Discussion Feb. 10

Wednesday, February 10, 2025



Scheduling Review

Policy question in OS — which process gets to run?
Policy goals:

» Avoid starvation
» Minimize response time for interactive jobs
» Fairness?

» Performance?



Preemption

» Why might the kernel want to preempt a process?
» Which schedulers from class are preemptable?
» Which are not?



Scheduler metrics

Turnaround time: Tgnish - T arrive
Response time: Tscheduled - Tarrive



Evaluating simple schedulers

Job Arrival Time Job Length

A 0 4
B 0 2
C 0 3

» RR scheduler: what is the avg response time for the 3
jobs?
» RR scheduler: what is the turnaround time for job B

» FIFO scheduler: what is avg turnaround time for the 3
jobs?



MLFQ Review

Q2 Q2
P | I i1l
it a1
TrT i
Qo Qo

Figure 8.4: Without (Left) and With (Right) Priority Boost

(OSTEP Chapter 8, Figure 4)



MLFQ Exercise

Book homework questions (see cpu-sched-mlfq)
https://github.com/remzi-arpacidusseau/ostep-homework:

1. How would you configure the scheduler parameters to
behave just like a round-robin scheduler?

2. Craft a workload with two jobs and scheduler parameters
so that one job takes advantage of the older Rules 4a and
4b (turned on with the -S flag) to game the scheduler and
obtain 99% of the CPU over a particular time interval.

» 4a: if a job uses its allotment while running, its priority is

reduced
> 4b: if a job gives up the CPU before it's allotment is up,
it stays at the same priority level


https://github.com/remzi-arpacidusseau/ostep-homework

Proportional Share Scheduling

Previous schedulers optimize for turnaround and response time.
What else should we think about when scheduling processes?

» Fair share of CPU



Lottery Scheduling

Algorithm
Scheduling via lottery:

» Each process is given tickets representing their
proportional share.

» On each time slice, generate a random number.

» The value of the number determines the schedule.

Example (1000 total tickets):
Process Tickets CPU Share

P1 500 50%
P2 250 25%
P3 250 25%

Random number: 600. P2 is scheduled.



Lottery Scheduling (cont.)

Pros:
» Simple. Very little state needed in scheduler.

» Cooperating processes can voluntarily reduce their own
tickets

Cons:

» Good fairness over the long term, but poor fairness over
the short term.

» How many tickets should jobs be given? Who determines
if a process is high or low priority.



Stride Scheduling

Proportional share without randomness.

Algorithm

Each process has a stride equal to N / tickets for some large
N.

» When a process is scheduled, increment pass by stride.
» Always schedule the process with the lowest stride.

Processes with more tickets have smaller stride. Therefore,
they are scheduled more frequently.



Stride Scheduling (cont.)

What happens when a schedule doesn't run for awhile?
» E.g. process is blocked on /O or sleeping.
» Process stride does not increase.
» Process will dominate CPU when it wakes up.
Solution: global stride and global pass.
» Global stride is N / all tickets.
» Global pass is updated by global stride on each timeslice.
» Process pass is set to global pass on wakeup.
This is the first taste of virtual CPU time.



Linux CFS

"Completely Fair Scheduler" in use in Linux until very recently.

» |dea: divide CPU cycles amongst processes in proportion
to their weights.

» Weights: nice value, not tickets.
Context switch tradeoff:

» Time slices too small: good fairness, poor performance
(too much context switching)

» Time slices too big: poor fairness, good performance.



Linux CFS - Deciding timeslice length

Set a scheduling interval of 48ms, or 6 * number of processes.

1. During every interval, each process must run once. To
determine each process's time slice length, divide the
interval length by the number of processes proportional to
their weight.

2. Linux keeps track of vruntime for each process. Processes
are preempted when their vruntime exceeds their timeslice
length.

3. Fairness is guaranteed within each scheduling interval.



Linux CFS - Choosing the next process

Organize processes in a red-black tree according to their
vruntime. The process with smallest vruntime is always the
left-most node.

» Imagine choosing the process with lowest vruntime in xv6
- linear scan through process array.

» For 100s or 1000s of processes, logarithmic lookup+insert
time is important.

Advantage of choosing the minimum vruntime?

» Interactive jobs scheduled first



	Discussion Feb. 10

