Discussion Section
Week 3

Working on real Operating Systems

e \Very Large Codebases
o The Linux Kernel has 30.34 million lines of code!

e \ery complex Codebases

o Operating Systems need to be resilient
o Define how software interacts with hardware
o Orchestrates how programs interact with other programs and systems

e \We start small

v Manual

A COMMENTARY ON THE SIXTH EDITION UNIX OPERATING SYSTEM

https://cs3210.cc.gatech.edu/r/unix6.pdf

12.7 exec (3020)

This system call, #11, changes a process execut-
ing one program into a process executing a differ-
ent program. See Section “EXEC(II)” of the UPM.
This is the longest and one of the most important
system calls.

3034: “namei” (6618) (which is discussed in de-
tail in Chapter 19) converts the first argu-
ment (which is a pointer to a character string
defining the name of the new program) into

an “inode” reference. (“inodes” are essential
parts of the file referencing mechanism.);

3087: Wait if the number of “exec”s currently un-
der way is too large (See the comment on line
3011.);

3040: “getblk(NODEV)” results in the allocation
of a 512 byte buffer from the pool of buffers.
This buffer is used temporarily to store in
core, that information which is currently in
the user data area, and which is needed to
start the new program. Note that the second
argument in “w.u.arg” is a pointer to this in-
formation;

3041: “access” returns a non-zero result if the file
is not executable. The second condition ex-
amines whether the file is a directory or a
special character file. (It would seem that by
making this test earlier, e.g. just after line
3036, the efficiency of the code could be im-
proved.);

3052: Copy the set of arguments from the user
space into the temporary buffer;

3064: If the argument string is too large to fit in
the buffer, take an error exit;

3071: If the number of characters in the argument
string is odd, add an extra, null character;

3090: The first four words (8 bytes) of the named

file are read into “u.u_arg”. The interpreta-
tion of these words is indicated in the com-
ment beginning on line 3076 and, more fully,
in the section “A.OUT(V)” of the UPM.
Note the setting of “u.u-base”, “u.u_count”,
“u.u_offset” and “u.u_segflg” preparatory to
the read operation;

3095: If the text segment is not to be protected,

add the text area size to the data area size,
and set the former to zero;

3105: Check whether the program has a “pure”

text area, but the program file has already
been opened by some other program as a data
file. If so, take the error exit;

3127: When this point is reached, the decision to

execute the new program is irrevocable i.e.
there is no longer the opportunity to return
to the original program with an error flag set;

3129: “expand” here actually implies a major con-

traction, to the “per process data” area only;

3130: “xalloc” takes care of allocating (if neces-

sary) and linking to the text area;

3158: The information stored in the buffer area is
copied into the stack in the user data area of
the new program;

3186: The locations in the kernel stack which con-
tain copies of the “previous” values of the reg-
isters in user mode are set to zero, except for
16, the stack pointer, which was set at line
3155;

«

3194: Decrement the reference count for the “in-

ode” structure;
3195: Release the temporary buffer;

3196: Wake up any other process waiting at line
3037.

XV6

e Based on v6, the first public release version of the Unix Operating System
(1975)

e Created at MIT in 2005

e Runs in an emulated environment, using gemu (Quick Emulator)

Features of xv6

Minimalist Kernel, around ~10K lines of code
Round Robin Scheduler
Process Creation via fork(), context switching
Segmentation and Paging for Memory Management
File System
IPC using pipes (“|")
System Calls

o read(), write(), open(), close(), uptime(), fork() etc
Interrupt-driven processing

e User Space utilities
o Shell, Is, cat, grep, echo

How to build and run xv6

1. Clone this repository (Note, we are using x86 version) GitHub -
mit-pdos/xv6-public: xv6 OS

2. Cd to xv6-public directory

make

4. Make-gemu-nox

W

Booting from Hard Disk..xvé...

cpu@: starting ©

sb: size 1000 nblocks 941 ninodes 200 nlog 30 logstart 2 inodestart 32 bmap start 58
init: starting sh

$ [

https://github.com/mit-pdos/xv6-public
https://github.com/mit-pdos/xv6-public

How to debug xv6

Check if you have .gdbinit.tmpl in your xv6 directory
o We will include this in your solution folder
o Check using Is -a (.gdbinit.tmp is hidden)
Modify your gdb config (gdbinit), found in /home/USERNAME/.config/gdb

o If you cannot find this path, try mkdir -p /home/USERNAME/.config/gdb
o Add afile gdbinit in the gdb directory

You need to add this line to the top of /lhome/USERNAME/.config/gdb/gdbinit
o add-auto-load-safe-path [absolute path to xv6 directory]/.gdbinit

Navigate back to your xv6 directory

Run make gemu-nox-gdb

Open another ssh connection, or use tmux to create another panel

Navigate to xv6 directory and run gdb

Run gdb command continue and you should see the xv6 run in the other panel

You can also use print statements, printf() works in userspace, and cprintf will work in kernel
space.

How to add and run a user program

Create your program (in this case, let’s call it usertest.c)
Open Makefile

Add _usertest to UPROGS (Line 168)

Add usertest.c to EXTRA (Line 251)

Compile and run xv6

You should be able to launch the user program from the xv6 prompt

Debugging a user Program

e Let's say you have a stub _test that you added in USERPROGS, which
reflects some executable “test”
e In gdb, type
o add-symbol-file _test
e This will load up the symbol table (i.e., the debugging information) for test.
e In gdb, type
o break test.c:[line number] to set a breakpoint
e Hit continue, switch to xv6 shell, run ./test, and it should break at that line

e Try using layout src to get a full view of code, and debugging information

Practical Demo!

Let’s take a look at

N~

How to compile and run
How to debug

How to add user programs
Look at internals?

