Skip to content
Snippets Groups Projects

Compare revisions

Changes are shown as if the source revision was being merged into the target revision. Learn more about comparing revisions.

Source

Select target project
No results found

Target

Select target project
  • HLI877/cs220-lecture-material
  • DANDAPANTULA/cs220-lecture-material
  • cdis/cs/courses/cs220/cs220-lecture-material
  • GIMOTEA/cs220-lecture-material
  • TWMILLER4/cs220-lecture-material
  • GU227/cs220-lecture-material
  • ABADAL/cs220-lecture-material
  • CMILTON3/cs220-lecture-material
  • BDONG39/cs220-lecture-material
  • JSANDOVAL6/cs220-lecture-material
  • JSABHARWAL2/cs220-lecture-material
  • GFREDERICKS/cs220-lecture-material
  • LMSUN/cs220-lecture-material
  • RBHALE/cs220-lecture-material
  • MILNARIK/cs220-lecture-material
  • SUTTI/cs220-lecture-material
  • NMISHRA4/cs220-lecture-material
  • HXIA36/cs220-lecture-material
  • DEPPELER/cs220-lecture-material
  • KIM2245/cs220-lecture-material
  • SKLEPFER/cs220-lecture-material
  • BANDIERA/cs220-lecture-material
  • JKILPS/cs220-lecture-material
  • SOERGEL/cs220-lecture-material
  • DBAUTISTA2/cs220-lecture-material
  • VLEFTWICH/cs220-lecture-material
  • MOU5/cs220-lecture-material
  • ALJACOBSON3/cs220-lecture-material
  • RCHOUDHARY5/cs220-lecture-material
  • MGERSCH/cs220-lecture-material
  • EKANDERSON8/cs220-lecture-material
  • ZHANG2752/cs220-lecture-material
  • VSANTAMARIA/cs220-lecture-material
  • VILBRANDT/cs220-lecture-material
  • ELADD2/cs220-lecture-material
  • YLIU2328/cs220-lecture-material
  • LMEASNER/cs220-lecture-material
  • ATANG28/cs220-lecture-material
  • AKSCHELLIN/cs220-lecture-material
  • OMBUSH/cs220-lecture-material
  • MJDAVID/cs220-lecture-material
  • AKHATRY/cs220-lecture-material
  • CZHUANG6/cs220-lecture-material
  • JPDEYOUNG/cs220-lecture-material
  • SDREES/cs220-lecture-material
  • CLCAMPBELL3/cs220-lecture-material
  • CJCAMPOS/cs220-lecture-material
  • AMARAN/cs220-lecture-material
  • rmflynn2/cs220-lecture-material
  • zhang2855/cs220-lecture-material
  • imanzoor/cs220-lecture-material
  • TOUSEEF/cs220-lecture-material
  • qchen445/cs220-lecture-material
  • nareed2/cs220-lecture-material
  • younkman/cs220-lecture-material
  • kli382/cs220-lecture-material
  • bsaulnier/cs220-lecture-material
  • isatrom/cs220-lecture-material
  • kgoodrum/cs220-lecture-material
  • mransom2/cs220-lecture-material
  • ahstevens/cs220-lecture-material
  • JRADUECHEL/cs220-lecture-material
  • mpcyr/cs220-lecture-material
  • wmeyrose/cs220-lecture-material
  • mmaltman/cs220-lecture-material
  • lsonntag/cs220-lecture-material
  • ghgallant/cs220-lecture-material
  • agkaiser2/cs220-lecture-material
  • rlgerhardt/cs220-lecture-material
  • chen2552/cs220-lecture-material
  • mickiewicz/cs220-lecture-material
  • cbarnish/cs220-lecture-material
  • alampson/cs220-lecture-material
  • mjwendt4/cs220-lecture-material
  • somsakhein/cs220-lecture-material
  • heppenibanez/cs220-lecture-material
  • szhang926/cs220-lecture-material
  • wewatson/cs220-lecture-material
  • jho34/cs220-lecture-material
  • lmedin/cs220-lecture-material
  • hjiang373/cs220-lecture-material
  • hfry2/cs220-lecture-material
  • ajroberts7/cs220-lecture-material
  • mcerhardt/cs220-lecture-material
  • njtomaszewsk/cs220-lecture-material
  • rwang728/cs220-lecture-material
  • jhansonflore/cs220-lecture-material
  • msajja/cs220-lecture-material
  • bjornson2/cs220-lecture-material
  • ccmclaren/cs220-lecture-material
  • armstrongbag/cs220-lecture-material
  • eloe2/cs220-lecture-material
92 results
Show changes
Showing
with 11088 additions and 0 deletions
%% Cell type:code id: tags:
``` python
# Warmup 0: Pandas!
import pandas as pd
```
%% Cell type:code id: tags:
``` python
# Warmup 1: What are your 2 favorite data structures that we have learned so far?
```
%% Cell type:code id: tags:
``` python
# Warmup 2: Find the mean, median, mode, and standard deviation
# of the following list of scores.
my_scores = [44, 32, 19, 67, 23, 23, 92, 47, 47, 78, 84]
```
%% Cell type:markdown id: tags:
## Learning Objectives
- Create a pandas Series from a list or from a dict
- Use Series methods max, min, mean, median, mode, quantile, value counts
- Extract elements from a Series using Boolean indexing
- Access Series members using .loc, .iloc, .items, and slicing
- Perform Series element-wise operations
%% Cell type:markdown id: tags:
# Pandas
%% Cell type:markdown id: tags:
**What is Pandas?**
- Pandas is a package of tools for doing Data Science
- Pandas was installed with Anaconda, so its on your computers
- [Learn More](https://en.wikipedia.org/wiki/Pandas_(software))
If for some reason, you don't have pandas installed, run the following command in terminal or powershell...
<pre>pip install pandas</pre>
%% Cell type:markdown id: tags:
A Pandas Series is like a combination of a list and a dictionary. The word 'index' is used to describe position.
%% Cell type:markdown id: tags:
## Series from a `list`
%% Cell type:code id: tags:
``` python
scores = pd.Series([44, 32, 19, 67, 23, 23, 92, 47, 47, 78, 84])
scores
```
%% Output
0 44
1 32
2 19
3 67
4 23
5 23
6 92
7 47
8 47
9 78
10 84
dtype: int64
%% Cell type:markdown id: tags:
A Pandas series acts a lot like a list; you can index and slice.
%% Cell type:code id: tags:
``` python
scores[3]
```
%% Output
67
%% Cell type:code id: tags:
``` python
scores[3:6]
```
%% Output
3 67
4 23
5 23
dtype: int64
%% Cell type:code id: tags:
``` python
## Series calculations
## mean, median, mode, quartiles, sd, count
print(scores.mean())
print(scores.median())
print(scores.std())
```
%% Output
50.54545454545455
47.0
26.051347897426098
%% Cell type:code id: tags:
``` python
# There could be multiple modes, so mode returns a Series
print(scores.mode())
```
%% Output
0 23
1 47
dtype: int64
%% Cell type:code id: tags:
``` python
# 5-Number summary
print(scores.quantile([1.0, 0.75, 0.5, 0.25, 0]))
```
%% Output
1.00 92.0
0.75 72.5
0.50 47.0
0.25 27.5
0.00 19.0
dtype: float64
%% Cell type:code id: tags:
``` python
print(scores.quantile([0.9, 0.1]))
```
%% Output
0.9 84.0
0.1 23.0
dtype: float64
%% Cell type:markdown id: tags:
`value_counts` creates a series where the index is the data, and the value is its count in the series
%% Cell type:code id: tags:
``` python
ages = pd.Series([18, 19, 20, 20, 20, 17, 18, 24, 25, 35, 22, 20, 21, 21, 20, 23, 23, 19, 19, 19, 20, 21])
ages.value_counts()
```
%% Output
20 6
19 4
21 3
18 2
23 2
17 1
24 1
25 1
35 1
22 1
dtype: int64
%% Cell type:markdown id: tags:
A series can be sorted by index or by values
%% Cell type:code id: tags:
``` python
ages.value_counts().sort_index()
```
%% Output
17 1
18 2
19 4
20 6
21 3
22 1
23 2
24 1
25 1
35 1
dtype: int64
%% Cell type:code id: tags:
``` python
ages.value_counts().sort_values(ascending=False)
```
%% Output
20 6
19 4
21 3
18 2
23 2
17 1
24 1
25 1
35 1
22 1
dtype: int64
%% Cell type:markdown id: tags:
### Plotting
%% Cell type:code id: tags:
``` python
## Series bar chart
age_plot = ages.value_counts().sort_index().plot.bar(color='lightsalmon')
age_plot.set(xlabel = "age", ylabel = "count")
```
%% Output
[Text(0.5, 0, 'age'), Text(0, 0.5, 'count')]
%% Cell type:markdown id: tags:
### Filtering
- & means 'and'
- | means 'or'
- ~ means 'not'
- we must use () for compound boolean expressions
%% Cell type:code id: tags:
``` python
# What ages are in the range 18 to 20, inclusive?
certain_students = ages[(ages >= 18) & (ages <= 20)]
certain_students
```
%% Output
0 18
1 19
2 20
3 20
4 20
6 18
11 20
14 20
17 19
18 19
19 19
20 20
dtype: int64
%% Cell type:code id: tags:
``` python
# What percentage of students are in this age range?
len(certain_students) / len(ages)
```
%% Output
0.5454545454545454
%% Cell type:code id: tags:
``` python
# What percentage of students are ages 18 OR 21?
stu_18_or_21 = ages[(ages == 18) | (ages == 20)]
len(stu_18_or_21) / len(ages)
```
%% Output
0.36363636363636365
%% Cell type:code id: tags:
``` python
# what percentage of students are NOT 19?
stu_not_19 = ages [~(ages==19)]
len(stu_not_19) / len(ages)
```
%% Output
0.8181818181818182
%% Cell type:code id: tags:
``` python
# One more thing....we can perform an operation on all values in a Series
# Let's add 1 to everyone's age
print(ages.value_counts())
ages = ages + 1
print(ages.value_counts())
```
%% Output
20 6
19 4
21 3
18 2
23 2
17 1
24 1
25 1
35 1
22 1
dtype: int64
21 6
20 4
22 3
19 2
24 2
18 1
25 1
26 1
36 1
23 1
dtype: int64
%% Cell type:code id: tags:
``` python
# Modified from https://automatetheboringstuff.com/chapter14/
import csv
def process_csv(filename):
example_file = open(filename, encoding="utf-8")
example_reader = csv.reader(example_file)
example_data = list(example_reader)
example_file.close()
return example_data
data = process_csv("pokemon_stats.csv")
header = data[0]
print(len(data))
data = data[1:]
data[15:18]
```
%% Output
886
[['15',
'Pidgey',
'45',
'40',
'40',
'Kanto',
'35',
'35',
'56',
'Normal',
'Flying'],
['16',
'Pidgeotto',
'60',
'55',
'63',
'Kanto',
'50',
'50',
'71',
'Normal',
'Flying'],
['17',
'Pidgeot',
'80',
'75',
'83',
'Kanto',
'70',
'70',
'101',
'Normal',
'Flying']]
%% Cell type:code id: tags:
``` python
# Create a Series of all the Pokemon names.
pokemon_list = [row[1] for row in data]
pokemons = pd.Series(pokemon_list)
pokemons
```
%% Output
0 Bulbasaur
1 Ivysaur
2 Venusaur
3 Charmander
4 Charmeleon
...
880 Regieleki
881 Regidrago
882 Glastrier
883 Spectrier
884 Calyrex
Length: 885, dtype: object
%% Cell type:code id: tags:
``` python
# Create a Series of all the Pokemon HPs.
hp_list = [int(row[4]) for row in data]
hps = pd.Series(hp_list)
hps
```
%% Output
0 45
1 60
2 80
3 39
4 58
...
880 80
881 200
882 100
883 100
884 100
Length: 885, dtype: int64
%% Cell type:code id: tags:
``` python
# Find the most common HP
hps.mode()
```
%% Output
0 60
dtype: int64
%% Cell type:code id: tags:
``` python
# Find how many pokemon have that most common hp
len(hps[hps == hps.mode()[0]])
```
%% Output
74
%% Cell type:code id: tags:
``` python
# How many Pokemon have HP between 50 and 75 (inclusive)?
len(hps[(hps >= 50) & (hps <= 75)])
```
%% Output
427
%% Cell type:code id: tags:
``` python
# What are the names of weak pokemon (<30 HP)?
weak_hps_idx = hps[hps < 30].index
pokemons[weak_hps_idx]
```
%% Output
47 Diglett
60 Abra
78 Magnemite
124 Magikarp
167 Pichu
208 Shuckle
275 Ralts
287 Shedinja
344 Feebas
350 Duskull
760 Wimpod
812 Blipbug
871 Dreepy
dtype: object
%% Cell type:code id: tags:
``` python
# What are the names of the pokemon from strongest to weakest (using health)?
all_hps_desc = hps.sort_values(ascending=False)
pokemons[all_hps_desc.index]
```
%% Output
237 Blissey
109 Chansey
787 Guzzlord
881 Regidrago
197 Wobbuffet
...
350 Duskull
124 Magikarp
208 Shuckle
47 Diglett
287 Shedinja
Length: 885, dtype: object
%% Cell type:markdown id: tags:
## Series from a `dict`
A Series is a cross between a list and a dict, so we can make a series from a dict as well
%% Cell type:code id: tags:
``` python
## Series from a dict
game1points = pd.Series({"Chris": 10, "Kiara": 3, "Mikayla": 7, "Ann": 8, "Trish": 6})
print(game1points)
```
%% Output
Chris 10
Kiara 3
Mikayla 7
Ann 8
Trish 6
dtype: int64
%% Cell type:code id: tags:
``` python
game2points = pd.Series({"Kiara": 7, "Chris": 3, "Trish": 11, "Mikayla": 2, "Ann": 5})
print(game2points)
```
%% Output
Kiara 7
Chris 3
Trish 11
Mikayla 2
Ann 5
dtype: int64
%% Cell type:code id: tags:
``` python
# Pandas can perform operations on two series by matching up their indices
total = game1points + game2points
total
```
%% Output
Ann 13
Chris 13
Kiara 10
Mikayla 9
Trish 17
dtype: int64
%% Cell type:code id: tags:
``` python
# Who has the most points?
print(total.max())
print(total.idxmax())
```
%% Output
17
Trish
%% Cell type:code id: tags:
``` python
# We can use [] to name the index or by its sequence number
print(total['Kiara'], total[2])
```
%% Output
10 10
%% Cell type:code id: tags:
``` python
# We can have multi-indexing....slightly different from slicing
total[["Chris", "Trish"]]
```
%% Output
Chris 13
Trish 17
dtype: int64
%% Cell type:code id: tags:
``` python
total_sorted = total.sort_values(ascending=False)
total_sorted
```
%% Output
Trish 17
Ann 13
Chris 13
Kiara 10
Mikayla 9
dtype: int64
%% Cell type:code id: tags:
``` python
ax = total_sorted.plot.bar(color="green", fontsize=16)
ax.set_ylabel("total points", fontsize=16)
```
%% Output
Text(0, 0.5, 'total points')
%% Cell type:markdown id: tags:
## More things to know about Series
Next time, we'll get into more ways to access data using `loc` and `iloc`.
We'll also talk about `DataFrame`, which is a series of series (like a spreadsheet!)
%% Cell type:code id: tags:
``` python
game1points
```
%% Output
Chris 10
Kiara 3
Mikayla 7
Ann 8
Trish 6
dtype: int64
%% Cell type:code id: tags:
``` python
game1points.iloc[2] # looks up by integer position
```
%% Output
7
%% Cell type:code id: tags:
``` python
game1points.loc["Mikayla"] # looks up by pandas index
```
%% Output
7
%% Cell type:code id: tags:
``` python
my_new_series = pd.Series({1: 89, 2: 104, 3: 681}) # this can be tricky!
my_new_series
```
%% Output
1 89
2 104
3 681
dtype: int64
%% Cell type:code id: tags:
``` python
my_new_series.iloc[1] # by integer position
```
%% Output
104
%% Cell type:code id: tags:
``` python
my_new_series.loc[1] # by index
```
%% Output
89
%% Cell type:code id: tags:
``` python
my_new_series[1] # by index!
```
%% Output
89
%% Cell type:code id: tags:
``` python
my_new_series[my_new_series > 100] # ... and also boolean masking!
```
%% Output
2 104
3 681
dtype: int64
%% Cell type:markdown id: tags:
Feel overwhelmed? Do the required reading. Pandas operations are good to put on your notesheet.
%% Cell type:code id: tags:
``` python
# Warmup 0: Pandas!
import pandas as pd
```
%% Cell type:code id: tags:
``` python
# Warmup 1: What are your 2 favorite data structures that we have learned so far?
```
%% Cell type:code id: tags:
``` python
# Warmup 2: Find the mean, median, mode, and standard deviation
# of the following list of scores.
my_scores = [44, 32, 19, 67, 23, 23, 92, 47, 47, 78, 84]
```
%% Cell type:markdown id: tags:
## Learning Objectives
- Create a pandas Series from a list or from a dict
- Use Series methods max, min, mean, median, mode, quantile, value counts
- Extract elements from a Series using Boolean indexing
- Access Series members using .loc, .iloc, .items, and slicing
- Perform Series element-wise operations
%% Cell type:markdown id: tags:
# Pandas
%% Cell type:markdown id: tags:
**What is Pandas?**
- Pandas is a package of tools for doing Data Science
- Pandas was installed with Anaconda, so its on your computers
- [Learn More](https://en.wikipedia.org/wiki/Pandas_(software))
If for some reason, you don't have pandas installed, run the following command in terminal or powershell...
<pre>pip install pandas</pre>
%% Cell type:markdown id: tags:
A Pandas Series is like a combination of a list and a dictionary. The word 'index' is used to describe position.
%% Cell type:markdown id: tags:
## Series from a `list`
%% Cell type:code id: tags:
``` python
scores = pd.Series([44, 32, 19, 67, 23, 23, 92, 47, 47, 78, 84])
scores
```
%% Cell type:markdown id: tags:
A Pandas series acts a lot like a list; you can index and slice.
%% Cell type:code id: tags:
``` python
scores[3]
```
%% Cell type:code id: tags:
``` python
scores[3:6]
```
%% Cell type:code id: tags:
``` python
## Series calculations
## mean, median, mode, quartiles, sd, count
```
%% Cell type:code id: tags:
``` python
# There could be multiple modes, so mode returns a Series
print(scores.mode())
```
%% Cell type:code id: tags:
``` python
# 5-Number summary
print(scores.quantile([1.0, 0.75, 0.5, 0.25, 0]))
```
%% Cell type:code id: tags:
``` python
print(scores.quantile([0.9, 0.1]))
```
%% Cell type:markdown id: tags:
`value_counts` creates a series where the index is the data, and the value is its count in the series
%% Cell type:code id: tags:
``` python
ages = pd.Series([18, 19, 20, 20, 20, 17, 18, 24, 25, 35, 22, 20, 21, 21, 20, 23, 23, 19, 19, 19, 20, 21])
ages.value_counts()
```
%% Cell type:markdown id: tags:
A series can be sorted by index or by values
%% Cell type:code id: tags:
``` python
ages.value_counts().sort_index()
```
%% Cell type:code id: tags:
``` python
ages.value_counts().sort_values(ascending=False)
```
%% Cell type:markdown id: tags:
### Plotting
%% Cell type:code id: tags:
``` python
## Series bar chart
age_plot = ages.value_counts().sort_index().plot.bar(color='lightsalmon')
age_plot.set(xlabel = "age", ylabel = "count")
```
%% Cell type:markdown id: tags:
### Filtering
- & means 'and'
- | means 'or'
- ~ means 'not'
- we must use () for compound boolean expressions
%% Cell type:code id: tags:
``` python
# What ages are in the range 18 to 20, inclusive?
```
%% Cell type:code id: tags:
``` python
# What percentage of students are in this age range?
```
%% Cell type:code id: tags:
``` python
# What percentage of students are ages 18 OR 21?
```
%% Cell type:code id: tags:
``` python
# what percentage of students are NOT 19?
```
%% Cell type:code id: tags:
``` python
# One more thing....we can perform an operation on all values in a Series
# Let's add 1 to everyone's age
print(ages.value_counts())
ages = ages + 1
print(ages.value_counts())
```
%% Cell type:code id: tags:
``` python
# Modified from https://automatetheboringstuff.com/chapter14/
import csv
def process_csv(filename):
example_file = open(filename, encoding="utf-8")
example_reader = csv.reader(example_file)
example_data = list(example_reader)
example_file.close()
return example_data
data = process_csv("pokemon_stats.csv")
header = data[0]
print(len(data))
data = data[1:]
data[15:18]
```
%% Cell type:code id: tags:
``` python
# Create a Series of all the Pokemon names.
```
%% Cell type:code id: tags:
``` python
# Create a Series of all the Pokemon HPs.
```
%% Cell type:code id: tags:
``` python
# Find the most common HP
```
%% Cell type:code id: tags:
``` python
# Find how many pokemon have that most common hp
```
%% Cell type:code id: tags:
``` python
# How many Pokemon have HP between 50 and 75 (inclusive)?
```
%% Cell type:code id: tags:
``` python
# What are the names of weak pokemon (<30 HP)?
```
%% Cell type:code id: tags:
``` python
# What are the names of the pokemon from strongest to weakest (using health)?
```
%% Cell type:markdown id: tags:
## Series from a `dict`
A Series is a cross between a list and a dict, so we can make a series from a dict as well
%% Cell type:code id: tags:
``` python
## Series from a dict
game1points = pd.Series({"Chris": 10, "Kiara": 3, "Mikayla": 7, "Ann": 8, "Trish": 6})
print(game1points)
```
%% Cell type:code id: tags:
``` python
game2points = pd.Series({"Kiara": 7, "Chris": 3, "Trish": 11, "Mikayla": 2, "Ann": 5})
print(game2points)
```
%% Cell type:code id: tags:
``` python
# Pandas can perform operations on two series by matching up their indices
total = game1points + game2points
total
```
%% Cell type:code id: tags:
``` python
# Who has the most points?
print(total.max())
print(total.idxmax())
```
%% Cell type:code id: tags:
``` python
# We can use [] to name the index or by its sequence number
print(total['Kiara'], total[2])
```
%% Cell type:code id: tags:
``` python
# We can have multi-indexing....slightly different from slicing
total[["Chris", "Trish"]]
```
%% Cell type:code id: tags:
``` python
total_sorted = total.sort_values(ascending=False)
total_sorted
```
%% Cell type:code id: tags:
``` python
ax = total_sorted.plot.bar(color="green", fontsize=16)
ax.set_ylabel("total points", fontsize=16)
```
%% Cell type:markdown id: tags:
## More things to know about Series
Next time, we'll get into more ways to access data using `loc` and `iloc`.
We'll also talk about `DataFrame`, which is a series of series (like a spreadsheet!)
Feel overwhelmed? Do the required reading & worksheet. Pandas operations are good to put on your notesheet.
%% Cell type:code id: tags:
``` python
game1points
```
%% Cell type:code id: tags:
``` python
game1points.iloc[2] # looks up by integer position
```
%% Cell type:code id: tags:
``` python
game1points.loc["Mikayla"] # looks up by pandas index
```
%% Cell type:code id: tags:
``` python
my_new_series = pd.Series({1: 89, 2: 104, 3: 681}) # this can be tricky!
my_new_series
```
%% Cell type:code id: tags:
``` python
my_new_series.iloc[1] # by integer position
```
%% Cell type:code id: tags:
``` python
my_new_series.loc[1] # by index
```
%% Cell type:code id: tags:
``` python
my_new_series[1] # by index!
```
%% Cell type:code id: tags:
``` python
my_new_series[my_new_series > 100] # ... and also boolean masking!
```
%% Cell type:markdown id: tags:
Feel overwhelmed? Do the required reading. Pandas operations are good to put on your notesheet.
,Name,Attack,Defense,HP,Region,Sp. Atk,Sp. Def,Speed,Type 1,Type 2
0,Bulbasaur,49,49,45,Kanto,65,65,45,Grass,Poison
1,Ivysaur,62,63,60,Kanto,80,80,60,Grass,Poison
2,Venusaur,82,83,80,Kanto,100,100,80,Grass,Poison
3,Charmander,52,43,39,Kanto,60,50,65,Fire,None
4,Charmeleon,64,58,58,Kanto,80,65,80,Fire,None
5,Charizard,84,78,78,Kanto,109,85,100,Fire,Flying
6,Squirtle,48,65,44,Kanto,50,64,43,Water,None
7,Wartortle,63,80,59,Kanto,65,80,58,Water,None
8,Blastoise,83,100,79,Kanto,85,105,78,Water,None
9,Caterpie,30,35,45,Kanto,20,20,45,Bug,None
10,Metapod,20,55,50,Kanto,25,25,30,Bug,None
11,Butterfree,45,50,60,Kanto,90,80,70,Bug,Flying
12,Weedle,35,30,40,Kanto,20,20,50,Bug,Poison
13,Kakuna,25,50,45,Kanto,25,25,35,Bug,Poison
14,Beedrill,90,40,65,Kanto,45,80,75,Bug,Poison
15,Pidgey,45,40,40,Kanto,35,35,56,Normal,Flying
16,Pidgeotto,60,55,63,Kanto,50,50,71,Normal,Flying
17,Pidgeot,80,75,83,Kanto,70,70,101,Normal,Flying
18,Rattata,56,35,30,Kanto,25,35,72,Normal,None
19,Raticate,81,60,55,Kanto,50,70,97,Normal,None
20,Spearow,60,30,40,Kanto,31,31,70,Normal,Flying
21,Fearow,90,65,65,Kanto,61,61,100,Normal,Flying
22,Ekans,60,44,35,Kanto,40,54,55,Poison,None
23,Arbok,95,69,60,Kanto,65,79,80,Poison,None
24,Pikachu,55,40,35,Kanto,50,50,90,Electric,None
25,Raichu,90,55,60,Kanto,90,80,110,Electric,None
26,Sandshrew,75,85,50,Kanto,20,30,40,Ground,None
27,Sandslash,100,110,75,Kanto,45,55,65,Ground,None
28,Nidorina,62,67,70,Kanto,55,55,56,Poison,None
29,Nidoqueen,92,87,90,Kanto,75,85,76,Poison,Ground
30,Nidorino,72,57,61,Kanto,55,55,65,Poison,None
31,Nidoking,102,77,81,Kanto,85,75,85,Poison,Ground
32,Clefairy,45,48,70,Kanto,60,65,35,Fairy,None
33,Clefable,70,73,95,Kanto,95,90,60,Fairy,None
34,Vulpix,41,40,38,Kanto,50,65,65,Fire,None
35,Ninetales,76,75,73,Kanto,81,100,100,Fire,None
36,Jigglypuff,45,20,115,Kanto,45,25,20,Normal,Fairy
37,Wigglytuff,70,45,140,Kanto,85,50,45,Normal,Fairy
38,Zubat,45,35,40,Kanto,30,40,55,Poison,Flying
39,Golbat,80,70,75,Kanto,65,75,90,Poison,Flying
40,Oddish,50,55,45,Kanto,75,65,30,Grass,Poison
41,Gloom,65,70,60,Kanto,85,75,40,Grass,Poison
42,Vileplume,80,85,75,Kanto,110,90,50,Grass,Poison
43,Paras,70,55,35,Kanto,45,55,25,Bug,Grass
44,Parasect,95,80,60,Kanto,60,80,30,Bug,Grass
45,Venonat,55,50,60,Kanto,40,55,45,Bug,Poison
46,Venomoth,65,60,70,Kanto,90,75,90,Bug,Poison
47,Diglett,55,25,10,Kanto,35,45,95,Ground,None
48,Dugtrio,100,50,35,Kanto,50,70,120,Ground,None
49,Meowth,45,35,40,Kanto,40,40,90,Normal,None
50,Persian,70,60,65,Kanto,65,65,115,Normal,None
51,Psyduck,52,48,50,Kanto,65,50,55,Water,None
52,Golduck,82,78,80,Kanto,95,80,85,Water,None
53,Mankey,80,35,40,Kanto,35,45,70,Fighting,None
54,Primeape,105,60,65,Kanto,60,70,95,Fighting,None
55,Growlithe,70,45,55,Kanto,70,50,60,Fire,None
56,Arcanine,110,80,90,Kanto,100,80,95,Fire,None
57,Poliwag,50,40,40,Kanto,40,40,90,Water,None
58,Poliwhirl,65,65,65,Kanto,50,50,90,Water,None
59,Poliwrath,95,95,90,Kanto,70,90,70,Water,Fighting
60,Abra,20,15,25,Kanto,105,55,90,Psychic,None
61,Kadabra,35,30,40,Kanto,120,70,105,Psychic,None
62,Alakazam,50,45,55,Kanto,135,95,120,Psychic,None
63,Machop,80,50,70,Kanto,35,35,35,Fighting,None
64,Machoke,100,70,80,Kanto,50,60,45,Fighting,None
65,Machamp,130,80,90,Kanto,65,85,55,Fighting,None
66,Bellsprout,75,35,50,Kanto,70,30,40,Grass,Poison
67,Weepinbell,90,50,65,Kanto,85,45,55,Grass,Poison
68,Victreebel,105,65,80,Kanto,100,70,70,Grass,Poison
69,Tentacool,40,35,40,Kanto,50,100,70,Water,Poison
70,Tentacruel,70,65,80,Kanto,80,120,100,Water,Poison
71,Geodude,80,100,40,Kanto,30,30,20,Rock,Ground
72,Graveler,95,115,55,Kanto,45,45,35,Rock,Ground
73,Golem,120,130,80,Kanto,55,65,45,Rock,Ground
74,Ponyta,85,55,50,Kanto,65,65,90,Fire,None
75,Rapidash,100,70,65,Kanto,80,80,105,Fire,None
76,Slowpoke,65,65,90,Kanto,40,40,15,Water,Psychic
77,Slowbro,75,110,95,Kanto,100,80,30,Water,Psychic
78,Magnemite,35,70,25,Kanto,95,55,45,Electric,Steel
79,Magneton,60,95,50,Kanto,120,70,70,Electric,Steel
80,Doduo,85,45,35,Kanto,35,35,75,Normal,Flying
81,Dodrio,110,70,60,Kanto,60,60,110,Normal,Flying
82,Seel,45,55,65,Kanto,45,70,45,Water,None
83,Dewgong,70,80,90,Kanto,70,95,70,Water,Ice
84,Grimer,80,50,80,Kanto,40,50,25,Poison,None
85,Muk,105,75,105,Kanto,65,100,50,Poison,None
86,Shellder,65,100,30,Kanto,45,25,40,Water,None
87,Cloyster,95,180,50,Kanto,85,45,70,Water,Ice
88,Gastly,35,30,30,Kanto,100,35,80,Ghost,Poison
89,Haunter,50,45,45,Kanto,115,55,95,Ghost,Poison
90,Gengar,65,60,60,Kanto,130,75,110,Ghost,Poison
91,Onix,45,160,35,Kanto,30,45,70,Rock,Ground
92,Drowzee,48,45,60,Kanto,43,90,42,Psychic,None
93,Hypno,73,70,85,Kanto,73,115,67,Psychic,None
94,Krabby,105,90,30,Kanto,25,25,50,Water,None
95,Kingler,130,115,55,Kanto,50,50,75,Water,None
96,Voltorb,30,50,40,Kanto,55,55,100,Electric,None
97,Electrode,50,70,60,Kanto,80,80,150,Electric,None
98,Exeggcute,40,80,60,Kanto,60,45,40,Grass,Psychic
99,Exeggutor,95,85,95,Kanto,125,75,55,Grass,Psychic
100,Cubone,50,95,50,Kanto,40,50,35,Ground,None
101,Marowak,80,110,60,Kanto,50,80,45,Ground,None
102,Hitmonlee,120,53,50,Kanto,35,110,87,Fighting,None
103,Hitmonchan,105,79,50,Kanto,35,110,76,Fighting,None
104,Lickitung,55,75,90,Kanto,60,75,30,Normal,None
105,Koffing,65,95,40,Kanto,60,45,35,Poison,None
106,Weezing,90,120,65,Kanto,85,70,60,Poison,None
107,Rhyhorn,85,95,80,Kanto,30,30,25,Ground,Rock
108,Rhydon,130,120,105,Kanto,45,45,40,Ground,Rock
109,Chansey,5,5,250,Kanto,35,105,50,Normal,None
110,Tangela,55,115,65,Kanto,100,40,60,Grass,None
111,Kangaskhan,95,80,105,Kanto,40,80,90,Normal,None
112,Horsea,40,70,30,Kanto,70,25,60,Water,None
113,Seadra,65,95,55,Kanto,95,45,85,Water,None
114,Goldeen,67,60,45,Kanto,35,50,63,Water,None
115,Seaking,92,65,80,Kanto,65,80,68,Water,None
116,Staryu,45,55,30,Kanto,70,55,85,Water,None
117,Starmie,75,85,60,Kanto,100,85,115,Water,Psychic
118,Scyther,110,80,70,Kanto,55,80,105,Bug,Flying
119,Jynx,50,35,65,Kanto,115,95,95,Ice,Psychic
120,Electabuzz,83,57,65,Kanto,95,85,105,Electric,None
121,Magmar,95,57,65,Kanto,100,85,93,Fire,None
122,Pinsir,125,100,65,Kanto,55,70,85,Bug,None
123,Tauros,100,95,75,Kanto,40,70,110,Normal,None
124,Magikarp,10,55,20,Kanto,15,20,80,Water,None
125,Gyarados,125,79,95,Kanto,60,100,81,Water,Flying
126,Lapras,85,80,130,Kanto,85,95,60,Water,Ice
127,Ditto,48,48,48,Kanto,48,48,48,Normal,None
128,Eevee,55,50,55,Kanto,45,65,55,Normal,None
129,Vaporeon,65,60,130,Kanto,110,95,65,Water,None
130,Jolteon,65,60,65,Kanto,110,95,130,Electric,None
131,Flareon,130,60,65,Kanto,95,110,65,Fire,None
132,Porygon,60,70,65,Kanto,85,75,40,Normal,None
133,Omanyte,40,100,35,Kanto,90,55,35,Rock,Water
134,Omastar,60,125,70,Kanto,115,70,55,Rock,Water
135,Kabuto,80,90,30,Kanto,55,45,55,Rock,Water
136,Kabutops,115,105,60,Kanto,65,70,80,Rock,Water
137,Aerodactyl,105,65,80,Kanto,60,75,130,Rock,Flying
138,Snorlax,110,65,160,Kanto,65,110,30,Normal,None
139,Articuno,85,100,90,Kanto,95,125,85,Ice,Flying
140,Zapdos,90,85,90,Kanto,125,90,100,Electric,Flying
141,Moltres,100,90,90,Kanto,125,85,90,Fire,Flying
142,Dratini,64,45,41,Kanto,50,50,50,Dragon,None
143,Dragonair,84,65,61,Kanto,70,70,70,Dragon,None
144,Dragonite,134,95,91,Kanto,100,100,80,Dragon,Flying
145,Mewtwo,110,90,106,Kanto,154,90,130,Psychic,None
146,Mew,100,100,100,Kanto,100,100,100,Psychic,None
147,Chikorita,49,65,45,Johto,49,65,45,Grass,None
148,Bayleef,62,80,60,Johto,63,80,60,Grass,None
149,Meganium,82,100,80,Johto,83,100,80,Grass,None
150,Cyndaquil,52,43,39,Johto,60,50,65,Fire,None
151,Quilava,64,58,58,Johto,80,65,80,Fire,None
152,Typhlosion,84,78,78,Johto,109,85,100,Fire,None
153,Totodile,65,64,50,Johto,44,48,43,Water,None
154,Croconaw,80,80,65,Johto,59,63,58,Water,None
155,Feraligatr,105,100,85,Johto,79,83,78,Water,None
156,Sentret,46,34,35,Johto,35,45,20,Normal,None
157,Furret,76,64,85,Johto,45,55,90,Normal,None
158,Hoothoot,30,30,60,Johto,36,56,50,Normal,Flying
159,Noctowl,50,50,100,Johto,86,96,70,Normal,Flying
160,Ledyba,20,30,40,Johto,40,80,55,Bug,Flying
161,Ledian,35,50,55,Johto,55,110,85,Bug,Flying
162,Spinarak,60,40,40,Johto,40,40,30,Bug,Poison
163,Ariados,90,70,70,Johto,60,70,40,Bug,Poison
164,Crobat,90,80,85,Johto,70,80,130,Poison,Flying
165,Chinchou,38,38,75,Johto,56,56,67,Water,Electric
166,Lanturn,58,58,125,Johto,76,76,67,Water,Electric
167,Pichu,40,15,20,Johto,35,35,60,Electric,None
168,Cleffa,25,28,50,Johto,45,55,15,Fairy,None
169,Igglybuff,30,15,90,Johto,40,20,15,Normal,Fairy
170,Togepi,20,65,35,Johto,40,65,20,Fairy,None
171,Togetic,40,85,55,Johto,80,105,40,Fairy,Flying
172,Natu,50,45,40,Johto,70,45,70,Psychic,Flying
173,Xatu,75,70,65,Johto,95,70,95,Psychic,Flying
174,Mareep,40,40,55,Johto,65,45,35,Electric,None
175,Flaaffy,55,55,70,Johto,80,60,45,Electric,None
176,Ampharos,75,85,90,Johto,115,90,55,Electric,None
177,Bellossom,80,95,75,Johto,90,100,50,Grass,None
178,Marill,20,50,70,Johto,20,50,40,Water,Fairy
179,Azumarill,50,80,100,Johto,60,80,50,Water,Fairy
180,Sudowoodo,100,115,70,Johto,30,65,30,Rock,None
181,Politoed,75,75,90,Johto,90,100,70,Water,None
182,Hoppip,35,40,35,Johto,35,55,50,Grass,Flying
183,Skiploom,45,50,55,Johto,45,65,80,Grass,Flying
184,Jumpluff,55,70,75,Johto,55,95,110,Grass,Flying
185,Aipom,70,55,55,Johto,40,55,85,Normal,None
186,Sunkern,30,30,30,Johto,30,30,30,Grass,None
187,Sunflora,75,55,75,Johto,105,85,30,Grass,None
188,Yanma,65,45,65,Johto,75,45,95,Bug,Flying
189,Wooper,45,45,55,Johto,25,25,15,Water,Ground
190,Quagsire,85,85,95,Johto,65,65,35,Water,Ground
191,Espeon,65,60,65,Johto,130,95,110,Psychic,None
192,Umbreon,65,110,95,Johto,60,130,65,Dark,None
193,Murkrow,85,42,60,Johto,85,42,91,Dark,Flying
194,Slowking,75,80,95,Johto,100,110,30,Water,Psychic
195,Misdreavus,60,60,60,Johto,85,85,85,Ghost,None
196,Unown,72,48,48,Johto,72,48,48,Psychic,None
197,Wobbuffet,33,58,190,Johto,33,58,33,Psychic,None
198,Girafarig,80,65,70,Johto,90,65,85,Normal,Psychic
199,Pineco,65,90,50,Johto,35,35,15,Bug,None
200,Forretress,90,140,75,Johto,60,60,40,Bug,Steel
201,Dunsparce,70,70,100,Johto,65,65,45,Normal,None
202,Gligar,75,105,65,Johto,35,65,85,Ground,Flying
203,Steelix,85,200,75,Johto,55,65,30,Steel,Ground
204,Snubbull,80,50,60,Johto,40,40,30,Fairy,None
205,Granbull,120,75,90,Johto,60,60,45,Fairy,None
206,Qwilfish,95,85,65,Johto,55,55,85,Water,Poison
207,Scizor,130,100,70,Johto,55,80,65,Bug,Steel
208,Shuckle,10,230,20,Johto,10,230,5,Bug,Rock
209,Heracross,125,75,80,Johto,40,95,85,Bug,Fighting
210,Sneasel,95,55,55,Johto,35,75,115,Dark,Ice
211,Teddiursa,80,50,60,Johto,50,50,40,Normal,None
212,Ursaring,130,75,90,Johto,75,75,55,Normal,None
213,Slugma,40,40,40,Johto,70,40,20,Fire,None
214,Magcargo,50,120,60,Johto,90,80,30,Fire,Rock
215,Swinub,50,40,50,Johto,30,30,50,Ice,Ground
216,Piloswine,100,80,100,Johto,60,60,50,Ice,Ground
217,Corsola,55,95,65,Johto,65,95,35,Water,Rock
218,Remoraid,65,35,35,Johto,65,35,65,Water,None
219,Octillery,105,75,75,Johto,105,75,45,Water,None
220,Delibird,55,45,45,Johto,65,45,75,Ice,Flying
221,Mantine,40,70,85,Johto,80,140,70,Water,Flying
222,Skarmory,80,140,65,Johto,40,70,70,Steel,Flying
223,Houndour,60,30,45,Johto,80,50,65,Dark,Fire
224,Houndoom,90,50,75,Johto,110,80,95,Dark,Fire
225,Kingdra,95,95,75,Johto,95,95,85,Water,Dragon
226,Phanpy,60,60,90,Johto,40,40,40,Ground,None
227,Donphan,120,120,90,Johto,60,60,50,Ground,None
228,Porygon2,80,90,85,Johto,105,95,60,Normal,None
229,Stantler,95,62,73,Johto,85,65,85,Normal,None
230,Smeargle,20,35,55,Johto,20,45,75,Normal,None
231,Tyrogue,35,35,35,Johto,35,35,35,Fighting,None
232,Hitmontop,95,95,50,Johto,35,110,70,Fighting,None
233,Smoochum,30,15,45,Johto,85,65,65,Ice,Psychic
234,Elekid,63,37,45,Johto,65,55,95,Electric,None
235,Magby,75,37,45,Johto,70,55,83,Fire,None
236,Miltank,80,105,95,Johto,40,70,100,Normal,None
237,Blissey,10,10,255,Johto,75,135,55,Normal,None
238,Raikou,85,75,90,Johto,115,100,115,Electric,None
239,Entei,115,85,115,Johto,90,75,100,Fire,None
240,Suicune,75,115,100,Johto,90,115,85,Water,None
241,Larvitar,64,50,50,Johto,45,50,41,Rock,Ground
242,Pupitar,84,70,70,Johto,65,70,51,Rock,Ground
243,Tyranitar,134,110,100,Johto,95,100,61,Rock,Dark
244,Lugia,90,130,106,Johto,90,154,110,Psychic,Flying
245,Ho-oh,130,90,106,Johto,110,154,90,Fire,Flying
246,Celebi,100,100,100,Johto,100,100,100,Psychic,Grass
247,Treecko,45,35,40,Hoenn,65,55,70,Grass,None
248,Grovyle,65,45,50,Hoenn,85,65,95,Grass,None
249,Sceptile,85,65,70,Hoenn,105,85,120,Grass,None
250,Torchic,60,40,45,Hoenn,70,50,45,Fire,None
