diff --git a/lecture_material/21-linalg-2/21-linalg2.ipynb b/lecture_material/21-linalg-2/21-linalg2.ipynb
index 341d50965ca66d24ea4a33221054bc54229b8900..d7848a3333b4a365af8775812533c561885d9cc2 100644
--- a/lecture_material/21-linalg-2/21-linalg2.ipynb
+++ b/lecture_material/21-linalg-2/21-linalg2.ipynb
@@ -560,7 +560,7 @@
     "* $c$ (known) is a vector of coefficients (our model parameters)\n",
     "* $y$ (computed) are the prices\n",
     "\n",
-    "**Below:** what if X and y are know, and we want to find c?"
+    "**Below:** what if X and y are known, and we want to find c?"
    ]
   },
   {
@@ -1641,48 +1641,20 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 44,
+   "execution_count": null,
    "id": "f719b210",
    "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "text/plain": [
-       "array([[10,  0,  1],\n",
-       "       [ 2,  8,  1],\n",
-       "       [ 4,  4,  1],\n",
-       "       [ 5,  5,  1]])"
-      ]
-     },
-     "execution_count": 44,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
+   "outputs": [],
    "source": [
     "X"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 45,
+   "execution_count": null,
    "id": "73e680f3",
    "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "text/plain": [
-       "array([[7.  ],\n",
-       "       [5.  ],\n",
-       "       [5.  ],\n",
-       "       [5.75]])"
-      ]
-     },
-     "execution_count": 45,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
+   "outputs": [],
    "source": [
     "y"
    ]
@@ -1697,7 +1669,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 46,
+   "execution_count": 44,
    "id": "bf3ec400",
    "metadata": {},
    "outputs": [
@@ -1709,7 +1681,7 @@
        "       [2.  ]])"
       ]
      },
-     "execution_count": 46,
+     "execution_count": 44,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -1729,7 +1701,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 47,
+   "execution_count": 45,
    "id": "b4c45f0e",
    "metadata": {},
    "outputs": [
@@ -1739,7 +1711,7 @@
        "(3, 3)"
       ]
      },
-     "execution_count": 47,
+     "execution_count": 45,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -1797,7 +1769,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 48,
+   "execution_count": 46,
    "id": "3506a459",
    "metadata": {},
    "outputs": [
@@ -1811,7 +1783,7 @@
        "       [8.5]])"
       ]
      },
-     "execution_count": 48,
+     "execution_count": 46,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -1830,7 +1802,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 49,
+   "execution_count": 47,
    "id": "96826616-3a4a-42da-8259-35ac984dc10e",
    "metadata": {},
    "outputs": [
@@ -1841,7 +1813,7 @@
      "traceback": [
       "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
       "\u001b[0;31mLinAlgError\u001b[0m                               Traceback (most recent call last)",
-      "Cell \u001b[0;32mIn[49], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m c \u001b[38;5;241m=\u001b[39m \u001b[43mnp\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mlinalg\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msolve\u001b[49m\u001b[43m(\u001b[49m\u001b[43mX\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43my\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m      2\u001b[0m c\n",
+      "Cell \u001b[0;32mIn[47], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m c \u001b[38;5;241m=\u001b[39m \u001b[43mnp\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mlinalg\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msolve\u001b[49m\u001b[43m(\u001b[49m\u001b[43mX\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43my\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m      2\u001b[0m c\n",
       "File \u001b[0;32m<__array_function__ internals>:200\u001b[0m, in \u001b[0;36msolve\u001b[0;34m(*args, **kwargs)\u001b[0m\n",
       "File \u001b[0;32m~/.local/lib/python3.8/site-packages/numpy/linalg/linalg.py:373\u001b[0m, in \u001b[0;36msolve\u001b[0;34m(a, b)\u001b[0m\n\u001b[1;32m    371\u001b[0m a, _ \u001b[38;5;241m=\u001b[39m _makearray(a)\n\u001b[1;32m    372\u001b[0m _assert_stacked_2d(a)\n\u001b[0;32m--> 373\u001b[0m \u001b[43m_assert_stacked_square\u001b[49m\u001b[43m(\u001b[49m\u001b[43ma\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    374\u001b[0m b, wrap \u001b[38;5;241m=\u001b[39m _makearray(b)\n\u001b[1;32m    375\u001b[0m t, result_t \u001b[38;5;241m=\u001b[39m _commonType(a, b)\n",
       "File \u001b[0;32m~/.local/lib/python3.8/site-packages/numpy/linalg/linalg.py:190\u001b[0m, in \u001b[0;36m_assert_stacked_square\u001b[0;34m(*arrays)\u001b[0m\n\u001b[1;32m    188\u001b[0m m, n \u001b[38;5;241m=\u001b[39m a\u001b[38;5;241m.\u001b[39mshape[\u001b[38;5;241m-\u001b[39m\u001b[38;5;241m2\u001b[39m:]\n\u001b[1;32m    189\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m m \u001b[38;5;241m!=\u001b[39m n:\n\u001b[0;32m--> 190\u001b[0m     \u001b[38;5;28;01mraise\u001b[39;00m LinAlgError(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mLast 2 dimensions of the array must be square\u001b[39m\u001b[38;5;124m'\u001b[39m)\n",
@@ -1864,7 +1836,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 50,
+   "execution_count": 48,
    "id": "85bd8103-328d-44c2-927a-6f078c24eb91",
    "metadata": {},
    "outputs": [
@@ -1876,7 +1848,7 @@
        "       [1.55555556]])"
       ]
      },
-     "execution_count": 50,
+     "execution_count": 48,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -1896,7 +1868,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 51,
+   "execution_count": 49,
    "id": "3c34b2fc-82e5-43b5-947f-d66bb4265118",
    "metadata": {},
    "outputs": [
@@ -1906,7 +1878,7 @@
        "(3, 5)"
       ]
      },
-     "execution_count": 51,
+     "execution_count": 49,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -1917,7 +1889,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 52,
+   "execution_count": 50,
    "id": "c7f1f1f6-2c54-4bf1-8570-b0857125a108",
    "metadata": {},
    "outputs": [
@@ -1927,7 +1899,7 @@
        "(5, 3)"
       ]
      },
-     "execution_count": 52,
+     "execution_count": 50,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -1938,7 +1910,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 53,
+   "execution_count": 51,
    "id": "8aa343c7-d041-4014-89b0-78a84f69846f",
    "metadata": {},
    "outputs": [
@@ -1948,7 +1920,7 @@
        "(3, 3)"
       ]
      },
-     "execution_count": 53,
+     "execution_count": 51,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -1974,7 +1946,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 54,
+   "execution_count": 52,
    "id": "243c2127",
    "metadata": {},
    "outputs": [
@@ -1988,7 +1960,7 @@
        "       [ 0.08333333,  0.08333333, -0.11111111,  0.47222222,  0.47222222]])"
       ]
      },
-     "execution_count": 54,
+     "execution_count": 52,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -2000,7 +1972,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 55,
+   "execution_count": 53,
    "id": "1e0681e9",
    "metadata": {},
    "outputs": [
@@ -2014,7 +1986,7 @@
        "       [10,  4,  1]])"
       ]
      },
-     "execution_count": 55,
+     "execution_count": 53,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -2025,7 +1997,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 56,
+   "execution_count": 54,
    "id": "3e881e59",
    "metadata": {},
    "outputs": [
@@ -2039,7 +2011,7 @@
        "       [8.5]])"
       ]
      },
-     "execution_count": 56,
+     "execution_count": 54,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -2058,7 +2030,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 57,
+   "execution_count": 55,
    "id": "33aeabe1",
    "metadata": {},
    "outputs": [
@@ -2072,7 +2044,7 @@
        "       [8.23611111]])"
       ]
      },
-     "execution_count": 57,
+     "execution_count": 55,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -2093,7 +2065,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 58,
+   "execution_count": 56,
    "id": "921938e2",
    "metadata": {},
    "outputs": [
@@ -2125,53 +2097,53 @@
        "  <tbody>\n",
        "    <tr>\n",
        "      <th>0</th>\n",
-       "      <td>2.457268</td>\n",
-       "      <td>6.443569</td>\n",
+       "      <td>5.805660</td>\n",
+       "      <td>10.829947</td>\n",
        "    </tr>\n",
        "    <tr>\n",
        "      <th>1</th>\n",
