Skip to content
Snippets Groups Projects

Compare revisions

Changes are shown as if the source revision was being merged into the target revision. Learn more about comparing revisions.

Source

Select target project
No results found

Target

Select target project
  • HLI877/cs220-lecture-material
  • DANDAPANTULA/cs220-lecture-material
  • cdis/cs/courses/cs220/cs220-lecture-material
  • GIMOTEA/cs220-lecture-material
  • TWMILLER4/cs220-lecture-material
  • GU227/cs220-lecture-material
  • ABADAL/cs220-lecture-material
  • CMILTON3/cs220-lecture-material
  • BDONG39/cs220-lecture-material
  • JSANDOVAL6/cs220-lecture-material
  • JSABHARWAL2/cs220-lecture-material
  • GFREDERICKS/cs220-lecture-material
  • LMSUN/cs220-lecture-material
  • RBHALE/cs220-lecture-material
  • MILNARIK/cs220-lecture-material
  • SUTTI/cs220-lecture-material
  • NMISHRA4/cs220-lecture-material
  • HXIA36/cs220-lecture-material
  • DEPPELER/cs220-lecture-material
  • KIM2245/cs220-lecture-material
  • SKLEPFER/cs220-lecture-material
  • BANDIERA/cs220-lecture-material
  • JKILPS/cs220-lecture-material
  • SOERGEL/cs220-lecture-material
  • DBAUTISTA2/cs220-lecture-material
  • VLEFTWICH/cs220-lecture-material
  • MOU5/cs220-lecture-material
  • ALJACOBSON3/cs220-lecture-material
  • RCHOUDHARY5/cs220-lecture-material
  • MGERSCH/cs220-lecture-material
  • EKANDERSON8/cs220-lecture-material
  • ZHANG2752/cs220-lecture-material
  • VSANTAMARIA/cs220-lecture-material
  • VILBRANDT/cs220-lecture-material
  • ELADD2/cs220-lecture-material
  • YLIU2328/cs220-lecture-material
  • LMEASNER/cs220-lecture-material
  • ATANG28/cs220-lecture-material
  • AKSCHELLIN/cs220-lecture-material
  • OMBUSH/cs220-lecture-material
  • MJDAVID/cs220-lecture-material
  • AKHATRY/cs220-lecture-material
  • CZHUANG6/cs220-lecture-material
  • JPDEYOUNG/cs220-lecture-material
  • SDREES/cs220-lecture-material
  • CLCAMPBELL3/cs220-lecture-material
  • CJCAMPOS/cs220-lecture-material
  • AMARAN/cs220-lecture-material
  • rmflynn2/cs220-lecture-material
  • zhang2855/cs220-lecture-material
  • imanzoor/cs220-lecture-material
  • TOUSEEF/cs220-lecture-material
  • qchen445/cs220-lecture-material
  • nareed2/cs220-lecture-material
  • younkman/cs220-lecture-material
  • kli382/cs220-lecture-material
  • bsaulnier/cs220-lecture-material
  • isatrom/cs220-lecture-material
  • kgoodrum/cs220-lecture-material
  • mransom2/cs220-lecture-material
  • ahstevens/cs220-lecture-material
  • JRADUECHEL/cs220-lecture-material
  • mpcyr/cs220-lecture-material
  • wmeyrose/cs220-lecture-material
  • mmaltman/cs220-lecture-material
  • lsonntag/cs220-lecture-material
  • ghgallant/cs220-lecture-material
  • agkaiser2/cs220-lecture-material
  • rlgerhardt/cs220-lecture-material
  • chen2552/cs220-lecture-material
  • mickiewicz/cs220-lecture-material
  • cbarnish/cs220-lecture-material
  • alampson/cs220-lecture-material
  • mjwendt4/cs220-lecture-material
  • somsakhein/cs220-lecture-material
  • heppenibanez/cs220-lecture-material
  • szhang926/cs220-lecture-material
  • wewatson/cs220-lecture-material
  • jho34/cs220-lecture-material
  • lmedin/cs220-lecture-material
  • hjiang373/cs220-lecture-material
  • hfry2/cs220-lecture-material
  • ajroberts7/cs220-lecture-material
  • mcerhardt/cs220-lecture-material
  • njtomaszewsk/cs220-lecture-material
  • rwang728/cs220-lecture-material
  • jhansonflore/cs220-lecture-material
  • msajja/cs220-lecture-material
  • bjornson2/cs220-lecture-material
  • ccmclaren/cs220-lecture-material
  • armstrongbag/cs220-lecture-material
  • eloe2/cs220-lecture-material
92 results
Show changes
Showing
with 2563 additions and 0 deletions
File added
File added
File added
File added
File added
File added
File added
File added
File added
PassengerId,Survived,Pclass,Name,Sex,Age,SibSp,Parch,Ticket,Fare,Cabin,Embarked
1,0,3,"Braund, Mr. Owen Harris",male,22,1,0,A/5 21171,7.25,,S
2,1,1,"Cumings, Mrs. John Bradley (Florence Briggs Thayer)",female,38,1,0,PC 17599,71.2833,C85,C
3,1,3,"Heikkinen, Miss. Laina",female,26,0,0,STON/O2. 3101282,7.925,,S
4,1,1,"Futrelle, Mrs. Jacques Heath (Lily May Peel)",female,35,1,0,113803,53.1,C123,S
5,0,3,"Allen, Mr. William Henry",male,35,0,0,373450,8.05,,S
6,0,3,"Moran, Mr. James",male,,0,0,330877,8.4583,,Q
7,0,1,"McCarthy, Mr. Timothy J",male,54,0,0,17463,51.8625,E46,S
8,0,3,"Palsson, Master. Gosta Leonard",male,2,3,1,349909,21.075,,S
9,1,3,"Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)",female,27,0,2,347742,11.1333,,S
10,1,2,"Nasser, Mrs. Nicholas (Adele Achem)",female,14,1,0,237736,30.0708,,C
11,1,3,"Sandstrom, Miss. Marguerite Rut",female,4,1,1,PP 9549,16.7,G6,S
12,1,1,"Bonnell, Miss. Elizabeth",female,58,0,0,113783,26.55,C103,S
13,0,3,"Saundercock, Mr. William Henry",male,20,0,0,A/5. 2151,8.05,,S
14,0,3,"Andersson, Mr. Anders Johan",male,39,1,5,347082,31.275,,S
15,0,3,"Vestrom, Miss. Hulda Amanda Adolfina",female,14,0,0,350406,7.8542,,S
16,1,2,"Hewlett, Mrs. (Mary D Kingcome) ",female,55,0,0,248706,16,,S
17,0,3,"Rice, Master. Eugene",male,2,4,1,382652,29.125,,Q
18,1,2,"Williams, Mr. Charles Eugene",male,,0,0,244373,13,,S
19,0,3,"Vander Planke, Mrs. Julius (Emelia Maria Vandemoortele)",female,31,1,0,345763,18,,S
20,1,3,"Masselmani, Mrs. Fatima",female,,0,0,2649,7.225,,C
21,0,2,"Fynney, Mr. Joseph J",male,35,0,0,239865,26,,S
22,1,2,"Beesley, Mr. Lawrence",male,34,0,0,248698,13,D56,S
23,1,3,"McGowan, Miss. Anna ""Annie""",female,15,0,0,330923,8.0292,,Q
24,1,1,"Sloper, Mr. William Thompson",male,28,0,0,113788,35.5,A6,S
25,0,3,"Palsson, Miss. Torborg Danira",female,8,3,1,349909,21.075,,S
26,1,3,"Asplund, Mrs. Carl Oscar (Selma Augusta Emilia Johansson)",female,38,1,5,347077,31.3875,,S
27,0,3,"Emir, Mr. Farred Chehab",male,,0,0,2631,7.225,,C
28,0,1,"Fortune, Mr. Charles Alexander",male,19,3,2,19950,263,C23 C25 C27,S
29,1,3,"O'Dwyer, Miss. Ellen ""Nellie""",female,,0,0,330959,7.8792,,Q
30,0,3,"Todoroff, Mr. Lalio",male,,0,0,349216,7.8958,,S
31,0,1,"Uruchurtu, Don. Manuel E",male,40,0,0,PC 17601,27.7208,,C
32,1,1,"Spencer, Mrs. William Augustus (Marie Eugenie)",female,,1,0,PC 17569,146.5208,B78,C
33,1,3,"Glynn, Miss. Mary Agatha",female,,0,0,335677,7.75,,Q
34,0,2,"Wheadon, Mr. Edward H",male,66,0,0,C.A. 24579,10.5,,S
35,0,1,"Meyer, Mr. Edgar Joseph",male,28,1,0,PC 17604,82.1708,,C
36,0,1,"Holverson, Mr. Alexander Oskar",male,42,1,0,113789,52,,S
37,1,3,"Mamee, Mr. Hanna",male,,0,0,2677,7.2292,,C
38,0,3,"Cann, Mr. Ernest Charles",male,21,0,0,A./5. 2152,8.05,,S
39,0,3,"Vander Planke, Miss. Augusta Maria",female,18,2,0,345764,18,,S
40,1,3,"Nicola-Yarred, Miss. Jamila",female,14,1,0,2651,11.2417,,C
41,0,3,"Ahlin, Mrs. Johan (Johanna Persdotter Larsson)",female,40,1,0,7546,9.475,,S
42,0,2,"Turpin, Mrs. William John Robert (Dorothy Ann Wonnacott)",female,27,1,0,11668,21,,S
43,0,3,"Kraeff, Mr. Theodor",male,,0,0,349253,7.8958,,C
44,1,2,"Laroche, Miss. Simonne Marie Anne Andree",female,3,1,2,SC/Paris 2123,41.5792,,C
45,1,3,"Devaney, Miss. Margaret Delia",female,19,0,0,330958,7.8792,,Q
46,0,3,"Rogers, Mr. William John",male,,0,0,S.C./A.4. 23567,8.05,,S
47,0,3,"Lennon, Mr. Denis",male,,1,0,370371,15.5,,Q
48,1,3,"O'Driscoll, Miss. Bridget",female,,0,0,14311,7.75,,Q
49,0,3,"Samaan, Mr. Youssef",male,,2,0,2662,21.6792,,C
50,0,3,"Arnold-Franchi, Mrs. Josef (Josefine Franchi)",female,18,1,0,349237,17.8,,S
51,0,3,"Panula, Master. Juha Niilo",male,7,4,1,3101295,39.6875,,S
52,0,3,"Nosworthy, Mr. Richard Cater",male,21,0,0,A/4. 39886,7.8,,S
53,1,1,"Harper, Mrs. Henry Sleeper (Myna Haxtun)",female,49,1,0,PC 17572,76.7292,D33,C
54,1,2,"Faunthorpe, Mrs. Lizzie (Elizabeth Anne Wilkinson)",female,29,1,0,2926,26,,S
55,0,1,"Ostby, Mr. Engelhart Cornelius",male,65,0,1,113509,61.9792,B30,C
56,1,1,"Woolner, Mr. Hugh",male,,0,0,19947,35.5,C52,S
57,1,2,"Rugg, Miss. Emily",female,21,0,0,C.A. 31026,10.5,,S
58,0,3,"Novel, Mr. Mansouer",male,28.5,0,0,2697,7.2292,,C
59,1,2,"West, Miss. Constance Mirium",female,5,1,2,C.A. 34651,27.75,,S
60,0,3,"Goodwin, Master. William Frederick",male,11,5,2,CA 2144,46.9,,S
61,0,3,"Sirayanian, Mr. Orsen",male,22,0,0,2669,7.2292,,C
62,1,1,"Icard, Miss. Amelie",female,38,0,0,113572,80,B28,
63,0,1,"Harris, Mr. Henry Birkhardt",male,45,1,0,36973,83.475,C83,S
64,0,3,"Skoog, Master. Harald",male,4,3,2,347088,27.9,,S
65,0,1,"Stewart, Mr. Albert A",male,,0,0,PC 17605,27.7208,,C
66,1,3,"Moubarek, Master. Gerios",male,,1,1,2661,15.2458,,C
67,1,2,"Nye, Mrs. (Elizabeth Ramell)",female,29,0,0,C.A. 29395,10.5,F33,S
68,0,3,"Crease, Mr. Ernest James",male,19,0,0,S.P. 3464,8.1583,,S
69,1,3,"Andersson, Miss. Erna Alexandra",female,17,4,2,3101281,7.925,,S
70,0,3,"Kink, Mr. Vincenz",male,26,2,0,315151,8.6625,,S
71,0,2,"Jenkin, Mr. Stephen Curnow",male,32,0,0,C.A. 33111,10.5,,S
72,0,3,"Goodwin, Miss. Lillian Amy",female,16,5,2,CA 2144,46.9,,S
73,0,2,"Hood, Mr. Ambrose Jr",male,21,0,0,S.O.C. 14879,73.5,,S
74,0,3,"Chronopoulos, Mr. Apostolos",male,26,1,0,2680,14.4542,,C
75,1,3,"Bing, Mr. Lee",male,32,0,0,1601,56.4958,,S
76,0,3,"Moen, Mr. Sigurd Hansen",male,25,0,0,348123,7.65,F G73,S
77,0,3,"Staneff, Mr. Ivan",male,,0,0,349208,7.8958,,S
78,0,3,"Moutal, Mr. Rahamin Haim",male,,0,0,374746,8.05,,S
79,1,2,"Caldwell, Master. Alden Gates",male,0.83,0,2,248738,29,,S
80,1,3,"Dowdell, Miss. Elizabeth",female,30,0,0,364516,12.475,,S
81,0,3,"Waelens, Mr. Achille",male,22,0,0,345767,9,,S
82,1,3,"Sheerlinck, Mr. Jan Baptist",male,29,0,0,345779,9.5,,S
83,1,3,"McDermott, Miss. Brigdet Delia",female,,0,0,330932,7.7875,,Q
84,0,1,"Carrau, Mr. Francisco M",male,28,0,0,113059,47.1,,S
85,1,2,"Ilett, Miss. Bertha",female,17,0,0,SO/C 14885,10.5,,S
86,1,3,"Backstrom, Mrs. Karl Alfred (Maria Mathilda Gustafsson)",female,33,3,0,3101278,15.85,,S
87,0,3,"Ford, Mr. William Neal",male,16,1,3,W./C. 6608,34.375,,S
88,0,3,"Slocovski, Mr. Selman Francis",male,,0,0,SOTON/OQ 392086,8.05,,S
89,1,1,"Fortune, Miss. Mabel Helen",female,23,3,2,19950,263,C23 C25 C27,S
90,0,3,"Celotti, Mr. Francesco",male,24,0,0,343275,8.05,,S
91,0,3,"Christmann, Mr. Emil",male,29,0,0,343276,8.05,,S
92,0,3,"Andreasson, Mr. Paul Edvin",male,20,0,0,347466,7.8542,,S
93,0,1,"Chaffee, Mr. Herbert Fuller",male,46,1,0,W.E.P. 5734,61.175,E31,S
94,0,3,"Dean, Mr. Bertram Frank",male,26,1,2,C.A. 2315,20.575,,S
95,0,3,"Coxon, Mr. Daniel",male,59,0,0,364500,7.25,,S
96,0,3,"Shorney, Mr. Charles Joseph",male,,0,0,374910,8.05,,S
97,0,1,"Goldschmidt, Mr. George B",male,71,0,0,PC 17754,34.6542,A5,C
98,1,1,"Greenfield, Mr. William Bertram",male,23,0,1,PC 17759,63.3583,D10 D12,C
99,1,2,"Doling, Mrs. John T (Ada Julia Bone)",female,34,0,1,231919,23,,S
100,0,2,"Kantor, Mr. Sinai",male,34,1,0,244367,26,,S
101,0,3,"Petranec, Miss. Matilda",female,28,0,0,349245,7.8958,,S
102,0,3,"Petroff, Mr. Pastcho (""Pentcho"")",male,,0,0,349215,7.8958,,S
103,0,1,"White, Mr. Richard Frasar",male,21,0,1,35281,77.2875,D26,S
104,0,3,"Johansson, Mr. Gustaf Joel",male,33,0,0,7540,8.6542,,S
105,0,3,"Gustafsson, Mr. Anders Vilhelm",male,37,2,0,3101276,7.925,,S
106,0,3,"Mionoff, Mr. Stoytcho",male,28,0,0,349207,7.8958,,S
107,1,3,"Salkjelsvik, Miss. Anna Kristine",female,21,0,0,343120,7.65,,S
108,1,3,"Moss, Mr. Albert Johan",male,,0,0,312991,7.775,,S
109,0,3,"Rekic, Mr. Tido",male,38,0,0,349249,7.8958,,S
110,1,3,"Moran, Miss. Bertha",female,,1,0,371110,24.15,,Q
111,0,1,"Porter, Mr. Walter Chamberlain",male,47,0,0,110465,52,C110,S
112,0,3,"Zabour, Miss. Hileni",female,14.5,1,0,2665,14.4542,,C
113,0,3,"Barton, Mr. David John",male,22,0,0,324669,8.05,,S
114,0,3,"Jussila, Miss. Katriina",female,20,1,0,4136,9.825,,S
115,0,3,"Attalah, Miss. Malake",female,17,0,0,2627,14.4583,,C
116,0,3,"Pekoniemi, Mr. Edvard",male,21,0,0,STON/O 2. 3101294,7.925,,S
117,0,3,"Connors, Mr. Patrick",male,70.5,0,0,370369,7.75,,Q
118,0,2,"Turpin, Mr. William John Robert",male,29,1,0,11668,21,,S
119,0,1,"Baxter, Mr. Quigg Edmond",male,24,0,1,PC 17558,247.5208,B58 B60,C
120,0,3,"Andersson, Miss. Ellis Anna Maria",female,2,4,2,347082,31.275,,S
121,0,2,"Hickman, Mr. Stanley George",male,21,2,0,S.O.C. 14879,73.5,,S
122,0,3,"Moore, Mr. Leonard Charles",male,,0,0,A4. 54510,8.05,,S
123,0,2,"Nasser, Mr. Nicholas",male,32.5,1,0,237736,30.0708,,C
124,1,2,"Webber, Miss. Susan",female,32.5,0,0,27267,13,E101,S
125,0,1,"White, Mr. Percival Wayland",male,54,0,1,35281,77.2875,D26,S
126,1,3,"Nicola-Yarred, Master. Elias",male,12,1,0,2651,11.2417,,C
127,0,3,"McMahon, Mr. Martin",male,,0,0,370372,7.75,,Q
128,1,3,"Madsen, Mr. Fridtjof Arne",male,24,0,0,C 17369,7.1417,,S
129,1,3,"Peter, Miss. Anna",female,,1,1,2668,22.3583,F E69,C
130,0,3,"Ekstrom, Mr. Johan",male,45,0,0,347061,6.975,,S
131,0,3,"Drazenoic, Mr. Jozef",male,33,0,0,349241,7.8958,,C
132,0,3,"Coelho, Mr. Domingos Fernandeo",male,20,0,0,SOTON/O.Q. 3101307,7.05,,S
133,0,3,"Robins, Mrs. Alexander A (Grace Charity Laury)",female,47,1,0,A/5. 3337,14.5,,S
134,1,2,"Weisz, Mrs. Leopold (Mathilde Francoise Pede)",female,29,1,0,228414,26,,S
135,0,2,"Sobey, Mr. Samuel James Hayden",male,25,0,0,C.A. 29178,13,,S
