Discussion Session
02.19.2025

P3 Overview

Building wsh

external command execution
built-in commands

variable substitution

pipe

command substitution

fork & exec

if (pid == 0) {

} else

// Child process
// Prepare the arguments for "ls -al"
char *args([] = {"1ls", "-al", NULL};

// Execute "ls -al" using execv
execv ("/bin/1s", args);

// If execv returns, it means it failed
perror ("execv") ;
exit(EXITiFAILURE);

{

// Parent process

// Wait for the child process to complete
int status;

waitpid(pid, &status, 0);

if (WIFEXITED(status)) {
printf ("Child process exited with status %d\n",
} else {

printf ("Child process did not exit normally\n");

}

WEXITSTATUS (status)) ;

pipe, dup2

* pipe()
o int pipe(int pipefd[2]);
o will allocate two file descriptors, which is the write end and read end.
o will be connected

e dup2()
o int dup2(int oldfd, int newfd);
o will copy oldfd into newfd
o newfd exists -> closed

Shell Review

Shell: the program initiates commands that users type

| want to run the program “a. D

Find the file “a.out”!

Type -
./a.out -

> Load the file “a.out”!

Return results Execute the “a.out”

< . . ionl
Shell from its main function

>

e Receives a string that contains the command from the user
e Interprets the string
e Lets the computer work on initiating the command that the user requested

There is Operating System (Kernel) between the shell and the computer

Shell Review

® Powerful features like pipe

Type
./a.out | grep

“hj_”

Return results

A

Shell

Find the file “a.out”!

-

Load the file “a.out”!
Execute the “a.out”
from its main function!

Find the file “grep”!

»
-

Load the file “grep”!

Execute the “grep” with the

output from a.out

>

Shell Review

® Shells are really complicated:
O Bash manual, 196 pages
O zsh manual, 480 pages

Shell features and OS support

Feature Interact with OS?
Start new process Yes

Output redirection Yes (file descriptors)
History No

Env variables No

Local variables No

Pipe Yes

Language No

Job control

Yes (Signals)

Mem Leak

® Allocated memories should be freed!
® But should not be freed more than once!

® However, we might have a mistake

® Therefore, use a tool!
O Valgrind
O Address Sanitizer (ASan)

Valgrind

® A program that tracks
allocation / deallocation / memory references

® Let's try

. . In case when your computer
1 1 .
$ sudo apt install valgrind do not have valgrind yet

$ valgrind ./my prog You can also discover tremendous functionalities
of valgrind using valgrind -h

Address Sanitizer

® To enable, build with —fsanitize=address

® Then run the compiled program.

==43313==ERROR: LeakSanitizer: detected memory leaks

Direct leak of 100 byte(s) in 10 object(s) allocated from:
#0 0x7£69f14c9a06 in __ interceptor calloc
../../../../src/libsanitizer/asan/asan malloc linux.cc:153
#1 0x55cel0e304lec in main (/home/user/discussion material/week3/a.out+0xllec)
#2 0x7f69fllee082 in _ libc start main ../csu/libc-start.c:308

SUMMARY: AddressSanitizer: 100 byvte(s) leaked in 10 allocation(s).

Address Sanitizer catches...

® (Global, Stack, Heap) overflow
® Double free
® Use after free

® Memory Leak

Valgrind VS ASan

® Advantages of asan
O Non-heap bugs: Stack overflow, Global overflow, ...
O Much faster: 2x Asan, 20x Valgrind
O Multi-threaded support

® Disadvantage

O Re-compilation required (i.e., Source code is required)

m Valgrind can detect memory bugs in compiled libraries.

m But asan only can detect bugs if it is compiled with the option
O Cannot detect uninitialized memory