-       "      <td>3.135322</td>\n",
-       "      <td>6.148335</td>\n",
+       "      <td>4.505769</td>\n",
+       "      <td>7.700637</td>\n",
        "    </tr>\n",
        "    <tr>\n",
        "      <th>2</th>\n",
-       "      <td>6.179865</td>\n",
-       "      <td>12.321621</td>\n",
+       "      <td>8.016641</td>\n",
+       "      <td>15.834128</td>\n",
        "    </tr>\n",
        "    <tr>\n",
        "      <th>3</th>\n",
-       "      <td>4.430829</td>\n",
-       "      <td>8.021383</td>\n",
+       "      <td>4.363379</td>\n",
+       "      <td>7.800512</td>\n",
        "    </tr>\n",
        "    <tr>\n",
        "      <th>4</th>\n",
-       "      <td>5.112592</td>\n",
-       "      <td>10.218929</td>\n",
+       "      <td>3.531965</td>\n",
+       "      <td>5.616152</td>\n",
        "    </tr>\n",
        "    <tr>\n",
        "      <th>5</th>\n",
-       "      <td>2.974205</td>\n",
-       "      <td>6.030322</td>\n",
+       "      <td>3.591809</td>\n",
+       "      <td>6.293603</td>\n",
        "    </tr>\n",
        "    <tr>\n",
        "      <th>6</th>\n",
-       "      <td>4.791755</td>\n",
-       "      <td>10.157226</td>\n",
+       "      <td>2.836593</td>\n",
+       "      <td>5.717766</td>\n",
        "    </tr>\n",
        "    <tr>\n",
        "      <th>7</th>\n",
-       "      <td>1.871502</td>\n",
-       "      <td>3.409193</td>\n",
+       "      <td>2.103368</td>\n",
+       "      <td>3.913067</td>\n",
        "    </tr>\n",
        "    <tr>\n",
        "      <th>8</th>\n",
-       "      <td>4.826732</td>\n",
-       "      <td>9.876410</td>\n",
+       "      <td>4.850006</td>\n",
+       "      <td>10.235146</td>\n",
        "    </tr>\n",
        "    <tr>\n",
        "      <th>9</th>\n",
-       "      <td>4.257244</td>\n",
-       "      <td>10.435702</td>\n",
+       "      <td>2.299206</td>\n",
+       "      <td>3.985440</td>\n",
        "    </tr>\n",
        "  </tbody>\n",
        "</table>\n",
@@ -2179,19 +2151,19 @@
       ],
       "text/plain": [
        "          x          y\n",
-       "0  2.457268   6.443569\n",
-       "1  3.135322   6.148335\n",
-       "2  6.179865  12.321621\n",
-       "3  4.430829   8.021383\n",
-       "4  5.112592  10.218929\n",
-       "5  2.974205   6.030322\n",
-       "6  4.791755  10.157226\n",
-       "7  1.871502   3.409193\n",
-       "8  4.826732   9.876410\n",
-       "9  4.257244  10.435702"
+       "0  5.805660  10.829947\n",
+       "1  4.505769   7.700637\n",
+       "2  8.016641  15.834128\n",
+       "3  4.363379   7.800512\n",
+       "4  3.531965   5.616152\n",
+       "5  3.591809   6.293603\n",
+       "6  2.836593   5.717766\n",
+       "7  2.103368   3.913067\n",
+       "8  4.850006  10.235146\n",
+       "9  2.299206   3.985440"
       ]
      },
-     "execution_count": 58,
+     "execution_count": 56,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -2205,7 +2177,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 59,
+   "execution_count": 57,
    "id": "0d1fcbc0-244a-45f3-a459-7b49e617d8bf",
    "metadata": {},
    "outputs": [
@@ -2215,13 +2187,13 @@
        "<Axes: xlabel='x', ylabel='y'>"
       ]
      },
-     "execution_count": 59,
+     "execution_count": 57,
      "metadata": {},
      "output_type": "execute_result"
     },
     {
      "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcYAAAHACAYAAAA4O8g0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAba0lEQVR4nO3dfYzU9Z3A8c+wPCgPO8qyKFtXWCOn9RGuSKP0OK1cG2upXnKabrBSStqk5dyjPe8sl7PVnoo2VbmShlZtEJ8wvd5hG1NrrOWhipZFpKE1p1Ae3BbRBXWXXc6VLHN/NGy+q7Assru/mfH1SuaP/c7MzieTkDe/x80VCoVCAAARETEo6wEAoJgIIwAkhBEAEsIIAAlhBICEMAJAQhgBICGMAJAYnPUA/e3AgQOxc+fOGDVqVORyuazHASADhUIh9u7dGzU1NTFoUM/bhGUfxp07d0ZtbW3WYwBQBJqamuKUU07p8TVlH8ZRo0ZFxF++jMrKyoynASALra2tUVtb29WEnpR9GA/uPq2srBRGgA+53hxSc/INACSEEQASwggACWEEgIQwAkBCGAEgIYwAkBBGAEgIIwAkhBEAEmV/SzgAStvW5rbY8ea+mFA1IurGjOj3zxNGAIrS2/vejYblG2PN5uautekTq2Nx/eTIDx/Sb59rVyoARalh+cZ4dsvubmvPbtkd1y1/sV8/VxgBKDpbm9tizebm6CwUuq13FgqxZnNzbNvd3m+fLYwAFJ0db+7r8fnte4QRgA+R8aOH9/j8hKr+OwlHGAEoOqdVj4zpE6uj4j1/WLgil4vpE6v79exUYQSgKC2unxzTTh/TbW3a6WNicf3kfv1cl2sAUJTyw4fEA3Onxrbd7bF9T7vrGAEgIqJuzMAE8SC7UgEgIYwAkBBGAEhkGsY1a9bEzJkzo6amJnK5XDz22GNdz+3fvz9uuOGGOPfcc2PEiBFRU1MT1157bezcuTO7gQEoe5mGsb29Pc4///z4wQ9+8L7n9u3bFxs2bIgbb7wxNmzYEP/zP/8TL7/8cnzuc5/LYFIAPixyhcJ7bkSXkVwuFytWrIgrr7zysK9pbGyMqVOnxo4dO+LUU0/t1e9tbW2NfD4fLS0tUVlZ2UfTAlBKjqYFJXW5RktLS+RyuTjhhBMO+5qOjo7o6Ojo+rm1tXUAJgOgXJTMyTfvvPNO3HDDDVFfX99j7RcuXBj5fL7rUVtbO4BTAlDqSiKM+/fvj6uvvjoKhUIsWbKkx9cuWLAgWlpauh5NTU0DNCUA5aDod6UejOKOHTvi17/+9RH3DQ8bNiyGDRs2QNMBUG6KOowHo7h58+ZYuXJlVFVVZT0SAGUu0zC2tbXFli1bun7etm1bbNy4MUaPHh3jxo2Lf/iHf4gNGzbE448/Hp2dnbFr166IiBg9enQMHTo0q7EBKGOZXq6xatWquOSSS963Pnv27Ljpppuirq7ukO9buXJlXHzxxb36DJdrAFAyl2tcfPHF0VOXi+QSSwA+RErirFQAGCjCCAAJYQSAhDACQEIYASAhjACQEEYASAgjACSEEQASwggACWEEgIQwAkBCGAEgIYwAkBBGAEgIIwAkhBEAEsIIAAlhBICEMAJAQhgBICGMAJAQRgBICCMAJIQRABLCCAAJYQSAhDACQEIYASAhjACQEEYASAgjACSEEQASwggACWEEgIQwAkBCGAEgIYwAkBBGAEgIIwAkhBEAEsIIAAlhBICEMAJAQhgBICGMAJAQRgBICCMAJIQRABLCCACJwVkPAJSWrc1tsePNfTGhakTUjRmR9TjQ54QR6JW3970bDcs3xprNzV1r0ydWx+L6yZEfPiTDyaBv2ZUK9ErD8o3x7Jbd3dae3bI7rlv+YkYTQf8QRuCItja3xZrNzdFZKHRb7ywUYs3m5ti2uz2jyaDvCSNwRDve3Nfj89v3CCPlQxiBIxo/eniPz0+ochIO5UMYgSM6rXpkTJ9YHRW5XLf1ilwupk+sdnYqZUUYgV5ZXD85pp0+ptvatNPHxOL6yRlNBP3D5RpAr+SHD4kH5k6NbbvbY/uedtcxUraEETgqdWME8VDc+KB8CCPAMXDjg/LjGCNQtrY2t8XKl9/o1+ss3fig/NhiBMrOQG3FHbzxwXulNz6wW7X02GIEys5AbcW58UF5EkagrAzk7evc+KA8CSNQVgZyK86ND8qTMAJlZaC34tz4oPxkGsY1a9bEzJkzo6amJnK5XDz22GPdni8UCvGtb30rxo0bF8cff3zMmDEjNm/enM2wQEkY6K24gzc+WHn9xbF0zgWx8vqL44G5U12qUcIyDWN7e3ucf/758YMf/OCQz3/3u9+N73//+/HDH/4wfvvb38aIESPi05/+dLzzzjsDPClQSrLYiqsbMyIuOWOs3adlIFcovOcIdUZyuVysWLEirrzyyoj4y9ZiTU1N/PM//3Ncf/31ERHR0tISJ510Utx///3x+c9/vle/t7W1NfL5fLS0tERlZWV/jQ8UIbev46CjaUHRHmPctm1b7Nq1K2bMmNG1ls/n4+Mf/3g899xzh31fR0dHtLa2dnsAH0624vggijaMu3btioiIk046qdv6SSed1PXcoSxcuDDy+XzXo7a2tl/nBKC8FG0YP6gFCxZES0tL16OpqSnrkYAiMBC3h6M8FO0t4U4++eSIiHj99ddj3LhxXeuvv/56TJo06bDvGzZsWAwbNqy/xwNKhJt8c7SKdouxrq4uTj755Hj66ae71lpbW+O3v/1tXHjhhRlOBpQSN/nmaGW6xdjW1hZbtmzp+nnbtm2xcePGGD16dJx66qkxf/78uOWWW2LixIlRV1cXN954Y9TU1HSduQrQEzf55oPINIzr16+PSy65pOvnb3zjGxERMXv27Lj//vvjX//1X6O9vT2+8pWvxNtvvx2f+MQn4pe//GUcd9xxWY0MlJDe3B5OGHmvormOsb+4jhE+vLY2t8Un71x92OdXXn+xMH5IlMV1jADHyk2++SCEEShrbvLN0SrayzUA+sLBm3y7PRy9JYzAh0LdGEGkd+xKBYCEMAJAQhgBICGMAJAQRgBICCMAJIQRABLCCAAJYQSAhDACQEIYASAhjACQEEYASAgjACSEEQASwggACWEEgIQwAkBCGAEgIYwAkBBGAEgIIwAkhBEAEsIIAAlhBICEMAJAQhgBICGMAJAQRgBICCMAJIQRABLCCAAJYQSAhDACQEIYASAhjACQEEYASAgjACSEEQASwggACWEEgIQwAkBCGAEgIYwAkBBGAEgIIwAkhBEAEsIIAAlhBICEMAJAQhgBICGMAJAQRgBICCMAJIQRABLCCAAJYQSAhDACQEIYASAhjACQEEYASAgjACSEEQASg7MeAPhw2NrcFjve3BcTqkZE3ZgRWY8Dh1XUYezs7IybbropHnroodi1a1fU1NTEF7/4xfj3f//3yOVyWY8H9MLb+96NhuUbY83m5q616ROrY3H95MgPH5LhZHBoRR3GO+64I5YsWRLLli2Ls88+O9avXx9z5syJfD4fDQ0NWY8H9ELD8o3x7Jbd3dae3bI7rlv+Yjwwd2pGU8HhFXUY165dG1dccUVcfvnlERExYcKEWL58eaxbty7jyYDe2Nrc1m1L8aDOQiHWbG6Obbvb7Val6BT1yTcXXXRRPP300/HKK69ERMTvfve7eOaZZ+Kyyy477Hs6OjqitbW12wPIxo439/X4/PY97QM0CfReUW8xfvOb34zW1tY488wzo6KiIjo7O+PWW2+NWbNmHfY9CxcujJtvvnkApwQOZ/zo4T0+P6HK1iLFp6i3GH/yk5/Eww8/HI888khs2LAhli1bFt/73vdi2bJlh33PggULoqWlpevR1NQ0gBMDqdOqR8b0idVR8Z6T5SpyuZg+sdpuVIpSrlAoFLIe4nBqa2vjm9/8ZsybN69r7ZZbbomHHnoo/vd//7dXv6O1tTXy+Xy0tLREZWVlf40KHEbLvv1x3fIXnZVKpo6mBUe9K3X27Nkxd+7cmD59+gcesLf27dsXgwZ136itqKiIAwcO9PtnA30jP3xIPDB3amzb3R7b97S7jpGid9RhbGlpiRkzZsT48eNjzpw5MXv27PjIRz7SH7PFzJkz49Zbb41TTz01zj777HjxxRfjrrvuii996Uv98nlA/6kbI4iUhg+0K7W5uTkefPDBWLZsWbz00ksxY8aMmDt3blxxxRUxZEjf7RrZu3dv3HjjjbFixYp44403oqamJurr6+Nb3/pWDB06tFe/w65UAI6mBcd8jHHDhg2xdOnSuO+++2LkyJFxzTXXxNe+9rWYOHHisfzaPiOMABxNC47prNTXXnstnnrqqXjqqaeioqIiPvOZz8SmTZvirLPOirvvvvtYfjUAZOKow7h///747//+7/jsZz8b48ePj//6r/+K+fPnx86dO2PZsmXxq1/9Kn7yk5/Ed77znf6YFwD61VGffDNu3Lg4cOBA1NfXx7p162LSpEnve80ll1wSJ5xwQh+MBwAD66jDePfdd8dVV10Vxx133GFfc8IJJ8S2bduOaTAAyMJRh/ELX/hCf8wBAEWhqG8JBwADTRgBICGMAJAQRgBICCMAJIQRABLCCAAJYQSAhDACQEIYASAhjACQEEYASAgjACSEEQASwggACWEEgIQwAkBCGAEgIYwAkBBGAEgIIwAkhBEAEsIIAAlhBICEMAJAQhgBICGMAJAQRgBICCMAJIQRABLCCAAJYQSAhDACQEIYASAhjACQEEYASAgjACSEEQASwggACWEEgIQwAkBCGAEgIYwAkBBGAEgIIwAkBmc9AP1va3Nb7HhzX0yoGhF1Y0ZkPQ5AURPGMvb2vnejYfnGWLO5uWtt+sTqWFw/OfLDh2Q4GUDxsiu1jDUs3xjPbtndbe3ZLbvjuuUvZjQRQPETxjK1tbkt1mxujs5Codt6Z6EQazY3x7bd7RlNBlDchLFM7XhzX4/Pb98jjACHIoxlavzo4T0+P6HKSTgAhyKMZeq06pExfWJ1VORy3dYrcrmYPrHa2akAhyGMZWxx/eSYdvqYbmvTTh8Ti+snZzQRQPFzuUYZyw8fEg/MnRrbdrfH9j3trmME6AVh/BCoGyOIAL1lVyoAJIQRABJ2pVLy3AsW6EvCSMlyL1igP9iVSslyL1igPwgjJcm9YIH+IowUla3NbbHy5TeOGDb3ggX6S9GH