136,0,2,"Richard, Mr. Emile",male,23,0,0,SC/PARIS 2133,15.0458,,C
137,1,1,"Newsom, Miss. Helen Monypeny",female,19,0,2,11752,26.2833,D47,S
138,0,1,"Futrelle, Mr. Jacques Heath",male,37,1,0,113803,53.1,C123,S
139,0,3,"Osen, Mr. Olaf Elon",male,16,0,0,7534,9.2167,,S
140,0,1,"Giglio, Mr. Victor",male,24,0,0,PC 17593,79.2,B86,C
141,0,3,"Boulos, Mrs. Joseph (Sultana)",female,,0,2,2678,15.2458,,C
142,1,3,"Nysten, Miss. Anna Sofia",female,22,0,0,347081,7.75,,S
143,1,3,"Hakkarainen, Mrs. Pekka Pietari (Elin Matilda Dolck)",female,24,1,0,STON/O2. 3101279,15.85,,S
144,0,3,"Burke, Mr. Jeremiah",male,19,0,0,365222,6.75,,Q
145,0,2,"Andrew, Mr. Edgardo Samuel",male,18,0,0,231945,11.5,,S
146,0,2,"Nicholls, Mr. Joseph Charles",male,19,1,1,C.A. 33112,36.75,,S
147,1,3,"Andersson, Mr. August Edvard (""Wennerstrom"")",male,27,0,0,350043,7.7958,,S
148,0,3,"Ford, Miss. Robina Maggie ""Ruby""",female,9,2,2,W./C. 6608,34.375,,S
149,0,2,"Navratil, Mr. Michel (""Louis M Hoffman"")",male,36.5,0,2,230080,26,F2,S
150,0,2,"Byles, Rev. Thomas Roussel Davids",male,42,0,0,244310,13,,S
151,0,2,"Bateman, Rev. Robert James",male,51,0,0,S.O.P. 1166,12.525,,S
152,1,1,"Pears, Mrs. Thomas (Edith Wearne)",female,22,1,0,113776,66.6,C2,S
153,0,3,"Meo, Mr. Alfonzo",male,55.5,0,0,A.5. 11206,8.05,,S
154,0,3,"van Billiard, Mr. Austin Blyler",male,40.5,0,2,A/5. 851,14.5,,S
155,0,3,"Olsen, Mr. Ole Martin",male,,0,0,Fa 265302,7.3125,,S
156,0,1,"Williams, Mr. Charles Duane",male,51,0,1,PC 17597,61.3792,,C
157,1,3,"Gilnagh, Miss. Katherine ""Katie""",female,16,0,0,35851,7.7333,,Q
158,0,3,"Corn, Mr. Harry",male,30,0,0,SOTON/OQ 392090,8.05,,S
159,0,3,"Smiljanic, Mr. Mile",male,,0,0,315037,8.6625,,S
160,0,3,"Sage, Master. Thomas Henry",male,,8,2,CA. 2343,69.55,,S
161,0,3,"Cribb, Mr. John Hatfield",male,44,0,1,371362,16.1,,S
162,1,2,"Watt, Mrs. James (Elizabeth ""Bessie"" Inglis Milne)",female,40,0,0,C.A. 33595,15.75,,S
163,0,3,"Bengtsson, Mr. John Viktor",male,26,0,0,347068,7.775,,S
164,0,3,"Calic, Mr. Jovo",male,17,0,0,315093,8.6625,,S
165,0,3,"Panula, Master. Eino Viljami",male,1,4,1,3101295,39.6875,,S
166,1,3,"Goldsmith, Master. Frank John William ""Frankie""",male,9,0,2,363291,20.525,,S
167,1,1,"Chibnall, Mrs. (Edith Martha Bowerman)",female,,0,1,113505,55,E33,S
168,0,3,"Skoog, Mrs. William (Anna Bernhardina Karlsson)",female,45,1,4,347088,27.9,,S
169,0,1,"Baumann, Mr. John D",male,,0,0,PC 17318,25.925,,S
170,0,3,"Ling, Mr. Lee",male,28,0,0,1601,56.4958,,S
171,0,1,"Van der hoef, Mr. Wyckoff",male,61,0,0,111240,33.5,B19,S
172,0,3,"Rice, Master. Arthur",male,4,4,1,382652,29.125,,Q
173,1,3,"Johnson, Miss. Eleanor Ileen",female,1,1,1,347742,11.1333,,S
174,0,3,"Sivola, Mr. Antti Wilhelm",male,21,0,0,STON/O 2. 3101280,7.925,,S
175,0,1,"Smith, Mr. James Clinch",male,56,0,0,17764,30.6958,A7,C
176,0,3,"Klasen, Mr. Klas Albin",male,18,1,1,350404,7.8542,,S
177,0,3,"Lefebre, Master. Henry Forbes",male,,3,1,4133,25.4667,,S
178,0,1,"Isham, Miss. Ann Elizabeth",female,50,0,0,PC 17595,28.7125,C49,C
179,0,2,"Hale, Mr. Reginald",male,30,0,0,250653,13,,S
180,0,3,"Leonard, Mr. Lionel",male,36,0,0,LINE,0,,S
181,0,3,"Sage, Miss. Constance Gladys",female,,8,2,CA. 2343,69.55,,S
182,0,2,"Pernot, Mr. Rene",male,,0,0,SC/PARIS 2131,15.05,,C
183,0,3,"Asplund, Master. Clarence Gustaf Hugo",male,9,4,2,347077,31.3875,,S
184,1,2,"Becker, Master. Richard F",male,1,2,1,230136,39,F4,S
185,1,3,"Kink-Heilmann, Miss. Luise Gretchen",female,4,0,2,315153,22.025,,S
186,0,1,"Rood, Mr. Hugh Roscoe",male,,0,0,113767,50,A32,S
187,1,3,"O'Brien, Mrs. Thomas (Johanna ""Hannah"" Godfrey)",female,,1,0,370365,15.5,,Q
188,1,1,"Romaine, Mr. Charles Hallace (""Mr C Rolmane"")",male,45,0,0,111428,26.55,,S
189,0,3,"Bourke, Mr. John",male,40,1,1,364849,15.5,,Q
190,0,3,"Turcin, Mr. Stjepan",male,36,0,0,349247,7.8958,,S
191,1,2,"Pinsky, Mrs. (Rosa)",female,32,0,0,234604,13,,S
192,0,2,"Carbines, Mr. William",male,19,0,0,28424,13,,S
193,1,3,"Andersen-Jensen, Miss. Carla Christine Nielsine",female,19,1,0,350046,7.8542,,S
194,1,2,"Navratil, Master. Michel M",male,3,1,1,230080,26,F2,S
195,1,1,"Brown, Mrs. James Joseph (Margaret Tobin)",female,44,0,0,PC 17610,27.7208,B4,C
196,1,1,"Lurette, Miss. Elise",female,58,0,0,PC 17569,146.5208,B80,C
197,0,3,"Mernagh, Mr. Robert",male,,0,0,368703,7.75,,Q
198,0,3,"Olsen, Mr. Karl Siegwart Andreas",male,42,0,1,4579,8.4042,,S
199,1,3,"Madigan, Miss. Margaret ""Maggie""",female,,0,0,370370,7.75,,Q
200,0,2,"Yrois, Miss. Henriette (""Mrs Harbeck"")",female,24,0,0,248747,13,,S
201,0,3,"Vande Walle, Mr. Nestor Cyriel",male,28,0,0,345770,9.5,,S
202,0,3,"Sage, Mr. Frederick",male,,8,2,CA. 2343,69.55,,S
203,0,3,"Johanson, Mr. Jakob Alfred",male,34,0,0,3101264,6.4958,,S
204,0,3,"Youseff, Mr. Gerious",male,45.5,0,0,2628,7.225,,C
205,1,3,"Cohen, Mr. Gurshon ""Gus""",male,18,0,0,A/5 3540,8.05,,S
206,0,3,"Strom, Miss. Telma Matilda",female,2,0,1,347054,10.4625,G6,S
207,0,3,"Backstrom, Mr. Karl Alfred",male,32,1,0,3101278,15.85,,S
208,1,3,"Albimona, Mr. Nassef Cassem",male,26,0,0,2699,18.7875,,C
209,1,3,"Carr, Miss. Helen ""Ellen""",female,16,0,0,367231,7.75,,Q
210,1,1,"Blank, Mr. Henry",male,40,0,0,112277,31,A31,C
211,0,3,"Ali, Mr. Ahmed",male,24,0,0,SOTON/O.Q. 3101311,7.05,,S
212,1,2,"Cameron, Miss. Clear Annie",female,35,0,0,F.C.C. 13528,21,,S
213,0,3,"Perkin, Mr. John Henry",male,22,0,0,A/5 21174,7.25,,S
214,0,2,"Givard, Mr. Hans Kristensen",male,30,0,0,250646,13,,S
215,0,3,"Kiernan, Mr. Philip",male,,1,0,367229,7.75,,Q
216,1,1,"Newell, Miss. Madeleine",female,31,1,0,35273,113.275,D36,C
217,1,3,"Honkanen, Miss. Eliina",female,27,0,0,STON/O2. 3101283,7.925,,S
218,0,2,"Jacobsohn, Mr. Sidney Samuel",male,42,1,0,243847,27,,S
219,1,1,"Bazzani, Miss. Albina",female,32,0,0,11813,76.2917,D15,C
220,0,2,"Harris, Mr. Walter",male,30,0,0,W/C 14208,10.5,,S
221,1,3,"Sunderland, Mr. Victor Francis",male,16,0,0,SOTON/OQ 392089,8.05,,S
222,0,2,"Bracken, Mr. James H",male,27,0,0,220367,13,,S
223,0,3,"Green, Mr. George Henry",male,51,0,0,21440,8.05,,S
224,0,3,"Nenkoff, Mr. Christo",male,,0,0,349234,7.8958,,S
225,1,1,"Hoyt, Mr. Frederick Maxfield",male,38,1,0,19943,90,C93,S
226,0,3,"Berglund, Mr. Karl Ivar Sven",male,22,0,0,PP 4348,9.35,,S
227,1,2,"Mellors, Mr. William John",male,19,0,0,SW/PP 751,10.5,,S
228,0,3,"Lovell, Mr. John Hall (""Henry"")",male,20.5,0,0,A/5 21173,7.25,,S
229,0,2,"Fahlstrom, Mr. Arne Jonas",male,18,0,0,236171,13,,S
230,0,3,"Lefebre, Miss. Mathilde",female,,3,1,4133,25.4667,,S
231,1,1,"Harris, Mrs. Henry Birkhardt (Irene Wallach)",female,35,1,0,36973,83.475,C83,S
232,0,3,"Larsson, Mr. Bengt Edvin",male,29,0,0,347067,7.775,,S
233,0,2,"Sjostedt, Mr. Ernst Adolf",male,59,0,0,237442,13.5,,S
234,1,3,"Asplund, Miss. Lillian Gertrud",female,5,4,2,347077,31.3875,,S
235,0,2,"Leyson, Mr. Robert William Norman",male,24,0,0,C.A. 29566,10.5,,S
236,0,3,"Harknett, Miss. Alice Phoebe",female,,0,0,W./C. 6609,7.55,,S
237,0,2,"Hold, Mr. Stephen",male,44,1,0,26707,26,,S
238,1,2,"Collyer, Miss. Marjorie ""Lottie""",female,8,0,2,C.A. 31921,26.25,,S
239,0,2,"Pengelly, Mr. Frederick William",male,19,0,0,28665,10.5,,S
240,0,2,"Hunt, Mr. George Henry",male,33,0,0,SCO/W 1585,12.275,,S
241,0,3,"Zabour, Miss. Thamine",female,,1,0,2665,14.4542,,C
242,1,3,"Murphy, Miss. Katherine ""Kate""",female,,1,0,367230,15.5,,Q
243,0,2,"Coleridge, Mr. Reginald Charles",male,29,0,0,W./C. 14263,10.5,,S
244,0,3,"Maenpaa, Mr. Matti Alexanteri",male,22,0,0,STON/O 2. 3101275,7.125,,S
245,0,3,"Attalah, Mr. Sleiman",male,30,0,0,2694,7.225,,C
246,0,1,"Minahan, Dr. William Edward",male,44,2,0,19928,90,C78,Q
247,0,3,"Lindahl, Miss. Agda Thorilda Viktoria",female,25,0,0,347071,7.775,,S
248,1,2,"Hamalainen, Mrs. William (Anna)",female,24,0,2,250649,14.5,,S
249,1,1,"Beckwith, Mr. Richard Leonard",male,37,1,1,11751,52.5542,D35,S
250,0,2,"Carter, Rev. Ernest Courtenay",male,54,1,0,244252,26,,S
251,0,3,"Reed, Mr. James George",male,,0,0,362316,7.25,,S
252,0,3,"Strom, Mrs. Wilhelm (Elna Matilda Persson)",female,29,1,1,347054,10.4625,G6,S
253,0,1,"Stead, Mr. William Thomas",male,62,0,0,113514,26.55,C87,S
254,0,3,"Lobb, Mr. William Arthur",male,30,1,0,A/5. 3336,16.1,,S
255,0,3,"Rosblom, Mrs. Viktor (Helena Wilhelmina)",female,41,0,2,370129,20.2125,,S
256,1,3,"Touma, Mrs. Darwis (Hanne Youssef Razi)",female,29,0,2,2650,15.2458,,C
257,1,1,"Thorne, Mrs. Gertrude Maybelle",female,,0,0,PC 17585,79.2,,C
258,1,1,"Cherry, Miss. Gladys",female,30,0,0,110152,86.5,B77,S
259,1,1,"Ward, Miss. Anna",female,35,0,0,PC 17755,512.3292,,C
260,1,2,"Parrish, Mrs. (Lutie Davis)",female,50,0,1,230433,26,,S
261,0,3,"Smith, Mr. Thomas",male,,0,0,384461,7.75,,Q
262,1,3,"Asplund, Master. Edvin Rojj Felix",male,3,4,2,347077,31.3875,,S
263,0,1,"Taussig, Mr. Emil",male,52,1,1,110413,79.65,E67,S
264,0,1,"Harrison, Mr. William",male,40,0,0,112059,0,B94,S
265,0,3,"Henry, Miss. Delia",female,,0,0,382649,7.75,,Q
266,0,2,"Reeves, Mr. David",male,36,0,0,C.A. 17248,10.5,,S
267,0,3,"Panula, Mr. Ernesti Arvid",male,16,4,1,3101295,39.6875,,S
268,1,3,"Persson, Mr. Ernst Ulrik",male,25,1,0,347083,7.775,,S
269,1,1,"Graham, Mrs. William Thompson (Edith Junkins)",female,58,0,1,PC 17582,153.4625,C125,S
270,1,1,"Bissette, Miss. Amelia",female,35,0,0,PC 17760,135.6333,C99,S
271,0,1,"Cairns, Mr. Alexander",male,,0,0,113798,31,,S
272,1,3,"Tornquist, Mr. William Henry",male,25,0,0,LINE,0,,S
273,1,2,"Mellinger, Mrs. (Elizabeth Anne Maidment)",female,41,0,1,250644,19.5,,S
274,0,1,"Natsch, Mr. Charles H",male,37,0,1,PC 17596,29.7,C118,C
275,1,3,"Healy, Miss. Hanora ""Nora""",female,,0,0,370375,7.75,,Q
276,1,1,"Andrews, Miss. Kornelia Theodosia",female,63,1,0,13502,77.9583,D7,S
277,0,3,"Lindblom, Miss. Augusta Charlotta",female,45,0,0,347073,7.75,,S
278,0,2,"Parkes, Mr. Francis ""Frank""",male,,0,0,239853,0,,S
279,0,3,"Rice, Master. Eric",male,7,4,1,382652,29.125,,Q
280,1,3,"Abbott, Mrs. Stanton (Rosa Hunt)",female,35,1,1,C.A. 2673,20.25,,S
281,0,3,"Duane, Mr. Frank",male,65,0,0,336439,7.75,,Q
282,0,3,"Olsson, Mr. Nils Johan Goransson",male,28,0,0,347464,7.8542,,S
283,0,3,"de Pelsmaeker, Mr. Alfons",male,16,0,0,345778,9.5,,S
284,1,3,"Dorking, Mr. Edward Arthur",male,19,0,0,A/5. 10482,8.05,,S
285,0,1,"Smith, Mr. Richard William",male,,0,0,113056,26,A19,S
286,0,3,"Stankovic, Mr. Ivan",male,33,0,0,349239,8.6625,,C
287,1,3,"de Mulder, Mr. Theodore",male,30,0,0,345774,9.5,,S
288,0,3,"Naidenoff, Mr. Penko",male,22,0,0,349206,7.8958,,S
289,1,2,"Hosono, Mr. Masabumi",male,42,0,0,237798,13,,S
290,1,3,"Connolly, Miss. Kate",female,22,0,0,370373,7.75,,Q
291,1,1,"Barber, Miss. Ellen ""Nellie""",female,26,0,0,19877,78.85,,S
292,1,1,"Bishop, Mrs. Dickinson H (Helen Walton)",female,19,1,0,11967,91.0792,B49,C
293,0,2,"Levy, Mr. Rene Jacques",male,36,0,0,SC/Paris 2163,12.875,D,C
294,0,3,"Haas, Miss. Aloisia",female,24,0,0,349236,8.85,,S
295,0,3,"Mineff, Mr. Ivan",male,24,0,0,349233,7.8958,,S
296,0,1,"Lewy, Mr. Ervin G",male,,0,0,PC 17612,27.7208,,C
297,0,3,"Hanna, Mr. Mansour",male,23.5,0,0,2693,7.2292,,C
298,0,1,"Allison, Miss. Helen Loraine",female,2,1,2,113781,151.55,C22 C26,S
299,1,1,"Saalfeld, Mr. Adolphe",male,,0,0,19988,30.5,C106,S
300,1,1,"Baxter, Mrs. James (Helene DeLaudeniere Chaput)",female,50,0,1,PC 17558,247.5208,B58 B60,C
301,1,3,"Kelly, Miss. Anna Katherine ""Annie Kate""",female,,0,0,9234,7.75,,Q
302,1,3,"McCoy, Mr. Bernard",male,,2,0,367226,23.25,,Q
303,0,3,"Johnson, Mr. William Cahoone Jr",male,19,0,0,LINE,0,,S
304,1,2,"Keane, Miss. Nora A",female,,0,0,226593,12.35,E101,Q
305,0,3,"Williams, Mr. Howard Hugh ""Harry""",male,,0,0,A/5 2466,8.05,,S
306,1,1,"Allison, Master. Hudson Trevor",male,0.92,1,2,113781,151.55,C22 C26,S
307,1,1,"Fleming, Miss. Margaret",female,,0,0,17421,110.8833,,C
308,1,1,"Penasco y Castellana, Mrs. Victor de Satode (Maria Josefa Perez de Soto y Vallejo)",female,17,1,0,PC 17758,108.9,C65,C
309,0,2,"Abelson, Mr. Samuel",male,30,1,0,P/PP 3381,24,,C
310,1,1,"Francatelli, Miss. Laura Mabel",female,30,0,0,PC 17485,56.9292,E36,C
311,1,1,"Hays, Miss. Margaret Bechstein",female,24,0,0,11767,83.1583,C54,C
312,1,1,"Ryerson, Miss. Emily Borie",female,18,2,2,PC 17608,262.375,B57 B59 B63 B66,C
313,0,2,"Lahtinen, Mrs. William (Anna Sylfven)",female,26,1,1,250651,26,,S
314,0,3,"Hendekovic, Mr. Ignjac",male,28,0,0,349243,7.8958,,S
315,0,2,"Hart, Mr. Benjamin",male,43,1,1,F.C.C. 13529,26.25,,S
316,1,3,"Nilsson, Miss. Helmina Josefina",female,26,0,0,347470,7.8542,,S
317,1,2,"Kantor, Mrs. Sinai (Miriam Sternin)",female,24,1,0,244367,26,,S
318,0,2,"Moraweck, Dr. Ernest",male,54,0,0,29011,14,,S
319,1,1,"Wick, Miss. Mary Natalie",female,31,0,2,36928,164.8667,C7,S
320,1,1,"Spedden, Mrs. Frederic Oakley (Margaretta Corning Stone)",female,40,1,1,16966,134.5,E34,C
321,0,3,"Dennis, Mr. Samuel",male,22,0,0,A/5 21172,7.25,,S
322,0,3,"Danoff, Mr. Yoto",male,27,0,0,349219,7.8958,,S
323,1,2,"Slayter, Miss. Hilda Mary",female,30,0,0,234818,12.35,,Q
324,1,2,"Caldwell, Mrs. Albert Francis (Sylvia Mae Harbaugh)",female,22,1,1,248738,29,,S
