{ "cells": [ { "cell_type": "code", "execution_count": 1, "id": "df568295-31af-4fde-b402-8adecdf57f13", "metadata": {}, "outputs": [], "source": [ "from sqlalchemy import create_engine, text\n", "engine = create_engine(\"mysql+mysqlconnector://root:abc@127.0.0.1:3306/cs544\")\n", "conn = engine.connect()" ] }, { "cell_type": "code", "execution_count": 2, "id": "8cabbb35-3d75-44ee-886c-6aa871a01d68", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[]" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "list(conn.execute(text(\"\"\"\n", " show tables\n", "\"\"\")))" ] }, { "cell_type": "code", "execution_count": 3, "id": "b68ba375-c9c9-4677-9d9d-310d1927a276", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "<sqlalchemy.engine.cursor.CursorResult at 0x7c45d0474de0>" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# table: users\n", "# columns: id, name, phone\n", "# name is required\n", "# id uniquely identifies row\n", "conn.execute(text(\"\"\"\n", " create table users (\n", " id int,\n", " name text NOT NULL,\n", " phone text,\n", " PRIMARY KEY (id)\n", " )\n", "\"\"\"))" ] }, { "cell_type": "code", "execution_count": 4, "id": "00a5b5b9-8e91-4d90-99ad-e85a1756ea88", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "<sqlalchemy.engine.cursor.CursorResult at 0x7c45c9711e80>" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "conn.execute(text(\"\"\"\n", " create table accounts (\n", " user_id int,\n", " name text NOT NULL,\n", " amount int NOT NULL,\n", " FOREIGN KEY (user_id) references users(id)\n", " )\n", "\"\"\"))" ] }, { "cell_type": "code", "execution_count": 5, "id": "9739d58c-8004-4844-a609-7ed95bdbf9aa", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[('accounts',), ('users',)]" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "list(conn.execute(text(\"\"\"\n", " show tables\n", "\"\"\")))" ] }, { "cell_type": "code", "execution_count": 6, "id": "1fc2171c-9f09-4b40-b5e0-fcb84870ec7d", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "<sqlalchemy.engine.cursor.CursorResult at 0x7c45c97122e0>" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "conn.execute(text(\"\"\"\n", " INSERT INTO users (id, name) VALUES (1, \"tyler\")\n", "\"\"\"))" ] }, { "cell_type": "code", "execution_count": 7, "id": "a96a9978-0927-4886-bd72-225150f9a5a2", "metadata": {}, "outputs": [], "source": [ "# conn.execute(text(\"\"\"\n", "# INSERT INTO users (id, name) VALUES (1, \"tyler\")\n", "# \"\"\"))" ] }, { "cell_type": "code", "execution_count": 8, "id": "0dbc816b-4f66-4b19-bcb6-e1b5212ef469", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[(1, 'tyler', None)]" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "list(conn.execute(text(\"\"\"\n", " SELECT *\n", " FROM users\n", "\"\"\")))" ] }, { "cell_type": "code", "execution_count": 9, "id": "45c24702-0285-43fe-ae0e-b9d01adc2a37", "metadata": {}, "outputs": [], "source": [ "conn.commit()" ] }, { "cell_type": "code", "execution_count": 10, "id": "2a18a93d-20c1-4f02-875a-e6154ad7aef5", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "<sqlalchemy.engine.cursor.CursorResult at 0x7c45c9712d60>" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "conn.execute(text(\"\"\"\n", " INSERT INTO accounts (user_id, name, amount)\n", " VALUES (1, \"A\", 10), (1, \"B\", 20)\n", "\"\"\"))" ] }, { "cell_type": "code", "execution_count": 11, "id": "753e807c-51d8-4190-9e8b-92e95bc8030b", "metadata": {}, "outputs": [], "source": [ "conn.commit()" ] }, { "cell_type": "code", "execution_count": 12, "id": "ca9c9379-ba53-42f0-9e11-eed9921adc01", "metadata": {}, "outputs": [], "source": [ "# this would break an invariant, so it's not allowed!