{ "cells": [ { "cell_type": "code", "execution_count": 1, "id": "34c3d038-ece1-448a-8613-9f950fd70fb2", "metadata": {}, "outputs": [], "source": [ "from sqlalchemy import create_engine, text\n", "engine = create_engine(\"mysql+mysqlconnector://root:abc@127.0.0.1:3306/cs544\")\n", "conn = engine.connect()" ] }, { "cell_type": "code", "execution_count": 4, "id": "d8c59b65-c21d-4853-b54a-77364d8009ad", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[]" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "list(conn.execute(text(\"show tables\")))" ] }, { "cell_type": "code", "execution_count": 5, "id": "cad5f150-10c2-4d87-a45e-ac21622862db", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "<sqlalchemy.engine.cursor.CursorResult at 0x7696940966d0>" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# table: users\n", "# columns: id, name, phone\n", "# name is required\n", "# id uniquely identifies row\n", "conn.execute(text(\"\"\"\n", " create table users (\n", " id int,\n", " name text NOT NULL,\n", " phone text,\n", " PRIMARY KEY (id)\n", " )\n", "\"\"\"))" ] }, { "cell_type": "code", "execution_count": 7, "id": "7c53fd18-7db7-419a-a884-f5a73de25b6f", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "<sqlalchemy.engine.cursor.CursorResult at 0x769694096cf0>" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "conn.execute(text(\"\"\"\n", " create table accounts (\n", " user_id int,\n", " name text NOT NULL,\n", " amount int NOT NULL,\n", " FOREIGN KEY (user_id) REFERENCES users (id)\n", " )\n", "\"\"\"))" ] }, { "cell_type": "code", "execution_count": 8, "id": "7f694879-f48c-4336-89fb-03c2b423cdf2", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[('accounts',), ('users',)]" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "list(conn.execute(text(\"show tables\")))" ] }, { "cell_type": "code", "execution_count": 9, "id": "4a0f1e2c-0e17-41bb-ab9c-49c93351f18e", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "<sqlalchemy.engine.cursor.CursorResult at 0x769694096970>" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "conn.execute(text(\"\"\"\n", "INSERT INTO users (id, name) VALUES (1, \"tyler\")\n", "\"\"\"))" ] }, { "cell_type": "code", "execution_count": 12, "id": "a2e34483-f7f0-4659-91db-d587f08de40b", "metadata": {}, "outputs": [], "source": [ "# conn.execute(text(\"\"\"\n", "# INSERT INTO users (id, name) VALUES (1, \"tyler\")\n", "# \"\"\"))" ] }, { "cell_type": "code", "execution_count": 10, "id": "88ff233c-ff1b-4d4c-8060-28b216898734", "metadata": {}, "outputs": [], "source": [ "conn.commit()" ] }, { "cell_type": "code", "execution_count": 14, "id": "7b93f8cb-bc35-49bd-be82-7c48af5d2f56", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "<sqlalchemy.engine.cursor.CursorResult at 0x76969c5c8e50>" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "conn.execute(text(\"\"\"\n", "INSERT INTO accounts (user_id, name, amount) VALUES (1, \"A\", 10), (1, \"B\", 20)\n", "\"\"\"))" ] }, { "cell_type": "code", "execution_count": 15, "id": "4cd70a0c-ca3b-44bb-aacc-8dc95ad02d29", "metadata": {}, "outputs": [], "source": [ "conn.commit()" ] }, { "cell_type": "code", "execution_count": 17, "id": "f77e36c7-0ee3-4dd8-80f5-10321c1c78cd", "metadata": {}, "outputs": [], "source": [ "# conn.execute(text(\"\"\"\n", "# DELETE FROM users WHERE id = 1\n", "# \"\"\"))" ] }, { "cell_type": "code", "execution_count": 19, "id": "a0862124-c44a-42bb-a63d-d160dd1312f4", "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "url = \"https://raw.githubusercontent.com/cfpb/api/master/resources/datasets/hmda/code_sheets/\"\n", "df = pd.read_csv(url + \"action_taken.csv\")\n", "df.to_sql(\"actions\", conn, index=False, if_exists=\"replace\")\n", "df = pd.read_csv(url + \"loan_type.csv\")\n", "df.to_sql(\"loan_types\", conn, index=False, if_exists=\"replace\")\n", "df = pd.read_csv(url + \"loan_purpose.csv\")\n", "df.to_sql(\"purposes\", conn, index=False, if_exists=\"replace\")\n", "conn.commit()" ] }, { "cell_type": "code", "execution_count": 