325,0,3,"Sage, Mr. George John Jr",male,,8,2,CA. 2343,69.55,,S
326,1,1,"Young, Miss. Marie Grice",female,36,0,0,PC 17760,135.6333,C32,C
327,0,3,"Nysveen, Mr. Johan Hansen",male,61,0,0,345364,6.2375,,S
328,1,2,"Ball, Mrs. (Ada E Hall)",female,36,0,0,28551,13,D,S
329,1,3,"Goldsmith, Mrs. Frank John (Emily Alice Brown)",female,31,1,1,363291,20.525,,S
330,1,1,"Hippach, Miss. Jean Gertrude",female,16,0,1,111361,57.9792,B18,C
331,1,3,"McCoy, Miss. Agnes",female,,2,0,367226,23.25,,Q
332,0,1,"Partner, Mr. Austen",male,45.5,0,0,113043,28.5,C124,S
333,0,1,"Graham, Mr. George Edward",male,38,0,1,PC 17582,153.4625,C91,S
334,0,3,"Vander Planke, Mr. Leo Edmondus",male,16,2,0,345764,18,,S
335,1,1,"Frauenthal, Mrs. Henry William (Clara Heinsheimer)",female,,1,0,PC 17611,133.65,,S
336,0,3,"Denkoff, Mr. Mitto",male,,0,0,349225,7.8958,,S
337,0,1,"Pears, Mr. Thomas Clinton",male,29,1,0,113776,66.6,C2,S
338,1,1,"Burns, Miss. Elizabeth Margaret",female,41,0,0,16966,134.5,E40,C
339,1,3,"Dahl, Mr. Karl Edwart",male,45,0,0,7598,8.05,,S
340,0,1,"Blackwell, Mr. Stephen Weart",male,45,0,0,113784,35.5,T,S
341,1,2,"Navratil, Master. Edmond Roger",male,2,1,1,230080,26,F2,S
342,1,1,"Fortune, Miss. Alice Elizabeth",female,24,3,2,19950,263,C23 C25 C27,S
343,0,2,"Collander, Mr. Erik Gustaf",male,28,0,0,248740,13,,S
344,0,2,"Sedgwick, Mr. Charles Frederick Waddington",male,25,0,0,244361,13,,S
345,0,2,"Fox, Mr. Stanley Hubert",male,36,0,0,229236,13,,S
346,1,2,"Brown, Miss. Amelia ""Mildred""",female,24,0,0,248733,13,F33,S
347,1,2,"Smith, Miss. Marion Elsie",female,40,0,0,31418,13,,S
348,1,3,"Davison, Mrs. Thomas Henry (Mary E Finck)",female,,1,0,386525,16.1,,S
349,1,3,"Coutts, Master. William Loch ""William""",male,3,1,1,C.A. 37671,15.9,,S
350,0,3,"Dimic, Mr. Jovan",male,42,0,0,315088,8.6625,,S
351,0,3,"Odahl, Mr. Nils Martin",male,23,0,0,7267,9.225,,S
352,0,1,"Williams-Lambert, Mr. Fletcher Fellows",male,,0,0,113510,35,C128,S
353,0,3,"Elias, Mr. Tannous",male,15,1,1,2695,7.2292,,C
354,0,3,"Arnold-Franchi, Mr. Josef",male,25,1,0,349237,17.8,,S
355,0,3,"Yousif, Mr. Wazli",male,,0,0,2647,7.225,,C
356,0,3,"Vanden Steen, Mr. Leo Peter",male,28,0,0,345783,9.5,,S
357,1,1,"Bowerman, Miss. Elsie Edith",female,22,0,1,113505,55,E33,S
358,0,2,"Funk, Miss. Annie Clemmer",female,38,0,0,237671,13,,S
359,1,3,"McGovern, Miss. Mary",female,,0,0,330931,7.8792,,Q
360,1,3,"Mockler, Miss. Helen Mary ""Ellie""",female,,0,0,330980,7.8792,,Q
361,0,3,"Skoog, Mr. Wilhelm",male,40,1,4,347088,27.9,,S
362,0,2,"del Carlo, Mr. Sebastiano",male,29,1,0,SC/PARIS 2167,27.7208,,C
363,0,3,"Barbara, Mrs. (Catherine David)",female,45,0,1,2691,14.4542,,C
364,0,3,"Asim, Mr. Adola",male,35,0,0,SOTON/O.Q. 3101310,7.05,,S
365,0,3,"O'Brien, Mr. Thomas",male,,1,0,370365,15.5,,Q
366,0,3,"Adahl, Mr. Mauritz Nils Martin",male,30,0,0,C 7076,7.25,,S
367,1,1,"Warren, Mrs. Frank Manley (Anna Sophia Atkinson)",female,60,1,0,110813,75.25,D37,C
368,1,3,"Moussa, Mrs. (Mantoura Boulos)",female,,0,0,2626,7.2292,,C
369,1,3,"Jermyn, Miss. Annie",female,,0,0,14313,7.75,,Q
370,1,1,"Aubart, Mme. Leontine Pauline",female,24,0,0,PC 17477,69.3,B35,C
371,1,1,"Harder, Mr. George Achilles",male,25,1,0,11765,55.4417,E50,C
372,0,3,"Wiklund, Mr. Jakob Alfred",male,18,1,0,3101267,6.4958,,S
373,0,3,"Beavan, Mr. William Thomas",male,19,0,0,323951,8.05,,S
374,0,1,"Ringhini, Mr. Sante",male,22,0,0,PC 17760,135.6333,,C
375,0,3,"Palsson, Miss. Stina Viola",female,3,3,1,349909,21.075,,S
376,1,1,"Meyer, Mrs. Edgar Joseph (Leila Saks)",female,,1,0,PC 17604,82.1708,,C
377,1,3,"Landergren, Miss. Aurora Adelia",female,22,0,0,C 7077,7.25,,S
378,0,1,"Widener, Mr. Harry Elkins",male,27,0,2,113503,211.5,C82,C
379,0,3,"Betros, Mr. Tannous",male,20,0,0,2648,4.0125,,C
380,0,3,"Gustafsson, Mr. Karl Gideon",male,19,0,0,347069,7.775,,S
381,1,1,"Bidois, Miss. Rosalie",female,42,0,0,PC 17757,227.525,,C
382,1,3,"Nakid, Miss. Maria (""Mary"")",female,1,0,2,2653,15.7417,,C
383,0,3,"Tikkanen, Mr. Juho",male,32,0,0,STON/O 2. 3101293,7.925,,S
384,1,1,"Holverson, Mrs. Alexander Oskar (Mary Aline Towner)",female,35,1,0,113789,52,,S
385,0,3,"Plotcharsky, Mr. Vasil",male,,0,0,349227,7.8958,,S
386,0,2,"Davies, Mr. Charles Henry",male,18,0,0,S.O.C. 14879,73.5,,S
387,0,3,"Goodwin, Master. Sidney Leonard",male,1,5,2,CA 2144,46.9,,S
388,1,2,"Buss, Miss. Kate",female,36,0,0,27849,13,,S
389,0,3,"Sadlier, Mr. Matthew",male,,0,0,367655,7.7292,,Q
390,1,2,"Lehmann, Miss. Bertha",female,17,0,0,SC 1748,12,,C
391,1,1,"Carter, Mr. William Ernest",male,36,1,2,113760,120,B96 B98,S
392,1,3,"Jansson, Mr. Carl Olof",male,21,0,0,350034,7.7958,,S
393,0,3,"Gustafsson, Mr. Johan Birger",male,28,2,0,3101277,7.925,,S
394,1,1,"Newell, Miss. Marjorie",female,23,1,0,35273,113.275,D36,C
395,1,3,"Sandstrom, Mrs. Hjalmar (Agnes Charlotta Bengtsson)",female,24,0,2,PP 9549,16.7,G6,S
396,0,3,"Johansson, Mr. Erik",male,22,0,0,350052,7.7958,,S
397,0,3,"Olsson, Miss. Elina",female,31,0,0,350407,7.8542,,S
398,0,2,"McKane, Mr. Peter David",male,46,0,0,28403,26,,S
399,0,2,"Pain, Dr. Alfred",male,23,0,0,244278,10.5,,S
400,1,2,"Trout, Mrs. William H (Jessie L)",female,28,0,0,240929,12.65,,S
401,1,3,"Niskanen, Mr. Juha",male,39,0,0,STON/O 2. 3101289,7.925,,S
402,0,3,"Adams, Mr. John",male,26,0,0,341826,8.05,,S
403,0,3,"Jussila, Miss. Mari Aina",female,21,1,0,4137,9.825,,S
404,0,3,"Hakkarainen, Mr. Pekka Pietari",male,28,1,0,STON/O2. 3101279,15.85,,S
405,0,3,"Oreskovic, Miss. Marija",female,20,0,0,315096,8.6625,,S
406,0,2,"Gale, Mr. Shadrach",male,34,1,0,28664,21,,S
407,0,3,"Widegren, Mr. Carl/Charles Peter",male,51,0,0,347064,7.75,,S
408,1,2,"Richards, Master. William Rowe",male,3,1,1,29106,18.75,,S
409,0,3,"Birkeland, Mr. Hans Martin Monsen",male,21,0,0,312992,7.775,,S
410,0,3,"Lefebre, Miss. Ida",female,,3,1,4133,25.4667,,S
411,0,3,"Sdycoff, Mr. Todor",male,,0,0,349222,7.8958,,S
412,0,3,"Hart, Mr. Henry",male,,0,0,394140,6.8583,,Q
413,1,1,"Minahan, Miss. Daisy E",female,33,1,0,19928,90,C78,Q
414,0,2,"Cunningham, Mr. Alfred Fleming",male,,0,0,239853,0,,S
415,1,3,"Sundman, Mr. Johan Julian",male,44,0,0,STON/O 2. 3101269,7.925,,S
416,0,3,"Meek, Mrs. Thomas (Annie Louise Rowley)",female,,0,0,343095,8.05,,S
417,1,2,"Drew, Mrs. James Vivian (Lulu Thorne Christian)",female,34,1,1,28220,32.5,,S
418,1,2,"Silven, Miss. Lyyli Karoliina",female,18,0,2,250652,13,,S
419,0,2,"Matthews, Mr. William John",male,30,0,0,28228,13,,S
420,0,3,"Van Impe, Miss. Catharina",female,10,0,2,345773,24.15,,S
421,0,3,"Gheorgheff, Mr. Stanio",male,,0,0,349254,7.8958,,C
422,0,3,"Charters, Mr. David",male,21,0,0,A/5. 13032,7.7333,,Q
423,0,3,"Zimmerman, Mr. Leo",male,29,0,0,315082,7.875,,S
424,0,3,"Danbom, Mrs. Ernst Gilbert (Anna Sigrid Maria Brogren)",female,28,1,1,347080,14.4,,S
425,0,3,"Rosblom, Mr. Viktor Richard",male,18,1,1,370129,20.2125,,S
426,0,3,"Wiseman, Mr. Phillippe",male,,0,0,A/4. 34244,7.25,,S
427,1,2,"Clarke, Mrs. Charles V (Ada Maria Winfield)",female,28,1,0,2003,26,,S
428,1,2,"Phillips, Miss. Kate Florence (""Mrs Kate Louise Phillips Marshall"")",female,19,0,0,250655,26,,S
429,0,3,"Flynn, Mr. James",male,,0,0,364851,7.75,,Q
430,1,3,"Pickard, Mr. Berk (Berk Trembisky)",male,32,0,0,SOTON/O.Q. 392078,8.05,E10,S
431,1,1,"Bjornstrom-Steffansson, Mr. Mauritz Hakan",male,28,0,0,110564,26.55,C52,S
432,1,3,"Thorneycroft, Mrs. Percival (Florence Kate White)",female,,1,0,376564,16.1,,S
433,1,2,"Louch, Mrs. Charles Alexander (Alice Adelaide Slow)",female,42,1,0,SC/AH 3085,26,,S
434,0,3,"Kallio, Mr. Nikolai Erland",male,17,0,0,STON/O 2. 3101274,7.125,,S
435,0,1,"Silvey, Mr. William Baird",male,50,1,0,13507,55.9,E44,S
436,1,1,"Carter, Miss. Lucile Polk",female,14,1,2,113760,120,B96 B98,S
437,0,3,"Ford, Miss. Doolina Margaret ""Daisy""",female,21,2,2,W./C. 6608,34.375,,S
438,1,2,"Richards, Mrs. Sidney (Emily Hocking)",female,24,2,3,29106,18.75,,S
439,0,1,"Fortune, Mr. Mark",male,64,1,4,19950,263,C23 C25 C27,S
440,0,2,"Kvillner, Mr. Johan Henrik Johannesson",male,31,0,0,C.A. 18723,10.5,,S
441,1,2,"Hart, Mrs. Benjamin (Esther Ada Bloomfield)",female,45,1,1,F.C.C. 13529,26.25,,S
442,0,3,"Hampe, Mr. Leon",male,20,0,0,345769,9.5,,S
443,0,3,"Petterson, Mr. Johan Emil",male,25,1,0,347076,7.775,,S
444,1,2,"Reynaldo, Ms. Encarnacion",female,28,0,0,230434,13,,S
445,1,3,"Johannesen-Bratthammer, Mr. Bernt",male,,0,0,65306,8.1125,,S
446,1,1,"Dodge, Master. Washington",male,4,0,2,33638,81.8583,A34,S
447,1,2,"Mellinger, Miss. Madeleine Violet",female,13,0,1,250644,19.5,,S
448,1,1,"Seward, Mr. Frederic Kimber",male,34,0,0,113794,26.55,,S
449,1,3,"Baclini, Miss. Marie Catherine",female,5,2,1,2666,19.2583,,C
450,1,1,"Peuchen, Major. Arthur Godfrey",male,52,0,0,113786,30.5,C104,S
451,0,2,"West, Mr. Edwy Arthur",male,36,1,2,C.A. 34651,27.75,,S
452,0,3,"Hagland, Mr. Ingvald Olai Olsen",male,,1,0,65303,19.9667,,S
453,0,1,"Foreman, Mr. Benjamin Laventall",male,30,0,0,113051,27.75,C111,C
454,1,1,"Goldenberg, Mr. Samuel L",male,49,1,0,17453,89.1042,C92,C
455,0,3,"Peduzzi, Mr. Joseph",male,,0,0,A/5 2817,8.05,,S
456,1,3,"Jalsevac, Mr. Ivan",male,29,0,0,349240,7.8958,,C
457,0,1,"Millet, Mr. Francis Davis",male,65,0,0,13509,26.55,E38,S
458,1,1,"Kenyon, Mrs. Frederick R (Marion)",female,,1,0,17464,51.8625,D21,S
459,1,2,"Toomey, Miss. Ellen",female,50,0,0,F.C.C. 13531,10.5,,S
460,0,3,"O'Connor, Mr. Maurice",male,,0,0,371060,7.75,,Q
461,1,1,"Anderson, Mr. Harry",male,48,0,0,19952,26.55,E12,S
462,0,3,"Morley, Mr. William",male,34,0,0,364506,8.05,,S
463,0,1,"Gee, Mr. Arthur H",male,47,0,0,111320,38.5,E63,S
464,0,2,"Milling, Mr. Jacob Christian",male,48,0,0,234360,13,,S
465,0,3,"Maisner, Mr. Simon",male,,0,0,A/S 2816,8.05,,S
466,0,3,"Goncalves, Mr. Manuel Estanslas",male,38,0,0,SOTON/O.Q. 3101306,7.05,,S
467,0,2,"Campbell, Mr. William",male,,0,0,239853,0,,S
468,0,1,"Smart, Mr. John Montgomery",male,56,0,0,113792,26.55,,S
469,0,3,"Scanlan, Mr. James",male,,0,0,36209,7.725,,Q
470,1,3,"Baclini, Miss. Helene Barbara",female,0.75,2,1,2666,19.2583,,C
471,0,3,"Keefe, Mr. Arthur",male,,0,0,323592,7.25,,S
472,0,3,"Cacic, Mr. Luka",male,38,0,0,315089,8.6625,,S
473,1,2,"West, Mrs. Edwy Arthur (Ada Mary Worth)",female,33,1,2,C.A. 34651,27.75,,S
474,1,2,"Jerwan, Mrs. Amin S (Marie Marthe Thuillard)",female,23,0,0,SC/AH Basle 541,13.7917,D,C
475,0,3,"Strandberg, Miss. Ida Sofia",female,22,0,0,7553,9.8375,,S
476,0,1,"Clifford, Mr. George Quincy",male,,0,0,110465,52,A14,S
477,0,2,"Renouf, Mr. Peter Henry",male,34,1,0,31027,21,,S
478,0,3,"Braund, Mr. Lewis Richard",male,29,1,0,3460,7.0458,,S
479,0,3,"Karlsson, Mr. Nils August",male,22,0,0,350060,7.5208,,S
480,1,3,"Hirvonen, Miss. Hildur E",female,2,0,1,3101298,12.2875,,S
481,0,3,"Goodwin, Master. Harold Victor",male,9,5,2,CA 2144,46.9,,S
482,0,2,"Frost, Mr. Anthony Wood ""Archie""",male,,0,0,239854,0,,S
483,0,3,"Rouse, Mr. Richard Henry",male,50,0,0,A/5 3594,8.05,,S
484,1,3,"Turkula, Mrs. (Hedwig)",female,63,0,0,4134,9.5875,,S
485,1,1,"Bishop, Mr. Dickinson H",male,25,1,0,11967,91.0792,B49,C
486,0,3,"Lefebre, Miss. Jeannie",female,,3,1,4133,25.4667,,S
487,1,1,"Hoyt, Mrs. Frederick Maxfield (Jane Anne Forby)",female,35,1,0,19943,90,C93,S
488,0,1,"Kent, Mr. Edward Austin",male,58,0,0,11771,29.7,B37,C
489,0,3,"Somerton, Mr. Francis William",male,30,0,0,A.5. 18509,8.05,,S
490,1,3,"Coutts, Master. Eden Leslie ""Neville""",male,9,1,1,C.A. 37671,15.9,,S
491,0,3,"Hagland, Mr. Konrad Mathias Reiersen",male,,1,0,65304,19.9667,,S
492,0,3,"Windelov, Mr. Einar",male,21,0,0,SOTON/OQ 3101317,7.25,,S
493,0,1,"Molson, Mr. Harry Markland",male,55,0,0,113787,30.5,C30,S
494,0,1,"Artagaveytia, Mr. Ramon",male,71,0,0,PC 17609,49.5042,,C
495,0,3,"Stanley, Mr. Edward Roland",male,21,0,0,A/4 45380,8.05,,S
496,0,3,"Yousseff, Mr. Gerious",male,,0,0,2627,14.4583,,C
497,1,1,"Eustis, Miss. Elizabeth Mussey",female,54,1,0,36947,78.2667,D20,C
498,0,3,"Shellard, Mr. Frederick William",male,,0,0,C.A. 6212,15.1,,S
499,0,1,"Allison, Mrs. Hudson J C (Bessie Waldo Daniels)",female,25,1,2,113781,151.55,C22 C26,S
500,0,3,"Svensson, Mr. Olof",male,24,0,0,350035,7.7958,,S
501,0,3,"Calic, Mr. Petar",male,17,0,0,315086,8.6625,,S
502,0,3,"Canavan, Miss. Mary",female,21,0,0,364846,7.75,,Q
503,0,3,"O'Sullivan, Miss. Bridget Mary",female,,0,0,330909,7.6292,,Q
504,0,3,"Laitinen, Miss. Kristina Sofia",female,37,0,0,4135,9.5875,,S
505,1,1,"Maioni, Miss. Roberta",female,16,0,0,110152,86.5,B79,S
506,0,1,"Penasco y Castellana, Mr. Victor de Satode",male,18,1,0,PC 17758,108.9,C65,C
507,1,2,"Quick, Mrs. Frederick Charles (Jane Richards)",female,33,0,2,26360,26,,S
508,1,1,"Bradley, Mr. George (""George Arthur Brayton"")",male,,0,0,111427,26.55,,S
509,0,3,"Olsen, Mr. Henry Margido",male,28,0,0,C 4001,22.525,,S
510,1,3,"Lang, Mr. Fang",male,26,0,0,1601,56.4958,,S
511,1,3,"Daly, Mr. Eugene Patrick",male,29,0,0,382651,7.75,,Q
512,0,3,"Webber, Mr. James",male,,0,0,SOTON/OQ 3101316,8.05,,S
513,1,1,"McGough, Mr. James Robert",male,36,0,0,PC 17473,26.2875,E25,S
514,1,1,"Rothschild, Mrs. Martin (Elizabeth L. Barrett)",female,54,1,0,PC 17603,59.4,,C