251,Combusken,85,60,60,Hoenn,85,60,55,Fire,Fighting
252,Blaziken,120,70,80,Hoenn,110,70,80,Fire,Fighting
253,Mudkip,70,50,50,Hoenn,50,50,40,Water,None
254,Marshtomp,85,70,70,Hoenn,60,70,50,Water,Ground
255,Swampert,110,90,100,Hoenn,85,90,60,Water,Ground
256,Poochyena,55,35,35,Hoenn,30,30,35,Dark,None
257,Mightyena,90,70,70,Hoenn,60,60,70,Dark,None
258,Zigzagoon,30,41,38,Hoenn,30,41,60,Normal,None
259,Linoone,70,61,78,Hoenn,50,61,100,Normal,None
260,Wurmple,45,35,45,Hoenn,20,30,20,Bug,None
261,Silcoon,35,55,50,Hoenn,25,25,15,Bug,None
262,Beautifly,70,50,60,Hoenn,100,50,65,Bug,Flying
263,Cascoon,35,55,50,Hoenn,25,25,15,Bug,None
264,Dustox,50,70,60,Hoenn,50,90,65,Bug,Poison
265,Lotad,30,30,40,Hoenn,40,50,30,Water,Grass
266,Lombre,50,50,60,Hoenn,60,70,50,Water,Grass
267,Ludicolo,70,70,80,Hoenn,90,100,70,Water,Grass
268,Seedot,40,50,40,Hoenn,30,30,30,Grass,None
269,Nuzleaf,70,40,70,Hoenn,60,40,60,Grass,Dark
270,Shiftry,100,60,90,Hoenn,90,60,80,Grass,Dark
271,Taillow,55,30,40,Hoenn,30,30,85,Normal,Flying
272,Swellow,85,60,60,Hoenn,75,50,125,Normal,Flying
273,Wingull,30,30,40,Hoenn,55,30,85,Water,Flying
274,Pelipper,50,100,60,Hoenn,95,70,65,Water,Flying
275,Ralts,25,25,28,Hoenn,45,35,40,Psychic,Fairy
276,Kirlia,35,35,38,Hoenn,65,55,50,Psychic,Fairy
277,Gardevoir,65,65,68,Hoenn,125,115,80,Psychic,Fairy
278,Surskit,30,32,40,Hoenn,50,52,65,Bug,Water
279,Masquerain,60,62,70,Hoenn,100,82,80,Bug,Flying
280,Shroomish,40,60,60,Hoenn,40,60,35,Grass,None
281,Breloom,130,80,60,Hoenn,60,60,70,Grass,Fighting
282,Slakoth,60,60,60,Hoenn,35,35,30,Normal,None
283,Vigoroth,80,80,80,Hoenn,55,55,90,Normal,None
284,Slaking,160,100,150,Hoenn,95,65,100,Normal,None
285,Nincada,45,90,31,Hoenn,30,30,40,Bug,Ground
286,Ninjask,90,45,61,Hoenn,50,50,160,Bug,Flying
287,Shedinja,90,45,1,Hoenn,30,30,40,Bug,Ghost
288,Whismur,51,23,64,Hoenn,51,23,28,Normal,None
289,Loudred,71,43,84,Hoenn,71,43,48,Normal,None
290,Exploud,91,63,104,Hoenn,91,73,68,Normal,None
291,Makuhita,60,30,72,Hoenn,20,30,25,Fighting,None
292,Hariyama,120,60,144,Hoenn,40,60,50,Fighting,None
293,Azurill,20,40,50,Hoenn,20,40,20,Normal,Fairy
294,Nosepass,45,135,30,Hoenn,45,90,30,Rock,None
295,Skitty,45,45,50,Hoenn,35,35,50,Normal,None
296,Delcatty,65,65,70,Hoenn,55,55,90,Normal,None
297,Sableye,75,75,50,Hoenn,65,65,50,Dark,Ghost
298,Mawile,85,85,50,Hoenn,55,55,50,Steel,Fairy
299,Aron,70,100,50,Hoenn,40,40,30,Steel,Rock
300,Lairon,90,140,60,Hoenn,50,50,40,Steel,Rock
301,Aggron,110,180,70,Hoenn,60,60,50,Steel,Rock
302,Meditite,40,55,30,Hoenn,40,55,60,Fighting,Psychic
303,Medicham,60,75,60,Hoenn,60,75,80,Fighting,Psychic
304,Electrike,45,40,40,Hoenn,65,40,65,Electric,None
305,Manectric,75,60,70,Hoenn,105,60,105,Electric,None
306,Plusle,50,40,60,Hoenn,85,75,95,Electric,None
307,Minun,40,50,60,Hoenn,75,85,95,Electric,None
308,Volbeat,73,75,65,Hoenn,47,85,85,Bug,None
309,Illumise,47,75,65,Hoenn,73,85,85,Bug,None
310,Roselia,60,45,50,Hoenn,100,80,65,Grass,Poison
311,Gulpin,43,53,70,Hoenn,43,53,40,Poison,None
312,Swalot,73,83,100,Hoenn,73,83,55,Poison,None
313,Carvanha,90,20,45,Hoenn,65,20,65,Water,Dark
314,Sharpedo,120,40,70,Hoenn,95,40,95,Water,Dark
315,Wailmer,70,35,130,Hoenn,70,35,60,Water,None
316,Wailord,90,45,170,Hoenn,90,45,60,Water,None
317,Numel,60,40,60,Hoenn,65,45,35,Fire,Ground
318,Camerupt,100,70,70,Hoenn,105,75,40,Fire,Ground
319,Torkoal,85,140,70,Hoenn,85,70,20,Fire,None
320,Spoink,25,35,60,Hoenn,70,80,60,Psychic,None
321,Grumpig,45,65,80,Hoenn,90,110,80,Psychic,None
322,Spinda,60,60,60,Hoenn,60,60,60,Normal,None
323,Trapinch,100,45,45,Hoenn,45,45,10,Ground,None
324,Vibrava,70,50,50,Hoenn,50,50,70,Ground,Dragon
325,Flygon,100,80,80,Hoenn,80,80,100,Ground,Dragon
326,Cacnea,85,40,50,Hoenn,85,40,35,Grass,None
327,Cacturne,115,60,70,Hoenn,115,60,55,Grass,Dark
328,Swablu,40,60,45,Hoenn,40,75,50,Normal,Flying
329,Altaria,70,90,75,Hoenn,70,105,80,Dragon,Flying
330,Zangoose,115,60,73,Hoenn,60,60,90,Normal,None
331,Seviper,100,60,73,Hoenn,100,60,65,Poison,None
332,Lunatone,55,65,90,Hoenn,95,85,70,Rock,Psychic
333,Solrock,95,85,90,Hoenn,55,65,70,Rock,Psychic
334,Barboach,48,43,50,Hoenn,46,41,60,Water,Ground
335,Whiscash,78,73,110,Hoenn,76,71,60,Water,Ground
336,Corphish,80,65,43,Hoenn,50,35,35,Water,None
337,Crawdaunt,120,85,63,Hoenn,90,55,55,Water,Dark
338,Baltoy,40,55,40,Hoenn,40,70,55,Ground,Psychic
339,Claydol,70,105,60,Hoenn,70,120,75,Ground,Psychic
340,Lileep,41,77,66,Hoenn,61,87,23,Rock,Grass
341,Cradily,81,97,86,Hoenn,81,107,43,Rock,Grass
342,Anorith,95,50,45,Hoenn,40,50,75,Rock,Bug
343,Armaldo,125,100,75,Hoenn,70,80,45,Rock,Bug
344,Feebas,15,20,20,Hoenn,10,55,80,Water,None
345,Milotic,60,79,95,Hoenn,100,125,81,Water,None
346,Castform,70,70,70,Hoenn,70,70,70,Normal,None
347,Kecleon,90,70,60,Hoenn,60,120,40,Normal,None
348,Shuppet,75,35,44,Hoenn,63,33,45,Ghost,None
349,Banette,115,65,64,Hoenn,83,63,65,Ghost,None
350,Duskull,40,90,20,Hoenn,30,90,25,Ghost,None
351,Dusclops,70,130,40,Hoenn,60,130,25,Ghost,None
352,Tropius,68,83,99,Hoenn,72,87,51,Grass,Flying
353,Chimecho,50,80,75,Hoenn,95,90,65,Psychic,None
354,Absol,130,60,65,Hoenn,75,60,75,Dark,None
355,Wynaut,23,48,95,Hoenn,23,48,23,Psychic,None
356,Snorunt,50,50,50,Hoenn,50,50,50,Ice,None
357,Glalie,80,80,80,Hoenn,80,80,80,Ice,None
358,Spheal,40,50,70,Hoenn,55,50,25,Ice,Water
359,Sealeo,60,70,90,Hoenn,75,70,45,Ice,Water
360,Walrein,80,90,110,Hoenn,95,90,65,Ice,Water
361,Clamperl,64,85,35,Hoenn,74,55,32,Water,None
362,Huntail,104,105,55,Hoenn,94,75,52,Water,None
363,Gorebyss,84,105,55,Hoenn,114,75,52,Water,None
364,Relicanth,90,130,100,Hoenn,45,65,55,Water,Rock
365,Luvdisc,30,55,43,Hoenn,40,65,97,Water,None
366,Bagon,75,60,45,Hoenn,40,30,50,Dragon,None
367,Shelgon,95,100,65,Hoenn,60,50,50,Dragon,None
368,Salamence,135,80,95,Hoenn,110,80,100,Dragon,Flying
369,Beldum,55,80,40,Hoenn,35,60,30,Steel,Psychic
370,Metang,75,100,60,Hoenn,55,80,50,Steel,Psychic
371,Metagross,135,130,80,Hoenn,95,90,70,Steel,Psychic
372,Regirock,100,200,80,Hoenn,50,100,50,Rock,None
373,Regice,50,100,80,Hoenn,100,200,50,Ice,None
374,Registeel,75,150,80,Hoenn,75,150,50,Steel,None
375,Latias,80,90,80,Hoenn,110,130,110,Dragon,Psychic
376,Latios,90,80,80,Hoenn,130,110,110,Dragon,Psychic
377,Kyogre,100,90,100,Hoenn,150,140,90,Water,None
378,Groudon,150,140,100,Hoenn,100,90,90,Ground,None
379,Rayquaza,150,90,105,Hoenn,150,90,95,Dragon,Flying
380,Jirachi,100,100,100,Hoenn,100,100,100,Steel,Psychic
381,Deoxys,150,50,50,Hoenn,150,50,150,Psychic,None
382,Turtwig,68,64,55,Sinnoh,45,55,31,Grass,None
383,Grotle,89,85,75,Sinnoh,55,65,36,Grass,None
384,Torterra,109,105,95,Sinnoh,75,85,56,Grass,Ground
385,Chimchar,58,44,44,Sinnoh,58,44,61,Fire,None
386,Monferno,78,52,64,Sinnoh,78,52,81,Fire,Fighting
387,Infernape,104,71,76,Sinnoh,104,71,108,Fire,Fighting
388,Piplup,51,53,53,Sinnoh,61,56,40,Water,None
389,Prinplup,66,68,64,Sinnoh,81,76,50,Water,None
390,Empoleon,86,88,84,Sinnoh,111,101,60,Water,Steel
391,Starly,55,30,40,Sinnoh,30,30,60,Normal,Flying
392,Staravia,75,50,55,Sinnoh,40,40,80,Normal,Flying
393,Staraptor,120,70,85,Sinnoh,50,60,100,Normal,Flying
394,Bidoof,45,40,59,Sinnoh,35,40,31,Normal,None
395,Bibarel,85,60,79,Sinnoh,55,60,71,Normal,Water
396,Kricketot,25,41,37,Sinnoh,25,41,25,Bug,None
397,Kricketune,85,51,77,Sinnoh,55,51,65,Bug,None
398,Shinx,65,34,45,Sinnoh,40,34,45,Electric,None
399,Luxio,85,49,60,Sinnoh,60,49,60,Electric,None
400,Luxray,120,79,80,Sinnoh,95,79,70,Electric,None
401,Budew,30,35,40,Sinnoh,50,70,55,Grass,Poison
402,Roserade,70,65,60,Sinnoh,125,105,90,Grass,Poison
403,Cranidos,125,40,67,Sinnoh,30,30,58,Rock,None
404,Rampardos,165,60,97,Sinnoh,65,50,58,Rock,None
405,Shieldon,42,118,30,Sinnoh,42,88,30,Rock,Steel
406,Bastiodon,52,168,60,Sinnoh,47,138,30,Rock,Steel
407,Burmy,29,45,40,Sinnoh,29,45,36,Bug,None
408,Wormadam,59,85,60,Sinnoh,79,105,36,Bug,Grass
409,Mothim,94,50,70,Sinnoh,94,50,66,Bug,Flying
410,Combee,30,42,30,Sinnoh,30,42,70,Bug,Flying
411,Vespiquen,80,102,70,Sinnoh,80,102,40,Bug,Flying
412,Pachirisu,45,70,60,Sinnoh,45,90,95,Electric,None
413,Buizel,65,35,55,Sinnoh,60,30,85,Water,None
414,Floatzel,105,55,85,Sinnoh,85,50,115,Water,None
415,Cherubi,35,45,45,Sinnoh,62,53,35,Grass,None
416,Cherrim,60,70,70,Sinnoh,87,78,85,Grass,None
417,Shellos,48,48,76,Sinnoh,57,62,34,Water,None
418,Gastrodon,83,68,111,Sinnoh,92,82,39,Water,Ground
419,Ambipom,100,66,75,Sinnoh,60,66,115,Normal,None
420,Drifloon,50,34,90,Sinnoh,60,44,70,Ghost,Flying
421,Drifblim,80,44,150,Sinnoh,90,54,80,Ghost,Flying
422,Buneary,66,44,55,Sinnoh,44,56,85,Normal,None
423,Lopunny,76,84,65,Sinnoh,54,96,105,Normal,None
424,Mismagius,60,60,60,Sinnoh,105,105,105,Ghost,None
425,Honchkrow,125,52,100,Sinnoh,105,52,71,Dark,Flying
426,Glameow,55,42,49,Sinnoh,42,37,85,Normal,None
427,Purugly,82,64,71,Sinnoh,64,59,112,Normal,None
428,Chingling,30,50,45,Sinnoh,65,50,45,Psychic,None
429,Stunky,63,47,63,Sinnoh,41,41,74,Poison,Dark
430,Skuntank,93,67,103,Sinnoh,71,61,84,Poison,Dark
431,Bronzor,24,86,57,Sinnoh,24,86,23,Steel,Psychic
432,Bronzong,89,116,67,Sinnoh,79,116,33,Steel,Psychic
433,Bonsly,80,95,50,Sinnoh,10,45,10,Rock,None
434,Happiny,5,5,100,Sinnoh,15,65,30,Normal,None
435,Chatot,65,45,76,Sinnoh,92,42,91,Normal,Flying
436,Spiritomb,92,108,50,Sinnoh,92,108,35,Ghost,Dark
437,Gible,70,45,58,Sinnoh,40,45,42,Dragon,Ground
438,Gabite,90,65,68,Sinnoh,50,55,82,Dragon,Ground
439,Garchomp,130,95,108,Sinnoh,80,85,102,Dragon,Ground
440,Munchlax,85,40,135,Sinnoh,40,85,5,Normal,None
441,Riolu,70,40,40,Sinnoh,35,40,60,Fighting,None
442,Lucario,110,70,70,Sinnoh,115,70,90,Fighting,Steel
443,Hippopotas,72,78,68,Sinnoh,38,42,32,Ground,None
444,Hippowdon,112,118,108,Sinnoh,68,72,47,Ground,None
445,Skorupi,50,90,40,Sinnoh,30,55,65,Poison,Bug
446,Drapion,90,110,70,Sinnoh,60,75,95,Poison,Dark
447,Croagunk,61,40,48,Sinnoh,61,40,50,Poison,Fighting
448,Toxicroak,106,65,83,Sinnoh,86,65,85,Poison,Fighting
449,Carnivine,100,72,74,Sinnoh,90,72,46,Grass,None
450,Finneon,49,56,49,Sinnoh,49,61,66,Water,None
451,Lumineon,69,76,69,Sinnoh,69,86,91,Water,None
452,Mantyke,20,50,45,Sinnoh,60,120,50,Water,Flying
453,Snover,62,50,60,Sinnoh,62,60,40,Grass,Ice
454,Abomasnow,92,75,90,Sinnoh,92,85,60,Grass,Ice
455,Weavile,120,65,70,Sinnoh,45,85,125,Dark,Ice
456,Magnezone,70,115,70,Sinnoh,130,90,60,Electric,Steel
457,Lickilicky,85,95,110,Sinnoh,80,95,50,Normal,None
458,Rhyperior,140,130,115,Sinnoh,55,55,40,Ground,Rock
459,Tangrowth,100,125,100,Sinnoh,110,50,50,Grass,None
460,Electivire,123,67,75,Sinnoh,95,85,95,Electric,None
461,Magmortar,95,67,75,Sinnoh,125,95,83,Fire,None
462,Togekiss,50,95,85,Sinnoh,120,115,80,Fairy,Flying
463,Yanmega,76,86,86,Sinnoh,116,56,95,Bug,Flying
464,Leafeon,110,130,65,Sinnoh,60,65,95,Grass,None
465,Glaceon,60,110,65,Sinnoh,130,95,65,Ice,None
466,Gliscor,95,125,75,Sinnoh,45,75,95,Ground,Flying
467,Mamoswine,130,80,110,Sinnoh,70,60,80,Ice,Ground
468,Porygon-Z,80,70,85,Sinnoh,135,75,90,Normal,None
469,Gallade,125,65,68,Sinnoh,65,115,80,Psychic,Fighting
470,Probopass,55,145,60,Sinnoh,75,150,40,Rock,Steel
471,Dusknoir,100,135,45,Sinnoh,65,135,45,Ghost,None
472,Froslass,80,70,70,Sinnoh,80,70,110,Ice,Ghost
473,Rotom,50,77,50,Sinnoh,95,77,91,Electric,Ghost
474,Uxie,75,130,75,Sinnoh,75,130,95,Psychic,None
475,Mesprit,105,105,80,Sinnoh,105,105,80,Psychic,None
476,Azelf,125,70,75,Sinnoh,125,70,115,Psychic,None
477,Dialga,120,120,100,Sinnoh,150,100,90,Steel,Dragon
478,Palkia,120,100,90,Sinnoh,150,120,100,Water,Dragon
479,Heatran,90,106,91,Sinnoh,130,106,77,Fire,Steel
480,Regigigas,160,110,110,Sinnoh,80,110,100,Normal,None
481,Giratina,100,120,150,Sinnoh,100,120,90,Ghost,Dragon
482,Cresselia,70,120,120,Sinnoh,75,130,85,Psychic,None
483,Phione,80,80,80,Sinnoh,80,80,80,Water,None
484,Manaphy,100,100,100,Sinnoh,100,100,100,Water,None
485,Darkrai,90,90,70,Sinnoh,135,90,125,Dark,None
486,Shaymin,100,100,100,Sinnoh,100,100,100,Grass,None
487,Arceus,120,120,120,Sinnoh,120,120,120,Normal,None
488,Victini,100,100,100,Unova,100,100,100,Psychic,Fire
489,Snivy,45,55,45,Unova,45,55,63,Grass,None
490,Servine,60,75,60,Unova,60,75,83,Grass,None
491,Serperior,75,95,75,Unova,75,95,113,Grass,None
492,Tepig,63,45,65,Unova,45,45,45,Fire,None
493,Pignite,93,55,90,Unova,70,55,55,Fire,Fighting
494,Emboar,123,65,110,Unova,100,65,65,Fire,Fighting
495,Oshawott,55,45,55,Unova,63,45,45,Water,None
496,Dewott,75,60,75,Unova,83,60,60,Water,None
497,Samurott,100,85,95,Unova,108,70,70,Water,None
498,Patrat,55,39,45,Unova,35,39,42,Normal,None
499,Watchog,85,69,60,Unova,60,69,77,Normal,None
500,Lillipup,60,45,45,Unova,25,45,55,Normal,None
501,Herdier,80,65,65,Unova,35,65,60,Normal,None
502,Stoutland,110,90,85,Unova,45,90,80,Normal,None
503,Purrloin,50,37,41,Unova,50,37,66,Dark,None
504,Liepard,88,50,64,Unova,88,50,106,Dark,None
505,Pansage,53,48,50,Unova,53,48,64,Grass,None
506,Simisage,98,63,75,Unova,98,63,101,Grass,None
507,Pansear,53,48,50,Unova,53,48,64,Fire,None
508,Simisear,98,63,75,Unova,98,63,101,Fire,None
509,Panpour,53,48,50,Unova,53,48,64,Water,None
510,Simipour,98,63,75,Unova,98,63,101,Water,None
511,Munna,25,45,76,Unova,67,55,24,Psychic,None
512,Musharna,55,85,116,Unova,107,95,29,Psychic,None
513,Pidove,55,50,50,Unova,36,30,43,Normal,Flying
514,Tranquill,77,62,62,Unova,50,42,65,Normal,Flying
515,Unfezant,115,80,80,Unova,65,55,93,Normal,Flying
516,Blitzle,60,32,45,Unova,50,32,76,Electric,None
517,Zebstrika,100,63,75,Unova,80,63,116,Electric,None
518,Roggenrola,75,85,55,Unova,25,25,15,Rock,None
519,Boldore,105,105,70,Unova,50,40,20,Rock,None
520,Gigalith,135,130,85,Unova,60,80,25,Rock,None
521,Woobat,45,43,65,Unova,55,43,72,Psychic,Flying
522,Swoobat,57,55,67,Unova,77,55,114,Psychic,Flying
523,Drilbur,85,40,60,Unova,30,45,68,Ground,None
524,Excadrill,135,60,110,Unova,50,65,88,Ground,Steel
525,Audino,60,86,103,Unova,60,86,50,Normal,None
526,Timburr,80,55,75,Unova,25,35,35,Fighting,None
527,Gurdurr,105,85,85,Unova,40,50,40,Fighting,None
528,Conkeldurr,140,95,105,Unova,55,65,45,Fighting,None
529,Tympole,50,40,50,Unova,50,40,64,Water,None
530,Palpitoad,65,55,75,Unova,65,55,69,Water,Ground
531,Seismitoad,95,75,105,Unova,85,75,74,Water,Ground
532,Throh,100,85,120,Unova,30,85,45,Fighting,None
533,Sawk,125,75,75,Unova,30,75,85,Fighting,None
534,Sewaddle,53,70,45,Unova,40,60,42,Bug,Grass
535,Swadloon,63,90,55,Unova,50,80,42,Bug,Grass
536,Leavanny,103,80,75,Unova,70,80,92,Bug,Grass
537,Venipede,45,59,30,Unova,30,39,57,Bug,Poison
538,Whirlipede,55,99,40,Unova,40,79,47,Bug,Poison
539,Scolipede,100,89,60,Unova,55,69,112,Bug,Poison
540,Cottonee,27,60,40,Unova,37,50,66,Grass,Fairy
541,Whimsicott,67,85,60,Unova,77,75,116,Grass,Fairy
542,Petilil,35,50,45,Unova,70,50,30,Grass,None
543,Lilligant,60,75,70,Unova,110,75,90,Grass,None
544,Basculin,92,65,70,Unova,80,55,98,Water,None
545,Sandile,72,35,50,Unova,35,35,65,Ground,Dark
546,Krokorok,82,45,60,Unova,45,45,74,Ground,Dark
547,Krookodile,117,80,95,Unova,65,70,92,Ground,Dark
548,Darumaka,90,45,70,Unova,15,45,50,Fire,None
549,Darmanitan,140,55,105,Unova,30,55,95,Fire,None
550,Maractus,86,67,75,Unova,106,67,60,Grass,None
551,Dwebble,65,85,50,Unova,35,35,55,Bug,Rock
552,Crustle,105,125,70,Unova,65,75,45,Bug,Rock
553,Scraggy,75,70,50,Unova,35,70,48,Dark,Fighting
554,Scrafty,90,115,65,Unova,45,115,58,Dark,Fighting
555,Sigilyph,58,80,72,Unova,103,80,97,Psychic,Flying
556,Yamask,30,85,38,Unova,55,65,30,Ghost,None
557,Cofagrigus,50,145,58,Unova,95,105,30,Ghost,None
558,Tirtouga,78,103,54,Unova,53,45,22,Water,Rock
559,Carracosta,108,133,74,Unova,83,65,32,Water,Rock
560,Archen,112,45,55,Unova,74,45,70,Rock,Flying
561,Archeops,140,65,75,Unova,112,65,110,Rock,Flying
562,Trubbish,50,62,50,Unova,40,62,65,Poison,None
563,Garbodor,95,82,80,Unova,60,82,75,Poison,None
564,Zorua,65,40,40,Unova,80,40,65,Dark,None
565,Zoroark,105,60,60,Unova,120,60,105,Dark,None
566,Minccino,50,40,55,Unova,40,40,75,Normal,None
567,Cinccino,95,60,75,Unova,65,60,115,Normal,None
568,Gothita,30,50,45,Unova,55,65,45,Psychic,None
569,Gothorita,45,70,60,Unova,75,85,55,Psychic,None
570,Gothitelle,55,95,70,Unova,95,110,65,Psychic,None
571,Solosis,30,40,45,Unova,105,50,20,Psychic,None
572,Duosion,40,50,65,Unova,125,60,30,Psychic,None
573,Reuniclus,65,75,110,Unova,125,85,30,Psychic,None
574,Ducklett,44,50,62,Unova,44,50,55,Water,Flying
575,Swanna,87,63,75,Unova,87,63,98,Water,Flying
576,Vanillite,50,50,36,Unova,65,60,44,Ice,None
577,Vanillish,65,65,51,Unova,80,75,59,Ice,None
578,Vanilluxe,95,85,71,Unova,110,95,79,Ice,None
579,Deerling,60,50,60,Unova,40,50,75,Normal,Grass
580,Sawsbuck,100,70,80,Unova,60,70,95,Normal,Grass
581,Emolga,75,60,55,Unova,75,60,103,Electric,Flying
582,Karrablast,75,45,50,Unova,40,45,60,Bug,None
583,Escavalier,135,105,70,Unova,60,105,20,Bug,Steel
584,Foongus,55,45,69,Unova,55,55,15,Grass,Poison
585,Amoonguss,85,70,114,Unova,85,80,30,Grass,Poison
586,Frillish,40,50,55,Unova,65,85,40,Water,Ghost
587,Jellicent,60,70,100,Unova,85,105,60,Water,Ghost
588,Alomomola,75,80,165,Unova,40,45,65,Water,None
589,Joltik,47,50,50,Unova,57,50,65,Bug,Electric
590,Galvantula,77,60,70,Unova,97,60,108,Bug,Electric
591,Ferroseed,50,91,44,Unova,24,86,10,Grass,Steel
592,Ferrothorn,94,131,74,Unova,54,116,20,Grass,Steel
593,Klink,55,70,40,Unova,45,60,30,Steel,None
594,Klang,80,95,60,Unova,70,85,50,Steel,None
595,Klinklang,100,115,60,Unova,70,85,90,Steel,None
596,Tynamo,55,40,35,Unova,45,40,60,Electric,None
597,Eelektrik,85,70,65,Unova,75,70,40,Electric,None
598,Eelektross,115,80,85,Unova,105,80,50,Electric,None
599,Elgyem,55,55,55,Unova,85,55,30,Psychic,None
600,Beheeyem,75,75,75,Unova,125,95,40,Psychic,None
601,Litwick,30,55,50,Unova,65,55,20,Ghost,Fire
602,Lampent,40,60,60,Unova,95,60,55,Ghost,Fire
603,Chandelure,55,90,60,Unova,145,90,80,Ghost,Fire
604,Axew,87,60,46,Unova,30,40,57,Dragon,None
605,Fraxure,117,70,66,Unova,40,50,67,Dragon,None
606,Haxorus,147,90,76,Unova,60,70,97,Dragon,None
607,Cubchoo,70,40,55,Unova,60,40,40,Ice,None
608,Beartic,130,80,95,Unova,70,80,50,Ice,None
609,Cryogonal,50,50,80,Unova,95,135,105,Ice,None
610,Shelmet,40,85,50,Unova,40,65,25,Bug,None
611,Accelgor,70,40,80,Unova,100,60,145,Bug,None
612,Stunfisk,66,84,109,Unova,81,99,32,Ground,Electric
613,Mienfoo,85,50,45,Unova,55,50,65,Fighting,None
614,Mienshao,125,60,65,Unova,95,60,105,Fighting,None
615,Druddigon,120,90,77,Unova,60,90,48,Dragon,None
616,Golett,74,50,59,Unova,35,50,35,Ground,Ghost
617,Golurk,124,80,89,Unova,55,80,55,Ground,Ghost
618,Pawniard,85,70,45,Unova,40,40,60,Dark,Steel
619,Bisharp,125,100,65,Unova,60,70,70,Dark,Steel
620,Bouffalant,110,95,95,Unova,40,95,55,Normal,None
621,Rufflet,83,50,70,Unova,37,50,60,Normal,Flying
622,Braviary,123,75,100,Unova,57,75,80,Normal,Flying
623,Vullaby,55,75,70,Unova,45,65,60,Dark,Flying
624,Mandibuzz,65,105,110,Unova,55,95,80,Dark,Flying
625,Heatmor,97,66,85,Unova,105,66,65,Fire,None
626,Durant,109,112,58,Unova,48,48,109,Bug,Steel
627,Deino,65,50,52,Unova,45,50,38,Dark,Dragon
628,Zweilous,85,70,72,Unova,65,70,58,Dark,Dragon
629,Hydreigon,105,90,92,Unova,125,90,98,Dark,Dragon
630,Larvesta,85,55,55,Unova,50,55,60,Bug,Fire
631,Volcarona,60,65,85,Unova,135,105,100,Bug,Fire
632,Cobalion,90,129,91,Unova,90,72,108,Steel,Fighting
633,Terrakion,129,90,91,Unova,72,90,108,Rock,Fighting
634,Virizion,90,72,91,Unova,90,129,108,Grass,Fighting
635,Tornadus,115,70,79,Unova,125,80,111,Flying,None
636,Thundurus,115,70,79,Unova,125,80,111,Electric,Flying
637,Reshiram,120,100,100,Unova,150,120,90,Dragon,Fire
638,Zekrom,150,120,100,Unova,120,100,90,Dragon,Electric
639,Landorus,125,90,89,Unova,115,80,101,Ground,Flying
640,Kyurem,130,90,125,Unova,130,90,95,Dragon,Ice
641,Keldeo,72,90,91,Unova,129,90,108,Water,Fighting
642,Meloetta,77,77,100,Unova,128,128,90,Normal,Psychic
643,Genesect,120,95,71,Unova,120,95,99,Bug,Steel
644,Chespin,61,65,56,Kalos,48,45,38,Grass,None
645,Quilladin,78,95,61,Kalos,56,58,57,Grass,None
646,Chesnaught,107,122,88,Kalos,74,75,64,Grass,Fighting
647,Fennekin,45,40,40,Kalos,62,60,60,Fire,None
648,Braixen,59,58,59,Kalos,90,70,73,Fire,None
649,Delphox,69,72,75,Kalos,114,100,104,Fire,Psychic
650,Froakie,56,40,41,Kalos,62,44,71,Water,None
651,Frogadier,63,52,54,Kalos,83,56,97,Water,None
652,Greninja,95,67,72,Kalos,103,71,122,Water,Dark
653,Bunnelby,36,38,38,Kalos,32,36,57,Normal,None
654,Diggersby,56,77,85,Kalos,50,77,78,Normal,Ground
655,Fletchling,50,43,45,Kalos,40,38,62,Normal,Flying
656,Fletchinder,73,55,62,Kalos,56,52,84,Fire,Flying
657,Talonflame,81,71,78,Kalos,74,69,126,Fire,Flying
658,Scatterbug,35,40,38,Kalos,27,25,35,Bug,None
659,Spewpa,22,60,45,Kalos,27,30,29,Bug,None
660,Vivillon,52,50,80,Kalos,90,50,89,Bug,Flying
661,Litleo,50,58,62,Kalos,73,54,72,Fire,Normal
662,Pyroar,68,72,86,Kalos,109,66,106,Fire,Normal
663,Floette,45,47,54,Kalos,75,98,52,Fairy,None
664,Florges,65,68,78,Kalos,112,154,75,Fairy,None
665,Skiddo,65,48,66,Kalos,62,57,52,Grass,None
666,Gogoat,100,62,123,Kalos,97,81,68,Grass,None
667,Pancham,82,62,67,Kalos,46,48,43,Fighting,None
668,Pangoro,124,78,95,Kalos,69,71,58,Fighting,Dark
669,Furfrou,80,60,75,Kalos,65,90,102,Normal,None
670,Espurr,48,54,62,Kalos,63,60,68,Psychic,None
671,Meowstic,48,76,74,Kalos,83,81,104,Psychic,None
672,Honedge,80,100,45,Kalos,35,37,28,Steel,Ghost
673,Doublade,110,150,59,Kalos,45,49,35,Steel,Ghost
674,Aegislash,50,140,60,Kalos,50,140,60,Steel,Ghost
675,Spritzee,52,60,78,Kalos,63,65,23,Fairy,None
676,Aromatisse,72,72,101,Kalos,99,89,29,Fairy,None
677,Swirlix,48,66,62,Kalos,59,57,49,Fairy,None
678,Slurpuff,80,86,82,Kalos,85,75,72,Fairy,None
679,Inkay,54,53,53,Kalos,37,46,45,Dark,Psychic
680,Malamar,92,88,86,Kalos,68,75,73,Dark,Psychic
681,Binacle,52,67,42,Kalos,39,56,50,Rock,Water
682,Barbaracle,105,115,72,Kalos,54,86,68,Rock,Water
683,Skrelp,60,60,50,Kalos,60,60,30,Poison,Water
684,Dragalge,75,90,65,Kalos,97,123,44,Poison,Dragon
685,Clauncher,53,62,50,Kalos,58,63,44,Water,None
686,Clawitzer,73,88,71,Kalos,120,89,59,Water,None
687,Helioptile,38,33,44,Kalos,61,43,70,Electric,Normal
688,Heliolisk,55,52,62,Kalos,109,94,109,Electric,Normal
689,Tyrunt,89,77,58,Kalos,45,45,48,Rock,Dragon
690,Tyrantrum,121,119,82,Kalos,69,59,71,Rock,Dragon
691,Amaura,59,50,77,Kalos,67,63,46,Rock,Ice
692,Aurorus,77,72,123,Kalos,99,92,58,Rock,Ice
693,Sylveon,65,65,95,Kalos,110,130,60,Fairy,None
694,Hawlucha,92,75,78,Kalos,74,63,118,Fighting,Flying
695,Dedenne,58,57,67,Kalos,81,67,101,Electric,Fairy
696,Carbink,50,150,50,Kalos,50,150,50,Rock,Fairy
697,Goomy,50,35,45,Kalos,55,75,40,Dragon,None
698,Sliggoo,75,53,68,Kalos,83,113,60,Dragon,None
699,Goodra,100,70,90,Kalos,110,150,80,Dragon,None
700,Klefki,80,91,57,Kalos,80,87,75,Steel,Fairy
701,Phantump,70,48,43,Kalos,50,60,38,Ghost,Grass
702,Trevenant,110,76,85,Kalos,65,82,56,Ghost,Grass
703,Pumpkaboo,66,70,49,Kalos,44,55,51,Ghost,Grass
704,Gourgeist,90,122,65,Kalos,58,75,84,Ghost,Grass
705,Bergmite,69,85,55,Kalos,32,35,28,Ice,None
706,Avalugg,117,184,95,Kalos,44,46,28,Ice,None
707,Noibat,30,35,40,Kalos,45,40,55,Flying,Dragon
708,Noivern,70,80,85,Kalos,97,80,123,Flying,Dragon
709,Xerneas,131,95,126,Kalos,131,98,99,Fairy,None
710,Yveltal,131,95,126,Kalos,131,98,99,Dark,Flying
711,Zygarde,100,121,108,Kalos,81,95,95,Dragon,Ground
712,Diancie,100,150,50,Kalos,100,150,50,Rock,Fairy
713,Hoopa,110,60,80,Kalos,150,130,70,Psychic,Ghost
714,Volcanion,110,120,80,Kalos,130,90,70,Fire,Water
715,Rowlet,55,55,68,Alola,50,50,42,Grass,Flying
716,Dartrix,75,75,78,Alola,70,70,52,Grass,Flying
717,Decidueye,107,75,78,Alola,100,100,70,Grass,Ghost
718,Litten,65,40,45,Alola,60,40,70,Fire,None
719,Torracat,85,50,65,Alola,80,50,90,Fire,None
720,Incineroar,115,90,95,Alola,80,90,60,Fire,Dark
721,Popplio,54,54,50,Alola,66,56,40,Water,None
722,Brionne,69,69,60,Alola,91,81,50,Water,None
723,Primarina,74,74,80,Alola,126,116,60,Water,Fairy
724,Pikipek,75,30,35,Alola,30,30,65,Normal,Flying
725,Trumbeak,85,50,55,Alola,40,50,75,Normal,Flying
726,Toucannon,120,75,80,Alola,75,75,60,Normal,Flying
727,Yungoos,70,30,48,Alola,30,30,45,Normal,None
728,Gumshoos,110,60,88,Alola,55,60,45,Normal,None
729,Grubbin,62,45,47,Alola,55,45,46,Bug,None
730,Charjabug,82,95,57,Alola,55,75,36,Bug,Electric
731,Vikavolt,70,90,77,Alola,145,75,43,Bug,Electric
732,Crabrawler,82,57,47,Alola,42,47,63,Fighting,None
733,Crabominable,132,77,97,Alola,62,67,43,Fighting,Ice
734,Oricorio,70,70,75,Alola,98,70,93,Fire,Flying
735,Cutiefly,45,40,40,Alola,55,40,84,Bug,Fairy
736,Ribombee,55,60,60,Alola,95,70,124,Bug,Fairy
737,Rockruff,65,40,45,Alola,30,40,60,Rock,None
738,Lycanroc,115,65,75,Alola,55,65,112,Rock,None
739,Wishiwashi,20,20,45,Alola,25,25,40,Water,None
740,Mareanie,53,62,50,Alola,43,52,45,Poison,Water
741,Toxapex,63,152,50,Alola,53,142,35,Poison,Water
742,Mudbray,100,70,70,Alola,45,55,45,Ground,None
743,Mudsdale,125,100,100,Alola,55,85,35,Ground,None
744,Dewpider,40,52,38,Alola,40,72,27,Water,Bug
745,Araquanid,70,92,68,Alola,50,132,42,Water,Bug
746,Fomantis,55,35,40,Alola,50,35,35,Grass,None
747,Lurantis,105,90,70,Alola,80,90,45,Grass,None
748,Morelull,35,55,40,Alola,65,75,15,Grass,Fairy
749,Shiinotic,45,80,60,Alola,90,100,30,Grass,Fairy
750,Salandit,44,40,48,Alola,71,40,77,Poison,Fire
751,Salazzle,64,60,68,Alola,111,60,117,Poison,Fire
752,Stufful,75,50,70,Alola,45,50,50,Normal,Fighting
753,Bewear,125,80,120,Alola,55,60,60,Normal,Fighting
754,Bounsweet,30,38,42,Alola,30,38,32,Grass,None
755,Steenee,40,48,52,Alola,40,48,62,Grass,None
756,Tsareena,120,98,72,Alola,50,98,72,Grass,None
757,Comfey,52,90,51,Alola,82,110,100,Fairy,None
758,Oranguru,60,80,90,Alola,90,110,60,Normal,Psychic
759,Passimian,120,90,100,Alola,40,60,80,Fighting,None
760,Wimpod,35,40,25,Alola,20,30,80,Bug,Water
761,Golisopod,125,140,75,Alola,60,90,40,Bug,Water
762,Sandygast,55,80,55,Alola,70,45,15,Ghost,Ground
763,Palossand,75,110,85,Alola,100,75,35,Ghost,Ground
764,Pyukumuku,60,130,55,Alola,30,130,5,Water,None
765,Silvally,95,95,95,Alola,95,95,95,Normal,None
766,Minior,60,100,60,Alola,60,100,60,Rock,Flying
767,Komala,115,65,65,Alola,75,95,65,Normal,None
768,Turtonator,78,135,60,Alola,91,85,36,Fire,Dragon
769,Togedemaru,98,63,65,Alola,40,73,96,Electric,Steel
770,Mimikyu,90,80,55,Alola,50,105,96,Ghost,Fairy
771,Bruxish,105,70,68,Alola,70,70,92,Water,Psychic
772,Drampa,60,85,78,Alola,135,91,36,Normal,Dragon
773,Dhelmise,131,100,70,Alola,86,90,40,Ghost,Grass
774,Jangmo-o,55,65,45,Alola,45,45,45,Dragon,None
775,Hakamo-o,75,90,55,Alola,65,70,65,Dragon,Fighting
776,Kommo-o,110,125,75,Alola,100,105,85,Dragon,Fighting
777,Cosmog,29,31,43,Alola,29,31,37,Psychic,None
778,Cosmoem,29,131,43,Alola,29,131,37,Psychic,None
779,Solgaleo,137,107,137,Alola,113,89,97,Psychic,Steel
780,Lunala,113,89,137,Alola,137,107,97,Psychic,Ghost
781,Nihilego,53,47,109,Alola,127,131,103,Rock,Poison
782,Buzzwole,139,139,107,Alola,53,53,79,Bug,Fighting
783,Pheromosa,137,37,71,Alola,137,37,151,Bug,Fighting
784,Xurkitree,89,71,83,Alola,173,71,83,Electric,None
785,Celesteela,101,103,97,Alola,107,101,61,Steel,Flying
786,Kartana,181,131,59,Alola,59,31,109,Grass,Steel
787,Guzzlord,101,53,223,Alola,97,53,43,Dark,Dragon
788,Necrozma,107,101,97,Alola,127,89,79,Psychic,None
789,Magearna,95,115,80,Alola,130,115,65,Steel,Fairy
790,Marshadow,125,80,90,Alola,90,90,125,Fighting,Ghost
791,Poipole,73,67,67,Alola,73,67,73,Poison,None
792,Naganadel,73,73,73,Alola,127,73,121,Poison,Dragon
793,Stakataka,131,211,61,Alola,53,101,13,Rock,Steel
794,Blacephalon,127,53,53,Alola,151,79,107,Fire,Ghost
795,Zeraora,112,75,88,Alola,102,80,143,Electric,None
796,Meltan,65,65,46,Alola,55,35,34,Steel,None
797,Melmetal,143,143,135,Alola,80,65,34,Steel,None
798,Grookey,65,50,50,Galar,40,40,65,Grass,None
799,Thwackey,85,70,70,Galar,55,60,80,Grass,None
800,Rillaboom,125,90,100,Galar,60,70,85,Grass,None
801,Scorbunny,71,40,50,Galar,40,40,69,Fire,None
802,Raboot,86,60,65,Galar,55,60,94,Fire,None
803,Cinderace,116,75,80,Galar,65,75,119,Fire,None
804,Sobble,40,40,50,Galar,70,40,70,Water,None
805,Drizzile,60,55,65,Galar,95,55,90,Water,None
806,Inteleon,85,65,70,Galar,125,65,120,Water,None
807,Skwovet,55,55,70,Galar,35,35,25,Normal,None
808,Greedent,95,95,120,Galar,55,75,20,Normal,None
809,Rookidee,47,35,38,Galar,33,35,57,Flying,None
810,Corvisquire,67,55,68,Galar,43,55,77,Flying,None
811,Corviknight,87,105,98,Galar,53,85,67,Flying,Steel
812,Blipbug,20,20,25,Galar,25,45,45,Bug,None
813,Dottler,35,80,50,Galar,50,90,30,Bug,Psychic
814,Orbeetle,45,110,60,Galar,80,120,90,Bug,Psychic
815,Nickit,28,28,40,Galar,47,52,50,Dark,None
816,Thievul,58,58,70,Galar,87,92,90,Dark,None
817,Gossifleur,40,60,40,Galar,40,60,10,Grass,None
818,Eldegoss,50,90,60,Galar,80,120,60,Grass,None
819,Wooloo,40,55,42,Galar,40,45,48,Normal,None
820,Dubwool,80,100,72,Galar,60,90,88,Normal,None
821,Chewtle,64,50,50,Galar,38,38,44,Water,None
822,Drednaw,115,90,90,Galar,48,68,74,Water,Rock
823,Yamper,45,50,59,Galar,40,50,26,Electric,None
824,Boltund,90,60,69,Galar,90,60,121,Electric,None
825,Rolycoly,40,50,30,Galar,40,50,30,Rock,None
826,Carkol,60,90,80,Galar,60,70,50,Rock,Fire
827,Coalossal,80,120,110,Galar,80,90,30,Rock,Fire
828,Applin,40,80,40,Galar,40,40,20,Grass,Dragon
829,Flapple,110,80,70,Galar,95,60,70,Grass,Dragon
830,Appletun,85,80,110,Galar,100,80,30,Grass,Dragon
831,Silicobra,57,75,52,Galar,35,50,46,Ground,None
832,Sandaconda,107,125,72,Galar,65,70,71,Ground,None
833,Cramorant,85,55,70,Galar,85,95,85,Flying,Water
834,Arrokuda,63,40,41,Galar,40,30,66,Water,None
835,Barraskewda,123,60,61,Galar,60,50,136,Water,None
836,Toxel,38,35,40,Galar,54,35,40,Electric,Poison
837,Toxtricity,98,70,75,Galar,114,70,75,Electric,Poison
838,Sizzlipede,65,45,50,Galar,50,50,45,Fire,Bug
839,Centiskorch,115,65,100,Galar,90,90,65,Fire,Bug
840,Clobbopus,68,60,50,Galar,50,50,32,Fighting,None
841,Grapploct,118,90,80,Galar,70,80,42,Fighting,None
842,Sinistea,45,45,40,Galar,74,54,50,Ghost,None
843,Polteageist,65,65,60,Galar,134,114,70,Ghost,None
844,Hatenna,30,45,42,Galar,56,53,39,Psychic,None
845,Hattrem,40,65,57,Galar,86,73,49,Psychic,None
846,Hatterene,90,95,57,Galar,136,103,29,Psychic,Fairy
847,Impidimp,45,30,45,Galar,55,40,50,Dark,Fairy
848,Morgrem,60,45,65,Galar,75,55,70,Dark,Fairy
849,Grimmsnarl,120,65,95,Galar,95,75,60,Dark,Fairy
850,Obstagoon,90,101,93,Galar,60,81,95,Dark,Normal
851,Perrserker,110,100,70,Galar,50,60,50,Steel,None
852,Cursola,95,50,60,Galar,145,130,30,Ghost,None
853,Runerigus,95,145,58,Galar,50,105,30,Ground,Ghost
854,Milcery,40,40,45,Galar,50,61,34,Fairy,None
855,Alcremie,60,75,65,Galar,110,121,64,Fairy,None
856,Falinks,100,100,65,Galar,70,60,75,Fighting,None
857,Pincurchin,101,95,48,Galar,91,85,15,Electric,None
858,Snom,25,35,30,Galar,45,30,20,Ice,Bug
859,Frosmoth,65,60,70,Galar,125,90,65,Ice,Bug
860,Stonjourner,125,135,100,Galar,20,20,70,Rock,None
861,Eiscue,80,110,75,Galar,65,90,50,Ice,None
862,Indeedee,65,55,60,Galar,105,95,95,Psychic,Normal
863,Morpeko,95,58,58,Galar,70,58,97,Electric,Dark
864,Cufant,80,49,72,Galar,40,49,40,Steel,None
865,Copperajah,130,69,122,Galar,80,69,30,Steel,None
866,Dracozolt,100,90,90,Galar,80,70,75,Electric,Dragon
867,Arctozolt,100,90,90,Galar,90,80,55,Electric,Ice
868,Dracovish,90,100,90,Galar,70,80,75,Water,Dragon
869,Arctovish,90,100,90,Galar,80,90,55,Water,Ice
870,Duraludon,95,115,70,Galar,120,50,85,Steel,Dragon
871,Dreepy,60,30,28,Galar,40,30,82,Dragon,Ghost
872,Drakloak,80,50,68,Galar,60,50,102,Dragon,Ghost
873,Dragapult,120,75,88,Galar,100,75,142,Dragon,Ghost
874,Zacian,170,115,92,Galar,80,115,148,Fairy,Steel
875,Zamazenta,130,145,92,Galar,80,145,128,Fighting,Steel
876,Eternatus,85,95,140,Galar,145,95,130,Poison,Dragon
877,Kubfu,90,60,60,Galar,53,50,72,Fighting,None
878,Urshifu,130,100,100,Galar,63,60,97,Fighting,Dark
879,Zarude,120,105,105,Galar,70,95,105,Dark,Grass
880,Regieleki,100,50,80,Galar,100,50,200,Electric,None
881,Regidrago,100,50,200,Galar,100,50,80,Dragon,None
882,Glastrier,145,130,100,Galar,65,110,30,Ice,None
883,Spectrier,65,60,100,Galar,145,80,130,Ghost,None
884,Calyrex,80,80,100,Galar,80,80,80,Psychic,Grass
Index,Title,Genre,Director,Cast,Year,Runtime,Rating,Revenue
0,Guardians of the Galaxy,"Action,Adventure,Sci-Fi",James Gunn,"Chris Pratt, Vin Diesel, Bradley Cooper, Zoe Saldana",2014,121,8.1,333.13
1,Prometheus,"Adventure,Mystery,Sci-Fi",Ridley Scott,"Noomi Rapace, Logan Marshall-Green, Michael fassbender, Charlize Theron",2012,124,7,126.46M
2,Split,"Horror,Thriller",M. Night Shyamalan,"James McAvoy, Anya Taylor-Joy, Haley Lu Richardson, Jessica Sula",2016,117,7.3,138.12M
3,Sing,"Animation,Comedy,Family",Christophe Lourdelet,"Matthew McConaughey,Reese Witherspoon, Seth MacFarlane, Scarlett Johansson",2016,108,7.2,270.32
4,Suicide Squad,"Action,Adventure,Fantasy",David Ayer,"Will Smith, Jared Leto, Margot Robbie, Viola Davis",2016,123,6.2,325.02
5,The Great Wall,"Action,Adventure,Fantasy",Yimou Zhang,"Matt Damon, Tian Jing, Willem Dafoe, Andy Lau",2016,103,6.1,45.13
6,La La Land,"Comedy,Drama,Music",Damien Chazelle,"Ryan Gosling, Emma Stone, Rosemarie DeWitt, J.K. Simmons",2016,128,8.3,151.06M
7,Mindhorn,Comedy,Sean Foley,"Essie Davis, Andrea Riseborough, Julian Barratt,Kenneth Branagh",2016,89,6.4,0
8,The Lost City of Z,"Action,Adventure,Biography",James Gray,"Charlie Hunnam, Robert Pattinson, Sienna Miller, Tom Holland",2016,141,7.1,8.01
9,Passengers,"Adventure,Drama,Romance",Morten Tyldum,"Jennifer Lawrence, Chris Pratt, Michael Sheen,Laurence Fishburne",2016,116,7,100.01M
10,Fantastic Beasts and Where to Find Them,"Adventure,Family,Fantasy",David Yates,"Eddie Redmayne, Katherine Waterston, Alison Sudol,Dan Fogler",2016,133,7.5,234.02