22, "id": "3e6ac1cc-5f2b-4c43-a3e7-862713ff66f0", "metadata": {}, "outputs": [], "source": [ "import pyarrow as pa\n", "import pyarrow.parquet\n", "t = pa.parquet.read_table(\n", " \"loans.parquet\", \n", " columns=[\"lei\", \"action_taken\", \"loan_type\", \"loan_amount\",\n", " \"interest_rate\", \"loan_purpose\", \"income\"]\n", ")" ] }, { "cell_type": "code", "execution_count": 24, "id": "504b747e-7b4c-4528-845a-32a03a9e2a8e", "metadata": {}, "outputs": [], "source": [ "t.to_pandas().to_sql(\"loans\", conn, index=False, if_exists=\"replace\", chunksize=10_000)\n", "conn.commit()" ] }, { "cell_type": "markdown", "id": "1fc118ae-84c9-423b-8038-c0d44bc9a443", "metadata": {}, "source": [ "# Transactions" ] }, { "cell_type": "code", "execution_count": 33, "id": "4cb87a68-c82a-404e-bf43-1360753aba41", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "remaining: -1\n", "rollback!\n" ] } ], "source": [ "conn.execute(text(\"\"\"\n", "update accounts set amount = amount - 5 WHERE name = 'A'\n", "\"\"\"))\n", "\n", "conn.execute(text(\"\"\"\n", "update accounts set amount = amount + 5 WHERE name = 'B'\n", "\"\"\"))\n", "\n", "remaining_amount = list(conn.execute(text(\"\"\"\n", "select amount from accounts WHERE name = 'A'\n", "\"\"\")))[0][0]\n", "print(\"remaining:\", remaining_amount)\n", "\n", "if remaining_amount >= 0:\n", " print(\"commit!\")\n", " conn.commit()\n", "else:\n", " print(\"rollback!\")\n", " conn.rollback()" ] }, { "cell_type": "markdown", "id": "019705c1-82e6-4434-9359-0843d6b2d8c5", "metadata": {}, "source": [ "# Analysis/SQL Queries" ] }, { "cell_type": "code", "execution_count": 34, "id": "35290388-dbfe-451f-94ba-d9ef8dee4e00", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>id</th>\n", " <th>action_taken</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>1</td>\n", " <td>Loan originated</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>2</td>\n", " <td>Application approved but not accepted</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>3</td>\n", " <td>Application denied by financial institution</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>4</td>\n", " <td>Application withdrawn by applicant</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>5</td>\n", " <td>File closed for incompleteness</td>\n", " </tr>\n", " <tr>\n", " <th>5</th>\n", " <td>6</td>\n", " <td>Loan purchased by the institution</td>\n", " </tr>\n", " <tr>\n", " <th>6</th>\n", " <td>7</td>\n", " <td>Preapproval request denied by financial instit...</td>\n", " </tr>\n", " <tr>\n", " <th>7</th>\n", " <td>8</td>\n", " <td>Preapproval request approved but not accepted</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " id action_taken\n", "0 1 Loan originated\n", "1 2 Application approved but not accepted\n", "2 3 Application denied by financial institution\n", "3 4 Application withdrawn by applicant\n", "4 5 File closed for incompleteness\n", "5 6 Loan purchased by the institution\n", "6 7 Preapproval request denied by financial instit...\n", "7 8 Preapproval request approved but not accepted" ] }, "execution_count": 34, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# what are all the possible actions? Practice SELECT/FROM.\n", "pd.read_sql(\"\"\"\n", "SELECT *\n", "FROM actions\n", "\"\"\", conn)" ] }, { "cell_type": "code", "execution_count": 35, "id": "cdbedc10-8d92-4c1a-83aa-9c604e447d1e", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>lei</th>\n", " <th>action_taken</th>\n", " <th>loan_type</th>\n", " <th>loan_amount</th>\n", " <th>interest_rate</th>\n", " <th>loan_purpose</th>\n", " <th>income</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>54930034MNPILHP25H80</td>\n", " <td>6</td>\n", " <td>1</td>\n", " <td>305000.0</td>\n", " <td>3.875</td>\n", " <td>1</td>\n", " <td>108.0</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>54930034MNPILHP25H80</td>\n", " <td>4</td>\n", " <td>1</td>\n", " <td>65000.0</td>\n", " <td>NA</td>\n", " <td>1</td>\n", " <td>103.0</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