;0>Xtcc&5v>|Xt*jb6jm5e*hJjI<E0ATwFF>*jeG=qstO5}mc
zU<`)<5ix{Kax&GQ?YKZD!~tp+@!D0&T=XBr1h{RGQVud1{}AoxZc<!J>Orw}>r9M*
zUePH841}|PaN_z(#~nNRbc@RWQwH;<jC+Ouo-UQcn!TF*><th20vGIa6M&$T9Rgce
zKl!n*PbKJhmOagN`DC7;Y=7VOL+`}C^iTGy)HWvc@4bDVLfQh382{8g5lu9EwvK(x
zoqs=FY9q-3^UuoE$vDG`*FCYC8`Zt3`n7o?+=Jk=d1B~c%v#=Tc>UR!0T3mWLY&YZ
z%vCqFCLEjG?~yoTsu&qQXwroAGz;?vI0bar)xWFdnCRYJ*%jT3?F#*H^U=pWYsOsS
ztgEvfa@>2$!vcD0W)#s`<btAFu8J6HX}4tKavTH;JRVdRg25$dbTXHMdQBuj%;~fl
z1a<n`<;^E<Jt#i)JAA`;OlWuv=}?C=1Sni5F@GMRUt%P-Xz``^SwyWj>c#oRt^`GS
zy$-o!-tHB0<4|Mfk5JV!Aj7v=qOAjuwh&_ffS`FCyTNqDL#Q${Q?0Z+s1nEWrlo@A
zkOQ1b4?!mPji7<DiqAxP`;bxq_J_myOS?IfC20T4fCOBDO(1wHLMMkJgxsQh(6a*d
ztw6miit?&UQ2p~J2uh8kjFx2e)Vgmke{7}80g)<Lccn_xL@45EaSl>6px%vbNCJ(0
zL40e0_$P5)R`uYs4N|8$@C8%B2}PZR+q|yY_e8&{#3dj5iOp}>b^IGvFVqt~o8YK{
z=@`2hX}{Tw)xVRO1@%Pt0m9UleXvaqCJ&-*<IaLqoWet4VL6S4xPl=o?6=lMOUgaX
zg*2w&+^u}eJhGxZsrFuu7c64HRb>t^9g~IZ-WpalIeF0=-mEUzE?Ppr-V&QpB^SjW
zeWl(*4B6!`8#V`^33d*|v(04I5vCe|aut<~rhOu3`8c6>!Ey5)+}^-~qEBCpek36F
zH2sk15;i1YQP0Oq&(W+`yv0sMX<Y;joT0}x(ch<X4S{9uZ?9XCGj8oT*OYm+J@3di
z`_mgaGy4DB=;vOJW3NQDV^x(tQO;oz$qTACE4$7Nnx_7I=XwW~spQAThC4Qb@|G9#
zRTLvwYMVpKk=A-}1X895N*#cjxSq>!R;l`B-!2GwTXDlejd-BJQ>@jq%FW&zuRGT$
zuWkc167+XQ18rSTJDcof6M^=-j%)>4*$@aieWCYCcL;<mLo_};JXwE7g9@!2bi!UL
zNP06>`8An)UjgfzP}C*QL1=ExU#qTAbM~^wu+W)F@I^sL1K)khHq^bR?cbaIQl%0e
zXTKq}QDv{m=*tossaV;;#(R!g0)R=ml4n6}^dpp^(}&9tFHx=jn|!Vk(y?Q~(iW<S
zwnbx(YrZV4L_7@ZjuY7JCmTUpcw3WjV$pciGOZ)3HjLtsGX?ou`+3*pPC%>IgugpL
zR0q0Cle6=fj?aQGdHenLGt}}0iB5&UZ7T!ZVdB$}W4iF)+`5Jpy5GM(b7Z+Z^upw6
z>WO;w!tctLTvV7lYsYK6_+5}G$@lloE_Dk=v$xmufh~ALfGRmRMgE<IqMZ+$hgqfI
z7Z!^B3;v^=xgQ07B3*@GkNnml5Pqlv-M8y>1%*M_*jO-!`=31Mg28uECy;(>LI1OC
zC8`qroosdWa>#wiuVgvJV|_TXt(R7N_?)pae4Q#;?BR;FKWQ1VIY{UYW^*{4cX)&5
zIO!A=p1XIs1w;6KqUr8NYksW!#O0ze=Liy=MtBalm$c-MaL(P@uCemPEm~-$zNpH%
z%MB%O8$ADen8AOvZs{+#!(hV<vRf0D!<3x!9ep7S;HL6knOTanbskR3Dg1n&X4K6&
z0rz^)ifO3+r6jCURL${OFbr+Fu}&D&c=@fzPwOT`!2_H!3G`T~l7Ya8sfG-FH+T;G
z%KCt_&Vs)ct9)l!cJp1k?7PlHWl-}BRXbmSfD{p^#OcsO0pc0vmV=cBDwaaL<r2g0
zKMh_(PtZ#V5ah53(3loH?`hpU`jw#d3O>e%XhYJmQvBlC#m1w<!|2BTDNwhR3CNe3
zo}LJN?8MpV(+FA5vwBTvn=xNB>9iTN`E1!Te7zEy58j<E`_qlEp<{9mgtQb!vvPXE
zg8#=Zgk_IV!f;MaOx?l!Yjw-GqLvM^|84N{hMez$slXTnkqfajp?yx<ta{L*85*u{
zG`wu68c8!ed*TS>V&%jBU*}0=2WYl$0g)kfJo=a@KI%O<w4I#;Vm~7*53N8Wc>H@c
z=ar(xmK2Gw)tlK0I#&1>k0ZU;ds1kJ2KS!YtxYtm>_f$4ywqydF>d=VzsZ((2I^gu
zgLwAu6~qtoix4kkHCUNqLo*Cd72)2EQ=@2K23P?a%<%*hyns#t$y&h0CaN{{H9+O9
z70r})>|&Dy20v<|%l;$au2p1zcU-wTmPHisq?rfG;kkLZ0$*y_esyHPj-{L|VAiuO
zj?EE<H`!?@{=9+FlU(C`m(yOFl#_f1^JY}KJd81-ef5_pl~x#Yc>KcGG4|5qvuQm{
zNH?_c)BYvdNC<<ie;l7Zj!~_ZdxUg$!(6$8f2p0SW0*n-Z~nTT+JjnBN^0H?FwR^)
z06#_$cJlm*9pfXoj&PZrs9dc>6C4c*Dvwp{cx#XwvN;|B4zj3<me$P(dweypHI9;l
zhUoOfR$MyEQQWIHoq=iU;1VIYe(&|+IpY2ZGeKmNjrGM9h))Y;sS-gSbT4OnHw-==
zK9?oU{rB@1&2Vc2Lg=T&7l)t6-7a@>G;)U-?)HH<-vsZRf*ObmM0hH%8<}ZoSbuA*
zeRT#>l)jPmH0M|S=9cJ)>1YlN8Btq`r~UzGf<4uokw%nIGqv7+eL}Kk^Rqh;{ZH;d
z%Yrt9!Ee%4ak>PEKlHEjHXF^kY7PYb&Jxx%&HR7y3Whw#m|k(%sj{7=@o}V@9PD=m
zH)`>r0h*kW1oet}Z~hP8Cc!`X_<!dL`k(oih*OUEs#wf*gw~iyPk}#T!qV4s1U23M
E57v-B>;M1&

literal 0
HcmV?d00001

diff --git a/p7/images/gradescope.png b/p7/images/gradescope.png
new file mode 100644
index 0000000000000000000000000000000000000000..a46c44d2a9b9b8d4b76a9721809d2e81754e946a
GIT binary patch
literal 153964
zcmYKF1yCGKv_1|)(BKl>AxLm{4VqxV9fHf^o-C3;a1ZVlTo+l~eQ|eZad%z*y!U?h
z_jT3OR8Ljc^i20T{haeWC+wSwJSG|`8XO!P<`)GSbvQVbUvO{;rKrenPkfgYg5GZM
zZtC)%;VQ?-58gV6)>6t+aB!d)^k-9~xBh!)1wA)7I70gWF8D9%AJ5_7UJJg+NNIW-
zAFsZb)SRV6K34^ss!4wMfFMiHrKV|!X4uWPlKiz|<!fy+*gzj#QUOkN05>Ko78ZU=
z`|4=H+(Z{1{yQ(02^CUW-VPjF`E8nFivQu@sm&`LI4<V4x8i`jC-LfL=W%%Kk03Lv
z>E}mTX{;<|Y+R}TS?2#WFFbT~bU{JE&XEyAHX8F0yV-!Ks3>kPgrOlF=aVJA6Ev-S
zxk~SyNqHCl&X>lcN;$g{msc1N-aq&`%tX7qGYI{{?vs`P7z}oHEsc04>-2#7?5!7P
z#2TGE)=zFP!YwQqY<F^?xNIU;{XRUb<oC**9>h}U$oMVM@q&Nwh2$_Ty$6m{%b-a}
zNa2feqSSZV|JRz`Qd3jAy1LYm14|n9>+8BY$sPopA1*B|tgXucb-&lcRF!*kx&mkZ
zUM}L)!C(2Oj7vK6Sz1~KJ>DF#+$peGSgrZsEUfiW`W9YyV?zCbL?K&{4xL#(O`}<l
zGW6Ghv-m56J$rfm&uJMQB)eX#P;re+#!`MqCMV~TPoD<O&yz#{ukA-OwqK2oj{dH%
zkHYX&r@<v}0D+Ra)_Z$pc6N4(0l(xaeGyH3uLxROTi+&xKkj=Cl8;ME3*H`xDJ#%4
z+JQoc?48KS40QGNhZ;j0O_;kO{b*v@*uR<zggkvH0_u9*JutPb=QXOf*U!<<_ZJWy
z#T`QzsREx@d^{ZbIN_9LRoI}@67*1J*8~aV|C?86XtCAc__(~IW98B)*L&LgGEmLm
zRS8B0<D>z3>;933i{ATz*@E=F^**Y~%E}smO{sBjTU=sd&{DmFX{90l!-D{X0+A3z
zFnLldEsb*g=qE50PyE~#zhgKqW#&$+@7_UnlRhUs^4sk&Eu2e(Dy%eW1duA*+(7;R
zRw^%zMnpu>4@F6zkZ_k%K%gg)MJK`n#%=;C?=})oma*5cPcNl%f%SQOcXVX0inz2}
zoJJoTJ>2eu1S&M8<RwjI?i>bvAlLOk#cU<bk?mZyv+Z-n_+F~r%c1`_K7Oal=>Pw{
z`*T+g>nh@u;&=>HEa`(kJzPr}c?iqYm%-xaw#(W^rR1CPF<bkS&K?K5p_17ZQGDFo
z+;JHh<w<rt{$+1JNHr2&6tF9Dh^NJ<qM}k=UoW*=e`Fb*XmiX<EDE4z&j=mp(h8YT
zZ`SZ2U4(y|klA+mdR$^$K~mDV1121h-zmC?Q6j29F-d!gY`21;S<z-{fr3$0mX;nm
zb}uV?vQ)o$b{4V=xo|pNG)$6}m!%UHCI#LF(~7luH^6NPZS}a0XSLaVnH?M)l(e!6
zZvKDvD5KdnTcv~D2D}SM)<NfWT+vO+l<=pFiz@;-EPEQNeEn<b_19LzL=6T+pz^;=
z1?QkGEG>17jj0%wl9~@hbuEC*X9^%7iy?K^2iuZnceirBIZlD9AjM=nv}Qj-^PBc(
z$Oj>lzj{2@G!}c=sQWGwr`U~Dwj~EOfW6q*SZ=57TGhSped8=M^rh^qtgI6`ztJx*
z9XEc?dDPcgWKtddDa;hDhHgtZi&fZ<=R)>24&lbxml_RbvTXkK>aaT6m^%fc7#~E{
zKAAgjBnR5rKCFP@s!?Hnmx}|%8bw&qlw#q@MM_%pD|*eIM`(MGH&E|-|C1%7ioi}x
zGXBmKu6*1Dfp2VF?B0r;?Ju`a0h0fXeq3Z+Xz_9?@U13^Pfm{5*<pc@$4`a*-?k`z
z1YXDC?yt5qG+V69RV<$mL$nUnZy4V#QTblyX87OC9%vDFRtEi4x%qBo>_Mlcy$4s#
z{v^Q1S3zAlQ5?q-z>hri@Yk>rC#DMlrA)Cu>?HIgQO;i8KBkli1qEecc|K0B^T&@L
zZ~iYjihSa%zFn}M2age)rKxzJU0Vm1*{DPLZfX80xwZ=WeOshs_#ylp%btD!VeL|_
z`k1u2b>ysh*tbyFe|R6oUpDq4@J?Ljk^uL<<tkLbO2A7%S6>$*f1yah_07wJF8YDU
zWK@>rOxsnD{0;#H3u1y0c6@YwjUgyB8<dzxASx!t_5Hg)xv(?pqL2{x{n5dq;anL+
z=>#xeNyAul*bnn?cb17rVw=n{m9{YIFy1v8oB3GV01JGmeeAi3fG!j!;o`0eWo$~^
zei3yyK`<1f3>&6@JyE=-+Kmb^_WAHTYU<){NT&XH&iR0w6hGu4*YwaOqjV-c;Z6eg
zt!YW{Shoh<o-7YPI4pxr52m2H&Gte80sPd*3dF8%ZWHBtJiJb87$?j1ecAq}e?7`t
zXrz&cJkj$)cDD!Uc6_vOj3gt@{*`?-fHpR0wfrIsv+;ih)o%b#|1zw)MNZB(>CKU1
zI<EXWe$>N=Vp96?V43>GI4z2dpVr-}xY;5D6$ZAQmNVk6@H`Rbc1tNG;-ah`j1?%e
z3|<j+@NE2a5?mMPU_^HO^h3gNXEp4-XSB_omC1cWTX6i-S!9-HRLT6p`_WT}Qg-;=
zq}@iJTW;<uP5Y567Ld+FT`dZ$L&f<S2;I(harF}8d(Xxhi$)<Wv#`Dq&>F9!cYm&}
z4C9^7fYNuDk&dTL10jy+hlZ<mY3Fk)*TsoIY|QwMP&~a3TU%T19JYXt&z7DJrjhqK
z_<EgMxmRtl{pp76=704b!&b-ZI`u~SIs&wCqBTE0X!9S1%+GL_(u}lnI;&HQjv;Ly
zMa9|CB+3r|j-PB860(1|^~&Jp{}((DC%RlE#5(3Quu@;}94Ie_ot5OW!0*KtUDns9
z*I6+AU33TK`KBQ3rxn)u^%2smr=v5T1nKa&tm_Ky@hV|>v8Dq-?oHr$egoL+(=^7C
z<K}UoIJUdo)lYCWCxR;v9<J|qGH@_`UY*ybdW=pY9(<1c<RSyIfgeV9$>ANajI{6E
zP{jK&x1j^ukb>{BS;~<CFYnHL`PTU(G0blmLgE0tk=wHxtDc7K<2DVs2)25O+{zKW
zk_}yZ7(N@jzV{}Nsjt;ZzAo6>52pfM{cSFu0=I~*WU}tKemR*?KOOgMn`qH+Yh19+
z4$QD1$J7tb1TD$t8V>Zt#%EvNX)|tga<eXK2=;40ap5<NojHb|wCVBTHwJ_kXsnK6
zbiHc0ou)*NU>p~1Q)~FX!M7pH4+Og8X2d!3ovR!;tF1<x7G*8qnphw44+dc34shu)
zOl|34{YkveVFxj)ksx6_H}ap&@vFH=G(*z0ty=K7U{Jg&_2XLEnzh+7k?Qxoq}X&=
zB#S246X!pZNMOIx`B?Asd{HDwRd$DsEEcu8%H^=cQVjydNo^5yXr3v3Hz>%YeVU(}
z(`L7}vVyQ~C|OFB1vE7Uk)PF-?pwnp?>(J3EJykKvun=X?bHL7X)4|=c6`>W@sy?h
z@emF@R3CC=K);{J^$m@P=!vDlE}`e^dAtEQkBi-HL<y{QAI<`1rVNHBC*eKo0mEE*
zikBP5rh;DQ<k3zgk!NseIm;m@ra*4QF2%}H%g4GS5Rd{^>g`$vj|+z-S(`wo`!p+5
ze>_IV{p+dy@t4mB*UG)`J>}^l3J%D1!7VXlen9g!eRWT*`Gx>oKCXL~Pyrj<Yl1El
zTtvdI@3<c-v1A&?w^GozbR}LozAyxKbT9FBm|hoyYAOX)n>U=ahKI+?YBrqW8I&#0
z1w@Zg+f$!XGkRN@@Q*_6-YJVvdFxxzUNQxCK=UqSm#qi~Looz!N8IIN*hh1Ne|?2c
zt*Q!P9|ouqI@@f9g!HTSn;Wg<a6Npo51Esu>grT+tX7Qbg~j3=zcLbdI%aY@&ji|3
z2#BgcI=DiG%+0<|$ti4&4-Co=@xhr>V*b);GwclsG26>>?%fmWVcAfNe9u&1kn^_R
zwG?~T=uON{?=WD5dy!ayRDHc%s~dSqD<68?PWXsbF^&<vA}nMgju>{}Xsej!TXo<l
zfvj+qvXz#M_Y#*(KUW-L%I{Hsyqsc2NC&r(31j;pV%Kw#uMfRfp`}cW4_`2wcVWfo
zsZ+Vlb7jDboKfbz7w@hd4fIy3TV^1LL-|~NCHYa^L8)HabQkSao^b;N$02AK(=#as
zaZ3PxysQbj#AdIL{#LoImeEorka4+<>r%}e(9xjNon@Kw1iecne<nE1d0L+V7W5N1
zJVo{Y8+htj-nlclb#}6fY5l`QzE)u952+`JOF=5KDy*z1ZT4^F)U>s>7C`?fA7Wnh
zOs>v;`O|p+V&CSP^U+0ZZd~v}?OL$^mbG=f*E&O1Iy?O}G9I#q^#%j;!l$Ai%1&;Z
z{%urI&xHvGct?9XdN6RO$({>n+cu>1wz3a5F^8W0>GSG&<x5H;#5w4AYzqr_0S<qT
zWHU<oUQx_gSkov$Et#4B_xXPNGs$_oR!vQfn&OYTYR-8=VzsI;d|pp&g~;}Lv0qw5
zl;fCvf#ZB?$&MVj=c_k8ju|5E#wunoD|$Kl?xi(Sm8juY=~RQ;@y#^S=h>1<sSPgk
zfe++YsZQg)eG$mET!kxJ#_vjNmhH1WPvTr}nEA_1BFaALKtJxv3QQQY8I;zCo?58v
zPb?8AM0e6mzphc!We9@<%JjHtvB)HxJt+_-v?ca6@I*|m&p{|kNODI{n;>h(?J!v8
zMzqYw<m;YALU>f0a;Z6q^z)Oc@5h+v18bwh)gM1%HIWLqUwP@UyaPQ2RI?8*d<g%b
zh#5;7or%ITvxIeic9Q=rK=PFQ63Rz|;(RTMI``a2DzA}Pf6|;6c=<u&tBA3?NK>b@
z)p8mPMe4@~k$J0<P&C+kH=>GuE0@(jL1tH%NV+7IhJw-J`)ew%-CXjHTkz!%r$AP{
z79-=1C+Rt}i!GeqU7HQRbzg{B&N#ViW6_L)J&Pv=)vwK2D;mGJIQ*EGzC*_Wm$nfp
zXqD>q{wcDuHZT8}N$@DJ+r?d#Gl^AWdDCeDtFvt$&fPI*MMuO>{j`nxSTsjezDb_H
z>KT{pCS>B%`~~Ot-5{_rcu)*KT6$J2_6vd8aa)aL$B?(nl=F4tGS;UsS$0i?u!R;M
z5^d)B+D5P5`g*M<n39Qsmd7j8YkL@0|5jDv{2F<{%cYwQ(ry)&e0ZwZlIN9dTvEaw
z&)5*Q@6saO(X%J3+8NISNdpg-9>m&E5}Tvm?1#km2dFK|n`fR>-k&Z?_W3~4Mvvt0
zA(Pn#tQW&Q%rY=KSZeS%@)UaihPM-9v<if=N_1!KW~YL!uJ78OUhc}==<!!2lC|`X
zu*i8OGwCSeCRg%g%V-xnJdT7*-5P>VA31q=UVO)m98SBVp2=#;Oq*ZSw=|sh=X+f7
zt^|%;mHvu$IEs6f&|7*bzU$-@yD!sN4d~1x+w1H^*=gOsZDQ>*xgcLn>1a@QRGGDS
zMT?I1u!LKfD2O0>gKl&lVf$FSYsOZ1eN+;WX~~M(i7S)2iLM*$8J#rdC@R}Q;+ckV
zF5GzwMEiZV6E!-Fjm8m@y&ZOOG;Zj+7JYPPM`%86He_aQGp=+Qq=Lic+kdXqmfmT}
zd4KFZ6XElaLDm`Kb!hHd7AFFse2&XWg2&uc*ZH9kBb@*fk5KC6*-G~pSxA2t0VizB
z@`c8^`EnzYsS>{C^NEY<TM-Ml9EPalgZ$l?%rIL@M^WYfG^QRKZW{04X;*q)5ZTJv
zf$U|?NBUGvsw{K<;iPG<6O7T)y{cp6UHhlx*3qf2DDY!3UFxL8Q~g{qk0|#Cn=5;N
zVtd;*OyOeuGw%KCEQ$W4)DKEbbI<o;e*BSjNm4#Ck*#2ROXR9{=4OAKu*?p5+P-sn
z<%`WwLVs-$mOBtwri?t>g&V>6Ap&ZnfO!46VNj4TARoe2YqJ|QSMba-dvBeQM}G2O
z^x8~fY`jEOak8j!NnHNu-ZewW_LXYAzBJ4+t1ZDZv?QW~3K^U9W6_1GD3+I(*J8y@
z9G(2m$6Yc3N7ng+!?3;mEDo?oZRusp<{_ke1w#npchnCfIBhPoU)M6ZzkBE7>pRRF
z)@(^rX*-F;r^WH`@Ng-NJ0J1MWA%{s#Z~yyRoSv&B9m2sh3G98QVi62@b~!!HHUlE
z3Fvq%9Zu<_y%+IVV!3R@rnt<}x6`-nS}!F>xIdg_as74$DLjJd;h4h?r#U3NPRlc@
z3@bQqYsb%B{Z$vrKH-&2cBM$r6G+cthge_R@t#~Ydm@Q<&hgkS9&55@bCJRvN&lT@
z1%b_zKOL=d?Tj{D9DkGW7A_$hR+c^fJ)6R1$M0#Uh~^!W9@sQ4_Dxqn2u;NQ1@(Q~
zE*TZVf;o<{KagAQ@t~fM{R4}HF9H?fK}h?%^W%mpGc!rkw(=R7W260;3lrO9db(u|
zX0x+aEaC#4ao=-5%FT-Ny#Q!FnyqLM&*9~OPU(?Z#(-M6^Rjw=Bj%eAr#oN9y8nAR
zk)|GFQF$S(Fh*GKJcmjbUJoT4ROlXO{MHW1`sPU;^ulJ+7D?nUoXf`aMeB4RrDIdX
z`rRY{JU=T7JEDmM53UIndgoDuao=Di1W@`!RKMvK>Hi~jh}z=IHU=S8J~#T%fPm?j
z(6zb9sM%D?m_e~+(2d2ULbfNX`1bZPsX-A10LRs^D<2ctT;UfAIZhy(3G!w_&Dueh
z@&0rldS!h*3cCOc30DjMck@4Mz`{6?b5s;QQ$TWMX2OYw=3xmVt$-MANTAO5Do`Nf
zz^y|-%IMWMp9Kp{eJnq6-?Q+Z{xkE5+lRjcQ!^_(#M=l)xGe|3-a3BYNHn4RfqVJM
zxiy(K!mrDZ0`iwxLH7^8*5<bl8*^`8?YrkYh%m8;3LL36?|-O;t|f0{om25(WjfG-
z{QNk_4vjc2g)f!*V6wy2^STzDy%*f%s=Coy<h5jE0>N}mgEzWKR~q`6c+u&ND$NqV
zC@YL;LL5fNWxB&U&VheeD9H~H{v1TrFYZdUE(~LWmOFZrFeI)|)+kS-A@MT+!15W5
zU>Q~7L|F%00}-<OO>o41o@SE-UBheeC@qfeI?BsCk)B~a5jpk#p!2QexbPT`^mOvT
z4t^(Q;X*5+B^$fQkq>RY?9*+98e46qlG_n+@y*>gN}RjMiIfxWXIB!UJDEW}!+yP$
z0aS%a)~)&)^I)zl;(H~3Z-x*vSUAGZ-wcfRF%(f_9(kaP^!419__{NlriBifCKTpJ
zx)Al4kjEv#oM$5f{rh|h5gqr_S#%20qnP@ihz3a^rDren6m;fC*ARY&9EWvD_bcbA
zwS1wWP|W2hHlW#cbl94U5g}&G@3x7>QRBJsMrSyKxv*dD6ltFCWh8+Df}#A(^Zp~1
z)aB?LKdar%N5TPKqg?gXrDy)DzO!mgRWkr`q14crXLJKE8A4wU=ChZo;_D}Qhd`K^
zekn4%_m*1V9d}9TDU}BAKIf(X{#?#^ZENG-u|)i4331YP!cE;KY8hDZmu$c|Bh6Y(
zOr_zkOa@>b%aLEg%>N*+^jhaG>`RyKc-5f+b{K4bs!w%{3{PrH%<i^o^U9GAx12%(
z_P)+(U4@NH#e#*y@H#&un-k`8&+?>$r{>=mo=8B+xG*)P&Tyd_bSR8mEl4CJw5XuO
zI<h3{eg8|?3;67`_3FGoVd_zGj4=QQJFbo4vYC(+@;u!cibs35{1)8qPiz_sRXH8b
zBy+iJA$ojK^j}%s?4jy@I_qHB^We8%2u(K0Dr6_XbHD{LWj<UHK^)Fj$-)Py=G%jb
zm*+=EmBG;KgYL6X)htmx3v%<x)!L4Z?2&i;bI4Nmukotl@mI|+b2=p3C?X>BI;XfS
z@pn2KGvb58Lp>(wx5e}VWzXht5soRoE{Fgx5o%`{9;nHEX(Z3Wg|Q$;!<OJJ{B^7R
z6Gd9A%Oxs1pQ95ea<wpfH4N4GahYra3ER^nsV@l6#ru(RzZ<c}=x0ZnLivnKgmP^~
zS#+*n!44>WxOBO<^6iZ8p~`m9QiSwhk0Uexc6`=b#U%2)W_oVEA9f5I7724$wWEz)
zzRXI3W*L$-ZMg>AMvxdWR96^n_W6|YI#pusP>PYVQz=e^D`K9jlc>JS73Q1D&!#1E
zaCBVyXL4JuAV&K6h?4TUC&s7DXNM=mkX4D7)gXSqozqI;8^OQT0|}DXz#mCRQ}+qs
zaByI;n)=8AeMHOyFkoMI54Z2{F2?TRy!AiYG~5`V(pK7RoC?6ZC4YEvKE9Z=Do^D?
z&AQbKMZ-+;z_xDA8PLei&E9;<{a5D!3*jz~X#8gX;DF#s8LH*@T|()3A7zAnKd~RX
zR=__h86oj!n0&QHNdrAES_!FjV@rwFA7h?smsRp6G3CqmdQLBe-(;8?{sgYY3_hFa
z2SvFt=E&n?s;mBCI+<yAOlo6%Y`^9M`&rnpyhlL{1wZQ2c{X^qs6kwuZ%O{>b+C8I
z)F&m0FtD4HW&~<ik57Q5!SiGI(pIc}mqkj})?c)msm6#w_w@I4pM};SO-dsH{cLa?
z{#Sg)CNL6)M<JU#jvYk2tK&_fV?Lj!!m!&k^7vUSHWbkkihT9>@O^1B@~&^>Q7XYr
zu&20u4mlMZbB{S$$5zkCjy6*+1wOAJuMHbfwWXA5OXwOp_RaOL!221l+StVk_EpM(
z1xY7C%aUz-%1}wOr1(qus6?OeBw<3wkYG-o<%U-oTGxm-fBz1g&s7tFG7?{JzH4{a
zLsBW{PhKDu0v<Ju!+mf5#oN;XIY*v{n!&<gazx7fxRr~u6G0F^pu&<&yTH9j8pl-}
zo!zfzq9`a()R-_jYoDhvUeuU|<_)Y87-w!eVE2ZQSjf>J0ULtoWVeIbdxX2RTKiIL
zH<oM#e|qav)7!UPY*Y<xL!)T&-)(3;32*HP7DM=MoxtQ}t~-((P(5KwAql8h$j=eO
zN%Lbt4EsH_hy>yvVkelYzhti@MG5!e0rmP^WAMb2>*$0o5MUa44<EK?ln>{Ql!Rc3
z*0mllMdUzp%T~B+RRouVtU$5x@1Ds$N-9xaQ8>r>`~-le5Hcv0p<$bpQ$LymkW6CK
z7{gClI55L1O=gZA@g$;7rqoKv*wCVp`kAhtvDW@BO=aj#j*GGqB0?IQ;jPwUNXyt5
z5y8%gOB8wiHQ}#ewDZhtFE?UUUbUMJc@63PX6{;+GfoQt3O6nuIJx)<9n|s}EudrT
zs!!t|ebK<Cy=-8|XWM}u-55;Bi=g|l^F2_P`e6qC#P>ryTEx#vS)K%zyd<8VqPI-V
zLYB0&n!wZTs!w~l)88X0%Kc*w1-o8BQjkoFz?YVUBeqY9O>4rNG|-oBp6`Oe_X}HF
zxF8DXPYv;G(VtiYo$B#KrS~wMX!Q`>C71L}R}Q<X3$e}6FMJ_@Bgse#fSJ-R_u8x0
z&)0;&%$C}kqSR0xu0jpyx&%YYkIwq`OK*CR?m5^#0VtC(ZLvKbqx!)sm@T6hkYaYp
z6aALa-uJ{`tsqV>#m1F<d`$m=w5oO#T3H?#z`sFenTcu@_PsJXg~-w@vzYGia2hFs
zh4h)=^2+JL`_HUYh5q0$%Ztc`bO=^%zEjcH%wGPe5{+QWJ%}`-l7Pb!D?+guo=aY)
zNQAKj?I82JI@;LMGRA;<VcKG5Fx|WM=9|1q)VgrVN^#r~Wo2cSVn&9Z&YEbOh~lb_
zQQ&ElJa~W@x0m2XCRP`*#$$XM$zRsMUCL=y7(|tKVn*c{+^Ujr)b~Nz0kg8mNGI8m
z4ut~|3+`6gB&6O|I6$VwYX6}S`})<EBcMj?Y^ZZH;3v(}MwMTV4)I15@}BgJ@XzJx
zsJo{pN<BZ_k4+|md2^F*uQ>N+@}U^}9&-B7g1@=q!PKnf;<QIWc`Lhai#_;dL<iZ$
zukQzY74s-u*3Fob`+@ppRUpLfjbll<xK;8vnA=~fV97X2zCMv&>>C)^KI?E=-Pq{1
zb`zIc20PTluP{SaDp<q9wuZ|gZ6DTC)Siii=zsXn862*Ry7{|_fuo&}WUBiAiB}z2
z?uU1t&l4{iHt9uK!W9+L@(GY0S&jEbn%r<}4){m$Wy1QG<CAi!8+x|s%NIFG+SBk;
z*3Cj|kkoET`5m+1oMcR)wJ+ysU~7^uh`}8cr|+Y5i<03*U17!}rv+V`;{zMHRcI#D
zFD3K~_i0qes;n~8ziSi8wgAWac&K+NnEPvPUrqT-2dFV@+u@I(0Hlp&qpQhzHgvVJ
zY}ss`n_82bgb5WA?@STWHBXSP1enn{Vf$ZMYVDR24)n%^TmtC`y~fvI^Twl$b5cHV
zAqTV%%e%!!ToqEdcR-VCYt5~0Yuo)k-w?RrM~}#{CW3o3yOme!C!sEFZN5<)WY^+e
z#kgw@vNTgwQg495rkL%0E5&#rH&aGU#%Q<F&>2hKe$UUKNWPZn9xhN>nWs-%y=;pv
z>ki^8SN>#^BXe{m3}jOnm0EMEW|`^6Ks(3UseKc~k_2!6J3-UUf)c&ES^8q|um5s$
z{`hNfm&iCL!r(is+ug6eC-;OZeh}CyAh*smbqcxdSm7-X&NYSN*{q~%G-qUwx?4H<
zG#QbKKyI%dYvv6%qohx+8%z(x$P@Ei^R}_)Xf&LnX!%=HcAW4+8MTIq2XY9jS%(}Y
zxJRNT(y)9HLdldDfA@-P$DbaX9@-{R)d|Bx(6kHAWq1eJb>i?GMI{}7Gw^+_dw{5{
z+ztclA~{li{%MM+u`$FWH6(vI|GN2oy>v(%{=_I>6K8rO>t2!4-o(Ajv@xTK!h3_L
zKAN9IH5eG!@&?eV5!zHwyIYD&%qm}_<p|?Dq#L)b>Z^fz!P1tjwCnC()3r-ME1Bou
z2PD-A2l+)9n&ne7F0npF=RcToEKUtMp!=E|<;3TFVjJFBRqR)vqICUgV^Tv@^AYbX
zCtaoeo&N8?r<l^s+W@MVj&>8HLvOGrL_A9C_S0RXYdQG9DD@Tsh(6Q&xX-{Xksou~
zza|YrHkv5aYqN7g3K;B<l=y+@e-b4bVA?Q^Rs^K#Gxu9^oUM0_!+AvaTPy1DKlJ1X
zW;z>??C>+%-27(+wCbfZ+oM__vHZBKVL}oe0-_}2g*@GSguV!S4kS->T$`T3wak3D
zd1?7~M`M08!)?hfE3~GVxNUTfRl1^)84?rd9|utIa{6@BllWv4a{6`B$O&TKUSoou
z_`=-^!(7s2MY#7|eMKu`k73S^8ylSH*oAmFX-&T5gL9QgI!PIMZw|uO{3w52rs^E~
zHiw^4NmoK1C`vNc?~T^Yp{5!FzVEYLns3t}e|2J%FWa-LKh7+O={#B+=5qVY;r*Ay
zpBN!=8mjzjJ^Hgj$s7(nD)EsgVUM1k-gK#KdUk5LNcC*ZdnXRp6?O?7zTZuEQd}hh
zVULUQyuX<}8}WazBmk2l{$a_}uF!|@M_E;_)E%b58@7PirlzM{ZtOPK+xoeGX=rG;
zJYGv2szYriw;UIU$c&NiH=n2yY}=bPJqx*iVb;3e@C3?AY9&7anA3G|r1W2ojVO8?
z4y=z3r`v)}k*iT}Nv-w{t&!3D!M3{c6K%nM{MFH*M<{fEpBiD#_Mq86mWc0pI>gy(
zU5|X-{@zzgR*Ms%QEl?rprkEk1a)j?HgOo!#dekoRV1$>uVA&X7IlZv0*;80Cxpy|
z^{<v;tZ(_NXexz$2oG`<-BEZ>bzJ!lWMkv-m+|=Bx8ypo&+~w?^}7a=2~tW5vGb#u
zOUrm2TjcX4KESLH+vLsFWWGELFNx!kwxGx12fRe=j&P+<C9)mW#Rsd#>*aWUovtXC
zJ;P!KQgrWr)Ly?G-l)a~E(_O<fLlF5UZBk6MpgB`p6EZSX96?v0SVf!!EUtX7{DtL
z)vpHRP)xrf8%}l5)vWA-!LdmH5V1@4<$#tur|}Fr3=Jev-cO^pUZFKPq8~*dI;;0d
zj_6q{k_y`&w^tNIx~+_)Oh8|cziho3c(N6v>~$}0w&0;c>p3=!4MSr*?<%6XM3?l+
z-n<+>4RDJk4KH}?GBJJnV2`VpHa0rhBW<9mlz1l3dh1vA_A(k>(n=$Ua7`}tJxi}2
zWjN}^;^}d4`x32KVZVikoHdmWH6y9Wd@34@S%yJhjC#BGc59V&m(l!;{ld_|8_XN$
zYiI?oRz&TBAT)1OQMzH4NBH1D4}Ehhk4*rUuVYk9Z>RfK3^n(cre~woZy#-^zS0G{
zAYDcw`V+W5OL3i^NcC{+XHNPyqNeqJ-#eox7fDoX*sM8PO^IE%Ja3pv5z6i9>DfHX
z2-#7H!z~^b^ay@E@A{cKE>}zvJj59Nq3u@7bM)sX2xeTZs8zctvztD6d36{Q#|_cQ
zIM^l#Gcve&TOMRHjxaAFbQ_Eic;?}UPuoJQ|BM+)a2Kp_o^j#JGDEgzg0^Z@NR6LJ
z1S#3j>`k5i?Uj^IqoBP}Kuy!3aT3na1Di&V@&*kQKtTfcha9O8&(XxY0{nYLiF+1{
zKif8uu2J)DK_OixR#1ohFZ64GAf;>of)$pHh&$(!uoaExUZHwm2jS@(NbSK)E8ARX
z>^X-h$v&r|^0__0(T?@f^(>JX8wGEI;xaLQjt+kQZ2#})N${491^HjM%#Agbrpf{2
zZjB$Rb9*x`f^v^SbR1vOwV1i3%{ACIT+f^_9P<4OY;$m>xKK<)Z*AZXtqy9wZO58!
zhl3HQx};?f$(V*OCQ=STQi}Op3w~1PcMMF~2)U38_RIgg*VAkCx9ERtqNn_=d)v6}
z@~;8YMowG$&n=wyEc=!I@_Tqc`6u1V&irLBvsN#8W-5Q67g(u5n;V#)V4o6EHzZ<+
z`gm=5gWX*|KhF{9+F#2HYk9pAyPp5RkzQULrb>3;C3$8GibCFnNPo2(8W=Qu08SUH
zi*Ns@fN)G4R5*!QRPuPTSIQP&a=h(rY@Yp%y27sB@`DiG2)7px-dLkoSWTYjnP9vk
za>J=!6FueOmi7AdMl$Y8f~?Ne-E%!8g@XNEJ%xy8@yw9!c>^;sL$6V5@l#N1QiB&u
zsxpB2o~2S?^KM;WNZz;EVcjd6zk2E47yQ&rz#u1e8J+QbHDH%ThnWy><|G6(A08f_
z)MYRk<esR;PJclczI^)G@Xe^5KO)gy+Zw2*BOEUj(j0TM(-tl)e@B~AdVVrNbf9|v
zCNkuhe{%R?h>5>HKecu$OCgY&$C*#oR+%Kr<YeXBm<v)~6M^^F#jwf{iHCa)k1x5r
zuECcK50?og&@9MOl#69^hBrye>ypu_ZMOH-Bw6dr#Ac7HL4&^g49P?B5n8h_4-dWx
z((H%3E~DF5;*cKhqv_5(!Rgi60y&y%9gnqd>6_jUfe*U1KX^PTM58qrU%M23*cok9
z-hQXp_yki>l$ps6TDAC~ABEU6cvXGtOtfCdPZe!s4eMH@ohHA=c``l2c;IgF?_1kv
z?c~E*KQ)MPD#8kBV4B}PJ7Nf&RNJim`mA2L<M|F4(>p}n)H3k0^e!_}P=;7Uyd{QO
zTePdBo%CZHRTk|pz*)$A#L2uw3X^{w6mBnT3)ING9y7Bw-~T49AS!v!6)chxe)Qw8
zoQ8wSdl5=|xWAcaf(lsKr1hlchuFkQ4RnnXcn-=w|G)>5kcG%VAJT#y1y(U_pM`o@
zvvtXdR;QP|O$WEJ^FkU}c!RSQZXKNo=B>AlmpHm2l(r|DvT7>9_`L`<w74$DLTH%J
zoSsV5!a$oAWq!yAx<i|N9FU<^H@2VeJDksnhKsuqjtWUROFthR!qPGwJuB*wN|JVy
zk6|;mT!S1$ZK(-Ekw0Y1Mpy7Qq`Yq{Xc-r<`+KdYB^9Hw&i)8VL<1f*O5pMKDp=Z1
zP#e}rD1!ZmWf`k)w_x4eQkOYH7^8mzh(QZSPtNhhon|!;|K~MXWQd$t*q3;Q;o}b4
zuJM|T?8^*kUs7wqu%jLIjEg5e8ohKifJ}G6*7zV~YR&mprO*F|VJpmICw%j08sDXB
zV__exF-TE)DK?7|L(r0yJ<!?Gx5hj$vSB&A+`k2Jt~yBYtn@e*o3y?by#BUkZSMIT
zz&G$UeBwWmMPQ2H2nv=?4`_D}r<bgqqd@LEV8ZiQtJ2Ly%n?&Rs_)9LTLt=af@xkF
z+vEknP52ZTFblYY^K>+h$le?8NprTO0swR61==`RND;p)=;&;`F<E+~<*TsYIOTeE
zILliJ{utN9(Wk+5kqdy>W;Ytbsu^(6M*HwoXB!YspH#%tQj}7K!k}xGl>|2=B5S%l
zo-yHs<*see;$;54a-VlyBGlC<4%CjG(Zcjf2y%0uVn0f7W=n5{DQYC%bvz2i0XH+k
z#*cJ+!_SE94QYPf&*^}HWoW0_+-fkDSa>5#VVvI!GU(pO;^Ec<x1XnJab0D#RwW)s
z$Tt>&yjlAthC9}u&)vRAu(Qws6yr0m6jKkrrbjYe{BI~rxYVrmbo8>;223XAoyGNV
z-`;;?-Y7yrVX_m4OZ9*^`Q0qC_tB7(emKtmhP2@$)~k*EiMjf|0<2p$0(P6u3u^BB
zFwRHO%l7|~3V^~Ft_uC_jkSNgNf+DJ^Nx0P66T4_Z^FM=9EW%2)2K1b{m0Fu9Ny}!
z9}Gf9dHMT#q|*~M8XSjA8~+9)@nNhjEfYmQ0eReeQj_GrJed+-SE9OPh931Ll)FRM
z{R#Fd?>(K}nV!Ct&@SsB`dWHcEk#{L$6F5l^UySw|6w!JPVH>?@t0xHe`Me3#1D`6
zuI=3Y@PvB;EEUft{F=6Kx~N#Nd}`F=gGKUezuWhA^ObDL09vl^z738>8yh)o2eRjP
z&rRL<ek=!mQ9Ikya^l*5_G#%j&*42v4pUOK0!@lFNv#(mIQA-gO~b%B$9UV{%j2Uc
zdFHnFAF<Dm>EO>jJtVcwSZO~CY*b6hRkitKt4eh{xq{q1_;6H*!snum06ve>KOzV|
zpD*<uq)?HTiB=IjsyxDxsh;-rkINBR%zDogoRya-Fj;y}sV_golYX2h_AyBJGD6l=
zw8oCQ-xa(FjeD6?mO|y?G6uY1p7%AbQT{<j8U5FSfzh`(RF(yn^ENwD5SieTed51y
ze=9|G?W*F#6@x&z@3*CsHuqwQ|1C7<I%IFATpw?H7e~mO-X^EfCwLgA!vlPT%l!_r
ze{Uc8b@f+!@66o<yiT}y-}>iIjt@{b=1$aI{VuX(pvA<>Fd}oX(zyJcvqdr)EF&-}
z?YrR&g_|QA5^fPXwK*y<<oU9>U`4C|3GEznhPDcWKO1;7M$nG5ZY;_ORk<)mB2)7^
z=y$Dh6R80sP&T)`f@qoL5wNMwX!n+9F8&(6oG-k>LgHRtHcm{jBkB-)Gem#A(8g-W
z=#8l^j+^3Iwys4npA8}u9<mHfajqC-q?x9Du-y@!Q_dB%yf>e|1W$&lpYdsh?dj8V
z4-Sa0QLSlnEj(P^=@L0!V#+j8W=?G8zV|MV;8E`m<n;f7YBoI4SDug^kWaJenqjCT
zps~ugzeB4n<f$g~^(mpbnWcYq038cL812Y|q5Ww-Z2_Dr*6NGVUi>Ad*O=~Z6~+Wj
z1G@*6b#;gh`-v*uEaZFxcUV0zkhi6vFmgy>{P5vsh<Y!x3?UBs$T+OfZ}a|Za}tXW
zoA%~Qm7j`53XEFXwe)_tOCbi)awQwm>JMQ@vbL1eNxik#sf<BNY2haS6us8h&%|Gf
zcbfgqlkyS;3&B8-&T4?$hwNWn&q53u<WN2D*+4}DvS8MvCs(=he>kLI_{$e0^UWka
zH*K78-0=z(6<Im6$-F*SV?=Kro(L2cnN(fI&}Pe%+vf7pQLi4m^Z7zgqidiUjlP#Z
zWt3>k(3g=2Zj_?ng<9(v{Rf5>9Qciz5bMvMKc9DmspjVbq(v_m=!gYvsIe$S{}g5a
zY*xV0eH#H%nZfnwbL({zKy=UqkR&H*gPn|>68{DiX{D(dsL)$tC4cB;XK{0b3QsBu
z^16$$p_8_xKiz_v9QZ3U1H%$>Zn3_teTrr1Ut`N3`FO(hm!#2hat-Bf%{-!a_2}y{
z-cn;3<cJ9yY5N_S3i7I^PK|U2Wzwp6#DCeRBjGs$(!C}KLT9%>J*r`5Kt}+vfF4eV
zeu)CkT~|o(&;@Rx3Q(4<M3|2SLAL-TUl950gbRTq#t!LehVI^eaMfmUjLP@%rbl|a
zXoD(0dx%ufUCUZA-*32VNVzwHLzRomH#%|2uBK%VTkb|?7^QIIXais24^L~zXlL3(
z57f?KD^iS{bVzpE!XyF9nS>!ZoNSksN2OLh;zrLQK;7gSv(&y}@b35SyvxGAc$h8W
zF4^#e_DcH;6AGh=H_Hjn5|UZgZST@z>V2#>6k-R4gftoQcEfvap<hL6Ld`pvcW7x?
zQ6oCCLb4lz>G)SEPcxCtkKyX$T|6Xsn}*)-LX-+uki)R5l;)t_$m=6x`67Opg<x0N
zo=xP<^sDgldkXy)W)${!A>rhL*6yb}3<%jOchUTVV>8kDda+^8IRb{l9sw=IhE@3e
zge5HfuLOy!69()Op>t*+!(&sEZWmP*0)Hmk?{y87PEMg93iDSk@!b$<2izJ?-0N{w
zx#0b=S(T>SdU`aC0Y&Ek|7;a!u85v7S(B|Jr({#hZ#euR<dT{-aZbC#u6_`AtSA<?
z^yAxM*(}tw6l>bK{d(3yg<hR6-|`cH%FG9bfW<H_9~7W8K1F0-M1XVMzcJ+<@5cPe
zQF?->dDaB@I#+89h9bLcbG2Z@Z>u+D&tkb{C*R~({-wrVNJt-o(F4B?DG*9{bK$~`
zLU0-T2@kWq)tjP2N+`+P)$^;}X5Wn%U6b9)F(7!fO>BcE&pBSEs)(VOGRT~65$;$<
z9;Jscj-I{Dw#<738iW!8%9SG5)9iFYs(_wX=9n8pwWVyvDdjbZzvTG-oUIjkAm{*+
zE~DQs_i6PwX5-<tFG6;GO~MgVnjcA@9JD@VyZk3IZ&(U9(Wc?&*G87>TWH_T_HI?6
z{$Kkc60HY;f}EZ_UE76mPw;wS7RLDg)t_G9)qvvSsUf`!eF2q@mZd7|nDg8M@~;CO
zvJUc4Cm)2o<MysIz>`^pM{UPKdoJd2;$%6=*#=ana3isVBVRs-l9<;Ur#<_%Ewa{r
z<s0z=!Bw78IlhOC(FOU%ict2b8i0g|%4G2i7X5M?uqx7M-;df<VZPw<7yJt}U)*SZ
zy!kZ0kGR*Y+(_E2d;?;^x<H2O(!Jvs>b=nMYRr@bGNfF3>bbs2O7x_dOH70JA>i8M
z`7P(jc^hvQzbZ&pCeevG_OolN><ewp3J&E-{V>v!fE+@Pi9XRbYD~W+@HOtY75+&F
zfy|tfr3LIzcYacH9j^M@bYSN!+da#_qN3q#c2Thdf9PX<Sh0xJh>cLyvYb{;HEU0@
zhF2th-hdjEx|wcbP$cpR<1Ej7KdI2#t&t^!k&l+xgi2%hpVX40-%Um+(Yk9(Pg`=F
z3B}J5NkC6zSGI~IR>k4&`)#UPhF<$l>-gZDt6H+1tITEWZruX!AzOz##w-VhVR?<u
z+jxnu!aY}h+uQ%{*Vhg8&_DLVD%d7KUV&Ahja#?&bIoYAxh6WhIS(eYK1IQ%uB!4b
zXECjIs>GaL7i5kBIxhL9DpI~rgJb**59+k8rttIq40cTdzsu-j;}UdnsvEQD*@=OZ
z%V2nG!SvIUe;=9@LQ%WYsC2fAUEc%J8a^wkm7k&*u6|vKF}u{j0a6nyCIwMz|7ed-
zb}gULY6c-}$56>l(j`arUj3)EwEsHe7nT)QYy=a~vf3o7D$2yOfGT|)gf5^Vj?YS(
zIzR;h=;6*a^RV1_>yM7xi;cN8uP&jy7pvY<6YC32+-_6I&sSFogvCmf99;yJdA~2>
zE?W<#kqwoY4xaZD3ZlmfybaZ&ljWLJA}Kk>)6cqFT@7Wr37}mdnl$a*^&O;{qe2;m
zQ@-3@w+fpH<>*bI*s}mDOspmWL-I|1K^_U_cUfriLAoW4-ZauyS)wkORFaf#KGNaX
z)*@T3BXB9)nsFdPmfXfAs~TBe=o%U{86Z`3nNp8qUAql(rNoXG<0t+a)d&0kiTWVo
zKf>Z^KRwZ}VMig2k_xh%K^O!DcpqUUYNzO+%zJdLhjbmfw_u;+=4y;Wne3B4wZ%ue
zT#RJ3A;&FP6NTd?3^)5tF!l`C)UDll6M1`QS2gPPMm!Df19S1ynm=Vzk$?mNJ17JN
zzWr~BO59Z}9_u!P*!L?15giz}?1txo{{xQyQ@7ngpw?Nbk?eL}6SK10{Y#yxsBq}M
zKkxeGseGA=*4paKiH`ck=4LCDW_MdQ$sn-$eKX$sGP*fFr`6hj-iE0=%&(zDTu3jh
z8|XxlDBoqZt5T3L$a9iDkP6!1_}%-73qN}Pjep~yf+>BECj(B1@kxFx?HuV4;BF9f
zO@`q!ei+(+xflpS8h)#K>0V#2QlQpB)JMT2Wtu-=HMp(C=ssQ16J)Pn2rkx1?Zu|)
zJ=$+*`1jJdmj$f0owlm~_uPA9TCzg5^^*(wR<Na3Bt?;8ptXkmsggY`VaTN2>G1;v
zhnFPLVwCGvobw0lAeNi#X>`fDJE`wF*3j-bvWUAo)Qq8O*;-tq>wwy58-X0X$t>^;
zC@?dfz;WEg-kO&O?;}6qF<Z&YYWTX`Y}#89mfd_+6pIV=)$)lA9S)t357m$&utQie
znKkkE_lrVax498+q~Buc0t1ZMeze(iSx+aeXES_S^7$oyoqC+&Em6@_HDRu{LAhtD
zOpihT1`tOmKceKY2>?U#q^c>Yl!H6E&SMk<uvnbzf8FKWae)-h7b)=9sW8sW{1w>-
z)~5A-837}W94E9bZ3nFt&rbwBKu6RVT*t~jKvujyfuJ9HOVsngF2Ri4jByqG>Sv+p
zrzThtjtrE!3g@2R3h)}tIs-s9CW1dM$6w%{ceXe3y7qQJ{#mT}*HtMw27ryJ?y`S3
zKHH6nO1LLElYJpI`G|J5m-Ky7<S>Bi&07eR%(x)uJM*ePY}8)Kon@UC4ycK?QQ?++
zt=Ddw=s7>r=V83}x(hb)o4jB)=Lp-ji`f;I&HlbOjk!jDw`<dhg%y00IRBNPYg*I@
zjvKAWEP<j<?UpX*o@xyX0`Qzb%HzXwu2$dk;I5?BvS;FGpw6!<AQs_dB$e;Mz&1pS
zc6#G}sLkWSWXhBDwT5d%5ecCu$R21#&JTeL7Jr7J2z@+tiUeUA)(OEP4>|H=fgN_o
ziQJR)r8U?^;Yfd1CTEm|mXpoSW5PP#$J5DZXCjHdyxY*<;ebPLM7bXtDc$j>MSDkF
z7?VudBUulCYvvPZJcPW#0dK4bmQC+ZcfUl9XFsE<$cDY;yvGm{fQkmXo!w$^Fyq6|
zLHo`20?DbzK@iufM88Tg5%6zmW8TlwX6RYwf7>{O1*WNmME@<sAV5Y&;2nT<I+Ybl
zGQr7HR2_|eK)b5-`_LXFiDp3pl8U<7_YMdc(G3fpzhY__h|~^=h(Bw3f8=IO@2P6(
zdWy=#7H;?!ZKwV*x=gCXl_KWvPy25+#}P4J>2ZH)s~$v8s`x*ELW!zQ7RVhUc*n6E
zTEN^dbSTi5S_7g$pkxyV@>-ewM@B5%fv=4XEQ*P1uWAb%5`&TcDuNydXim@_Mk)cn
zV?`aIJJlbJ?r48H?xEQ<(6-q-cIZXGC1n*GR|VcFRoy-Yl{}R4J?1Ci{E4Oevo~)|
zFVK{#igv!;C>^d&i(O}Xuk3nU@IU$YvaH3sj>kiHlAT$kZ%DXIc>jg+ZaWGo&B(+O
zunRi^#M{d$Sm5;~^rKSxBRAy_i$5d!gwy#k(FvB#mAM9WHZ)W$8Xk|1jiC9L!wg%@
zbh}zrr~W9iB?<eRyO;4;9FNN48BK?YxitkZXOCk*zDnlO{b|VAn;26z^;5G0$<#P)
zd*aXQeKv%qvyNAGm27dEB7O&bB8w4m*gfJ%cE>klSC1pv9Ib>f58*r*nNw>}%c-5_
zx3l{B!cX&Mw=G6S$WNnqBm=YyWq>O7qxl8D(9U{qUn2%LSzQAFuyxvqqu)@_58i6m
z%4XvrFG(}l?H=$Gbu5SE=V46#GJ&9|F9qz;sG{(!8~0e@g1KBIkHnd~HwS&M3>B!l
z=orl7gAQIMxi?BE(fSCz(aDqwUK4D;GwYb-`h_0QR+GhEZJ+mYGVMH~yUY?7ScV`h
zdd$Me<zGt*wx=FH>wvrw-1?cqPwVz3NKl4mx;YOPasq-V9pfx!geb4PL-OZYT=>;9
zzkBVm2$TEJU#C?5_KCxfGMs)3fj#FNfzs#!9cI7onLJoGOOrA(B3oP4JLK4E1*}@j
z#u7)LYS+~Fn17>wg*~PnH*>LEAl{xv%W3xjC%WeGZ{rwaH>S}}C(9=5#*Ys1|5K6n
zZ0h|}l3$#YIsvQaOM?VN32rMA1Y&m~mju>=B1L9rKnhN~xZ<Peu;KYl4+&_@?{XQL
zPxI!z1VC@E%b+4(UfL~#u4Otjmh_t*fa`L&F$CaW(F(q7kkdB%fJGq~CSxFQ|5z8&
z62Ar>;OLqZc=^>x_cc@SpWPv#;i!CN;D6}udjFh8iF!nU@kL;5(3E&vbC&p8=P4F(
z@u_i44FC4>X4b@x70tz;8k0%eYA-+t*2$`=Q*P_&aW3&q;AxB%l=#o50XR@7#3KZl
zRhc=uxn4q$ags2PmKpUspODbclxeK%D^!S9A&WGkC!_}_y`-+GZOTd~YHGJ7kv}5b
zFQx5=xE!<pp4<yJuCMVtGN8;;;`4=63rKbVs10`0UQ{t{aSxY}-xeW{Zx*388+~Wb
z2E!~#N@Zz|p~NzQHV?It#tiz?#>M9TjxR$I9qG30Pup3-G!Kd32y=_W^LmGC{TE&y
z+k5Q<o~VVj*U==H?{VAIu9ef>hgvk@h#u<Gs4juvIodi2mSQ%mYVK;2A_tEeMQq!7
zB>x(?&=uMEue_>uu$p4cd%w@v`D>)q%mMMoy@f6)rIWWnwd~ggJJz|VGQeI`Za%Q9
zN3Kac-pu(hL46)V!gh8WP-bqm=}CsT5f%rba!;nkB}om%P-Nt78$hRoz=)0m`-$jY
z=Lv2Z{d%4q3b8V{mcY%~>(NaBMO6{Imz;g%=6x5YF%q$UiE!{O!{Mi=mkC`cU!O~K
zj8w)Tzf(?zh=BD%Dv1!s=NCtBGk2iwpQ`?6ib8+TL1{*O+)2V+C}1d5j4I?FK-vi8
z)rl^01({$DK<E$eI}0c|{#QqvZkynSAC^CmFkgO#RHdyl*zy;p=qLEANQdT9i6+|{
zU8P8&F`)eFJ#@rPLRiCAIrzw^-(;UCFj7qb@u2tX%(1zmHa>=GFNpgdHYae;>MRF3
zKesZ;i0n2*gZB1UlNF-mW&XLESg|}UcH>iy{Txtaav~#OLs5}4QAM}N5c>6U0k-*9
z2e^Vyo;s^nAFprD=7;!FmicIx706mrGh2v6NBpW<YR7=`;YYo;s0)qD@5FpUOm@uY
z`sc#11&itnD$}bjJ1coU*+OQ7wsTziQP+_~S}y}|ylAkjIjkkO_rnWE6YdZ$Kt(J0
ziV48F^Ra4;(}79IOR*s_<RV(F@(!`FJHI6T5@uE24&$rv?HF>MFqSuC-Rvn#Hchtw
z`VbugJY&50R`%if=EW{wVkzz{zT)@2Mw}r1-4FuX8Ll~qdHw+pDy&0R++@w!kMdJ8
zzN*#H8!?ajcw@02<;~y6PU$Wd(VnRtKFt;Uf7HEYR9wy0E(*beLvRa_KoVSnOGuCq
zEQH{0!QI`01q%tT0fI~8(hW53!GbsLPUDTAmA&8nChtDq8RLxm<Bogl2fe5Pt82}w
zHKpb=pK|XIhP0i%``8F_q!C@3o595+4LM+3YfN~&GBnbB03(|KZC^oqHgu^0`w&;9
z>aI^BJOt#s`rw+Xu|uT9=jGpoeV1=zL4~_=IUi`v=UZq=1*Je(SpX*1MmX*!GOC><
z*2h*-`XqCT(y$~Gn|Pz>#Zr?d{9<W4sMbwb;%m{l;CE1Drh`=c#J>=++DfQCQgC&%
zk!-pOGmtAe6eerJN_GGK%tJa1eD(|lp{3sZv4&JLTU%si=0p6oA}-fia>0SD^1rI3
z)A(~?!*wGiE_N=x^~d=@1=eKUc<!e{)nd}!UF+D`i~tsO$wb2!03!nC4DbfwhVRZF
zZ1{!Z(Fheh*2?q|!r0ofNaAvmZmoO>_MULt9Htk<gSWP0jD5*Q$EWu0=kd2giv>!J
zE2;RbSvT1)6&dz%wbz7X)ys%gI%;@#gXrtYJqky=(%3j+HbUCSWS(*A+5IrGunBLm
zz;Eg6ddF_2-{0EhX3M@j>mZ52Yd(TxrGKTs_7tL>f?Q&pgyqfBl~nqSMhKy{1Jq&N
zt5*_#E{pCgW#Bebta1ngKTo<C#EDcEyJk}G)cRn|p?gN$^^`8GjuFA4VS%F}Zaa99
zROx1=kpVU(sv^kAND4lUEqpPjw#j8paCr%S_}H1A2{&qZM-RjrXVU~G@LG9ixG;<F
z6N;7{<aEDwfHIt>le^f6%WsT)0Ks;@&^{zz|6z#8B6i}~+W|jU%xJ2s1kbCTO`eyN
zYD$Q6x{vh8drN^&c6E4(LA@=N%O`}?pA>`h480n}UtM0c&WWfM^3be|FM<fJ+BHN@
z`d;qx7VKE0`afxU6qgP<YkyV6_mF`L`>gaHr)1$|P7}60JL<9i7=FrjMEkQf4eCBe
zW!UunL67h-gpC@Ie0(_A+Vd3H36FRmCG3qd#s|yoyW}9nsw7pfxpLs?6Bsn`6>)uf
zej-g+U+Wa?mXCCT2@k3ZMK3(`q<P<U7yMY<w#|3#veI@H<<1`oaaG^S&O;=e$nhTP
zJo%L*+@<&x!PhkG(5~#}${#bmQw^SM4E-*K-Mt(aQsoUcWFxhT@XG!dCO!9A$L}hI
z81L<nf?5;_lU(2KxWWTfZl!h?5ZZ=sFD!W(I>iLMa;hrvMX$A5Ny6Wx>)$_XEzEiM
zL5(-3VdmYL*N>N`(0F5$rQNJFs3P38n1zQRDub+5Re0UGawLElyEF7Utdk1=;aQ64
zY?JqJLpqsG{1wAl3lr<a)o9bnN_?;im3qIEvEHN{t=mFgUum5KMJ>7Og?7lXN}f<&
z*h-BzakO5~$Mn=Qp)(uHfC&12c-89-5WDlasfGx*_1INq1pcgb_2jK*yTN<G^qE51
zpbzPBD;sE6R17wt6R*;N^N?J}AH2u@p(DLCgW1@cqON^4R*hxcbE=5qwUSkqo}xJd
zy}j$WGqi6`#UbSo()_fm%unc`kHz7yYaIi%Sxo8T!MA;<JJtzL&dq#d4az<TtXOp-
z+GAgHx`oK>C~nSbIr~@_H9IO`6t0lKtYXwR)CPMZg#Dw$w*#S`eU2h;_9~EH3sQwo
zy~j;+xq39e!toT;;B6E8LVu$7VaY6E(5lFqOJ~KqeL_e-y+#B3JBtP^P3H2W4Fa7J
z^8@8O*S;&SB1h{W0G^^+0wDWuhJ;f?W_EOD)oW*V8WA4sF>ip)^CyM}2S-iN#pm%p
z7W;7#2>2et!*ImvWdZm~rrbXWQn8~g+#slaV&~>y$KLL_*2Fm};br4$Ya12k_p-c0
z1FrsL#f%z==#^cV1DhB&i&bd21GI~#p+ea#i<(vQotNKmfoigB`OGCJ+pf}q+tb6t
z*oDy4l#l%t7;DC|>={iLOY^p~^#QZ9Ish9)%d8H}1%%mRi^-i4&H}d2INqYB=mAo1
z>er3;Vni;(wC>4!Z_6hCD2CDidvH1xxW<xmDdg8AINkS~zlQC!b#-Zh+&EV{Y99D)
zGwfT=VNyc+qAK2A2=F;R!Mwe1G~b|EQSqREpl{+$#w0f3+R!bDtsHuJG&`~Te4|~3
ztHMRj<haD~`j1r%85i8!ZDNY%uT0`>F<!Eg{(2@@3)>~T*ViJ+Xsq+)&*Xqg;PHkp
z>B4Sm=@7J#AKkY@_ZGd4=u`00N=e`KzUfK30XZB5hvR!Nx=fyHc+`7~KStO&$z+DN
zFQ!*gEtCma3u(M8qI7NqfN@nfsf;cQN*Y93w}i=7V)In0h4P|&!!(iS_`h~cR3m+v
z%E_tRv-I8~)Tp@KKMx!=x$aS_m1tOSGip|AI%C)v8#7h~N!cSlgb#Fr0jh{Hemq;#
zpF>FOKO*bQmS1ZKT#8l<uL`tmsjpNR-U^tQ=|i_1{MlGp4U9`;n_Tspif#tm-jmu}
zS{6|+oF|e%3m(saIhwACJWrkoA!U$*G^tqG2hd3*mh*4<D>V2=muqB1g|?&dks`{H
zAg-s~pXq~*;h(ribgMU0G@+19;ozK{Ao&T1>y4139M-+b<AP8Oz5S@4klWV7AGzlS
z8q-P0C6E7Et^LUi=?cdjWvJ{&g@-F=*{$|1m%p7AQj#q`A?E&QC*6-!ei^5s50$&i
zopNE((Oq<{+IAj`>iSxqlw~Y_)?+5OPHqMl25ud;lo9(wYDZJ$&q+~QgeoH@nKsJT
zU<(d?8X-6o8_$u3&a8eFG?iCOO*Ooi#}(46yqcR>4@2yES>M>*;aXB3L_GsgpA|VH
z6d2_uvgWN*Gw*}oxAeav#?*)RirBPk>q`M})y$as=Qw9gbUz-s3%!YnE@||Do$=zB
z81a!axCc*3{N8w>t_(nMvWA5eanPOLcygb5r(qe`cP7KW7qNJ-AYu3LaM@#Z)g*`e
zD5-<1R8{Wk##=9guZNl21s7sJ!QAzY#Q27iig@aC0ZUisb17#Ew#qQ8dtCcv^jvE2
zACawIkg#2S^~sQ)A*k}UPa%N5Ei<30q_6dU5LtpV!ZKUhj$}{IwGT2&Tz3?+RN{TN
z%#!fgNVi)H{cGnG6hgMEEY}~34Di()#Vh?VS;LR+8@N}dIEyjVnjM1<?1tQD={|3_
zf{c^AzmM)8UU1Dii^BOK37>j2D$?rBU+gdDyZh0{6>B?{1q?%6k1GAr)3)0ON)oi*
zJ)fyPm4Lb0jOUJaX2i5-h<e4Lr?ghNaPXQJ?Y%^dPWyxjHPh6`#&ku^5t671zGD9L
zi}t2Qz7On}%h|3Jxg~54f8kPS8CI5Q_9HEqUD@SbU0II&YX3lENaJ;-DY77MwG4F2
z$6@`TN&rl+!<H+o3Zb_d0cbGznju(Qi7W}#y#Ps*@D{~ZeL`{}`&^dTOr%NxURYGj
ztKD#c@7Z{>K8;IrvlNsj^p>Ypn>qZp?C~MU1`OOka$)8oW4zdh;o<cJnUSnO<Y2ju
z%%Se}P@E!Eor(e){}+RcEtR&m@YM8lq1?Cv+u9xfC$~e^Pw}CBgSwTq6D@7C)ZyWY
zvGJ+`^#eyF{Yz`(FLjG_jC9OKPI*+tCnhEe^r5tlPR9<SJ76s>zVqm9)}RnSwyB_g
zGmc`Q#=_yySvryV+LY7p?h^_?Nu#Q}aVbgi9#+Q3%7%^6*UU&G5E%9zcUE*Jr@LH&
zoSPM?Sz$MpgyvIxl{6<pPV#;DyFnR7u_5HLA3lq81pc(T-ixXW_poBKG>#dApnuKa
zczAB`W9woYxH>1%HHoCdV+_CG-CgR7CxO0~3lR}Wr9Gpi)<&r~w`xku*OSE?k3dzs
zX-94=-X=EWqeP>N{AXfg4uv!O<G@tO?_YJzvJ4qdfjMicjgpY%$48^6F6uo`-xLO=
z68}<X|7s)Y63!kvb!A_7@1@)iUokSyk<hahBO)e_O-(H>d+H;<Souayt{s122*hQ4
zJHbmzN^0-wnlP8G56OtSzW&rHZB1hhZy6JF6kCPq)+fBH<@&gFR^?JH(Xx6K3u?r_
zKHTEdk!xyjGV`6(-RBwi$hLfSjcj0Q$_8mHC|p7QJ(L^uq~zo*+d1%2>?fjyfC!T(
zEG%+UGgA!0!c-m}Gf0bv#@!VT?b2gqy7_IoFC$78`1Slyvb<i66BQ|zl$5-MHoMC2
zT1{4c*6(ugi|Xy|>kJNa=RFw3p-oTeDf<S>PXMu4fKRu<<5K70x~A6F-Ri=zv1wUl
zg#sUtRBD*e1(XyTv{uQK{+bTp!+E2;y!>NO6Ux8<fSwD-MAEXdep@_&tJB~}0+5Ss
zQ<h3c>2TQ(znG;Xcx%b25qW%N_BsrQR=>XGu%d`XTU#4o+=-tP(}(!p<N+nQyW7)Q
z-K$rI+LNRh>U3Su?pxK#w=PcVsgPj{6O8Z7d5o(N-JaLri$zci66YM@yLT#|OZkz+
z{xe;G5%QyqLO(mh+a`+dnw`Z_OGv2H-UMiS7#~0GG!Kl!M2CRE*@`qkd<WJ}NRPh8
zu&^i$i-|ECu1g_axtW2%+Pk_aJv=UY`bg)*)D_|C-J>%^y3B|i!~PJ&IRcG(!I_#u
z{nKrMzbzf%ce|gU=ae3h<>kVNsU`ys$I5EsKy`F<|E=hUqw^qLXh`JA$s0f7M}S8D
zcgya34EC(8stSsVVhg=sVRqQ<FtISCM`_#I+IlS~$FWJ8vaiEXZfB=2Gf%|;PyL!2
zbbU>wN_tLEK@u~lu*mZbw`8yMUy7tglxTXga-7n+SaVuqDPx{(<U|i&N3J2-7)tkx
zO)UOa3{Wa_${o0$V`HPOCI##T{}z+7i;0bK(2Q%1DLmX(nk^}HGO+7S4z*lQMF2>D
z=w04UPj6wPyhM=}18j0;Mk|@uu~DCJqkpjXrEMAJ&|C^ZI<TRyb#~Gw+N9Ms(1s(+
zC0p+<gp8HXLI0dyp;St>vpGPNvf5rE2%`ITD2MjQ@z}xg>S@{xVR&O&(S;!fN{h2h
zpQ_kwnQp(NnrrmYhu+BF%yikXLNzuX4T};3D;pGSIk}p+XWh8Tf|gnG3`tMqY-eBC
z+GY&gA5^V+UFb=m30q%h@X{7EBV9)m|41Nlm6oQn+Mm?5cj55Sg~p2a*y>q#dg+0(
zQo`DYHHPCidAqbijDjeFlNT$2sgEnYI}!b^inT{0ZGA5j^u<y?*24wT=E#C}EGA7g
zRSl7n_T87&l{7Uqd-_T2()dkYB+W_wekWCNr==X&cqpbS%d7q4<N2y$i!u<mu-O3}
zFFeU_%7c?ewJy&Y0*@=TH>f<gfAVnXQ&kn%ZuE4uqDT2qwO7QVSku_V^^)@SnOKzK
zs=e!6(;4clDNgQr@H1Xsr|EOxv5b)e+uFpbZ9fv{-?R7YLK)XEPwW?>{&yRpi3Uu<
zpDmj*@c&Uy_QZ;kh{vmR=09)7kS$Ek<Nr4!*uU(GWtbNKgY9cSEj?ecFJHbaF7K8k
z{Nn2QcN<B6!X~Pc&d9(}q-VRjQRJi=O40ILdHlM1j*9aC@t*OwZ{L0vQg_8c`aSKx
z9#54A;M?&CYWd&#8ABu%j!*+AkeL1<y&@)gG_QV2)DK8Wf0^Wee-uzYVe8ROc*yzR
zf~eEf<nfj(R^JJEnSQ4P5c|lydq<>`mOf7O`@Ue}++4FFCqR(n{ZZFCE@j)CDF1c)
z5QG2z!v9x$3S3@g4c_Iit!*$qeTv0CIB1FW*XjU1=E6rudBz0+cXfMB+PBOb2OIlq
zOnjj(#Pull|9>mxe^|?srBwG_ZpGO+#OY*ZW$hhY)#QFp{-$DFLPp`>93>es5vO0T
z($uXP=DX2Rd%I9P@=-e^Pv^bB$Hi((Fe&Wu6e$Htab*0H&G5+&KU$_@W3v4+#Q^I{
z7iYu7#I(F-mf0Sy3xRiC9TZt1X;V?Hxd<5{7U?%j8Z#Oi1OY3_b<^ZV0QQ4w6%Q|i
zpaD5SIo_qUrLe`^{LB!5aTBa|rDfP1V|YZoayW06$-w>Wjjl>h|4-s7vw^@+2;>*1
z>6#0pxVl(KaBy#TAK+sMU-aPop>4A7ziD<vtJ?659<Z9^+_=FnH<_>7bj_qoxC7rO
zjEyDd@fLU)$j9J*N{O>Isjq0H2PBHt9NeltXq?UAPgSsEF8J_a=(#OKZ5<4@eNknJ
zO-#(6xW^Pp%UA~z_wcHDKY6cs;wFRydZV@~C=^8rUJf0Cejd75&rvc-c7M>HJ=>(r
zs3{G+31t6xlSrIz7X+>w-0;!G2r%_CYt4W5QRRfhw76yZuqWDBTQ3>d;d_}@R+oSN
zm2fxG^#HsqfbbE|g@$HrN94IHwVuz?V^-}NA`Cn_H7jH_H8sbp%dfe)xnNTJGIf0H
zgzNXfco@D;H7n9wP-_d@Ty^AVkgget0xH7pAId@Xv)s+4`6L*3{_dK``?UQWan*wS
zJuf$_Hl4<DyeM~~h|=gvcfU!!`F8*2>hssHIb~0$I~-z+4Gi?XtIX*KGlcUKhzOMx
zTDkmHseixcMUa9i4e!biXhzE%i|<BF0dx5($CKUNZh&W-h{D*oG$1_+o&A*Bz{Vyw
zK~1U76KBzHFs=1VJj<#;Q#Ok^mzdpxUen?3S7OuJGJ8=L>`b4V_%t%(OD!v2M=|LJ
zP(Q$4;EvnQ<$hYnau32Io}s%<-m+YyweXY3uJNuJ#{hb9#G*k{trv}ay_9O#Z>=xE
zDt@@jbJW1lBQGh*f1nnLJb+aG>9;K^+P^)&V8(<HVE519Sz@UsoJ>_=YM0CFGN=%J
z`DuSM^PIQ29{}`a*t#HT$e1ijrwazL3D>Pmp6(nXjC0_tn_S!~b&bddhv}z{!PuWu
zQnZYaG)$<5E)k6NeAZ#zbRG}v{7&e#YT#{2gpA{qS`1Ha4mu;G^mc|vI2%uwFv!JB
zo|Kt>Sax513Pg-yMN_4iNLAS8|52^k!jc1>eiYZau)fYhJZ_L_vD_no7I$SiSB{`T
z%_wcotFe)D>yUYv`5Oj1^J98QoNY4A-kvf@Pc%)CEU2+jq~^gd_R)ch<6#Z$_Spf1
z`o;3|^IaG-N(~LHhJ}2iuA0l=rGvba;RRb4ie8mNkQNZAx(T8CTYVl|w1DqU5oRcr
zyiC)QuA7MEh+nxgtp~rSc|^bIk*lx_<`lYMgjZN3kx_?_wL#eqL=2tceLRpQu(rAX
ztzDIIJ8d%yg?bt@atC9}&F;h^JujbnpRADykdub|92r4)>}l<)_Q9?YFN{?k-KH4?