11,Hidden Figures,"Biography,Drama,History",Theodore Melfi,"Taraji P. Henson, Octavia Spencer, Janelle Monáe,Kevin Costner",2016,127,7.8,169.27M
12,Rogue One,"Action,Adventure,Sci-Fi",Gareth Edwards,"Felicity Jones, Diego Luna, Alan Tudyk, Donnie Yen",2016,133,7.9,532.17
13,Moana,"Animation,Adventure,Comedy",Ron Clements,"Auli'i Cravalho, Dwayne Johnson, Rachel House, Temuera Morrison",2016,107,7.7,248.75
14,Colossal,"Action,Comedy,Drama",Nacho Vigalondo,"Anne Hathaway, Jason Sudeikis, Austin Stowell,Tim Blake Nelson",2016,109,6.4,2.87
15,The Secret Life of Pets,"Animation,Adventure,Comedy",Chris Renaud,"Louis C.K., Eric Stonestreet, Kevin Hart, Lake Bell",2016,87,6.6,368.31
16,Hacksaw Ridge,"Biography,Drama,History",Mel Gibson,"Andrew Garfield, Sam Worthington, Luke Bracey,Teresa Palmer",2016,139,8.2,67.12
17,Jason Bourne,"Action,Thriller",Paul Greengrass,"Matt Damon, Tommy Lee Jones, Alicia Vikander,Vincent Cassel",2016,123,6.7,162.16M
18,Lion,"Biography,Drama",Garth Davis,"Dev Patel, Nicole Kidman, Rooney Mara, Sunny Pawar",2016,118,8.1,51.69
19,Arrival,"Drama,Mystery,Sci-Fi",Denis Villeneuve,"Amy Adams, Jeremy Renner, Forest Whitaker,Michael Stuhlbarg",2016,116,8,100.5M
20,Gold,"Adventure,Drama,Thriller",Stephen Gaghan,"Matthew McConaughey, Edgar Ramírez, Bryce Dallas Howard, Corey Stoll",2016,120,6.7,7.22
21,Manchester by the Sea,Drama,Kenneth Lonergan,"Casey Affleck, Michelle Williams, Kyle Chandler,Lucas Hedges",2016,137,7.9,47.7
22,Hounds of Love,"Crime,Drama,Horror",Ben Young,"Emma Booth, Ashleigh Cummings, Stephen Curry,Susie Porter",2016,108,6.7,0
23,Trolls,"Animation,Adventure,Comedy",Walt Dohrn,"Anna Kendrick, Justin Timberlake,Zooey Deschanel, Christopher Mintz-Plasse",2016,92,6.5,153.69M
24,Independence Day: Resurgence,"Action,Adventure,Sci-Fi",Roland Emmerich,"Liam Hemsworth, Jeff Goldblum, Bill Pullman,Maika Monroe",2016,120,5.3,103.14M
25,Paris pieds nus,Comedy,Dominique Abel,"Fiona Gordon, Dominique Abel,Emmanuelle Riva, Pierre Richard",2016,83,6.8,0
26,Bahubali: The Beginning,"Action,Adventure,Drama",S.S. Rajamouli,"Prabhas, Rana Daggubati, Anushka Shetty,Tamannaah Bhatia",2015,159,8.3,6.5
27,Dead Awake,"Horror,Thriller",Phillip Guzman,"Jocelin Donahue, Jesse Bradford, Jesse Borrego,Lori Petty",2016,99,4.7,0.01
28,Bad Moms,Comedy,Jon Lucas,"Mila Kunis, Kathryn Hahn, Kristen Bell,Christina Applegate",2016,100,6.2,113.08M
29,Assassin's Creed,"Action,Adventure,Drama",Justin Kurzel,"Michael Fassbender, Marion Cotillard, Jeremy Irons,Brendan Gleeson",2016,115,5.9,54.65
30,Why Him?,Comedy,John Hamburg,"Zoey Deutch, James Franco, Tangie Ambrose,Cedric the Entertainer",2016,111,6.3,60.31
31,Nocturnal Animals,"Drama,Thriller",Tom Ford,"Amy Adams, Jake Gyllenhaal, Michael Shannon, Aaron Taylor-Johnson",2016,116,7.5,10.64
32,X-Men: Apocalypse,"Action,Adventure,Sci-Fi",Bryan Singer,"James McAvoy, Michael Fassbender, Jennifer Lawrence, Nicholas Hoult",2016,144,7.1,155.33M
33,Deadpool,"Action,Adventure,Comedy",Tim Miller,"Ryan Reynolds, Morena Baccarin, T.J. Miller, Ed Skrein",2016,108,8,363.02
34,Resident Evil: The Final Chapter,"Action,Horror,Sci-Fi",Paul W.S. Anderson,"Milla Jovovich, Iain Glen, Ali Larter, Shawn Roberts",2016,107,5.6,26.84
35,Captain America: Civil War,"Action,Adventure,Sci-Fi",Anthony Russo,"Chris Evans, Robert Downey Jr.,Scarlett Johansson, Sebastian Stan",2016,147,7.9,408.08
36,Interstellar,"Adventure,Drama,Sci-Fi",Christopher Nolan,"Matthew McConaughey, Anne Hathaway, Jessica Chastain, Mackenzie Foy",2014,169,8.6,187.99M
37,Doctor Strange,"Action,Adventure,Fantasy",Scott Derrickson,"Benedict Cumberbatch, Chiwetel Ejiofor, Rachel McAdams, Benedict Wong",2016,115,7.6,232.6
38,The Magnificent Seven,"Action,Adventure,Western",Antoine Fuqua,"Denzel washington, Chris Pratt, Ethan Hawke,Vincent D'Onofrio",2016,132,6.9,93.38
39,5/25/1977,"Comedy,Drama",Patrick Read Johnson,"John Francis Daley, Austin Pendleton, Colleen Camp, Neil Flynn",2007,113,7.1,0
40,Sausage Party,"Animation,Adventure,Comedy",Greg Tiernan,"Seth Rogen, Kristen Wiig, Jonah Hill, Alistair Abell",2016,89,6.3,97.66
41,Moonlight,Drama,Barry Jenkins,"Mahershala Ali, Shariff Earp, Duan Sanderson, Alex R. Hibbert",2016,111,7.5,27.85
42,Don't Fuck in the Woods,Horror,Shawn Burkett,"Brittany Blanton, Ayse Howard, Roman Jossart,Nadia White",2016,73,2.7,0
43,The Founder,"Biography,Drama,History",John Lee Hancock,"Michael Keaton, Nick Offerman, John Carroll Lynch, Linda Cardellini",2016,115,7.2,12.79
44,Lowriders,Drama,Ricardo de Montreuil,"Gabriel Chavarria, Demián Bichir, Theo Rossi,Tony Revolori",2016,99,6.3,4.21
45,Pirates of the Caribbean: On Stranger Tides,"Action,Adventure,Fantasy",Rob Marshall,"Johnny Depp, Penélope Cruz, Ian McShane, Geoffrey Rush",2011,136,6.7,241.06
46,Miss Sloane,"Drama,Thriller",John Madden,"Jessica Chastain, Mark Strong, Gugu Mbatha-Raw,Michael Stuhlbarg",2016,132,7.3,3.44
47,Fallen,"Adventure,Drama,Fantasy",Scott Hicks,"Hermione Corfield, Addison Timlin, Joely Richardson,Jeremy Irvine",2016,91,5.6,0
48,Star Trek Beyond,"Action,Adventure,Sci-Fi",Justin Lin,"Chris Pine, Zachary Quinto, Karl Urban, Zoe Saldana",2016,122,7.1,158.8M
49,The Last Face,Drama,Sean Penn,"Charlize Theron, Javier Bardem, Adèle Exarchopoulos,Jared Harris",2016,130,3.7,0
50,Star Wars: Episode VII - The Force Awakens,"Action,Adventure,Fantasy",J.J. Abrams,"Daisy Ridley, John Boyega, Oscar Isaac, Domhnall Gleeson",2015,136,8.1,936.63
51,Underworld: Blood Wars,"Action,Adventure,Fantasy",Anna Foerster,"Kate Beckinsale, Theo James, Tobias Menzies, Lara Pulver",2016,91,5.8,30.35
52,Mother's Day,"Comedy,Drama",Garry Marshall,"Jennifer Aniston, Kate Hudson, Julia Roberts, Jason Sudeikis",2016,118,5.6,32.46
53,John Wick,"Action,Crime,Thriller",Chad Stahelski,"Keanu Reeves, Michael Nyqvist, Alfie Allen, Willem Dafoe",2014,101,7.2,43
54,The Dark Knight,"Action,Crime,Drama",Christopher Nolan,"Christian Bale, Heath Ledger, Aaron Eckhart,Michael Caine",2008,152,9,533.32
55,Silence,"Adventure,Drama,History",Martin Scorsese,"Andrew Garfield, Adam Driver, Liam Neeson,Tadanobu Asano",2016,161,7.3,7.08
56,Don't Breathe,"Crime,Horror,Thriller",Fede Alvarez,"Stephen Lang, Jane Levy, Dylan Minnette, Daniel Zovatto",2016,88,7.2,89.21
57,Me Before You,"Drama,Romance",Thea Sharrock,"Emilia Clarke, Sam Claflin, Janet McTeer, Charles Dance",2016,106,7.4,56.23
58,Their Finest,"Comedy,Drama,Romance",Lone Scherfig,"Gemma Arterton, Sam Claflin, Bill Nighy, Jack Huston",2016,117,7,3.18
59,Sully,"Biography,Drama",Clint Eastwood,"Tom Hanks, Aaron Eckhart, Laura Linney, Valerie Mahaffey",2016,96,7.5,125.07M
60,Batman v Superman: Dawn of Justice,"Action,Adventure,Sci-Fi",Zack Snyder,"Ben Affleck, Henry Cavill, Amy Adams, Jesse Eisenberg",2016,151,6.7,330.25
61,The Autopsy of Jane Doe,"Horror,Mystery,Thriller",André Øvredal,"Brian Cox, Emile Hirsch, Ophelia Lovibond, Michael McElhatton",2016,86,6.8,0
62,The Girl on the Train,"Crime,Drama,Mystery",Tate Taylor,"Emily Blunt, Haley Bennett, Rebecca Ferguson, Justin Theroux",2016,112,6.5,75.31
63,Fifty Shades of Grey,"Drama,Romance,Thriller",Sam Taylor-Johnson,"Dakota Johnson, Jamie Dornan, Jennifer Ehle,Eloise Mumford",2015,125,4.1,166.15M
64,The Prestige,"Drama,Mystery,Sci-Fi",Christopher Nolan,"Christian Bale, Hugh Jackman, Scarlett Johansson, Michael Caine",2006,130,8.5,53.08
65,Kingsman: The Secret Service,"Action,Adventure,Comedy",Matthew Vaughn,"Colin Firth, Taron Egerton, Samuel L. Jackson,Michael Caine",2014,129,7.7,128.25M
66,Patriots Day,"Drama,History,Thriller",Peter Berg,"Mark Wahlberg, Michelle Monaghan, J.K. Simmons, John Goodman",2016,133,7.4,31.86
67,Mad Max: Fury Road,"Action,Adventure,Sci-Fi",George Miller,"Tom Hardy, Charlize Theron, Nicholas Hoult, Zoë Kravitz",2015,120,8.1,153.63M
68,Wakefield,Drama,Robin Swicord,"Bryan Cranston, Jennifer Garner, Beverly D'Angelo,Jason O'Mara",2016,106,7.5,0.01
69,Deepwater Horizon,"Action,Drama,Thriller",Peter Berg,"Mark Wahlberg, Kurt Russell, Douglas M. Griffin, James DuMont",2016,107,7.2,61.28
70,The Promise,"Drama,History",Terry George,"Oscar Isaac, Charlotte Le Bon, Christian Bale, Daniel Giménez Cacho",2016,133,5.9,0
71,Allied,"Action,Drama,Romance",Robert Zemeckis,"Brad Pitt, Marion Cotillard, Jared Harris, Vincent Ebrahim",2016,124,7.1,40.07
72,A Monster Calls,"Drama,Fantasy",J.A. Bayona,"Lewis MacDougall, Sigourney Weaver, Felicity Jones,Toby Kebbell",2016,108,7.5,3.73
73,Collateral Beauty,"Drama,Romance",David Frankel,"Will Smith, Edward Norton, Kate Winslet, Michael Peña",2016,97,6.8,30.98
74,Zootopia,"Animation,Adventure,Comedy",Byron Howard,"Ginnifer Goodwin, Jason Bateman, Idris Elba, Jenny Slate",2016,108,8.1,341.26
75,Pirates of the Caribbean: At World's End,"Action,Adventure,Fantasy",Gore Verbinski,"Johnny Depp, Orlando Bloom, Keira Knightley,Geoffrey Rush",2007,169,7.1,309.4
76,The Avengers,"Action,Sci-Fi",Joss Whedon,"Robert Downey Jr., Chris Evans, Scarlett Johansson,Jeremy Renner",2012,143,8.1,623.28
77,Inglourious Basterds,"Adventure,Drama,War",Quentin Tarantino,"Brad Pitt, Diane Kruger, Eli Roth,Mélanie Laurent",2009,153,8.3,120.52M
78,Pirates of the Caribbean: Dead Man's Chest,"Action,Adventure,Fantasy",Gore Verbinski,"Johnny Depp, Orlando Bloom, Keira Knightley, Jack Davenport",2006,151,7.3,423.03
79,Ghostbusters,"Action,Comedy,Fantasy",Paul Feig,"Melissa McCarthy, Kristen Wiig, Kate McKinnon, Leslie Jones",2016,116,5.3,128.34M
80,Inception,"Action,Adventure,Sci-Fi",Christopher Nolan,"Leonardo DiCaprio, Joseph Gordon-Levitt, Ellen Page, Ken Watanabe",2010,148,8.8,292.57
81,Captain Fantastic,"Comedy,Drama",Matt Ross,"Viggo Mortensen, George MacKay, Samantha Isler,Annalise Basso",2016,118,7.9,5.88
82,The Wolf of Wall Street,"Biography,Comedy,Crime",Martin Scorsese,"Leonardo DiCaprio, Jonah Hill, Margot Robbie,Matthew McConaughey",2013,180,8.2,116.87M
83,Gone Girl,"Crime,Drama,Mystery",David Fincher,"Ben Affleck, Rosamund Pike, Neil Patrick Harris,Tyler Perry",2014,149,8.1,167.74M
84,Furious Seven,"Action,Crime,Thriller",James Wan,"Vin Diesel, Paul Walker, Dwayne Johnson, Jason Statham",2015,137,7.2,350.03
85,Jurassic World,"Action,Adventure,Sci-Fi",Colin Trevorrow,"Chris Pratt, Bryce Dallas Howard, Ty Simpkins,Judy Greer",2015,124,7,652.18
86,Live by Night,"Crime,Drama",Ben Affleck,"Ben Affleck, Elle Fanning, Brendan Gleeson, Chris Messina",2016,129,6.4,10.38
87,Avatar,"Action,Adventure,Fantasy",James Cameron,"Sam Worthington, Zoe Saldana, Sigourney Weaver, Michelle Rodriguez",2009,162,7.8,760.51
88,The Hateful Eight,"Crime,Drama,Mystery",Quentin Tarantino,"Samuel L. Jackson, Kurt Russell, Jennifer Jason Leigh, Walton Goggins",2015,187,7.8,54.12
89,The Accountant,"Action,Crime,Drama",Gavin O'Connor,"Ben Affleck, Anna Kendrick, J.K. Simmons, Jon Bernthal",2016,128,7.4,86.2
90,Prisoners,"Crime,Drama,Mystery",Denis Villeneuve,"Hugh Jackman, Jake Gyllenhaal, Viola Davis,Melissa Leo",2013,153,8.1,60.96
91,Warcraft,"Action,Adventure,Fantasy",Duncan Jones,"Travis Fimmel, Paula Patton, Ben Foster, Dominic Cooper",2016,123,7,47.17
92,The Help,Drama,Tate Taylor,"Emma Stone, Viola Davis, Octavia Spencer, Bryce Dallas Howard",2011,146,8.1,169.71M
93,War Dogs,"Comedy,Crime,Drama",Todd Phillips,"Jonah Hill, Miles Teller, Steve Lantz, Gregg Weiner",2016,114,7.1,43.02
94,Avengers: Age of Ultron,"Action,Adventure,Sci-Fi",Joss Whedon,"Robert Downey Jr., Chris Evans, Mark Ruffalo, Chris Hemsworth",2015,141,7.4,458.99
95,The Nice Guys,"Action,Comedy,Crime",Shane Black,"Russell Crowe, Ryan Gosling, Angourie Rice, Matt Bomer",2016,116,7.4,36.25
96,Kimi no na wa,"Animation,Drama,Fantasy",Makoto Shinkai,"Ryûnosuke Kamiki, Mone Kamishiraishi, Ryô Narita, Aoi Yuki",2016,106,8.6,4.68
97,The Void,"Horror,Mystery,Sci-Fi",Jeremy Gillespie,"Aaron Poole, Kenneth Welsh,Daniel Fathers, Kathleen Munroe",2016,90,5.8,0.15
98,Personal Shopper,"Drama,Mystery,Thriller",Olivier Assayas,"Kristen Stewart, Lars Eidinger, Sigrid Bouaziz,Anders Danielsen Lie",2016,105,6.3,1.29
99,The Departed,"Crime,Drama,Thriller",Martin Scorsese,"Leonardo DiCaprio, Matt Damon, Jack Nicholson, Mark Wahlberg",2006,151,8.5,132.37M
100,Legend,"Biography,Crime,Drama",Brian Helgeland,"Tom Hardy, Emily Browning, Taron Egerton, Paul Anderson",2015,132,7,1.87
101,Thor,"Action,Adventure,Fantasy",Kenneth Branagh,"Chris Hemsworth, Anthony Hopkins, Natalie Portman, Tom Hiddleston",2011,115,7,181.02M
102,The Martian,"Adventure,Drama,Sci-Fi",Ridley Scott,"Matt Damon, Jessica Chastain, Kristen Wiig, Kate Mara",2015,144,8,228.43
103,Contratiempo,"Crime,Mystery,Thriller",Oriol Paulo,"Mario Casas, Ana Wagener, José Coronado, Bárbara Lennie",2016,106,7.9,0
104,The Man from U.N.C.L.E.,"Action,Adventure,Comedy",Guy Ritchie,"Henry Cavill, Armie Hammer, Alicia Vikander, Elizabeth Debicki",2015,116,7.3,45.43
105,Hell or High Water,"Crime,Drama,Thriller",David Mackenzie,"Chris Pine, Ben Foster, Jeff Bridges, Gil Birmingham",2016,102,7.7,26.86
106,The Comedian,Comedy,Taylor Hackford,"Robert De Niro, Leslie Mann, Danny DeVito, Edie Falco",2016,120,5.4,1.66
107,The Legend of Tarzan,"Action,Adventure,Drama",David Yates,"Alexander Skarsgård, Rory J. Saper, Christian Stevens, Christoph Waltz",2016,110,6.3,126.59M
108,All We Had,Drama,Katie Holmes,"Eve Lindley, Richard Kind, Mark Consuelos, Katherine Reis",2016,105,5.8,0
109,Ex Machina,"Drama,Mystery,Sci-Fi",Alex Garland,"Alicia Vikander, Domhnall Gleeson, Oscar Isaac,Sonoya Mizuno",2014,108,7.7,25.44
110,The Belko Experiment,"Action,Horror,Thriller",Greg McLean,"John Gallagher Jr., Tony Goldwyn, Adria Arjona, John C. McGinley",2016,89,6.3,10.16
111,12 Years a Slave,"Biography,Drama,History",Steve McQueen,"Chiwetel Ejiofor, Michael Kenneth Williams, Michael Fassbender, Brad Pitt",2013,134,8.1,56.67
112,The Bad Batch,"Romance,Sci-Fi",Ana Lily Amirpour,"Keanu Reeves, Jason Momoa, Jim Carrey, Diego Luna",2016,118,6.1,0
113,300,"Action,Fantasy,War",Zack Snyder,"Gerard Butler, Lena Headey, David Wenham, Dominic West",2006,117,7.7,210.59
114,Harry Potter and the Deathly Hallows: Part 2,"Adventure,Drama,Fantasy",David Yates,"Daniel Radcliffe, Emma Watson, Rupert Grint, Michael Gambon",2011,130,8.1,380.96
115,Office Christmas Party,Comedy,Josh Gordon,"Jason Bateman, Olivia Munn, T.J. Miller,Jennifer Aniston",2016,105,5.8,54.73
116,The Neon Demon,"Horror,Thriller",Nicolas Winding Refn,"Elle Fanning, Christina Hendricks, Keanu Reeves, Karl Glusman",2016,118,6.2,1.33
117,Dangal,"Action,Biography,Drama",Nitesh Tiwari,"Aamir Khan, Sakshi Tanwar, Fatima Sana Shaikh,Sanya Malhotra",2016,161,8.8,11.15
118,10 Cloverfield Lane,"Drama,Horror,Mystery",Dan Trachtenberg,"John Goodman, Mary Elizabeth Winstead, John Gallagher Jr., Douglas M. Griffin",2016,104,7.2,71.9
119,Finding Dory,"Animation,Adventure,Comedy",Andrew Stanton,"Ellen DeGeneres, Albert Brooks,Ed O'Neill, Kaitlin Olson",2016,97,7.4,486.29
120,Miss Peregrine's Home for Peculiar Children,"Adventure,Drama,Family",Tim Burton,"Eva Green, Asa Butterfield, Samuel L. Jackson, Judi Dench",2016,127,6.7,87.24
121,Divergent,"Adventure,Mystery,Sci-Fi",Neil Burger,"Shailene Woodley, Theo James, Kate Winslet, Jai Courtney",2014,139,6.7,150.83M
122,Mike and Dave Need Wedding Dates,"Adventure,Comedy,Romance",Jake Szymanski,"Zac Efron, Adam Devine, Anna Kendrick, Aubrey Plaza",2016,98,6,46.01
123,Boyka: Undisputed IV,Action,Todor Chapkanov,"Scott Adkins, Teodora Duhovnikova, Alon Aboutboul, Julian Vergov",2016,86,7.4,0
124,The Dark Knight Rises,"Action,Thriller",Christopher Nolan,"Christian Bale, Tom Hardy, Anne Hathaway,Gary Oldman",2012,164,8.5,448.13
125,The Jungle Book,"Adventure,Drama,Family",Jon Favreau,"Neel Sethi, Bill Murray, Ben Kingsley, Idris Elba",2016,106,7.5,364
126,Transformers: Age of Extinction,"Action,Adventure,Sci-Fi",Michael Bay,"Mark Wahlberg, Nicola Peltz, Jack Reynor, Stanley Tucci",2014,165,5.7,245.43
127,Nerve,"Adventure,Crime,Mystery",Henry Joost,"Emma Roberts, Dave Franco, Emily Meade, Miles Heizer",2016,96,6.6,38.56
128,Mamma Mia!,"Comedy,Family,Musical",Phyllida Lloyd,"Meryl Streep, Pierce Brosnan, Amanda Seyfried,Stellan Skarsgård",2008,108,6.4,143.7M
129,The Revenant,"Adventure,Drama,Thriller",Alejandro González Iñárritu,"Leonardo DiCaprio, Tom Hardy, Will Poulter, Domhnall Gleeson",2015,156,8,183.64M
130,Fences,Drama,Denzel Washington,"Denzel Washington, Viola Davis, Stephen Henderson, Jovan Adepo",2016,139,7.3,57.64
131,Into the Woods,"Adventure,Comedy,Drama",Rob Marshall,"Anna Kendrick, Meryl Streep, Chris Pine, Emily Blunt",2014,125,6,128M
132,The Shallows,"Drama,Horror,Thriller",Jaume Collet-Serra,"Blake Lively, Óscar Jaenada, Angelo Josue Lozano Corzo, Brett Cullen",2016,86,6.4,55.12
133,Whiplash,"Drama,Music",Damien Chazelle,"Miles Teller, J.K. Simmons, Melissa Benoist, Paul Reiser",2014,107,8.5,13.09
134,Furious 6,"Action,Crime,Thriller",Justin Lin,"Vin Diesel, Paul Walker, Dwayne Johnson, Michelle Rodriguez",2013,130,7.1,238.67
135,The Place Beyond the Pines,"Crime,Drama,Thriller",Derek Cianfrance,"Ryan Gosling, Bradley Cooper, Eva Mendes,Craig Van Hook",2012,140,7.3,21.38
136,No Country for Old Men,"Crime,Drama,Thriller",Ethan Coen,"Tommy Lee Jones, Javier Bardem, Josh Brolin, Woody Harrelson",2007,122,8.1,74.27
137,The Great Gatsby,"Drama,Romance",Baz Luhrmann,"Leonardo DiCaprio, Carey Mulligan, Joel Edgerton,Tobey Maguire",2013,143,7.3,144.81M
138,Shutter Island,"Mystery,Thriller",Martin Scorsese,"Leonardo DiCaprio, Emily Mortimer, Mark Ruffalo,Ben Kingsley",2010,138,8.1,127.97M
139,Brimstone,"Mystery,Thriller,Western",Martin Koolhoven,"Dakota Fanning, Guy Pearce, Kit Harington,Carice van Houten",2016,148,7.1,0
140,Star Trek,"Action,Adventure,Sci-Fi",J.J. Abrams,"Chris Pine, Zachary Quinto, Simon Pegg, Leonard Nimoy",2009,127,8,257.7
141,Diary of a Wimpy Kid,"Comedy,Family",Thor Freudenthal,"Zachary Gordon, Robert Capron, Rachael Harris,Steve Zahn",2010,94,6.2,64
142,The Big Short,"Biography,Comedy,Drama",Adam McKay,"Christian Bale, Steve Carell, Ryan Gosling, Brad Pitt",2015,130,7.8,70.24
143,Room,Drama,Lenny Abrahamson,"Brie Larson, Jacob Tremblay, Sean Bridgers,Wendy Crewson",2015,118,8.2,14.68
144,Django Unchained,"Drama,Western",Quentin Tarantino,"Jamie Foxx, Christoph Waltz, Leonardo DiCaprio,Kerry Washington",2012,165,8.4,162.8M
145,Ah-ga-ssi,"Drama,Mystery,Romance",Chan-wook Park,"Min-hee Kim, Jung-woo Ha, Jin-woong Jo, So-ri Moon",2016,144,8.1,2.01
146,The Edge of Seventeen,"Comedy,Drama",Kelly Fremon Craig,"Hailee Steinfeld, Haley Lu Richardson, Blake Jenner, Kyra Sedgwick",2016,104,7.4,14.26
147,Watchmen,"Action,Drama,Mystery",Zack Snyder,"Jackie Earle Haley, Patrick Wilson, Carla Gugino,Malin Akerman",2009,162,7.6,107.5M
148,Superbad,Comedy,Greg Mottola,"Michael Cera, Jonah Hill, Christopher Mintz-Plasse, Bill Hader",2007,113,7.6,121.46M
149,Inferno,"Action,Adventure,Crime",Ron Howard,"Tom Hanks, Felicity Jones, Irrfan Khan, Ben Foster",2016,121,6.2,34.26
150,The BFG,"Adventure,Family,Fantasy",Steven Spielberg,"Mark Rylance, Ruby Barnhill, Penelope Wilton,Jemaine Clement",2016,117,6.4,55.47
151,The Hunger Games,"Adventure,Sci-Fi,Thriller",Gary Ross,"Jennifer Lawrence, Josh Hutcherson, Liam Hemsworth,Stanley Tucci",2012,142,7.2,408
152,White Girl,Drama,Elizabeth Wood,"Morgan Saylor, Brian Marc, Justin Bartha, Adrian Martinez",2016,88,5.8,0.2
153,Sicario,"Action,Crime,Drama",Denis Villeneuve,"Emily Blunt, Josh Brolin, Benicio Del Toro, Jon Bernthal",2015,121,7.6,46.88
154,Twin Peaks: The Missing Pieces,"Drama,Horror,Mystery",David Lynch,"Chris Isaak, Kiefer Sutherland, C.H. Evans, Sandra Kinder",2014,91,8.1,0
155,Aliens vs Predator - Requiem,"Action,Horror,Sci-Fi",Colin Strause,"Reiko Aylesworth, Steven Pasquale,Shareeka Epps, John Ortiz",2007,94,4.7,41.8
156,Pacific Rim,"Action,Adventure,Sci-Fi",Guillermo del Toro,"Idris Elba, Charlie Hunnam, Rinko Kikuchi,Charlie Day",2013,131,7,101.79M
157,"Crazy, Stupid, Love.","Comedy,Drama,Romance",Glenn Ficarra,"Steve Carell, Ryan Gosling, Julianne Moore, Emma Stone",2011,118,7.4,84.24
158,Scott Pilgrim vs. the World,"Action,Comedy,Fantasy",Edgar Wright,"Michael Cera, Mary Elizabeth Winstead, Kieran Culkin, Alison Pill",2010,112,7.5,31.49
159,Hot Fuzz,"Action,Comedy,Mystery",Edgar Wright,"Simon Pegg, Nick Frost, Martin Freeman, Bill Nighy",2007,121,7.9,23.62
160,Mine,"Thriller,War",Fabio Guaglione,"Armie Hammer, Annabelle Wallis,Tom Cullen, Clint Dyer",2016,106,6,0
161,Free Fire,"Action,Comedy,Crime",Ben Wheatley,"Sharlto Copley, Brie Larson, Armie Hammer, Cillian Murphy",2016,90,7,1.8
162,X-Men: Days of Future Past,"Action,Adventure,Sci-Fi",Bryan Singer,"Patrick Stewart, Ian McKellen, Hugh Jackman, James McAvoy",2014,132,8,233.91
163,Jack Reacher: Never Go Back,"Action,Adventure,Crime",Edward Zwick,"Tom Cruise, Cobie Smulders, Aldis Hodge, Robert Knepper",2016,118,6.1,58.4
164,Casino Royale,"Action,Adventure,Thriller",Martin Campbell,"Daniel Craig, Eva Green, Judi Dench, Jeffrey Wright",2006,144,8,167.01M
165,Twilight,"Drama,Fantasy,Romance",Catherine Hardwicke,"Kristen Stewart, Robert Pattinson, Billy Burke,Sarah Clarke",2008,122,5.2,191.45M
166,Now You See Me 2,"Action,Adventure,Comedy",Jon M. Chu,"Jesse Eisenberg, Mark Ruffalo, Woody Harrelson, Dave Franco",2016,129,6.5,65.03
167,Woman in Gold,"Biography,Drama,History",Simon Curtis,"Helen Mirren, Ryan Reynolds, Daniel Brühl, Katie Holmes",2015,109,7.3,33.31
168,13 Hours,"Action,Drama,History",Michael Bay,"John Krasinski, Pablo Schreiber, James Badge Dale,David Denman",2016,144,7.3,52.82
169,Spectre,"Action,Adventure,Thriller",Sam Mendes,"Daniel Craig, Christoph Waltz, Léa Seydoux, Ralph Fiennes",2015,148,6.8,200.07
170,Nightcrawler,"Crime,Drama,Thriller",Dan Gilroy,"Jake Gyllenhaal, Rene Russo, Bill Paxton, Riz Ahmed",2014,118,7.9,32.28
171,Kubo and the Two Strings,"Animation,Adventure,Family",Travis Knight,"Charlize Theron, Art Parkinson, Matthew McConaughey, Ralph Fiennes",2016,101,7.9,48.02
172,Beyond the Gates,"Adventure,Horror",Jackson Stewart,"Graham Skipper, Chase Williamson, Brea Grant,Barbara Crampton",2016,84,5.2,0
173,Her,"Drama,Romance,Sci-Fi",Spike Jonze,"Joaquin Phoenix, Amy Adams, Scarlett Johansson,Rooney Mara",2013,126,8,25.56
174,Frozen,"Animation,Adventure,Comedy",Chris Buck,"Kristen Bell, Idina Menzel, Jonathan Groff, Josh Gad",2013,102,7.5,400.74
175,Tomorrowland,"Action,Adventure,Family",Brad Bird,"George Clooney, Britt Robertson, Hugh Laurie, Raffey Cassidy",2015,130,6.5,93.42
176,Dawn of the Planet of the Apes,"Action,Adventure,Drama",Matt Reeves,"Gary Oldman, Keri Russell, Andy Serkis, Kodi Smit-McPhee",2014,130,7.6,208.54
177,Tropic Thunder,"Action,Comedy",Ben Stiller,"Ben Stiller, Jack Black, Robert Downey Jr., Jeff Kahn",2008,107,7,110.42M
178,The Conjuring 2,"Horror,Mystery,Thriller",James Wan,"Vera Farmiga, Patrick Wilson, Madison Wolfe, Frances O'Connor",2016,134,7.4,102.46M
179,Ant-Man,"Action,Adventure,Comedy",Peyton Reed,"Paul Rudd, Michael Douglas, Corey Stoll, Evangeline Lilly",2015,117,7.3,180.19M
180,Bridget Jones's Baby,"Comedy,Romance",Sharon Maguire,"Renée Zellweger, Gemma Jones, Jim Broadbent,Sally Phillips",2016,118,6.7,24.09
181,The VVitch: A New-England Folktale,"Horror,Mystery",Robert Eggers,"Anya Taylor-Joy, Ralph Ineson, Kate Dickie, Julian Richings",2015,92,6.8,25.14
182,Cinderella,"Drama,Family,Fantasy",Kenneth Branagh,"Lily James, Cate Blanchett, Richard Madden,Helena Bonham Carter",2015,105,7,201.15
183,Realive,Sci-Fi,Mateo Gil,"Tom Hughes, Charlotte Le Bon, Oona Chaplin, Barry Ward",2016,112,5.9,0
184,Forushande,"Drama,Thriller",Asghar Farhadi,"Taraneh Alidoosti, Shahab Hosseini, Babak Karimi,Farid Sajjadi Hosseini",2016,124,8,3.4
185,Love,"Drama,Romance",Gaspar Noé,"Aomi Muyock, Karl Glusman, Klara Kristin, Juan Saavedra",2015,135,6,0
186,Billy Lynn's Long Halftime Walk,"Drama,War",Ang Lee,"Joe Alwyn, Garrett Hedlund, Arturo Castro, Mason Lee",2016,113,6.3,1.72
187,Crimson Peak,"Drama,Fantasy,Horror",Guillermo del Toro,"Mia Wasikowska, Jessica Chastain, Tom Hiddleston, Charlie Hunnam",2015,119,6.6,31.06
188,Drive,"Crime,Drama",Nicolas Winding Refn,"Ryan Gosling, Carey Mulligan, Bryan Cranston, Albert Brooks",2011,100,7.8,35.05
189,Trainwreck,"Comedy,Drama,Romance",Judd Apatow,"Amy Schumer, Bill Hader, Brie Larson, Colin Quinn",2015,125,6.3,110.01M
190,The Light Between Oceans,"Drama,Romance",Derek Cianfrance,"Michael Fassbender, Alicia Vikander, Rachel Weisz, Florence Clery",2016,133,7.2,12.53
191,Below Her Mouth,Drama,April Mullen,"Erika Linder, Natalie Krill, Sebastian Pigott, Mayko Nguyen",2016,94,5.6,0
192,Spotlight,"Crime,Drama,History",Tom McCarthy,"Mark Ruffalo, Michael Keaton, Rachel McAdams, Liev Schreiber",2015,128,8.1,44.99
193,Morgan,"Horror,Sci-Fi,Thriller",Luke Scott,"Kate Mara, Anya Taylor-Joy, Rose Leslie, Michael Yare",2016,92,5.8,3.91
194,Warrior,"Action,Drama,Sport",Gavin O'Connor,"Tom Hardy, Nick Nolte, Joel Edgerton, Jennifer Morrison",2011,140,8.2,13.65
195,Captain America: The First Avenger,"Action,Adventure,Sci-Fi",Joe Johnston,"Chris Evans, Hugo Weaving, Samuel L. Jackson,Hayley Atwell",2011,124,6.9,176.64M
196,Hacker,"Crime,Drama,Thriller",Akan Satayev,"Callan McAuliffe, Lorraine Nicholson, Daniel Eric Gold, Clifton Collins Jr.",2016,95,6.3,0
197,Into the Wild,"Adventure,Biography,Drama",Sean Penn,"Emile Hirsch, Vince Vaughn, Catherine Keener, Marcia Gay Harden",2007,148,8.1,18.35
198,The Imitation Game,"Biography,Drama,Thriller",Morten Tyldum,"Benedict Cumberbatch, Keira Knightley, Matthew Goode, Allen Leech",2014,114,8.1,91.12
199,Central Intelligence,"Action,Comedy,Crime",Rawson Marshall Thurber,"Dwayne Johnson, Kevin Hart, Danielle Nicolet, Amy Ryan",2016,107,6.3,127.38M
200,Edge of Tomorrow,"Action,Adventure,Sci-Fi",Doug Liman,"Tom Cruise, Emily Blunt, Bill Paxton, Brendan Gleeson",2014,113,7.9,100.19M
201,A Cure for Wellness,"Drama,Fantasy,Horror",Gore Verbinski,"Dane DeHaan, Jason Isaacs, Mia Goth, Ivo Nandi",2016,146,6.5,8.1
202,Snowden,"Biography,Drama,Thriller",Oliver Stone,"Joseph Gordon-Levitt, Shailene Woodley, Melissa Leo,Zachary Quinto",2016,134,7.3,21.48
203,Iron Man,"Action,Adventure,Sci-Fi",Jon Favreau,"Robert Downey Jr., Gwyneth Paltrow, Terrence Howard, Jeff Bridges",2008,126,7.9,318.3
204,Allegiant,"Action,Adventure,Mystery",Robert Schwentke,"Shailene Woodley, Theo James, Jeff Daniels,Naomi Watts",2016,120,5.7,66
205,X: First Class,"Action,Adventure,Sci-Fi",Matthew Vaughn,"James McAvoy, Michael Fassbender, Jennifer Lawrence, Kevin Bacon",2011,132,7.8,146.41M
206,Raw (II),"Drama,Horror",Julia Ducournau,"Garance Marillier, Ella Rumpf, Rabah Nait Oufella,Laurent Lucas",2016,99,7.5,0.51
207,Paterson,"Comedy,Drama,Romance",Jim Jarmusch,"Adam Driver, Golshifteh Farahani, Nellie, Rizwan Manji",2016,118,7.5,2.14
208,Bridesmaids,"Comedy,Romance",Paul Feig,"Kristen Wiig, Maya Rudolph, Rose Byrne, Terry Crews",2011,125,6.8,169.08M
209,The Girl with All the Gifts,"Drama,Horror,Thriller",Colm McCarthy,"Gemma Arterton, Glenn Close, Dominique Tipper,Paddy Considine",2016,111,6.7,0
210,San Andreas,"Action,Adventure,Drama",Brad Peyton,"Dwayne Johnson, Carla Gugino, Alexandra Daddario,Colton Haynes",2015,114,6.1,155.18M
211,Spring Breakers,Drama,Harmony Korine,"Vanessa Hudgens, Selena Gomez, Ashley Benson,Rachel Korine",2012,94,5.3,14.12
212,Transformers,"Action,Adventure,Sci-Fi",Michael Bay,"Shia LaBeouf, Megan Fox, Josh Duhamel, Tyrese Gibson",2007,144,7.1,318.76
213,Old Boy,"Action,Drama,Mystery",Spike Lee,"Josh Brolin, Elizabeth Olsen, Samuel L. Jackson, Sharlto Copley",2013,104,5.8,0
214,Thor: The Dark World,"Action,Adventure,Fantasy",Alan Taylor,"Chris Hemsworth, Natalie Portman, Tom Hiddleston,Stellan Skarsgård",2013,112,7,206.36
215,Gods of Egypt,"Action,Adventure,Fantasy",Alex Proyas,"Brenton Thwaites, Nikolaj Coster-Waldau, Gerard Butler, Chadwick Boseman",2016,126,5.5,31.14
216,Captain America: The Winter Soldier,"Action,Adventure,Sci-Fi",Anthony Russo,"Chris Evans, Samuel L. Jackson,Scarlett Johansson, Robert Redford",2014,136,7.8,259.75
217,Monster Trucks,"Action,Adventure,Comedy",Chris Wedge,"Lucas Till, Jane Levy, Thomas Lennon, Barry Pepper",2016,104,5.7,33.04
218,A Dark Song,"Drama,Horror",Liam Gavin,"Mark Huberman, Susan Loughnane, Steve Oram,Catherine Walker",2016,100,6.1,0
219,Kick-Ass,"Action,Comedy",Matthew Vaughn,"Aaron Taylor-Johnson, Nicolas Cage, Chloë Grace Moretz, Garrett M. Brown",2010,117,7.7,48.04
220,Hardcore Henry,"Action,Adventure,Sci-Fi",Ilya Naishuller,"Sharlto Copley, Tim Roth, Haley Bennett, Danila Kozlovsky",2015,96,6.7,9.24
221,Cars,"Animation,Adventure,Comedy",John Lasseter,"Owen Wilson, Bonnie Hunt, Paul Newman, Larry the Cable Guy",2006,117,7.1,244.05
222,It Follows,"Horror,Mystery",David Robert Mitchell,"Maika Monroe, Keir Gilchrist, Olivia Luccardi,Lili Sepe",2014,100,6.9,14.67
223,The Girl with the Dragon Tattoo,"Crime,Drama,Mystery",David Fincher,"Daniel Craig, Rooney Mara, Christopher Plummer,Stellan Skarsgård",2011,158,7.8,102.52M
224,We're the Millers,"Comedy,Crime",Rawson Marshall Thurber,"Jason Sudeikis, Jennifer Aniston, Emma Roberts, Ed Helms",2013,110,7,150.37M
225,American Honey,Drama,Andrea Arnold,"Sasha Lane, Shia LaBeouf, Riley Keough, McCaul Lombardi",2016,163,7,0.66
226,The Lobster,"Comedy,Drama,Romance",Yorgos Lanthimos,"Colin Farrell, Rachel Weisz, Jessica Barden,Olivia Colman",2015,119,7.1,8.7
227,Predators,"Action,Adventure,Sci-Fi",Nimród Antal,"Adrien Brody, Laurence Fishburne, Topher Grace,Alice Braga",2010,107,6.4,52
228,Maleficent,"Action,Adventure,Family",Robert Stromberg,"Angelina Jolie, Elle Fanning, Sharlto Copley,Lesley Manville",2014,97,7,241.41
229,Rupture,"Horror,Sci-Fi,Thriller",Steven Shainberg,"Noomi Rapace, Michael Chiklis, Kerry Bishé,Peter Stormare",2016,102,4.8,0
230,Pan's Labyrinth,"Drama,Fantasy,War",Guillermo del Toro,"Ivana Baquero, Ariadna Gil, Sergi López,Maribel Verdú",2006,118,8.2,37.62
231,A Kind of Murder,"Crime,Drama,Thriller",Andy Goddard,"Patrick Wilson, Jessica Biel, Haley Bennett, Vincent Kartheiser",2016,95,5.2,0
232,Apocalypto,"Action,Adventure,Drama",Mel Gibson,"Gerardo Taracena, Raoul Max Trujillo, Dalia Hernández,Rudy Youngblood",2006,139,7.8,50.86
233,Mission: Impossible - Rogue Nation,"Action,Adventure,Thriller",Christopher McQuarrie,"Tom Cruise, Rebecca Ferguson, Jeremy Renner, Simon Pegg",2015,131,7.4,195M
234,The Huntsman: Winter's War,"Action,Adventure,Drama",Cedric Nicolas-Troyan,"Chris Hemsworth, Jessica Chastain, Charlize Theron, Emily Blunt",2016,114,6.1,47.95
235,The Perks of Being a Wallflower,"Drama,Romance",Stephen Chbosky,"Logan Lerman, Emma Watson, Ezra Miller, Paul Rudd",2012,102,8,17.74
236,Jackie,"Biography,Drama,History",Pablo Larraín,"Natalie Portman, Peter Sarsgaard, Greta Gerwig,Billy Crudup",2016,100,6.8,13.96
237,The Disappointments Room,"Drama,Horror,Thriller",D.J. Caruso,"Kate Beckinsale, Mel Raido, Duncan Joiner, Lucas Till",2016,85,3.9,2.41
238,The Grand Budapest Hotel,"Adventure,Comedy,Drama",Wes Anderson,"Ralph Fiennes, F. Murray Abraham, Mathieu Amalric,Adrien Brody",2014,99,8.1,59.07
239,The Host ,"Action,Adventure,Romance",Andrew Niccol,"Saoirse Ronan, Max Irons, Jake Abel, Diane Kruger",2013,125,5.9,26.62
240,Fury,"Action,Drama,War",David Ayer,"Brad Pitt, Shia LaBeouf, Logan Lerman, Michael Peña",2014,134,7.6,85.71
241,Inside Out,"Animation,Adventure,Comedy",Pete Docter,"Amy Poehler, Bill Hader, Lewis Black, Mindy Kaling",2015,95,8.2,356.45
242,Rock Dog,"Animation,Adventure,Comedy",Ash Brannon,"Luke Wilson, Eddie Izzard, J.K. Simmons, Lewis Black",2016,90,5.8,9.4
243,Terminator Genisys,"Action,Adventure,Sci-Fi",Alan Taylor,"Arnold Schwarzenegger, Jason Clarke, Emilia Clarke,Jai Courtney",2015,126,6.5,89.73
244,Percy Jackson & the Olympians: The Lightning Thief,"Adventure,Family,Fantasy",Chris Columbus,"Logan Lerman, Kevin McKidd, Steve Coogan,Brandon T. Jackson",2010,118,5.9,88.76
245,Les Misérables,"Drama,Musical,Romance",Tom Hooper,"Hugh Jackman, Russell Crowe, Anne Hathaway,Amanda Seyfried",2012,158,7.6,148.78M
246,Children of Men,"Drama,Sci-Fi,Thriller",Alfonso Cuarón,"Julianne Moore, Clive Owen, Chiwetel Ejiofor,Michael Caine",2006,109,7.9,35.29
247,20th Century Women,"Comedy,Drama",Mike Mills,"Annette Bening, Elle Fanning, Greta Gerwig, Billy Crudup",2016,119,7.4,5.66
248,Spy,"Action,Comedy,Crime",Paul Feig,"Melissa McCarthy, Rose Byrne, Jude Law, Jason Statham",2015,119,7.1,110.82M
249,The Intouchables,"Biography,Comedy,Drama",Olivier Nakache,"François Cluzet, Omar Sy, Anne Le Ny, Audrey Fleurot",2011,112,8.6,13.18
250,Bonjour Anne,"Comedy,Drama,Romance",Eleanor Coppola,"Diane Lane, Alec Baldwin, Arnaud Viard, Linda Gegusch",2016,92,4.9,0.32
251,Kynodontas,"Drama,Thriller",Yorgos Lanthimos,"Christos Stergioglou, Michele Valley, Angeliki Papoulia, Hristos Passalis",2009,94,7.3,0.11
252,Straight Outta Compton,"Biography,Drama,History",F. Gary Gray,"O'Shea Jackson Jr., Corey Hawkins, Jason Mitchell,Neil Brown Jr.",2015,147,7.9,161.03M
253,The Amazing Spider-Man 2,"Action,Adventure,Sci-Fi",Marc Webb,"Andrew Garfield, Emma Stone, Jamie Foxx, Paul Giamatti",2014,142,6.7,202.85
254,The Conjuring,"Horror,Mystery,Thriller",James Wan,"Patrick Wilson, Vera Farmiga, Ron Livingston, Lili Taylor",2013,112,7.5,137.39M
255,The Hangover,Comedy,Todd Phillips,"Zach Galifianakis, Bradley Cooper, Justin Bartha, Ed Helms",2009,100,7.8,277.31