515,0,3,"Coleff, Mr. Satio",male,24,0,0,349209,7.4958,,S
516,0,1,"Walker, Mr. William Anderson",male,47,0,0,36967,34.0208,D46,S
517,1,2,"Lemore, Mrs. (Amelia Milley)",female,34,0,0,C.A. 34260,10.5,F33,S
518,0,3,"Ryan, Mr. Patrick",male,,0,0,371110,24.15,,Q
519,1,2,"Angle, Mrs. William A (Florence ""Mary"" Agnes Hughes)",female,36,1,0,226875,26,,S
520,0,3,"Pavlovic, Mr. Stefo",male,32,0,0,349242,7.8958,,S
521,1,1,"Perreault, Miss. Anne",female,30,0,0,12749,93.5,B73,S
522,0,3,"Vovk, Mr. Janko",male,22,0,0,349252,7.8958,,S
523,0,3,"Lahoud, Mr. Sarkis",male,,0,0,2624,7.225,,C
524,1,1,"Hippach, Mrs. Louis Albert (Ida Sophia Fischer)",female,44,0,1,111361,57.9792,B18,C
525,0,3,"Kassem, Mr. Fared",male,,0,0,2700,7.2292,,C
526,0,3,"Farrell, Mr. James",male,40.5,0,0,367232,7.75,,Q
527,1,2,"Ridsdale, Miss. Lucy",female,50,0,0,W./C. 14258,10.5,,S
528,0,1,"Farthing, Mr. John",male,,0,0,PC 17483,221.7792,C95,S
529,0,3,"Salonen, Mr. Johan Werner",male,39,0,0,3101296,7.925,,S
530,0,2,"Hocking, Mr. Richard George",male,23,2,1,29104,11.5,,S
531,1,2,"Quick, Miss. Phyllis May",female,2,1,1,26360,26,,S
532,0,3,"Toufik, Mr. Nakli",male,,0,0,2641,7.2292,,C
533,0,3,"Elias, Mr. Joseph Jr",male,17,1,1,2690,7.2292,,C
534,1,3,"Peter, Mrs. Catherine (Catherine Rizk)",female,,0,2,2668,22.3583,,C
535,0,3,"Cacic, Miss. Marija",female,30,0,0,315084,8.6625,,S
536,1,2,"Hart, Miss. Eva Miriam",female,7,0,2,F.C.C. 13529,26.25,,S
537,0,1,"Butt, Major. Archibald Willingham",male,45,0,0,113050,26.55,B38,S
538,1,1,"LeRoy, Miss. Bertha",female,30,0,0,PC 17761,106.425,,C
539,0,3,"Risien, Mr. Samuel Beard",male,,0,0,364498,14.5,,S
540,1,1,"Frolicher, Miss. Hedwig Margaritha",female,22,0,2,13568,49.5,B39,C
541,1,1,"Crosby, Miss. Harriet R",female,36,0,2,WE/P 5735,71,B22,S
542,0,3,"Andersson, Miss. Ingeborg Constanzia",female,9,4,2,347082,31.275,,S
543,0,3,"Andersson, Miss. Sigrid Elisabeth",female,11,4,2,347082,31.275,,S
544,1,2,"Beane, Mr. Edward",male,32,1,0,2908,26,,S
545,0,1,"Douglas, Mr. Walter Donald",male,50,1,0,PC 17761,106.425,C86,C
546,0,1,"Nicholson, Mr. Arthur Ernest",male,64,0,0,693,26,,S
547,1,2,"Beane, Mrs. Edward (Ethel Clarke)",female,19,1,0,2908,26,,S
548,1,2,"Padro y Manent, Mr. Julian",male,,0,0,SC/PARIS 2146,13.8625,,C
549,0,3,"Goldsmith, Mr. Frank John",male,33,1,1,363291,20.525,,S
550,1,2,"Davies, Master. John Morgan Jr",male,8,1,1,C.A. 33112,36.75,,S
551,1,1,"Thayer, Mr. John Borland Jr",male,17,0,2,17421,110.8833,C70,C
552,0,2,"Sharp, Mr. Percival James R",male,27,0,0,244358,26,,S
553,0,3,"O'Brien, Mr. Timothy",male,,0,0,330979,7.8292,,Q
554,1,3,"Leeni, Mr. Fahim (""Philip Zenni"")",male,22,0,0,2620,7.225,,C
555,1,3,"Ohman, Miss. Velin",female,22,0,0,347085,7.775,,S
556,0,1,"Wright, Mr. George",male,62,0,0,113807,26.55,,S
557,1,1,"Duff Gordon, Lady. (Lucille Christiana Sutherland) (""Mrs Morgan"")",female,48,1,0,11755,39.6,A16,C
558,0,1,"Robbins, Mr. Victor",male,,0,0,PC 17757,227.525,,C
559,1,1,"Taussig, Mrs. Emil (Tillie Mandelbaum)",female,39,1,1,110413,79.65,E67,S
560,1,3,"de Messemaeker, Mrs. Guillaume Joseph (Emma)",female,36,1,0,345572,17.4,,S
561,0,3,"Morrow, Mr. Thomas Rowan",male,,0,0,372622,7.75,,Q
562,0,3,"Sivic, Mr. Husein",male,40,0,0,349251,7.8958,,S
563,0,2,"Norman, Mr. Robert Douglas",male,28,0,0,218629,13.5,,S
564,0,3,"Simmons, Mr. John",male,,0,0,SOTON/OQ 392082,8.05,,S
565,0,3,"Meanwell, Miss. (Marion Ogden)",female,,0,0,SOTON/O.Q. 392087,8.05,,S
566,0,3,"Davies, Mr. Alfred J",male,24,2,0,A/4 48871,24.15,,S
567,0,3,"Stoytcheff, Mr. Ilia",male,19,0,0,349205,7.8958,,S
568,0,3,"Palsson, Mrs. Nils (Alma Cornelia Berglund)",female,29,0,4,349909,21.075,,S
569,0,3,"Doharr, Mr. Tannous",male,,0,0,2686,7.2292,,C
570,1,3,"Jonsson, Mr. Carl",male,32,0,0,350417,7.8542,,S
571,1,2,"Harris, Mr. George",male,62,0,0,S.W./PP 752,10.5,,S
572,1,1,"Appleton, Mrs. Edward Dale (Charlotte Lamson)",female,53,2,0,11769,51.4792,C101,S
573,1,1,"Flynn, Mr. John Irwin (""Irving"")",male,36,0,0,PC 17474,26.3875,E25,S
574,1,3,"Kelly, Miss. Mary",female,,0,0,14312,7.75,,Q
575,0,3,"Rush, Mr. Alfred George John",male,16,0,0,A/4. 20589,8.05,,S
576,0,3,"Patchett, Mr. George",male,19,0,0,358585,14.5,,S
577,1,2,"Garside, Miss. Ethel",female,34,0,0,243880,13,,S
578,1,1,"Silvey, Mrs. William Baird (Alice Munger)",female,39,1,0,13507,55.9,E44,S
579,0,3,"Caram, Mrs. Joseph (Maria Elias)",female,,1,0,2689,14.4583,,C
580,1,3,"Jussila, Mr. Eiriik",male,32,0,0,STON/O 2. 3101286,7.925,,S
581,1,2,"Christy, Miss. Julie Rachel",female,25,1,1,237789,30,,S
582,1,1,"Thayer, Mrs. John Borland (Marian Longstreth Morris)",female,39,1,1,17421,110.8833,C68,C
583,0,2,"Downton, Mr. William James",male,54,0,0,28403,26,,S
584,0,1,"Ross, Mr. John Hugo",male,36,0,0,13049,40.125,A10,C
585,0,3,"Paulner, Mr. Uscher",male,,0,0,3411,8.7125,,C
586,1,1,"Taussig, Miss. Ruth",female,18,0,2,110413,79.65,E68,S
587,0,2,"Jarvis, Mr. John Denzil",male,47,0,0,237565,15,,S
588,1,1,"Frolicher-Stehli, Mr. Maxmillian",male,60,1,1,13567,79.2,B41,C
589,0,3,"Gilinski, Mr. Eliezer",male,22,0,0,14973,8.05,,S
590,0,3,"Murdlin, Mr. Joseph",male,,0,0,A./5. 3235,8.05,,S
591,0,3,"Rintamaki, Mr. Matti",male,35,0,0,STON/O 2. 3101273,7.125,,S
592,1,1,"Stephenson, Mrs. Walter Bertram (Martha Eustis)",female,52,1,0,36947,78.2667,D20,C
593,0,3,"Elsbury, Mr. William James",male,47,0,0,A/5 3902,7.25,,S
594,0,3,"Bourke, Miss. Mary",female,,0,2,364848,7.75,,Q
595,0,2,"Chapman, Mr. John Henry",male,37,1,0,SC/AH 29037,26,,S
596,0,3,"Van Impe, Mr. Jean Baptiste",male,36,1,1,345773,24.15,,S
597,1,2,"Leitch, Miss. Jessie Wills",female,,0,0,248727,33,,S
598,0,3,"Johnson, Mr. Alfred",male,49,0,0,LINE,0,,S
599,0,3,"Boulos, Mr. Hanna",male,,0,0,2664,7.225,,C
600,1,1,"Duff Gordon, Sir. Cosmo Edmund (""Mr Morgan"")",male,49,1,0,PC 17485,56.9292,A20,C
601,1,2,"Jacobsohn, Mrs. Sidney Samuel (Amy Frances Christy)",female,24,2,1,243847,27,,S
602,0,3,"Slabenoff, Mr. Petco",male,,0,0,349214,7.8958,,S
603,0,1,"Harrington, Mr. Charles H",male,,0,0,113796,42.4,,S
604,0,3,"Torber, Mr. Ernst William",male,44,0,0,364511,8.05,,S
605,1,1,"Homer, Mr. Harry (""Mr E Haven"")",male,35,0,0,111426,26.55,,C
606,0,3,"Lindell, Mr. Edvard Bengtsson",male,36,1,0,349910,15.55,,S
607,0,3,"Karaic, Mr. Milan",male,30,0,0,349246,7.8958,,S
608,1,1,"Daniel, Mr. Robert Williams",male,27,0,0,113804,30.5,,S
609,1,2,"Laroche, Mrs. Joseph (Juliette Marie Louise Lafargue)",female,22,1,2,SC/Paris 2123,41.5792,,C
610,1,1,"Shutes, Miss. Elizabeth W",female,40,0,0,PC 17582,153.4625,C125,S
611,0,3,"Andersson, Mrs. Anders Johan (Alfrida Konstantia Brogren)",female,39,1,5,347082,31.275,,S
612,0,3,"Jardin, Mr. Jose Neto",male,,0,0,SOTON/O.Q. 3101305,7.05,,S
613,1,3,"Murphy, Miss. Margaret Jane",female,,1,0,367230,15.5,,Q
614,0,3,"Horgan, Mr. John",male,,0,0,370377,7.75,,Q
615,0,3,"Brocklebank, Mr. William Alfred",male,35,0,0,364512,8.05,,S
616,1,2,"Herman, Miss. Alice",female,24,1,2,220845,65,,S
617,0,3,"Danbom, Mr. Ernst Gilbert",male,34,1,1,347080,14.4,,S
618,0,3,"Lobb, Mrs. William Arthur (Cordelia K Stanlick)",female,26,1,0,A/5. 3336,16.1,,S
619,1,2,"Becker, Miss. Marion Louise",female,4,2,1,230136,39,F4,S
620,0,2,"Gavey, Mr. Lawrence",male,26,0,0,31028,10.5,,S
621,0,3,"Yasbeck, Mr. Antoni",male,27,1,0,2659,14.4542,,C
622,1,1,"Kimball, Mr. Edwin Nelson Jr",male,42,1,0,11753,52.5542,D19,S
623,1,3,"Nakid, Mr. Sahid",male,20,1,1,2653,15.7417,,C
624,0,3,"Hansen, Mr. Henry Damsgaard",male,21,0,0,350029,7.8542,,S
625,0,3,"Bowen, Mr. David John ""Dai""",male,21,0,0,54636,16.1,,S
626,0,1,"Sutton, Mr. Frederick",male,61,0,0,36963,32.3208,D50,S
627,0,2,"Kirkland, Rev. Charles Leonard",male,57,0,0,219533,12.35,,Q
628,1,1,"Longley, Miss. Gretchen Fiske",female,21,0,0,13502,77.9583,D9,S
629,0,3,"Bostandyeff, Mr. Guentcho",male,26,0,0,349224,7.8958,,S
630,0,3,"O'Connell, Mr. Patrick D",male,,0,0,334912,7.7333,,Q
631,1,1,"Barkworth, Mr. Algernon Henry Wilson",male,80,0,0,27042,30,A23,S
632,0,3,"Lundahl, Mr. Johan Svensson",male,51,0,0,347743,7.0542,,S
633,1,1,"Stahelin-Maeglin, Dr. Max",male,32,0,0,13214,30.5,B50,C
634,0,1,"Parr, Mr. William Henry Marsh",male,,0,0,112052,0,,S
635,0,3,"Skoog, Miss. Mabel",female,9,3,2,347088,27.9,,S
636,1,2,"Davis, Miss. Mary",female,28,0,0,237668,13,,S
637,0,3,"Leinonen, Mr. Antti Gustaf",male,32,0,0,STON/O 2. 3101292,7.925,,S
638,0,2,"Collyer, Mr. Harvey",male,31,1,1,C.A. 31921,26.25,,S
639,0,3,"Panula, Mrs. Juha (Maria Emilia Ojala)",female,41,0,5,3101295,39.6875,,S
640,0,3,"Thorneycroft, Mr. Percival",male,,1,0,376564,16.1,,S
641,0,3,"Jensen, Mr. Hans Peder",male,20,0,0,350050,7.8542,,S
642,1,1,"Sagesser, Mlle. Emma",female,24,0,0,PC 17477,69.3,B35,C
643,0,3,"Skoog, Miss. Margit Elizabeth",female,2,3,2,347088,27.9,,S
644,1,3,"Foo, Mr. Choong",male,,0,0,1601,56.4958,,S
645,1,3,"Baclini, Miss. Eugenie",female,0.75,2,1,2666,19.2583,,C
646,1,1,"Harper, Mr. Henry Sleeper",male,48,1,0,PC 17572,76.7292,D33,C
647,0,3,"Cor, Mr. Liudevit",male,19,0,0,349231,7.8958,,S
648,1,1,"Simonius-Blumer, Col. Oberst Alfons",male,56,0,0,13213,35.5,A26,C
649,0,3,"Willey, Mr. Edward",male,,0,0,S.O./P.P. 751,7.55,,S
650,1,3,"Stanley, Miss. Amy Zillah Elsie",female,23,0,0,CA. 2314,7.55,,S
651,0,3,"Mitkoff, Mr. Mito",male,,0,0,349221,7.8958,,S
652,1,2,"Doling, Miss. Elsie",female,18,0,1,231919,23,,S
653,0,3,"Kalvik, Mr. Johannes Halvorsen",male,21,0,0,8475,8.4333,,S
654,1,3,"O'Leary, Miss. Hanora ""Norah""",female,,0,0,330919,7.8292,,Q
655,0,3,"Hegarty, Miss. Hanora ""Nora""",female,18,0,0,365226,6.75,,Q
656,0,2,"Hickman, Mr. Leonard Mark",male,24,2,0,S.O.C. 14879,73.5,,S
657,0,3,"Radeff, Mr. Alexander",male,,0,0,349223,7.8958,,S
658,0,3,"Bourke, Mrs. John (Catherine)",female,32,1,1,364849,15.5,,Q
659,0,2,"Eitemiller, Mr. George Floyd",male,23,0,0,29751,13,,S
660,0,1,"Newell, Mr. Arthur Webster",male,58,0,2,35273,113.275,D48,C
661,1,1,"Frauenthal, Dr. Henry William",male,50,2,0,PC 17611,133.65,,S
662,0,3,"Badt, Mr. Mohamed",male,40,0,0,2623,7.225,,C
663,0,1,"Colley, Mr. Edward Pomeroy",male,47,0,0,5727,25.5875,E58,S
664,0,3,"Coleff, Mr. Peju",male,36,0,0,349210,7.4958,,S
665,1,3,"Lindqvist, Mr. Eino William",male,20,1,0,STON/O 2. 3101285,7.925,,S
666,0,2,"Hickman, Mr. Lewis",male,32,2,0,S.O.C. 14879,73.5,,S
667,0,2,"Butler, Mr. Reginald Fenton",male,25,0,0,234686,13,,S
668,0,3,"Rommetvedt, Mr. Knud Paust",male,,0,0,312993,7.775,,S
669,0,3,"Cook, Mr. Jacob",male,43,0,0,A/5 3536,8.05,,S
670,1,1,"Taylor, Mrs. Elmer Zebley (Juliet Cummins Wright)",female,,1,0,19996,52,C126,S
671,1,2,"Brown, Mrs. Thomas William Solomon (Elizabeth Catherine Ford)",female,40,1,1,29750,39,,S
672,0,1,"Davidson, Mr. Thornton",male,31,1,0,F.C. 12750,52,B71,S
673,0,2,"Mitchell, Mr. Henry Michael",male,70,0,0,C.A. 24580,10.5,,S
674,1,2,"Wilhelms, Mr. Charles",male,31,0,0,244270,13,,S
675,0,2,"Watson, Mr. Ennis Hastings",male,,0,0,239856,0,,S
676,0,3,"Edvardsson, Mr. Gustaf Hjalmar",male,18,0,0,349912,7.775,,S
677,0,3,"Sawyer, Mr. Frederick Charles",male,24.5,0,0,342826,8.05,,S
678,1,3,"Turja, Miss. Anna Sofia",female,18,0,0,4138,9.8417,,S
679,0,3,"Goodwin, Mrs. Frederick (Augusta Tyler)",female,43,1,6,CA 2144,46.9,,S
680,1,1,"Cardeza, Mr. Thomas Drake Martinez",male,36,0,1,PC 17755,512.3292,B51 B53 B55,C
681,0,3,"Peters, Miss. Katie",female,,0,0,330935,8.1375,,Q
682,1,1,"Hassab, Mr. Hammad",male,27,0,0,PC 17572,76.7292,D49,C
683,0,3,"Olsvigen, Mr. Thor Anderson",male,20,0,0,6563,9.225,,S
684,0,3,"Goodwin, Mr. Charles Edward",male,14,5,2,CA 2144,46.9,,S
685,0,2,"Brown, Mr. Thomas William Solomon",male,60,1,1,29750,39,,S
686,0,2,"Laroche, Mr. Joseph Philippe Lemercier",male,25,1,2,SC/Paris 2123,41.5792,,C
687,0,3,"Panula, Mr. Jaako Arnold",male,14,4,1,3101295,39.6875,,S
688,0,3,"Dakic, Mr. Branko",male,19,0,0,349228,10.1708,,S
689,0,3,"Fischer, Mr. Eberhard Thelander",male,18,0,0,350036,7.7958,,S
690,1,1,"Madill, Miss. Georgette Alexandra",female,15,0,1,24160,211.3375,B5,S
691,1,1,"Dick, Mr. Albert Adrian",male,31,1,0,17474,57,B20,S
692,1,3,"Karun, Miss. Manca",female,4,0,1,349256,13.4167,,C
693,1,3,"Lam, Mr. Ali",male,,0,0,1601,56.4958,,S
694,0,3,"Saad, Mr. Khalil",male,25,0,0,2672,7.225,,C
695,0,1,"Weir, Col. John",male,60,0,0,113800,26.55,,S
696,0,2,"Chapman, Mr. Charles Henry",male,52,0,0,248731,13.5,,S
697,0,3,"Kelly, Mr. James",male,44,0,0,363592,8.05,,S
698,1,3,"Mullens, Miss. Katherine ""Katie""",female,,0,0,35852,7.7333,,Q
699,0,1,"Thayer, Mr. John Borland",male,49,1,1,17421,110.8833,C68,C
700,0,3,"Humblen, Mr. Adolf Mathias Nicolai Olsen",male,42,0,0,348121,7.65,F G63,S
701,1,1,"Astor, Mrs. John Jacob (Madeleine Talmadge Force)",female,18,1,0,PC 17757,227.525,C62 C64,C
702,1,1,"Silverthorne, Mr. Spencer Victor",male,35,0,0,PC 17475,26.2875,E24,S
703,0,3,"Barbara, Miss. Saiide",female,18,0,1,2691,14.4542,,C
704,0,3,"Gallagher, Mr. Martin",male,25,0,0,36864,7.7417,,Q
705,0,3,"Hansen, Mr. Henrik Juul",male,26,1,0,350025,7.8542,,S
706,0,2,"Morley, Mr. Henry Samuel (""Mr Henry Marshall"")",male,39,0,0,250655,26,,S