>54930034MNPILHP25H80</td>\n", " <td>6</td>\n", " <td>1</td>\n", " <td>75000.0</td>\n", " <td>3.25</td>\n", " <td>1</td>\n", " <td>146.0</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>54930034MNPILHP25H80</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>155000.0</td>\n", " <td>4.0</td>\n", " <td>32</td>\n", " <td>70.0</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>54930034MNPILHP25H80</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>305000.0</td>\n", " <td>3.25</td>\n", " <td>1</td>\n", " <td>71.0</td>\n", " </tr>\n", " <tr>\n", " <th>5</th>\n", " <td>54930034MNPILHP25H80</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>175000.0</td>\n", " <td>3.375</td>\n", " <td>1</td>\n", " <td>117.0</td>\n", " </tr>\n", " <tr>\n", " <th>6</th>\n", " <td>54930034MNPILHP25H80</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>575000.0</td>\n", " <td>4.5</td>\n", " <td>1</td>\n", " <td>180.0</td>\n", " </tr>\n", " <tr>\n", " <th>7</th>\n", " <td>54930034MNPILHP25H80</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>105000.0</td>\n", " <td>5.375</td>\n", " <td>1</td>\n", " <td>180.0</td>\n", " </tr>\n", " <tr>\n", " <th>8</th>\n", " <td>54930034MNPILHP25H80</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>85000.0</td>\n", " <td>3.375</td>\n", " <td>1</td>\n", " <td>136.0</td>\n", " </tr>\n", " <tr>\n", " <th>9</th>\n", " <td>549300FQ2SN6TRRGB032</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>405000.0</td>\n", " <td>Exempt</td>\n", " <td>1</td>\n", " <td>NaN</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " lei action_taken loan_type loan_amount interest_rate \\\n", "0 54930034MNPILHP25H80 6 1 305000.0 3.875 \n", "1 54930034MNPILHP25H80 4 1 65000.0 NA \n", "2 54930034MNPILHP25H80 6 1 75000.0 3.25 \n", "3 54930034MNPILHP25H80 1 1 155000.0 4.0 \n", "4 54930034MNPILHP25H80 1 1 305000.0 3.25 \n", "5 54930034MNPILHP25H80 1 1 175000.0 3.375 \n", "6 54930034MNPILHP25H80 1 1 575000.0 4.5 \n", "7 54930034MNPILHP25H80 1 1 105000.0 5.375 \n", "8 54930034MNPILHP25H80 1 1 85000.0 3.375 \n", "9 549300FQ2SN6TRRGB032 1 1 405000.0 Exempt \n", "\n", " loan_purpose income \n", "0 1 108.0 \n", "1 1 103.0 \n", "2 1 146.0 \n", "3 32 70.0 \n", "4 1 71.0 \n", "5 1 117.0 \n", "6 1 180.0 \n", "7 1 180.0 \n", "8 1 136.0 \n", "9 1 NaN " ] }, "execution_count": 35, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# what are the first 10 loans? Practice LIMIT.\n", "pd.read_sql(\"\"\"\n", "SELECT *\n", "FROM loans\n", "LIMIT 10\n", "\"\"\", conn)" ] }, { "cell_type": "code", "execution_count": null, "id": "4cc63602-f5d1-4502-b955-54d504dfcb40", "metadata": {}, "outputs": [], "source": [ "# projection: choosing what columns (SELECT)\n", "# selection: filtering rows (WHERE)" ] }, { "cell_type": "code", "execution_count": 38, "id": "c0eb9c38-ff94-486a-b34e-e241d8f69d01", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>interest_rate</th>\n", " <th>amount_in_thousands</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>3.875</td>\n", " <td>305.0</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>NA</td>\n", " <td>65.0</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>3.25</td>\n", " <td>75.0</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>4.0</td>\n", " <td>155.0</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>3.25</td>\n", " <td>305.0</td>\n", " </tr>\n", " <tr>\n", " <th>5</th>\n", " <td>3.375</td>\n", " <td>175.0</td>\n", " </tr>\n", " <tr>\n", " <th>6</th>\n", " <td>4.5</td>\n", " <td>575.0</td>\n", " </tr>\n", " <tr>\n", " <th>7</th>\n", " <td>5.375</td>\n", " <td>105.0</td>\n", " </tr>\n", " <tr>\n", " <th>8</th>\n", " <td>3.375</td>\n", " <td>85.0</td>\n", " </tr>\n", " <tr>\n", " <th>9</th>\n", " <td>Exempt</td>\n", " <td>405.0</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " interest_rate amount_in_thousands\n", "0 3.875 305.0\n", "1 NA 65.0\n", "2 3.25 75.0\n", "3 4.0 155.0\n", "4 3.25 305.0\n", "5 3.375 175.0\n", "6 4.5 575.0\n", "7 5.375 105.0\n", "8 3.375 85.0\n", "9 Exempt 405.0" ] }, "execution_count": 38, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# what are the first 10 interest rates and loan amounts (in thousands)? Practice SELECT.