256,Battleship,"Action,Adventure,Sci-Fi",Peter Berg,"Alexander Skarsgård, Brooklyn Decker, Liam Neeson,Rihanna",2012,131,5.8,65.17
257,Rise of the Planet of the Apes,"Action,Drama,Sci-Fi",Rupert Wyatt,"James Franco, Andy Serkis, Freida Pinto, Karin Konoval",2011,105,7.6,176.74M
258,Lights Out,Horror,David F. Sandberg,"Teresa Palmer, Gabriel Bateman, Maria Bello,Billy Burke",2016,81,6.4,67.24
259,Norman: The Moderate Rise and Tragic Fall of a New York Fixer,"Drama,Thriller",Joseph Cedar,"Richard Gere, Lior Ashkenazi, Michael Sheen,Charlotte Gainsbourg",2016,118,7.1,2.27
260,Birdman or (The Unexpected Virtue of Ignorance),"Comedy,Drama,Romance",Alejandro González Iñárritu,"Michael Keaton, Zach Galifianakis,Edward Norton, Andrea Riseborough",2014,119,7.8,42.34
261,Black Swan,"Drama,Thriller",Darren Aronofsky,"Natalie Portman, Mila Kunis, Vincent Cassel,Winona Ryder",2010,108,8,106.95M
262,Dear White People,"Comedy,Drama",Justin Simien,"Tyler James Williams, Tessa Thompson, Kyle Gallner,Teyonah Parris",2014,108,6.2,4.4
263,Nymphomaniac: Vol. I,Drama,Lars von Trier,"Charlotte Gainsbourg, Stellan Skarsgård, Stacy Martin, Shia LaBeouf",2013,117,7,0.79
264,Teenage Mutant Ninja Turtles: Out of the Shadows,"Action,Adventure,Comedy",Dave Green,"Megan Fox, Will Arnett, Tyler Perry, Laura Linney",2016,112,6,0.54
265,Knock Knock,"Drama,Horror,Thriller",Eli Roth,"Keanu Reeves, Lorenza Izzo, Ana de Armas, Aaron Burns",2015,99,4.9,0.03
266,Dirty Grandpa,Comedy,Dan Mazer,"Robert De Niro, Zac Efron, Zoey Deutch, Aubrey Plaza",2016,102,6,35.54
267,Cloud Atlas,"Drama,Sci-Fi",Tom Tykwer,"Tom Hanks, Halle Berry, Hugh Grant, Hugo Weaving",2012,172,7.5,27.1
268,X-Men Origins: Wolverine,"Action,Adventure,Sci-Fi",Gavin Hood,"Hugh Jackman, Liev Schreiber, Ryan Reynolds, Danny Huston",2009,107,6.7,179.88M
269,Satanic,Horror,Jeffrey G. Hunt,"Sarah Hyland, Steven Krueger, Justin Chon, Clara Mamet",2016,85,3.7,0
270,Skyfall,"Action,Adventure,Thriller",Sam Mendes,"Daniel Craig, Javier Bardem, Naomie Harris, Judi Dench",2012,143,7.8,304.36
271,The Hobbit: An Unexpected Journey,"Adventure,Fantasy",Peter Jackson,"Martin Freeman, Ian McKellen, Richard Armitage,Andy Serkis",2012,169,7.9,303
272,21 Jump Street,"Action,Comedy,Crime",Phil Lord,"Jonah Hill, Channing Tatum, Ice Cube,Brie Larson",2012,110,7.2,138.45M
273,Sing Street,"Comedy,Drama,Music",John Carney,"Ferdia Walsh-Peelo, Aidan Gillen, Maria Doyle Kennedy, Jack Reynor",2016,106,8,3.23
274,Ballerina,"Animation,Adventure,Comedy",Eric Summer,"Elle Fanning, Dane DeHaan, Carly Rae Jepsen, Maddie Ziegler",2016,89,6.8,0
275,Oblivion,"Action,Adventure,Mystery",Joseph Kosinski,"Tom Cruise, Morgan Freeman, Andrea Riseborough, Olga Kurylenko",2013,124,7,89.02
276,22 Jump Street,"Action,Comedy,Crime",Phil Lord,"Channing Tatum, Jonah Hill, Ice Cube,Nick Offerman",2014,112,7.1,191.62M
277,Zodiac,"Crime,Drama,History",David Fincher,"Jake Gyllenhaal, Robert Downey Jr., Mark Ruffalo,Anthony Edwards",2007,157,7.7,33.05
278,Everybody Wants Some!!,Comedy,Richard Linklater,"Blake Jenner, Tyler Hoechlin, Ryan Guzman,Zoey Deutch",2016,117,7,3.37
279,Iron Man Three,"Action,Adventure,Sci-Fi",Shane Black,"Robert Downey Jr., Guy Pearce, Gwyneth Paltrow,Don Cheadle",2013,130,7.2,408.99
280,Now You See Me,"Crime,Mystery,Thriller",Louis Leterrier,"Jesse Eisenberg, Common, Mark Ruffalo, Woody Harrelson",2013,115,7.3,117.7M
281,Sherlock Holmes,"Action,Adventure,Crime",Guy Ritchie,"Robert Downey Jr., Jude Law, Rachel McAdams, Mark Strong",2009,128,7.6,209.02
282,Death Proof,Thriller,Quentin Tarantino,"Kurt Russell, Zoë Bell, Rosario Dawson, Vanessa Ferlito",2007,113,7.1,0
283,The Danish Girl,"Biography,Drama,Romance",Tom Hooper,"Eddie Redmayne, Alicia Vikander, Amber Heard, Ben Whishaw",2015,119,7,12.71
284,Hercules,"Action,Adventure",Brett Ratner,"Dwayne Johnson, John Hurt, Ian McShane, Joseph Fiennes",2014,98,6,72.66
285,Sucker Punch,"Action,Fantasy",Zack Snyder,"Emily Browning, Vanessa Hudgens, Abbie Cornish,Jena Malone",2011,110,6.1,36.38
286,Keeping Up with the Joneses,"Action,Comedy",Greg Mottola,"Zach Galifianakis, Isla Fisher, Jon Hamm, Gal Gadot",2016,105,5.8,14.9
287,Jupiter Ascending,"Action,Adventure,Sci-Fi",Lana Wachowski,"Channing Tatum, Mila Kunis,Eddie Redmayne, Sean Bean",2015,127,5.3,47.38
288,Masterminds,"Action,Comedy,Crime",Jared Hess,"Zach Galifianakis, Kristen Wiig, Owen Wilson, Ross Kimball",2016,95,5.8,17.36
289,Iris,Thriller,Jalil Lespert,"Romain Duris, Charlotte Le Bon, Jalil Lespert, Camille Cottin",2016,99,6.1,0
290,Busanhaeng,"Action,Drama,Horror",Sang-ho Yeon,"Yoo Gong, Soo-an Kim, Yu-mi Jung, Dong-seok Ma",2016,118,7.5,2.13
291,Pitch Perfect,"Comedy,Music,Romance",Jason Moore,"Anna Kendrick, Brittany Snow, Rebel Wilson, Anna Camp",2012,112,7.2,65
292,Neighbors 2: Sorority Rising,Comedy,Nicholas Stoller,"Seth Rogen, Rose Byrne, Zac Efron, Chloë Grace Moretz",2016,92,5.7,55.29
293,The Exception,Drama,David Leveaux,"Lily James, Jai Courtney, Christopher Plummer, Loïs van Wijk",2016,107,7.7,0
294,Man of Steel,"Action,Adventure,Fantasy",Zack Snyder,"Henry Cavill, Amy Adams, Michael Shannon, Diane Lane",2013,143,7.1,291.02
295,The Choice,"Drama,Romance",Ross Katz,"Benjamin Walker, Teresa Palmer, Alexandra Daddario,Maggie Grace",2016,111,6.6,18.71
296,Ice Age: Collision Course,"Animation,Adventure,Comedy",Mike Thurmeier,"Ray Romano, Denis Leary, John Leguizamo, Chris Wedge",2016,94,5.7,64.06
297,The Devil Wears Prada,"Comedy,Drama",David Frankel,"Anne Hathaway, Meryl Streep, Adrian Grenier, Emily Blunt",2006,109,6.8,124.73M
298,The Infiltrator,"Biography,Crime,Drama",Brad Furman,"Bryan Cranston, John Leguizamo, Diane Kruger, Amy Ryan",2016,127,7.1,15.43
299,There Will Be Blood,"Drama,History",Paul Thomas Anderson,"Daniel Day-Lewis, Paul Dano, Ciarán Hinds,Martin Stringer",2007,158,8.1,40.22
300,The Equalizer,"Action,Crime,Thriller",Antoine Fuqua,"Denzel Washington, Marton Csokas, Chloë Grace Moretz, David Harbour",2014,132,7.2,101.53M
301,Lone Survivor,"Action,Biography,Drama",Peter Berg,"Mark Wahlberg, Taylor Kitsch, Emile Hirsch, Ben Foster",2013,121,7.5,125.07M
302,The Cabin in the Woods,Horror,Drew Goddard,"Kristen Connolly, Chris Hemsworth, Anna Hutchison,Fran Kranz",2012,95,7,42.04
303,The House Bunny,"Comedy,Romance",Fred Wolf,"Anna Faris, Colin Hanks, Emma Stone, Kat Dennings",2008,97,5.5,48.24
304,She's Out of My League,"Comedy,Romance",Jim Field Smith,"Jay Baruchel, Alice Eve, T.J. Miller, Mike Vogel",2010,104,6.4,31.58
305,Inherent Vice,"Comedy,Crime,Drama",Paul Thomas Anderson,"Joaquin Phoenix, Josh Brolin, Owen Wilson,Katherine Waterston",2014,148,6.7,8.09
306,Alice Through the Looking Glass,"Adventure,Family,Fantasy",James Bobin,"Mia Wasikowska, Johnny Depp, Helena Bonham Carter, Anne Hathaway",2016,113,6.2,77.04
307,Vincent N Roxxy,"Crime,Drama,Thriller",Gary Michael Schultz,"Emile Hirsch, Zoë Kravitz, Zoey Deutch,Emory Cohen",2016,110,5.5,0
308,The Fast and the Furious: Tokyo Drift,"Action,Crime,Thriller",Justin Lin,"Lucas Black, Zachery Ty Bryan, Shad Moss, Damien Marzette",2006,104,6,62.49
309,How to Be Single,"Comedy,Romance",Christian Ditter,"Dakota Johnson, Rebel Wilson, Leslie Mann, Alison Brie",2016,110,6.1,46.81
310,The Blind Side,"Biography,Drama,Sport",John Lee Hancock,"Quinton Aaron, Sandra Bullock, Tim McGraw,Jae Head",2009,129,7.7,255.95
311,La vie d'Adèle,"Drama,Romance",Abdellatif Kechiche,"Léa Seydoux, Adèle Exarchopoulos, Salim Kechiouche, Aurélien Recoing",2013,180,7.8,2.2
312,The Babadook,"Drama,Horror",Jennifer Kent,"Essie Davis, Noah Wiseman, Daniel Henshall, Hayley McElhinney",2014,93,6.8,0.92
313,The Hobbit: The Battle of the Five Armies,"Adventure,Fantasy",Peter Jackson,"Ian McKellen, Martin Freeman, Richard Armitage,Cate Blanchett",2014,144,7.4,255.11
314,Harry Potter and the Order of the Phoenix,"Adventure,Family,Fantasy",David Yates,"Daniel Radcliffe, Emma Watson, Rupert Grint, Brendan Gleeson",2007,138,7.5,292
315,Snowpiercer,"Action,Drama,Sci-Fi",Bong Joon Ho,"Chris Evans, Jamie Bell, Tilda Swinton, Ed Harris",2013,126,7,4.56
316,The 5th Wave,"Action,Adventure,Sci-Fi",J Blakeson,"Chloë Grace Moretz, Matthew Zuk, Gabriela Lopez,Bailey Anne Borders",2016,112,5.2,34.91
317,The Stakelander,"Action,Horror",Dan Berk,"Connor Paolo, Nick Damici, Laura Abramsen, A.C. Peterson",2016,81,5.3,0
318,The Visit,"Comedy,Horror,Thriller",M. Night Shyamalan,"Olivia DeJonge, Ed Oxenbould, Deanna Dunagan, Peter McRobbie",2015,94,6.2,65.07
319,Fast Five,"Action,Crime,Thriller",Justin Lin,"Vin Diesel, Paul Walker, Dwayne Johnson, Jordana Brewster",2011,131,7.3,209.81
320,Step Up,"Crime,Drama,Music",Anne Fletcher,"Channing Tatum, Jenna Dewan Tatum, Damaine Radcliff, De'Shawn Washington",2006,104,6.5,65.27
321,Lovesong,Drama,So Yong Kim,"Riley Keough, Jena Malone, Jessie Ok Gray, Cary Joji Fukunaga",2016,84,6.4,0.01
322,RocknRolla,"Action,Crime,Thriller",Guy Ritchie,"Gerard Butler, Tom Wilkinson, Idris Elba, Thandie Newton",2008,114,7.3,5.69
323,In Time,"Action,Sci-Fi,Thriller",Andrew Niccol,"Justin Timberlake, Amanda Seyfried, Cillian Murphy,Olivia Wilde",2011,109,6.7,37.55
324,The Social Network,"Biography,Drama",David Fincher,"Jesse Eisenberg, Andrew Garfield, Justin Timberlake,Rooney Mara",2010,120,7.7,96.92
325,The Last Witch Hunter,"Action,Adventure,Fantasy",Breck Eisner,"Vin Diesel, Rose Leslie, Elijah Wood, Ólafur Darri Ólafsson",2015,106,6,27.36
326,Victor Frankenstein,"Drama,Horror,Sci-Fi",Paul McGuigan,"Daniel Radcliffe, James McAvoy, Jessica Brown Findlay, Andrew Scott",2015,110,6,5.77
327,A Street Cat Named Bob,"Biography,Comedy,Drama",Roger Spottiswoode,"Luke Treadaway, Bob the Cat, Ruta Gedmintas, Joanne Froggatt",2016,103,7.4,0.04
328,Green Room,"Crime,Horror,Thriller",Jeremy Saulnier,"Anton Yelchin, Imogen Poots, Alia Shawkat,Patrick Stewart",2015,95,7,3.22
329,Blackhat,"Crime,Drama,Mystery",Michael Mann,"Chris Hemsworth, Viola Davis, Wei Tang, Leehom Wang",2015,133,5.4,7.1
330,Storks,"Animation,Adventure,Comedy",Nicholas Stoller,"Andy Samberg, Katie Crown,Kelsey Grammer, Jennifer Aniston",2016,87,6.9,72.66
331,American Sniper,"Action,Biography,Drama",Clint Eastwood,"Bradley Cooper, Sienna Miller, Kyle Gallner, Cole Konis",2014,133,7.3,350.12
332,Dallas Buyers Club,"Biography,Drama",Jean-Marc Vallée,"Matthew McConaughey, Jennifer Garner, Jared Leto, Steve Zahn",2013,117,8,27.3
333,Lincoln,"Biography,Drama,History",Steven Spielberg,"Daniel Day-Lewis, Sally Field, David Strathairn,Joseph Gordon-Levitt",2012,150,7.4,182.2M
334,Rush,"Action,Biography,Drama",Ron Howard,"Daniel Brühl, Chris Hemsworth, Olivia Wilde,Alexandra Maria Lara",2013,123,8.1,26.9
335,Before I Wake,"Drama,Fantasy,Horror",Mike Flanagan,"Kate Bosworth, Thomas Jane, Jacob Tremblay,Annabeth Gish",2016,97,6.1,0
336,Silver Linings Playbook,"Comedy,Drama,Romance",David O. Russell,"Bradley Cooper, Jennifer Lawrence, Robert De Niro, Jacki Weaver",2012,122,7.8,132.09M
337,Tracktown,"Drama,Sport",Alexi Pappas,"Alexi Pappas, Chase Offerle, Rachel Dratch, Andy Buckley",2016,88,5.9,0
338,The Fault in Our Stars,"Drama,Romance",Josh Boone,"Shailene Woodley, Ansel Elgort, Nat Wolff, Laura Dern",2014,126,7.8,124.87M
339,Blended,"Comedy,Romance",Frank Coraci,"Adam Sandler, Drew Barrymore, Wendi McLendon-Covey, Kevin Nealon",2014,117,6.5,46.28
340,Fast & Furious,"Action,Crime,Thriller",Justin Lin,"Vin Diesel, Paul Walker, Michelle Rodriguez, Jordana Brewster",2009,107,6.6,155.02M
341,Looper,"Action,Crime,Drama",Rian Johnson,"Joseph Gordon-Levitt, Bruce Willis, Emily Blunt, Paul Dano",2012,119,7.4,66.47
342,White House Down,"Action,Drama,Thriller",Roland Emmerich,"Channing Tatum, Jamie Foxx, Maggie Gyllenhaal,Jason Clarke",2013,131,6.4,73.1
343,Pete's Dragon,"Adventure,Family,Fantasy",David Lowery,"Bryce Dallas Howard, Robert Redford, Oakes Fegley,Oona Laurence",2016,102,6.8,76.2
344,Spider-Man 3,"Action,Adventure",Sam Raimi,"Tobey Maguire, Kirsten Dunst, Topher Grace, Thomas Haden Church",2007,139,6.2,336.53
345,The Three Musketeers,"Action,Adventure,Romance",Paul W.S. Anderson,"Logan Lerman, Matthew Macfadyen, Ray Stevenson, Milla Jovovich",2011,110,5.8,20.32
346,Stardust,"Adventure,Family,Fantasy",Matthew Vaughn,"Charlie Cox, Claire Danes, Sienna Miller, Ian McKellen",2007,127,7.7,38.35
347,American Hustle,"Crime,Drama",David O. Russell,"Christian Bale, Amy Adams, Bradley Cooper,Jennifer Lawrence",2013,138,7.3,150.12M
348,Jennifer's Body,"Comedy,Horror",Karyn Kusama,"Megan Fox, Amanda Seyfried, Adam Brody, Johnny Simmons",2009,102,5.1,16.2
349,Midnight in Paris,"Comedy,Fantasy,Romance",Woody Allen,"Owen Wilson, Rachel McAdams, Kathy Bates, Kurt Fuller",2011,94,7.7,56.82
350,Lady Macbeth,Drama,William Oldroyd,"Florence Pugh, Christopher Fairbank, Cosmo Jarvis, Naomi Ackie",2016,89,7.3,0
351,Joy,Drama,David O. Russell,"Jennifer Lawrence, Robert De Niro, Bradley Cooper, Edgar Ramírez",2015,124,6.6,56.44
352,The Dressmaker,"Comedy,Drama",Jocelyn Moorhouse,"Kate Winslet, Judy Davis, Liam Hemsworth,Hugo Weaving",2015,119,7.1,2.02
353,Café Society,"Comedy,Drama,Romance",Woody Allen,"Jesse Eisenberg, Kristen Stewart, Steve Carell, Blake Lively",2016,96,6.7,11.08
354,Insurgent,"Adventure,Sci-Fi,Thriller",Robert Schwentke,"Shailene Woodley, Ansel Elgort, Theo James,Kate Winslet",2015,119,6.3,130M
355,Seventh Son,"Action,Adventure,Fantasy",Sergei Bodrov,"Ben Barnes, Julianne Moore, Jeff Bridges, Alicia Vikander",2014,102,5.5,17.18
356,The Theory of Everything,"Biography,Drama,Romance",James Marsh,"Eddie Redmayne, Felicity Jones, Tom Prior, Sophie Perry",2014,123,7.7,35.89
357,This Is the End,"Comedy,Fantasy",Evan Goldberg,"James Franco, Jonah Hill, Seth Rogen,Jay Baruchel",2013,107,6.6,101.47M
358,About Time,"Comedy,Drama,Fantasy",Richard Curtis,"Domhnall Gleeson, Rachel McAdams, Bill Nighy,Lydia Wilson",2013,123,7.8,15.29
359,Step Brothers,Comedy,Adam McKay,"Will Ferrell, John C. Reilly, Mary Steenburgen,Richard Jenkins",2008,98,6.9,100.47M
360,Clown,"Horror,Thriller",Jon Watts,"Andy Powers, Laura Allen, Peter Stormare, Christian Distefano",2014,100,5.7,0.05
361,Star Trek Into Darkness,"Action,Adventure,Sci-Fi",J.J. Abrams,"Chris Pine, Zachary Quinto, Zoe Saldana, Benedict Cumberbatch",2013,132,7.8,228.76
362,Zombieland,"Adventure,Comedy,Horror",Ruben Fleischer,"Jesse Eisenberg, Emma Stone, Woody Harrelson,Abigail Breslin",2009,88,7.7,75.59
363,"Hail, Caesar!","Comedy,Mystery",Ethan Coen,"Josh Brolin, George Clooney, Alden Ehrenreich, Ralph Fiennes",2016,106,6.3,30
364,Slumdog Millionaire,Drama,Danny Boyle,"Dev Patel, Freida Pinto, Saurabh Shukla, Anil Kapoor",2008,120,8,141.32M
365,The Twilight Saga: Breaking Dawn - Part 2,"Adventure,Drama,Fantasy",Bill Condon,"Kristen Stewart, Robert Pattinson, Taylor Lautner, Peter Facinelli",2012,115,5.5,292.3
366,American Wrestler: The Wizard,"Drama,Sport",Alex Ranarivelo,"William Fichtner, Jon Voight, Lia Marie Johnson,Gabriel Basso",2016,117,6.9,0
367,The Amazing Spider-Man,"Action,Adventure",Marc Webb,"Andrew Garfield, Emma Stone, Rhys Ifans, Irrfan Khan",2012,136,7,262.03
368,Ben-Hur,"Action,Adventure,Drama",Timur Bekmambetov,"Jack Huston, Toby Kebbell, Rodrigo Santoro,Nazanin Boniadi",2016,123,5.7,26.38
369,Sleight,"Action,Drama,Sci-Fi",J.D. Dillard,"Jacob Latimore, Seychelle Gabriel, Dulé Hill, Storm Reid",2016,89,6,3.85
370,The Maze Runner,"Action,Mystery,Sci-Fi",Wes Ball,"Dylan O'Brien, Kaya Scodelario, Will Poulter, Thomas Brodie-Sangster",2014,113,6.8,102.41M
371,Criminal,"Action,Crime,Drama",Ariel Vromen,"Kevin Costner, Ryan Reynolds, Gal Gadot, Gary Oldman",2016,113,6.3,14.27
372,Wanted,"Action,Crime,Fantasy",Timur Bekmambetov,"Angelina Jolie, James McAvoy, Morgan Freeman, Terence Stamp",2008,110,6.7,134.57M
373,Florence Foster Jenkins,"Biography,Comedy,Drama",Stephen Frears,"Meryl Streep, Hugh Grant, Simon Helberg, Rebecca Ferguson",2016,111,6.9,27.37
374,Collide,"Action,Crime,Thriller",Eran Creevy,"Nicholas Hoult, Felicity Jones, Anthony Hopkins, Ben Kingsley",2016,99,5.7,2.2
375,Black Mass,"Biography,Crime,Drama",Scott Cooper,"Johnny Depp, Benedict Cumberbatch, Dakota Johnson, Joel Edgerton",2015,123,6.9,62.56
376,Creed,"Drama,Sport",Ryan Coogler,"Michael B. Jordan, Sylvester Stallone, Tessa Thompson, Phylicia Rashad",2015,133,7.6,109.71M
377,Swiss Army Man,"Adventure,Comedy,Drama",Dan Kwan,"Paul Dano, Daniel Radcliffe, Mary Elizabeth Winstead, Antonia Ribero",2016,97,7.1,4.21
378,The Expendables 3,"Action,Adventure,Thriller",Patrick Hughes,"Sylvester Stallone, Jason Statham, Jet Li, Antonio Banderas",2014,126,6.1,39.29
379,What We Do in the Shadows,"Comedy,Fantasy,Horror",Jemaine Clement,"Jemaine Clement, Taika Waititi,Cori Gonzalez-Macuer, Jonny Brugh",2014,86,7.6,3.33
380,Southpaw,"Drama,Sport",Antoine Fuqua,"Jake Gyllenhaal, Rachel McAdams, Oona Laurence,Forest Whitaker",2015,124,7.4,52.42
381,Hush,"Horror,Thriller",Mike Flanagan,"John Gallagher Jr., Kate Siegel, Michael Trucco,Samantha Sloyan",2016,81,6.6,0
382,Bridge of Spies,"Drama,History,Thriller",Steven Spielberg,"Tom Hanks, Mark Rylance, Alan Alda, Amy Ryan",2015,142,7.6,72.31
383,The Lego Movie,"Animation,Action,Adventure",Phil Lord,"Chris Pratt, Will Ferrell, Elizabeth Banks, Will Arnett",2014,100,7.8,257.76
384,Everest,"Action,Adventure,Drama",Baltasar Kormákur,"Jason Clarke, Ang Phula Sherpa, Thomas M. Wright, Martin Henderson",2015,121,7.1,43.25
385,Pixels,"Action,Comedy,Family",Chris Columbus,"Adam Sandler, Kevin James, Michelle Monaghan,Peter Dinklage",2015,105,5.6,78.75
386,Robin Hood,"Action,Adventure,Drama",Ridley Scott,"Russell Crowe, Cate Blanchett, Matthew Macfadyen,Max von Sydow",2010,140,6.7,105.22M
387,The Wolverine,"Action,Adventure,Sci-Fi",James Mangold,"Hugh Jackman, Will Yun Lee, Tao Okamoto, Rila Fukushima",2013,126,6.7,132.55M
388,John Carter,"Action,Adventure,Sci-Fi",Andrew Stanton,"Taylor Kitsch, Lynn Collins, Willem Dafoe,Samantha Morton",2012,132,6.6,73.06
389,Keanu,"Action,Comedy",Peter Atencio,"Keegan-Michael Key, Jordan Peele, Tiffany Haddish,Method Man",2016,100,6.3,20.57
390,The Gunman,"Action,Crime,Drama",Pierre Morel,"Sean Penn, Idris Elba, Jasmine Trinca, Javier Bardem",2015,115,5.8,10.64
391,Steve Jobs,"Biography,Drama",Danny Boyle,"Michael Fassbender, Kate Winslet, Seth Rogen, Jeff Daniels",2015,122,7.2,17.75
392,Whisky Galore,"Comedy,Romance",Gillies MacKinnon,"Tim Pigott-Smith, Naomi Battrick, Ellie Kendrick,James Cosmo",2016,98,5,0
393,Grown Ups 2,Comedy,Dennis Dugan,"Adam Sandler, Kevin James, Chris Rock, David Spade",2013,101,5.4,133.67M
394,The Age of Adaline,"Drama,Fantasy,Romance",Lee Toland Krieger,"Blake Lively, Michiel Huisman, Harrison Ford,Kathy Baker",2015,112,7.2,42.48
395,The Incredible Hulk,"Action,Adventure,Sci-Fi",Louis Leterrier,"Edward Norton, Liv Tyler, Tim Roth, William Hurt",2008,112,6.8,134.52M
396,Couples Retreat,Comedy,Peter Billingsley,"Vince Vaughn, Malin Akerman, Jon Favreau, Jason Bateman",2009,113,5.5,109.18M
397,Absolutely Anything,"Comedy,Sci-Fi",Terry Jones,"Simon Pegg, Kate Beckinsale, Sanjeev Bhaskar, Rob Riggle",2015,85,6,0
398,Magic Mike,"Comedy,Drama",Steven Soderbergh,"Channing Tatum, Alex Pettyfer, Olivia Munn,Matthew McConaughey",2012,110,6.1,113.71M
399,Minions,"Animation,Action,Adventure",Kyle Balda,"Sandra Bullock, Jon Hamm, Michael Keaton, Pierre Coffin",2015,91,6.4,336.03
400,The Black Room,Horror,Rolfe Kanefsky,"Natasha Henstridge, Lukas Hassel, Lin Shaye,Dominique Swain",2016,91,3.9,0
401,Bronson,"Action,Biography,Crime",Nicolas Winding Refn,"Tom Hardy, Kelly Adams, Luing Andrews,Katy Barker",2008,92,7.1,0.1
402,Despicable Me,"Animation,Adventure,Comedy",Pierre Coffin,"Steve Carell, Jason Segel, Russell Brand, Julie Andrews",2010,95,7.7,251.5
403,The Best of Me,"Drama,Romance",Michael Hoffman,"James Marsden, Michelle Monaghan, Luke Bracey,Liana Liberato",2014,118,6.7,26.76
404,The Invitation,"Drama,Mystery,Thriller",Karyn Kusama,"Logan Marshall-Green, Emayatzy Corinealdi, Michiel Huisman, Tammy Blanchard",2015,100,6.7,0.23
405,Zero Dark Thirty,"Drama,History,Thriller",Kathryn Bigelow,"Jessica Chastain, Joel Edgerton, Chris Pratt, Mark Strong",2012,157,7.4,95.72
406,Tangled,"Animation,Adventure,Comedy",Nathan Greno,"Mandy Moore, Zachary Levi, Donna Murphy, Ron Perlman",2010,100,7.8,200.81
407,The Hunger Games: Mockingjay - Part 2,"Action,Adventure,Sci-Fi",Francis Lawrence,"Jennifer Lawrence, Josh Hutcherson, Liam Hemsworth, Woody Harrelson",2015,137,6.6,281.67
408,Vacation,"Adventure,Comedy",John Francis Daley,"Ed Helms, Christina Applegate, Skyler Gisondo, Steele Stebbins",2015,99,6.1,58.88
409,Taken,"Action,Thriller",Pierre Morel,"Liam Neeson, Maggie Grace, Famke Janssen, Leland Orser",2008,93,7.8,145M
410,Pitch Perfect 2,"Comedy,Music",Elizabeth Banks,"Anna Kendrick, Rebel Wilson, Hailee Steinfeld,Brittany Snow",2015,115,6.5,183.44M
411,Monsters University,"Animation,Adventure,Comedy",Dan Scanlon,"Billy Crystal, John Goodman, Steve Buscemi, Helen Mirren",2013,104,7.3,268.49
412,Elle,"Crime,Drama,Thriller",Paul Verhoeven,"Isabelle Huppert, Laurent Lafitte, Anne Consigny,Charles Berling",2016,130,7.2,0
413,Mechanic: Resurrection,"Action,Adventure,Crime",Dennis Gansel,"Jason Statham, Jessica Alba, Tommy Lee Jones,Michelle Yeoh",2016,98,5.6,21.2
414,Tusk,"Comedy,Drama,Horror",Kevin Smith,"Justin Long, Michael Parks, Haley Joel Osment,Genesis Rodriguez",2014,102,5.4,1.82
415,The Headhunter's Calling,Drama,Mark Williams,"Alison Brie, Gerard Butler, Willem Dafoe, Gretchen Mol",2016,108,6.9,0
416,Atonement,"Drama,Mystery,Romance",Joe Wright,"Keira Knightley, James McAvoy, Brenda Blethyn,Saoirse Ronan",2007,123,7.8,50.92
417,Harry Potter and the Deathly Hallows: Part 1,"Adventure,Family,Fantasy",David Yates,"Daniel Radcliffe, Emma Watson, Rupert Grint, Bill Nighy",2010,146,7.7,294.98
418,Shame,Drama,Steve McQueen,"Michael Fassbender, Carey Mulligan, James Badge Dale, Lucy Walters",2011,101,7.2,4
419,Hanna,"Action,Drama,Thriller",Joe Wright,"Saoirse Ronan, Cate Blanchett, Eric Bana, Vicky Krieps",2011,111,6.8,40.25
420,The Babysitters,Drama,David Ross,"Lauren Birkell, Paul Borghese, Chira Cassel, Anthony Cirillo",2007,88,5.7,0.04
421,Pride and Prejudice and Zombies,"Action,Horror,Romance",Burr Steers,"Lily James, Sam Riley, Jack Huston, Bella Heathcote",2016,108,5.8,10.91
422,300: Rise of an Empire,"Action,Drama,Fantasy",Noam Murro,"Sullivan Stapleton, Eva Green, Lena Headey, Hans Matheson",2014,102,6.2,106.37M
423,London Has Fallen,"Action,Crime,Drama",Babak Najafi,"Gerard Butler, Aaron Eckhart, Morgan Freeman,Angela Bassett",2016,99,5.9,62.4
424,The Curious Case of Benjamin Button,"Drama,Fantasy,Romance",David Fincher,"Brad Pitt, Cate Blanchett, Tilda Swinton, Julia Ormond",2008,166,7.8,127.49M
425,Sin City: A Dame to Kill For,"Action,Crime,Thriller",Frank Miller,"Mickey Rourke, Jessica Alba, Josh Brolin, Joseph Gordon-Levitt",2014,102,6.5,13.75
426,The Bourne Ultimatum,"Action,Mystery,Thriller",Paul Greengrass,"Matt Damon, Edgar Ramírez, Joan Allen, Julia Stiles",2007,115,8.1,227.14
427,Srpski film,"Horror,Mystery,Thriller",Srdjan Spasojevic,"Srdjan 'Zika' Todorovic, Sergej Trifunovic,Jelena Gavrilovic, Slobodan Bestic",2010,104,5.2,0
428,The Purge: Election Year,"Action,Horror,Sci-Fi",James DeMonaco,"Frank Grillo, Elizabeth Mitchell, Mykelti Williamson, Joseph Julian Soria",2016,109,6,79
429,3 Idiots,"Comedy,Drama",Rajkumar Hirani,"Aamir Khan, Madhavan, Mona Singh, Sharman Joshi",2009,170,8.4,6.52
430,Zoolander 2,Comedy,Ben Stiller,"Ben Stiller, Owen Wilson, Penélope Cruz, Will Ferrell",2016,102,4.7,28.84
431,World War Z,"Action,Adventure,Horror",Marc Forster,"Brad Pitt, Mireille Enos, Daniella Kertesz, James Badge Dale",2013,116,7,202.35
432,Mission: Impossible - Ghost Protocol,"Action,Adventure,Thriller",Brad Bird,"Tom Cruise, Jeremy Renner, Simon Pegg, Paula Patton",2011,132,7.4,209.36
433,Let Me Make You a Martyr,"Action,Crime,Drama",Corey Asraf,"Marilyn Manson, Mark Boone Junior, Sam Quartin, Niko Nicotera",2016,102,6.4,0
434,Filth,"Comedy,Crime,Drama",Jon S. Baird,"James McAvoy, Jamie Bell, Eddie Marsan, Imogen Poots",2013,97,7.1,0.03
435,The Longest Ride,"Drama,Romance",George Tillman Jr.,"Scott Eastwood, Britt Robertson, Alan Alda, Jack Huston",2015,123,7.1,37.43
436,The imposible,"Drama,Thriller",J.A. Bayona,"Naomi Watts, Ewan McGregor, Tom Holland, Oaklee Pendergast",2012,114,7.6,19
437,Kick-Ass 2,"Action,Comedy,Crime",Jeff Wadlow,"Aaron Taylor-Johnson, Chloë Grace Moretz,Christopher Mintz-Plasse, Jim Carrey",2013,103,6.6,28.75
438,Folk Hero & Funny Guy,Comedy,Jeff Grace,"Alex Karpovsky, Wyatt Russell, Meredith Hagner,Melanie Lynskey",2016,88,5.6,0
439,Oz the Great and Powerful,"Adventure,Family,Fantasy",Sam Raimi,"James Franco, Michelle Williams, Rachel Weisz, Mila Kunis",2013,130,6.3,234.9
440,Brooklyn,"Drama,Romance",John Crowley,"Saoirse Ronan, Emory Cohen, Domhnall Gleeson,Jim Broadbent",2015,117,7.5,38.32
441,Coraline,"Animation,Family,Fantasy",Henry Selick,"Dakota Fanning, Teri Hatcher, John Hodgman, Jennifer Saunders",2009,100,7.7,75.28
442,Blue Valentine,"Drama,Romance",Derek Cianfrance,"Ryan Gosling, Michelle Williams, John Doman,Faith Wladyka",2010,112,7.4,9.7
443,The Thinning,Thriller,Michael J. Gallagher,"Logan Paul, Peyton List, Lia Marie Johnson,Calum Worthy",2016,81,6,0
444,Silent Hill,"Adventure,Horror,Mystery",Christophe Gans,"Radha Mitchell, Laurie Holden, Sean Bean,Deborah Kara Unger",2006,125,6.6,46.98
445,Dredd,"Action,Sci-Fi",Pete Travis,"Karl Urban, Olivia Thirlby, Lena Headey, Rachel Wood",2012,95,7.1,13.4
446,Hunt for the Wilderpeople,"Adventure,Comedy,Drama",Taika Waititi,"Sam Neill, Julian Dennison, Rima Te Wiata, Rachel House",2016,101,7.9,5.2
447,Big Hero 6,"Animation,Action,Adventure",Don Hall,"Ryan Potter, Scott Adsit, Jamie Chung,T.J. Miller",2014,102,7.8,222.49
448,Carrie,"Drama,Horror",Kimberly Peirce,"Chloë Grace Moretz, Julianne Moore, Gabriella Wilde, Portia Doubleday",2013,100,5.9,35.27
449,Iron Man 2,"Action,Adventure,Sci-Fi",Jon Favreau,"Robert Downey Jr., Mickey Rourke, Gwyneth Paltrow,Don Cheadle",2010,124,7,312.06
450,Demolition,"Comedy,Drama",Jean-Marc Vallée,"Jake Gyllenhaal, Naomi Watts, Chris Cooper,Judah Lewis",2015,101,7,1.82
451,Pandorum,"Action,Horror,Mystery",Christian Alvart,"Dennis Quaid, Ben Foster, Cam Gigandet, Antje Traue",2009,108,6.8,10.33
452,Olympus Has Fallen,"Action,Thriller",Antoine Fuqua,"Gerard Butler, Aaron Eckhart, Morgan Freeman,Angela Bassett",2013,119,6.5,98.9
453,I Am Number Four,"Action,Adventure,Sci-Fi",D.J. Caruso,"Alex Pettyfer, Timothy Olyphant, Dianna Agron, Teresa Palmer",2011,109,6.1,55.09
454,Jagten,Drama,Thomas Vinterberg,"Mads Mikkelsen, Thomas Bo Larsen, Annika Wedderkopp, Lasse Fogelstrøm",2012,115,8.3,0.61
455,The Proposal,"Comedy,Drama,Romance",Anne Fletcher,"Sandra Bullock, Ryan Reynolds, Mary Steenburgen,Craig T. Nelson",2009,108,6.7,163.95M
456,Get Hard,"Comedy,Crime",Etan Cohen,"Will Ferrell, Kevin Hart, Alison Brie, T.I.",2015,100,6,90.35
457,Just Go with It,"Comedy,Romance",Dennis Dugan,"Adam Sandler, Jennifer Aniston, Brooklyn Decker,Nicole Kidman",2011,117,6.4,103.03M
458,Revolutionary Road,"Drama,Romance",Sam Mendes,"Leonardo DiCaprio, Kate Winslet, Christopher Fitzgerald, Jonathan Roumie",2008,119,7.3,22.88
459,The Town,"Crime,Drama,Thriller",Ben Affleck,"Ben Affleck, Rebecca Hall, Jon Hamm, Jeremy Renner",2010,125,7.6,92.17
460,The Boy,"Horror,Mystery,Thriller",William Brent Bell,"Lauren Cohan, Rupert Evans, James Russell, Jim Norton",2016,97,6,35.79
461,Denial,"Biography,Drama",Mick Jackson,"Rachel Weisz, Tom Wilkinson, Timothy Spall, Andrew Scott",2016,109,6.6,4.07
462,Predestination,"Drama,Mystery,Sci-Fi",Michael Spierig,"Ethan Hawke, Sarah Snook, Noah Taylor, Madeleine West",2014,97,7.5,0
463,Goosebumps,"Adventure,Comedy,Family",Rob Letterman,"Jack Black, Dylan Minnette, Odeya Rush, Ryan Lee",2015,103,6.3,80.02
464,Sherlock Holmes: A Game of Shadows,"Action,Adventure,Crime",Guy Ritchie,"Robert Downey Jr., Jude Law, Jared Harris, Rachel McAdams",2011,129,7.5,186.83M
465,Salt,"Action,Crime,Mystery",Phillip Noyce,"Angelina Jolie, Liev Schreiber, Chiwetel Ejiofor, Daniel Olbrychski",2010,100,6.4,118.31M
466,Enemy,"Mystery,Thriller",Denis Villeneuve,"Jake Gyllenhaal, Mélanie Laurent, Sarah Gadon,Isabella Rossellini",2013,91,6.9,1.01
467,District 9,"Action,Sci-Fi,Thriller",Neill Blomkamp,"Sharlto Copley, David James, Jason Cope, Nathalie Boltt",2009,112,8,115.65M
468,The Other Guys,"Action,Comedy,Crime",Adam McKay,"Will Ferrell, Mark Wahlberg, Derek Jeter, Eva Mendes",2010,107,6.7,119.22M
469,American Gangster,"Biography,Crime,Drama",Ridley Scott,"denzel Washington, Russell Crowe, Chiwetel Ejiofor,Josh Brolin",2007,157,7.8,130.13M
470,Marie Antoinette,"Biography,Drama,History",Sofia Coppola,"Kirsten Dunst, Jason Schwartzman, Rip Torn, Judy Davis",2006,123,6.4,15.96
471,2012,"Action,Adventure,Sci-Fi",Roland Emmerich,"John Cusack, Thandie Newton, Chiwetel Ejiofor,Amanda Peet",2009,158,5.8,166.11M
472,Harry Potter and the Half-Blood Prince,"Adventure,Family,Fantasy",David Yates,"Daniel Radcliffe, Emma Watson, Rupert Grint, Michael Gambon",2009,153,7.5,301.96
473,Argo,"Biography,Drama,History",Ben Affleck,"Ben Affleck, Bryan Cranston, John Goodman, Alan Arkin",2012,120,7.7,136.02M
474,Eddie the Eagle,"Biography,Comedy,Drama",Dexter Fletcher,"Taron Egerton, Hugh Jackman, Tom Costello, Jo Hartley",2016,106,7.4,15.79
475,The Lives of Others,"Drama,Thriller",Florian Henckel von Donnersmarck,"Ulrich Mühe, Martina Gedeck,Sebastian Koch, Ulrich Tukur",2006,137,8.5,11.28
476,Pet,"Horror,Thriller",Carles Torrens,"Dominic Monaghan, Ksenia Solo, Jennette McCurdy,Da'Vone McDonald",2016,94,5.7,0
477,Paint It Black,Drama,Amber Tamblyn,"Alia Shawkat, Nancy Kwan, Annabelle Attanasio,Alfred Molina",2016,96,8.3,0
478,Macbeth,"Drama,War",Justin Kurzel,"Michael Fassbender, Marion Cotillard, Jack Madigan,Frank Madigan",2015,113,6.7,0
479,Forgetting Sarah Marshall,"Comedy,Drama,Romance",Nicholas Stoller,"Kristen Bell, Jason Segel, Paul Rudd, Mila Kunis",2008,111,7.2,62.88
480,The Giver,"Drama,Romance,Sci-Fi",Phillip Noyce,"Brenton Thwaites, Jeff Bridges, Meryl Streep, Taylor Swift",2014,97,6.5,45.09
481,Triple 9,"Action,Crime,Drama",John Hillcoat,"Casey Affleck, Chiwetel Ejiofor, Anthony Mackie,Aaron Paul",2016,115,6.3,12.63
482,Perfetti sconosciuti,"Comedy,Drama",Paolo Genovese,"Giuseppe Battiston, Anna Foglietta, Marco Giallini,Edoardo Leo",2016,97,7.7,0
483,Angry Birds,"Animation,Action,Adventure",Clay Kaytis,"Jason Sudeikis, Josh Gad, Danny McBride, Maya Rudolph",2016,97,6.3,107.51M
484,Moonrise Kingdom,"Adventure,Comedy,Drama",Wes Anderson,"Jared Gilman, Kara Hayward, Bruce Willis, Bill Murray",2012,94,7.8,45.51
485,Hairspray,"Comedy,Drama,Family",Adam Shankman,"John Travolta, Queen Latifah, Nikki Blonsky,Michelle Pfeiffer",2007,117,6.7,118.82M
486,Safe Haven,"Drama,Romance,Thriller",Lasse Hallström,"Julianne Hough, Josh Duhamel, Cobie Smulders,David Lyons",2013,115,6.7,71.35
487,Focus,"Comedy,Crime,Drama",Glenn Ficarra,"Will Smith, Margot Robbie, Rodrigo Santoro, Adrian Martinez",2015,105,6.6,53.85
488,Ratatouille,"Animation,Comedy,Family",Brad Bird,"Brad Garrett, Lou Romano, Patton Oswalt,Ian Holm",2007,111,8,206.44
489,Stake Land,"Drama,Horror,Sci-Fi",Jim Mickle,"Connor Paolo, Nick Damici, Kelly McGillis, Gregory Jones",2010,98,6.5,0.02
490,The Book of Eli,"Action,Adventure,Drama",Albert Hughes,"Denzel Washington, Mila Kunis, Ray Stevenson, Gary Oldman",2010,118,6.9,94.82
491,Cloverfield,"Action,Horror,Sci-Fi",Matt Reeves,"Mike Vogel, Jessica Lucas, Lizzy Caplan, T.J. Miller",2008,85,7,80.03
492,Point Break,"Action,Crime,Sport",Ericson Core,"Edgar Ramírez, Luke Bracey, Ray Winstone, Teresa Palmer",2015,114,5.3,28.77
493,Under the Skin,"Drama,Horror,Sci-Fi",Jonathan Glazer,"Scarlett Johansson, Jeremy McWilliams, Lynsey Taylor Mackay, Dougie McConnell",2013,108,6.3,2.61
494,I Am Legend,"Drama,Horror,Sci-Fi",Francis Lawrence,"Will Smith, Alice Braga, Charlie Tahan, Salli Richardson-Whitfield",2007,101,7.2,256.39
495,Men in Black 3,"Action,Adventure,Comedy",Barry Sonnenfeld,"Will Smith, Tommy Lee Jones, Josh Brolin,Jemaine Clement",2012,106,6.8,179.02M
496,Super 8,"Mystery,Sci-Fi,Thriller",J.J. Abrams,"Elle Fanning, AJ Michalka, Kyle Chandler, Joel Courtney",2011,112,7.1,126.98M
497,Law Abiding Citizen,"Crime,Drama,Thriller",F. Gary Gray,"Gerard Butler, Jamie Foxx, Leslie Bibb, Colm Meaney",2009,109,7.4,73.34
498,Up,"Animation,Adventure,Comedy",Pete Docter,"Edward Asner, Jordan Nagai, John Ratzenberger, Christopher Plummer",2009,96,8.3,292.98
499,Maze Runner: The Scorch Trials,"Action,Sci-Fi,Thriller",Wes Ball,"Dylan O'Brien, Kaya Scodelario, Thomas Brodie-Sangster,Giancarlo Esposito",2015,131,6.3,81.69
500,Carol,"Drama,Romance",Todd Haynes,"Cate Blanchett, Rooney Mara, Sarah Paulson, Kyle Chandler",2015,118,7.2,0.25
501,Imperium,"Crime,Drama,Thriller",Daniel Ragussis,"Daniel Radcliffe, Toni Collette, Tracy Letts, Sam Trammell",2016,109,6.5,0
502,Youth,"Comedy,Drama,Music",Paolo Sorrentino,"Michael Caine, Harvey Keitel, Rachel Weisz, Jane Fonda",2015,124,7.3,2.7
503,Mr. Nobody,"Drama,Fantasy,Romance",Jaco Van Dormael,"Jared Leto, Sarah Polley, Diane Kruger, Linh Dan Pham",2009,141,7.9,0
504,City of Tiny Lights,"Crime,Drama,Thriller",Pete Travis,"Riz Ahmed, Billie Piper, James Floyd, Cush Jumbo",2016,110,5.7,0