707,1,2,"Kelly, Mrs. Florence ""Fannie""",female,45,0,0,223596,13.5,,S
708,1,1,"Calderhead, Mr. Edward Pennington",male,42,0,0,PC 17476,26.2875,E24,S
709,1,1,"Cleaver, Miss. Alice",female,22,0,0,113781,151.55,,S
710,1,3,"Moubarek, Master. Halim Gonios (""William George"")",male,,1,1,2661,15.2458,,C
711,1,1,"Mayne, Mlle. Berthe Antonine (""Mrs de Villiers"")",female,24,0,0,PC 17482,49.5042,C90,C
712,0,1,"Klaber, Mr. Herman",male,,0,0,113028,26.55,C124,S
713,1,1,"Taylor, Mr. Elmer Zebley",male,48,1,0,19996,52,C126,S
714,0,3,"Larsson, Mr. August Viktor",male,29,0,0,7545,9.4833,,S
715,0,2,"Greenberg, Mr. Samuel",male,52,0,0,250647,13,,S
716,0,3,"Soholt, Mr. Peter Andreas Lauritz Andersen",male,19,0,0,348124,7.65,F G73,S
717,1,1,"Endres, Miss. Caroline Louise",female,38,0,0,PC 17757,227.525,C45,C
718,1,2,"Troutt, Miss. Edwina Celia ""Winnie""",female,27,0,0,34218,10.5,E101,S
719,0,3,"McEvoy, Mr. Michael",male,,0,0,36568,15.5,,Q
720,0,3,"Johnson, Mr. Malkolm Joackim",male,33,0,0,347062,7.775,,S
721,1,2,"Harper, Miss. Annie Jessie ""Nina""",female,6,0,1,248727,33,,S
722,0,3,"Jensen, Mr. Svend Lauritz",male,17,1,0,350048,7.0542,,S
723,0,2,"Gillespie, Mr. William Henry",male,34,0,0,12233,13,,S
724,0,2,"Hodges, Mr. Henry Price",male,50,0,0,250643,13,,S
725,1,1,"Chambers, Mr. Norman Campbell",male,27,1,0,113806,53.1,E8,S
726,0,3,"Oreskovic, Mr. Luka",male,20,0,0,315094,8.6625,,S
727,1,2,"Renouf, Mrs. Peter Henry (Lillian Jefferys)",female,30,3,0,31027,21,,S
728,1,3,"Mannion, Miss. Margareth",female,,0,0,36866,7.7375,,Q
729,0,2,"Bryhl, Mr. Kurt Arnold Gottfrid",male,25,1,0,236853,26,,S
730,0,3,"Ilmakangas, Miss. Pieta Sofia",female,25,1,0,STON/O2. 3101271,7.925,,S
731,1,1,"Allen, Miss. Elisabeth Walton",female,29,0,0,24160,211.3375,B5,S
732,0,3,"Hassan, Mr. Houssein G N",male,11,0,0,2699,18.7875,,C
733,0,2,"Knight, Mr. Robert J",male,,0,0,239855,0,,S
734,0,2,"Berriman, Mr. William John",male,23,0,0,28425,13,,S
735,0,2,"Troupiansky, Mr. Moses Aaron",male,23,0,0,233639,13,,S
736,0,3,"Williams, Mr. Leslie",male,28.5,0,0,54636,16.1,,S
737,0,3,"Ford, Mrs. Edward (Margaret Ann Watson)",female,48,1,3,W./C. 6608,34.375,,S
738,1,1,"Lesurer, Mr. Gustave J",male,35,0,0,PC 17755,512.3292,B101,C
739,0,3,"Ivanoff, Mr. Kanio",male,,0,0,349201,7.8958,,S
740,0,3,"Nankoff, Mr. Minko",male,,0,0,349218,7.8958,,S
741,1,1,"Hawksford, Mr. Walter James",male,,0,0,16988,30,D45,S
742,0,1,"Cavendish, Mr. Tyrell William",male,36,1,0,19877,78.85,C46,S
743,1,1,"Ryerson, Miss. Susan Parker ""Suzette""",female,21,2,2,PC 17608,262.375,B57 B59 B63 B66,C
744,0,3,"McNamee, Mr. Neal",male,24,1,0,376566,16.1,,S
745,1,3,"Stranden, Mr. Juho",male,31,0,0,STON/O 2. 3101288,7.925,,S
746,0,1,"Crosby, Capt. Edward Gifford",male,70,1,1,WE/P 5735,71,B22,S
747,0,3,"Abbott, Mr. Rossmore Edward",male,16,1,1,C.A. 2673,20.25,,S
748,1,2,"Sinkkonen, Miss. Anna",female,30,0,0,250648,13,,S
749,0,1,"Marvin, Mr. Daniel Warner",male,19,1,0,113773,53.1,D30,S
750,0,3,"Connaghton, Mr. Michael",male,31,0,0,335097,7.75,,Q
751,1,2,"Wells, Miss. Joan",female,4,1,1,29103,23,,S
752,1,3,"Moor, Master. Meier",male,6,0,1,392096,12.475,E121,S
753,0,3,"Vande Velde, Mr. Johannes Joseph",male,33,0,0,345780,9.5,,S
754,0,3,"Jonkoff, Mr. Lalio",male,23,0,0,349204,7.8958,,S
755,1,2,"Herman, Mrs. Samuel (Jane Laver)",female,48,1,2,220845,65,,S
756,1,2,"Hamalainen, Master. Viljo",male,0.67,1,1,250649,14.5,,S
757,0,3,"Carlsson, Mr. August Sigfrid",male,28,0,0,350042,7.7958,,S
758,0,2,"Bailey, Mr. Percy Andrew",male,18,0,0,29108,11.5,,S
759,0,3,"Theobald, Mr. Thomas Leonard",male,34,0,0,363294,8.05,,S
760,1,1,"Rothes, the Countess. of (Lucy Noel Martha Dyer-Edwards)",female,33,0,0,110152,86.5,B77,S
761,0,3,"Garfirth, Mr. John",male,,0,0,358585,14.5,,S
762,0,3,"Nirva, Mr. Iisakki Antino Aijo",male,41,0,0,SOTON/O2 3101272,7.125,,S
763,1,3,"Barah, Mr. Hanna Assi",male,20,0,0,2663,7.2292,,C
764,1,1,"Carter, Mrs. William Ernest (Lucile Polk)",female,36,1,2,113760,120,B96 B98,S
765,0,3,"Eklund, Mr. Hans Linus",male,16,0,0,347074,7.775,,S
766,1,1,"Hogeboom, Mrs. John C (Anna Andrews)",female,51,1,0,13502,77.9583,D11,S
767,0,1,"Brewe, Dr. Arthur Jackson",male,,0,0,112379,39.6,,C
768,0,3,"Mangan, Miss. Mary",female,30.5,0,0,364850,7.75,,Q
769,0,3,"Moran, Mr. Daniel J",male,,1,0,371110,24.15,,Q
770,0,3,"Gronnestad, Mr. Daniel Danielsen",male,32,0,0,8471,8.3625,,S
771,0,3,"Lievens, Mr. Rene Aime",male,24,0,0,345781,9.5,,S
772,0,3,"Jensen, Mr. Niels Peder",male,48,0,0,350047,7.8542,,S
773,0,2,"Mack, Mrs. (Mary)",female,57,0,0,S.O./P.P. 3,10.5,E77,S
774,0,3,"Elias, Mr. Dibo",male,,0,0,2674,7.225,,C
775,1,2,"Hocking, Mrs. Elizabeth (Eliza Needs)",female,54,1,3,29105,23,,S
776,0,3,"Myhrman, Mr. Pehr Fabian Oliver Malkolm",male,18,0,0,347078,7.75,,S
777,0,3,"Tobin, Mr. Roger",male,,0,0,383121,7.75,F38,Q
778,1,3,"Emanuel, Miss. Virginia Ethel",female,5,0,0,364516,12.475,,S
779,0,3,"Kilgannon, Mr. Thomas J",male,,0,0,36865,7.7375,,Q
780,1,1,"Robert, Mrs. Edward Scott (Elisabeth Walton McMillan)",female,43,0,1,24160,211.3375,B3,S
781,1,3,"Ayoub, Miss. Banoura",female,13,0,0,2687,7.2292,,C
782,1,1,"Dick, Mrs. Albert Adrian (Vera Gillespie)",female,17,1,0,17474,57,B20,S
783,0,1,"Long, Mr. Milton Clyde",male,29,0,0,113501,30,D6,S
784,0,3,"Johnston, Mr. Andrew G",male,,1,2,W./C. 6607,23.45,,S
785,0,3,"Ali, Mr. William",male,25,0,0,SOTON/O.Q. 3101312,7.05,,S
786,0,3,"Harmer, Mr. Abraham (David Lishin)",male,25,0,0,374887,7.25,,S
787,1,3,"Sjoblom, Miss. Anna Sofia",female,18,0,0,3101265,7.4958,,S
788,0,3,"Rice, Master. George Hugh",male,8,4,1,382652,29.125,,Q
789,1,3,"Dean, Master. Bertram Vere",male,1,1,2,C.A. 2315,20.575,,S
790,0,1,"Guggenheim, Mr. Benjamin",male,46,0,0,PC 17593,79.2,B82 B84,C
791,0,3,"Keane, Mr. Andrew ""Andy""",male,,0,0,12460,7.75,,Q
792,0,2,"Gaskell, Mr. Alfred",male,16,0,0,239865,26,,S
793,0,3,"Sage, Miss. Stella Anna",female,,8,2,CA. 2343,69.55,,S
794,0,1,"Hoyt, Mr. William Fisher",male,,0,0,PC 17600,30.6958,,C
795,0,3,"Dantcheff, Mr. Ristiu",male,25,0,0,349203,7.8958,,S
796,0,2,"Otter, Mr. Richard",male,39,0,0,28213,13,,S
797,1,1,"Leader, Dr. Alice (Farnham)",female,49,0,0,17465,25.9292,D17,S
798,1,3,"Osman, Mrs. Mara",female,31,0,0,349244,8.6833,,S
799,0,3,"Ibrahim Shawah, Mr. Yousseff",male,30,0,0,2685,7.2292,,C
800,0,3,"Van Impe, Mrs. Jean Baptiste (Rosalie Paula Govaert)",female,30,1,1,345773,24.15,,S
801,0,2,"Ponesell, Mr. Martin",male,34,0,0,250647,13,,S
802,1,2,"Collyer, Mrs. Harvey (Charlotte Annie Tate)",female,31,1,1,C.A. 31921,26.25,,S
803,1,1,"Carter, Master. William Thornton II",male,11,1,2,113760,120,B96 B98,S
804,1,3,"Thomas, Master. Assad Alexander",male,0.42,0,1,2625,8.5167,,C
805,1,3,"Hedman, Mr. Oskar Arvid",male,27,0,0,347089,6.975,,S
806,0,3,"Johansson, Mr. Karl Johan",male,31,0,0,347063,7.775,,S
807,0,1,"Andrews, Mr. Thomas Jr",male,39,0,0,112050,0,A36,S
808,0,3,"Pettersson, Miss. Ellen Natalia",female,18,0,0,347087,7.775,,S
809,0,2,"Meyer, Mr. August",male,39,0,0,248723,13,,S
810,1,1,"Chambers, Mrs. Norman Campbell (Bertha Griggs)",female,33,1,0,113806,53.1,E8,S
811,0,3,"Alexander, Mr. William",male,26,0,0,3474,7.8875,,S
812,0,3,"Lester, Mr. James",male,39,0,0,A/4 48871,24.15,,S
813,0,2,"Slemen, Mr. Richard James",male,35,0,0,28206,10.5,,S
814,0,3,"Andersson, Miss. Ebba Iris Alfrida",female,6,4,2,347082,31.275,,S
815,0,3,"Tomlin, Mr. Ernest Portage",male,30.5,0,0,364499,8.05,,S
816,0,1,"Fry, Mr. Richard",male,,0,0,112058,0,B102,S
817,0,3,"Heininen, Miss. Wendla Maria",female,23,0,0,STON/O2. 3101290,7.925,,S
818,0,2,"Mallet, Mr. Albert",male,31,1,1,S.C./PARIS 2079,37.0042,,C
819,0,3,"Holm, Mr. John Fredrik Alexander",male,43,0,0,C 7075,6.45,,S
820,0,3,"Skoog, Master. Karl Thorsten",male,10,3,2,347088,27.9,,S
821,1,1,"Hays, Mrs. Charles Melville (Clara Jennings Gregg)",female,52,1,1,12749,93.5,B69,S
822,1,3,"Lulic, Mr. Nikola",male,27,0,0,315098,8.6625,,S
823,0,1,"Reuchlin, Jonkheer. John George",male,38,0,0,19972,0,,S
824,1,3,"Moor, Mrs. (Beila)",female,27,0,1,392096,12.475,E121,S
825,0,3,"Panula, Master. Urho Abraham",male,2,4,1,3101295,39.6875,,S
826,0,3,"Flynn, Mr. John",male,,0,0,368323,6.95,,Q
827,0,3,"Lam, Mr. Len",male,,0,0,1601,56.4958,,S
828,1,2,"Mallet, Master. Andre",male,1,0,2,S.C./PARIS 2079,37.0042,,C
829,1,3,"McCormack, Mr. Thomas Joseph",male,,0,0,367228,7.75,,Q
830,1,1,"Stone, Mrs. George Nelson (Martha Evelyn)",female,62,0,0,113572,80,B28,
831,1,3,"Yasbeck, Mrs. Antoni (Selini Alexander)",female,15,1,0,2659,14.4542,,C
832,1,2,"Richards, Master. George Sibley",male,0.83,1,1,29106,18.75,,S
833,0,3,"Saad, Mr. Amin",male,,0,0,2671,7.2292,,C
834,0,3,"Augustsson, Mr. Albert",male,23,0,0,347468,7.8542,,S
835,0,3,"Allum, Mr. Owen George",male,18,0,0,2223,8.3,,S
836,1,1,"Compton, Miss. Sara Rebecca",female,39,1,1,PC 17756,83.1583,E49,C
837,0,3,"Pasic, Mr. Jakob",male,21,0,0,315097,8.6625,,S
838,0,3,"Sirota, Mr. Maurice",male,,0,0,392092,8.05,,S
839,1,3,"Chip, Mr. Chang",male,32,0,0,1601,56.4958,,S
840,1,1,"Marechal, Mr. Pierre",male,,0,0,11774,29.7,C47,C
841,0,3,"Alhomaki, Mr. Ilmari Rudolf",male,20,0,0,SOTON/O2 3101287,7.925,,S
842,0,2,"Mudd, Mr. Thomas Charles",male,16,0,0,S.O./P.P. 3,10.5,,S
843,1,1,"Serepeca, Miss. Augusta",female,30,0,0,113798,31,,C
844,0,3,"Lemberopolous, Mr. Peter L",male,34.5,0,0,2683,6.4375,,C
845,0,3,"Culumovic, Mr. Jeso",male,17,0,0,315090,8.6625,,S
846,0,3,"Abbing, Mr. Anthony",male,42,0,0,C.A. 5547,7.55,,S
847,0,3,"Sage, Mr. Douglas Bullen",male,,8,2,CA. 2343,69.55,,S
848,0,3,"Markoff, Mr. Marin",male,35,0,0,349213,7.8958,,C
849,0,2,"Harper, Rev. John",male,28,0,1,248727,33,,S
850,1,1,"Goldenberg, Mrs. Samuel L (Edwiga Grabowska)",female,,1,0,17453,89.1042,C92,C
851,0,3,"Andersson, Master. Sigvard Harald Elias",male,4,4,2,347082,31.275,,S
852,0,3,"Svensson, Mr. Johan",male,74,0,0,347060,7.775,,S
853,0,3,"Boulos, Miss. Nourelain",female,9,1,1,2678,15.2458,,C
854,1,1,"Lines, Miss. Mary Conover",female,16,0,1,PC 17592,39.4,D28,S
855,0,2,"Carter, Mrs. Ernest Courtenay (Lilian Hughes)",female,44,1,0,244252,26,,S
856,1,3,"Aks, Mrs. Sam (Leah Rosen)",female,18,0,1,392091,9.35,,S
857,1,1,"Wick, Mrs. George Dennick (Mary Hitchcock)",female,45,1,1,36928,164.8667,,S
858,1,1,"Daly, Mr. Peter Denis ",male,51,0,0,113055,26.55,E17,S
859,1,3,"Baclini, Mrs. Solomon (Latifa Qurban)",female,24,0,3,2666,19.2583,,C
860,0,3,"Razi, Mr. Raihed",male,,0,0,2629,7.2292,,C
861,0,3,"Hansen, Mr. Claus Peter",male,41,2,0,350026,14.1083,,S
862,0,2,"Giles, Mr. Frederick Edward",male,21,1,0,28134,11.5,,S
863,1,1,"Swift, Mrs. Frederick Joel (Margaret Welles Barron)",female,48,0,0,17466,25.9292,D17,S
864,0,3,"Sage, Miss. Dorothy Edith ""Dolly""",female,,8,2,CA. 2343,69.55,,S
865,0,2,"Gill, Mr. John William",male,24,0,0,233866,13,,S
866,1,2,"Bystrom, Mrs. (Karolina)",female,42,0,0,236852,13,,S
867,1,2,"Duran y More, Miss. Asuncion",female,27,1,0,SC/PARIS 2149,13.8583,,C
868,0,1,"Roebling, Mr. Washington Augustus II",male,31,0,0,PC 17590,50.4958,A24,S
869,0,3,"van Melkebeke, Mr. Philemon",male,,0,0,345777,9.5,,S
870,1,3,"Johnson, Master. Harold Theodor",male,4,1,1,347742,11.1333,,S
871,0,3,"Balkic, Mr. Cerin",male,26,0,0,349248,7.8958,,S
872,1,1,"Beckwith, Mrs. Richard Leonard (Sallie Monypeny)",female,47,1,1,11751,52.5542,D35,S
873,0,1,"Carlsson, Mr. Frans Olof",male,33,0,0,695,5,B51 B53 B55,S
874,0,3,"Vander Cruyssen, Mr. Victor",male,47,0,0,345765,9,,S
875,1,2,"Abelson, Mrs. Samuel (Hannah Wizosky)",female,28,1,0,P/PP 3381,24,,C
876,1,3,"Najib, Miss. Adele Kiamie ""Jane""",female,15,0,0,2667,7.225,,C
877,0,3,"Gustafsson, Mr. Alfred Ossian",male,20,0,0,7534,9.8458,,S
878,0,3,"Petroff, Mr. Nedelio",male,19,0,0,349212,7.8958,,S
879,0,3,"Laleff, Mr. Kristo",male,,0,0,349217,7.8958,,S
880,1,1,"Potter, Mrs. Thomas Jr (Lily Alexenia Wilson)",female,56,0,1,11767,83.1583,C50,C
881,1,2,"Shelley, Mrs. William (Imanita Parrish Hall)",female,25,0,1,230433,26,,S
882,0,3,"Markun, Mr. Johann",male,33,0,0,349257,7.8958,,S
883,0,3,"Dahlberg, Miss. Gerda Ulrika",female,22,0,0,7552,10.5167,,S
884,0,2,"Banfield, Mr. Frederick James",male,28,0,0,C.A./SOTON 34068,10.5,,S
885,0,3,"Sutehall, Mr. Henry Jr",male,25,0,0,SOTON/OQ 392076,7.05,,S
886,0,3,"Rice, Mrs. William (Margaret Norton)",female,39,0,5,382652,29.125,,Q
887,0,2,"Montvila, Rev. Juozas",male,27,0,0,211536,13,,S
888,1,1,"Graham, Miss. Margaret Edith",female,19,0,0,112053,30,B42,S
889,0,3,"Johnston, Miss. Catherine Helen ""Carrie""",female,,1,2,W./C. 6607,23.45,,S
890,1,1,"Behr, Mr. Karl Howell",male,26,0,0,111369,30,C148,C
891,0,3,"Dooley, Mr. Patrick",male,32,0,0,370376,7.75,,Q
File deleted
%% Cell type:code id: tags:
``` python
# known import statements
import pandas as pd
import sqlite3 as sql # note that we are renaming to sql
import os
# new import statement
import numpy as np
```
%% Cell type:markdown id: tags:
# Lecture 35 Pandas 3: Data Transformation
* Data transformation is the process of changing the format, structure, or values of data.