\n", "pd.read_sql(\"\"\"\n", "SELECT interest_rate, loan_amount / 1000 AS amount_in_thousands\n", "FROM loans\n", "LIMIT 10\n", "\"\"\", conn)" ] }, { "cell_type": "code", "execution_count": 39, "id": "29f2e695-fc92-412c-bc1c-5c06f4200d25", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>lei</th>\n", " <th>action_taken</th>\n", " <th>loan_type</th>\n", " <th>loan_amount</th>\n", " <th>interest_rate</th>\n", " <th>loan_purpose</th>\n", " <th>income</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>254900IER2H3R8YLBW04</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>105000.0</td>\n", " <td>2.875</td>\n", " <td>31</td>\n", " <td>1530000.0</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>3Y4U8VZURTYWI1W2K376</td>\n", " <td>3</td>\n", " <td>1</td>\n", " <td>7455000.0</td>\n", " <td>NA</td>\n", " <td>4</td>\n", " <td>94657029.0</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>549300CS1XP28EERR469</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>75000.0</td>\n", " <td>4.99</td>\n", " <td>4</td>\n", " <td>2030000.0</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>549300CS1XP28EERR469</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>205000.0</td>\n", " <td>3.75</td>\n", " <td>1</td>\n", " <td>7291000.0</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " lei action_taken loan_type loan_amount interest_rate \\\n", "0 254900IER2H3R8YLBW04 1 1 105000.0 2.875 \n", "1 3Y4U8VZURTYWI1W2K376 3 1 7455000.0 NA \n", "2 549300CS1XP28EERR469 1 1 75000.0 4.99 \n", "3 549300CS1XP28EERR469 1 1 205000.0 3.75 \n", "\n", " loan_purpose income \n", "0 31 1530000.0 \n", "1 4 94657029.0 \n", "2 4 2030000.0 \n", "3 1 7291000.0 " ] }, "execution_count": 39, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# what are the loans for individuals with income over $1 million? Practice WHERE.\n", "pd.read_sql(\"\"\"\n", "SELECT *\n", "FROM loans\n", "WHERE income > 1000000\n", "\"\"\", conn)" ] }, { "cell_type": "code", "execution_count": 41, "id": "b0808413-c09d-4d5f-9c03-b7f5747d3205", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>lei</th>\n", " <th>action_taken</th>\n", " <th>loan_type</th>\n", " <th>loan_amount</th>\n", " <th>interest_rate</th>\n", " <th>loan_purpose</th>\n", " <th>income</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>549300XWUSRVVOHPRY47</td>\n", " <td>6</td>\n", " <td>1</td>\n", " <td>264185000.0</td>\n", " <td>NA</td>\n", " <td>1</td>\n", " <td>None</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>AD6GFRVSDT01YPT1CS68</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>74755000.0</td>\n", " <td>1.454</td>\n", " <td>1</td>\n", " <td>None</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>AD6GFRVSDT01YPT1CS68</td>\n", " <td>4</td>\n", " <td>2</td>\n", " <td>66005000.0</td>\n", " <td>NA</td>\n", " <td>1</td>\n", " <td>None</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>YQI2CPR3Z44KAR0HG822</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>65005000.0</td>\n", " <td>3.0</td>\n", " <td>1</td>\n", " <td>None</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>254900YA1AQXNM8QVZ06</td>\n", " <td>1</td>\n", " <td>2</td>\n", " <td>63735000.0</td>\n", " <td>2.99</td>\n", " <td>2</td>\n", " <td>None</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " lei action_taken loan_type loan_amount interest_rate \\\n", "0 549300XWUSRVVOHPRY47 6 1 264185000.0 NA \n", "1 AD6GFRVSDT01YPT1CS68 1 1 74755000.0 1.454 \n", "2 AD6GFRVSDT01YPT1CS68 4 2 66005000.0 NA \n", "3 YQI2CPR3Z44KAR0HG822 1 1 65005000.0 3.0 \n", "4 254900YA1AQXNM8QVZ06 1 2 63735000.0 2.99 \n", "\n", " loan_purpose income \n", "0 1 None \n", "1 1 None \n", "2 1 None \n", "3 1 None \n", "4 2 None " ] }, "execution_count": 41, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# what are the five biggest loans in terms of dollar amount? Practice ORDER BY.