
P4 Discussion Section
TA: Hayden Coffey

1

Updated: 03/04/25



P4: Learning Objectives

Understand paging in xv6.

Understand complexities of supporting multiple page sizes.

2



P4: Project Overview

Integrating huge pages (4 MB) into the xv6 memory management system.

—

Can work with a partner (can be in other lecture section).

Due 03/20/25.

3



XV6 Memory Management 
Overview

4



xv6 Page Table

4 KB Pages

5
https://github.com/zarif98sjs/xv6-memory-management-walkthrough?tab=readme-ov-file



xv6 Memory Basics

4 KB page size

32 bit virtual address space

Virtual memory is split between kernel and user space program

6

User Kernel

0x1000000000x0

4 GB

KERNBASE
0x80000000

2 GB

Virtual Address Space



xv6 Memory Basics

4 KB page size

32 bit virtual address space

Virtual memory is split between kernel and user space program

7

User Kernel

0x1000000000x0

4 GB

KERNBASE
0x80000000

2 GB

Virtual Address Space Same for all proc

Proc Specific



Kernel Memory Mapping (Simplified)

8

KERNBASE

Physical Memory

0x0

4 GB4 GB

0x0



Kernel Memory Mapping (Simplified)

9

KERNBASE

Physical Memory

0x0

PHYSTOP

4 GB4 GB

Max ~2 GB

0x0

Contiguous 
mapping!

KERNBASE + 
PHYSTOP



Kernel Memory Mapping (Simplified)

10

KERNBASE

Physical Memory

0x0

PHYSTOP

Devices Devices 4 GB4 GB
32 MB

Max ~2 GB

0x0

KERNBASE + 
PHYSTOP



User Memory Mapping (Simplified)

11

Physical Memory

0x0

PHYSTOP

Devices Devices 4 GB4 GB
32 MB

Max ~2 GB

0x0

PHYSTOP

KERNBASE + 
PHYSTOP



User Memory Mapping (Simplified)

12

Physical Memory

0x0

PHYSTOP

Devices Devices 4 GB4 GB
32 MB

Max ~2 GB

0x0

PHYSTOP

Heap

Stack
Code/Data

KERNBASE + 
PHYSTOP



Memory Mapping (Simplified)

13

Physical Memory

0x0

PHYSTOP

Devices Devices 4 GB4 GB
32 MB

Max ~2 GB

0x0

PHYSTOP

Heap

Stack
Code/Data

4 KB Page

KERNBASE + 
PHYSTOP



Memory Mapping (Simplified)

14

Physical Memory

0x0

Devices DevicesKERNBASE + 
PHYSTOP

4 GB4 GB
32 MB

Max ~2 GB

0x0

PHYSTOP

Heap

Stack
Code/Data

4 KB Page



Memory Init (Look in main.c)

Kernel needs to create its own page table!

After boot, kernel starts with only first 4 MB of memory available.

kinit1(): Chops up 4 MB into 4 KB free pages.

15KERNBASE

4 GB

end

KERNBASE + 
PHYSTOP

Kernel 
Data/Text, 

MMIO

4 MB



Memory Init (Look in main.c)

Kernel needs to create its own page table!

After boot, kernel starts with only first 4 MB of memory available.

kinit1(): Chops up 4 MB into 4 KB free pages with freerange().

16KERNBASE

4 GB

end

KERNBASE + 
PHYSTOP

Kernel 
Data/Text, 

MMIO

4 MB Nothing drawn to scale!

Free Page



Memory Init (Look in main.c)

kvmalloc(): Use starting free pages to build kernel part of page table.

17KERNBASE

4 GB

end Kernel 
Data/Text, 

MMIO

4 MB Request a page with kalloc()

Free Page
KERNBASE + 

PHYSTOP



Memory Init (Look in main.c)

kvmalloc(): Use starting free pages to build kernel part of page table.

kinit2(): Adds rest of memory to free page list with freerange().

18KERNBASE

4 GB

end Kernel 
Data/Text, 

MMIO

Free Page
KERNBASE + 

PHYSTOP



How does a process get memory?

malloc(): If more pages needed, calls sbrk()

sbrk() -> growproc() -> allocuvm

190x0

PHYSTOP

Heap

Stack
Code/Data

Kernel 
Data/Text, 

MMIO



Project 4:

Introducing huge pages (4 MB) into xv6

20



Project 4:

Step 1: Enable huge page allocations

khugeinit()

khugealloc()

khugefree()

21



Project 4:

Step 2: Integrate into memory management system.

vmalloc(n, flag): Can base on malloc (umalloc.c)

flag -> VMALLOC_SIZE_BASE or VMALLOC_SIZE_HUGE

22



Project 4:

Step 3: Transparent Huge Page Allocation

Update malloc to use huge pages for allocations >= 1 MB.

23



Sources

https://github.com/zarif98sjs/xv6-memory-management-walkthrough

https://www.cse.iitb.ac.in/~mythili/os/notes/old-xv6/xv6-memory.pdf

24

https://github.com/zarif98sjs/xv6-memory-management-walkthrough
https://www.cse.iitb.ac.in/~mythili/os/notes/old-xv6/xv6-memory.pdf