505,Savages,"Crime,Drama,Thriller",Oliver Stone,"Aaron Taylor-Johnson, Taylor Kitsch, Blake Lively,Benicio Del Toro",2012,131,6.5,47.31
506,(500) Days of Summer,"Comedy,Drama,Romance",Marc Webb,"Zooey Deschanel, Joseph Gordon-Levitt, Geoffrey Arend, Chloë Grace Moretz",2009,95,7.7,32.39
507,Movie 43,"Comedy,Romance",Elizabeth Banks,"Emma Stone, Stephen Merchant, Richard Gere, Liev Schreiber",2013,94,4.3,8.83
508,Gravity,"Drama,Sci-Fi,Thriller",Alfonso Cuarón,"Sandra Bullock, George Clooney, Ed Harris, Orto Ignatiussen",2013,91,7.8,274.08
509,The Boy in the Striped Pyjamas,"Drama,War",Mark Herman,"Asa Butterfield, David Thewlis, Rupert Friend, Zac Mattoon O'Brien",2008,94,7.8,9.03
510,Shooter,"Action,Crime,Drama",Antoine Fuqua,"Mark Wahlberg, Michael Peña, Rhona Mitra, Danny Glover",2007,124,7.2,46.98
511,The Happening,"Sci-Fi,Thriller",M. Night Shyamalan,"Mark Wahlberg, Zooey Deschanel, John Leguizamo, Ashlyn Sanchez",2008,91,5,64.51
512,Bone Tomahawk,"Adventure,Drama,Horror",S. Craig Zahler,"Kurt Russell, Patrick Wilson, Matthew Fox, Richard Jenkins",2015,132,7.1,66.01
513,Magic Mike XXL,"Comedy,Drama,Music",Gregory Jacobs,"Channing Tatum, Joe Manganiello, Matt Bomer,Adam Rodriguez",2015,115,5.7,0
514,Easy A,"Comedy,Drama,Romance",Will Gluck,"Emma Stone, Amanda Bynes, Penn Badgley, Dan Byrd",2010,92,7.1,58.4
515,Exodus: Gods and Kings,"Action,Adventure,Drama",Ridley Scott,"Christian Bale, Joel Edgerton, Ben Kingsley, Sigourney Weaver",2014,150,6,65.01
516,Chappie,"Action,Crime,Drama",Neill Blomkamp,"Sharlto Copley, Dev Patel, Hugh Jackman,Sigourney Weaver",2015,120,6.9,31.57
517,The Hobbit: The Desolation of Smaug,"Adventure,Fantasy",Peter Jackson,"Ian McKellen, Martin Freeman, Richard Armitage,Ken Stott",2013,161,7.9,258.36
518,Half of a Yellow Sun,"Drama,Romance",Biyi Bandele,"Chiwetel Ejiofor, Thandie Newton, Anika Noni Rose,Joseph Mawle",2013,111,6.2,0.05
519,Anthropoid,"Biography,History,Thriller",Sean Ellis,"Jamie Dornan, Cillian Murphy, Brian Caspe, Karel Hermánek Jr.",2016,120,7.2,2.96
520,The Counselor,"Crime,Drama,Thriller",Ridley Scott,"Michael fassbender, Penélope Cruz, Cameron Diaz,Javier Bardem",2013,117,5.3,16.97
521,Viking,"Action,Drama,History",Andrey Kravchuk,"Anton Adasinsky, Aleksandr Armer, Vilen Babichev, Rostislav Bershauer",2016,133,4.7,23.05
522,Whiskey Tango Foxtrot,"Biography,Comedy,Drama",Glenn Ficarra,"Tina Fey, Margot Robbie, Martin Freeman, Alfred Molina",2016,112,6.6,0
523,Trust,"Crime,Drama,Thriller",David Schwimmer,"Clive Owen, Catherine Keener, Liana Liberato,Jason Clarke",2010,106,7,0.06
524,Birth of the Dragon,"Action,Biography,Drama",George Nolfi,"Billy Magnussen, Terry Chen, Teresa Navarro,Vanessa Ross",2016,103,3.9,93.05
525,Elysium,"Action,Drama,Sci-Fi",Neill Blomkamp,"Matt Damon, Jodie Foster, Sharlto Copley, Alice Braga",2013,109,6.6,0
526,The Green Inferno,"Adventure,Horror",Eli Roth,"Lorenza Izzo, Ariel Levy, Aaron Burns, Kirby Bliss Blanton",2013,100,5.4,7.19
527,Godzilla,"Action,Adventure,Sci-Fi",Gareth Edwards,"Aaron Taylor-Johnson, Elizabeth Olsen, Bryan Cranston, Ken Watanabe",2014,123,6.4,200.66
528,The Bourne Legacy,"Action,Adventure,Mystery",Tony Gilroy,"Jeremy Renner, Rachel Weisz, Edward Norton, Scott Glenn",2012,135,6.7,113.17M
529,A Good Year,"Comedy,Drama,Romance",Ridley Scott,"Russell Crowe, Abbie Cornish, Albert Finney, Marion Cotillard",2006,117,6.9,7.46
530,Friend Request,"Horror,Thriller",Simon Verhoeven,"Alycia Debnam-Carey, William Moseley, Connor Paolo, Brit Morgan",2016,92,5.4,64.03
531,Deja Vu,"Action,Sci-Fi,Thriller",Tony Scott,"Denzel Washington, Paula Patton, Jim Caviezel, Val Kilmer",2006,126,7,0
532,Lucy,"Action,Sci-Fi,Thriller",Luc Besson,"Scarlett Johansson, Morgan Freeman, Min-sik Choi,Amr Waked",2014,89,6.4,126.55M
533,A Quiet Passion,"Biography,Drama",Terence Davies,"Cynthia Nixon, Jennifer Ehle, Duncan Duff, Keith Carradine",2016,125,7.2,1.08
534,Need for Speed,"Action,Crime,Drama",Scott Waugh,"Aaron Paul, Dominic Cooper, Imogen Poots, Scott Mescudi",2014,132,6.5,43.57
535,Jack Reacher,"Action,Crime,Mystery",Christopher McQuarrie,"Tom Cruise, Rosamund Pike, Richard Jenkins, Werner Herzog",2012,130,7,58.68
536,The Do-Over,"Action,Adventure,Comedy",Steven Brill,"Adam Sandler, David Spade, Paula Patton, Kathryn Hahn",2016,108,5.7,0.54
537,True Crimes,"Crime,Drama,Thriller",Alexandros Avranas,"Jim Carrey, Charlotte Gainsbourg, Marton Csokas, Kati Outinen",2016,92,7.3,0
538,American Pastoral,"Crime,Drama",Ewan McGregor,"Ewan McGregor, Jennifer Connelly, Dakota Fanning, Peter Riegert",2016,108,6.1,0
539,The Ghost Writer,"Mystery,Thriller",Roman Polanski,"Ewan McGregor, Pierce Brosnan, Olivia Williams,Jon Bernthal",2010,128,7.2,15.52
540,Limitless,"Mystery,Sci-Fi,Thriller",Neil Burger,"Bradley Cooper, Anna Friel, Abbie Cornish, Robert De Niro",2011,105,7.4,79.24
541,Spectral,"Action,Mystery,Sci-Fi",Nic Mathieu,"James Badge Dale, Emily Mortimer, Bruce Greenwood,Max Martini",2016,107,6.3,0
542,P.S. I Love You,"Drama,Romance",Richard LaGravenese,"Hilary Swank, Gerard Butler, Harry Connick Jr., Lisa Kudrow",2007,126,7.1,53.68
543,Zipper,"Drama,Thriller",Mora Stephens,"Patrick Wilson, Lena Headey, Ray Winstone,Richard Dreyfuss",2015,103,5.7,0
544,Midnight Special,"Drama,Mystery,Sci-Fi",Jeff Nichols,"Michael Shannon, Joel Edgerton, Kirsten Dunst, Adam Driver",2016,112,6.7,3.71
545,Don't Think Twice,"Comedy,Drama",Mike Birbiglia,"Keegan-Michael Key, Gillian Jacobs, Mike Birbiglia,Chris Gethard",2016,92,6.8,4.42
546,Alice in Wonderland,"Adventure,Family,Fantasy",Tim Burton,"Mia Wasikowska, Johnny Depp, Helena Bonham Carter,Anne Hathaway",2010,108,6.5,334.19
547,Chuck,"Biography,Drama,Sport",Philippe Falardeau,"Elisabeth Moss, Naomi Watts, Ron Perlman, Liev Schreiber",2016,98,6.8,0.11
548,"I, Daniel Blake",Drama,Ken Loach,"Dave Johns, Hayley Squires, Sharon Percy, Briana Shann",2016,100,7.9,0
549,The Break-Up,"Comedy,Drama,Romance",Peyton Reed,"Jennifer Aniston, Vince Vaughn, Jon Favreau, Joey Lauren Adams",2006,106,5.8,118.68M
550,Loving,"Biography,Drama,Romance",Jeff Nichols,"Ruth Negga, Joel Edgerton, Will Dalton, Dean Mumford",2016,123,7.1,7.7
551,Fantastic Four,"Action,Adventure,Sci-Fi",Josh Trank,"Miles Teller, Kate Mara, Michael B. Jordan, Jamie Bell",2015,100,4.3,56.11
552,The Survivalist,"Drama,Sci-Fi,Thriller",Stephen Fingleton,"Mia Goth, Martin McCann, Barry Ward, Andrew Simpson",2015,104,6.3,0
553,Colonia,"Drama,Romance,Thriller",Florian Gallenberger,"Emma Watson, Daniel Brühl, Michael Nyqvist,Richenda Carey",2015,106,7.1,0
554,The Boy Next Door,"Mystery,Thriller",Rob Cohen,"Jennifer Lopez, Ryan Guzman, Kristin Chenoweth, John Corbett",2015,91,4.6,35.39
555,The Gift,"Mystery,Thriller",Joel Edgerton,"Jason Bateman, Rebecca Hall, Joel Edgerton, Allison Tolman",2015,108,7.1,43.77
556,Dracula Untold,"Action,Drama,Fantasy",Gary Shore,"Luke Evans, Dominic Cooper, Sarah Gadon, Art Parkinson",2014,92,6.3,55.94
557,In the Heart of the Sea,"Action,Adventure,Biography",Ron Howard,"Chris Hemsworth, Cillian Murphy, Brendan Gleeson,Ben Whishaw",2015,122,6.9,24.99
558,Idiocracy,"Adventure,Comedy,Sci-Fi",Mike Judge,"Luke Wilson, Maya Rudolph, Dax Shepard, Terry Crews",2006,84,6.6,0.44
559,The Expendables,"Action,Adventure,Thriller",Sylvester Stallone,"Sylvester Stallone, Jason Statham, Jet Li, Dolph Lundgren",2010,103,6.5,102.98M
560,Evil Dead,"Fantasy,Horror",Fede Alvarez,"Jane Levy, Shiloh Fernandez, Jessica Lucas, Lou Taylor Pucci",2013,91,6.5,54.24
561,Sinister,"Horror,Mystery",Scott Derrickson,"Ethan Hawke, Juliet Rylance, James Ransone,Fred Dalton Thompson",2012,110,6.8,48.06
562,Wreck-It Ralph,"Animation,Adventure,Comedy",Rich Moore,"John C. Reilly, Jack McBrayer, Jane Lynch, Sarah Silverman",2012,101,7.8,189.41M
563,Snow White and the Huntsman,"Action,Adventure,Drama",Rupert Sanders,"Kristen Stewart, Chris Hemsworth, Charlize Theron, Sam Claflin",2012,127,6.1,155.11M
564,Pan,"Adventure,Family,Fantasy",Joe Wright,"Levi Miller, Hugh Jackman, Garrett Hedlund, Rooney Mara",2015,111,5.8,34.96
565,Transformers: Dark of the Moon,"Action,Adventure,Sci-Fi",Michael Bay,"Shia LaBeouf, Rosie Huntington-Whiteley, Tyrese Gibson, Josh Duhamel",2011,154,6.3,352.36
566,Juno,"Comedy,Drama",Jason Reitman,"Ellen Page, Michael Cera, Jennifer Garner, Jason Bateman",2007,96,7.5,143.49M
567,A Hologram for the King,"Comedy,Drama",Tom Tykwer,"Tom Hanks, Sarita Choudhury, Ben Whishaw,Alexander Black",2016,98,6.1,4.2
568,Money Monster,"Crime,Drama,Thriller",Jodie Foster,"George Clooney, Julia Roberts, Jack O'Connell,Dominic West",2016,98,6.5,41.01
569,The Other Woman,"Comedy,Romance",Nick Cassavetes,"Cameron Diaz, Leslie Mann, Kate Upton, Nikolaj Coster-Waldau",2014,109,6,83.91
570,Enchanted,"Animation,Comedy,Family",Kevin Lima,"Amy Adams, Susan Sarandon, James Marsden, Patrick Dempsey",2007,107,7.1,127.71M
571,The Intern,"Comedy,Drama",Nancy Meyers,"Robert De Niro, Anne Hathaway, Rene Russo,Anders Holm",2015,121,7.1,75.27
572,Little Miss Sunshine,"Comedy,Drama",Jonathan Dayton,"Steve Carell, Toni Collette, Greg Kinnear, Abigail Breslin",2006,101,7.8,59.89
573,Bleed for This,"Biography,Drama,Sport",Ben Younger,"Miles Teller, Aaron Eckhart, Katey Sagal, Ciarán Hinds",2016,117,6.8,4.85
574,Clash of the Titans,"Action,Adventure,Fantasy",Louis Leterrier,"Sam Worthington, Liam Neeson, Ralph Fiennes,Jason Flemyng",2010,106,5.8,163.19M
575,The Finest Hours,"Action,Drama,History",Craig Gillespie,"Chris Pine, Casey Affleck, Ben Foster, Eric Bana",2016,117,6.8,27.55
576,Tron,"Action,Adventure,Sci-Fi",Joseph Kosinski,"Jeff Bridges, Garrett Hedlund, Olivia Wilde, Bruce Boxleitner",2010,125,6.8,172.05M
577,The Hunger Games: Catching Fire,"Action,Adventure,Mystery",Francis Lawrence,"Jennifer Lawrence, Josh Hutcherson, Liam Hemsworth, Philip Seymour Hoffman",2013,146,7.6,424.65
578,All Good Things,"Crime,Drama,Mystery",Andrew Jarecki,"Ryan Gosling, Kirsten Dunst, Frank Langella, Lily Rabe",2010,101,6.3,0.58
579,Kickboxer: Vengeance,Action,John Stockwell,"Dave Bautista, Alain Moussi, Gina Carano, Jean-Claude Van Damme",2016,90,4.9,131.56M
580,The Last Airbender,"Action,Adventure,Family",M. Night Shyamalan,"Noah Ringer, Nicola Peltz, Jackson Rathbone,Dev Patel",2010,103,4.2,0
581,Sex Tape,"Comedy,Romance",Jake Kasdan,"Jason Segel, Cameron Diaz, Rob Corddry, Ellie Kemper",2014,94,5.1,38.54
582,What to Expect When You're Expecting,"Comedy,Drama,Romance",Kirk Jones,"Cameron Diaz, Matthew Morrison, J. Todd Smith, Dennis Quaid",2012,110,5.7,41.1
583,Moneyball,"Biography,Drama,Sport",Bennett Miller,"Brad Pitt, Robin Wright, Jonah Hill, Philip Seymour Hoffman",2011,133,7.6,75.61
584,Ghost Rider,"Action,Fantasy,Thriller",Mark Steven Johnson,"Nicolas Cage, Eva Mendes, Sam Elliott, Matt Long",2007,114,5.2,115.8M
585,Unbroken,"Biography,Drama,Sport",Angelina Jolie,"Jack O'Connell, Miyavi, Domhnall Gleeson, Garrett Hedlund",2014,137,7.2,115.6M
586,Immortals,"Action,Drama,Fantasy",Tarsem Singh,"Henry Cavill, Mickey Rourke, John Hurt, Stephen Dorff",2011,110,6,83.5
587,Sunshine,"Adventure,Sci-Fi,Thriller",Danny Boyle,"Cillian Murphy, Rose Byrne, Chris Evans, Michelle Yeoh",2007,107,7.3,3.68
588,Brave,"Animation,Adventure,Comedy",Mark Andrews,"Kelly Macdonald,Billy Connolly, Emma Thompson, Julie Walters",2012,93,7.2,237.28
589,Män som hatar kvinnor,"Drama,Mystery,Thriller",Niels Arden Oplev,"Michael Nyqvist, Noomi Rapace, Ewa Fröling,Lena Endre",2009,152,7.8,10.1
590,Adoration,"Drama,Romance",Anne Fontaine,"Naomi Watts, Robin Wright, Xavier Samuel, James Frecheville",2013,112,6.2,0.32
591,The Drop,"Crime,Drama,Mystery",Michaël R. Roskam,"Tom Hardy, Noomi Rapace, James Gandolfini,Matthias Schoenaerts",2014,106,7.1,10.72
592,She's the Man,"Comedy,Romance,Sport",Andy Fickman,"Amanda Bynes, Laura Ramsey, Channing Tatum,Vinnie Jones",2006,105,6.4,2.34
593,Daddy's Home,"Comedy,Family",Sean Anders,"Will Ferrell, Mark Wahlberg, Linda Cardellini, Thomas Haden Church",2015,96,6.1,150.32M
594,Let Me In,"Drama,Horror,Mystery",Matt Reeves,"Kodi Smit-McPhee, Chloë Grace Moretz, Richard Jenkins, Cara Buono",2010,116,7.2,12.13
595,Never Back Down,"Action,Drama,Sport",Jeff Wadlow,"Sean Faris, Djimon Hounsou, Amber Heard, Cam Gigandet",2008,110,6.6,24.85
596,Grimsby,"Action,Adventure,Comedy",Louis Leterrier,"Sacha Baron Cohen, Mark Strong, Rebel Wilson,Freddie Crowder",2016,83,6.2,6.86
597,Moon,"Drama,Mystery,Sci-Fi",Duncan Jones,"Sam Rockwell, Kevin Spacey, Dominique McElligott,Rosie Shaw",2009,97,7.9,5.01
598,Megamind,"Animation,Action,Comedy",Tom McGrath,"Will Ferrell, Jonah Hill, Brad Pitt, Tina Fey",2010,95,7.3,148.34M
599,Gangster Squad,"Action,Crime,Drama",Ruben Fleischer,"Sean Penn, Ryan Gosling, Emma Stone, Giovanni Ribisi",2013,113,6.7,46
600,Blood Father,"Action,Crime,Drama",Jean-François Richet,"Mel Gibson, Erin Moriarty, Diego Luna, Michael Parks",2016,88,6.4,93.95
601,He's Just Not That Into You,"Comedy,Drama,Romance",Ken Kwapis,"Jennifer Aniston, Jennifer Connelly, Morgan Lily,Trenton Rogers",2009,129,6.4,0
602,Kung Fu Panda 3,"Animation,Action,Adventure",Alessandro Carloni,"Jack Black, Bryan Cranston, Dustin Hoffman, Angelina Jolie",2016,95,7.2,143.52M
603,The Rise of the Krays,"Crime,Drama",Zackary Adler,"Matt Vael, Simon Cotton, Kevin Leslie, Olivia Moyles",2015,110,5.1,6.53
604,Handsome Devil,Drama,John Butler,"Fionn O'Shea, Nicholas Galitzine, Andrew Scott, Moe Dunford",2016,95,7.4,0
605,Winter's Bone,Drama,Debra Granik,"Jennifer Lawrence, John Hawkes, Garret Dillahunt,Isaiah Stone",2010,100,7.2,0
606,Horrible Bosses,"Comedy,Crime",Seth Gordon,"Jason Bateman, Charlie Day, Jason Sudeikis, Steve Wiebe",2011,98,6.9,117.53M
607,Mommy,Drama,Xavier Dolan,"Anne Dorval, Antoine-Olivier Pilon, Suzanne Clément,Patrick Huard",2014,139,8.1,3.49
608,Hellboy II: The Golden Army,"Action,Adventure,Fantasy",Guillermo del Toro,"Ron Perlman, Selma Blair, Doug Jones, John Alexander",2008,120,7,75.75
609,Beautiful Creatures,"Drama,Fantasy,Romance",Richard LaGravenese,"Alice Englert, Viola Davis, Emma Thompson,Alden Ehrenreich",2013,124,6.2,19.45
610,Toni Erdmann,"Comedy,Drama",Maren Ade,"Sandra Hüller, Peter Simonischek, Michael Wittenborn,Thomas Loibl",2016,162,7.6,1.48
611,The Lovely Bones,"Drama,Fantasy,Thriller",Peter Jackson,"Rachel Weisz, Mark Wahlberg, Saoirse Ronan, Susan Sarandon",2009,135,6.7,43.98
612,The Assassination of Jesse James by the Coward Robert Ford,"Biography,Crime,Drama",Andrew Dominik,"Brad Pitt, Casey Affleck, Sam Shepard, Mary-Louise Parker",2007,160,7.5,3.9
613,Don Jon,"Comedy,Drama,Romance",Joseph Gordon-Levitt,"Joseph Gordon-Levitt, Scarlett Johansson,Julianne Moore, Tony Danza",2013,90,6.6,24.48
614,Bastille Day,"Action,Crime,Drama",James Watkins,"Idris Elba, Richard Madden, Charlotte Le Bon, Kelly Reilly",2016,92,6.3,0.04
615,2307: Winter's Dream,Sci-Fi,Joey Curtis,"Paul Sidhu, Branden Coles, Arielle Holmes, Kelcey Watson",2016,101,4,20.76
616,Free State of Jones,"Action,Biography,Drama",Gary Ross,"Matthew McConaughey, Gugu Mbatha-Raw, Mahershala Ali, Keri Russell",2016,139,6.9,0
617,Mr. Right,"Action,Comedy,Romance",Paco Cabezas,"Anna Kendrick, Sam Rockwell, Tim Roth, James Ransone",2015,95,6.3,0.03
618,The Secret Life of Walter Mitty,"Adventure,Comedy,Drama",Ben Stiller,"Ben Stiller, Kristen Wiig, Jon Daly, Kathryn Hahn",2013,114,7.3,58.23
619,Dope,"Comedy,Crime,Drama",Rick Famuyiwa,"Shameik Moore, Tony Revolori, Kiersey Clemons,Kimberly Elise",2015,103,7.3,17.47
620,Underworld Awakening,"Action,Fantasy,Horror",Måns Mårlind,"Kate Beckinsale, Michael Ealy, India Eisley, Stephen Rea",2012,88,6.4,62.32
621,Antichrist,"Drama,Horror",Lars von Trier,"Willem Dafoe, Charlotte Gainsbourg, Storm Acheche Sahlstrøm",2009,108,6.6,0.4
622,Friday the 13th,Horror,Marcus Nispel,"Jared Padalecki, Amanda Righetti, Derek Mears,Danielle Panabaker",2009,97,5.6,65
623,Taken 3,"Action,Thriller",Olivier Megaton,"Liam Neeson, Forest Whitaker, Maggie Grace,Famke Janssen",2014,109,6,89.25
624,Total Recall,"Action,Adventure,Mystery",Len Wiseman,"Colin Farrell, Bokeem Woodbine, Bryan Cranston,Kate Beckinsale",2012,118,6.3,58.88
625,X-Men: The Last Stand,"Action,Adventure,Fantasy",Brett Ratner,"Patrick Stewart, Hugh Jackman, Halle Berry, Famke Janssen",2006,104,6.7,234.36
626,The Escort,"Comedy,Drama,Romance",Will Slocombe,"Lyndsy Fonseca, Michael Doneger, Tommy Dewey,Bruce Campbell",2016,88,6,0
627,The Whole Truth,"Crime,Drama,Mystery",Courtney Hunt,"Keanu Reeves, Renée Zellweger, Gugu Mbatha-Raw, Gabriel Basso",2016,93,6.1,0
628,Night at the Museum: Secret of the Tomb,"Adventure,Comedy,Family",Shawn Levy,"Ben Stiller, Robin Williams, Owen Wilson, Dick Van Dyke",2014,98,6.2,113.73M
629,Love & Other Drugs,"Comedy,Drama,Romance",Edward Zwick,"Jake Gyllenhaal, Anne Hathaway, Judy Greer, Oliver Platt",2010,112,6.7,32.36
630,The Interview,Comedy,Evan Goldberg,"James Franco, Seth Rogen, Randall Park, Lizzy Caplan",2014,112,6.6,6.11
631,The Host,"Comedy,Drama,Horror",Bong Joon Ho,"Kang-ho Song, Hee-Bong Byun, Hae-il Park, Doona Bae",2006,120,7,2.2
632,Megan Is Missing,"Drama,Horror,Thriller",Michael Goi,"Amber Perkins, Rachel Quinn, Dean Waite, Jael Elizabeth Steinmeyer",2011,85,4.9,0
633,WALL·E,"Animation,Adventure,Family",Andrew Stanton,"Ben Burtt, Elissa Knight, Jeff Garlin, Fred Willard",2008,98,8.4,223.81
634,Knocked Up,"Comedy,Romance",Judd Apatow,"Seth Rogen, Katherine Heigl, Paul Rudd, Leslie Mann",2007,129,7,148.73M
635,Source Code,"Mystery,Romance,Sci-Fi",Duncan Jones,"Jake Gyllenhaal, Michelle Monaghan, Vera Farmiga,Jeffrey Wright",2011,93,7.5,54.7
636,Lawless,"Crime,Drama",John Hillcoat,"Tom Hardy, Shia LaBeouf, Guy Pearce, Jason Clarke",2012,116,7.3,37.4
637,Unfriended,"Drama,Horror,Mystery",Levan Gabriadze,"Heather Sossaman, Matthew Bohrer, Courtney Halverson, Shelley Hennig",2014,83,5.6,31.54
638,American Reunion,Comedy,Jon Hurwitz,"Jason Biggs, Alyson Hannigan,Seann William Scott, Chris Klein",2012,113,6.7,56.72
639,The Pursuit of Happyness,"Biography,Drama",Gabriele Muccino,"Will Smith, Thandie Newton, Jaden Smith, Brian Howe",2006,117,8,162.59M
640,Relatos salvajes,"Comedy,Drama,Thriller",Damián Szifron,"Darío Grandinetti, María Marull, Mónica Villa, Rita Cortese",2014,122,8.1,3.08
641,The Ridiculous 6,"Comedy,Western",Frank Coraci,"Adam Sandler, Terry Crews, Jorge Garcia, Taylor Lautner",2015,119,4.8,0
642,Frantz,"Drama,History,War",François Ozon,"Pierre Niney, Paula Beer, Ernst Stötzner, Marie Gruber",2016,113,7.5,0.86
643,Viral,"Drama,Horror,Sci-Fi",Henry Joost,"Sofia Black-D'Elia, Analeigh Tipton,Travis Tope, Michael Kelly",2016,85,5.5,0
644,Gran Torino,Drama,Clint Eastwood,"Clint Eastwood, Bee Vang, Christopher Carley,Ahney Her",2008,116,8.2,148.09M
645,Burnt,"Comedy,Drama",John Wells,"Bradley Cooper, Sienna Miller, Daniel Brühl, Riccardo Scamarcio",2015,101,6.6,13.65
646,Tall Men,"Fantasy,Horror,Thriller",Jonathan Holbrook,"Dan Crisafulli, Kay Whitney, Richard Garcia, Pat Cashman",2016,133,3.2,0
647,Sleeping Beauty,"Drama,Romance",Julia Leigh,"Emily Browning, Rachael Blake, Ewen Leslie, Bridgette Barrett",2011,101,5.3,0.03
648,Vampire Academy,"Action,Comedy,Fantasy",Mark Waters,"Zoey Deutch, Lucy Fry, Danila Kozlovsky, Gabriel Byrne",2014,104,5.6,7.79
649,Sweeney Todd: The Demon Barber of Fleet Street,"Drama,Horror,Musical",Tim Burton,"Johnny Depp, Helena Bonham Carter, Alan Rickman,Timothy Spall",2007,116,7.4,52.88
650,Solace,"Crime,Drama,Mystery",Afonso Poyart,"Anthony Hopkins, Jeffrey Dean Morgan, Abbie Cornish, Colin Farrell",2015,101,6.4,0
651,Insidious,"Horror,Mystery,Thriller",James Wan,"Patrick Wilson, Rose Byrne, Ty Simpkins, Lin Shaye",2010,103,6.8,53.99
652,Popstar: Never Stop Never Stopping,"Comedy,Music",Akiva Schaffer,"Andy Samberg, Jorma Taccone,Akiva Schaffer, Sarah Silverman",2016,87,6.7,9.39
653,The Levelling,Drama,Hope Dickson Leach,"Ellie Kendrick, David Troughton, Jack Holden,Joe Blakemore",2016,83,6.4,0
654,Public Enemies,"Biography,Crime,Drama",Michael Mann,"Christian Bale, Johnny Depp, Christian Stolte, Jason Clarke",2009,140,7,97.03
655,Boyhood,Drama,Richard Linklater,"Ellar Coltrane, Patricia Arquette, Ethan Hawke,Elijah Smith",2014,165,7.9,25.36
656,Teenage Mutant Ninja Turtles,"Action,Adventure,Comedy",Jonathan Liebesman,"Megan Fox, Will Arnett, William Fichtner, Noel Fisher",2014,101,5.9,190.87M
657,Eastern Promises,"Crime,Drama,Mystery",David Cronenberg,"Naomi Watts, Viggo Mortensen, Armin Mueller-Stahl, Josef Altin",2007,100,7.7,17.11
658,The Daughter,Drama,Simon Stone,"Geoffrey Rush, Nicholas Hope, Sam Neill, Ewen Leslie",2015,96,6.7,0.03
659,Pineapple Express,"Action,Comedy,Crime",David Gordon Green,"Seth Rogen, James Franco, Gary Cole, Danny McBride",2008,111,7,87.34
660,The First Time,"Comedy,Drama,Romance",Jon Kasdan,"Dylan O'Brien, Britt Robertson, Victoria Justice, James Frecheville",2012,95,6.9,0.02
661,Gone Baby Gone,"Crime,Drama,Mystery",Ben Affleck,"Morgan Freeman, Ed Harris, Casey Affleck, Michelle Monaghan",2007,114,7.7,20.3
662,The Heat,"Action,Comedy,Crime",Paul Feig,"Sandra Bullock, Michael McDonald, Melissa McCarthy,Demián Bichir",2013,117,6.6,159.58M
663,L'avenir,Drama,Mia Hansen-Løve,"Isabelle Huppert, André Marcon, Roman Kolinka,Edith Scob",2016,102,7.1,0.28
664,Anna Karenina,"Drama,Romance",Joe Wright,"Keira Knightley, Jude Law, Aaron Taylor-Johnson,Matthew Macfadyen",2012,129,6.6,12.8
665,Regression,"Crime,Drama,Mystery",Alejandro Amenábar,"Ethan Hawke, David Thewlis, Emma Watson,Dale Dickey",2015,106,5.7,0.05
666,Ted 2,"Adventure,Comedy,Romance",Seth MacFarlane,"Mark Wahlberg, Seth MacFarlane, Amanda Seyfried, Jessica Barth",2015,115,6.3,81.26
667,Pain & Gain,"Comedy,Crime,Drama",Michael Bay,"Mark Wahlberg, Dwayne Johnson, Anthony Mackie,Tony Shalhoub",2013,129,6.5,49.87
668,Blood Diamond,"Adventure,Drama,Thriller",Edward Zwick,"Leonardo DiCaprio, Djimon Hounsou, Jennifer Connelly, Kagiso Kuypers",2006,143,8,57.37
669,Devil's Knot,"Biography,Crime,Drama",Atom Egoyan,"Colin Firth, Reese Witherspoon, Alessandro Nivola,James Hamrick",2013,114,6.1,0
670,Child 44,"Crime,Drama,Thriller",Daniel Espinosa,"Tom Hardy, Gary Oldman, Noomi Rapace, Joel Kinnaman",2015,137,6.5,1.21
671,The Hurt Locker,"Drama,History,Thriller",Kathryn Bigelow,"Jeremy Renner, Anthony Mackie, Brian Geraghty,Guy Pearce",2008,131,7.6,15.7
672,Green Lantern,"Action,Adventure,Sci-Fi",Martin Campbell,"Ryan Reynolds, Blake Lively, Peter Sarsgaard,Mark Strong",2011,114,5.6,116.59M
673,War on Everyone,"Action,Comedy",John Michael McDonagh,"Alexander Skarsgård, Michael Peña, Theo James, Tessa Thompson",2016,98,5.9,0
674,The Mist,Horror,Frank Darabont,"Thomas Jane, Marcia Gay Harden, Laurie Holden,Andre Braugher",2007,126,7.2,25.59
675,Escape Plan,"Action,Crime,Mystery",Mikael Håfström,"Sylvester Stallone, Arnold Schwarzenegger, 50 Cent, Vincent D'Onofrio",2013,115,6.7,25.12
676,"Love, Rosie","Comedy,Romance",Christian Ditter,"Lily Collins, Sam Claflin, Christian Cooke, Jaime Winstone",2014,102,7.2,0.01
677,The DUFF,Comedy,Ari Sandel,"Mae Whitman, Bella Thorne, Robbie Amell, Allison Janney",2015,101,6.5,34.02
678,The Age of Shadows,"Action,Drama,Thriller",Jee-woon Kim,"Byung-hun Lee, Yoo Gong, Kang-ho Song, Ji-min Han",2016,140,7.2,0.54
679,The Hunger Games: Mockingjay - Part 1,"Action,Adventure,Sci-Fi",Francis Lawrence,"Jennifer Lawrence, Josh Hutcherson, Liam Hemsworth, Woody Harrelson",2014,123,6.7,337.1
680,We Need to Talk About Kevin,"Drama,Mystery,Thriller",Lynne Ramsay,"Tilda Swinton, John C. Reilly, Ezra Miller, Jasper Newell",2011,112,7.5,1.74
681,Love & Friendship,"Comedy,Drama,Romance",Whit Stillman,"Kate Beckinsale, Chloë Sevigny, Xavier Samuel,Emma Greenwell",2016,90,6.5,14.01
682,The Mortal Instruments: City of Bones,"Action,Fantasy,Horror",Harald Zwart,"Lily Collins, Jamie Campbell Bower, Robert Sheehan,Jemima West",2013,130,5.9,31.17
683,Seven Pounds,"Drama,Romance",Gabriele Muccino,"Will Smith, Rosario Dawson, Woody Harrelson,Michael Ealy",2008,123,7.7,69.95
684,The King's Speech,"Biography,Drama",Tom Hooper,"Colin Firth, Geoffrey Rush, Helena Bonham Carter,Derek Jacobi",2010,118,8,138.8M
685,Hunger,"Biography,Drama",Steve McQueen,"Stuart Graham, Laine Megaw, Brian Milligan, Liam McMahon",2008,96,7.6,0.15
686,Jumper,"Action,Adventure,Sci-Fi",Doug Liman,"Hayden Christensen, Samuel L. Jackson, Jamie Bell,Rachel Bilson",2008,88,6.1,80.17
687,Toy Story 3,"Animation,Adventure,Comedy",Lee Unkrich,"Tom Hanks, Tim Allen, Joan Cusack, Ned Beatty",2010,103,8.3,414.98
688,Tinker Tailor Soldier Spy,"Drama,Mystery,Thriller",Tomas Alfredson,"Gary Oldman, Colin Firth, Tom Hardy, Mark Strong",2011,122,7.1,24.1
689,Resident Evil: Retribution,"Action,Horror,Sci-Fi",Paul W.S. Anderson,"Milla Jovovich, Sienna Guillory, Michelle Rodriguez, Aryana Engineer",2012,96,5.4,42.35
690,Dear Zindagi,"Drama,Romance",Gauri Shinde,"Alia Bhatt, Shah Rukh Khan, Kunal Kapoor, Priyanka Moodley",2016,151,7.8,1.4
691,Genius,"Biography,Drama",Michael Grandage,"Colin Firth, Jude Law, Nicole Kidman, Laura Linney",2016,104,6.5,1.36
692,Pompeii,"Action,Adventure,Drama",Paul W.S. Anderson,"Kit Harington, Emily Browning, Kiefer Sutherland, Adewale Akinnuoye-Agbaje",2014,105,5.5,23.22
693,Life of Pi,"Adventure,Drama,Fantasy",Ang Lee,"Suraj Sharma, Irrfan Khan, Adil Hussain, Tabu",2012,127,7.9,124.98M
694,Hachi: A Dog's Tale,"Drama,Family",Lasse Hallström,"Richard Gere, Joan Allen, Cary-Hiroyuki Tagawa,Sarah Roemer",2009,93,8.1,0
695,10 Years,"Comedy,Drama,Romance",Jamie Linden,"Channing Tatum, Rosario Dawson, Chris Pratt, Jenna Dewan Tatum",2011,100,6.1,0.2
696,I Origins,"Drama,Romance,Sci-Fi",Mike Cahill,"Michael Pitt, Steven Yeun, Astrid Bergès-Frisbey, Brit Marling",2014,106,7.3,0.33
697,Live Free or Die Hard,"Action,Adventure,Thriller",Len Wiseman,"Bruce Willis, Justin Long, Timothy Olyphant, Maggie Q",2007,128,7.2,134.52M
698,The Matchbreaker,"Comedy,Romance",Caleb Vetter,"Wesley Elder, Christina Grimmie, Osric Chau, Olan Rogers",2016,94,5.5,0
699,Funny Games,"Crime,Drama,Horror",Michael Haneke,"Naomi Watts, Tim Roth, Michael Pitt, Brady Corbet",2007,111,6.5,1.29
700,Ted,"Comedy,Fantasy",Seth MacFarlane,"Mark Wahlberg, Mila Kunis, Seth MacFarlane, Joel McHale",2012,106,7,218.63
701,RED,"Action,Comedy,Crime",Robert Schwentke,"Bruce Willis, Helen Mirren, Morgan Freeman,Mary-Louise Parker",2010,111,7.1,90.36
702,Australia,"Adventure,Drama,Romance",Baz Luhrmann,"Nicole Kidman, Hugh Jackman, Shea Adams, Eddie Baroo",2008,165,6.6,49.55
703,Faster,"Action,Crime,Drama",George Tillman Jr.,"Dwayne Johnson, Billy Bob Thornton, Maggie Grace, Mauricio Lopez",2010,98,6.5,23.23
704,The Neighbor,"Crime,Horror,Thriller",Marcus Dunstan,"Josh Stewart, Bill Engvall, Alex Essoe, Ronnie Gene Blevins",2016,87,5.8,0
705,The Adjustment Bureau,"Romance,Sci-Fi,Thriller",George Nolfi,"Matt Damon, Emily Blunt, Lisa Thoreson, Florence Kastriner",2011,106,7.1,62.45
706,The Hollars,"Comedy,Drama,Romance",John Krasinski,"Sharlto Copley, Charlie Day, Richard Jenkins, Anna Kendrick",2016,88,6.5,1.02
707,The Judge,"Crime,Drama",David Dobkin,"Robert Downey Jr., Robert Duvall, Vera Farmiga, Billy Bob Thornton",2014,141,7.4,47.11
708,Closed Circuit,"Crime,Drama,Mystery",John Crowley,"Eric Bana, Rebecca Hall, Jim Broadbent, Ciarán Hinds",2013,96,6.2,5.73
709,Transformers: Revenge of the Fallen,"Action,Adventure,Sci-Fi",Michael Bay,"Shia LaBeouf, Megan Fox, Josh Duhamel, Tyrese Gibson",2009,150,6,402.08
710,La tortue rouge,"Animation,Fantasy",Michael Dudok de Wit,"Emmanuel Garijo, Tom Hudson, Baptiste Goy, Axel Devillers",2016,80,7.6,0.92
711,The Book of Life,"Animation,Adventure,Comedy",Jorge R. Gutiérrez,"Diego Luna, Zoe Saldana, Channing Tatum, Ron Perlman",2014,95,7.3,50.15
712,Incendies,"Drama,Mystery,War",Denis Villeneuve,"Lubna Azabal, Mélissa Désormeaux-Poulin, Maxim Gaudette, Mustafa Kamel",2010,131,8.2,6.86
713,The Heartbreak Kid,"Comedy,Romance",Bobby Farrelly,"Ben Stiller, Michelle Monaghan,Malin Akerman, Jerry Stiller",2007,116,5.8,36.77
714,Happy Feet,"Animation,Comedy,Family",George Miller,"Elijah Wood, Brittany Murphy, Hugh Jackman, Robin Williams",2006,108,6.5,197.99M
715,Entourage,Comedy,Doug Ellin,"Adrian Grenier, Kevin Connolly, Jerry Ferrara, Kevin Dillon",2015,104,6.6,32.36
716,The Strangers,"Horror,Mystery,Thriller",Bryan Bertino,"Scott Speedman, Liv Tyler, Gemma Ward, Alex Fisher",2008,86,6.2,52.53
717,Noah,"Action,Adventure,Drama",Darren Aronofsky,"Russell Crowe, Jennifer Connelly, Anthony Hopkins, Emma Watson",2014,138,5.8,101.16M
718,Neighbors,Comedy,Nicholas Stoller,"Seth Rogen, Rose Byrne, Zac Efron, Lisa Kudrow",2014,97,6.4,150.06M
719,Nymphomaniac: Vol. II,Drama,Lars von Trier,"Charlotte Gainsbourg, Stellan Skarsgård, Willem Dafoe, Jamie Bell",2013,123,6.7,0.33
720,Wild,"Adventure,Biography,Drama",Jean-Marc Vallée,"Reese Witherspoon, Laura Dern, Gaby Hoffmann,Michiel Huisman",2014,115,7.1,37.88
721,Grown Ups,Comedy,Dennis Dugan,"Adam Sandler, Salma Hayek, Kevin James, Chris Rock",2010,102,6,162M
722,Blair Witch,"Horror,Thriller",Adam Wingard,"James Allen McCune, Callie Hernandez, Corbin Reid, Brandon Scott",2016,89,5.1,20.75
723,The Karate Kid,"Action,Drama,Family",Harald Zwart,"Jackie Chan, Jaden Smith, Taraji P. Henson, Wenwen Han",2010,140,6.2,176.59M
724,Dark Shadows,"Comedy,Fantasy,Horror",Tim Burton,"Johnny Depp, Michelle Pfeiffer, Eva Green, Helena Bonham Carter",2012,113,6.2,79.71
725,Friends with Benefits,"Comedy,Romance",Will Gluck,"Mila Kunis, Justin Timberlake, Patricia Clarkson, Jenna Elfman",2011,109,6.6,55.8
726,The Illusionist,"Drama,Mystery,Romance",Neil Burger,"Edward Norton, Jessica Biel, Paul Giamatti, Rufus Sewell",2006,110,7.6,39.83
727,The A-Team,"Action,Adventure,Comedy",Joe Carnahan,"Liam Neeson, Bradley Cooper, Sharlto Copley,Jessica Biel",2010,117,6.8,77.21
728,The Guest,Thriller,Adam Wingard,"Dan Stevens, Sheila Kelley, Maika Monroe, Joel David Moore",2014,100,6.7,0.32
729,The Internship,Comedy,Shawn Levy,"Vince Vaughn, Owen Wilson, Rose Byrne, Aasif Mandvi",2013,119,6.3,44.67
730,Paul,"Adventure,Comedy,Sci-Fi",Greg Mottola,"Simon Pegg, Nick Frost, Seth Rogen, Mia Stallard",2011,104,7,37.37
731,This Beautiful Fantastic,"Comedy,Drama,Fantasy",Simon Aboud,"Jessica Brown Findlay, Andrew Scott, Jeremy Irvine,Tom Wilkinson",2016,100,6.9,0
732,The Da Vinci Code,"Mystery,Thriller",Ron Howard,"Tom Hanks, Audrey Tautou, Jean Reno, Ian McKellen",2006,149,6.6,217.54
733,Mr. Church,"Comedy,Drama",Bruce Beresford,"Eddie Murphy, Britt Robertson, Natascha McElhone, Xavier Samuel",2016,104,7.7,0.69
734,Hugo,"Adventure,Drama,Family",Martin Scorsese,"Asa Butterfield, Chloë Grace Moretz, Christopher Lee, Ben Kingsley",2011,126,7.5,73.82
735,The Blackcoat's Daughter,"Horror,Thriller",Oz Perkins,"Emma Roberts, Kiernan Shipka, Lauren Holly, Lucy Boynton",2015,93,5.6,0.02
736,Body of Lies,"Action,Drama,Romance",Ridley Scott,"Leonardo DiCaprio, Russell Crowe, Mark Strong,Golshifteh Farahani",2008,128,7.1,39.38
737,Knight of Cups,"Drama,Romance",Terrence Malick,"Christian Bale, Cate Blanchett, Natalie Portman,Brian Dennehy",2015,118,5.7,0.56
738,The Mummy: Tomb of the Dragon Emperor,"Action,Adventure,Fantasy",Rob Cohen,"Brendan Fraser, Jet Li, Maria Bello, Michelle Yeoh",2008,112,5.2,102.18M
739,The Boss,Comedy,Ben Falcone,"Melissa McCarthy, Kristen Bell, Peter Dinklage, Ella Anderson",2016,99,5.4,63.03
740,Hands of Stone,"Action,Biography,Drama",Jonathan Jakubowicz,"Edgar Ramírez, Usher Raymond, Robert De Niro, Rubén Blades",2016,111,6.6,4.71
741,El secreto de sus ojos,"Drama,Mystery,Romance",Juan José Campanella,"Ricardo Darín, Soledad Villamil, Pablo Rago,Carla Quevedo",2009,129,8.2,20.17
742,True Grit,"Adventure,Drama,Western",Ethan Coen,"Jeff Bridges, Matt Damon, Hailee Steinfeld,Josh Brolin",2010,110,7.6,171.03M
743,We Are Your Friends,"Drama,Music,Romance",Max Joseph,"Zac Efron, Wes Bentley, Emily Ratajkowski, Jonny Weston",2015,96,6.2,3.59
744,A Million Ways to Die in the West,"Comedy,Romance,Western",Seth MacFarlane,"Seth MacFarlane, Charlize Theron, Liam Neeson,Amanda Seyfried",2014,116,6.1,42.62
745,Only for One Night,Thriller,Chris Stokes,"Brian White, Karrueche Tran, Angelique Pereira,Jessica Vanessa DeLeon",2016,86,4.6,0
746,Rules Don't Apply,"Comedy,Drama,Romance",Warren Beatty,"Lily Collins, Haley Bennett, Taissa Farmiga, Steve Tom",2016,127,5.7,3.65
747,Ouija: Origin of Evil,"Horror,Thriller",Mike Flanagan,"Elizabeth Reaser, Lulu Wilson, Annalise Basso,Henry Thomas",2016,99,6.1,34.9
748,Percy Jackson: Sea of Monsters,"Adventure,Family,Fantasy",Thor Freudenthal,"Logan Lerman, Alexandra Daddario, Brandon T. Jackson, Nathan Fillion",2013,106,5.9,68.56
749,Fracture,"Crime,Drama,Mystery",Gregory Hoblit,"Anthony Hopkins, Ryan Gosling, David Strathairn,Rosamund Pike",2007,113,7.2,39
750,Oculus,"Horror,Mystery",Mike Flanagan,"Karen Gillan, Brenton Thwaites, Katee Sackhoff,Rory Cochrane",2013,104,6.5,27.69
751,In Bruges,"Comedy,Crime,Drama",Martin McDonagh,"Colin Farrell, Brendan Gleeson, Ciarán Hinds,Elizabeth Berrington",2008,107,7.9,7.76
752,This Means War,"Action,Comedy,Romance",McG,"Reese Witherspoon, Chris Pine, Tom Hardy, Til Schweiger",2012,103,6.3,54.76
753,Lída Baarová,"Biography,Drama,History",Filip Renc,"Tatiana Pauhofová, Karl Markovics, Gedeon Burkhard,Simona Stasová",2016,106,5,0