\n", "pd.read_sql(\"\"\"\n", "SELECT *\n", "FROM loans\n", "ORDER BY loan_amount DESC\n", "LIMIT 5\n", "\"\"\", conn)" ] }, { "cell_type": "code", "execution_count": 50, "id": "77bc2433-5cdb-4134-a75a-6ddbf5e34661", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>action_taken</th>\n", " <th>loan_type</th>\n", " <th>lei</th>\n", " <th>action_taken</th>\n", " <th>loan_type</th>\n", " <th>loan_amount</th>\n", " <th>interest_rate</th>\n", " <th>loan_purpose</th>\n", " <th>income</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>Loan purchased by the institution</td>\n", " <td>Conventional</td>\n", " <td>549300XWUSRVVOHPRY47</td>\n", " <td>6</td>\n", " <td>1</td>\n", " <td>264185000.0</td>\n", " <td>NA</td>\n", " <td>1</td>\n", " <td>None</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>Loan originated</td>\n", " <td>Conventional</td>\n", " <td>AD6GFRVSDT01YPT1CS68</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>74755000.0</td>\n", " <td>1.454</td>\n", " <td>1</td>\n", " <td>None</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>Application withdrawn by applicant</td>\n", " <td>FHA-insured</td>\n", " <td>AD6GFRVSDT01YPT1CS68</td>\n", " <td>4</td>\n", " <td>2</td>\n", " <td>66005000.0</td>\n", " <td>NA</td>\n", " <td>1</td>\n", " <td>None</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>Loan originated</td>\n", " <td>Conventional</td>\n", " <td>YQI2CPR3Z44KAR0HG822</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>65005000.0</td>\n", " <td>3.0</td>\n", " <td>1</td>\n", " <td>None</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>Loan originated</td>\n", " <td>FHA-insured</td>\n", " <td>254900YA1AQXNM8QVZ06</td>\n", " <td>1</td>\n", " <td>2</td>\n", " <td>63735000.0</td>\n", " <td>2.99</td>\n", " <td>2</td>\n", " <td>None</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " action_taken loan_type lei \\\n", "0 Loan purchased by the institution Conventional 549300XWUSRVVOHPRY47 \n", "1 Loan originated Conventional AD6GFRVSDT01YPT1CS68 \n", "2 Application withdrawn by applicant FHA-insured AD6GFRVSDT01YPT1CS68 \n", "3 Loan originated Conventional YQI2CPR3Z44KAR0HG822 \n", "4 Loan originated FHA-insured 254900YA1AQXNM8QVZ06 \n", "\n", " action_taken loan_type loan_amount interest_rate loan_purpose income \n", "0 6 1 264185000.0 NA 1 None \n", "1 1 1 74755000.0 1.454 1 None \n", "2 4 2 66005000.0 NA 1 None \n", "3 1 1 65005000.0 3.0 1 None \n", "4 1 2 63735000.0 2.99 2 None " ] }, "execution_count": 50, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# what are the actions taken and types for those loans (show the text, not numbers)? Practice INNER JOIN.\n", "pd.read_sql(\"\"\"\n", "SELECT actions.action_taken, loan_types.loan_type, loans.*\n", "FROM loans\n", "INNER JOIN actions ON loans.action_taken = actions.id\n", "INNER JOIN loan_types ON loans.loan_type = loan_types.id\n", "ORDER BY loan_amount DESC\n", "LIMIT 5\n", "\"\"\", conn)" ] }, { "cell_type": "code", "execution_count": 53, "id": "fe7e1b59-644c-4b12-8c1e-38dce7fdd53b", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>lei</th>\n", " <th>action_taken</th>\n", " <th>loan_type</th>\n", " <th>loan_amount</th>\n", " <th>interest_rate</th>\n", " <th>loan_purpose</th>\n", " <th>income</th>\n", " <th>id</th>\n", " <th>loan_purpose</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>None</td>\n", " <td>None</td>\n", " <td>None</td>\n", " <td>None</td>\n", " <td>None</td>\n", " <td>None</td>\n", " <td>None</td>\n", " <td>3</td>\n", " <td>Refinancing</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " lei action_taken loan_type loan_amount interest_rate loan_purpose income \\\n", "0 None None None None None None None \n", "\n", " id loan_purpose \n", "0 3 Refinancing " ] }, "execution_count": 53, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# what is a loan_purpose that doesn't appear in the loans table? Practice LEFT/RIGHT JOIN.