
Discussion Section
Week 3



Working on real Operating Systems

● Very Large Codebases 
○ The Linux Kernel has 30.34 million lines of code!

● Very complex Codebases
○ Operating Systems need to be resilient 
○ Define how software interacts with hardware
○ Orchestrates how programs interact with other programs and systems

● We start small



v6 Manual

A COMMENTARY ON THE SIXTH EDITION UNIX OPERATING SYSTEM

https://cs3210.cc.gatech.edu/r/unix6.pdf




xv6

● Based on v6, the first public release version of the Unix Operating System 
(1975)

● Created at MIT in 2005
● Runs in an emulated environment, using qemu (Quick Emulator)



Features of xv6

● Minimalist Kernel, around ~10K lines of code
● Round Robin Scheduler
● Process Creation via fork(), context switching
● Segmentation and Paging for Memory Management
● File System
● IPC using pipes (“|”)
● System Calls

○ read(), write(), open(), close(), uptime(), fork() etc
● Interrupt-driven processing
● User Space utilities

○ Shell, ls, cat, grep, echo



How to build and run xv6

1. Clone this repository (Note, we are using x86 version) GitHub - 
mit-pdos/xv6-public: xv6 OS

2. Cd to xv6-public directory
3. make
4. Make-qemu-nox

https://github.com/mit-pdos/xv6-public
https://github.com/mit-pdos/xv6-public


How to debug xv6 

● Check if you have .gdbinit.tmpl in your xv6 directory
○ We will include this in your solution folder
○ Check using ls -a (.gdbinit.tmp is hidden)

● Modify your gdb config (gdbinit), found in /home/USERNAME/.config/gdb
○ If you cannot find this path, try mkdir -p /home/USERNAME/.config/gdb
○ Add a file gdbinit in the gdb directory

● You need to add this line to the top of /home/USERNAME/.config/gdb/gdbinit 
○ add-auto-load-safe-path [absolute path to xv6 directory]/.gdbinit

● Navigate back to your xv6 directory
● Run make qemu-nox-gdb
● Open another ssh connection, or use tmux to create another panel
● Navigate to xv6 directory and run gdb
● Run gdb command continue and you should see the xv6 run in the other panel

You can also use print statements, printf() works in userspace, and cprintf will work in kernel 
space.



How to add and run a user program

● Create your program (in this case, let’s call it usertest.c)
● Open Makefile
● Add _usertest to UPROGS (Line 168)
● Add usertest.c to EXTRA (Line 251)

Compile and run xv6

You should be able to launch the user program from the xv6 prompt



Debugging a user Program

● Let’s say you have a stub _test that you added in USERPROGS, which 
reflects some executable “test”

● In gdb, type
○ add-symbol-file _test

● This will load up the symbol table (i.e., the debugging information) for test. 
● In gdb, type

○ break test.c:[line number] to set a breakpoint
● Hit continue, switch to xv6 shell, run ./test, and it should break at that line
● Try using layout src to get a full view of code, and debugging information



Practical Demo!

Let’s take a look at 

1. How to compile and run
2. How to debug
3. How to add user programs
4. Look at internals?