zV8z;QB^t*pq#y(ZVZLJTp7+sdqQJ$F#YywsZQ!DfuWvIBj(&qDNw=b84|}%w<+4*G
z_1VK~VV49KRKhq#Sp_z33Mx7c6Q=WnIqhhSH1D-fe?L;>qmS3kDCISQ#}%fSVp*i>
zvGwW4<@OtBF5yK@(LV_qZJ6<>6rpTgam{L&K7J4Gbq}=1!hZ57j>}?qZy%^Fy-ooG
zE9u|ueJ}XxVx?)zt_NwG#jYtJmN=v3_7%qAHa180&<(OB+fPXX*VoWnceBeK0ryo-
zY4Mx5+31F3K{3Arl<HI4(uuL?=d2Uw)I#J+P!Y7)yXzqQg_HoS9O?cN{q*4e1O@|m
z3xkT}>QfgR<%tPCcgxuo%*|0%HhRDXqUlCbn>#c{>Mm>h+P<DWo~Ykqc=m{O^Nj6f
zo@=1%gYZ6PZrxC0!t9K5Wx3Y{zTHwLNEk-<=U;9nzA`x4ZZ4-)q4glkniG?TUx{YX
zEUn-%aQkP9L<pufw;0?knGsE_B;N`Xm}@Bh`(d3!EzeiY$6W1-*p*F}$y-d_5bnI*
z+WhK?MftGj=zvqGY$1To89yDqXo_iZ^5}9Nh81A!^SR#f`OC5*mhd+}%`rbTj}V9V
zxjdjQ23Sddw-K8BH}_hSy`b&Yb@K&Nylxmo<9lx@OzBz@9+MGp)^cbiqu4gd7znr;
zobtJj$eWri<YC_<j4qh6uKD=ejD>~m^Qsad4Zc=*xja7hNnymyUUM!wE6u7CqmcQb
z%ZBAZ|8DqF6O{!vwU-h6HOoiV=|EzS83tpbAU%Jx?goKub}B|N@7XoCjxNz07E3>k
zun~gD)S=g1kR#8dt8(o4i~S>W_B?S?Oz|4MmiDilPQA#F5=f2Zg^R226hw~g@%OBp
z@jJfSalCpR>B>2oy*H{1%TLJ9(2K#(q=-ghyh@_1!swsR_)g7Z1L-*HmQRoPW-M!o
zOB`7(C&Gbnroc#6h>(Q4*)8|p-p*{e?FKBVh<9!K<muP-c)ZJ?<JE@Q=5$|w&@iW~
z<gTjbxqLQkOMiMoI*=-KKVU9`c4LvaD_UJ({i#a^)-%J@Y`KkSj)zYqbor#5vDoxL
zcM!}jTKO$d^X>6Y#C6Me?>)dH{<{_37Cl1R-5j}pE-=&Ha8Kpy+1|Ghu87yyD~uvM
zd$`_rZcmZHcWKy|x270rGI%onIa;VJ2wZofQg+ssgrNB3ADZ|92L~NXHo_GK-zx=<
zumQ1Q*;GHjuQL^p%!tBu0jYvhpJOH1yxX?XiW*{em6%8%Tb%TxRFg?HhXu1GiCGI|
z=zKw42-kn8A#y%>0GB6wh&T=9@=>u!{$U|d;Vu&5=Ri8&cO1m0@Pfq!_o#a3UiaXu
zj~fJy%?~wd#aAJT1m-SCbYfhXDuMFW3zCq$ld_o4$w6GEYntB+RHJ0)gvpH2Bill|
zQw$Lp{e(r0wwoaR#a_Nb%oNJ7rGwoUI#|e8al{eu)t-hhtLIpmca)JMY-1$xk64}&
zwf4<z%-2V2Wvh<3cH5+cw8r>+#5^ZVYLN6wdzI)NIAX(YJpD6(oW~6Ro!rzy>gb2c
zvzcoT%6lVNbhjl<iulk4kOB27Y)0&FnF9{zvv<GzYET#Z@&U)j;+0?7(__ARyRl-#
zg3oDn@iW=~1T-bs_;d7%tZj=GJDeu61WXSk1%t6QZaNI)?clU{L;Ki(XOh{&dg_(`
zRE^G?aBrOZ6~j+g0aE&H54sx3{`U=W6ww~W-NqIxb>){|>Fs&c`(2K{5D0BpL{2XT
zqe&cWp_P$L_c_tAY&8I~US;$~T#<fs<@ff9MWzmWYIw?d9p8ztFOSV6dSu-iN7l}D
zU2Fm8am13k6QK=oqBLw(%+<Yg80M~Kxtw(4T1uq}^QuQU^a}Ce=VWT2pY!{6rWs1l
z#JeILXC!@0Zz40C{wX$G&>46pLi6IdMZE$}!wAx4I89n)`{*n9{UJg#(sOX#fICnv
zI#D+qo5a>Fqq2#1h4AnlK{MB3qbbya)4Sxh`PtA`fyl<5fj7@o#|;~>KYs9HF^_|D
zN{WqGvg_ch8CQ4t?E9PhH8KCz6PssNzqQz#7}1DwwEnTj&w7_uM&LGcI=V#}{~ZVv
z@0RJsLrGvYUt?6iAnROEE;pOyFZ#K`o*YlY&yQk~uvkqQPtMT<M$DgFe?s*Omd5n{
z&RlLo5@<Z0t-adO=f=fsh`Qcr#-L%LhwrO0-|n0UEcH926JhFT?34&WE?v%>=PE;`
zL262kQCQN;gJ_q~sN^o7wm?pQK+{qL!NN<&OPN!F#+*HVPgQef+<Vn4X<A#CefeJC
zI_t~X_RPgs#;wv>ip=u2&Xm-o15%$yj-Nl^F^l6zXrp^fhhb|6<7awn37Y989j$K$
zE*>b<2yd}6aQhGpkDMG!FAOePy4cbETOE(E9re`nmwR<Vr1I-N81#Q%avzp0b;j;-
z72$cWTcr5~zoeDSPO+th9-rQzhtVB=ab9us!eT``UZKMcf2k%azKRW4-9>_cE=hCR
z=J&pyph{8;uvpIy>Vk|sHzuf0Di$WF=B7e6z9MyXDCutQwwJHPm4P>pg5}HPV=-^`
zShYmCP<?AHW4YG#$VF<giPZNymI5=reYJO27l6YtQMb*kNR81jZb}Sa)w;aFn~i@U
zS*k+Usej1?bMeGZpgnGjlL5!gvd8$6&kIvacnuYyU6vTw<PNHJ%)4QC8M1TF?Zo&q
zZ!mmc`l@jWKyhvJ&l&iC?t8K=?GQ$*LTL&z=ANjZpZ#T^=H5&WE$(RAWfiBb8*UH&
zeC>49TE!Te9i+9U=CzmXR$;0`=CXws??&P`l<toqjvM?F#m=a=?>VMs6Tw2HLwmCl
zv*D~;_uJ&4x?i{4dM}HFupGcjYfSmnabJET`eUm}{X6u4%<k9IF{ON%jS~-5j-iii
zVb4mWm2eJh7$QcBh%cjUK7M|zZNIFB)<C4VRPJ~WWyZY_El;q{IznwKikQn1`BrLH
z?_s%Wf6<RddBBJy{)}76LzjSH7!8ayV2Y*Zsc||x?Y$9kdB8l3l|gG6AnUR?H;<jQ
zWENYL@ID3beOS9%#uZY<x=^*hU6jWVg55X*HzGqbCG4;AW^DF@u`;0;3s8N3yG48X
z%%=OThGwxEx}Nie`~R^bV4Gz^uoqf}cm^g58HdQbcO2I5vk?p8T~<rJNj!Hdkz4Z*
z6er$f#nb2rN42LlaAZTZZA^|sw*Uv@JsPlJtj+ZC2cyqOQd9U}`M3yoecxROV+)`0
z2!&u|!~9%&zBax_<-iI(?pc!R9)3Rj%%1n&zf4cv+4;u_(rtNJ>YY{^vd=CoLAGSI
z2AAc^Nf&h_A@aJ>1cW%amlQlQHImCp9E-`F7|PGn*IC=`+jq4YRa%&1UubE?+E%ax
z$D^M`yWD3^%t+$)LVf3VMOv&B=WH`837NYxx*R0{^b&Hj+7hOxoyawq#f2^-#G^H~
zPW-qQT=yUK!uJUp7vikZ@@8-8N6m^oYpPJrx71BG4v_#eZSzU2vQiAA*riK=VxJ{c
zBxVjI79dkCSCpl}w}R{KkO|g!5eJP3I1QMg^@+C;jhT!aC92b>(Y>Q8PLR&NDhOS&
z0wruY?S;gmq-NKa<%7qn5I0q1@I`wY{*jgWYphUQ==V>sXpRiJ2#gSsj~HEz(Yc{z
zq<45v+k0FEzR&^;seX#_sQxxLnO)rn&H5Evof)68nx(&A-_U$ujrpuADLgAmZ6^Yw
z8FcG;(iP9Pv*^iMkMyW44b?8lKquB>svA>+Z~dk==cww9oV~8FuS;(k6Fq6vx2J{0
zn{VQyhSv@ZYF5k#wBfYU7@n;P=#o2G9*}18n_C9&DJBv^%e}tm_pncR?B!DC56q5e
z3*;&9WD%Tj{Q(a<+UO*lwgnT&kJ822B90Ix5B!B|FtM^%PzC%VAq-*i03BL^=1?cx
zqcsPU`O7Cwt)Hlouvul$_BOL$Al8@#p%IV-^82O)9kTE(#}u=>+apXwSh}&!TH{*0
zmSR00RE?inu}^lku<H(Mm9Qtekc;lHSvTT*@3xkh)YLa}&9%KF6(kFXR{4xTRAg6@
z3d`u)+sN{bzupLVSG{*8zM+}lwI{U`KNhOp3T#ooZS&&z(Y?jTv78@o1@FG@g-2bZ
zAK0i*VjBq$HH8xEeXV$5YexS8zqhrm_rQ3Pqy`Vr05{CDTuUnGey6$gyyhfC@#2WU
zNVH{~ykRBj77y4n)b1iB&>MEPB^V~AAZa0KQr@0XJ&P8JGnY5n>~+8*asD%L6g8n>
zMwTi<0ZY`GR7@e5+ip1Rws%&lRbp-NPR{GbqQn60(f1o4(688HgfNpXX{DK2+cB`)
zBKEZ7t6@d7DQ<KzcD_FNzOZ?TVXm4+aKZ1_7)?j}yfbp5?8PP8HH99T$_(GDvt%~%
z8(1cSXZ^ln=6tB2cxhK=VOc#?oo9`Loj@O3r@kDYYW(y#aY$m}fPcB(^(%j2QJp?o
z+1f)|+_ys-XP|&p8<z6wTY*O55wfz%RCAeGQR`>(jR!bldc`-63}UP5)>h96>9)2t
z0AO?lKl}rKgVvjcDs&iFzI`k}&vQ;eJe;3Swq;a&x%yWsaZ^0Y@@2tcmIma6nYFm*
zq}yV(AoZy;A;z5vysl+j6cZ0UM4TJ7^p{|nHrPcuXZfh*g5>b~NL3Q#=NTFa1o|+T
zNkKB^vbw?>QViz3wAGX_vSu`gc2D@;KFT$imR^0FA*V9--STB$p4H?t)Wj+A>TuWR
z2LW6*3>D6M0nhGRFQ9g3xUbi+hiM<NlZH?@qv^))xmu&Tt+`93ahTCbt~JxL6lDLc
zABi>j+p8=m`;4@1-jY@Khz05Mv35#Vza*Av>2)%1_1rr_y%az$Q_QB@v_U*&r9Fiy
zbVV1cl$+1yBrPxCl+Bc?2Nuoyl9X4xpK-&IHQoHeu`d6}8{+COpT};1v2e8yOq9SQ
z7P;QU<waN)uBDYa>G0+a?VWQ6R|iH@v_F0J)kfRa2;B-?X;t%k@oB-4?oeObRi@7;
z1?{?`$9Y@ZAvB=tfuR20Uc|-Zcu(J;bS<|H?36jf_u_Fi{$})TOk_*`f_GHXR8cR{
zrD3m<>CD}yz8^n2i(H^f-m|4WjsVy0v8pWj^TSO%>nT417z?+}RPYlQ;b6+_$uWMo
zHK?2XTD8MQJ9vCE+}~@b;BjvG_Qz&ps-=!Er<mgrhZZ~{ZV$&e;moFtmy`U5GeRyS
zNpgu%t}J_en^N))n!!))%J}DlZS{y=ZZwAD6JHwjY0#OE8MT()J(9PrM&ViDI-TW}
z1bGwl)D`xxjS}t2Xwkc0Jo~Ckn@=ko*1p{+W&=4}Y@a4EPxMg1$>63<$<%K-Szs>+
zmVUI`+V;4U$DugI>8_5e3KCoP%`R`w0)z7)N=hI$kDaRLJ}e;J9Cab#bc`tLsTSJ3
zR+#H6nsrFQchRKdE}fi>d=s-+bMhq6+pE9AQp<v!3dCC7c+x3M+L~mfYk&u_6wwL5
zon31_Q`bmoa%_{!3&-@GW~FXq9q>nRv7GQOFGXT_iUxElos?BSv{AK#jy^wZ^HB?}
z*n6?1iE}BTqf!~^<74*1I={C(d8*!7_Hb+M>JwT_;fDr?74+Mw3K}3yUS3_^0+QIN
z@Yqpnylj)3g1QL%UV74|?Tojl9zeATP)TEcE+hxXjcE(I8%%H24ZWPs_f%BGoT)_f
z@Sv`X3M&9Y={Gf1RiU{;`nHOvi{A!G4JQa_LN0GMf}jjeeD1P<FGheGXNXCdu6Fxs
z<e3vmpzF3&W6F8w*EtU3!DA(3#bIPg=I`{+msq1wIoeOU(G8KA3@+O(bx{VRy!{tX
zHE3Ls3oDj1&QkRf3QF;r{4Tie4M8K8g7jM27U9`2S{_W}z*M8bqw`M(K{m|t7wc@O
zAE6QcEwa)XSDd6tN^SDQd(V<dt}`z1RLXJMF?MXOw$ak2YG|<+$YZuJkojv|3Ex06
zF1#tP@lq@&4ZKl)?u}L_M+WOhzgXS~B7_fgYn0y2T-6#(!&V4~{n(AD#yE%wpwGAI
z;qmHRQ?J#BNo?ypd;~VwIv0_1IBy`Qn1We4%<4ZslM|QeK!GrQBN5qnq22tDap|7R
zBEL89%z+Qt*L?O@<(Fyo#9jm^YmZRH+>m@#^ge>LAoA2ySq*z=CHfF43pb+dc&EpZ
zmwzmkB5EBx{O$?3PZEhYCYRa|IHI22(*6{6`6qJzWmGKt&I85n6{Ct%=f;w??e}D_
z#e&4$>^i8#eZrezLr78DhG{y*<&_dXE^3aItdnjJb8VsEie`MqE_cJpBYlS{4Qn<=
zB0sue*XJAC>%r|1{9gHmmlOim=L_YQ>r6aBx^r{(h~Ww&&Bn_B!-{mLP$kCRLA;v1
zQ>F@Q^(8y2Ej;>4znFB9@GBu#Ni9zy*Mo&nWqk3-yeO*n(NUto(;eek#+YTukeCcH
zf6juxnwQvosl(Z9!?S)PCWa!}qDN_#usy+R__(?T;7d$!^1iEk)oHq?9fL+z!r35`
ze}r~l`?MuVtz}!EFUOz*|5%#*dfw6d*xrZwVjm6l>;QS8JI}C{)&M?h;Ek|XS!s0-
zhLxX}FD~)2`Z#iW%P4d%JyICK8I~61ax&#y7oB^cEUwULUa@!EemHt<KP8Spdl@9&
zW#Cp*Mt@F^fY*&{aMl9BvpVb){u3c>p}vR#O_(Zs7ruD%<zd6#Fh|COtrwg)scKKZ
zKI-b;g2)IVyQS)@lyyeVjq~Nbl&U@MdmqpZ2YbH2Ob_lD5}plZde}XC={$5GO8!+`
zGp0bAk<%`<k{!;cdlMC6&?l#B-|=fvS=QO8;AFCOWzyce0yyU27HdLVb11&}P=B<m
zxMPGYr<%Av@0Ip&wHF~a)QfOFdFOCR<1p=oyt|#~a-&|yb}mO7C_t;Cq(o?m!qh7R
zGOs*SYQ2+){UW2%kHq?~SWY?0&67q9U+H7KjNQPdvij5d!0FJzhjSGqALJ>c9ZFNO
zf@N4Dsm?@5@9c2$!UVp+UU(ltdo}nf`Dv|}?yJY(B{?cFjtw^BQP4I6UM-K=EPn}#
zkU&ElXb13Yhl|E`by<pq%tv}Ke1sA!Z!G&<T6hP}usY+yK?Yl8Rj-@N9(*u+D8`DJ
zDRM5<Jm-Yo>*23*Aj7qOq~vaOYuM2*q<%QmcYb)b@Pl)&m2budO(b%jd3{AyH+{ze
zK$j7FUnT0W_3nMYi>wo$kMtvQ^lzkoBxBpfJOqugp<dfg=o=d9KGXFx8u*@XdfuN+
zwGPFn`LZT7JuRqF=RqtT=|_zmguYnivCz{}I@tLUb=tIQ6RcU{cm5N|)jS<B8_KRN
zWlP&8b!GAu5&~<~mLMcvlxo$OxczAFifl`ufe~`Lf79U`7p>7?2D?uPdfkfT{YVR7
zzq!Y?bg@x>2RBR(C{b!Go2tF#8U``zy=qi5dH-Pk5`GhCLnBN`KS^bksWJzKo6nNV
zL<jc^NlKb%v900OZ3-Xzz0WvWN{x#{B{MUt`B((v{n$8yqQs~1v0%ezjQg)0qU;pV
z+}9jsSQBu<*D)={IeLbTJF>oCH954v^o6d-6?Eh9^$p8Z{iWQ17;e2Qb@Vx;<|Vcl
zwkD%64`FCqt--dMjrfSKPuF6y>yJf4?fToHbUCh_MH16O3Z`g^Pcow0ZGG~ZiIg$o
zcW*l8P_!OCMffzr>t>>72sbaITtzDJf|ypmx|Y4U(Mc1l$2_h=c{Am^_WG}llia?q
z)U^~Wem5jgI>;wyjkez0$01Q3M2rwf*0=KwAUyH8)nUCB#_OF<FdxmM({uNw_CDny
zS*~4)i1BMX*x*L;;)wKcplrmKZ+TW{$K~}+i))3o_C|p2_$9-dYg$TmYmdW_fk~*N
z^J5M4&={HaIu|FGLeDpH{9NcdBm@CJhnjEi@A=I9N<#`zP=tfX*jliaMA>-kIUX}D
z)-CvTmm{ORh3ffe@^d}KVhq8N>OR|Z5ER79^gboIL_PUD1oge4Y}TtMNRM|(_wk8M
z{~AGJ<=Yt?LB@5{NoHtclha(8fcSJ5n&~Uq<ar8*e`|Hrj7+>*!(Yf*n`0xGDkcNZ
zdC^hU*S8Fma5BrAjQT>|3H7`V9}7&u$acH^TV7OKmEIf%JPZUm9FoDurX1c-EgznR
z(q%(3#Y3K5F<ui^5=SI(v{w-`^_@i=%p{g-g|8N?!#9KQbM)rG_4ZrY);Uw%{_MJ@
zNQfpSafz6+IZhoxyc(;?u7o`p{Jb^D-D{hdqJYmjlc3R97%w!`xNp_$Tg9_icR*-8
zJ`CjJFUUzrfkX6EAg+6>j3_P7(ESe{CVRmR7sv?C-*7fl3~*`vg{Rnr=2W7zye}vM
zPO%_FX_2Bp_m?7Y+R%r<N5A(v%Io=n!8e}gA$Hn(i6?C!s=&`cb_J*M{_>TjQ<Fhy
z5BSFRkfHH*G%nDfAlf!n_vYFj>PM!@R2dbMDH2da#m``JuK!wAF37Dv!Tq){f27dI
zD;Z5E76}ekfc6h8lii*3mW&~lup{mHCZ^8%5kAtZx2Dj0yFE2o$hd<!!o`I!{Q+{f
zIO6H!%O<Gy;K>s`_ip9-1jwAu=K@XdeRL|2B_09Jp`(tlUd3PVhD<p;WB{woenNu#
z`AF&(*&eY!+`MVPd_K;mphp?aniLVd8L>1+asBu|o3h#4xw=+%6lva;eRA9yPXiMe
z>WhX3W_8kkR*v^?lOT`3GBm7&ndqJmB@z)Cs1+w@<rJ`*!tV6I8jl`6<M!!HYT(iL
z!G%qt8IEVuE$xjH0g1|}9K!B#t+hn^3vM74_zXZ-GbHKAacKA)jy^7#t4BU(u_2oi
z-^mN5ql*A?q7rZ3d@5l^nf1Ifv9iLZ3i5BDm%)(H(9~eyIi5g6goo`*;s8jvoL*QE
zSG%;~rP~gn<MO?CpuE4mEv^9a+hUSD?+d<r&+0ZP|MPGF9+wGho*}X%J8-qCG97$8
z@tL5J&+0?CF=AWTX`i||<qn0GRs<EwrW>8#B^upR;P+X%^;<rWyx+H-z!|zbuy8hq
zk%q?5s!qnmV9GD_a8P$oJs_MV)fKhVYoMf;po);!AH3bn^I96{?UyP8(txoRz*tX>
z<}m~8K+>DcuMFs#?$e2hk~cSbwbb1`X*~N$YYv7+EiNP)I|@f1y!dx)5BwaD+4R*!
zmFpC!&1P9s&+s5UuQpd+Z?OXK%UYhE**iYI1v{Hz=!1jxP&xIf>6xPEpNNc?_?%r^
zPj_ZmSAg7ST6lQu-Z1mM)(JJrsl-ti$2XQmLixF{=$;dj70gTlnsA`tN0W&hJwz&D
ze>|@EwSrQjW-nOQ8G|i4++0Q~H`fC8K|gd(oR~2FBLMqNNIRej*ve#;ftLk^2|dYc
z!o0oE9`FWpq>$lJN&G$V_ocg2H)PG%x56E|2!L&0P=JgqlsGoFU}N?B#1qZ*85jF!
z&+cF0(ZmI)5q=i6UoG#&F_2?np?K1q_MJxkpz+AlZs-<C{~AtXbQi@k)pe-=W#ks3
zOo!Dao_=IC)s_B$KFY&w@^HGd6V2;<@9QZ@9~$xlIG=9~yf8NNnc_!&eC<u8E8DxD
zqpJ_9O?hgq7xE^MW)HyFKw2L^(~lp&TPZybL|>T+)#KEsO+6a6%lsVcfs4B>++R!d
zuNnITWTg6~?0h~{I*QWp5^|93l&R;w6LdZTQlfLVo>VMVuKb{ove*!=WZ26A{nq_i
z0&xxVu(xwg1fGd2!PY4zPk`h!21kHjHREo4H)hG;z~6$$Y;hjLb7dqyBW~qj(D%xQ
z*VQR;$ZB)>o?9J+^E$ly@J30z&tPZR_h!xbF1Gz}pxUCmva%zL{*|dumhvn0#=|2P
z?sAx2N4xu0)a264H~P!7{hW#6TC)>4p}YIAfw!0)?Y@eh-*#l(NVx=xhjm|Hxz8j>
zUuG=X+*DuGK(|k$RZ{ZKrN%bwmIBk`;^Ot2H{h*9jKAWxu&|;x5N4U2S}zrs@MkKX
zyP6-_H1gP$W%1}@LhN?dfg>m567(t#9S`1<v3IRR96%H26oe;1po9rl1{fk}Xv5$n
zjL>}Uh_)s!Y;(|wQC~RPLqj9UyF`9(jE;)yH)sOb%D|gw$wd~Kog?&Rc*$1ip_n0t
zOBIElK}-7!qLkeBC*W>`M&21BvKWA2&&i6DJXuzl`y4nCmc1=H*to|ZxxBVkSuQ-R
z=fN)|!QXA)e&4OZaJy=#bs}#a?KM!u!0E6n@GJieK;)EV$^XQMf!oK6RIxvNcz({}
zS7B#F7amsN{0DYqj-GO&7&J&YC&o8H>GF%hyom9S@7gC&(4nH|XOz-q0G|T*2?I0W
z$lqV}E^7a0>{#~p<7a%Nnb()tM(no{a<Ylz?}~7uwi_0kxP}VkOd?Bb&};eB><c$A
zt*lsTssYnK^nT;l7bj9(G#qiUvdW98<+<+7^va<7tNt-m!f~8mzbU)8u-t0_K+}JV
z<JU#OKcQy@UmoS=8jVaSATG~crhHGzcYVG9^P*<-Ct|JO%dVIMPXEhV!@YT34e&Ak
z_YWTmtbm)@;{G9murMHHr<Wn5&b7of0=Rjq1BeS5la1Aa+{eOjrAK)j$uT>EnwGK-
zriD%`UAWgy^mqp)8iBr5das7~^9(v<cn*I?8|d`&-88}!P+?Nq;<}Jg^DdXRaTfBc
z3u_TEH@>p(`GvXhAlB|AV2J+!)fG?@AWsdeFfT5@B^x;;Bk&Sb)>S!mJU)W=>kA+D
zWdn3Q>(QC|z9^|?z8_;U-6<==v68O$bkdrfl}mL+X(B&$bh5~9zsm|5$tQFZl+Xn-
zIT!y}A4TXyDrH7@TVIoA{Wwz~d~LUWiiK81^I~f*{JZ#_-7(_9v2&i^Z1;qQHMH8=
zbLsWG5L^S^yI8yq7T+eyd>dye+gk_mWQ+%aO3GwS%_)Zyf)qaU0$?SMd$04501(a;
zgy}fo+Zg0~zxWfu$s!D~)@5EOskWMgZ^wu)uGBz#Y`=7Vr>j=z9cU?<qet6G2(j+e
zRXiOj$tnhHvN&U#Df$lMoL8$_PHPv6UyfDrM0suHJ1eBENzhU;E_7*5Rj%TC$fiCc
z9Zg19_?q~R<K9elaBzcE^7baN#HbyAX^`D9srxq{=CLAGIo%x74<DE^K`dmt>~?~U
zbQk=#i{qKiGQ=Ap^~HKVI*JONlT?1~UO*9UcqOzO;CH9xcbkG)Lfy!8ANk!}**Ru9
z+Ysn-D`{V&H10cwme!EWYc-QoV#`_M3WxD0uzlHses-oPrSxi%J`mUxrtre+-74Ii
zD8jw{Bv53%fRR8tvlqdKN+%W;kbZ4)KH=jd%mN$fNotu_A#^wHy*Hh=fFIJ<H%gRI
z=GJ>NUen*%s+>{h=BpVf9=BI*Gedo-&c0G=8gbYe@?3zz4X{2dOtl{Lg0k$BpcQ}3
zH#b9*psw2TSLSc)*k^Zy$*7?$TU&h>n%b)Z9{jd}LVUH3P5T0ZGZP80-rgUrqWcP~
zLJUR7w&su`sC&hcm#X>H+bd(T4}aoQRbSZZv6p>_^O2vvzV`lZl2<Gz6@KV@E|u}o
zuYZCY0RzjbX!>5yYF<1E6Uqc#k!%og7|#FXFq%7YGckaNvQdpwnid;xzVUp<uGerM
zno#-)%}-(4XE_O{(O3M!wAyYx{CoBL#u{(JT^pN<<#_&z{iyS}BgkRj@`1y;QR8Jv
z<%Q{_;`E1+vjZk238QV*0nNIiu?iQT6wkh!uxoxb_J~9Ox=@-x&}ehlAbX`ev-zD~
z$t4RakBn#lTa{SXZ1~W!22fQ{?-PN8hrN875NzGvetT|wlX}oPd2B0k*RDS0v@9Uz
zdHwYIWVzVUdr6mYsj}Jr*_p_#i0^}gNKb0$5P~2FIJelCIHDpQ%^~f>bt8F3SyZ{@
z3=GqANA%=$?@_n+#KF;3$A!}rp)cxz$Qdg7+zto;*~R1j14LM-IglG6kZ4axb71>4
zk!H`bzh!M9U$N&!-otH4{cAE14%Jf#?}UbCR=;TJ;Xq54W7FFNp^!4Ojh5LG(p_FY
z%W%H_x(zCoPx9IFGA7vK^Ti+>gjQ1O%8;=kw;bYdKA>`sA?&8y&y9k5zTD4F;%yCU
z*U2s;jCE$dV;XG;*Zb{szI)m&zhbGO4r9Kj`DAqi&gCcLgt!z29!Ia5oo~CD4O-as
zDY5KTe)_b0_kK`;+xpsGdf57ikO&au$6aEngZezx))U;-1Z}g0ZDW^MxFecU-Jk4v
zz1UyTJxv?QljZq!i27yQ9ALJN{OQdXHy>plzqpFtgk|yY(amtc9)V}hY<B|;edkQN
zKsCAOqBGSpN_6@kpLD;Kac&YVyfa7^wYK<Np&<F5@}Ii-1uAmB_%-=F9Z!}4<?x}H
z3)|a;c|A?>B7?cz3gVG`9~l=L;K=tm4-uSFD*kxgr#rI;bEMrvnVnGC#5Kph8u@yG
ziQuZBAf1U3eA|TFXnHFaxz)9W7t#~YYfv{Aw)9Gp#pD!O@|v+0*4==^>vwr4xZx~e
zXPJPCbq!{{mm*|z<D*w<e`v{F=~y*BI!aMH-Z_G-prb>O37lL`Zf2_|hwjxrDBWLH
zjW3-kJvUQhdOmu|o}c%SdtZb$QyB8v|0-5#UN!n$Q0L7^bM)qYaKe$e&w6&r$43_J
zrwjlpr+?@%)5Dd^=V|Y2p+}(f&C~UMDLpS=xO7?*dCcyt&V`7!6)r2Ad?pV=_7~v1
z`M>>E$@j<%^&4vw<i2c8*i5l5#m2=I(%lg42PHeZE=sKepvw-8*3g{0*1T6&!yBdQ
z_X7i!{H_ECnVAfRdRHp-^n4BT3ZI%58W-5wc=49(gaNkbKDUe1!#cnqI69VBv5>1w
zk~>gKE>;N<wCYuGcqvL7bdS8+oURQTke*-;1P|gxBWy?I&?NQ)4bEBYvU9b^BkPKV
z6&WF?PtL$bo)(+!<?n;G0W4?GZxAPdqJh1RJWfqd4eI1*)M9;txc-K*Hq}Bg32N^x
zi>7ws<9aORlb7H-T*vBy6OOdiQzlw*tfA40Xt)H9Jb$PTN;Nj_AcurzE0Iy;tBY(L
z^bnhGZlXp7$Fo9GVgu4<+icbr>gl_sC(NcMJ{CU}Nc@bX&dglX!CS$>unB?3C^(8N
z;{DJnu(}`qt=9bqw))rmfwM+L6mxiekH8<xo{apc^0k{}_~xr2$X>QguA$Yt;{1%A
zlysd`N>97d*2ap8;t>-ASo2T+g>a4uIP-go(iL+LP*scHeBZv6&%Rpx7*{OdLyt#`
zOPTG_4uNmkv6v?IYfevdw}2O87RF1n<Xs}S?CZ#+U2$8i#BUx#o-}{S2w}~&VKy3C
z`e7OYI0b|@@q8(ceyOh9^;avk27+C-AJj<I_UFT2Dd%$)R6%j9g`Qq9)_SeV$L(%w
zR38AQ_JMOlNtJWATJkCD3_Doy)^bHlP|Yp^GCM~3m{?-r@(d4<z$Ln_A-1B+wgJ3J
z7d{?RGv%?1S!Qb1>l$vGM0Qgli=NA}o$0p{XWS&4!Ba6O9!=em@ak#=^vaAvgS7i8
z&yG+t<|PT)7mj|P2i+^<bkM}<c}dCmfPc*No6*@CLSD5QYjqij5ckijM-1i9xczUm
zJ*j@&T5oEQx$%RsVeNRWK#jC3@oYx}GLs)a*(-5xZ80~Up%*oL2BsF8mNdo#ag(&3
z`s&_C9Y4b&BRY*Un__%<^g9PK$#Qh7)-|r%cpL2U#)^$&++?C;EI%;O-kgZy_}nRc
z>`rS<!}>Z5_!uROfj@Kh526Hj)C?Dee;)okV<U&<;Op#=MtiY}j5c8?c4d6E@$;Og
z7JvyG^$inBb&;`$V_v#~VRF$J)<ss^t?4(1eL*n>9zA?GNzZAF#qS8FJv`hC`frXj
z-oKYS?}8s&2G;?e0Zg~nsrX2UaYWf7=3(^DT?eJs`3XGY=F0~t^FA~SHhM7_H;{fh
zBmzR!5G{UZn#;THa9fK1V<AkAaQLQ}=ftPS?!zDm&LR=vxFr9P)0**L0m=-3bsG3H
zD)@!yq5p>;_^+NRwCYc~FMbD#<2e8Fvx|zgN6?&W@Q^svUA-?xa<++v^CVEb$Lc`f
z_YHsErHJC!Z`s?QjQ?~QfCRa6GS{D43D8gPU;RT*{i|oz0eMkwYs*o`;O38L=a+lG
zKZazlp%MFEy+z7Mh;cS;xR$+rt22|JrtYiXitpEzsj|(zmTq?4mx#^?G!;+RT5!m(
zoBeKm%h5ak6-b0d8vhw10DoH$Qor`EaaBUh<~k~T|2c?f-E8<sb`hW2inVJW$S)i$
zfXaSVN&jxysmi}%CFtXX&|t$qg~xGuck)#$`?)YDK{vY|tD4(;h^srBfCk&h46kjP
zkh;UaW7xomsw%B_qNW?`45E9Kj*iE`j%E(vNBpO$va!g?X=o+oxYAew`$+}4<0@L7
zc|ri7;(gO>&rp1fp`qbX1vlV;D~fR=m4H?5we+e3FxEjWAQ<>h1G_jn9(|5a$IS=3
zjD6V-|Mh|vmDx%mArjn>75JH%`IUYZTm99*HM_gKJ%c~g6Mu<E$Os96*KV8nw_G+|
z`<C3|0Qrwo{=?M)dj5w(mJUFEkg>8TK3vKN@;}njOd5QXlPtA0DN0%TPWwB6fBLh%
z_}|N3it?wh6Gy%^=YW6zq4SOgP*->GWR7ZFU9Kp<`b7R$Y+K;j5Sz&Y;6K_{jZFb!
z?{seyvf<zV^y}(>7~ua+9ohd-jq`swto;eCx-GW>pt|5>cY=l|uj&4kkc)|jyfv#{
z>T?uh8L>~dK9@b*>2wL#A3HiEMMRv*KX@a=7;>`5o(DIIh;n&#vGO`NwQp^jUst-~
zp3#VXL`0A|0F^%O?mcgvp+ic7;%eJG{yUnQnA10j)<2tHg)YvN(*x-Gu1!M5rKNqn
zVWyi&Vi)w2{h$#>x&WYdlU|4kUB#?1_~gWSz~c_3+SVfmj6PNE!ZPoEr|W`MUQ?kw
zGe+2sfiGc}YqP$-{#sU{^W=P9V)ORKvh-yH^cFoDFWS^LBDw%#KmBfZ`n*nu6m$V>
zv~Nx|`?NX`Tp_H6J$DgSiM_@yOGYAUCAtxFSze|$6X(@!-<o~61ULx*aC~L7fXo8B
z){_mFj@qsm${@wQo%DzZmI+@8xA~4kCWg`fZ8Cph*8kH+6y7Mvwd-eP*%xV(G2aPB
z9p7~oTJ?1Sr99X03o=ZsnJ_!COUZ<AnF`iE04GY==!9{5K8jslS=}KFYKk^p_+Pxe
zcT`hr_bwU)#RgbGK)|vA0Rg4=A_CHpDqW=s0V2JIfT$=^RC*0XdXrv405<|k?*RgY
zA_NjTga9GQUGA-Wf4}dZbMLt0jB(dLFp{jb-a6ko=kv@t$sumUgSpfL#h-A~>>&ZX
z?QdFU-5v;szSw|S-bTF($PPB~VYW`9utmdV`0%G7ND<@aj)YP0=2WcS6Eyt#zCVFK
zS&aM5)ye@f={etZ<%CzS!n;MFzLH=b8{5vtYeB?`tA5i^$-EZXGg>C4_W?hH`I)3U
z0g*w1<nQR>+{W77+T}M&YmpON-(CuB1=v7$D}s6tv=V1A`+gJ6YY58MABDm<`J`DP
z&ATGO6d=8)@A4a>!oihp)Db`0d;i&$jO4?Jsk*{`1z~*T6_HEIsgitaFcu(jQ9*eD
z!~O|Ds#&exh$q;K#R0Y@-IpetKX%Kd#q9!CC(ZOmwnfzcIH^;;mMqWy8O_yJjm_wk
z_pNKS2_!O~u}t{d)1&QhR(2fSHr8kI_lRB;;(dC68@(d_^p8Aw>M@yGF#Se?;9cka
zlT8O*Mn?qSTRulM7AF)XA?OIekGj8E%IbkE;KlW)?Xe{UldL{u7T0u`H>=S)I_|EG
zY9$9Oj2Fg=piR$BAhN<4=PSZF6DHbjEbMuBR9fcWoOE+^3~!8%{uzO#7sU~7YU6jR
z+obesXj}NG`HiqC&E^D(9T1LPCWsW2;nhw5vj%T=WnU>XNFE5=+7?&6R__$c^QOh?
zq5qoka=si4aEX1P&IG#0B(iiUN}N{gBQcT#_U@@U@FY+V1%lAEZL;N;$Ief*Z0N#N
z))xS0E=!t<D3GIE?iu<v4#=*V6{kwsiLn%3o-9xO>VJ_HkTP}uQy5Ar)16W!cC4A#
zh1%rzEiYlik@SqS27hwbbo9#l%)jgrX~wi@Rb*zLT%JK?-DG^tq5Ra~0!6{^oP48C
z+jK^TGlSrk-1)c?V*sx(ct97eI<`G{@%-j<$XRwU*i5KVTp@7%>iWjy<!SPf`^vWc
zOZBUXc<uA(4UY}vw%_VZ3lreR#-&u=9cAVi%=OT9W1OLELMP;_PBuB(TdBLs$~IVE
zEe3F_^W#;f0Gaam*3@eTwpq(n|3xVdC3pzuaVvSepO{-@nI?(ps=~{W5u=*w_siBK
zAPmY<M?=}xR}%1)792hX?JM&5qY=v@1hbss0;cA6uEBQ2o-U!Yif>&71;Ow|H5{)?
z=PC-`zN73o`XbeEh{Bvc)6R7Y7yBP4wK83RYAdST(~<S@+A3b4n~1k>nJL+SNjLro
z9C2LiI2a6O9cfBR3K97Jz5e6JV^M0fo}!|xB|+3Gy+MV{z%PHi$dh?`Wc_dny%2ns
zL;kb`8yHB3loXT>00uvU_=2E810`?6SNryxqticwH)dX}=joj9_x13)KSscRGetx)
z0|hYZRJ3pS6&o5@?7lra<(uEah&sWrC;|7|W8LMTd|ur)uP**%n|t%v1mMc$>(tFj
zxO9QWg@~B?;jXQr6>EQ^l?%Y1UEns4xo(>`pVgD6yzJQ<8?3RBl;8g0H(@1yez3Fy
z0Jc8LcQ9ND7v>t)$+^>pVb>YDc?XYRP2w={Z_yN}i~J+4m!`6^oA~aIp>tiZK18v7
zgd^;01kW@>7uS7t`h&Qx_;Zn{e1&(Yy6Fzv-)Tzj-#6Bz3uv!L^rnb?u;Q^Wf0V7d
zvvkh(*t-%d!~09mO-vFRjYLdYSSHpgPIj?f2<_Q%uXwh+`l3-+w*WtTtxlk}yrS~Y
zGkSU-ZHFT6y0ky4J^Wf<gATS3Mu;&l9M^+6on}KcbbD8@2z|Rfk&xlreR~FsDhFUy
z-<!Lw!S~z0egiU8`9$2djH(gu8Hrq|jHGcX5<I*gQmcaY*`IHlI5~YGvfTz2=0>6H
zuXnarvaf!Oj@J!4Bs>AzhT%2kRp#qeJJaGj2eWiJ%<|Z2{pMI~{;YYTA}34HkP~~Z
z|G~v2nnwHn=yBRss)oeov(Zx=lXxCQxjQZw6#VcSa`uT~45_Gj{RzraL6DC6EXh})
zgUG}}amG1365ky|>)ovhDSk9J@Mq=}J5X?DS@j?7z~}~$AvtsgwjliY&z=77w+HDt
zgU^8_-QIs0j?LF=8=T=J;6`H?=&*~6h5d9QA|mHJDNScTMz~CWtacjJbYOWGX-RfH
z$*ZS6|J+XskcUi;i{9(_@$;#55S8(Y=d8CcTipbAeyT~doxojO7#k}FGQyJfRMIM$
zV5{Roh{w!^%M@rO3ERH}y-C#47IlE#LL>`0McQsn$&>cJuUg;T`|Orx^Wj6WqFPxJ
zQ1)43j9KMIx8&Bgy|i#6gxN}`Wq;R>^%FAbxdx}e2k6xjIn14tw?#aJts7tRtVh{P
z0MKE2du4LJfcJg<mRJb=xPa>=FI!NZv2`(QL*cI|O!1N!K(&A9{RMRAa-~zavK2e%
z;JlRAJwXJAi_0kMZv_!B0d(m6R5N|MJ~`fjttTEIX5k8Y<G`t7-)a*1<iFwp=N>=0
zqHu7im3D*`3&6l&ACwC2W+N6JwuRds6vglFcMJd6Y4=Gew|+%bAm4ZB*;^emJ`qGB
ztlvbq0@1L@0wOV#Hi_JBc~#!$ECUe5Udrq|Q_Tki<-W-jOm!C$VoZ#Ut#HI(u57l_
z?ypz%zgtCz(b8XLU64{#v^i0w%Dh`~@qFdGm6+!Jt2e{tPf~T$?Kza`Y*k-ZQ|w%V
z9=FvlUo0n}H(G4>FD`8U#IaBpNp*IMr@z{0hCtA@+mE6+@7_D{#W6^X9l-9|zJGh*
zf15`S%9`ry5}sZvs3w1Ohmnh+4PA8x?=oI_90J`}z{yHKc|fIUKelrtQ})hh;W8kj
zhakF+<<twC{zhv%%-0y&vtb0_)Oc~A{Yr)k=LuHzTALIfFAV!?YFg-&T;OWq)k@l~
z_i<n`xlc=DwXW`Y6X6_tz{JdfJlUznF;HygD*f7R1LFGyX|;7Y=}iUjxuCflT0-;7
zV{K9+tt=N)a_3|0ZRXeF!FRARrQ<Mu#yx<d{Lqvda|L<m%I^H`e&Tmg>{CSY9)Xan
z3h5N?Zf*-~DeGjhkbKhlCH8X>ip{!jQDa(sJLS;h<MUg~7CmMZQ3uzVm)?lI>k7FN
z<^eOu*~7S;?cvkW_FC_1^Ak#0)}8)1HlDcI$y@$pb!=EF|91MjnOCZs>Ccd4{)2;m
zcH3x7LqqaW^iY;Afx;+&`1m?WAnN3^GD{-6SVBUQ)VllBbO|e)xXUe|GV#>=_emjE
zfc}`b0_Bj&22S#E=E{pUy;K^+-fF@Eu6cXavy$EJeEn!c()$oXs>G9LRGMeYLrMv6
z3BB?uf41x(rP$oBcAJ#{`O(JYny?~M3~=VhFb1Aui`qljo`23vxPNXZCSCRievKk~
zDMKf9t~W8CA1~7lTC7!6u~WlO_ojBcrLfma*`j9j|FF?fvvw0QDYXg5!hvLsW4Jvn
z?Hj{{#2WDIV132eHxVw6K5QMu4rR=8$o@FQ!VkGl9N&u%bsgj&0L-Tw&vqP+>gTaH
zVyQ@C*WE}h=XcBNW{DaC(P0G(V+H3a2769lhPcPiH68bMMt$+T$eRsi=Q2~jiWVZy
z@QRke%n#nVq)M4w?1*g7q(5elxNq7wO(wgW6z+6S+Ef5^h2&|udK*PK(cq?@*~^R^
z^8Ec88|y>?(jIJYomQcXe|ljbJ|mk&|MrBw(#iHwQ1%Tr7Vd&GxUx3_pK<d-Ps`RP
zmFUoAY#%PWoWK0#HN$<eh=N=9bC1(qx=;J^g61>jd)Pkd9o;<cWDW7wjX=c>ho!W-
zH2-ctMY$ch{D|Il@ld>^6{@)y?-$Q+TDt&)jNNYOchIz_e(|2hkMX@dpr=Xu9F2fU
zef%(Iqnart<_;}qU5v(>D9&B73(k#QIeZF<>lTK0ecbJp9jSj}g|+&Uoax$Pw-Sm_
zTQTq*8SBq_)sM@rGsWQqxCW_&g7l5U_2#?)%GMLyV+#WU&PpR-F7nEBT7`k4m~;7=
zzUYs^I-{n=!*L$<jc(2Ek#4KA2QbETf-K|k5&P3A9Ujopez?KZE%~8NGIjil#gbfJ
zYOJJYP4>vfDx<RnI41Z}Lbe^MYH%UO7r#C;<GqvEeOJEH3L1kr3@$DWUVA#SxGOVR
zw-ks(I27+mtmLz}#TXj)#~_0<@+_<$3_6Hrl--p<Xyye!iY?L`-Yc4DfT3Q}xK{7v
z8|B*H9xmp})#NA}isAqln+#v6aWdeGTtmy!9|Qe$bwzi@3rxatB3;G?ocK~J_tt!^
zX+Zk5R~3D}Qh-{}HL!Pv+L5w*s;8dqj~BO}F>Rzsj7^kI@339coMaqr*?J;>Hz?^a
z9aeETy$=hR&tUiVj3Nijr4ws-h)&nH_jbghG-e7MI3Oc<A{Fk|%&*I`+n`3>Z=vE|
z?LV>_5Sp5W1n+^j@I3qIdrVVXZ`PZ)*sKDA)5<tyG>6xh^W9jvoO=SnY2LZw?+mN6
z%_BLH-QpSD!X_nPIY}ni{f#O2c*@jwI*33aB^g@)Mm$Ik!ld-djyJq^-IOd@qxrj|
zAW+DQo1h>~nd~sL!1zUkUEWHuDcA5#Cxh@ZQ~aNnm0@jTb0UOyr*F|1;;)hqVq8CA
z4B`wj4_+~Ww<P(@A2uW1nwPGQZX;|33RezLw<HoZ`;OO2n?a8LARwOB3o%UD#7c2n
z4&D=B?i)Uhne|?rEMk2GZJcP2a9wL+%q>9E{%#3~<|GLIQG_t=NyJrFD0JKE;btyR
zIHR`$<lS`wjeW*$>&EAxaRw;ND67RZ!xN3+6fqQBB2T*#k^6^TF1hHExPB^687lOP
zJ1UzeUtn*%TvN-p9JBOiaHAMFgCZS}W}P0JEuKom>(hv&zH5~K=gsfgkG1B1nrz(K
zW*46mR_N~a#m9zc3|*A`dctmkIp;*wXcqxnENC&c(N<{_UTFp6Hx>AhSq;=$7v+7B
zml1UR+MRVX>!kckYomR)iHAG_`=O+bF{D*7m>>zk=jBs!->o;OFf}9fWtn90Kl1;x
z*A3Tz@h{3VS?jCt99p_vYEfWv%3<6**`lV8fPImtGriGfF#R>yKD#x1ih(=ZK-{oW
zCb8A8)kFDHAhg)zOuID!7GT$7m_i*0OY!lR<j{s1OEydCWk|U<NBl=0&xL^QY@0TJ
z+_^FSB}YBYbWR#z*eiIGUD2N^5Z7-%biTNFSjA(kc-5;e?xp#|e1S2$eUoQ+t}9HB
z%tzfNP8#Kgnx_XMDgMf|YuXkCmybuyGJ6O9GlZ?LfX5rRJXAqZ-A0+5^6pp0^uqCk
zIBl#>$YuEQa4(H_WEC?mDhBmn^yy`EpVJvFZtpeLV#ZDr+^aek{%%Od6xm!73l*GM
zY!ZxcV8QD>915@EIUY03jZZWx70oT+uvq$ICCWH3-PhVIut#&$So*Uy;UTs>r}aM;
z(UXEZ9qs;5P1)e1`pT**;~X`H{9KpG)EXP{VxXesWy`(to!t)Mp;z)k1FUmFBQomV
zyWREyJDnTV&>d@z-a`#O&zZrn@2t41RvPc>Mjy6lAqqZNNvm`#SY)^7!^>)IkY$C%
z61dq=EAyR2QovT2u=s+K_jC{$<Lz#%XHroWydcCjS@;&QQfIS!@Iu^R_ju#}ZpwP?
z369ayBM)TrEEq|ej+v|z)gnm<4wm@ZjD~fiaL)*3jRRF~4;rox7iE8A>^0g#2**o7
z%7QJy9l`qe#GcX4Dw|Q574|VC-E*WWm+vyt29Iqi9{dhpUf6(*tZNhf6w>8&s1`MP
zj$Ry@EgfP8$E(n6^fg;MssX|`RigM;$LhL$3a!uqlULUF{+>A{R)eg2{v=48w{tR#
zR{+7taawm91j^KwTJQ7e`S$HIAn9Ux*2h^`Tff=Fd+wqvNGtu`mEy2=Y@_d(TxsEy
zmEM$R-Jy8-a>=DkHAz6+!BDxzLxiOgB4Iots>}I8j{57E!6=T?MCuiZHP1Th76Ly*
z0m2wAw69O(={M|}V{RnnsqZSmU&O`rsn=YY_QQmw3?N@sOB=`ZrsdJM=!`ZxS2X&5
z4QoWG(>k`}aL?P?4mTUEBTDBv`txO-!AeIbe~JkIi+*T44*c{|;Ik+&489z`HZf_M
z`5&TgGhWusz$PoFGn!9S)G+GCjkJVHKIjgkxZ5L?KmD(zoSW~l7_o=Bbu%@&aG|TL
z1WIE#8Gn~lRYmw_sK=ijOiNyXNEY9FHHD{fSf9)d&+xOf>7%N_xI~O3nVJVzJ}_RD
zD`1LM9PEiv9E;#GEi|_KbV#l!r;G?&dpnPMjClxrYYdI36a-xx-?CL-#Q=6bsZOf>
z>(}uXJJ4@ws2?!~8PDYIPQ*8PQqGxdN)Ck5P6Xg4Gy?wE(qNAhAIr_h!-VC^@5abG
z*AZ_0dg3fm1$5<CKSB(iMtBHWCln2*NTOCs&815z+K&l}dNKXt``}u*ykqnXWfm&#
zI&{BZ;UJE=muvt*?pDgAjrO_ibRagCmj`o>n@j3HtUV4oYCidI!!&`@aCnF-SU)kT
z&-qbH^Du7l6eW0Xkp(x&r-t=fU)`-=n?RVtVe$a+xO)^f)L_+EaPMH-*|UT75D%xi
zpj!?kR98|ZS)NTRsZKD1Hc2-?XMZ(XiSNLhER$Qd|K)^Fcf0_$I$*Ta%EGb6wfIcn
z?#OuH`k<5GjdadBK~~m7AT0{1Q3c@>Op-zx$C<-}8%+?0qP1><1Ah<iEK&782IKke
z_}$zfD)OmJTIsM}H}a?|`QrYeBEvu%F~)!#@P+kHdM2)+y&mnFsA!XE8SiwHx|Gr4
zV%@dLJwl%q;&ioJX12>2&_47$=)|waW?o8qys{lHFmkY3WnAo_lP~^gu`AvfX)ccC
z0D+GG$5h-)Ax}8sf}WJ8Eza@62SUT>)2(4GpK@0cz45D4%?<G|M)i2j_{)Qtp@J<<
zf&FgzqplbV*=OB4Cm0#<znq3Y8MzcnAk8Eb*z%-tevQjYHM8X~kIsmU%w)55g>!r~
zm!g{udrO(taDNNMxm!ZgX{ufce}ccO78HVEp?UnP51`Y98{CP{RuXqS5=fK{UE@-N
z_7%cpMuSSXNr`@4QlBdShRf0na{tJBkAUAm7H=fnuJAllez3@b-0onnMPmIcB3#Bw
zl<=JL0Y-+HU@b|EJ0kc|O{Eh07^sW+SnKZ>#eL>Nl?*~iu;GcdNm;>Hwwmh1wPAIX
zrGI>_o!#;V)i=D6(5#PQL}~~GTju_pZ#Y#<=`z33t${{hxq!#=znj;46)M0b`%k=V
zn`Q>|F{3LB^Gyo5$=jDFCMJp==DZ#@kXY-TEC*&zX5-h3Gk1*&^k*pS_UY!M=?Rr9
z16gf-#g$)rPRWtOh@&O$7u&6ZD)>!GmUn+_d>hQsJfH-Ynpc?vEBPswQ3CkF4kPI{
z@&MtpF<8ri9_1G?khCN^GH}Ug6L2FHc-FZxiyCKRQ>xqAOqF`r3G1At-jvJBQlOAK
z9EuK9J3G7ami9uREbktqVWIgIN$*LXm#Tw99-HcYDM5R~!zB*qsn2CQjK5l|skhj5
zd9CH4ngn>cI!?!ov?p5*0^PER=8}C%&CAQ1Y-#7?=^(3I*Hro~DnOuCjTfLhzsDH_
zO8evA?fU=vW%iUi3zopQwp?Kg6zeg{d2<ptE;TVtZT`o9Juz3H(o6+7A(kL!2{n+G
zoztL@%EkSPn|lx-wKLfw?dj8}t2W14qc8G-EXSyDfnT@r3jdt@OV&<wA$&9p|F(|z
z)W2&21bY7Q+CQ5g_|5;pmv0SDfw*SsOi4s$cj@KT-x39Q==)-iPOCH&w{2i0C#S3y
zIKA%G*!<}zs&5)j3i1v;XxkZ=oLs1O{=BZ%L|n6f_>EL?ubE#8veJsoc}kQB7!!=W
z3<BAA|F^{EhSLP~99W#=pk%*gQcSCgY$yozdL;A1E9a9S>XX~_rD@lu1Q|izh&54&
zZxlKbc{@hYP*go>Yq~5MoyMd7Z3~i`h4wf^I2mlgBxf(#ZZw=1t)BMZsPKA$=j_e}
z1j*l5oU6Sj<7_Wq0HlK?-8}_As4*$j;3!{q^BjHZ#gsqy^}=~-^_Y<Pry7m0w1mh0
z$D1^JYawwZ4>hmK*?h-1$V9na@5B_e@T5>wW8-JVE+;YEpr?nw)6v-A`uz@&KmP&f
z`SdMs7c-0V-e*2v?H<_{2YV!N5sin;*0POI6Wp3z9y%#kbK_KRUdC5v?z>Wb%0}|@
z=K~oGw$mWrKHs0X%#mAZb?Ki+((xZihv=Ql@4MQXcl12%0<#n(YCR`TB&)?Hv(xT-
zM|9NCuIkOv38ypReC(+s{ARXdV>RR;G_$0P*~JC+ag=f=lZ?;i{)LasPW6IjZkmQn
zA3SCdNs)_BPIEd6t*!U};EZkI)J!8+&$BmRlKbyGk08~|DF(NRb|@cLP|R?ZWORqV
zb`bTlz%)ecNc%)LDVRoE_Nm_D5v|*h;+BO#51?v+tA*<*p_!eHlgs@Lujkek&mLHZ
zwJy-js3<R-tk<O>E8Cu_fj0Me`)dd~FpYLJtHdo=AHv&O1E;8zZYt}Y)8kwnq6t{v
z*2XMz+3cL*zwOA`j;pPIZGj#d%Waxj<j!tS!HT(MQbP#T$XQ;0L4DW28w+)p6+hOh
zJIfp3p{w6{!hdPEPk!I<8|X8`)WPxN^2&X)3upo=AWUx$*+iy9FoX8K;YHaG2>$-Z
zp1nE=LhpRYd*UNY4E{*^ap9`qThQlljJW%x+^YL<6O9J%mB|^;w4++WNyqdcx|xd<
zORUSEk`WwpE1vN1cxmOSb6D=pol9P%_fu%zLppC-c<!2Lr@&&<2Wf2H<9?+A3J{w9
z9M+7Xp$qwIM<@yXlr8#xx#vMb2Nwn=CMILmH;GM(iY0HE!mT?jN0h>e4tPmN*-Iaj
z1IOqDwPZ3EQgy~}X|9ReuuCGWu^vZ#s3?P}7Y&+Q>B2r;mV(~a6rp3C7e9s0^CtQG
zow;)4eRmNaOHcHv1!s;c$afjBF6Zv#@w@FlgUr@GgfXz+=I*mt7rXMslZ7SKRWwd4
zH~hi|kx4C}p%1FNiCQjrgxddzas?L2K@6%JO5r8Z`N}%aF3*DBqxR-BA8em!xj7%s
zuk57hyI%Ol4+7jW1%8ju&>B|5A}`}uzZENvh?<yV{;`l}eGP%h3tF9MQUk*nktG=a
z@rh%qmC}N!?WXoV$jm@ATl2T?dDWfpqR{C^zR9Zn_{n&gm`9&h!k}ZUcXN!wa?Wq*
z3D{T14WL9jw%V^m_8E1h9Ylafr~Ef$th)<lXE7T*hAZIQ9~JI1_yzMIt-Glqn_nk#
z{(yV)T*fjPt;%1>eE<hJU5ial!S1h;CCpA4zW%X`kr-w#nW=Yc{xR&xOs$+ffY|u;
z#aufZ`)buQsKsMaC@Uj0h@>KKn@jjdjDUhAxw$}PCKkQ8F_Zg3-O=_NU>to`q8UE-
z&6~-hxz!821r84*s&)!fR?RT&Ek>VDJ#RqA#uvCpr0Z9^^t=#Je%wFql37~+VnBi<
za;?=l3}zT_aAZb#HK6oia9!FRiRv&55>?YVH$I#p_TX)s8>%NrH1AC7%*`2>iEBW4
z3Rx4)v^5U&?iXDfMq&)3OUuQQJ-R}RYTR{(jI=7(zIjuM)W+Hwdy5p4qHuFDQAh&V
z0OS5~L)s_3O$q3d9H}j+<Ig8>T9H@3=SXTUE(lcbQ{u)({7kVJSxgwekV+-SogcP1
zrSL_KIQ6M{B8I!<p<cT;Fh@`5y{2h2%9or6t;`#MVwPgbaWoULbI%>8U-R#*I?%pW
z?vX3v39<OR`q(0PJg$@RWM4AK;h`2I%NxT4**cNFysPfp;}vuCUaqZol@v%!-)C;_
z#Bb`aD-+k)hb*c1*z0LB3fE|*LO9-;e)UIQmb8DcPct2|cE)xkb-@yatb5v<<a+0k
zGiFE>yW^qLMdV}*I&tjyZg@b)=}nHuON>HmXM=vrWPPv2XoOU`R>#aG<k9|Z@^X`4
zHM8k6?NcX0V>o5=0H9br;u~~nu<{0A$fyEZLzBSEk*%4JRXkUu|In$3%}J9E)Ojqb
zd+N;8w6%Pklx)-4dl$vn3cerMF)n#Trb&nG;63-FF?KS2(FO(>F@~z0t=EddvVCc-
zS#_9}={pl~p`PS`=vWJznV#lYb8hg{Cf<GQXShZgbUJhQ+(N&=W5-ILu)S2SmYpk~
zp-S)%?|;N?^_BOV29uch_GJR<n3g@KxrRwSqpjX5)5Nrche}FjTbZ`lI$bF=7Tmz&
z&7OT9n{F=>4b7mZf|na>HIVUgx8Z@~8>}ZsAuk_w5+{><S~ft!q}wG7Q<8s;jMCjB
zc6+{WlXVz><L$lG>Eb|6w&J*r7GLvEGBwUC^Jj!cFefktJW*5BI|tp3-i`Rshm&;>
z_yw-u`y738-L>rWjGQB+Duod=S5vw7%8K)4*23n*jzT!tX{g@)8-*pWsmPJH<;Q9-
zenaIoZc?E9G#lKJBtRWEJ<kwUZf{Kz?NJa$7Syc=Z_<=nBgUM(!R#ERot%CH-Y~IY
zM;mCN({MhxJ*If1TH_)?p(T;xrK(tHDLpOfqdidj+A+|xZ=2KvdVWJTc=ZiAHN`w`
zJE!5@TX%XFO$AVsxEYh8nAR7Y#Zc$sM7-jCE4&N@x@vvcY~8n<OP%2|eH!}4kOy?N
z^+e9nF3&gGOJ{sRj~b4*|Ggu0FVKaM{g1V-O;(RGpe&1Ts>e8w;^1QbIHMYu!F$BW
ztA+f=Mb4AEb%fRKSYtqco!-T^EFXrV3V?L*dzd^M=z=%&u-%e@!z;{O%r#Gk)na!>
zy~;}$E7Ta=s-y!YmCBLm5zz-j)rIDjw~dM1M{s9U(ORT-k!4{vBZtDgWHV-uy2OTY
zMnFx*6rzwMPStdul&V)2K6}B4=`UgQ;@?lvF>#5E5TuL7p>ES3oM>Br+5$rB-l1!f
zJ=nsB$i|P@zEM$NjIX1Zh9(?qh5`LsoK)3sX<M9o9)_3*cDR`G=wKnHaSh|^G!Nr6
zB~|rRqEmM+;&x05^uI{o0Hyh9-UL~0b7!`hXfRmRKJ>!RE><7Lr+NS0UAF@HP0LDT
zYQV+H$N(8?(<5@BO_NDE*^CwKJATc*YhLxR8-C*1fH=yT;)`+a>`V8NjXmG=%&h1s
zBHgyiuHPAL0u`#)e{0J%L?|OvRaNb*5$ROA5tNkKa@H`%LX%z#!(q{8ApUD|t#jHF
z&NfzF{=Hmp6hb1?E;-0nxw)bY3ZJSXl2D<f67yW=zKYdDVEt}>xM|)Plq>^>)(YXF
z6}>od?7|lqrc~CAjBp+)c!Cneo0iYbBp%==6sG#mfWBFLrw=JMHcbB<{jre9GnJ2C
zKV#hy^Z_VWT3q<LisyHK?MDF%SJ1NYes8LTA-U1pwPB%}fcIAJ&%j+qTUq$74gmJ-
zYU5~;iLsYa+)Tz+=sN7j6R4bHG+?8Rhm@M#Bd{c#GO{_(lE1+$IP`kgE5ByBsJ_Ea
zBtoZS1IiRNEX&nbZJ(wyJ7!0GZD0Ur0qJsc+Z;Qjb1zB=`DHkVyvU@hZkbvFNle21
z^C<H3J~dHprCa@q`AD-s?+p%We#B+|abgR3FIAAqs>WG-?R(ddtf;~OqDrCqi*Alq
zr!Jd6zElQbMS4%3>!G<iJm)ekx38ApDd^qK)VRV`x3cKSGf7c$SO=`_10Y2%jJls+
zWK#IlCN;z@*b|g09i*sDxj(GvXQN0xEM5ac4_AETSoW5kwB*_SITS~*$3reo@R=NA
z`!#MM7h{vl_qvm-R<}pPxmHHs_D?>xKV0fP^clRD&N^)#&ctQ17fLHr<qgigePj(r
zl~$q03XQwn6!8Q}aZ+!cH-<W0n2zwlHJI8AuFD7B+hfQ2tQ92>TlceunYmq&8rWOp
z_QdL{iapEZk3XGgCX4Gs97PlVG}HsEFH!beoL4Y5Km9Wbfg7~)l-WnANYasjFqqsC
z)i>sU2D@_%w5|59x8sHgjV`9)xz2Z6!w}I$(uT_cmX}v&<kgnx_+n@$XN`S!i}mML
zll-Z)3RR$Ho58{M;wT`c7?xSe*{L2tC7_wo5~$gAQk1?Yh`wv8Myu*$>}5|Mb#cg8
zkCR~1&#8l>dmv4UvS^3H6#v(~SDWiF+rGJw$xkIE$p2M~E<8S#wbMc}Nwf(l%n01(
zLrMkT>+>L7CRab6yC-O|6}BF@d_Ag(YTbK)(;`>8rIW#$*L+=2*6Pum-F1rDS%Kzl
zw(2pHBExxq)Hr_c+e`RUg2s5*;YG0n>0yk5OQ)lVtIllg9l-fE>)V7hGn;G(tOGI+
z!5R;u(F9-_JnI#1dG^H@<Ag&)R+`+f1*%m`ePa!x3x5wDps6!1{r2pH3?$Kx!%qb*
ziFdAJcbbQm)wv$dtHg|7=xuJcXnJ&th$%);r2ll7YbMQULt`sj`^wRPUw}**H-+I?
zAl=tfYmW}wl4-|%qn}nmF<J{=xnQpI3_HyUuhMDj)oPp%XBQ??@P|i=<fE$I`88;;
zFaw)kR65uA&2s4w6{s~x>O(xxBDxTcUuri9bWQC4Uvv8Z$V%U=bA9cGAJZA^^Fa4#
z=P!Ky3|(52wvAbru+~c7tK|Nl7BIafT%%A|R{z0X2K!wVbUKk!i?@Eg!gBJrdZ#o2
ztZfAm@tv%Oh*abQFiS(iM9!xQcV46ScW+Rfh~u#*qy@ihpZ1GSamCy+%ZZcnYyQ|m
zVEP<>6_!Iud3MO6WAb9y=&{6`t5<`BB)E~VzxQ=!B&*^A2ccQ`3uHwUr#mgOr6G8*
z=*XcMJY^;-*Wxl!!VV7@q4f5Lw$Xd{$FUG*Uij~kvu>*I!hJCV^^!KjS#9C27Rqar
ziMcJ&u-nT!`$DGja{NEW|E!_TD(fVZ3WsVPqy#}B*?^0ai{X;uoKw4`$BYE7{7G2u
zSO4zx6PLo*Fn#fdyGB9f%9<HF46F&a5ZO7G=9=jKYN8UQF>TNsGUeSegTyK$ni8JJ
z^tpMzR?|r@fuN3-ON=Y|<AlrAym3WN$V2{(0IMtB&Lbnkl2lQwr<}A`y|Za~*+bOy
z`{BLqZ!mndT2#7V#M11XN(v(At<UQ8LNy2!0mS|Dbs7ebJMwk7JTjCRi;LP5v|qJR
zlbPLD?quYIOVau`@Ejn0H8?iRd7BLSGw!xWrwa>S$sbR%-FGaW9IBIsHpG9~i>$cA
zohKSE;@CV{=W<Q_-Csr?U#Yg4-obM7LR`s#=5lJMV>NaJ%@Rk$IRN)$Xq$#z*+!no
zSnx||4ZQVPaZ~2_E`5~X$lienv7iAyMJ#gUqG0cAax(QK^lkiQWzVx#^{WV(SL5cI
z{<g7|r1*_X3S`8c3#@z1eVok8L*1HpJ-orwCZa8=kScGjlv5zg2sVa|*|&k;q+qt1
zS^L0a(I~%>=s8kmVzp>VHLY?cq}4WxJ2MARK_MU2LHlt}k14uqzR6e>5?wVnP{UsQ
zF(IL%Vfg8#HAnjE%|BwI3|G@;G=aRS_MbXsXv$_6^kO*kAHhMRL#HTY2UgAnFXj*V
zO_k)HY4wIqM;6Ff)u{_W&;z>e0pQZ8mwgw;M{Roi{%NnH^N6AQbXd1i;uXDvXDIQv
zhD_W6nov@(+Qli3grzmlQiMm6UdSMwI+WB4xJ+cV#L~#&U+7>v%_qtNmvx-9buo6_
zx3A>i1uXf+lo8*wNnZatE5x%;GO|dYqhNCE=!|zuKv?VbTBdiWf?GZ@_hBW87V~!?
z=ln@Ms81v$39c|+Ls6Miq&*=1G(Yx#8Hyn{3M~si_9+NzTKG8dlV-Ezv}A>k{A&ae
zE?vST5#@zMh4j+kh4s<goQ<It8>lk7?+^IHr(F+I+fifFvV?Kja(oQajH{L*6U?V6
z_z@Kxs%1zoVtdzC#8$LB31u_5lrEcQT^G+jw7S*fPOBKkXGP9e=NfpuRz_~x4(gMZ
z^4KkK2$Hlx9XUn{O1mn+hVr@iNc!LD2We*QltBAN^K@MKF(-L5Qwx)sq6|HV57{0K
zfJ#o4Ezup%8L{4}89btjHe7Al@y>Zs^*Fyr@V<lV-P6hOU`_kfSu<tYu=VZ!?_q(m
zXmNcPIH!Hl+1(+3!^@HZUT;KZxvx~$D#|QpeI=!nc;DcsVm8<C|GE_xjccd=aw};6
z?N-nqsl=YrnBls7|0|R6i=nvnDZ}$yH<4IWu4lP&S)h;(dpgmi!0}r7PhU!C^Dnop
zzL9zi$MB?Js!^SqpmEuw?@kPQds!+0UWe>OW~C`SG5d)f)HN;{ul+X{tW!SOh}KGh
zU+wKI=^SErF0R%tgfpVpeP_zg$aoFemO)wU6hpNK4!O$6waz2=%V*r{tk}j1i$4hK
z_Dnzyqt^oV*HEKn_5v0c&?UpQW@qHdbAgjJ5cpw+XBiKMA}n5x8AwQy$j#R|h3iig
z9E@xDeu&N`i;>sw9`@Tn1`k~=2un>3GA3U$#X)JO0ia$}BA;)<KUtAiYk)37E_CX}
zW~yX$&g(#tOKV&C&YAgQrDiS-kIVaRYO8(fmr-5>YbAWYpvx)<-)?`!x0A-=dw{Js
z=}jk=E!0GwW~7kaMB<yr(!Zp8LM^*n`E=`^R0g@4)cK}oUKmt;vhm@T>LJ|&+JgiZ
zCN?+{!z1vd>wQ`<=0ZO^sy8v{uxH-pm^5|mO#i|8mrp9+L!-ImU5bY1m;rB29pKGj
z-t+yX$VGJ7RrFca8rhT|DYJM-K8z|dPS4mRBOy&?^3)ruBZb92AM%}636h2WVQPoB
zy&pcBK!itM9YkY-vc`IEcw<LVMXv7>d~6)x{nVSvj$*D$C1!U>Oq?SYHn6f#dEt@L
zL_*bKS+9o$hSFH=DVaI}et}^{_!N1xpKheQc;`9B>Y-sHAJledwAjqhSirbqF;Bqg
z7DP)s6_rOvh*`mV2P2{zKY5yp7Z{_1_vo$Q<k#<nYRI6Fqw^rOa~4m>=wN3)%%up6
zVoQ61k-6aMcaj!EcW8us11m3x>sDNhNQg4i&oCHts0gi{KYb6q+8qKaW}xU8Yr3C!
zc&0S;Mow=1;CE@bqT^QY6+&Eqgx1hCZpJfdZM7#?<>z}77(U8aSJ*C^S_d3H&KC|R
zsngeDPMHM081b=2f1xbKuFVrw!kg-Z<6NE03pt&iP+?BKZ=DV@Y*Er@F98EyrP$+m
z`|6(bHN(G=$ZIZ`Qp!VU=aj7$b835>Y{nhD6<KiI!)j(t&argUxY*K62RG(B(*PJ9
zI`Vza<s;QL)f-B+!zp!EW@hF!PmqV?>n5YcM(*a*&L*WxP5ku)v}m=HV_u)DXF}Hj
zon0@Ub4})!EBJL~B@w^NqhnmEX{>X!Oe<(Ze8=#BJzl`18n!dEP{Me))XB9w$pUvW
zT=GdJfRDBG$esnwT?Ym6zg;P%gFnvs{%N;A*sG2~jN8wV#d8z&*>gsBwDmJ><9f&^
zQ_q@Zx24GEA|g6G_DXwpQd4GiSzU67iI6AfVz0X%t3Te&Si2ZbUgGo-<_R$y`Pg=R
zK5ntEG_s0MJuOYt(esMSFLzNg%Y?74r43s0Qv(IXt0Ltcq;%prNS3+$%}#)TTi5$d
z+C~~QOUIC;4j*AALfp3Y%i}_*R)1PYw>TdrP->I)<fQ>F9P60{+19q6cFRfD{l8Z?
zZ>5l9^%%SFbh+<_|A5fOw5-VnMpoA}16B2iHc<yJslWGyR-#Sn(#1b!Hq7hp9n3SN
zt#>PAmLhysmK-yBPWc5UpfjM8eY9x}zU93$&>yd}oJZ>mGg7vq52KK#4hoM&g`WpE
z*0>d`(^GX=5hCLAuc#~A6~yJ1jb^8AHCoU;z^rZUWCXY173oOH2;?QNk>{xuD}4%4
z>BAO$%@g5hhi8!tCwhr|p)LvYU7KQ_SRMiQQrIbL$ouaX9}$FTQPBpPy3E;N(sdrC
z6}y2wo#D?DIYGzXE1+eQYt{|wX%=Ew3jxonVon|A1kxon@GS?salOcR!=1(Og~Q#m
zlZolHV|^=Z0Y@|2oq(G@V51@7xPakmGgFZ02hUpH^wb)ShcqZmevc>4uf@mEx*pjd
zROfcEs`v+%^R8K`LgyBc9Zu2wEl=ypO6qE(LJsuBZs=mX71n8S*=_@<F?<Ri-{-$`
zTY3S21d`-X?YC*gCsLoR%22ML{E%efLRAA!;%CRe7RPImj(=brZ-4zQd`<({YDAG?
z&THIgiG3oVa3nnFz$K(7OB73_K~ryIaAn>)=jx?KOH7QT@T0@AD&bhVCTL=!I>jPi
z+}Q;sj(s}t3c9<!Mjh)RaT&mMt;E(#3lHtzIrddQ=83KMu3~P)<M5Uw_F_{jG^dQm
zBPw)*fkR6B4h`rYpD&Q==U4=~0y%l)S~;VsI~XI&g#SETqB-hi65j2#7BVAKT8nV%
zkGSLtIbXcoxK8A5?@@pM7c$m<9w#8ZlInX4KmxH=gA-?!F4FPmUE_W3Y*D5${rZ7M
zUlZ!r8qAufNOpaE{}U)I@`{9SMc1xR<kC~*#{0mjEEjj19J}5%QYV#h<G8c=#()}H
znAf8-X4vLdMPpbsQ{W_wp9zIM3?I%;tFeR&$XeuBt(CHgkG%;t#m|0F3D}I{li_VF
zEnA=IF0<`;8o8?2nqV1xgp^!MLlUh-zm=b@{?5plf3}*nJ3SUYiY!~}cbXonO(sWW
z?0uAh530ddyek;S1Cl&?m(rbNz4ku?e9d{^w4M@V<4vcJ6#sT(9~ffKzF|gh#5ECt
zVRvwe7ceqf)Qn#ZTtJT&?@o1!diI?Mr4>YTc_y~$=?Hcm#s1~B<JDB8^>d7{=JbZI
z2ij&NkWRp&+9nR&S4eCNIM~v=sL7-6FfY_jIldGkng(Ere_v8}#fvOV8JtlSp6D`k
zLY5#xgmBo@@A_DD;6sl3?zk*uxwO1xU{4-V!w*F=P~5tv@`7Q@>nvWq?~=j9lnj;?
zZ0}0IJhHAjVBrKpxT@bGL!(FXjHDvZd%4WcS3r$%VZsj*1l|Ai7~)K@c_B<eQrYHc
zmeKk40l|?Wb+djZof=OraqzdDv9xGz)Q~40bu4)r-LkQ6v2z(aTtlz!TOWGWt_K}R
zBNVG_b|!47IM4LKPYupSh0b-fpdY1Pw5=8&37BweR1<Q&F1|=?&>w4)WkCtZS+8%b
z>jRr>>=ETU_nfx^se@21*IlM_zme<bFN%yy8!7Jou(jzH8<h-7xf^T_R%G1};TA)U
zt$J-*(-rUC->L|<@u_{Sy<e`@ydTMLT2$~gtIazgHm}b-tHy22l8Uf@Iqma9D|Q#l
z%Q<8!kg(#0YCcm5SHjk~=D)3r9@s09_Ys-}Q)NxcgDGz*9&_!Dn=Za5Cb=fla$$Q2
zb9kQ65X0LTTt`0VaAT>3*kL34rHKKn*h*aj8xCfzhm?_=@K)d%SK91Nw8|<QbQKHk
z@L~vZiKLLbcASUh45;<<{4FJqK}zeI6?9&&6{!7fDUE|<p~Gw#E?NLx5b*e9fNf<)
z${nrls&t~zU?L`;Bm|ys5@5}DKK1O^O1O3MC#0|M$7_6QxeWu$tV^4Pq_0y)pr+Uh
zN8S_7H;fez>0rN2V&JAZzFg4e6G5A%A*;TIpup+p-t1^LyY}LSM5vIS#&0?k@WYe2
zahgiygBH|7xWe6JWV+i(cUxmaDlLa>37K?k7$#6?(Cb`e^k<gyKcoVsXK{eHE^|{i
z8^HKvR=;}VM_gxvKcsHQ8v)*-klY_(Ex(!#{CO^ND|f)TJ?-Y&MEXkbf3)zHN$w?3
zw2@cbjz=$Bsr*vYZ{`ee)1_2{(;$>dXPK+f_og1*K?}IU_?VnMWMnD55B%@5l^$uj
z`b^{G=e^u@i1->VZrs6f|F{=32m^>bg=?C)?`f`m?l<KLxb069XPU?HkQ}hOW!AI6
zuP#th$Cc?L{f`PZpC5oF9h}J#m!Jv<Po^bs($LE3ny%*f09V}<GuD6Kc<%LIY=PXT
zRN)PL@>@^B!jt^#O!?j|#?;1IWKp8Qo5TO+N~nD3W&4+J;+1}qs+Rn}V@hC#x<Nih
ziVOT?yrQjF=fOi~2j1g*rbs8=X|eeyQ3swY$NyuJXYKTHtgRGA{N{`cirQ#gWMUET
zaq4v936a0y*q?r(pa0%!iWQ+9x8XJ}va%RWUnHKU{9-Z#{c8Ola-;j-{{1f)7n@aH
z_as$)cg%Qh`v&NqMLW){i&D1Can*@}$tlu*MsE1@PA!Q^-;0K!&rT-{V{~F8TIA$(
z@BZVj*+X1Q^!fb?{o3=O*YLiZ%uZ`J`bB<1m1+9Q9dGvYr)~AvepJ(S3(Oij*Ftmb
zq73F|4>Tzf!%kjjq$z4-@j*}5w7g?g%0FgjJuCQD$iL+T=$al~$cLC;h@Iktx7ibv
zHOoRhy>=qorytUo_dq%!0U6EneOkZU@cb#js_oi}<JvRZ?s_erTy!Sj)_T(kU6p5f
zE~~DhqGV0hRH8M_-`s*G)^FY7-#3t2I6sukTztS@B%jY}kkc2b_NA+BiWcIZ&(>1+
z8TzlBF?=dx$mh9K4AnwOyE5n2ANPzmFi)<`*dBy-@|o?#4@k!JKkF~76TU?&m#K(l
zdySyp`4Px)tm`rTv`Q#B6vdaR_{=4%wm-2!y_fu>*;JmisTdwg^m|<E72F^4u$6MI
zKMBg|F_>-4^pkG#_a*h=97rKIsZ}rSLN>1~cLocez1QRSoxD<i+57UP`)azTNgq2q
z_<VFBxk<J?oZL|yc)I!*F^cj5X-}cYjI?<7iK+H}k;7*9Gq$_-M18pyIpJ1K@Ikt_
z^ksxKi%)O2=IC2hDwPS!5#sQ|pD-zt5Utfyxy2kS)E~M(LBquUXD<+KLru^!Z&Svd
zQ+HBk3m`3KJiES*Z(mnY?<CDaW>Br(Oh~?{?<=V#FOM&X@$kMuSjMhG@zXwQ*&lGL
zyOUcaf}Tkrii~487Cx?Un`fW=(Oe3SnS#7+Yf}EPCTbJAPF#l_K1Llfy`rA|f%&Q8
zVr74i0x0d<PpdO+c47BC;DwnI(?6oqd(3Ah$m46c`*Km&CQ19bIPa}1xqB()QK?qt
zp3=csyxMWcFS^MVZ+a%5UJ?;Nc}AaRyW*7y)8(8(Pn3l|CGFlaw9icJOD(D&%t0zs
zfhFkjIZmpd$a(8aCZU#9Gi6BSEm4-JcMjFSHHSt$tSH;!E=T`p^4;MoPb3}b?VU>U
z8EGB-g1T0|))qgz)AshwewL<w%20YB|Bc{Jm>7N;BHNEf>`?WfKjc-wiESJcA@bFK
zpz*qPbRl}&sl#!rO=tCJ+nHF6HbY7<O<5e`K_6nXp2a8{)5_;MrQf#2-1X*sB60&d
zc8cG|qEb8IdDpXpIAI~}WNcG?w_<0F^LmpnN4dSx^UV$4*uveK^|R|~0F~f`u6rXx
z>>{|T5s9aZe<O4{Fy=m=2)x7-vpui8P(?)Baci@F9Nw^)_g`o{C?idv0VctPZ@-uX
zk*ybo+wx>M+<p@Yj#GZ~)Bvg$+p*S@rGatgQo`@P_V^bor>w_i5QHf9c{(B8v7u=I
zV?glP36JysnyRVoCnh5VPP$eJ(;h34*q1csYiGSLSbZWQGGShg7aK%LYnQYgF~m*W
z)(DG}y8WCHed9CnjiiOd1Ds!bbi9rK%1T&z^VM}Oj`3jLM{B1H(EhIUq(r^icf7XK
zU4f)~6A5|oxGd)09`^r7Qxu4HxX4H|Yp9_O;ohfX*Wm$<f7{H(6fu{g`NQ3woU0I;
z328{a^W$+ED_^Cd;s$fCL=!i_;#&)<ru<KefZWa>EVpIH6S($L1ILj`|IH8Z=u7K;
z@|mU+^wX|z1j5gx-J!0S_e+O1@UwFxTQsb#G^>xAZuH?x>-kjvWLiGqVsk|ca~0dT
zj=T)+a0&ZjKuXAvj+*X&G;<6dszgK1%BVONM4!}<q$NxH54q}+Rl|Z%AKq~C9|~Lh
z1>Ehs|0wF$KSdK0(!{@fyY3W`es!^D0@#s_3=gvrD9r~RU6SG7>7q_JdnhD_@%XXj
zzdYV&anrGH_UQ0x^MYh@bX88=h@?*2YEV;y3xuFQ??OHM;Qxdb;K}s^g%xNahhGZf
zK%(h)8`fi1pi9oPjaln~eMh&hWtR92RP0#rrmgK<J~}%QX$!}Gp|UlWxf(#YnYyu@
zdx0nJ5!kPfZ6PJ{rZ;3;yA{rWX^DRm3-!-Z)yz)+cbJZ#=E2}p``3C}2>?jR*9J+2
zFsSve=)9-D#k>yse0sm_)L+6S<l?EHblB770K)Q9>-l|!#M1rz{P!iLp?_@hzferC
zbqPn8LG}$~KE#0enN>g|K%dqn3n8?(+}(@JYf`MRulUOO0Z=kvmoivnh^TcH?K$*S
z+z(mj^bgNA&&d1DS_nW|2Rmf{<R*`TQMlZ~awh<8p4{_9_zZ^xZ^<B_fjWK^Y2?nF
zHkxyJj-)oxVmK3^5+lEvX|Ad^Nt}x&hfQ!fP016Bz`Pqrju{n9&3pa0!0+6;#pq^C
z@US|Z2jI`bodG(+YH&H%9VKM{MlKNJBnzf#Eqrxh;CCnE+_e&NakYr`kug`a7fMlW
znSiw!5hs_A^u#!VcWq<%JW)c9y_-LI0nKUB-4G|to;Le)=xl|$i^#C29uE#iJt&{7
zbt`4DNzGo9^;zDtpt_;brPsXE(KW@G-~b|Sadldtr2-@BmWCOxv$K14<k`>XN)E{9
z22yNr40)C}mHcGSXNJ-e9ER)&8)(yu)<Mb}J!#iHhC!J>&iw}IK$-9N9PFJYWj6}6
z@~;2{12=C)qGkGMZE0^Nhi^Z0veLWQp@;I#B<uFc*z4fRm(WDbcz&l*Jw-lJtFo25
zQ(B)J%GyfCXQ(#}QXM)wY*Ay-%O<|sSOXq4IXHd!XwR@l^RnZHTUJN2EmpUs!nE9^
z*Wrv_FtjKb4TmMvNUv{RS0VgFXv>K0&g>knol^^GisPW|FDl__;xwT4sDDYhuc{TG
zVa-<6`iYi)4|N;tVoU@rim(k>XCRoktE<by{9Q+!t3uF^&uWT?&vi9c!swaCTOrD?