8c9//nNcc801UVVVFccff3yce+65sX79+qzHoo+9ve/duPbH6+KTd66OOUsb45LvrYprf7wuWvbtP+Tr3QsW6C9FHca33norpk2bFkOGDIknnngiXnrppbjzzjvjxBNPzHo0+tjRHi90L1igvxT1Wal33HFH1NbWxtKlS7vW6urqMpyI/nDweOF7pccLDxW6xfWT47rlL3Z7r3vBAseqqMP485//PD796U/HVVddFatXr46PfOQj8bWvfS2+/OUvH/Y9HR0d0dHR0fVza2vrQIzKMejN8cJDhdG9YIH+UNS7Urdu3RpLliyJiRMnxpNPPhlf/epXo6GhIZYtW3bY9yxcuDDy+XzXo7a2dgAn5oM41uOFdWNGxCVnjBVFoE/kCoX3nO9eRIYOHRpTpkyJtWvXdq01NDREY2NjPPfcc4d8z6G2GGtra6OlpSUqKyv7fWY+mGt/vC6e3bK72+UXFblcTDt9TDwwd2qGkwHloLW1NfL5fK9aUNRbjOPGjYuzzjqr29pHP/rRePXVVw/7nmHDhkVlZWW3B8XP344EikVRH2OcNm1avPzyy93WXnnllRg/fnxGE9FfHC8EikVRh/HrX/96XHTRRXHbbbfF1VdfHevWrYt77rkn7rnnnqxHo5/425FA1op6V+oFF1wQK1asiOXLl8c555wT//Ef/xGLFi2KWbNmZT0aAGWqqE++6QtHc8AVgPJUNiffAMBAE0YASAgjACSEEQASwggACWEEgIQwAkBCGAEgIYwAkBBGAEgIIwAkhBEAEsIIAAlhBICEMAJAQhgBICGMAJAQRgBICCMAJIQRABLCCAAJYQSAhDACQEIYASAhjACQEEYASAgjACSEEQASwggACWEEgIQwAkBCGAEgIYwAkBBGAEgIIwAkhBEAEsIIAAlhBICEMAJAQhgBICGMAJAQRgBICCMAJIQRABLCCAAJYQSAhDACQEIYASAhjACQEEYASAgjACSEEQASwggACWEEgIQwAkBCGAEgIYwAkBBGAEgIIwAkhBEAEsIIAAlhBICEMAJAQhgBICGMAJAQRgBICCMAJIQRABIlFcbbb789crlczJ8/P+tRAChTJRPGxsbG+NGPfhTnnXde1qMAUMZKIoxtbW0xa9asuPfee+PEE0/MehwAylhJhHHevHlx+eWXx4wZM4742o6Ojmhtbe32AIDeGpz1AEfy6KOPxoYNG6KxsbFXr1+4cGHcfPPN/TwVAOWqqLcYm5qa4p/+6Z/i4YcfjuOOO65X71mwYEG0tLR0PZqamvp5SgDKSa5QKBSyHuJwHnvssfj7v//7qKio6Frr7OyMXC4XgwYNio6Ojm7PHUpra2vk8/loaWmJysrK/h4ZgCJ0NC0o6l2pl156aWzatKnb2pw5c+LMM8+MG2644YhRBICjVdRhHDVqVJxzzjnd1kaMGBFVVVXvWweAvlDUxxgBYKAV9RbjoaxatSrrEQAoY7YYASAhjACQEEYASAgjACSEEQASwggACWEEgIQwAkBCGAEgIYwAkBBGAEgIIwAkSu4m4lnZ2twWO97cFxOqRkTdmBFZjwNAPxHGI3h737vRsHxjrNnc3LU2fWJ1LK6fHPnhQzKcDID+YFfqETQs3xjPbtndbe3ZLbvjuuUvZjQRAP1JGHuwtbkt1mxujs5Codt6Z6EQazY3x7bd7RlNBkB/EcYe7HhzX4/Pb98jjADlRhh7MH708B6fn1DlJByAciOMPTitemRMn1gdFblct/WKXC6mT6x2dipAGRLGI1hcPzmmnT6m29q008fE4vrJGU0EQH9yucYR5IcPiQfmTo1tu9tj+5521zEClDlh7KW6MYII8GFgVyoAJIQRABLCCAAJYQSAhDACQEIYASAhjACQEEYASAgjACSEEQASwggAibK/V2qhUIiIiNbW1ownASArBxtwsAk9Kfsw7t27NyIiamtrM54EgKzt3bs38vl8j6/JFXqTzxJ24MCB2LlzZ4waNSpy7/mDw/2htbU1amtro6mpKSorK/v988qV77Fv+B6Pne+wb2T9PRYKhdi7d2/U1NTEoEE9H0Us+y3GQYMGxSmnnDLgn1tZWekfUR/wPfYN3+Ox8x32jSy/xyNtKR7k5BsASAgjACSEsY8NGzYsvv3tb8ewYcOyHqWk+R77hu/x2PkO+0YpfY9lf/INABwNW4wAkBBGAEgIIwAkhBEAEsLYRxYuXBgXXHBBjBo1KsaOHRtXXnllvPzyy1mPVVKWLFkS5513XtcFwBdeeGE88cQTWY9V8m6//fbI5XIxf/78rEcpKTfddFPkcrlujzPPPDPrsUrSn//857jmmmuiqqoqjj/++Dj33HNj/fr1WY91WMLYR1avXh3z5s2L559/Pp566qnYv39/fOpTn4r29vasRysZp5xyStx+++3xwgsvxPr16+OTn/xkXHHFFfGHP/wh69FKVmNjY/zoRz+K8847L+tRStLZZ58dr732WtfjmWeeyXqkkvPWW2/FtGnTYsiQIfHEE0/ESy+9FHfeeWeceOKJWY92WGV/S7iB8stf/rLbz/fff3+MHTs2XnjhhZg+fXpGU5WWmTNndvv51ltvjSVLlsTzzz8fZ599dkZTla62traYNWtW3HvvvXHLLbdkPU5JGjx4cJx88slZj1HS7rjjjqitrY2lS5d2rdXV1WU40ZHZYuwnLS0tERExevTojCcpTZ2dnfHoo49Ge3t7XHjhhVmPU5LmzZsXl19+ecyYMSPrUUrW5s2bo6amJk477bSYNWtWvPrqq1mPVHJ+/vOfx5QpU+Kqq66KsWPHxuTJk+Pee+/Neqwe2WLsBwcOHIj58+fHtGnT4pxzzsl6nJKyadOmuPDCC+Odd96JkSNHxooVK+Kss87KeqyS8+ijj8aGDRuisbEx61FK1sc//vG4//7744wzzojXXnstbr755vibv/mb+P3vfx+jRo3KerySsXXr1liyZEl84xvfiH/7t3+LxsbGaGhoiKFDh8bs2bOzHu+Q3PmmH3z1q1+NJ554Ip555plM/rJHKXv33Xfj1VdfjZaWlvjpT38a9913X6xevVocj0JTU1NMmTIlnnrqqa5jixdffHFMmjQpFi1alO1wJeztt9+O8ePHx1133RVz587NepySMXTo0JgyZUqsXbu2a62hoSEaGxvjueeey3Cyw7MrtY/94z/+Yzz++OOxcuVKUfwAhg4dGqeffnp87GMfi4ULF8b5558f//mf/5n1WCXlhRdeiDfeeCP++q//OgYPHhyDBw+O1atXx/e///0YPHhwdHZ2Zj1iSTrhhBPir/7qr2LLli1Zj1JSxo0b977/2H70ox8t6t3SdqX2kUKhENddd12sWLEiVq1aVfQHl0vFgQMHoqOjI+sxSsqll14amzZt6rY2Z86cOPPMM+OGG26IioqKjCYrbW1tbfHHP/4xvvCFL2Q9SkmZNm3a+y5de+WVV2L8+PEZTXRkwthH5s2bF4888kj87Gc/i1GjRsWuXbsi4i9/GPP444/PeLrSsGDBgrjsssvi1FNPjb1798YjjzwSq1atiieffDLr0UrKqFGj3ndse8SIEVFVVeWY91G4/vrrY+bMmTF+/PjYuXNnfPvb346Kioqor6/PerSS8vWvfz0uuuiiuO222+Lqq6+OdevWxT333BP33HNP1qMdljD2kSVLlkTEX47lpJYuXRpf/OIXB36gEvTGG2/EtddeG6+99lrk8/k477zz4sknn4y/+7u/y3o0PoT+9Kc/RX19fezZsyeqq6vjE5/4RDz//PNRXV2d9Wgl5YILLogVK1bEggUL4jvf+U7U1dXFokWLYtasWVmPdlhOvgGAhJNvACAhjACQEEYASAgjACSEEQASwggACWEEgIQwAkBCGAEgIYwAkBBGKFPNzc1x8sknx2233da1tnbt2hg6dGg8/fTTGU4Gxc29UqGM/eIXv4grr7wy1q5dG2eccUZMmjQprrjiirjrrruyHg2KljBCmZs3b1786le/iilTpsSmTZuisbExhg0blvVYULSEEcrc//3f/8U555wTTU1N8cILL8S5556b9UhQ1BxjhDL3xz/+MXbu3BkHDhyI7du3Zz0OFD1bjFDG3n333Zg6dWpMmjQpzjjjjFi0aFFs2rQpxo4dm/VoULSEEcrYv/zLv8RPf/rT+N3vfhcjR46Mv/3bv418Ph+PP/541qNB0bIrFcrUqlWrYtGiRfHggw9GZWVlDBo0KB588MH4zW9+E0uWLMl6PChathgBIGGLEQASwggACWEEgIQwAkBCGAEgIYwAkBBGAEgIIwAkhBEAEsIIAAlhBICEMAJA4v8BbHXil2GKfP8AAAAASUVORK5CYII=",
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcYAAAHACAYAAAA4O8g0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAf5ElEQVR4nO3de3BU9f3/8deSwAIhWc1NiOSGRFBATAewGAbJQLUMomiLmkFkwGmrZgh4G0g7iK1KwOlYKkUU/Q4ElajVhnrHSoUoeAEhSG+QSAIpKZJ42SWJLpic3x8O+/uskBAku+dk9/mY2T/y2d3se7Wdp+eze3JclmVZAgAAkqQedg8AAICTEEYAAAyEEQAAA2EEAMBAGAEAMBBGAAAMhBEAAANhBADAEGv3AKHW1tam+vp6xcfHy+Vy2T0OAMAmlmXp6NGjSktLU48e7R8XRnwY6+vrlZ6ebvcYAACHqKur08CBA9u9P+LDGB8fL+m7fxAJCQk2TwMAsIvP51N6enqgC+2J+DCe2D5NSEggjACA036sxpdvAAAwEEYAAAyEEQAAA2EEAMBAGAEAMNgaxoqKCk2dOlVpaWlyuVzasGHDSY/597//rWuuuUYej0dxcXEaPXq0Dh48GP5hAQBRwdYwNjc3a+TIkVq5cuUp7//00081btw4DR06VJs3b9Ynn3yiRYsWqXfv3mGeFAAQLVyWZVl2DyF9d15JeXm5pk2bFli76aab1LNnTz399NM/+Pf6fD55PB55vV7OYwSAKNbZHjj2M8a2tja99tpruvDCC3XVVVcpNTVVl1122Sm3W01+v18+ny/oBgBAZzk2jEeOHFFTU5OWLl2qn/70p3rrrbd03XXX6frrr9eWLVvafV5JSYk8Hk/gxt9JBQCcCcdupdbX1+v8889XQUGB1q9fH3jcNddco7i4OJWVlZ3y9/j9fvn9/sDPJ/42HlupANA97W9o0oEvWpSVFKfs5Lgf/Hs6u5Xq2L+VmpycrNjYWF188cVB6xdddJHee++9dp/ndrvldrtDPR4AIMS+ajmmorJKVVQ1BNbG56RoRUGuPH17hux1HbuV2qtXL40ePVp79+4NWt+3b58yMzNtmgoAEC5FZZXaWt0YtLa1ulFzy3aF9HVtPWJsampSdXV14OeamhpVVlYqMTFRGRkZuvfee3XjjTdq/Pjxys/P15tvvqlXXnlFmzdvtm9oAEDI7W9oCjpSPKHVslRR1aCaxuaz2lbtiK1HjDt27FBubq5yc3MlSXfddZdyc3N13333SZKuu+46Pf7443r44Yc1YsQIPfXUU3rppZc0btw4O8cGAITYgS9aOry/9vPmkL22rUeMEyZM0Om++zNnzhzNmTMnTBMBAJwgM7Fvh/dnJYXmaFFy8GeMAIDoNSiln8bnpCjmexcVjnG5ND4nJWTbqBJhBAA41IqCXOUNTg5ayxucrBUFuSF9XceergEAiG6evj217tYxqmlsVu3nzWd9HmNnEUYAgKNlJ4cniCewlQoAgIEwAgBgIIwAABgIIwAABsIIAICBMAIAYCCMAAAYCCMAAAbCCACAgTACAGAgjAAAGAgjAAAGwggAgIEwAgBgIIwAABgIIwAABsIIAICBMAIAYCCMAAAYCCMAAAbCCACAgTACAGAgjAAAGAgjAAAGwggAgIEwAgBgIIwAABgIIwAABsIIAICBMAIAYCCMAAAYCCMAAAbCCACAgTACAGAgjAAAGAgjAAAGwggAgIEwAgBgIIwAABgIIwAABsIIAICBMAIAYCCMAAAYCCMAAAZbw1hRUaGpU6cqLS1NLpdLGzZsaPext912m1wul5YvXx62+QAA0cfWMDY3N2vkyJFauXJlh48rLy/XBx98oLS0tDBNBgCIVrF2vvjkyZM1efLkDh9z6NAhzZ07Vxs3btSUKVPCNBkAIFrZGsbTaWtr08yZM3Xvvfdq2LBhnXqO3++X3+8P/Ozz+UI1HgAgAjn6yzfLli1TbGysioqKOv2ckpISeTyewC09PT2EEwIAIo1jw/jxxx/rj3/8o9auXSuXy9Xp5xUXF8vr9QZudXV1IZwSABBpHBvGd999V0eOHFFGRoZiY2MVGxurAwcO6O6771ZWVla7z3O73UpISAi6AQDQWY79jHHmzJmaNGlS0NpVV12lmTNnavbs2TZNBQCIdLaGsampSdXV1YGfa2pqVFlZqcTERGVkZCgpKSno8T179lT//v01ZMiQcI8KAIgStoZxx44dys/PD/x81113SZJmzZqltWvX2jQVACCa2RrGCRMmyLKsTj++trY2dMMAACAHf/kGAAA7EEYAAAyEEQAAA2EEAMBAGAEAMBBGAAAMhBEAAANhBADAQBgBADAQRgAADIQRAAADYQQAwEAYAQAwEEYAAAyEEQAAA2EEAMBAGAEAMBBGAAAMhBEAAANhBADAQBgBADAQRgAADIQRAAADYQQAwEAYAQAwEEYAAAyEEQAAA2EEAMBAGAEAMBBGAAAMhBEAAANhBADAQBgBADAQRgAADIQRAAADYQQAwEAYAQAwEEYAAAyEEQAAA2EEAMBAGAEAMBBGAAAMhBEAAANhBADAQBgBADAQRgAADIQRAAADYQQAwGBrGCsqKjR16lSlpaXJ5XJpw4YNgfuOHz+uBQsWaMSIEYqLi1NaWppuueUW1dfX2zcwACDi2RrG5uZmjRw5UitXrjzpvpaWFu3cuVOLFi3Szp079Ze//EV79+7VNddcY8OkAIBo4bIsy7J7CElyuVwqLy/XtGnT2n3M9u3bNWbMGB04cEAZGRmd+r0+n08ej0der1cJCQldNC0AoLvpbA9iwzjTWfN6vXK5XDrnnHPafYzf75ff7w/87PP5wjAZACBSdJsv33zzzTdasGCBCgoKOix9SUmJPB5P4Jaenh7GKQEA3V23COPx48d1ww03yLIsrVq1qsPHFhcXy+v1Bm51dXVhmhIAEAkcv5V6IooHDhzQ3//+99N+Tuh2u+V2u8M0HQAg0jg6jCeiWFVVpXfeeUdJSUl2jwQAiHC2hrGpqUnV1dWBn2tqalRZWanExEQNGDBAP//5z7Vz5069+uqram1t1eHDhyVJiYmJ6tWrl11jAwAimK2na2zevFn5+fknrc+aNUv333+/srOzT/m8d955RxMmTOjUa3C6BgBA6iana0yYMEEdddkhp1gCAKJIt/hWKgAA4UIYAQAwEEYAAAyEEQAAA2EEAMBAGAEAMBBGAAAMhBEAAANhBADAQBgBADAQRgAADIQRAAADYQQAwEAYAQAwEEYAAAyEEQAAA2EEAMBAGAEAMBBGAAAMhBEAAANhBADAQBgBADAQRgAADLF2DwAA37e/oUkHvmhRVlKcspPj7B4HUYYwAnCMr1qOqaisUhVVDYG18TkpWlGQK0/fnjZOhmjCVioAxygqq9TW6sagta3VjZpbtsumiRCNCCMAR9jf0KSKqga1WlbQeqtlqaKqQTWNzTZNhmhDGAE4woEvWjq8v/ZzwojwIIwAHCEzsW+H92cl8SUchAdhBOAIg1L6aXxOimJcrqD1GJdL43NS+HYqwoYwAnCMFQW5yhucHLSWNzhZKwpybZoI0YjTNQA4hqdvT627dYxqGptV+3kz5zHCFoQRgONkJxNE2IetVAAADIQRAAADYQQAwEAYAQAwEEYAAAyEEQAAA2EEAMBAGAEAMHCCP9DNcHV7ILQII9BNcHV7IDzYSgW6Ca5uD4QHYQS6Aa5uD4QPYQS6Aa5uD4QPYQS6Aa5uD4SPrWGsqKjQ1KlTlZaWJpfLpQ0bNgTdb1mW7rvvPg0YMEB9+vTRpEmTVFVVZc+wgI24uj0QPraGsbm5WSNHjtTKlStPef/DDz+sRx99VI8//rg+/PBDxcXF6aqrrtI333wT5kkB+3F1eyA8XJb1vU/zbeJyuVReXq5p06ZJ+u5oMS0tTXfffbfuueceSZLX69V5552ntWvX6qabburU7/X5fPJ4PPJ6vUpISAjV+EDYcHV74IfpbA8c+xljTU2NDh8+rEmTJgXWPB6PLrvsMr3//vs2TgbYKzs5TvlDUokiECKOPcH/8OHDkqTzzjsvaP28884L3Hcqfr9ffr8/8LPP5wvNgACAiOTYI8YfqqSkRB6PJ3BLT0+3eyQAQDdyxmGcNWuWKioqQjFLkP79+0uSPvvss6D1zz77