\n", "# foreign keys are still referencing user id 1\n", "#\n", "# conn.execute(text(\"\"\"\n", "# DELETE FROM users WHERE id = 1;\n", "# \"\"\"))" ] }, { "cell_type": "code", "execution_count": 13, "id": "75ae1cff-684a-4c04-9ce3-f619edea898c", "metadata": {}, "outputs": [], "source": [ "import pandas as pd" ] }, { "cell_type": "code", "execution_count": 14, "id": "de914434-5eb7-465b-aec4-8bec6953b623", "metadata": {}, "outputs": [], "source": [ "url = \"https://raw.githubusercontent.com/cfpb/api/master/resources/datasets/hmda/code_sheets/\"\n", "df = pd.read_csv(url + \"action_taken.csv\")\n", "df.to_sql(\"actions\", conn, index=False, if_exists=\"replace\")\n", "df = pd.read_csv(url + \"loan_type.csv\")\n", "df.to_sql(\"loan_types\", conn, index=False, if_exists=\"replace\")\n", "df = pd.read_csv(url + \"loan_purpose.csv\")\n", "df.to_sql(\"purposes\", conn, index=False, if_exists=\"replace\")\n", "conn.commit()" ] }, { "cell_type": "code", "execution_count": 15, "id": "4c24c47e-8f03-4b84-9647-6fd1559a4b0b", "metadata": {}, "outputs": [], "source": [ "import pyarrow as pa\n", "import pyarrow.csv, pyarrow.parquet\n", "\n", "t = pa.parquet.read_table(\n", " \"loans.parquet\", \n", " columns=[\"lei\", \"action_taken\", \"loan_type\",\n", " \"loan_amount\", \"interest_rate\", \"loan_purpose\", \"income\"\n", " ]\n", ")" ] }, { "cell_type": "code", "execution_count": 16, "id": "a0f419e7-b0d7-4bf1-94ad-4c4ca961ada6", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "447367" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "t.to_pandas().to_sql(\"loans\", conn, index=False,\n", " if_exists=\"replace\", chunksize=10_000)" ] }, { "cell_type": "code", "execution_count": 17, "id": "96846d26-3aa8-414a-a925-eafa9fe60f50", "metadata": {}, "outputs": [], "source": [ "conn.commit()" ] }, { "cell_type": "markdown", "id": "24e3be3e-5296-44fa-a850-c1e0df34cd38", "metadata": {}, "source": [ "# Transactions" ] }, { "cell_type": "code", "execution_count": 18, "id": "791ad3aa-0a41-4c5c-b1ee-6d9b5b95e023", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "remaining: 5\n", "commit!\n" ] } ], "source": [ "conn.execute(text(\"\"\"\n", "update accounts set amount = amount + 5 where name = 'B'\n", "\"\"\"))\n", "conn.execute(text(\"\"\"\n", "update accounts set amount = amount - 5 where name = 'A'\n", "\"\"\"))\n", "\n", "# invariant: account cannot go negative\n", "remaining_amount = list(conn.execute(text(\n", " \"select amount from accounts where name = 'A'\"\n", ")))[0][0]\n", "print(\"remaining:\", remaining_amount)\n", "if remaining_amount >= 0:\n", " print(\"commit!\")\n", " conn.commit()\n", "else:\n", " print(\"rollback!\")\n", " conn.rollback()" ] }, { "cell_type": "code", "execution_count": 19, "id": "10f7d983-69fc-4800-b529-b7f19e0cdb73", "metadata": {}, "outputs": [], "source": [ "# conn.rollback() or conn.commit()" ] }, { "cell_type": "markdown", "id": "49392cee-e7b9-4ce0-9ce3-961965443b3d", "metadata": {}, "source": [ "# Analyze/Query the Data" ] }, { "cell_type": "code", "execution_count": 20, "id": "ed5f92fc-ac76-4307-bd0c-6b714ed5a699", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>id</th>\n", " <th>action_taken</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>1</td>\n", " <td>Loan originated</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>2</td>\n", " <td>Application approved but not accepted</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>3</td>\n", " <td>Application denied by financial institution</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>4</td>\n", " <td>Application withdrawn by applicant</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>5</td>\n", " <td>File closed for incompleteness</td>\n", " </tr>\n", " <tr>\n", " <th>5</th>\n", " <td>6</td>\n", " <td>Loan purchased by the institution</td>\n", " </tr>\n", " <tr>\n", " <th>6</th>\n", " <td>7</td>\n", " <td>Preapproval request denied by financial instit...