
Concurrency Discussion 
Review

CS 537: 03/12/25

1



Outline

Locks

Condition Variables

Examples and Group Work

Reader/Writer Lock using Condition Variables

Designing Thread Safe Stack

Identifying Deadlock Practice

2



Outline

Locks

Condition Variables

Examples and Group Work

Reader/Writer Lock using Condition Variables

Designing Thread Safe Stack

Identifying Deadlock Practice

3

Basics

Application



Quick Note: Threads Vs. Processes

What is the difference?

Why use one over the other?

4

?



Quick Note: Threads Vs. Processes

What is the difference?

Why use one over the other?

5



Creating Threads

POSIX Threads (pthreads)

6

Declare pthread vars
Function Thread Executes

Join (like wait)



Creating Threads

POSIX Threads (pthreads)

7

Declare pthread vars
Function Thread Executes

Join (like wait)
Print order not guaranteed!



Concurrency Primitives

8



Locks

Why use locks?

9



Locks

Why use locks?

10

Three different runs!



Locks

11



Ex. Types of Lock Mechanism (Pros/Cons of each?)

12

Spin Lock

Spin Lock with Yield

Blocking Lock



Condition Variables

Allows threads to wait on a specific 
condition.

13



Condition Variables

Allows threads to wait on a specific 
condition.

14

Why two cond_t?

Why use while() and 
not if()?



Semaphores

Wait: Check value, if greater than 0 
(Linux) decrement and proceed.

Post: Increment value.

Can be used for both lock/condition 
variable.

Can be used for thread throttling.

15
“Zemaphore” is a semaphore! Read chapter 31 for more.



Examples

16



Reader/Writer Lock

Mutual exclusion is inefficient with many 
readers, few writers.

Readers could execute in parallel.

ReaderWriter (RW) Lock

- If no one holds lock, writer may enter.
- If no one other than a reader holds 

lock, a reader may enter.

17

Writer

Reader

Critical Section

Writer

Critical Section

Reader

Critical Section

Reader

Reader



Reader/Writer Lock

int NReaders, Nwriters;
Cond_t CanRead, CanWrite;
Mutex_t lock;

18

 Void BeginRead() {
  pthread_mutex_lock(&lock)
  while(NWriters == 1) {

cond_wait(CanRead,&lock);
  }
  ++NReaders;
  Signal(CanRead);
  pthread_mutex_unlock(&lock)
}

Void EndRead() {
  pthread_mutex_lock(&lock)
  if(--NReaders == 0)

Signal(CanWrite);
  pthread_mutex_unlock(&lock)
}

Void BeginWrite()  {
   pthread_mutex_lock(&lock)
   while(NWriters == 1 || NReaders > 0) {
 cond_wait(CanWrite,&lock);
   }
   NWriters = 1;
   pthread_mutex_unlock(&lock)
}

Void EndWrite() {
  pthread_mutex_lock(&lock)
  NWriters = 0;
  Signal(CanRead);
  Signal(CanWrite);
  pthread_mutex_unlock(&lock)
}



Reader/Writer Lock

int NReaders, Nwriters;
Cond_t CanRead, CanWrite;
Mutex_t lock;

19

 Void BeginRead() {
  pthread_mutex_lock(&lock)
  while(NWriters == 1) {

cond_wait(CanRead,&lock);
  }
  ++NReaders;
  Signal(CanRead);
  pthread_mutex_unlock(&lock)
}

Void EndRead() {
  pthread_mutex_lock(&lock)
  if(--NReaders == 0)

Signal(CanWrite);
  pthread_mutex_unlock(&lock)
}

Void BeginWrite()  {
   pthread_mutex_lock(&lock)
   while(NWriters == 1 || NReaders > 0) {
 cond_wait(CanWrite,&lock);
   }
   NWriters = 1;
   pthread_mutex_unlock(&lock)
}

Void EndWrite() {
  pthread_mutex_lock(&lock)
  NWriters = 0;
  Signal(CanRead);
  Signal(CanWrite);
  pthread_mutex_unlock(&lock)
}

What happens with 
multiple readers and 
writers waiting?