LHDfqRQXF8vr9QZudXV1IZ0TABBZzjiMXq9XkyZNUk5OjpYsWaJDhw6FYi5lZ2erf//+2rRpU2DN5/Ppww8/1NixY9t9ntvtVkJCQtANAIDOOuMwbtiwQYcOHdLtt9+u559/XllZWZo8ebJefPFFHT9+/Ix+V1NTkyorK1VZWSnpuy/cVFZW6uDBg3K5XJo/f74efPBBvfzyy9qzZ49uueUWpaWlBb65CgBAVzvr0zV27typNWvW6KmnnlK/fv10880364477lBOTs5pn7t582bl5+eftD5r1iytXbtWlmVp8eLFWr16tb766iuNGzdOjz32mC688MJOz8fpGgAAqfM9OKsw/u9//9O6deu0Zs0a/fe//9XPfvYzHTp0SFu2bNHDDz+sO++884f+6i5DGAEAUgjPYzx+/LheeuklXX311crMzNSf//xnzZ8/X/X19SotLdXbb7+tF154Qb/73e/O6g0AAGCHMz6PccCAAWpra1NBQYE++ugjXXrppSc9Jj8/X+ecc04XjAcAQHidcRj/8Ic/aPr06erdu3e7jznnnHNUU1NzVoMBAGCHMw7jzJkzQzEHAACOEHF/+QYAgLNBGAEAMBBGAAAMhBEAAANhBADAQBgBADAQRgAADIQRAAADYQQAwEAYAQAwEEYAAAyEEQAAA2EEAMBAGAEAMBBGAAAMhBEAAANhBADAQBgBADAQRgAADIQRAAADYQQAwEAYAQAwEEYAAAyEEQAAA2EEAMBAGAEAMBBGAAAMhBEAAANhBADAQBgBADAQRgAADIQRAAADYQQAwEAYAQAwEEYAAAyEEQAAA2EEAMBAGAEAMBBGAAAMhBEAAANhBADAQBgBADAQRgAADIQRAACDo8PY2tqqRYsWKTs7W3369NEFF1ygBx54QJZl2T0aACBCxdo9QEeWLVumVatWqbS0VMOGDdOOHTs0e/ZseTweFRUV2T0eACACOTqM27Zt07XXXqspU6ZIkrKyslRWVqaPPvrI5skAAJHK0Vupl19+uTZt2qR9+/ZJknbv3q333ntPkydPbvc5fr9fPp8v6AYAQGc5+ohx4cKF8vl8Gjp0qGJiYtTa2qqHHnpIM2bMaPc5JSUl+u1vfxvGKQEAkcTRR4wvvPCCnn32Wa1fv147d+5UaWmpfv/736u0tLTd5xQXF8vr9QZudXV1YZwYANDduSwHf8UzPT1dCxcuVGFhYWDtwQcf1DPPPKP//Oc/nfodPp9PHo9HXq9XCQkJoRoVUWp/Q5MOfNGirKQ4ZSfH2T0OgA50tgeO3kptaWlRjx7BB7UxMTFqa2uzaSLgO1+1HFNRWaUqqhoCa+NzUrSiIFeevj1tnAzA2XL0VurUqVP10EMP6bXXXlNtba3Ky8v1yCOP6LrrrrN7NES5orJKba1uDFrbWt2ouWW7bJoIQFdx9BHjihUrtGjRIt1xxx06cuSI0tLS9Ktf/Ur33Xef3aMhiu1vaAo6Ujyh1bJUUdWgmsbmoG1VtluB7sXRYYyPj9fy5cu1fPlyu0cBAg580dLh/bWffxdGtluB7snRW6mAE2Um9u3w/qyk744K2W4FuifCCJyhQSn9ND4nRTEuV9B6jMul8Tkpyk6OC2y3tn7vS9/mdisAZyKMwA+woiBXeYOTg9byBidrRUGupM5ttwJwJkd/xgg4ladvT627dYxqGptV+3nzSV+s6ex2KwDnIYzAWchOPvU3TU9st26tbgzaTo1xuZQ3OJlvpwIOxlYqECKn224F4EwcMQIhcrrtVgDORBiBEGtvuxWAM7GVCgCAgTACAGAgjAAAGAgjAAAGwggAgIEwAgBgIIwAABgIIwAABsIIAICBMAIAYCCMAAAYCCMAAAbCCACAgTACAGAgjAAAGAgjAAAGwggAgIEwAgBgIIwAABgIIwAABsIIAICBMAIAYCCMAAAYCCMAAAbCCACAgTACAGAgjAAAGAgjAAAGwggAgIEwAgBgIIwAABhi7R4AkKT9DU068EWLspLilJ0cZ/c4AKIYYYStvmo5pqKySlVUNQTWxuekaEVBrjx9e9o4GYBoxVYqbFVUVqmt1Y1Ba1urGzW3bJdNEwGIdoQRttnf0KSKqga1WlbQeqtlqaKqQTWNzTZNBiCaEUbY5sAXLR3eX/s5YQQQfoQRtslM7Nvh/VlJfAkHQPgRRthmUEo/jc9JUYzLFbQe43JpfE4K304FYAvCCFutKMhV3uDkoLW8wclaUZBr00QAoh2na8BWnr49te7WMappbFbt582cxwjAdo4/Yjx06JBuvvlmJSUlqU+fPhoxYoR27Nhh91joYtnJccofkkoUAdjO0UeMX375pfLy8pSfn6833nhDKSkpqqqq0rnnnmv3aACACOXoMC5btkzp6elas2ZNYC07O9vGiQAAkc7RW6kvv/yyRo0apenTpys1NVW5ubl68sknO3yO3++Xz+cLugEA0FmODuP+/fu1atUq5eTkaOPGjbr99ttVVFSk0tLSdp9TUlIij8cTuKWnp4dxYgBAd+eyrO/9PS4H6dWrl0aNGqVt27YF1oqKirR9+3a9//77p3yO3++X3+8P/Ozz+ZSeni6v16uEhISQzwwAcCafzyePx3PaHjj6iHHAgAG6+OKLg9YuuugiHTx4sN3nuN1uJSQkBN0AAOgsR4cxLy9Pe/fuDVrbt2+fMjMzbZoIABDpHB3GO++8Ux988IGWLFmi6upqrV+/XqtXr1ZhYaHdozna/oYmvbP3CFenAIAfwNGfMUrSq6++quLiYlVVVSk7O1t33XWXfvGLX3T6+Z3dU44EXPQXANrX2R44PoxnK5rCeMv/faSt1Y1B1zeMcbmUNzhZ624dY+NkAGC/iPjyDTqvO170ly1fAE7k6L98g87rzEV/nfJ3SNnyBeBkHDFGiO500d+iskptrW4MWtta3ai5ZbtsmggA/j/CGCG6y0V/u+OWL4DoQhgjSHe46G9ntnwBwE58xhhBusNFf7vTli+A6EQYI1B2svOCeMKJLd/2Titx6twAogdbqQi77rDlCyB6ccSIsOsOW74AohdhhG2cvOULIHqxlQoAgIEwAgBgIIwAABgIIwAABsIIAICBMAIAYCCMAAAYCCMAAAbCCACAgTACAGAgjAAAGAgjAAAGwggAgIEwAgBgIIwAABgIIwAABsIIAICBMAIAYCCMAAAYCCMAAAbCCACAgTACAGAgjAAAGAgjAAAGwggAgIEwAgBgIIwAABgIIwAABsIIAICBMAIAYCCMAAAYCCMAAAbCCACAgTACAGAgjAAAGAgjAAAGwggAgKFbhXHp0qVyuVyaP3++3aMAACJUrN0DdNb27dv1xBNP6JJLLrF7lNPa39CkA1+0KCspTtnJcXaPAwA4A90ijE1NTZoxY4aefPJJPfjgg3aP066vWo6pqKxSFVUNgbXxOSlaUZArT9+eNk4GAOisbrGVWlhYqClTpmjSpEm2zbC/oUnv7D2imsbmdh9TVFaprdWNQWtbqxs1t2xXqMcDAHQRxx8xPvfcc9q5c6e2b9/eqcf7/X75/f7Azz6f76xev7NHgfsbmoIec0KrZamiqkE1jc1sqwJAN+DoI8a6ujrNmzdPzz77rHr37t2p55SUlMjj8QRu6enpZzVDZ48CD3zR0uHvqf28/SNNAIBzODqMH3/8sY4cOaIf/ehHio2NVWxsrLZs2aJHH31UsbGxam1tPek5xcXF8nq9gVtdXd0Pfv0TR4GtlhW0bh4FnpCZ2LfD35WVxNEiAHQHjt5KnThxovbs2RO0Nnv2bA0dOlQLFixQTEzMSc9xu91yu91d8vqdOQo8sT06KKWfxuekaGt1Y1BIY1wu5Q1OZhsVALoJR4cxPj5ew4cPD1qLi4tTUlLSSeuhcKZHgSsKcjW3bFfQZ415g5O1oiA3JPMBALqeo8NotzM9CvT07al1t45RTWOzaj9v5jxGAOiGXJb1vQ/QIozP55PH45HX61VCQsIZP9/bcvyko0DOTQSA7qezPeCI8TQ4CgSA6EIYOyk7mSACQDRw9OkaAACEG2EEAMBAGAEAMBBGAAAMhBEAAANhBADAQBgBADAQRgAADIQRAAADYQQAwEAYAQAwRPzfSj1x8RCfz2fzJAAAO53owOkuKhXxYTx69KgkKT093eZJAABOcPToUXk8nnbvj/jrMba1tam+vl7x8fFyuVwdPtbn8yk9PV11dXU/6NqN3Q3vN3JF03uVouv9RtN7lbr2/VqWpaNHjyotLU09erT/SWLEHzH26NFDAwcOPKPnJCQkRMX/4E7g/UauaHqvUnS932h6r1LXvd+OjhRP4Ms3AAAYCCMAAAbCaHC73Vq8eLHcbrfdo4QF7zdyRdN7laLr/UbTe5Xseb8R/+UbAADOBEeMAAAYCCMAAAbCCACAgTACAGAgjJJKSko0evRoxcfHKzU1VdOmTdPevXvtHitkVq1apUsuuSRwwuzYsWP1xhtv2D1WWCxdulQul0vz58+3e5SQuP/+++VyuYJuQ4cOtXuskDl06JBuvvlmJSUlqU+fPhoxYoR27Nhh91ghkZWVddK/W5fLpcLCQrtH63Ktra1atGiRsrOz1adPH11wwQV64IEHTvs3TrtKxP/lm87YsmWLCgsLNXr0aH377bf69a9/rSuvvFL/+te/FBcXZ/d4XW7gwIFaunSpcnJyZFmWSktLde2112rXrl0aNmyY3eOFzPbt2/XEE0/okksusXuUkBo2bJjefvvtwM+xsZH5f/Mvv/xSeXl5ys/P1xtvvKGUlBRVVVXp3HPPtXu0kNi+fbtaW1sDP//jH//QT37yE02fPt3GqUJj2bJlWrVqlUpLSzVs2DDt2LFDs2fPlsfjUVFRUegHsHCSI0eOWJKsLVu22D1K2Jx77rnWU089ZfcYIXP06FErJyfH+tvf/mZdccUV1rx58+weKSQWL15sjRw50u4xwmLBggXWuHHj7B7DNvPmzbMuuOACq62tze5RutyUKVOsOXPmBK1df/311owZM8Ly+mylnoLX65UkJSYm2jxJ6LW2tuq5555Tc3Ozxo4da/c4IVNYWKgpU6Zo0qRJdo8SclVVVUpLS9OgQYM0Y8YMHTx40O6RQuLll1/WqFGjNH36dKWmpio3N1dPPvmk3WOFxbFjx/TMM89ozpw5p704Qnd0+eWXa9OmTdq3b58kaffu3Xrvvfc0efLk8AwQlvx2I62trdaUKVOsvLw8u0cJqU8++cSKi4uzYmJiLI/HY7322mt2jxQyZWVl1vDhw62vv/7asiwroo8YX3/9deuFF16wdu/ebb355pvW2LFjrYyMDMvn89k9Wpdzu92W2+22iouLrZ07d1pPPPGE1bt3b2vt2rV2jxZyzz//vBUTE2MdOnTI7lFCorW11VqwYIHlcrms2NhYy+VyWUuWLAnb6xPG77ntttuszMxMq66uzu5RQsrv91tVVVXWjh07rIULF1rJycnWP//5T7vH6nIHDx60UlNTrd27dwfWIjmM3/fll19aCQkJEblN3rNnT2vs2LFBa3PnzrV+/OMf2zRR+Fx55ZXW1VdfbfcYIVNWVmYNHDjQKisrsz755BNr3bp1VmJiYtj+o4cwGgoLC62BAwda+/fvt3uUsJs4caL1y1/+0u4xulx5ebklyYqJiQncJFkul8uKiYmxvv32W7tHDLlRo0ZZCxcutHuMLpeRkWHdeuutQWuPPfaYlZaWZtNE4VFbW2v16NHD2rBhg92jhMzAgQOtP/3pT0FrDzzwgDVkyJCwvH5kfl3tDFmWpblz56q8vFybN29Wdna23SOFXVtbm/x+v91jdLmJEydqz549QWuzZ8/W0KFDtWDBAsXExNg0WXg0NTXp008/1cyZM+0epcvl5eWddFrVvn37lJmZadNE4bFmzRqlpqZqypQpdo8SMi0tLSddSDgmJkZtbW1heX3CqO++mLF+/Xr99a9/VXx8vA4fPizpuwta9unTx+bpul5xcbEmT56sjIwMHT16VOvXr9fmzZu1ceNGu0frcvHx8Ro+fHjQWlxcnJKSkk5ajwT33HOPpk6dqszMTNXX12vx4sWKiYlRQUGB3aN1uTvvvFOXX365lixZohtuuEEfffSRVq9erdWrV9s9Wsi0tbVpzZo1mjVrVsSehiNJU6dO1UMPPaSMjAwNGzZMu3bt0iOPPKI5c+aEZ4CwHJc6nKRT3tasWWP3aCExZ84cKzMz0+rVq5eVkpJiTZw40XrrrbfsHitsIvkzxhtvvNEaMGCA1atXL+v888+3brzxRqu6utrusULmlVdesYYPH2653W5r6NCh1urVq+0eKaQ2btxoSbL27t1r9ygh5fP5rHnz5lkZGRlW7969rUGDBlm/+c1vLL/fH5bX57JTAAAYOI8RAAADYQQAwEAYAQAwEEYAAAyEEQAAA2EEAMBAGAEAMBBGAAAMhBEAAANhBADAQBiBCNXQ0KD+/ftryZIlgbVt27apV69e2rRpk42TAc7G30oFItjrr7+uadOmadu2bRoyZIguvfRSXXvttXrkkUfsHg1wLMIIRLjCwkK9/fbbGjVqlPbs2aPt27fL7XbbPRbgWIQRiHBff/21hg8frrq6On388ccaMWKE3SMBjsZnjECE+/TTT1VfX6+2tjbV1tbaPQ7geBwxAhHs2LFjGjNmjC699FINGTJEy5cv1549e5Sammr3aIBjEUYggt1777168cUXtXv3bvXr109XXHGFPB6PXn31VbtHAxyLrVQgQm3evFnLly/X008/rYSEBPXo0UNPP/203n33Xa1atcru8QDH4ogRAAADR4wAABgIIwAABsIIAICBMAIAYCCMAAAYCCMAAAbCCACAgTACAGAgjAAAGAgjAAAGwggAgIEwAgBg+H9iv/BzpaI/iAAAAABJRU5ErkJggg==",
       "text/plain": [
        "<Figure size 500x500 with 1 Axes>"
       ]
@@ -2236,26 +2208,26 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 60,
+   "execution_count": 58,
    "id": "8304b0fb",
    "metadata": {},
    "outputs": [
     {
      "data": {
       "text/plain": [
-       "array([[2.45726844],\n",
-       "       [3.13532163],\n",
-       "       [6.17986536],\n",
-       "       [4.4308288 ],\n",
-       "       [5.1125918 ],\n",
-       "       [2.97420546],\n",
-       "       [4.79175498],\n",
-       "       [1.87150233],\n",
-       "       [4.82673247],\n",
-       "       [4.25724431]])"
+       "array([[5.80566022],\n",
+       "       [4.50576881],\n",
+       "       [8.0166413 ],\n",
+       "       [4.36337898],\n",
+       "       [3.53196483],\n",
+       "       [3.59180888],\n",
+       "       [2.83659263],\n",
+       "       [2.10336819],\n",
+       "       [4.85000576],\n",
+       "       [2.29920602]])"
       ]
      },
-     "execution_count": 60,
+     "execution_count": 58,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -2267,36 +2239,36 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 61,
+   "execution_count": 59,
    "id": "b9f4403e",
    "metadata": {},
    "outputs": [
     {
      "data": {
       "text/plain": [
-       "array([[0.0341988 , 0.04363555, 0.0860077 , 0.06166565, 0.07115402,\n",
-       "        0.04139323, 0.0666888 , 0.02604646, 0.0671756 , 0.0592498 ],\n",
-       "       [0.04363555, 0.05567624, 0.10974048, 0.07868153, 0.0907881 ,\n",
-       "        0.05281518, 0.08509076, 0.03323366, 0.08571189, 0.07559906],\n",