zME724F$1CV$lB832}k@oTHSf8(mo)tgI*?Jx4^ak-Ki_7?QM3)H>QvlfO2U3YWpQG
zDD%@M!<k<*s&w6Tx<UnrUNEjHg87s_EVGnWm4IXcw4pVh7X@<xKHFLVFI~8$oi0%4
zby;$Foznu3PkJiFJynQZN~ynPyOQzhH=kNYJt<pEjbqH-K3#e5Q47l2KmH>?km+we
z9CBjlrF(}-Cu9X5`9~dEJ`e46I01?~`!C7&lEK1j2G<09C@p<Dvu_^0>G)2~Mjd9i
zyHRYk*iijvOhiCfGC{}8(Z;`*#^qQQ&q>m5P7L2-tR3>G=YBc{iAaa|uA?wg7U8^g
z6@f{W{S8sbd#_G6?sW-xt4`UcNI)Bdy-P240lfOPtL^2@3OYC4npM*$eV+$_K-{7K
zF%4ekc3SDEwX0AdUO}3*KDE|m@Lf4F&s|ThOt|^LoCEEvzcyJjn(ZWN?=oFfimpQw
z<c1_&jR4Y$aiP(K)AvBe$DWbEx*qq|o>)p^bOiq>ZS!_Rm358Rj@E_?0L^oGpob!A
zB`l{2S*?vjlNT6~!S4YxH#__y+$#zeJAARH=jPEsY>dFcj&#5e%3uVdppM}wEl88`
zUuko?(5KWKAliTg%@T?RW90LWW1#u8^o-*ntNAuP#<3ky;@6s6(sybtv?G5qO7b&O
zKb5!W48{N@$kUk|amg$;`Wx0Pw~CAf9Lv{BX5|Bkhl2Egmzu-{{S+!WU4XTLsw$S4
z7se}+Kk-43S%MaIg<AQ#ePeUqT~{5nxq`Rfs>vUI<^WTh6R|Qj5P%jwy^TsW%GJDV
zp(Zo1wb1GM9S1wY>$;BDYvfP~kQzn&?X}*n%I*r=&i`Kgssp)(kvs~Nmu!;GpE}{m
znJrV>lF&N8iZUe5*>$o>Rq?34tIY959zcH9bF7XS%2|L{;(L?iEnu8?^lw5MRE>-M
zu=7wS9Juig<#Y>>f-G?KGTDpxO}08{RCD?ecIqd}AMbXo#CO`bV5qAhioC|kb&C=M
zB`g;_bk;A=sB-u$#38!^Z*!})|3u3n=k<V#n-@%&tdY={{{g3dJGkl_6Q~cc?WMuT
zKoJ%V3rmhtpLbZ3-tPCpLb@w~u-HozC0YNn^igj&A#s0^^MhdyoU?4eLf*Rqdd%^k
z@uAw0WUUkb(DJ!IIYhDjwBK_h{#}p%AG!MfH<tfRrf%^<3&3<^FVEHOe*2izgSN7j
zSP<&A?H}nm?+{c6UXsZFe%|8<?XX;%MsZ7t!&TG1visk2%mFj2IQQb~TNQy!?a~{1
zmjL1_cr9DiJXP$Q)2Rg0*5VNtlG=B++^=7D;*VVOhL@Q=j-n31*()|;W~X!wLnp3z
zJl|{>kK3jE;|6%o3+RcpuCG7logLaG1<L+k)V+6DlWD)MjfyaiB4Za2&~ZQ%DbkC8
z9i>W_j?#n>dO%77ii(PYiqb<70ci;>lu#7~X^GSTAp}JT5JC${fDqU><2d7b-&yaw
z_F8*?$G7=!4vz64Pm<@k@B4RN=fx*sK&(efGA47E>>^&ArU=QMGzz$=ef(X}x5qKK
zaT)9Yt76sEg+|RNd!>T>^$ee`389_=x8pyVC^5?u6A@XDJ3`RmqrA>vcw+F@<NdaA
zgXn3Wzu&&~#?^I9Za-B2S-|nSj-KlYXIv=8Yv7FgzuLdOY4<-9hEv=TxPJX3OYm0o
zsO9F_jE1!aDmZvoD8EXiv<+pBBNkp<4V3wJ^J(yMj_n5N(!G0@9-5q6bP7zoPIxY-
zcKBoLO44ox9mg+1DtuexPb(P|`vpsWIONEbaGSn%tYKg1>SX8WUh1B7E48=v<dcn#
zDY#!3URac;Rk0;lOVbM*xI5w0*)O*taQ1$;8@q59e=%7LdVBao629k6&KE3i{B7w|
zU}uVg?9KsrJhIJI;VtR9+ps19D;c@WeNf-Kr-FQP&q{Uag~oxfgL-qyvyc&N<nW88
zuZ#NT@9y{r#_oA<i@E}D&V@e@Bx0g21&6geG|dvUENQl^eC3}G-C!3bjIeawKZhdx
z>cw`_d7f3^L-n!b>h;M8TdLOHHTkDuVQ*YdKA!!)y5RCY2g1fDeD1__Yy0~PZUza7
z>n1N{-*21P7x&lT)~A#TlWv|3CA}Fr*?-(``!h@H$LCzel)#2>&uPh<4xen-RDnI+
zwVLM<tvgfi<!w7Pue>jpVsP6YB&W|5y*2()GiDHBbmuG;n!S39Uu-yypfRDwIvUDW
zJJF|D_Z60$!tz`jW%#D8w`gwajuuo=TN3<=fmiN+UZZv5!2{7e?yTdas+?cHXb0ob
zx)i$z8<tIylG<$HRs0#djg|P*AK>r{fEO?=QPpq3wGDZsEkEDQx#M{6tFqTkZ9bNh
z#Neo5?-@fktI~eow{}SFgvXcDV0T&xaVKNNQsk^O$D+2IjH}9kQ8eh9QJ=MKh6wCC
zw8|zqoq!jrN2pU)D&uaOq<A(uEe{rW&Z?aidlmI=_^8pN#cfY{7NlfE6f{HX!JGBs
zh$^Q}EL9nmEVI0r_@SQLca3-;m45W6qebr*i*gMjt-<)2yfJ=$@WXrY<tW#VNOhIT
z1BXg)A3c_!ka1JsSzIFBJVJqVT!U&`Gw}TWpX|3(wBv#B9Mdw(e<HtA&i0&xq<_45
z+|%C|N5OBP-x^t|9nUw=@6D7Vsm&oVw@RHOUPoI@Ut4||pQ_nE+4gy@^ENH;PH*aA
z43ZE~6t?VCeM_#d@UNj_XM2rLd_vs6M!vzR$jkSO=64K>I-QJzOGP!DpTPI4$LH_S
zI}v^6DUu$L$8%r!6O8w_+NAu8fo@|w$BuU6w5e$t0y_iypl{^xo=Oe}-?wMF|KAwh
zHCLfRygnqIB03cH)MdFEI0g<dYPM=_xxIM>0Qt)Z-X(dzQ}F>jn%}=064>959dpY5
zOsD#$1(g+CCf9sBUHth7tft~?!L~~~ub51Km6%Pbt<wv~cqQH6=YX>Q26S^j)}K=V
zpm$2eC0xqeWrk{Kv)7$&u#bBo-(*u>5iH?T9>()p*wtX<6LFU8nZR{xgu*&>tfH<a
z5q=D#)A#<C;T-<DR;&#hdv@|jQ<_Bs&WXlDQ`SOIPC2l{HIE)?IX;TCPeZRVMUCfR
zi=LvNC|Ip*R$~5b>V532Y6yNMejiBdAgFgs;dOx8uQ;OPKWr&J+D{3ZtG|zeB==ai
zG%i#{a#C+!<y?9I3q?P1!-Fa2-|ysJq6(%xYUAY$TXgpyceKa`^iKLjc86jSW$ToW
z3$Gc<w8fInDh8lct^B$ql3bVhN>I5NDyjT>@-_fW-ax#r=DZ0l-Swy!Oi~mXQTWBr
z@Ah(7=!%KQ+2wcb`U7ZfUBXxPz=&fOlPP^rWZye=@1=B+P{&8Oho1TQ)hw_o$3M46
z^xdaf_f`;t@@$F$*{u31$3>5j(Wt#Rt7Xdq6QVQelk%FTKtc>_xp+WDYEAFfd~+{k
zk;yCnq8M7use^>|C4!aeTAqD<YN>hAJ5P&W*tX;krO&mxt8CS%WpU38AOk+D{kz!8
ziWrG8ZNCG1MtAoA!WEDrw`qh+>7Zhc@>!AeYn59XTBRhu9lvZG;igoJ_O0hdl2fyj
z%<`wu2kf&;e>LpRI2ws@=>55No?(Nz`RQ^ds`@OSdv8Fw1iWgiJ^|YHNxpQro4kI@
z`F2FnJ=pY;5B%u@MjU?H1e0gpz32QIqKh}2Y%OcJoq+1w5++iR_cE_P;XR;1z;+`6
z^sUPYac^mTQ~+l$PV1s4@LN#kPV}L)j(fUs?yc6{FvN7w6db`%Bc~NAli6oNY>Ck|
z3@`Wo!>spt8!sIAV>-jq5SO-~r*ou*+lEaeL5?V!TjBec;9?PsWx$~zm3zUoKFObY
znc)#w&bO#kNH`NV<#Rig!xkP4n+tEk-)iO&Y<q70Bx&N|kw#sqC5UgAODOwEHe6Ag
zgL??GGSt}D8c)!Nuf4hM6TfHmVq$DLA|lTWo!#`r*HE~92xB7ea*X;ewOFvfK8<g%
z{IN&I=SELsOrF^yuHABDZ&g}ualPXFTeCkBrt1?<uCDo@-~(g?%akGYQ$2YzHIi6P
zzE-Dh{Ux`4QM~EE+Si7M4*C1*WY0gUx1>}`PJDY=DgKYxWC`7O8RsLB7Gn5S;zAi(
zlhD*ItTUl?2IIG^JT7RKpLenGQZTIzznAp7%IcCr`Rx&-Zo9r=GNN?gorriTV>UL`
zn9j2c^&#1<)~8uX<1{=;By3i{mifVT#ktJ|<2HN_lNW@(cbsy1oMFM}X%AHBg%#`*
z>YFUs|18h8_I}5iTE7Lq!P0f*jw`kWGKgz=8|ct@yB_J;;$yXPwet)}ZwdR<SfZ9C
z_NpT};gzdqu>I`GrB<Gz4i!nWH#Z6M!t2i*wHYHqGov`G$}^Ze3xa@tQZ5J#1lZaS
zMDCm{&5H7eqQMy1Xb-&Bw@R88Y5<%TrH-?98uC=Qh5|f~?~qpjk}5%1qZD4t)+$q#
zq?}G{|KerNNoU)Kv_!KxUiIZ!ad;1r$pcOun*LYOh*S?<`}&3DW6aYSH^E%7`n7^_
zhS0bT|DK}t0LBSqpo=<t_#+jYD7q=(R1(CA=~fOIc=L=JYW9ho2G>ce!YzvvDs$k=
zRn#Q2QsQ{|dIXA2$5Ig+K-A)Nvpl2o)n2o_YeqTBo_RmxTxAKvHu9zX^dN1+<N`{p
z>i`@B8PH+4_mxo-;Z<6cHl3BlOdHl#ZaK1B8hrjG?j|hhm0^sp6-UZ;Eg}wWmAh$v
zKF@?`-J9+^)~fa;cznOKz8NK2*tC&B8qF^v2K}a=m?zd2m!CuxNLu=$tK@eJ>}>mI
z3(TKMO~au&T827F1=Cx2%T!>A`$Oxm+B&KYglGlL8~{6Y$>7<>n8nEh_U^11(j(1L
zf1*WRv}kD<aHCC=zx2F*sIGFBXYRN(Kw=BCR^_kisktxx+N$+!ijtzk6#i)LJ}5I4
zd<g<TCu$iFq`TnWpi)#%mpwsE>a+C{-JLVKyiLiP)vG>Ju6v$Pe5p>wsNTh+nEHCQ
z9~DVPka)Q4bt{`u-F>k39Ia5pY9`Hu?1$_9N?do|l9Iib0l-ren0w`xdv$t;$Epl9
zd!o|XyGDk6k`Sze8Udr^>4WX_a-~c)2)4F*1k$mJxV^^6p-%gRlvCea5$*VdPgYWc
zEalr}JzAU1gX|^t2`#qAs1C!?Vs0Jd{u<sS2YvlY0t`i*$f(G^Nlhi;tY+Lq?DbN!
z);ognaU)8j2&Xx6*-e_e#v-#Pr5!?NJ*&u>j1?n8oa#3PkD`pQQ#GkNs}5Lm=ru3G
z@i%G8UR_$YgywdNI%2}R)`!ATs$A<|RJIw#mr#Nyvf#ZRU@<j51P;^cYg2pYX=Wi|
zak=D!PUV7NZ3sRBtAPj~2E8m#{4gP!5!W|Qt_QLBginWF+v6piyA9=-u&j9uv6xDV
z+4dz-^iaEXmEH!VFhfP<qq^g@Uc1lm>yp$r`4&T1BGAF-89Qk>f2%tnOk~bC)oTKz
z1mvJXt4r9_d*=tA7k9YLpO_A)GhbbbbwQ*QP}lr1BG_3^#v={GwD!b&x7iv<#7DUF
zL>7DZr93;NnxH@J3`xWHF1S-=1#LI>;8M|?G1gF9(IhE(Jdi7gc0Z2M>^ntZHMiXV
zYeRa^X>;}fFTX^|^$REgw1}Ccg?Vf+qb!KBv;K^ogm?n0kB|m&z;B09ojD$sZlyzg
z74_1zp$->j(uivl3JIQ(cTn{sUs7QAZMrP@$+GP(cawr#six?RpZB%qyYx;mVaqm6
z)xq67@Ko$I*3KHcc>fu9UCRnDfh?bh`<0s1U2v@bv(jwqm;hmad^i>AJ$Q(|vYq|L
zv%_jI*7h`AHmqV?n-ee+PW9W-8w4c|%-bC5zQ|wIWI{MbT#4^UUL1R5`eeCHznok^
zkX}$w_lz~GouDWN)QWa@Z$K1HcHl@}qm-=ec__PEP_dl4_il?Uf}JeWgSC7;Q?p`)
zfp&JS{W3C0m+7LfU-rf*S5UB4S*=QKMbVJ<ajUQ5W6dvDg6Nkt<|y@pr+WR6+9u|q
zLk#7CQ{Y3;427f1nol*$r!ks_;|Dz^BO>`H0lKmx=2*ItMm*|jPbpJ1d3ZjO+Lhpm
z6A5?753_?r<bXFk(CUt`da&M08<zjQg|~@c$6Dj#mlfZE<6A$gnxCtY=s2k)D${x`
zTi#lmxVy{3ZrFlg3(qnRyOvSLCuE9o-`AUG+ctx~#Bk3W4YnO-tPo(--p}pwu+PgH
zW@Lt~N4e-S%UU5lOp6#+a^%n0{TTraBILdjt-YrTid)z&n@kX2N-9@8Z#lr;pe*vt
zv+~3di?`#@><>KRPg=L0gkrzOW6BjuTYh8qzA>;Bx@@yT#h2eL(T>G3RyVhd!<K7C
zN4DPBOl<2$7*V=2ZJW`QGOSr3yzj(5N!8icvxv1T&-jFn=M}FHd5A9sql7Ee>A@dX
z6x7K+Bf(}T%*wK`+ube9<2nw_up+M|lcvE3#~qjdsomAKl6fpy?9jmnN`y?4eECJv
zlql2%ZB*#%EY!mo6Ec-Q>*7~Cyc&$sv|21Irwu?W6mO$qPxasXa($d^Tj%>yt=!AP
zrR^>OW!A<M1V{E}WAds}$%{{tL1rGQ4(rM5g($$AB9$5koH$9Y88_VG!=%Mdk9}XD
zfK;<}AGe+UHWx#0Tx0u{Y6Q`oh#2{F#Cdu!OB_bc*ZI(j6U?A(P<1GpCu01{@9Ban
z+CUEUk`M4`D8(|K3Ej^#8_f=OZ&II9X4>%qKpJ_V@~|9h#s{9-ns@bx$|Fd0F_b0E
zw$y3-oEb?=`2ZF(tnCO&)8mj%d_HVBg2j!@iKm37#0Ek8{ATe3MGy40dCP10dI~(*
z`gys)3>xq{Y@&&K9s=-xVapH?7q7|{PDb?_C#Qabt*GTTad-X1S_XTuE2oq;)Sv=O
zDCmF28bVvoRCY^`W8B*G$5F^ZaNIjs9vxuiYf*PDNLVxUG60rgRyEPdzO5)qzKb+H
z<3K?5RlRbrD&H{-nE_9XmlnqNLBTT0W!ykxt=?7P3z;>z93D73F9QiH`OEWg=1Ag6
ze8L;~=|fdS=CrRBNpJbf-FWe-QE;1PWIwU0RkgLvB;MWOvI0oxJV8Q!&audy74%9T
zX_=VSK!c_?Ek6nSUl*+nW!Edx*CKmzOb$E=f#e|uN(PvbnP+Kgt(v#MAG^X^$|o=C
zm5F6|s8YMG*4b<|%QyYt(#*p{*plcIGTz@oJDvEvPkhd^B$UMVQ#$#pA4gxQWZUKg
z7qfnT=~2G0N$3zgEvCoGZx+x=e30JbpJI6Rl*+5fBCBoowyeg+;PE&j#)Bji{JA^k
zPW0_q3#U?-;JMVW$>LL)(>Lsr%ZCcCF=CUHp|65rR28YJjeuyoZFQMne4vPD3{0rY
ztjgFK7<fMZerwN27?}qLtEMDyDG$(VLoS)V@D%pVY|>hIDzd~vs)6Z%-7SWqu*xq8
z%e6gQe>g2};ogTjjgEwCfCVI{L=q42i{r7q^-w%?DRm}<b`hppivcl`rb(FmSu^{Y
zWov%*+1K5_CcO#b@L0X9Gk`&Q%Ff#1jhh+6+<f}`7dApIN_pBZ0etm#;1sx}KM$B`
z^R+rp^}STq=hgNpkB^$NU)ki`5&+_Q1{eZ)W;pmx;ujY=`)Z6Eq)nL@Twr{6RUy7d
zJeCjnax5^q-IxfAb~nrSM4KrSg2fMe>bSDO>v_YZ?B<rcZDFViJ?dQ>jB(GkZR?&M
z`sh;UVqZr%x;K^)Vz8KKwa|uFf(*r1iHLiLcv`Q^jbu!(LDM?UDYplVM{cei3@jV?
zBtCjDhsWegCGhnG*x8pR5UO5kXntLpS^3<Y){}dl{ggG32z_N%>kfn0I~9{-<l9$k
zk8eLPur@UQi!^wwGO?-i4dJvH2%_(8MC9JyDTN%dey{qfROhr=%7goS`$7zqX@j*y
z+$iG5TjwqXl(qf3h&Qrsefb!Px!S$r(#x+@lw2H=(@|Dno?8+vtd7zO;GD;uE_R9T
z>lRY(b<K@ZSa04J052s)c-6V+s)Zylco!?LdWCVaQbX6Fg~Yh)1lzf89S*%}+sc<n
z)9T^p_F;WR+hVAsWqY?alwNhsDKF63qLC+VaOMLyOfP*t{&9y@J>2^0+`vs@O_p@@
zWS(}mVYjR90U~Ta+BVb3<QTDGHVav;3W?h(&nj*itewTgdvFatcAZ(s3LartVAvJp
z6wK>xkP1aJkv5~DS7xOWa%dp|M8COcYG{ISzW@s4`ky^>KM<6339OCrCh`3oDI0n$
zl_SX<T2X7m*tI5^F$EJDdWVCjlTAFtD<ZcU+jrA{<xIPW{DCKiOjp#covSz<n-B|!
zj+-csl`7BlXDB8sjVE;;3Na4>G~YS?x_KR(E64qV+><0`3D}s}lC0S4w+?H$q>iuG
zu<wg_Lm^GI5c@b1C6X-j3G6`jNyHw^xnD>OoEW(s@kp&OtNXd~p4T+8vVlD!_6DVg
z^ei!#Z&FC{_@uLQHFH;(WlAlDHQmv5-tf1<0Q%9F-W6^5`%jV=7wIxnIcbDJn%2_I
z^5M|gEgw=yXQh&rE2s(6fpmBUqVZDo8WV|{ZDb7-97m5$us`UQfpKUxr#TId5`Q9;
zdkHf~p=ug^w-U(^feE`;;sSKO>(4FYA4pSp7wp$np|OnfS!tyHN>7as;HECMb#=T(
zX1b<SG*sQ*I&iiNRvVnJA9Z<Sk2kfOWX^!}l@L>gUnlYz*PW*9fzOdb%}&~%J-@PQ
zlneGnU^}JTA*4`7#oRoYK_|jK9RMWchp(1Nn(LC#{yMV=Y3v0`#q7;3!W}l$q_Nr;
zXhxT-DC9o1A3SlpggLzZ;c3^0ldI%nHIobRanfbCKM9)U4IUodDtyDV-dyTsAS2nh
z6$a_+Q6Sv1_bsd*$=NqWDlXkvse33D`h4v-s<x%C@Ilji8r%6(YMe62OZ1W;*X%mG
zDx3HK&1MmGWpOT%5SI`Fg_LbEE>6T-WZe+st9^}*TP+c%sJIMe4;2gG%Va1wOQ@@1
zWfSUVh1V>Pj-tUl@~7&0kO{^zK}{Ji|CAYFO)ouw;Kla$8`?Km=2uOoJoJb9Elunq
z1gE*LDBBN)PZ#M*SKNk^8SO(KYt{UF_^DyNbQG0d4k5t@2C$>8o7{<~yX-_uaTWPt
zJ#A@WuQX7jNQz*@wgRDXj1h=rGfwA6FspH&^Zm3s^V5zIRa4f7s5e6FO>@8Q987XR
z%_`DmDSn^vT9a}F_)WP~$5&Rw^Z@Wg1siXJxU51L1DRi6$&9z=kuZST=Y-}bp(u5J
z&85h=RYgeGg~DHtGRBnYiu71RD34dvc*kOe5XvHgXGRp6P++siyU-kygnjQ{_Lk&b
z-q!ZqxeYq*nYJBAu$~Qbs36zC@}+6;jFt6yIWu2)vq1Ldch8P$zgS(ifmh!uwkp3l
zGngGO7dT_QFeI}$pHdZI?^^z_4`yMXC8(&gT<_LQ66=?jTMhF!K9p36LmSQ9^3;-7
z-I{2B9W?mm8Qo=TZFV*TZmLHfaqD3Uf6Q{yU#EO08}p`R6D!3fySc}K=qz5rIgg|6
zF?X2Fx&T{Es4fU~&#S(3-sjQ7hs9xkxu4E#lcz84Ufs&|g6FT{@IM-$()HxC(hL_D
z@L9ko`F+*(zdt5hJ&F9J-$`1HC%U+()jE@zi52X}aA0DhIqPP-M9Yp=+sap{>PJ5v
zB`ck;7+VbNer=i~Eb&_i{z*ax4Hv@CwtcGmCwnGA{E6%6<)I0uLfbM4*TjS5hRNgX
zU%#XU#HhPH?cRM79d403z<lytQRiU<MRM7CeI)qfyz&(KArq_jx4~2J!oEJ_lD*nm
z9;R+F)on6g%X2&kr|fj?)%2ri<Gb|T-(PvkK>)q^o*s*Y$K7bZujuTk-*S^|+_Wb4
zdP}sZ|MbXwP}?CH!f*8~>D*CU>RpSe0r~9yVtUrr(Y?ujJJvmV8|3=miWO-%p459d
zsh8CbQtVPfmpfkVt#CjY>qwgPnP_5x1qo8Odu4oHfTqe|Zhe`!^9Ko1xLp5P)>VhF
z5!lZY{DRhRXmsZpBR{RGSu?!mD*pP2hDd@Gk}U7Aw@B-~yh~c7P1()fztmw|2ETzx
z-f{7{JvnzLT2#l7CYN}5g8-{Iw&(QE9Uh|UITgn3r(9y5H$}rX+q`W~6VWgz)@;7^
z??+ybs<_MlMT!!K8<S5OnJH56N`sJIHim9~EUp5A-*MYGB+FNyr?qy7FD0`Sy-DZ2
zbR2zwul4#{l_xFRzDN^Z*NygQwp7ywH>6aPm{Arrt$>MQ_X=_EEQVjxn`4V%yfy2q
z$h#whB0dsb>%>X3r1izOD2C|I>jEF^H^OGa-}4?^Tq-`hz>q@aZS&+&H8sAsYB6&>
zFZ-l*%wMf;DZ75^ZEs4t!;3*koswrjEpBWHi5A+IvQ^#L^N1WI%IIUk5YMAD2b|%*
z$SN9~8RCXT^2P0@NCgT$-o3*L$i!YB*LZQO-fx}T2g%-52N&K)6|`T#>f=I`*XM()
z@as-#;cnV|hlE4<76vtK{>#C|gFno?-e3B2<~0X6%%?VYOfr@_ga(Zo0aWpbxn!dF
zDc06wzqNFK8+UpRKhrYj7lDr#ub134xzv^u>T|vIH01*r;-Sp^D7DmEQkg#^5W0HV
zT?8Jd@aq4=1Fzfle?r6!55Yml0tS9QiJo^bLDfs~a<`w{V~vgY+?>l1b%BrnA4KO`
zu2n1y*Ig~oa?1*Sb5Wk&WP8J^j?xd?xn+Y6o#v+tY>$NR1ntCs+yF-Io(GqD_cxDG
z?3Kwh&Ory_jwe2h<|lO-4O!8C&XgMDKP!#O=$$LBhW8thFrmEm(qz7aJg4YylDItI
zmPA08uh&;alA^Xb?8kidzOCY1<tI7n(YosxrG4NKkC69{r}(w=zT+2}$UTI3Ht#k~
zfp@v1TjavG^cUZ{m_o4jF}Z(N^b=oyoorm4Dh@^pk?easz!Q<hl+y4Mlp(who&DV4
zdid%YF!?RuB5!h$9`C|6{24~LXfab6MPGRl0BoGUKWQ$^$j8L(`_G9*$mV1poogdA
zabS8C@K%mj|I^KMaZ0S}!CO1x|JGeJUQ)YnRdrg$Z*$}@Vm+YI$%F^TpsE^p!h_`5
z2JSBl9?qwZq%|VMtC+BeuJezz(Ba6ILB2sR#466Qfw>8O>D+UZCiQwv`(>Ke>k;Y%
zNi!V}3)7pGx7b49gOUBlwKr{Y{tyw3B&&V)NJE3zHT1!5WMEv23NuJ#6`esH6la((
z6ot-Q2MI9K`dv4K$q>guPTiK8>Cz%4Z}PWy_5<KYvJU^FR`Ase(GFW67I!$$)$h~F
z4KBJvPs%WNQ233{JGmq)(p7%{pa0N3-m?(g<nU)=1N`QnG>{UTXews9-$jvU&RzvV
zlkj($f6ZG!e8A&R!vy#jMt(c{r$hw&=Y~e;PmbgN&@aP(9R$)5LxZF@`JR<_NSWy@
zp*2MQhG}L4H0yh6m#~m`f1PRo9I^yAAM5y36!kuz(bOYRk2K5X>7(AKI89R+2m^hJ
z|4p;#==5{%b-2|WDX?|0!jNBU`2vcV<jizU8~AXj?NIm8p<-6;jG&ZV+*Da*P?IN9
z=q5W_c!eA#(@$$htglvNB(1I}0K1HD9~ajP?!Q(gd*42H&c)JD>KGVNiNuK670g*a
z0MlQWRHTm%2y*%zffJ?8Qa<!NFDYHd6}MnLSfSC)V<UQNdY9s(2cQ0dgS@c?RY6_}
zte$CiLsN%Pwj5@6wS|o9tljbxPO8u7YEzxq(etBeAqH+#g1S_Y`mKql!+@vTFcU@2
z)Eb(kg`5q0G>Z;&!F{SmZRNV^yP@Fw_H*@eNNI@z4H?)25UZwPcm*~s1cd`qq74Xj
zbf(JCy4<rDlwD1N$O>-%=To=4f$NAZ^%AW3^U@H;%-a#zFI_4~5~>#KKm9tHmwa=}
z+nfsbtRzMEei($1SGch6#1bvX{pAVVFzMVAI1nHq9MN`#NgexBS656q<ze;EHr;&$
zA1@A7A3N3r&O=iNu$T>yHT#KRKB6`lX9b)JXa4+Dg`cxZt2+x?$lmBm*IYKsH}|t5
zSz$bKQz@zWAKK!N=O?s^R6Kgz^Z96`;!0;E)Y8Rd|H=r6t<G6r{rnjI`T2)I>WhLI
zf93#|&3tB6<B=$}3%)pEL`+TF!plEc(nFH2yPPQ+av=g;Z7?6t>6`@X%^%;{u0CP)
zGA(s$v-}lTf*|nqnmEz-1M_LmOn6Y(`5?eUBIvB7-*L#9%8(he?k4?dHD%7IlC6?=
zcxu>~bG>Rv<1So(AZ=h&+0~0+a0(1}^Is^8nZcR8@dl7#J@KOBx*8OY0JaH(6rgvB
z#;Mo-!zBR5*9@sAp(71vb1tg+Pdpu$N<hQwIobAoS-IfkKF=gSu3M<Rz^he_-3r<1
zuqQ$BY=4d@T<>_=Z&YA5np&M9F@}Ks=if7tv7+*JvB;rxI}O`D_6;Q5Tpd`w4g^Gl
ztXj*D2Xe^$1I84Xx^^0T`Jw^OOtzHu;ui?oZD>ynHOi~byqPHsx)h<9n}d1+))nql
zCM`fCW>H`0C9>8Y>>dNG7E-tLA94g=t^i?^@`3hz^@YCAY84O*XAhz~vGFCbUqk72
z4wWsY>u(T`3Ye~I_ldOAy4;&*-r4xj5ZhGWGC5xnOtW&P5h*nwxiQ2O7bC1O6&y6=
z#?7@?`G+s2G0h6&&k5hOAsqv6v)=YPwgK<XLq(eg4C@o}!6qDXCN#_pq!&pyZuAr(
z;2Mmf-{2hRBZN(@)oiGW3BG3OPB065#s~<pLtw63XTfd8OZC=V`tbV1QNEhVOB(A_
zk}KDHbqZG}kLd?d`Je+>eOon{FF;^D9hDtd=3)&MraB{O*VwGup=gb(|3F5fNYxCz
zuI<?M&yl{G)E<Dl=5M9<V*FgqU{GEz2>}4uMd@`M>I9pU6z6vj<wYC8)+D6)cS|hI
zIf}A6{7+ukyzZTQpVv|@wLe|=GRVr>W5c>8P5bus|EcePNLGH3kyz>KA^2Zk-G^w4
z(L#5cSuA#wj?R8sFq4E)*Tp8r)jcg%n)C(X1ly^ex`<NPlCKb(D6e^SRg^u|X_V<P
zIbP#G*?(pIP(Z2FQQ<dsBrLXB5%+Pw6nOcsvUL4tg|}h9-r0`C01`K2$Y<*0we0D;
zi4VxDyp<<)zr!s$;oD@H!pEK%^u1r=F&Nz@0jqfxd8PZn6I0immPYQH8<a)!*1Kyf
zwy1K|X8tQaoue;?PQ=ht@JpoMF%#piU-@EulHNI^=WRZ8Agtz}q?CU#?P6;ew^D;-
zH;vqeXmb$wZ+xLdsm>}{BI;~k9S4_BPD|viyu_FakhbCC`opojKP=83JcDmu;E`QD
z38(+|(^{O*-w}(uz*ctSN8%N@TmG`KuRQ@czm)I=oJ-4bI@ad6$wubv9dDR^-^h=V
zvlFL;PHTE4I>s^tuQL0cTJKx_!>-M^y?haBU_bItnKRFC%;N5=JlOZQTD4iiIZhoG
z=g6luGc|IC>(b@AH*r)6vO}E6BV@>kYP9RNn#j%UEohT7VW0ZXLDOXXVv^V`aC9*9
zbJ)%;v-1tcBg-0FE^T6;Kkdj2`gk$QTqDKe+Xo9Q1umTXON3K^iP}FP=3Hj@)D>7c
zPv|^LhHnXdOYgb={In9z*0}EvY|&Np`xb6fUe=yfc8BrE?&hEe55fj#@QCr5%%RcJ
zs0!2KZM%sjz!?<vNLeVDsH|frd%1XAUU4e7a%KZ6eS0VKUf+hN82=S3?lYC~exNG!
zl6A0J2a#eGI3}CMmANf?g_-=p<X06S!#R?(Sme5nAXd+0C}*8gg~z@ua!6_V%Iy=s
zAq{m;`$`HZ^b&x|BkI>$+-I@&wP#0uAx3`SuD3S^;;&@3luv^4gBtiaq>D4mF%+G)
zTF;nEyS=($O+E5m)dE&l+hVxpa^G*$G!X6Vbo<z0%9lbQ9#i>EY*ES~JO96gF8U$<
zRrbt}^@9^ClRKi1=px~!^E<m(Q;PD_dRKwYykR@4Ygf?{G&`<kC&OA!o8BW!dviN8
z0)5tw7%6$Ag`IilKc>%yJ|aW-d`W(8gA+9s=QOqiF@WOd-O3LUE;;alecs`w6JR&q
zp{4S5rya0_I0%fa{>ROn?6K;8%s&H+(>p;9;aY+mKFB9NEc%~pwj_ZeRYEgnN6Hs}
zA@MeX3oL}N?ZhtIy-bmZ#;*;-6`pzp&8N=~u%RWpvv;&ivZUr~d`O`!Irx)nVo&Mh
zy15k5vj=aBWk>46)P}%czs&rbzkaS{06VOA5iR20*&bxM*9B+2$0493s`kI;MA;|X
zV0S}MLeA=u5Hf|n?6;r%*vK%~we&YW<1a;b;<w>rYqfo=d4+$M)*{BTa`*#Qd@IBJ
z9oR?*%(2T*3PyO^UUNV?^)XBm7;8VonX^uxpV{5LpwW!-J1Eg3|I{@s0e?+p+V4#E
zpNCn;4sBfYgki)$jd-k_Ec;YnyY@=9a(@|oTvum$*t&S@4w11|T#&limd2eE*e%cP
zI(lDKm-$A-K69gFGVrMY+N3I(Cb}vM$?mu@Zlt(r=#DclaiJ06$6tM5Ps2&~md~4g
zT74<zO#?5E8sHL3Rd*<j96X%HiTv6gHLZROh5j#TYDq!&J-$h5bLRh))JmtwgRu4b
z;*|?$O@9~Go<s27O8j@Jv?}~*EA!W0!x<l4_>h73o~jL7`}T1kjeLDP!1qNU&Q56P
zvB|s5?4~eHvTQ<n=NWz6F+W*{^-H)@3;*P%1^c_+^AAfo@`q{vf7|0l)NL91e{het
zuc=Z6ZRqB5;_Jq^;*C+G+wo+k3(aDqFX8)9)>W**-LTBl{u4#O>f!9{O6@>XrhxP%
z>!Bz--OawksMRpvwAOte@JL++jSb#?tMF;9TUWi>lk*3AAwbQRR1O`xudp%e9#o1k
z1xyLl+O5Ah5G{^hz6PKfn8tcbWU%X7i@_=x-5h1N>?yN6;Jcb__#7dqNOPufXv)Za
zK}p?K3fsf%3fXqLU0a3Ka;?Vh#2nXhp0whsO4J-Z4;_A<A^*xs6)>1KG{9ggoN_DK
znB&0ZTv2^qLvQ2_)b)Gw%>4R(Ht(nXe50OPy~K&pH1C+|HLEZX&cW<ZMYONAeDA!`
zpSJ%qWDlP48?<G;2L0~FG^3H-1X&?DE=~ytQolqap|VT%=$drk5Wx-B#{k~LZDv7i
zusATL``6w#R{FqSV&0LLb)aWGh%U|-rew4s7G$G^3xK8P>iRNO%Bu9ZEz2Oth{&1_
z=sO+s@+D-`S8)hgGpo=VEl(^9u(~5<m6Yddk1(U*PMh$P0xQ-OzlgTB4(7afO(R6N
z>$w&>+#{h5?-Wscoz)h0b$rIwpe;A@uk-W2#VQ4R@(QyVf)j?I2&puz{ydOaeOeNj
z?bquqd2N;{9(?1YH?p%VvD<iIijbEjB>kv+RGIV&m!q8zM0*=!z!~AC1J1(zUJ(;H
zugIg|J-A|Bf3`Qz!esQ)E`zB0c3X8t$AA*)X@UIP9Cq&Y2p)HVfpd+Kq}N~&Jb_Fs
z^#|KFS19_OXXKqs?y`tKLx{f!iluWB!>m)8y_CU(s`J}8yl(=e*PCoI-OVsJ`!A#6
z%Zaa&6)f5wGzG<-9LC7#hNUgONK$^_Eyag4cN>j{2H#py&{!Kz4yHxnJ(wQJ<5H&i
zNi3^`-R~Uj!psaiLbXk7o2`nkBXRD#+}d{3S2(23q^zber`PrUj1N$wMB@g#nv&(^
zVcK2t8=@Ma1jUVUt6`jUPrq{ZL}JWv#aN;~7x8ha@x4a@!sK~T)c{ley3d+31^2d_
z<_E)oA0-i_D_seEPCBQP<(kLZ*pxSB1=r5Dbs;)CGn@T~6KN@Z4gi{*>cz)08mQ=r
zmw2t>v{L=<%TmD0V(m_3g(ewy<J*Jn`SpQW*>;6$mF!F`Dz7+MP<3C@hJs_so1#pw
z^xBNt)C6FpsSCW;n+H?q4SvpF%})$E9j;4Tz(CT_69X}>Q<)c!=b0A2GVmHQm9I;-
zFCe^=)skKU_#^?|Cri-`0_YPAoX3Gw%n6DOB`}8TevpVJ`->#9b4uZ2ng}o^%MW1M
zEDC$Vmu~ff`Y1QhGKeZTsvUjvbC)S>rvI$s=9&C=o|I=`4itCN+Ee$UVd%V=^|{~;
zvXS!I%xSx|OPKkBYtjn^%K_e<H+`n$q?QmF*e3rHy#2<2YWl0i;xO>)cFWZD%#f=0
z!J8(_(WXX!>32&Y<l7!u*_>A>*D~`9NUQ;*NU6i>4Yc&KQ20rSJr1kQ^gSN;-yD~O
z#@$CbJ_+@Ch3M$NLAXLLw&kzqU<WZCS%lp)#ndvGFnyAr+>L^>dsr!cip$Kf0j|k6
zRL@U;kc*U5hV$m*c=$qw-KtX@4=cJft3b4R-Ya0o_^sQ{1!UVfj0>Xv%=$_<j9IBc
zg!R0Rahae1!=K{23Mfm2Q{o&8=v`l{JBbbSqh5yH$8_rm9}!y?n`|@vdxJDyF1__H
z94s2PY=e@@cW~(Ua$pl5uWPVb&w@vBY?vpp)E}QO<Ni4*4GiNiqVNGMNtrxL4v)?X
z1<4%p7*5P})eI$DW;(R5);W@c^-K3>-@H(-HQ<-vJ*LR4wbYri3axdo67NXO6|$uo
zu<P0Ww&>wt_%KCD*5fW#o69ktsyb9Ac3yZ8Ia$VST^mp+*pr{L!njjUx57N`0pv%S
zm}7GH7qfm^XyMZQv5r+0O9E%o-TEBXVmc^5<nw<IGc0zT37>Ac`_~=mp3@!wKRClw
z0raKb)|b7n?KGgnRheg;)AeQN3(;DHhSUR7eQhfPC0#C6g<fH{gH_2L(~6d<|H`Ik
zgq%_|1%+nn%>_ZWn(_0f;j*)7InsT#ThIhCWc8qNAI<ub+fe!u6h8PunzZfLg2}#2
zTV9g<NU%_fQghAPJIy@n(m1BmY+&C{F{&}*Pi^W#w<5d8Pv$80$4pKFT*l53E&3|T
z5!*kHB$OjXs(ca*AU*w-y3CXsdWXfMhmZP5Th?wgyKY`2Aj6({avW=hQ`fUJDk67^
z_7z+t=UGHXt5Os3*Kv%enqmG-bJ^oss2+T>^5F6ljj@J~gU5z_tH0oBMmGqrY@H;Z
ztkL<(Q_7bMESgi%rG`;mO0FV3S6M$f6s!dm@}(-hu^_u`3z(ibWtL}Zxz7d<N%s{e
zu2z<TfNjctaBrpLJ4cOUIdS!q?R}l)cNbsAvwFc8IJZaCTmst2V^(N&5#vrMVdopw
zCQVh^CGS|WClp#l%Hw<PQCOyMLSXR#;w#y!GklG6CvR8EjvtO5FBOtgGxXKvVV=pQ
ztDD=$G2800p&eJvnF!?Y>)brE+`Ns&!59_M35>bZ!7sO88}x6HfxxUX#g%k>EHc$#
z&|mx}(OSga?IOScNZ)RkL>Qw-M^IW{q;PI_Rw$`62U8E^-7}n|o{{X!8Bq1j6s&Gb
z2{z3&?Ti~__7}Uxbd)P)0lnWGzfxlQTpggMp?K-!Wo!UFJDt(K+)<bkC?P&q<4rSU
z24CcDAG6N#9ZN6%nv+g=$NfOxd!W%K?q|*0g<r7R-V1W{S!w$!9bsZc>DY_5SA!V$
zfx~EY>0p_;B7vS(=M&q#yTC6e+6oi=Bpbi<$wei(z<$qC;jQPx>wg`ROZ>Lyll)ml
z6FUO899-D1*1jH^57qLXcq$h_GX`{|S=J3_*C(Ht&Z3{p2?5Gl^w+`U_>qbs=5)7G
zri$OJozQB?KS=i)(}cY!p;8apYeQ_(a!O8^{uKQs$uYshm~QzfN>$l@^=aM#&BUxV
z3iE2cmOpE|Kd;=V{Mn9B^I|<WPkD=(T9fB@aKyB<gE_rI$~W1m8miQ>xM$Z6M#hMg
z`?0aj2X8z*vX_OCK!tE0+aJ46eIb<%YZDF}{7|C=t!e>5iE11CMPgs4f$mJJg#@}0
z(5w^1nFdh=9}|NCSX*EF81LSDB<a1eG;5Si5G@dHKc1!ATnZx=CBI0lGKpEA6?n45
zstwQ_A%(2!=BAze;S+ROG2h%ouSX!j&OFv=idwCxb>ef@!<AbtEUQ|#Omi;-3&Mob
z)}MFu{bj_Xl0rmwSlNjz&!%)W11`TSeLH(%jJRHy$kKYPiNxL<vNmC~#dVZx9RgA{
zBj(%lYQa5P3D5*pSE1fQ*EY)oye7<`l~wd2nKj(gAaY>BE8b2-?tGuqa?(j+__dH<
z{A}|qa@{F_4y;Mcilt)B3T>`{GtO4U!)6Cxo-i#DL-O|@w&)z+C-o3wbcpqn!O3SG
zNt16w*0P$L9+yM~K?i+HZ}b|1#_Wevy@jJ?Ur|v1GPyun7if_~?nnPg{p~&-A9%fD
z`v>lr7*Vb4Db#FRO~Ncm{?#jg>Qf=bwP%rw4fV4d=irQY`RK`p+jDITX%atPJn=W)
zV?i3zR5yDBDne5rk%CdxjgYRnutzi0kX6fkg-sc@vc=sTUBo7yNkxCdkQ;I8lVuOY
z-R<gcn`fa-NP>z`E_`W^Pp$IXOM4U){RWae%=t|`m+q80npWKqqYcH6mEG?fdwjEy
z9G77x)Tb)t36RacihPUQQmVXZ{<J*;BikM%2TI!UTAdq~zNV<rcPC<o3K@w?*W7gM
zzhQoCZXckd9TkL>)!EZy!TN6|aJW54fr5LX8U4oA0%~2>V<8zg5MCx@Vx@ky95Pfd
zyqN0R7^o4u{G9+?QFM&zo^sLj8#%RLGDLV)IkPL}n%=`vFwY<c!8>l)QOuc3PpNCG
z-+@0ZW7SgqvOJ4I)NK4oW`3x{_^iHV<wqt(Dbo9T1s$U-DJkK=9!*Mv&5aznh*9fs
z+r}h%v1zW04{r8fEvEQ)gR@-P>6v56KReo_5ONg!GMzUfKu3(*bi0QOIN+2X`wxNe
z$elr3-ekRXN-p;tw(&x6?v0<cE&z27`S<fXUTjtpOApht_o7$}2fNv;hZPzXpSzgl
z?9mB;z@CD$=aUBjR;{=~))u{KGQQJxC^sspdQcL$t-%IrVmU^ujOJn+YnhZ(ZoVEw
z;WNuOzG(C$+5PiiZ~0L1Heydc0Gd~Z*TyA7R`YL!44#>P+ZaikpQ>uIXk!dJ)h6wJ
zC%zPPHu4~$5|WGP7*sl_;_O)h_5hh!Maba1*8G~al1V^+R(w8|nxJh%Orj+byxx@l
zT6^|DY5iBR?Tknz*MWIT6Su7BEzUmmNSdvMeZFTW6xviU(05W?+DS9e6KE|n(z=vy
zuB^)Rrn?CD<{F)sB;>fgD`34WhedTXDUF`;+ocSE$?m!pn>K`Pel|m>pNnoN)XjJd
zA$6$BLwSl4DP=A%^MYYBIZFM5B}R_w=oxDiM0K=!t1s<RJfP(G%FOewou!A_Ob#~l
zfY{SJ6br=q^f_PT)$Q=X`cu7xRz9i%<nv~bae>Tkm8Z;{_o{cH2rG_C;vm-(!i#*s
z+I!mm=$zm^znGC8jH+Y4aXk8y*a2IIutQJNrh4;o<EWM?^FAd^PPzS)qk`_*;|8^-
zY5JUUEo)`Fz$a2;HLhN9sY~Pw$(BQt(>wFbGF`3_$DCVA##WXI3WYYcm-vJd&dmFO
zNlX03xS%)7L>nm@l8Ph{xPvKS6;~DWEGpVSQjY<mW-GUFlmOI-dvBgQr%69)zOxy{
zQMk(T!@itJX>KO<Zju9()<-~TDfr-H>}D#x9&q-$tVJaLLt)*R#-{H{(igAyd?rhj
zGPk;V#@+vq2}-^T7nB}<dP!lFy&bV6=S*}8dG!H+a*z>7Bjy}<4tg)z;`&D#FACrA
zH=ADGh)DVW5sst<H#G?pJ-lyC%4iX*?saH_rLoC$A`M#9U6!?4*2S|utfl`35#X96
zo^5!K&aRopyIb@c7Qpr+Pv^rUY)FH>2hViBvVHFa)w6w@LGsC7Lz4rOPh_+R*+_K{
z@4<F_2<IN$SI&U{kmeg+5I^&KMVy+N0fN_Jz<SPHPCBT7u-{-(U2W3DWah&rP|rBL
zDzjjnP2B(nn*!<3!x*|ip<<b#eeLRU^V!jXjnjoNC2RYF%NT)5@q@vnt+lW#IVez2
z^W3&MC4Qe!*W&baqE%^7<`khIx8CMcGmqCslqlyu$wfYrPu_m!E<c%oM==EZP)JJf
z_%-=@dxtH(E;~|T>;MgdNQDae-YG<rIukt`w7uri=b@u2unwIyy^Sr7!#cu1cdcDx
zb#zKGm>nSi^dO|QhF2U*SI{KH&PQ;91BCZ*t&z9O<RM7Gf&ruHDIr=t0YO)i<a#l+
zJ)=W@zU64U+9c_^^mu6>sh7wGjOrz@RZ^hF8k%L?*vf}>30F&j#cd>kX7|gK4>Y)t
zq>;Ejvv_+H7UoW*>HJeu;qPS<w#Lnp!TqL`C+KgLdE4y*YI~q*LDe^!ae>2p-@5pM
zECQU|#~-MOo%~4?eWba5qsu|vpan;~`}(5b3?lCKxnkB35a1_%vIpT5-DCdU4VcV3
zf3!9H#C0Hg+t<W~tmE1{xFl5ea4FsA6LDHkeFK_!+7C6%Jrc+T!-Qp-E8|BV8GqgO
z%c>#(>6ik6GkOh@!S8oK1Bc_WKa@Ch_zRNGMb{gJ>6Z~)N_GQ1p#0gdo*P~ZP@E_E
zry}s!;n=ZDa|gJt3IbA36i5q$fDwRvm8bNkq0N7o-6WG`e&M^jTlgYV=KG}M*g<e0
zd&mS)nf$7H`DBoDV|JZO+umj*p~3B^ju%gAp)T3#ZG8jvL9_e3SJNGNW4w$FcvgM&
z7eZ!lw3=_IH*mz&TTM>7CuP2OA|&BQLPFQ)g;G!553~tO)Jc@Lr&(ihZlw|*q!RL9
zbhW;~Bvzq(K#J!tX&`<!ROo+me&aE@nz|`7oO2}glvj&Sn3NU68`RW)`<Y|^1yar(
z|G<s-^5Pc_)tvW!trIm7r*$d%FM0T-=7#E99Kna}QPO{=4a}+>uVnnCo%n)`Byc~Z
z)#QNjjlwC-Rjyl?vsdYN{>~eS!%<V(T+8TZa)Q`4RMesIJq`+QjX<FF*7yTHS0L5^
z{ea-y3CJWqC3hvH)V1hblQnSky;BL4CbKFS!v)XkzCaP@|IXxQEBl8ThX{CgcOP3)
zfnU(hIU@SUT*dA{6ZZDM6$VypbQ1n;SwPvgmF6cRG`<x;d48|**cjWSvS$#KwQXPi
zd%B4g&YM?%(;0B~$3fIXFo<&UOL~rs&o~M9OL@Ni83(fbJA0?`2YP3c)OWJnrpSV_
zOZ;e;D>8inBi81$E$4BZ;qsSvFM@DU)vJCs`Qx|{!o1a`t-R|9<wPBODsBW<rHOJL
z*_%U@wX9RhCsrF=eK_%|h;{kJuk@<f(6%VvC-`Bn*q5@-mksK@9#WoA$8|N~F7q<C
zQ`VXHD62oc`|0GV|DfGB5C6e7apPC6#|}!{O>`#A+AZ&ZK@DG*f6ih-;Jk~jpm@WW
zr=j^PV6Z&bS#oN7tI3JMlS-e=ZO-0Ih70`SfO%V=t8*N8*gZq>s#DosWi?d_opQ2H
zAT!k%?{Y=(_516${rdOcuGOv?C^-vmZ~+CYt-4^Aw>aj#KGDEbf9r1ebPxwo@2?Ln
zu{|w7H6JD(Xf0PLH08(KbQ!MH)oWuNs>WSU2YQcG&UH=4&qer6iSNGO9#XtFypuPA
zCEp(FzbSW|Qz}aGNF18URQTjN+<D{r-|~0=qEZka#6S|kis}D=A^v_x_AHnexwI=C
zJc;p|Ozgf@B|a9y&->jnaUH>X@PEeNAxjC|X6$Ga_HQ{Jewz~i7|nd*HXMCX)DQ&u
z+Afe{pVk<-D&FlA@Z$MOwp#)+Mme5V2p%r9v`uc!iF;HQnd}N7@nkt~ls(?Zm)e#*
z5NMq5r2m-3y?%%(--1C4y%4#v8nks<ug~)nf<783vZb7VLVovY)_DZHZh;tf`7NQd
z8q^9>*Aj+ZQ9LN2sX9sun^4j2^IaE+`DQhw<KzUIHSrPaivG65*TXs@ad?es){eVV
z%I6A3L!f#gBZ1+Kf3KR@1iGXTeRDVc8)@M3mY;wBV1)14v=PAi???lI?ckpFpW0{e
zubt`tYg_j>6yN`AzdYLD3yyR2J5}3gNmU(_YMVU3`U2nI49V@bE8kdH4B??a)E@td
zw|okq)HZi*Lxr6D2bVDao>k#r#iY6hFU|l4;l-zl0v_Xti|@5)A|YLebHuLMZ9*HD
z(uBkyFLv|dEfy*g4Kl6&;O_^&^Y=D)ZgZXwYkmJxb1hupI%r4iDl^vTd6h^X7JKFV
zg8uUdXLf~OmZru&GUVxVO6d9fVy&nNiHj;S-yW(@>pMUV;@8&?u~YY{z02?Hu%Blu
zrhsW|qT#lOE8iq=J-RQ|&-A3$h9LJ>fKExQXa6r7UG~gGSi9!t1KnN)AlkhyNDmKQ
zJ%y77HDWm%UbhXK2G}Ni#THt+gfSCs+l$*zX}l8-AyZMEU!2#Rw`n*kvpd>AG?1~P
z-c76XW3O_Bf4K<gjM3v-)1|jct_v{;ML@{)i4a>`WfOZ}-)v|@msP_Taa<?_^l#N0
zH;va?G|WfH`9w5Rr2M9(4QUok6<7@fIVbl*!|{=@y1kXGL9uG{9Nrw0<>j}sx!LO$
z811)D{O6H@HXF*{aworB<x!sy`FWbZ=C9gh4fmO2>&8?6PL*{=;=e7Q?2-8O99|>w
z%{qrt?@q*G>_VZB%4hpCh+dp(+raTM!iJ*{!JZ`L$Cn18SDO&{N*{zH`T4VqdAvpr
zs6a%<&8@Cd(MgPf9MA+h33{<~b^}xFqiw72j~@vxF?{H{e%O$*3v^h&*i+*dACbBd
z0^u`U=vVoGn=IVx_jsd_%n`|DF*l#19b-~p816pFy^bi|5#ys4_0hy`;1B+#t^1MJ
zSG(qK=4Htx3O@e-R*GRb=kYQ~G1O`~$o|(-4F2@YsK|F=JPWfMlH%{C-!pHgJ6gNS
z0*8&_4NeJ$ut-ygnJTq>&<9jKE%&6Fq6q*wGkKS=*T7q(YJE2cXfHNIr)1+?W3j@O
z$z#r<DsLpEpL7q<2J=C2BQ|L6iPA5j!TIKSmYMf$D*_4!PuOSNAtOLN<CkfYR8N24
z^w6X-6YRqWJU)MG%48ACuj=iex1O!fi3(0d190@C8=$Rz`*C5H(D9tXz4V;txX(4^
zi-y-`7Vo!kTln3%W8{ur9;_T-sKt*4)_IzG@1K5Ab?;+=)TJY(zCsd+JKIwCDacMp
zucw@@tSGhJ@_{*Nl-+tp2I(qSr%mC0PqO@M{N*$`B>e{@XLd;ItPKTm*UMh}1GXu?
z#xs^a+!0n|H$&GNIOZ^Dv_+fOKBA_a-{RbJmiE?N^XFftD`cs&OfRfno?V7b{&U&%
z{-*C^_MctgD?IS(n;Cqb=7m-rpi;KCBr7;I1hrqrKD(gcWDe%0-hSG@WMe)4j*UHF
zvJx~?gNC{+fDK~Cqn9UCH2{)&;m;I@4Kz99lp`f1!s66X=r7ky?0%Lo61wxdhkEEQ
z4RyzjwyhzFJHBr8TK@|T_4u`&JN_qqPJtx+ux9B}{25#r`<)+x`#N`Af{0S@r1y5l
zj<3WGEBJSTcKBu@)-jR^PUYOq)~Bs9fr{pl$M89DI5KG45agAHTzyVnt#vu|)-E<f
zeI_-ex6EfxHBNuMQa_&WP&&mvXuu0M?0r|BX&b`48Dltyh2$Kx4H+}jNm|I$WKZel
zC<aa@D@}Fq4-@Ry6wdHb34vCdxWs_hwZ_By4d|x!8y0d&wW2sb8-V|?oGsshf&RXn
zEl&rrm#@e7LH7&Yltdja>!{oDQ_<iE*)(gf>o1s3e?uPipPX+{^@#ehEc@ScM;lGq
z<EJgYfk)%o`!{W{Ud+hl$M+gFd7Xa##){wVsl0yPT5!4Hc7#Ec|HP*w9oDk;Yy?}s
zzChQcRt;vFV=k4WoM1_Q0b{--9BL4kh1@AJ)LKa}*1Xc!hS%#^CRJ0bEbRJ*(DgpQ
z!>}w_=QKZ|kb6Jx^QXPEn0i#%rT|^>=S*20Q{L!Srq0&o2SAB=F#j^p&kWI`6lZF`
z#K=fGF=auq#D82<mxw~^!-B|JUP;q$SLNjzUH)cOEs%zc>C+04J2X>3yy~1v@@SBK
zkf`0u?Y%ut*rSb~-JvmUr^i+LMl5ps`{Qj$YXMi2Xcbjg+_>yl=9b%`Ows4^G9|Mq
zm38G_vg`QQcuvCKmvlF3p8r>&mXke!;r#Lk{M=kezFpXq2L@3dxpXWt6JNLb>#;3?
z-EmUE^B97{%)@5J2W9(wNA}J<+v@U-8s*1@))-jzdObElZ(w?wlV_Y;(*2xusA2qI
z_Un@CtxC=QD%MB6gi*lzY}Qm>Sgv7H^@QYjJ{VhPUvh!sKk42)({?Cuf)Qa_=)O-Q
zW$86!b<LzqK!8|&oDn$|utwIjU=Tpd>jW@JPgZ}3f>9=nbjZ`k69Ibcxsk*ZRveN?
zdsTQo+Nfhf3`C;V!WZhc<Ro~!yMu=%tIG#^mh2|1#E&p|5>MYYo0apXNo0L>I)W`1
zy|MWPZfRqM52+dEdW~lqxD;0J^*nRmz5TMj=xI==RQgvRQ`RJ6Amg5ED}OU%QlLym
zowoqlt+=>UI~Efu(a9M0liF^c-47RCa`~0w;njxFUQQ8WJ>Mg%FFZ@|Y~5bLN}TPJ
z+Q8L@j*92^QdClDN55!Gc5<s|z+-I*u7E<-EUNim<h^B7TwB*Qhy_T103o;rg1b9}
zU`YrN+}%C6dvFWx65QS0-JQZI+}$bq-22?z=RW;*fBp5_WArzA^!~xAIs<AP>g==k
znrqIvR^<U-2|?;%>ct$jPRk^>RT{aG+pk*G=$*y{gA58+)=&+=9)ed^_e@^%X%I|w
zZGHkkfwR!fhfu%Y3dj#aGo=a=bEr5O<U_LT_Z5BBYfUG1YwghZKc6l`8cZkaE8x3t
zl>C6^xbzggaUVVQ8$RFPFTQ=Mcd1#q`<|QTeD>lBXjh%7T4Qs)Kl+M8rK)uZ=xluj
z5hpfTljPjL1DgG!7Acx;Neh|`s#zHi&06eF7DQLsJK5kj;Z6mlyJh~_yB5@TvgL5-
zjVCIy8`rjy4YcN-XPNZIV>i$DTosUI3{U@Ar4H2VwdX2Ih1}JtnF~T?=*RF{8tMel
z8|iH8Fg;Ju3{7&LeABPmctFh>fnpQN(0yeClUMtvIVomy*!5p!(!al<Irhw=d--SK
z+Am|<q4X}`mYYk-L6{N=={oPxYooM+7(XQY2l~4Fo4b}n7YbH~{mVM`n*(Q1RHV+_
zf#ZTfa70K|VhzQ(>zJ@!?D^A;gS%Gl(nVs);_i@D>uf+e1+9HU)0?FRji$YOZ`hd}
zJxVoF(CJ~HKH@6SqInUh$bHC)&*X9FjW9#QGFiLD;jqe#%lOrKW>n~L_bJPQqf)06
zDcudyK;&|6y&V5N?_Sd;$YM;w@&U?AZsbf){BU)8I&)Ysu_*z^@w*RHxi1tGw06es
zUnt2dnizV`hxr0(E?<+Mk_iclt0q<qD&cQ&5me02zt!3-Kvj6tzbo{<g~M$J+R_mH
z@$>iaDo2NcKYc!2eyOZ5141}$%S0rlAq{+m7(^D#74yqb3{TW=CiXmTA>IbRdbl1X
zNjO(=MJ>{W@C!Op4PD7waoGuZ5hP6Ow2v<^g+xRRzTaP~8l~U0bCb|?K0Btna~qYk
zjA^>^@JF0DuZoKNW5mM2w*TWT@bdqYXGCg}UtQV9Iz08FY;JD0FONuC6eLVar}`;H
z`|tCT{vMgU2b#B>gUu33(@KttnjQiklAyp_!h!zb5g`;_-dlFdV4w+Xmg|8-d6|lw
z#>H{Hta4yakmuUFXQ*3_^Pd*3(%I`^;?}MNY)vr)Ex`qcrl9g}NGLd=$$|Ykh0DJ)
zla#Gk4O@DJ_{WaxrB9YSy}jh(ll?78ZrLr0mN>GX1ffw)&Ecz3tc_@5J?l0tTE4lG
zJdmn~0|9?1#)1(VXiI2*F5f%TZ0_`GQk1IE1%()r^{mmR6o^Hy;eS79yRZ`(FoUIc
z&Mn}CD9ET1JX~yk=f1O=%dY8^%ZSJJU1p9&Y4+#~IQU$nna=~I(P2N(a7EM9tjGGI
zm;H{DoLm$_FYWE^ea^`06%_dQu$(vsdx8PRtUI@*0Ot*!zbIMn`h%nR+JsklLaXje
zfm=%~n{$RjvsFSrrI4RL8)1zYHNUArQ6h-n)^mO&3;>x99od7oC5KnbvB=sY#QL`B
z(O3`Nol7-QUv^ar)@dL5G_d^CTp;AN#an!Rq%_)Rf45TVVqZU36w%9o@=e28(vEXW
zqwz<zUf)Ec0a8tm`uXVF;gkn{pvr$(P?p%5ua4C_#*;Uhh8`hR+}!)B+k=f7CV|AU
zhhLY&QZ5=yC1$#;&{-mbaWxv-rJKG=DlDF$ELflH_N^GOI20aXO1$3i4?1h{t*5K`
zY+(PWBEc*_xB7y0@VW1ud{4it<-DwZ(MgSil)^DH($Vi{LjQR9&h~a}!*6#bm(Z}8
znE<$)fFfHBHV5k-!A8N*M61>iTE7<w&2|;TbS0nMmiSM%GTs@l)CYlVTouX`Q6lUQ
zLlcGl!98gagSPKSXR^FgnfCAE4a82@<#6{w3IT{vZJ>vjB0u=3SxJMAbF0CWYs!o0
zVN3K%BO?R+0Xekbi6U{d&If@o|I*Ua>+|lPflBMU-;hGUao~IVkqCU`SbJU?et53|
zFGR@e&XtNYuBen^y0btY7DQq2;0`vnqmSDB+mZP!gnat#U?ityW|d_02<AY%guvU9
z-ksU~+vNw{#%2!YK>6e^lJJouzGGY44xR$&e+`)zq=ShJ3rSQ}99p{*L%MsKbuL$D
zhQ?a&iTQtQb_M7sBf>?5riN+Nna7;e*f4IbKT}9Yk%yreq>OY1td4c+>8-{O)dNpW
zfvwSuCW_3cbN}$bF8?-vL%6b*Ic4C}Blsf1npEvB<)k(C0qudu<^HYa-M#Id(gEn|
zK)JykUlX#=3KtRFJ%u6g@$!WBr&czqCVse<zM$F7!=q=f&Q-YJmNT_f);-F2wzo5`
zwUM~^bZwo|stSd`oSmmc9r*?b<su`pp92eb0R(p1o|*`hywxy7z<bk29xhFgcio)I
zX9hXhAoXIz67JCuw-!Jti@#PiE<35llqf%1^Y{^tU$8hkxf5c>2kBGhI~zcBZr-Tx
z0hkvp>$1QxzJg*iCj#OgF?@s65OCVX!<Pld(Eu(-iCRmsiJ78(Jdq?L^SQK^Q>&TE
zdD%^b*MuFhKD165az^q+ijo#D_PMy<?LruCALgxb57`xFkE%2Ec7_a|e|6z-?zK6Q
zox6*K6NO-!&1QabFBRR}K?hT;sarC%rs9W0f(1p7{gCP%j_?#qG$`jhpO$Y<uLFqJ
z14P?M+A=;^DlITUeRZLJ8Q2LW@}r>;r4$jL4eAWMqcHvz<SKVP3zy-D`r}G|^awOE
zT%H{~G=`1os%ZDuikaDTA}b^yI~ks7dx6C=u9gxf$v06LgzW%v7qO^FMLcb}I+9N;
zp&k4ZlJl#wY`rQEd@?*`lX_XTaC^B!JU+XKa6u|QXs=5BkWzW5w5i$nWBj3sbUPJw
zyjn;&bnlrZxA_|Akv0>#i1(&r)k=}E>u_d>nTbmz&M572ux%5k8}fBX`MJ^nV*|3}
zg9@3@I<6C6gc??^cpD%MO6#G8sp+e#IxVSOg-YKZWOgdz-;Rp44!yPHNMidgdbxNq
z0Oqo1K$wbq$}Rn64Qvm?;acI(^v{^jH@o0-E&=>o#`nbBfkA>}a|XI0ZRt<VAK*&@
z1eZ|-TLt0A1m<C7B(QW=gTOYalV5o1QM(MEq|**|>sI6EKB_lKWA$zn+IaLNAP8aw
zOAYd0fFH89YAQBQ3!(?P(<!vZ+-$i#+^pD$%xADp#-0?@Y=w;&Qu-(b-B7h|dT%Xn
z5#7!=o(Hs_m)MIo8_<MWobhM1!7Ca#SC3GSEaw=_&*q-y^Qk^RmP4U_Y98MqaXIr~
z9D!;T)rJZAY~V^67>w6+A*nmyBfrcdQLa>zG;+n+Bjlq6Pbll6jfrRCv4J;}{Juop
z`!z3>%Wtu9H;<maONRy%ypDIdVp{Y29*QG?e3g<~VJ-1y17ntqZj;$fz~QaG81hF$
zMXb0|Wk38uR#{;FsBak$q2kl|FO)C4trxV$B;At2nS82aPL_)a!^G|K&j}4<4V1jL
ziVHFm5O7b_lXN!Cs_dhVj<q+Zy(%V@8^0CN9)g40yVgl5p^;eKzyI3DXxyh9_hyRw
zlWH=er<Kx3!*Z0@d;GB@`sl=l!Fpjz5~83$WcqEKE$*3{#MnfRy*UkGHNjPQa!uGH
zkLr*;etnRYOX}DAkzPZKhc`j4@=MaaIn!ZdzxMboljt=jSxI6lR|i=s(h-pO+#8F^
ze(!Yo?@6_jw3MOB{4K?BEpiDCkJi^WNLhJmI>gn~sp-0<lV{&Gi!(N#-A+~NS1SAa
zU-#${HuWFMpsx)L^CLXqIXLa<NU9iAAn#)YOKXLDNu=_8&sRaZGUe?UEp1FWQEJB8
zN{}SvbA~yPtp#VD#*gRe8L6Z#tS(|>z$43sU*UPICKi_#Ote_=h92HTA%72cZ=EjU
z+@G`V^?Rh<$LqmRsT}j*fo~Ci#uqkp3)4J;W#0CS-%_SWPb?gYuFEuPf(qTe$+S%0
zXhz<D`q3EIJ0V9|p(FjOx8=5wj*&h*t3-*_nSc~YDLJS`ke~2jGD7cB!q@H~h~&Vi
zOe7=Gm8?O^B=9Z-yI9MYveB*wZ41x2sbPq@73=(MZtHbz%8pWsYhTiJzDgGSJ~y`t
z-^w5H$i?=R@ys+n@ujN}QPHh;$56y&hgk$aHSCEB{6#VkFPC<<%}8}0+BArGjBlQh
zJDy=<|Eh?pS@B0!V%~V2nWM8C!ytQOn}L}K3XxAAOjCaP$80wQ0s&Iryix{~X)IgL
z($x==TST=*mYSu_NeNx|6yNvG4QfQoiWhOuug!xUHJ`Cn>rSJ|v(uef-ae(f!c#Zh
zkQ{Zt<l>t4vDGlTbC#+hl#zC(r(p{`+;AvS%bFABAOCR2fVGI~d0~Hf@L-pd;+PD*
zMk5O6@eyqgJ1fpfN^DZumm~uDlT<sYulD4qA8CRT&ly-4t(pVpvo0}h9~8K+2%6#I
ziSazyi^LadX0)L9Nf-A`zQYQsg|mV4@N%zlFJ(M6qU~HUnNRn+IPyajvqn6+#%qzg
z9eP-__u&IA2p=00<Gougs<*OY&EEJN2dbK^<A{FeB$ZsvD{kWKBx$Ge$?|{FO#~@L
zlba6hEPjCV3~7TO<gZ4<$vX%U%C;E`pL$^}$4q7i^O$wDNc5Q~JlwR50FWynKgK>N
z5X040wn&Pcy1wR{0b}2&$^Q@tOd;e%#VL7y6orkwq69&ZW0tIraI4M<Km3ktFh|c0
zzoziT`<Bu#;=D-cF++Eg<c$t$ex$7*%VH)l<JP_pCjZ3mAP<lB;sK9+Q%miL%LQ&^
ziC>?h;vIVZTkoz^Pht+57e_LyJybvGG?f?yUR#R5Det^~{${unj_fHDM+V{WXh1Gh
zBV|d9NZ|<zShQzKqEt!=X_S)M=MA$6Ky5Gj#p{OeoKKHOdJ9q@3ZTGn9Xn&=ey-R9
ziuBETMf>{Rk2>ITtFY|eJLNru^-^u$+E>>R%-6o>WRx}}xp{qP{+0x*4^*RopGbXo
zgDZJm_f4(g`bu)td)*#A{axv5r{qiJ$Yx9x?9riOZS>p1&<;i#eCB7%{S|k_Q!AvV
zS3KDE8b(IAo9xrM21r~qV`eVBpMlu3?=|$i<0%>tbW^aVh|ZSP-<ZXm^PX#V<TcXB
z_(p{IzsN_S5P@QJfyyMkT=4!Z08E=Nr1gbJukJgEgZj~?#Fghg`yhim$%Y-h6fy6r
zY6(<E2JJ=X<<a?QEwsPMLAX7%%NtW^eOw&Nz8PdVTBbz&tkAQEwzifQL59oZ$Sp+a
zv_Muhq8GI@cN7UzJRxQsY#=tA$MzyIa69V@ZJQ43E6U@3W`>8Jg8C7`-Ui=eVO7*`
z{1owOsS}=Tk|bn>-n<_2NW*hYkg;TI!bB6OcZ5q-x(Z@7JmU5Gy&Qg#gu4@2Q;5;#
zNQqbYnG;qu+JEhnNvglS-I?V9J6$Mq&R6Hpu!X%ATDfdC)f#nCi^m{rBo&F<!;Q^2
zSUfhSNrap(7It<u+2iE$D2{f~6YT6QLAJB;V$11J$H<7N2lD|<C2vD{(3i{cDs{hq
z>}aBvzqgqQ&GS&IW7hX!nmshgW>M)C5}hGx(wn|_gQ9|W1D~ocI2?~?G$?A7rQwWF
zbaU!N)XRK2N#*4rj<nT%G%!uMBFX(!g0Xsh2-WP;g5v;60*gL6??S;#KQVSvgh$!J
zB##DtjScA!CKRx#PPtK}+o&<F5*coz-5#=->6EspC~nlS2h93E4zRXYTB!%AY3te&
z=H}#8>Z-)_9~6re36)}Y%D7TtKzhdAMg0TZ0gMn%lrDisL{`1lt~;b&gCklbc(0-;
zIg{BcXV`!P7T6w^ZZ&f-5~HtItb*8uKfHF}Edl!X=!f)(@9gz-*eVRlWniXAbd&OM
zl{?U)g#Js)Fh8NYjmj8jhVa}++dyf#tCmVZE3J#QRgGxhOR^+n%jGMXxKrgCH8jCD
zKUJ3R?T5dJtiE!Nh;eJfjl<@|Pj6n;MZ@L&G-su}!3|a>)gGtB0>9}ex6*Rhk061Y
zdNYN7G4mS5Z0tkO(`*{ES}W}D`<^eq&&5SLUe}O9#(Ch=`o66EXxu|&G%;L(7t-Ak
zjmzakLzw!cnwc#-k-N{ulMxw$)QZO^GP-Em7>KNDQJ^a`>-eE;CE;N-AP}D)y@l7V
z^GEvjknB*cO^F)nou6pE$1+y}ec+wv@<CJo8u)1KaF<GOvAnwC9l}FWzCu-Q&srq4
zH35j*fj*T}W<wQjLo}|;FkIcfOYMEB(g>adRilT31vS34R?vqsM403^7Nm%)-8H{J
zy7-akbjO0sg5Q^RrJ0Ye9Lo>pWrpwF{rC{%xt-Zfe5A!Zygq|_`$e0vEaDCq9HAuf
zUE6a!_-lG96+Jxq2S$1tmM%;~Rw^*|%F9e5dWp85$F*jUiqSj3$(&XhwdaqR;%+A#
zH&;FQzM37IV-y=;)YYyTGbQGO2WKj(@)o-179VJBn#g`cKL))ktbw~92-=ZCUMf|)
zRpc+w*Cwm`$X;Qfv0cqpGD}FP(Wug~j4Nsi87I1%ywQ&BXuJDFGe%;X*w8tIiinF}
z#_O@Ho4{O1e?^Ct$ZW|Ia716uv12!=4;L07<Gd#dJ0n0i67gEU4X=0>zF@1l7B*~%
za!53}f&sJ5JyAbLhq19s4ss(er;F#mqs$$UTg(rzON+Om3m*j#hTl^B706e9fy3-p
zFY5F`IS8$!CN^JyhjqE?m^NtBoo-&(wbMefGhLBAnn4p%5C-u5Hzy$1YQDYgor|Jg
z!T6Lg9ET~Sc_b_C%=iT_<f|&PU}-<zOre2QM8G0KXRDZGN>fZ;t?FDs197;Kf$nOM
zo@t0b6)qi%EiX;qw<Ou#ToI1T`(<A1&1&a@*(z+ter`L_p9^p58m}e>r|>-w7Yr0B
zRAV|grfWpaQr<31I6I5&e5JFGwcS2cR?}=^7<3{1!0^QcztQE0r&Jm7l}59TsFJ1{
zlg8N84B_#Wdb#DCR2FkERFTe}xtV%O>cngl?rg3(XA-MwN}C13&CrJhcc4s6NiDbM
zUDWUw?Cy#X;@6j#s6Q9Rb<?y9Q$&KmK;_&)XZIdbO*I-<^=voCqZLmmLeQPsQ{<O}
zIFJ0JZ}^_a^9(1S>6tyPCbb4CS0@QN4VFj8MYj?;Q09*X?Qs13L{G0wa%&Ts+*F($
zP+HTM@i;`rpEQ2DLYh<hS}Jv*>S<mgi)9Oy%jnDE842P=+g9|(=`|>G?;N@PSR@#q
zfqQ?I)LDgJe)A(Kl6ohLeKf7wkK$lfHPHwKmx+yRTLu$)Y0>~;=)6nJ7S#+3y}fxR
zsw*cmZmU+lS0#old~RgH92WOGn@s19TFz*QITvN=FLRaBUJ_w0gUZkF<uAFh`0EgS
z(ckd)Uwf4fTpPUGnK;G@C1EziMTUQDsj<b&(-jN4Dc@t&9?S+d3dP_PsI$k_J!H4v
zaL`o&z}TlcZIIiGQ)uKThgTdYi}bKfi92Hh?df`wu1odS7}9ngP&H;IK6$!Qis<cX
z(NUq@Pp+Hyx&T}njV4d6>Artzyy*l=@UH=V8ha~>zcw7l!MdJZbIMhC)NK>HIy}1L
zpv$$jGXi-xJIio&kEH|>-=9RLA4K8oMH;|BF!`O2cZlwmuG(}zOdOUMTqTNBZn)#n
zFnUcEz+~tViu@=rTM^P|xDa?@O+rTaoW_b#1&#;*;CXF*h~b$OFq^hwC}czbki>o_
zACFLBEloo~4-ra3vQC+3D{FT=2sK+>o~wW9a_{)9mmi_cav|^#X=kf3B=&;ri=Gip
znIDIyrt!fHvL1G~w#MLV?zpzsgx^*?DFs)*;TyDM3qNeKV;lrI|L9{3jZIuuB@MaD
z5x>_~IOiBvZjdKRpFg47QVtloPe-;v()Cb?+)J^(rhA<_%=F6trS9?ejw_#!FQxQa
zTZrc*;la(zvxE`?E2o=)5R@1-QlGKsyDf3IX6;e}$KxD6+;Oez9W1sRW7)#WO?mFr
z0fCTCpO3d37m8}Zls?t&!ouY`woxf^H|A2WrLv8*#V*x1Y17fKodTQt7}bZnx*4<d
zn{Fe6OBQ1{MS4Gfy>sAr4aDPhT9vxwSdd0I@1w<zrh;6UqJ9VLRmVPQ{r;<}G3wQT
zHi-Y{=sdtZ#`~RtQ^~T;bcDx=%_boFd`XdGCWbNAhQ|E66~^<#fQ;o^N6sPE2*tO1
zd83_0pZ5lNa6Ts%Gjh}VMEXvmy#*JIF3`dxzYAQ-+>1+$%0Y$<W-xyNjp`HoSdOkm
z-OKxfu@l2--O&k?{1Lf{%lwXV{)nDapbK7F7Fi+Rhb_K{lr-U)D{~NxyAP%m-~~|<
zO?6dw2*&bJP^Dk7OqPVU)qAD(gV-OIqHt2hqmLx-fAkyIggSn9_y2P5Ry16e<>4AF
zumw?`=7nDGgEu?oKFflNuG}zuU@#$6t7Vj-F|@<|L3Nd?e@=j_CA<X^Lm(5#{NXyk
zi(5X+sI1a=3JP?{I)UQ9qa$E`GXMRc*Z^r}UXqh2YmVJi(n=-If9083+Lc>e?48){
zx>!-K+x=+cD;~$*yFmucjE{c}EDg8Vy{y`Z*I6zlWZ6CY)bxQ5{}N5$$(hJs;EwLt
zYT`>Nr9O~Sdsd|D7|jYWz{<M~_3n6wXnMrxOPEQ&*RI)3(G51<Hd(-0vn3`aa+QTw
zc!B;}`C93XVQH{1U=L@?Tn%9<a(L`KVXl3qHC|Dc!%~C`^OXMF8-YJNK&L80(O@-q
z>{Os+rEy)>|K(}3PkHHN?$wz60resry0ROmOXI>VN|5#87*}`#d(lsqL#u{1fBS=t
zfd}7Hw+KygL!1zco0Lyo!?D&}b~Lak`_mmEs5ky<E%z)LkM`Z)61QjrZKLX~I1NiQ
z86t%BMG<PuLxkLk0*r*81aU&vc70IHD(uuqUzKT!0tsZMdPl15QZ)lRH_|586@T_y
zaubYFT0I6!ej$C#v3vK1W=$XEn<L8fi6bSrY)S|lvFlXCFY#oD+wxVxv!g<TN-L*T
zkMlB;O4}^3(qQ`q(DZh^GKg{o8AX`aN=qXymr78;y~j$dk0G%AMoawl2H5j;j35`6
z>lrDQ<(F^AV}jNV86VOv@{UjZv14o*Mo|<jhQM<qS`CaqLbjwf=Bq#-0_yq>xkO}Q
zEIlpyZJkLNcG_MDJPMnj6dLr}^GH${{FMgU*&x&%*=x00S}D6jHv`uU*SQD##kta>
zKyl*ZAb~;MvXwqv;<J|r6>e82<wZIH&|^2kO&k_zbu>hawN~*9?YhfSgdp$&WxB|d
zi~W{^<KPH>5)BMBb)BrobY=So$##EeZH3sEP{}_#@@qPf&(UI$B%yHPd^Ucgy+2qT
z12Uf!(s8OUs2J!ndqGg;Xw2horai6$sfbWjaBRQRz3Au@78I3BIFIC{nY`Z6+JDXH
ze;qQv_>gBPDAfGp*JVt~|9B^}Q1OqGe}33P=zsm||9_vUB*A2DwDZ=AADAzw-Q6Ow
zOxTr+*O7=Uxn4r51g}g)EN`4Cz=3QZUvE@SQ<N0v;1uF}Vh?|kS*$6(!iZHI)Zfx%
z@l^bSqo{B_yrca0y(xT!14W_7G9L{!R<S$-ug9C`Pcq2}FCG;gOHL${;FVEOU~1K~
zgT*1rdc6y68p4hHzBSpqq<AE-4@U&$tH|RlL5<AT3ii}iLxfN^NWWXPjb0yZ;p1t;
zlCg(&``SOI2fECi9#jHywyszxV^mZC*(VF;sG7GE70c)|f*&lti_T|2e>hB8#Gxy8
zsjQ=bYH=kg-ht{aTOLN1D6D^UThDEM|L^P04E6@nF@4!Ts+8>(N}+LBYOE@t3DFZm
zPk^|@u|~*EaoBCkij+mlM70>*Krf(o3nx|=>*T69Hi3h<O(0r+%IMNLr{8cUoZ8rp
zwA=v3$L@h?MKi8-<|;8<YdpMyjy%`)XEg^pWTo^2hSm@B&mSgJUzM5-i3do1Xtt3g
z6As}POC&EnVIA6J-<#7CwlFyp3Y1+D6~!r*8>BmbQ|A2{*SyNLzk2nOC-E{_L(6P2
z{!<F9wV=tEpCPkAK<-Wb-jmwD(v2T$n<nnU(8lVyrHO|WV18pQ;JACN3swIG-J7`U
z&FH`<n%rsIifUX>7DOzcP@%KHefUFu9XvRC&Bt3bxDphxD4ecA=Jwk&Q?DU6w~$8)
zl75m82I@YlRmd;pd95OA`KtLSf2W<~d{;<65qNZ$GvZElsk5hU3B`D>us{iIBrLg-
zWGDNvjMs(Kx>egqejF#1p`|CtLOd4B-g}6#zY)WM!|8F?nP<dWj(7#bBvNZKC?_t4
zU(EV7S-~<DQ3}fwCC1hG9h1~t-l5qLT<G5!D3qI2J_5oSO>U1Y2+l3-O_2bixq)kP
z;MzTbQ{m31B`X>9dlDOmB|hzH$OSfv{A{}M1M4@NHu|xIfjjzN>OB8mYS0z<kfD^w
zO}|^qQ2SWK^?zL$XA{AJi_`BdED`yxfdAI+#;=XTcfRwM=bBhA?FD}FH~(RfjXpc=
z9Hx$(=xK4aw-Eb~%l~mE1)VJ%2T{a=ZFsFEOz42F2KjDxgJmYxR&cnS5lU$Ab|WHH
ze$@;oLP^>dqK6EV3ynx@=7AEtxS|+2aZij{?}sAxe)4DOikziR*VT^FM8yu&R+@yc
z|Gj4AHS*gzt1DayQQ4rK_<!7I8lHcp1Ok<`;#3Yv;0W=}(U$mvLg~-_jzYIlX7v3A
zy^;x5-F}!!j0KCvk<A`(ebpDiE7tqvc69W<@<()UX9k~*${-)MIFKRg&MUarTu84g
zb3Q#O9T2)lmxQl7zNeCKDhAO9(&;A7lxX!8i(Hocya{A%Muy4GMIH)C4wGK70;s%W
zJ&QJ-pq)^?pmQS5CCxavIcn#JN>-{YOI2M^He6MWQAW3i*_g5--gP14KZxMnm2N1e
zh2f(PZAp_g2s~~#i*|M#U8{obsM=N)mWjmJK9+lJHVKS+(zTO_4vfziZqLJ#$+%#w
z5ajAuB{Wq-qa-+GgHtPks6p01Rm0NLbJ&l)y$9i1bvTBxW)h!6$p1*0nJ4=$P@EG@
z7!4(TP7KXBW1<miG0p(xWzmb4(3zI2;%CQQfL^mPq|;$%HB^MGwtn4YohD3^?8cW2
zGQmmHLn2Qo`3KIeQ<nTYqXpcJL1Nf;h0oedq$oZ?q;iv7O%t!|rBt8Xvbh73xjHiR
z&*-Dl1&P-=5bW5YKl6{cx;JP^GL=-Tj3pJTnHi+9>$i`GCKxHeeV2$QqyvbL5&mKo
z5vU7AiP!PLs&R|5xJEMJT$-FlRVe!H6Y_FS4zytA#AV;!O6hFsXRDv@Qdkz=!_NQU
zQ{=xR3z!$GMX-~sWeiD0igm44WAf=vm_b%||7^cS#4!NHVR(<6z_M3&9hx}GOTXh*
z+w94#becNa{*Set^q_EAKEJG}`he4tgpv~B*b>uqd+1WmXniL8*L^86GAs}2JQo#;
z5OeE(N;BzqT%S)>QKQS~HL}U?j4Q+Y<LE@OG7$0nva&7cLWMYuzJGS7kr7bBzQhC*
zg@%rEpT>aewr<%rx$M1#-P^32NGho%ckXA7`((Awx{bsiy7gQV2HXbElY~6tjF^R7
zBV%c6X&Lg%j_MLWuZ<bIA_;Z;4yi*+qci1iBJb>{BgV3&8w9bgq(0PBsWAww+O@r^
zvXz_UsWsQilpo$@L6q6&9oU=?EBj@0A_|1mABP+0kIBu(ylOl;26@E#@|U`Ru%CYC
zk)t(!tLl6AWz}DkG@qt^%QLGP_MAaOMhjR;6zDju)T2G+WCz<G&9pNpNV=fP3xS%(
zlKt9KAZ>W-z+=S!425nG;l1d2W1aB?A@{T#lolNomv+@=Q&`f15U$RTAJ^8_sOAze
zANXaj4|{jA`Z9r1la-Qa2NAcMdZ9QF2Dg@Eoz3pEPxlwnHA+^;)q9BMb3_Oc1RW`N
z7eDJQip)<y4M_L=g#OnMNW%RQr*bo$RBiIT-89Y}=XD-2^B!1w4ZKCZy2x`)POGHd
z*&i|9;0qzHtJWjF?G!`@<wbxBD{MyaLhtQ-?xjvfgnZ9H?Ml;*A|eVy|0PnRpRb^O
zA-w8|YE)Ty3Q_Ai?W(Ifb6Yh+t1~6<l}h@NvZM|OP*8|YSvb1sIaMFkYT}^hA}HM{
zq7z&1XkI-(jCoEJiXsiCVTT-68J&&dTMgQSu^zojQ+e^-rM{1)?dKiDvRy}FP~e0;
z*%?w$cwV4Ph7&8P6`NVFx+gr3&@JP1pW8UqgCs;m>R|svOJrcj%!rDF#VD5d+8aku
z7p~F%D43%}bpRRkl1zO4GLcoe(Z;X%qYB>j^)-vc{PzNtDvE1DF0V(Qk9=3kh@iSF
z@jS2BEXj&+J|`DvLWGo*4VD@^jro>FMwi^LfhIobr8*XeMq{b0c&--W;)(PG7hP`Z
zt-5M)_E-Be>)GL-o49yp6<vb@cOA5$>Vs{Ol6}bNp1;}!z-fPC84|?!Ya3Fa=$n$(
zHapkaojO3*Xwau8wz9h11z|4AIlg0Ll(uML&ol>+gA()gg|t0+4iXZQ{#sqNIqriN
zZ!LJEC#14O_~9DoZ1lVNY7LSgqlVAHT-nfdRG{`%@a>F~$N2Lvy|T31n}mr^yw)F&
zfT()$KcebP79QJcy3);^u8t0_CdGWk61?Ul7gFFk-<csPEHUgIj)a!$5`}XW^)F2b
zsIw+RZ5S=GLg@joKb;;q+RA+US!QX0uhyI9x(>sD16S7b*v80rL6@o5)|Vv6kzW!Q
zG*+UCVtlyn4VV^?h7(yZm13Bs?hGkLV}H?cprbDU(BU8P7>nt2`7gRK^>5$uYoSC%
zMd$0u(c>AkdMETuz85H=0&MY&rme1fB(+(7J-3&rwj!KPo}0kS&qZKnN01%gbP0az
zoh8E?4hzM)+OV7ov!KecxL)9v1z@K+!%O?|g}(^FTDLMt-GCFE#%LQ+^V&&s!3$ej
z(l6Lk(!8aFfEr*arPF2SNJ%r#d!d;A9V*D+vR|C{`f42aC7~SH<JJSe)qCiC!L&Za
zSnhE_0e4#`yxeHNzEJ;?Wh|v5@zA^>P4RvJd2>fgs3hsyRN~AQD#Tqsou76N-5?ou
zv8L~o(?7#(XS9EqhiuWpz~oSsa&qbnXrWo(CTGO$AgtTwtAz(89-w;5wohyDNI65K
zmnl-s#ULDCrtU9y1j^S@61I5vU$1h;-l13G>0YO=^lfM=+e@`t3t=H4Z{&VRs{k}n
z7~U@}WvzLIvTz1(Z(|@*ZiN`ab67}rLVOV_oKy&MN7DS((onnR`oy2)B^6KoLa@W)
zIy*l;*6P0K)N+5Z>hVnIaIzTEg7BIISWK+%zhd#&?`8lKKtc~&Pqo&Cz1Iy=Kw!2y
zPPsKN+0fLme)a5%Sz|gAWspse-f<GY>LyH-b*qkUoJRP--{`OhW5vj5PftopV}%U$
z`+)$y^JN$rkkdW3R%T=qZ)*YvCSxmv(R{I$kdg0!Kq`$VZ2944;7VlN?y+CS_!t~A
zM(IgEr`Bjg4q0F%=+g2ed|h*Cdp4RVh}zPb#-e&nEbzl9-35=#zb$0i-Sw=ujqD86
zbV9-pe&5^rEWmSHCs$XSnp5%IZ1=J=4Y6lOueW`sM^s}<9asRIcsJNp#6VF*8ciF{
zTLgi6Z_^*HI9Vt1=E$5*N_1F|5&{D)BTP9l_YY_!hmA-mHn5+eOZ)!^;=f*lfD;O4
z)N(|J;09oI2((<Or+CiI&hBs9qGn?H1~GvD$F!TUknI}?>d+!3ZOj57*1w+=;8o%K
z|K(?pWSO%huy5@XLsLydn9ZIrl^m9M2kU$0Y0qzM(Kx?`o)C5$6iBN6p?2ehFeF4~
z)|#mtP|}pd3=FpDLy8Ym3YYY{;z-rprGKXifFmZblIwqkcYU+QUE2iG?o{=B0YJwW
z0GhOZ@8Sj0m4XjCG1R6tW8Gkemx0AVZ(|p?kZ-u@v15j8;)oPViWOfieuR&thf5y{
z+eUyxmioukLXQ;$v}zw{47+bhshzoerm^&9?+f_!tt6pbZayfFK?iCzCE~`(Ti@Mv
zO1gjk-(8hLcx`ieN9K?NO8d_OcL~H@<%2q@m@q=Tcs==GmF78C+;kO+(!1NM#Ox%2
ztT9?qjv|MzLSPJUdJMGe#elQx%FB|{F}p_}hfo7*=2YM8nxNAghZlgLMPC9Y%2JJ@
z^rgk!?)b|<aZ=Jhq2Y^vK*PP$-_VeiU7=K`=)VCD6Uu7wE-o85i=fc{y|gJf03e8(
z^c2JAQyY#XuD-$NMx>k+a9;q4u?169H;!UBbZ>+btok-sZIcsP2p+mHRW9tIhvogZ
zqh?Xi`S^K?9ex&Wx_U0jutrrl;+p_s=0l0zOC}{rBWJX&^g84ZKe;Gwh!FP-e<5EU
zWzrLus7IsOiBEq)>Z9^$LN~b=Fj#IuhldtJCtyFs4mlQwg~lOWWZNnr%R-sO#Uhz2
z_xoP~2kZP0OHF-!j$2Q~fdl|`8GUG(-ZS&IN_oXg1Hf7(u2^NGfzF`-H}(Y|XFA3+
zoEWFrawj-rWtmnUcQ+M(hfM!aS>uB`To@TVj0`>stCN-9IFA{1rd|`7shxG=?mzi-
zslpTX(Ekyk{>J2!(g}54`TG4u(eAvhm(5ttJ7IT56<7G+gSz|B9MXdB3m^vidted*
z7-XP;t-FZvgeJ>bm|f);%Nj)=C-FLHvPw5{EAWcvH3n`Z{DCr+mMd=%-FkKf6IFzI
z9LreGM2zR_Gn2wrrR$v|Gor^PGn=0tBGDZsO#*{&h>9GLNJEqj?GNUdY0=$jH~BXJ
z!WpW7y6b$y5FCA@hD@r5uy>Cl!DmDu0f&6wO)BAY5Yz0wP$1}o_Eq9*a*THEHFC^6
zAO;!w(xrJt{(Bb2Y65cTR_VaL5G{}3HJL~!^TP)m7F(9tla-*%BBhy{<1|`7KR`A~
zXkx@NgQa~E#CDl{$?T9rD5G}V4CwuKpL^h(M<G0J-z?|}E0&)n(|#;TIGYZYP}i#l
zMpjgv9mIv1O5B00FPY-ZmqP(X(WdL!jbPhj;7g<(g+Nz7<B3TF<thm3RcZsk!|JYj
z`~DU`HeW#yhePjP?~HC0nkfSkw?F00j~7u~1cH&JwetMPP;x!*wwrsP=qBURX6WzD
zKMTRtvmKoUcEZ8M+Cb*ja_BMXv2cxP%Sft+N7-JM53a4cy^jUVQN!x%TL?cw!{!Lv
zESZOC=HjBTBrc&uMCUmWsw6l0GsoiCqgil;z&i3iE)ySWq{Y>ORaK_7YdAj9167%g
z)df@-#B8;&0V=jX!_3i%1Ko;^JXgmloc_=6`R$?=nAH&Jj$rA?6z2ET!0i8jF11dz
zKf1SnJnd6eZ*jo9W;ZJ=iCwK=&8q-N{H1zljn=v%O@J5O&#I7sl~>ZlSeA5-XLxrs
zZ(VJ<@X>-fzL^y$SmY5=TcW17k&k|>J+Ib3)bt}iadpF7>MTgkV7Zj-RY-6-t39X9
zXuQ_9JIyYu$inwbIFaxjB9YW4Da%gr1Kd_SWJ}v#r4%FudCp~wH$^XVV>u2~qV3H}
zhO7LMagxw4ii4pn_bPo2?sT#m0@y<kwO4?e(Xui_Hfl6rx<T~5gKhI#Z)C0{(^q4b
z27DCun)+Sb)+h$)pX4B`e{+`3#V(ep@MP~DejY(<L>~?5?tI)LI{K5fWQUzwRpZU8
zut81Mhr(xdhyR**spi`Ibtg5>RzPi~ErIq{%4qHP-lHIIG@9P!iNz>#!*Rp}4qM*^
zlql+{2bmQiw2+A>onf~N4L||dzL^tZU}z$`0Y3I-L_iU`=w%UJ4_|Ed<g6v;{xSD4
z%^%=7Yijn<q1TjL1-%1*Qp$9VN?DLM@=k`Qd+Aw-v)R<~sc1_bbJJ<yMriW;psn1P
zu-V!B)x}f#i!{FiB1&a~I)b?}Gmj<h{NhEKJ%uJ}o06AvR!bkGq+TyA(_9b7|BEdX
zzS6+OfwvPWxBiCbqw6-q?JT;+0vD;qw(Rl;y4OckJy2SW`v4c#i7xkXJHyX?cN>|Z
zK$?7TXWyq)SKT)fod+Q;hoFrhkKud%38y8t2uIGIdK>6Td7n1z_Ru)p=_~3K{ImT3
zB(ndgzYI!|H1#070<-SP9Y=_^V4!)Jmv3K4-V`zMa*~(m4PBFe=?P`<MayZ8{u;h~
zi$`;#X~(odHi`D`<iB8h!ouaYG&ij91P=g({5cd})ID0oIDS~kq1`W9lzzl`D8AkL
zwA6;J)q2mfbkLN~-wOzj;fO~<dh<`?^}Uqgd<5^9v2Gq}I&GI-3eAM#m^?ULcz)Am
z7B5&v4c9$s<Ft1sy3XC}W+6^TXL*1^9HJU%GdiV2*YisbH(#>^kB7s`yDr@gJ`H8r
zfEsKvc&)l(d3?*GOEtQ+rSlhC)<{y`KlsE?jw@)X91y)T+Bwhx?cU_jC(+{4HPITU
z-uL~HKFLLQdyuPP72bYd`&;_AA9l^eGcn9D?+-eiLuE$?<ZcjtrPeX7gd_$<q!DY|
zE#-FKtz;48twS{TXT;NPtdx2N^lS>ibaO4gij#k{WLcI+ASZ@=O3mE~q?*I4j_t?H
zk970pSb(ZM^K@Uqc}3IpkXocnMaRxv1WF5Mr7r!E_N^mfM4Et~N*m*x2IEl;8t&Z2
zeOmvl(L!@hb%+JMJA~R`Y2u7F($1K;RI|w+5Oo83{scZP&;{)^dFlG6trec1)*lV!