\n", "pd.read_sql(\"\"\"\n", "SELECT *\n", "FROM loans\n", "RIGHT JOIN purposes ON loans.loan_purpose = purposes.id\n", "WHERE loans.loan_purpose IS NULL\n", "\"\"\", conn)" ] }, { "cell_type": "code", "execution_count": 54, "id": "b0ce8f29-49ef-4e1c-9f78-e42e4242f7b6", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>COUNT(*)</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>447367</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " COUNT(*)\n", "0 447367" ] }, "execution_count": 54, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# how many rows are in the table? Practice COUNT(*).\n", "pd.read_sql(\"\"\"\n", "SELECT COUNT(*)\n", "FROM loans\n", "\"\"\", conn)" ] }, { "cell_type": "code", "execution_count": 55, "id": "17652759-6909-47e7-86d9-efd91c374cf3", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>COUNT(income)</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>399948</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " COUNT(income)\n", "0 399948" ] }, "execution_count": 55, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# how many non-null values are in the income column? Practice COUNT(column).\n", "pd.read_sql(\"\"\"\n", "SELECT COUNT(income)\n", "FROM loans\n", "\"\"\", conn)" ] }, { "cell_type": "code", "execution_count": 56, "id": "6c029b7b-5b29-4be9-be5b-83ee246e5f30", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>AVG(interest_rate)</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>2.21657</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " AVG(interest_rate)\n", "0 2.21657" ] }, "execution_count": 56, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# what is the average interest rate for loans of type \"Conventional\"? Practice AVG.\n", "pd.read_sql(\"\"\"\n", "SELECT AVG(interest_rate)\n", "FROM loans\n", "INNER JOIN loan_types ON loans.loan_type = loan_types.id\n", "WHERE loan_types.loan_type = \"Conventional\"\n", "\"\"\", conn)" ] }, { "cell_type": "code", "execution_count": 58, "id": "40d65b3d-ed6f-4318-8e95-b03dcc668d01", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>loan_type</th>\n", " <th>COUNT(*)</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>Conventional</td>\n", " <td>389217</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>VA-guaranteed</td>\n", " <td>24551</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>FHA-insured</td>\n", " <td>30496</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>FSA/RHS-guaranteed</td>\n", " <td>3103</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " loan_type COUNT(*)\n", "0 Conventional 389217\n", "1 VA-guaranteed 24551\n", "2 FHA-insured 30496\n", "3 FSA/RHS-guaranteed 3103" ] }, "execution_count": 58, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# how many loans are there of each type? Practice GROUP BY.\n", "pd.read_sql(\"\"\"\n", "SELECT loan_types.loan_type, COUNT(*)\n", "FROM loans\n", "INNER JOIN loan_types ON loans.loan_type = loan_types.id\n", "GROUP BY loan_types.loan_type\n", "\"\"\", conn)" ] }, { "cell_type": "code", "execution_count": 59, "id": "c1bf9134-2694-44e4-9a38-bcb5b51fa2e8", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>loan_type</th>\n", " <th>count</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>Conventional</td>\n", " <td>389217</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>VA-guaranteed</td>\n", " <td>24551</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>FHA-insured</td>\n", " <td>30496</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " loan_type count\n", "0 Conventional 389217\n", "1 VA-guaranteed 24551\n", "2 FHA-insured 30496" ] }, "execution_count": 59, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# which loan types appear at least 10,000 times? Practice HAVING.\n", "# how many loans are there of each type? Practice GROUP BY.\n", "pd.read_sql(\"\"\"\n", "SELECT loan_types.loan_type, COUNT(*) AS count\n", "FROM loans\n", "INNER JOIN loan_types ON loans.loan_type = loan_types.idGROUP BY loan_types.loan_type\n", "HAVING count >= 10000\n", "\"\"\", conn)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.3" } }, "nbformat": 4, "nbformat_minor": 5 }