</td>\n", " </tr>\n", " <tr>\n", " <th>7</th>\n", " <td>8</td>\n", " <td>Preapproval request approved but not accepted</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " id action_taken\n", "0 1 Loan originated\n", "1 2 Application approved but not accepted\n", "2 3 Application denied by financial institution\n", "3 4 Application withdrawn by applicant\n", "4 5 File closed for incompleteness\n", "5 6 Loan purchased by the institution\n", "6 7 Preapproval request denied by financial instit...\n", "7 8 Preapproval request approved but not accepted" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# what are all the possible actions? Practice SELECT/FROM.\n", "pd.read_sql(\"\"\"\n", "SELECT *\n", "FROM actions\n", "\"\"\", conn)" ] }, { "cell_type": "code", "execution_count": 21, "id": "8349be60-02f4-43bb-9cf2-568bc70d2c75", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>lei</th>\n", " <th>action_taken</th>\n", " <th>loan_type</th>\n", " <th>loan_amount</th>\n", " <th>interest_rate</th>\n", " <th>loan_purpose</th>\n", " <th>income</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>54930034MNPILHP25H80</td>\n", " <td>6</td>\n", " <td>1</td>\n", " <td>305000.0</td>\n", " <td>3.875</td>\n", " <td>1</td>\n", " <td>108.0</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>54930034MNPILHP25H80</td>\n", " <td>4</td>\n", " <td>1</td>\n", " <td>65000.0</td>\n", " <td>NA</td>\n", " <td>1</td>\n", " <td>103.0</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>54930034MNPILHP25H80</td>\n", " <td>6</td>\n", " <td>1</td>\n", " <td>75000.0</td>\n", " <td>3.25</td>\n", " <td>1</td>\n", " <td>146.0</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>54930034MNPILHP25H80</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>155000.0</td>\n", " <td>4.0</td>\n", " <td>32</td>\n", " <td>70.0</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>54930034MNPILHP25H80</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>305000.0</td>\n", " <td>3.25</td>\n", " <td>1</td>\n", " <td>71.0</td>\n", " </tr>\n", " <tr>\n", " <th>5</th>\n", " <td>54930034MNPILHP25H80</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>175000.0</td>\n", " <td>3.375</td>\n", " <td>1</td>\n", " <td>117.0</td>\n", " </tr>\n", " <tr>\n", " <th>6</th>\n", " <td>54930034MNPILHP25H80</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>575000.0</td>\n", " <td>4.5</td>\n", " <td>1</td>\n", " <td>180.0</td>\n", " </tr>\n", " <tr>\n", " <th>7</th>\n", " <td>54930034MNPILHP25H80</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>105000.0</td>\n", " <td>5.375</td>\n", " <td>1</td>\n", " <td>180.0</td>\n", " </tr>\n", " <tr>\n", " <th>8</th>\n", " <td>54930034MNPILHP25H80</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>85000.0</td>\n", " <td>3.375</td>\n", " <td>1</td>\n", " <td>136.0</td>\n", " </tr>\n", " <tr>\n", " <th>9</th>\n", " <td>549300FQ2SN6TRRGB032</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>405000.0</td>\n", " <td>Exempt</td>\n", " <td>1</td>\n", " <td>NaN</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " lei action_taken loan_type loan_amount interest_rate \\\n", "0 54930034MNPILHP25H80 6 1 305000.0 3.875 \n", "1 54930034MNPILHP25H80 4 1 65000.0 NA \n", "2 54930034MNPILHP25H80 6 1 75000.0 3.25 \n", "3 54930034MNPILHP25H80 1 1 155000.0 4.0 \n", "4 54930034MNPILHP25H80 1 1 305000.0 3.25 \n", "5 54930034MNPILHP25H80 1 1 175000.0 3.375 \n", "6 54930034MNPILHP25H80 1 1 575000.0 4.5 \n", "7 54930034MNPILHP25H80 1 1 105000.0 5.375 \n", "8 54930034MNPILHP25H80 1 1 85000.0 3.375 \n", "9 549300FQ2SN6TRRGB032 1 1 405000.0 Exempt \n", "\n", " loan_purpose income \n", "0 1 108.0 \n", "1 1 103.0 \n", "2 1 146.0 \n", "3 32 70.0 \n", "4 1 71.0 \n", "5 1 117.0 \n", "6 1 180.0 \n", "7 1 180.0 \n", "8 1 136.0 \n", "9 1 NaN " ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# what are the first 10 loans? Practice LIMIT.