z)0^x*mp(vjpVk-qg-a<bNq1=b8uS+p)fuQhbT!(aZFIGugBr|Y2U~Naf{e@|V<8jO
z6$n1A0@<~A5=+;V9xAm2C#`qz%}IFAPVaTV6vdi#L?<mz6ifJc&j;2jbyLCNGu_0E
zg7cVyPxtsNRh2SLwPZx@^_2HiAuZ?Xj1gMC21QrT!K>{(FNm8juu@V}$_=}SZ5rI}
zg4H?mC5-qUE~CH8w}OwelR4RPR{!s1fx@=7v?8}s)i|#@%k$D{Id-XGEVH&pB86t_
z(p_rhp|zRYj`9S@gg@mWoDTaY75)G!YX1mxb<mllEn63e=(QnQMvb+$GXqC>+D*Y(
zD3V)sK|(QZsobCl%w|LkEg5=;Lpn10(mv#E)2|;Y<C`Srg~7Cw-ad@%8z{$D5(<Az
z7ou##8g$@JXguV+OH4-z{kbp#I!o^#{J3a1ayr@7B2#22Ne6mFn59|txZB4!-rFOu
zs}N~QXKmPF+V_k9er_Hv3B3jg5ZddB+r+;e)Z(0eB5oKXSHq}qKCzrG*2zPH3h}&%
zfVjVyJpzT#33sB+FQFQZ?rbD0Sm!G(em<W1Wk~N#kPfN-z%AW(wheaQatV+&(AMn4
z)8Etw$FB8#A%v0wr0*Em!3XwjHZ3mw)<Mk2TrP;|tpxA-njg#F;}Up0H(-Ao8~7aF
zb9sT9&Qq|&S~W5HAb{+4$;>rl(_VPwxe*X{aJr45!$QRv2vwd?rVO`FtaKc?<`v%G
z>ID6)21%|A<L_-_!wJ8>PN*`>p_73C4wGux<2kay9mZQddZLp@uch!$T=A|%Rjug(
zLa_JP_<><6r?65+X&tAWS^;tv;PW$2VqX7(s?4+fkY|wqhhBEJp~loWM5q%$5g*3S
zH_mx!&1SylGon_fv)ntfJN=6v2zm(SN;Sk49XJe!6GJG8J&~a;7CRflF*wYnM3(lQ
z_%6D^h~ESRCGJL5?jG>iWCRZGj2>1dCJ!7*p@!d#|K8PsqrrQa#5=zir>47#y1hld
zE&P1y>iS}Nh<Kp=FFNl$K-I6;`CZn-`qJYJa(Y<Usu_t6=0y#!gSCwekGbdP%DW^`
z1q;>0^*4gOvH(>%OFI=zx`V^amRs9KP5&DX`_s*rxQ|a%kK~to^D6MJPc81uI_)G|
z%4O>}sRR2-c*~2mUHu-61G1C4>7)|%9)w2f{fyj*j6Ug~A8vHDzXuW|(+8Jo_MC5)
z>@F}sk=?iCFXnME`nm}ID$TLJoc?S+AMIn!*cuFoY6if7!sRPb0AeL2vB3Me#q_jr
z_q{%5NRCkB)gN|-^p-c?hR0!>JUNl^=@Bmu=GKB3G?+yi#7L)9L(gh{<}qE>)NS##
zZ7hY@%(0tIkH7Gg#MEf=Pv<NXFUnoH%~(Y`S6+^>(DDGRJg$eI?_j;?qVFUF`~`fm
ziCjcVDZ>@u%EmOCsdhXV{-q$-A6F(wM~qrstz^%HNA1w_)|i$ik!^*2P3#S<!Qbso
zG63b3^%J})%}u$6{e{iej0nlqe^)^6(*(?<@V^w~`ikZAnsAv9SMH6nqfI0Kk(7F2
z&&P{FIkuHyHpC$YZFr^%r!_UIKS-w^`QlJ{2pZUAg!U`4SiGnJSKqs5kZIopneq0q
zckPM*Ady2<4{l!{Z9^T38c-#=(g=ka*s#Ca0Iy8~%8)bnk9_y`CokJ%hxt=n_o9YX
z-Rm_FvYc&t8uAY|vs<U;9d4nT@fr^XiOqu6%#@r7#5W)K`=<1_tNs*E|HQ4yiH(f*
zOOe1n`>maxi5sgGwbUfKPUQ+;@lFkc>E2Losx|cm%p<oC!zMMDEL}=!_o_oo{S*Si
z>TQ0>Z^}uXi|E?uUv&q!D;Xer$SefjIm+D}3wwF0%`1!pSHi<PL{j#PgI=wlWpodh
zat6zmkQYvSwL@6B+74GLZL~WKpL4TCD=TI-^5&Jmj6w=vMI+F;Gs@(B4<#I>0!jRf
zJj-W67ZN~s!X!_SG*W+SJ5DqPWaW^8gY{n;M%<%(EAsb%sF?j*hy3w0|5KL1?l3h=
z7T3;(Xkx?t!jSL!R6cX7W+RSt#51C>p;X)jOuX1=57OY-eAnnGUoh?UyGp5^ikMg~
z><|tsujs5SIuoF$P<4UCi#x#Qsm<&<9>W#B*@bYnNl7*`y0}zRWS2Ov%a5Ky-^26;
z5Ty#~pchg<H(`SGN=la0{!$>@Dq2*GOrhF!1w1>UdlK<@b;v!3lm}%o?cBuLSZWtG
zizptRMrNJeH=PXpsYu=2OcMqSTgLw>Lgp+jqIco6TJoxYI!Jh=5~ezEm<=>v1?qJI
zPR>WnJh>09$YD;H+}t~-J<qv1^8v&<hQp3rp6i*7Vq2a6F(q+ltiOw7SlMz*Tg|=z
zM>PX(OYzN=J>?p(Gyz|tw{PC$#6lVQ7mUkd@UE8_1H-N9DcT=yqbh^rQ&jt$U{Uy8
zFU=O_n^aVEP8U)a$K4+<1xMm-yFr6Bmi(L8SnK!pVC~wU(T?cHR~q`K6~&`ktv^N{
z9EKX)((%erM<HgQcox>%u9Mat00h1tVoSCuFQeWWt9i@ELLQzacY$?#_B4StmP}<$
z4|7I3q!csG5wskiSg)x&x|(^QG!s{eeiMs$8B9`6Jwf4fDyc5PiCxz}igmL}$p}fe
z@pKC|DQol9=nL1KJ)zy?&KMjh`i$Ymat`|yk5i1{51qIESSzeCXdaf~>Y#u=uIBtg
zSjw_Ag>ioRZ_V$qX^7?@Qg65jtCePN(BOp<!CA}V(j2xGvdfET!Q{XQz@(*ArV)EV
zi2Zh6GwxZl<3GRTpo~sdREPL7Y;$F!7|A>BAr74JBGg=l2TUM>5X*Z|&5*l@GcEH+
zEX11}o-0Hp;;_B=Fa=*aAMb(uhYp^k%%LE!8Jj#z6st0USV=$3bf&Vduj>d_M=OhB
zR0S~?D^Jc=kYH@EyA`8v8Vf~+#p$5KeK(&#*yIat@*BOhbI_t8v<muKsag|9@1>{8
zb;#A%hMAHG#k7@My)g#vo62`G@QdH(uu80D^~HC#a8p?;rWJrTJ$e?-M~zemK~N1;
zITpM7H3#*&@2Kp~1~E09EjsM@rIj4(=WII~HFyEP1x&GjPF0DuwS$=2iJ@|G<+Aap
zaimZS;E2SfYATb_tC`^-y=ADJd|`dK5dh2o1gp<+IirTGEZ0N+g<!5oO=<Li7V8Wo
zy8tHLYBIZl!0wKZuI@+3tJYl#TLge^ZTlRYrA>qGT%#dh;-2ER(HIUK{26G*s!iG*
z0QVym9i2~^G;2-I($>&mmD%aj;cWRkpW_psrHh>{zT;Sw{~(;|GGw0MZ_BkjADwTZ
z{5^O@4eNv3Ew}G%Sx$G9r-(Q$m%1@hi9Z~vCao1DL@U6Z&St+SvwkLOXq`Wf_Pfyk
zY(!t-(RSQ&dXbBAyI+@XO-CzN+O*ZK+59vjU%Z-1I=6Usqa*V538w8m#CxiN+vd(%
z&j<OVOFlFv`ZW4hc!XhE=h-1$)mqhfVF4!*%3<gj7JYkC>f#p9Vgx~F!W}cq>4S0~
z!+w$hS>-p;aS$C9EllO$^FG&f+>`&sE3<{U;-I`nzQ8b7S!R<n)N}Pfa3~PDwW?v4
z0Xwu7m|}NtRS5Tn;IR?-0LGN~0|v#>2&%Buf@Um`lk+dY_7$pu=4(&QyLlFTxLJYJ
z8l7&HA6BV3`OE!0Dd?)3uM>>jJ2-4f4;W;dFFz3%e_8RzrH$YCVUyP5VbsIeSFZBh
zwGe{6=>iB-Wu$n)hbja-i8^nQF}jyV#%`S85Tw)EJ+Ys&c@>!*&&{`-x|#&(swynV
z|Dj8*>o3QGelqa16taz=$f1#tik(V4tfHc$`eDUtRg>dH`e~7q4Gy1!a)8@@Y<qJ}
z#0B0^WK6X699JhIpx^bevxo2NBg>cC5aNRQMvc!>`YGKpRz~3Vbuya=a#}^*^)d;x
z`BuW_WRBQ_z!TIncgIH&e|5o!lympn1FHl!XBx;-E9{Pq?bdbCY_YF6nWIWnYh?v~
z-Zw2JlZ_#EK|x|EgM4}qN{!(rAD7XZ8Gu>+Jsf8Ni*AglsG~q~g^W8kcU}qASkrf~
z3-{PzR7nt*tpN6uD|}W?9`<&LmamjY$#_P1)zY>=1O-bzr{j?+-9lU--pmnG{td>b
zy9XvB;{|xhnKx|!tUUd;=%CzYgl*Wz*q7NY_?`3t8J=$v0rd`{|3d&30$rR|G>6V;
zl7e#Kp<0ZDN1c@*?ixn7E3=Z}Wm2qi)deH&tzF?339BiwC3YbE=xBcFWys{f)xmTJ
zj6t()j6L9q@&#h)+ncJfp+l8*P}qS@Q!WbLV0(TXl_WtMm@(^Y@gv-O&(%b_h`j8h
zKfJMCC+^DWNj?n+ir|Q4>RnJFy-O`pdw5pBX}t}KNQNpw0F@(MZ=H6RYB$xKp6EFT
z*K~Q`Y57i!?G}Y#nZE`KT#aSOW9LU)^(T`lmrc#qKXN0T1GWodeLFekwpaJ;1}&>w
ze7&TI1QR=-ad$aYr5iL+Y4kwllrO3j8Rd?BN4^&;AQAK3zyNXb7LTsLRtccg*Q?Js
zJP|TLCLL!8obyr6YqD8(1ZpE#0lHZ04KZgAK^F-5rSYPsrlU{_Z<krV{l5BZAnEua
z4I}c5U>9H=qOv@-!tVyT7h)Ym_6~xvT?I^;$zlrQBtNUkh&vzi!dEM)eVOg<f)&uz
zoG<4_w=VLG$8AoNOkUGsY=cu$8i|k+Q7lEQ=i%YXl+*S?J_c24SUVhkiA`*3A@)EN
ze5w_(^xPlD<-=M+a!+?6V2?fF5|aP$hXH$Ij$9k)S$cYHUT8jr!M$UHo?cE=G)vJx
zX1Y9y3iuVVq@)~g+e|pw$>&&E!#wq6iTGkJXyuzs?yI6`zC6C7{ZrkM#P}3U^E9pE
z#7?cD;rTb?lzDE$_=s<?LJqcR$Mo*+##BilMH3eh$-xHd>OsPAxIREyl$M)+QIn-d
zWfrV`OM`)h-O`Hl`Uhv#IMU76f(&_sK9Sn~&+QDzzQ~aO#|8(SQ83QDylByc+)3#`
z0UX;uMt+p`|GQ`CJ^@)JjkUQy3OUg8{J~{io5cOH<~HqXdB=N9xI9l!q~-V1w_Zor
z?SzCu!eWwz`<YdC+JWBeNhBwhMWrErI6XF1F4ooj&ms^1kUQn;0{=?rfVMOYU!Q{#
zJ~E)m)P?z|NCEy-Sy@Z~8;aVH=M!qFBgdu}K?DGdXrYZJ-1$LJs8guWbh}8m75mHb
zrvEeE3;zF#_bNq9=6RuWysviC8u*7&?W+QQ{(p}MvoiZ24p^}bvQQ+L@#7;o{-;<l
zSzPlYoFQ3V9)!<k80#lTuh`B+`{Ur=FV}um#{ivA{K7zs5E1dmvJGXCP+v8Q8!($J
zYx4(9ZUFhc=8#|}Wh2u)50P&h>`c_Y77nP1*U6fc(H>O?W`7v6ZAp$Pj~d45dUwVz
zi8xz4C0yWt$X=`UJ8<%}0j4xXy)=QiLb!jBU=z!|P~T%oVFcd=UWQD>2r0(B56MZh
zi1|ZW`aypTs-}bEZ(A;MW$2|7d%J-^tEdMCnm$?vh<m19i%uA3W>hVk9+iIVa~*Ti
z*??&J72R)3F8{E?lnT**cyd*!V1XKVL*le^@8OowbLg)uoI*+K@gs9j<Yt%gb<nim
zcF1&jRP1`lqj|lnl$1;3VF78U>eQ|ZlX9s%vVS}N<=6hdad*~nQSIyg2SGqVLZllM
zkPhjVQaVJsySt=8x~03M8>G9Np}V`g^S99L-tM!{x#ymH&$)m6<`3t!mcuZ!W-;sg
zJkRIz{xB;il@wAU(}<z9inav|JUL*Ru{|=g`rxp75qPD!P&iX~g<ll0YfR|AZMl%0
zNMzo?&%fc(Ica|EI(P+AeIp_7lDZ4x?z$~!*CbxA_-wKH^I8Ple>eoJ_Yql5ZT#sl
z<tWt9=Ex-Y_0#B|qZq-+-E*gslWVANLVW_HyA5HNw<lZz>`{%3-eS-h_Joe+DM^wk
z{+E+6a_vT79;R@&k<6AVfEJZq5Pz-i<pd5R)sE(}^Yuz4t+He__83nSk>(lqh1{{B
zS*|vSDD9Ms%nTMQ;N4dO<+{w7X0L5fVX7twyqhD+3+}W|>$}5ri$2ot>vItGkEZUA
z&aTyi%rkQcv9P|D!2mS{=4C{>*0;ghl-N88470H1xL`BmP5I(Zi`Gv#-o63vJgh0g
z3+od2BF%>6(8C3(gk#p1^t!pcFW$(^lV2a7F(BN{GO)bkO6^)0Q^wPN5-d~mIFz5F
zwEA>AI>M(O<p}rCGm6J`BwXFzy!5c^ni49s*u(19>s2Cs(5pvKP8y-FnyiK9>UT!)
zcwjPKWrzyVC^|q1?EpGF?R53Rt1rKN+wF-0<E8Ab=cR-fie7Nz&wW`;2{>gbIdT<G
zCcn7DnCVX~BY8f7AzQsEt`Pdg?w9b7?S3)^l&>fwH^6=Tij3iP;yNApk|+&{wdvg3
zTe2WeQ{4=bg34c%m1H#;7>6hTMCpM_#}cIg=M9OQGi^eTg4xAMzS_a?Xs<<<atZgz
zDS8Q`hCom><%*>Q)hOgIFFlK$7C3<*AMC)<q;#(WOR@69EEoKq7nAp}T#$GE^AQfl
z5TUDL^^Tgn^Mu}>dLQAV=n4gk$`2zYGm+iQ{uZr=)huzw_z*!EfNxC^Blvv++N7D7
z67M9*Q20GlC!$!4(HC%|x45~9(;iJQzBpPA+~Zo;B@<N=;Zg_!A?T&CZrl6$3Bz(#
z-lBA_fiavA86sEt9GV%&Vm&NLl>4f^D2|!*2fut@cUJ#UdhA{WVs&<Pxz#APC0^2f
zzgX&L)ssWCxCX&6!VB?A1QfE86qbK0%}^AFbj-wu6Q&)};Fj5~An=g*eO^NQ$GoJS
zw4DJRBgJyzb%*Zi1zbCIM>Z_>)-~WS5{?;|x(%liR&ccWCeEJWt?%JNX5WX;)l(Xs
zT-Vu+GL3>ZGJZDQ`|?2dTb*aJn$|ak_L{GpyaMCz2}(?i`-vGEg02o@PF|mPq|QBo
z;bN3KzRb9miB5?7GFGg8{XAVmAPSHb%)ck@FmZeq;Xuubeu$*+6LS8gOt(>?K}{Pc
zP4mOvVnn?U{OF#lI47*22vDB>xaGJj-hKBO4WXQ(0N3y~iyx4u^qZarC@6zRbZ}s~
zIU-;apWztupXnfaZv+iMx~jh>75nW=#wz&xg*<C#j}I*RRq`*#8F+rOCs4l<qQ38m
zbp0qZ`fJlOz3KawcE_(fAD&%{{;xm%AK7CvnB6;kVbE^HetjgoF_BB6;(Yw<22c_`
zeR?#?;3{7{uh|K`zu4U7Z{Xh!NIg%2(LaZC)MzKk2|9Xh5?*<F2nH>9nB%2gBNJHo
zVskuwP;AYm3tyb%Qd63cM@ATqb@J~B?@0HI6?>n#;7;471H6K%Vt-KC%kvw1k>Eti
ziqRnJ^ZL3<`{RsiC?uo^ra!$=lcpf$*XUPw4$NT@p6BzJUU>Bhf$P_t9+fiWv^GO8
zS60??45v&ET%(E!OsWQ#=5xy6DxKLk=_>*GR$O7~LBstGTE4=!#vS|OPEH5Z{o2C}
zB_@+5gpH}H(!q7e^POzxYL)kzcr5DfgA?MqIvPhz^Z2_L=4I(x8q<fWH)!5LxNRG@
z_kr@N;yml{I3d|P{($NU?@zC?dqYD77nMRKKn&**t#d1k)%FyMu|iq%a4=WUA9~Hl
z1@o0DChAxY4h|!^isO2JU$bdvyg*Ke=$I6Y0Dz6UthZUm`K{U5(m>`}GQzi3&kQxW
z9QNV|Ck)wGyNwp3@z$1)BFIbfU&ehYC*4+V&+2sP0iBu7Vp4l@1#{Nn@&NL+kuo2j
ztXf(yk>5^S;O>LKZ?a9gtj&dmta5`3JBKvE@q&rOYFK-FdxP!#!^5NI-*lVW@;Z{J
z)kQ_zP|m_Vk;V6Anru`#uX5SGnFb^6!*!e~*J$}}Jm@xUgr7czEw;UP1}5dtyVz`(
zE_v=rdW7#CdiCU+WB<-k>zypE{E~zK4ZXahz@t_5iQ$wFnBw-w^<EqH^+vM@9H0Ar
z*KY284#i9PTk&S#+D@4#r6#D(3>*#4eLR5;a>-LSk>6_PT<#c19U4`Vlnm{~SE;k1
zgui!sp(+~f!y=ur<VV-uMW0Ee$U?%$XXOCUoqjziftZZp>7lSspN^u69#}3%@+nn2
zVh9GOH>Im^j9A)ybm;Rv<(JpxZR-Q4cvMOV!?t?-{+$9&aMf_ea*E09L7%N<Xpw$t
zb(t|mpt5kdQ~4VkHa51}gI;<&vK4a*xo<Eo<lAzDLgGwD17IAuaLwEI=Q(i1{!+vD
zQbC45^}}p`6<$sJm%oDUte7Y!+#L(9F(bLco<<J)t2a8JIPWK_&Tgl1OazS$I9p@+
zu%LF)5c@T_el6Xe({Don;)Cn{slg~vvH2xI$n6ka@5omLkxpYz6mWPo&_XJ+*$U{4
zVN9Bk3u}(Eh9(Aa+3qynCb0GtV?DpdxfuduW*uqHlvI7a%$0q%;d|-DkFhx%lNoAz
zSu*wXg>oISN59P|Mj}38werQYU&K2f1gsMh4y78LAJo;FB%;lc#?ulK68I1$4Ta*a
zf@uO9Xk)Ta>@|>3-FXv*4KZ$_ieW|f3p^AmsNVXex&)Q$EeEHEl3X%jD2|Iu{AuY$
zMTiaga&8B*s!bL1F5a`(XBzu%5I(n?g7KVTo?<wxS&Gx`LlbS$k@+ftv`H>x9aBsv
z@BNz;Y?+v1CKYo(Qa&gkz1`i-Hihab#3|cji}Z;y_(5;a3lO>&=mEVZ?!QyMsjSmy
z(D!c>Z^jH7`c`D3apEvM1tx7R(|FFV)S2SE5>eN*QWy;|oXALnyOO&ZZ=ICWeJ|l!
z`EHiD8d2o0vP%yPh9sP9YXGAeaDi+FqY!$a-sBcp8lZjd$T9uwM$1e`!R;h{sNGTL
zk$mX8#df@$i*A9)L;*-7s)-C%Uwp30?Rz^W1@|n$)$Y_-%ZknmGRGA1M@@*~j8t@^
zY^DYGCF6|0?QZNhPg?4cjqY9G(b$S|b!vU}bt`+LSeaqZUuB{a$S*XYXfTkQ5~-dX
zU{5O>(~OzR(FMIUj6&yYhi?uzYTz=(swjFLTP%nmq1fw-Up!xwPLt@l4F5~<*e8i4
zv*$#s?65aVOf+_7OyJ(BJjbIHc~w8-i-&GimAQxYv-(dh$yr`$T>#e9vyyONVQwFK
zeGd7hj?5slDPI`^@|ngtWMUqn>Q|GB$gXo7h+~#uOXDW>4sLpchBuBex4)j;O%FUT
zpQC1=o^Dec)UJV2d#B%B<tH*qIg50ZoC}mVq*!cks072bbN5vLfugd6?<DdG%+PL&
zor5`?*EJJvLo&{?*3Jh-qo^N}%8&i}zq##<ds-O?KoN8%@^4v@LQ~qX(|VtepT}q)
z#hz>zrVt;Gi$|hCrxL=A#l(`07s>dJb30&9wVmM7?K0Jg5#Q>Jk58SwdcMv*BR*xB
zA|LP_@b&3F@&pbheWxO1*Tl-1Xe~Fto!yB-_6h#a!v(0vYy5xZJei3JNYSPz`s*UH
zKTQC;*9&7YFh=C!gyb>w2z}XJWC2IxT#LCthc{2y@C1eqMq)SKV1_#KD0cayBCbMW
zn2F|_<uLy{bp8;zeutdx2XW;z#KOm}<SQ^pUrmdBw-6K5Zti(1pla@Bc;XiAGSN)i
zeW^Bl;?!O3Km_+FfRNeXPewccOJD2la1C7j*_qNQ;|Tu0=e6UVtGF@_M(;N!Z#Nym
zgK$}O9))(xH!?*=Qc8jlKgIUFrX+id$JZYe2OTixa+m7XeT8i70wuIpv5G;@((o!=
z_!kpVs-HLbLJr?EDk?JmqP}?Y<_rS};lqP~O{uLNQ4FO~sK>KTi@|(a@lq;^=&Bue
zn!TlJn#kQD@`^!uI;#dCNqq>9*dx#(gvaQv64FSGgC`k8o#nFQ=K!2sgsYl!{#I^$
zgS15sGc1oWd0`}+X&lKk|DF%B{kJqN^<a>%m;JeHq?`)X*;P3DE`w=dqM`5|^DY@k
zO&k>YF>lP8DUE0dL%pm{6D?q|Oit4Lf;gZ_&y_IgMjqC|$(7EzAUU!xLhKEHT<iEg
z3_esh@j|?{S0#>>ghm6dL(p1*f8(;tk#G0X-21n=?1Va5nJB1D7&+}5+VJUYLJH=K
zS}og)`Bt6B&VBiRbJ<C|KoUepMl-%{G6D+XVt}L(8R1p8CH%+PNm$JUEM_VS;;7k2
zqbm4%?ft>!zCM(c0X-uAU{Q<^EC4~~!xY>K(9ZZzDi<~XxpGm80sPn3je`zWAoR!s
zNgq+<Ma-A>$-wjoKMbT}q@fzY%W(e)%ej8R%06&qQEn;mV-?jsS!5A%<FV2|C?;tM
zBvn?EO(i!)gEK9${E#%JWh-XcS=v>U5$33?KFijYjMLmu*rE)cx)pS|VXV|8i}96S
ze|6UViDOc1nPL%a1N&=5c^rTOI>DgP9s-oE^a-{K{g+1e_ZkHYYzc0^D&5CqYO)^&
z1OF5CUB-{fP0<r@zd4o$@(qw;)4tMzS3vjp!LCSkETGyTZ|C@}t~A}f7^!&5BBs0`
zF>g9U<zpl?T;*JLT|6SoemFVEc^HkG@$4>pg~8*70;J)7Mo2DeB&#H$I&DfH)|fPS
zhU)HKeVzO-6qYeuycz#TC8cCHp4iV;p3KYdOOc4#zcs7<-6k{8c78sPlcVqmSX=*g
z%X%aCu$8s*{qE=9hkK(x8G?R1-}3>oUt8QIL9deiqX0<?Fi;_M7Nn!Iw3KM+hj$K)
zBdqOc*_f-w*)bgZFkZ`6@B&rCd<oC4lMAdqkX>tf4q5-=!h4?vAT16yjf<Dhnp8y{
z9hjV0#dr2gDF)oG->Y=oQYvKc8=V6}=8Nr49>*Jy8$f;(Hl}3TW%lO0G>U1L{^Dmr
z>El<bw@EirsEFo-YcFR^OWf>#jey$>5{@LKCs%Zyzx*8%p)^v~8)02DRGI3C_8@gD
zNMKEksfe0VF#nEJ_}M=j<WM_5Y&a~`SJfDv`vCXkSxYL?^1*El(SaVfponTQB%UJ^
zEQ>wbXxV;Hb1wh8ce8E)V=0Rg;O7xJ&S0ek@fw${_G8@0kvd~s`c4itRa60@0hz&q
z$Dt{;!cieMJIo3dMk(dd!gDe1F_sO2(_{Ix<|8nUG&__ltIBUjdQHt4Nd%R9l;kVO
z1DjI`e<3daIz<?yWVXD+zALpOsIJiW#xR8w3@+bY+)_ddR8~3+-b2t_i`!okQU@od
zRt|8__1yZ1;t^Z}U61_+vJZ<1P?2K;$Vs#8WutOHE0a<nSvJ#W$fHHNd+~&M%!ZH1
zwnxU&(gLKu*=={Sh4lHLUOX)&m%O%)o%ZFD%)>%|sdBZ_`L?>c92o4U4VC^F_z|wM
zKMefD#0-Q1cgp_LEtcbPuHUaAR<<*+_X6@CtYn<5uYFw<RSr5>wN~Q!wdS3(3>W94
z6R@!tCI@hi8S~td1f}h27{0hI(88`QEv@$GEsu&QOH12a^kJx`W#`6~YzQ0c0(6#4
zf7AtkRWyycD+XqOW30e<`nfa>5S%`5UUt5~Rqdc`chpvO5X0uh5~m)?-+kFb)PQ#U
zj7q60pzQT@vGchY`%D3Z*y_r{?1nzffqoD$>^rh7P;LksWxH>_z|*8PZZnmuT}8lX
zL|x9)&wSF48FUYf`z}@l`<$ch%O3Za8KzYUB0q423k-9TvtSO{?%w8Rs0ehJ<YINR
z%-5PS34r2=I!J;t0j3)j+RE}s750h2JUGLMd19R%(s1Oxm#_cYa*cIv@$o(pT~E3C
z?57gd9<#c~E_pKjJ@OZ19Yy9KD)xbrz*^L$__##!#ljY7S_74D>`6gqu|va4*d`L?
zIBYHjlPpT*#{PZdZ<#~PABCabyHdMc%d0rFZ0EdkRw_DO;9TW2%&HN0o~z{%bJ^VA
z_1GF^xO9CrOT_1XA*Kj80p6VJLp5AG0>c8r8b<4Rl@nN4-nwe*(T|ODbGQ$+gesf#
z0Btf(yvSZ|iAg334jUeuO?va-AkwfdsHs^s3SWI#=d$+F&c3<7Uo6r&5ediR#{H3z
z_@pPL%bjPx8;(S&z_V78ypG=J{e$filnbX@sCX_HT<5<1FelrQKCB~g9i5CD#YA@Y
zH?LM>!2eWfM?F0X{bKVXA+Ev|0NfblR{dZjN5OGNM#9k4KY)=5$o?&0WVi5N!N?{5
z9E_}!W%xqeaSVW0ADny+Mr0>@PVI7v@%(&06g=w-h4dMTd;IKFd5inGfO>O}N0GX%
zADkT~Yh;9Pg{~;iU|DYT<(k>e#hjj%@hB8gLsB51FO?V{3gCq_Lr4(n=(vT}a9$DY
zJ~i_7<!W2%^*r8EC?8I2xqrQWmsE$_CXN>nag4doVUArIetc!O4sBG8`gW+v>Eb*-
z=0JZ$&USZpd#q!7xPg%sN`1KgL$4f$w`}-!`NDkKK!Yxg^F*Z>l-Fa!bC^&7o%RS2
zk@3}(=L5<zz+~-~>ko@r8SS!uY3Go#VSps28w)yA{x6xwe0%?hdHe+q%-fUQ3)B(R
zJmACA+1uSbgpzBv>_v>P81pw>6~c+AAI#u3o!Y1HXJ-dy=1l<2Tv!I`>c5nBQh<7A
zEQ<=&y`ylQKUDN5bEaIJtin`|WJ7qzmPr(rBk%0w^swl(ZEvBrI{^C5JmJZp;AYjg
zNkIwPuMJ&*oM3dCcPwLu7f!k*)fock<-0T`^TKq@lxLSxg>zY|9T;dwg}{exs(r-x
z#$4YuS{<*G+hlyqSbMA(h7@i6W>wgtCJJvejSWv@o+#pwb8ZvdnzGZf#O@dm=H#@+
z$C<j@n$NZVo;P?Qkfiy*atX@b#M9XOY}tax&7uHmx#^?vDlHf0#1rHQ%>q@goRlfc
z3!VlS!f%$cRrBR4eOmZVoncOrHIW{o<Al^)c(7xIP0|REi=x`SQ`=W!6I?50_xhIZ
zd+49bRXEYFK~byqt(-})pI~<5E(wJbphu@T-oC_UcjSW-SB}svWqv>a_r;zS<(g!c
zZ^$4|t}(d@M^OXXIDoYmQlTqddwkU}Q0<vSL2%m}ma=g_L;r5F4qBf?tg$HtHGZ45
z2V|ME>+`AGFckd$ym(n}yqe(?#|Xr;@O_QqTR<i(*ibLNO}9dh{HNw8S=RDo46{8I
zw6bD3?Nb{6al(sO8)9VpOIfodK~3f{i^dZaVE}hU>Q|r~wjE)^Ig2A0oE%f*-TRzj
zMWwJFE@<!On&!y=ghw#=ib|kK_^|rZp}ARhy)=#^Bh91Ixhtl`?J;R6a()^qNGskN
ztF|p1moCkc6)O{Xsx?(c;L~ZaHr(z}PpUKH(NXjt>Sovp@DL>=b<9o%lSi}APG)A<
zC1ssk&%{piulDkS85zrwly=f(Gly4vbNb<ISjl+sfvH*Wxtx;DqGSb~|Ggob2UrAi
zqTr)P=7em*cgftskOln7s>1QOExX;@xGCMjy$x~Iws?<jrn@b=Q6ztX;Ic9U&fKq4
z8U>o(U^{GfF#eHLVHo{{+p>_(h98Emlm6@%f8NB5^Z|L*T2vSf$g&C6O$go9n49jM
zQL-B`byZ;48D+?;30HNc@3tuvy%vgm&#2_pA5RG3`oND}nAfF7h)j2H_(ip8Ss(eg
zs?GOp#WPQlDvgJdQ{=mh%&GW&*Lp2kx}7PaR8ZH`l8azQ!|x;b!q-qO_nco~8QaX=
zU9Li6_cFWfz@nL*Udgba6~cr^hBql=E@2yRiW`#>ndbr8KJU5&d&H^i$g~}D(ap7^
zYQc>;!V(SdVC=y0c_;DjLc*6M=hzkz>!~uZTmU|F%VyO4)Bp+Sfftl-%)VF+k8o%R
z^4z&BG0_d|Jj?%>&ssnV5;13e{H<faM>aIf5?=Mj6w}M;A~YW1;^y&k$yvnXKPlF<
zKXf!n>U{EJvEVPyAdpmGw&=IYn>r+cPwZ`MlHT0d887+Z*3KFPueY+~UI?h3sfoB~
z71!YJ5&LGax~!GAm^J?jVO`$XlrEV^EwJ7uXefdiFN_1Vkgs)H7w!}G$j?&(TxD*6
zu3Guppe>SH2`#jVd~Kr4YOZyNr^;kBce1Hihcf1gk@23oVuTgEFt3t>c^?0GAs`Nl
zf<4w&)fZ-p>fm^Lj#@}8deGI0K%+l{Uga~M+V_Ry8a`QH6QOdXFtc24tQ&;DQdPwq
zWq8LMs7W%Ut~!hx$T2gDTK90MU~uPa?IFq{bTgQj94e{`sprs7o&pi-NO&$6xPTwU
zPktW6%j34IeYubFr?zH9C=40<v6}7WrzS6J(l?z!PDR>Sa2uo0(owg5lE*q}!%ma~
z+4jO^vb>No&rnn--!3vZH5SIiLB}$hwbh?!mROa*Ea*pl>UN-Y$?J@#to|gUQ}-v~
zrE<5lV*d8X3_?dKUGaV^Z5cli;NCIfs6@bt&@}tTMAe|6ppnOAI_GM%O8?CFGW>p`
z6c$*%3TUoIQy$tFe#LfB#!zB{oA4XAhw7LwQsIyvy9Dt<FYL%oZ`Ar8llCW&I#EPY
zQ7U#>3}%2k4jU4zkdMnksy>T}%pFT?8CiD8rNs2?Hdn1HcwJ)z3#c*WBR{q5DbsQ1
zzv>^p8hNp*RM{h9pcpa!@G(d(RRVYt3l-I3pYh0UT(sBcXM4BM11Sj&qj=fhOg6oz
z;L8A}!L9%(CAxuWvruc&R3Cm3_z-|;Pon%^G?ua}v<6iSMn1{cHTb}6izV1WTa!sF
zrM_UOH83(M2_cj2YvlZUwBv&0#8PKmh~N7Hscf4MxjLzY#{pf_@3rE}^`>6HGUazn
zDNheJR#C-=GfFDRg}crrIV<&7uwE2PyfMw|s?AlGg#auu#l){LM3u0}w%OD=26->$
z{a!K0SfU2oY<$iTa_GZkkf<m}u2(J-DfhSLr=fYZ3v*X`A;>(I^LQTMPLGFrl*|;v
zOjk0q^>ELF;_gGPT^O^x;a>QIeVs`1r{mOJts`wA>t^v!-fr1_6k*Pm#*<J@hmIbH
zh#<TEDN8jo2>U*&;r8WvQJ~$<`;m`l_M(#?jmCj=if@NQ(8{grZTlCn2;Yo|I!t{p
zZuZCW+lTUfk7j&}wN=@J0qrEA`8;kd(iGbH>kcj7PR@GsW2m(}`B%Y%rRuyGe8G})
z{)awbh0*k~kPKL(rmnyux}~5YxYM-+CLFKxUB|c8hDBfj9s^F{vt6cdnp0~-*diY<
zjkJ@Pq2y1G*1sHjhBIoY?hPPRBS6e<k)j-{N}WA-Ld`d)hAY;eYKI}{m<u?(kCB}P
zl}Si2%s3OBpzd$A3E-2u8zCqadaj$M$`IETPXs#(8|_zBjw~$0UM1<0?=z7t<2=8D
za~#<*rBzvM8Z%y1Z92i6v<Q|MwI(};lae}51`#3j;6aCfEl(qg-)2_d%&`MTNsj|(
zFqe$_S$dU=5TgoLmLu*!JyQK>RBMYp_o7iTZ8%dE9;HVV6F)R_ZHo=VMdu3yZ>&(<
zmf{{(*A$AkY^>HWjl4Vv0B)B*naO-w)htI@k&1u3K*M~-B2S@4tRH1(W5abBgQVE1
zjcnCYX>j+B%GRb|bCpe`v$r?gr6<hW+xw;mtjO=zE73MOSa}{G+Wc(wiMyZeLABYd
zT=P`8oOr4CQt4zLBOo$SCAz}-8S7=)TMyQLi@0m{*ayCB$==`SHj5;|MoUw$a1Ey6
zx6gN)cP>`t!Y`o3w33=!1+N~Gpkne#9<^v(GU$iF1^F%HzyO+@3cOhIYouQVo8L|i
zpfVNU1$YFJ*f&RNJ>hPsB-+^o<!yW1IAGv6d|bG$YvBZ7E1rX)Htj9I<4Bs7!2tHM
zmmW>zUn)`)!;l5M8c6AFg@;PAqu?B=-cRKjVFd%`1f;RDI3u?7cyS~!RB#(}_PQzC
zaPS?|h~u*syzQcMJIut&2J$P;0a3IAB=FtjvAb@TzGmAehez1Jk^$M{`g3=3?U`Kb
z<+1Sy4A%Kx<hX5`#SLK^8xXlsmB<K|$Kj1j^^Ask(YBRz+t2be#Koa@>e?J5zI;^y
zMy0z9O}hnI%64ITv<LBg9d$&yppS&QUc+k6_zBqb!^u<jTAzH2^!#IoD}Y?-inX(A
z?C607#J+?kr~7ms<E8q@H`}XG3uGRpA@Wr&CiCEe(1KP^;X*+1l+!4Jkgoh|Ci~ua
z&EgG|q0>pMmQcZu&)?3I;0lVaI-~M|T~C!6`lv>^=1*6&OqXVth>EYo_wYM5f67yc
z!{-v#!ajG|lV@g`UA)hjbptaii}PX`lZn1)`|#aZJ2MjL_xih3q`2-Y#Lw;ulB9h#
z+Fc+Wz-oOz=f@qsi-M7sicJd)FjW9p=OvTI0@&rbiuJKq#tTOwAwQrP{I09)|Fsyj
zit{~c`CV5jAM!nes<7u_AksStm`=iQ&V%T5X!rcs&#+scAul^Xo68%7eFR2Rqk#>u
zI?;E`tqNR{`spGc_g)?AYOjA-#l<RrF}daN`!_5A8$tgQ;jza?4Cix}$t+T8eS>VJ
zr)X2?iWasnRXw{a-1GUq#*bq<t(tJDP{f4JhCx$V7W@928aG`J5l;aCF~bv%P!WbR
z3ac*|8a@6OeJG)#?-1zx)8#swC%76N@HS}c-vLuM{Ia&xymX%+99RA{k5MQx@jp$O
zbi7{4C^^?>O_XN*v|0nlRt7NT%d$)zHADGRO*4S;W}KBhACN3hVg^UQren>aOeg4W
zhY#$bC2OOY+l~nUQ6P^y-du@Di6#xMM-axzuw?)vy~dwICi$z6<GQTQJZ$YH;nDp(
zLsNVg4mFQN9g#|2fxoYyL>~WK?r60E*-G@+2~)Yz1wP;F{a+_cjbGu)Cw~u+DJU%4
z6@J<8R+;o|{cS0F67R6X%*h?)CI+I=q$$Dl?8c3N9`PvC>ZY_s1lTVhNHrVK3YX$r
zAb|{Zrj4cR?Ea#aK2jPJZtv5I9sp}8gC#`m><HsN21WEfKz$Wm?dHFsSk!*nJj1Z<
zgKvI;)Kae{(%@;SF7U7L9Qn;gic~48@lYVue2j*}GlK#c<#gp-m0D2$nPl-c7^C&y
zEm_16ZVT|a^ugAm6rOmB^v`BY)r3YlFo_Y2G+D3jvAJmEX8Tci>S|=O=myxB`UN{D
zimP2KVK4<B!Z9#)4(8gEts_af<{rjOHPHWOP)B~78Eig`#~t0BdUFz@AG2;mSn4lf
z#v>C^{3!(U#?7NUecs4*yan<d-v7vVuwVIa<vYl?(&Z{P1j+kuC=%==soG&cz7ze2
z5fAdul`>a$d&F*$KCAtAXpZlY<KH|D>S_$d6d_y1E<gnojI?0>-_muh{W%q-5W%TL
z9oSQ8z<E}S_oW8@^C(BHfigDsI3K3i=fgDY9jM=>mwvkyhZv=vj_}<|e?mE$pgjOJ
z8`bzQA(8nrzM9);zW=5j_zaarHV=3+!Q3J7$2OeJ#_$^kkG_10J-@POh*eY2FHK~S
zuNdoQH|%sx!Jq}@z$`>kvB^c^F~&N`mHL3K<ws&up_EZnq|^1MVw=~R^y^@Cx~64k
z9PE5-*OXf4XN*T4mpJo%vwHuG?z1#8K$nOM>Bw0>Q=@sS0X>O3z%W@)VMFy{Z_uO(
z=DFradb8UHc)nqG0os3b<}~!yE16UVE7r?Ls@Iy_U0~7YHG!IuI$Sl2hwzqk7p=ZW
zy~fNB>Vw5iIbPBq+y}6klZ$_8)D${sfU*DO3Jyb=#Iv)y>{1YNZCsLz^H);(e}n0G
z9S`tv@=jqtj?uCTtm3L{`s=}hs{SGKfgBjy`>n188XlPn30+3HJcAp7)ItaQC=&x#
z^aR650jn1ueh??+30RAiMEq}qp$**cz6Ht2Szj<3VeVh9Ko1w8=YOgnzwe;{&(F#E
zRqH6^@qMcsm>m6C0NJVY*Ps6Xb<d~?*~qxe)F~EINLUyIAUi5c*AU{eMpY5T%-R3#
zPy=^+c@B&7q{k2F%~_UAI`QQWRhPE4uawM@i9t5TQ%jp2c!F~8V6d^VS6NFn8U(u&
zXD=L2<N&RpZ21$7Tcjk%0Hl_A&q7=JfOuxy_bzwYXIp&<j5uz)Q_BmXMA7svxX&w$
zBX$907f(ZG%fQ?`o^-=4lz&uPmyL8%5GK)m``rl<vD3{H$J*Kz2gQzht<|R@=$A;W
zwlLww?lwCRsuv`0uTLZuPj@x)GUl+~pcg)K<aZL}`%pGhYc6^x`u=^WOOLc#^4fI_
zMxz!FK=<E#)Ib$hENwhE#Uk?!i<)=YVr0&b8nBgk6vyGIw*6`==~nPdfm(O=+O+j3
zb50!+ipiT1ZgWI~Q}i=B<p9pEhnu8Kxu)z>uljr3el6|A+X}BmZ@|8GSr5WD85MdU
z0s@VZt=Mub_62PtA4QXI7ZnDS5V?5bS0cppPRBAY?#`3$Q)T>7qdBNiCv`zf2~2b0
z+wGJW;J`6qyoz5)<QNqnC)eL0A`zj%yx!~;5xHB#`ijF<Q2qi0_+WdlKKYr<Yg{gc
z9cJxr_`u)oK4>Q&2$;XvTzWkN0y}^O<18Iui`dP+m}$<?YscZ>Hl`)<Xtkv;iYUW4
zMEA&Y^YxiGc&=m%EFO<)JMg89=``}^QR#e)2riUN-f+>Vnf*SsCG+sNx0frjqXmk)
z)(a$}fqX;RZ~CJ`Is;<pEKf55BI8g5xfV+IP*Fuilzg+7a9=D#@qQ!t3fhaM?2fks
z_4!<^kF7!`zY+d(-6;RTM=jWn8ydW*!ti))<IJ6!g3?lx`Lb{)Q(>_OLZo0^B<1MO
zcl|4<JcW(g!SK;Q4RrG-c<!4&0xxUyex{uc?%J~7LY5QXdjiVS!3g28qr)?S-~#1h
z4r{cdqoa{AMWSv-RRFrA$#wrhR_bpgr2wyBn)MG&>A~^PtA~-KQAJzmw}!)xNIrRD
z1xPOdNO}f@!E_HsqA~uYp6?q!+wdtVPSyIR{#s}G`4I6kJ)oQV$At5_Z*b-IPyW~b
zogAf>k3gbg7~O=<d5C_)rZwFrQ%(I?Idv#A^pf*XB5a?ABfRLo`S5kcS6yyW?FLUH
z+q7dWT2*6)wM}Wq-`B&bIV-;kVN(>!3=RyoeB<M><7GXv%40F;p>Z5e-ze}E$!cx*
z+1p_;9ffSyUX4kx<IW+>J2Rm@etfw#R$i>VQ-wyg;LdZP(0hN~Ob;StJ#)yr)byBA
zphF^^E3&7Ly}rPAT}|@!F<}E11}~5<p74BC4JdH5lzIZFyO6m!zqT%fGH6^Umo>e6
zt|`X?h0dk&%q%9@G;|&k5@Sbm{ll_zG2CFUu2avq)s$71O-2EF&MFa}=o%dyq?hnq
z8WXbpuZsA8jqdxiO{i?BnbvQ?gfF&UT;A67Gmonzq~Npbw$y7$9x$&?Mp65%PCXB6
zug9GXMg;C*ZK@EfxC$@<!>6yWr|7_!t$1cW^ui>7xwJTuAP5SU$p+15aY5a6-{v4Z
zQk<M4CamOyPTXR7{tq+!dgyg5oP|lFek%C+xYN9zY3r}JyT2`aOiD)9+)n9RX>~~#
zge&X;U@@{}-;U+VsfJrKewe{-B%~pCFOud=`uuhDFq+Mn6?bdw*}NkY+LJiO-0uR^
zGQLS&03@28plY{<!H#moj7p*Kxgo+j59t_{#AwQgGZ->W-2=*i9FQSWJve%P1Gi_e
z!Vg171ib`;uiBf401|u-Bk9H-tjkNn<?y4azYlM3yL|m$=HUIA-u_U2?gnKIwrS^(
zuRBMptAe?QAGYDKW!I0>;1(vX-E^Qsia;Q8j@@9ssHn>){2v*WVhq++0j!&Hsd^n1
z#QDnRa5RT0F0td~<1y2@m!&G(zY3JG?)_E&jd<Di`#YU?kYDcK&A??&iFMakcY*;_
ztXY-cZBrC@Kya@X0kd}CpIuWn#d2CK0HnfI<;{Rv0-YBA{L|1^@o!L}RzrKF)~c8R
z%^m@#=;(R(U9FR_i?eAQ_E$XGE-=|2v2y>3vZIqxgL69S>a^v-_Q0n9yxeHo%iaAE
zM#!y`(<63FhPMqx^+f=mPWcgpHq_4ed~ah${`(1+1AJ6!|CVo)rHC`f>K9iRSxGrv
zPwUMNQwOEw<b38o=5b%-7A{QhH?-_IITW8ag0})I0kNd6x0&!bBl*Uf`a2pTJs%6(
zqd`C{;4aqHSL~YCz&fV(&ZRK*W4=O3fR%Z_RzlNNU)<rlU|hYGxp&47EM{MDH9$2>
zk{5Me6cc@n3Q_bfN<B~c!P&(LE8oXW^&fY2t+i7*U(<#1jPD&75zgreiL@MGE0TU!
z4wlci>-M4^u~d5gK@W_058$+;@7kjDR`!CZGeq0`3-4ipkeCiw5T|!orkLjWos$Iz
z(i<Euix<F`<<fDNYR_q8fs(Jw8EnVFxT-fV<*ib!<r;{$uqZPi^41$+aWXTp-Dh#1
z5Kvgu9`3)ZJ=<e@2V(Xu-fswo*N#>lADVDcsfJV+|GacetGTeXlv<!)Ak7V3i*p!D
zL1f(37spi0z=8o_k=t8l9pvC%A_EB_%N52l&(Q%RpIT~X_?vzcigX~%B-03w?rc>m
zinaV*zdhT(8Ni=?Oo-L*YxwTi1JVO-F}#Zyqmg)}c&my7Js{-oGx%LhcjMc;IUX!(
zz5hfi_#u?xP%pp*0mE;8jk2--85XVS8q)*wo8rO-6?gM6q#AW$aWClHtKKsL)@3aJ
z9AL0($!qh3e@Z-@r`Ar|B<$w!$3I*SK5IX@cXVr&IkfPNy~vJ7n<%O+IkQy3y6~Gy
z1=#Nhr~(~8$5hz3nBAs@_Q{fE>$)#!^!c?zs;wyt)L~Ty-@T<cN1$p$lJ^?aWZ#4T
z1E2>wyYpJ$x&s&6OV~U=ihpE=gHiIrxA4zUEM!al=m*C$>}*_fH3mhf_aZ3zIUO|R
z-y{QIeNP7X#_UXayd1JT@)-W~wtd&VGviIdwrmZauu~gy63#Ai@TU6ILXwaQeJALM
zf>@8b#G=in?eS^ZEhGJt8w_Jp0#bC0{K!M9Y*5IcwUkeuVqEF_J|J?-k=UvGwm8f7
zQFHLKF~|B%XB3_FjIY*4ll6Sr(SzEEsUx;ux{9%YysbHZcmYQ~Ov051bLo%7tqt@D
z2fK9YRNk`d@i0&`(lF?^7G`SBLganm5qxKj6~7ZdU=b?*ZO#As{;1H+E!GtdqA`aI
z8H|y@L)6d%qm`hV=nc4<+*7}wRpTttcc3#_4I2`e&J(>~ntecJDg=Z+{_URsufmX;
zP2wL+7_+tZ$d{LwW)>Dwiewr7_OcS7s`9I#-;2PF{)c{fN!CWr)mDFZ52ypk*uB`N
z=28dpg5>}t=}Vl6hq2>B!287HWVYcP4v_A8xZDm2$lV~LSgpTnEg#Ub3Jj<2-og-*
zHkt8%2+xRg`h@b{iM<5|e`cy_?b@ue4*`4=rwwU>(>C9k>y$MBSJuw5eOzyAD}&<M
z=-83^rh?D)ddt2J0TBrn&c2}=fKBSMNv%-_h_cMqtjK*%P5@<^u%P^Yfj}fU=s_8#
zb~*)#4eI1R*6CZ=*vKl-F36jXXh&I<zcOwk8_8D2I^7<XRwNIJV_He-?G?GKV7Irk
z>ul)#l>lDNUlV*E=puUkJnk$*<DDKlY9PAz{ydJGAOvf-+5z-@-&?Uce(T+uv;zaA
z=fKotrw!Hsc41`!2Jc)TYuQZK<4RCGsabJejE6@Oi5LObT~)x@y;C=_!*3=3-9(+V
za_&)y6{W#gR#5vhOaN}fhUG&-7h${kd?*M<a66I`h|KO{lcurUJJ*}8W*`p2bVKl}
z^Q^5E_KCfu>|a~SGK?YLwn>-FaxDDMNH$Hl%;8hV^SC8)%P%%AqXvL5Pb%y9!{j5C
z_}mWGxxxbZGUkyyPlWqJarRqo#8Q{d0wFf%M?qycgPpUY#<Y=P4)DUV?P;>X_@B?6
zFrO(aFYd1T5+D^e52m1^c2IVlZjX<aopx8_MBoZ@=l&`P?qrR0WhA~cwr|4Q4hgkH
z4RyLsDe!dBw6QRA)#bJAoi2iM#uZ)M9eW4G(?JpK?;k~-7AQ+^-M7>O|2H~KI*)Q~
zX>n$@twK-Ib@n~){X^>+jb7Qavh`NlZ-*yew7vN4SI#x+n;ruD7`53RkjOxmbz^os
zb}bgiGjPtn!Ny5>=l-(o@#0VGs_6Hc6dCy!&-^QH2p}dj;u%JVy1kYgY?fI$FC|Oo
zS6z(VEO)2$_6EOB;IAzXlN7(yr+;90R*n`HmK%I1RGBq6IQFvWXWE|*96Vm@JoH`G
z2jm|;k1v_6si1**-#~;bBL)5KZ1w2G<vCK!;Y?A1xx8G<Dc|Ovboc3rOpy9=qOx7G
zHkLhQD+?2cY_qC20ub}6XU~bVYuLqT4$nk79hAT|zJpCQUEa1-hUjg)nfOmNn&5y$
z-nF43n7yzWP`=R~u3whiUw@uoWt`jFGb@x$;?e!mYC9Es>XKX~PJc1Go?DKIJXw}~
zeU_>!hrTtMpIiP22>N)yq})x#xCepnE@+trKh>TUBWJbYeBi63r)Gi@iG<$)g$6|u
z6CSm=Jgc+)4Q8)T5RWqtczNbdb0pXO+x15Hl3GV#<o5uCZlF?hn;$oAygXiC9KYe5
zv=#hQ2%Th`bv8cUYkk4NDtp+<QF?eCOoPc*<osB>E-)>9U$AB1PcLG!IyLW`946T{
zCZ_}IT|YbJ_<JrOM9Jk2+_=t(hT7t*Qf5R6=yi`X|6aN<OkD%H#@r=$KR<iMeNQyN
z;L2M68sjh)0`t|e^b>|op-K=C$ygG8`c?MsRR{i=u0s1&6lL7Qtkm%!_|Bq%V+u;G
z-7lTlk&ainWriRf)HJ8E=h8LSXLrZ7{8Om;(PW;uL*k2e_Z?qIsUkoQI+!CBv9m{H
z+z|@}7w7FLp*uXwdrewxgF-)#9fUWJ6<ClzrM7ZjdN`f}v852w@$ylnw^;h}@*M;%
z*Ada`r}Ea;Bn|VmW_xSOX?@V*eYoX4NF{hF6QO;H>;9beERi`#9vH{h9z!rH!xC&R
zaNaodi(I@h$g4Tqv)*1l-BiWG@hH+)CDX|ZXd&;mRy^33+?c0F=Q2_v@u+o&VHUs9
z=ZxRMq1n!N={X)GDWcDyR3&t2<bJu5*x(wLNk3R%YzR=inur8}^`ko!)!Mv0=bQ>@
zwZiA&82RrgHu`V6_u#GheuDQd>?FeP&fz{u^b^&p9a7Wz%v>)fqNA{2Q=M+9H^MHW
z(>kJWv9M__N4~@WgNL<;OA5yEOhNJpiHYz`C;zzE{!Em+oDN{tP)OVn4W`51REv16
z#-IYmK#`N&o{<k_bxS=#4uV{J8o~P}!-?~@h`LuCQDrZ9t(W)RF<u+gME>5}TLX3X
zXLoZj8oe$VJ^!g1mx+KmTSY?!vg;LnF~SKKHW!x&>1l+e|EE$=q8`}s++9evnk|cZ
z)x+v)&qG{x`$yYS<;!UYQ3IKpy7Jvq^V4X^P;gQ~r<l(3F?j{qgLTGi0Xyek;Kcl$
z>PK>!w#LodJ#WajFxU8e$EV7$4@QTQ%oQ*yU|jvU3t%?Hl+SYE4*V$igdbRa5na;<
zM?_9m>%2P-U+LyL*f^34(sy`SNc@@Z-MCe`0yfT5l>{L-uDMQN=IjXJxJXPw);~_z
z=y6e@y&zpTD5Bt{47wa_6pPNnw!EeL@N6`(1>x!zIVGW{`?mblfEZ$vH*tqNcsA1T
zCmb{z+WjDdPG{HJiDU=wXzKnO3y&?_TSaO-z*x~^p{kJtdd%_ptj{qtz2D>0S@YwV
zSCj>zXO8T-dGx!1>IZK+88dTs7Z!==?6$U~Zj?s;A`|UicGx`9F5@rEo5nagGxD=l
zxkpo|I0$?7HOZdt1%O_HdR=plzuWqRnR&$BQd#%XUaSm9Qrw=BZsDHO276bbLZHz5
zQ?lEUGDSJw-P-oX__@Bam!md-R>TNvN`$lv+AUy=4gqgRY&{QpXr1-}-qYQ@ADvU|
zzu!5fTdZ<W6^UBsfC@DTLo&QA4;i2MYoKDNbw??^`H>QQb-9t|3pLb2{sV?x5#pnx
z!UX^^Y?im`x=9|1e>x%gLb--`yp&p7fB2{P^d;j<AxI!K6+nm*HN3;KI?3ACcv1VJ
zFc%FEdYr|IjJF@$2z>;#Fv+P1+Ic$GXGeq1RD6AHLE}!l^qAmGv7)>lyBtVCF*1}?
zsPalMFM1E@NsaOXfBS6#+>6W%9R7~$n{Z7l$?*Y1w<!e%gPeUMl74mnjKpr|SU{x)
zNC`(G2Fm#b#3HfNNcD|%5tE;H9KYkn7t_-1!h50T+gJv3V(2@pS*bkiRZwzs@n#hl
z31fC@p%@*xhbs)<IX?7X7og5;9)WCOfOrxhN>jrzG@Koq$G|^30hR<zbD0+CW*es*
zMb<HZZ_Gldb3o%e@9OBtNwux6!!rFIbs#D8%H5psfJ}%cPAA{*H_7T_e*VthK2O10
zs4STl73G#{;mgO&X-4N$-wL&2v|7HSM!}*j4^!dpoX(Ea<jF3!)BO)mE`n*a*0flt
z&Gc84YLl^pId*n>A>1|a2;)9r_v9nGy$Us-%5_SXT#&5Y8>xLorBe0TzfB9#|5#E&
z?z2Jny%3?0r9X=;mtP<wo9X?H#Upr~c<wV#*ve10ITV2ukJ49BAW_yOj_nP2F?==a
zfcW#B-CmCYu`+D!B+`9jawP0KVBMv~ZNE1qW4AUuSh8cYbjQ)AqcmJ6uGI#Q$AVed
zaGj{sYB;F#9w5@Mkb(GfQJoF^wMTbzmbXR;l^WDl3T`t<GxKJyttqrXQPymReC4J9
zalxG5UdM0vbux#SK&@YVyyeA`%P`GOOYn+g<2p5ZR9PVfpnk9r>1OihkJ`m_C6K<3
zL>zd}FJ)x=nO*K|q42whxFhRDsa>Hi9cQVC((&Oo{d)!{fh1W!qmR4M?(HOx6p8WQ
zRUj<yYHunkCv9Fl{*^|RAHPgo4>S42_3Lz`ui;xoPFAZ&OQAlU0~$e+I=<W2y>#}X
zSEu6=iVBX1so}PgNKo71B>{H6<Nva_qgPfj(EjR$^sAo{f?0mq%L}CR9Q*?5onvoa
z3c(8Y#{|i+-L*D_VKCc~;UwHDM3N22bqs<BDk&X|E)ZO3uaM~U%q-%i#yAjF6$s<#
z0-{tb%lS)0^E8rFTW_)GgJDN(4kw|r>E_=Vs>iO$(d6TG_5KvPPUMbQ_6yCcJ)P_>
zVt`@Hy{7H4o#AMnTP(wlne>PsrCTKxp@(d5vEgQ|Z@P!YY>sTHhi0Dw9dc!@d-AJ<
zmLbG(6>P)7(_91pxz%RJNs?}dD6cdp%9GtG9Qrxzpa?wi=7kUm5#MY6x!eyd_6+*&
z;sVaD@0Z&<zcXofCT+n)u^bxHojCxR^G9dr&aS?;Dy3tQ+yA9__xDsA<;%6NOF|rq
zUjQTQf#>+^7BJOK;l~}p2s{H*YA=0hA6RR6h0b1=7pRw_+#x)!20uFWe<$#?!IUqA
z`Nl_G)#6fz*Z&Bl2!;O+JIn#$vsI}C)RoO(Wbns=_b>neAl*~*MboU$8>gg_y*U^U
zur!z;%rk%f^E7ubxKQKRqmj@-;G{_nsQkYOx6yZh3S!T?v>khlHI_1f&vw=nX-tzW
zi^o#9n`K`*xLJ=%*D@Lc&|=AI6+Sl`Ub(8$Ga<Y&Uho63+Y<BHL2yR~KXuD*ss2UX
zG9pi_;^O!OGN4m#-)H->iruZSbQ*c<pcOJ%W};j+8cnLcBb8YICx;1T)V9s;v1}?=
zm`JgGvz`KBW|L<OsKf1Ftc!(rpbAGt=4(~y4TIHhmLVQRY?HeedhtCm;hnOK{&Ztn
z#-AopB_La9C}cU^JUpr#nLbzK5Ctb;=zIK)lYyTFZBK8g@vO?B&BjX;<vfryeRsGM
zBGcj|{cE-b(yO5D*PyWIaaoF`vh<P;{_eUuhkI}<y>-)5L9%?stCVtH<C`kYnn6p_
zwSCbma``jGSl&wDYF`~4rHfiL>#{-f6xM%XdsxJn*7ouU#Xdm6<QW#>#vN5Bhl@)8
zvdZL7mRiLd-F?T;rf_4AgTJ&t3QbAxwL)o<F_svZMZ0^)=XC)d>v?Fs!`03X%gC4l
z7gM&{Y4EWC@XPxhOHVZ>XWUrcG^$y%$wHp)sibss@6Ryf5omU7Jz65v!=^>_nbM1H
za`?v{cpatldAr(Azk<~yX3om}0><vM8h`b`7jQNF9S?joaZkg=A2~yjZ*u0r@Xoe_
zxe)Lg2TU{7j_YUXipc4d_!s(%GdN6UDt$><xm>5p-ZV)|2A$Un1Oj4f`N##7ZU0?P
zd1moQtFh<X=i76zT&7d5h0fO)KxwgBtq8x<Ha#!Wb~PKj6M*A_C(t@VeIUGqXOXB>
zd{arw19i(j;_3&p<ulYONH4x<XA>!ZAg?z%f)xy9)2{1}s@B)PYmu-k2(R9IgN||G
zl&6Vi-B*I#aq>1;?WUd{V?IwM1FO)Ea_X+|e3|Z@p|2jo?hwlHSmB^CdH?&7FZ^;5
zwW7+x^yj;!JP2KldmXTA8md?3D=OV#`+}f2k4qq+gAitGWx-Was0PNuUsLSetZy*j
z9ayJU{W$(;W_vtpvQA@OBS~W(C{VmjKelBX>gj<N0dTEP#B@d1WkB1Vpd%L+{YQ!j
z%it*s%6J@{!yzK4q8rf5-VbL4XC!O4C>><&=gqvqTYDsmJ{BvcBKMf3%TYZbq-BL_
zV_5j4Uhd=eNcy+gTg+ijsGg5K4~*CH%U_5?>R)?#skN-VWXar{#9o~f0W}6}RCUU7
z673u!%5UBNOK@A3rZ#$;e+IW@ehpI4ZUHlsu^@YPxYbia509(wE_)oR^+99o>7R0^
zs&_QB|C&3cE;^w2psKW|3Ia}TpWroEA+x{m^)6k`_8>TO$aa@6lIDb6Kcmu|kSWu;
zy21cSvj={#&3+Tgd^X1ZuI_o&WMr_YeBr6dq*4*2?$0DP-$8HUyxn;9?L3j*_Df9H
z%b3rEpXbk=_USD5sw_dq$XxbE?3v4Ywq@!iKE@wyHIiPwN(Fh>33g|Fc#4AW*yB%v
zkyJM?kaNDV_hj2inB8>xjo^{IE~?^lcAoC(%%p2UL;*G5P1onW*&GnB3&eLZO6Bjs
zzTe&j8y3FKMZmp}GRgbMyYI-skE3eOa}Mt;Ka6%`01=yDYG6X|c0W@#Jo}chNU_54
zRUNZQcs1Nz@LGXF%G@qn4j;jNjtA3+oE&w8^O3n0=v}2o+k0DA0VghA7sF4b34-I5
z^%^L*X}dUAHeHWu=1olNQ$=fRb5t`OWO97gnM#NiD{r3#zA^Y1kciI7w{7$CwlA&g
zsZ*tlBF8{Zpa9!#uX!!ao~E*F$`_UGyP^c>i?@{p8rpT{_e3@UI(c)4^<%dLaV!a6
z%Ey@`08=1??W%>fvs1`b5XL69i?+4VMC<ONx_c}y-lt|AAgE=fruumG4)bPo-9VzO
znswGLY+Cp%8ftc$7ezRH$bVUI+OSw{7V~!dtVZS=H%~>>lg_oV<%+WL6wQv2+ueKC
z^#hmg1P<>+J=@IbmKF#2zEkw`mh-bu9LI;(IUlbuIX2?Qdt>OmttbQZ)~Bu$GjZ=7
zM2iLCC$F27!oHCz=2c$J%*q=AOUNWk&^ERHSqcBAs{)4)L^<)(u(G-7J+c#UQ;r0Y
zD21{$k+@ZbaUTm*^4Fp3Qt#n0avU#@a?XhmvfnMPkY{GtvK1Ockmnlrpkm&y^3~jm
zA3MwBuJu`g5-La_gOAsHGTWb-44iY_eP!~hOB0Q&$g=EUlgWPjIPl)!OClD{yB2|f
z580hxw#GJ1w7EbfXHjV)>yDOrg&J#xMH-r#C`ius>vhJn#p3BgpH+sMf+^?80aKF*
zLld215R2NL>NIC^fT}9!COyN-SmR9NpnPTWs00(EcBPQAp+=J9ZGZgfYh6Pw&@pF*
zy@<wpwd<JD5jrzRo_<eRi}jb$pDn5gPDCRVotfoA=E8-~sI86r9c*8}uaPy_mJXR=
zv5a2EL0YwRmJXAkV?9W$I?yb2-=RKr=$9Uv3}{oi7CrY?`NFDpJ@S~vra|*4PjwKq
zj-6>%NbCgl=y6`fwa_94tc|nu4A=LQy%IBFe4ms$v_<en_(%m_gm~}pB8<@o2JBr8
zQX0n-X^v`@Noll1w(ZxC8??GSdy|i|WO|St@gXh@q;g|a%L_<4x8r7`F{Q<9gFXd|
zQ@GUFc6(#aB*&zBJYF8^2Ih4ialAh(s8kdQMcAq;B%b@OI!8@jDh$V-?sQd)0-0Ze
zS|5s7!bJ!Av}7|V*(M_K&f**<N=4pDX<QOo_E<oZFB<`wUoU$nvE83*j|@4*WPK&X
z`g$BaV;}0Y-g;VQ+as{<;zaj3sum>#9J>+MF!cZ{HhXnrFGZIU+9(Ovzk}^O>m0*^
z-Yhrb3~D05ff*lSLUn;2kyOpe03^3iJIr{2<#<nA<eW`^0RH`;6lf8Xhc8frEl2?m
zwUz-w!s@|skd1cgB?pOmDlzg*$`_PCTYS%)=*S?hF8bH8++UQ^=HqL=n-CP*Rx%OD
zAlWc%cWNjvJJTWcws6F?iGSkO(t3KgD-eYr6FPSbsTjq6JjqjP=tM_D6!v7Q!iruX
z40g+5+?xXbV7<aABw6jPmxa)_<E1i*;CT3+FZcUG&83S+V=U(#pVvx92IEGtDpdu)
zScXX@NtBC+lC;<sUH3m_wz)Ulm~kMAeVyUWWXM#ei(hssK<0E4G+5=`K$V8XQ{uH-
zYL-$m|NUJyqIklofi<eS!7Yr~)4M(at0{;DGjshG&IV;x?;h?7_2c|#Mg)Tb!@ng3
zfA)R*`#&%k;A($tb>fqP?^Y`ab3^>t$E_go2oucpBn|S-9}mLUf^_|Ha3A*Jd*Fk?