754,The Road,"Adventure,Drama",John Hillcoat,"Viggo Mortensen, Charlize Theron, Kodi Smit-McPhee,Robert Duvall",2009,111,7.3,0.06
755,Lavender,"Drama,Thriller",Ed Gass-Donnelly,"Abbie Cornish, Dermot Mulroney, Justin Long,Diego Klattenhoff",2016,92,5.2,0
756,Deuces,Drama,Jamal Hill,"Larenz Tate, Meagan Good, Rotimi, Rick Gonzalez",2016,87,6.6,0
757,Conan the Barbarian,"Action,Adventure,Fantasy",Marcus Nispel,"Jason Momoa, Ron Perlman, Rose McGowan,Stephen Lang",2011,113,5.2,21.27
758,The Fighter,"Action,Biography,Drama",David O. Russell,"Mark Wahlberg, Christian Bale, Amy Adams,Melissa Leo",2010,116,7.8,93.57
759,August Rush,"Drama,Music",Kirsten Sheridan,"Freddie Highmore, Keri Russell, Jonathan Rhys Meyers, Terrence Howard",2007,114,7.5,31.66
760,Chef,"Comedy,Drama",Jon Favreau,"Jon Favreau, Robert Downey Jr., Scarlett Johansson,Dustin Hoffman",2014,114,7.3,31.24
761,Eye in the Sky,"Drama,Thriller,War",Gavin Hood,"Helen Mirren, Aaron Paul, Alan Rickman, Barkhad Abdi",2015,102,7.3,18.7
762,Eagle Eye,"Action,Mystery,Thriller",D.J. Caruso,"Shia LaBeouf, Michelle Monaghan, Rosario Dawson,Michael Chiklis",2008,118,6.6,101.11M
763,The Purge,"Horror,Sci-Fi,Thriller",James DeMonaco,"Ethan Hawke, Lena Headey, Max Burkholder,Adelaide Kane",2013,85,5.7,64.42
764,PK,"Comedy,Drama,Romance",Rajkumar Hirani,"Aamir Khan, Anushka Sharma, Sanjay Dutt,Boman Irani",2014,153,8.2,10.57
765,Ender's Game,"Action,Sci-Fi",Gavin Hood,"Harrison Ford, Asa Butterfield, Hailee Steinfeld, Abigail Breslin",2013,114,6.7,61.66
766,Indiana Jones and the Kingdom of the Crystal Skull,"Action,Adventure,Fantasy",Steven Spielberg,"Harrison Ford, Cate Blanchett, Shia LaBeouf,Karen Allen",2008,122,6.2,317.01
767,Paper Towns,"Drama,Mystery,Romance",Jake Schreier,"Nat Wolff, Cara Delevingne, Austin Abrams, Justice Smith",2015,109,6.3,31.99
768,High-Rise,Drama,Ben Wheatley,"Tom Hiddleston, Jeremy Irons, Sienna Miller, Luke Evans",2015,119,5.7,0.34
769,Quantum of Solace,"Action,Adventure,Thriller",Marc Forster,"Daniel Craig, Olga Kurylenko, Mathieu Amalric, Judi Dench",2008,106,6.6,168.37M
770,The Assignment,"Action,Crime,Thriller",Walter Hill,"Sigourney Weaver, Michelle Rodriguez, Tony Shalhoub,Anthony LaPaglia",2016,95,4.5,0
771,How to Train Your Dragon,"Animation,Action,Adventure",Dean DeBlois,"Jay Baruchel, Gerard Butler,Christopher Mintz-Plasse, Craig Ferguson",2010,98,8.1,217.39
772,Lady in the Water,"Drama,Fantasy,Mystery",M. Night Shyamalan,"Paul Giamatti, Bryce Dallas Howard, Jeffrey Wright, Bob Balaban",2006,110,5.6,42.27
773,The Fountain,"Drama,Sci-Fi",Darren Aronofsky,"Hugh Jackman, Rachel Weisz, Sean Patrick Thomas, Ellen Burstyn",2006,96,7.3,10.14
774,Cars 2,"Animation,Adventure,Comedy",John Lasseter,"Owen Wilson, Larry the Cable Guy,Michael Caine, Emily Mortimer",2011,106,6.2,191.45M
775,31,"Horror,Thriller",Rob Zombie,"Malcolm McDowell, Richard Brake, Jeff Daniel Phillips,Sheri Moon Zombie",2016,102,5.1,0.78
776,Final Girl,"Action,Thriller",Tyler Shields,"Abigail Breslin, Wes Bentley, Logan Huffman,Alexander Ludwig",2015,90,4.7,0
777,Chalk It Up,Comedy,Hisonni Johnson,"Maddy Curley, John DeLuca, Nikki SooHoo, Drew Seeley",2016,90,4.8,0
778,The Man Who Knew Infinity,"Biography,Drama",Matt Brown,"Dev Patel, Jeremy Irons, Malcolm Sinclair, Raghuvir Joshi",2015,108,7.2,3.86
779,Unknown,"Action,Mystery,Thriller",Jaume Collet-Serra,"Liam Neeson, Diane Kruger, January Jones,Aidan Quinn",2011,113,6.9,61.09
780,Self/less,"Action,Mystery,Sci-Fi",Tarsem Singh,"Ryan Reynolds, Natalie Martinez, Matthew Goode,Ben Kingsley",2015,117,6.5,12.28
781,Mr. Brooks,"Crime,Drama,Thriller",Bruce A. Evans,"Kevin Costner, Demi Moore, William Hurt, Dane Cook",2007,120,7.3,28.48
782,Tramps,"Comedy,Romance",Adam Leon,"Callum Turner, Grace Van Patten, Michal Vondel, Mike Birbiglia",2016,82,6.5,0
783,Before We Go,"Comedy,Drama,Romance",Chris Evans,"Chris Evans, Alice Eve, Emma Fitzpatrick, John Cullum",2014,95,6.9,0.04
784,Captain Phillips,"Biography,Drama,Thriller",Paul Greengrass,"Tom Hanks, Barkhad Abdi, Barkhad Abdirahman,Catherine Keener",2013,134,7.8,107.1M
785,The Secret Scripture,Drama,Jim Sheridan,"Rooney Mara, Eric Bana, Theo James, Aidan Turner",2016,108,6.8,0
786,Max Steel,"Action,Adventure,Family",Stewart Hendler,"Ben Winchell, Josh Brener, Maria Bello, Andy Garcia",2016,92,4.6,3.77
787,Hotel Transylvania 2,"Animation,Comedy,Family",Genndy Tartakovsky,"Adam Sandler, Andy Samberg, Selena Gomez, Kevin James",2015,89,6.7,169.69M
788,Hancock,"Action,Crime,Drama",Peter Berg,"Will Smith, Charlize Theron, Jason Bateman, Jae Head",2008,92,6.4,227.95
789,Sisters,Comedy,Jason Moore,"Amy Poehler, Tina Fey, Maya Rudolph, Ike Barinholtz",2015,118,6,87.03
790,The Family,"Comedy,Crime,Thriller",Luc Besson,"Robert De Niro, Michelle Pfeiffer, Dianna Agron, John D'Leo",2013,111,6.3,36.92
791,Zack and Miri Make a Porno,"Comedy,Romance",Kevin Smith,"Seth Rogen, Elizabeth Banks, Craig Robinson, Gerry Bednob",2008,101,6.6,31.45
792,Ma vie de Courgette,"Animation,Comedy,Drama",Claude Barras,"Gaspard Schlatter, Sixtine Murat, Paulin Jaccoud,Michel Vuillermoz",2016,66,7.8,0.29
793,Man on a Ledge,"Action,Crime,Thriller",Asger Leth,"Sam Worthington, Elizabeth Banks, Jamie Bell, Mandy Gonzalez",2012,102,6.6,18.6
794,No Strings Attached,"Comedy,Romance",Ivan Reitman,"Natalie Portman, Ashton Kutcher, Kevin Kline, Cary Elwes",2011,108,6.2,70.63
795,Rescue Dawn,"Adventure,Biography,Drama",Werner Herzog,"Christian Bale, Steve Zahn, Jeremy Davies, Zach Grenier",2006,120,7.3,5.48
796,Despicable Me 2,"Animation,Adventure,Comedy",Pierre Coffin,"Steve Carell, Kristen Wiig, Benjamin Bratt, Miranda Cosgrove",2013,98,7.4,368.05
797,A Walk Among the Tombstones,"Crime,Drama,Mystery",Scott Frank,"Liam Neeson, Dan Stevens, David Harbour, Boyd Holbrook",2014,114,6.5,25.98
798,The World's End,"Action,Comedy,Sci-Fi",Edgar Wright,"Simon Pegg, Nick Frost, Martin Freeman, Rosamund Pike",2013,109,7,26
799,Yoga Hosers,"Comedy,Fantasy,Horror",Kevin Smith,"Lily-Rose Depp, Harley Quinn Smith, Johnny Depp,Adam Brody",2016,88,4.3,0
800,Seven Psychopaths,"Comedy,Crime",Martin McDonagh,"Colin Farrell, Woody Harrelson, Sam Rockwell,Christopher Walken",2012,110,7.2,14.99
801,Beowulf,"Animation,Action,Adventure",Robert Zemeckis,"Ray Winstone, Crispin Glover, Angelina Jolie,Robin Wright",2007,115,6.2,82.16
802,Jack Ryan: Shadow Recruit,"Action,Drama,Thriller",Kenneth Branagh,"Chris Pine, Kevin Costner, Keira Knightley,Kenneth Branagh",2014,105,6.2,50.55
803,1408,"Fantasy,Horror",Mikael Håfström,"John Cusack, Samuel L. Jackson, Mary McCormack, Paul Birchard",2007,104,6.8,71.98
804,The Gambler,"Crime,Drama,Thriller",Rupert Wyatt,"Mark Wahlberg, Jessica Lange, John Goodman, Brie Larson",2014,111,6,33.63
805,Prince of Persia: The Sands of Time,"Action,Adventure,Fantasy",Mike Newell,"Jake Gyllenhaal, Gemma Arterton, Ben Kingsley,Alfred Molina",2010,116,6.6,90.76
806,The Spectacular Now,"Comedy,Drama,Romance",James Ponsoldt,"Miles Teller, Shailene Woodley, Kyle Chandler,Jennifer Jason Leigh",2013,95,7.1,6.85
807,A United Kingdom,"Biography,Drama,Romance",Amma Asante,"David Oyelowo, Rosamund Pike, Tom Felton, Jack Davenport",2016,111,6.8,3.9
808,USS Indianapolis: Men of Courage,"Action,Drama,History",Mario Van Peebles,"Nicolas Cage, Tom Sizemore, Thomas Jane,Matt Lanter",2016,128,5.2,0
809,Turbo Kid,"Action,Adventure,Comedy",François Simard,"Munro Chambers, Laurence Leboeuf, Michael Ironside, Edwin Wright",2015,93,6.7,0.05
810,Mama,"Horror,Thriller",Andrés Muschietti,"Jessica Chastain, Nikolaj Coster-Waldau, Megan Charpentier, Isabelle Nélisse",2013,100,6.2,71.59
811,Orphan,"Horror,Mystery,Thriller",Jaume Collet-Serra,"Vera Farmiga, Peter Sarsgaard, Isabelle Fuhrman, CCH Pounder",2009,123,7,41.57
812,To Rome with Love,"Comedy,Romance",Woody Allen,"Woody Allen, Penélope Cruz, Jesse Eisenberg, Ellen Page",2012,112,6.3,16.68
813,Fantastic Mr. Fox,"Animation,Adventure,Comedy",Wes Anderson,"George Clooney, Meryl Streep, Bill Murray, Jason Schwartzman",2009,87,7.8,21
814,Inside Man,"Crime,Drama,Mystery",Spike Lee,"Denzel Washington, Clive Owen, Jodie Foster,Christopher Plummer",2006,129,7.6,88.5
815,I.T.,"Crime,Drama,Mystery",John Moore,"Pierce Brosnan, Jason Barry, Karen Moskow, Kai Ryssdal",2016,95,5.4,0
816,127 Hours,"Adventure,Biography,Drama",Danny Boyle,"James Franco, Amber Tamblyn, Kate Mara, Sean Bott",2010,94,7.6,18.33
817,Annabelle,"Horror,Mystery,Thriller",John R. Leonetti,"Ward Horton, Annabelle Wallis, Alfre Woodard,Tony Amendola",2014,99,5.4,84.26
818,Wolves at the Door,"Horror,Thriller",John R. Leonetti,"Katie Cassidy, Elizabeth Henstridge, Adam Campbell, Miles Fisher",2016,73,4.6,0
819,Suite Française,"Drama,Romance,War",Saul Dibb,"Michelle Williams, Kristin Scott Thomas, Margot Robbie,Eric Godon",2014,107,6.9,0
820,The Imaginarium of Doctor Parnassus,"Adventure,Fantasy,Mystery",Terry Gilliam,"Christopher Plummer, Lily Cole, Heath Ledger,Andrew Garfield",2009,123,6.8,7.69
821,G.I. Joe: The Rise of Cobra,"Action,Adventure,Sci-Fi",Stephen Sommers,"Dennis Quaid, Channing Tatum, Marlon Wayans,Adewale Akinnuoye-Agbaje",2009,118,5.8,150.17M
822,Christine,"Biography,Drama",Antonio Campos,"Rebecca Hall, Michael C. Hall, Tracy Letts, Maria Dizzia",2016,119,7,0.3
823,Man Down,"Drama,Thriller",Dito Montiel,"Shia LaBeouf, Jai Courtney, Gary Oldman, Kate Mara",2015,90,5.8,0
824,Crawlspace,"Horror,Thriller",Phil Claydon,"Michael Vartan, Erin Moriarty, Nadine Velazquez,Ronnie Gene Blevins",2016,88,5.3,0
825,Shut In,"Drama,Horror,Thriller",Farren Blackburn,"Naomi Watts, Charlie Heaton, Jacob Tremblay,Oliver Platt",2016,91,4.6,6.88
826,The Warriors Gate,"Action,Adventure,Fantasy",Matthias Hoene,"Mark Chao, Ni Ni, Dave Bautista, Sienna Guillory",2016,108,5.3,0
827,Grindhouse,"Action,Horror,Thriller",Robert Rodriguez,"Kurt Russell, Rose McGowan, Danny Trejo, Zoë Bell",2007,191,7.6,25.03
828,Disaster Movie,Comedy,Jason Friedberg,"Carmen Electra, Vanessa Lachey,Nicole Parker, Matt Lanter",2008,87,1.9,14.17
829,Rocky Balboa,"Drama,Sport",Sylvester Stallone,"Sylvester Stallone, Antonio Tarver, Milo Ventimiglia, Burt Young",2006,102,7.2,70.27
830,Diary of a Wimpy Kid: Dog Days,"Comedy,Family",David Bowers,"Zachary Gordon, Robert Capron, Devon Bostick,Steve Zahn",2012,94,6.4,49
831,Jane Eyre,"Drama,Romance",Cary Joji Fukunaga,"Mia Wasikowska, Michael Fassbender, Jamie Bell, Su Elliot",2011,120,7.4,11.23
832,Fool's Gold,"Action,Adventure,Comedy",Andy Tennant,"Matthew McConaughey, Kate Hudson, Donald Sutherland, Alexis Dziena",2008,112,5.7,70.22
833,The Dictator,Comedy,Larry Charles,"Sacha Baron Cohen, Anna Faris, John C. Reilly, Ben Kingsley",2012,83,6.4,59.62
834,The Loft,"Mystery,Romance,Thriller",Erik Van Looy,"Karl Urban, James Marsden, Wentworth Miller, Eric Stonestreet",2014,108,6.3,5.98
835,Bacalaureat,"Crime,Drama",Cristian Mungiu,"Adrian Titieni, Maria-Victoria Dragus, Lia Bugnar,Malina Manovici",2016,128,7.5,0.13
836,You Don't Mess with the Zohan,"Action,Comedy",Dennis Dugan,"Adam Sandler, John Turturro, Emmanuelle Chriqui,Nick Swardson",2008,113,5.5,100.02M
837,Exposed,"Crime,Drama,Mystery",Gee Malik Linton,"Ana de Armas, Keanu Reeves, Christopher McDonald, Mira Sorvino",2016,102,4.2,0
838,Maudie,"Biography,Drama,Romance",Aisling Walsh,"Ethan Hawke, Sally Hawkins, Kari Matchett, Zachary Bennett",2016,115,7.8,0
839,Horrible Bosses 2,"Comedy,Crime",Sean Anders,"Jason Bateman, Jason Sudeikis, Charlie Day, Jennifer Aniston",2014,108,6.3,54.41
840,A Bigger Splash,"Drama,Thriller",Luca Guadagnino,"Tilda Swinton, Matthias Schoenaerts, Ralph Fiennes, Dakota Johnson",2015,125,6.4,1.98
841,Melancholia,Drama,Lars von Trier,"Kirsten Dunst, Charlotte Gainsbourg, Kiefer Sutherland, Alexander Skarsgård",2011,135,7.1,3.03
842,The Princess and the Frog,"Animation,Adventure,Comedy",Ron Clements,"Anika Noni Rose, Keith David, Oprah Winfrey, Bruno Campos",2009,97,7.1,104.37M
843,Unstoppable,"Action,Thriller",Tony Scott,"Denzel Washington, Chris Pine, Rosario Dawson, Ethan Suplee",2010,98,6.8,81.56
844,Flight,"Drama,Thriller",Robert Zemeckis,"Denzel Washington, Nadine Velazquez, Don Cheadle, John Goodman",2012,138,7.3,93.75
845,Home,"Animation,Adventure,Comedy",Tim Johnson,"Jim Parsons, Rihanna, Steve Martin, Jennifer Lopez",2015,94,6.7,177.34M
846,La migliore offerta,"Crime,Drama,Mystery",Giuseppe Tornatore,"Geoffrey Rush, Jim Sturgess, Sylvia Hoeks,Donald Sutherland",2013,131,7.8,0.09
847,Mean Dreams,Thriller,Nathan Morlando,"Sophie Nélisse, Josh Wiggins, Joe Cobden, Bill Paxton",2016,108,6.3,0
848,42,"Biography,Drama,Sport",Brian Helgeland,"Chadwick Boseman, T.R. Knight, Harrison Ford,Nicole Beharie",2013,128,7.5,95
849,21,"Crime,Drama,Thriller",Robert Luketic,"Jim Sturgess, Kate Bosworth, Kevin Spacey, Aaron Yoo",2008,123,6.8,81.16
850,Begin Again,"Drama,Music",John Carney,"Keira Knightley, Mark Ruffalo, Adam Levine, Hailee Steinfeld",2013,104,7.4,16.17
851,Out of the Furnace,"Crime,Drama,Thriller",Scott Cooper,"Christian Bale, Casey Affleck, Zoe Saldana, Woody Harrelson",2013,116,6.8,11.33
852,Vicky Cristina Barcelona,"Drama,Romance",Woody Allen,"Rebecca Hall, Scarlett Johansson, Javier Bardem,Christopher Evan Welch",2008,96,7.1,23.21
853,Kung Fu Panda,"Animation,Action,Adventure",Mark Osborne,"Jack Black, Ian McShane,Angelina Jolie, Dustin Hoffman",2008,92,7.6,215.4
854,Barbershop: The Next Cut,"Comedy,Drama",Malcolm D. Lee,"Ice Cube, Regina Hall, Anthony Anderson, Eve",2016,111,5.9,54.01
855,Terminator Salvation,"Action,Adventure,Drama",McG,"Christian Bale, Sam Worthington, Anton Yelchin, Moon Bloodgood",2009,115,6.6,125.32M
856,Freedom Writers,"Biography,Crime,Drama",Richard LaGravenese,"Hilary Swank, Imelda Staunton, Patrick Dempsey, Scott Glenn",2007,123,7.5,36.58
857,The Hills Have Eyes,Horror,Alexandre Aja,"Ted Levine, Kathleen Quinlan, Dan Byrd, Emilie de Ravin",2006,107,6.4,41.78
858,Changeling,"Biography,Drama,Mystery",Clint Eastwood,"Angelina Jolie, Colm Feore, Amy Ryan, Gattlin Griffith",2008,141,7.8,35.71
859,Remember Me,"Drama,Romance",Allen Coulter,"Robert Pattinson, Emilie de Ravin, Caitlyn Rund,Moisés Acevedo",2010,113,7.2,19.06
860,Koe no katachi,"Animation,Drama,Romance",Naoko Yamada,"Miyu Irino, Saori Hayami, Aoi Yuki, Kenshô Ono",2016,129,8.4,0
861,"Alexander and the Terrible, Horrible, No Good, Very Bad Day","Comedy,Family",Miguel Arteta,"Steve Carell, Jennifer Garner, Ed Oxenbould, Dylan Minnette",2014,81,6.2,66.95
862,Locke,Drama,Steven Knight,"Tom Hardy, Olivia Colman, Ruth Wilson, Andrew Scott",2013,85,7.1,1.36
863,The 9th Life of Louis Drax,"Mystery,Thriller",Alexandre Aja,"Jamie Dornan, Aiden Longworth, Sarah Gadon,Aaron Paul",2016,108,6.3,0
864,Horns,"Drama,Fantasy,Horror",Alexandre Aja,"Daniel Radcliffe, Juno Temple, Max Minghella, Joe Anderson",2013,120,6.5,0.16
865,Indignation,"Drama,Romance",James Schamus,"Logan Lerman, Sarah Gadon, Tijuana Ricks, Sue Dahlman",2016,110,6.9,3.4
866,The Stanford Prison Experiment,"Biography,Drama,History",Kyle Patrick Alvarez,"Ezra Miller, Tye Sheridan, Billy Crudup, Olivia Thirlby",2015,122,6.9,0.64
867,Diary of a Wimpy Kid: Rodrick Rules,"Comedy,Family",David Bowers,"Zachary Gordon, Devon Bostick, Robert Capron,Rachael Harris",2011,99,6.6,52.69
868,Mission: Impossible III,"Action,Adventure,Thriller",J.J. Abrams,"Tom Cruise, Michelle Monaghan, Ving Rhames, Philip Seymour Hoffman",2006,126,6.9,133.38M
869,En man som heter Ove,"Comedy,Drama",Hannes Holm,"Rolf Lassgård, Bahar Pars, Filip Berg, Ida Engvoll",2015,116,7.7,3.36
870,Dragonball Evolution,"Action,Adventure,Fantasy",James Wong,"Justin Chatwin, James Marsters, Yun-Fat Chow, Emmy Rossum",2009,85,2.7,9.35
871,Red Dawn,"Action,Thriller",Dan Bradley,"Chris Hemsworth, Isabel Lucas, Josh Hutcherson, Josh Peck",2012,93,5.4,44.8
872,One Day,"Drama,Romance",Lone Scherfig,"Anne Hathaway, Jim Sturgess, Patricia Clarkson,Tom Mison",2011,107,7,13.77
873,Life as We Know It,"Comedy,Drama,Romance",Greg Berlanti,"Katherine Heigl, Josh Duhamel, Josh Lucas, Alexis Clagett",2010,114,6.6,53.36
874,28 Weeks Later,"Drama,Horror,Sci-Fi",Juan Carlos Fresnadillo,"Jeremy Renner, Rose Byrne, Robert Carlyle, Harold Perrineau",2007,100,7,28.64
875,Warm Bodies,"Comedy,Horror,Romance",Jonathan Levine,"Nicholas Hoult, Teresa Palmer, John Malkovich,Analeigh Tipton",2013,98,6.9,66.36
876,Blue Jasmine,Drama,Woody Allen,"Cate Blanchett, Alec Baldwin, Peter Sarsgaard, Sally Hawkins",2013,98,7.3,33.4
877,Wrath of the Titans,"Action,Adventure,Fantasy",Jonathan Liebesman,"Sam Worthington, Liam Neeson, Rosamund Pike, Ralph Fiennes",2012,99,5.8,83.64
878,Shin Gojira,"Action,Adventure,Drama",Hideaki Anno,"Hiroki Hasegawa, Yutaka Takenouchi,Satomi Ishihara, Ren Ôsugi",2016,120,6.9,1.91
879,Saving Mr. Banks,"Biography,Comedy,Drama",John Lee Hancock,"Emma Thompson, Tom Hanks, Annie Rose Buckley, Colin Farrell",2013,125,7.5,83.3
880,Transcendence,"Drama,Mystery,Romance",Wally Pfister,"Johnny Depp, Rebecca Hall, Morgan Freeman, Cillian Murphy",2014,119,6.3,23.01
881,Rio,"Animation,Adventure,Comedy",Carlos Saldanha,"Jesse Eisenberg, Anne Hathaway, George Lopez,Karen Disher",2011,96,6.9,143.62M
882,Equals,"Drama,Romance,Sci-Fi",Drake Doremus,"Nicholas Hoult, Kristen Stewart, Vernetta Lopez,Scott Lawrence",2015,101,6.1,0.03
883,Babel,Drama,Alejandro González Iñárritu,"Brad Pitt, Cate Blanchett, Gael García Bernal, Mohamed Akhzam",2006,143,7.5,34.3
884,The Tree of Life,"Drama,Fantasy",Terrence Malick,"Brad Pitt, Sean Penn, Jessica Chastain, Hunter McCracken",2011,139,6.8,13.3
885,The Lucky One,"Drama,Romance",Scott Hicks,"Zac Efron, Taylor Schilling, Blythe Danner, Riley Thomas Stewart",2012,101,6.5,60.44
886,Piranha 3D,"Comedy,Horror,Thriller",Alexandre Aja,"Elisabeth Shue, Jerry O'Connell, Richard Dreyfuss,Ving Rhames",2010,88,5.5,25
887,50/50,"Comedy,Drama,Romance",Jonathan Levine,"Joseph Gordon-Levitt, Seth Rogen, Anna Kendrick, Bryce Dallas Howard",2011,100,7.7,34.96
888,The Intent,"Crime,Drama",Femi Oyeniran,"Dylan Duffus, Scorcher,Shone Romulus, Jade Asha",2016,104,3.5,0
889,This Is 40,"Comedy,Romance",Judd Apatow,"Paul Rudd, Leslie Mann, Maude Apatow, Iris Apatow",2012,134,6.2,67.52
890,Real Steel,"Action,Drama,Family",Shawn Levy,"Hugh Jackman, Evangeline Lilly, Dakota Goyo,Anthony Mackie",2011,127,7.1,85.46
891,Sex and the City,"Comedy,Drama,Romance",Michael Patrick King,"Sarah Jessica Parker, Kim Cattrall, Cynthia Nixon, Kristin Davis",2008,145,5.5,152.64M
892,Rambo,"Action,Thriller,War",Sylvester Stallone,"Sylvester Stallone, Julie Benz, Matthew Marsden, Graham McTavish",2008,92,7.1,42.72
893,Planet Terror,"Action,Comedy,Horror",Robert Rodriguez,"Rose McGowan, Freddy Rodríguez, Josh Brolin,Marley Shelton",2007,105,7.1,0
894,Concussion,"Biography,Drama,Sport",Peter Landesman,"Will Smith, Alec Baldwin, Albert Brooks, David Morse",2015,123,7.1,34.53
895,The Fall,"Adventure,Comedy,Drama",Tarsem Singh,"Lee Pace, Catinca Untaru, Justine Waddell, Kim Uylenbroek",2006,117,7.9,2.28
896,The Ugly Truth,"Comedy,Romance",Robert Luketic,"Katherine Heigl, Gerard Butler, Bree Turner, Eric Winter",2009,96,6.5,88.92
897,Bride Wars,"Comedy,Romance",Gary Winick,"Kate Hudson, Anne Hathaway, Candice Bergen, Bryan Greenberg",2009,89,5.5,58.72
898,Sleeping with Other People,"Comedy,Drama,Romance",Leslye Headland,"Jason Sudeikis, Alison Brie, Jordan Carlos,Margarita Levieva",2015,101,6.5,0.81
899,Snakes on a Plane,"Action,Adventure,Crime",David R. Ellis,"Samuel L. Jackson, Julianna Margulies, Nathan Phillips, Rachel Blanchard",2006,105,5.6,34.01
900,What If,"Comedy,Romance",Michael Dowse,"Daniel Radcliffe, Zoe Kazan, Megan Park, Adam Driver",2013,98,6.8,3.45
901,How to Train Your Dragon 2,"Animation,Action,Adventure",Dean DeBlois,"Jay Baruchel, Cate Blanchett, Gerard Butler, Craig Ferguson",2014,102,7.9,177M
902,RoboCop,"Action,Crime,Sci-Fi",José Padilha,"Joel Kinnaman, Gary Oldman, Michael Keaton, Abbie Cornish",2014,117,6.2,58.61
903,In Dubious Battle,Drama,James Franco,"Nat Wolff, James Franco, Vincent D'Onofrio, Selena Gomez",2016,110,6.2,0
904,"Hello, My Name Is Doris","Comedy,Drama,Romance",Michael Showalter,"Sally Field, Max Greenfield, Tyne Daly, Wendi McLendon-Covey",2015,95,6.7,14.44
905,Ocean's Thirteen,"Crime,Thriller",Steven Soderbergh,"George Clooney, Brad Pitt, Matt Damon,Michael Mantell",2007,122,6.9,117.14M
906,Slither,"Comedy,Horror,Sci-Fi",James Gunn,"Nathan Fillion, Elizabeth Banks, Michael Rooker, Don Thompson",2006,95,6.5,7.77
907,Contagion,"Drama,Thriller",Steven Soderbergh,"Matt Damon, Kate Winslet, Jude Law, Gwyneth Paltrow",2011,106,6.6,75.64
908,Il racconto dei racconti - Tale of Tales,"Drama,Fantasy,Horror",Matteo Garrone,"Salma Hayek, Vincent Cassel, Toby Jones, John C. Reilly",2015,133,6.4,0.08
909,I Am the Pretty Thing That Lives in the House,Thriller,Oz Perkins,"Ruth Wilson, Paula Prentiss, Lucy Boynton, Bob Balaban",2016,87,4.7,0
910,Bridge to Terabithia,"Adventure,Drama,Family",Gabor Csupo,"Josh Hutcherson, AnnaSophia Robb, Zooey Deschanel, Robert Patrick",2007,96,7.2,82.23
911,Coherence,"Mystery,Sci-Fi,Thriller",James Ward Byrkit,"Emily Baldoni, Maury Sterling, Nicholas Brendon, Elizabeth Gracen",2013,89,7.2,0.07
912,Notorious,"Biography,Crime,Drama",George Tillman Jr.,"Jamal Woolard, Anthony Mackie, Derek Luke,Momo Dione",2009,122,6.7,36.84
913,Goksung,"Drama,Fantasy,Horror",Hong-jin Na,"Jun Kunimura, Jung-min Hwang, Do-won Kwak, Woo-hee Chun",2016,156,7.5,0.79
914,The Expendables 2,"Action,Adventure,Thriller",Simon West,"Sylvester Stallone, Liam Hemsworth, Randy Couture,Jean-Claude Van Damme",2012,103,6.6,85.02
915,The Girl Next Door,"Crime,Drama,Horror",Gregory Wilson,"William Atherton, Blythe Auffarth, Blanche Baker,Kevin Chamberlin",2007,91,6.7,0
916,Perfume: The Story of a Murderer,"Crime,Drama,Fantasy",Tom Tykwer,"Ben Whishaw, Dustin Hoffman, Alan Rickman,Francesc Albiol",2006,147,7.5,2.21
917,The Golden Compass,"Adventure,Family,Fantasy",Chris Weitz,"Nicole Kidman, Daniel Craig, Dakota Blue Richards, Ben Walker",2007,113,6.1,70.08
918,Centurion,"Action,Adventure,Drama",Neil Marshall,"Michael fassbender, Dominic West, Olga Kurylenko,Andreas Wisniewski",2010,97,6.4,0.12
919,Scouts Guide to the Zombie Apocalypse,"Action,Comedy,Horror",Christopher Landon,"Tye Sheridan, Logan Miller, Joey Morgan,Sarah Dumont",2015,93,6.3,3.64
920,17 Again,"Comedy,Drama,Family",Burr Steers,"Zac Efron, Matthew Perry, Leslie Mann, Thomas Lennon",2009,102,6.4,64.15
921,No Escape,"Action,Thriller",John Erick Dowdle,"Lake Bell, Pierce Brosnan, Owen Wilson,Chatchawai Kamonsakpitak",2015,103,6.8,27.29
922,Superman Returns,"Action,Adventure,Sci-Fi",Bryan Singer,"Brandon Routh, Kevin Spacey, Kate Bosworth, James Marsden",2006,154,6.1,200.07
923,The Twilight Saga: Breaking Dawn - Part 1,"Adventure,Drama,Fantasy",Bill Condon,"Kristen Stewart, Robert Pattinson, Taylor Lautner, Gil Birmingham",2011,117,4.9,281.28
924,Precious,Drama,Lee Daniels,"Gabourey Sidibe, Mo'Nique, Paula Patton, Mariah Carey",2009,110,7.3,47.54
925,The Sea of Trees,Drama,Gus Van Sant,"Matthew McConaughey, Naomi Watts, Ken Watanabe,Ryoko Seta",2015,110,5.9,0.02
926,Good Kids,Comedy,Chris McCoy,"Zoey Deutch, Nicholas Braun, Mateo Arias, Israel Broussard",2016,86,6.1,0
927,The Master,Drama,Paul Thomas Anderson,"Philip Seymour Hoffman, Joaquin Phoenix,Amy Adams, Jesse Plemons",2012,144,7.1,16.38
928,Footloose,"Comedy,Drama,Music",Craig Brewer,"Kenny Wormald, Julianne Hough, Dennis Quaid,Andie MacDowell",2011,113,5.9,51.78
929,If I Stay,"Drama,Fantasy,Music",R.J. Cutler,"Chloë Grace Moretz, Mireille Enos, Jamie Blackley,Joshua Leonard",2014,107,6.8,50.46
930,The Ticket,Drama,Ido Fluk,"Dan Stevens, Malin Akerman, Oliver Platt, Kerry Bishé",2016,97,5.4,0
931,Detour,Thriller,Christopher Smith,"Tye Sheridan, Emory Cohen, Bel Powley,Stephen Moyer",2016,97,6.3,0
932,The Love Witch,"Comedy,Horror",Anna Biller,"Samantha Robinson, Jeffrey Vincent Parise, Laura Waddell, Gian Keys",2016,120,6.2,0.22
933,Talladega Nights: The Ballad of Ricky Bobby,"Action,Comedy,Sport",Adam McKay,"Will Ferrell, John C. Reilly, Sacha Baron Cohen, Gary Cole",2006,108,6.6,148.21M
934,The Human Centipede (First Sequence),Horror,Tom Six,"Dieter Laser, Ashley C. Williams, Ashlynn Yennie, Akihiro Kitamura",2009,92,4.4,0.18
935,Super,"Comedy,Drama",James Gunn,"Rainn Wilson, Ellen Page, Liv Tyler, Kevin Bacon",2010,96,6.8,0.32
936,The Siege of Jadotville,"Action,Drama,Thriller",Richie Smyth,"Jamie Dornan, Mark Strong, Jason O'Mara, Michael McElhatton",2016,108,7.3,0
937,Up in the Air,"Drama,Romance",Jason Reitman,"George Clooney, Vera Farmiga, Anna Kendrick,Jason Bateman",2009,109,7.4,83.81
938,The Midnight Meat Train,"Horror,Mystery",Ryûhei Kitamura,"Vinnie Jones, Bradley Cooper, Leslie Bibb, Brooke Shields",2008,98,6.1,0.07
939,The Twilight Saga: Eclipse,"Adventure,Drama,Fantasy",David Slade,"Kristen Stewart, Robert Pattinson, Taylor Lautner,Xavier Samuel",2010,124,4.9,300.52
940,Transpecos,Thriller,Greg Kwedar,"Johnny Simmons, Gabriel Luna, Clifton Collins Jr.,David Acord",2016,86,5.8,0
941,What's Your Number?,"Comedy,Romance",Mark Mylod,"Anna Faris, Chris Evans, Ari Graynor, Blythe Danner",2011,106,6.1,13.99
942,Riddick,"Action,Sci-Fi,Thriller",David Twohy,"Vin Diesel, Karl Urban, Katee Sackhoff, Jordi Mollà",2013,119,6.4,42
943,Triangle,"Fantasy,Mystery,Thriller",Christopher Smith,"Melissa George, Joshua McIvor, Jack Taylor,Michael Dorman",2009,99,6.9,0
944,The Butler,"Biography,Drama",Lee Daniels,"Forest Whitaker, Oprah Winfrey, John Cusack, Jane Fonda",2013,132,7.2,116.63M
945,King Cobra,"Crime,Drama",Justin Kelly,"Garrett Clayton, Christian Slater, Molly Ringwald,James Kelley",2016,91,5.6,0.03
946,After Earth,"Action,Adventure,Sci-Fi",M. Night Shyamalan,"Jaden Smith, David Denman, Will Smith,Sophie Okonedo",2013,100,4.9,60.52
947,Kicks,Adventure,Justin Tipping,"Jahking Guillory, Christopher Jordan Wallace,Christopher Meyer, Kofi Siriboe",2016,80,6.1,0.15
948,Me and Earl and the Dying Girl,"Comedy,Drama",Alfonso Gomez-Rejon,"Thomas Mann, RJ Cyler, Olivia Cooke, Nick Offerman",2015,105,7.8,6.74
949,The Descendants,"Comedy,Drama",Alexander Payne,"George Clooney, Shailene Woodley, Amara Miller, Nick Krause",2011,115,7.3,82.62
950,Sex and the City 2,"Comedy,Drama,Romance",Michael Patrick King,"Sarah Jessica Parker, Kim Cattrall, Kristin Davis, Cynthia Nixon",2010,146,4.3,95.33
951,The Kings of Summer,"Adventure,Comedy,Drama",Jordan Vogt-Roberts,"Nick Robinson, Gabriel Basso, Moises Arias,Nick Offerman",2013,95,7.2,1.29
952,Death Race,"Action,Sci-Fi,Thriller",Paul W.S. Anderson,"Jason Statham, Joan Allen, Tyrese Gibson, Ian McShane",2008,105,6.4,36.06
953,That Awkward Moment,"Comedy,Romance",Tom Gormican,"Zac Efron, Michael B. Jordan, Miles Teller, Imogen Poots",2014,94,6.2,26.05
954,Legion,"Action,Fantasy,Horror",Scott Stewart,"Paul Bettany, Dennis Quaid, Charles S. Dutton, Lucas Black",2010,100,5.2,40.17
955,End of Watch,"Crime,Drama,Thriller",David Ayer,"Jake Gyllenhaal, Michael Peña, Anna Kendrick, America Ferrera",2012,109,7.7,40.98
956,3 Days to Kill,"Action,Drama,Thriller",McG,"Kevin Costner, Hailee Steinfeld, Connie Nielsen, Amber Heard",2014,117,6.2,30.69
957,Lucky Number Slevin,"Crime,Drama,Mystery",Paul McGuigan,"Josh Hartnett, Ben Kingsley, Morgan Freeman, Lucy Liu",2006,110,7.8,22.49
958,Trance,"Crime,Drama,Mystery",Danny Boyle,"James McAvoy, Rosario Dawson, Vincent Cassel,Danny Sapani",2013,101,7,2.32
959,Into the Forest,"Drama,Sci-Fi,Thriller",Patricia Rozema,"Ellen Page, Evan Rachel Wood, Max Minghella,Callum Keith Rennie",2015,101,5.9,0.01
960,The Other Boleyn Girl,"Biography,Drama,History",Justin Chadwick,"Natalie Portman, Scarlett Johansson, Eric Bana,Jim Sturgess",2008,115,6.7,26.81
961,I Spit on Your Grave,"Crime,Horror,Thriller",Steven R. Monroe,"Sarah Butler, Jeff Branson, Andrew Howard,Daniel Franzese",2010,108,6.3,0.09
962,Custody,Drama,James Lapine,"Viola Davis, Hayden Panettiere, Catalina Sandino Moreno, Ellen Burstyn",2016,104,6.9,0
963,Inland Empire,"Drama,Mystery,Thriller",David Lynch,"Laura Dern, Jeremy Irons, Justin Theroux, Karolina Gruszka",2006,180,7,0
964,L'odyssée,"Adventure,Biography",Jérôme Salle,"Lambert Wilson, Pierre Niney, Audrey Tautou,Laurent Lucas",2016,122,6.7,0
965,The Walk,"Adventure,Biography,Crime",Robert Zemeckis,"Joseph Gordon-Levitt, Charlotte Le Bon,Guillaume Baillargeon, Émilie Leclerc",2015,123,7.3,10.14
966,Wrecker,"Action,Horror,Thriller",Micheal Bafaro,"Anna Hutchison, Andrea Whitburn, Jennifer Koenig,Michael Dickson",2015,83,3.5,0
967,The Lone Ranger,"Action,Adventure,Western",Gore Verbinski,"Johnny Depp, Armie Hammer, William Fichtner,Tom Wilkinson",2013,150,6.5,89.29
968,Texas Chainsaw 3D,"Horror,Thriller",John Luessenhop,"Alexandra Daddario, Tania Raymonde, Scott Eastwood, Trey Songz",2013,92,4.8,34.33M
969,Disturbia,"Drama,Mystery,Thriller",D.J. Caruso,"Shia LaBeouf, David Morse, Carrie-Anne Moss, Sarah Roemer",2007,105,6.9,80.05
970,Rock of Ages,"Comedy,Drama,Musical",Adam Shankman,"Julianne Hough, Diego Boneta, Tom Cruise, Alec Baldwin",2012,123,5.9,38.51
971,Scream 4,"Horror,Mystery",Wes Craven,"Neve Campbell, Courteney Cox, David Arquette, Lucy Hale",2011,111,6.2,38.18
972,Queen of Katwe,"Biography,Drama,Sport",Mira Nair,"Madina Nalwanga, David Oyelowo, Lupita Nyong'o, Martin Kabanza",2016,124,7.4,8.81
973,My Big Fat Greek Wedding 2,"Comedy,Family,Romance",Kirk Jones,"Nia Vardalos, John Corbett, Michael Constantine, Lainie Kazan",2016,94,6,59.57
974,Dark Places,"Drama,Mystery,Thriller",Gilles Paquet-Brenner,"Charlize Theron, Nicholas Hoult, Christina Hendricks, Chloë Grace Moretz",2015,113,6.2,0
975,Amateur Night,Comedy,Lisa Addario,"Jason Biggs, Janet Montgomery,Ashley Tisdale, Bria L. Murphy",2016,92,5,0
976,It's Only the End of the World,Drama,Xavier Dolan,"Nathalie Baye, Vincent Cassel, Marion Cotillard, Léa Seydoux",2016,97,7,0
977,The Skin I Live In,"Drama,Thriller",Pedro Almodóvar,"Antonio Banderas, Elena Anaya, Jan Cornet,Marisa Paredes",2011,120,7.6,3.19
978,Miracles from Heaven,"Biography,Drama,Family",Patricia Riggen,"Jennifer Garner, Kylie Rogers, Martin Henderson,Brighton Sharbino",2016,109,7,61.69
979,Annie,"Comedy,Drama,Family",Will Gluck,"Quvenzhané Wallis, Cameron Diaz, Jamie Foxx, Rose Byrne",2014,118,5.3,85.91
980,Across the Universe,"Drama,Fantasy,Musical",Julie Taymor,"Evan Rachel Wood, Jim Sturgess, Joe Anderson, Dana Fuchs",2007,133,7.4,24.34
981,Let's Be Cops,Comedy,Luke Greenfield,"Jake Johnson, Damon Wayans Jr., Rob Riggle, Nina Dobrev",2014,104,6.5,82.39
982,Max,"Adventure,Family",Boaz Yakin,"Thomas Haden Church, Josh Wiggins, Luke Kleintank,Lauren Graham",2015,111,6.8,42.65
983,Your Highness,"Adventure,Comedy,Fantasy",David Gordon Green,"Danny McBride, Natalie Portman, James Franco, Rasmus Hardiker",2011,102,5.6,21.56
984,Final Destination 5,"Horror,Thriller",Steven Quale,"Nicholas D'Agosto, Emma Bell, Arlen Escarpeta, Miles Fisher",2011,92,5.9,42.58
985,Endless Love,"Drama,Romance",Shana Feste,"Gabriella Wilde, Alex Pettyfer, Bruce Greenwood,Robert Patrick",2014,104,6.3,23.39
986,Martyrs,Horror,Pascal Laugier,"Morjana Alaoui, Mylène Jampanoï, Catherine Bégin,Robert Toupin",2008,99,7.1,0
987,Selma,"Biography,Drama,History",Ava DuVernay,"David Oyelowo, Carmen Ejogo, Tim Roth, Lorraine Toussaint",2014,128,7.5,52.07
988,Underworld: Rise of the Lycans,"Action,Adventure,Fantasy",Patrick Tatopoulos,"Rhona Mitra, Michael Sheen, Bill Nighy, Steven Mackintosh",2009,92,6.6,45.8
989,Taare Zameen Par,"Drama,Family,Music",Aamir Khan,"Darsheel Safary, Aamir Khan, Tanay Chheda, Sachet Engineer",2007,165,8.5,1.2
990,Take Me Home Tonight,"Comedy,Drama,Romance",Michael Dowse,"Topher Grace, Anna Faris, Dan Fogler, Teresa Palmer",2011,97,6.3,6.92
991,Resident Evil: Afterlife,"Action,Adventure,Horror",Paul W.S. Anderson,"Milla Jovovich, Ali Larter, Wentworth Miller,Kim Coates",2010,97,5.9,60.13
992,Project X,Comedy,Nima Nourizadeh,"Thomas Mann, Oliver Cooper, Jonathan Daniel Brown, Dax Flame",2012,88,6.7,54.72
993,Secret in Their Eyes,"Crime,Drama,Mystery",Billy Ray,"Chiwetel Ejiofor, Nicole Kidman, Julia Roberts, Dean Norris",2015,111,6.2,0
994,Hostel: Part II,Horror,Eli Roth,"Lauren German, Heather Matarazzo, Bijou Phillips, Roger Bart",2007,94,5.5,17.54
995,Step Up 2: The Streets,"Drama,Music,Romance",Jon M. Chu,"Robert Hoffman, Briana Evigan, Cassie Ventura, Adam G. Sevani",2008,98,6.2,58.01
996,Search Party,"Adventure,Comedy",Scot Armstrong,"Adam Pally, T.J. Miller, Thomas Middleditch,Shannon Woodward",2014,93,5.6,0
997,Nine Lives,"Comedy,Family,Fantasy",Barry Sonnenfeld,"Kevin Spacey, Jennifer Garner, Robbie Amell,Cheryl Hines",2016,87,5.3,19.64
%% Cell type:code id: tags:
``` python
import pandas as pd
from pandas import Series, DataFrame
# We can explictly import Series and DataFrame, why might we do this?
```
%% Cell type:markdown id: tags:
### Series Review
%% Cell type:markdown id: tags:
#### Series from `list`
%% Cell type:code id: tags:
``` python
scores_list = [54, 22, 19, 73, 80]
scores_series = Series(scores_list)
scores_series
# what name do we call the 0, 1, 2, ... ?? A: index
# what name do we call the 54, 22, 19, .... ?? A: value
# what name do we call the numbers we can't see? A: integer position
```
%% Output
0 54
1 22
2 19
3 73
4 80
dtype: int64
%% Cell type:markdown id: tags:
#### Selecting certain scores.
What are all the scores `> 50`?