\n", "pd.read_sql(\"\"\"\n", "SELECT *\n", "FROM loans\n", "LIMIT 10\n", "\"\"\", conn)" ] }, { "cell_type": "code", "execution_count": 22, "id": "f99ed83c-d50c-43f7-bf3c-7307bb30801b", "metadata": {}, "outputs": [], "source": [ "# projection: choosing what columns (SELECT)" ] }, { "cell_type": "code", "execution_count": 23, "id": "d2fe1388-b308-4f8c-8a63-c426c0f1b787", "metadata": {}, "outputs": [], "source": [ "# selection: filtering rows (WHERE)" ] }, { "cell_type": "code", "execution_count": 24, "id": "0da82d35-5e7f-481b-a3fe-9d828b541794", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>interest_rate</th>\n", " <th>loan_thousands</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>3.875</td>\n", " <td>305.0</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>NA</td>\n", " <td>65.0</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>3.25</td>\n", " <td>75.0</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>4.0</td>\n", " <td>155.0</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>3.25</td>\n", " <td>305.0</td>\n", " </tr>\n", " <tr>\n", " <th>5</th>\n", " <td>3.375</td>\n", " <td>175.0</td>\n", " </tr>\n", " <tr>\n", " <th>6</th>\n", " <td>4.5</td>\n", " <td>575.0</td>\n", " </tr>\n", " <tr>\n", " <th>7</th>\n", " <td>5.375</td>\n", " <td>105.0</td>\n", " </tr>\n", " <tr>\n", " <th>8</th>\n", " <td>3.375</td>\n", " <td>85.0</td>\n", " </tr>\n", " <tr>\n", " <th>9</th>\n", " <td>Exempt</td>\n", " <td>405.0</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " interest_rate loan_thousands\n", "0 3.875 305.0\n", "1 NA 65.0\n", "2 3.25 75.0\n", "3 4.0 155.0\n", "4 3.25 305.0\n", "5 3.375 175.0\n", "6 4.5 575.0\n", "7 5.375 105.0\n", "8 3.375 85.0\n", "9 Exempt 405.0" ] }, "execution_count": 24, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# what are the first 10 interest rates and loan amounts (in thousands)? Practice SELECT.\n", "pd.read_sql(\"\"\"\n", "SELECT interest_rate, loan_amount / 1000 AS loan_thousands\n", "FROM loans\n", "LIMIT 10\n", "\"\"\", conn)" ] }, { "cell_type": "code", "execution_count": 25, "id": "4ee4b0cb-7671-4570-9e18-fcd4b8c0394c", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>lei</th>\n", " <th>action_taken</th>\n", " <th>loan_type</th>\n", " <th>loan_amount</th>\n", " <th>interest_rate</th>\n", " <th>loan_purpose</th>\n", " <th>income</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>254900IER2H3R8YLBW04</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>105000.0</td>\n", " <td>2.875</td>\n", " <td>31</td>\n", " <td>1530000.0</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>3Y4U8VZURTYWI1W2K376</td>\n", " <td>3</td>\n", " <td>1</td>\n", " <td>7455000.0</td>\n", " <td>NA</td>\n", " <td>4</td>\n", " <td>94657029.0</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>549300CS1XP28EERR469</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>75000.0</td>\n", " <td>4.99</td>\n", " <td>4</td>\n", " <td>2030000.0</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>549300CS1XP28EERR469</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>205000.0</td>\n", " <td>3.75</td>\n", " <td>1</td>\n", " <td>7291000.0</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " lei action_taken loan_type loan_amount interest_rate \\\n", "0 254900IER2H3R8YLBW04 1 1 105000.0 2.875 \n", "1 3Y4U8VZURTYWI1W2K376 3 1 7455000.0 NA \n", "2 549300CS1XP28EERR469 1 1 75000.0 4.99 \n", "3 549300CS1XP28EERR469 1 1 205000.0 3.75 \n", "\n", " loan_purpose income \n", "0 31 1530000.0 \n", "1 4 94657029.0 \n", "2 4 2030000.0 \n", "3 1 7291000.0 " ] }, "execution_count": 25, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# what are the loans for individuals with income over $1 million? Practice WHERE.