z{qdg|kbizY7_i@-3U~-N6b~5s9}lI2dDQsFRtV3-tNVF#g>wg^`MCiGriJ*Q`jrBR
zJttyypU71ADJg9f^In;<7-w*p*}s)Ot8}8WbjW01q~CL0t}$vg5CUoSZzpzr>Rq2{
zC~Y-97c%Au`G3s4c{H1A+xM@nvb9xhRTV{d6*adMMMGyZt$Eg(XDWsgv+7`M&2!9Z
z9)lPXs;DV32O+dd5HUprF}zpz-o5Yrd+z&ve$Vr~@A|D@{<D^>T-SM?*LfYs@%?;{
zQ*RrtxmPO8^?k|`#P3)^<@$BWCS1SKv_l!U`?Rc(Z(KrSj9O{~+KwMtKVr3g%$5+o
z?g5_)tA}81r`jg2ZkV%;Pm&@mM)X6QP|x}*s$6n~a$4R@fEBb_ruh_#%9z3!ubKB{
zA@EFRe$)8JaGJcL4f<x8f@3p$Lb|l2Rf~<SHc)4i(G#IgmrS~xM$O>NZI$~uicIH3
z!&7!ovn4k8C5Yv^QFwn{W5eBZG>GL_y{D<d3=`#&TZ<pIv*|q&BcH9o8AmtYe0F)b
ztTr*;Rq$mm!9r?{`DCP+GM~%P2ER?L@7S)t8GE&1i)A?1O~q8Xr-KaC^%-0uLfwG%
zPC&a{=T>}j^k{PmSf{KOtf3nJtQTH$drd0=vz-{@0(yEYH5XSFC({|EHLEP{b3!$Y
z-{hgI{l+T$N;Ah)dm;LRb)DiTt!BDo)|GKn4}%FODzsbou4ANOL~ScnFdW*9|6H>J
zZEuC#T|ZP`V!JuiAg@%{G_y;*HReoaWn;-x`E`plJH6*=5XH%@nyO?`1@Y|Hq~_=O
znGb7s3ahj*)KSr>d8j2_t<F}TO{#6@x~I8)D~)t(f`=b-50g%<W{|_ixg)ZTPi<n;
z=3SrOhgk4XR)wvfmyg`H%jzE*=6q*7Pv0&zT|Bm~ld_2hH{F=LqWy>m=5#La%vQ&D
z5pJSMT%yCLHgkHJC(KjCs#`BJhP@v%L1}UsqW8+BRX=mHj11(~^=oG~QhtNVgB-`X
zvTwF^|ELHCGesqtDH-5b99QqPd^q>Tw7}blNk?+VUu-cUxy_|>tv(>HScc+gaqdn6
z@u5Wsfm?70q__~kF~xK1U9)%3<)z&(Xz0M`(vj98`d$y=p-<;=l<TSap<j<}>-<}q
z_0cbkq8dsMD@6<;e2!lh->^>!a6+v^N^n`vAF=5UUvb8MYd$NEn9SJY>kr`s32~;t
zSf3Uf!ox;g-Z5n6OWs@rTpGi$lqS;`kELB-872fv-9Jh^*yE);;F&B@)VE*PM6flp
z-m)XMtYvD7YER2hK>nD~r?nD@WOeK`h3jxm{fEpEkN@!k$&o7aA;%9>+u6&YYa21A
zK4YgVaFd_PRzWPd@}wDV-4U0m4me)QA&rVtA+jmC_!pzc#rst^_K*KH)j_?S$7V~q
zqocxKnrBvY%+U+-aZVr;XPUD!OP_MM)y#2}MB|2PY^vtpF^{g=i(m8KqZKfR+)5Gt
z=5z2vn@a{{of$VLa5N=eoJYk?m@kPdhXw|w7&x1*b<b)v$fJf{);3MvH2fk}B3Gpu
zdtngYj^nY`5e%cE>YHE1ZcI>}^L%4gGb?fRUr2T8;OkINn=0Nm=DcSAJ$NAP3);lw
zvp3q(CnY|7-y6xS0&&1T`!oDnrsZn1K_9)OPHQhu?;N+fKotk$iX-@5siOIW-%rH8
zVQ}-Aw7hL_f+eGK*AksnuTyL2ltp}SGTYh9=3dY!-BG6lF6>NBf$@t3K{410Yn<CY
zLxigyygt6x@QKIZELV1a+m#EDnCmvZd{sY09y5I~XIN%1o%UpC&i|Cr!Keob9q}^5
zmLJZ?5x+}Idu?J1BN!W{bgURio!S;g2>cx-hJ}&LU@Oeqoyf4y^7O1ZslP6rrXlM$
z8gq3ANo`l?^PKMZEwsy-D3Lg9R)y?dpPcXgaT(XHV#}|`Of~O`f5iJ+z|A#pij*0m
zGfS}}J$E7FK`$=YWa=`vsvCP%QkwTr&W@LuTkp=qw%dPCoIk7AIT6njt(;sVLn}3V
z`M(@3(0iPy(_~6hp8;Z*{^aR1Qx5qpV0Jl*+daBUWUKAfr>#Hdpw*|4n2v6vxGtPR
zjIizex}&R}DJYpKj6O`l7A+_xrFZ^Y5~VN6*n360=)&VE@1<Fefm>~zs~jw#>PR{M
z3I>xpoi%vo=zDgDb&SiKECEfdZ&q=XTd!2%M+SD!k*^oU=|dxbe}S5fAA?VA_=F&A
zrYMfa1SS^yF7D48@Rd8v$KSpu9AFva)Y<M}D!dii#(2?w+wVSIW^}|e9>P~7;|@x{
zT7_)$31OU)OrFj($y*%@RzMO%X-`5RYj5Mnb~l?e&c=CixJ%g&5t8p9f;>?Nx3YJI
zJ*Pa7c+v?9LCM`kYni!cTfnHmd)X87oRY!fwsMFWfK#5_)>ey&T7I#X56th#7)R08
zhTIc8*I{GiliKZ7g^&K1#^?j2{ur7D_H+smUIw=-M#C#aGdP>P9Hzd!-?PS<I8Qd}
zj+W@?V)e>K%B@xB`%-$h+2noW6NQf+iYd%!p4`OOJHJ^vT8TIyJ5})O7HmoSuI3+0
zrBK&aCm(S$auyhkR*a^S3FL3%w^B*iin^A7Y2U^YXE{^jveY-tN12FZ*^WAT_L0Jh
z1Me-{xh<6=Ru<jjcz^EYaejZ0=?N&cetAr7KMd-<V!DP<EHkckGX{O1o0BBqp<5mC
z0!9rU@26)(q$RZr<yLhJ+Cp5!Xc`*R<sg%XO+Y9tc4SnNh^GP`6GAZq4Si)>K}!E`
z-)WLw^V5`i93DIQ$Njg?2hq4`0i7@gTQTO^VZiBf-^RwI8sGtQPyD6qb5t%0mD^@6
z=6`<i!u}MEewl$X<#1-&g(+qV?ru*lH?4DRne-glEJ*WM-m>pEZ#F=ppcRNC-=4#0
zDv(aedhC3lV+?4g1Ghlqcofg}?=A5oY1~vSnZ!&Uq2-`UoYW>Bg<7ce>;ztCA=Pok
zw%{Vo;Y!JSue5T?zWSgi!5)j^lyc*ozmm)5m^lTX&ZKc8H(WgST;*3VNAp4B?OE<I
zesjNUSxHCx)*5v2{e!(?t)kfeEY2MhZsJsnaU3$!CGNw}HOTggl+sF*Rd1rYkbcG3
z1~dQYLSkZLorC0P(KBr(FJi$_%bs~cRJa!Iu8-5q{_ds_I8itN8YiK6mNE>|;-Df9
zs0W=c#|QX~U;QYw^xQJ&xxcMls9{ft=5&}`d~!gHmRrHs+4;t~Aj_h>Wbi)*vLCu=
z(zJ#>`A3Wx<T2Uo84+N5bB0d3Wj?kgM<q!wcaIEno6zEv_ZxQxDeyT`MwYafDVtfZ
zBfrP-YmT?N8ik2(??znWqjhvNgOp|Z=OkScH7!Q-YgVUpcHe4SUQkc9+bvGmTO8Je
zS&$vnBLE+No;u{wYjnCFP0;CZnsr^#=4q^v=C1ARg`#Xl)~APTf6V_?o{1J$Xf$B6
zNS8UNag0(+5iio|R+2lI4ZdyDoI2DEOOx6*R;$EV4W;_LieMG7p-xeDEFDHSL|cwF
z6lGt2Z)ozgd%y;nY73QJWNwxs9pR?Gc|~0YsmvVggksrEqKZdHs2{tWkfKZqpAce9
zLn8eyV;Rm^K~<a2%rtIQ>x`%W+NAEuvWRGXNqi#z@_QckT1QtGp%4!C__6rx0B)cA
z`P9Xy!G60_Fy)lPg3_7_YSUB+cYzwoxLCK?=|m0RZ`AGH3OiinW&hhA$u3R<_tyOP
zKiVAZM*x=>5;ff$?|)WmTiCFAaTUO73#^6w#b1O--SH2R@m@{0u<0L~^?tilMTLx4
z1#Ev)G(x!N<9v?}Zqt_>qsiv^M=Een)>ON=*5#9T27>y+>%mhn6_v5~yzerj-+^TR
z;k@nWCp}Yu+0eJzxZrh&orX{*1I&!;U57X3y5f0^z3O>)WrF(Uw^y;Y)a2@ZSh0DD
z8E`b_o+rTplQ~@n(gAj0m^DG~0AcsByhIxlJ)JbMc979@Lmzd8{q_!{?LKx|^1Vi9
zm*e0NZ{x-rJ4xs9uP)kECNk4ry&^`9`%J`1f(#w7+!X(|+<Ks5P}v#JBu1}o$UIB`
z0Z}^R&dbkqR>%yHYDf5`QB&e1HnxlGFsk+OLD<#;WNi^|j<+98mE5yfzQ}m+ydhQ6
zB}e?(v(-Z1>JTO_*&p@kcYU<X)uH9l6whI5uKXCckp4K_Q!!9VL(Y5cSw^blblF27
z8?{l>w(YB&Pwh9r)+0ph;0y28-9TFuYCNzL7(bEyz@W!^>a=zrQw@0(Gfc#%T4vs~
zuI?8^#mUuUft8Vc{vWB+?A?(fL)CUOi0NaVYg>~8zwcomGA-7Jo%W;<z3r&c8GDwa
zDp)kFI{jUY;(Sie;(R@>_JA+&0JaJ*$@K+oeQ;k;N{^tlS6PnKnsOkmM;l>{E$YS~
zEJ0bs82*6isHUFFZ<E1!y3X_<(^o~ZMAy6itZ8LcpuA7)<n*MG7=>5@?13)myycNk
zMS)wd1`<D>wF>E^c&_G95633Ba(7L@eGB7M1ycIw)2v>Q<20hRYIwEZ1IBmH^gY^N
zpkJSNB1HQO>gK$op8adRi<Sv}^Nt7l@_@|`$bENP`LLsX)2C@#;WdRsq-vsY)sdMJ
zpjcKP#UA^Wi?%+FmDc16LDB@NhW~$)O8z&p*T}1hOBudo9R$wUXr=D@W;sbz)2@fh
zdz9t*T0FmBC)di3D1BAxkVFc&$+nt{By+ST{1V%uWz3W}8e5+Z5m>6Je)SF<LryPk
zS%v&HNHlIfKq?+6H7=q0@qoRN5uvtT-*np|cuZ_vn6#(dVr*U>Jd*br+d^ccz7us(
z)sj-$*Qcx7-p{#A9-S=*UnDt}Vi&{hDqd_)#pt-!cWXKj9=-_u$|_O0w##!oWcb(b
z(6DkHd%j~(;Qb_Vu=!-mMPl8~M9njyk*6Pdrzp|uL)KIJ4NtcZWmO$;N<?<=XMKI<
zUn{@Nm-w-THHrN*1qlYW+Ad?Waa-lDUS-*eZ)-K>vzQ0XK#izpYh$>T0c+pFE(6$#
zcLmUfqe#Nqk~{4JK|g$=S@Yse#PyU0<t}Kl^0FbG;$#2Sh8!*6+j_-*_1<ItmG(f0
z@t)KR)7c%ywadeCY@8)N68KL>OP{sgi#y18CoY)Qs!h@0HV4b-1)nU)@`EF#RPVkt
zja9=1k>6tmjOCk~=;YSuDC<iSRw=~u#TP5?-(y?3PI)@J*GjlpDc?<2ccxxU0Y6{m
zUxTj;AL4JWb1^jsYWvbf-Y#c~C9Zl0WZ2$K{`%>;?yu|wsLezHciTZ5U{vhA`%#`Z
zefZLsqUqsyP0=|zdeD5<TbR&FIiq@CP-1xIgc_;uGGbMT@$xKPLu|C`gWcfpZHA{J
zT;Gv6;g~UZ{Y-vWA3KN!`xZG8E$Uig`noWN;exlxT9YWT3wlla(8q=KahhegU0xz%
zNPI8?=oOip;W(tlD7izp+GQ8g1d`$_2k(_Heq(-qyY1Nw*+zLMH-z1Hq|T>Do3bsy
zi$K^iVtFp|-AUP(bX(2d7&^^BNcZpO{KR@8qyZ?G5Q2*rn$}LXTsR79i=1&iP|^jj
zV!m8;6U4s#LW@z*$%91q9Y{4OTAcG)i@!BQdJk1-+aK&u%~m)eP{B0McKQxdAYPUJ
zkL47EZ10M394WngKqTLH7%QxIS)#;q`BOyt4=t;{Yi77Z4m_hX?iLN!AVxc<o2D+=
zcO*tN5)uxL8eg_x-CuTa%9J9J<ZzHew+IPS_7d{8lbT{bEy~M`Kg`2F3Cv<H)Myl8
zjg~oDkWD6hlXP6V=IOPXRz^KOEE$CCeBG^0o?hXe_Eyf2^VR@Dox#%;`}$0j0F@X8
zaw(2;w`zMW1`MH1!V!nQCzDL~ck=`$o2^T*?&RNT{3Kt7MlcVZb2@ERW7TpDao+T<
zVY+=EuC`6r_36!=$YT5GI-;8yJ)1dE!#~cZEjp8oLCK^$=()Uraae@d+B2T<?NR9R
za9(iHHyG^aFw?WnVm-1FM^Jfbzkm$C4b4LR)`BB0*Wx4$d7em*%;MvEb-Ypjnlqk~
z7m1N#Hp5<&7U0lXW*^j%5;Vx3(Q_qfi~V}N|0mxVrTyHHbuUUuy_7=<L^G_Oknk#i
z6UO2FaupsmxqztGg3!epLzgA$)JR%)k$*nfN+|9$>BZpe3Id*`cgv38mAbxinw|Wk
zrV;+cnK4aXSu^miN!42>c*_wxzh;NySoPyc@5L<awfXK8)o14)CrI16)X#qx{J>v<
z3s~pg+k~^m2|JfZ=!ISQh|(G&X5304xt52*xy%-tP3BDArcYGEMOw}A>mPY08|-TY
z^-E{#uEU;hTxg*V-q0;GF%%>F=xI{?Ox`ka56*heU=ZU!ENPdfMMZwT*f**bE<$EM
zpG>H@O&e6fCnqJ?>7ODB;Uk0{178T$hxz(cpHK|Eto44LHh}cTxB7u|Yk#zBsjROm
zI<+H_N5e||1HT7(i8;@Y*kM)u8c&YX^!c$B@1qf2xDW3A^yR3b3M@=dcXTLTHQ9)Z
zYs+x+PtX6iGF7~0(CrVdJ{#BPYA9GGGS@WdMT_fuymQ*Z9SZonY|VJ=EQ1zK{$NTW
z<mPczHTwAH8bA%>B~Y?X&cJj0IrjE2YHL8tUdJoRQZ3W9yHl!B#bza+cQ;F38N8UD
zsC<v}|Dnt&=kvf-{qTE^ReWa5r*{^<E!12={pQ!eV_=PnS3c>Ee`bL53+OExE`(Xl
zK^=UZMOgacFhqayCu2m;;V|s&=hGKGjDwJ<&VJ)~A#YKZsNXULFLKnI$04Ji4L=!N
z9!HdgUlc7J%D+aoi=oB~*`D>kWu1yjmzmqvh{q8>c+m!(m*u$Y@JVUr=<H3>NTV1!
z?VwaNbyftFR(ah<mA&o^%sFQ8Iirq;k;Dgd+<&W7;gtBw4t(?N7aY&~iE3qGAJxGV
zKlDR<ALx6V9(NURuzeXiin|KSz|@rl?pihN^hagvZ!cMdmgDd}|F%kjf2RKD*j~-O
zIj_clAgh=nVLLV*l`07N0G!J=0?G4)i0pvNE|nTPV%4sW$6uDpf8)=qk9vhgfP8I6
z+>G@mg~j~#s=QWa@a5#2^Xcl{OAG!-*3{%f8@cusJSvIm*lUId%LmM?wyzM-8FC}U
z{v;yO3@|$nVonDRx47<iC0e=2t<SJ;5Is0!G|!k(qi3uXAQWm~1tN<rBA_16D}peu
zGvNQOIeyhwWt&qr?<hdVtRAsbYT8FQP>gPHJP30~p=9T78)9*ml1C^**pzA7R}-c+
z84^pWPVH`JkUnB(BpRL040h?0kzKt4U2;Sr;b#|olNC<g4Dm;FTinji>6ekTlsMAZ
zBeNpizvBq?zSv7msI86F;rfw!ctKoXTHLx}Te-mVWLxj0O_pN4B8!1F2}|-MS=Q@&
za(RWeeu}uYyK#QA&*qK2M&C)`co@cQI+ZmqGoB|gu-;-A;ev`1B>({}2$a^|K#?re
zB6c;<h?`HTbKkcP6?4f`LHEPuUOg?;gpNr|AnOmfeK*bbx+IRq3YifjKz6y}#l{HK
z@081ImWj-2w^L#dC!&ffvD74r>0O)^Q$hMiHgP#T(ZKVJOcsGbiEp!6Q<y?vD9D#2
zOvHJn8Ku}Vaokk<+*jjpyurTrY~B3Zg9WZ_VZI<A1n=A7FCx91rI9rPidW)p+Jb)z
zISjt1{8&l}e+y2!Mn%0RI98Cj8#Y_G|5bPTvywzTBWYJ)Ct)LfqTa}UExi*3y7J-J
zir6~aZ$LNzvlVv3*~{U<>j!D@5HU|W`9D@&>-^%^_j6KUm<#-rfQ_r3@cAMYUKRU|
zH??S(V@PNWQsIjYA+>tQM&SEO35LGC_60@*+ttS@w@A{|g?YqxZUvyWi+-$-h(*jS
z-ap<Mnd_VLKwla0o@RMAqd}Pz?<-hwyUKjS&$Uy>|E6VXqm-k)sv&ZScubD22H7e;
zW{x^A)DD1_6t1mUQLvvJ7+WO#tH+#~TFSo#=PGWsbE|rQ`x^yyukUtu_aUf}Y}qim
zy5hjXa&|0r2IW)nDM_BAY?_{_q2=xa8QV@B+m%p0zZ^Q<5<*-cd9W4Igst*B>}7I^
zsWq&(Y&!h5B7Hbw-{N_c%TB4lkLLNRw}`(;uUm^4Map^A;b%<f!5}WD(Xr_vXbShM
zR$I%hgQ2ixpih_6`xXAl>HG}^^w_<^Y3W(NyYglg0Wuo=ni)ftZz1;Yz|QJB{^MKk
z8AxXWkscqPpu-1G)Yrl=Tcb#Yyncw6<GyB%)440_;c{+IvEHj%<l=<s#JsUm^9mpj
z5xkhVB_~$w0W>C#!Jtf)PcSS^qcEGgC6e=LmpvOvXN?~;zT9F=y#-E`-~F!2@xvLH
zSGBjbnqPVR<jDMLv~QihCd=0(O@;o9!eqmm(eil_U${9pXe_tMi#U<nJ&YWjsIi^a
zMBf3*pt=r=&(@k-$jbu0HWK}$UePT&(H3jhmVApAwsh3?v3Y;FXsL<U_E3V<9SLuj
zNV*D&SX<g<E0rry@1+Jr#llIHZR*oZ%EQM2AVB-^48S&}zz)0c#iOdsji?O)QhEc9
zuEi<M_C43rC(QfR4~Jc`1u_m3&Cg=d)!^1fa3f!$^lEt<3bF><O8i~J+28Ii<-IGP
z`{(Vt6>l~uc+T*`@dCc*i^DEGr}arGYh&$j6q;(rZ>#)pU<Sv-S2Aj=fZG6~g~B$z
z)+JNvA-Md3U&vPQd_o4PHpg7;dpgpEfxxorLlR}^f=+J#zG=o<<1zB}%Na}CBe6Sk
z>LzPb?L6sV>w0k@z|b;=PD(7mr5Mn!nCwHq@}dTbe=61Y=&X(xbZKT*2CL3Q*4>k-
zvDL4tyqOl9nkYWN7etvr&y-l^7We{;#Lq1_2If*>?0~6Z`(%sC94&7+=*g6fkd=nZ
zWNT6`l}Rq*xK8z^>C4p2SLP?xSamz$sgf1yG7I+r1YwY(dTH{Wb;P8nvjD*%zt`@0
z(kiMdbF4mswE+ZT*DEW>uP!^CD6@fPq)F+wHSc<?@7$_aTuyW{ajmg&EjAPC0PkQY
zb!C0OzXq#O2yaw$iQ_Kix{6{lmO{z=F<7B3u+4F_x!8_61vhdn8!8ixPq%c{#rsl*
zAFu}Q)yf}P*9peo$Pb);SuglFu`ckU8zoA5>7WZz;`ctbCrPLt^fNGZ{2-@z*4r_V
zq*pf3$cY^}%0yx<C9SK~y|!9W6#MzHeuk7EW-+kU=M>9reb|WP^4Q9yG!bHk?W=^E
z{wQ6?>n7U6_{aE~)t05iEXuKRGsm&A`nKWEFT$o0^H7;GB~BC7LaGbGE~+_dDH6T=
zCqIA8Rh&+I1UwA-OJ8Gszh~3yz#sSk4@0|i+2~UAS)<J^cju|<$1>oBr-=RC75sd6
zhU&?5Ou>WDZqafxcy%gnTq!Jl&7#J?LXm68l!%=qv#A$=?aSIf+)ojsj*lBWer^8l
zDXyc&vr9ff@YxrC??b0cl?=4zSy%aj;)RFh$c?HzQ$7`cCWPhpSogf+S=+zyWYcq_
zlLRKHKi<7?@b*73J(yL6O^x5>+;U{@BFt9hE(gZg;;LD@qQ*Sug?63s2hCkBO{N&#
zPkFjnDaY2GLH2QYQxB`y()Q*}!W)f@y!)nW_0XgJ@sEOrpDHIuU9);VVs1djN?kN#
zTG3K!4Bw8;DHfR*x_EKT-l{<ke<nLRe~{EfrPsw^=x+_zy5PN9cIuJ6U(P&a3v^Jc
ztefHImZkQT$#cr_8@rD|4y&!Zi*cN?dndz(At<lT4nCl~@*ZDdZdsAQkeL?w{lzeH
zC=J9_(`Fzx6F{FqEvLL)TjX|jt-p``K}!{$soRH>#w{f?8*}5TcW4XMKI|qiKqnn7
zQK8*7+bscR!PI1=7tAc<js}q+tyRMg(`kNs{y0+Ub01R9VvE1{Sy^#TMFqZ&&${R4
znu6O?5ckT96XgiCbK6Akw<VTuy&Mc?j+g|7nlh3maEpVZfy<AyS9g&Q-z+Dlr4}2`
zaX5G5j}V}d-O{>Z?e@5<Ft;Uf|IJ-i)JxMsI+Rwk-52vqJ0S1v+5_+ISW=3)c!Lq_
zZrj^P)}db&kJ$^|sk{;H^Iz>%Z_+Oqrwla~^p)Eyoae4Eefd&QukwStRsZU?()7nU
z{#xwBYFoDJINaDjsSD?iwYk{EC2Lh9djwtsj=VN9an(3{;7q@dMV)Y5IH?ga{*XRn
zuDe{=FqV!UC<k77SJUO5T{?jnHLNRYXN-zvJY+9KrB}Csna`*TsE+?ePEQHo*XR_A
zBL%XC2+#+t{CJ-=5oP}kG?p%<J){t68M3zv#*ZP|={+|+7BSgoVJg0G!U+`UatYAA
zz7R`y*A}lSHQ)BJDy7w-0-sq=!liaJOF6eC?|Q4R*J_1b#B=E^2&Z^1>olX%L34H2
zWxcmc`*^Gu$c#XMtYum4FJawNYKfA_NSBo?AGHLnYCEk2v}_}@mv{S+<khb+p0inj
zhSbQv@eNDy(zc?bg4!q>lU13^_&VR@*p3#3D+R8X4qQUh9le}%r#D%&8K3X<qzM&<
zzX@B4qH@DXt#qQ?WZx&4M;BrK>IJq*1^whfX0%-oNvz1HUzUAm!XRy)qxkdg>BXJy
zR~a&KwXZ&<gi7Z;PZqKD|NRS8Hs2nJ*3ORwGP53MMp1Bqa8H8B+kRS&vP%0;cwxo5
z(w;=g2-E}{7!8H9y5qmvhqmH*j1!&e?rt$~+#o^IMyzPKWxdoMZ?Y&2b6-e?ls|Z{
zl=f_Y9(>|<4_xuPCUhu}KU!5=+1<oPCE-RkD->c>(L8_=U4Yr2w%P3&6*O#4{(S0^
zn{h~q4x-s&?t85QDsa`=ayYT9CsU*;oRyTuF$BbzMYr1Kz<88kJ!yr%>+Xs9p7_D`
z>87Q!qvpIr^uB6gy6y9wPq$=WUYi4*05U=MZ$z9%df>&@$9fNAM6>oK{s_nJJ+TNm
z#pz;aXCAoOPLW-T<Agly5L_Or4SS=O@k!oN{%J-vi%y}*WAC!J48?om;JVDa{yqNu
zrp#u2iJoR~&$v?y-HxHnxcndzj`o!LrD}$P)H6C2S0-vox?!+*kfRh)!F}9W-892}
z9_E7<Et{(DcHS5VuLlK~)@Z>pEWajzcA8=KFnfw<zj?h;zr&cim#B$Y+^$iD1+NIM
zQeHU=)PgVdc=fDM1j#r;rAz21w9Dg%dadNCblxYZVe`F(#rYLgr0Z!zV+g+rbqBSv
zHDC*L9E1{_=-^^t=R}u1ZL*NA^3T~gNP~RorQJ-!6qjUBEuCAr+4S}B69OL;kQo?^
z@Xsl@xHdHtSZY+3I$DzN>#AFBU<L;-jIBjn+5^ei9O8UPtmEXig>xEfUWl`t^6A%~
zH#rbxGdx!3#GhdrM3gx}zI|M|`ma7-3rCb^em{GqlGI=eWa7W-dv}-~pT0CC;q5uJ
zM$jWvQD(-(gpMkMr%ma%v1d>w6V-&332-B9mCO*VAyMHpk<&q*jy;)L;{YeR)<ItG
zUpCGh@7+R{ywLVPBr*BUm7rnvXi*@(TV~nof;_xUWkO$xjgTtUj`_V}saHl}67JkD
zzFKG~>%R~g4nM}iJaVh8L&2Lku+RdDrG-YR@Tw9Pj6BIu2Iyi_$7yG734XVkDjw%q
zO5$WU`gH0gz8wk3?uE1>h<{j*i(}8SeyIf>L6lf{$Pp=JnFe#J+6$Cbp^xVBgoFj4
z)Z7|8TlTzga}*mj7`|_d^R9ge!f-u}IH#NQ0e>a+Dsrj5Lnd&|PohI+Mq$FMown$x
zVo=?v-m=6Dx|1^Igw1K8XIiX*+7hy}Lz%^^`X%r9?Kjk|V&}G|7g&?Y;pJNWHY<ob
zt8=d{4_@wSkq>_GjJ^{r@nzXR`f!!kHUqNW?ur~k%KM@-Pmm0S>RrYP6#^>UJ5&TU
zqkq)!y(EvfctbTZ?-Yq+;=PPxZ9{5_#`Pmi$i88q<^>ZQ^Wm#=8J6RbA9{(Gn1neL
z{S<s=v)g@_$Zd7gQ}}F`q*xJb9f3$u7+Cfs5VzwB0?U9zt!NB3s@s@nE9xqNgzX}*
z&DLo|q&Je}e`iCeWpnJ@0mAKLhQzqjQNQ<0iNWA+^W6!(E=eD)eA>Pt5XC9nQe7Eh
zQ+Jm>i3A96%KE9D+?@CNlVPKwY0dZK-H#TRm$$!1v=B17sU|`&ag}(~b#&X9yMO;l
zTtG(dH2wFHqL&i7k;2v|qC9)_wX&OcSEQ^X5-Qui#Mqz)@@5upI4%e;<M#DLCMq>B
z`lUIsVG-j2A0L1Av>aVdZSgCTf0t6g01g;QY-t*uFSyiLWyHv_c;nlaWbYRr1w#88
zV$jNVMyA?&IF7icC1b1b#>aJ`=gP)3X3u5APgle<it#X|)go>grgOtw-r8#nBcOl(
zBxzxkAN5MXV-IE8V$$z0GN#~qq%e;r?sD!e)!43h{Y=_e@Ze^(M5n%--GDi!&c2lW
z!$<)K(=|GdamFx)l_&b;HlY>V=<uqpR31mE>6skZr31KBKfdpiL3Mo2wQz@_X7jBL
z$}OWxmna~Jd5-nEgDF^oNhV0D>dp5iU^8a~km$ih!x@Le$x*3SCfTo)kpVWDKRQPp
z7i0Q4wh%Ql=)m3kiqYJdIL_5->+=2p^-G&?OyzFhwP}=E#T5~RbO+mV6`iF#gz#MA
z!P`!THO0>omSq>x(a&mZ?BXS)B%mZvlxrPDDcUJ>6a7;0EY(z@f|F{=ERT-QFE=bm
zC(3ooxGvQ6Nddc%Zj7;uHtx*j{Rfi=ch~giJu|73lI5PpT6#GKw;m@5=5q(6<O)b2
zU~J7Fc~uvKA#x>dFVNg-$)zUDZv6=oNy{U}FG8ELos!ZYt0qnKO)sdsjM$p1S7X=4
zTa4>(I~H%(*J(+4bG_6)_HAovID9uCF~GFpX+DptEcUkE%Hf@kzSJ^T8&ow^7jEI>
z**NDl-wl2rSdc-A_nLt@CLK^72ri_X^9;+(Tp<AG-3XQb8MER#KGd&{7i#gw9szwO
z|NO8HC#=i${7F7=^D$Fi?JILA(bD8izZ<k9B0-H_fB;p5$^bbZnO1+%j+%W?tlKL=
z&&!+jYd388+LvBK8+eQ+>G=Pik8CJS8A9s=y_Z$P{(qoYo&O@<qFs^MgMp|<0GR^L
zb5-0b1sh;JE;s-FOBFo`(R;tNVC(iA<R>esZUz)yZ$U{%s0;PeLNM|@BN3locv7sq
zP{i9i6a#ekBmwbf!5<jVB>Lm6>$ahwnu`+^+1S}$+Q25q$H>cN=9R667PnvddxNBS
z$4movPrFj;Y*%<1fw#@SQj*8;QvU);(lf}L-^^6FcJ<Cb2v@gn=V{)=So_*qvGp4d
zs1CYBKzVC!8<>vdn!c#duAKB-%Sk?FDLSk+DKz{Gn6$)Cq4vYhsG1;plAbkCFZ{I#
zXnsPS=AO;-Vg8A)oiOaa9!k{s6S9mwH-`M}6K>=t0>IkuHW8`SReYA?^%rXb>0Y+(
z#9Dpl;|#RmE3(a)!RP;;HY!)Jcnq8e2VkyBrX!;B685!c@SJqBrJCmZC4>Gn8O2c*
z*6nocPhc{~`a9kF--*d5X}p;YqRM=(t$SY_7e%;nrlA?$p^%*|WlMpL|A9;eiS#r+
zc>LsK$v<w9=FkBMp#=HXhqYRIV?0#vhz&Gn<!8pdI1zh7vW-8v_Ej^(rGo!coysNn
z4X@QBbDDyE(v)bpRM*8pB@qr<ffN2!uX+{bFnReuS*rWdgS6fdCp8oNmg!(Sf2&<c
zE`rb>yRLXra_f^bDZX$O^tn(I&0eQ?L(NTm*Kv00;aooJg)teb`|8AhP^xsWrjA|z
zcd5z#7>0Avi{F#rGGaZnr-#4N>bKl)dnaC8AOjq$<-=*^2a}V5awngZ^Bprcc9$J3
zo%-w`{e>1i#C~}zJ}`P|vTwS)GAB*CxwPk=*r9!?(KaFJ+&O8=qnPrax{t&wF^d6T
zv{lsQ>8GL4{{cNIZ@Bf1=*ydFu1M@OO^3MT*1^}x0LbgdSm9oz$Z+#TwAin8-7p0}
zvZ*WM$qP=?*B!_zU$5Nm&CTz(O?)N*4bm;%UtlC#g-r&fan2ZcZY2W67ZJtuPhOgF
z=a+{0m3Aj1x~&+{1b*n|*Cn7rbwzU*pZJV-nu0o1Nm6Ftr}lnvAoyz1d4DFqOpMN*
z9(}XRb1ZE%W1L_4{UYhb+Q;}c>6y*%%AK}r^&gi(jgZg2GZ)ZUss4|CV<{bpw3;6_
zx0mpT=U<;Uu#nB71v{Ycg%h+Po!d?$r~bw=i=U_I^tr{Bt@70Xr0FI94bUW*pKt#k
z<C9LEe`pfdVKRkD&H0PRHihnkvP+sogX=HCY8u)cTt7^r9I>NFziQL{g-(qCsz=p*
z%$soG7r0j{YQ2;z^a6h{pDTOkpjA)D@mE_$X@8A+>*I$se>g9EskF@M1$lv9mXqV~
z2Z~Td<)wRGC~Vd8W%qj+<_~H=e4qxa7-lt9$FUlIf)q>~%_a3b`E`ozD6QLYBBxU?
z6SW_-VyH$#@>4xq_}(~C&VbEUJNgda3)I57@gU2r*l?#0C`)(z<LwM)3<f8{k#R)s
zK4-S6caP4E22%R|v#VV}Vs6u0t^vkzdC<z;Nyb!x$;gTR)-t_Gxxy+i6TKA;^|aql
z&k10zI-Tx4iQ2v5ceJpJ{2MlDbrAqC8fPQ)3&3Y7WL+ZA3^Y6{O83#uJcu+u#!1yF
zesrE<D!W7Hp;lQ%eeyU)cn;O=csxmD6jE;Mne&EyAJ%>DjDf2-@9^b)*nP|VTGJ1=
zuJ^H}56LD8K-11`NzNh6u||QPzCNGRoCV2K%G#Nyyk>SvDX!9LQr5F3$X{j*o*awY
zr5VyY_-c&WcFi@wl#y0yQe*0V-+yiI!%5o1{W_)#7gs=^MdmVwWX%IG-5(18pu$t_
zig~Ln{xEsKFHzQ|afY-TO!d4jBP~E?u%=!V`B|=V{148It|#P5iWaaS9SBi6dpn%D
zV5UIRCp<<F3iPY|X~GGGKeas*MikXMKB@H^PuG+_4ULHz5GW84jjw+D)22bg;gmWN
zdG)ND@~h*mr!HOm^EKJ<;7_xL=wq7X3j@E_3=Pe{*d#6tl$XH%Vb91r`7`EFQurtI
z2YmIxKao1%um5PfxJh3bA@eJ3yXx6@?8;QMshp(C_eTffuH{nB)5XiW#l_AgdJdTC
zeD{SuYw8(pkcw*JQFan^t?>9R2`kmU6}a7T=v#-06VwI_Vw548e(Hg@w{uR+o3q+w
z%NU3LJ@TI0%H{rDqCVCP=>nP_t;;Ac(^G$l3)D1M%do(nU|b%?9Lnw0y!6dKiU=3f
z?LjbkuEZfS%Y)Ge#-4!G?EL2MY^O&0-J+sf61V5mTx<PCRjBX`IWL_EKJ^4%)l2oP
zG$y9WCw@6if_kTN@>RFSwU35YL6EJHIS_e?%Ds35bWw_TMd%^*&7L`#q+=yKDBf^=
z1+|ogdYuxT2|5!ha+5o)Zwto}N=E7*m8h@?E{5L9g?Z1&gErQA>ek{l<#i7lJrCpy
z4d*&n3;9*-SI~@C7Nxf{n!J|ED7fLy{<P`DA1QeyXhiC#82N)oKms-fG)5*O0nu!z
zzQ#6U>NZUSunc}#I{u4%=7}8pk06Lw8t;F`XWE=-v(C+l2M{Q%bRc5CC!IH92LGe)
zWBY+e%t$A~^(X*Yg-0dy+MJHr_b3H=#me;VEe_@yHCVlOX@SFkLYaaIVy-pu+)Dw-
z0zZjqfC8TV{!gpVJy~a5<71>~a>XTeSCtz{D=fN=wd_Fus<7U~<@ImvE`;4%)@hm<
z^7#Q`Oe!}7{5O9vaO|j;JnfVZ9DKkj>+!X2w0YYIM13SCV$!Gs)y&M3utkk;KUbTD
z+r4TyG=M)S87m(w(k`s^$Di#_Q!o#7nauO2Zo@&xXjs|*8AK1+QxN{LUi%I13tQ-N
zNpb6*JS|=x77mV*6E5c@b=IQypZ){PT>S5VnZ`Z4P27QQ#&O~kofMpZz59G$K7>0!
z2~*!-c*H6G$XX?7%na|BewSr!o0i7J?w_R(rNW%Y;p0PJ`8Co#jPrJOULD-_j*h+p
zDprto)-eb^F8DzV+9V|~JQMG^od7iD<-6$^Qt67^4`1kiH>mjV?NTQl;}))q+kOm<
zY%qSyH$L8?Hi3U`iH_xsSX~{s?`%{z#LvuU7dp%@1Ef1k{r8UsW3&sg9nI0ghC_A0
zv|@=TX&MIpzOpd!f@K`briE(($r&GloBZ(_{x@wR=@5shHb<K^4mu^}`@1Be>Q@ZJ
z$rj@#$|~%jxz1&#V6H1hK(TJcMRgNQljgtT*~_2yKcz7bQ5kZDH2_l|i171zAEQtN
zT|nvXid*XlU;F$om&;c<v0L6$YqxZP{J$eH0Xd_uSidAO{Gwo<^bF9==}1<yWUO?M
zRlCq`k-mMj^d)n``*3%K(Kr^r^?~1!^FO-d_8j&+Jew=haNOjo40G>}<x%#7i8}!J
ztmx@5=23rEy|OCpmU_mmhyLbVR$Y?_va{Dp@U_qF<bjzr?dU5qPHaohr2x$he<blW
zpqz~`z@#t|xn}!wcl4T}35p2)XWoX-*6254-<~80vY*e!yg55K!{vJqDPr=e$rbq!
z>%B6<U7|M`z-K2r3zrvU)qNs{Bo`2+cL^1qXj9HnLiXF0X1E!5G-qxBadJnbWUOqI
z=sdYRVW#OY(Zk}q18pJC#%bCS>WIsf5$$5bvc@LQ#gM22Qg__Q>e!es+|``r>}fEB
zPq*-i`ay12XkDbo%>oaPq6@rRLusz#RjcE0?T2PQy6Wt=Jph7G^bNpZGSdA&8B7#Y
z-?de_zg|8KwdJp8o^i>$_xY1C5+oXYcLo;q7lb*j&k7tz{MSFym|XWE{rG+7G)+U^
zKbPQN_P@hzwJ}Tba#3^B-JeO`H<l6s5HlueO~w#1EvX;UqMfO91=3PqJO04@-3Seh
z;Zx;D_jR0+&9BfK%&FB~&YPzi<o`VjY5D^Fr@9DShW-g4!#rOiAl9$dTfu5~aNKsc
zvEp`CzWKSA8y^yvO#||54?-?8j@^6AWVle?vj5YIC$W9r6cEdtKI~MSaU$+MzO`J^
zW{SVDfC-}Udjw&u!3X5|HmL__8FQcFcy#uHAL4o966fEc$ddpRd85?pAx^L9H;VHk
z2zgPE@vxh5eKn=@d@hHBTOoTUr67<ZI<&|nW>LAmTtmSaYLT8eU>YJUYz`m1;T1KX
z@4YegPg{^E6OfC^9^*~#zhF^U!l2f98=w$egU0>FzE+`-;9BRmg}jmlPNf1uMC0%Y
zWS@rvZ$VtN!mYTG8q^wT=tKW9r}kEm%+OSDxW@R~qwTsa=g*DtJywN<Upz_|`qOhA
z@=vSs_I#S3GEDU@3L*T7M0UapT8sfGvhKRu_r~if&BqAL71{ixdcT%m20cyony=db
zEqmTq(wcVwB-!?E(brFJR)u~o6gL?FqSL(<%sq1fb^3ON`KkNqAig>M<>~RX4Z^z3
z{=`)SRc8WMZX07Bi}CT$tnLW50j)uaH2X}pP!S1GE2A4P=gjNP6D&mLtWB}|L_@B!
z`SQD(xXpp>^xKOBHmK=^nw-Bm^<JQRPPfGeW?~-?E+k)LFR~83YMmu^$#vHbpIWQ)
zka0WlI0f_{yn1jkKTMjn5=2_H_6--zIdgNQMR8|qX$c&Y|CyFQ4oQas-8S?6{Y6Gi
z1^fj0!Gm+&DL8x3(@{T4OIDIYlOu8GU@S&Q5+9&`=6GSXzml5U!NbRm_^(s0p^)oz
zA1NAaJRs=KE_0*of%&NeHYFeb8)$>pUG;1e*<Zudun!nDQybbk7=AyAwUC_84-U5<
z(C0jHyi`iNj{JnY&LBJyIr=nZwpjYc<!4Vuo7ukH@6>P7p2;(;%(czuso6fRA}NH4
zAChXTsimWv7ABPUPZ3WEHTtyo7N6Pr4(%+qMh0{zG1QA%3``zAd+?Ak0LP(o_D4E3
z6G3peG0A4$S3q2a08KpkHq(zj${!nMUmh1*l2me`J|%N~+)+IFjkv1s>O7)H$vowX
z5!%?7b&y{DJ_Y80_4~W#Z=bndFF$JQl(LZjD&SW|taUybupnA>J?Ur=(_XM)NWJ&$
z!FGY8hxcRG#u@$wxG8pFk~N!@COs0z;&8&n%g=Ij(AalOxbDi!oJo-SlRQo6)p<uT
zzBt~y6;Qt(p2EUDu>0M4sPU5oj~O|tkSU-2`kEMXNf`meHpPJHGL((>(&yld7`O4{
z-&WSTw&ynv$%|CkrBynyo5-puE)PLQ>A2$Mx63Ia8_mwcS0FJ|7gyB~ekC937D*u2
zrG~&v;Wh}70le59<RXwIM9LxTZ?&P6-)MLkj312A2A&W%Xm_<+5MZ3@<_{gGi=2w>
z!1wm~5d6kyU6&?a^WHKZx_L}g6B0@1n3XepCvatVGcjB$g0a^0)79F3)S2HZCue62
z`kOx7AMp?>)tb*wJg~SBt?*)_Uyza*E7ki>lzob)RwntO#oEU&z<Gg*|8I%u;kj$O
z#NiJ4hm0(SpPM)0lM~lu&T9Q}Clln~<t?)-(f8R^ynltEL8_s^%;f1wkhdB5Qq`1?
zR-R}YD{3F#CS0A5n3l0;#`AdgKH`rTme<@S{j0gJwiN&9Z|*+6(8>Q+nyTW?w1;i7
z&Ltt`**>e{PJN|0`#eVS;{ngx!D+zBK=(%*fHW;a|3&A{6`NVUL>=$dZ$W3C2L_|>
zWd;45m|&6yRt6fnHq*!A_m4gR!0TsOJOkWNQQ-hkB)U#crPn@-t)+<lS?UdMSQ~1S
z&awpTFVcd(R&40>=7KG!fuJIW-yjmSE%VvLQ<`;F?A0{t1D|rWCi!MbQLkk}wT<wb
za&!`_R9G4LZFub*Q+3Nc<nJv4hSZk6SpHTg>a$Rz_^89qpeblKp7@8I@9KR>yVZOu
zG2|qf@!w^o!4#v^)!aPHt(Shs2<cSI2PDH~yPm`}G?RM_|9_g4zD)sRr&NJXC`Dz`
zT1#`@ktoo<CtFk{IDk6SyKQK|y)*I0zB23JhC}8y(*hmh77)j2W;fkeSL`XH9S>>7
zJx6JSPK-Yv?z5qN8KeqWkMt_D?)>qkR+c|x>m_f2<E`;QzvO=!nt!qD#|L?tmi?pr
zeO2Vfv5e-Qp!fG?=*1elV6To2LB~X4LG$K3St*B{Hwh&|kUA$9G_tcQj-T9-&h2Rl
zV;9t}O?Eb}vd-NL+^gEd`Byk33b<lL!{#>l$-80-*V9XWim$#)H>NSo3B`}hasfvc
z9P|+UeMA}P;!;~KWUlOe+is;U6S_+nvm4*4*s_V~x|k>p#rnQ5(ZC%4&F1ruBEe(@
zq|wyK7v~Mz&k;cQIEs(sbHrq}Y*WjP5_%e&9zs|IFD`7W2)1DJJ8t2dUK#cMZ0=H5
zE@0Z@+~W7MJ;I-#AfeX(EA+HP8yW!bN{W!^(Sv?h7=C$L(YNT{>Rn%lAJjchqF}vk
zrzhOx^wnfQjj)?5=r1;@3c<#XgmkEGtt#f~z}&4{M(~E9Y0^u;BljqD#^0Q3VL5H4
zobTOKdxwp?qNDfl=}PdO`uXLD|8zc)D*wy$@n@T2GYvqGS|YE;6q{^ZaOv&%Nt239
zR%-Yku9;1nlthE{ZLVm}3@Vcab%ttZ@Dnts(S?eJOZRSaNV`5OpMvY$zV>Q#YP{hf
zb>A~GRVrMsYui~j&+SEmC`*wdWUA0a2D}&{Fzm6=$5!v1v*q%(ws$k6-QQnVLIB?t
z!>ylr*JmoRcR0JfOXn(g;K5(})@;SgKjg#1c<S<Z38eAikFGVCh!@ni9;vz;x*shA
zAU)y27qV|D_!Vw;s1yT2JI8OU)NVytplfDvd}Ak3;HQ~D5$B`Ld-|=MsznjenYwK^
z@LF?g^2-Lh1Xb<;4t^_`7^#CWd5`%Ve=gwL@H1a<4=X!i#c?-Lz4(Hm3c!{Oet|12
zne)sHw^=Gmg1aC5^f9FBR1|SmRr$Jqc?xK_g%5V`T1RU_Wpddf@Q$qwgY2>gLjJcX
ziX5#{bA5@tCB!+o!(m(WV#mwO1C2BV{atsw9^8UAR%EVO!UY*%+VY^@)H}2Wz3);I
zF9Ws_*#l=pcXeT_Qidwqk~ar)5iwQsu?mL)Z$PN<4%LY)_wEOe_ffVt@ckz3^C&n8
zM5kRYryqUAs39QAXcP{>T=+`fY=8iL(Pe{!q=4mox9c5rV2u(s=-pe#Rw@<_R{R#a
zd?{%Hsfg#9)z<yR)sG{96WYLs)s7#BK*ujH`0TiB#|W}|M)f3#%+>8lOu%~e$_D_u
zT+zM5FSd68H>s@uUhRUIS<a+nv5;n~e*%u!{3MdA1d#Rw^vg}yx7*&bE4+;T=|c3^
z$WeJL7(vQ-p`w74u*i#s-pLMAO>|gYBk9)bsZ;lV>U!Ra0j2M?3klc>g~it36N2XD
zrKUeU90WwetFQks!(GjYPQO#m%W<SL?ap%1EGr9}s?%}dW3f(7{3Ta|wYt|RS}yLu
zz<2%UB(3xNwZ2T~S1`S?Z!gcNLy!4GB>!^~calzt>eZ<4s<6Yv@-+_QLg=N{!lm8P
z<?c%^DDO9#-0Z9HfV4)pt%y}dl9RxJWAQWi<s~_}i36!(qlas1&{9uqJscEUe8q6m
zuzZkyMgxO*n2DC4X27jJ1{m(XoiyQg#?zkdq?J1&?eeEqEqaq3AW5B|QT_Uv0i{rW
z^?@Fdv}rT0>~v|%;Ni827=@?rAB0JM=RT^&+jJcoFlOu}V0oO?-V=^NqXuhtNh3AH
zjO{DitLuT=Ery51jvpt1xqC@})`5yLEjEKy1KS8-!q&YbtQPh;HUR%PK{S6ydt(yr
z7=w+y(SqGILO8$*{Frk!ym2p7m87E)_a$slLx7*yKJ;sU+HE~3uH~X$R#4;A^fUDK
za?$bK&80#($%&@HwAXmc9Y7UI6}^d*HHvYCfw?udVgdKIwf=4xO}RR~5y!7ntn{jy
zt>Ou4WkOe2SWRwwO;wxCj#+Jg1-~|0^-LQyRa_<_<eb=LRF4sX5hhlK0iV8u{#1Z9
zI`wfz+En^LAtYjq-NThBY`(uFeZqZQ#_JC%G+DAjf}U+Hm1w+m5F57V-Gy>^)>JNn
zHYxL9V_X@UmKht~^V&FGU#Qq#JW8H2&2auOx>5rkUJy){hMwh8SlCt)^p3u=>`iGY
zHqWkJ<=!-(ChgsuK7=CnT$YZv;113|)-PV(R&y8~D>H(7*3fyZW<HhQqbocLY$Ojz
zo_{=TmJO}n(Js90+*aXW(()#=h2YB2^`dSGz!fONLpHc#761@Q%S1LgK9F&f=zPHh
z%Jw3299m<p!639Z$4ZS|Lkq*&Pr*f$GeBUyiE3;8#6IPkEeUIsa7G+ZU|O!b4)9V4
z6~)96W+qTp4@(dB!Vss6W0{7x$3Uz?qT^hmNDt7uYjYlLt01PiY9ct>EH!#k%4xE6
z8R)aM6cwfObyrjhOY!~j`}8QH%oIBK&!#-H;xL~zQRf-%l0BA^os-G^j?C-W21wFb
zZiRyCj&LFU=yY}||JX$5J?)J`O>Dr#u)(AUz$SUBKf0C1yDXG*?>@&DljgQ~JB>5X
zS%oeyur}YWkl^R0*Q^Y{c=@-iONX)E$O5{Y4FEi=-RM|<D$MCwIO#}qrg;$c(YV0w
zR(%H#fTh)q)aif1_gf*#XR1KT-S)#`1~O|S$yuBG<Pu^)FMZ#<V|8krkRxYb7~&G^
zGS~f1>xCK9I*WXu$mP&0U>?1R@3jqWMilFmW|^Q!NKY)_HZGc!bhMjKg{9u~DeiZZ
zGDPyNr%8t5j{a8E<7Xa_xG$+~hUv>#B9xK>NPrLd;E`W55X%%9v_0tgDEZ1~?s@bT
zh3sjR7t>k)hy8n7+s0fFigVhtE0Dzx{bvu*Efk?*yO%98yQg8C>#m@^Rbwv{ruH4k
zV?ZWzr6-ox{vu|@5*>U8B8+d3HxGC@Wd|!aHgD%XN;(|du`#Y2k2jZ^k5UX!Xs6Q(
zy*1YxD^uh5J^g-|FHViYRie<PGV;sT9nXdM3@k>XQ->}k{ItJ_=m;o8D55)@NS-43
zE_Me_{J}GR=_Kj{M)YEx>}Ko*lfQ^YQhMe~;|m!Q=yGuH0^=tAMZjw%$%mEJF6fh8
zxJ&6S(w;K{jm^n-bgp6?k2s1m(EzAP?*{;l0_1-SG}4Juu0(>3K>@~1Dt{4;<&xNX
z`~K*%Vq=6w>hVw?@Vw4o<xQa7UGATLF@S00%iekk7?}V#4=(TfolV{6kXN$8P!Z5m
zN))_TD+v#u-3dI#slZktVY?qX@g@Z<^(WORpXg*@+k0<DC%4YL(_t_q%*khAW~_81
z+p?{<HC5Q0`O4XMF#hw)KD{ZRG<U1sOSi8ka7|QO)$nEj?i<W*zmV^(@{X_uMK@~!
z-JI8EeyjE^n-9#Jk}(A$$@4<`B~}|2r-Tezof*otb~nSLB8CqeP5?x;x^bN#q;5sf
zO!%|2@*fmvNEaTJq3eQ&Yew(lMDz<HxmI!Nt_OHta^Qlwtmj_*n;7<7X8s3ay@C0E
zuc@bGJ$TE(K8b<uueX@*e&-O>dzMrna@%V85t)q?yc}PaB|9(J=m=7~ipF$nZ^-)W
z#ZxsJ`I`S%b?+V3<hq6XVqX?yD*`IbWdQ}T&^vaN-a@3SNDG7(I)vC8O{JHBNKb%B
z?*T<RBvL{QB!nIaB|r!PLg0L?=01Dud&anToIB3F`6FXM+V_6#edm0h`I`wkf>Qah
zR!VsfQfn2T&}<GUGxWc7KmI+r%1vJp9e+WIJU(Cv*yfX0#8qa?vkMKXmIi8_;?3Pj
z<K+RfDgoE(3oY^na979M=j}oj3iMnoqJ4u`14aXQ`L9q;R8SqwB*9WuwlCWi@4M(I
zbAS<qN3QMmx}o7QvUU(<^4Nu28Ip&@lj1KN5p8`;PAUpcoSg^Ei<HNkwqR^A;AFx%
zs&Zu6cZM}hywfpFFROuleDz%9!Ew9?jinG4D4IX(RSQFG7D37&=9oCTc%Iq684^L7
zSD0*Ea(zP~pW<uJpbDn%)WXQw9fKfO;`Df1K<wM<X6QZoRJZ-g@w#te$BdVKS;zc`
zpCDT_GTO#dhRrq&Cg~4CzkF|QmO8CYhE}Q1k%E7$@jdx2{ud{b$MZs>Tict3n3Bd#
z$m^)Hykr|Ugxk=k>uHG3wJI<=L#e_f)`WO|bNND-MU{2h#ud{RgH$u14hLmSaHYs(
z@;%C)t~qyb`BqJhnM!dfau+*Vyq=h*R^j@iPQ%CMrA~R;{*^lQ5mU;PTQE37V%z!O
z??y!#I^z3~yuxUUh=FoEK;JNGd8Oa?3F2Er*<LY_LDI`~s<>I+=@C`W<u{vaBWe(1
zj_Pf|E7lS;+<JufxRwrA)wcvTlf*L-ESF8^oIA*Jo;i#%#XeJ<8_F8N-7j%y`z)kJ
zb<*9RrtI4j=Y=f{Ik#=8r=%V6AODgna#b&i;urjFb=RCmz%_VtNNx!YCy^q}@5UXC
z7e_KjX4&N{5IZWr8Q<d-wW$)rQpljAMh~hE;4)%()%>S=(;R^XlPFM+5cgv7h4)bS
znk#tbrB_A@%mifP4tdB}oMs{jhSHl~U{hGq*i~WWA+Z`F;EWtNwOQ9?`STOAZ;g4Z
zWWgU)Bca1(Ory4EY*&pbX3;>o2hgOA)GS5?Dk9`Z2dB$t%T7@3yku@vX?wB;s^PDj
z;a82L$Xoss9mzzf{?NwlFopG!{nc03_bSvBrALaY6#|CE>Gv>kcF^h$feY66_wkAL
zZ@of%y0NFRFT+a6!9TUYs9YBZn7GP92oQnG=6Zlc2e2I;u1^rD%Ur|yT-$;q`VzvQ
zq;*9lVCuasJUF)yZKLapT(Pc#L6(+J3>3j~EGcBYiH^ALRCv+)2Kt_q(WfWdSj*xx
zCx_>y%KrUwTPsbsfT%j_*JN^mBfYcXRhu(XnIYM9(ejgxS5bS4N(nE@w=(?$Qpj(B
z!CdyP*aw($y#}@Bfdd_th+@QFD!v|;j3V~Tbt^%B(Ck0%HqyVci0GAcSxlRmC4ZZg
z+pYn7{yICn*d@6l=;d~yR9cPSK>0~y2f|p~pqnS@$_Nktmk?kf56o8R?d6B!u70H{
z=Y)o_3SB{GG9T5Ivk5PsE#BYi=RTnR``B^_u$jE8xHV(y#SMMVVbNkzE<sm&8ar8F
zc5W%@nB2djTGC3dv)byriuRk9b%1_wyR2q181?sLQ~Pkq4{;q!GQzBRqG_pLi=se#
zG8p07V?DCxz`&_GB_6l+E??Z@k7+y7+DlzQsn7eY%8Fo%msVlW8$3U+kg(guYk*Vp
zOAGicB9xOT!Q=Mq0ivnww+XSY1XmyoR}CF~p<3=SQ=ZvLZv3~<T`>duD|C0{>^{iz
zy4c2BkLM@Jns>%7{tJAbT;&6cZib9p96D7<((cSBB`J<sIkY7;?R|v?=Y76F{k~1i
zfGU2Ow#u0-tLByuntizzT0_aY!Lxew^goP~6ODEPJO*#~k0&-{wcXgmlZo8VBm9>c
za9g+kM^)#kY}Jbs{%QwUT(A8TbOUJv+23@o)%?OSo@ku7znxEb{_leSllQ;i9{(lL
z^6Q-9`TskL@qdv{`adwr|Ac^zxc?2`8P@SxZN17SWR=(x4I+}2jq5v;(fU>usGwLB
zWDpfQQ0A7Gq5>mnHfl%pe4Ic`P0%<%9K2E9b%mP-FRD+SV`a9-VDI4T<gYP9w<tEr
zQyJ-vX6W@Y%aYJKO%b&_K(3BZPQ+Ll`j<g-T+yK3_iSn}plkkIx%Pa0xoj(P(=Ekz
zdh7FNo!DZ=O;JuJCdYLcwq;HMmdwc`qQS%(hVhJ`47vZ7RXLQ<;ZdK}`lyM8Z`n#u
zQSqMo-WHuS749`F#P2gZWlSMw=7~)W=r^4{O)lU$H3rnPlmZEq-+%chm|p-HR%4~F
zzBCvwrojp@gs*SzTd!Xc1>6@H0wWfDOjwAva)`pUnJ4g>X0OQ*q(J36h?|&=774jJ
zcJl)+gRq4%d3gZf|2WT4Dhv(PH{Q&tO+*`l>fLSX@h<(9MV#rkCMP+tUHjG};Iu-U
zpqV;$sTb3+;+#Wj5%#kk4e$SlkX|R}{UW<__0Cqv^3^)l63{nlqtX`6Deyr`@?10d
zb(Y-Cx%rxJCi*hg2$@tSKTL8Wd<unw09=#fkHaB_QGWA71#NbQ6`=FIe~_+pfBLt@
z$@~E#9+Nacb;-#1LJ1I*X-2l#>_FGvXB~HLU+_p(FZb9CS&LQC6|Bc!B~@VmhFqnp
zfiES?s4w*vsRmt~xaivJ@k1Cx8ukgxR;nuKNfTCr0B&!^G4^D$zS|w9mRLZ;{0uD+
zMzQ62!u$n9{WsW^%72GlWxFwf%Kkpa#P$8>vJ6wzAMUDm5orHOyKI?z^Yvj;c@ohU
z?UXi^^-?#U4#>dU>9avGy~WQ>+fb=xql$X;HEf7Gy40&fPynC_RmnO~1oMo(UICrA
zG6%dCgtpay3IU$?w*S5xDV!D3(PkCcx)bpvPy!CH!ae}5F2W9_Hz!d*4kmX%Uzj5!
z@zYh-r%Sz7q5-o0e+zk)6hj&cR{&qyYFJAB370a<eGjm!Jgr0ws23CEW@Z5@8i1S{
z1OUdDcQ*W$X64B=?LK|m&1IZl65x8I2D&4X)U>rD#RzH1iUSXFJOtfN{qj|Of&4%9
zRmhw^Ak@9d<v<^(e651{A+jHrsc7;vto{Da&Hq0DS9|AIkZP>230F_9uDd32JMchR
zUiA_Uk7*q}SL(`kpBt(nt}uaBOL8O-FN=_hYh>E+JKR=^06)=SOAJ&IHnkG8YD~ab
zfooP~%jeP$DEeV!tSad2+hIO7$ZEe?Y-cEgLB3t(J^AC)R}bYe>U`lno5Y^1GObGn
z2zT;u`CSg*cNfYlUX)4EXK&>eULIwwe?OD}qb-kV<L?3hvFPk}=_Jme2f!qI!P^?D
z7996ZKn7JaP*wr-U?8BfPQN@b-Nhd2#@FL|Q3|fhO??+mu7CAZa3$Yz`23k{$a=g-
zT-~SDLnUx26Pu)IBg&Y`W^2RqwSc7GI|3S5g?SBB1xL~Q@~7QJlOEVB*(a&mzgowt
zw?>x1X9j0~?z;Wr^-Ov_HAh6n`=@MAI_f^Qb{ifg9xj%}K&*Gim2Fb@iT{LCj#C-{
zZ-}z^uYoA@0alHkFGO2#_nY796n)-ouKd`w4js8cfpbI$u=Y8d_se=#<gWMbz_X02
za%F?o3Y4JrZFY!);CXtkEuThaipo*iC>OA!DL{$M9u{Tp1@0cb=J=H$lkKEs<JN4!
zzO;}VRuxcieNL)L7lZ&Xx`f<j0gKY(=cWG@ZxwstcgomMA%sXbuUo`jVFk@w)Ntht
zmvy}Cc%J-lP;CjP$0gb|=zaGH{m1N8X#ERk73fWKbhqMp;`^5bv-cnLvCut$ulL&~
zz{mm=m%lH8|KbAt<vaO*6PEnHXNLYy8Lp8c_}9o9Vy6~9*w3SNXBHO6lKyRN3{;l_
z6}@?p5lOiZC+I+RVDcan<25^e4}O)VO}St2s{NRZ<Dj`4DR(n1G#?9;9wj-n50>kW
z0EHTG08)^oiAddMYpAQhP;l-mI=QsU+W|kaqLcg<hUnQ~xdIi}h3$zl@U#)>`PPRT
zDvuJxYUcd5q5ObYw7W)da&ubEFB4_QpT)5%HP6;dbW>XZCjiN!1Cw}+ppt@@)kfmN
zC~&Q?)-u}$%A7D<EZRJ)7;tOZzC7@<s_r9@mviyz42;We3dvdbh0G-NWRd$jS^$9A
z|LmPf$<b2u__6Dz9T6`bH{IPoCqF_GlBc&h`NARww)1PLn*o)N_{6<~w-gLg-x2d2
z!b%xGu2<Y{kCuxEWEm+B92t;goSvm!hAWzzBGS;WErW0bGy-wALlOFA&Jlh`Xx8#^
zN0LR;K>-sWM?w|^gp<|QBT#awMXa>Br`1QxF9C0dxXv*s^TPc2b#-)3ux4T7>nP`i
z8iuQ#TmGPQ-m-hVpyb$CSpZ4=oyNat<<{_DJ|9mpKk=U!aQ$)2D-dc1`8qfch>$_b
zcA)}%()nt_irqC)>Us8(hEu={JoP=VL%Q;WfUzFNA7M7}F5c7Xk|zJzE&JZRyi;Tw
zB_hfm4<eWlx6AewXZ!%gft(5!iZ0veM6z?|Sly4eMlY9nF$E{uk-E3fJOg({L=0lu
z>{@bNGMs(gsOGm12$@ftd<ZISfw#xXy~ZZU>O0|5yn-cxqj9(9;$>w3^QsW-9lEjV
zHPIH`0{z>YVEuM<%n*Q_YBFmk3_~|;2OqKX{5dr-TCI!({lKx-(??D+8~vs1@-uZ_
z3za<`#-@d2-qeml>EyYRQ&Wo@qiUJiI)aD&<4yz9EtD$8o3!xOHd)!$-Vu=lWU!2y
zK7Ifa09Rqe7}$Rok%}fhY$+^hh^qUU$;Dsno7ECT-(w{W91%uKY99hc<a$fRTu$Sr
z^g7|3n@879UU4sdWw51V*U9bP`=v`6i1{I$)yS=7l3b8iic@{>Bp!q%R{_!F+sDrn
zfJn}UR06dB>W(<7iEmAmsp$$w)<9m$M5JiAj;h)@Az_;x?OMwl34C*_or}kK5B7HR
zx0Kl<@{??>Of4vQz<~1FfTMF+|2R6TJ}tdTxPLI5c6#mLPnIo~tGVWt4YOUz3x^%j
zlCeY0NShZCzojr6U=E#j6?fpx;a_OIR@i}*M)4FVCxUyvO(kW0ko*aFPvHahcRJK+
zxm_rY&cbL`5Qo^+L5W(IR(-p4XqwU=J<}474mz%PK(aDoR7xbpJzF;6LDS44KW?rC
zbpWcPed|1sVt$7E(&<0oUxF~J%5^ovx}B&Xq_qL`RqvPc5TXG<qV>1RnkALY02O0N
z^#N}o#N0x4O?K{w|Aihkw5>-0kiqh0rrMc1^wqcgfJ-)Sa#PdJ*Og$VNaLJ!?02hE
zTe8<rQMIAsHm~nHEMm0g?J!rZOD9{fo0@L^x}Q(`jDPo%A+6@n<ItZLcJ86{XG+Dr
zG0Qrd<;Ejhp!Z~Pk^TCon~f=ey||qMXRSX-P@Elb;kZ#Mz|S?e%s{%@E_w`_Tbd3|
zlbWh(?4=!<%kpI@EWOPE6&oF4&H4O6-r6Q`QTpTeXVxm&qcjt)>f0ojl};quO|Lu=
zeNM7_aAM{%Z8IOJ7bNuh`xSGbW@WF25;ZMm$~|DgXF=-u@8yOxR0EdZ430kBY4|Ep
zYptQXam5#~50>utR?M}uN!vh2?HwAl(b_2bzE>R%9VpS=I=)%HUGiNMwcJyQ(7>$6
zqNb{h#hrm-MEA=id)Xc2f2Yf^@_*4~ZqPJdZ^3X}4SkP(Cqs70xk9iTDSreP2nDg%
z-xt2T>d~dc1ui!MP-(!ovZz)&BR<~XUdHk8H1MTfH9JFNC0aFn39m`-t4!47P6rE*
zE9f<lVt(SHHF92QZ5jq^TK1vP>Aeyptp_~emAm$p!D*L37)uiL-nK7YN<=XG#>0E{
zOn@$HvXK`sM=opmBa0g%V^?NrihXOGqsI7hE>l>W`ssw6(=-rNlwKd7)IW(fWY`{%
zHo9grKcDLq%rXOztINIQKt&$%e`Ul7X`Kqr`xVNcLh5~CthVt3{2leCL+vSmli~jT
zgsuiX-4o7o;`2^g2n;aW(MQaoPz#q5_5SKQ_dFZC<4V#+yp0zpR>M`$*WDX-BW+&B
zay!Kc*cvc0m#t6vi#fD?B;nYuwoZp-hk#W3)OJdc5s4&x_Or1{t+Je!Emvnw%jK}<
zM)v>!j8_28r>aJEaJZD@M9c01UGdNqRS)f)`(Vb^0XaOX+e%h!i^D5ErEZ%yX8Gh4
zrYovc1L-jaXQP|o!&67#b;C-OVAHS{%!e!76uBXD-$MW3w$$j$p=-uv?J>j>e{R>x
z)g9{wN<*2iJ)k*w+Q$1U#03vm@buJMeq2?xoszP>T#K8IY5lke?5mF%FDtb%hf%Fv
zFw<YbQ8-tqe~Q~ZI3VpGnew~ML70JNA{Pnhq6OM1SA#J#{B!fA#LW^r$8#djjmykp
z)+sOy0D`57b}P{bT-%+a)cEMw=lh^>rB!!^m|iu#PE(B<0@KmZNc3Qm?+kRI)bsul
z%sA~IG0lP;cPmk^yownjt`gMu=V=fdc`;8C@b1P+$5folR3rCWBIl<*okLtCHp^JW
z$T=OJ=t#qd+5*UBvxY#Z?6A`Rg_;Jv@harbjepWVPdfT0>uO5jh<u>Zd{pRxB1V6~
zcWmB9HDn{9T~NBvTE!dkbNQZS`LtnEnkJNU4tz&NC2Z3g<9hlXN$-(e_N_1bBQFho
zF=!d%e;(O%;MLlm%Uv^_Z7pAA_%AYo{e|Y#e2mz&D<9oMH`A*97fwy!kycRv&1B_(
zyOVYPVNtE5@sI>=(p;V1m)^%#$vy2BC9C_A^^8_q-|`Q@uHg2*i-&FiIlVal$g7<|
zi=mxmD#ea4>PuWo<AHN$klYxUl{z4zOoEqG6@Up6Aa{T4w+Pv3HW}cKGS;<PnJ+>Z
z4Lj^4O8j6r7(_Ar&V?N-pJ;il%6`)}wX!#=E8+asp~lYo8n-4L00vBmGsTKb;N$Uo
z1A##O{&gVC>Fb9M0w5;{F+V-lwI2eQbrc&(kGV+=9{svDn`=k^Jr+xRkg~rv>1gNB
z(Pmr6!U2E^HMqjRxHupnl=EoM!3)~`v+hxSqAH;`YLIhcBI~b`SkrSA>HuC?k>@y|
z&GBw>X+s=n-msD+BE5XqW`Q;p-hn%qB3ShLuxd-RjYaWU-rtho32r8^i?oi%0`*(>
zJ@jYT#S)vrPp|<ix63fpAEDU&F_WEQ>I)ED%iHM1_VEon9X%I!Iof=^cGO+(q4_}g
zr@!j{>3xZ&<?_Y*V{CIz<*K|+#lwVq+C*mZdYxi4bbDYQB(*Qq;9}T^WA`84;%uo7
zK3US1t2cgq9X~Uqw3(rTj+3nN|KOF7|I-$)fq9*}5pUD!+AFB%Mh<OK!Qak0FhPkM
zmUU{&H_aLKot!;Uajsj%)PPjQX6|iEHQWYjkgz~7-+z^sc+UWNl1MKSV_#78tGDG)
zjaVU*R6ot(UHiBl15U?&g<W@Z03C#+XBchlQmg<^?D_Uz<-CahCg=T$C}~`pH2p7(
zl5J0ojrhA?m=gI@&XesC=Z`yfSlFGff{hz}RS$%o(%9^~u<dg>9d^ts@?8C3qg|w%
zMXZdgAX2XEk?DiNu(n|Z*z8_4568S|>x$0A;`88g5k>yh8+)#ss=ju4SXighzbbdH
z<Ds}lAh}R(qOSKectu3<$0qJf-Lmf%*ay+k9~9gkzhZm48K_j-U$;u`4Vrj~^}CAE
zx4O~+E;Mf&Z8~QD<q05`W-Uz!2n*$Kz3$Okhe{pL#ZDcCqfMuQTgM-AX+X$4*<!*k
zHE}$FLGgBIpBkB`EcYX9O}3mivrKagUH*iXEEjKp5B!ShGNboP`BbK-!?|sI)R{~}
zzgb=Zbgpi%;7M8E&+Fl9*L>T}jgZ~~lrk}iT>8v-UI0=Zd3>Sfm-a`xmbZT?D1Ij{
zSPqe|6aXo<t@D12FO(qmo2=xMO1D}cRw(%Tw#O1DHEK$|J0vQa?D1cBtplqof?wp<
z-A4fE($=gRqM*pLQB~%C#T^-ljnl5iuL(z+C6wKE#$k6@G1tG~7lkeuHN^RD!sj5{
z)B#3qBGVa%ybuMA3lfkfd3QhEvC-iAP{h9wvmd)Id#(~5h#x8L5+)1s$yF@o$))y?
z)8AYadDvmHwa{WB{Aop&X@Iva|E?l*M9TR5a#e7bAJ$%h9dRK`6jYkv_gy0H<DKS5
zIwC@?X;j>ds~}VLK4~m~HneF^fDrO+We8d(dDca>-n7mFs*ubw(5-BvjyZYx%gpnx
z-&2O>LIB2u^1TK>!ho-8pscOK=Rz;5kE%h-2^x1W3#V@%gWG5{i7G#!dEuRlYll7U
z><FC^e%sN&J#C1}UqR{c(h>1AdHbbDvZQPQow&Z$G$+@|o|nK1ynaa;nqB(k!j3w~
zjH8+)gIiH*UNxH9S(9&33>hm#uDiGGj6HAteLBq)xN)Pm^wTouiZ}puPgQEV)Ttv0
zv~3sTQ1!~@vN8MjULsWj+`Fp=Ro>%9iJzMk5Zsei^FLoezb#Fad>sbZ4c+rwD^qtA
zjofy=cSJnItuCoB^iP<Z;?`OwbOGL;j1zgy?7T;)@D(u)={ql(0!CkJ1Ls!lw&-$J
zNmVT}6{O)=7bmL{8^8@_mSy(nM^lI`0Hde|+SjRVKG1u=LAcy97%K6`WpX5?#Jg%J
zY2zh52K}jC!NomF?RYdiWQA-2U!^Fm9M>=Zvj20G&rtGW0uSbbm)lP2HtIzZz>j1J
z_oD;SzbOt^1r3_>B3EMlW~0hZG`y;^)xz9&#30)|6={9DYr3qfYWT!{=o9<>Ft-J}
zEXuyEh0CDs%l6=2s{3xLM<BUKQ4h2#ad5bjEfR@j6)e%(?04ak+4KDfq`fWRktxI&
zk%su562I-vfaCL2sE*t>3Dc^>WZkT9jR4MyFNLk8G6pa8-FLf+M0Kof=8Z)UAR-!E
zA5VsD(q1zl^)T!<3$@u(hpJ2*mdwG6^17Q9neFsw{pmM5P;jmz4&9`$KP&z|^Q?cN
zb$h&0lmvo5<BWDxo^!yFxiAVQO7jFJqa_k;m9tfnl>)Hd^NCwZosNRU+Vbip75t6!
zgXf&OdmJn)9%h*5TcA(B?BWI)YzGIXP9bQZ{lZl9l<+M3?fzxl8Wg)Uj)MxpFbIIP
zicMUrLrN=y3sVMap*0eQTg_`J-yohgb-HS_BBrQck%KBt_)-14MDc{8qM~=6*lT|W
zt>8kS@td6N<=Fq(XFG8179bzfJ#U^7K9st`QLiJ<T?gWP@`}>e+L5cKEN;(j#Z^yJ
zmSwfZ`W@c&knq0~A9GG_gB2}%Ukhzj;czl;ni;MoaqkMP^%LbBilIz%%$KKw0A8mQ
zs_?me;0bi16-c`2DL3rCNaZ@d19)F3C&qg6H>ObElf{fajA_M-;nKEaT%bo{1ZN}|
zO0CE5&Cw?f<MfjyA8(~9`<h&i6fT%)2lt5bo*Yy>^Jfy~{>R0A1OBbMq4oW<6S{8K
zD(~Na$hFImfY?-Ei=7T?Zeik8`c<U2ek`2mon6&?!u)Cuo!$6)5V+Vj**;}V%E_mk
zt8g_1mux|Wnf1ArinI^pvMVqtzQpxd-f_XUH0oZo{uS2q1ec(a7JEe=XadanS*bXj
zt^WgdeAcp0%IeaTioy=s5x|>Qte+Y_IxrzMC0^lc^!USflPZY-_hkqoo=g0#_Kss3
zx*S^m)thNC#F=6MzFiVs2y*zbb>eou2hbF9?K$P{y6v;vQpW<#G<gdk$6JPYU|gW%
zK%u199S}HB0@veNMKo#|r9XQ}?=A>~Pu?J1QUMA@eaqud_Sau}$RSt3rY9vL2;VG<
zYo5B6L;*BP1!!|c`$vVa>J2Jj;LCcqZO)?#UMeLuWP2c!i1d{~chj#szv|-bF4AzX
zZ1<n418R={N!46yUI6cTV)|(3GYR{?m@|9-KcHW>`rx)PK}eNg^X;?yH$H!>zmuNe
z&wt=ocz7ynxBIrhW6dhuDP(Y-umU88BXvRc?+Rw%{lk~zOpJ(N2=||%0{?7qI8`?6
ze*XHSUvn-Gk7wfDORd6?S66=3lL9{wzI$)*O@J)-YxM(sr|cN-diJ?h*T<@~?Rf%#
zzoGx&#k{VO`D+uONO%8diT5un>i;3>_H=K7I3ffGc&F81%ek^NT*0<U{_iaYHr&(U
zm(mCP`Jct%zwCeiI|uM#x<5)wllI4v4l+xG(Y7<H<iE1O!&06&=FD|Y{k-dNaqNZY
zqoL1((?jDs<es4S;Q2fQtAE2w?06vb_Yt%9#UXp!ZtnAWJhK-W5#=xZw8Lt0mK0lI
zW--xfx3GaQ#sQx^^v5SZ;j^Ffd<pwISzahb!>Mc`3^?G6=5ZobvzNu5N<ZB%k5mb?