* Often needed during data cleaning and sometimes during data analysis
Possible data transformation:
* Parsing/Extraction
* Parse CSV to Pandas DataFrame
* Missing Value Manipulations
* Dropping
* Imputation: replace missing value with substitute values
* Typecasting, Formating, Renaming
* Typecasting: covert one column from int to float
* Formating: format the time column to datatime object
* Renaming: rename column and index names
* Applying/Mapping
* Filtering, Aggregation, Grouping, and Summarization
* Covered in Pandas 1 & 2 lectures
%% Cell type:markdown id: tags:
# Today's Learning Objectives:
* Identify, drop, or fill missing values with Pandas .isna, .dropna, and .fillna
* Apply a function to Pandas Series and DataFrame rows/columns
* Replace all target values to Pandas Series and DataFrame rows/columns
* Filter, Aggregate, Group, and Summarize information in a DataFrame with .groupby
* Convert .groupby examples to SQL
%% Cell type:markdown id: tags:
# The dataset: Spotify songs
Adapted from https://www.kaggle.com/datasets/mrmorj/dataset-of-songs-in-spotify.
If you are interested in digging deeper in this dataset, here's a [blog post](https://medium.com/@boplantinga/what-do-spotifys-audio-features-tell-us-about-this-year-s-eurovision-song-contest-66ad188e112a) that explain each column in details.
%% Cell type:markdown id: tags:
### WARMUP 1: Establish a connection to the spotify.db database
%% Cell type:code id: tags:
``` python
# open up the spotify database
db_pathname = "spotify.db"
assert os.path.exists(db_pathname)
conn = sql.connect(db_pathname)
```
%% Cell type:code id: tags:
``` python
def qry(sql):
return pd.read_sql(sql, conn)
```
%% Cell type:markdown id: tags:
### WARMUP 2: Identify the table name(s) inside the database
%% Cell type:code id: tags:
``` python
qry("select * from sqlite_master")
```
%% Output
type name tbl_name rootpage \
0 table spotify spotify 1527
1 index sqlite_autoindex_spotify_1 spotify 1528
sql
0 CREATE TABLE spotify(\nid TEXT PRIMARY KEY,\nt...
1 None
%% Cell type:markdown id: tags:
### WARMUP 3: Use pandas lookup expression to identify the column names and the types: use .iloc
%% Cell type:code id: tags:
``` python
print(qry("select * from sqlite_master")["sql"].iloc[0])
```
%% Output
CREATE TABLE spotify(
id TEXT PRIMARY KEY,
title BLOB,
song_name BLOB,
genre TEXT,
duration_ms INTEGER,
key INTEGER,
mode INTEGER,
time_signature INTEGER,
tempo REAL,
acousticness REAL,
danceability REAL,
energy REAL,
instrumentalness REAL,
liveness REAL,
loudness REAL,
speechiness REAL,
valence REAL)
%% Cell type:markdown id: tags:
### WARMUP 4: Store the data inside `spotify` table inside a variable called `df`
%% Cell type:code id: tags:
``` python
df = qry("select * from spotify")
df
```
%% Output
id title song_name \
0 7pgJBLVz5VmnL7uGHmRj6p Pathology
1 0vSWgAlfpye0WCGeNmuNhy Symbiote
2 7EL7ifncK2PWFYThJjzR25 BRAINFOOD
3 1umsRbM7L4ju7rn9aU8Ju6 Sacrifice
4 4SKqOHKYU5pgHr5UiVKiQN Backpack
... ... ... ...
35872 46bXU7Sgj7104ZoXxzz9tM Euphoric Hardstyle
35873 0he2ViGMUO3ajKTxLOfWVT Greatest Hardstyle Playlist
35874 72DAt9Lbpy9EUS29OzQLob Best of Hardstyle 2020
35875 6HXgExFVuE1c3cq9QjFCcU Euphoric Hardstyle
35876 6MAAMZImxcvYhRnxDLTufD Best of Hardstyle 2020
genre duration_ms key mode time_signature tempo \
0 Dark Trap 224427 8 1 4 115.080
1 Dark Trap 98821 5 1 4 218.050
2 Dark Trap 101172 8 1 4 189.938
3 Dark Trap 96062 10 0 4 139.990
4 Dark Trap 135079 5 1 4 128.014
... ... ... ... ... ... ...
35872 hardstyle 269208 4 1 4 150.013
35873 hardstyle 210112 0 0 4 149.928
35874 hardstyle 234823 8 1 4 154.935
35875 hardstyle 323200 6 0 4 150.042
35876 hardstyle 162161 9 1 4 155.047
acousticness danceability energy instrumentalness liveness \
0 0.401000 0.719 0.493 0.000000 0.1180
1 0.013800 0.850 0.893 0.000004 0.3720
2 0.187000 0.864 0.365 0.000000 0.1160
3 0.145000 0.767 0.576 0.000003 0.0968
4 0.007700 0.765 0.726 0.000000 0.6190
... ... ... ... ... ...
35872 0.031500 0.528 0.693 0.000345 0.1210
35873 0.022500 0.517 0.768 0.000018 0.2050
35874 0.026000 0.361 0.821 0.000242 0.3850
35875 0.000551 0.477 0.921 0.029600 0.0575
35876 0.001890 0.529 0.945 0.000055 0.4140
loudness speechiness valence
0 -7.230 0.0794 0.1240
1 -4.783 0.0623 0.0391
2 -10.219 0.0655 0.0478
3 -9.683 0.2560 0.1870
4 -5.580 0.1910 0.2700
... ... ... ...
35872 -5.148 0.0304 0.3940
35873 -7.922 0.0479 0.3830
35874 -3.102 0.0505 0.1240
35875 -4.777 0.0392 0.4880
35876 -5.862 0.0615 0.1340
[35877 rows x 17 columns]
%% Cell type:markdown id: tags:
### Setting a column as row indices for the `DataFrame`
- Syntax: `df.set_index("<COLUMN>")`
- Returns a new DataFrame object instance reference.
- WARNING: executing this twice will result in `KeyError` being thrown. Once you set a column as row index, it will no longer be a column within the `DataFrame`. If you tried this, go back and execute the above cell and update `df` once more and then execute the below cell exactly once.
%% Cell type:code id: tags:
``` python
# Set the id column as row indices
df = df.set_index("id")
df
```
%% Output
title song_name genre \
id
7pgJBLVz5VmnL7uGHmRj6p Pathology Dark Trap
0vSWgAlfpye0WCGeNmuNhy Symbiote Dark Trap
7EL7ifncK2PWFYThJjzR25 BRAINFOOD Dark Trap
1umsRbM7L4ju7rn9aU8Ju6 Sacrifice Dark Trap
4SKqOHKYU5pgHr5UiVKiQN Backpack Dark Trap
... ... ... ...
46bXU7Sgj7104ZoXxzz9tM Euphoric Hardstyle hardstyle
0he2ViGMUO3ajKTxLOfWVT Greatest Hardstyle Playlist hardstyle
72DAt9Lbpy9EUS29OzQLob Best of Hardstyle 2020 hardstyle
6HXgExFVuE1c3cq9QjFCcU Euphoric Hardstyle hardstyle
6MAAMZImxcvYhRnxDLTufD Best of Hardstyle 2020 hardstyle
duration_ms key mode time_signature tempo \
id
7pgJBLVz5VmnL7uGHmRj6p 224427 8 1 4 115.080
0vSWgAlfpye0WCGeNmuNhy 98821 5 1 4 218.050
7EL7ifncK2PWFYThJjzR25 101172 8 1 4 189.938
1umsRbM7L4ju7rn9aU8Ju6 96062 10 0 4 139.990
4SKqOHKYU5pgHr5UiVKiQN 135079 5 1 4 128.014
... ... ... ... ... ...
46bXU7Sgj7104ZoXxzz9tM 269208 4 1 4 150.013
0he2ViGMUO3ajKTxLOfWVT 210112 0 0 4 149.928
72DAt9Lbpy9EUS29OzQLob 234823 8 1 4 154.935
6HXgExFVuE1c3cq9QjFCcU 323200 6 0 4 150.042
6MAAMZImxcvYhRnxDLTufD 162161 9 1 4 155.047
acousticness danceability energy instrumentalness \
id
7pgJBLVz5VmnL7uGHmRj6p 0.401000 0.719 0.493 0.000000
0vSWgAlfpye0WCGeNmuNhy 0.013800 0.850 0.893 0.000004
7EL7ifncK2PWFYThJjzR25 0.187000 0.864 0.365 0.000000
1umsRbM7L4ju7rn9aU8Ju6 0.145000 0.767 0.576 0.000003
4SKqOHKYU5pgHr5UiVKiQN 0.007700 0.765 0.726 0.000000
... ... ... ... ...
46bXU7Sgj7104ZoXxzz9tM 0.031500 0.528 0.693 0.000345
0he2ViGMUO3ajKTxLOfWVT 0.022500 0.517 0.768 0.000018
72DAt9Lbpy9EUS29OzQLob 0.026000 0.361 0.821 0.000242
6HXgExFVuE1c3cq9QjFCcU 0.000551 0.477 0.921 0.029600
6MAAMZImxcvYhRnxDLTufD 0.001890 0.529 0.945 0.000055
liveness loudness speechiness valence
id
7pgJBLVz5VmnL7uGHmRj6p 0.1180 -7.230 0.0794 0.1240
0vSWgAlfpye0WCGeNmuNhy 0.3720 -4.783 0.0623 0.0391
7EL7ifncK2PWFYThJjzR25 0.1160 -10.219 0.0655 0.0478
1umsRbM7L4ju7rn9aU8Ju6 0.0968 -9.683 0.2560 0.1870
4SKqOHKYU5pgHr5UiVKiQN 0.6190 -5.580 0.1910 0.2700
... ... ... ... ...
46bXU7Sgj7104ZoXxzz9tM 0.1210 -5.148 0.0304 0.3940
0he2ViGMUO3ajKTxLOfWVT 0.2050 -7.922 0.0479 0.3830
72DAt9Lbpy9EUS29OzQLob 0.3850 -3.102 0.0505 0.1240
6HXgExFVuE1c3cq9QjFCcU 0.0575 -4.777 0.0392 0.4880
6MAAMZImxcvYhRnxDLTufD 0.4140 -5.862 0.0615 0.1340
[35877 rows x 16 columns]
%% Cell type:markdown id: tags:
### Not a Number
- `np.NaN` is the floating point representation of Not a Number
- You do not need to know / learn the details about the `numpy` package
### Replacing / modifying values within the `DataFrame`
Syntax: `df.replace(<TARGET>, <REPLACE>)`
- Your target can be `str`, `int`, `float`, `None` (there are other possiblities, but those are too advanced for this course)
- Returns a new DataFrame object instance reference.
Let's now replace the missing values (empty strings) with `np.NAN`
%% Cell type:code id: tags:
``` python
df = df.replace("", np.NaN)
df.head(10) # title is the album name
```
%% Output
title song_name genre duration_ms \
id
7pgJBLVz5VmnL7uGHmRj6p NaN Pathology Dark Trap 224427
0vSWgAlfpye0WCGeNmuNhy NaN Symbiote Dark Trap 98821
7EL7ifncK2PWFYThJjzR25 NaN BRAINFOOD Dark Trap 101172
1umsRbM7L4ju7rn9aU8Ju6 NaN Sacrifice Dark Trap 96062
4SKqOHKYU5pgHr5UiVKiQN NaN Backpack Dark Trap 135079
3uE1swbcRp5BrO64UNy6Ex NaN TakingOutTheTrash Dark Trap 192833
3KJrwOuqiEwHq6QTreZT61 NaN Io sono qui Dark Trap 180880
4QhUXx4ON40TIBrZIlnIke NaN Murder Dark Trap 186261
09320vyX4qHd4GjHIpy5w0 NaN High 'N Mighty Dark Trap 124676
6xEnbXM1us9fDJy2LC0lru NaN Bang Ya Fucking Head Dark Trap 154929
key mode time_signature tempo acousticness \
id
7pgJBLVz5VmnL7uGHmRj6p 8 1 4 115.080 0.4010
0vSWgAlfpye0WCGeNmuNhy 5 1 4 218.050 0.0138
7EL7ifncK2PWFYThJjzR25 8 1 4 189.938 0.1870
1umsRbM7L4ju7rn9aU8Ju6 10 0 4 139.990 0.1450
4SKqOHKYU5pgHr5UiVKiQN 5 1 4 128.014 0.0077
3uE1swbcRp5BrO64UNy6Ex 11 1 4 120.004 0.1720
3KJrwOuqiEwHq6QTreZT61 10 0 4 128.066 0.0987
4QhUXx4ON40TIBrZIlnIke 0 1 4 114.956 0.0343
09320vyX4qHd4GjHIpy5w0 7 1 5 111.958 0.1120
6xEnbXM1us9fDJy2LC0lru 1 1 4 125.013 0.0525
danceability energy instrumentalness liveness \
id
7pgJBLVz5VmnL7uGHmRj6p 0.719 0.493 0.000000 0.1180
0vSWgAlfpye0WCGeNmuNhy 0.850 0.893 0.000004 0.3720
7EL7ifncK2PWFYThJjzR25 0.864 0.365 0.000000 0.1160
1umsRbM7L4ju7rn9aU8Ju6 0.767 0.576 0.000003 0.0968
4SKqOHKYU5pgHr5UiVKiQN 0.765 0.726 0.000000 0.6190
3uE1swbcRp5BrO64UNy6Ex 0.814 0.575 0.000291 0.1090
3KJrwOuqiEwHq6QTreZT61 0.812 0.813 0.000150 0.0758
4QhUXx4ON40TIBrZIlnIke 0.602 0.578 0.000000 0.1640
09320vyX4qHd4GjHIpy5w0 0.876 0.768 0.000012 0.2830
6xEnbXM1us9fDJy2LC0lru 0.690 0.760 0.000000 0.1340
loudness speechiness valence
id
7pgJBLVz5VmnL7uGHmRj6p -7.230 0.0794 0.1240
0vSWgAlfpye0WCGeNmuNhy -4.783 0.0623 0.0391
7EL7ifncK2PWFYThJjzR25 -10.219 0.0655 0.0478
1umsRbM7L4ju7rn9aU8Ju6 -9.683 0.2560 0.1870
4SKqOHKYU5pgHr5UiVKiQN -5.580 0.1910 0.2700
3uE1swbcRp5BrO64UNy6Ex -9.635 0.0635 0.2880
3KJrwOuqiEwHq6QTreZT61 -5.583 0.0984 0.3480
4QhUXx4ON40TIBrZIlnIke -5.610 0.0283 0.1560
09320vyX4qHd4GjHIpy5w0 -6.606 0.2010 0.7200
6xEnbXM1us9fDJy2LC0lru -5.431 0.0895 0.0797
%% Cell type:markdown id: tags:
### Checking for missing values
Syntax: `Series.isna()`
- Returns a boolean Series
Let's check if any of the "song_name"(s) are missing
%% Cell type:code id: tags:
``` python
df["song_name"].isna()
```
%% Output
id
7pgJBLVz5VmnL7uGHmRj6p False
0vSWgAlfpye0WCGeNmuNhy False
7EL7ifncK2PWFYThJjzR25 False
1umsRbM7L4ju7rn9aU8Ju6 False
4SKqOHKYU5pgHr5UiVKiQN False
...