\n", "pd.read_sql(\"\"\"\n", "SELECT *\n", "FROM loans\n", "WHERE income > 1000000\n", "\"\"\", conn)" ] }, { "cell_type": "code", "execution_count": 26, "id": "d64a2a5e-e2d4-42a3-a894-9283160d2636", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>lei</th>\n", " <th>action_taken</th>\n", " <th>loan_type</th>\n", " <th>loan_amount</th>\n", " <th>interest_rate</th>\n", " <th>loan_purpose</th>\n", " <th>income</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>549300XWUSRVVOHPRY47</td>\n", " <td>6</td>\n", " <td>1</td>\n", " <td>264185000.0</td>\n", " <td>NA</td>\n", " <td>1</td>\n", " <td>None</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>AD6GFRVSDT01YPT1CS68</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>74755000.0</td>\n", " <td>1.454</td>\n", " <td>1</td>\n", " <td>None</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>AD6GFRVSDT01YPT1CS68</td>\n", " <td>4</td>\n", " <td>2</td>\n", " <td>66005000.0</td>\n", " <td>NA</td>\n", " <td>1</td>\n", " <td>None</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>YQI2CPR3Z44KAR0HG822</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>65005000.0</td>\n", " <td>3.0</td>\n", " <td>1</td>\n", " <td>None</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>254900YA1AQXNM8QVZ06</td>\n", " <td>1</td>\n", " <td>2</td>\n", " <td>63735000.0</td>\n", " <td>2.99</td>\n", " <td>2</td>\n", " <td>None</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " lei action_taken loan_type loan_amount interest_rate \\\n", "0 549300XWUSRVVOHPRY47 6 1 264185000.0 NA \n", "1 AD6GFRVSDT01YPT1CS68 1 1 74755000.0 1.454 \n", "2 AD6GFRVSDT01YPT1CS68 4 2 66005000.0 NA \n", "3 YQI2CPR3Z44KAR0HG822 1 1 65005000.0 3.0 \n", "4 254900YA1AQXNM8QVZ06 1 2 63735000.0 2.99 \n", "\n", " loan_purpose income \n", "0 1 None \n", "1 1 None \n", "2 1 None \n", "3 1 None \n", "4 2 None " ] }, "execution_count": 26, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# what are the five biggest loans in terms of dollar amount? Practice ORDER BY.\n", "pd.read_sql(\"\"\"\n", "SELECT *\n", "FROM loans\n", "ORDER BY loan_amount DESC\n", "LIMIT 5\n", "\"\"\", conn)" ] }, { "cell_type": "code", "execution_count": 27, "id": "c01b796c-ded3-4e11-81e7-69d7660da9cb", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>action_taken</th>\n", " <th>loan_type</th>\n", " <th>lei</th>\n", " <th>loan_amount</th>\n", " <th>interest_rate</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>Loan purchased by the institution</td>\n", " <td>Conventional</td>\n", " <td>549300XWUSRVVOHPRY47</td>\n", " <td>264185000.0</td>\n", " <td>NA</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>Loan originated</td>\n", " <td>Conventional</td>\n", " <td>AD6GFRVSDT01YPT1CS68</td>\n", " <td>74755000.0</td>\n", " <td>1.454</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>Application withdrawn by applicant</td>\n", " <td>FHA-insured</td>\n", " <td>AD6GFRVSDT01YPT1CS68</td>\n", " <td>66005000.0</td>\n", " <td>NA</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>Loan originated</td>\n", " <td>Conventional</td>\n", " <td>YQI2CPR3Z44KAR0HG822</td>\n", " <td>65005000.0</td>\n", " <td>3.0</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>Loan