%% Cell type:code id: tags:
``` python
scores_series[scores_series > 50]
```
%% Output
0 54
3 73
4 80
dtype: int64
%% Cell type:markdown id: tags:
**Answer:** Boolean indexing. Try the following...
%% Cell type:code id: tags:
``` python
scores_series[[True, True, False, False, True]] # often called a "mask"
```
%% Output
0 54
1 22
4 80
dtype: int64
%% Cell type:markdown id: tags:
We are really writing a "mask" for our data.
%% Cell type:code id: tags:
``` python
scores_series > 50
```
%% Output
0 True
1 False
2 False
3 True
4 True
dtype: bool
%% Cell type:code id: tags:
``` python
scores_series[scores_series > 50]
```
%% Output
0 54
3 73
4 80
dtype: int64
%% Cell type:markdown id: tags:
#### Series from `dict`
%% Cell type:code id: tags:
``` python
# Imagine we hire students and track their weekly hours
week1 = Series({"Rita":5, "Therese":3, "Janice": 6})
week2 = Series({"Rita":3, "Therese":7, "Janice": 4})
week3 = Series({"Therese":5, "Janice":5, "Rita": 8}) # Wrong order! Will this matter?
print(week1)
print(week2)
print(week3)
```
%% Output
Rita 5
Therese 3
Janice 6
dtype: int64
Rita 3
Therese 7
Janice 4
dtype: int64
Therese 5
Janice 5
Rita 8
dtype: int64
%% Cell type:markdown id: tags:
#### For everyone in Week 1, add 3 to their hours
%% Cell type:code id: tags:
``` python
week1 = week1 + 3
week1
```
%% Output
Rita 8
Therese 6
Janice 9
dtype: int64
%% Cell type:markdown id: tags:
#### Total up everyone's hours
%% Cell type:code id: tags:
``` python
total_hours = week1 + week2 + week3
total_hours
```
%% Output
Janice 18
Rita 19
Therese 18
dtype: int64
%% Cell type:markdown id: tags:
#### What is week1 / week3 ?
%% Cell type:code id: tags:
``` python
week1 / week3
# Notice that we didn't have to worry about the order of indices
```
%% Output
Janice 1.8
Rita 1.0
Therese 1.2
dtype: float64
%% Cell type:markdown id: tags:
#### What type of values are stored in week1 > week2?
%% Cell type:code id: tags:
``` python
print(week1)
print(week2)
week1 > week2 # indices are ordered the same
```
%% Output
Rita 8
Therese 6
Janice 9
dtype: int64
Rita 3
Therese 7
Janice 4
dtype: int64
Rita True
Therese False
Janice True
dtype: bool
%% Cell type:markdown id: tags:
#### What is week1 > week3?
%% Cell type:code id: tags:
``` python
print(week1)
print(week3)
# week1 > week3 # indices not in same order
# week1.sort_index() > week3.sort_index() #proper way
```
%% Output
Rita 8
Therese 6
Janice 9
dtype: int64
Therese 5
Janice 5
Rita 8
dtype: int64
%% Cell type:markdown id: tags:
# Lecture 28: Pandas 2 - DataFrames
Learning Objectives:
- Create a DataFrame from
- a dictionary of Series, lists, or dicts
- a list of Series, lists, dicts
- Select a column, row, cell, or rectangular region of a DataFrame
- Convert CSV files into DataFrames and DataFrames into CSV Files
- Access the head or tail of a DataFrame
%% Cell type:markdown id: tags:
**Big Idea**: Data Frames store 2-dimensional data in tables! It is a collection of Series.
%% Cell type:markdown id: tags:
## You can create a DataFrame in a variety of ways!
### From a dictionary of Series
%% Cell type:code id: tags:
``` python
names = Series(["Alice", "Bob", "Cindy", "Dan"])
scores = Series([6, 7, 8, 9])
# to make a dictionary of Series, need to write column names for the keys
DataFrame({
"Player name": names,
"Score": scores
})
```
%% Output
Player name Score
0 Alice 6
1 Bob 7
2 Cindy 8
3 Dan 9
%% Cell type:markdown id: tags:
### From a dictionary of lists
%% Cell type:code id: tags:
``` python
name_list = ["Alice", "Bob", "Cindy", "Dan"]
score_list = [6, 7, 8, 9]
# this is the same as above, reminding us that Series act like lists
DataFrame({
"Player name": name_list,
"Score": score_list
})
```
%% Output
Player name Score
0 Alice 6
1 Bob 7
2 Cindy 8
3 Dan 9
%% Cell type:markdown id: tags:
### From a dictionary of dictionaries
We need to make up keys to match the things in each column
%% Cell type:code id: tags:
``` python
data = {
"Player name": {0: "Alice", 1: "Bob", 2: "Cindy", 3: "Dan"},
"Score": {0: 6, 1: 7, 2: 8, 3: 9}
}
DataFrame(data)
```
%% Output
Player name Score
0 Alice 6
1 Bob 7
2 Cindy 8
3 Dan 9
%% Cell type:markdown id: tags:
### From a list of lists
We have to add the column names, we do this with `columns = [name1, name2, ....]`
%% Cell type:code id: tags:
``` python
data = [
["Alice", 6],
["Bob", 7],
["Cindy", 8],
["Dan", 9]
]
data
DataFrame(data, columns = ["Player name", "Score"])
```
%% Output
Player name Score
0 Alice 6
1 Bob 7
2 Cindy 8
3 Dan 9
%% Cell type:markdown id: tags:
### From a list of dicts
%% Cell type:code id: tags:
``` python
data = [
{"Player name": "Alice", "Score": 6},
{"Player name": "Bob", "Score": 7},
{"Player name": "Cindy", "Score": 8},
{"Player name": "Dan", "Score": 9}
]
data
DataFrame(data)
```
%% Output
Player name Score
0 Alice 6
1 Bob 7
2 Cindy 8
3 Dan 9
%% Cell type:markdown id: tags:
### Explicitly naming the indices
We can use `index = [name1, name2, ...]` to rename the index of each row
%% Cell type:code id: tags:
``` python
#
data = [
{"Player name": "Alice", "Score": 6},
{"Player name": "Bob", "Score": 7},
{"Player name": "Cindy", "Score": 8},
{"Player name": "Dan", "Score": 9}
]
data
DataFrame(data, index=["A", "B", "C", "D"]) # must have a name for each row
```
%% Output
Player name Score
A Alice 6
B Bob 7
C Cindy 8
D Dan 9
%% Cell type:code id: tags:
``` python
# You try:
# Make a DataFrame of 4 people you know with different ages
# Give names to both the columns and rows
ages = [
["Alice", 6],
["Bob", 7],
["Cindy", 8],
["Dan", 9]
]
DataFrame(ages, index=["A", "B", "C", "D"], columns=["Name", "Age"])
# Share how you did with this with your neighbor
# If you both did it the same way, try it a different way.
```
%% Output
Name Age
A Alice 6
B Bob 7
C Cindy 8
D Dan 9
%% Cell type:markdown id: tags:
## Select a column, row, cell, or rectangular region of a DataFrame
### Data lookup: Series
- `s.loc[X]` <- lookup by pandas index
- `s.iloc[X]` <- lookup by integer position
%% Cell type:code id: tags:
``` python
hours = Series({"Alice":6, "Bob":7, "Cindy":8, "Dan":9})
hours
```
%% Output
Alice 6
Bob 7
Cindy 8
Dan 9
dtype: int64
%% Cell type:code id: tags:
``` python
# Lookup Bob's hours by pandas index.
hours.loc["Bob"]
```
%% Output
7
%% Cell type:code id: tags:
``` python
# Lookup Bob's hours by integer position.
hours.iloc[1]
```
%% Output
7
%% Cell type:code id: tags:
``` python
# Lookup Cindy's hours by pandas index.
hours.loc["Cindy"]
```
%% Output
8
%% Cell type:markdown id: tags:
### Data lookup: DataFrame
- `d.loc[r]` lookup ROW by pandas ROW index
- `d.iloc[r]` lookup ROW by ROW integer position
- `d[c]` lookup COL by pandas COL index
- `d.loc[r, c]` lookup by pandas ROW index and pandas COL index
- `d.iloc[r, c]` lookup by ROW integer position and COL integer position
%% Cell type:code id: tags:
``` python
# We often call the object that we make df
data = [
["Alice", 6],
["Bob", 7],
["Cindy", 8],
["Dan", 9]
]
df = DataFrame(data, index=["A", "B", "C", "D"], columns = ["Player name", "Score"])
df
```
%% Output
Player name Score
A Alice 6
B Bob 7
C Cindy 8
D Dan 9
%% Cell type:markdown id: tags:
### What are 3 different ways of accessing row D?
%% Cell type:code id: tags:
``` python
#df["D"] # Nope!
print(df.loc["D"])
print(df.iloc[3])
print(df.iloc[-1])
```
%% Output
Player name Dan
Score 9
Name: D, dtype: object
Player name Dan
Score 9
Name: D, dtype: object
Player name Dan
Score 9
Name: D, dtype: object
%% Cell type:markdown id: tags:
### How about accessing a column?
%% Cell type:code id: tags:
``` python
df
```
%% Output
Player name Score
A Alice 6
B Bob 7
C Cindy 8
D Dan 9
%% Cell type:code id: tags:
``` python
#df[0] # Nope!
print(df["Player name"])
```
%% Output
A Alice
B Bob
C Cindy
D Dan
Name: Player name, dtype: object
%% Cell type:markdown id: tags:
### What are 3 different ways to access a single cell?
%% Cell type:code id: tags:
``` python
df
```
%% Output
Player name Score
A Alice 6
B Bob 7
C Cindy 8
D Dan 9
%% Cell type:code id: tags:
``` python
# How to access Cindy?
#print(df["C", "Player name"]) # Nope!
print(df.loc["C", "Player name"])
print(df["Player name"].loc["C"])
print(df.iloc[2, 0])
```
%% Output
Cindy
Cindy
Cindy
%% Cell type:markdown id: tags:
## How to set values for a specific entry?
- `d.loc[r, c] = new_val`
- `d.iloc[r, c] = new_val`
%% Cell type:code id: tags:
``` python
#change player D's name
df.loc["D", "Player name"] = "Bianca"
df
```
%% Output
Player name Score
A Alice 6
B Bob 7
C Cindy 8
D Bianca 9
%% Cell type:code id: tags:
``` python
# then add 3 to that player's score using .loc
df.loc["D","Score"] += 3
df
```
%% Output
Player name Score
A Alice 6
B Bob 7
C Cindy 8
D Bianca 12
%% Cell type:code id: tags:
``` python
# add 7 to a different player's score using .iloc
df.iloc[0, 1] += 7
df
```
%% Output
Player name Score
A Alice 13
B Bob 7
C Cindy 8
D Bianca 12
%% Cell type:markdown id: tags:
### Find the max score and the mean score
%% Cell type:code id: tags:
``` python
# find the max and mean of the "Score" column
print(df["Score"].max(), df["Score"].mean())
```
%% Output
13 10.0
%% Cell type:markdown id: tags:
### Find the highest scoring player
%% Cell type:code id: tags:
``` python
df
```
%% Output
Player name Score
A Alice 13
B Bob 7
C Cindy 8
D Bianca 12
%% Cell type:code id: tags:
``` python
highest_scorer = df["Score"].idxmax()
df["Player name"].loc[highest_scorer]
```
%% Output
'Alice'
%% Cell type:markdown id: tags:
## Slicing a DataFrame
- `df.iloc[ROW_SLICE, COL_SLICE]` <- make a rectangular slice from the DataFrame using integer positions
- `df.loc[ROW_SLICE, COL_SLICE]` <- make a rectangular slice from the DataFrame using index
%% Cell type:code id: tags:
``` python
df.iloc[1:3, 0:2]
```
%% Output
Player name Score
B Bob 7
C Cindy 8
%% Cell type:code id: tags:
``` python
df.loc["B":"C", "Player name":"Score"] # notice that this way is inclusive of endpoints
```
%% Output
Player name Score
B Bob 7
C Cindy 8
%% Cell type:markdown id: tags:
## Set values for sliced DataFrame
- `d.loc[ROW_SLICE, COL_SLICE] = new_val` <- set value by ROW INDEX and COL INDEX
- `d.iloc[ROW_SLICE, COL_SLICE] = new_val` <- set value by ROW Integer position and COL Integer position
%% Cell type:code id: tags:
``` python
df
```
%% Output
Player name Score
A Alice 13
B Bob 7
C Cindy 8
D Bianca 12
%% Cell type:code id: tags:
``` python
df.loc["B":"C", "Score"] += 5
df
```
%% Output
Player name Score
A Alice 13
B Bob 12
C Cindy 13
D Bianca 12
%% Cell type:markdown id: tags:
### Pandas allows slicing of non-contiguous columns
%% Cell type:code id: tags:
``` python
# just get Player name for Index B and D
df.loc[["B", "D"],"Player name"]
```
%% Output
B Bob
D Bianca
Name: Player name, dtype: object
%% Cell type:code id: tags:
``` python
# add 2 to the people in rows B and D
df.loc[["B", "D"],"Score"] += 2
df
```
%% Output
Player name Score
A Alice 13
B Bob 14
C Cindy 13
D Bianca 14
%% Cell type:markdown id: tags:
## Boolean indexing on a DataFrame
- `d[BOOL SERIES]` <- makes a new DF of all rows that lined up were True
%% Cell type:code id: tags:
``` python
df
```
%% Output
Player name Score
A Alice 13
B Bob 14
C Cindy 13
D Bianca 14
%% Cell type:markdown id: tags:
### Make a Series of Booleans based on Score >= 15
%% Cell type:code id: tags:
``` python
b = df["Score"] >= 15
b
```
%% Output
A False
B False
C False
D False
Name: Score, dtype: bool
%% Cell type:markdown id: tags:
### use b to slice the DataFrame
if b is true, include this row in the new df
%% Cell type:code id: tags:
``` python
df[b]
```
%% Output
Empty DataFrame
Columns: [Player name, Score]
Index: []
%% Cell type:markdown id: tags:
### do the last two things in a single step
%% Cell type:code id: tags:
``` python
df[df["Score"] >= 15]
```
%% Output
Empty DataFrame
Columns: [Player name, Score]
Index: []
%% Cell type:markdown id: tags:
## Creating DataFrame from csv
%% Cell type:code id: tags:
``` python
# it's that easy!
df = pd.read_csv("IMDB-Movie-Data.csv")
df
```
%% Output
Index Title Genre \
0 0 Guardians of the Galaxy Action,Adventure,Sci-Fi
1 1 Prometheus Adventure,Mystery,Sci-Fi
2 2 Split Horror,Thriller
3 3 Sing Animation,Comedy,Family
4 4 Suicide Squad Action,Adventure,Fantasy
.. ... ... ...
993 993 Secret in Their Eyes Crime,Drama,Mystery
994 994 Hostel: Part II Horror
995 995 Step Up 2: The Streets Drama,Music,Romance
996 996 Search Party Adventure,Comedy
997 997 Nine Lives Comedy,Family,Fantasy
Director Cast \
0 James Gunn Chris Pratt, Vin Diesel, Bradley Cooper, Zoe S...
1 Ridley Scott Noomi Rapace, Logan Marshall-Green, Michael ...
2 M. Night Shyamalan James McAvoy, Anya Taylor-Joy, Haley Lu Richar...
3 Christophe Lourdelet Matthew McConaughey,Reese Witherspoon, Seth Ma...
4 David Ayer Will Smith, Jared Leto, Margot Robbie, Viola D...
.. ... ...
993 Billy Ray Chiwetel Ejiofor, Nicole Kidman, Julia Roberts...
994 Eli Roth Lauren German, Heather Matarazzo, Bijou Philli...
995 Jon M. Chu Robert Hoffman, Briana Evigan, Cassie Ventura,...
996 Scot Armstrong Adam Pally, T.J. Miller, Thomas Middleditch,Sh...
997 Barry Sonnenfeld Kevin Spacey, Jennifer Garner, Robbie Amell,Ch...
Year Runtime Rating Revenue
0 2014 121 8.1 333.13
1 2012 124 7.0 126.46M
2 2016 117 7.3 138.12M
3 2016 108 7.2 270.32
4 2016 123 6.2 325.02
.. ... ... ... ...
993 2015 111 6.2 0
994 2007 94 5.5 17.54
995 2008 98 6.2 58.01
996 2014 93 5.6 0
997 2016 87 5.3 19.64
[998 rows x 9 columns]
%% Cell type:markdown id: tags:
### View the first few lines of the DataFrame
- `.head(n)` gets the first n lines, 5 is the default
%% Cell type:code id: tags:
``` python
df.head()
```
%% Output
Index Title Genre \
0 0 Guardians of the Galaxy Action,Adventure,Sci-Fi
1 1 Prometheus Adventure,Mystery,Sci-Fi
2 2 Split Horror,Thriller
3 3 Sing Animation,Comedy,Family
4 4 Suicide Squad Action,Adventure,Fantasy
Director Cast \
0 James Gunn Chris Pratt, Vin Diesel, Bradley Cooper, Zoe S...
1 Ridley Scott Noomi Rapace, Logan Marshall-Green, Michael ...
2 M. Night Shyamalan James McAvoy, Anya Taylor-Joy, Haley Lu Richar...
3 Christophe Lourdelet Matthew McConaughey,Reese Witherspoon, Seth Ma...
4 David Ayer Will Smith, Jared Leto, Margot Robbie, Viola D...
Year Runtime Rating Revenue
0 2014 121 8.1 333.13
1 2012 124 7.0 126.46M
2 2016 117 7.3 138.12M
3 2016 108 7.2 270.32
4 2016 123 6.2 325.02
%% Cell type:markdown id: tags:
### get the first 2 rows
%% Cell type:code id: tags:
``` python
df.head(2)
```
%% Output
Index Title Genre Director \
0 0 Guardians of the Galaxy Action,Adventure,Sci-Fi James Gunn
1 1 Prometheus Adventure,Mystery,Sci-Fi Ridley Scott
Cast Year Runtime Rating \
0 Chris Pratt, Vin Diesel, Bradley Cooper, Zoe S... 2014 121 8.1
1 Noomi Rapace, Logan Marshall-Green, Michael ... 2012 124 7.0
Revenue
0 333.13
1 126.46M
%% Cell type:markdown id: tags:
### View the first few lines of the DataFrame
- `.tail(n)` gets the last n lines, 5 is the default
%% Cell type:code id: tags:
``` python
df.tail()
```
%% Output
Index Title Genre Director \
993 993 Secret in Their Eyes Crime,Drama,Mystery Billy Ray
994 994 Hostel: Part II Horror Eli Roth
995 995 Step Up 2: The Streets Drama,Music,Romance Jon M. Chu
996 996 Search Party Adventure,Comedy Scot Armstrong
997 997 Nine Lives Comedy,Family,Fantasy Barry Sonnenfeld
Cast Year Runtime Rating \
993 Chiwetel Ejiofor, Nicole Kidman, Julia Roberts... 2015 111 6.2
994 Lauren German, Heather Matarazzo, Bijou Philli... 2007 94 5.5
995 Robert Hoffman, Briana Evigan, Cassie Ventura,... 2008 98 6.2
996 Adam Pally, T.J. Miller, Thomas Middleditch,Sh... 2014 93 5.6
997 Kevin Spacey, Jennifer Garner, Robbie Amell,Ch... 2016 87 5.3
Revenue
993 0
994 17.54
995 58.01
996 0
997 19.64
%% Cell type:code id: tags:
``` python
df.tail(3)
```
%% Output
Index Title Genre Director \
995 995 Step Up 2: The Streets Drama,Music,Romance Jon M. Chu
996 996 Search Party Adventure,Comedy Scot Armstrong
997 997 Nine Lives Comedy,Family,Fantasy Barry Sonnenfeld
Cast Year Runtime Rating \
995 Robert Hoffman, Briana Evigan, Cassie Ventura,... 2008 98 6.2
996 Adam Pally, T.J. Miller, Thomas Middleditch,Sh... 2014 93 5.6
997 Kevin Spacey, Jennifer Garner, Robbie Amell,Ch... 2016 87 5.3
Revenue
995 58.01
996 0
997 19.64
%% Cell type:markdown id: tags:
### What is the last year in our DataFrame?
%% Cell type:code id: tags:
``` python
df["Year"].max()
```
%% Output
2016
%% Cell type:code id: tags:
``` python
### What are the rows that correspond to movies whose title contains "Harry" ?
df[df["Title"].str.contains("Harry")]
```
%% Output
Index Title \
114 114 Harry Potter and the Deathly Hallows: Part 2
314 314 Harry Potter and the Order of the Phoenix
417 417 Harry Potter and the Deathly Hallows: Part 1
472 472 Harry Potter and the Half-Blood Prince
Genre Director \
114 Adventure,Drama,Fantasy David Yates
314 Adventure,Family,Fantasy David Yates
417 Adventure,Family,Fantasy David Yates
472 Adventure,Family,Fantasy David Yates
Cast Year Runtime Rating \
114 Daniel Radcliffe, Emma Watson, Rupert Grint, M... 2011 130 8.1
314 Daniel Radcliffe, Emma Watson, Rupert Grint, B... 2007 138 7.5
417 Daniel Radcliffe, Emma Watson, Rupert Grint, B... 2010 146 7.7
472 Daniel Radcliffe, Emma Watson, Rupert Grint, M... 2009 153 7.5
Revenue
114 380.96
314 292
417 294.98
472 301.96
%% Cell type:markdown id: tags:
### What is the movie at index 6 ?
%% Cell type:code id: tags:
``` python
df.iloc[6]
```
%% Output
Index 6
Title La La Land
Genre Comedy,Drama,Music
Director Damien Chazelle
Cast Ryan Gosling, Emma Stone, Rosemarie DeWitt, J....
Year 2016
Runtime 128
Rating 8.3
Revenue 151.06M
Name: 6, dtype: object
%% Cell type:code id: tags:
``` python
df
```
%% Output
Index Title Genre \
0 0 Guardians of the Galaxy Action,Adventure,Sci-Fi
1 1 Prometheus Adventure,Mystery,Sci-Fi
2 2 Split Horror,Thriller
3 3 Sing Animation,Comedy,Family
4 4 Suicide Squad Action,Adventure,Fantasy
.. ... ... ...
993 993 Secret in Their Eyes Crime,Drama,Mystery
994 994 Hostel: Part II Horror
995 995 Step Up 2: The Streets Drama,Music,Romance
996 996 Search Party Adventure,Comedy
997 997 Nine Lives Comedy,Family,Fantasy
Director Cast \
0 James Gunn Chris Pratt, Vin Diesel, Bradley Cooper, Zoe S...
1 Ridley Scott Noomi Rapace, Logan Marshall-Green, Michael ...
2 M. Night Shyamalan James McAvoy, Anya Taylor-Joy, Haley Lu Richar...
3 Christophe Lourdelet Matthew McConaughey,Reese Witherspoon, Seth Ma...
4 David Ayer Will Smith, Jared Leto, Margot Robbie, Viola D...
.. ... ...
993 Billy Ray Chiwetel Ejiofor, Nicole Kidman, Julia Roberts...
994 Eli Roth Lauren German, Heather Matarazzo, Bijou Philli...
995 Jon M. Chu Robert Hoffman, Briana Evigan, Cassie Ventura,...
996 Scot Armstrong Adam Pally, T.J. Miller, Thomas Middleditch,Sh...
997 Barry Sonnenfeld Kevin Spacey, Jennifer Garner, Robbie Amell,Ch...
Year Runtime Rating Revenue
0 2014 121 8.1 333.13
1 2012 124 7.0 126.46M
2 2016 117 7.3 138.12M
3 2016 108 7.2 270.32
4 2016 123 6.2 325.02
.. ... ... ... ...
993 2015 111 6.2 0
994 2007 94 5.5 17.54
995 2008 98 6.2 58.01
996 2014 93 5.6 0
997 2016 87 5.3 19.64
[998 rows x 9 columns]
%% Cell type:markdown id: tags:
## Notice that there are two index columns
- That happened because when you write a csv from pandas to a file, it writes a new index column
- So if the dataFrame already contains an index, you are going to get two index columns
- Let's fix that problem
%% Cell type:markdown id: tags:
### How can you use slicing to get just columns with Title and Year?
%% Cell type:code id: tags:
``` python
df2 = df[["Title", "Year"]]
df2
# notice that this does not have the 'index' column
```
%% Output
Title Year
0 Guardians of the Galaxy 2014
1 Prometheus 2012
2 Split 2016
3 Sing 2016
4 Suicide Squad 2016
.. ... ...
993 Secret in Their Eyes 2015
994 Hostel: Part II 2007
995 Step Up 2: The Streets 2008
996 Search Party 2014
997 Nine Lives 2016
[998 rows x 2 columns]
%% Cell type:markdown id: tags:
### How can you use slicing to get rid of the first column?
%% Cell type:code id: tags:
``` python
df = df.iloc[:, 1:] #all the rows, not column 0
df
```
%% Output
Title Genre Director \
0 Guardians of the Galaxy Action,Adventure,Sci-Fi James Gunn
1 Prometheus Adventure,Mystery,Sci-Fi Ridley Scott
2 Split Horror,Thriller M. Night Shyamalan
3 Sing Animation,Comedy,Family Christophe Lourdelet
4 Suicide Squad Action,Adventure,Fantasy David Ayer
.. ... ... ...
993 Secret in Their Eyes Crime,Drama,Mystery Billy Ray
994 Hostel: Part II Horror Eli Roth
995 Step Up 2: The Streets Drama,Music,Romance Jon M. Chu
996 Search Party Adventure,Comedy Scot Armstrong
997 Nine Lives Comedy,Family,Fantasy Barry Sonnenfeld
Cast Year Runtime Rating \
0 Chris Pratt, Vin Diesel, Bradley Cooper, Zoe S... 2014 121 8.1
1 Noomi Rapace, Logan Marshall-Green, Michael ... 2012 124 7.0
2 James McAvoy, Anya Taylor-Joy, Haley Lu Richar... 2016 117 7.3
3 Matthew McConaughey,Reese Witherspoon, Seth Ma... 2016 108 7.2
4 Will Smith, Jared Leto, Margot Robbie, Viola D... 2016 123 6.2
.. ... ... ... ...
993 Chiwetel Ejiofor, Nicole Kidman, Julia Roberts... 2015 111 6.2
994 Lauren German, Heather Matarazzo, Bijou Philli... 2007 94 5.5
995 Robert Hoffman, Briana Evigan, Cassie Ventura,... 2008 98 6.2
996 Adam Pally, T.J. Miller, Thomas Middleditch,Sh... 2014 93 5.6
997 Kevin Spacey, Jennifer Garner, Robbie Amell,Ch... 2016 87 5.3
Revenue
0 333.13
1 126.46M
2 138.12M
3 270.32
4 325.02
.. ...
993 0
994 17.54
995 58.01
996 0
997 19.64
[998 rows x 8 columns]
%% Cell type:markdown id: tags:
### Write a df to a csv file
%% Cell type:code id: tags:
``` python
df.to_csv("better_movies.csv", index = False)
```
%% Cell type:markdown id: tags:
## Practice on your own.....Data Analysis with Data Frames
%% Cell type:code id: tags:
``` python
# What are all the movies that have above average run time?
long_movies = df [df["Runtime"] > df["Runtime"].mean()]
long_movies
```
%% Output
Title Genre Director \
0 Guardians of the Galaxy Action,Adventure,Sci-Fi James Gunn
1 Prometheus Adventure,Mystery,Sci-Fi Ridley Scott
2 Split Horror,Thriller M. Night Shyamalan
4 Suicide Squad Action,Adventure,Fantasy David Ayer
6 La La Land Comedy,Drama,Music Damien Chazelle
.. ... ... ...
977 The Skin I Live In Drama,Thriller Pedro Almodóvar
979 Annie Comedy,Drama,Family Will Gluck
980 Across the Universe Drama,Fantasy,Musical Julie Taymor
987 Selma Biography,Drama,History Ava DuVernay
989 Taare Zameen Par Drama,Family,Music Aamir Khan
Cast Year Runtime Rating \
0 Chris Pratt, Vin Diesel, Bradley Cooper, Zoe S... 2014 121 8.1
1 Noomi Rapace, Logan Marshall-Green, Michael ... 2012 124 7.0
2 James McAvoy, Anya Taylor-Joy, Haley Lu Richar... 2016 117 7.3
4 Will Smith, Jared Leto, Margot Robbie, Viola D... 2016 123 6.2
6 Ryan Gosling, Emma Stone, Rosemarie DeWitt, J.... 2016 128 8.3
.. ... ... ... ...
977 Antonio Banderas, Elena Anaya, Jan Cornet,Mari... 2011 120 7.6
979 Quvenzhané Wallis, Cameron Diaz, Jamie Foxx, R... 2014 118 5.3
980 Evan Rachel Wood, Jim Sturgess, Joe Anderson, ... 2007 133 7.4
987 David Oyelowo, Carmen Ejogo, Tim Roth, Lorrain... 2014 128 7.5
989 Darsheel Safary, Aamir Khan, Tanay Chheda, Sac... 2007 165 8.5
Revenue
0 333.13
1 126.46M
2 138.12M
4 325.02
6 151.06M
.. ...
977 3.19
979 85.91
980 24.34
987 52.07
989 1.2
[432 rows x 8 columns]
%% Cell type:code id: tags:
``` python
# of these movies, what was the min rating?
min_rating = long_movies["Rating"].min()
min_rating
```
%% Output
3.2
%% Cell type:code id: tags:
``` python
# Which movies had this min rating?
long_movies[long_movies["Rating"] == min_rating]
```
%% Output
Title Genre Director \
646 Tall Men Fantasy,Horror,Thriller Jonathan Holbrook
Cast Year Runtime Rating \
646 Dan Crisafulli, Kay Whitney, Richard Garcia, P... 2016 133 3.2
Revenue
646 0
%% Cell type:markdown id: tags:
### What are all long_movies with someone in the cast named "Emma" ?
%% Cell type:code id: tags:
``` python
long_movies[long_movies["Cast"].str.contains("Emma")]
```
%% Output
Title Genre \
6 La La Land Comedy,Drama,Music
92 The Help Drama
114 Harry Potter and the Deathly Hallows: Part 2 Adventure,Drama,Fantasy
157 Crazy, Stupid, Love. Comedy,Drama,Romance
253 The Amazing Spider-Man 2 Action,Adventure,Sci-Fi
314 Harry Potter and the Order of the Phoenix Adventure,Family,Fantasy
367 The Amazing Spider-Man Action,Adventure
417 Harry Potter and the Deathly Hallows: Part 1 Adventure,Family,Fantasy
472 Harry Potter and the Half-Blood Prince Adventure,Family,Fantasy
609 Beautiful Creatures Drama,Fantasy,Romance
717 Noah Action,Adventure,Drama
879 Saving Mr. Banks Biography,Comedy,Drama
Director Cast \
6 Damien Chazelle Ryan Gosling, Emma Stone, Rosemarie DeWitt, J....
92 Tate Taylor Emma Stone, Viola Davis, Octavia Spencer, Bryc...
114 David Yates Daniel Radcliffe, Emma Watson, Rupert Grint, M...
157 Glenn Ficarra Steve Carell, Ryan Gosling, Julianne Moore, Em...
253 Marc Webb Andrew Garfield, Emma Stone, Jamie Foxx, Paul ...
314 David Yates Daniel Radcliffe, Emma Watson, Rupert Grint, B...
367 Marc Webb Andrew Garfield, Emma Stone, Rhys Ifans, Irrfa...
417 David Yates Daniel Radcliffe, Emma Watson, Rupert Grint, B...
472 David Yates Daniel Radcliffe, Emma Watson, Rupert Grint, M...
609 Richard LaGravenese Alice Englert, Viola Davis, Emma Thompson,Alde...
717 Darren Aronofsky Russell Crowe, Jennifer Connelly, Anthony Hopk...
879 John Lee Hancock Emma Thompson, Tom Hanks, Annie Rose Buckley, ...
Year Runtime Rating Revenue
6 2016 128 8.3 151.06M
92 2011 146 8.1 169.71M
114 2011 130 8.1 380.96
157 2011 118 7.4 84.24
253 2014 142 6.7 202.85
314 2007 138 7.5 292
367 2012 136 7.0 262.03
417 2010 146 7.7 294.98
472 2009 153 7.5 301.96
609 2013 124 6.2 19.45
717 2014 138 5.8 101.16M
879 2013 125 7.5 83.3
%% Cell type:code id: tags:
``` python
# What is the title of the shortest movie?
df[df["Runtime"] == df["Runtime"].min()]["Title"]
```
%% Output
792 Ma vie de Courgette
Name: Title, dtype: object
%% Cell type:code id: tags:
``` python
# What movie had the highest revenue?
# df["Revnue"].max() did not work
# we need to clean our data
def format_revenue(revenue):
#TODO: Check the last character of the string
if type(revenue) == float: # need this in here if we run code multiple times
return revenue
elif revenue[-1] == 'M': # some have an "M" at the end
return float(revenue[:-1]) * 1e6
else:
return float(revenue) * 1e6
```
%% Cell type:code id: tags:
``` python
# What movie had the highest revenue?
revenue = df["Revenue"].apply(format_revenue) # apply a function to a column
print(revenue.head())
max_revenue = revenue.max()
# make a copy of our df
rev_df = df.copy()
rev_df["Rev as fl"] = revenue
rev_df
```
%% Output
0 333130000.0
1 126460000.0
2 138120000.0
3 270320000.0
4 325020000.0
Name: Revenue, dtype: float64
Title Genre Director \
0 Guardians of the Galaxy Action,Adventure,Sci-Fi James Gunn
1 Prometheus Adventure,Mystery,Sci-Fi Ridley Scott
2 Split Horror,Thriller M. Night Shyamalan
3 Sing Animation,Comedy,Family Christophe Lourdelet
4 Suicide Squad Action,Adventure,Fantasy David Ayer
.. ... ... ...
993 Secret in Their Eyes Crime,Drama,Mystery Billy Ray
994 Hostel: Part II Horror Eli Roth
995 Step Up 2: The Streets Drama,Music,Romance Jon M. Chu
996 Search Party Adventure,Comedy Scot Armstrong
997 Nine Lives Comedy,Family,Fantasy Barry Sonnenfeld
Cast Year Runtime Rating \
0 Chris Pratt, Vin Diesel, Bradley Cooper, Zoe S... 2014 121 8.1
1 Noomi Rapace, Logan Marshall-Green, Michael ... 2012 124 7.0
2 James McAvoy, Anya Taylor-Joy, Haley Lu Richar... 2016 117 7.3
3 Matthew McConaughey,Reese Witherspoon, Seth Ma... 2016 108 7.2
4 Will Smith, Jared Leto, Margot Robbie, Viola D... 2016 123 6.2
.. ... ... ... ...
993 Chiwetel Ejiofor, Nicole Kidman, Julia Roberts... 2015 111 6.2
994 Lauren German, Heather Matarazzo, Bijou Philli... 2007 94 5.5
995 Robert Hoffman, Briana Evigan, Cassie Ventura,... 2008 98 6.2
996 Adam Pally, T.J. Miller, Thomas Middleditch,Sh... 2014 93 5.6
997 Kevin Spacey, Jennifer Garner, Robbie Amell,Ch... 2016 87 5.3
Revenue Rev as fl
0 333.13 333130000.0
1 126.46M 126460000.0
2 138.12M 138120000.0
3 270.32 270320000.0
4 325.02 325020000.0
.. ... ...
993 0 0.0
994 17.54 17540000.0
995 58.01 58010000.0
996 0 0.0
997 19.64 19640000.0
[998 rows x 9 columns]
%% Cell type:code id: tags:
``` python
# Now we can answer the question!
rev_df[rev_df["Rev as fl"] == max_revenue]
```
%% Output
Title Genre \
50 Star Wars: Episode VII - The Force Awakens Action,Adventure,Fantasy
Director Cast Year \
50 J.J. Abrams Daisy Ridley, John Boyega, Oscar Isaac, Domhna... 2015
Runtime Rating Revenue Rev as fl
50 136 8.1 936.63 936630000.0
%% Cell type:code id: tags:
``` python
# Or more generally...
rev_df.sort_values(by="Rev as fl", ascending=False)
```
%% Output
Title Genre \
50 Star Wars: Episode VII - The Force Awakens Action,Adventure,Fantasy
87 Avatar Action,Adventure,Fantasy
85 Jurassic World Action,Adventure,Sci-Fi
76 The Avengers Action,Sci-Fi
54 The Dark Knight Action,Crime,Drama
.. ... ...
888 The Intent Crime,Drama
392 Whisky Galore Comedy,Romance
478 Macbeth Drama,War
823 Man Down Drama,Thriller
476 Pet Horror,Thriller
Director Cast \
50 J.J. Abrams Daisy Ridley, John Boyega, Oscar Isaac, Domhna...
87 James Cameron Sam Worthington, Zoe Saldana, Sigourney Weaver...
85 Colin Trevorrow Chris Pratt, Bryce Dallas Howard, Ty Simpkins,...
76 Joss Whedon Robert Downey Jr., Chris Evans, Scarlett Johan...
54 Christopher Nolan Christian Bale, Heath Ledger, Aaron Eckhart,Mi...
.. ... ...
888 Femi Oyeniran Dylan Duffus, Scorcher,Shone Romulus, Jade Asha
392 Gillies MacKinnon Tim Pigott-Smith, Naomi Battrick, Ellie Kendri...
478 Justin Kurzel Michael Fassbender, Marion Cotillard, J...
823 Dito Montiel Shia LaBeouf, Jai Courtney, Gary Oldman, Kate ...
476 Carles Torrens Dominic Monaghan, Ksenia Solo, Jennette McCurd...
Year Runtime Rating Revenue Rev as fl
50 2015 136 8.1 936.63 936630000.0
87 2009 162 7.8 760.51 760510000.0
85 2015 124 7.0 652.18 652180000.0
76 2012 143 8.1 623.28 623280000.0
54 2008 152 9.0 533.32 533320000.0
.. ... ... ... ... ...
888 2016 104 3.5 0 0.0
392 2016 98 5.0 0 0.0
478 2015 113 6.7 0 0.0
823 2015 90 5.8 0 0.0
476 2016 94 5.7 0 0.0
[998 rows x 9 columns]
%% Cell type:code id: tags:
``` python
df
```
%% Output
Title Genre Director \
0 Guardians of the Galaxy Action,Adventure,Sci-Fi James Gunn
1 Prometheus Adventure,Mystery,Sci-Fi Ridley Scott
2 Split Horror,Thriller M. Night Shyamalan
3 Sing Animation,Comedy,Family Christophe Lourdelet
4 Suicide Squad Action,Adventure,Fantasy David Ayer
.. ... ... ...
993 Secret in Their Eyes Crime,Drama,Mystery Billy Ray
994 Hostel: Part II Horror Eli Roth
995 Step Up 2: The Streets Drama,Music,Romance Jon M. Chu
996 Search Party Adventure,Comedy Scot Armstrong
997 Nine Lives Comedy,Family,Fantasy Barry Sonnenfeld
Cast Year Runtime Rating \
0 Chris Pratt, Vin Diesel, Bradley Cooper, Zoe S... 2014 121 8.1
1 Noomi Rapace, Logan Marshall-Green, Michael ... 2012 124 7.0
2 James McAvoy, Anya Taylor-Joy, Haley Lu Richar... 2016 117 7.3
3 Matthew McConaughey,Reese Witherspoon, Seth Ma... 2016 108 7.2
4 Will Smith, Jared Leto, Margot Robbie, Viola D... 2016 123 6.2
.. ... ... ... ...
993 Chiwetel Ejiofor, Nicole Kidman, Julia Roberts... 2015 111 6.2
994 Lauren German, Heather Matarazzo, Bijou Philli... 2007 94 5.5
995 Robert Hoffman, Briana Evigan, Cassie Ventura,... 2008 98 6.2
996 Adam Pally, T.J. Miller, Thomas Middleditch,Sh... 2014 93 5.6
997 Kevin Spacey, Jennifer Garner, Robbie Amell,Ch... 2016 87 5.3
Revenue
0 333.13
1 126.46M
2 138.12M
3 270.32
4 325.02
.. ...
