
Discussion Session
02.19.2025

P3 Overview

● Building wsh
● external command execution
● built-in commands
● variable substitution
● pipe
● command substitution

fork & exec
if (pid == 0) {

// Child process
 // Prepare the arguments for "ls -al"
 char *args[] = {"ls", "-al", NULL};

 // Execute "ls -al" using execv
 execv("/bin/ls", args);

 // If execv returns, it means it failed
 perror("execv");
 exit(EXIT_FAILURE);

} else {
 // Parent process
 // Wait for the child process to complete
 int status;
 waitpid(pid, &status, 0);

 if (WIFEXITED(status)) {
 printf("Child process exited with status %d\n", WEXITSTATUS(status));
 } else {
 printf("Child process did not exit normally\n");
 }
}

pipe, dup2

● pipe()
○ int pipe(int pipefd[2]);
○ will allocate two file descriptors, which is the write end and read end.
○ will be connected

● dup2()
○ int dup2(int oldfd, int newfd);
○ will copy oldfd into newfd
○ newfd exists -> closed

Shell Review

● Receives a string that contains the command from the user
● Interprets the string
● Lets the computer work on initiating the command that the user requested

There is Operating System (Kernel) between the shell and the computer

Shell

Type
./a.out

I want to run the program “a.out”!

Find the file “a.out”!

Load the file “a.out”!

Execute the “a.out”
from its main function!

Return results

Shell: the program initiates commands that users type

Shell Review

● Powerful features like pipe

Shell

Type
./a.out | grep “hi”

Find the file “a.out”!

Load the file “a.out”!

Execute the “a.out”
from its main function!

Return results
Find the file “grep”!

Load the file “grep”!

Execute the “grep” with the
output from a.out

Shell Review

● Shells are really complicated:
○ Bash manual, 196 pages

○ zsh manual, 480 pages

Shell features and OS support

Feature Interact with OS?
Start new process Yes
Output redirection Yes (file descriptors)
History No
Env variables No
Local variables No
Pipe Yes
Language No
Job control Yes (Signals)

Mem Leak
● Allocated memories should be freed!
● But should not be freed more than once!

● However, we might have a mistake

● Therefore, use a tool!
○ Valgrind
○ Address Sanitizer (ASan)

Valgrind

● A program that tracks
allocation / deallocation / memory references

● Let’s try

$ sudo apt install valgrind

$ valgrind ./my_prog

In case when your computer
do not have valgrind yet

You can also discover tremendous functionalities
of valgrind using valgrind -h

Address Sanitizer

● To enable, build with –fsanitize=address

● Then run the compiled program.

===
==43313==ERROR: LeakSanitizer: detected memory leaks

Direct leak of 100 byte(s) in 10 object(s) allocated from:
 #0 0x7f69f14c9a06 in __interceptor_calloc
../../../../src/libsanitizer/asan/asan_malloc_linux.cc:153
 #1 0x55ce0e3041ec in main (/home/user/discussion_material/week3/a.out+0x11ec)
 #2 0x7f69f11ee082 in __libc_start_main ../csu/libc-start.c:308

SUMMARY: AddressSanitizer: 100 byte(s) leaked in 10 allocation(s).

Address Sanitizer catches…

● (Global, Stack, Heap) overflow

● Double free

● Use after free

● Memory Leak

Valgrind VS ASan
● Advantages of asan

○ Non-heap bugs: Stack overflow, Global overflow, …
○ Much faster: 2x Asan, 20x Valgrind
○ Multi-threaded support

● Disadvantage
○ Re-compilation required (i.e., Source code is required)

■ Valgrind can detect memory bugs in compiled libraries.
■ But asan only can detect bugs if it is compiled with the option

○ Cannot detect uninitialized memory