zeu*NiY-lRg)%Q-EXaK#T?W<I``Qp^uB+~Hb!EON2$)pn1V5w9)^4Pma^I#Y?iNg+A
zJTwexWbU#~y)<6p^3T32ywOQ~Bc0lI&Brc#AD*WWqOR32F|D4a|BtNI0BVn6>@GAD
z8r=kbkMQn~-^-=_)40M@VN{6S`Wud>ISITR`NzvoX#Wgkdz=2VMPjA=j^S?~Af`D_
zQ{BD8Hi_8hLrNV5N;A__0}xZx`@z4_M!-isHDxL5i!DNVM!~iU1t3Fz^EYNyWD9cn
z;}p$8E&u%9_=AEouN&P5&-qPG89U&RRzURN{nwTGBz)$NJ+WT8a@j6d<mESt`Ea|Z
z_m-^y$`+hh;t0y_obG^){xhmKPQ5duk9p!zIq{6yPdTo((Z@G5{O@Q-iT3sHn)hC)
zj7(k3H|e*Q0$0CEbw}jbVhi)%RdxNj+qa*e{IFR#H0-V5(fuT;Nnlc<r&*kYCb<gE
zluW3Vb@Yzs+%JMu*EsG`kg~iMNQREC<o~duUi=Y)AJlyYbjkeVVXfaf^es00(4AA<
zfY2u$y$;Dctn=4pg0kX-H#A_kV4-QK!*-zs718@QPuBPq{1^mkD!tY{)<>?@LJx-J
zX6Fp{6Ma`i|NOG;=TpZlq<p3po^jSUVj!QC+$-<g*1NklZV(ZfnC)L7!p=X~v<Ocs
zag2@>x|BiRQw*5iPgiS>mP)w&objuy#35C)^hm`Y{_0-x1l?E#Q+z(Nnu=^sl8zb-
z_z;te+4QFrAclO9Nyp*^3x^8N%u68zSOGL#5Ef)gF_%a?>|uxDby*cSQz+&XDQ;T$
z=BVOLDN22BT@3ySIK7zOS6Wp~nY!4`B4k@y#CE{+lFOUVG4*(ah6Fep_Z?WP+$egi
zc~=T8_rpMpI(ol!dG*W_>A^jLiZ(*$cPX2|3o)Ne9IL6T$dgyORuNIG{ChEAeN2r7
z!@pKLT9ul?P9~c6hRmaOYs-7}6HnH4MDI_@xy4&&O~CH{b5D8RMxlxGE*XMZjb`T&
zl_;Wf)^(XivhU^q8CIhj%Lh&;2MU0&>8Y;N?>4)vr@#5M%xNf$6>*kVSqjH&RIQDV
zjG&H#K>nqbhWx41d7DHbf6mUkwqBs~A58%avu|9Al<kY9-fLHc&hl8#t`9&Gh_&yC
zJzA5H(T9VxwCYz~1T-X5X98C^Yf*wWYl8$;gG|eOh?1(G-(Kw~UCs<d+9*g<bCb&d
zI<^h5IWg}BsiHv+ptp}CW-=-V$mHu>4@T|~Z@VfZlm2o;RVw(Fg|D}rWX>o{RAH%2
zGl^x5@So1Oz(>w-7oZ%DN4^T;BtBiA5Elgzq5J!?nR4q{2=O}j^Fhz6WY085_5QE$
z=V9o|YTsb9I@cG{n6-$FBIN=~sR>oaD(|J*sLyzQZ=9U9jQd>Shl=cwF+oiHa;W%V
zRqSU9D?MPP=pe!aRL{DuADH<Z$2L?PAXBVN=j&P#tKHZfM<3TI>^(ZEWiP}n7(b&c
zD`tHol|lVZYbogrSnBQ=<GXT+#P;470iVPk3&kcuL^Kr6Er<{fZnju`O@vWQ@zsn=
zF$bA?{e(}FsojGS<cbr0dw%1IC!8^UseYO5@nf*#xd19R-N1NH3<Vy4imd?Q_xVf}
z2nuG|lGKMontZhb0R{h$$MCxnklL<Lhk#X|{ShIP#u|gUg_eD}59Lm2t+i<MyzK?L
zrLFE#V`Xqu^RD<-(@xa++b6`~#qu04*H2wyOd+hi={U8t?oX=j#15QG6HNwfP)4o@
zrK9c@)qdQ6;PlNm?o?ySXKz)Ef%Dw6{q)s=2fpG828}|O39Hl336P(=^~t{9EYeH`
zFdiA#+nSz84`uu=qw7M$GtLe%7={Fl$_xr|U`Lnk!!@Nw!aU{P1$9h%;tJ_OnJ^5S
z<~@?>ppL9&-TO^s%)1;+mDs3VxTxXeVZ10T?o&v0;KbjIH%btztj`!2w?@aq@!cuP
zAP+B0s?3}pC(Js5@#ZC+xq=P??&Z+EzMDISy&cRn;{(0!pvyP1ZOX42*-muPv4`Gk
z+%x-WPyFa>38ArDvrrQ#(w`mpfV%dCqiXV+lS%~|ewK@ilBKX{X7vMJko@8maneB$
zsJHhZi;~K3P~WRs?2+}#&;}LaK7a4is0^d~`G;Wnjf|0#wU2WKA>XHK5~BL%xg#g5
zTcOpn-(5xo^W5i7S?EQ~pbGsU1x|75){9BGRs_#vkun%*w{IG@v#MH*;$EZ8wUUon
zx!gO<mUJG_WbXUdLx{JjaPkrHT=%Zg_KG<rmIa^(DyKkShptA>C#$wVd1P~s3e1Tg
zD$D&~s6v*IhFz+tL(wIe%+m_4@p`?D;$3ELO_4$sOWy>(uAMmMWzEDUr3bo)6|Jzn
z=xdwD>qa+bzs3Ik*E$Aysp%vo@597W(B!5lyFj9PZWA><5lqi>{P=)zqQFwte9M}S
z<^54g+M1p=smdH1T&CjdiG1#yCeJ_TE>5i^=r0|+a5oJAij#nD8HlwT6X$)3CXMpZ
z#7)xmZj~tK-f|gB|5g{((;#Ofka6na%}D4Ee^*1@M8oqQUrnkNW%WqxPGcI|>Fn+<
z^>);j);vLB=5;PdN%QNM@q~|<Jw!;76iUCScYTH6FaOg;al*&0CJ&`k*(SZ%QtmvU
zB<?b0i4Vs69V9?v3_ZJIrt*bz%o`<CJoMgnR1a)%4Qyccw{K6#i~Cp>sR=?B&TrYJ
zN-nvTz`hv}>LjhT4hL!9q$o(N5;^Iq?}n7L)!K>iB_@U&bPLnkAYqn=v8lkE=Eq1v
z3`+(Zn&)j+n3qeoh~>JagodBU&}t`V)PoPP&rZ$Sp)?r=OW_@2Ek}5%#?}aoh=f%L
zXZE2?ijsjLcN|u(E8qQT(8I_lROyj8BV<0xe)+S~Z;1;kBe+m+NZ0JwAcz%zU4PLB
zy6V^$1GT}<71HER<thZ`00@Kbv?!4>om`$!vH9rqX(D5N;?*cFa1h03D^_UiUh+_f
zS4l(m%;F}>7n5Cz$-OavcDa1GTROG>7BrY1UmVODP4HTGuOAd_Wo$0XPS`fe&k>^J
zhXS1#v1JFd+I@Wss;;K=3e`KM53PDzexqeGLYL;1^kje&b?eGGOqXiC)9EbV$g_Cs
z+Zsa!5d$%;H1p#c1)^vtdLAYeR?i=j`t_9n=vz2JCG{t-905j7dBWfYf1wS$uDV31
zV1eS>aKiQ2CPD#IqdLcD_<rV)VW|maV^SSyzVU(g<oe2SVd?#IY7&bzE{p3aD7(j5
zNh;L9(34uZClto|XbAps>nf&Sle(5Ba9gOazFjRTdxAqWG^sH(QN20OW}vU9Ue>0l
z1<#b7c15PC^pb-mvpAUiy&7IoOPg`48Zu=)tyl#CwKb4NStnGg@6H+V^XY+@!{CQ(
zQW)mGDN&W0H)*SY9|{xKJGdlrB9F4QLrb`mCOVksk;6xPz|as}J+Yz|k|RY<Q5sSE
zY6q|5nn_Ps$y!tD53cVH%p9TFzm&kqJ@88<1r8~3KWnCKoX0PaHJK}@8<b+HhmpUB
zhBd<#v{l^QCe-<Hh+WG1+U1>nH|@zZl7Br8pEHi=Kg+HS!XdelR#Qwl#XcvN&uz-+
zM#Wq1;c$N}T2gIG<AY}*p87ICu@2|qs{LF&)ilRm`y;Tll9mtcy>58VNqljil5>dc
zSG%#-Ty6Ei@lF}k-%TsQ3B>{e4xiO6m{L+GRM(GpmnJv;6i&Q6tzlu?oz*xSl1Dly
z$R~?&<^`QUmQ$9#8(|Z828~*McNH?R7ojoX6Xr@$x_MN`8e1uw?Cuf_aIY_fU9|Sa
zXykik><!eUaq}!wE3oU-WSx6MymAU2c9nE8T`uPlY4Y8rVldNju;<NNDZd}CO7TCI
z7)N!thLmV8lE|C6Vur_E4Q#9w<FO)gcMDQj$atiAv=zfN+P;1&9gKwTjp(hNRUphs
zRMZ&f=DVw`JQwrUDq$`cNQK&i>n3INZF19x=I?`(v{WC~cV!oX7A5#3R<3r^L=yA-
zFo*k1>vf|lpr~9K{-fp78(o$Hs6HbCWgZ-@c3PdN6pG(lKkQ+otLU7Ox4R%jO6=l6
zFWil;4r^nsc;FrT8sENMzUnZi93%{5cDOgnu9`jjY2>7kohjbeZGss%U71!3Decxm
zi4$`eHSErgGYa#!yvnLHV}0*cW;vG`X+Z6q0ukAY+KNQi(5xVe(+^SC5`WtHav!+H
z{eByGdTFf<<p7irw%<MxWyb{fX?&=k&a1HNTab|~b*bu|-;21(ja=lq2f43ULcLRS
zhC->=AJT2ID*f`)0<S--2c!6~-jP~A4`mjv!Vj{%-+iU_$ynE#7VT-Iq^aal5W>ri
zsl8IB*{|lHWf#$>TQYMYnowe_dEZl+^#<&sdN30kM1Wyb@!j9ZI9T7$!bAUR=h}hm
zJfzUbp)}s-ucjjORS4M*qasY?{9LZuk~=|o$Z0-9{Fqf%j85fD^t%37JOlK0Zxp1N
zALq|4&_9L@p_v7wb{UITaYBh}Yxlq8+19uC?+wW@OcXu2kWJ$_FBJYpfjPkh>=eER
zN^~m1O3xHy#rT%gb5=_vNHl^w{jv<6UcDcOSIxnH5+byy5G&+sLukKgF?c-ltW$Xw
zy7~9b)!!RO=jRMkGlViSvu2c>U1qOCHNM#CZdvE7(F%>z3`F~Ks%akZk8iXJOed*&
z7BMY<&;ON=ZjGC1va`TL&w3`|^T|BgD<Z~`8}q`Ll(lD02h)`E_2+dnx{w+Q6KVLf
zm+;HP)<JS?<e42=F!9Qw&!s_0w$`aX6&W=nNkN}V=W8#>e8{Lv;&g|95AWo5ERQNl
z`zjYFiFqbJ3+o-$4+hraf!{9E2XDoLMnt9Ml~2`_ST*XX7Q0oxS`YW7J@X23xM`qJ
zMN;eMU$<X;@xp61T&-~RrttEu@QU#TORm>&>C$>CmFv3f`7OvPd4hj=l5UE!s;Gk7
zv9s5uitInGZ_G#UDffFNW_v70$6dT51n2+uf{}zLVzt$lja(z22pWxcv7E=&CnX%x
zI<r}-luI?jXprnmQfDw$J<G56Msi`xeaVfic8u_`<eL2X+Br@AsX=Xf4-BTX%bHG>
zX12JD9%dK7_JyBhh4l-f==_iGwQ$E{<<P|~X+I`kZ~}59LRUV(#8obvS_<X5NmGs%
zfyeFymh2JbAZY>Xdna-S%qZmSO#HAORQ03o%hP1`^>LZ*zAer-Cl`8%_8te5Bk+2E
zy|p=Gd-;H5j^?#o>eW!HJ|}0o#pdC=74BhKpbMF2PN-g^c<tl6IPTU981ng^r}_&O
z_$x}n+z>bA!swwimEXw-YJsQN=c5XQZzbk@w<dcdZ@c;w-z|H=VC_5ISn3k3l%cjj
zlEZ(1X{~RF8a;bIzx6VRj<^{zU!)9Y69ng4kzj$@V49qcxc@xzyAx@s!d~(G!{4rV
zawbJ7N|0Ar-%xXHkOzt=c0AX@ket(k-Y4v=^K2_b{RD_eqh<8A(2nPbdSP8xF6wVo
z*{9NOR>df_GE+wJN%HC#mmqU^s2FaLzKloq!@Q?c{CSiWkS7T+?3EJf;FX=#g&`J%
zi!tEaOhKbAZ=kh(Dee5HS7q)dQ4L#1{|*2h)cn5HOAWuRORAXr(vREHcZFu#e_rKE
zD{MqH4pcov`z7TW)pgc>o!8ac@pQz+?yzx<lCA!IO^WZp=B85RI?8sc)X$ANj5S>T
zid7c4{IT5A@~E(%a|@~V-O}5U-2x>yT$yno$z**iu>QNmL#5(#s9P*h&Rttje!RR9
zK}#w=hV?DZ)}~U!U@@=}y72k-t%L*da|w^@P3bSBJtm*rOM%xeac|_A8+HX0=M2q|
z?@*+&FB>YHx$ob}zuGmEVv4u;iJq7N(_09*;*dnF4K3K8W{RDir1rkkauj~{GtY%;
z_=BH;MVar~H}jT3)DakTzFYBXx^wT!x^eR13DXf*as_RSeQ!Mg?8QP9MoFl9rma)0
zmAu^hWBT`?CR0jo27h!k@c22ZZuby1AN@GdT-$GBm<=DP+3;+bJLXJ3qz_9CH%tX?
z^^6*DoiIr6_l49=MuKrz#d&SBn`K_qWUWJOMbL-z6XW3Lr>+kl6x>i~pENn_@#9Ji
z$AhF(U|g9rz*wI|C2JWl9k+5PoWf=fdsux?mPzxl%`tw%Ml?0Eoo7wC3S)Ur@?&Wl
zgspYARDovRCeWx)O8?n9UehvIuL$qv<4RTR%IA~tEBAU2-<pbCVbe*>jm6_j_?CZV
z0yo8R8te2HyTNX1V^_lk+$n1-qCop7*3Y4RbmKMnnpNBllm!XS`)7D~%KpBh!B)~n
zMz)MqHban`yQt=Uq56)E#*gCcVhl1b9VSFqbE14F$;r<dd1(xlr(2p`ER2>$^xZ1y
zDyGW&kYAj78U;u$T6zNT4oSNYDX@~;D65*ceU*iU5!6qMx@1tO!BmvW^=BXquSttn
zeHHvt<j=Ck=y`U;b;!zB`3miSx#r|?TrbnH7)MAd44G6qS9pP)>hWZ$z0{LpOB$~@
z?ZB#xIFnDv&EsDl1*bYJkiUPrNm&s9b#F9lY8rIZF<)n&H#kT$Fp5todw1Db=JyAy
z#IW8~pm`mA;={>WAM`Pj(Q~n>>AjIAmi|>%=&#}l!H8#?_l0ssLGHx&i0rb*A-~0S
zc7I##f!KHKR5DI(HMLY`NXY=A#`B@z%$(-+OVCF7A>N(IYcNjuV4l_d!6{}#-8?f+
z(brW7JhCeo=`m>})AtQtWme>8K~t;E*Acltwo&`8*S}`mr6xV*bL8xg$`|46gZXaS
zywz99ahKd#184}VdAH0VKJXEL)*gG>v{<1F=NqVEa?cyG?fDCv`Bk^@GY+%0yBZK;
z%ne?<RP~o;o!BK~oQrOtPSozE10a~)+WGf`rt2!32`S=#woK>YDZJtu-`OWE@zeK9
z{`~nFgFW#oIiDf&#4%p_z*;DyGB0-i&4FnB(9RTs1^DJ#ToMmSK7x8Ie|CB=uU!q;
zn4p%)jIXM9>DJ7<)z)D5`1SPSn=5nVcq30aczc}D+fMD$3or7~E=<Mq<@Xipfc3>;
z#{J`uBMs&H^QBCi{c+#Ja@_CHR7FUxEsK;?Wr4`Mh+#ikcI-)3*KuFO*goh*V`9!@
z2I%{4rrUy~Ubl=Y>b5uAwdrtBakXS}@K*NYVhw3?vr<kEKD}3U8mm_?@va?lzbKhf
zA@tp#iv!QL6;ZgwF6csKvu0}M?&!=|OZ!2bhTded^_zO6qE-4%t=;~Dcpkdpkd(SU
z41(8UUJUF;&T~Sr_9=`CmKW-NR>V81**)WZ{g41vS!KCr1`6oBpj(xnL*jGS>4;#>
z2t)=Z30`grRjn`y>)8R<G3(<6k@@z6(qGXnHRCt$t9F_Cp8n49*hms>2j{;MJ1>+i
znyj8a_A;zORj9sDEZ6J?r<{Ad_T6pB4boOw6KJDBFs-LaO#!-o_*`f4!i>RO>&a{#
zmv^K%kWbSCgtb6UV-CCnmT7u2RP&WoQ<_4aCPrwje&6N|nkY}IUqe?J-pa^-cbpgQ
zLlaXRI^CCXcLzRfOk1AFJn-kW+#oQuD3#T-Q1k5y2$Q_zk?-Fe-n#%j610HbN2rPO
zcvD<CUs;#4DHdp%>|djQJv^!8hGa*DF(OTcSO3X;+=kWigd1C_SJFT__-oJG>lH^?
z3RBfR-i<#CJryc3phpidM!c;0GL*NQWiB5%`xx{}qHYsN=@Di!kS+Y6FC|O$7(s_o
zws6lyy8D)g)}%;qCP!1_0H`Ne#`Wy(fG{v4S5n%k_uEUkInK)xM6dYT4CHRh`rGRd
zXsbb5eWn<K7gf^O9Ir|ow@7m}sSR?8HImJ$m8<0qy6Tv&h>R;1@|us>7lcAQFV>`$
z<g1p!jZ9VhK{5BTRm-oZMIMZsv(Twa_UZeCAZHjDYkoZe)3A&IVWHCM?7^bmcX;vi
zeIfHLEe!OrD^Y$1Ho+8)>Wmkh{uBBY?h$5QTROaT|GJ(iJm1}l>w@d32@#REy{8w7
z>Mmdoj;jmX%^&DRQj*Tbxyy{JKbPsC|7aI~wy*8-=W3j95C&?KR@C>SY){sieH3=2
zNFvhJ^n9l+^*z@9V-Yi1z|!i=XIr#bp+1`Y<m}P$2)A6~`U)|>Wgz$7?}mbpYLyfd
zBTqRrSwfeG;9a0^RW#c*0`w4TljHkbaiTD@d~Ga+p;rNIyiwqbJvb<+Qs|4=%{i0(
zuNTEz5y53z9{X7<Yu!dgUM~#yE*yf_oQqE))0r)jlWHSF#W;U&S$ZE4CW;K^nx_R*
zjEffGxJBib${%(9mz(e{$Fep`Bw}cUnUGXM2Wc(-iEW)WB1!f~;(<Kdx$pc?r23dv
zi?$9f)yuAOi2&ATTQdggjce4m+e$y#@?dP*Co40QBN4M_W3tl)9-its_q^LL$$2lN
z<Wlc7*Xl)S%MX^H-8vK_UixOn_Mh%fKRgk29%1%G;`YuWch{P@NXP48t5-)1uKg}2
z-F33z!_l4S@YdsRuSlPJ+U(*CX{jl}Cmy_aB@#KX$T^4f_K(7A4&sTD6eTJR*n(^A
z7y5VkTcM5HJ0faX>PKPcNisp}NLvBT@;my%t~Yd9C%Ll+#p*WJ1wpSp#-qO1845=R
zEMJ?3HMaDJI9z+ZQeS8@GNQ^S7B@B)7*sUihUtG=ytY(}xPGM9@Z_Zq-=HLOuq9@z
zQ%AtomkvH7v3REkU5)U~%i)yL?+8ousT1qV@4cL8qz#xA8EHtapbH0s^ezUe`koIi
z+FZCXr7}|w{v_SPhTIG|4uN62f^x_uak-is)mnC+RcJ_*Ynd1<+Mv#>ebpeYP*jt+
z-jhgImhCYba{0EgxjBEh3##Fp9e1g~EF-a2Rx{ZiZ%&Wr6Kd^z$QwG|zoK=Ld)cRt
zx7v)|?m94}VWYMFb&KO>O3={=VI`yvuDMS=oIA{23yEw`y*e17SyO#W&cOH8q`at~
zO%Ay(X!%}-#;Uq2=mWIYZ|v#n*^^XQo&xNtZGJJ%YwV<k>XZou=-xNz{^<LvaIo*)
z+XI53_4VhCZP^dch)H0j@GSRa^)=~b&O+63z#M<@HHZ^s#OW>(@@)wjtI4xOv#7Fu
zx0u3ms0?o(Cztt{gWmV?QNlmv6walLoLp}8s_j^XVhbb3E>*SY>2>uLFZesl42p3+
zsxxZymzv|=9Dh^3B^rx%LV4FBkKF4rn5$aO^M*GEHl=8VkFo}ZOY>|j%>^M^3mZWN
zY5h4^BiA2=$cTY4nIFuN1hjl8f4D2|HkvC@z>AVCRDv^4uU8kjNw<Gw79a;iLbWQq
z;Q9A$M1#c6I3B2z892sbd0n)(b9EQMq+Kn%uWwu4BdXS%(xh}!>mv7UsH*gt<Bu_l
zB0XZR^)VTs4lq5BRIy6c+)@yA8^|d*qT#;wk>N@aV#Ms!@Sde$;!g*=?Of$>9Pqff
zF2|CUKkw5#(clNpcW-K@1*uwBpHY%ub{oCe(=TM6>x?Qp5y59;xiJXuzf&wr1%FVt
zDt9R<+s8i^o!ZeZbMd2woT*~4o38=C@UB<EVXT>nFtd+ZHYy)-LMYM|gLz%SRx#Dj
zBTf&QgUx3aqfVM>KJpF;F*z3+7l#3NZM=EM&Ry&4wnpbr%N3s<I}-KtP?+w{`+Lp>
z&8fkj!Fbqqs(DU)sbY3b^IR&3`#B`>A!U$|FRp~-oijXjwBgUqzbna~ydl-!&l`n4
zKR6KHyzi3Crs)0$;TO;GHyl}-#DPaBCWh=2u8|K;eXEsRc3i6qV#LOmYV6>iA&l)y
z$RADQ5u<iLv@uY*^a?^}ByrzEgd*%m-<~*FIz5v<j?r9nX21O|3G{9G<8js`%&+P)
zwb{qZwrU{KQn+D!Oa*brqau2vDdHU~*;fIA3NU&;_nQCX#-8_LqozAVVlcjjG0tlm
zCz`A6Y-mX!SU$5{>Zuc=>OO(Gftr`o4nKSdD9EkPoz%;f>CXL&Ty;%#O&wKn0~D3m
z-#=9=UOtnSVPN!|(bwO?_bu)^n-gHp({go(Tf)jG2v|K+ySVG@7x^hxYxh7tc#BJN
zN%N4EF+>Xrq8|-uRCjdN@7>$izpezGt!(o0y0!B!Ec*0|WcFQ$vtOS4Jfd~Y`<>Iy
zfDmnJE~6B3SiZySoP0t@Op1EJx?kc-EXHh3Nia9_lv1UZ^Bt@X);xcpM^-_zO3#qu
zbPll((?*glYP0)u2W>wm92&LSp?*>OT+}i2=w^sOLZgcInPFnq78awWkQP&dA5ePw
zYoO^t2lK)Y+&Sg<o$r0h$BLZ+31A$*wi)4zm9UKy!O!;^Hxzxrqye)Tg~^+<t|`Z|
zvin6gLO$02`oSwF&gSk6kXNx(_K(YUS|xD4BKqQPwb@GjWeIt2kUMlkD&yIaH=^5n
z?^rI6SOgeKQ=3qaxBj0uTtfLT0rrnCzkBTO(`@_CEBD_2!xaPOntRW7|5c>-KGLmx
zSUlJ~?$zFX&u6YlUE!cf9?$bbMfe}_xV%~2@zIq0sP~aHrRdCqf*b_|qJEY{YIaiH
z<P-RF2zULSUc0s<&5#(3aUM3QcomXnDRa%c#L00QM_Nl#g}-u3OuS0%J-7FL<Qwr*
zDoxUgjdyvh?*3Isc&Z>liP6=>Ail@vH2g5~-0?B7%bo9%A9FI`&Yh`H_k6a`+Z~xF
iM)%z{@QUa<HH{$hCdzxA4gW&|xp&*(R^g2Y&;AF}k2Gum

literal 0
HcmV?d00001

diff --git a/p7/p7.ipynb b/p7/p7.ipynb
new file mode 100644
index 0000000..6d8d852
--- /dev/null
+++ b/p7/p7.ipynb
@@ -0,0 +1,2471 @@
+{
+ "cells": [
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "4ec2178b",
+   "metadata": {
+    "cell_type": "code",
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "# import and initialize otter\n",
+    "import otter\n",
+    "grader = otter.Notebook(\"p7.ipynb\")"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "4098a8db",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "import p7_test"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "f080923f",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# PLEASE FILL IN THE DETAILS\n",
+    "# Enter none if you don't have a project partner\n",
+    "\n",
+    "# project: p7\n",
+    "# submitter: NETID1\n",
+    "# partner: NETID2"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "12654767",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "# Project 7: Drinking Water Accessibility"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "2b970d5d",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "## Learning Objectives:\n",
+    "\n",
+    "In this project you will demonstrate how to:\n",
+    "\n",
+    "- Write programs to interpret data present in csv files,\n",
+    "- Use lists and dictionaries effectively to manage data,\n",
+    "- **Develop good coding styling habits (points may be deducted for bad coding styles)**"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "d997f9d6",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "## Testing your code:\n",
+    "\n",
+    "Along with this notebook, you must have downloaded the file `p7_test.py`. If you are curious about how we test your code, you can explore this file, and specifically the value of the variable `expected_json`, to understand the expected answers to the questions. You can have a look at [P2](https://git.doit.wisc.edu/cdis/cs/courses/cs220/cs220-s23-projects/-/tree/main/p2/p2.ipynb) if you have forgotten how to read the outputs of the `grader.check` function calls."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "60ecd7f7",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "**Please go through [Lab-P7](https://git.doit.wisc.edu/cdis/cs/courses/cs220/cs220-s23-projects/-/tree/main/lab-p7) before starting this project.** The lab introduces some useful techniques necessary for this project."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "8c9d3711",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "## Project Description:\n",
+    "\n",
+    "Universal access to safe drinking water is a fundamental need and human right. Securing access for all would go a long way in reducing illness and death, especially among children. \"Safely managed\" drinking water services represent an ambitious new rung on the ladder used to track progress on drinking water. Since 2000, 2 billion people have gained access to safely managed services (i.e., accessible on-premises, available when needed, and free from contamination). In 2020, 5.8 billion people used safely managed services and a further 2 billion people used basic services. However, 771 million people still lacked even a basic level of service, including 282 million who used a “limited” water service (source from which water collection time exceeds 30 minutes), 367 million who used unimproved sources and 122 million who still collected drinking water directly from rivers, lakes, and other surface water sources. The data reveal pronounced disparities, with the poorest and those living in rural areas least likely to use a basic service. In most countries, the burden of water collection continues to fall mainly to women and girls.\n",
+    "\n",
+    "[The Unicef website](https://data.unicef.org/) states that \"consistent, credible data about children’s situations are critical to the improvement of their lives – and indispensable to realizing the rights of every child.\" Data Scientists will play an important role in reaching this goal.\n",
+    "\n",
+    "For this project, you'll be analyzing data drawn from multiple sources. Our data is primarily drawn from the report titled [\"Progress on Household Drinking Water, Sanitation and Hygiene\"](https://washdata.org/sites/default/files/2021-07/jmp-2021-wash-households.pdf) data published by the Unicef/WHO Joint Monitoring Programme for Water Supply, Sanitation and Hygiene (2021). The original dataset can be found [here](https://data.unicef.org/topic/water-and-sanitation/drinking-water/) if you are interested in exploring the dataset yourself. Our dataset is further augmented by data from The World Bank on the [income levels of each country](https://datatopics.worldbank.org/world-development-indicators/the-world-by-income-and-region.html)."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "1abbab4c",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "## Dataset:\n",
+    "\n",
+    "The JMP report defines *people who have access to an [improved source of water](https://www.cdc.gov/healthywater/global/assessing.html#ImprovedDrinking) within 30 minutes round trip collection time* as having [at least basic access](https://www.cdc.gov/healthywater/global/assessing.html#DrinkingWaterSources) to water. For this project, we will focus on the **percentage of population** of each country who had **at least basic** water supply in the years **2015** and **2020**. Open `water_accessibility.csv` with Microsoft Excel or some other Spreadsheet viewer and look at the list of countries in the dataset. Data for each country appears twice, one row for the year *2015* and the other row for year *2020*. Countries which had incomplete data have been **omitted** from the dataset, and we will **ignore** those countries in this project. You do **not** have to deal with any **missing data** in the dataset.\n",
+    "\n",
+    "The data shows:\n",
+    "- `country_code` : the unique country code that consists of three alphabet letters\n",
+    "- `country_name` : the name of the country\n",
+    "- `region` : the geographical location of the country (does not equal to its corresponding continents, but follows the administrative groupings from [The World Bank](https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-lending-groups))\n",
+    "- `year` : the year in which it was subject to data collection\n",
+    "- `income_level` : the classification of income level based on GNI per capita in US dollars ([The World Bank Atlas Method](https://datahelpdesk.worldbank.org/knowledgebase/articles/378834-how-does-the-world-bank-classify-countries))\n",
+    "- `pop` : population of the country in a specific year (in thousands)\n",
+    "- `urban_percent` : the percentage of population in a given country that is urban\n",
+    "- `national_alb` : the percentage of a country's population that has access to at least basic water supply\n",
+    "- `urban_alb` : the percentage of a country's urban population that has access to at least basic water supply"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "3226285c",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "## Project Requirements:\n",
+    "\n",
+    "You **may not** hardcode indices in your code, unless the question explicitly says so. If you open your `.csv` file with Excel, manually count through the rows and use this number to loop through the dataset, this is also considered as hardcoding. We'll **manually deduct** points from your autograder score on Gradescope during code review. You are **allowed** to assume that the dataset is ordered in such a way that the *even indices* (0, 2 .. etc;) corresponds to the rows with information for the year 2015, and the *odd indices* (1, 3 .. etc;) correspond to the rows with information for year 2020. Using this fact about the dataset will **not** be considered hardcoding.\n",
+    "\n",
+    "**Store** your final answer for each question in the **variable specified for each question**. This step is important because Otter grades your work by comparing the value of this variable against the correct answer.\n",
+    "\n",
+    "For some of the questions, we'll ask you to write (then use) a function to compute the answer. If you compute the answer **without** creating the function we ask you to write, we'll **manually deduct** points from your autograder score on Gradescope, even if the way you did it produced the correct answer. \n",
+    "\n",
+    "Required Functions:\n",
+    "- `cell`\n",
+    "- `get_col_dict`\n",
+    "\n",
+    "In this project, you will also be required to define certain **data structures**. If you do not create these data structures exactly as specified, we'll **manually deduct** points from your autograder score on Gradescope, even if the way you did it produced the correct answer.\n",
+    "\n",
+    "Required Data Structures:\n",
+    "- `dict_2015`\n",
+    "- `dict_2020`\n",
+    "- `rural_non_alb_bin_2015_dict`\n",
+    "- `rural_non_alb_bin_2020_dict`\n",
+    "    \n",
+    "Students are only allowed to use Python commands and concepts that have been taught in the course prior to the release of p7. Therefore, **you should not use the pandas module**.  We will **manually deduct** points from your autograder score on Gradescope otherwise.\n",
+    "\n",
+    "For more details on what will cause you to lose points during code review and specific requirements, please take a look at the [Grading rubric](https://git.doit.wisc.edu/cdis/cs/courses/cs220/cs220-s23-projects/-/blob/main/p7/rubric.md)."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "30a1f9b6",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "## Incremental Coding and Testing:\n",
+    "\n",
+    "You should always strive to do incremental coding. **Incremental coding enables you to avoid challenging bugs.** Always write a few lines of code and then test those lines of code, before proceeding to write further code. You can call the `print` function to test intermediate step outputs.\n",
+    "\n",
+    "We also recommend you do incremental testing: make sure to run the local tests as soon as you are done with a question. This will ensure that you haven't made a big mistake that might potentially impact the rest of your project solution. Please refrain from making multiple submissions on Gradescope for testing individual questions' answers. Instead use the local tests, to test your solution on your laptop.\n",
+    "\n",
+    "That said, it is **important** that you check the Gradescope test results as soon as you submit your project on Gradescope. Test results on Gradescope are typically available somewhere between 2 to 10 minutes after the submission.\n",
+    "\n",
+    "Also, remember to check with the [P7 rubric](https://git.doit.wisc.edu/cdis/cs/courses/cs220/cs220-s23-projects/-/blob/main/p7/rubric.md) to verify that you will not be losing any points during manual review."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "301913cb",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "## Project Questions and Functions:"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "6db03afc",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# it is considered a good coding practice to place all import statements at the top of the notebook\n",
+    "# please place all your import statements in this cell if you need to import any more modules for this project\n"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "84fc95f0",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "First, read the data stored in `water_accessibility.csv`. You **must** read the csv file and then get the header and rows (and store them into `csv_header` and `csv_rows` variables). You will **lose points** if you use any other names to store these variables."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "1bee769c",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# read the data stored in water_accessibility.csv\n",
+    "\n",
+    "# read the data in \"water_accessibility.csv\"\n",
+    "csv_data = ... \n",
+    "\n",
+    "# split the header and other rows into appropriate variables\n",
+    "csv_header = ...\n",
+    "csv_rows = ...\n",
+    "\n",
+    "print(csv_header)\n",
+    "print(csv_rows[0:2])"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "899b98a0",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "### Function 1: `cell(row_idx, col_name)` \n",
+    "\n",
+    "This function must take in a row index, `row_idx` and a column name, `col_name` as its inputs, and return the value in `water_accessibility.csv` stored there. There is **no missing data** in this dataset.\n",
+    "\n",
+    "You **must** define the variables `csv_header` and `csv_rows` as in Lab-P7, and you **must** copy/paste your `cell` function from Lab-P7.\n",
+    "\n",
+    "**Important:** You **must** only use the `cell` function to extract data from the dataset. If you extract any data without explicitly using this function, you will **lose points** during manual review. Moreover, your `cell` function **must** handle typecasting all columns and multiplying the population (`pop`) by *1000*. You will **lose points** if you perform these steps outside the `cell` function."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "8d660407",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# define the cell function here\n"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "22319e1e",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "After you define the function `cell`, run the following two cells to test whether it works."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "0f8f552c",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "cell_test1 = cell(0, 'country_name')\n",
+    "cell_test2 = cell(1, 'year')\n",
+    "cell_test3 = cell(2, 'urban_percent')\n",
+    "cell_test4 = cell(3, 'urban_alb')\n",
+    "cell_test5 = cell(4, 'income_level')\n",
+    "cell_test6 = cell(5, 'pop')"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "b69f3c64",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"cell_test\")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "029ef4df",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "You are all set! You are now ready to start solving the questions."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "ec0db606",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "**Question 1:** Which country had the highest population (`pop`) in *2020*?"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "267544c7",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# compute and store the answer in the variable 'highest_pop_country', then display it\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "823559e7",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q1\")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "541486f4",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "**Question 2:** Which country had the highest population (`pop`) **increase** between *2015* and *2020*?\n",
+    "\n",
+    "There is a **unique** country in this dataset whose population increased the most. You **do not** have to worry about ties.\n",
+    "\n",
+    "**Hint:** Recall how to loop through the dataset and extract data from each year from [Lab-P7](https://git.doit.wisc.edu/cdis/cs/courses/cs220/cs220-s23-projects/-/tree/main/lab-p7)."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "166a98dd",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# compute and store the answer in the variable 'highest_pop_inc_country', then display it\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "5021ef50",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q2\")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "1a6716cb",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "**Question 3:** Which country had the highest **increase** in at least basic (`national_alb`) water supply between the years of *2015* and *2020*? \n",
+    "\n",
+    "There is a **unique** country in this dataset whose `national_alb` value increased the most. You **do not** have to worry about ties.\n",
+    "\n",
+    "**Hint:** Take a look at q7 in Lab-P7 to see how to compute the change in `national_alb` between *2015* and *2020* for each country."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "c2066e60",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# compute and store the answer in the variable 'highest_nat_alb_inc_country', then display it\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "0bab1616",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q3\")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "9dc35fc4",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "**Question 4:** What was the `income_level` in *2020* of the country with the highest increase in at least basic (`national_alb`) water supply between *2015* and *2020*?\n",
+    "\n",
+    "You **must** not repeat your computation here. Instead modify your code for q3 to extract the correct index, and use that to answer this question."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "6e8927dd",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# compute and store the answer in the variable 'highest_alb_inc_income_level', then display it\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "e558e594",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q4\")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "72a83cc4",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "**Question 5:** What is the **total** population (`pop`) of **all** the countries (in the dataset) in the `year` *2015*?\n",
+    "\n",
+    "The `pop` column stores the population in thousands. Your `cell` function already multiplies the value in this column by *1000*, so you can directly use the value returned by `cell` as the population of the country."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "bbc9f7d5",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# compute and store the answer in the variable 'total_pop_2015', then display it\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "495a9cc2",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q5\")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "6fd46918",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "**Question 6:** What was the global **percentage** of urban population (`urban_percent`) across **all** countries (in the dataset) in the `year` *2015*?\n",
+    "\n",
+    "You need to find the **total** urban population by *multiplying* the `pop` and `urban_percent` columns of each country and *adding* this up (the urban population). Then you need to *divide* by the **total** population to get the percentage of urban population across all the countries.\n",
+    "\n",
+    "Your output **must** be an **int**. You **must** use the `round` function to round your answer to the nearest integer."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "59597ee6",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# compute and store the answer in the variable 'urban_pop_percent_2015', then display it\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "51239c61",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q6\")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "43f8cde2",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "**Question 7:** What was the **total** population (`pop`) of countries that were in the *High income* group (`income_level`) in the `year` *2020*?\n",
+    "\n",
+    "Your output **must** be an **int**."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "972f9e3f",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# compute and store the answer in the variable 'high_income_pop', then display it\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "625825be",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q7\")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "c832901b",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "**Question 8:** Which *income group* (`income_level`) had the **least** population (`pop`) in the `year` *2015*?\n",
+    "\n",
+    "You must find the **total** population (`pop`) for each `income_level`, and find the `income_level` which has the **least** total population.\n",
+    "\n",
+    "**Hint:** There are several ways to solve this problem efficiently (including using `dicts`). You can try to solve this problem using dicts if you want to. However, another approach that you might already be familiar with from p6 is to first create a *list* of all the **unique** income levels, and then loop through the entire dataset for **each** income level to find the total population of that income level, before comparing these numbers to find the income level with the least population."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "c6f5df91",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# compute and store the answer in the variable 'least_pop_income_group', then display it\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "6e3c7f47",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q8\")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "23bce21c",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "**Question 9:** Create a **list** of the names (`country_name`) of all countries in the *North America* `region` that **tied** for the **maximum** `national_alb` in *2015* (in *North America*).\n",
+    "\n",
+    "You need to first find the **maximum** value of `national_alb` among all countries in the `region` *North America*, and then make a `list` of **all** the countries in this region having this `national_alb` value. **Multiple** countries from *North America* have the same maximum `national_alb` value, so your output **must** be a `list` of **all** those countries."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "574514c6",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# compute and store the answer in the variable 'na_max_alb_countries', then display it\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "70816313",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q9\")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "505aefcf",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "### Function 2: `get_col_dict(col_name, year)` \n",
+    "\n",
+    "This function should take in a column `col_name` and a `year` (*2015* or *2020*) as its inputs, and return a `dict` where each key is a `country_code` and the corresponding value is the value under the given `col_name` for the country with the said `country_code` in the given `year`.\n",
+    "\n",
+    "For example, the value returned by `get_col_dict('country_name', 2015)` should be something like the following:\n",
+    "```python\n",
+    "{'AFG': 'Afghanistan',\n",
+    " 'ALB': 'Albania',\n",
+    " 'DZA': 'Algeria',\n",
+    " 'AND': 'Andorra',\n",
+    " 'AGO': 'Angola',\n",
+    " 'ARM': 'Armenia',\n",
+    " 'AUS': 'Australia',\n",
+    " 'AUT': 'Austria',\n",
+    " 'AZE': 'Azerbaijan',\n",
+    " 'BGD': 'Bangladesh',\n",
+    " ...\n",
+    "}\n",
+    "```\n",
+    "\n",
+    "and the value returned by `get_col_dict('pop', 2020)` should be something like the following:\n",
+    "```python\n",
+    "{'AFG': 38928000,\n",
+    " 'ALB': 2878000,\n",
+    " 'DZA': 43851000,\n",
+    " 'AND': 77000,\n",
+    " 'AGO': 32866000,\n",
+    " 'ARM': 2963000,\n",
+    " 'AUS': 25500000,\n",
+    " 'AUT': 9006000,\n",
+    " 'AZE': 10139000,\n",
+    " 'BGD': 164689000,\n",
+    " ...\n",
+    "}\n",
+    "```\n",
+    "\n",
+    "Start with the following code snippet and complete the function."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "6ea7d480",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# replace the ... with your code\n",
+    "\n",
+    "def get_col_dict(col_name, year):\n",
+    "    col_dict = {}\n",
+    "    if year == 2015:\n",
+    "        for idx in range (0, len(csv_rows), 2):\n",
+    "            col_dict[...] = ... \n",
+    "    elif year == 2020:\n",
+    "        for idx in range (1, len(csv_rows), 2):\n",
+    "            col_dict[...] = ... \n",
+    "    return col_dict"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "4da85178",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "After you define the function `get_col_dict`, run the following two cells to test whether it works."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "c8c01873",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "get_col_dict_test1 = get_col_dict('region', 2020)\n",
+    "get_col_dict_test2 = get_col_dict('national_alb', 2015)\n",
+    "get_col_dict_test3 = get_col_dict('pop', 2020)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "ffb16361",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"get_col_dict\")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "fd5d8dbe",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "### Data Structures 1: `dict_2015`\n",
+    "\n",
+    "You must now create a data structure named `dict_2015`. This data structure must be a **dict**. Each key must be a `country_code`, and the corresponding value must be another **dict**. As for the inner dictionary, the keys must be the various column names, and the values must be the values under the column name for `country_code` in the `year` *2015*.\n",
+    "\n",
+    "The keys for each of the *inner* dictionary are the column names:\n",
+    "- `'country_name'`\n",
+    "- `'region'`\n",
+    "- `'income_level'`\n",
+    "- `'year'`\n",
+    "- `'pop'`\n",
+    "- `'urban_percent'`\n",
+    "- `'national_alb'`\n",
+    "- `'urban_alb'`\n",
+    "\n",
+    "You are **allowed** to *hardcode* the **names** of all these columns (i.e., the keys of the *inner* dictionaries).\n",
+    "\n",
+    "The data structure `dict_2015` should look something like this:\n",
+    "```python\n",
+    "{'AFG': {'country_name': 'Afghanistan',\n",
+    "  'region': 'South Asia',\n",
+    "  'income_level': 'Low income',\n",
+    "  'year': 2015,\n",
+    "  'pop': 34414000,\n",
+    "  'urban_percent': 25,\n",
+    "  'national_alb': 61,\n",
+    "  'urban_alb': 87},\n",
+    " 'ALB': {'country_name': 'Albania',\n",
+    "  'region': 'Europe & Central Asia',\n",
+    "  'income_level': 'Upper middle income',\n",
+    "  'year': 2015,\n",
+    "  'pop': 2891000,\n",
+    "  'urban_percent': 57,\n",
+    "  'national_alb': 93,\n",
+    "  'urban_alb': 95},\n",
+    "  ...\n",
+    "}\n",
+    "```"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "db358fa4",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# define the variable 'dict_2015' here as described above\n",
+    "# you may display the variable for testing purposes while you define it,\n",
+    "# BUT you MUST remove the line displaying 'dict_2015' before submission as the output will be too large to display\n",
+    "\n",
+    "# initialize as an empty dictionary\n",
+    "dict_2015 = ...\n",
+    "\n",
+    "country_dict = get_col_dict('country_name', 2015)\n",
+    "region_dict = get_col_dict(..., ...)\n",
+    "# call get_col_dict for other columns\n",
+    "...\n",
+    "\n",
+    "# add data from all these dicts to dict_2015"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "582e6dd2",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "After you define the data structure `dict_2015`, run the following cell to test whether you have defined it properly."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "1b82de8b",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"dict_2015\")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "7e4d448a",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "### Data Structures 2: `dict_2020`\n",
+    "\n",
+    "You must now create a data structure named `dict_2020`. This data structure must be a **dict**. Each key must be a `country_code`, and the corresponding value must be another **dict**. As for the inner dictionary, the keys must be the various column names, and the values must be the values under the column name for `country_code` in the `year` *2020*.\n",
+    "\n",
+    "The keys for each of the *inner* dictionary are the column names:\n",
+    "- `'country_name'`\n",
+    "- `'region'`\n",
+    "- `'income_level'`\n",
+    "- `'year'`\n",
+    "- `'pop'`\n",
+    "- `'urban_percent'`\n",
+    "- `'national_alb'`\n",
+    "- `'urban_alb'`\n",
+    "\n",
+    "You are **allowed** to *hardcode* the **names** of all these columns (i.e., the keys of the *inner* dictionaries)."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "d9d1fa73",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# define the variable 'dict_2020' here as described above\n",
+    "# you may display the variable for testing purposes while you define it,\n",
+    "# BUT you MUST remove the line displaying 'dict_2020' before submission as the output will be too large to display\n"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "27206e45",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "After you define the data structure `dict_2020`, run the following cell to test whether you have defined it properly."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "f7f2590c",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"dict_2020\")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "f5823f27",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "#### From this point onwards, you are only allowed to access data from `water_accessibility.csv` by querying from the **dicts** `dict_2015` and `dict_2020`. You will **lose points** during manual review if you access the data through any other means (inlcuding calling the `cell` function)."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "122010ce",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "**Question 10:** Output the data from *China* (`country_code`: *CHN*) for the `year` *2020*.\n",
+    "\n",
+    "Your output **must** be a **dict** mapping each column name to the value for the country *CHN* in the year *2020*. You **must** answer this by querying data from `dict_2020`.\n",
+    "\n",
+    "The expected output is:\n",
+    "```python\n",
+    "{'country_name': 'China',\n",
+    " 'region': 'East Asia & Pacific',\n",
+    " 'income_level': 'Upper middle income',\n",
+    " 'year': 2020,\n",
+    " 'pop': 1463141000,\n",
+    " 'urban_percent': 62,\n",
+    " 'national_alb': 94,\n",
+    " 'urban_alb': 97}\n",
+    "```"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "1f92792a",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# compute and store the answer in the variable 'chn_2020_dict', then display it\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "3e0db750",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q10\")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "1c6f7551",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "**Question 11:** What is the national at least basic (`national_alb`) water supply for *Nepal* (`country_code`: *NPL*) in the `year` *2015*?"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "6afb44a6",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# compute and store the answer in the variable 'npl_national_alb_2015', then display it\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "8628138d",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q11\")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "a1c2a622",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "**Question 12:** How much did the population (`pop`) of *Finland* **increase** (`country_code`: *FIN*) from the `year` *2015* to *2020*?"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "9d227a6e",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# compute and store the answer in the variable 'population_change_fin', then display it\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "a621aa32",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q12\")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "1bac50ce",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "**Question 13:** For each `income_level`, find the **total** population (`pop`) of all countries within that `income_level` in *2020*.\n",
+    "\n",
+    "Your output **must** be a **dict** where each key is a `income_level`, and the corresponding value is the **sum** of populations (`pop`) of all the countries from that `income_level` in the `year` *2020*."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "e2244625",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# compute and store the answer in the variable 'income_level_pops', then display it\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "8ac9595f",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q13\")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "4355a333",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "**Question 14:** For each `income_level`, find the **total** population (`pop`) of all countries who have access to at least basic water supply within that `income_level` in *2020*.\n",
+    "\n",
+    "Your output **must** be a **dict** where each key is a `income_level`, and the corresponding value is the **sum** of populations (`pop`) which have access to at least basic water supply of all the countries from that `income_level` in the `year` *2020*.\n",
+    "\n",
+    "You **must** round the population of **each** country with access to at least basic water supply to the **nearest** integer **before** adding them up.\n",
+    "\n",
+    "**Hint:** For each country, the population with at least basic water supply is `pop * national_alb / 100`. "
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "2163db33",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# compute and store the answer in the variable 'income_level_alb_pops', then display it\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "43d09315",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q14\")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "2fc75f18",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "**Question 15:** For each `income_level`, find the **percentage** of population (`pop`) of all countries within that `income_level` with at least basic water supply in *2020*.\n",
+    "\n",
+    "Your output **must** be a **dict** where each key is a `income_level`, and the corresponding value is the **percentage** of the population (`pop`) which have access to at least basic water supply of all the countries from that `income_level` in the `year` *2020*. The percentages **must** be represented as **int**s between *0* and *100*. You **must** round each of the percentages to the **nearest** integer.\n",
+    "\n",
+    "**Hint:** You need to loop through the dictionary you found in Q13 (or Q14), and for each key, you need to divide the corresponding value in the Q14 dictionary by the value of the same key in the Q13 dictionary and multiply by 100. Take another look at Task 3.6 from Lab-P7, if you are not sure how to proceed here."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "8fc6a590",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# compute and store the answer in the variable 'income_level_alb_percent', then display it\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "cce208df",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q15\")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "a25919a2",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "### Data Structure 3: Adding `rural_alb`  to `dict_2015` and `dict_2020`\n",
+    "\n",
+    "Our dataset has data on the percentage of **national** and **urban** populations with at least basic water supply. However, it is usually **rural** populations which have the greatest difficulty in getting access to water.\n",
+    "\n",
+    "Luckily, we are able to calculate **rural_alb** from the given data using the formula:\n",
+    "\n",
+    "$$\n",
+    "rural_{alb} = \\frac{national_{alb} - \\left(urban_{alb} \\times \\frac{urban\\_percent}{100}\\right)}{\\left(1 - \\frac{urban\\_percent}{100}\\right)}\n",
+    "$$\n",
+    "\n",
+    "*If a country has `urban_percent` equal to `100`, then the country has a negligible rural population, and the formula above is not valid. For such countries, we will assume that `rural_alb` is the **same** as `urban_alb`.*\n",
+    "\n",
+    "You **must** loop through each country in `dict_2015` and `dict_2020`, and add an **additional** key value pair for each country. The new key should be the string: `\"rural_alb\"`, and the corresponding value should be the `rural_alb` value for that country as given by the formula above. You **must** round each number to the **nearest** integer."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "f897e182",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# add the additional key-value pair to both dicts 'dict_2015' and 'dict_2020' here\n",
+    "# you may display the variable for testing purposes while you define it,\n",
+    "# BUT you MUST remove the line displaying the dicts before submission as the output will be too large to display\n"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "873d577f",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "Run the following cell to test whether you have correctly updated the two data structures."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "f819df98",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"ds3\")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "8ec2d557",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "**Question 16:** What's the percentage of rural population with at least basic (`rural_alb`) water supply in *Zimbabwe* (`country_code`: *ZWE*) in *2020*? \n",
+    "\n",
+    "You **must** answer this question by querying data from the dict `dict_2020`."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "82e8a1ed",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# compute and store the answer in the variable 'zimbabwe_rural_alb_2020', then display it\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "39afe0ed",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q16\")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "89ad1d5d",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "### Data Structure 4: `rural_non_alb` bins\n",
+    "\n",
+    "We have now managed to extract the percentage of rural population with access to atleast basic water supply for each of the countries in the dataset. We can now use this information to find out the countries whose rural populations do **not** have access to at least basic water supply.\n",
+    "\n",
+    "You **must** create two **dict**s (one for the `year` *2015* and one for *2020*) where the keys are the integers *0*, *10*, *20*, ..., *100*. The value corresponding to the integer *0* **must** be a **list** containing the names of all the countries for which their rural population **without** access to at least basic (which we can represent as `rural_non_alb`) water supply is `0 <= rural_non_alb < 10`. Similarly, the value corresponding to the key *10* must be a **list** of all countries for which `10 <= rural_non_alb < 20`, and so on.\n",
+    "\n",
+    "**Hints:**\n",
+    "1. You can find `rural_non_alb` as `rural_non_alb = 100 - rural_alb`.\n",
+    "2. You can find the bin which any country falls into by using the formula:\n",
+    "```python\n",
+    "rural_non_alb_bin = ((100 - rural_alb)//10) * 10\n",
+    "```\n",
+    "3. Even if a particular bin has no countries in it, you **must** still create a bin for it in your dict (with the value being an empty list). The starter code below will help you accomplish this."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "b87087c6",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# compute and store the answer in the variable 'rural_non_alb_bin_2015_dict'\n",
+    "\n",
+    "# initialize as an empty dictionary\n",
+    "rural_non_alb_bin_2015_dict = ...\n",
+    "\n",
+    "# loop through the keys we want for the dictionary - 0, 10, 20, ..., 100 (inclusive of 100)\n",
+    "# and add them to the dictionary as keys with the value as an empty list\n",
+    "for rural_non_alb_bin in range(...):\n",
+    "    rural_non_alb_bin_2015_dict[rural_non_alb_bin] = []\n",
+    "\n",
+    "# loop through each country and add to the correct bin of rural_non_alb_bin_2015_dict"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "3494a2e3",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# compute and store the answer in the variable 'rural_non_alb_bin_2020_dict'\n"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "0587f1dc",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "After you define the data structures `rural_non_alb_bin_2015_dict` and `rural_non_alb_bin_2020_dict`, run the following cell to test whether you have defined them properly."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "8a645c3e",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"rural_non_alb_bins\")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "852082e7",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "**Question 17:** List all the countries which had `rural_non_alb` value between *20* and *29* (both inclusive) in the `year` *2015*.\n",
+    "\n",
+    "You **must** answer this question by querying the the **dict** `rural_non_alb_bin_2015_dict`."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "3d3cb290",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# compute and store the answer in the variable 'bin_20_countries', then display it\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "9b39a0f5",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q17\")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "cfa77a6b",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "**Question 18:** What are the countries in the **last** non-empty bin in the `year` *2020*?\n",
+    "\n",
+    "Your output **must** be a **list** of the countries in the bin with the **highest** percentage of rural population without at least basic access to water.\n",
+    "\n",
+    "**Hint:** You must first find the largest key of the **dict** `rural_non_alb_bin_2020_dict` with a non-empty bin, and then find the value of that key."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "df205363",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# compute and store the answer in the variable 'last_non_empty_bin_2020', then display it\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "ac4cbbb5",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q18\")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "b7a2eb11",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "**Question 19:** What countries have **regressed** by moving to a **higher** bin from *2015* to *2020*?\n",
+    "\n",
+    "Your answer **must** be a **list** of countries which have regressed by having their percentage of rural population without at least basic access to water move to a bin with a **higher** key.\n",
+    "\n",
+    "**Hint:** There are many ways of solving this question. Here are a few:\n",
+    "1. You could create a new dictionary by swapping the keys and values of `rural_non_alb_bin_2015_dict` (and similarly `rural_non_alb_bin_2020_dict`), and use these dictionaries to determine the countries that have regressed.\n",
+    "2. You could create a nested loop to go through all possible combinations of keys in both the dictionaries `rural_non_alb_bin_2015_dict` and `rural_non_alb_bin_2020_dict`.\n",
+    "3. You could loop through all the countries and directly query from `dict_2015` and `dict_2020` to determine which of them have regressed."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "9394c718",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# compute and store the answer in the variable 'countries_regressed', then display it\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "70db3d66",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q19\")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "471a1681",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "**Question 20:** What countries have **improved** by moving to a **lower** bin from *2015* to *2020*?\n",
+    "\n",
+    "Your answer **must** be a **list** of countries which have improved by having their percentage of rural population without at least basic access to water move to a bin with a **lower** key."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "6fc48d32",
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "# compute and store the answer in the variable 'countries_improved', then display it\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "aca62588",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "grader.check(\"q20\")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "9e4b8059",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    "## Submission\n",
+    "It is recommended that at this stage, you Restart and Run all Cells in your notebook.\n",
+    "That will automatically save your work and generate a zip file for you to submit.\n",
+    "\n",
+    "**SUBMISSION INSTRUCTIONS**:\n",
+    "1. **Upload** the zipfile to Gradescope.\n",
+    "2. Check **Gradescope otter** results as soon as the auto-grader execution gets completed. Don't worry about the score showing up as -/100.0. You only need to check that the test cases passed."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "5e515e70",
+   "metadata": {
+    "cell_type": "code"
+   },
+   "outputs": [],
+   "source": [
+    "# running this cell will create a new save checkpoint for your notebook\n",
+    "from IPython.display import display, Javascript\n",
+    "display(Javascript('IPython.notebook.save_checkpoint();'))"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "ba9d60ae",
+   "metadata": {
+    "cell_type": "code",
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "!jupytext --to py p7.ipynb"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "34403430",
+   "metadata": {
+    "cell_type": "code",
+    "deletable": false,
+    "editable": false
+   },
+   "outputs": [],
+   "source": [
+    "p7_test.check_file_size(\"p7.ipynb\")\n",
+    "grader.export(pdf=False, run_tests=True, files=[\"p7.py\"])"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "38a140ba",
+   "metadata": {
+    "deletable": false,
+    "editable": false
+   },
+   "source": [
+    " "
+   ]
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3 (ipykernel)",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.9.13"
+  },
+  "otter": {
+   "OK_FORMAT": true,
+   "tests": {
+    "cell_test": {
+     "name": "cell_test",
+     "points": 0,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> p7_test.check(\"qcell_test1\", cell_test1)\nTrue",
+         "hidden": false,
+         "locked": false
+        },
+        {
+         "code": ">>> p7_test.check(\"qcell_test2\", cell_test2)\nTrue",
+         "hidden": false,
+         "locked": false
+        },
+        {
+         "code": ">>> p7_test.check(\"qcell_test3\", cell_test3)\nTrue",
+         "hidden": false,
+         "locked": false
+        },
+        {
+         "code": ">>> p7_test.check(\"qcell_test4\", cell_test4)\nTrue",
+         "hidden": false,
+         "locked": false
+        },
+        {
+         "code": ">>> p7_test.check(\"qcell_test5\", cell_test5)\nTrue",
+         "hidden": false,
+         "locked": false
+        },
+        {
+         "code": ">>> p7_test.check(\"qcell_test6\", cell_test6)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "dict_2015": {
+     "name": "dict_2015",
+     "points": 0,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> p7_test.check(\"qdict_2015_test\", dict_2015)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "dict_2020": {
+     "name": "dict_2020",
+     "points": 0,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> p7_test.check(\"qdict_2020_test\", dict_2020)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "ds3": {
+     "name": "ds3",
+     "points": 0,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> p7_test.check(\"qdict_2015_rural_alb_test\", dict_2015)\nTrue",
+         "hidden": false,
+         "locked": false
+        },
+        {
+         "code": ">>> p7_test.check(\"qdict_2020_rural_alb_test\", dict_2020)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "get_col_dict": {
+     "name": "get_col_dict",
+     "points": 0,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> p7_test.check(\"qget_col_dict_test1\", get_col_dict_test1)\nTrue",
+         "hidden": false,
+         "locked": false
+        },
+        {
+         "code": ">>> p7_test.check(\"qget_col_dict_test2\", get_col_dict_test2)\nTrue",
+         "hidden": false,
+         "locked": false
+        },
+        {
+         "code": ">>> p7_test.check(\"qget_col_dict_test3\", get_col_dict_test3)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "import": {
+     "name": "import",
+     "points": 0,
+     "suites": [
+      {
+       "cases": [],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q1": {
+     "name": "q1",
+     "points": 0,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> p7_test.check(\"q1\", highest_pop_country)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q10": {
+     "name": "q10",
+     "points": 0,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> p7_test.check(\"q10\", chn_2020_dict)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q11": {
+     "name": "q11",
+     "points": 0,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> p7_test.check(\"q11\", npl_national_alb_2015)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q12": {
+     "name": "q12",
+     "points": 0,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> p7_test.check(\"q12\", population_change_fin)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q13": {
+     "name": "q13",
+     "points": 0,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> p7_test.check(\"q13\", income_level_pops)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q14": {
+     "name": "q14",
+     "points": 0,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> p7_test.check(\"q14\", income_level_alb_pops)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q15": {
+     "name": "q15",
+     "points": 0,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> p7_test.check(\"q15\", income_level_alb_percent)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q16": {
+     "name": "q16",
+     "points": 0,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> p7_test.check(\"q16\", zimbabwe_rural_alb_2020)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q17": {
+     "name": "q17",
+     "points": 0,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> p7_test.check(\"q17\", bin_20_countries)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q18": {
+     "name": "q18",
+     "points": 0,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> p7_test.check(\"q18\", last_non_empty_bin_2020)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q19": {
+     "name": "q19",
+     "points": 0,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> p7_test.check(\"q19\", countries_regressed)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q2": {
+     "name": "q2",
+     "points": 0,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> p7_test.check(\"q2\", highest_pop_inc_country)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q20": {
+     "name": "q20",
+     "points": 0,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> p7_test.check(\"q20\", countries_improved)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q3": {
+     "name": "q3",
+     "points": 0,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> p7_test.check(\"q3\", highest_nat_alb_inc_country)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q4": {
+     "name": "q4",
+     "points": 0,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> p7_test.check(\"q4\", highest_alb_inc_income_level)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q5": {
+     "name": "q5",
+     "points": 0,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> p7_test.check(\"q5\", total_pop_2015)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q6": {
+     "name": "q6",
+     "points": 0,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> p7_test.check(\"q6\", urban_pop_percent_2015)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q7": {
+     "name": "q7",
+     "points": 0,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> p7_test.check(\"q7\", high_income_pop)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q8": {
+     "name": "q8",
+     "points": 0,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> p7_test.check(\"q8\", least_pop_income_group)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "q9": {
+     "name": "q9",
+     "points": 0,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> p7_test.check(\"q9\", na_max_alb_countries)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "rubric-f1": {
+     "name": "rubric-f1",
+     "points": 3,
+     "suites": [
+      {
+       "cases": [],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "rubric-f2": {
+     "name": "rubric-f2",
+     "points": 3,
+     "suites": [
+      {
+       "cases": [],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "rubric-q1": {
+     "name": "rubric-q1",
+     "points": 4,
+     "suites": [
+      {
+       "cases": [],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "rubric-q10": {
+     "name": "rubric-q10",
+     "points": 2,
+     "suites": [
+      {
+       "cases": [],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "rubric-q11": {
+     "name": "rubric-q11",
+     "points": 2,
+     "suites": [
+      {
+       "cases": [],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "rubric-q12": {
+     "name": "rubric-q12",
+     "points": 3,
+     "suites": [
+      {
+       "cases": [],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "rubric-q13": {
+     "name": "rubric-q13",
+     "points": 4,
+     "suites": [
+      {
+       "cases": [],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "rubric-q14": {
+     "name": "rubric-q14",
+     "points": 4,
+     "suites": [
+      {
+       "cases": [],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "rubric-q15": {
+     "name": "rubric-q15",
+     "points": 4,
+     "suites": [
+      {
+       "cases": [],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "rubric-q16": {
+     "name": "rubric-q16",
+     "points": 2,
+     "suites": [
+      {
+       "cases": [],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "rubric-q17": {
+     "name": "rubric-q17",
+     "points": 2,
+     "suites": [
+      {
+       "cases": [],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "rubric-q18": {
+     "name": "rubric-q18",
+     "points": 4,
+     "suites": [
+      {
+       "cases": [],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "rubric-q19": {
+     "name": "rubric-q19",
+     "points": 5,
+     "suites": [
+      {
+       "cases": [],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "rubric-q2": {
+     "name": "rubric-q2",
+     "points": 4,
+     "suites": [
+      {
+       "cases": [],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "rubric-q20": {
+     "name": "rubric-q20",
+     "points": 5,
+     "suites": [
+      {
+       "cases": [],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "rubric-q3": {
+     "name": "rubric-q3",
+     "points": 4,
+     "suites": [
+      {
+       "cases": [],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "rubric-q4": {
+     "name": "rubric-q4",
+     "points": 4,
+     "suites": [
+      {
+       "cases": [],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "rubric-q5": {
+     "name": "rubric-q5",
+     "points": 4,
+     "suites": [
+      {
+       "cases": [],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "rubric-q6": {
+     "name": "rubric-q6",
+     "points": 4,
+     "suites": [
+      {
+       "cases": [],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "rubric-q7": {
+     "name": "rubric-q7",
+     "points": 4,
+     "suites": [
+      {
+       "cases": [],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "rubric-q8": {
+     "name": "rubric-q8",
+     "points": 5,
+     "suites": [
+      {
+       "cases": [],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "rubric-q9": {
+     "name": "rubric-q9",
+     "points": 4,
+     "suites": [
+      {
+       "cases": [],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    },
+    "rural_non_alb_bins": {
+     "name": "rural_non_alb_bins",
+     "points": 0,
+     "suites": [
+      {
+       "cases": [
+        {
+         "code": ">>> p7_test.check(\"qrural_non_alb_bin_2015\", rural_non_alb_bin_2015_dict)\nTrue",
+         "hidden": false,
+         "locked": false
+        },
+        {
+         "code": ">>> p7_test.check(\"qrural_non_alb_bin_2020\", rural_non_alb_bin_2020_dict)\nTrue",
+         "hidden": false,
+         "locked": false
+        }
+       ],
+       "scored": true,
+       "setup": "",
+       "teardown": "",
+       "type": "doctest"
+      }
+     ]
+    }
+   }
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/p7/p7_test.py b/p7/p7_test.py
new file mode 100644
index 0000000..f362038
--- /dev/null
+++ b/p7/p7_test.py
@@ -0,0 +1,6205 @@
+#!/usr/bin/python
+
+import os, json, math
+
+MAX_FILE_SIZE = 500 # units - KB
+REL_TOL = 6e-04  # relative tolerance for floats
+ABS_TOL = 15e-03  # absolute tolerance for floats
+
+PASS = "PASS"
+
+TEXT_FORMAT = "text"  # question type when expected answer is a str, int, float, or bool
+TEXT_FORMAT_NAMEDTUPLE = "text namedtuple"  # question type when expected answer is a namedtuple
+TEXT_FORMAT_UNORDERED_LIST = "text list_unordered"  # question type when the expected answer is a list where the order does *not* matter
+TEXT_FORMAT_ORDERED_LIST = "text list_ordered"  # question type when the expected answer is a list where the order does matter
+TEXT_FORMAT_ORDERED_LIST_NAMEDTUPLE = "text list_ordered namedtuple"  # question type when the expected answer is a list of namedtuples where the order does matter
+TEXT_FORMAT_SPECIAL_ORDERED_LIST = "text list_special_ordered"  # question type when the expected answer is a list where order does matter, but with possible ties. Elements are ordered according to values in special_ordered_json (with ties allowed)
+TEXT_FORMAT_DICT = "text dict"  # question type when the expected answer is a dictionary
+TEXT_FORMAT_LIST_DICTS_ORDERED = "text list_dicts_ordered"  # question type when the expected answer is a list of dicts where the order does matter
+
+
+expected_json = {"cell_test1": (TEXT_FORMAT, 'Afghanistan'),
+                 "cell_test2": (TEXT_FORMAT, 2020),
+                 "cell_test3": (TEXT_FORMAT, 57),
+                 "cell_test4": (TEXT_FORMAT, 96),
+                 "cell_test5": (TEXT_FORMAT, 'Upper middle income'),
+                 "cell_test6": (TEXT_FORMAT, 43851000),
+                 "1": (TEXT_FORMAT, "China"),
+                 "2": (TEXT_FORMAT, "India"),
+                 "3": (TEXT_FORMAT, "Afghanistan"),
+                 "4": (TEXT_FORMAT, "Low income"),
+                 "5": (TEXT_FORMAT, 6501786000),
+                 "6": (TEXT_FORMAT, 52),
+                 "7": (TEXT_FORMAT, 871268000),
+                 "8": (TEXT_FORMAT, "Low income"),
+                 "9": (TEXT_FORMAT_UNORDERED_LIST, ['Bermuda', 'Canada', 'United States of America']),
+                 "get_col_dict_test1": (TEXT_FORMAT_DICT, {'AFG': 'South Asia',
+                                         'ALB': 'Europe & Central Asia',
+                                         'DZA': 'Middle East & North Africa',
+                                         'AND': 'Europe & Central Asia',
+                                         'AGO': 'Sub-Saharan Africa',
+                                         'ARM': 'Europe & Central Asia',
+                                         'AUS': 'East Asia & Pacific',
+                                         'AUT': 'Europe & Central Asia',
+                                         'AZE': 'Europe & Central Asia',
+                                         'BGD': 'South Asia',
+                                         'BLR': 'Europe & Central Asia',
+                                         'BEL': 'Europe & Central Asia',
+                                         'BLZ': 'Latin America & Caribbean',
+                                         'BEN': 'Sub-Saharan Africa',
+                                         'BMU': 'North America',
+                                         'BTN': 'South Asia',
+                                         'BIH': 'Europe & Central Asia',
+                                         'BWA': 'Sub-Saharan Africa',
+                                         'BRA': 'Latin America & Caribbean',
+                                         'BRN': 'East Asia & Pacific',
+                                         'BGR': 'Europe & Central Asia',
+                                         'BFA': 'Sub-Saharan Africa',
+                                         'BDI': 'Sub-Saharan Africa',
+                                         'CPV': 'Sub-Saharan Africa',
+                                         'KHM': 'East Asia & Pacific',
+                                         'CMR': 'Sub-Saharan Africa',
+                                         'CAN': 'North America',
+                                         'CAF': 'Sub-Saharan Africa',
+                                         'TCD': 'Sub-Saharan Africa',
+                                         'CHL': 'Latin America & Caribbean',
+                                         'CHN': 'East Asia & Pacific',
+                                         'COL': 'Latin America & Caribbean',
+                                         'CRI': 'Latin America & Caribbean',
+                                         'CIV': 'Sub-Saharan Africa',
+                                         'CUB': 'Latin America & Caribbean',
+                                         'CYP': 'Europe & Central Asia',
+                                         'CZE': 'Europe & Central Asia',
+                                         'DNK': 'Europe & Central Asia',
+                                         'DJI': 'Middle East & North Africa',
+                                         'DOM': 'Latin America & Caribbean',
+                                         'ECU': 'Latin America & Caribbean',
+                                         'SLV': 'Latin America & Caribbean',
+                                         'EST': 'Europe & Central Asia',
+                                         'SWZ': 'Sub-Saharan Africa',
+                                         'ETH': 'Sub-Saharan Africa',
+                                         'FJI': 'East Asia & Pacific',
+                                         'FIN': 'Europe & Central Asia',
+                                         'FRA': 'Europe & Central Asia',
+                                         'GAB': 'Sub-Saharan Africa',
+                                         'GEO': 'Europe & Central Asia',
+                                         'DEU': 'Europe & Central Asia',
+                                         'GHA': 'Sub-Saharan Africa',
+                                         'GIB': 'Europe & Central Asia',
+                                         'GRC': 'Europe & Central Asia',
+                                         'GRL': 'Europe & Central Asia',
+                                         'GTM': 'Latin America & Caribbean',
+                                         'GIN': 'Sub-Saharan Africa',
+                                         'GNB': 'Sub-Saharan Africa',
+                                         'GUY': 'Latin America & Caribbean',
+                                         'HTI': 'Latin America & Caribbean',
+                                         'HND': 'Latin America & Caribbean',
+                                         'HUN': 'Europe & Central Asia',
+                                         'ISL': 'Europe & Central Asia',
+                                         'IND': 'South Asia',
+                                         'IDN': 'East Asia & Pacific',
+                                         'IRQ': 'Middle East & North Africa',
+                                         'IRL': 'Europe & Central Asia',
+                                         'ISR': 'Middle East & North Africa',
+                                         'JAM': 'Latin America & Caribbean',
+                                         'JOR': 'Middle East & North Africa',
+                                         'KAZ': 'Europe & Central Asia',
+                                         'KEN': 'Sub-Saharan Africa',
+                                         'KIR': 'East Asia & Pacific',
+                                         'LVA': 'Europe & Central Asia',
+                                         'LSO': 'Sub-Saharan Africa',
+                                         'LBR': 'Sub-Saharan Africa',
+                                         'LTU': 'Europe & Central Asia',
+                                         'LUX': 'Europe & Central Asia',
+                                         'MDG': 'Sub-Saharan Africa',
+                                         'MWI': 'Sub-Saharan Africa',
+                                         'MYS': 'East Asia & Pacific',
+                                         'MDV': 'South Asia',
+                                         'MLI': 'Sub-Saharan Africa',
+                                         'MLT': 'Middle East & North Africa',
+                                         'MHL': 'East Asia & Pacific',
+                                         'MRT': 'Sub-Saharan Africa',
+                                         'MUS': 'Sub-Saharan Africa',
+                                         'MEX': 'Latin America & Caribbean',
+                                         'MCO': 'Europe & Central Asia',
+                                         'MNG': 'East Asia & Pacific',
+                                         'MNE': 'Europe & Central Asia',
+                                         'MAR': 'Middle East & North Africa',
+                                         'MOZ': 'Sub-Saharan Africa',
+                                         'MMR': 'East Asia & Pacific',
+                                         'NAM': 'Sub-Saharan Africa',
+                                         'NRU': 'East Asia & Pacific',
+                                         'NPL': 'South Asia',
+                                         'NLD': 'Europe & Central Asia',
+                                         'NZL': 'East Asia & Pacific',
+                                         'NIC': 'Latin America & Caribbean',
+                                         'NER': 'Sub-Saharan Africa',
+                                         'NGA': 'Sub-Saharan Africa',
+                                         'MKD': 'Europe & Central Asia',
+                                         'NOR': 'Europe & Central Asia',
+                                         'OMN': 'Middle East & North Africa',
+                                         'PAK': 'South Asia',
+                                         'PLW': 'East Asia & Pacific',
+                                         'PAN': 'Latin America & Caribbean',
+                                         'PNG': 'East Asia & Pacific',
+                                         'PRY': 'Latin America & Caribbean',
+                                         'PER': 'Latin America & Caribbean',
+                                         'PHL': 'East Asia & Pacific',
+                                         'POL': 'Europe & Central Asia',
+                                         'PRT': 'Europe & Central Asia',
+                                         'ROU': 'Europe & Central Asia',
+                                         'RUS': 'Europe & Central Asia',
+                                         'RWA': 'Sub-Saharan Africa',
+                                         'WSM': 'East Asia & Pacific',
+                                         'SEN': 'Sub-Saharan Africa',
+                                         'SRB': 'Europe & Central Asia',
+                                         'SLE': 'Sub-Saharan Africa',
+                                         'SGP': 'East Asia & Pacific',
+                                         'SLB': 'East Asia & Pacific',
+                                         'SOM': 'Sub-Saharan Africa',
+                                         'ZAF': 'Sub-Saharan Africa',
+                                         'SSD': 'Sub-Saharan Africa',
+                                         'ESP': 'Europe & Central Asia',
+                                         'LKA': 'South Asia',
+                                         'SDN': 'Sub-Saharan Africa',
+                                         'SUR': 'Latin America & Caribbean',
+                                         'SWE': 'Europe & Central Asia',
+                                         'CHE': 'Europe & Central Asia',
+                                         'SYR': 'Middle East & North Africa',
+                                         'TJK': 'Europe & Central Asia',
+                                         'THA': 'East Asia & Pacific',
+                                         'TLS': 'East Asia & Pacific',
+                                         'TGO': 'Sub-Saharan Africa',
+                                         'TON': 'East Asia & Pacific',
+                                         'TUN': 'Middle East & North Africa',
+                                         'TKM': 'Europe & Central Asia',
+                                         'TUV': 'East Asia & Pacific',
+                                         'UGA': 'Sub-Saharan Africa',
+                                         'UKR': 'Europe & Central Asia',
+                                         'GBR': 'Europe & Central Asia',
+                                         'USA': 'North America',
+                                         'URY': 'Latin America & Caribbean',
+                                         'UZB': 'Europe & Central Asia',
+                                         'VUT': 'East Asia & Pacific',
+                                         'VNM': 'East Asia & Pacific',
+                                         'ZMB': 'Sub-Saharan Africa',
+                                         'ZWE': 'Sub-Saharan Africa'}),
+                 "get_col_dict_test2": (TEXT_FORMAT_DICT, {'AFG': 61,
+                                        'ALB': 93,
+                                        'DZA': 93,
+                                        'AND': 100,
+                                        'AGO': 54,
+                                        'ARM': 100,
+                                        'AUS': 100,
+                                        'AUT': 100,
+                                        'AZE': 92,
+                                        'BGD': 97,
+                                        'BLR': 96,
+                                        'BEL': 100,
+                                        'BLZ': 97,
+                                        'BEN': 65,
+                                        'BMU': 100,
+                                        'BTN': 96,
+                                        'BIH': 96,
+                                        'BWA': 88,
+                                        'BRA': 98,
+                                        'BRN': 100,
+                                        'BGR': 100,
+                                        'BFA': 50,
+                                        'BDI': 60,
+                                        'CPV': 85,
+                                        'KHM': 68,
+                                        'CMR': 64,
+                                        'CAN': 100,
+                                        'CAF': 42,
+                                        'TCD': 44,
+                                        'CHL': 100,
+                                        'CHN': 92,
+                                        'COL': 96,
+                                        'CRI': 100,
+                                        'CIV': 71,
+                                        'CUB': 96,
+                                        'CYP': 100,
+                                        'CZE': 100,
+                                        'DNK': 100,
+                                        'DJI': 76,
+                                        'DOM': 96,
+                                        'ECU': 93,
+                                        'SLV': 96,
+                                        'EST': 100,
+                                        'SWZ': 67,
+                                        'ETH': 42,
+                                        'FJI': 94,
+                                        'FIN': 100,
+                                        'FRA': 100,
+                                        'GAB': 84,
+                                        'GEO': 96,
+                                        'DEU': 100,
+                                        'GHA': 80,
+                                        'GIB': 100,
+                                        'GRC': 100,
+                                        'GRL': 100,
+                                        'GTM': 92,
+                                        'GIN': 64,
+                                        'GNB': 59,
+                                        'GUY': 95,
+                                        'HTI': 65,
+                                        'HND': 93,
+                                        'HUN': 100,
+                                        'ISL': 100,
+                                        'IND': 88,
+                                        'IDN': 89,
+                                        'IRQ': 94,
+                                        'IRL': 97,
+                                        'ISR': 100,
+                                        'JAM': 90,
+                                        'JOR': 100,
+                                        'KAZ': 95,
+                                        'KEN': 58,
+                                        'KIR': 74,
+                                        'LVA': 99,
+                                        'LSO': 71,
+                                        'LBR': 73,
+                                        'LTU': 97,
+                                        'LUX': 100,
+                                        'MDG': 49,
+                                        'MWI': 66,
+                                        'MYS': 97,
+                                        'MDV': 99,
+                                        'MLI': 74,
+                                        'MLT': 100,
+                                        'MHL': 88,
+                                        'MRT': 67,
+                                        'MUS': 100,
+                                        'MEX': 98,
+                                        'MCO': 100,
+                                        'MNG': 81,
+                                        'MNE': 97,
+                                        'MAR': 84,
+                                        'MOZ': 51,
+                                        'MMR': 74,
+                                        'NAM': 83,
+                                        'NRU': 100,
+                                        'NPL': 88,
+                                        'NLD': 100,
+                                        'NZL': 100,
+                                        'NIC': 81,
+                                        'NER': 45,
+                                        'NGA': 69,
+                                        'MKD': 97,
+                                        'NOR': 100,
+                                        'OMN': 90,
+                                        'PAK': 89,
+                                        'PLW': 100,
+                                        'PAN': 93,
+                                        'PNG': 41,
+                                        'PRY': 97,
+                                        'PER': 90,
+                                        'PHL': 92,
+                                        'POL': 100,
+                                        'PRT': 100,
+                                        'ROU': 100,
+                                        'RUS': 97,
+                                        'RWA': 57,
+                                        'WSM': 91,
+                                        'SEN': 79,
+                                        'SRB': 93,
+                                        'SLE': 58,
+                                        'SGP': 100,
+                                        'SLB': 69,
+                                        'SOM': 49,
+                                        'ZAF': 92,
+                                        'SSD': 41,
+                                        'ESP': 100,
+                                        'LKA': 90,
+                                        'SDN': 59,
+                                        'SUR': 96,
+                                        'SWE': 100,
+                                        'CHE': 100,
+                                        'SYR': 94,
+                                        'TJK': 76,
+                                        'THA': 100,
+                                        'TLS': 75,
+                                        'TGO': 64,
+                                        'TON': 99,
+                                        'TUN': 95,
+                                        'TKM': 98,
+                                        'TUV': 100,
+                                        'UGA': 48,
+                                        'UKR': 94,
+                                        'GBR': 100,
+                                        'USA': 100,
+                                        'URY': 100,
+                                        'UZB': 98,
+                                        'VUT': 90,
+                                        'VNM': 93,
+                                        'ZMB': 61,
+                                        'ZWE': 65}),
+                 "get_col_dict_test3": (TEXT_FORMAT_DICT, {'AFG': 38928000,
+                                         'ALB': 2878000,
+                                         'DZA': 43851000,
+                                         'AND': 77000,
+                                         'AGO': 32866000,
+                                         'ARM': 2963000,
+                                         'AUS': 25500000,
+                                         'AUT': 9006000,
+                                         'AZE': 10139000,
+                                         'BGD': 164689000,
+                                         'BLR': 9449000,
+                                         'BEL': 11590000,
+                                         'BLZ': 398000,
+                                         'BEN': 12123000,
+                                         'BMU': 62000,
+                                         'BTN': 772000,
+                                         'BIH': 3281000,
+                                         'BWA': 2352000,
+                                         'BRA': 212559000,
+                                         'BRN': 437000,
+                                         'BGR': 6948000,
+                                         'BFA': 20903000,
+                                         'BDI': 11891000,
+                                         'CPV': 556000,
+                                         'KHM': 16719000,
+                                         'CMR': 26546000,
+                                         'CAN': 37742000,
+                                         'CAF': 4830000,
+                                         'TCD': 16426000,
+                                         'CHL': 19116000,
+                                         'CHN': 1463141000,
+                                         'COL': 50883000,
+                                         'CRI': 5094000,
+                                         'CIV': 26378000,
+                                         'CUB': 11327000,
+                                         'CYP': 1207000,
+                                         'CZE': 10709000,
+                                         'DNK': 5792000,
+                                         'DJI': 988000,
+                                         'DOM': 10848000,
+                                         'ECU': 17643000,
+                                         'SLV': 6486000,
+                                         'EST': 1327000,
+                                         'SWZ': 1160000,
+                                         'ETH': 114964000,
+                                         'FJI': 896000,
+                                         'FIN': 5541000,
+                                         'FRA': 65274000,
+                                         'GAB': 2226000,
+                                         'GEO': 3989000,
+                                         'DEU': 83784000,
+                                         'GHA': 31073000,
+                                         'GIB': 34000,
+                                         'GRC': 10423000,
+                                         'GRL': 57000,
+                                         'GTM': 17916000,
+                                         'GIN': 13133000,
+                                         'GNB': 1968000,
+                                         'GUY': 787000,
+                                         'HTI': 11403000,
+                                         'HND': 9905000,
+                                         'HUN': 9660000,
+                                         'ISL': 341000,
+                                         'IND': 1380004000,
+                                         'IDN': 273524000,
+                                         'IRQ': 40223000,
+                                         'IRL': 4938000,
+                                         'ISR': 8656000,
+                                         'JAM': 2961000,
+                                         'JOR': 10203000,
+                                         'KAZ': 18777000,
+                                         'KEN': 53771000,
+                                         'KIR': 119000,
+                                         'LVA': 1886000,
+                                         'LSO': 2142000,
+                                         'LBR': 5058000,
+                                         'LTU': 2722000,
+                                         'LUX': 626000,
+                                         'MDG': 27691000,
+                                         'MWI': 19130000,
+                                         'MYS': 32366000,
+                                         'MDV': 541000,
+                                         'MLI': 20251000,
+                                         'MLT': 442000,
+                                         'MHL': 59000,
+                                         'MRT': 4650000,
+                                         'MUS': 1272000,
+                                         'MEX': 128933000,
+                                         'MCO': 39000,
+                                         'MNG': 3278000,
+                                         'MNE': 628000,
+                                         'MAR': 36911000,
+                                         'MOZ': 31255000,
+                                         'MMR': 54410000,
+                                         'NAM': 2541000,
+                                         'NRU': 11000,
+                                         'NPL': 29137000,
+                                         'NLD': 17135000,
+                                         'NZL': 4822000,
+                                         'NIC': 6625000,
+                                         'NER': 24207000,
+                                         'NGA': 206140000,
+                                         'MKD': 2083000,
+                                         'NOR': 5421000,
+                                         'OMN': 5107000,
+                                         'PAK': 220892000,
+                                         'PLW': 18000,
+                                         'PAN': 4315000,
+                                         'PNG': 8947000,
+                                         'PRY': 7133000,
+                                         'PER': 32972000,
+                                         'PHL': 109581000,
+                                         'POL': 37847000,
+                                         'PRT': 10197000,
+                                         'ROU': 19238000,
+                                         'RUS': 145934000,
+                                         'RWA': 12952000,
+                                         'WSM': 198000,
+                                         'SEN': 16744000,
+                                         'SRB': 8737000,
+                                         'SLE': 7977000,
+                                         'SGP': 5850000,
+                                         'SLB': 687000,
+                                         'SOM': 15893000,
+                                         'ZAF': 59309000,
+                                         'SSD': 11194000,
+                                         'ESP': 46755000,
+                                         'LKA': 21413000,
+                                         'SDN': 43849000,
+                                         'SUR': 587000,
+                                         'SWE': 10099000,
+                                         'CHE': 8655000,
+                                         'SYR': 17501000,
+                                         'TJK': 9538000,
+                                         'THA': 69800000,
+                                         'TLS': 1318000,
+                                         'TGO': 8279000,
+                                         'TON': 106000,
+                                         'TUN': 11819000,
+                                         'TKM': 6031000,
+                                         'TUV': 12000,
+                                         'UGA': 45741000,
+                                         'UKR': 43734000,
+                                         'GBR': 67886000,
+                                         'USA': 331003000,
+                                         'URY': 3474000,
+                                         'UZB': 33469000,
+                                         'VUT': 307000,
+                                         'VNM': 97339000,
+                                         'ZMB': 18384000,
+                                         'ZWE': 14863000}),
+                 "dict_2015_test": (TEXT_FORMAT_DICT, {'AFG': {'country_name': 'Afghanistan',
+                                      'region': 'South Asia',
+                                      'income_level': 'Low income',
+                                      'year': 2015,
+                                      'pop': 34414000,
+                                      'urban_percent': 25,
+                                      'national_alb': 61,
+                                      'urban_alb': 87},
+                                         'ALB': {'country_name': 'Albania',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 2891000,
+                                          'urban_percent': 57,
+                                          'national_alb': 93,
+                                          'urban_alb': 95},
+                                         'DZA': {'country_name': 'Algeria',
+                                          'region': 'Middle East & North Africa',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 39728000,
+                                          'urban_percent': 71,
+                                          'national_alb': 93,
+                                          'urban_alb': 95},
+                                         'AND': {'country_name': 'Andorra',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 78000,
+                                          'urban_percent': 88,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'AGO': {'country_name': 'Angola',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 27884000,
+                                          'urban_percent': 63,
+                                          'national_alb': 54,
+                                          'urban_alb': 70},
+                                         'ARM': {'country_name': 'Armenia',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 2926000,
+                                          'urban_percent': 63,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'AUS': {'country_name': 'Australia',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 23932000,
+                                          'urban_percent': 86,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'AUT': {'country_name': 'Austria',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 8679000,
+                                          'urban_percent': 58,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'AZE': {'country_name': 'Azerbaijan',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 9623000,
+                                          'urban_percent': 55,
+                                          'national_alb': 92,
+                                          'urban_alb': 100},
+                                         'BGD': {'country_name': 'Bangladesh',
+                                          'region': 'South Asia',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 156256000,
+                                          'urban_percent': 34,
+                                          'national_alb': 97,
+                                          'urban_alb': 98},
+                                         'BLR': {'country_name': 'Belarus',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 9439000,
+                                          'urban_percent': 77,
+                                          'national_alb': 96,
+                                          'urban_alb': 96},
+                                         'BEL': {'country_name': 'Belgium',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 11288000,
+                                          'urban_percent': 98,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'BLZ': {'country_name': 'Belize',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 361000,
+                                          'urban_percent': 45,
+                                          'national_alb': 97,
+                                          'urban_alb': 100},
+                                         'BEN': {'country_name': 'Benin',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2015,
+                                          'pop': 10576000,
+                                          'urban_percent': 46,
+                                          'national_alb': 65,
+                                          'urban_alb': 74},
+                                         'BMU': {'country_name': 'Bermuda',
+                                          'region': 'North America',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 64000,
+                                          'urban_percent': 100,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'BTN': {'country_name': 'Bhutan',
+                                          'region': 'South Asia',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 728000,
+                                          'urban_percent': 39,
+                                          'national_alb': 96,
+                                          'urban_alb': 98},
+                                         'BIH': {'country_name': 'Bosnia and Herzegovina',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 3429000,
+                                          'urban_percent': 47,
+                                          'national_alb': 96,
+                                          'urban_alb': 95},
+                                         'BWA': {'country_name': 'Botswana',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 2121000,
+                                          'urban_percent': 67,
+                                          'national_alb': 88,
+                                          'urban_alb': 97},
+                                         'BRA': {'country_name': 'Brazil',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 204472000,
+                                          'urban_percent': 86,
+                                          'national_alb': 98,
+                                          'urban_alb': 100},
+                                         'BRN': {'country_name': 'Brunei Darussalam',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 415000,
+                                          'urban_percent': 77,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'BGR': {'country_name': 'Bulgaria',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 7200000,
+                                          'urban_percent': 74,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'BFA': {'country_name': 'Burkina Faso',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2015,
+                                          'pop': 18111000,
+                                          'urban_percent': 28,
+                                          'national_alb': 50,
+                                          'urban_alb': 80},
+                                         'BDI': {'country_name': 'Burundi',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2015,
+                                          'pop': 10160000,
+                                          'urban_percent': 12,
+                                          'national_alb': 60,
+                                          'urban_alb': 89},
+                                         'CPV': {'country_name': 'Cabo Verde',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 525000,
+                                          'urban_percent': 64,
+                                          'national_alb': 85,
+                                          'urban_alb': 92},
+                                         'KHM': {'country_name': 'Cambodia',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 15521000,
+                                          'urban_percent': 22,
+                                          'national_alb': 68,
+                                          'urban_alb': 89},
+                                         'CMR': {'country_name': 'Cameroon',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 23298000,
+                                          'urban_percent': 55,
+                                          'national_alb': 64,
+                                          'urban_alb': 82},
+                                         'CAN': {'country_name': 'Canada',
+                                          'region': 'North America',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 36027000,
+                                          'urban_percent': 81,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'CAF': {'country_name': 'Central African Republic',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2015,
+                                          'pop': 4493000,
+                                          'urban_percent': 40,
+                                          'national_alb': 42,
+                                          'urban_alb': 58},
+                                         'TCD': {'country_name': 'Chad',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2015,
+                                          'pop': 14111000,
+                                          'urban_percent': 23,
+                                          'national_alb': 44,
+                                          'urban_alb': 75},
+                                         'CHL': {'country_name': 'Chile',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 17969000,
+                                          'urban_percent': 87,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'CHN': {'country_name': 'China',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 1430405000,
+                                          'urban_percent': 56,
+                                          'national_alb': 92,
+                                          'urban_alb': 98},
+                                         'COL': {'country_name': 'Colombia',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 47521000,
+                                          'urban_percent': 80,
+                                          'national_alb': 96,
+                                          'urban_alb': 100},
+                                         'CRI': {'country_name': 'Costa Rica',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 4848000,
+                                          'urban_percent': 77,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'CIV': {'country_name': "Côte d'Ivoire",
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 23226000,
+                                          'urban_percent': 49,
+                                          'national_alb': 71,
+                                          'urban_alb': 87},
+                                         'CUB': {'country_name': 'Cuba',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 11325000,
+                                          'urban_percent': 77,
+                                          'national_alb': 96,
+                                          'urban_alb': 98},
+                                         'CYP': {'country_name': 'Cyprus',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 1161000,
+                                          'urban_percent': 67,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'CZE': {'country_name': 'Czech Republic',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 10601000,
+                                          'urban_percent': 73,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'DNK': {'country_name': 'Denmark',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 5689000,
+                                          'urban_percent': 88,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'DJI': {'country_name': 'Djibouti',
+                                          'region': 'Middle East & North Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 914000,
+                                          'urban_percent': 77,
+                                          'national_alb': 76,
+                                          'urban_alb': 84},
+                                         'DOM': {'country_name': 'Dominican Republic',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 10282000,
+                                          'urban_percent': 79,
+                                          'national_alb': 96,
+                                          'urban_alb': 98},
+                                         'ECU': {'country_name': 'Ecuador',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 16212000,
+                                          'urban_percent': 63,
+                                          'national_alb': 93,
+                                          'urban_alb': 100},
+                                         'SLV': {'country_name': 'El Salvador',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 6325000,
+                                          'urban_percent': 70,
+                                          'national_alb': 96,
+                                          'urban_alb': 99},
+                                         'EST': {'country_name': 'Estonia',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 1315000,
+                                          'urban_percent': 68,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'SWZ': {'country_name': 'Eswatini',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 1104000,
+                                          'urban_percent': 23,
+                                          'national_alb': 67,
+                                          'urban_alb': 95},
+                                         'ETH': {'country_name': 'Ethiopia',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2015,
+                                          'pop': 100835000,
+                                          'urban_percent': 19,
+                                          'national_alb': 42,
+                                          'urban_alb': 82},
+                                         'FJI': {'country_name': 'Fiji',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 869000,
+                                          'urban_percent': 55,
+                                          'national_alb': 94,
+                                          'urban_alb': 98},
+                                         'FIN': {'country_name': 'Finland',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 5481000,
+                                          'urban_percent': 85,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'FRA': {'country_name': 'France',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 64453000,
+                                          'urban_percent': 80,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'GAB': {'country_name': 'Gabon',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 1948000,
+                                          'urban_percent': 88,
+                                          'national_alb': 84,
+                                          'urban_alb': 89},
+                                         'GEO': {'country_name': 'Georgia',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 4024000,
+                                          'urban_percent': 57,
+                                          'national_alb': 96,
+                                          'urban_alb': 100},
+                                         'DEU': {'country_name': 'Germany',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 81787000,
+                                          'urban_percent': 77,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'GHA': {'country_name': 'Ghana',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 27849000,
+                                          'urban_percent': 54,
+                                          'national_alb': 80,
+                                          'urban_alb': 91},
+                                         'GIB': {'country_name': 'Gibraltar',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 34000,
+                                          'urban_percent': 100,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'GRC': {'country_name': 'Greece',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 10660000,
+                                          'urban_percent': 78,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'GRL': {'country_name': 'Greenland',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 56000,
+                                          'urban_percent': 86,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'GTM': {'country_name': 'Guatemala',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 16252000,
+                                          'urban_percent': 50,
+                                          'national_alb': 92,
+                                          'urban_alb': 97},
+                                         'GIN': {'country_name': 'Guinea',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2015,
+                                          'pop': 11432000,
+                                          'urban_percent': 35,
+                                          'national_alb': 64,
+                                          'urban_alb': 85},
+                                         'GNB': {'country_name': 'Guinea-Bissau',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2015,
+                                          'pop': 1737000,
+                                          'urban_percent': 42,
+                                          'national_alb': 59,
+                                          'urban_alb': 73},
+                                         'GUY': {'country_name': 'Guyana',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 767000,
+                                          'urban_percent': 26,
+                                          'national_alb': 95,
+                                          'urban_alb': 100},
+                                         'HTI': {'country_name': 'Haiti',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Low income',
+                                          'year': 2015,
+                                          'pop': 10696000,
+                                          'urban_percent': 52,
+                                          'national_alb': 65,
+                                          'urban_alb': 85},
+                                         'HND': {'country_name': 'Honduras',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 9113000,
+                                          'urban_percent': 55,
+                                          'national_alb': 93,
+                                          'urban_alb': 99},
+                                         'HUN': {'country_name': 'Hungary',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 9778000,
+                                          'urban_percent': 71,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'ISL': {'country_name': 'Iceland',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 330000,
+                                          'urban_percent': 94,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'IND': {'country_name': 'India',
+                                          'region': 'South Asia',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 1310152000,
+                                          'urban_percent': 33,
+                                          'national_alb': 88,
+                                          'urban_alb': 93},
+                                         'IDN': {'country_name': 'Indonesia',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 258383000,
+                                          'urban_percent': 53,
+                                          'national_alb': 89,
+                                          'urban_alb': 95},
+                                         'IRQ': {'country_name': 'Iraq',
+                                          'region': 'Middle East & North Africa',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 35572000,
+                                          'urban_percent': 70,
+                                          'national_alb': 94,
+                                          'urban_alb': 98},
+                                         'IRL': {'country_name': 'Ireland',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 4652000,
+                                          'urban_percent': 63,
+                                          'national_alb': 97,