46bXU7Sgj7104ZoXxzz9tM True
0he2ViGMUO3ajKTxLOfWVT True
72DAt9Lbpy9EUS29OzQLob True
6HXgExFVuE1c3cq9QjFCcU True
6MAAMZImxcvYhRnxDLTufD True
Name: song_name, Length: 35877, dtype: bool
%% Cell type:markdown id: tags:
### Review: `Pandas.Series.value_counts()`
- Returns a new `Series` with unique values from the original `Series` as keys and the count of those unique values as values.
- Return value `Series` is ordered using descending order of counts
%% Cell type:code id: tags:
``` python
# count the number of missing values for song name
df["song_name"].isna().value_counts()
```
%% Output
False 18342
True 17535
Name: song_name, dtype: int64
%% Cell type:markdown id: tags:
### Missing value manipulation
Syntax: `df.fillna(<REPLACE>)`
- Returns a new DataFrame object instance reference.
%% Cell type:code id: tags:
``` python
# use .fillna to replace missing values
df["song_name"].fillna("No Song Name")
# to replace the original DataFrame's column, you need to explicitly update that object instance
# TODO: uncomment the below lines and update the code
df["song_name"] = df["song_name"].fillna("No Song Name")
df
```
%% Output
title song_name genre \
id
7pgJBLVz5VmnL7uGHmRj6p NaN Pathology Dark Trap
0vSWgAlfpye0WCGeNmuNhy NaN Symbiote Dark Trap
7EL7ifncK2PWFYThJjzR25 NaN BRAINFOOD Dark Trap
1umsRbM7L4ju7rn9aU8Ju6 NaN Sacrifice Dark Trap
4SKqOHKYU5pgHr5UiVKiQN NaN Backpack Dark Trap
... ... ... ...
46bXU7Sgj7104ZoXxzz9tM Euphoric Hardstyle No Song Name hardstyle
0he2ViGMUO3ajKTxLOfWVT Greatest Hardstyle Playlist No Song Name hardstyle
72DAt9Lbpy9EUS29OzQLob Best of Hardstyle 2020 No Song Name hardstyle
6HXgExFVuE1c3cq9QjFCcU Euphoric Hardstyle No Song Name hardstyle
6MAAMZImxcvYhRnxDLTufD Best of Hardstyle 2020 No Song Name hardstyle
duration_ms key mode time_signature tempo \
id
7pgJBLVz5VmnL7uGHmRj6p 224427 8 1 4 115.080
0vSWgAlfpye0WCGeNmuNhy 98821 5 1 4 218.050
7EL7ifncK2PWFYThJjzR25 101172 8 1 4 189.938
1umsRbM7L4ju7rn9aU8Ju6 96062 10 0 4 139.990
4SKqOHKYU5pgHr5UiVKiQN 135079 5 1 4 128.014
... ... ... ... ... ...
46bXU7Sgj7104ZoXxzz9tM 269208 4 1 4 150.013
0he2ViGMUO3ajKTxLOfWVT 210112 0 0 4 149.928
72DAt9Lbpy9EUS29OzQLob 234823 8 1 4 154.935
6HXgExFVuE1c3cq9QjFCcU 323200 6 0 4 150.042
6MAAMZImxcvYhRnxDLTufD 162161 9 1 4 155.047
acousticness danceability energy instrumentalness \
id
7pgJBLVz5VmnL7uGHmRj6p 0.401000 0.719 0.493 0.000000
0vSWgAlfpye0WCGeNmuNhy 0.013800 0.850 0.893 0.000004
7EL7ifncK2PWFYThJjzR25 0.187000 0.864 0.365 0.000000
1umsRbM7L4ju7rn9aU8Ju6 0.145000 0.767 0.576 0.000003
4SKqOHKYU5pgHr5UiVKiQN 0.007700 0.765 0.726 0.000000
... ... ... ... ...
46bXU7Sgj7104ZoXxzz9tM 0.031500 0.528 0.693 0.000345
0he2ViGMUO3ajKTxLOfWVT 0.022500 0.517 0.768 0.000018
72DAt9Lbpy9EUS29OzQLob 0.026000 0.361 0.821 0.000242
6HXgExFVuE1c3cq9QjFCcU 0.000551 0.477 0.921 0.029600
6MAAMZImxcvYhRnxDLTufD 0.001890 0.529 0.945 0.000055
liveness loudness speechiness valence
id
7pgJBLVz5VmnL7uGHmRj6p 0.1180 -7.230 0.0794 0.1240
0vSWgAlfpye0WCGeNmuNhy 0.3720 -4.783 0.0623 0.0391
7EL7ifncK2PWFYThJjzR25 0.1160 -10.219 0.0655 0.0478
1umsRbM7L4ju7rn9aU8Ju6 0.0968 -9.683 0.2560 0.1870
4SKqOHKYU5pgHr5UiVKiQN 0.6190 -5.580 0.1910 0.2700
... ... ... ... ...
46bXU7Sgj7104ZoXxzz9tM 0.1210 -5.148 0.0304 0.3940
0he2ViGMUO3ajKTxLOfWVT 0.2050 -7.922 0.0479 0.3830
72DAt9Lbpy9EUS29OzQLob 0.3850 -3.102 0.0505 0.1240
6HXgExFVuE1c3cq9QjFCcU 0.0575 -4.777 0.0392 0.4880
6MAAMZImxcvYhRnxDLTufD 0.4140 -5.862 0.0615 0.1340
[35877 rows x 16 columns]
%% Cell type:markdown id: tags:
### Dropping missing values
Syntax: `df.dropna()`
- Returns a new DataFrame object instance reference.
%% Cell type:code id: tags:
``` python
# .dropna will drop all rows that contain NaN in them
df.dropna()
```
%% Output
title song_name genre \
id
5LzAV6KfjN8VhWCedeygfY Dirtybird Players No Song Name techhouse
3TsCb6ueD678XBJDiRrvhr tech house No Song Name techhouse
6Y0Fy2buEis7bEOlG0QET1 Tech House Bangerz No Song Name techhouse
4EJI2XGViSQp6WscLKgYDD tech house No Song Name techhouse
4x6VzOQTLIrkkCWcDPh5Y0 blanc | Tech House No Song Name techhouse
... ... ... ...
46bXU7Sgj7104ZoXxzz9tM Euphoric Hardstyle No Song Name hardstyle
0he2ViGMUO3ajKTxLOfWVT Greatest Hardstyle Playlist No Song Name hardstyle
72DAt9Lbpy9EUS29OzQLob Best of Hardstyle 2020 No Song Name hardstyle
6HXgExFVuE1c3cq9QjFCcU Euphoric Hardstyle No Song Name hardstyle
6MAAMZImxcvYhRnxDLTufD Best of Hardstyle 2020 No Song Name hardstyle
duration_ms key mode time_signature tempo \
id
5LzAV6KfjN8VhWCedeygfY 197499 7 1 4 127.997
3TsCb6ueD678XBJDiRrvhr 206000 10 1 4 124.994
6Y0Fy2buEis7bEOlG0QET1 199839 4 0 4 124.006
4EJI2XGViSQp6WscLKgYDD 173861 8 1 4 125.031
4x6VzOQTLIrkkCWcDPh5Y0 394960 8 0 4 127.029
... ... ... ... ... ...
46bXU7Sgj7104ZoXxzz9tM 269208 4 1 4 150.013
0he2ViGMUO3ajKTxLOfWVT 210112 0 0 4 149.928
72DAt9Lbpy9EUS29OzQLob 234823 8 1 4 154.935
6HXgExFVuE1c3cq9QjFCcU 323200 6 0 4 150.042
6MAAMZImxcvYhRnxDLTufD 162161 9 1 4 155.047
acousticness danceability energy instrumentalness \
id
5LzAV6KfjN8VhWCedeygfY 0.000957 0.806 0.950 0.920000
3TsCb6ueD678XBJDiRrvhr 0.062300 0.729 0.978 0.908000
6Y0Fy2buEis7bEOlG0QET1 0.019100 0.724 0.792 0.812000
4EJI2XGViSQp6WscLKgYDD 0.053000 0.700 0.898 0.418000
4x6VzOQTLIrkkCWcDPh5Y0 0.000301 0.803 0.919 0.926000
... ... ... ... ...
46bXU7Sgj7104ZoXxzz9tM 0.031500 0.528 0.693 0.000345
0he2ViGMUO3ajKTxLOfWVT 0.022500 0.517 0.768 0.000018
72DAt9Lbpy9EUS29OzQLob 0.026000 0.361 0.821 0.000242
6HXgExFVuE1c3cq9QjFCcU 0.000551 0.477 0.921 0.029600
6MAAMZImxcvYhRnxDLTufD 0.001890 0.529 0.945 0.000055
liveness loudness speechiness valence
id
5LzAV6KfjN8VhWCedeygfY 0.1130 -6.782 0.0811 0.580
3TsCb6ueD678XBJDiRrvhr 0.0353 -6.645 0.0420 0.778
6Y0Fy2buEis7bEOlG0QET1 0.1080 -8.555 0.0405 0.346
4EJI2XGViSQp6WscLKgYDD 0.5740 -6.099 0.2570 0.791
4x6VzOQTLIrkkCWcDPh5Y0 0.1020 -8.667 0.0702 0.754
... ... ... ... ...
46bXU7Sgj7104ZoXxzz9tM 0.1210 -5.148 0.0304 0.394
0he2ViGMUO3ajKTxLOfWVT 0.2050 -7.922 0.0479 0.383
72DAt9Lbpy9EUS29OzQLob 0.3850 -3.102 0.0505 0.124
6HXgExFVuE1c3cq9QjFCcU 0.0575 -4.777 0.0392 0.488
6MAAMZImxcvYhRnxDLTufD 0.4140 -5.862 0.0615 0.134
[17529 rows x 16 columns]
%% Cell type:markdown id: tags:
### Review: `Pandas.Series.apply(...)`
Syntax: `Series.apply(<FUNCTION OBJECT REFERENCE>)`
- applies input function to every element of the Series.
- Returns a new `Series` object instance reference.
Let's apply transformation function to `mode` column `Series`:
- mode = 1 means major modality (sounds happy)
- mode = 0 means minor modality (sounds sad)
%% Cell type:code id: tags:
``` python
def replace_mode(m):
if m == 1:
return "major"
else:
return "minor"
```
%% Cell type:code id: tags:
``` python
df["mode"].apply(replace_mode)
```
%% Output
id
7pgJBLVz5VmnL7uGHmRj6p major
0vSWgAlfpye0WCGeNmuNhy major
7EL7ifncK2PWFYThJjzR25 major
1umsRbM7L4ju7rn9aU8Ju6 minor
4SKqOHKYU5pgHr5UiVKiQN major
...
46bXU7Sgj7104ZoXxzz9tM major
0he2ViGMUO3ajKTxLOfWVT minor
72DAt9Lbpy9EUS29OzQLob major
6HXgExFVuE1c3cq9QjFCcU minor
6MAAMZImxcvYhRnxDLTufD major
Name: mode, Length: 35877, dtype: object
%% Cell type:markdown id: tags:
### `lambda` recap
Let's write a `lambda` function instead of the `replace_mode` function
%% Cell type:code id: tags:
``` python
df["mode"].apply(lambda m: "major" if m == 1 else "minor")
```
%% Output
id
7pgJBLVz5VmnL7uGHmRj6p major
0vSWgAlfpye0WCGeNmuNhy major
7EL7ifncK2PWFYThJjzR25 major
1umsRbM7L4ju7rn9aU8Ju6 minor
4SKqOHKYU5pgHr5UiVKiQN major
...
46bXU7Sgj7104ZoXxzz9tM major
0he2ViGMUO3ajKTxLOfWVT minor
72DAt9Lbpy9EUS29OzQLob major
6HXgExFVuE1c3cq9QjFCcU minor
6MAAMZImxcvYhRnxDLTufD major
Name: mode, Length: 35877, dtype: object
%% Cell type:markdown id: tags:
Typically transformed columns are added as new columns within the DataFrame.
Let's add a new `modified_mode` column.
%% Cell type:code id: tags:
``` python
df["modified_mode"] = df["mode"].apply(lambda m: "major" if m == 1 else "minor")
df
```
%% Output
title song_name genre \
id
7pgJBLVz5VmnL7uGHmRj6p NaN Pathology Dark Trap
0vSWgAlfpye0WCGeNmuNhy NaN Symbiote Dark Trap
7EL7ifncK2PWFYThJjzR25 NaN BRAINFOOD Dark Trap
1umsRbM7L4ju7rn9aU8Ju6 NaN Sacrifice Dark Trap
4SKqOHKYU5pgHr5UiVKiQN NaN Backpack Dark Trap
... ... ... ...
46bXU7Sgj7104ZoXxzz9tM Euphoric Hardstyle No Song Name hardstyle
0he2ViGMUO3ajKTxLOfWVT Greatest Hardstyle Playlist No Song Name hardstyle
72DAt9Lbpy9EUS29OzQLob Best of Hardstyle 2020 No Song Name hardstyle
6HXgExFVuE1c3cq9QjFCcU Euphoric Hardstyle No Song Name hardstyle
6MAAMZImxcvYhRnxDLTufD Best of Hardstyle 2020 No Song Name hardstyle
duration_ms key mode time_signature tempo \
id
7pgJBLVz5VmnL7uGHmRj6p 224427 8 1 4 115.080
0vSWgAlfpye0WCGeNmuNhy 98821 5 1 4 218.050
7EL7ifncK2PWFYThJjzR25 101172 8 1 4 189.938
1umsRbM7L4ju7rn9aU8Ju6 96062 10 0 4 139.990
4SKqOHKYU5pgHr5UiVKiQN 135079 5 1 4 128.014
... ... ... ... ... ...
46bXU7Sgj7104ZoXxzz9tM 269208 4 1 4 150.013
0he2ViGMUO3ajKTxLOfWVT 210112 0 0 4 149.928
72DAt9Lbpy9EUS29OzQLob 234823 8 1 4 154.935
6HXgExFVuE1c3cq9QjFCcU 323200 6 0 4 150.042
6MAAMZImxcvYhRnxDLTufD 162161 9 1 4 155.047
acousticness danceability energy instrumentalness \
id
7pgJBLVz5VmnL7uGHmRj6p 0.401000 0.719 0.493 0.000000
0vSWgAlfpye0WCGeNmuNhy 0.013800 0.850 0.893 0.000004
7EL7ifncK2PWFYThJjzR25 0.187000 0.864 0.365 0.000000
1umsRbM7L4ju7rn9aU8Ju6 0.145000 0.767 0.576 0.000003
4SKqOHKYU5pgHr5UiVKiQN 0.007700 0.765 0.726 0.000000
... ... ... ... ...
46bXU7Sgj7104ZoXxzz9tM 0.031500 0.528 0.693 0.000345
0he2ViGMUO3ajKTxLOfWVT 0.022500 0.517 0.768 0.000018
72DAt9Lbpy9EUS29OzQLob 0.026000 0.361 0.821 0.000242
6HXgExFVuE1c3cq9QjFCcU 0.000551 0.477 0.921 0.029600
6MAAMZImxcvYhRnxDLTufD 0.001890 0.529 0.945 0.000055
liveness loudness speechiness valence modified_mode
id
7pgJBLVz5VmnL7uGHmRj6p 0.1180 -7.230 0.0794 0.1240 major
0vSWgAlfpye0WCGeNmuNhy 0.3720 -4.783 0.0623 0.0391 major
7EL7ifncK2PWFYThJjzR25 0.1160 -10.219 0.0655 0.0478 major
1umsRbM7L4ju7rn9aU8Ju6 0.0968 -9.683 0.2560 0.1870 minor
4SKqOHKYU5pgHr5UiVKiQN 0.6190 -5.580 0.1910 0.2700 major
... ... ... ... ... ...
46bXU7Sgj7104ZoXxzz9tM 0.1210 -5.148 0.0304 0.3940 major
0he2ViGMUO3ajKTxLOfWVT 0.2050 -7.922 0.0479 0.3830 minor
72DAt9Lbpy9EUS29OzQLob 0.3850 -3.102 0.0505 0.1240 major
6HXgExFVuE1c3cq9QjFCcU 0.0575 -4.777 0.0392 0.4880 minor
6MAAMZImxcvYhRnxDLTufD 0.4140 -5.862 0.0615 0.1340 major
[35877 rows x 17 columns]
%% Cell type:markdown id: tags:
#### Let's go back to the original table from the SQL database
%% Cell type:code id: tags:
``` python
df = qry("SELECT * FROM spotify")
df
```
%% Output
id title song_name \
0 7pgJBLVz5VmnL7uGHmRj6p Pathology
1 0vSWgAlfpye0WCGeNmuNhy Symbiote
2 7EL7ifncK2PWFYThJjzR25 BRAINFOOD
3 1umsRbM7L4ju7rn9aU8Ju6 Sacrifice
4 4SKqOHKYU5pgHr5UiVKiQN Backpack
... ... ... ...
35872 46bXU7Sgj7104ZoXxzz9tM Euphoric Hardstyle
35873 0he2ViGMUO3ajKTxLOfWVT Greatest Hardstyle Playlist
35874 72DAt9Lbpy9EUS29OzQLob Best of Hardstyle 2020
35875 6HXgExFVuE1c3cq9QjFCcU Euphoric Hardstyle
35876 6MAAMZImxcvYhRnxDLTufD Best of Hardstyle 2020
genre duration_ms key mode time_signature tempo \
0 Dark Trap 224427 8 1 4 115.080
1 Dark Trap 98821 5 1 4 218.050
2 Dark Trap 101172 8 1 4 189.938
3 Dark Trap 96062 10 0 4 139.990
4 Dark Trap 135079 5 1 4 128.014
... ... ... ... ... ... ...
35872 hardstyle 269208 4 1 4 150.013
35873 hardstyle 210112 0 0 4 149.928
35874 hardstyle 234823 8 1 4 154.935
35875 hardstyle 323200 6 0 4 150.042
35876 hardstyle 162161 9 1 4 155.047
acousticness danceability energy instrumentalness liveness \
0 0.401000 0.719 0.493 0.000000 0.1180
1 0.013800 0.850 0.893 0.000004 0.3720
2 0.187000 0.864 0.365 0.000000 0.1160
3 0.145000 0.767 0.576 0.000003 0.0968
4 0.007700 0.765 0.726 0.000000 0.6190
... ... ... ... ... ...
35872 0.031500 0.528 0.693 0.000345 0.1210
35873 0.022500 0.517 0.768 0.000018 0.2050
35874 0.026000 0.361 0.821 0.000242 0.3850
35875 0.000551 0.477 0.921 0.029600 0.0575
35876 0.001890 0.529 0.945 0.000055 0.4140
loudness speechiness valence
0 -7.230 0.0794 0.1240
1 -4.783 0.0623 0.0391
2 -10.219 0.0655 0.0478
3 -9.683 0.2560 0.1870
4 -5.580 0.1910 0.2700
... ... ... ...
35872 -5.148 0.0304 0.3940
35873 -7.922 0.0479 0.3830
35874 -3.102 0.0505 0.1240
35875 -4.777 0.0392 0.4880
35876 -5.862 0.0615 0.1340
[35877 rows x 17 columns]
%% Cell type:markdown id: tags:
Extract just the "genre" and "duration_ms" columns from `df`.
%% Cell type:code id: tags:
``` python
df[["genre", 'duration_ms']]
```
%% Output
genre duration_ms
0 Dark Trap 224427
1 Dark Trap 98821
2 Dark Trap 101172
3 Dark Trap 96062
4 Dark Trap 135079
... ... ...