Reader/Writer Lock : Fair Edition

int WaitingWriters, 
     WaitingReaders,
     NReaders, NWriters;
Cond_t CanRead, CanWrite;
Mutex_t lock;

20

 
Void BeginRead() {
  bool didWait = False;
  pthread_mutex_lock(&lock)
  while(NWriters == 1 ||
 (WaitingWriters > 0 && \

NReaders > 0 && !didWait)) {
++WaitingReaders;
cond_wait(CanRead,&lock);
--WaitingReaders;
didWait = True;
}

  ++NReaders;
  Signal(CanRead);
  pthread_mutex_unlock(&lock)
}

Void EndRead() {
 pthread_mutex_lock(&lock)
  if(--NReaders == 0)

Signal(CanWrite);
  pthread_mutex_unlock(&lock)
}

Void BeginWrite()  {
   pthread_mutex_lock(&lock)
   while(NWriters == 1 || NReaders > 0) {
 ++WaitingWriters;
 cond_wait(CanWrite,&lock);
 --WaitingWriters;
   }
   NWriters = 1;
   pthread_mutex_unlock(&lock)
}

Void EndWrite() {
  pthread_mutex_lock(&lock)
  NWriters = 0;
  if(WaitingReaders)

Signal(CanRead);
  else Signal(CanWrite);
  pthread_mutex_unlock(&lock)
}



Student Group Activity: Thread Safe Stack Design

Write the code for a thread-safe stack, where the stack implements a PUSH and POP 
operation of any arbitrary value (void*). 

PUSH should wait while the stack is full and POP should wait while the stack is empty. 

Use mutexes and condition variables only. You can assume the stack has a known maximum 
size

21

void * POP() {
…

}

void * PUSH(void *element) {
…

}



Example Stack 

void stack_push(ThreadSafeStack* stack, void* value) {

pthread_mutex_lock(&stack->mutex);

while (stack->top == STACK_SIZE - 1) {

       pthread_cond_wait(&stack->cond_not_full, &stack->mutex);

}

stack->data[++stack->top] = value;

pthread_cond_signal(&stack->cond_not_empty);

pthread_mutex_unlock(&stack->mutex);

} 22

void* stack_pop(ThreadSafeStack* stack) {

pthread_mutex_lock(&stack->mutex);

while (stack->top == -1) {

       pthread_cond_wait(&stack->cond_not_empty, &stack->mutex);

}

void* value = stack->data[stack->top--];

pthread_cond_signal(&stack->cond_not_full);

pthread_mutex_unlock(&stack->mutex);

return value;

}

typedef struct {
void* data[STACK_SIZE];
int top;
pthread_mutex_t mutex;
pthread_cond_t cond_not_full;
pthread_cond_t cond_not_empty;

} ThreadSafeStack;

Untested ChatGPT generated 
code! Exercise: Look over and 
see if its valid.



Example Identifying Deadlocks

What are the four requirements for a deadlock?

23



Example Identifying Deadlocks

What are the four requirements for a deadlock?

- Mutual Exclusion: Thread gains exclusive control of resource.
- Hold-and-Wait: Threads hold resources already allocated while waiting for 

other resources.
- No Preemption: Resources cannot be forcibly removed from threads holding 

them.
- Circular Wait: Circular dependency chain, each thread holds resources 

requested by next in chain.

24



Example Identifying Deadlocks

void transfer(Account *acct1, Account *acct2, int amount) {

lock(acct1->lock);

if (acct1->balance > amount) {

       lock(acct2->lock);

       acct1->balance = acct1->balance - amount;

       acct2->balance = acct2->balance + amount;

       release(acct2->lock);

}

release(acct1->lock);

} 25

void withdraw(Account* acct) {

lock(acct->lock);

if (acct->balance > amount) {

acct->balance =

acct->balance - amount;

}

release(acct->lock);

}



This Slide Intentionally Left Blank

26