+                                          'urban_alb': 97},
+                                         'ISR': {'country_name': 'Israel',
+                                          'region': 'Middle East & North Africa',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 7978000,
+                                          'urban_percent': 92,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'JAM': {'country_name': 'Jamaica',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 2891000,
+                                          'urban_percent': 55,
+                                          'national_alb': 90,
+                                          'urban_alb': 95},
+                                         'JOR': {'country_name': 'Jordan',
+                                          'region': 'Middle East & North Africa',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 9267000,
+                                          'urban_percent': 90,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'KAZ': {'country_name': 'Kazakhstan',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 17572000,
+                                          'urban_percent': 57,
+                                          'national_alb': 95,
+                                          'urban_alb': 98},
+                                         'KEN': {'country_name': 'Kenya',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 47878000,
+                                          'urban_percent': 26,
+                                          'national_alb': 58,
+                                          'urban_alb': 87},
+                                         'KIR': {'country_name': 'Kiribati',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 111000,
+                                          'urban_percent': 52,
+                                          'national_alb': 74,
+                                          'urban_alb': 89},
+                                         'LVA': {'country_name': 'Latvia',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 1998000,
+                                          'urban_percent': 68,
+                                          'national_alb': 99,
+                                          'urban_alb': 99},
+                                         'LSO': {'country_name': 'Lesotho',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 2059000,
+                                          'urban_percent': 27,
+                                          'national_alb': 71,
+                                          'urban_alb': 90},
+                                         'LBR': {'country_name': 'Liberia',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2015,
+                                          'pop': 4472000,
+                                          'urban_percent': 50,
+                                          'national_alb': 73,
+                                          'urban_alb': 84},
+                                         'LTU': {'country_name': 'Lithuania',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 2932000,
+                                          'urban_percent': 67,
+                                          'national_alb': 97,
+                                          'urban_alb': 100},
+                                         'LUX': {'country_name': 'Luxembourg',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 567000,
+                                          'urban_percent': 90,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'MDG': {'country_name': 'Madagascar',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2015,
+                                          'pop': 24234000,
+                                          'urban_percent': 35,
+                                          'national_alb': 49,
+                                          'urban_alb': 78},
+                                         'MWI': {'country_name': 'Malawi',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2015,
+                                          'pop': 16745000,
+                                          'urban_percent': 16,
+                                          'national_alb': 66,
+                                          'urban_alb': 86},
+                                         'MYS': {'country_name': 'Malaysia',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 30271000,
+                                          'urban_percent': 74,
+                                          'national_alb': 97,
+                                          'urban_alb': 100},
+                                         'MDV': {'country_name': 'Maldives',
+                                          'region': 'South Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 455000,
+                                          'urban_percent': 39,
+                                          'national_alb': 99,
+                                          'urban_alb': 99},
+                                         'MLI': {'country_name': 'Mali',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2015,
+                                          'pop': 17439000,
+                                          'urban_percent': 40,
+                                          'national_alb': 74,
+                                          'urban_alb': 91},
+                                         'MLT': {'country_name': 'Malta',
+                                          'region': 'Middle East & North Africa',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 434000,
+                                          'urban_percent': 94,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'MHL': {'country_name': 'Marshall Islands',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 57000,
+                                          'urban_percent': 76,
+                                          'national_alb': 88,
+                                          'urban_alb': 86},
+                                         'MRT': {'country_name': 'Mauritania',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 4046000,
+                                          'urban_percent': 51,
+                                          'national_alb': 67,
+                                          'urban_alb': 86},
+                                         'MUS': {'country_name': 'Mauritius',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 1259000,
+                                          'urban_percent': 41,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'MEX': {'country_name': 'Mexico',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 121858000,
+                                          'urban_percent': 79,
+                                          'national_alb': 98,
+                                          'urban_alb': 100},
+                                         'MCO': {'country_name': 'Monaco',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 38000,
+                                          'urban_percent': 100,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'MNG': {'country_name': 'Mongolia',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 2998000,
+                                          'urban_percent': 68,
+                                          'national_alb': 81,
+                                          'urban_alb': 94},
+                                         'MNE': {'country_name': 'Montenegro',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 627000,
+                                          'urban_percent': 66,
+                                          'national_alb': 97,
+                                          'urban_alb': 98},
+                                         'MAR': {'country_name': 'Morocco',
+                                          'region': 'Middle East & North Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 34664000,
+                                          'urban_percent': 61,
+                                          'national_alb': 84,
+                                          'urban_alb': 96},
+                                         'MOZ': {'country_name': 'Mozambique',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2015,
+                                          'pop': 27042000,
+                                          'urban_percent': 34,
+                                          'national_alb': 51,
+                                          'urban_alb': 80},
+                                         'MMR': {'country_name': 'Myanmar',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 52681000,
+                                          'urban_percent': 30,
+                                          'national_alb': 74,
+                                          'urban_alb': 88},
+                                         'NAM': {'country_name': 'Namibia',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 2315000,
+                                          'urban_percent': 47,
+                                          'national_alb': 83,
+                                          'urban_alb': 97},
+                                         'NRU': {'country_name': 'Nauru',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 10000,
+                                          'urban_percent': 100,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'NPL': {'country_name': 'Nepal',
+                                          'region': 'South Asia',
+                                          'income_level': 'Low income',
+                                          'year': 2015,
+                                          'pop': 27015000,
+                                          'urban_percent': 19,
+                                          'national_alb': 88,
+                                          'urban_alb': 90},
+                                         'NLD': {'country_name': 'Netherlands',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 16938000,
+                                          'urban_percent': 90,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'NZL': {'country_name': 'New Zealand',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 4615000,
+                                          'urban_percent': 86,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'NIC': {'country_name': 'Nicaragua',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 6223000,
+                                          'urban_percent': 58,
+                                          'national_alb': 81,
+                                          'urban_alb': 97},
+                                         'NER': {'country_name': 'Niger',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2015,
+                                          'pop': 20002000,
+                                          'urban_percent': 16,
+                                          'national_alb': 45,
+                                          'urban_alb': 88},
+                                         'NGA': {'country_name': 'Nigeria',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 181137000,
+                                          'urban_percent': 48,
+                                          'national_alb': 69,
+                                          'urban_alb': 85},
+                                         'MKD': {'country_name': 'North Macedonia',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 2079000,
+                                          'urban_percent': 57,
+                                          'national_alb': 97,
+                                          'urban_alb': 97},
+                                         'NOR': {'country_name': 'Norway',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 5200000,
+                                          'urban_percent': 81,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'OMN': {'country_name': 'Oman',
+                                          'region': 'Middle East & North Africa',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 4267000,
+                                          'urban_percent': 81,
+                                          'national_alb': 90,
+                                          'urban_alb': 94},
+                                         'PAK': {'country_name': 'Pakistan',
+                                          'region': 'South Asia',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 199427000,
+                                          'urban_percent': 36,
+                                          'national_alb': 89,
+                                          'urban_alb': 94},
+                                         'PLW': {'country_name': 'Palau',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 18000,
+                                          'urban_percent': 78,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'PAN': {'country_name': 'Panama',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 3968000,
+                                          'urban_percent': 67,
+                                          'national_alb': 93,
+                                          'urban_alb': 98},
+                                         'PNG': {'country_name': 'Papua New Guinea',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 8108000,
+                                          'urban_percent': 13,
+                                          'national_alb': 41,
+                                          'urban_alb': 85},
+                                         'PRY': {'country_name': 'Paraguay',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 6689000,
+                                          'urban_percent': 61,
+                                          'national_alb': 97,
+                                          'urban_alb': 100},
+                                         'PER': {'country_name': 'Peru',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 30471000,
+                                          'urban_percent': 77,
+                                          'national_alb': 90,
+                                          'urban_alb': 95},
+                                         'PHL': {'country_name': 'Philippines',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 102113000,
+                                          'urban_percent': 46,
+                                          'national_alb': 92,
+                                          'urban_alb': 96},
+                                         'POL': {'country_name': 'Poland',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 38034000,
+                                          'urban_percent': 60,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'PRT': {'country_name': 'Portugal',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 10368000,
+                                          'urban_percent': 64,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'ROU': {'country_name': 'Romania',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 19925000,
+                                          'urban_percent': 54,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'RUS': {'country_name': 'Russian Federation',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 144985000,
+                                          'urban_percent': 74,
+                                          'national_alb': 97,
+                                          'urban_alb': 99},
+                                         'RWA': {'country_name': 'Rwanda',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2015,
+                                          'pop': 11369000,
+                                          'urban_percent': 17,
+                                          'national_alb': 57,
+                                          'urban_alb': 80},
+                                         'WSM': {'country_name': 'Samoa',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 194000,
+                                          'urban_percent': 19,
+                                          'national_alb': 91,
+                                          'urban_alb': 91},
+                                         'SEN': {'country_name': 'Senegal',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2015,
+                                          'pop': 14578000,
+                                          'urban_percent': 46,
+                                          'national_alb': 79,
+                                          'urban_alb': 94},
+                                         'SRB': {'country_name': 'Serbia',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 8877000,
+                                          'urban_percent': 56,
+                                          'national_alb': 93,
+                                          'urban_alb': 92},
+                                         'SLE': {'country_name': 'Sierra Leone',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2015,
+                                          'pop': 7172000,
+                                          'urban_percent': 41,
+                                          'national_alb': 58,
+                                          'urban_alb': 76},
+                                         'SGP': {'country_name': 'Singapore',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 5592000,
+                                          'urban_percent': 100,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'SLB': {'country_name': 'Solomon Islands',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 603000,
+                                          'urban_percent': 22,
+                                          'national_alb': 69,
+                                          'urban_alb': 91},
+                                         'SOM': {'country_name': 'Somalia',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2015,
+                                          'pop': 13797000,
+                                          'urban_percent': 43,
+                                          'national_alb': 49,
+                                          'urban_alb': 74},
+                                         'ZAF': {'country_name': 'South Africa',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 55386000,
+                                          'urban_percent': 65,
+                                          'national_alb': 92,
+                                          'urban_alb': 99},
+                                         'SSD': {'country_name': 'South Sudan',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2015,
+                                          'pop': 10716000,
+                                          'urban_percent': 19,
+                                          'national_alb': 41,
+                                          'urban_alb': 61},
+                                         'ESP': {'country_name': 'Spain',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 46672000,
+                                          'urban_percent': 80,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'LKA': {'country_name': 'Sri Lanka',
+                                          'region': 'South Asia',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 20908000,
+                                          'urban_percent': 18,
+                                          'national_alb': 90,
+                                          'urban_alb': 98},
+                                         'SDN': {'country_name': 'Sudan',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 38903000,
+                                          'urban_percent': 34,
+                                          'national_alb': 59,
+                                          'urban_alb': 73},
+                                         'SUR': {'country_name': 'Suriname',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 559000,
+                                          'urban_percent': 66,
+                                          'national_alb': 96,
+                                          'urban_alb': 98},
+                                         'SWE': {'country_name': 'Sweden',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 9765000,
+                                          'urban_percent': 87,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'CHE': {'country_name': 'Switzerland',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 8297000,
+                                          'urban_percent': 74,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'SYR': {'country_name': 'Syrian Arab Republic',
+                                          'region': 'Middle East & North Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 17997000,
+                                          'urban_percent': 52,
+                                          'national_alb': 94,
+                                          'urban_alb': 95},
+                                         'TJK': {'country_name': 'Tajikistan',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 8454000,
+                                          'urban_percent': 27,
+                                          'national_alb': 76,
+                                          'urban_alb': 95},
+                                         'THA': {'country_name': 'Thailand',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 68715000,
+                                          'urban_percent': 48,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'TLS': {'country_name': 'Timor-Leste',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 1196000,
+                                          'urban_percent': 29,
+                                          'national_alb': 75,
+                                          'urban_alb': 90},
+                                         'TGO': {'country_name': 'Togo',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2015,
+                                          'pop': 7323000,
+                                          'urban_percent': 40,
+                                          'national_alb': 64,
+                                          'urban_alb': 88},
+                                         'TON': {'country_name': 'Tonga',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 101000,
+                                          'urban_percent': 23,
+                                          'national_alb': 99,
+                                          'urban_alb': 100},
+                                         'TUN': {'country_name': 'Tunisia',
+                                          'region': 'Middle East & North Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 11180000,
+                                          'urban_percent': 68,
+                                          'national_alb': 95,
+                                          'urban_alb': 100},
+                                         'TKM': {'country_name': 'Turkmenistan',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 5565000,
+                                          'urban_percent': 50,
+                                          'national_alb': 98,
+                                          'urban_alb': 100},
+                                         'TUV': {'country_name': 'Tuvalu',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 11000,
+                                          'urban_percent': 60,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'UGA': {'country_name': 'Uganda',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2015,
+                                          'pop': 38225000,
+                                          'urban_percent': 22,
+                                          'national_alb': 48,
+                                          'urban_alb': 77},
+                                         'UKR': {'country_name': 'Ukraine',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 44922000,
+                                          'urban_percent': 69,
+                                          'national_alb': 94,
+                                          'urban_alb': 92},
+                                         'GBR': {'country_name': 'United Kingdom',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 65860000,
+                                          'urban_percent': 83,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'USA': {'country_name': 'United States of America',
+                                          'region': 'North America',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 320878000,
+                                          'urban_percent': 82,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'URY': {'country_name': 'Uruguay',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 3412000,
+                                          'urban_percent': 95,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'UZB': {'country_name': 'Uzbekistan',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 30930000,
+                                          'urban_percent': 51,
+                                          'national_alb': 98,
+                                          'urban_alb': 100},
+                                         'VUT': {'country_name': 'Vanuatu',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 271000,
+                                          'urban_percent': 25,
+                                          'national_alb': 90,
+                                          'urban_alb': 100},
+                                         'VNM': {'country_name': 'Vietnam',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 92677000,
+                                          'urban_percent': 34,
+                                          'national_alb': 93,
+                                          'urban_alb': 98},
+                                         'ZMB': {'country_name': 'Zambia',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 15879000,
+                                          'urban_percent': 42,
+                                          'national_alb': 61,
+                                          'urban_alb': 86},
+                                         'ZWE': {'country_name': 'Zimbabwe',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2015,
+                                          'pop': 13815000,
+                                          'urban_percent': 32,
+                                          'national_alb': 65,
+                                          'urban_alb': 94}}),
+                 "dict_2020_test": (TEXT_FORMAT_DICT, {'AFG': {'country_name': 'Afghanistan',
+                                          'region': 'South Asia',
+                                          'income_level': 'Low income',
+                                          'year': 2020,
+                                          'pop': 38928000,
+                                          'urban_percent': 26,
+                                          'national_alb': 75,
+                                          'urban_alb': 100},
+                                         'ALB': {'country_name': 'Albania',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 2878000,
+                                          'urban_percent': 62,
+                                          'national_alb': 95,
+                                          'urban_alb': 96},
+                                         'DZA': {'country_name': 'Algeria',
+                                          'region': 'Middle East & North Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 43851000,
+                                          'urban_percent': 74,
+                                          'national_alb': 94,
+                                          'urban_alb': 96},
+                                         'AND': {'country_name': 'Andorra',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 77000,
+                                          'urban_percent': 88,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'AGO': {'country_name': 'Angola',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 32866000,
+                                          'urban_percent': 67,
+                                          'national_alb': 57,
+                                          'urban_alb': 72},
+                                         'ARM': {'country_name': 'Armenia',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 2963000,
+                                          'urban_percent': 63,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'AUS': {'country_name': 'Australia',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 25500000,
+                                          'urban_percent': 86,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'AUT': {'country_name': 'Austria',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 9006000,
+                                          'urban_percent': 59,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'AZE': {'country_name': 'Azerbaijan',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 10139000,
+                                          'urban_percent': 56,
+                                          'national_alb': 96,
+                                          'urban_alb': 100},
+                                         'BGD': {'country_name': 'Bangladesh',
+                                          'region': 'South Asia',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 164689000,
+                                          'urban_percent': 38,
+                                          'national_alb': 98,
+                                          'urban_alb': 97},
+                                         'BLR': {'country_name': 'Belarus',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 9449000,
+                                          'urban_percent': 79,
+                                          'national_alb': 96,
+                                          'urban_alb': 96},
+                                         'BEL': {'country_name': 'Belgium',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 11590000,
+                                          'urban_percent': 98,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'BLZ': {'country_name': 'Belize',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 398000,
+                                          'urban_percent': 46,
+                                          'national_alb': 98,
+                                          'urban_alb': 99},
+                                         'BEN': {'country_name': 'Benin',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 12123000,
+                                          'urban_percent': 48,
+                                          'national_alb': 65,
+                                          'urban_alb': 73},
+                                         'BMU': {'country_name': 'Bermuda',
+                                          'region': 'North America',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 62000,
+                                          'urban_percent': 100,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'BTN': {'country_name': 'Bhutan',
+                                          'region': 'South Asia',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 772000,
+                                          'urban_percent': 42,
+                                          'national_alb': 97,
+                                          'urban_alb': 98},
+                                         'BIH': {'country_name': 'Bosnia and Herzegovina',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 3281000,
+                                          'urban_percent': 49,
+                                          'national_alb': 96,
+                                          'urban_alb': 95},
+                                         'BWA': {'country_name': 'Botswana',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 2352000,
+                                          'urban_percent': 71,
+                                          'national_alb': 92,
+                                          'urban_alb': 98},
+                                         'BRA': {'country_name': 'Brazil',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 212559000,
+                                          'urban_percent': 87,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'BRN': {'country_name': 'Brunei Darussalam',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 437000,
+                                          'urban_percent': 78,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'BGR': {'country_name': 'Bulgaria',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 6948000,
+                                          'urban_percent': 76,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'BFA': {'country_name': 'Burkina Faso',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2020,
+                                          'pop': 20903000,
+                                          'urban_percent': 31,
+                                          'national_alb': 47,
+                                          'urban_alb': 80},
+                                         'BDI': {'country_name': 'Burundi',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2020,
+                                          'pop': 11891000,
+                                          'urban_percent': 14,
+                                          'national_alb': 62,
+                                          'urban_alb': 91},
+                                         'CPV': {'country_name': 'Cabo Verde',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 556000,
+                                          'urban_percent': 67,
+                                          'national_alb': 89,
+                                          'urban_alb': 93},
+                                         'KHM': {'country_name': 'Cambodia',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 16719000,
+                                          'urban_percent': 24,
+                                          'national_alb': 71,
+                                          'urban_alb': 90},
+                                         'CMR': {'country_name': 'Cameroon',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 26546000,
+                                          'urban_percent': 58,
+                                          'national_alb': 66,
+                                          'urban_alb': 82},
+                                         'CAN': {'country_name': 'Canada',
+                                          'region': 'North America',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 37742000,
+                                          'urban_percent': 82,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'CAF': {'country_name': 'Central African Republic',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2020,
+                                          'pop': 4830000,
+                                          'urban_percent': 42,
+                                          'national_alb': 37,
+                                          'urban_alb': 50},
+                                         'TCD': {'country_name': 'Chad',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2020,
+                                          'pop': 16426000,
+                                          'urban_percent': 24,
+                                          'national_alb': 46,
+                                          'urban_alb': 74},
+                                         'CHL': {'country_name': 'Chile',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 19116000,
+                                          'urban_percent': 88,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'CHN': {'country_name': 'China',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 1463141000,
+                                          'urban_percent': 62,
+                                          'national_alb': 94,
+                                          'urban_alb': 97},
+                                         'COL': {'country_name': 'Colombia',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 50883000,
+                                          'urban_percent': 81,
+                                          'national_alb': 97,
+                                          'urban_alb': 100},
+                                         'CRI': {'country_name': 'Costa Rica',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 5094000,
+                                          'urban_percent': 81,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'CIV': {'country_name': "Côte d'Ivoire",
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 26378000,
+                                          'urban_percent': 52,
+                                          'national_alb': 71,
+                                          'urban_alb': 85},
+                                         'CUB': {'country_name': 'Cuba',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 11327000,
+                                          'urban_percent': 77,
+                                          'national_alb': 97,
+                                          'urban_alb': 98},
+                                         'CYP': {'country_name': 'Cyprus',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 1207000,
+                                          'urban_percent': 67,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'CZE': {'country_name': 'Czech Republic',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 10709000,
+                                          'urban_percent': 74,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'DNK': {'country_name': 'Denmark',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 5792000,
+                                          'urban_percent': 88,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'DJI': {'country_name': 'Djibouti',
+                                          'region': 'Middle East & North Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 988000,
+                                          'urban_percent': 78,
+                                          'national_alb': 76,
+                                          'urban_alb': 84},
+                                         'DOM': {'country_name': 'Dominican Republic',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 10848000,
+                                          'urban_percent': 83,
+                                          'national_alb': 97,
+                                          'urban_alb': 98},
+                                         'ECU': {'country_name': 'Ecuador',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 17643000,
+                                          'urban_percent': 64,
+                                          'national_alb': 95,
+                                          'urban_alb': 100},
+                                         'SLV': {'country_name': 'El Salvador',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 6486000,
+                                          'urban_percent': 73,
+                                          'national_alb': 98,
+                                          'urban_alb': 100},
+                                         'EST': {'country_name': 'Estonia',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 1327000,
+                                          'urban_percent': 69,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'SWZ': {'country_name': 'Eswatini',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 1160000,
+                                          'urban_percent': 24,
+                                          'national_alb': 71,
+                                          'urban_alb': 97},
+                                         'ETH': {'country_name': 'Ethiopia',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2020,
+                                          'pop': 114964000,
+                                          'urban_percent': 22,
+                                          'national_alb': 50,
+                                          'urban_alb': 84},
+                                         'FJI': {'country_name': 'Fiji',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 896000,
+                                          'urban_percent': 57,
+                                          'national_alb': 94,
+                                          'urban_alb': 98},
+                                         'FIN': {'country_name': 'Finland',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 5541000,
+                                          'urban_percent': 86,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'FRA': {'country_name': 'France',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 65274000,
+                                          'urban_percent': 81,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'GAB': {'country_name': 'Gabon',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 2226000,
+                                          'urban_percent': 90,
+                                          'national_alb': 85,
+                                          'urban_alb': 90},
+                                         'GEO': {'country_name': 'Georgia',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 3989000,
+                                          'urban_percent': 59,
+                                          'national_alb': 97,
+                                          'urban_alb': 100},
+                                         'DEU': {'country_name': 'Germany',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 83784000,
+                                          'urban_percent': 77,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'GHA': {'country_name': 'Ghana',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 31073000,
+                                          'urban_percent': 57,
+                                          'national_alb': 86,
+                                          'urban_alb': 96},
+                                         'GIB': {'country_name': 'Gibraltar',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 34000,
+                                          'urban_percent': 100,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'GRC': {'country_name': 'Greece',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 10423000,
+                                          'urban_percent': 80,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'GRL': {'country_name': 'Greenland',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 57000,
+                                          'urban_percent': 87,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'GTM': {'country_name': 'Guatemala',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 17916000,
+                                          'urban_percent': 52,
+                                          'national_alb': 94,
+                                          'urban_alb': 98},
+                                         'GIN': {'country_name': 'Guinea',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2020,
+                                          'pop': 13133000,
+                                          'urban_percent': 37,
+                                          'national_alb': 64,
+                                          'urban_alb': 87},
+                                         'GNB': {'country_name': 'Guinea-Bissau',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2020,
+                                          'pop': 1968000,
+                                          'urban_percent': 44,
+                                          'national_alb': 59,
+                                          'urban_alb': 71},
+                                         'GUY': {'country_name': 'Guyana',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 787000,
+                                          'urban_percent': 27,
+                                          'national_alb': 96,
+                                          'urban_alb': 100},
+                                         'HTI': {'country_name': 'Haiti',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 11403000,
+                                          'urban_percent': 57,
+                                          'national_alb': 67,
+                                          'urban_alb': 85},
+                                         'HND': {'country_name': 'Honduras',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 9905000,
+                                          'urban_percent': 58,
+                                          'national_alb': 96,
+                                          'urban_alb': 100},
+                                         'HUN': {'country_name': 'Hungary',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 9660000,
+                                          'urban_percent': 72,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'ISL': {'country_name': 'Iceland',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 341000,
+                                          'urban_percent': 94,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'IND': {'country_name': 'India',
+                                          'region': 'South Asia',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 1380004000,
+                                          'urban_percent': 35,
+                                          'national_alb': 90,
+                                          'urban_alb': 94},
+                                         'IDN': {'country_name': 'Indonesia',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 273524000,
+                                          'urban_percent': 57,
+                                          'national_alb': 92,
+                                          'urban_alb': 98},
+                                         'IRQ': {'country_name': 'Iraq',
+                                          'region': 'Middle East & North Africa',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 40223000,
+                                          'urban_percent': 71,
+                                          'national_alb': 98,
+                                          'urban_alb': 100},
+                                         'IRL': {'country_name': 'Ireland',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 4938000,
+                                          'urban_percent': 64,
+                                          'national_alb': 97,
+                                          'urban_alb': 97},
+                                         'ISR': {'country_name': 'Israel',
+                                          'region': 'Middle East & North Africa',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 8656000,
+                                          'urban_percent': 93,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'JAM': {'country_name': 'Jamaica',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 2961000,
+                                          'urban_percent': 56,
+                                          'national_alb': 91,
+                                          'urban_alb': 95},
+                                         'JOR': {'country_name': 'Jordan',
+                                          'region': 'Middle East & North Africa',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 10203000,
+                                          'urban_percent': 91,
+                                          'national_alb': 99,
+                                          'urban_alb': 100},
+                                         'KAZ': {'country_name': 'Kazakhstan',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 18777000,
+                                          'urban_percent': 58,
+                                          'national_alb': 95,
+                                          'urban_alb': 98},
+                                         'KEN': {'country_name': 'Kenya',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 53771000,
+                                          'urban_percent': 28,
+                                          'national_alb': 62,
+                                          'urban_alb': 87},
+                                         'KIR': {'country_name': 'Kiribati',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 119000,
+                                          'urban_percent': 56,
+                                          'national_alb': 78,
+                                          'urban_alb': 92},
+                                         'LVA': {'country_name': 'Latvia',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 1886000,
+                                          'urban_percent': 68,
+                                          'national_alb': 99,
+                                          'urban_alb': 99},
+                                         'LSO': {'country_name': 'Lesotho',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 2142000,
+                                          'urban_percent': 29,
+                                          'national_alb': 72,
+                                          'urban_alb': 93},
+                                         'LBR': {'country_name': 'Liberia',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2020,
+                                          'pop': 5058000,
+                                          'urban_percent': 52,
+                                          'national_alb': 75,
+                                          'urban_alb': 86},
+                                         'LTU': {'country_name': 'Lithuania',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 2722000,
+                                          'urban_percent': 68,
+                                          'national_alb': 98,
+                                          'urban_alb': 100},
+                                         'LUX': {'country_name': 'Luxembourg',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 626000,
+                                          'urban_percent': 91,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'MDG': {'country_name': 'Madagascar',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2020,
+                                          'pop': 27691000,
+                                          'urban_percent': 39,
+                                          'national_alb': 53,
+                                          'urban_alb': 80},
+                                         'MWI': {'country_name': 'Malawi',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2020,
+                                          'pop': 19130000,
+                                          'urban_percent': 17,
+                                          'national_alb': 70,
+                                          'urban_alb': 86},
+                                         'MYS': {'country_name': 'Malaysia',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 32366000,
+                                          'urban_percent': 77,
+                                          'national_alb': 97,
+                                          'urban_alb': 100},
+                                         'MDV': {'country_name': 'Maldives',
+                                          'region': 'South Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 541000,
+                                          'urban_percent': 41,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'MLI': {'country_name': 'Mali',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2020,
+                                          'pop': 20251000,
+                                          'urban_percent': 44,
+                                          'national_alb': 83,
+                                          'urban_alb': 96},
+                                         'MLT': {'country_name': 'Malta',
+                                          'region': 'Middle East & North Africa',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 442000,
+                                          'urban_percent': 95,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'MHL': {'country_name': 'Marshall Islands',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 59000,
+                                          'urban_percent': 78,
+                                          'national_alb': 89,
+                                          'urban_alb': 87},
+                                         'MRT': {'country_name': 'Mauritania',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 4650000,
+                                          'urban_percent': 55,
+                                          'national_alb': 72,
+                                          'urban_alb': 89},
+                                         'MUS': {'country_name': 'Mauritius',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 1272000,
+                                          'urban_percent': 41,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'MEX': {'country_name': 'Mexico',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 128933000,
+                                          'urban_percent': 81,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'MCO': {'country_name': 'Monaco',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 39000,
+                                          'urban_percent': 100,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'MNG': {'country_name': 'Mongolia',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 3278000,
+                                          'urban_percent': 69,
+                                          'national_alb': 85,
+                                          'urban_alb': 97},
+                                         'MNE': {'country_name': 'Montenegro',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 628000,
+                                          'urban_percent': 67,
+                                          'national_alb': 99,
+                                          'urban_alb': 100},
+                                         'MAR': {'country_name': 'Morocco',
+                                          'region': 'Middle East & North Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 36911000,
+                                          'urban_percent': 64,
+                                          'national_alb': 90,
+                                          'urban_alb': 98},
+                                         'MOZ': {'country_name': 'Mozambique',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2020,
+                                          'pop': 31255000,
+                                          'urban_percent': 37,
+                                          'national_alb': 63,
+                                          'urban_alb': 88},
+                                         'MMR': {'country_name': 'Myanmar',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 54410000,
+                                          'urban_percent': 31,
+                                          'national_alb': 84,
+                                          'urban_alb': 95},
+                                         'NAM': {'country_name': 'Namibia',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 2541000,
+                                          'urban_percent': 52,
+                                          'national_alb': 84,
+                                          'urban_alb': 96},
+                                         'NRU': {'country_name': 'Nauru',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 11000,
+                                          'urban_percent': 100,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'NPL': {'country_name': 'Nepal',
+                                          'region': 'South Asia',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 29137000,
+                                          'urban_percent': 21,
+                                          'national_alb': 90,
+                                          'urban_alb': 90},
+                                         'NLD': {'country_name': 'Netherlands',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 17135000,
+                                          'urban_percent': 92,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'NZL': {'country_name': 'New Zealand',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 4822000,
+                                          'urban_percent': 87,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'NIC': {'country_name': 'Nicaragua',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 6625000,
+                                          'urban_percent': 59,
+                                          'national_alb': 82,
+                                          'urban_alb': 97},
+                                         'NER': {'country_name': 'Niger',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2020,
+                                          'pop': 24207000,
+                                          'urban_percent': 17,
+                                          'national_alb': 47,
+                                          'urban_alb': 86},
+                                         'NGA': {'country_name': 'Nigeria',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 206140000,
+                                          'urban_percent': 52,
+                                          'national_alb': 78,
+                                          'urban_alb': 92},
+                                         'MKD': {'country_name': 'North Macedonia',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 2083000,
+                                          'urban_percent': 58,
+                                          'national_alb': 98,
+                                          'urban_alb': 98},
+                                         'NOR': {'country_name': 'Norway',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 5421000,
+                                          'urban_percent': 83,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'OMN': {'country_name': 'Oman',
+                                          'region': 'Middle East & North Africa',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 5107000,
+                                          'urban_percent': 86,
+                                          'national_alb': 92,
+                                          'urban_alb': 95},
+                                         'PAK': {'country_name': 'Pakistan',
+                                          'region': 'South Asia',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 220892000,
+                                          'urban_percent': 37,
+                                          'national_alb': 90,
+                                          'urban_alb': 93},
+                                         'PLW': {'country_name': 'Palau',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 18000,
+                                          'urban_percent': 81,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'PAN': {'country_name': 'Panama',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 4315000,
+                                          'urban_percent': 68,
+                                          'national_alb': 94,
+                                          'urban_alb': 98},
+                                         'PNG': {'country_name': 'Papua New Guinea',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 8947000,
+                                          'urban_percent': 13,
+                                          'national_alb': 45,
+                                          'urban_alb': 86},
+                                         'PRY': {'country_name': 'Paraguay',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 7133000,
+                                          'urban_percent': 62,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'PER': {'country_name': 'Peru',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 32972000,
+                                          'urban_percent': 78,
+                                          'national_alb': 93,
+                                          'urban_alb': 97},
+                                         'PHL': {'country_name': 'Philippines',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 109581000,
+                                          'urban_percent': 47,
+                                          'national_alb': 94,
+                                          'urban_alb': 97},
+                                         'POL': {'country_name': 'Poland',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 37847000,
+                                          'urban_percent': 60,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'PRT': {'country_name': 'Portugal',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 10197000,
+                                          'urban_percent': 66,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'ROU': {'country_name': 'Romania',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 19238000,
+                                          'urban_percent': 54,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'RUS': {'country_name': 'Russian Federation',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 145934000,
+                                          'urban_percent': 75,
+                                          'national_alb': 97,
+                                          'urban_alb': 99},
+                                         'RWA': {'country_name': 'Rwanda',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2020,
+                                          'pop': 12952000,
+                                          'urban_percent': 17,
+                                          'national_alb': 60,
+                                          'urban_alb': 83},
+                                         'WSM': {'country_name': 'Samoa',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 198000,
+                                          'urban_percent': 18,
+                                          'national_alb': 92,
+                                          'urban_alb': 92},
+                                         'SEN': {'country_name': 'Senegal',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 16744000,
+                                          'urban_percent': 48,
+                                          'national_alb': 85,
+                                          'urban_alb': 95},
+                                         'SRB': {'country_name': 'Serbia',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 8737000,
+                                          'urban_percent': 56,
+                                          'national_alb': 95,
+                                          'urban_alb': 95},
+                                         'SLE': {'country_name': 'Sierra Leone',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2020,
+                                          'pop': 7977000,
+                                          'urban_percent': 43,
+                                          'national_alb': 64,
+                                          'urban_alb': 78},
+                                         'SGP': {'country_name': 'Singapore',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 5850000,
+                                          'urban_percent': 100,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'SLB': {'country_name': 'Solomon Islands',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 687000,
+                                          'urban_percent': 25,
+                                          'national_alb': 67,
+                                          'urban_alb': 91},
+                                         'SOM': {'country_name': 'Somalia',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2020,
+                                          'pop': 15893000,
+                                          'urban_percent': 46,
+                                          'national_alb': 56,
+                                          'urban_alb': 79},
+                                         'ZAF': {'country_name': 'South Africa',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 59309000,
+                                          'urban_percent': 67,
+                                          'national_alb': 94,
+                                          'urban_alb': 100},
+                                         'SSD': {'country_name': 'South Sudan',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2020,
+                                          'pop': 11194000,
+                                          'urban_percent': 20,
+                                          'national_alb': 41,
+                                          'urban_alb': 70},
+                                         'ESP': {'country_name': 'Spain',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 46755000,
+                                          'urban_percent': 81,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'LKA': {'country_name': 'Sri Lanka',
+                                          'region': 'South Asia',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 21413000,
+                                          'urban_percent': 19,
+                                          'national_alb': 92,
+                                          'urban_alb': 100},
+                                         'SDN': {'country_name': 'Sudan',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2020,
+                                          'pop': 43849000,
+                                          'urban_percent': 35,
+                                          'national_alb': 60,
+                                          'urban_alb': 74},
+                                         'SUR': {'country_name': 'Suriname',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 587000,
+                                          'urban_percent': 66,
+                                          'national_alb': 98,
+                                          'urban_alb': 99},
+                                         'SWE': {'country_name': 'Sweden',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 10099000,
+                                          'urban_percent': 88,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'CHE': {'country_name': 'Switzerland',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 8655000,
+                                          'urban_percent': 74,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'SYR': {'country_name': 'Syrian Arab Republic',
+                                          'region': 'Middle East & North Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2020,
+                                          'pop': 17501000,
+                                          'urban_percent': 55,
+                                          'national_alb': 94,
+                                          'urban_alb': 95},
+                                         'TJK': {'country_name': 'Tajikistan',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 9538000,
+                                          'urban_percent': 28,
+                                          'national_alb': 82,
+                                          'urban_alb': 96},
+                                         'THA': {'country_name': 'Thailand',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 69800000,
+                                          'urban_percent': 51,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'TLS': {'country_name': 'Timor-Leste',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 1318000,
+                                          'urban_percent': 31,
+                                          'national_alb': 85,
+                                          'urban_alb': 96},
+                                         'TGO': {'country_name': 'Togo',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2020,
+                                          'pop': 8279000,
+                                          'urban_percent': 43,
+                                          'national_alb': 69,
+                                          'urban_alb': 91},
+                                         'TON': {'country_name': 'Tonga',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 106000,
+                                          'urban_percent': 23,
+                                          'national_alb': 99,
+                                          'urban_alb': 100},
+                                         'TUN': {'country_name': 'Tunisia',
+                                          'region': 'Middle East & North Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 11819000,
+                                          'urban_percent': 70,
+                                          'national_alb': 98,
+                                          'urban_alb': 100},
+                                         'TKM': {'country_name': 'Turkmenistan',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 6031000,
+                                          'urban_percent': 53,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'TUV': {'country_name': 'Tuvalu',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 12000,
+                                          'urban_percent': 64,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'UGA': {'country_name': 'Uganda',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2020,
+                                          'pop': 45741000,
+                                          'urban_percent': 25,
+                                          'national_alb': 56,
+                                          'urban_alb': 79},
+                                         'UKR': {'country_name': 'Ukraine',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 43734000,
+                                          'urban_percent': 69,
+                                          'national_alb': 94,
+                                          'urban_alb': 92},
+                                         'GBR': {'country_name': 'United Kingdom',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 67886000,
+                                          'urban_percent': 84,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'USA': {'country_name': 'United States of America',
+                                          'region': 'North America',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 331003000,
+                                          'urban_percent': 83,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'URY': {'country_name': 'Uruguay',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 3474000,
+                                          'urban_percent': 96,
+                                          'national_alb': 100,
+                                          'urban_alb': 100},
+                                         'UZB': {'country_name': 'Uzbekistan',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 33469000,
+                                          'urban_percent': 50,
+                                          'national_alb': 98,
+                                          'urban_alb': 100},
+                                         'VUT': {'country_name': 'Vanuatu',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 307000,
+                                          'urban_percent': 26,
+                                          'national_alb': 91,
+                                          'urban_alb': 100},
+                                         'VNM': {'country_name': 'Vietnam',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 97339000,
+                                          'urban_percent': 37,
+                                          'national_alb': 97,
+                                          'urban_alb': 100},
+                                         'ZMB': {'country_name': 'Zambia',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 18384000,
+                                          'urban_percent': 45,
+                                          'national_alb': 65,
+                                          'urban_alb': 87},
+                                         'ZWE': {'country_name': 'Zimbabwe',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 14863000,
+                                          'urban_percent': 32,
+                                          'national_alb': 63,
+                                          'urban_alb': 93}}),
+                 "10": (TEXT_FORMAT_DICT, {'country_name': 'China',
+                                         'region': 'East Asia & Pacific',
+                                         'income_level': 'Upper middle income',
+                                         'year': 2020,
+                                         'pop': 1463141000,
+                                         'urban_percent': 62,
+                                         'national_alb': 94,
+                                         'urban_alb': 97}),
+                 "11": (TEXT_FORMAT, 88),
+                 "12": (TEXT_FORMAT, 60000),
+                 "13": (TEXT_FORMAT_DICT, {'Low income': 514021000,
+                                         'Upper middle income': 2430080000,
+                                         'Lower middle income': 3045857000,
+                                         'High income': 871268000}),
+                 "14": (TEXT_FORMAT_DICT, {'Low income': 302975040,
+                                         'Upper middle income': 2321860110,
+                                         'Lower middle income': 2687761440,
+                                         'High income': 870638000}),
+                 "15": (TEXT_FORMAT_DICT, {'Low income': 59,
+                                         'Upper middle income': 96,
+                                         'Lower middle income': 88,
+                                         'High income': 100}),
+                 "dict_2015_rural_alb_test": (TEXT_FORMAT_DICT, {'AFG': {'country_name': 'Afghanistan',
+                                          'region': 'South Asia',
+                                          'income_level': 'Low income',
+                                          'year': 2015,
+                                          'pop': 34414000,
+                                          'urban_percent': 25,
+                                          'national_alb': 61,
+                                          'urban_alb': 87,
+                                          'rural_alb': 52},
+                                         'ALB': {'country_name': 'Albania',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 2891000,
+                                          'urban_percent': 57,
+                                          'national_alb': 93,
+                                          'urban_alb': 95,
+                                          'rural_alb': 90},
+                                         'DZA': {'country_name': 'Algeria',
+                                          'region': 'Middle East & North Africa',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 39728000,
+                                          'urban_percent': 71,
+                                          'national_alb': 93,
+                                          'urban_alb': 95,
+                                          'rural_alb': 88},
+                                         'AND': {'country_name': 'Andorra',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 78000,
+                                          'urban_percent': 88,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'AGO': {'country_name': 'Angola',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 27884000,
+                                          'urban_percent': 63,
+                                          'national_alb': 54,
+                                          'urban_alb': 70,
+                                          'rural_alb': 27},
+                                         'ARM': {'country_name': 'Armenia',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 2926000,
+                                          'urban_percent': 63,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'AUS': {'country_name': 'Australia',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 23932000,
+                                          'urban_percent': 86,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'AUT': {'country_name': 'Austria',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 8679000,
+                                          'urban_percent': 58,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'AZE': {'country_name': 'Azerbaijan',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 9623000,
+                                          'urban_percent': 55,
+                                          'national_alb': 92,
+                                          'urban_alb': 100,
+                                          'rural_alb': 82},
+                                         'BGD': {'country_name': 'Bangladesh',
+                                          'region': 'South Asia',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 156256000,
+                                          'urban_percent': 34,
+                                          'national_alb': 97,
+                                          'urban_alb': 98,
+                                          'rural_alb': 96},
+                                         'BLR': {'country_name': 'Belarus',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 9439000,
+                                          'urban_percent': 77,
+                                          'national_alb': 96,
+                                          'urban_alb': 96,
+                                          'rural_alb': 96},
+                                         'BEL': {'country_name': 'Belgium',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 11288000,
+                                          'urban_percent': 98,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'BLZ': {'country_name': 'Belize',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 361000,
+                                          'urban_percent': 45,
+                                          'national_alb': 97,
+                                          'urban_alb': 100,
+                                          'rural_alb': 95},
+                                         'BEN': {'country_name': 'Benin',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2015,
+                                          'pop': 10576000,
+                                          'urban_percent': 46,
+                                          'national_alb': 65,
+                                          'urban_alb': 74,
+                                          'rural_alb': 57},
+                                         'BMU': {'country_name': 'Bermuda',
+                                          'region': 'North America',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 64000,
+                                          'urban_percent': 100,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'BTN': {'country_name': 'Bhutan',
+                                          'region': 'South Asia',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 728000,
+                                          'urban_percent': 39,
+                                          'national_alb': 96,
+                                          'urban_alb': 98,
+                                          'rural_alb': 95},
+                                         'BIH': {'country_name': 'Bosnia and Herzegovina',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 3429000,
+                                          'urban_percent': 47,
+                                          'national_alb': 96,
+                                          'urban_alb': 95,
+                                          'rural_alb': 97},
+                                         'BWA': {'country_name': 'Botswana',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 2121000,
+                                          'urban_percent': 67,
+                                          'national_alb': 88,
+                                          'urban_alb': 97,
+                                          'rural_alb': 70},
+                                         'BRA': {'country_name': 'Brazil',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 204472000,
+                                          'urban_percent': 86,
+                                          'national_alb': 98,
+                                          'urban_alb': 100,
+                                          'rural_alb': 86},
+                                         'BRN': {'country_name': 'Brunei Darussalam',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 415000,
+                                          'urban_percent': 77,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'BGR': {'country_name': 'Bulgaria',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 7200000,
+                                          'urban_percent': 74,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'BFA': {'country_name': 'Burkina Faso',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2015,
+                                          'pop': 18111000,
+                                          'urban_percent': 28,
+                                          'national_alb': 50,
+                                          'urban_alb': 80,
+                                          'rural_alb': 38},
+                                         'BDI': {'country_name': 'Burundi',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2015,
+                                          'pop': 10160000,
+                                          'urban_percent': 12,
+                                          'national_alb': 60,
+                                          'urban_alb': 89,
+                                          'rural_alb': 56},
+                                         'CPV': {'country_name': 'Cabo Verde',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 525000,
+                                          'urban_percent': 64,
+                                          'national_alb': 85,
+                                          'urban_alb': 92,
+                                          'rural_alb': 73},
+                                         'KHM': {'country_name': 'Cambodia',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 15521000,
+                                          'urban_percent': 22,
+                                          'national_alb': 68,
+                                          'urban_alb': 89,
+                                          'rural_alb': 62},
+                                         'CMR': {'country_name': 'Cameroon',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 23298000,
+                                          'urban_percent': 55,
+                                          'national_alb': 64,
+                                          'urban_alb': 82,
+                                          'rural_alb': 42},
+                                         'CAN': {'country_name': 'Canada',
+                                          'region': 'North America',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 36027000,
+                                          'urban_percent': 81,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'CAF': {'country_name': 'Central African Republic',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2015,
+                                          'pop': 4493000,
+                                          'urban_percent': 40,
+                                          'national_alb': 42,
+                                          'urban_alb': 58,
+                                          'rural_alb': 31},
+                                         'TCD': {'country_name': 'Chad',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2015,
+                                          'pop': 14111000,
+                                          'urban_percent': 23,
+                                          'national_alb': 44,
+                                          'urban_alb': 75,
+                                          'rural_alb': 35},
+                                         'CHL': {'country_name': 'Chile',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 17969000,
+                                          'urban_percent': 87,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'CHN': {'country_name': 'China',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 1430405000,
+                                          'urban_percent': 56,
+                                          'national_alb': 92,
+                                          'urban_alb': 98,
+                                          'rural_alb': 84},
+                                         'COL': {'country_name': 'Colombia',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 47521000,
+                                          'urban_percent': 80,
+                                          'national_alb': 96,
+                                          'urban_alb': 100,
+                                          'rural_alb': 80},
+                                         'CRI': {'country_name': 'Costa Rica',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 4848000,
+                                          'urban_percent': 77,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'CIV': {'country_name': "Côte d'Ivoire",
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 23226000,
+                                          'urban_percent': 49,
+                                          'national_alb': 71,
+                                          'urban_alb': 87,
+                                          'rural_alb': 56},
+                                         'CUB': {'country_name': 'Cuba',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 11325000,
+                                          'urban_percent': 77,
+                                          'national_alb': 96,
+                                          'urban_alb': 98,
+                                          'rural_alb': 89},
+                                         'CYP': {'country_name': 'Cyprus',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 1161000,
+                                          'urban_percent': 67,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'CZE': {'country_name': 'Czech Republic',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 10601000,
+                                          'urban_percent': 73,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'DNK': {'country_name': 'Denmark',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 5689000,
+                                          'urban_percent': 88,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'DJI': {'country_name': 'Djibouti',
+                                          'region': 'Middle East & North Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 914000,
+                                          'urban_percent': 77,
+                                          'national_alb': 76,
+                                          'urban_alb': 84,
+                                          'rural_alb': 49},
+                                         'DOM': {'country_name': 'Dominican Republic',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 10282000,
+                                          'urban_percent': 79,
+                                          'national_alb': 96,
+                                          'urban_alb': 98,
+                                          'rural_alb': 88},
+                                         'ECU': {'country_name': 'Ecuador',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 16212000,
+                                          'urban_percent': 63,
+                                          'national_alb': 93,
+                                          'urban_alb': 100,
+                                          'rural_alb': 81},
+                                         'SLV': {'country_name': 'El Salvador',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 6325000,
+                                          'urban_percent': 70,
+                                          'national_alb': 96,
+                                          'urban_alb': 99,
+                                          'rural_alb': 89},
+                                         'EST': {'country_name': 'Estonia',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 1315000,
+                                          'urban_percent': 68,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'SWZ': {'country_name': 'Eswatini',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 1104000,
+                                          'urban_percent': 23,
+                                          'national_alb': 67,
+                                          'urban_alb': 95,
+                                          'rural_alb': 59},
+                                         'ETH': {'country_name': 'Ethiopia',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2015,
+                                          'pop': 100835000,
+                                          'urban_percent': 19,
+                                          'national_alb': 42,
+                                          'urban_alb': 82,
+                                          'rural_alb': 33},
+                                         'FJI': {'country_name': 'Fiji',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 869000,
+                                          'urban_percent': 55,
+                                          'national_alb': 94,
+                                          'urban_alb': 98,
+                                          'rural_alb': 89},
+                                         'FIN': {'country_name': 'Finland',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 5481000,
+                                          'urban_percent': 85,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'FRA': {'country_name': 'France',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 64453000,
+                                          'urban_percent': 80,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'GAB': {'country_name': 'Gabon',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 1948000,
+                                          'urban_percent': 88,
+                                          'national_alb': 84,
+                                          'urban_alb': 89,
+                                          'rural_alb': 47},
+                                         'GEO': {'country_name': 'Georgia',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 4024000,
+                                          'urban_percent': 57,
+                                          'national_alb': 96,
+                                          'urban_alb': 100,
+                                          'rural_alb': 91},
+                                         'DEU': {'country_name': 'Germany',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 81787000,
+                                          'urban_percent': 77,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'GHA': {'country_name': 'Ghana',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 27849000,
+                                          'urban_percent': 54,
+                                          'national_alb': 80,
+                                          'urban_alb': 91,
+                                          'rural_alb': 67},
+                                         'GIB': {'country_name': 'Gibraltar',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 34000,
+                                          'urban_percent': 100,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'GRC': {'country_name': 'Greece',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 10660000,
+                                          'urban_percent': 78,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'GRL': {'country_name': 'Greenland',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 56000,
+                                          'urban_percent': 86,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'GTM': {'country_name': 'Guatemala',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 16252000,
+                                          'urban_percent': 50,
+                                          'national_alb': 92,
+                                          'urban_alb': 97,
+                                          'rural_alb': 87},
+                                         'GIN': {'country_name': 'Guinea',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2015,
+                                          'pop': 11432000,
+                                          'urban_percent': 35,
+                                          'national_alb': 64,
+                                          'urban_alb': 85,
+                                          'rural_alb': 53},
+                                         'GNB': {'country_name': 'Guinea-Bissau',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2015,
+                                          'pop': 1737000,
+                                          'urban_percent': 42,
+                                          'national_alb': 59,
+                                          'urban_alb': 73,
+                                          'rural_alb': 49},
+                                         'GUY': {'country_name': 'Guyana',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 767000,
+                                          'urban_percent': 26,
+                                          'national_alb': 95,
+                                          'urban_alb': 100,
+                                          'rural_alb': 93},
+                                         'HTI': {'country_name': 'Haiti',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Low income',
+                                          'year': 2015,
+                                          'pop': 10696000,
+                                          'urban_percent': 52,
+                                          'national_alb': 65,
+                                          'urban_alb': 85,
+                                          'rural_alb': 43},
+                                         'HND': {'country_name': 'Honduras',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 9113000,
+                                          'urban_percent': 55,
+                                          'national_alb': 93,
+                                          'urban_alb': 99,
+                                          'rural_alb': 86},
+                                         'HUN': {'country_name': 'Hungary',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 9778000,
+                                          'urban_percent': 71,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'ISL': {'country_name': 'Iceland',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 330000,
+                                          'urban_percent': 94,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'IND': {'country_name': 'India',
+                                          'region': 'South Asia',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 1310152000,
+                                          'urban_percent': 33,
+                                          'national_alb': 88,
+                                          'urban_alb': 93,
+                                          'rural_alb': 86},
+                                         'IDN': {'country_name': 'Indonesia',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 258383000,
+                                          'urban_percent': 53,
+                                          'national_alb': 89,
+                                          'urban_alb': 95,
+                                          'rural_alb': 82},
+                                         'IRQ': {'country_name': 'Iraq',
+                                          'region': 'Middle East & North Africa',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 35572000,
+                                          'urban_percent': 70,
+                                          'national_alb': 94,
+                                          'urban_alb': 98,
+                                          'rural_alb': 85},
+                                         'IRL': {'country_name': 'Ireland',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 4652000,
+                                          'urban_percent': 63,
+                                          'national_alb': 97,
+                                          'urban_alb': 97,
+                                          'rural_alb': 97},
+                                         'ISR': {'country_name': 'Israel',
+                                          'region': 'Middle East & North Africa',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 7978000,
+                                          'urban_percent': 92,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'JAM': {'country_name': 'Jamaica',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 2891000,
+                                          'urban_percent': 55,
+                                          'national_alb': 90,
+                                          'urban_alb': 95,
+                                          'rural_alb': 84},
+                                         'JOR': {'country_name': 'Jordan',
+                                          'region': 'Middle East & North Africa',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 9267000,
+                                          'urban_percent': 90,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'KAZ': {'country_name': 'Kazakhstan',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 17572000,
+                                          'urban_percent': 57,
+                                          'national_alb': 95,
+                                          'urban_alb': 98,
+                                          'rural_alb': 91},
+                                         'KEN': {'country_name': 'Kenya',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 47878000,
+                                          'urban_percent': 26,
+                                          'national_alb': 58,
+                                          'urban_alb': 87,
+                                          'rural_alb': 48},
+                                         'KIR': {'country_name': 'Kiribati',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 111000,
+                                          'urban_percent': 52,
+                                          'national_alb': 74,
+                                          'urban_alb': 89,
+                                          'rural_alb': 58},
+                                         'LVA': {'country_name': 'Latvia',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 1998000,
+                                          'urban_percent': 68,
+                                          'national_alb': 99,
+                                          'urban_alb': 99,
+                                          'rural_alb': 99},
+                                         'LSO': {'country_name': 'Lesotho',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 2059000,
+                                          'urban_percent': 27,
+                                          'national_alb': 71,
+                                          'urban_alb': 90,
+                                          'rural_alb': 64},
+                                         'LBR': {'country_name': 'Liberia',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2015,
+                                          'pop': 4472000,
+                                          'urban_percent': 50,
+                                          'national_alb': 73,
+                                          'urban_alb': 84,
+                                          'rural_alb': 62},
+                                         'LTU': {'country_name': 'Lithuania',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 2932000,
+                                          'urban_percent': 67,
+                                          'national_alb': 97,
+                                          'urban_alb': 100,
+                                          'rural_alb': 91},
+                                         'LUX': {'country_name': 'Luxembourg',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 567000,
+                                          'urban_percent': 90,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'MDG': {'country_name': 'Madagascar',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2015,
+                                          'pop': 24234000,
+                                          'urban_percent': 35,
+                                          'national_alb': 49,
+                                          'urban_alb': 78,
+                                          'rural_alb': 33},
+                                         'MWI': {'country_name': 'Malawi',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2015,
+                                          'pop': 16745000,
+                                          'urban_percent': 16,
+                                          'national_alb': 66,
+                                          'urban_alb': 86,
+                                          'rural_alb': 62},
+                                         'MYS': {'country_name': 'Malaysia',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 30271000,
+                                          'urban_percent': 74,
+                                          'national_alb': 97,
+                                          'urban_alb': 100,
+                                          'rural_alb': 88},
+                                         'MDV': {'country_name': 'Maldives',
+                                          'region': 'South Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 455000,
+                                          'urban_percent': 39,
+                                          'national_alb': 99,
+                                          'urban_alb': 99,
+                                          'rural_alb': 99},
+                                         'MLI': {'country_name': 'Mali',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2015,
+                                          'pop': 17439000,
+                                          'urban_percent': 40,
+                                          'national_alb': 74,
+                                          'urban_alb': 91,
+                                          'rural_alb': 63},
+                                         'MLT': {'country_name': 'Malta',
+                                          'region': 'Middle East & North Africa',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 434000,
+                                          'urban_percent': 94,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'MHL': {'country_name': 'Marshall Islands',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 57000,
+                                          'urban_percent': 76,
+                                          'national_alb': 88,
+                                          'urban_alb': 86,
+                                          'rural_alb': 94},
+                                         'MRT': {'country_name': 'Mauritania',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 4046000,
+                                          'urban_percent': 51,
+                                          'national_alb': 67,
+                                          'urban_alb': 86,
+                                          'rural_alb': 47},
+                                         'MUS': {'country_name': 'Mauritius',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 1259000,
+                                          'urban_percent': 41,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'MEX': {'country_name': 'Mexico',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 121858000,
+                                          'urban_percent': 79,
+                                          'national_alb': 98,
+                                          'urban_alb': 100,
+                                          'rural_alb': 90},
+                                         'MCO': {'country_name': 'Monaco',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 38000,
+                                          'urban_percent': 100,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'MNG': {'country_name': 'Mongolia',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 2998000,
+                                          'urban_percent': 68,
+                                          'national_alb': 81,
+                                          'urban_alb': 94,
+                                          'rural_alb': 53},
+                                         'MNE': {'country_name': 'Montenegro',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 627000,
+                                          'urban_percent': 66,
+                                          'national_alb': 97,
+                                          'urban_alb': 98,
+                                          'rural_alb': 95},
+                                         'MAR': {'country_name': 'Morocco',
+                                          'region': 'Middle East & North Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 34664000,
+                                          'urban_percent': 61,
+                                          'national_alb': 84,
+                                          'urban_alb': 96,
+                                          'rural_alb': 65},
+                                         'MOZ': {'country_name': 'Mozambique',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2015,
+                                          'pop': 27042000,
+                                          'urban_percent': 34,
+                                          'national_alb': 51,
+                                          'urban_alb': 80,
+                                          'rural_alb': 36},
+                                         'MMR': {'country_name': 'Myanmar',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 52681000,
+                                          'urban_percent': 30,
+                                          'national_alb': 74,
+                                          'urban_alb': 88,
+                                          'rural_alb': 68},
+                                         'NAM': {'country_name': 'Namibia',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 2315000,
+                                          'urban_percent': 47,
+                                          'national_alb': 83,
+                                          'urban_alb': 97,
+                                          'rural_alb': 71},
+                                         'NRU': {'country_name': 'Nauru',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 10000,
+                                          'urban_percent': 100,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'NPL': {'country_name': 'Nepal',
+                                          'region': 'South Asia',
+                                          'income_level': 'Low income',
+                                          'year': 2015,
+                                          'pop': 27015000,
+                                          'urban_percent': 19,
+                                          'national_alb': 88,
+                                          'urban_alb': 90,
+                                          'rural_alb': 88},
+                                         'NLD': {'country_name': 'Netherlands',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 16938000,
+                                          'urban_percent': 90,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'NZL': {'country_name': 'New Zealand',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 4615000,
+                                          'urban_percent': 86,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'NIC': {'country_name': 'Nicaragua',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 6223000,
+                                          'urban_percent': 58,
+                                          'national_alb': 81,
+                                          'urban_alb': 97,
+                                          'rural_alb': 59},
+                                         'NER': {'country_name': 'Niger',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2015,
+                                          'pop': 20002000,
+                                          'urban_percent': 16,
+                                          'national_alb': 45,
+                                          'urban_alb': 88,
+                                          'rural_alb': 37},
+                                         'NGA': {'country_name': 'Nigeria',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 181137000,
+                                          'urban_percent': 48,
+                                          'national_alb': 69,
+                                          'urban_alb': 85,
+                                          'rural_alb': 54},
+                                         'MKD': {'country_name': 'North Macedonia',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 2079000,
+                                          'urban_percent': 57,
+                                          'national_alb': 97,
+                                          'urban_alb': 97,
+                                          'rural_alb': 97},
+                                         'NOR': {'country_name': 'Norway',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 5200000,
+                                          'urban_percent': 81,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'OMN': {'country_name': 'Oman',
+                                          'region': 'Middle East & North Africa',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 4267000,
+                                          'urban_percent': 81,
+                                          'national_alb': 90,
+                                          'urban_alb': 94,
+                                          'rural_alb': 73},
+                                         'PAK': {'country_name': 'Pakistan',
+                                          'region': 'South Asia',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 199427000,
+                                          'urban_percent': 36,
+                                          'national_alb': 89,
+                                          'urban_alb': 94,
+                                          'rural_alb': 86},
+                                         'PLW': {'country_name': 'Palau',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 18000,
+                                          'urban_percent': 78,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'PAN': {'country_name': 'Panama',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 3968000,
+                                          'urban_percent': 67,
+                                          'national_alb': 93,
+                                          'urban_alb': 98,
+                                          'rural_alb': 83},
+                                         'PNG': {'country_name': 'Papua New Guinea',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 8108000,
+                                          'urban_percent': 13,
+                                          'national_alb': 41,
+                                          'urban_alb': 85,
+                                          'rural_alb': 34},
+                                         'PRY': {'country_name': 'Paraguay',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 6689000,
+                                          'urban_percent': 61,
+                                          'national_alb': 97,
+                                          'urban_alb': 100,
+                                          'rural_alb': 92},
+                                         'PER': {'country_name': 'Peru',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 30471000,
+                                          'urban_percent': 77,
+                                          'national_alb': 90,
+                                          'urban_alb': 95,
+                                          'rural_alb': 73},
+                                         'PHL': {'country_name': 'Philippines',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 102113000,
+                                          'urban_percent': 46,
+                                          'national_alb': 92,
+                                          'urban_alb': 96,
+                                          'rural_alb': 89},
+                                         'POL': {'country_name': 'Poland',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 38034000,
+                                          'urban_percent': 60,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'PRT': {'country_name': 'Portugal',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 10368000,
+                                          'urban_percent': 64,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'ROU': {'country_name': 'Romania',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 19925000,
+                                          'urban_percent': 54,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'RUS': {'country_name': 'Russian Federation',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 144985000,
+                                          'urban_percent': 74,
+                                          'national_alb': 97,
+                                          'urban_alb': 99,
+                                          'rural_alb': 91},
+                                         'RWA': {'country_name': 'Rwanda',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2015,
+                                          'pop': 11369000,
+                                          'urban_percent': 17,
+                                          'national_alb': 57,
+                                          'urban_alb': 80,
+                                          'rural_alb': 52},
+                                         'WSM': {'country_name': 'Samoa',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 194000,
+                                          'urban_percent': 19,
+                                          'national_alb': 91,
+                                          'urban_alb': 91,
+                                          'rural_alb': 91},
+                                         'SEN': {'country_name': 'Senegal',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2015,
+                                          'pop': 14578000,
+                                          'urban_percent': 46,
+                                          'national_alb': 79,
+                                          'urban_alb': 94,
+                                          'rural_alb': 66},
+                                         'SRB': {'country_name': 'Serbia',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 8877000,
+                                          'urban_percent': 56,
+                                          'national_alb': 93,
+                                          'urban_alb': 92,
+                                          'rural_alb': 94},
+                                         'SLE': {'country_name': 'Sierra Leone',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2015,
+                                          'pop': 7172000,
+                                          'urban_percent': 41,
+                                          'national_alb': 58,
+                                          'urban_alb': 76,
+                                          'rural_alb': 45},
+                                         'SGP': {'country_name': 'Singapore',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 5592000,
+                                          'urban_percent': 100,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'SLB': {'country_name': 'Solomon Islands',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 603000,