-       "       [0.0860077 , 0.10974048, 0.2163036 , 0.15508497, 0.17894759,\n",
-       "        0.10410119, 0.16771787, 0.0655051 , 0.16894213, 0.14900928],\n",
-       "       [0.06166565, 0.07868153, 0.15508497, 0.11119254, 0.12830152,\n",
-       "        0.07463829, 0.12025006, 0.04696573, 0.12112783, 0.10683641],\n",
-       "       [0.07115402, 0.0907881 , 0.17894759, 0.12830152, 0.14804303,\n",
-       "        0.08612273, 0.1387527 , 0.05419225, 0.13976553, 0.12327512],\n",
-       "       [0.04139323, 0.05281518, 0.10410119, 0.07463829, 0.08612273,\n",
-       "        0.05010115, 0.08071817, 0.03152587, 0.08130737, 0.07171422],\n",
-       "       [0.0666888 , 0.08509076, 0.16771787, 0.12025006, 0.1387527 ,\n",
-       "        0.08071817, 0.13004538, 0.05079146, 0.13099465, 0.11553908],\n",
-       "       [0.02604646, 0.03323366, 0.0655051 , 0.04696573, 0.05419225,\n",
-       "        0.03152587, 0.05079146, 0.01983748, 0.05116221, 0.04512577],\n",
-       "       [0.0671756 , 0.08571189, 0.16894213, 0.12112783, 0.13976553,\n",
-       "        0.08130737, 0.13099465, 0.05116221, 0.13195085, 0.11638246],\n",
-       "       [0.0592498 , 0.07559906, 0.14900928, 0.10683641, 0.12327512,\n",
-       "        0.07171422, 0.11553908, 0.04512577, 0.11638246, 0.10265093]])"
+       "array([[0.16524954, 0.12825005, 0.22818184, 0.12419713, 0.10053216,\n",
+       "        0.10223553, 0.08073942, 0.05986927, 0.13804824, 0.0654435 ],\n",
+       "       [0.12825005, 0.09953477, 0.17709177, 0.09638931, 0.07802294,\n",
+       "        0.07934492, 0.0626618 , 0.0464645 , 0.10713915, 0.05079065],\n",
+       "       [0.22818184, 0.17709177, 0.31508079, 0.17149537, 0.13881802,\n",
+       "        0.14117009, 0.11148757, 0.0826694 , 0.19062143, 0.09036648],\n",
+       "       [0.12419713, 0.09638931, 0.17149537, 0.09334324, 0.07555728,\n",
+       "        0.07683749, 0.06068159, 0.04499614, 0.10375337, 0.04918559],\n",
+       "       [0.10053216, 0.07802294, 0.13881802, 0.07555728, 0.06116032,\n",
+       "        0.06219659, 0.0491191 , 0.03642241, 0.08398382, 0.03981358],\n",
+       "       [0.10223553, 0.07934492, 0.14117009, 0.07683749, 0.06219659,\n",
+       "        0.06325043, 0.04995135, 0.03703954, 0.08540681, 0.04048817],\n",
+       "       [0.08073942, 0.0626618 , 0.11148757, 0.06068159, 0.0491191 ,\n",
+       "        0.04995135, 0.03944854, 0.02925158, 0.06744911, 0.0319751 ],\n",
+       "       [0.05986927, 0.0464645 , 0.0826694 , 0.04499614, 0.03642241,\n",
+       "        0.03703954, 0.02925158, 0.0216904 , 0.05001434, 0.02370993],\n",
+       "       [0.13804824, 0.10713915, 0.19062143, 0.10375337, 0.08398382,\n",
+       "        0.08540681, 0.06744911, 0.05001434, 0.11532449, 0.05467102],\n",
+       "       [0.0654435 , 0.05079065, 0.09036648, 0.04918559, 0.03981358,\n",
+       "        0.04048817, 0.0319751 , 0.02370993, 0.05467102, 0.02591748]])"
       ]
      },
-     "execution_count": 61,
+     "execution_count": 59,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -2308,7 +2280,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 62,
+   "execution_count": 60,
    "id": "db976c33",
    "metadata": {},
    "outputs": [
@@ -2341,63 +2313,63 @@
        "  <tbody>\n",
        "    <tr>\n",
        "      <th>0</th>\n",
-       "      <td>2.457268</td>\n",
-       "      <td>6.443569</td>\n",
-       "      <td>5.067716</td>\n",
+       "      <td>5.805660</td>\n",
+       "      <td>10.829947</td>\n",
+       "      <td>10.936833</td>\n",
        "    </tr>\n",
        "    <tr>\n",
        "      <th>1</th>\n",
-       "      <td>3.135322</td>\n",
-       "      <td>6.148335</td>\n",
-       "      <td>6.466091</td>\n",
+       "      <td>4.505769</td>\n",
+       "      <td>7.700637</td>\n",
+       "      <td>8.488068</td>\n",
        "    </tr>\n",
        "    <tr>\n",
        "      <th>2</th>\n",
-       "      <td>6.179865</td>\n",
-       "      <td>12.321621</td>\n",
-       "      <td>12.744967</td>\n",
+       "      <td>8.016641</td>\n",
+       "      <td>15.834128</td>\n",
+       "      <td>15.101928</td>\n",
        "    </tr>\n",
        "    <tr>\n",
        "      <th>3</th>\n",
-       "      <td>4.430829</td>\n",
-       "      <td>8.021383</td>\n",
-       "      <td>9.137864</td>\n",
+       "      <td>4.363379</td>\n",
+       "      <td>7.800512</td>\n",
+       "      <td>8.219831</td>\n",
        "    </tr>\n",
        "    <tr>\n",
        "      <th>4</th>\n",
-       "      <td>5.112592</td>\n",
-       "      <td>10.218929</td>\n",
-       "      <td>10.543889</td>\n",
+       "      <td>3.531965</td>\n",
+       "      <td>5.616152</td>\n",
+       "      <td>6.653594</td>\n",
        "    </tr>\n",
        "    <tr>\n",
        "      <th>5</th>\n",
-       "      <td>2.974205</td>\n",
-       "      <td>6.030322</td>\n",
-       "      <td>6.133815</td>\n",
+       "      <td>3.591809</td>\n",
+       "      <td>6.293603</td>\n",
+       "      <td>6.766330</td>\n",
        "    </tr>\n",
        "    <tr>\n",
        "      <th>6</th>\n",
-       "      <td>4.791755</td>\n",
-       "      <td>10.157226</td>\n",
-       "      <td>9.882215</td>\n",
+       "      <td>2.836593</td>\n",
+       "      <td>5.717766</td>\n",
+       "      <td>5.343637</td>\n",
        "    </tr>\n",
        "    <tr>\n",
        "      <th>7</th>\n",
-       "      <td>1.871502</td>\n",
-       "      <td>3.409193</td>\n",
-       "      <td>3.859669</td>\n",
+       "      <td>2.103368</td>\n",
+       "      <td>3.913067</td>\n",
+       "      <td>3.962372</td>\n",
        "    </tr>\n",
        "    <tr>\n",
        "      <th>8</th>\n",
-       "      <td>4.826732</td>\n",
-       "      <td>9.876410</td>\n",
-       "      <td>9.954351</td>\n",
+       "      <td>4.850006</td>\n",
+       "      <td>10.235146</td>\n",
+       "      <td>9.136549</td>\n",
        "    </tr>\n",
        "    <tr>\n",
        "      <th>9</th>\n",
-       "      <td>4.257244</td>\n",
-       "      <td>10.435702</td>\n",
-       "      <td>8.779874</td>\n",
+       "      <td>2.299206</td>\n",
+       "      <td>3.985440</td>\n",
+       "      <td>4.331296</td>\n",
        "    </tr>\n",
        "  </tbody>\n",
        "</table>\n",
@@ -2405,19 +2377,19 @@
       ],
       "text/plain": [
        "          x          y          p\n",
-       "0  2.457268   6.443569   5.067716\n",
-       "1  3.135322   6.148335   6.466091\n",
-       "2  6.179865  12.321621  12.744967\n",
-       "3  4.430829   8.021383   9.137864\n",
-       "4  5.112592  10.218929  10.543889\n",
-       "5  2.974205   6.030322   6.133815\n",
-       "6  4.791755  10.157226   9.882215\n",
-       "7  1.871502   3.409193   3.859669\n",
-       "8  4.826732   9.876410   9.954351\n",
-       "9  4.257244  10.435702   8.779874"
+       "0  5.805660  10.829947  10.936833\n",
+       "1  4.505769   7.700637   8.488068\n",
+       "2  8.016641  15.834128  15.101928\n",
+       "3  4.363379   7.800512   8.219831\n",
+       "4  3.531965   5.616152   6.653594\n",
+       "5  3.591809   6.293603   6.766330\n",
+       "6  2.836593   5.717766   5.343637\n",
+       "7  2.103368   3.913067   3.962372\n",
+       "8  4.850006  10.235146   9.136549\n",
+       "9  2.299206   3.985440   4.331296"
       ]
      },
-     "execution_count": 62,
+     "execution_count": 60,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -2429,7 +2401,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 63,
+   "execution_count": 61,
    "id": "9aab4539",
    "metadata": {},
    "outputs": [
@@ -2439,13 +2411,13 @@
        "<Axes: xlabel='x', ylabel='p'>"
       ]
      },
-     "execution_count": 63,
+     "execution_count": 61,
      "metadata": {},
      "output_type": "execute_result"
     },
     {
