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TA: Hayden Coffey
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P4: Learning Objectives

Understand paging in xv6.

Understand complexities of supporting multiple page sizes.
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P4: Project Overview

Integrating huge pages (4 MB) into the xv6 memory management system.

—

Can work with a partner (can be in other lecture section).

Due 03/20/25.
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XV6 Memory Management 
Overview

4



xv6 Page Table

4 KB Pages
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https://github.com/zarif98sjs/xv6-memory-management-walkthrough?tab=readme-ov-file



xv6 Memory Basics

4 KB page size

32 bit virtual address space

Virtual memory is split between kernel and user space program
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xv6 Memory Basics

4 KB page size

32 bit virtual address space

Virtual memory is split between kernel and user space program
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Kernel Memory Mapping (Simplified)
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Kernel Memory Mapping (Simplified)
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Kernel Memory Mapping (Simplified)
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User Memory Mapping (Simplified)
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User Memory Mapping (Simplified)
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Memory Mapping (Simplified)
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Memory Mapping (Simplified)
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Memory Init (Look in main.c)

Kernel needs to create its own page table!

After boot, kernel starts with only first 4 MB of memory available.

kinit1(): Chops up 4 MB into 4 KB free pages.
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Memory Init (Look in main.c)

Kernel needs to create its own page table!

After boot, kernel starts with only first 4 MB of memory available.

kinit1(): Chops up 4 MB into 4 KB free pages with freerange().
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Memory Init (Look in main.c)

kvmalloc(): Use starting free pages to build kernel part of page table.
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Memory Init (Look in main.c)

kvmalloc(): Use starting free pages to build kernel part of page table.

kinit2(): Adds rest of memory to free page list with freerange().
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How does a process get memory?

malloc(): If more pages needed, calls sbrk()

sbrk() -> growproc() -> allocuvm
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Project 4:

Introducing huge pages (4 MB) into xv6
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Project 4:

Step 1: Enable huge page allocations

khugeinit()

khugealloc()

khugefree()
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Project 4:

Step 2: Integrate into memory management system.

vmalloc(n, flag): Can base on malloc (umalloc.c)

flag -> VMALLOC_SIZE_BASE or VMALLOC_SIZE_HUGE
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Project 4:

Step 3: Transparent Huge Page Allocation

Update malloc to use huge pages for allocations >= 1 MB.
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Sources

https://github.com/zarif98sjs/xv6-memory-management-walkthrough

https://www.cse.iitb.ac.in/~mythili/os/notes/old-xv6/xv6-memory.pdf
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https://github.com/zarif98sjs/xv6-memory-management-walkthrough
https://www.cse.iitb.ac.in/~mythili/os/notes/old-xv6/xv6-memory.pdf