+                                          'urban_percent': 22,
+                                          'national_alb': 69,
+                                          'urban_alb': 91,
+                                          'rural_alb': 63},
+                                         'SOM': {'country_name': 'Somalia',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2015,
+                                          'pop': 13797000,
+                                          'urban_percent': 43,
+                                          'national_alb': 49,
+                                          'urban_alb': 74,
+                                          'rural_alb': 30},
+                                         'ZAF': {'country_name': 'South Africa',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 55386000,
+                                          'urban_percent': 65,
+                                          'national_alb': 92,
+                                          'urban_alb': 99,
+                                          'rural_alb': 79},
+                                         'SSD': {'country_name': 'South Sudan',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2015,
+                                          'pop': 10716000,
+                                          'urban_percent': 19,
+                                          'national_alb': 41,
+                                          'urban_alb': 61,
+                                          'rural_alb': 36},
+                                         'ESP': {'country_name': 'Spain',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 46672000,
+                                          'urban_percent': 80,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'LKA': {'country_name': 'Sri Lanka',
+                                          'region': 'South Asia',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 20908000,
+                                          'urban_percent': 18,
+                                          'national_alb': 90,
+                                          'urban_alb': 98,
+                                          'rural_alb': 88},
+                                         'SDN': {'country_name': 'Sudan',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 38903000,
+                                          'urban_percent': 34,
+                                          'national_alb': 59,
+                                          'urban_alb': 73,
+                                          'rural_alb': 52},
+                                         'SUR': {'country_name': 'Suriname',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 559000,
+                                          'urban_percent': 66,
+                                          'national_alb': 96,
+                                          'urban_alb': 98,
+                                          'rural_alb': 92},
+                                         'SWE': {'country_name': 'Sweden',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 9765000,
+                                          'urban_percent': 87,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'CHE': {'country_name': 'Switzerland',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 8297000,
+                                          'urban_percent': 74,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'SYR': {'country_name': 'Syrian Arab Republic',
+                                          'region': 'Middle East & North Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 17997000,
+                                          'urban_percent': 52,
+                                          'national_alb': 94,
+                                          'urban_alb': 95,
+                                          'rural_alb': 93},
+                                         'TJK': {'country_name': 'Tajikistan',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 8454000,
+                                          'urban_percent': 27,
+                                          'national_alb': 76,
+                                          'urban_alb': 95,
+                                          'rural_alb': 69},
+                                         'THA': {'country_name': 'Thailand',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 68715000,
+                                          'urban_percent': 48,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'TLS': {'country_name': 'Timor-Leste',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 1196000,
+                                          'urban_percent': 29,
+                                          'national_alb': 75,
+                                          'urban_alb': 90,
+                                          'rural_alb': 69},
+                                         'TGO': {'country_name': 'Togo',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2015,
+                                          'pop': 7323000,
+                                          'urban_percent': 40,
+                                          'national_alb': 64,
+                                          'urban_alb': 88,
+                                          'rural_alb': 48},
+                                         'TON': {'country_name': 'Tonga',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 101000,
+                                          'urban_percent': 23,
+                                          'national_alb': 99,
+                                          'urban_alb': 100,
+                                          'rural_alb': 99},
+                                         'TUN': {'country_name': 'Tunisia',
+                                          'region': 'Middle East & North Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 11180000,
+                                          'urban_percent': 68,
+                                          'national_alb': 95,
+                                          'urban_alb': 100,
+                                          'rural_alb': 84},
+                                         'TKM': {'country_name': 'Turkmenistan',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 5565000,
+                                          'urban_percent': 50,
+                                          'national_alb': 98,
+                                          'urban_alb': 100,
+                                          'rural_alb': 96},
+                                         'TUV': {'country_name': 'Tuvalu',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2015,
+                                          'pop': 11000,
+                                          'urban_percent': 60,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'UGA': {'country_name': 'Uganda',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2015,
+                                          'pop': 38225000,
+                                          'urban_percent': 22,
+                                          'national_alb': 48,
+                                          'urban_alb': 77,
+                                          'rural_alb': 40},
+                                         'UKR': {'country_name': 'Ukraine',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 44922000,
+                                          'urban_percent': 69,
+                                          'national_alb': 94,
+                                          'urban_alb': 92,
+                                          'rural_alb': 98},
+                                         'GBR': {'country_name': 'United Kingdom',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 65860000,
+                                          'urban_percent': 83,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'USA': {'country_name': 'United States of America',
+                                          'region': 'North America',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 320878000,
+                                          'urban_percent': 82,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'URY': {'country_name': 'Uruguay',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'High income',
+                                          'year': 2015,
+                                          'pop': 3412000,
+                                          'urban_percent': 95,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'UZB': {'country_name': 'Uzbekistan',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 30930000,
+                                          'urban_percent': 51,
+                                          'national_alb': 98,
+                                          'urban_alb': 100,
+                                          'rural_alb': 96},
+                                         'VUT': {'country_name': 'Vanuatu',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 271000,
+                                          'urban_percent': 25,
+                                          'national_alb': 90,
+                                          'urban_alb': 100,
+                                          'rural_alb': 87},
+                                         'VNM': {'country_name': 'Vietnam',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 92677000,
+                                          'urban_percent': 34,
+                                          'national_alb': 93,
+                                          'urban_alb': 98,
+                                          'rural_alb': 90},
+                                         'ZMB': {'country_name': 'Zambia',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2015,
+                                          'pop': 15879000,
+                                          'urban_percent': 42,
+                                          'national_alb': 61,
+                                          'urban_alb': 86,
+                                          'rural_alb': 43},
+                                         'ZWE': {'country_name': 'Zimbabwe',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2015,
+                                          'pop': 13815000,
+                                          'urban_percent': 32,
+                                          'national_alb': 65,
+                                          'urban_alb': 94,
+                                          'rural_alb': 51}}),
+"dict_2020_rural_alb_test": (TEXT_FORMAT_DICT, {'AFG': {'country_name': 'Afghanistan',
+                                          'region': 'South Asia',
+                                          'income_level': 'Low income',
+                                          'year': 2020,
+                                          'pop': 38928000,
+                                          'urban_percent': 26,
+                                          'national_alb': 75,
+                                          'urban_alb': 100,
+                                          'rural_alb': 66},
+                                         'ALB': {'country_name': 'Albania',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 2878000,
+                                          'urban_percent': 62,
+                                          'national_alb': 95,
+                                          'urban_alb': 96,
+                                          'rural_alb': 93},
+                                         'DZA': {'country_name': 'Algeria',
+                                          'region': 'Middle East & North Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 43851000,
+                                          'urban_percent': 74,
+                                          'national_alb': 94,
+                                          'urban_alb': 96,
+                                          'rural_alb': 88},
+                                         'AND': {'country_name': 'Andorra',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 77000,
+                                          'urban_percent': 88,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'AGO': {'country_name': 'Angola',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 32866000,
+                                          'urban_percent': 67,
+                                          'national_alb': 57,
+                                          'urban_alb': 72,
+                                          'rural_alb': 27},
+                                         'ARM': {'country_name': 'Armenia',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 2963000,
+                                          'urban_percent': 63,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'AUS': {'country_name': 'Australia',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 25500000,
+                                          'urban_percent': 86,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'AUT': {'country_name': 'Austria',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 9006000,
+                                          'urban_percent': 59,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'AZE': {'country_name': 'Azerbaijan',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 10139000,
+                                          'urban_percent': 56,
+                                          'national_alb': 96,
+                                          'urban_alb': 100,
+                                          'rural_alb': 91},
+                                         'BGD': {'country_name': 'Bangladesh',
+                                          'region': 'South Asia',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 164689000,
+                                          'urban_percent': 38,
+                                          'national_alb': 98,
+                                          'urban_alb': 97,
+                                          'rural_alb': 99},
+                                         'BLR': {'country_name': 'Belarus',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 9449000,
+                                          'urban_percent': 79,
+                                          'national_alb': 96,
+                                          'urban_alb': 96,
+                                          'rural_alb': 96},
+                                         'BEL': {'country_name': 'Belgium',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 11590000,
+                                          'urban_percent': 98,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'BLZ': {'country_name': 'Belize',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 398000,
+                                          'urban_percent': 46,
+                                          'national_alb': 98,
+                                          'urban_alb': 99,
+                                          'rural_alb': 97},
+                                         'BEN': {'country_name': 'Benin',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 12123000,
+                                          'urban_percent': 48,
+                                          'national_alb': 65,
+                                          'urban_alb': 73,
+                                          'rural_alb': 58},
+                                         'BMU': {'country_name': 'Bermuda',
+                                          'region': 'North America',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 62000,
+                                          'urban_percent': 100,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'BTN': {'country_name': 'Bhutan',
+                                          'region': 'South Asia',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 772000,
+                                          'urban_percent': 42,
+                                          'national_alb': 97,
+                                          'urban_alb': 98,
+                                          'rural_alb': 96},
+                                         'BIH': {'country_name': 'Bosnia and Herzegovina',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 3281000,
+                                          'urban_percent': 49,
+                                          'national_alb': 96,
+                                          'urban_alb': 95,
+                                          'rural_alb': 97},
+                                         'BWA': {'country_name': 'Botswana',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 2352000,
+                                          'urban_percent': 71,
+                                          'national_alb': 92,
+                                          'urban_alb': 98,
+                                          'rural_alb': 77},
+                                         'BRA': {'country_name': 'Brazil',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 212559000,
+                                          'urban_percent': 87,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'BRN': {'country_name': 'Brunei Darussalam',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 437000,
+                                          'urban_percent': 78,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'BGR': {'country_name': 'Bulgaria',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 6948000,
+                                          'urban_percent': 76,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'BFA': {'country_name': 'Burkina Faso',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2020,
+                                          'pop': 20903000,
+                                          'urban_percent': 31,
+                                          'national_alb': 47,
+                                          'urban_alb': 80,
+                                          'rural_alb': 32},
+                                         'BDI': {'country_name': 'Burundi',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2020,
+                                          'pop': 11891000,
+                                          'urban_percent': 14,
+                                          'national_alb': 62,
+                                          'urban_alb': 91,
+                                          'rural_alb': 57},
+                                         'CPV': {'country_name': 'Cabo Verde',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 556000,
+                                          'urban_percent': 67,
+                                          'national_alb': 89,
+                                          'urban_alb': 93,
+                                          'rural_alb': 81},
+                                         'KHM': {'country_name': 'Cambodia',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 16719000,
+                                          'urban_percent': 24,
+                                          'national_alb': 71,
+                                          'urban_alb': 90,
+                                          'rural_alb': 65},
+                                         'CMR': {'country_name': 'Cameroon',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 26546000,
+                                          'urban_percent': 58,
+                                          'national_alb': 66,
+                                          'urban_alb': 82,
+                                          'rural_alb': 44},
+                                         'CAN': {'country_name': 'Canada',
+                                          'region': 'North America',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 37742000,
+                                          'urban_percent': 82,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'CAF': {'country_name': 'Central African Republic',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2020,
+                                          'pop': 4830000,
+                                          'urban_percent': 42,
+                                          'national_alb': 37,
+                                          'urban_alb': 50,
+                                          'rural_alb': 28},
+                                         'TCD': {'country_name': 'Chad',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2020,
+                                          'pop': 16426000,
+                                          'urban_percent': 24,
+                                          'national_alb': 46,
+                                          'urban_alb': 74,
+                                          'rural_alb': 37},
+                                         'CHL': {'country_name': 'Chile',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 19116000,
+                                          'urban_percent': 88,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'CHN': {'country_name': 'China',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 1463141000,
+                                          'urban_percent': 62,
+                                          'national_alb': 94,
+                                          'urban_alb': 97,
+                                          'rural_alb': 89},
+                                         'COL': {'country_name': 'Colombia',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 50883000,
+                                          'urban_percent': 81,
+                                          'national_alb': 97,
+                                          'urban_alb': 100,
+                                          'rural_alb': 84},
+                                         'CRI': {'country_name': 'Costa Rica',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 5094000,
+                                          'urban_percent': 81,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'CIV': {'country_name': "Côte d'Ivoire",
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 26378000,
+                                          'urban_percent': 52,
+                                          'national_alb': 71,
+                                          'urban_alb': 85,
+                                          'rural_alb': 56},
+                                         'CUB': {'country_name': 'Cuba',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 11327000,
+                                          'urban_percent': 77,
+                                          'national_alb': 97,
+                                          'urban_alb': 98,
+                                          'rural_alb': 94},
+                                         'CYP': {'country_name': 'Cyprus',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 1207000,
+                                          'urban_percent': 67,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'CZE': {'country_name': 'Czech Republic',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 10709000,
+                                          'urban_percent': 74,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'DNK': {'country_name': 'Denmark',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 5792000,
+                                          'urban_percent': 88,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'DJI': {'country_name': 'Djibouti',
+                                          'region': 'Middle East & North Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 988000,
+                                          'urban_percent': 78,
+                                          'national_alb': 76,
+                                          'urban_alb': 84,
+                                          'rural_alb': 48},
+                                         'DOM': {'country_name': 'Dominican Republic',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 10848000,
+                                          'urban_percent': 83,
+                                          'national_alb': 97,
+                                          'urban_alb': 98,
+                                          'rural_alb': 92},
+                                         'ECU': {'country_name': 'Ecuador',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 17643000,
+                                          'urban_percent': 64,
+                                          'national_alb': 95,
+                                          'urban_alb': 100,
+                                          'rural_alb': 86},
+                                         'SLV': {'country_name': 'El Salvador',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 6486000,
+                                          'urban_percent': 73,
+                                          'national_alb': 98,
+                                          'urban_alb': 100,
+                                          'rural_alb': 93},
+                                         'EST': {'country_name': 'Estonia',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 1327000,
+                                          'urban_percent': 69,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'SWZ': {'country_name': 'Eswatini',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 1160000,
+                                          'urban_percent': 24,
+                                          'national_alb': 71,
+                                          'urban_alb': 97,
+                                          'rural_alb': 63},
+                                         'ETH': {'country_name': 'Ethiopia',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2020,
+                                          'pop': 114964000,
+                                          'urban_percent': 22,
+                                          'national_alb': 50,
+                                          'urban_alb': 84,
+                                          'rural_alb': 40},
+                                         'FJI': {'country_name': 'Fiji',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 896000,
+                                          'urban_percent': 57,
+                                          'national_alb': 94,
+                                          'urban_alb': 98,
+                                          'rural_alb': 89},
+                                         'FIN': {'country_name': 'Finland',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 5541000,
+                                          'urban_percent': 86,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'FRA': {'country_name': 'France',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 65274000,
+                                          'urban_percent': 81,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'GAB': {'country_name': 'Gabon',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 2226000,
+                                          'urban_percent': 90,
+                                          'national_alb': 85,
+                                          'urban_alb': 90,
+                                          'rural_alb': 40},
+                                         'GEO': {'country_name': 'Georgia',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 3989000,
+                                          'urban_percent': 59,
+                                          'national_alb': 97,
+                                          'urban_alb': 100,
+                                          'rural_alb': 93},
+                                         'DEU': {'country_name': 'Germany',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 83784000,
+                                          'urban_percent': 77,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'GHA': {'country_name': 'Ghana',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 31073000,
+                                          'urban_percent': 57,
+                                          'national_alb': 86,
+                                          'urban_alb': 96,
+                                          'rural_alb': 73},
+                                         'GIB': {'country_name': 'Gibraltar',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 34000,
+                                          'urban_percent': 100,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'GRC': {'country_name': 'Greece',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 10423000,
+                                          'urban_percent': 80,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'GRL': {'country_name': 'Greenland',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 57000,
+                                          'urban_percent': 87,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'GTM': {'country_name': 'Guatemala',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 17916000,
+                                          'urban_percent': 52,
+                                          'national_alb': 94,
+                                          'urban_alb': 98,
+                                          'rural_alb': 90},
+                                         'GIN': {'country_name': 'Guinea',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2020,
+                                          'pop': 13133000,
+                                          'urban_percent': 37,
+                                          'national_alb': 64,
+                                          'urban_alb': 87,
+                                          'rural_alb': 50},
+                                         'GNB': {'country_name': 'Guinea-Bissau',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2020,
+                                          'pop': 1968000,
+                                          'urban_percent': 44,
+                                          'national_alb': 59,
+                                          'urban_alb': 71,
+                                          'rural_alb': 50},
+                                         'GUY': {'country_name': 'Guyana',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 787000,
+                                          'urban_percent': 27,
+                                          'national_alb': 96,
+                                          'urban_alb': 100,
+                                          'rural_alb': 95},
+                                         'HTI': {'country_name': 'Haiti',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 11403000,
+                                          'urban_percent': 57,
+                                          'national_alb': 67,
+                                          'urban_alb': 85,
+                                          'rural_alb': 43},
+                                         'HND': {'country_name': 'Honduras',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 9905000,
+                                          'urban_percent': 58,
+                                          'national_alb': 96,
+                                          'urban_alb': 100,
+                                          'rural_alb': 90},
+                                         'HUN': {'country_name': 'Hungary',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 9660000,
+                                          'urban_percent': 72,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'ISL': {'country_name': 'Iceland',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 341000,
+                                          'urban_percent': 94,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'IND': {'country_name': 'India',
+                                          'region': 'South Asia',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 1380004000,
+                                          'urban_percent': 35,
+                                          'national_alb': 90,
+                                          'urban_alb': 94,
+                                          'rural_alb': 88},
+                                         'IDN': {'country_name': 'Indonesia',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 273524000,
+                                          'urban_percent': 57,
+                                          'national_alb': 92,
+                                          'urban_alb': 98,
+                                          'rural_alb': 84},
+                                         'IRQ': {'country_name': 'Iraq',
+                                          'region': 'Middle East & North Africa',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 40223000,
+                                          'urban_percent': 71,
+                                          'national_alb': 98,
+                                          'urban_alb': 100,
+                                          'rural_alb': 93},
+                                         'IRL': {'country_name': 'Ireland',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 4938000,
+                                          'urban_percent': 64,
+                                          'national_alb': 97,
+                                          'urban_alb': 97,
+                                          'rural_alb': 97},
+                                         'ISR': {'country_name': 'Israel',
+                                          'region': 'Middle East & North Africa',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 8656000,
+                                          'urban_percent': 93,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'JAM': {'country_name': 'Jamaica',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 2961000,
+                                          'urban_percent': 56,
+                                          'national_alb': 91,
+                                          'urban_alb': 95,
+                                          'rural_alb': 86},
+                                         'JOR': {'country_name': 'Jordan',
+                                          'region': 'Middle East & North Africa',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 10203000,
+                                          'urban_percent': 91,
+                                          'national_alb': 99,
+                                          'urban_alb': 100,
+                                          'rural_alb': 89},
+                                         'KAZ': {'country_name': 'Kazakhstan',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 18777000,
+                                          'urban_percent': 58,
+                                          'national_alb': 95,
+                                          'urban_alb': 98,
+                                          'rural_alb': 91},
+                                         'KEN': {'country_name': 'Kenya',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 53771000,
+                                          'urban_percent': 28,
+                                          'national_alb': 62,
+                                          'urban_alb': 87,
+                                          'rural_alb': 52},
+                                         'KIR': {'country_name': 'Kiribati',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 119000,
+                                          'urban_percent': 56,
+                                          'national_alb': 78,
+                                          'urban_alb': 92,
+                                          'rural_alb': 60},
+                                         'LVA': {'country_name': 'Latvia',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 1886000,
+                                          'urban_percent': 68,
+                                          'national_alb': 99,
+                                          'urban_alb': 99,
+                                          'rural_alb': 99},
+                                         'LSO': {'country_name': 'Lesotho',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 2142000,
+                                          'urban_percent': 29,
+                                          'national_alb': 72,
+                                          'urban_alb': 93,
+                                          'rural_alb': 63},
+                                         'LBR': {'country_name': 'Liberia',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2020,
+                                          'pop': 5058000,
+                                          'urban_percent': 52,
+                                          'national_alb': 75,
+                                          'urban_alb': 86,
+                                          'rural_alb': 63},
+                                         'LTU': {'country_name': 'Lithuania',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 2722000,
+                                          'urban_percent': 68,
+                                          'national_alb': 98,
+                                          'urban_alb': 100,
+                                          'rural_alb': 94},
+                                         'LUX': {'country_name': 'Luxembourg',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 626000,
+                                          'urban_percent': 91,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'MDG': {'country_name': 'Madagascar',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2020,
+                                          'pop': 27691000,
+                                          'urban_percent': 39,
+                                          'national_alb': 53,
+                                          'urban_alb': 80,
+                                          'rural_alb': 36},
+                                         'MWI': {'country_name': 'Malawi',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2020,
+                                          'pop': 19130000,
+                                          'urban_percent': 17,
+                                          'national_alb': 70,
+                                          'urban_alb': 86,
+                                          'rural_alb': 67},
+                                         'MYS': {'country_name': 'Malaysia',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 32366000,
+                                          'urban_percent': 77,
+                                          'national_alb': 97,
+                                          'urban_alb': 100,
+                                          'rural_alb': 87},
+                                         'MDV': {'country_name': 'Maldives',
+                                          'region': 'South Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 541000,
+                                          'urban_percent': 41,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'MLI': {'country_name': 'Mali',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2020,
+                                          'pop': 20251000,
+                                          'urban_percent': 44,
+                                          'national_alb': 83,
+                                          'urban_alb': 96,
+                                          'rural_alb': 73},
+                                         'MLT': {'country_name': 'Malta',
+                                          'region': 'Middle East & North Africa',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 442000,
+                                          'urban_percent': 95,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'MHL': {'country_name': 'Marshall Islands',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 59000,
+                                          'urban_percent': 78,
+                                          'national_alb': 89,
+                                          'urban_alb': 87,
+                                          'rural_alb': 96},
+                                         'MRT': {'country_name': 'Mauritania',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 4650000,
+                                          'urban_percent': 55,
+                                          'national_alb': 72,
+                                          'urban_alb': 89,
+                                          'rural_alb': 51},
+                                         'MUS': {'country_name': 'Mauritius',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 1272000,
+                                          'urban_percent': 41,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'MEX': {'country_name': 'Mexico',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 128933000,
+                                          'urban_percent': 81,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'MCO': {'country_name': 'Monaco',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 39000,
+                                          'urban_percent': 100,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'MNG': {'country_name': 'Mongolia',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 3278000,
+                                          'urban_percent': 69,
+                                          'national_alb': 85,
+                                          'urban_alb': 97,
+                                          'rural_alb': 58},
+                                         'MNE': {'country_name': 'Montenegro',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 628000,
+                                          'urban_percent': 67,
+                                          'national_alb': 99,
+                                          'urban_alb': 100,
+                                          'rural_alb': 97},
+                                         'MAR': {'country_name': 'Morocco',
+                                          'region': 'Middle East & North Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 36911000,
+                                          'urban_percent': 64,
+                                          'national_alb': 90,
+                                          'urban_alb': 98,
+                                          'rural_alb': 76},
+                                         'MOZ': {'country_name': 'Mozambique',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2020,
+                                          'pop': 31255000,
+                                          'urban_percent': 37,
+                                          'national_alb': 63,
+                                          'urban_alb': 88,
+                                          'rural_alb': 48},
+                                         'MMR': {'country_name': 'Myanmar',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 54410000,
+                                          'urban_percent': 31,
+                                          'national_alb': 84,
+                                          'urban_alb': 95,
+                                          'rural_alb': 79},
+                                         'NAM': {'country_name': 'Namibia',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 2541000,
+                                          'urban_percent': 52,
+                                          'national_alb': 84,
+                                          'urban_alb': 96,
+                                          'rural_alb': 71},
+                                         'NRU': {'country_name': 'Nauru',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 11000,
+                                          'urban_percent': 100,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'NPL': {'country_name': 'Nepal',
+                                          'region': 'South Asia',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 29137000,
+                                          'urban_percent': 21,
+                                          'national_alb': 90,
+                                          'urban_alb': 90,
+                                          'rural_alb': 90},
+                                         'NLD': {'country_name': 'Netherlands',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 17135000,
+                                          'urban_percent': 92,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'NZL': {'country_name': 'New Zealand',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 4822000,
+                                          'urban_percent': 87,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'NIC': {'country_name': 'Nicaragua',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 6625000,
+                                          'urban_percent': 59,
+                                          'national_alb': 82,
+                                          'urban_alb': 97,
+                                          'rural_alb': 60},
+                                         'NER': {'country_name': 'Niger',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2020,
+                                          'pop': 24207000,
+                                          'urban_percent': 17,
+                                          'national_alb': 47,
+                                          'urban_alb': 86,
+                                          'rural_alb': 39},
+                                         'NGA': {'country_name': 'Nigeria',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 206140000,
+                                          'urban_percent': 52,
+                                          'national_alb': 78,
+                                          'urban_alb': 92,
+                                          'rural_alb': 63},
+                                         'MKD': {'country_name': 'North Macedonia',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 2083000,
+                                          'urban_percent': 58,
+                                          'national_alb': 98,
+                                          'urban_alb': 98,
+                                          'rural_alb': 98},
+                                         'NOR': {'country_name': 'Norway',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 5421000,
+                                          'urban_percent': 83,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'OMN': {'country_name': 'Oman',
+                                          'region': 'Middle East & North Africa',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 5107000,
+                                          'urban_percent': 86,
+                                          'national_alb': 92,
+                                          'urban_alb': 95,
+                                          'rural_alb': 74},
+                                         'PAK': {'country_name': 'Pakistan',
+                                          'region': 'South Asia',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 220892000,
+                                          'urban_percent': 37,
+                                          'national_alb': 90,
+                                          'urban_alb': 93,
+                                          'rural_alb': 88},
+                                         'PLW': {'country_name': 'Palau',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 18000,
+                                          'urban_percent': 81,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'PAN': {'country_name': 'Panama',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 4315000,
+                                          'urban_percent': 68,
+                                          'national_alb': 94,
+                                          'urban_alb': 98,
+                                          'rural_alb': 86},
+                                         'PNG': {'country_name': 'Papua New Guinea',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 8947000,
+                                          'urban_percent': 13,
+                                          'national_alb': 45,
+                                          'urban_alb': 86,
+                                          'rural_alb': 39},
+                                         'PRY': {'country_name': 'Paraguay',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 7133000,
+                                          'urban_percent': 62,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'PER': {'country_name': 'Peru',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 32972000,
+                                          'urban_percent': 78,
+                                          'national_alb': 93,
+                                          'urban_alb': 97,
+                                          'rural_alb': 79},
+                                         'PHL': {'country_name': 'Philippines',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 109581000,
+                                          'urban_percent': 47,
+                                          'national_alb': 94,
+                                          'urban_alb': 97,
+                                          'rural_alb': 91},
+                                         'POL': {'country_name': 'Poland',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 37847000,
+                                          'urban_percent': 60,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'PRT': {'country_name': 'Portugal',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 10197000,
+                                          'urban_percent': 66,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'ROU': {'country_name': 'Romania',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 19238000,
+                                          'urban_percent': 54,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'RUS': {'country_name': 'Russian Federation',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 145934000,
+                                          'urban_percent': 75,
+                                          'national_alb': 97,
+                                          'urban_alb': 99,
+                                          'rural_alb': 91},
+                                         'RWA': {'country_name': 'Rwanda',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2020,
+                                          'pop': 12952000,
+                                          'urban_percent': 17,
+                                          'national_alb': 60,
+                                          'urban_alb': 83,
+                                          'rural_alb': 55},
+                                         'WSM': {'country_name': 'Samoa',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 198000,
+                                          'urban_percent': 18,
+                                          'national_alb': 92,
+                                          'urban_alb': 92,
+                                          'rural_alb': 92},
+                                         'SEN': {'country_name': 'Senegal',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 16744000,
+                                          'urban_percent': 48,
+                                          'national_alb': 85,
+                                          'urban_alb': 95,
+                                          'rural_alb': 76},
+                                         'SRB': {'country_name': 'Serbia',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 8737000,
+                                          'urban_percent': 56,
+                                          'national_alb': 95,
+                                          'urban_alb': 95,
+                                          'rural_alb': 95},
+                                         'SLE': {'country_name': 'Sierra Leone',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2020,
+                                          'pop': 7977000,
+                                          'urban_percent': 43,
+                                          'national_alb': 64,
+                                          'urban_alb': 78,
+                                          'rural_alb': 53},
+                                         'SGP': {'country_name': 'Singapore',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 5850000,
+                                          'urban_percent': 100,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'SLB': {'country_name': 'Solomon Islands',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 687000,
+                                          'urban_percent': 25,
+                                          'national_alb': 67,
+                                          'urban_alb': 91,
+                                          'rural_alb': 59},
+                                         'SOM': {'country_name': 'Somalia',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2020,
+                                          'pop': 15893000,
+                                          'urban_percent': 46,
+                                          'national_alb': 56,
+                                          'urban_alb': 79,
+                                          'rural_alb': 36},
+                                         'ZAF': {'country_name': 'South Africa',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 59309000,
+                                          'urban_percent': 67,
+                                          'national_alb': 94,
+                                          'urban_alb': 100,
+                                          'rural_alb': 82},
+                                         'SSD': {'country_name': 'South Sudan',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2020,
+                                          'pop': 11194000,
+                                          'urban_percent': 20,
+                                          'national_alb': 41,
+                                          'urban_alb': 70,
+                                          'rural_alb': 34},
+                                         'ESP': {'country_name': 'Spain',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 46755000,
+                                          'urban_percent': 81,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'LKA': {'country_name': 'Sri Lanka',
+                                          'region': 'South Asia',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 21413000,
+                                          'urban_percent': 19,
+                                          'national_alb': 92,
+                                          'urban_alb': 100,
+                                          'rural_alb': 90},
+                                         'SDN': {'country_name': 'Sudan',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2020,
+                                          'pop': 43849000,
+                                          'urban_percent': 35,
+                                          'national_alb': 60,
+                                          'urban_alb': 74,
+                                          'rural_alb': 52},
+                                         'SUR': {'country_name': 'Suriname',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 587000,
+                                          'urban_percent': 66,
+                                          'national_alb': 98,
+                                          'urban_alb': 99,
+                                          'rural_alb': 96},
+                                         'SWE': {'country_name': 'Sweden',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 10099000,
+                                          'urban_percent': 88,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'CHE': {'country_name': 'Switzerland',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 8655000,
+                                          'urban_percent': 74,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'SYR': {'country_name': 'Syrian Arab Republic',
+                                          'region': 'Middle East & North Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2020,
+                                          'pop': 17501000,
+                                          'urban_percent': 55,
+                                          'national_alb': 94,
+                                          'urban_alb': 95,
+                                          'rural_alb': 93},
+                                         'TJK': {'country_name': 'Tajikistan',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 9538000,
+                                          'urban_percent': 28,
+                                          'national_alb': 82,
+                                          'urban_alb': 96,
+                                          'rural_alb': 77},
+                                         'THA': {'country_name': 'Thailand',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 69800000,
+                                          'urban_percent': 51,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'TLS': {'country_name': 'Timor-Leste',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 1318000,
+                                          'urban_percent': 31,
+                                          'national_alb': 85,
+                                          'urban_alb': 96,
+                                          'rural_alb': 80},
+                                         'TGO': {'country_name': 'Togo',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2020,
+                                          'pop': 8279000,
+                                          'urban_percent': 43,
+                                          'national_alb': 69,
+                                          'urban_alb': 91,
+                                          'rural_alb': 52},
+                                         'TON': {'country_name': 'Tonga',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 106000,
+                                          'urban_percent': 23,
+                                          'national_alb': 99,
+                                          'urban_alb': 100,
+                                          'rural_alb': 99},
+                                         'TUN': {'country_name': 'Tunisia',
+                                          'region': 'Middle East & North Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 11819000,
+                                          'urban_percent': 70,
+                                          'national_alb': 98,
+                                          'urban_alb': 100,
+                                          'rural_alb': 93},
+                                         'TKM': {'country_name': 'Turkmenistan',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 6031000,
+                                          'urban_percent': 53,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'TUV': {'country_name': 'Tuvalu',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Upper middle income',
+                                          'year': 2020,
+                                          'pop': 12000,
+                                          'urban_percent': 64,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'UGA': {'country_name': 'Uganda',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Low income',
+                                          'year': 2020,
+                                          'pop': 45741000,
+                                          'urban_percent': 25,
+                                          'national_alb': 56,
+                                          'urban_alb': 79,
+                                          'rural_alb': 48},
+                                         'UKR': {'country_name': 'Ukraine',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 43734000,
+                                          'urban_percent': 69,
+                                          'national_alb': 94,
+                                          'urban_alb': 92,
+                                          'rural_alb': 98},
+                                         'GBR': {'country_name': 'United Kingdom',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 67886000,
+                                          'urban_percent': 84,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'USA': {'country_name': 'United States of America',
+                                          'region': 'North America',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 331003000,
+                                          'urban_percent': 83,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'URY': {'country_name': 'Uruguay',
+                                          'region': 'Latin America & Caribbean',
+                                          'income_level': 'High income',
+                                          'year': 2020,
+                                          'pop': 3474000,
+                                          'urban_percent': 96,
+                                          'national_alb': 100,
+                                          'urban_alb': 100,
+                                          'rural_alb': 100},
+                                         'UZB': {'country_name': 'Uzbekistan',
+                                          'region': 'Europe & Central Asia',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 33469000,
+                                          'urban_percent': 50,
+                                          'national_alb': 98,
+                                          'urban_alb': 100,
+                                          'rural_alb': 96},
+                                         'VUT': {'country_name': 'Vanuatu',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 307000,
+                                          'urban_percent': 26,
+                                          'national_alb': 91,
+                                          'urban_alb': 100,
+                                          'rural_alb': 88},
+                                         'VNM': {'country_name': 'Vietnam',
+                                          'region': 'East Asia & Pacific',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 97339000,
+                                          'urban_percent': 37,
+                                          'national_alb': 97,
+                                          'urban_alb': 100,
+                                          'rural_alb': 95},
+                                         'ZMB': {'country_name': 'Zambia',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 18384000,
+                                          'urban_percent': 45,
+                                          'national_alb': 65,
+                                          'urban_alb': 87,
+                                          'rural_alb': 47},
+                                         'ZWE': {'country_name': 'Zimbabwe',
+                                          'region': 'Sub-Saharan Africa',
+                                          'income_level': 'Lower middle income',
+                                          'year': 2020,
+                                          'pop': 14863000,
+                                          'urban_percent': 32,
+                                          'national_alb': 63,
+                                          'urban_alb': 93,
+                                          'rural_alb': 49}}),
+                 "16": (TEXT_FORMAT, 49),
+                 "rural_non_alb_bin_2015": (TEXT_FORMAT_DICT, {0: ['Andorra',
+                                          'Armenia',
+                                          'Australia',
+                                          'Austria',
+                                          'Bangladesh',
+                                          'Belarus',
+                                          'Belgium',
+                                          'Belize',
+                                          'Bermuda',
+                                          'Bhutan',
+                                          'Bosnia and Herzegovina',
+                                          'Brunei Darussalam',
+                                          'Bulgaria',
+                                          'Canada',
+                                          'Chile',
+                                          'Costa Rica',
+                                          'Cyprus',
+                                          'Czech Republic',
+                                          'Denmark',
+                                          'Estonia',
+                                          'Finland',
+                                          'France',
+                                          'Georgia',
+                                          'Germany',
+                                          'Gibraltar',
+                                          'Greece',
+                                          'Greenland',
+                                          'Guyana',
+                                          'Hungary',
+                                          'Iceland',
+                                          'Ireland',
+                                          'Israel',
+                                          'Jordan',
+                                          'Kazakhstan',
+                                          'Latvia',
+                                          'Lithuania',
+                                          'Luxembourg',
+                                          'Maldives',
+                                          'Malta',
+                                          'Marshall Islands',
+                                          'Mauritius',
+                                          'Monaco',
+                                          'Montenegro',
+                                          'Nauru',
+                                          'Netherlands',
+                                          'New Zealand',
+                                          'North Macedonia',
+                                          'Norway',
+                                          'Palau',
+                                          'Paraguay',
+                                          'Poland',
+                                          'Portugal',
+                                          'Romania',
+                                          'Russian Federation',
+                                          'Samoa',
+                                          'Serbia',
+                                          'Singapore',
+                                          'Spain',
+                                          'Suriname',
+                                          'Sweden',
+                                          'Switzerland',
+                                          'Syrian Arab Republic',
+                                          'Thailand',
+                                          'Tonga',
+                                          'Turkmenistan',
+                                          'Tuvalu',
+                                          'Ukraine',
+                                          'United Kingdom',
+                                          'United States of America',
+                                          'Uruguay',
+                                          'Uzbekistan'],
+                                         10: ['Albania',
+                                          'Algeria',
+                                          'Azerbaijan',
+                                          'Brazil',
+                                          'China',
+                                          'Cuba',
+                                          'Dominican Republic',
+                                          'Ecuador',
+                                          'El Salvador',
+                                          'Fiji',
+                                          'Guatemala',
+                                          'Honduras',
+                                          'India',
+                                          'Indonesia',
+                                          'Iraq',
+                                          'Jamaica',
+                                          'Malaysia',
+                                          'Mexico',
+                                          'Nepal',
+                                          'Pakistan',
+                                          'Panama',
+                                          'Philippines',
+                                          'Sri Lanka',
+                                          'Tunisia',
+                                          'Vanuatu',
+                                          'Vietnam'],
+                                         20: ['Cabo Verde', 'Colombia', 'Namibia', 'Oman', 'Peru', 'South Africa'],
+                                         30: ['Botswana',
+                                          'Cambodia',
+                                          'Ghana',
+                                          'Lesotho',
+                                          'Liberia',
+                                          'Malawi',
+                                          'Mali',
+                                          'Morocco',
+                                          'Myanmar',
+                                          'Senegal',
+                                          'Solomon Islands',
+                                          'Tajikistan',
+                                          'Timor-Leste'],
+                                         40: ['Afghanistan',
+                                          'Benin',
+                                          'Burundi',
+                                          "Côte d'Ivoire",
+                                          'Eswatini',
+                                          'Guinea',
+                                          'Kiribati',
+                                          'Mongolia',
+                                          'Nicaragua',
+                                          'Nigeria',
+                                          'Rwanda',
+                                          'Sudan',
+                                          'Zimbabwe'],
+                                         50: ['Cameroon',
+                                          'Djibouti',
+                                          'Gabon',
+                                          'Guinea-Bissau',
+                                          'Haiti',
+                                          'Kenya',
+                                          'Mauritania',
+                                          'Sierra Leone',
+                                          'Togo',
+                                          'Zambia'],
+                                         60: ['Burkina Faso',
+                                          'Central African Republic',
+                                          'Chad',
+                                          'Ethiopia',
+                                          'Madagascar',
+                                          'Mozambique',
+                                          'Niger',
+                                          'Papua New Guinea',
+                                          'South Sudan',
+                                          'Uganda'],
+                                         70: ['Angola', 'Somalia'],
+                                         80: [],
+                                         90: [],
+                                         100: []}),
+                 "rural_non_alb_bin_2020": (TEXT_FORMAT_DICT, {0: ['Albania',
+                                          'Andorra',
+                                          'Armenia',
+                                          'Australia',
+                                          'Austria',
+                                          'Azerbaijan',
+                                          'Bangladesh',
+                                          'Belarus',
+                                          'Belgium',
+                                          'Belize',
+                                          'Bermuda',
+                                          'Bhutan',
+                                          'Bosnia and Herzegovina',
+                                          'Brazil',
+                                          'Brunei Darussalam',
+                                          'Bulgaria',
+                                          'Canada',
+                                          'Chile',
+                                          'Costa Rica',
+                                          'Cuba',
+                                          'Cyprus',
+                                          'Czech Republic',
+                                          'Denmark',
+                                          'Dominican Republic',
+                                          'El Salvador',
+                                          'Estonia',
+                                          'Finland',
+                                          'France',
+                                          'Georgia',
+                                          'Germany',
+                                          'Gibraltar',
+                                          'Greece',
+                                          'Greenland',
+                                          'Guyana',
+                                          'Hungary',
+                                          'Iceland',
+                                          'Iraq',
+                                          'Ireland',
+                                          'Israel',
+                                          'Kazakhstan',
+                                          'Latvia',
+                                          'Lithuania',
+                                          'Luxembourg',
+                                          'Maldives',
+                                          'Malta',
+                                          'Marshall Islands',
+                                          'Mauritius',
+                                          'Mexico',
+                                          'Monaco',
+                                          'Montenegro',
+                                          'Nauru',
+                                          'Netherlands',
+                                          'New Zealand',
+                                          'North Macedonia',
+                                          'Norway',
+                                          'Palau',
+                                          'Paraguay',
+                                          'Philippines',
+                                          'Poland',
+                                          'Portugal',
+                                          'Romania',
+                                          'Russian Federation',
+                                          'Samoa',
+                                          'Serbia',
+                                          'Singapore',
+                                          'Spain',
+                                          'Suriname',
+                                          'Sweden',
+                                          'Switzerland',
+                                          'Syrian Arab Republic',
+                                          'Thailand',
+                                          'Tonga',
+                                          'Tunisia',
+                                          'Turkmenistan',
+                                          'Tuvalu',
+                                          'Ukraine',
+                                          'United Kingdom',
+                                          'United States of America',
+                                          'Uruguay',
+                                          'Uzbekistan',
+                                          'Vietnam'],
+                                         10: ['Algeria',
+                                          'Cabo Verde',
+                                          'China',
+                                          'Colombia',
+                                          'Ecuador',
+                                          'Fiji',
+                                          'Guatemala',
+                                          'Honduras',
+                                          'India',
+                                          'Indonesia',
+                                          'Jamaica',
+                                          'Jordan',
+                                          'Malaysia',
+                                          'Nepal',
+                                          'Pakistan',
+                                          'Panama',
+                                          'South Africa',
+                                          'Sri Lanka',
+                                          'Vanuatu'],
+                                         20: ['Botswana',
+                                          'Ghana',
+                                          'Mali',
+                                          'Morocco',
+                                          'Myanmar',
+                                          'Namibia',
+                                          'Oman',
+                                          'Peru',
+                                          'Senegal',
+                                          'Tajikistan',
+                                          'Timor-Leste'],
+                                         30: ['Afghanistan',
+                                          'Cambodia',
+                                          'Eswatini',
+                                          'Lesotho',
+                                          'Liberia',
+                                          'Malawi',
+                                          'Nigeria'],
+                                         40: ['Benin',
+                                          'Burundi',
+                                          "Côte d'Ivoire",
+                                          'Kenya',
+                                          'Kiribati',
+                                          'Mauritania',
+                                          'Mongolia',
+                                          'Nicaragua',
+                                          'Rwanda',
+                                          'Sierra Leone',
+                                          'Solomon Islands',
+                                          'Sudan',
+                                          'Togo'],
+                                         50: ['Cameroon',
+                                          'Djibouti',
+                                          'Guinea',
+                                          'Guinea-Bissau',
+                                          'Haiti',
+                                          'Mozambique',
+                                          'Uganda',
+                                          'Zambia',
+                                          'Zimbabwe'],
+                                         60: ['Burkina Faso',
+                                          'Chad',
+                                          'Ethiopia',
+                                          'Gabon',
+                                          'Madagascar',
+                                          'Niger',
+                                          'Papua New Guinea',
+                                          'Somalia',
+                                          'South Sudan'],
+                                         70: ['Angola', 'Central African Republic'],
+                                         80: [],
+                                         90: [],
+                                         100: []}),
+                 "17": (TEXT_FORMAT_UNORDERED_LIST, ['Cabo Verde', 'Colombia', 'Namibia', 'Oman', 'Peru', 'South Africa']),
+                 "18": (TEXT_FORMAT_UNORDERED_LIST, ['Angola', 'Central African Republic']),
+                 "19": (TEXT_FORMAT_UNORDERED_LIST, ['Jordan',
+                                         'Solomon Islands',
+                                         'Guinea',
+                                         'Zimbabwe',
+                                         'Gabon',
+                                         'Central African Republic']),
+                 "20": (TEXT_FORMAT_UNORDERED_LIST, ['Albania',
+                                         'Azerbaijan',
+                                         'Brazil',
+                                         'Cuba',
+                                         'Dominican Republic',
+                                         'El Salvador',
+                                         'Iraq',
+                                         'Mexico',
+                                         'Philippines',
+                                         'Tunisia',
+                                         'Vietnam',
+                                         'Cabo Verde',
+                                         'Colombia',
+                                         'South Africa',
+                                         'Botswana',
+                                         'Ghana',
+                                         'Mali',
+                                         'Morocco',
+                                         'Myanmar',
+                                         'Senegal',
+                                         'Tajikistan',
+                                         'Timor-Leste',
+                                         'Afghanistan',
+                                         'Eswatini',
+                                         'Nigeria',
+                                         'Kenya',
+                                         'Mauritania',
+                                         'Sierra Leone',
+                                         'Togo',
+                                         'Mozambique',
+                                         'Uganda',
+                                         'Somalia'])}
+
+
+special_ordered_json =  {}
+
+def compare_outputs(expected, actual, format, expected_ordering=None):
+    try:
+        if format == TEXT_FORMAT:
+            return simple_compare(expected, actual)
+        elif format in [TEXT_FORMAT_ORDERED_LIST, TEXT_FORMAT_LIST_DICTS_ORDERED]:
+            return list_compare_ordered(expected, actual)
+        elif format == TEXT_FORMAT_UNORDERED_LIST:
+            return list_compare_unordered(expected, actual)
+        elif format == TEXT_FORMAT_SPECIAL_ORDERED_LIST:
+            return list_compare_special(expected, actual, special_ordered_json[qnum[1:]])
+        elif format == TEXT_FORMAT_DICT:
+            return dict_compare(expected, actual)
+        else:
+            if expected != actual:
+                return "expected %s but found %s " % (repr(expected), repr(actual))
+    except:
+        if expected != actual:
+            return "expected %s" % (repr(expected))
+
+def check_cell_text(qnum, actual):
+    format, expected = expected_json[qnum[1:]]
+    if format == TEXT_FORMAT_SPECIAL_ORDERED_LIST:
+        expected_ordering = special_ordered_json[qnum[1:]]
+        return compare_outputs(expected, actual, format, expected_ordering)
+    else:
+        return compare_outputs(expected, actual, format)
+
+
+def simple_compare(expected, actual, complete_msg=True):
+    msg = PASS
+    if type(expected) == type:
+        if expected != actual:
+            if type(actual) == type:
+                msg = "expected %s but found %s" % (expected.__name__, actual.__name__)
+            else:
+                msg = "expected %s but found %s" % (expected.__name__, repr(actual))
+    elif type(expected) != type(actual) and not (type(expected) in [float, int] and type(actual) in [float, int]):
+        msg = "expected to find type %s but found type %s" % (type(expected).__name__, type(actual).__name__)
+    elif type(expected) == float:
+        if not math.isclose(actual, expected, rel_tol=REL_TOL, abs_tol=ABS_TOL):
+            msg = "expected %s" % (repr(expected))
+            if complete_msg:
+                msg = msg + " but found %s" % (repr(actual))
+    else:
+        if expected != actual:
+            msg = "expected %s" % (repr(expected))
+            if complete_msg:
+                msg = msg + " but found %s" % (repr(actual))
+    return msg
+
+
+def list_compare_ordered(expected, actual, obj="list"):
+    msg = PASS
+    if type(expected) != type(actual):
+        msg = "expected to find type %s but found type %s" % (type(expected).__name__, type(actual).__name__)
+        return msg
+    for i in range(len(expected)):
+        if i >= len(actual):
+            msg = "expected missing %s in %s" % (repr(expected[i]), obj)
+            break
+        if type(expected[i]) in [int, float, bool, str]:
+            val = simple_compare(expected[i], actual[i])
+        elif type(expected[i]) in [list]:
+            val = list_compare_ordered(expected[i], actual[i], "sub" + obj)
+        elif type(expected[i]) in [dict]:
+            val = dict_compare(expected[i], actual[i])
+        elif type(expected[i]).__name__ == obfuscate1():
+            val = simple_compare(expected[i], actual[i])
+        if val != PASS:
+            msg = "at index %d of the %s, " % (i, obj) + val
+            break
+    if len(actual) > len(expected) and msg == PASS:
+        msg = "found unexpected %s in %s" % (repr(actual[len(expected)]), obj)
+    if len(expected) != len(actual):
+        msg = msg + " (found %d entries in %s, but expected %d)" % (len(actual), obj, len(expected))
+
+    if len(expected) > 0 and type(expected[0]) in [int, float, bool, str]:
+        if msg != PASS and list_compare_unordered(expected, actual, obj) == PASS:
+            try:
+                msg = msg + " (list may not be ordered as required)"
+            except:
+                pass
+    return msg
+
+
+def list_compare_helper(larger, smaller):
+    msg = PASS
+    j = 0
+    for i in range(len(larger)):
+        if i == len(smaller):
+            msg = "expected %s" % (repr(larger[i]))
+            break
+        found = False
+        while not found:
+            if j == len(smaller):
+                val = simple_compare(larger[i], smaller[j - 1], False)
+                break
+            val = simple_compare(larger[i], smaller[j], False)
+            j += 1
+            if val == PASS:
+                found = True
+                break
+        if not found:
+            msg = val
+            break
+    return msg
+
+
+def list_compare_unordered(expected, actual, obj="list"):
+    msg = PASS
+    if type(expected) != type(actual):
+        msg = "expected to find type %s but found type %s" % (type(expected).__name__, type(actual).__name__)
+        return msg
+    try:
+        sort_expected = sorted(expected)
+        sort_actual = sorted(actual)
+    except:
+        msg = "unexpected datatype found in %s; expected entries of type %s" % (obj, obj, type(expected[0]).__name__)
+        return msg
+
+    if len(actual) == 0 and len(expected) > 0:
+        msg = "in the %s, missing" % (obj) + expected[0]
+    elif len(actual) > 0 and len(expected) > 0:
+        val = simple_compare(sort_expected[0], sort_actual[0])
+        if val.startswith("expected to find type"):
+            msg = "in the %s, " % (obj) + simple_compare(sort_expected[0], sort_actual[0])
+        else:
+            if len(expected) > len(actual):
+                msg = "in the %s, missing " % (obj) + list_compare_helper(sort_expected, sort_actual)
+            elif len(expected) < len(actual):
+                msg = "in the %s, found un" % (obj) + list_compare_helper(sort_actual, sort_expected)
+            if len(expected) != len(actual):
+                msg = msg + " (found %d entries in %s, but expected %d)" % (len(actual), obj, len(expected))
+                return msg
+            else:
+                val = list_compare_helper(sort_expected, sort_actual)
+                if val != PASS:
+                    msg = "in the %s, missing " % (obj) + val + ", but found un" + list_compare_helper(sort_actual,
+                                                                                               sort_expected)
+    return msg
+
+
+def list_compare_special_init(expected, special_order):
+    real_expected = []
+    for i in range(len(expected)):
+        if real_expected == [] or special_order[i-1] != special_order[i]:
+            real_expected.append([])
+        real_expected[-1].append(expected[i])
+    return real_expected
+
+
+def list_compare_special(expected, actual, special_order):
+    expected = list_compare_special_init(expected, special_order)
+    msg = PASS
+    expected_list = []
+    for expected_item in expected:
+        expected_list.extend(expected_item)
+    val = list_compare_unordered(expected_list, actual)
+    if val != PASS:
+        msg = val
+    else:
+        i = 0
+        for expected_item in expected:
+            j = len(expected_item)
+            actual_item = actual[i: i + j]
+            val = list_compare_unordered(expected_item, actual_item)
+            if val != PASS:
+                if j == 1:
+                    msg = "at index %d " % (i) + val
+                else:
+                    msg = "between indices %d and %d " % (i, i + j - 1) + val
+                msg = msg + " (list may not be ordered as required)"
+                break
+            i += j
+
+    return msg
+
+
+def dict_compare(expected, actual, obj="dict"):
+    msg = PASS
+    if type(expected) != type(actual):
+        msg = "expected to find type %s but found type %s" % (type(expected).__name__, type(actual).__name__)
+        return msg
+    try:
+        expected_keys = sorted(list(expected.keys()))
+        actual_keys = sorted(list(actual.keys()))
+    except:
+        msg = "unexpected datatype found in keys of dict; expect a dict with keys of type %s" % (
+            type(expected_keys[0]).__name__)
+        return msg
+    val = list_compare_unordered(expected_keys, actual_keys, "dict")
+    if val != PASS:
+        msg = "bad keys in %s: " % (obj) + val
+    if msg == PASS:
+        for key in expected:
+            if expected[key] == None or type(expected[key]) in [int, float, bool, str]:
+                val = simple_compare(expected[key], actual[key])
+            elif type(expected[key]) in [list]:
+                val = list_compare_ordered(expected[key], actual[key], "value")
+            elif type(expected[key]) in [dict]:
+                val = dict_compare(expected[key], actual[key], "sub" + obj)
+            if val != PASS:
+                msg = "incorrect val for key %s in %s: " % (repr(key), obj) + val
+    return msg
+
+
+def check(qnum, actual):
+    msg = check_cell_text(qnum, actual)
+    if msg == PASS:
+        return True
+    print("<b style='color: red;'>ERROR:</b> " + msg)
+
+def check_file_size(path):
+    size = os.path.getsize(path)
+    assert size < MAX_FILE_SIZE * 10**3, "Your file is too big to be processed by Gradescope; please delete unnecessary output cells so your file size is < %s KB" % MAX_FILE_SIZE
diff --git a/p7/rubric.md b/p7/rubric.md
new file mode 100644
index 0000000..63c9880
--- /dev/null
+++ b/p7/rubric.md
@@ -0,0 +1,124 @@
+# Project 7 (P7) grading rubric
+
+## Code reviews
+
+- A TA / grader will be reviewing your code after the deadline.
+- They will make deductions based on the Rubric provided below.
+- To ensure that you don’t lose any points in code review, you must review the rubric and make sure that you have followed the instructions provided in the project correctly.
+
+## Rubric
+
+### General guidelines:
+
+- Did not save the notebook file prior to running the cell containing "export". We cannot see your output if you do not save before generating the zip file. This deduction will become stricter for future projects. (-3)
+- Used concepts/modules (ex: pandas) not covered in class yet (built-in functions that you have been introduced to can be used) (-3)
+- import statements are not mentioned in the required cell at the top of the notebook (-1)
+- Hardcoded answers or data structures (full points)
+
+### Question specific guidelines:
+
+- `cell` (3)
+	- Function does not typecast based on column names (-1)
+	- Function does not multiply the values in the pop column by 1000 (-1)
+	- Function is defined more than once (-1)
+
+- Q1 (4)
+	- Incorrect logic is used to answer (-2)
+	- Required functions are not used to answer (-1)
+
+- Q2 (4)
+	- Incorrect logic is used to answer (-2)
+	- Required functions are not used to answer (-1)
+
+- Q3 (4)
+	- Incorrect logic is used to answer (-2)
+	- Required functions are not used to answer (-1)
+
+- Q4 (4)
+	- Incorrect logic is used to answer (-1)
+	- Recomputed variable defined in Q3 (-1)
+	- Required functions are not used to answer (-1)
+
+- Q5 (4)
+	- Incorrect logic is used to answer (-2)
+	- Required functions are not used to answer (-1)
+
+- Q6 (4)
+	- Incorrect logic is used to answer (-2)
+	- Required functions are not used to answer (-1)
+
+- Q7 (4)
+	- Incorrect logic is used to answer (-2)
+	- Required functions are not used to answer (-1)
+
+- Q8 (5)
+	- Incorrect logic is used to answer (-2)
+	- Hardcoded income levels (-1)
+	- Required functions are not used to answer (-1)
+
+- Q9 (4)
+	- Incorrect logic is used to answer (-2)
+	- Required functions are not used to answer (-1)
+
+- `get_col_dict` (3)
+	- Incorrect logic is used in function (-2)
+	- Function is defined more than once (-1)
+
+- `dict_2015` (3)
+	- Data structure is defined incorrectly (-3)
+
+- `dict_2020` (3)
+	- Data structure is defined incorrectly (-3)
+
+- Q10 (2)
+	- Required data structures are not used to answer (-1)
+
+- Q11 (2)
+	- Required data structures are not used to answer (-1)
+
+- Q12 (3)
+	- Incorrect logic is used to answer (-1)
+	- Required data structures are not used to answer (-1)
+
+- Q13 (4)
+	- Incorrect logic is used to answer (-2)
+	- Required data structures are not used to answer (-1)
+
+- Q14 (4)
+	- Incorrect logic is used to answer (-2)
+	- Required data structures are not used to answer (-1)
+
+- Q15 (4)
+	- Incorrect logic is used to answer (-1)
+	- Recomputed variables already defined in q13 and q14 (-1)
+	- Required data structures are not used to answer (-1)
+
+- `dict_2015` (2)
+	- Incorrect rural_alb calculation in data structure (-2)
+
+- `dict_2020` (2)
+	- Incorrect rural_alb calculation in data structure (-2)
+
+- Q16 (2)
+	- Required data structures are not used to answer (-1)
+
+- `rural_non_alb_bin_2015_dict` (5)
+	- Data structure is defined incorrectly (-5)
+
+- `rural_non_alb_bin_2020_dict` (5)
+	- Data structure is defined incorrectly (-5)
+
+- Q17 (2)
+	- Required data structures are not used to answer (-1)
+
+- Q18 (4)
+	- Incorrect logic is used to answer (-2)
+	- Required data structures are not used to answer (-1)
+
+- Q19 (5)
+	- Incorrect logic is used to answer (-2)
+	- Required data structures are not used to answer (-2)
+
+- Q20 (5)
+	- Incorrect logic is used to answer (-2)
+	- Required data structures are not used to answer (-2)
diff --git a/p7/water_accessibility.csv b/p7/water_accessibility.csv
new file mode 100644
index 0000000..2be44fa
--- /dev/null
+++ b/p7/water_accessibility.csv
@@ -0,0 +1,303 @@
+country_code,country_name,region,year,income_level,pop,urban_percent,national_alb,urban_alb
+AFG,Afghanistan,South Asia,2015,Low income,34414,25,61,87
+AFG,Afghanistan,South Asia,2020,Low income,38928,26,75,100
+ALB,Albania,Europe & Central Asia,2015,Upper middle income,2891,57,93,95
+ALB,Albania,Europe & Central Asia,2020,Upper middle income,2878,62,95,96
+DZA,Algeria,Middle East & North Africa,2015,Upper middle income,39728,71,93,95
+DZA,Algeria,Middle East & North Africa,2020,Lower middle income,43851,74,94,96
+AND,Andorra,Europe & Central Asia,2015,High income,78,88,100,100
+AND,Andorra,Europe & Central Asia,2020,High income,77,88,100,100
+AGO,Angola,Sub-Saharan Africa,2015,Upper middle income,27884,63,54,70
+AGO,Angola,Sub-Saharan Africa,2020,Lower middle income,32866,67,57,72
+ARM,Armenia,Europe & Central Asia,2015,Lower middle income,2926,63,100,100
+ARM,Armenia,Europe & Central Asia,2020,Upper middle income,2963,63,100,100
+AUS,Australia,East Asia & Pacific,2015,High income,23932,86,100,100
+AUS,Australia,East Asia & Pacific,2020,High income,25500,86,100,100
+AUT,Austria,Europe & Central Asia,2015,High income,8679,58,100,100
+AUT,Austria,Europe & Central Asia,2020,High income,9006,59,100,100
+AZE,Azerbaijan,Europe & Central Asia,2015,Upper middle income,9623,55,92,100
+AZE,Azerbaijan,Europe & Central Asia,2020,Upper middle income,10139,56,96,100
+BGD,Bangladesh,South Asia,2015,Lower middle income,156256,34,97,98
+BGD,Bangladesh,South Asia,2020,Lower middle income,164689,38,98,97
+BLR,Belarus,Europe & Central Asia,2015,Upper middle income,9439,77,96,96
+BLR,Belarus,Europe & Central Asia,2020,Upper middle income,9449,79,96,96
+BEL,Belgium,Europe & Central Asia,2015,High income,11288,98,100,100
+BEL,Belgium,Europe & Central Asia,2020,High income,11590,98,100,100
+BLZ,Belize,Latin America & Caribbean,2015,Upper middle income,361,45,97,100
+BLZ,Belize,Latin America & Caribbean,2020,Lower middle income,398,46,98,99
+BEN,Benin,Sub-Saharan Africa,2015,Low income,10576,46,65,74
+BEN,Benin,Sub-Saharan Africa,2020,Lower middle income,12123,48,65,73
+BMU,Bermuda,North America,2015,High income,64,100,100,100
+BMU,Bermuda,North America,2020,High income,62,100,100,100
+BTN,Bhutan,South Asia,2015,Lower middle income,728,39,96,98
+BTN,Bhutan,South Asia,2020,Lower middle income,772,42,97,98
+BIH,Bosnia and Herzegovina,Europe & Central Asia,2015,Upper middle income,3429,47,96,95
+BIH,Bosnia and Herzegovina,Europe & Central Asia,2020,Upper middle income,3281,49,96,95
+BWA,Botswana,Sub-Saharan Africa,2015,Upper middle income,2121,67,88,97
+BWA,Botswana,Sub-Saharan Africa,2020,Upper middle income,2352,71,92,98
+BRA,Brazil,Latin America & Caribbean,2015,Upper middle income,204472,86,98,100
+BRA,Brazil,Latin America & Caribbean,2020,Upper middle income,212559,87,100,100
+BRN,Brunei Darussalam,East Asia & Pacific,2015,High income,415,77,100,100
+BRN,Brunei Darussalam,East Asia & Pacific,2020,High income,437,78,100,100
+BGR,Bulgaria,Europe & Central Asia,2015,Upper middle income,7200,74,100,100
+BGR,Bulgaria,Europe & Central Asia,2020,Upper middle income,6948,76,100,100
+BFA,Burkina Faso,Sub-Saharan Africa,2015,Low income,18111,28,50,80
+BFA,Burkina Faso,Sub-Saharan Africa,2020,Low income,20903,31,47,80
+BDI,Burundi,Sub-Saharan Africa,2015,Low income,10160,12,60,89
+BDI,Burundi,Sub-Saharan Africa,2020,Low income,11891,14,62,91
+CPV,Cabo Verde,Sub-Saharan Africa,2015,Lower middle income,525,64,85,92
+CPV,Cabo Verde,Sub-Saharan Africa,2020,Lower middle income,556,67,89,93
+KHM,Cambodia,East Asia & Pacific,2015,Lower middle income,15521,22,68,89
+KHM,Cambodia,East Asia & Pacific,2020,Lower middle income,16719,24,71,90
+CMR,Cameroon,Sub-Saharan Africa,2015,Lower middle income,23298,55,64,82
+CMR,Cameroon,Sub-Saharan Africa,2020,Lower middle income,26546,58,66,82
+CAN,Canada,North America,2015,High income,36027,81,100,100
+CAN,Canada,North America,2020,High income,37742,82,100,100
+CAF,Central African Republic,Sub-Saharan Africa,2015,Low income,4493,40,42,58
+CAF,Central African Republic,Sub-Saharan Africa,2020,Low income,4830,42,37,50
+TCD,Chad,Sub-Saharan Africa,2015,Low income,14111,23,44,75
+TCD,Chad,Sub-Saharan Africa,2020,Low income,16426,24,46,74
+CHL,Chile,Latin America & Caribbean,2015,High income,17969,87,100,100
+CHL,Chile,Latin America & Caribbean,2020,High income,19116,88,100,100
+CHN,China,East Asia & Pacific,2015,Upper middle income,1430405,56,92,98
+CHN,China,East Asia & Pacific,2020,Upper middle income,1463141,62,94,97
+COL,Colombia,Latin America & Caribbean,2015,Upper middle income,47521,80,96,100
+COL,Colombia,Latin America & Caribbean,2020,Upper middle income,50883,81,97,100
+CRI,Costa Rica,Latin America & Caribbean,2015,Upper middle income,4848,77,100,100
+CRI,Costa Rica,Latin America & Caribbean,2020,Upper middle income,5094,81,100,100
+CIV,Côte d'Ivoire,Sub-Saharan Africa,2015,Lower middle income,23226,49,71,87
+CIV,Côte d'Ivoire,Sub-Saharan Africa,2020,Lower middle income,26378,52,71,85
+CUB,Cuba,Latin America & Caribbean,2015,Upper middle income,11325,77,96,98
+CUB,Cuba,Latin America & Caribbean,2020,Upper middle income,11327,77,97,98
+CYP,Cyprus,Europe & Central Asia,2015,High income,1161,67,100,100
+CYP,Cyprus,Europe & Central Asia,2020,High income,1207,67,100,100
+CZE,Czech Republic,Europe & Central Asia,2015,High income,10601,73,100,100
+CZE,Czech Republic,Europe & Central Asia,2020,High income,10709,74,100,100
+DNK,Denmark,Europe & Central Asia,2015,High income,5689,88,100,100
+DNK,Denmark,Europe & Central Asia,2020,High income,5792,88,100,100
+DJI,Djibouti,Middle East & North Africa,2015,Lower middle income,914,77,76,84
+DJI,Djibouti,Middle East & North Africa,2020,Lower middle income,988,78,76,84
+DOM,Dominican Republic,Latin America & Caribbean,2015,Upper middle income,10282,79,96,98
+DOM,Dominican Republic,Latin America & Caribbean,2020,Upper middle income,10848,83,97,98
+ECU,Ecuador,Latin America & Caribbean,2015,Upper middle income,16212,63,93,100
+ECU,Ecuador,Latin America & Caribbean,2020,Upper middle income,17643,64,95,100
+SLV,El Salvador,Latin America & Caribbean,2015,Lower middle income,6325,70,96,99
+SLV,El Salvador,Latin America & Caribbean,2020,Lower middle income,6486,73,98,100
+EST,Estonia,Europe & Central Asia,2015,High income,1315,68,100,100
+EST,Estonia,Europe & Central Asia,2020,High income,1327,69,100,100
+SWZ,Eswatini,Sub-Saharan Africa,2015,Lower middle income,1104,23,67,95
+SWZ,Eswatini,Sub-Saharan Africa,2020,Lower middle income,1160,24,71,97
+ETH,Ethiopia,Sub-Saharan Africa,2015,Low income,100835,19,42,82
+ETH,Ethiopia,Sub-Saharan Africa,2020,Low income,114964,22,50,84
+FJI,Fiji,East Asia & Pacific,2015,Upper middle income,869,55,94,98
+FJI,Fiji,East Asia & Pacific,2020,Upper middle income,896,57,94,98
+FIN,Finland,Europe & Central Asia,2015,High income,5481,85,100,100
+FIN,Finland,Europe & Central Asia,2020,High income,5541,86,100,100
+FRA,France,Europe & Central Asia,2015,High income,64453,80,100,100
+FRA,France,Europe & Central Asia,2020,High income,65274,81,100,100
+GAB,Gabon,Sub-Saharan Africa,2015,Upper middle income,1948,88,84,89
+GAB,Gabon,Sub-Saharan Africa,2020,Upper middle income,2226,90,85,90
+GEO,Georgia,Europe & Central Asia,2015,Upper middle income,4024,57,96,100
+GEO,Georgia,Europe & Central Asia,2020,Upper middle income,3989,59,97,100
+DEU,Germany,Europe & Central Asia,2015,High income,81787,77,100,100
+DEU,Germany,Europe & Central Asia,2020,High income,83784,77,100,100
+GHA,Ghana,Sub-Saharan Africa,2015,Lower middle income,27849,54,80,91
+GHA,Ghana,Sub-Saharan Africa,2020,Lower middle income,31073,57,86,96
+GIB,Gibraltar,Europe & Central Asia,2015,High income,34,100,100,100
+GIB,Gibraltar,Europe & Central Asia,2020,High income,34,100,100,100
+GRC,Greece,Europe & Central Asia,2015,High income,10660,78,100,100
+GRC,Greece,Europe & Central Asia,2020,High income,10423,80,100,100
+GRL,Greenland,Europe & Central Asia,2015,High income,56,86,100,100
+GRL,Greenland,Europe & Central Asia,2020,High income,57,87,100,100
+GTM,Guatemala,Latin America & Caribbean,2015,Lower middle income,16252,50,92,97
+GTM,Guatemala,Latin America & Caribbean,2020,Upper middle income,17916,52,94,98
+GIN,Guinea,Sub-Saharan Africa,2015,Low income,11432,35,64,85
+GIN,Guinea,Sub-Saharan Africa,2020,Low income,13133,37,64,87
+GNB,Guinea-Bissau,Sub-Saharan Africa,2015,Low income,1737,42,59,73
+GNB,Guinea-Bissau,Sub-Saharan Africa,2020,Low income,1968,44,59,71
+GUY,Guyana,Latin America & Caribbean,2015,Upper middle income,767,26,95,100
+GUY,Guyana,Latin America & Caribbean,2020,Upper middle income,787,27,96,100
+HTI,Haiti,Latin America & Caribbean,2015,Low income,10696,52,65,85
+HTI,Haiti,Latin America & Caribbean,2020,Lower middle income,11403,57,67,85
+HND,Honduras,Latin America & Caribbean,2015,Lower middle income,9113,55,93,99
+HND,Honduras,Latin America & Caribbean,2020,Lower middle income,9905,58,96,100
+HUN,Hungary,Europe & Central Asia,2015,High income,9778,71,100,100
+HUN,Hungary,Europe & Central Asia,2020,High income,9660,72,100,100
+ISL,Iceland,Europe & Central Asia,2015,High income,330,94,100,100
+ISL,Iceland,Europe & Central Asia,2020,High income,341,94,100,100
+IND,India,South Asia,2015,Lower middle income,1310152,33,88,93
+IND,India,South Asia,2020,Lower middle income,1380004,35,90,94
+IDN,Indonesia,East Asia & Pacific,2015,Lower middle income,258383,53,89,95
+IDN,Indonesia,East Asia & Pacific,2020,Lower middle income,273524,57,92,98
+IRQ,Iraq,Middle East & North Africa,2015,Upper middle income,35572,70,94,98
+IRQ,Iraq,Middle East & North Africa,2020,Upper middle income,40223,71,98,100
+IRL,Ireland,Europe & Central Asia,2015,High income,4652,63,97,97
+IRL,Ireland,Europe & Central Asia,2020,High income,4938,64,97,97
+ISR,Israel,Middle East & North Africa,2015,High income,7978,92,100,100
+ISR,Israel,Middle East & North Africa,2020,High income,8656,93,100,100
+JAM,Jamaica,Latin America & Caribbean,2015,Upper middle income,2891,55,90,95
+JAM,Jamaica,Latin America & Caribbean,2020,Upper middle income,2961,56,91,95
+JOR,Jordan,Middle East & North Africa,2015,Upper middle income,9267,90,100,100
+JOR,Jordan,Middle East & North Africa,2020,Upper middle income,10203,91,99,100
+KAZ,Kazakhstan,Europe & Central Asia,2015,Upper middle income,17572,57,95,98
+KAZ,Kazakhstan,Europe & Central Asia,2020,Upper middle income,18777,58,95,98
+KEN,Kenya,Sub-Saharan Africa,2015,Lower middle income,47878,26,58,87
+KEN,Kenya,Sub-Saharan Africa,2020,Lower middle income,53771,28,62,87
+KIR,Kiribati,East Asia & Pacific,2015,Lower middle income,111,52,74,89
+KIR,Kiribati,East Asia & Pacific,2020,Lower middle income,119,56,78,92
+LVA,Latvia,Europe & Central Asia,2015,High income,1998,68,99,99
+LVA,Latvia,Europe & Central Asia,2020,High income,1886,68,99,99
+LSO,Lesotho,Sub-Saharan Africa,2015,Lower middle income,2059,27,71,90
+LSO,Lesotho,Sub-Saharan Africa,2020,Lower middle income,2142,29,72,93
+LBR,Liberia,Sub-Saharan Africa,2015,Low income,4472,50,73,84
+LBR,Liberia,Sub-Saharan Africa,2020,Low income,5058,52,75,86
+LTU,Lithuania,Europe & Central Asia,2015,High income,2932,67,97,100
+LTU,Lithuania,Europe & Central Asia,2020,High income,2722,68,98,100
+LUX,Luxembourg,Europe & Central Asia,2015,High income,567,90,100,100
+LUX,Luxembourg,Europe & Central Asia,2020,High income,626,91,100,100
+MDG,Madagascar,Sub-Saharan Africa,2015,Low income,24234,35,49,78
+MDG,Madagascar,Sub-Saharan Africa,2020,Low income,27691,39,53,80
+MWI,Malawi,Sub-Saharan Africa,2015,Low income,16745,16,66,86
+MWI,Malawi,Sub-Saharan Africa,2020,Low income,19130,17,70,86
+MYS,Malaysia,East Asia & Pacific,2015,Upper middle income,30271,74,97,100
+MYS,Malaysia,East Asia & Pacific,2020,Upper middle income,32366,77,97,100
+MDV,Maldives,South Asia,2015,Upper middle income,455,39,99,99
+MDV,Maldives,South Asia,2020,Upper middle income,541,41,100,100
+MLI,Mali,Sub-Saharan Africa,2015,Low income,17439,40,74,91
+MLI,Mali,Sub-Saharan Africa,2020,Low income,20251,44,83,96
+MLT,Malta,Middle East & North Africa,2015,High income,434,94,100,100
+MLT,Malta,Middle East & North Africa,2020,High income,442,95,100,100
+MHL,Marshall Islands,East Asia & Pacific,2015,Upper middle income,57,76,88,86
+MHL,Marshall Islands,East Asia & Pacific,2020,Upper middle income,59,78,89,87
+MRT,Mauritania,Sub-Saharan Africa,2015,Lower middle income,4046,51,67,86
+MRT,Mauritania,Sub-Saharan Africa,2020,Lower middle income,4650,55,72,89
+MUS,Mauritius,Sub-Saharan Africa,2015,Upper middle income,1259,41,100,100
+MUS,Mauritius,Sub-Saharan Africa,2020,Upper middle income,1272,41,100,100
+MEX,Mexico,Latin America & Caribbean,2015,Upper middle income,121858,79,98,100
+MEX,Mexico,Latin America & Caribbean,2020,Upper middle income,128933,81,100,100
+MCO,Monaco,Europe & Central Asia,2015,High income,38,100,100,100
+MCO,Monaco,Europe & Central Asia,2020,High income,39,100,100,100
+MNG,Mongolia,East Asia & Pacific,2015,Lower middle income,2998,68,81,94
+MNG,Mongolia,East Asia & Pacific,2020,Lower middle income,3278,69,85,97
+MNE,Montenegro,Europe & Central Asia,2015,Upper middle income,627,66,97,98
+MNE,Montenegro,Europe & Central Asia,2020,Upper middle income,628,67,99,100
+MAR,Morocco,Middle East & North Africa,2015,Lower middle income,34664,61,84,96
+MAR,Morocco,Middle East & North Africa,2020,Lower middle income,36911,64,90,98
+MOZ,Mozambique,Sub-Saharan Africa,2015,Low income,27042,34,51,80
+MOZ,Mozambique,Sub-Saharan Africa,2020,Low income,31255,37,63,88
+MMR,Myanmar,East Asia & Pacific,2015,Lower middle income,52681,30,74,88
+MMR,Myanmar,East Asia & Pacific,2020,Lower middle income,54410,31,84,95
+NAM,Namibia,Sub-Saharan Africa,2015,Upper middle income,2315,47,83,97
+NAM,Namibia,Sub-Saharan Africa,2020,Upper middle income,2541,52,84,96
+NRU,Nauru,East Asia & Pacific,2015,High income,10,100,100,100
+NRU,Nauru,East Asia & Pacific,2020,High income,11,100,100,100
+NPL,Nepal,South Asia,2015,Low income,27015,19,88,90
+NPL,Nepal,South Asia,2020,Lower middle income,29137,21,90,90
+NLD,Netherlands,Europe & Central Asia,2015,High income,16938,90,100,100
+NLD,Netherlands,Europe & Central Asia,2020,High income,17135,92,100,100
+NZL,New Zealand,East Asia & Pacific,2015,High income,4615,86,100,100
+NZL,New Zealand,East Asia & Pacific,2020,High income,4822,87,100,100
+NIC,Nicaragua,Latin America & Caribbean,2015,Lower middle income,6223,58,81,97
+NIC,Nicaragua,Latin America & Caribbean,2020,Lower middle income,6625,59,82,97
+NER,Niger,Sub-Saharan Africa,2015,Low income,20002,16,45,88
+NER,Niger,Sub-Saharan Africa,2020,Low income,24207,17,47,86
+NGA,Nigeria,Sub-Saharan Africa,2015,Lower middle income,181137,48,69,85
+NGA,Nigeria,Sub-Saharan Africa,2020,Lower middle income,206140,52,78,92
+MKD,North Macedonia,Europe & Central Asia,2015,Upper middle income,2079,57,97,97
+MKD,North Macedonia,Europe & Central Asia,2020,Upper middle income,2083,58,98,98
+NOR,Norway,Europe & Central Asia,2015,High income,5200,81,100,100
+NOR,Norway,Europe & Central Asia,2020,High income,5421,83,100,100
+OMN,Oman,Middle East & North Africa,2015,High income,4267,81,90,94
+OMN,Oman,Middle East & North Africa,2020,High income,5107,86,92,95
+PAK,Pakistan,South Asia,2015,Lower middle income,199427,36,89,94
+PAK,Pakistan,South Asia,2020,Lower middle income,220892,37,90,93
+PLW,Palau,East Asia & Pacific,2015,Upper middle income,18,78,100,100
+PLW,Palau,East Asia & Pacific,2020,High income,18,81,100,100
+PAN,Panama,Latin America & Caribbean,2015,Upper middle income,3968,67,93,98
+PAN,Panama,Latin America & Caribbean,2020,Upper middle income,4315,68,94,98
+PNG,Papua New Guinea,East Asia & Pacific,2015,Lower middle income,8108,13,41,85
+PNG,Papua New Guinea,East Asia & Pacific,2020,Lower middle income,8947,13,45,86
+PRY,Paraguay,Latin America & Caribbean,2015,Upper middle income,6689,61,97,100
+PRY,Paraguay,Latin America & Caribbean,2020,Upper middle income,7133,62,100,100
+PER,Peru,Latin America & Caribbean,2015,Upper middle income,30471,77,90,95
+PER,Peru,Latin America & Caribbean,2020,Upper middle income,32972,78,93,97
+PHL,Philippines,East Asia & Pacific,2015,Lower middle income,102113,46,92,96
+PHL,Philippines,East Asia & Pacific,2020,Lower middle income,109581,47,94,97
+POL,Poland,Europe & Central Asia,2015,High income,38034,60,100,100
+POL,Poland,Europe & Central Asia,2020,High income,37847,60,100,100
+PRT,Portugal,Europe & Central Asia,2015,High income,10368,64,100,100
+PRT,Portugal,Europe & Central Asia,2020,High income,10197,66,100,100
+ROU,Romania,Europe & Central Asia,2015,Upper middle income,19925,54,100,100
+ROU,Romania,Europe & Central Asia,2020,Upper middle income,19238,54,100,100
+RUS,Russian Federation,Europe & Central Asia,2015,Upper middle income,144985,74,97,99
+RUS,Russian Federation,Europe & Central Asia,2020,Upper middle income,145934,75,97,99
+RWA,Rwanda,Sub-Saharan Africa,2015,Low income,11369,17,57,80
+RWA,Rwanda,Sub-Saharan Africa,2020,Low income,12952,17,60,83
+WSM,Samoa,East Asia & Pacific,2015,Lower middle income,194,19,91,91
+WSM,Samoa,East Asia & Pacific,2020,Lower middle income,198,18,92,92
+SEN,Senegal,Sub-Saharan Africa,2015,Low income,14578,46,79,94
+SEN,Senegal,Sub-Saharan Africa,2020,Lower middle income,16744,48,85,95
+SRB,Serbia,Europe & Central Asia,2015,Upper middle income,8877,56,93,92
+SRB,Serbia,Europe & Central Asia,2020,Upper middle income,8737,56,95,95
+SLE,Sierra Leone,Sub-Saharan Africa,2015,Low income,7172,41,58,76
+SLE,Sierra Leone,Sub-Saharan Africa,2020,Low income,7977,43,64,78
+SGP,Singapore,East Asia & Pacific,2015,High income,5592,100,100,100
+SGP,Singapore,East Asia & Pacific,2020,High income,5850,100,100,100
+SLB,Solomon Islands,East Asia & Pacific,2015,Lower middle income,603,22,69,91
+SLB,Solomon Islands,East Asia & Pacific,2020,Lower middle income,687,25,67,91
+SOM,Somalia,Sub-Saharan Africa,2015,Low income,13797,43,49,74
+SOM,Somalia,Sub-Saharan Africa,2020,Low income,15893,46,56,79
+ZAF,South Africa,Sub-Saharan Africa,2015,Upper middle income,55386,65,92,99
+ZAF,South Africa,Sub-Saharan Africa,2020,Upper middle income,59309,67,94,100
+SSD,South Sudan,Sub-Saharan Africa,2015,Low income,10716,19,41,61
+SSD,South Sudan,Sub-Saharan Africa,2020,Low income,11194,20,41,70
+ESP,Spain,Europe & Central Asia,2015,High income,46672,80,100,100
+ESP,Spain,Europe & Central Asia,2020,High income,46755,81,100,100
+LKA,Sri Lanka,South Asia,2015,Lower middle income,20908,18,90,98
+LKA,Sri Lanka,South Asia,2020,Lower middle income,21413,19,92,100
+SDN,Sudan,Sub-Saharan Africa,2015,Lower middle income,38903,34,59,73
+SDN,Sudan,Sub-Saharan Africa,2020,Low income,43849,35,60,74
+SUR,Suriname,Latin America & Caribbean,2015,Upper middle income,559,66,96,98
+SUR,Suriname,Latin America & Caribbean,2020,Upper middle income,587,66,98,99
+SWE,Sweden,Europe & Central Asia,2015,High income,9765,87,100,100
+SWE,Sweden,Europe & Central Asia,2020,High income,10099,88,100,100
+CHE,Switzerland,Europe & Central Asia,2015,High income,8297,74,100,100
+CHE,Switzerland,Europe & Central Asia,2020,High income,8655,74,100,100
+SYR,Syrian Arab Republic,Middle East & North Africa,2015,Lower middle income,17997,52,94,95
+SYR,Syrian Arab Republic,Middle East & North Africa,2020,Low income,17501,55,94,95
+TJK,Tajikistan,Europe & Central Asia,2015,Lower middle income,8454,27,76,95
+TJK,Tajikistan,Europe & Central Asia,2020,Lower middle income,9538,28,82,96
+THA,Thailand,East Asia & Pacific,2015,Upper middle income,68715,48,100,100
+THA,Thailand,East Asia & Pacific,2020,Upper middle income,69800,51,100,100
+TLS,Timor-Leste,East Asia & Pacific,2015,Lower middle income,1196,29,75,90
+TLS,Timor-Leste,East Asia & Pacific,2020,Lower middle income,1318,31,85,96
+TGO,Togo,Sub-Saharan Africa,2015,Low income,7323,40,64,88
+TGO,Togo,Sub-Saharan Africa,2020,Low income,8279,43,69,91
+TON,Tonga,East Asia & Pacific,2015,Lower middle income,101,23,99,100
+TON,Tonga,East Asia & Pacific,2020,Upper middle income,106,23,99,100
+TUN,Tunisia,Middle East & North Africa,2015,Lower middle income,11180,68,95,100
+TUN,Tunisia,Middle East & North Africa,2020,Lower middle income,11819,70,98,100
+TKM,Turkmenistan,Europe & Central Asia,2015,Upper middle income,5565,50,98,100
+TKM,Turkmenistan,Europe & Central Asia,2020,Upper middle income,6031,53,100,100
+TUV,Tuvalu,East Asia & Pacific,2015,Upper middle income,11,60,100,100
+TUV,Tuvalu,East Asia & Pacific,2020,Upper middle income,12,64,100,100
+UGA,Uganda,Sub-Saharan Africa,2015,Low income,38225,22,48,77
+UGA,Uganda,Sub-Saharan Africa,2020,Low income,45741,25,56,79
+UKR,Ukraine,Europe & Central Asia,2015,Lower middle income,44922,69,94,92
+UKR,Ukraine,Europe & Central Asia,2020,Lower middle income,43734,69,94,92
+GBR,United Kingdom,Europe & Central Asia,2015,High income,65860,83,100,100
+GBR,United Kingdom,Europe & Central Asia,2020,High income,67886,84,100,100
+USA,United States of America,North America,2015,High income,320878,82,100,100
+USA,United States of America,North America,2020,High income,331003,83,100,100
+URY,Uruguay,Latin America & Caribbean,2015,High income,3412,95,100,100
+URY,Uruguay,Latin America & Caribbean,2020,High income,3474,96,100,100
+UZB,Uzbekistan,Europe & Central Asia,2015,Lower middle income,30930,51,98,100
+UZB,Uzbekistan,Europe & Central Asia,2020,Lower middle income,33469,50,98,100
+VUT,Vanuatu,East Asia & Pacific,2015,Lower middle income,271,25,90,100
+VUT,Vanuatu,East Asia & Pacific,2020,Lower middle income,307,26,91,100
+VNM,Vietnam,East Asia & Pacific,2015,Lower middle income,92677,34,93,98
+VNM,Vietnam,East Asia & Pacific,2020,Lower middle income,97339,37,97,100
+ZMB,Zambia,Sub-Saharan Africa,2015,Lower middle income,15879,42,61,86
+ZMB,Zambia,Sub-Saharan Africa,2020,Lower middle income,18384,45,65,87
+ZWE,Zimbabwe,Sub-Saharan Africa,2015,Low income,13815,32,65,94
+ZWE,Zimbabwe,Sub-Saharan Africa,2020,Lower middle income,14863,32,63,93
-- 
GitLab