      "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcYAAAHACAYAAAA4O8g0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAfHElEQVR4nO3dfWyV9f3/8dfhQAvBtpZGbhoL6XpuUG7UWXWI23QePYc6JsumsUVlbskSw2DodMgSvFd0i4SZmE7QiNN5+MOszhg5Jx4EnQG1wDRsZl7nHJ10IrrZ2gM4Kx7O94/zo7/PqaV39JzrnKvPR3Ji+jm9ebeJPr3uXZlMJiMAACBJGmf3AAAAFBPCCACAgTACAGAgjAAAGAgjAAAGwggAgIEwAgBgIIwAABjG2z1Avh07dkwHDhxQRUWFXC6X3eMAAGyQyWR06NAh1dbWaty4gbcJHR/GAwcOqK6uzu4xAABFoKOjQ6effvqAn+P4MFZUVEjK/jEqKyttngYAYIdUKqW6urreJgzE8WE8vvu0srKSMALAGDeUQ2qcfAMAgIEwAgBgIIwAABgIIwAABsIIAICBMAIAYCCMAAAYCCMAAAbCCACAgTACAGBw/C3hAAAlzrKkZFLyeCSvN+8/ji1GAEBx6uyUQiHJ75eamiSfL/txV1defyxhBAAUp5YWKRbLXYvFpObmvP5YwggAKD6WJUWjUjqdu55OZ9fj8bz9aMIIACg+yeTA7ycSefvRhBEAUHwaGgZ+3+PJ248mjACA4uPzScGg5Hbnrrvd2fU8np1KGAEAxSkclgKB3LVAILueR1zHCAAoTtXVUiSSPdEmkSjYdYyEEQBQ3LzeggTxOHalAgBgIIwAABgIIwAABsIIAICBMAIAYCCMAAAYuFwDAFDULMtSMpmUx+ORl+cxAgDGqs7OToVCIfn9fjU1Ncnn8ykUCqmL5zECAMailpYWxfo8jzEWi6mZ5zECAMYay7IUjUaV7vM8xnQ6rWg0qjjPYwQAjCXJQZ7HmOB5jACAsaRhkOcxengeIwBgLPH5fAoGg3L3eR6j2+1WMBjM69mphBEAUJTC4bACfZ7HGAgEFOZ5jACAsai6ulqRSETxeFyJRKJg1zESRgBAUfN6vQUJ4nHsSgUAwEAYAQAw2BrGV199VYsXL1Ztba1cLpeee+653veOHj2q1atXa968eZo8ebJqa2t1/fXX68CBA/YNDABwPFvDeOTIEZ111ll65JFHvvbe559/rr1792rt2rXau3ev/vznP+vdd9/VD37wAxsmBQCMFa5MJpOxewhJcrlcamtr05IlS074Oe3t7Tr//PP1wQcfaObMmUP6vqlUSlVVVeru7lZlZeUoTQsAKCXDaUFJnZXa3d0tl8ulU0899YSf09PTo56ent6PU6lUASYDADhFyZx888UXX2j16tVqbm4esPbr1q1TVVVV76uurq6AUwIASl1JhPHo0aO6+uqrlclk1NraOuDnrlmzRt3d3b2vjo6OAk0JAHCCot+VejyKH3zwgV5++eVB9w2Xl5ervLy8QNMBAJymqMN4PIrxeFzbt29XTU2N3SMBABzO1jAePnw455la77//vt566y1NmTJFM2bM0I9//GPt3btXL7zwgtLptA4ePChJmjJlisrKyuwaGwDgYLZerrFjxw5dcsklX1tftmyZ7rzzTtXX1/f7ddu3b9fFF188pJ/B5RoAgJK5XOPiiy/WQF0ukkssAQBjSEmclQoAQKEQRgAADIQRAAADYQQAwEAYAQAwEEYAAAyEEQAAA2EEAMBAGAEAMBBGAAAMhBEAAANhBADAQBgBADAQRgAADIQRAAADYQQAwEAYAQAwEEYAAAyEEQAAA2EEAMBAGAEAMBBGAAAMhBEAAANhBADAQBgBADAQRgAADIQRAAADYQQAwEAYAQAwEEYAAAyEEQAAA2EEAMBAGAEAMBBGAAAMhBEAAANhBADAQBgBADAQRgAADIQRAAADYQQAwEAYAQAwEEYAAAyEEQAAA2EEAMAw3u4BAMARLEtKJiWPR/J67Z4GJ4EtRgA4GZ2dUigk+f1SU5Pk82U/7uqyezKMEGEEgJPR0iLFYrlrsZjU3GzPPDhphBEARsqypGhUSqdz19Pp7Ho8bs9cOCmEEcCwWJalrVu3Ks5/9LPHFAeSSBRmDowqwghgSDo7OxUKheT3+9XU1CSfz6dQKKSusXwsraFh4Pc9nsLMgVFFGAEMSUtLi2J9jqXFYjE1j+VjaT6fFAxKbnfuutudXefs1JJEGAEMyrIsRaNRpfscS0un04pGo2N7t2o4LAUCuWuBQHYdJYnrGAEMKjnIsbREIiHvWN06qq6WIpHsiTaJBNcxOgBhBDCohkGOpXk4lpaNIUF0BHalAhiUz+dTMBiUu8+xNLfbrWAwOHa3FuFIhBHAkITDYQX6HEsLBAIKcywNDsOuVABDUl1drUgkong8rkQiIY/Hw5aiwbIsJZNJ/i4OQBgBDIvX6+U//IbOzk61tLQoGo32rgWDQYXDYVVXV9s4GUaKXakAHKsQd+nh+k7nIYwAHKdQd+nh+k5nIowAHKdQW3FDub4TpYcwAnCUQm7FcX2nMxFGAI5SyK04ru90JsIIwFEKvRXH9Z3OY2sYX331VS1evFi1tbVyuVx67rnnct7PZDK6/fbbNWPGDE2aNEmBQICD2QAGVOituOPXd1qWpRdffFGWZSkSiXCpRgmzNYxHjhzRWWedpUceeaTf93/729/q4Ycf1h/+8Ae98cYbmjx5soLBoL744osCTwqglNixFef1erVo0SJ2nzqAK5PJZOweQpJcLpfa2tq0ZMkSSdmtxdraWv3qV7/SLbfcIknq7u7WtGnTtHnzZl1zzTVD+r6pVEpVVVXq7u5WZWVlvsYHUIRy7tKTyUjJJE+/GKOG04KivfPN+++/r4MHD+b8X19VVZUuuOAC7dq164Rh7OnpUU9PT+/HqVQq77MCKE5er1femhqppUUy7kyjYDD7vER2d6IfRXvyzcGDByVJ06ZNy1mfNm1a73v9WbdunaqqqnpfdXV1eZ0TQJFraZH6XNOoWEzizjQ4gaIN40itWbNG3d3dva+Ojg67RwJgl2g0++pzTaPS6ew6J/OhH0UbxunTp0uSPv7445z1jz/+uPe9/pSXl6uysjLnBWCM6eyUQqHsayDcmQb9KNow1tfXa/r06dq2bVvvWiqV0htvvKEFCxbYOBmAotff7tP+cGca9MPWk28OHz6ccxeK999/X2+99ZamTJmimTNnatWqVbr33nvl9XpVX1+vtWvXqra2tvfMVQD4GsvKPdGmH19JiklqkMT5qejL1jDu3r1bl1xySe/HN998syRp2bJl2rx5s37961/ryJEj+vnPf67PPvtMF110kSKRiCZOnGjXyACK3SC3hJOyUWyW9EwiwXWH+JqiuY4xX7iOERhjLEvy+0/4dkDStt5PtQjjGDGcFhTtMUYAGBGfL3udYp9bwn0lKaJsFLnJNwZCGAE4Tzgs9bkl3PHdpxI3+cbAivbONwAwYtXVUiSSvU4xkZA8HjUoe0zR4/GwpYgBEUYAzuX19t4X1SsRRAwJu1IBADAQRgAADIQRAAADYQQAwEAYAQAwEEYAAAyEEQAAA2EEAMBAGAEAMBBGAAAMhBEAAANhBADAQBgBADAQRgAADIQRAAADYQQAwEAYAQAwjLd7AABjhGVJyaTk8Uher93TACfEFiOA/OrslEIhye+Xmpokny/7cVeX3ZMB/SKMAPKrpUWKxXLXYjGpudmeeYBBEEYA+WNZUjQqpdO56+l0dj0et2cuYACEEUD+JJMDv59IFGYOYBgII4D8aWgY+H2PpzBzAMNAGAHkj88nBYOS25277nZn1zk7FUWIMALIr3BYCgRy1wKB7DpQhLiOEUB+VVdLkUj2RJtEgusYUfQII4DC8HoJIkoCu1IBADAQRgAADIQRAAADYQQAwMDJNwCGh6dkwOHYYgQwNDwlA2MEYQQwNDwlA2MEYQQwOJ6SgTGEMAIYHE/JwBhCGAEMjqdkYAwhjAAGx1MyMIYQRgBDw1MyMEZwHSOAoeEpGRgjCCOA4eEpGXA4dqUCAGAgjAAAGAgjAAAGwggAgIEwAgBgIIwAABgIIwAABsIIAICBMAIAYCCMAAAYCCMAAAbCCACAgTACAGAgjAAAGAgjAAAGwggAgIEwAgBgIIwAABjGn+w3yGQykiSXy3XSwwBwLsuylEwm5fF45PV67R4HOKERbzE+/vjjmjt3riZOnKiJEydq7ty5euyxx0ZzNqXTaa1du1b19fWaNGmSGhoadM899/TGGEDx6+zsVCgUkt/vV1NTk3w+n0KhkLq6uuweDejXiLYYb7/9dq1fv14rVqzQggULJEm7du3STTfdpP379+vuu+8eleEefPBBtba26sknn9ScOXO0e/du3XDDDaqqqtLKlStH5WcAyK+WlhbFYrGctVgspubmZkUiEZumAk7MlRnB5tdpp52mhx9+WM3NzTnr4XBYK1as0H//+99RGe773/++pk2bpscff7x37Uc/+pEmTZqkp59+ekjfI5VKqaqqSt3d3aqsrByVuQAMjWVZ8vv9A77PblUUwnBaMKJdqUePHlVjY+PX1s8991x99dVXI/mW/brwwgu1bds2WZYlSXr77bf12muvadGiRSf8mp6eHqVSqZwXAHskk8kB308kEgWaBBi6EYXxuuuuU2tr69fWN27cqKVLl570UMfddtttuuaaazR79mxNmDBB55xzjlatWjXgz1i3bp2qqqp6X3V1daM2D4DhaWhoGPB9j8dToEmAoRvRrtQVK1boj3/8o+rq6vStb31LkvTGG29o//79uv766zVhwoTez12/fv2Ih9uyZYtuvfVW/e53v9OcOXP01ltvadWqVVq/fr2WLVvW79f09PSop6en9+NUKqW6ujp2pQI2CYVCisViSqfTvWtut1uBQIBjjCiY4exKHVEYL7nkkiF9nsvl0ssvvzzcb9+rrq5Ot912m5YvX967du+99+rpp5/WP//5zyF9D44xAvbq6upSc3OzotFo71owGFQ4HFZ1dbWNk2EsGU4LRnRW6vbt20c02HB9/vnnGjcud2+v2+3WsWPHCvLzAZy86upqRSIRxeNxJRIJrmNE0TvpC/zzafHixbrvvvs0c+ZMzZkzR3/729+0fv16/fSnP7V7NADD5PV6CSJKwoh2pRbKoUOHtHbtWrW1temTTz5RbW2tmpubdfvtt6usrGxI34NdqQCAvB9jLCWEEQCQ9+sYAQBwKsIIAICBMAIAYCCMAAAYCCMAAAbCCACAgTACAGAgjAAAGAgjAAAGwggAgIEwAgBgIIwAABgIIwAABsIIAICBMAIAYCCMAAAYCCMAAAbCCACAgTACAGAgjAAAGAgjAAAGwggAgIEwAgBgIIwAABgIIwAABsIIAICBMAIAYCCMAAAYCCMAAAbCCACAgTACAGAgjAAAGAgjAAAGwggAgIEwAgBgIIwAABgIIwAABsIIAICBMAIAYCCMAAAYCCMAAAbCCACAgTACAGAgjAAAGAgjAAAGwggAgIEwAgBgGG/3AMg/y7KUTCbl8Xjk9XrtHmf0WZaUTEoej+TE3w9AQbHF6GCdnZ0KhULy+/1qamqSz+dTKBRSV1eX3aONjs5OKRSS/H6pqUny+bIfO+X3A2ALwuhgLS0tisViOWuxWEzNzc02TTTKWlqkPr+fYjHJKb8fAFu4MplMxu4h8imVSqmqqkrd3d2qrKy0e5yCsSxLfr9/wPdLereqZWW3FAd6v5R/PwCjajgtYIvRoZLJ5IDvJxKJAk2SJ4P8fir13w+AbQijQzU0NAz4vsfjKdAkeTLI76dS//0A2IYwOpTP51MwGJTb7c5Zd7vdCgaDpb0bVcqeaBMMSn1+P7nd2fVS//0A2IYwOlg4HFYgEMhZCwQCCofDNk00ysJhqc/vp0Aguw4AI8TJN2NAPB5XIpFw7nWM8Xj2mCLXMQI4geG0gDACAByPs1IBABghwggAgIF7paK4jOC+p46/FyyAgmKLEcVhBPc9dfy9YAHYgjCiOIzgvqeOvxcsAFtwVirsN4L7njr+XrAARhVnpaK0jOC+p46/FywA2xR9GD/88ENde+21qqmp0aRJkzRv3jzt3r3b7rEwmkZw31PH3wsWgG2KOoxdXV1auHChJkyYoK1bt+qdd97RQw89pOrqartHw2jy+bS7pkZf9Vn+StLumpp+z051/L1gAdimqMP44IMPqq6uTk888YTOP/981dfX6/LLLx90awGlxbIsXfbpp+pz6o1iki779FPF4/F+v87x94IFYIuiDuPzzz+vxsZGXXXVVZo6darOOeccbdq0acCv6enpUSqVynmhuCWTSX0maZEkb59/fqYTHy+srq5WJBKRZVl68cUXZVmWIpEIexQAnJSiDuN7772n1tZWeb1eRaNR3XjjjVq5cqWefPLJE37NunXrVFVV1fuqq6sr4MQYCXMPQEJS5P/987jBjhd6vV4tWrSI3acARkVRX65RVlamxsZG7dy5s3dt5cqVam9v165du/r9mp6eHvX09PR+nEqlVFdXx+UaRS4UCikWiymdTveuud1uBQIBRSIRGycD4ASOuVxjxowZOvPMM3PWzjjjDO3fv/+EX1NeXq7KysqcF4ofxwsBFIuivlfqwoUL9e677+asWZalWbNm2TQR8uX48ULHPzsSQNEr6jDedNNNuvDCC3X//ffr6quv1ptvvqmNGzdq48aNdo+GPPF6vQQRgK2Kelfqeeedp7a2NoXDYc2dO1f33HOPNmzYoKVLl9o9GgDAoYr65JvRwL1SAQCOOfkGAIBCI4wAABgIIwAABsIIAICBMAIAYCCMAAAYCCMAAAbCCACAgTACAGAgjAAAGAgjAAAGwggAgIEwAgBgIIwAABgIIwAABsIIAICBMAIAYCCMAAAYCCMAAAbCCACAgTACAGAgjAAAGAgjAAAGwggAgGG83QOgACxLSiYlj0fyeu2eBgCKGluMTtbZKYVCkt8vNTVJPl/2464uuycDgKJFGJ2spUWKxXLXYjGpudmeeQCgBBBGp7IsKRqV0unc9XQ6ux6P2zMXABQ5wuhUyeTA7ycShZkDAEoMYXSqhoaB3/d4CjMHAJQYwuhUPp8UDEpud+66251d5+xUAOgXYXSycFgKBHLXAoHsOgCgX1zH6GTV1VIkkj3RJpHgOkYAGALCOBZ4vQQRAIaIXakAABgIIwAABsIIAICBMAIAYCCMAAAYCCMAAAbCCACAgTACAGAgjAAAGAgjAAAGwggAgIEwAgBgIIwAABgIIwAABsIIAICBMAIAYCCMAAAYCCMAAAbCCACAgTACAGAgjAAAGAgjAAAGwggAgIEwAgBgIIwAABgIIwAABsIIAICBMAIAYCCMAAAYCCMAAIaSCuMDDzwgl8ulVatW2T0KAMChSiaM7e3tevTRRzV//ny7RwEAOFhJhPHw4cNaunSpNm3apOrqarvHAQA4WEmEcfny5briiisUCAQG/dyenh6lUqmcFwAAQzXe7gEGs2XLFu3du1ft7e1D+vx169bprrvuyvNUAACnKuotxo6ODv3yl7/Un/70J02cOHFIX7NmzRp1d3f3vjo6OkZnGMuStm6V4vHR+X4AgKLkymQyGbuHOJHnnntOP/zhD+V2u3vX0um0XC6Xxo0bp56enpz3+pNKpVRVVaXu7m5VVlYOf4jOTqmlRYpG//9aMCiFwxLHOwGgJAynBUW9K/XSSy/Vvn37ctZuuOEGzZ49W6tXrx40iqOipUWKxXLXYjGpuVmKRPL/8wEABVXUYayoqNDcuXNz1iZPnqyampqvreeFZeVuKR6XTmfX43HJ683/HACAginqY4y2SyYHfj+RKMwcAICCKeotxv7s2LGjcD+soWHg9z2ewswBACgYthgH4vNlT7TpeyzT7c6usxsVAByHMA4mHJb63lggEMiuAwAcp+R2pRZcdXX27NN4PHtM0eNhSxEAHIwwDpXXSxABYAxgVyoAAAbCCACAgTACAGAgjAAAGAgjAAAGwggAgIEwAgBg4DrGIbIsS8lkUh6PR16uZwQAx2KLcRCdnZ0KhULy+/1qamqSz+dTKBRSV1eX3aMBAPKAMA6ipaVFsT4PKo7FYmpubrZpIgBAPhHGAViWpWg0qnQ6nbOeTqcVjUYVj8dtmgwAkC+EcQDJQR5UnOBBxQDgOIRxAA2DPKjYw4OKAcBxCOMAfD6fgsGg3H0eVOx2uxUMBjk7FQAciDAOIhwOK9DnQcWBQEBhHlQMAI7EdYyDqK6uViQSUTweVyKR4DpGAHA4wjhEXq+XIALAGMCuVAAADIQRAAADYQQAwEAYAQAwEEYAAAyEEQAAA2EEAMBAGAEAMBBGAAAMhBEAAANhBADA4Ph7pWYyGUlSKpWyeRIAgF2ON+B4Ewbi+DAeOnRIklRXV2fzJAAAux06dEhVVVUDfo4rM5R8lrBjx47pwIEDqqiokMvlyvvPS6VSqqurU0dHhyorK/P+85yKv+Po4O948vgbjg67/46ZTEaHDh1SbW2txo0b+Cii47cYx40bp9NPP73gP7eyspJ/iUYBf8fRwd/x5PE3HB12/h0H21I8jpNvAAAwEEYAAAyEcZSVl5frjjvuUHl5ud2jlDT+jqODv+PJ4284Okrp7+j4k28AABgOthgBADAQRgAADIQRAAADYQQAwEAYR8m6det03nnnqaKiQlOnTtWSJUv07rvv2j1WSWltbdX8+fN7LwBesGCBtm7davdYJe+BBx6Qy+XSqlWr7B6lpNx5551yuVw5r9mzZ9s9Vkn68MMPde2116qmpkaTJk3SvHnztHv3brvHOiHCOEpeeeUVLV++XK+//rpeeuklHT16VJdffrmOHDli92gl4/TTT9cDDzygPXv2aPfu3fre976nK6+8Uv/4xz/sHq1ktbe369FHH9X8+fPtHqUkzZkzRx999FHv67XXXrN7pJLT1dWlhQsXasKECdq6daveeecdPfTQQ6qurrZ7tBNy/C3hCiUSieR8vHnzZk2dOlV79uzRd77zHZumKi2LFy/O+fi+++5Ta2urXn/9dc2ZM8emqUrX4cOHtXTpUm3atEn33nuv3eOUpPHjx2v69Ol2j1HSHnzwQdXV1emJJ57oXauvr7dxosGxxZgn3d3dkqQpU6bYPElpSqfT2rJli44cOaIFCxbYPU5JWr58ua644goFAgG7RylZ8XhctbW1+sY3vqGlS5dq//79do9Ucp5//nk1Njbqqquu0tSpU3XOOedo06ZNdo81ILYY8+DYsWNatWqVFi5cqLlz59o9TknZt2+fFixYoC+++EKnnHKK2tradOaZZ9o9VsnZsmWL9u7dq/b2drtHKVkXXHCBNm/eLL/fr48++kh33XWXvv3tb+vvf/+7Kioq7B6vZLz33ntqbW3VzTffrN/85jdqb2/XypUrVVZWpmXLltk9Xr+4800e3Hjjjdq6datee+01W57sUcq+/PJL7d+/X93d3Xr22Wf12GOP6ZVXXiGOw9DR0aHGxka99NJLvccWL774Yp199tnasGGDvcOVsM8++0yzZs3S+vXr9bOf/czucUpGWVmZGhsbtXPnzt61lStXqr29Xbt27bJxshNjV+oo+8UvfqEXXnhB27dvJ4ojUFZWJo/Ho3PPPVfr1q3TWWedpd///vd2j1VS9uzZo08++UTf/OY3NX78eI0fP16vvPKKHn74YY0fP17pdNruEUvSqaeeKp/Pp0QiYfcoJWXGjBlf+x/bM844o6h3S7MrdZRkMhmtWLFCbW1t2rFjR9EfXC4Vx44dU09Pj91jlJRLL71U+/bty1m74YYbNHv2bK1evVput9umyUrb4cOHlUwmdd1119k9SklZuHDh1y5dsyxLs2bNsmmiwRHGUbJ8+XI988wz+stf/qKKigodPHhQUvbBmJMmTbJ5utKwZs0aLVq0SDNnztShQ4f0zDPPaMeOHYpGo3aPVlIqKiq+dmx78uTJqqmp4Zj3MNxyyy1avHixZs2apQMHDuiOO+6Q2+1Wc3Oz3aOVlJtuukkXXnih7r//fl199dV68803tXHjRm3cuNHu0U6IMI6S1tZWSdljOaYnnnhCP/nJTwo/UAn65JNPdP311+ujjz5SVVWV5s+fr2g0qssuu8zu0TAG/fvf/1Zzc7M+/fRTnXbaabrooov0+uuv67TTTrN7tJJy3nnnqa2tTWvWrNHdd9+t+vp6bdiwQUuXLrV7tBPi5BsAAAycfAMAgIEwAgBgIIwAABgIIwAABsIIAICBMAIAYCCMAAAYCCMAAAbCCACAgTACAGAgjIBD/ec//9H06dN1//33967t3LlTZWVl2rZtm42TAcWNe6UCDvbiiy9qyZIl2rlzp/x+v84++2xdeeWVWr9+vd2jAUWLMAIOt3z5csViMTU2Nmrfvn1qb29XeXm53WMBRYswAg73v//9T3PnzlVHR4f27NmjefPm2T0SUNQ4xgg4XDKZ1IEDB3Ts2DH961//snscoOixxQg42Jdffqnzzz9fZ599tvx+vzZs2KB9+/Zp6tSpdo8GFC3CCDjYrbfeqmeffVZvv/22TjnlFH33u99VVVWVXnjhBbtHA4oWu1IBh9qxY4c2bNigp556SpWVlRo3bpyeeuop/fWvf1Vra6vd4wFFiy1GAAAMbDECAGAgjAAAGAgjAAAGwggAgIEwAgBgIIwAABgIIwAABsIIAICBMAIAYCCMAAAYCCMAAAbCCACA4f8A9Ooum193LU4AAAAASUVORK5CYII=",
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcYAAAHACAYAAAA4O8g0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAkG0lEQVR4nO3de3BU5eH/8c+ykcBQsgYQJZIgJrtBAREHVMT5ImXrbkJRdOolQXSwMx07jOB1kHZAW1S002GoU4uijlCVtU7bUG9k7SIXHbyAKGov7EWQ/GCUziTNAuqqm/P7I5I+GyQEyO45u3m/Zs5M9zm72c/adj6e55znHJdlWZYAAIAkqY/dAQAAcBKKEQAAA8UIAICBYgQAwEAxAgBgoBgBADBQjAAAGChGAAAMRXYHyLa2tjbt27dPAwcOlMvlsjsOAMAmlmXpwIEDKisrU58+Rz8uLPhi3Ldvn8rLy+2OAQBwiKamJg0fPvyo+wu+GAcOHCip/R9ESUmJzWkAAHZJJpMqLy/v6IWjKfhiPDx9WlJSQjECAI55Wo2LbwAAMFCMAAAYKEYAAAwUIwAABooRAACDrcW4efNmzZgxQ2VlZXK5XFq7du0R7/nXv/6lK664Qh6PRwMGDNDEiRO1Z8+e3IcFAPQKthbjoUOHNG7cOD366KPfuz+RSOjSSy/VqFGjtHHjRn344YdatGiR+vXrl+OkAIDewmVZlmV3CKl9XUlDQ4NmzpzZMXb99dfrlFNO0TPPPHPCfzeZTMrj8ai1tZV1jADQi3W3Dxx7jrGtrU2vvPKKfD6fAoGAhg4dqosuuuh7p1tNqVRKyWQyYwMAoLscW4z79+/XwYMH9dBDDykYDOq1117TVVddpauvvlqbNm066ueWLl0qj8fTsXGfVADA8XDsVOq+fft05plnqq6uTmvWrOl43xVXXKEBAwYoFAp9799JpVJKpVIdrw/fG4+pVADIT9FoVIlEQlVVVfJ6vSf8d/J+KnXIkCEqKirSueeemzF+zjnndHlVanFxccd9Ubk/KgDkr+bmZgWDQVVXV6u2tlY+n0/BYFAtLS1Z/V7HFmPfvn01ceJE7dy5M2M8Go1qxIgRNqUCAORKfX29IpFIxlgkElFdXV1Wv9fWp2scPHhQ8Xi84/WuXbv0wQcfaNCgQaqoqNDdd9+t6667Tv/3f/+nqVOnqrGxUS+99JI2btxoX2gAQNZFo1GFw+EjxtPptMLhsGKx2ElNq3bF1iPGbdu2afz48Ro/frwk6Y477tD48eO1ePFiSdJVV12lxx57TL/5zW80duxYPfnkk/rLX/6iSy+91M7YAIAsSyQSXe43D6p6mmMuvskW1jECQP6JRqOqrq7ucv/xHjHm/cU3AIDe6/AadrfbnTHudrsVCASyNo0qUYwAAIcKhULy+/0ZY36//6jL9XqKrRffAABwNKWlpWpsbFQsFlM8Hj/pdYzdRTECABzN6/XmpBAPYyoVAAADxQgAgIFiBADAQDECAGCgGAEAMFCMAAAYKEYAAAwUIwAABooRAAADxQgAgIFiBADAQDECAGDgJuIAAGeLRqVEQqqqknJwM3GOGAEAztTcLAWDUnW1VFsr+Xztr1tasvq1FCMAwJnq66VIJHMsEpHq6rL6tRQjAMB5olEpHJbS6czxdLp9PBbL2ldTjAAA50kkut4fj2ftqylGAIDzVFZ2vb+qKmtfTTECAJzH55MCAcntzhx3u9vHs3h1KsUIAHCmUEjy+zPH/P728SxiHSMAwJlKS6XGxvYLbeLxnK1jpBgBAM7m9eakEA9jKhUAAAPFCACAgWIEAMBAMQIAYKAYAQAwUIwAABgoRgAADBQjAAAGihEAAAPFCACAgWIEAMBAMQIAYKAYAQAwUIwAABgoRgAADBQjAAAGihEAAAPFCACAgWIEAMBAMQIAYKAYAQAwUIwAABhsLcbNmzdrxowZKisrk8vl0tq1a4/63ltuuUUul0vLly/PWT4AQO9jazEeOnRI48aN06OPPtrl+xoaGvT222+rrKwsR8kAAL1VkZ1fXlNTo5qami7fs3fvXt16660Kh8OaPn16jpIBAHorW4vxWNra2jR79mzdfffdGj16dLc+k0qllEqlOl4nk8lsxQMAFCBHX3zz8MMPq6ioSPPmzev2Z5YuXSqPx9OxlZeXZzEhAKDQOLYY33vvPf3ud7/TqlWr5HK5uv25hQsXqrW1tWNramrKYkoAQKFxbDG+8cYb2r9/vyoqKlRUVKSioiJ9+umnuvPOO3XWWWcd9XPFxcUqKSnJ2AAA6C7HnmOcPXu2/H5/xlggENDs2bM1Z84cm1IBAAqdrcV48OBBxePxjte7du3SBx98oEGDBqmiokKDBw/OeP8pp5yiM844Q9XV1bmOCgDoJWwtxm3btmnq1Kkdr++44w5J0k033aRVq1bZlAoA0JvZWoyXXXaZLMvq9vt3796dvTAAAMjBF98AAGAHihEAAAPFCACAgWIEAMBAMQIAYKAYAQAwUIwAABgoRgAADBQjAAAGihEAAAPFCACAgWIEAMBAMQIAYKAYAQAwUIwAABgoRgAADBQjAAAGihEAAAPFCACAgWIEAMBAMQIAYKAYAQAwUIwAABgoRgAADBQjAAAGihEAAAPFCACAgWIEAMBAMQIAYKAYAQAwUIwAABgoRgAADBQjAAAGihEAAAPFCACAgWIEAMBAMQIAYKAYAQAwUIwAABgoRgAADBQjAAAGihEAAAPFCACAgWIEAMBAMQIAYKAYAQAwUIwAABgoRgAADLYW4+bNmzVjxgyVlZXJ5XJp7dq1Hfu++eYbLViwQGPHjtWAAQNUVlamG2+8Ufv27bMvMACg4NlajIcOHdK4ceP06KOPHrHviy++0Pbt27Vo0SJt375df/3rX7Vz505dccUVNiQFAPQWLsuyLLtDSJLL5VJDQ4Nmzpx51Pds3bpVF154oT799FNVVFR06+8mk0l5PB61traqpKSkh9ICAPJNd/ugKIeZTlpra6tcLpdOPfXUo74nlUoplUp1vE4mkzlIBgAoFHlz8c1XX32lBQsWqK6ursumX7p0qTweT8dWXl6ew5QAgHyXF8X4zTff6Nprr5VlWVqxYkWX7124cKFaW1s7tqamphylBAAUAsdPpR4uxU8//VSvv/76Mc8TFhcXq7i4OEfpAACFxtHFeLgUY7GYNmzYoMGDB9sdCQBQ4GwtxoMHDyoej3e83rVrlz744AMNGjRIw4YN009+8hNt375dL7/8stLptD777DNJ0qBBg9S3b1+7YgMACpityzU2btyoqVOnHjF+00036b777tPIkSO/93MbNmzQZZdd1q3vYLkGAEDKk+Ual112mbrqZYcssQQA9CJ5cVUqAAC5QjECAGCgGAEAMFCMAAAYKEYAAAwUIwAABooRAAADxQgAgIFiBADAQDECAGCgGAEAMFCMAAAYKEYAAAwUIwAABooRAAADxQgAgIFiBADAQDECAGCgGAEAMFCMAAAYiuwOAABHiEalREKqqpK8XrvToJfhiBGAczQ3S8GgVF0t1dZKPl/765YWu5OhF6EYAThHfb0UiWSORSJSXZ09edArUYwAnCEalcJhKZ3OHE+n28djMXtyodehGAE4QyLR9f54PDc50OtRjACcobKy6/1VVbnJgV6PYgTgCFFJjZK+7TT+7XfjTKQiVyhGAI6QSCRUJ6nTpTeKSKqTFGcqFTnCOkYAjlBZWan/SqqRVPXdFv9uk6QqplKRIxwxAnAEn8+nQCAgt9utuNqnT+OS3G63AoGAvCz0R45QjAAcIxQKye/3Z4z5/X6FQiGbEqE3YioVgGOUlpaqsbFRsVhM8XhcVVVVHCki5yhGAI7j9XopRNiGqVQAAAwUIwAABooRAAADxQgAgIFiBADAQDECAGCgGAEAMFCMAAAYWOAP5JloNKpEIsFdYYAs4YgRyBPNzc0KBoOqrq5WbW2tfD6fgsGgWlpa7I4GFBSKEcgT9fX1ikQyn1YYiURUV1dnUyKgMFGMQB6IRqMKh8NKp9MZ4+l0WuFwWLEYz7cHegrFCOSBRCLR5X6ebg/0HIoRyAOVlZVd7ufp9kDPsbUYN2/erBkzZqisrEwul0tr167N2G9ZlhYvXqxhw4apf//+8vv9TBmhVzKfbm/i6fZAz7O1GA8dOqRx48bp0Ucf/d79v/nNb/TII4/oscce0zvvvKMBAwYoEAjoq6++ynFSwH483R7IDZdlWZbdISTJ5XKpoaFBM2fOlNR+tFhWVqY777xTd911lySptbVVp59+ulatWqXrr7++W383mUzK4/GotbVVJSUl2YoP5AxPtwdOTHf7wLHnGHft2qXPPvss49+QPR6PLrroIr311ls2JgPs5fV6VVNTQykCWeLYO9989tlnkqTTTz89Y/z000/v2Pd9UqmUUqlUx+tkMpmdgACAguTYI8YTtXTpUnk8no6tvLzc7kgAgDxy0sVoWZaycZryjDPOkCR9/vnnGeOff/55x77vs3DhQrW2tnZsTU1NPZ4NAFC4TrgYn3rqKY0ZM0b9+vVTv379NGbMGD355JM9FmzkyJE644wztH79+o6xZDKpd955R5MmTTrq54qLi1VSUpKxAQDQXSd0jnHx4sVatmyZbr311o6Seuutt3T77bdrz549+vWvf92tv3Pw4MGMO3bs2rVLH3zwgQYNGqSKigrddtttuv/+++X1ejVy5EgtWrRIZWVlHVeuAgDQ46wTMGTIEGvNmjVHjK9Zs8YaPHhwt//Ohg0bLElHbDfddJNlWZbV1tZmLVq0yDr99NOt4uJia9q0adbOnTuPK2tra6slyWptbT2uzwEACkt3++CE1jGeeuqp2rp16xGXi0ejUV144YX673//e9KF3VNYxwgAkLK8jnH27NlasWLFEeMrV67UrFmzTuRPAgDgCCe8jvGpp57Sa6+9posvvliS9M4772jPnj268cYbdccdd3S8b9myZSefEgCAHDmhYvz44491wQUXSPrf43CGDBmiIUOG6OOPP+54n8vl6oGIAADkzgkV44YNG3o6BwAAjlBwd74BAOBkUIwAABgoRgAADBQjAAAGihEAAAPFCACAgWIEAMBAMQIAYKAYAQAwUIwAABgoRgAADCf8dA0ANolGpURCqqqSOj0TFcDJ44gRyBfNzVIwKFVXS7W1ks/X/rqlxe5kQEGhGIF8UV8vRSKZY5GIVFdnTx6gQFGMQD6IRqVwWEqnM8fT6fbxWMyeXEABohiBfPDdA8GPKh7PTQ6gF6AYgXxQWdn1/qqq3OQAegGKEcgHPp8UCEhud+a4290+ztWpQI+hGIF8EQpJfn/mmN/fPg6gx7COEcgXpaVSY2P7hTbxOOsYgSyhGIF84/VSiEAWMZUKAICBYgQAwEAxAgBgoBgBADBQjAAAGChGAAAMFCMAAAaKEQAAA8UIAICBO98A2RaNtj82ilu4AXmBI0YgW5qbpWBQqq6Wamvbn5ARDEotLXYnA9AFihHIlvp6KRLJHItEpLo6e/IA6BaKEciGaFQKh6V0OnM8nW4fj8XsyQXgmChGIBsSia73x+O5yQHguFGMQDZUVna9v6oqNzkAHDeKEcgGn08KBCS3O3Pc7W4f5+pUwLEoRiBbQiHJ788c8/vbxwE4FusYgZPR1RrF0lKpsbH9Qpt4nHWMQJ6gGIET0dzcvhwjHP7fWCDQfjRYWpr5Xq+XQgTyCFOpwIlgjSJQsChG4HixRhEoaBQjcLxYowgUNIoROF6sUQQKmqOLMZ1Oa9GiRRo5cqT69++vyspKLVmyRJZl2R0NvRlrFIGC5uirUh9++GGtWLFCq1ev1ujRo7Vt2zbNmTNHHo9H8+bNszseerNQqP1CG/OqVNYoAgXB0cW4ZcsWXXnllZo+fbok6ayzzlIoFNK7775rczL0eqxRBAqWo6dSL7nkEq1fv17RaFSStGPHDr355puqqak56mdSqZSSyWTGBmSN1yvV1FCKQAFx9BHjPffco2QyqVGjRsntdiudTuuBBx7QrFmzjvqZpUuX6le/+lUOUwIAComjjxhfeOEFPffcc1qzZo22b9+u1atX67e//a1Wr1591M8sXLhQra2tHVtTU1MOEwMA8p3LcvAlnuXl5brnnns0d+7cjrH7779fzz77rP797393628kk0l5PB61traqpKQkW1HRS0WjUSUSCVVVVcnLdCrgaN3tA0cfMX7xxRfq0yczotvtVltbm02JgHbNzc0KBoOqrq5WbW2tfD6fgsGgWlpa7I4G4CQ5uhhnzJihBx54QK+88op2796thoYGLVu2TFdddZXd0dDL1dfXK9LpXqmRSER13CsVyHuOnko9cOCAFi1apIaGBu3fv19lZWWqq6vT4sWL1bdv3279DaZS0dOi0aiqq6u73G9OqzLdCjhDd/vA0VelDhw4UMuXL9fy5cvtjgJ0SBzjXqnxeFxer1fNzc2qr69X2LgJQCAQUCgUUmnnR1MBcAxHT6UCTlR5jHulVn13r1SmW4H8RDECx8nn8ykQCMjd6V6pbrdbgUBAXq9X0WhU4XBY6U6Ppkqn0wqHw4rxaCrAsShG4ASEQiH5/f6MMb/fr9B390rtznQrAGdy9DlGwKlKS0vV2NioWCymeDx+xIU13Z1uBeA8FCNwErxe7/deaXp4ujUSiWRMp7rdbvn9fq5OBRyMqVQgS4413QrAmThiBLLkWNOtAJyJYgSy7GjTrQCcialUAAAMFCMAAAaKEQAAA8UIAICBYgQAwEAxAgBgoBgBADBQjAAAGChGAAAMFCMAAAaKEQAAA8UIAICBYgQAwEAxAgBgoBgBADBQjAAAGChGAAAMRXYHACRJ0aiUSEhVVRJPuwdgI44YYa/mZikYlKqrpdpayedrf93SYncyAL0UxQh71ddLkUjmWCQi1dXZkwdAr0cxwj7RqBQOS+l05ng63T4ei9mTC0CvRjHCPps2db0/Hs9NDgAwcPENcq+5uX0KNRzu+n1VVbnJAwAGihG5933nFU1ut+T3c3UqAFtQjMitw+cVu+L3S6FQbvIAQCecY0RuJRJd73/iCamxUSotzU0eAOiEYkRuVVZ2vX/KlNzkAICjoBiRWz6fFAi0n0c0ud3t45xXBGAzihG5Fwq1n0c0cV4RgENw8Q1yr7S0/TxiLNa+VpH7owJwEIoR9vF6KUQAjkMxwhGi0agSiYSqqqrkpSwB2IhzjLBVc3OzgsGgqqurVVtbK5/Pp2AwqBaergHAJhQjbFVfX69Ip7vgRCIR1fF0DQA2oRhhm2g0qnA4rHSnp2uk02mFw2HFeLoGABtQjLBN4hh3wYnzdA0ANqAYYZvKY9wFp4qnawCwAcUI2/h8PgUCAbk73QXH7XYrEAhwdSoAW1CMsFUoFJK/011w/H6/QtwFB4BNWMcIW5WWlqqxsVGxWEzxeJx1jABs5/gjxr179+qGG27Q4MGD1b9/f40dO1bbtm2zOxZ6mNfrVU1NDaUIwHaOPmJsaWnR5MmTNXXqVK1bt06nnXaaYrGYSnlWHwAgSxxdjA8//LDKy8v19NNPd4yNHDnSxkQAgELn6KnUF198URMmTNA111yjoUOHavz48XriiSe6/EwqlVIymczYAADoLkcX4yeffKIVK1bI6/UqHA7r5z//uebNm6fVq1cf9TNLly6Vx+Pp2MrLy3OYGACQ71yWZVl2hziavn37asKECdqyZUvH2Lx587R161a99dZb3/uZVCqlVCrV8TqZTKq8vFytra0qKSnJemYAgDMlk0l5PJ5j9oGjjxiHDRumc889N2PsnHPO0Z49e476meLiYpWUlGRsAAB0l6OLcfLkydq5c2fGWDQa1YgRI2xKBAAodI4uxttvv11vv/22HnzwQcXjca1Zs0YrV67U3Llz7Y7maNFoVOvWrePpFABwAhxdjBMnTlRDQ4NCoZDGjBmjJUuWaPny5Zo1a5bd0RyJh/4CwMlz9MU3PaG7J1sLQTAYVCQSyXi+odvtlt/vV2Njo43JAMB+BXHxDbovHx/6y5QvACeiGAtEPj30lylfAE5GMRaIfHrob319vSKRSMZYJBJRXV2dTYkA4H8oxgKRLw/9zccpXwC9C8VYQPLhob/5NOULoHdy9NM1cHzy4aG/+TTlC6B3ohgLkNfrdVwhHnZ4yvdoy0qcmhtA78FUKnIuH6Z8AfReHDEWomhUSiSkqirJgUdg+TDlC6D3ohgLSXOzVF8vhcP/GwsEpFBIKi21L9dROHnKF0DvxVRqIamvlzqtD1QkIrE+EAC6jWIsFNFo+5Fip/WBSqfbx1kfCADdQjEWimOsDxTrAwGgWyjGQnGM9YFifSAAdAvFWCh8vvYLbTrdEk5ud/s4F7kAQLdQjIUkFJI6rQ+U398+DgDoFpZrFJLSUqmxsf1Cm3jcsesYAcDJKMZC5PVSiABwgphKBQDAQDECAGCgGAEAMFCMAAAYKEYAAAwUIwAABooRAAADxQgAgIFiBADAQDECAGCgGAEAMFCMAAAYKEYAAAwUIwAABooRAAADxQgAgIFiBADAQDECAGCgGAEAMFCMAAAYiuwOUJCiUSmRkKqqJK/X7jQAgOPAEWNPam6WgkGpulqqrZV8vvbXLS12JwMAdBPF2JPq66VIJHMsEpHq6uzJAwA4bhRjT4lGpXBYSqczx9Pp9vFYzJ5cAIDjQjH2lESi6/3xeG5yAABOCsXYUyoru95fVZWbHACAk0Ix9hSfTwoEJLc7c9ztbh/n6lQAyAsUY08KhSS/P3PM728fBwDkBdYx9qTSUqmxsf1Cm3icdYwAkIfy6ojxoYceksvl0m233WZ3lK55vVJNDaUIAHkob44Yt27dqscff1znnXee3VGOKRqNKpFIqKqqSl7KEQDySl4cMR48eFCzZs3SE088odLSUntCRKPSunVdrkdsbm5WMBhUdXW1amtr5fP5FAwG1cKdbwAgb+RFMc6dO1fTp0+Xv/OFLblwHLd5q6+vV6TTnW8ikYjquPMNAOQNx0+lPv/889q+fbu2bt3arfenUimlUqmO18lk8qS+/+trrpF7wwaZizDSr72mtp/8RKesX98xFo1GFQ6Hj/h8Op1WOBxWLBZjWhUA8oCjjxibmpo0f/58Pffcc+rXr1+3PrN06VJ5PJ6Orby8/MQDRKPq+/rrcltWxrDbsnTK669nTKsmjnHnmzh3vgGAvODoYnzvvfe0f/9+XXDBBSoqKlJRUZE2bdqkRx55REVFRUp3vi+ppIULF6q1tbVja2pqOuHv/3+bNnW5f6+xv/IYd76p4s43AJAXHD2VOm3aNH300UcZY3PmzNGoUaO0YMECuTvfZUZScXGxiouLe+T7E5KGd7E/LunM7/6zz+dTIBBQJBLJKGy32y2/3880KgDkCUcX48CBAzVmzJiMsQEDBmjw4MFHjGfDsClT1CjJr8x/UN9KikiqnDIl4/2hUEh1dXUZ5xr9fr9C3PkGAPKGo4vRbj6fT7/44Q/lev11BYzx9ZKe/OEP9edOR4GlpaVqbGxULBZTPB5nHSMA5CGXZXW6sqTAJJNJeTwetba2qqSk5Lg/39LSorq6OiXCYVWpffq0MhBQKBSyb00lAOC4dbcPOGI8Bo4CAaB3oRi7yev1UogA0As4erkGAAC5RjECAGCgGAEAMFCMAAAYKEYAAAwUIwAABooRAAADxQgAgIFiBADAQDECAGCgGAEAMBT8vVIPPzwkmUzanAQAYKfDPXCsh0oVfDEeOHBAklReXm5zEgCAExw4cEAej+eo+wv+eYxtbW3at2+fBg4cKJfL1eV7k8mkysvL1dTUdELPbsw3/N7C1Zt+q9S7fm9v+q1Sz/5ey7J04MABlZWVqU+fo59JLPgjxj59+mj48OHH9ZmSkpJe8T+4w/i9has3/Vapd/3e3vRbpZ77vV0dKR7GxTcAABgoRgAADBSjobi4WPfee6+Ki4vtjpIT/N7C1Zt+q9S7fm9v+q2SPb+34C++AQDgeHDECACAgWIEAMBAMQIAYKAYAQAwUIySli5dqokTJ2rgwIEaOnSoZs6cqZ07d9odK2tWrFih8847r2PB7KRJk7Ru3Tq7Y+XEQw89JJfLpdtuu83uKFlx3333yeVyZWyjRo2yO1bW7N27VzfccIMGDx6s/v37a+zYsdq2bZvdsbLirLPOOuK/W5fLpblz59odrcel02ktWrRII0eOVP/+/VVZWaklS5Yc8x6nPaXg73zTHZs2bdLcuXM1ceJEffvtt/rFL36hyy+/XP/85z81YMAAu+P1uOHDh+uhhx6S1+uVZVlavXq1rrzySr3//vsaPXq03fGyZuvWrXr88cd13nnn2R0lq0aPHq1IJNLxuqioMP9v3tLSosmTJ2vq1Klat26dTjvtNMViMZWWltodLSu2bt2qdDrd8frjjz/Wj370I11zzTU2psqOhx9+WCtWrNDq1as1evRobdu2TXPmzJHH49G8efOyH8DCEfbv329JsjZt2mR3lJwpLS21nnzySbtjZM2BAwcsr9dr/f3vf7emTJlizZ8/3+5IWXHvvfda48aNsztGTixYsMC69NJL7Y5hm/nz51uVlZVWW1ub3VF63PTp062bb745Y+zqq6+2Zs2alZPvZyr1e7S2tkqSBg0aZHOS7Eun03r++ed16NAhTZo0ye44WTN37lxNnz5dfr/f7ihZF4vFVFZWprPPPluzZs3Snj177I6UFS+++KImTJiga665RkOHDtX48eP1xBNP2B0rJ77++ms9++yzuvnmm4/5cIR8dMkll2j9+vWKRqOSpB07dujNN99UTU1NbgLkpH7zSDqdtqZPn25NnjzZ7ihZ9eGHH1oDBgyw3G635fF4rFdeecXuSFkTCoWsMWPGWF9++aVlWVZBHzG++uqr1gsvvGDt2LHDamxstCZNmmRVVFRYyWTS7mg9rri42CouLrYWLlxobd++3Xr88cetfv36WatWrbI7Wtb96U9/stxut7V37167o2RFOp22FixYYLlcLquoqMhyuVzWgw8+mLPvpxg7ueWWW6wRI0ZYTU1NdkfJqlQqZcViMWvbtm3WPffcYw0ZMsT6xz/+YXesHrdnzx5r6NCh1o4dOzrGCrkYO2tpabFKSkoKcpr8lFNOsSZNmpQxduutt1oXX3yxTYly5/LLL7d+/OMf2x0ja0KhkDV8+HArFApZH374ofXHP/7RGjRoUM7+pYdiNMydO9caPny49cknn9gdJeemTZtm/exnP7M7Ro9raGiwJFlut7tjk2S5XC7L7XZb3377rd0Rs27ChAnWPffcY3eMHldRUWH99Kc/zRj7wx/+YJWVldmUKDd2795t9enTx1q7dq3dUbJm+PDh1u9///uMsSVLlljV1dU5+f7CvFztOFmWpVtvvVUNDQ3auHGjRo4caXeknGtra1MqlbI7Ro+bNm2aPvroo4yxOXPmaNSoUVqwYIHcbrdNyXLj4MGDSiQSmj17tt1RetzkyZOPWFYVjUY1YsQImxLlxtNPP62hQ4dq+vTpdkfJmi+++OKIBwm73W61tbXl5PspRrVfmLFmzRr97W9/08CBA/XZZ59Jan+gZf/+/W1O1/MWLlyompoaVVRU6MCBA1qzZo02btyocDhsd7QeN3DgQI0ZMyZjbMCAARo8ePAR44Xgrrvu0owZMzRixAjt27dP9957r9xut+rq6uyO1uNuv/12XXLJJXrwwQd17bXX6t1339XKlSu1cuVKu6NlTVtbm55++mnddNNNBbsMR5JmzJihBx54QBUVFRo9erTef/99LVu2TDfffHNuAuTkuNThJH3v9vTTT9sdLStuvvlma8SIEVbfvn2t0047zZo2bZr12muv2R0rZwr5HON1111nDRs2zOrbt6915plnWtddd50Vj8ftjpU1L730kjVmzBiruLjYGjVqlLVy5Uq7I2VVOBy2JFk7d+60O0pWJZNJa/78+VZFRYXVr18/6+yzz7Z++ctfWqlUKiffz2OnAAAwsI4RAAADxQgAgIFiBADAQDECAGCgGAEAMFCMAAAYKEYAAAwUIwAABooRAAADxQgAgIFiBArUf/7zH51xxhl68MEHO8a2bNmivn37av369TYmA5yNe6UCBezVV1/VzJkztWXLFlVXV+v888/XlVdeqWXLltkdDXAsihEocHPnzlUkEtGECRP00UcfaevWrSouLrY7FuBYFCNQ4L788kuNGTNGTU1Neu+99zR27Fi7IwGOxjlGoMAlEgnt27dPbW1t2r17t91xAMfjiBEoYF9//bUuvPBCnX/++aqurtby5cv10UcfaejQoXZHAxyLYgQK2N13360///nP2rFjh37wgx9oypQp8ng8evnll+2OBjgWU6lAgdq4caOWL1+uZ555RiUlJerTp4+eeeYZvfHGG1qxYoXd8QDH4ogRAAADR4wAABgoRgAADBQjAAAGihEAAAPFCACAgWIEAMBAMQIAYKAYAQAwUIwAABgoRgAADBQjAAAGihEAAMP/B3Je1g0FU//sAAAAAElFTkSuQmCC",
       "text/plain": [
        "<Figure size 500x500 with 1 Axes>"
       ]
@@ -2472,7 +2444,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 64,
+   "execution_count": 62,
    "id": "bfd1ce1d",
    "metadata": {},
    "outputs": [
@@ -2522,7 +2494,7 @@
        "y   8  12"
       ]
      },
-     "execution_count": 64,
+     "execution_count": 62,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -2537,7 +2509,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 65,
+   "execution_count": 63,
    "id": "cae18757",
    "metadata": {},
    "outputs": [
@@ -2547,7 +2519,7 @@
        "5.0"
       ]
      },
-     "execution_count": 65,
+     "execution_count": 63,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -2559,17 +2531,17 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 66,
+   "execution_count": 64,
    "id": "1e096c19",
    "metadata": {},
    "outputs": [
     {
      "data": {
       "text/plain": [
-       "2.561718483508864"
+       "2.0278336399647197"
       ]
      },
-     "execution_count": 66,
+     "execution_count": 64,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -2590,7 +2562,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 67,
+   "execution_count": 65,
    "id": "6758c077",
    "metadata": {
     "scrolled": true
@@ -2599,10 +2571,10 @@
     {
      "data": {
       "text/plain": [
-       "<matplotlib.image.AxesImage at 0x7f195d19fcd0>"
+       "<matplotlib.image.AxesImage at 0x7f22571371c0>"
       ]
      },
-     "execution_count": 67,
+     "execution_count": 65,
      "metadata": {},
      "output_type": "execute_result"
     },
diff --git a/lecture_material/21-linalg-2/21-linalg2_001.ipynb b/lecture_material/21-linalg-2/21-linalg2_001.ipynb
index a07758cbeb2b3446fd4d67df38d958271810dc19..e8d2888292b9942809e3f20625c25e40efb72c1a 100644
--- a/lecture_material/21-linalg-2/21-linalg2_001.ipynb
+++ b/lecture_material/21-linalg-2/21-linalg2_001.ipynb
@@ -317,7 +317,7 @@
     "* $c$ (known) is a vector of coefficients (our model parameters)\n",
     "* $y$ (computed) are the prices\n",
     "\n",
-    "**Below:** what if X and y are know, and we want to find c?"
+    "**Below:** what if X and y are known, and we want to find c?"
    ]
   },
   {
diff --git a/lecture_material/21-linalg-2/21-linalg2_002.ipynb b/lecture_material/21-linalg-2/21-linalg2_002.ipynb
index a07758cbeb2b3446fd4d67df38d958271810dc19..e8d2888292b9942809e3f20625c25e40efb72c1a 100644
--- a/lecture_material/21-linalg-2/21-linalg2_002.ipynb
+++ b/lecture_material/21-linalg-2/21-linalg2_002.ipynb
@@ -317,7 +317,7 @@
     "* $c$ (known) is a vector of coefficients (our model parameters)\n",
     "* $y$ (computed) are the prices\n",
     "\n",
-    "**Below:** what if X and y are know, and we want to find c?"
+    "**Below:** what if X and y are known, and we want to find c?"
    ]
   },
   {