35872 hardstyle 269208
35873 hardstyle 210112
35874 hardstyle 234823
35875 hardstyle 323200
35876 hardstyle 162161
[35877 rows x 2 columns]
%% Cell type:markdown id: tags:
### `Pandas.DataFrame.groupby(...)`
Syntax: `DataFrame.groupby(<COLUMN>)`
- Returns a `groupby` object instance reference
- Need to apply aggregation methods to use the return value of `groupby`
%% Cell type:code id: tags:
``` python
df[["genre", "duration_ms"]].groupby("genre")
```
%% Output
<pandas.core.groupby.generic.DataFrameGroupBy object at 0x7f82f8026e50>
%% Cell type:markdown id: tags:
### What is the average duration for each genre ordered based on decreasing order of averages?
#### v1: using `df` (`pandas`) to answer the question
%% Cell type:code id: tags:
``` python
df[["genre", "duration_ms"]].groupby("genre").mean().sort_values(by = "duration_ms", ascending = False)
```
%% Output
duration_ms
genre
psytrance 445770.492075
techno 399123.187453
techhouse 298395.587596
dnb 288860.138811
trance 288729.366262
hardstyle 232828.626542
Hiphop 227885.028411
RnB 225628.556955
trap 225149.277731
Emo 218370.989519
Pop 211558.052980
Rap 200816.798836
Dark Trap 196059.938997
Underground Rap 175506.191224
Trap Metal 145940.519467
%% Cell type:code id: tags:
``` python
df[["genre"]].value_counts()
```
%% Output
genre
Underground Rap 4330
Dark Trap 3590
Hiphop 3027
trance 2804
psytrance 2650
techno 2646
dnb 2507
trap 2362
hardstyle 2351
techhouse 2209
RnB 1905
Trap Metal 1875
Emo 1622
Rap 1546
Pop 453
dtype: int64
%% Cell type:markdown id: tags:
One way to check whether `groupby` works would be to use `value_counts` on the same column `Series`.
%% Cell type:code id: tags:
``` python
df["genre"].value_counts()
```
%% Cell type:markdown id: tags:
### What is the average duration for each genre ordered based on decreasing order of averages?
#### v2: using SQL query to answer the question
%% Cell type:code id: tags:
``` python
# SQL equivalent query of the above Pandas query
avg_duration_per_genre = qry("""
select genre, avg(duration_ms)
from spotify
group by genre
order by avg(duration_ms) desc
""")
# How can we get make the SQL query output to be exactly same as df.groupby?
avg_duration_per_genre = avg_duration_per_genre.set_index("genre")
avg_duration_per_genre
```
%% Output
avg(duration_ms)
genre
psytrance 445770.492075
techno 399123.187453
techhouse 298395.587596
dnb 288860.138811
trance 288729.366262
hardstyle 232828.626542
Hiphop 227885.028411
RnB 225628.556955
trap 225149.277731
Emo 218370.989519
Pop 211558.052980
Rap 200816.798836
Dark Trap 196059.938997
Underground Rap 175506.191224
Trap Metal 145940.519467
%% Cell type:markdown id: tags:
### You can groupby more than one column
%% Cell type:code id: tags:
``` python
# select mode, time_signature, and speechiness
df[["mode", "time_signature", "speechiness"]]
```
%% Output
mode time_signature speechiness
0 1 4 0.0794
1 1 4 0.0623
2 1 4 0.0655
3 0 4 0.2560
4 1 4 0.1910
... ... ... ...
35872 1 4 0.0304
35873 0 4 0.0479
35874 1 4 0.0505
35875 0 4 0.0392
35876 1 4 0.0615
[35877 rows x 3 columns]
%% Cell type:code id: tags:
``` python
```
%% Cell type:code id: tags:
``` python
```
%% Cell type:markdown id: tags:
### What is the average speechiness for each mode, time signature pair?
#### v1: pandas
%% Cell type:code id: tags:
``` python
df[["mode", "time_signature", "speechiness"]].groupby(["mode", "time_signature"]).mean()
```
%% Output
speechiness
mode time_signature
0 1 0.181224
3 0.121837
4 0.126688
5 0.204890
1 1 0.173138
3 0.129512
4 0.139170
5 0.220177
%% Cell type:code id: tags:
``` python
# SQL equivalent query of the above Pandas query
qry("""
SELECT mode, time_signature, AVG(speechiness) as avg_speechiness
FROM spotify
GROUP BY mode, time_signature
""")
```
%% Output
mode time_signature avg_speechiness
0 0 1 0.181224
1 0 3 0.121837
2 0 4 0.126688
3 0 5 0.204890
4 1 1 0.173138
5 1 3 0.129512
6 1 4 0.139170
7 1 5 0.220177
%% Cell type:markdown id: tags:
### Self-practice
%% Cell type:markdown id: tags:
### Which songs have a tempo greater than 150 and what are their genre?
%% Cell type:code id: tags:
``` python
# v1: pandas
fast_songs =
```
%% Cell type:code id: tags:
``` python
# v2: SQL
qry("""
""")
```
%% Cell type:markdown id: tags:
### What is the sum of danceability and liveness for "Hiphop" genre songs?
%% Cell type:code id: tags:
``` python
# v1: pandas
hiphop_songs =
```
%% Cell type:code id: tags:
``` python
# v2: SQL
hiphop_songs = qry("""
""")
hiphop_songs
```
%% Cell type:markdown id: tags:
### Find all song_name ordered by ascending order of duration_ms. Eliminate songs which don't have a song_name
%% Cell type:code id: tags:
``` python
# v1: pandas
songs_by_duration =
```
%% Cell type:code id: tags:
``` python
# v2
songs_by_duration = qry("""
""")
songs_by_duration
```
%% Cell type:markdown id: tags:
### How many distinct "genre"s are there in the dataset?
%% Cell type:code id: tags:
``` python
# v1: pandas
```
%% Cell type:code id: tags:
``` python
# v2: SQL
genres = qry("""
""")
```
%% Cell type:markdown id: tags:
### Considering only songs with energy greater than 0.5, what is the maximum energy for each "genre" with song count greater than 2000?
%% Cell type:code id: tags:
``` python
genre_groups =
```
%% Cell type:code id: tags:
``` python
# v1: pandas
high_energy_songs = ???
genre_groups = ???
max_energy = ???
max_energy["energy"]
```
%% Cell type:code id: tags:
``` python
genre_counts = ???
genre_counts["energy_max"] = max_energy["energy"]
filtered_genre_counts = ???
filtered_genre_counts
```
%% Cell type:code id: tags:
``` python
# v2: SQL
qry("""
""")
```
%% Cell type:code id: tags:
``` python
# known import statements
import pandas as pd
import sqlite3 as sql # note that we are renaming to sql
import os
# new import statement
import numpy as np
```
%% Cell type:markdown id: tags:
# Lecture 35 Pandas 3: Data Transformation
* Data transformation is the process of changing the format, structure, or values of data.
* Often needed during data cleaning and sometimes during data analysis
Possible data transformation:
* Parsing/Extraction
* Parse CSV to Pandas DataFrame
* Missing Value Manipulations
* Dropping
* Imputation: replace missing value with substitute values
* Typecasting, Formating, Renaming
* Typecasting: covert one column from int to float
* Formating: format the time column to datatime object
* Renaming: rename column and index names
* Applying/Mapping
* Filtering, Aggregation, Grouping, and Summarization
* Covered in Pandas 1 & 2 lectures
%% Cell type:markdown id: tags:
# Today's Learning Objectives:
* Identify, drop, or fill missing values with Pandas .isna, .dropna, and .fillna
* Apply a function to Pandas Series and DataFrame rows/columns
* Replace all target values to Pandas Series and DataFrame rows/columns
* Filter, Aggregate, Group, and Summarize information in a DataFrame with .groupby
* Convert .groupby examples to SQL
%% Cell type:markdown id: tags:
# The dataset: Spotify songs
Adapted from https://www.kaggle.com/datasets/mrmorj/dataset-of-songs-in-spotify.
If you are interested in digging deeper in this dataset, here's a [blog post](https://medium.com/@boplantinga/what-do-spotifys-audio-features-tell-us-about-this-year-s-eurovision-song-contest-66ad188e112a) that explain each column in details.
%% Cell type:markdown id: tags:
### WARMUP 1: Establish a connection to the spotify.db database
%% Cell type:code id: tags:
``` python
# open up the spotify database
db_pathname = "spotify.db"
assert os.path.exists(db_pathname)
conn = sql.connect(db_pathname)
```
%% Cell type:code id: tags:
``` python
def qry(sql):
return pd.read_sql(sql, conn)
```
%% Cell type:markdown id: tags:
### WARMUP 2: Identify the table name(s) inside the database
%% Cell type:code id: tags:
``` python
qry("select * from sqlite_master")
```
%% Output
type name tbl_name rootpage \
0 table spotify spotify 1527
1 index sqlite_autoindex_spotify_1 spotify 1528
sql
0 CREATE TABLE spotify(\nid TEXT PRIMARY KEY,\nt...
1 None
%% Cell type:markdown id: tags:
### WARMUP 3: Use pandas lookup expression to identify the column names and the types: use .iloc
%% Cell type:code id: tags:
``` python
print(qry("select * from sqlite_master")["sql"].iloc[0])
```
%% Output
CREATE TABLE spotify(
id TEXT PRIMARY KEY,
title BLOB,
song_name BLOB,
genre TEXT,
duration_ms INTEGER,
key INTEGER,
mode INTEGER,
time_signature INTEGER,
tempo REAL,
acousticness REAL,
danceability REAL,
energy REAL,
instrumentalness REAL,
liveness REAL,
loudness REAL,
speechiness REAL,
valence REAL)
%% Cell type:markdown id: tags:
### WARMUP 4: Store the data inside `spotify` table inside a variable called `df`
%% Cell type:code id: tags:
``` python
df = qry("select * from spotify")
df
```
%% Output
id title song_name \
0 7pgJBLVz5VmnL7uGHmRj6p Pathology
1 0vSWgAlfpye0WCGeNmuNhy Symbiote
2 7EL7ifncK2PWFYThJjzR25 BRAINFOOD
3 1umsRbM7L4ju7rn9aU8Ju6 Sacrifice
4 4SKqOHKYU5pgHr5UiVKiQN Backpack
... ... ... ...
35872 46bXU7Sgj7104ZoXxzz9tM Euphoric Hardstyle
35873 0he2ViGMUO3ajKTxLOfWVT Greatest Hardstyle Playlist
35874 72DAt9Lbpy9EUS29OzQLob Best of Hardstyle 2020
35875 6HXgExFVuE1c3cq9QjFCcU Euphoric Hardstyle
35876 6MAAMZImxcvYhRnxDLTufD Best of Hardstyle 2020
genre duration_ms key mode time_signature tempo \
0 Dark Trap 224427 8 1 4 115.080
1 Dark Trap 98821 5 1 4 218.050
2 Dark Trap 101172 8 1 4 189.938
3 Dark Trap 96062 10 0 4 139.990
4 Dark Trap 135079 5 1 4 128.014
... ... ... ... ... ... ...
35872 hardstyle 269208 4 1 4 150.013
35873 hardstyle 210112 0 0 4 149.928
35874 hardstyle 234823 8 1 4 154.935
35875 hardstyle 323200 6 0 4 150.042
35876 hardstyle 162161 9 1 4 155.047
acousticness danceability energy instrumentalness liveness \
0 0.401000 0.719 0.493 0.000000 0.1180
1 0.013800 0.850 0.893 0.000004 0.3720
2 0.187000 0.864 0.365 0.000000 0.1160
3 0.145000 0.767 0.576 0.000003 0.0968
4 0.007700 0.765 0.726 0.000000 0.6190
... ... ... ... ... ...
35872 0.031500 0.528 0.693 0.000345 0.1210
35873 0.022500 0.517 0.768 0.000018 0.2050
35874 0.026000 0.361 0.821 0.000242 0.3850
35875 0.000551 0.477 0.921 0.029600 0.0575
35876 0.001890 0.529 0.945 0.000055 0.4140
loudness speechiness valence
0 -7.230 0.0794 0.1240
1 -4.783 0.0623 0.0391
2 -10.219 0.0655 0.0478
3 -9.683 0.2560 0.1870
4 -5.580 0.1910 0.2700
... ... ... ...
35872 -5.148 0.0304 0.3940
35873 -7.922 0.0479 0.3830
35874 -3.102 0.0505 0.1240
35875 -4.777 0.0392 0.4880
35876 -5.862 0.0615 0.1340
[35877 rows x 17 columns]
%% Cell type:markdown id: tags:
### Setting a column as row indices for the `DataFrame`
- Syntax: `df.set_index("<COLUMN>")`
- Returns a new DataFrame object instance reference.
- WARNING: executing this twice will result in `KeyError` being thrown. Once you set a column as row index, it will no longer be a column within the `DataFrame`. If you tried this, go back and execute the above cell and update `df` once more and then execute the below cell exactly once.
%% Cell type:code id: tags:
``` python
# Set the id column as row indices
df =
df
```
%% Cell type:markdown id: tags:
### Not a Number
- `np.NaN` is the floating point representation of Not a Number
- You do not need to know / learn the details about the `numpy` package
### Replacing / modifying values within the `DataFrame`
Syntax: `df.replace(<TARGET>, <REPLACE>)`
- Your target can be `str`, `int`, `float`, `None` (there are other possiblities, but those are too advanced for this course)
- Returns a new DataFrame object instance reference.
Let's now replace the missing values (empty strings) with `np.NAN`
%% Cell type:code id: tags:
``` python
df =
df.head(10) # title is the album name
```
%% Cell type:markdown id: tags:
### Checking for missing values
Syntax: `Series.isna()`
- Returns a boolean Series
Let's check if any of the "song_name"(s) are missing
%% Cell type:code id: tags:
``` python
df["song_name"]
```
%% Cell type:markdown id: tags:
### Review: `Pandas.Series.value_counts()`
- Returns a new `Series` with unique values from the original `Series` as keys and the count of those unique values as values.
- Return value `Series` is ordered using descending order of counts
%% Cell type:code id: tags:
``` python
# count the number of missing values for song name
df["song_name"]
```
%% Cell type:markdown id: tags:
### Missing value manipulation
Syntax: `df.fillna(<REPLACE>)`
- Returns a new DataFrame object instance reference.
%% Cell type:code id: tags:
``` python
# use .fillna to replace missing values
df["song_name"]
# to replace the original DataFrame's column, you need to explicitly update that object instance
# TODO: uncomment the below lines and update the code
#df["song_name"] = ???
#df
```
%% Cell type:markdown id: tags:
### Dropping missing values
Syntax: `df.dropna()`
- Returns a new DataFrame object instance reference.
%% Cell type:code id: tags:
``` python
# .dropna will drop all rows that contain NaN in them
df.dropna()
```
%% Cell type:markdown id: tags:
### Review: `Pandas.Series.apply(...)`
Syntax: `Series.apply(<FUNCTION OBJECT REFERENCE>)`
- applies input function to every element of the Series.
- Returns a new `Series` object instance reference.
Let's apply transformation function to `mode` column `Series`:
- mode = 1 means major modality (sounds happy)
- mode = 0 means minor modality (sounds sad)
%% Cell type:code id: tags:
``` python
def replace_mode(m):
if m == 1:
return "major"
else:
return "minor"
```
%% Cell type:code id: tags:
``` python
df["mode"]
```
%% Cell type:markdown id: tags:
### `lambda` recap
Let's write a `lambda` function instead of the `replace_mode` function
%% Cell type:code id: tags:
``` python
df["mode"].apply(???)
```
%% Cell type:markdown id: tags:
Typically transformed columns are added as new columns within the DataFrame.
Let's add a new `modified_mode` column.
%% Cell type:code id: tags:
``` python
df["modified_mode"] = df["mode"].apply(lambda m: "major" if m == 1 else "minor")
df
```
%% Cell type:markdown id: tags:
#### Let's go back to the original table from the SQL database
%% Cell type:code id: tags:
``` python
df = qry("SELECT * FROM spotify")
df
```
%% Cell type:markdown id: tags:
Extract just the "genre" and "duration_ms" columns from `df`.
%% Cell type:code id: tags:
``` python
df[???]
```
%% Cell type:markdown id: tags:
### `Pandas.DataFrame.groupby(...)`
Syntax: `DataFrame.groupby(<COLUMN>)`
- Returns a `groupby` object instance reference
- Need to apply aggregation methods to use the return value of `groupby`
%% Cell type:code id: tags:
``` python
df[["genre", "duration_ms"]]
```
%% Cell type:markdown id: tags:
### What is the average duration for each genre ordered based on decreasing order of averages?
#### v1: using `df` (`pandas`) to answer the question
%% Cell type:code id: tags:
``` python
df[["genre", "duration_ms"]]
```
%% Cell type:code id: tags:
``` python
df[["genre", "duration_ms"]]
```
%% Cell type:markdown id: tags:
One way to check whether `groupby` works would be to use `value_counts` on the same column `Series`.
%% Cell type:code id: tags:
``` python
df["genre"].value_counts()
```
%% Cell type:markdown id: tags:
### What is the average duration for each genre ordered based on decreasing order of averages?
#### v2: using SQL query to answer the question
%% Cell type:code id: tags:
``` python
# SQL equivalent query of the above Pandas query
avg_duration_per_genre = qry("""
""")
# How can we get make the SQL query output to be exactly same as df.groupby?
avg_duration_per_genre = avg_duration_per_genre.set_index("genre")
avg_duration_per_genre
```
%% Cell type:markdown id: tags:
### What is the average speechiness for each mode, time signature pair?
#### v1: pandas
%% Cell type:code id: tags:
``` python
# use a list to indicate all the columns you want to groupby
```
%% Cell type:code id: tags:
``` python
# SQL equivalent query of the above Pandas query
qry("""
""")
```
%% Cell type:markdown id: tags:
### Self-practice
%% Cell type:markdown id: tags:
### Which songs have a tempo greater than 150 and what are their genre?
%% Cell type:code id: tags:
``` python
# v1: pandas
fast_songs =
```
%% Cell type:code id: tags:
``` python
# v2: SQL
qry("""
""")
```
%% Cell type:markdown id: tags:
### What is the sum of danceability and liveness for "Hiphop" genre songs?
%% Cell type:code id: tags:
``` python
# v1: pandas
hiphop_songs =
```
%% Cell type:code id: tags:
``` python
# v2: SQL
hiphop_songs = qry("""
""")
hiphop_songs
```
%% Cell type:markdown id: tags:
### Find all song_name ordered by ascending order of duration_ms. Eliminate songs which don't have a song_name
%% Cell type:code id: tags:
``` python
# v1: pandas
songs_by_duration =
```
%% Cell type:code id: tags:
``` python
# v2
songs_by_duration = qry("""
""")
songs_by_duration
```
%% Cell type:markdown id: tags:
### How many distinct "genre"s are there in the dataset?
%% Cell type:code id: tags:
``` python
# v1: pandas
```
%% Cell type:code id: tags:
``` python
# v2: SQL
genres = qry("""
""")
```
%% Cell type:markdown id: tags:
### Considering only songs with energy greater than 0.5, what is the maximum energy for each "genre" with song count greater than 2000?
%% Cell type:code id: tags:
``` python
genre_groups =
```
%% Cell type:code id: tags:
``` python
# v1: pandas
high_energy_songs = ???
genre_groups = ???
max_energy = ???
max_energy["energy"]
```
%% Cell type:code id: tags:
``` python
genre_counts = ???
genre_counts["energy_max"] = max_energy["energy"]
filtered_genre_counts = ???
filtered_genre_counts
```
%% Cell type:code id: tags:
``` python
# v2: SQL
qry("""
""")
```
Today's lecture notes will be shared via a Google Doc shared in lecture