AFS

04.23.2025

Distributed File Systems

Recap distributed system problems:
- Things can fail / timeout

- Communication methods

- Consistency

- RPC

File system concerns

- Why do we even want one?
- Reliability
- Sharing
- How should we interact with the filesystem? Aka, what is the interface?
- User library?
- VFS?
- What is the consistency model?
- Concurrent updates w/ multiple clients
- Server failure?
- Client failure?
- Where to store distributed state?
- Server must maintain state for each client?

NFS

Lecture Tomorrow

AFS : Andrew File System

e Objective: Scalability! (1000's of machines)

e More reasonable semantics for concurrent file access

AFS Design

e NFS: Server exports local FS

e AFS: Directory tree stored across many server machines (helps scalability!)

. ‘ Break directory tree into “volumes”
. ‘ ‘ l.e., partial sub trees

Prototype

Key idea: "whole file caching"
- Contact server during open and close
- Reads and writes performed locally (this is contrast to NFS).
- "Clients cache entire files from a collection of dedicated

autonomous servers."

Requirements: we assume client has local-disk cache.

Prototype

a.txt 1st block a.txt 1st block

a.txt
a.txt 1st block
a.txt 1st block Cliont a.txt
Client '\?I;r;f(;? local disk Server
a.txt 2nd block cache) a.txt 2nd block is valid?
a.txt 2nd block a.txt 2nd block yes
traverse

directories

Observations

- Works okay
- Slower than local file access, but faster than logging into timesharing system
- Some applications run slowly
- Repetitive stat calls to check if file exists
- Dedicated process per client is very resource-intensive (Path traversal)
- Resource limits on server
- Context switches - Single process per client

- Only scaled to ~20 users/server

Benchmark and Breakdown

- Two RPCs made up over 90% of all RPCs
- TestAuth
- GetFileStat

- Look at CPU usage of each server
- high CPU, low I/O usage.

- more profiling: context switch cost, path traversal

Revised Version

e (Cache management
o Assume cache entries are valid unless otherwise notified.
o Server will make a “callback” function if another client changes the file.
o What changes? Server now needs to maintain state for each client.

e Name resolution - Introduce “file id”.
o Directory entries map path segments to fid.
o Server isn't aware of path at all.
o volume | vnode | uniquifier. (to enable reuse of the volume and file IDs when a file is deleted)
All fields are unique and contain info about which volume the file is located.

e Communication and server processes

o Use lightweight processes (i.e., threads) instead of processes on server.
e Low-level storage representation

o Access file by vnode (which corresponds to local inode) instead of path.

o Needed to modify the local file system to do this.
o Goal: eliminate path lookups

Prototype

a.txt 1st block a.txt 1st block

a.txt
a.txt 1st block
a.txt 1st block Cliont a.txt
Client '\?I;r;f(;? local disk Server
a.txt 2nd block cache) a.txt 2nd block is valid?
a.txt 2nd block a.txt 2nd block yes
traverse

directories

Revised

Client

a.txt 1st block

a.txt 1st block

a.txt 2nd block

>

a.txt 2nd block

Client
Memory
(Buffer
cache)

a.txt 1st block

a.txt 1st block

a.txt 2nd block

a.txt 2nd block

e FID of ‘a.txt’ can be
found by recursively
fetching directories

FID

a.txt

local disk
Server

notify if it is not valid

Consistency

e \What are the implications of open-to-close semantics?

o Writes to a file are immediately visible to other processes on the same machine

o Writes to a file are only visible to other machines after the file is closed
o Last writer wins.

i.e. no filesystem locking.
Clients have to coordinate themselves if they want locks.

Consistency

Client; Clienty Server Comments
P, Py Cache| P3 Cache| Disk
open(F) - - - File created
write(A) A - -
close() A - A
open(F) A - A
read) > A A - A
close() A - A
open(F) A - A
write(B) B - A
open(F) B - A Local processes
read) - B B - A see writes immediately
close() B - A
B open(F) A A Remote processes
B read) - A A A do not see writes...
B close() A A
close() B y. ¢ B ... until close()
B open(F) B B has taken place
B read() - B B B
B close() B B
B open(F) B B
open(F) B B B
write(D) D B B
D write(C) (& B
D close() C €
close() D ¢ D
D open(F) D D Unfortunately for P3
D read) - D D D the last writer wins
D close() D D

Figure 50.3: Cache Consistency Timeline

Evaluation

oSr
£
~
5
B 4r Prototype
£ - — - Revised Andrew File System
m o
o 3
2
b
S
Q)
xo! __ e
&. —-— —
1 s
(4] 2 4 6 8 10 12 14 16 18 20

Load Units