originated</td>\n", " <td>FHA-insured</td>\n", " <td>254900YA1AQXNM8QVZ06</td>\n", " <td>63735000.0</td>\n", " <td>2.99</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " action_taken loan_type lei \\\n", "0 Loan purchased by the institution Conventional 549300XWUSRVVOHPRY47 \n", "1 Loan originated Conventional AD6GFRVSDT01YPT1CS68 \n", "2 Application withdrawn by applicant FHA-insured AD6GFRVSDT01YPT1CS68 \n", "3 Loan originated Conventional YQI2CPR3Z44KAR0HG822 \n", "4 Loan originated FHA-insured 254900YA1AQXNM8QVZ06 \n", "\n", " loan_amount interest_rate \n", "0 264185000.0 NA \n", "1 74755000.0 1.454 \n", "2 66005000.0 NA \n", "3 65005000.0 3.0 \n", "4 63735000.0 2.99 " ] }, "execution_count": 27, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# what are the actions taken and types for those loans (show the text, not numbers)? Practice INNER JOIN.\n", "pd.read_sql(\"\"\"\n", "SELECT actions.action_taken, loan_types.loan_type, loans.lei, loans.loan_amount, loans.interest_rate\n", "FROM loans\n", "INNER JOIN actions ON loans.action_taken = actions.id\n", "INNER JOIN loan_types ON loans.loan_type = loan_types.id\n", "ORDER BY loan_amount DESC\n", "LIMIT 5\n", "\"\"\", conn)" ] }, { "cell_type": "code", "execution_count": 34, "id": "b7d4a687-70bf-46e7-a715-013977358d05", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>lei</th>\n", " <th>action_taken</th>\n", " <th>loan_type</th>\n", " <th>loan_amount</th>\n", " <th>interest_rate</th>\n", " <th>loan_purpose</th>\n", " <th>income</th>\n", " <th>id</th>\n", " <th>loan_purpose</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>None</td>\n", " <td>None</td>\n", " <td>None</td>\n", " <td>None</td>\n", " <td>None</td>\n", " <td>None</td>\n", " <td>None</td>\n", " <td>3</td>\n", " <td>Refinancing</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " lei action_taken loan_type loan_amount interest_rate loan_purpose income \\\n", "0 None None None None None None None \n", "\n", " id loan_purpose \n", "0 3 Refinancing " ] }, "execution_count": 34, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# what is a loan_purpose that doesn't appear in the loans table? Practice LEFT/RIGHT JOIN.\n", "pd.read_sql(\"\"\"\n", "SELECT *\n", "FROM loans\n", "RIGHT JOIN purposes ON loans.loan_purpose = purposes.id\n", "WHERE loans.loan_purpose IS NULL\n", "\"\"\", conn)" ] }, { "cell_type": "code", "execution_count": 35, "id": "fc73517c-cf57-4a91-bb9d-2fbfc76544d5", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>COUNT(*)</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>447367</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " COUNT(*)\n", "0 447367" ] }, "execution_count": 35, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# how many rows are in the table? Practice COUNT(*).\n", "pd.read_sql(\"\"\"\n", "SELECT COUNT(*)\n", "FROM loans\n", "\"\"\", conn)" ] }, { "cell_type": "code", "execution_count": 37, "id": "e91feeee-8689-4f57-a991-f6ca3fee2a6d", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>COUNT(income)</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>399948</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " COUNT(income)\n", "0 399948" ] }, "execution_count": 37, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# how many non-null values are in the income column? Practice COUNT(column).\n", "pd.read_sql(\"\"\"\n", "SELECT COUNT(income)\n", "FROM loans\n", "\"\"\", conn)" ] }, { "cell_type": "code", "execution_count": 39, "id": "d688a1a3-3740-4dcf-8de5-b8f9f3e928b3", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>id</th>\n", " <th>loan_type</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>1</td>\n", " <td>Conventional</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>2</td>\n", " <td>FHA-insured</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>3</td>\n", " <td>VA-guaranteed</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>4</td>\n", " <td>FSA/RHS-guaranteed</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " id loan_type\n", "0 1 Conventional\n", "1 2 FHA-insured\n", "2 3 VA-guaranteed\n", "3 4 FSA/RHS-guaranteed" ] }, "execution_count": 39, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pd.read_sql(\"\"\"\n", "SELECT *\n", "FROM loan_types\n", "\"\"\", conn)" ] }, { "cell_type": "code", "execution_count": 49, "id": "12333532-0618-4ed4-b71b-260a4f35e581", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>AVG(interest_rate)</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>2.21657</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " AVG(interest_rate)\n", "0 2.21657" ] }, "execution_count": 49, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# what is the average interest rate for loans of type \"Conventional\"? Practice AVG.\n", "pd.read_sql(\"\"\"\n", "SELECT AVG(interest_rate)\n", "FROM loans\n", "INNER JOIN loan_types ON loans.loan_type = loan_types.id\n", "WHERE loan_types.loan_type = 'Conventional'\n", "\"\"\", conn)" ] }, { "cell_type": "code", "execution_count": 51, "id": "23c00af3-e385-435a-8bf6-f5cfe64f02db", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>loan_type</th>\n", " <th>AVG(interest_rate)</th>\n", " <th>COUNT(*)</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>Conventional</td>\n", " <td>2.216570</td>\n", " <td>389217</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>VA-guaranteed</td>\n", " <td>1.919140</td>\n", " <td>24551</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>FHA-insured</td>\n", " <td>2.211670</td>\n", " <td>30496</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>FSA/RHS-guaranteed</td>\n", " <td>2.523942</td>\n", " <td>3103</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " loan_type AVG(interest_rate) COUNT(*)\n", "0 Conventional 2.216570 389217\n", "1 VA-guaranteed 1.919140 24551\n", "2 FHA-insured 2.211670 30496\n", "3 FSA/RHS-guaranteed 2.523942 3103" ] }, "execution_count": 51, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# how many loans are there of each type? Practice GROUP BY.\n", "pd.read_sql(\"\"\"\n", "SELECT loan_types.loan_type, AVG(interest_rate), COUNT(*)\n", "FROM loans\n", "INNER JOIN loan_types ON loans.loan_type = loan_types.id\n", "GROUP BY loan_types.loan_type\n", "\"\"\", conn)" ] }, { "cell_type": "code", "execution_count": 53, "id": "2400a6a4-7056-47e0-b202-3bbb85a77b2f", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>loan_type</th>\n", " <th>AVG(interest_rate)</th>\n", " <th>count</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>Conventional</td>\n", " <td>2.21657</td>\n", " <td>389217</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>VA-guaranteed</td>\n", " <td>1.91914</td>\n", " <td>24551</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>FHA-insured</td>\n", " <td>2.21167</td>\n", " <td>30496</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " loan_type AVG(interest_rate) count\n", "0 Conventional 2.21657 389217\n", "1 VA-guaranteed 1.91914 24551\n", "2 FHA-insured 2.21167 30496" ] }, "execution_count": 53, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# which loan types appear at least 10,000 times? Practice HAVING.\n", "pd.read_sql(\"\"\"\n", "SELECT loan_types.loan_type, AVG(interest_rate), COUNT(*) as count\n", "FROM loans\n", "INNER JOIN loan_types ON loans.loan_type = loan_types.id\n", "GROUP BY loan_types.loan_type\n", "HAVING count >= 10000\n", "\"\"\", conn)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.3" } }, "nbformat": 4, "nbformat_minor": 5 }