993 0
994 17.54
995 58.01
996 0
997 19.64
[998 rows x 8 columns]
%% Cell type:code id: tags:
``` python
# What is the average runtime for movies by "Francis Lawrence"?
fl_movies = df[df["Director"] == "Francis Lawrence"]
fl_movies["Runtime"].mean()
```
%% Output
126.75
%% Cell type:markdown id: tags:
### More complicated questions...
%% Cell type:code id: tags:
``` python
# which director had the highest average rating?
# one way is to make a python dict of director, list of ratings
director_dict = dict()
# make the dictionary: key is director, value is list of ratings
for i in range(len(df)):
director = df.loc[i, "Director"]
rating = df.loc[i, "Rating"]
#print(i, director, rating)
if director not in director_dict:
director_dict[director] = []
director_dict[director].append(rating)
# make a ratings dict key is directory, value is average
# only include directors with > 4 movies
ratings_dict = {k:sum(v)/len(v) for (k,v) in director_dict.items() if len(v) > 4}
#sort a dict by values
dict(sorted(ratings_dict.items(), key=lambda t:t[-1], reverse=True))
```
%% Output
{'Christopher Nolan': 8.680000000000001,
'Martin Scorsese': 7.92,
'David Fincher': 7.8199999999999985,
'Denis Villeneuve': 7.76,
'J.J. Abrams': 7.58,
'David Yates': 7.433333333333334,
'Danny Boyle': 7.42,
'Antoine Fuqua': 7.040000000000001,
'Zack Snyder': 7.040000000000001,
'Woody Allen': 7.019999999999999,
'Peter Berg': 6.860000000000001,
'Ridley Scott': 6.85,
'Justin Lin': 6.82,
'Michael Bay': 6.483333333333334,
'Paul W.S. Anderson': 5.766666666666666,
'M. Night Shyamalan': 5.533333333333332}
%% Cell type:code id: tags:
``` python
# FOR DEMONSTRATION PURPOSES ONLY
# We haven't (and will not) learn about "groupby"
# Pandas has many operations which will be helpful!
# Consider what you already know, and what Pandas can solve
# when formulating your solutions.
rating_groups = df.groupby("Director")["Rating"]
rating_groups.mean()[rating_groups.count() > 4].sort_values(ascending=False)
```
%% Output
Director
Christopher Nolan 8.680000
Martin Scorsese 7.920000
David Fincher 7.820000
Denis Villeneuve 7.760000
J.J. Abrams 7.580000
David Yates 7.433333
Danny Boyle 7.420000
Antoine Fuqua 7.040000
Zack Snyder 7.040000
Woody Allen 7.020000
Peter Berg 6.860000
Ridley Scott 6.850000
Justin Lin 6.820000
Michael Bay 6.483333
Paul W.S. Anderson 5.766667
M. Night Shyamalan 5.533333
Name: Rating, dtype: float64
%% Cell type:code id: tags:
``` python
import pandas as pd
from pandas import Series, DataFrame
# We can explictly import Series and DataFrame, why might we do this?
```
%% Cell type:markdown id: tags:
### Series Review
%% Cell type:markdown id: tags:
#### Series from `list`
%% Cell type:code id: tags:
``` python
scores_list = [54, 22, 19, 73, 80]
scores_series = Series(scores_list)
scores_series
# what name do we call the 0, 1, 2, ... ?? A:
# what name do we call the 54, 22, 19, .... ?? A:
# what name do we call the numbers we can't see? A:
```
%% Cell type:markdown id: tags:
#### Selecting certain scores.
What are all the scores `> 50`?
%% Cell type:code id: tags:
``` python
```
%% Cell type:markdown id: tags:
**Answer:** Boolean indexing. Try the following...
%% Cell type:code id: tags:
``` python
scores_series[[True, True, False, False, True]] # often called a "mask"
```
%% Cell type:markdown id: tags:
We are really writing a "mask" for our data.
%% Cell type:code id: tags:
``` python
scores_series > 50
```
%% Cell type:markdown id: tags:
#### Series from `dict`
%% Cell type:code id: tags:
``` python
# Imagine we hire students and track their weekly hours
week1 = Series({"Rita":5, "Therese":3, "Janice": 6})
week2 = Series({"Rita":3, "Therese":7, "Janice": 4})
week3 = Series({"Therese":5, "Janice":5, "Rita": 8}) # Wrong order! Will this matter?
print(week1)
print(week2)
print(week3)
```
%% Cell type:markdown id: tags:
#### For everyone in Week 1, add 3 to their hours
%% Cell type:code id: tags:
``` python
week1 = week1 + 3
week1
```
%% Cell type:markdown id: tags:
#### Total up everyone's hours
%% Cell type:code id: tags:
``` python
total_hours = week1 + week2 + week3
total_hours
```
%% Cell type:markdown id: tags:
#### What is week1 / week3 ?
%% Cell type:code id: tags:
``` python
week1 / week3
# Notice that we didn't have to worry about the order of indices
```
%% Cell type:markdown id: tags:
#### What type of values are stored in week1 > week2?
%% Cell type:code id: tags:
``` python
print(week1)
print(week2)
week1 > week2 # indices are ordered the same
```
%% Cell type:markdown id: tags:
#### What is week1 > week3?
%% Cell type:code id: tags:
``` python
print(week1)
print(week3)
# week1 > week3 # indices not in same order
# week1.sort_index() > week3.sort_index() #proper way
```
%% Cell type:markdown id: tags:
# Lecture 28: Pandas 2 - DataFrames
Learning Objectives:
- Create a DataFrame from
- a dictionary of Series, lists, or dicts
- a list of Series, lists, dicts
- Select a column, row, cell, or rectangular region of a DataFrame
- Convert CSV files into DataFrames and DataFrames into CSV Files
- Access the head or tail of a DataFrame
%% Cell type:markdown id: tags:
**Big Idea**: Data Frames store 2-dimensional data in tables! It is a collection of Series.
%% Cell type:markdown id: tags:
## You can create a DataFrame in a variety of ways!
### From a dictionary of Series
%% Cell type:code id: tags:
``` python
names = Series(["Alice", "Bob", "Cindy", "Dan"])
scores = Series([6, 7, 8, 9])
# to make a dictionary of Series, need to write column names for the keys
DataFrame({
"Player name": names,
"Score": scores
})
```
%% Cell type:markdown id: tags:
### From a dictionary of lists
%% Cell type:code id: tags:
``` python
name_list = ["Alice", "Bob", "Cindy", "Dan"]
score_list = [6, 7, 8, 9]
# this is the same as above, reminding us that Series act like lists
DataFrame({
"Player name": name_list,
"Score": score_list
})
```
%% Cell type:markdown id: tags:
### From a dictionary of dictionaries
We need to make up keys to match the things in each column
%% Cell type:code id: tags:
``` python
data = {
"Player name": {0: "Alice", 1: "Bob", 2: "Cindy", 3: "Dan"},
"Score": {0: 6, 1: 7, 2: 8, 3: 9}
}
DataFrame(data)
```
%% Cell type:markdown id: tags:
### From a list of lists
We have to add the column names, we do this with `columns = [name1, name2, ....]`
%% Cell type:code id: tags:
``` python
data = [
["Alice", 6],
["Bob", 7],
["Cindy", 8],
["Dan", 9]
]
data
DataFrame(data, columns = ["Player name", "Score"])
```
%% Cell type:markdown id: tags:
### From a list of dicts
%% Cell type:code id: tags:
``` python
data = [
{"Player name": "Alice", "Score": 6},
{"Player name": "Bob", "Score": 7},
{"Player name": "Cindy", "Score": 8},
{"Player name": "Dan", "Score": 9}
]
data
DataFrame(data)
```
%% Cell type:markdown id: tags:
### Explicitly naming the indices
We can use `index = [name1, name2, ...]` to rename the index of each row
%% Cell type:code id: tags:
``` python
#
data = [
{"Player name": "Alice", "Score": 6},
{"Player name": "Bob", "Score": 7},
{"Player name": "Cindy", "Score": 8},
{"Player name": "Dan", "Score": 9}
]
data
DataFrame(data, index=["A", "B", "C", "D"]) # must have a name for each row
```
%% Cell type:code id: tags:
``` python
# You try:
# Make a DataFrame of 4 people you know with different ages
# Give names to both the columns and rows
# Share how you did with this with your neighbor
# If you both did it the same way, try it a different way.
```
%% Cell type:markdown id: tags:
## Select a column, row, cell, or rectangular region of a DataFrame
### Data lookup: Series
- `s.loc[X]` <- lookup by pandas index
- `s.iloc[X]` <- lookup by integer position
%% Cell type:code id: tags:
``` python
hours = Series({"Alice":6, "Bob":7, "Cindy":8, "Dan":9})
hours
```
%% Cell type:code id: tags:
``` python
# Lookup Bob's hours by pandas index.
hours.loc["Bob"]
```
%% Cell type:code id: tags:
``` python
# Lookup Bob's hours by integer position.
hours.iloc[2]
```
%% Cell type:code id: tags:
``` python
# Lookup Cindy's hours by pandas index.
```
%% Cell type:markdown id: tags:
### Data lookup: DataFrame
- `d.loc[r]` lookup ROW by pandas ROW index
- `d.iloc[r]` lookup ROW by ROW integer position
- `d[c]` lookup COL by pandas COL index
- `d.loc[r, c]` lookup by pandas ROW index and pandas COL index
- `d.iloc[r, c]` lookup by ROW integer position and COL integer position
%% Cell type:code id: tags:
``` python
# We often call the object that we make df
data = [
["Alice", 6],
["Bob", 7],
["Cindy", 8],
["Dan", 9]
]
df = DataFrame(data, index=["A", "B", "C", "D"], columns = ["Player name", "Score"])
df
```
%% Cell type:markdown id: tags:
### What are 3 different ways of accessing row D?
%% Cell type:code id: tags:
``` python
```
%% Cell type:markdown id: tags:
### How about accessing a column?
%% Cell type:code id: tags:
``` python
```
%% Cell type:markdown id: tags:
### What are 3 different ways to access a single cell?
%% Cell type:code id: tags:
``` python
```
%% Cell type:markdown id: tags:
## How to set values for a specific entry?
- `d.loc[r, c] = new_val`
- `d.iloc[r, c] = new_val`
%% Cell type:code id: tags:
``` python
#change player D's name
df.loc["D", "Player name"] = "Bianca"
df
```
%% Cell type:code id: tags:
``` python
# then add 3 to that player's score using .loc
```
%% Cell type:code id: tags:
``` python
# add 7 to a different player's score using .iloc
```
%% Cell type:markdown id: tags:
### Find the max score and the mean score
%% Cell type:code id: tags:
``` python
# find the max and mean of the "Score" column
print(df["Score"].max(), df["Score"].mean())
```
%% Cell type:markdown id: tags:
### Find the highest scoring player
%% Cell type:code id: tags:
``` python
```
%% Cell type:markdown id: tags:
## Slicing a DataFrame
- `df.iloc[ROW_SLICE, COL_SLICE]` <- make a rectangular slice from the DataFrame using integer positions
- `df.loc[ROW_SLICE, COL_SLICE]` <- make a rectangular slice from the DataFrame using index
%% Cell type:code id: tags:
``` python
df.iloc[1:3, 0:2]
```
%% Cell type:code id: tags:
``` python
df.loc["B":"C", "Player name":"Score"] # notice that this way is inclusive of endpoints
```
%% Cell type:markdown id: tags:
## Set values for sliced DataFrame
- `d.loc[ROW_SLICE, COL_SLICE] = new_val` <- set value by ROW INDEX and COL INDEX
- `d.iloc[ROW_SLICE, COL_SLICE] = new_val` <- set value by ROW Integer position and COL Integer position
%% Cell type:code id: tags:
``` python
df
```
%% Cell type:code id: tags:
``` python
df.loc["B":"C", "Score"] += 5
df
```
%% Cell type:markdown id: tags:
### Pandas allows slicing of non-contiguous columns
%% Cell type:code id: tags:
``` python
# just get Player name for Index B and D
df.loc[["B", "D"],"Player name"]
```
%% Cell type:code id: tags:
``` python
# add 2 to the people in rows B and D
df.loc[["B", "D"],"Score"] += 2
df
```
%% Cell type:markdown id: tags:
## Boolean indexing on a DataFrame
- `d[BOOL SERIES]` <- makes a new DF of all rows that lined up were True
%% Cell type:code id: tags:
``` python
df
```
%% Cell type:markdown id: tags:
### Make a Series of Booleans based on Score >= 15
%% Cell type:code id: tags:
``` python
b = df["Score"] >= 15
b
```
%% Cell type:markdown id: tags:
### use b to slice the DataFrame
if b is true, include this row in the new df
%% Cell type:code id: tags:
``` python
df[b]
```
%% Cell type:markdown id: tags:
### do the last two things in a single step
%% Cell type:code id: tags:
``` python
df[df["Score"] >= 15]
```
%% Cell type:markdown id: tags:
## Creating DataFrame from csv
%% Cell type:code id: tags:
``` python
# it's that easy!
df = pd.read_csv("IMDB-Movie-Data.csv")
df
```
%% Cell type:markdown id: tags:
### View the first few lines of the DataFrame
- `.head(n)` gets the first n lines, 5 is the default
%% Cell type:code id: tags:
``` python
df.head()
```
%% Cell type:markdown id: tags:
### get the first 2 rows
%% Cell type:code id: tags:
``` python
df.head(2)
```
%% Cell type:markdown id: tags:
### View the first few lines of the DataFrame
- `.tail(n)` gets the last n lines, 5 is the default
%% Cell type:code id: tags:
``` python
df.tail()
```
%% Cell type:code id: tags:
``` python
df.tail(3)
```
%% Cell type:markdown id: tags:
### What is the last year in our DataFrame?
%% Cell type:code id: tags:
``` python
df["Year"].max()
```
%% Cell type:markdown id: tags:
### What are the rows that correspond to movies whose title contains "Harry" ?
%% Cell type:code id: tags:
``` python
```
%% Cell type:markdown id: tags:
### What is the movie at index 6 ?
%% Cell type:code id: tags:
``` python
```
%% Cell type:markdown id: tags:
## Notice that there are two index columns
- That happened because when you write a csv from pandas to a file, it writes a new index column
- So if the dataFrame already contains an index, you are going to get two index columns
- Let's fix that problem
%% Cell type:markdown id: tags:
### How can you use slicing to get just columns with Title and Year?
%% Cell type:code id: tags:
``` python
df2 = ???
df2
# notice that this does not have the 'index' column
```
%% Cell type:markdown id: tags:
### How can you use slicing to get rid of the first column?
%% Cell type:code id: tags:
``` python
df = df.iloc[:, 1:] #all the rows, not column 0
df
```
%% Cell type:markdown id: tags:
### Write a df to a csv file
%% Cell type:code id: tags:
``` python
df.to_csv("better_movies.csv", index = False)
```
%% Cell type:markdown id: tags:
## Practice on your own.....Data Analysis with Data Frames
%% Cell type:code id: tags:
``` python
# What are all the movies that have above average run time?
long_movies = ???
long_movies
```
%% Cell type:code id: tags:
``` python
# of these movies, what was the min rating?
min_rating = ???
min_rating
```
%% Cell type:code id: tags:
``` python
# Which movies had this min rating?
???
```
%% Cell type:markdown id: tags:
### What are all long_movies with someone in the cast named "Emma" ?
%% Cell type:code id: tags:
``` python
???
```
%% Cell type:markdown id: tags:
### What is the title of the shortest movie?
%% Cell type:code id: tags:
``` python
???
```
%% Cell type:markdown id: tags:
### What movie had the highest revenue?
%% Cell type:code id: tags:
``` python
# df["Revnue"].max() did not work
# we need to clean our data
def format_revenue(revenue):
#TODO: Check the last character of the string
if type(revenue) == float: # need this in here if we run code multiple times
return revenue
elif revenue[-1] == 'M': # some have an "M" at the end
return float(revenue[:-1]) * 1e6
else:
return float(revenue) * 1e6
```
%% Cell type:code id: tags:
``` python
# What movie had the highest revenue?
revenue = df["Revenue"].apply(format_revenue) # apply a function to a column
print(revenue.head())
max_revenue = revenue.max()
# make a copy of our df
rev_df = df.copy()
rev_df["Rev as fl"] = revenue
rev_df
```
%% Cell type:code id: tags:
``` python
# Now we can answer the question!
???
```
%% Cell type:code id: tags:
``` python
# Or more generally...
rev_df.sort_values(by="Rev as fl", ascending=False)
```
%% Cell type:code id: tags:
``` python
df
```
%% Cell type:code id: tags:
``` python
# What is the average runtime for movies by "Francis Lawrence"?
???
```
%% Cell type:markdown id: tags:
### More complicated questions...
%% Cell type:code id: tags:
``` python
# Which director had the highest average rating?
# one way is to make a python dict of director, list of ratings
director_dict = dict()
# make the dictionary: key is director, value is list of ratings
for i in range(len(df)):
director = df.loc[i, "Director"]
rating = df.loc[i, "Rating"]
#print(i, director, rating)
if director not in director_dict:
director_dict[director] = []
director_dict[director].append(rating)
# make a ratings dict key is directory, value is average
# only include directors with > 4 movies
ratings_dict = {k:sum(v)/len(v) for (k,v) in director_dict.items() if len(v) > 4}
#sort a dict by values
dict(sorted(ratings_dict.items(), key=lambda t:t[-1], reverse=True))
```
%% Cell type:code id: tags:
``` python
# FOR DEMONSTRATION PURPOSES ONLY
# We haven't (and will not) learn about "groupby"
# Pandas has many operations which will be helpful!
# Consider what you already know, and what Pandas can solve
# when formulating your solutions.
rating_groups = df.groupby("Director")["Rating"]
rating_groups.mean()[rating_groups.count() > 4].sort_values(ascending=False)
```
%% Cell type:code id: tags:
``` python
# We'll need these modules!
import os
import requests
import json
import pandas as pd
from pandas import Series, DataFrame
```
%% Cell type:code id: tags:
``` python
# Warmup 0
# Did you hardcode the slashes in P10 rather than using os.path.join?
# It likely won't run on the grader. Check your code and check the autograder ASAP.
os.path.join("data", "cole.csv")
```
%% Output
'data\\cole.csv'
%% Cell type:code id: tags:
``` python
# Warmup 1: Read the data from "new_movie_data.csv" into a pandas DataFrame called "movies"
movies = pd.read_csv("new_movie_data.csv")
movies
```
%% Output
Title Genre \
0 Guardians of the Galaxy Action,Adventure,Sci-Fi
1 Prometheus Adventure,Mystery,Sci-Fi
2 Split Horror,Thriller
3 Sing Animation,Comedy,Family
4 Suicide Squad Action,Adventure,Fantasy
... ... ...
1063 Guardians of the Galaxy Vol. 2 Action, Adventure, Comedy
1064 Baby Driver Action, Crime, Drama
1065 Only the Brave Action, Biography, Drama
1066 Incredibles 2 Animation, Action, Adventure
1067 A Star Is Born Drama, Music, Romance
Director Cast \
0 James Gunn Chris Pratt, Vin Diesel, Bradley Cooper, Zoe S...
1 Ridley Scott Noomi Rapace, Logan Marshall-Green, Michael ...
2 M. Night Shyamalan James McAvoy, Anya Taylor-Joy, Haley Lu Richar...
3 Christophe Lourdelet Matthew McConaughey,Reese Witherspoon, Seth Ma...
4 David Ayer Will Smith, Jared Leto, Margot Robbie, Viola D...
... ... ...
1063 James Gunn Chris Pratt, Zoe Saldana, Dave Bautista, Vin D...
1064 Edgar Wright Ansel Elgort, Jon Bernthal, Jon Hamm, Eiza Gon...
1065 Joseph Kosinski Josh Brolin, Miles Teller, Jeff Bridges, Jenni...
1066 Brad Bird Craig T. Nelson, Holly Hunter, Sarah Vowell, H...
1067 Bradley Cooper Lady Gaga, Bradley Cooper, Sam Elliott, Greg G...
Year Runtime Rating Revenue
0 2014 121 8.1 333.13
1 2012 124 7.0 126.46M
2 2016 117 7.3 138.12M
3 2016 108 7.2 270.32
4 2016 123 6.2 325.02
... ... ... ... ...
1063 2017 136 7.6 389.81
1064 2017 113 7.6 107.83
1065 2017 134 7.6 18.34
1066 2018 118 7.6 608.58
1067 2018 136 7.6 215.29
[1068 rows x 8 columns]
%% Cell type:code id: tags:
``` python
# Warmup 2: What years does this new movie dataset cover?
print(movies['Year'].min(), 'to', movies['Year'].max())
```
%% Output
2006 to 2020
%% Cell type:code id: tags:
``` python
# Warmup 3a: What are the movies with the median rating?
median_movies = movies[movies['Rating'] == movies['Rating'].median()]
median_movies
```
%% Output
Title Genre \
38 The Magnificent Seven Action,Adventure,Western
195 Captain America: The First Avenger Action,Adventure,Sci-Fi
222 It Follows Horror,Mystery
330 Storks Animation,Adventure,Comedy
359 Step Brothers Comedy
366 American Wrestler: The Wizard Drama,Sport
373 Florence Foster Jenkins Biography,Comedy,Drama
375 Black Mass Biography,Crime,Drama
415 The Headhunter's Calling Drama
466 Enemy Mystery,Thriller
490 The Book of Eli Action,Adventure,Drama
516 Chappie Action,Crime,Drama
529 A Good Year Comedy,Drama,Romance
557 In the Heart of the Sea Action,Adventure,Biography
606 Horrible Bosses Comedy,Crime
616 Free State of Jones Action,Biography,Drama
660 The First Time Comedy,Drama,Romance
731 This Beautiful Fantastic Comedy,Drama,Fantasy
779 Unknown Action,Mystery,Thriller
783 Before We Go Comedy,Drama,Romance
819 Suite Française Drama,Romance,War
865 Indignation Drama,Romance
866 The Stanford Prison Experiment Biography,Drama,History
868 Mission: Impossible III Action,Adventure,Thriller
875 Warm Bodies Comedy,Horror,Romance
878 Shin Gojira Action,Adventure,Drama
881 Rio Animation,Adventure,Comedy
905 Ocean's Thirteen Crime,Thriller
943 Triangle Fantasy,Mystery,Thriller
962 Custody Drama
969 Disturbia Drama,Mystery,Thriller
Director Cast \
38 Antoine Fuqua Denzel washington, Chris Pratt, Ethan Haw...
195 Joe Johnston Chris Evans, Hugo Weaving, Samuel L. Jackson,H...
222 David Robert Mitchell Maika Monroe, Keir Gilchrist, Olivia Luccardi,...
330 Nicholas Stoller Andy Samberg, Katie Crown,Kelsey Grammer, Jenn...
359 Adam McKay Will Ferrell, John C. Reilly, Mary Steenburgen...
366 Alex Ranarivelo William Fichtner, Jon Voight, Lia Marie Johnso...
373 Stephen Frears Meryl Streep, Hugh Grant, Simon Helberg, Rebec...
375 Scott Cooper Johnny Depp, Benedict Cumberbatch, Dakota John...
415 Mark Williams Alison Brie, Gerard Butler, Willem Dafoe, Gret...
466 Denis Villeneuve Jake Gyllenhaal, Mélanie Laurent, Sarah Gadon,...
490 Albert Hughes Denzel Washington, Mila Kunis, Ray Steve...
516 Neill Blomkamp Sharlto Copley, Dev Patel, Hugh Jackman,Sigour...
529 Ridley Scott Russell Crowe, Abbie Cornish, Albert Finney, M...
557 Ron Howard Chris Hemsworth, Cillian Murphy, Brendan Glees...
606 Seth Gordon Jason Bateman, Charlie Day, Jason Sudeikis, St...
616 Gary Ross Matthew McConaughey, Gugu Mbatha-Raw, Mahersha...
660 Jon Kasdan Dylan O'Brien, Britt Robertson, Victoria Justi...
731 Simon Aboud Jessica Brown Findlay, Andrew Scott, Jeremy Ir...
779 Jaume Collet-Serra Liam Neeson, Diane Kruger, January Jones,Aidan...
783 Chris Evans Chris Evans, Alice Eve, Emma Fitzpatrick, John...
819 Saul Dibb Michelle Williams, Kristin Scott Thomas, Margo...
865 James Schamus Logan Lerman, Sarah Gadon, Tijuana Ricks, Sue ...
866 Kyle Patrick Alvarez Ezra Miller, Tye Sheridan, Billy Crudup, Olivi...
868 J.J. Abrams Tom Cruise, Michelle Monaghan, Ving Rhames, Ph...
875 Jonathan Levine Nicholas Hoult, Teresa Palmer, John Malkovich,...
878 Hideaki Anno Hiroki Hasegawa, Yutaka Takenouchi,Satomi Ishi...
881 Carlos Saldanha Jesse Eisenberg, Anne Hathaway, George Lopez,K...
905 Steven Soderbergh George Clooney, Brad Pitt, Matt Damon,Michael ...
943 Christopher Smith Melissa George, Joshua McIvor, Jack Taylor,Mic...
962 James Lapine Viola Davis, Hayden Panettiere, Catalina Sandi...
969 D.J. Caruso Shia LaBeouf, David Morse, Carrie-Anne Moss, S...
Year Runtime Rating Revenue
38 2016 132 6.9 93.38
195 2011 124 6.9 176.64M
222 2014 100 6.9 14.67
330 2016 87 6.9 72.66
359 2008 98 6.9 100.47M
366 2016 117 6.9 0
373 2016 111 6.9 27.37
375 2015 123 6.9 62.56
415 2016 108 6.9 0
466 2013 91 6.9 1.01
490 2010 118 6.9 94.82
516 2015 120 6.9 31.57
529 2006 117 6.9 7.46
557 2015 122 6.9 24.99
606 2011 98 6.9 117.53M
616 2016 139 6.9 0
660 2012 95 6.9 0.02
731 2016 100 6.9 0
779 2011 113 6.9 61.09
783 2014 95 6.9 0.04
819 2014 107 6.9 0
865 2016 110 6.9 3.4
866 2015 122 6.9 0.64
868 2006 126 6.9 133.38M
875 2013 98 6.9 66.36
878 2016 120 6.9 1.91
881 2011 96 6.9 143.62M
905 2007 122 6.9 117.14M
943 2009 99 6.9 0
962 2016 104 6.9 0
969 2007 105 6.9 80.05
%% Cell type:code id: tags:
``` python
# Warmup 3b: Of these, what was the average runtime?
median_movies["Runtime"].mean()
```
%% Output
110.2258064516129
%% Cell type:code id: tags:
``` python
# Warmup 3c: ... and how does that compare to the average runtime of all movies?
movies["Runtime"].mean()
```
%% Output
114.09363295880149
%% Cell type:code id: tags:
``` python
# Warmup 3d: ... and how does that compare to the average runtime of all Sport movies?
movies[movies["Genre"].str.contains("Sport")]["Runtime"].mean()
```
%% Output
118.33333333333333
%% Cell type:code id: tags:
``` python
# Warmup 4a: What does this function do?
def format_revenue(revenue):
if revenue[-1] == 'M': # some have an "M" at the end
return float(revenue[:-1]) * 1e6
else: # otherwise, assume millions.
return float(revenue) * 1e6
```
%% Cell type:code id: tags:
``` python
# Warmup 4b: Using the above function, create a new column called
# "CountableRevenue" with the revenue as a float.
movies["CountableRevenue"] = movies["Revenue"].apply(format_revenue)
movies
```
%% Output
Title Genre \
0 Guardians of the Galaxy Action,Adventure,Sci-Fi
1 Prometheus Adventure,Mystery,Sci-Fi
2 Split Horror,Thriller
3 Sing Animation,Comedy,Family
4 Suicide Squad Action,Adventure,Fantasy
... ... ...
1063 Guardians of the Galaxy Vol. 2 Action, Adventure, Comedy
1064 Baby Driver Action, Crime, Drama
1065 Only the Brave Action, Biography, Drama
1066 Incredibles 2 Animation, Action, Adventure
1067 A Star Is Born Drama, Music, Romance
Director Cast \
0 James Gunn Chris Pratt, Vin Diesel, Bradley Cooper, Zoe S...
1 Ridley Scott Noomi Rapace, Logan Marshall-Green, Michael ...
2 M. Night Shyamalan James McAvoy, Anya Taylor-Joy, Haley Lu Richar...
3 Christophe Lourdelet Matthew McConaughey,Reese Witherspoon, Seth Ma...
4 David Ayer Will Smith, Jared Leto, Margot Robbie, Viola D...
... ... ...
1063 James Gunn Chris Pratt, Zoe Saldana, Dave Bautista, Vin D...
1064 Edgar Wright Ansel Elgort, Jon Bernthal, Jon Hamm, Eiza Gon...
1065 Joseph Kosinski Josh Brolin, Miles Teller, Jeff Bridges, Jenni...
1066 Brad Bird Craig T. Nelson, Holly Hunter, Sarah Vowell, H...
1067 Bradley Cooper Lady Gaga, Bradley Cooper, Sam Elliott, Greg G...
Year Runtime Rating Revenue CountableRevenue
0 2014 121 8.1 333.13 333130000.0
1 2012 124 7.0 126.46M 126460000.0
2 2016 117 7.3 138.12M 138120000.0
3 2016 108 7.2 270.32 270320000.0
4 2016 123 6.2 325.02 325020000.0
... ... ... ... ... ...
1063 2017 136 7.6 389.81 389810000.0
1064 2017 113 7.6 107.83 107830000.0
1065 2017 134 7.6 18.34 18340000.0
1066 2018 118 7.6 608.58 608580000.0
1067 2018 136 7.6 215.29 215290000.0
[1068 rows x 9 columns]
%% Cell type:code id: tags:
``` python
# Warmup 5: What are the top 10 highest-revenue movies?
movies.sort_values(by="CountableRevenue", ascending=False).head(10)
```
%% Output
Title \
50 Star Wars: Episode VII - The Force Awakens
1006 Avengers: Endgame
87 Avatar
1007 Avengers: Infinity War
85 Jurassic World
76 The Avengers
998 Hamilton
1066 Incredibles 2
54 The Dark Knight
12 Rogue One
Genre Director \
50 Action,Adventure,Fantasy J.J. Abrams
1006 Action, Adventure, Drama Anthony Russo
87 Action,Adventure,Fantasy James Cameron
1007 Action, Adventure, Sci-Fi Anthony Russo
85 Action,Adventure,Sci-Fi Colin Trevorrow
76 Action,Sci-Fi Joss Whedon
998 Biography, Drama, History Thomas Kail
1066 Animation, Action, Adventure Brad Bird
54 Action,Crime,Drama Christopher Nolan
12 Action,Adventure,Sci-Fi Gareth Edwards
Cast Year Runtime \
50 Daisy Ridley, John Boyega, Oscar Isaac, Domhna... 2015 136
1006 Joe Russo, Robert Downey Jr., Chris Evans, Mar... 2019 181
87 Sam Worthington, Zoe Saldana, Sigourney Weaver... 2009 162
1007 Joe Russo, Robert Downey Jr., Chris Hemsworth,... 2018 149
85 Chris Pratt, Bryce Dallas Howard, Ty Simpkins,... 2015 124
76 Robert Downey Jr., Chris Evans, Scarlett Johan... 2012 143
998 Lin-Manuel Miranda, Phillipa Soo, Leslie Odom ... 2020 160
1066 Craig T. Nelson, Holly Hunter, Sarah Vowell, H... 2018 118
54 Christian Bale, Heath Ledger, Aaron Eckhart,Mi... 2008 152
12 Felicity Jones, Diego Luna, Alan Tudyk, Donnie... 2016 133
Rating Revenue CountableRevenue
50 8.1 936.63 936630000.0
1006 8.4 858.37 858370000.0
87 7.8 760.51 760510000.0
1007 8.4 678.82 678820000.0
85 7.0 652.18 652180000.0
76 8.1 623.28 623280000.0
998 8.6 612.82 612820000.0
1066 7.6 608.58 608580000.0
54 9.0 533.32 533320000.0
12 7.9 532.17 532170000.0
%% Cell type:markdown id: tags:
# Web 1 - How to get data from the 'Net
Core Ideas:
- Network structure
- Client/Server
- Request/Response
- HTTP protocol
- URL
- Headers
- Status Codes
- The requests module
%% Cell type:markdown id: tags:
## HTTP Status Codes overview
- 1XX : Informational
- 2XX : Successful
- 3XX : Redirection
- 4XX : Client Error
- 5XX : Server Error
https://en.wikipedia.org/wiki/List_of_HTTP_status_codes
%% Cell type:markdown id: tags:
## requests.get : Simple string example
- URL: https://cs220.cs.wisc.edu/hello.txt
%% Cell type:code id: tags:
``` python
url = "https://cs220.cs.wisc.edu/hello.txt"
r = requests.get(url) # r is the response
print(r.status_code)
print(r.text)
```
%% Output
200
Hello CS220 / CS319 students! Welcome to our website. Hope you are staying safe and healthy!
%% Cell type:code id: tags:
``` python
# Q: What if the web site does not exist?
typo_url = "https://cs220.cs.wisc.edu/hello.txttttt"
r = requests.get(typo_url)
print(r.status_code)
print(r.text)
# A: We get a 403 (client error)
```
%% Output
403
<html>
<head><title>403 Forbidden</title></head>
<body>
<h1>403 Forbidden</h1>
<ul>
<li>Code: AccessDenied</li>
<li>Message: Access Denied</li>
<li>RequestId: 07YJ296B9R21R3Z1</li>
<li>HostId: ukRbAHURwMp537u4fprHN/lvhUM04PVNZlyQhTUWDbgcR0tyQEXrFzfQcQkVycivBcW1d3QblVg=</li>
</ul>
<h3>An Error Occurred While Attempting to Retrieve a Custom Error Document</h3>
<ul>
<li>Code: AccessDenied</li>
<li>Message: Access Denied</li>
</ul>
<hr/>
</body>
</html>
%% Cell type:code id: tags:
``` python
# We can check for a status_code error by using an assert
typo_url = "https://cs220.cs.wisc.edu/hello.txttttt"
r = requests.get(typo_url)
assert r.status_code == 200
print(r.status_code)
print(r.text)
```
%% Output
---------------------------------------------------------------------------
AssertionError Traceback (most recent call last)
Cell In[14], line 4
2 typo_url = "https://cs220.cs.wisc.edu/hello.txttttt"
3 r = requests.get(typo_url)
----> 4 assert r.status_code == 200
5 print(r.status_code)
6 print(r.text)
AssertionError:
%% Cell type:code id: tags:
``` python
# Instead of using an assert, we often use raise_for_status()
r = requests.get(typo_url)
r.raise_for_status() #similar to asserting r.status_code == 200
r.text
# Note the error you get.... We will use this in the next cell
```
%% Output
---------------------------------------------------------------------------
HTTPError Traceback (most recent call last)
Cell In[15], line 3
1 # Instead of using an assert, we often use raise_for_status()
2 r = requests.get(typo_url)
----> 3 r.raise_for_status() #similar to asserting r.status_code == 200
4 r.text
File ~\anaconda3\Lib\site-packages\requests\models.py:1021, in Response.raise_for_status(self)
1016 http_error_msg = (
1017 f"{self.status_code} Server Error: {reason} for url: {self.url}"
1018 )
1020 if http_error_msg:
-> 1021 raise HTTPError(http_error_msg, response=self)
HTTPError: 403 Client Error: Forbidden for url: https://cs220.cs.wisc.edu/hello.txttttt
%% Cell type:code id: tags:
``` python
# Let's try to catch that error
try:
r = requests.get(typo_url)
r.raise_for_status() #similar to asserting r.status_code == 200
r.text
except requests.HTTPError as e: # What's still wrong here?
print("oops!!", e)
```
%% Output
oops!! 403 Client Error: Forbidden for url: https://cs220.cs.wisc.edu/hello.txttttt
%% Cell type:markdown id: tags:
## requests.get : JSON file example
- URL: https://www.msyamkumar.com/scores.json
- `json.load` (FILE_OBJECT)
- `json.loads` (STRING)
%% Cell type:code id: tags:
``` python
# GETting a JSON file, the long way
url = "https://www.msyamkumar.com/scores.json"
r = requests.get(url)
r.raise_for_status()
urltext = r.text
print(urltext)
d = json.loads(urltext)
print(type(d), d)
```
%% Output
{
"alice": 100,
"bob": 200,
"cindy": 300
}
<class 'dict'> {'alice': 100, 'bob': 200, 'cindy': 300}
%% Cell type:code id: tags:
``` python
# GETting a JSON file, the shortcut way
url = "https://www.msyamkumar.com/scores.json"
#Shortcut to bypass using json.loads()
r = requests.get(url)
r.raise_for_status()
d2 = r.json()
print(type(d2), d2)
```
%% Output
<class 'dict'> {'alice': 100, 'bob': 200, 'cindy': 300}
%% Cell type:markdown id: tags:
## Good GET Etiquette
Don't make a lot of requests to the same server all at once.
- Requests use up the server's time
- Major websites will often ban users who make too many requests
- You can break a server....similar to DDoS attacks (DON'T DO THIS)
In CS220 we will usually give you a link to a copied file to avoid overloading the site.
%% Cell type:markdown id: tags:
### Explore real-world JSON
How to explore an unknown JSON?
- If you run into a `dict`, try `.keys()` method to look at the keys of the dictionary, then use lookup process to explore further
- If you run into a `list`, iterate over the list and print each item
### Weather for UW-Madison campus
- URL: https://api.weather.gov/gridpoints/MKX/37,63/forecast
%% Cell type:code id: tags:
``` python
# TODO: GET the forecast from the URL below. Then, explore the data we are working with!
url = "https://api.weather.gov/gridpoints/MKX/37,63/forecast"
r = requests.get(url)
r.raise_for_status()
weather_data = r.json()
print(type(weather_data))
# print(weather_data) #uncomment to see all the json
```
%% Output
<class 'dict'>
%% Cell type:code id: tags:
``` python
# TODO: display the keys of the weather_data dict
print(list(weather_data.keys()))
# TODO: lookup the value corresponding to the 'properties'
weather_data["properties"]
# TODO: you know what to do next ... explore type again
print(type(weather_data["properties"]))
```
%% Output
['@context', 'type', 'geometry', 'properties']
<class 'dict'>
%% Cell type:code id: tags:
``` python
# TODO: display the keys of the properties dict
print(list(weather_data["properties"].keys()))
# TODO: lookup the value corresponding to the 'periods'
# weather_data["properties"]["periods"] # uncomment to see the output
# TODO: you know what to do next ... explore type again
print(type(weather_data["properties"]["periods"]))
```
%% Output
['updated', 'units', 'forecastGenerator', 'generatedAt', 'updateTime', 'validTimes', 'elevation', 'periods']
<class 'list'>
%% Cell type:code id: tags:
``` python
# TODO: extract periods list into a variable
periods_list = weather_data["properties"]["periods"]
# TODO: create a DataFrame using periods_list
# TODO: What does each inner data structure represent in your DataFrame?
# Keep in mind that outer data structure is a list.
# A. rows (because outer data structure is a list)
periods_df = DataFrame(periods_list)
periods_df
```
%% Output
number name startTime \
0 1 Today 2023-11-15T06:00:00-06:00
1 2 Tonight 2023-11-15T18:00:00-06:00
2 3 Thursday 2023-11-16T06:00:00-06:00
3 4 Thursday Night 2023-11-16T18:00:00-06:00
4 5 Friday 2023-11-17T06:00:00-06:00
5 6 Friday Night 2023-11-17T18:00:00-06:00
6 7 Saturday 2023-11-18T06:00:00-06:00
7 8 Saturday Night 2023-11-18T18:00:00-06:00
8 9 Sunday 2023-11-19T06:00:00-06:00
9 10 Sunday Night 2023-11-19T18:00:00-06:00
10 11 Monday 2023-11-20T06:00:00-06:00
11 12 Monday Night 2023-11-20T18:00:00-06:00
12 13 Tuesday 2023-11-21T06:00:00-06:00
13 14 Tuesday Night 2023-11-21T18:00:00-06:00
endTime isDaytime temperature temperatureUnit \
0 2023-11-15T18:00:00-06:00 True 63 F
1 2023-11-16T06:00:00-06:00 False 42 F
2 2023-11-16T18:00:00-06:00 True 65 F
3 2023-11-17T06:00:00-06:00 False 37 F
4 2023-11-17T18:00:00-06:00 True 44 F
5 2023-11-18T06:00:00-06:00 False 29 F
6 2023-11-18T18:00:00-06:00 True 49 F
7 2023-11-19T06:00:00-06:00 False 29 F
8 2023-11-19T18:00:00-06:00 True 48 F
9 2023-11-20T06:00:00-06:00 False 34 F
10 2023-11-20T18:00:00-06:00 True 46 F
11 2023-11-21T06:00:00-06:00 False 36 F
12 2023-11-21T18:00:00-06:00 True 43 F
13 2023-11-22T06:00:00-06:00 False 28 F
temperatureTrend probabilityOfPrecipitation \
0 falling {'unitCode': 'wmoUnit:percent', 'value': None}
1 None {'unitCode': 'wmoUnit:percent', 'value': None}
2 None {'unitCode': 'wmoUnit:percent', 'value': None}
3 None {'unitCode': 'wmoUnit:percent', 'value': 30}
4 falling {'unitCode': 'wmoUnit:percent', 'value': None}
5 None {'unitCode': 'wmoUnit:percent', 'value': None}
6 falling {'unitCode': 'wmoUnit:percent', 'value': None}
7 None {'unitCode': 'wmoUnit:percent', 'value': None}
8 falling {'unitCode': 'wmoUnit:percent', 'value': None}
9 None {'unitCode': 'wmoUnit:percent', 'value': None}
10 None {'unitCode': 'wmoUnit:percent', 'value': 30}
11 None {'unitCode': 'wmoUnit:percent', 'value': 50}
12 None {'unitCode': 'wmoUnit:percent', 'value': 30}
13 None {'unitCode': 'wmoUnit:percent', 'value': 20}
dewpoint \
0 {'unitCode': 'wmoUnit:degC', 'value': 4.444444...
1 {'unitCode': 'wmoUnit:degC', 'value': 4.444444...
2 {'unitCode': 'wmoUnit:degC', 'value': 7.777777...
3 {'unitCode': 'wmoUnit:degC', 'value': 7.777777...
4 {'unitCode': 'wmoUnit:degC', 'value': -1.66666...
5 {'unitCode': 'wmoUnit:degC', 'value': -5.55555...
6 {'unitCode': 'wmoUnit:degC', 'value': -1.11111...
7 {'unitCode': 'wmoUnit:degC', 'value': -0.55555...
8 {'unitCode': 'wmoUnit:degC', 'value': 0.555555...
9 {'unitCode': 'wmoUnit:degC', 'value': 0}
10 {'unitCode': 'wmoUnit:degC', 'value': 3.333333...
11 {'unitCode': 'wmoUnit:degC', 'value': 2.777777...
12 {'unitCode': 'wmoUnit:degC', 'value': 2.222222...
13 {'unitCode': 'wmoUnit:degC', 'value': 0}
relativeHumidity windSpeed windDirection \
0 {'unitCode': 'wmoUnit:percent', 'value': 61} 5 to 10 mph W
1 {'unitCode': 'wmoUnit:percent', 'value': 89} 5 to 10 mph S
2 {'unitCode': 'wmoUnit:percent', 'value': 86} 10 to 20 mph S
3 {'unitCode': 'wmoUnit:percent', 'value': 70} 15 to 25 mph W
4 {'unitCode': 'wmoUnit:percent', 'value': 70} 10 to 15 mph NW
5 {'unitCode': 'wmoUnit:percent', 'value': 69} 5 to 10 mph W
6 {'unitCode': 'wmoUnit:percent', 'value': 63} 10 to 15 mph W
7 {'unitCode': 'wmoUnit:percent', 'value': 92} 5 to 10 mph NW
8 {'unitCode': 'wmoUnit:percent', 'value': 92} 5 mph E
9 {'unitCode': 'wmoUnit:percent', 'value': 85} 5 to 10 mph SE
10 {'unitCode': 'wmoUnit:percent', 'value': 89} 10 mph SE
11 {'unitCode': 'wmoUnit:percent', 'value': 92} 10 to 15 mph NE
12 {'unitCode': 'wmoUnit:percent', 'value': 92} 15 mph NW
13 {'unitCode': 'wmoUnit:percent', 'value': 82} 15 mph NW
icon \
0 https://api.weather.gov/icons/land/day/few?siz...
1 https://api.weather.gov/icons/land/night/few?s...
2 https://api.weather.gov/icons/land/day/sct?siz...
3 https://api.weather.gov/icons/land/night/rain_...
4 https://api.weather.gov/icons/land/day/few?siz...
5 https://api.weather.gov/icons/land/night/few?s...
6 https://api.weather.gov/icons/land/day/few?siz...
7 https://api.weather.gov/icons/land/night/few?s...
8 https://api.weather.gov/icons/land/day/few?siz...
9 https://api.weather.gov/icons/land/night/bkn?s...
10 https://api.weather.gov/icons/land/day/rain_sh...
11 https://api.weather.gov/icons/land/night/rain_...
12 https://api.weather.gov/icons/land/day/rain_sh...
13 https://api.weather.gov/icons/land/night/snow,...
shortForecast \
0 Sunny
1 Mostly Clear
2 Mostly Sunny
3 Chance Rain Showers
4 Sunny
5 Mostly Clear
6 Sunny
7 Mostly Clear
8 Sunny
9 Mostly Cloudy
10 Chance Rain Showers
11 Chance Rain Showers
12 Chance Rain Showers
13 Slight Chance Rain And Snow Showers
detailedForecast
0 Sunny. High near 63, with temperatures falling...
1 Mostly clear, with a low around 42. South wind...
2 Mostly sunny, with a high near 65. South wind ...
3 A chance of rain showers. Mostly cloudy, with ...
4 Sunny. High near 44, with temperatures falling...
5 Mostly clear, with a low around 29. West wind ...
6 Sunny. High near 49, with temperatures falling...
7 Mostly clear, with a low around 29. Northwest ...
8 Sunny. High near 48, with temperatures falling...
9 Mostly cloudy, with a low around 34.
10 A chance of rain showers. Mostly cloudy, with ...
11 A chance of rain showers. Mostly cloudy, with ...
12 A chance of rain showers. Mostly cloudy, with ...
13 A slight chance of rain and snow showers. Most...
%% Cell type:markdown id: tags:
#### What are the maximum and minimum observed temperatures?
%% Cell type:code id: tags:
``` python
min_temp = periods_df["temperature"].min()
max_temp = periods_df["temperature"].max()
print("Min of {} degrees, max of {} degrees".format(min_temp, max_temp))
```
%% Output
Min of 28 degrees, max of 65 degrees
%% Cell type:markdown id: tags:
#### Which days `detailedForecast` contains `rain`?
%% Cell type:code id: tags:
``` python
snow_days_df = periods_df[periods_df["detailedForecast"].str.contains("rain")]
snow_days_df
```
%% Output
number name startTime \
3 4 Thursday Night 2023-11-16T18:00:00-06:00
10 11 Monday 2023-11-20T06:00:00-06:00
11 12 Monday Night 2023-11-20T18:00:00-06:00
12 13 Tuesday 2023-11-21T06:00:00-06:00
13 14 Tuesday Night 2023-11-21T18:00:00-06:00
endTime isDaytime temperature temperatureUnit \
3 2023-11-17T06:00:00-06:00 False 37 F
10 2023-11-20T18:00:00-06:00 True 46 F
11 2023-11-21T06:00:00-06:00 False 36 F
12 2023-11-21T18:00:00-06:00 True 43 F
13 2023-11-22T06:00:00-06:00 False 28 F
temperatureTrend probabilityOfPrecipitation \
3 None {'unitCode': 'wmoUnit:percent', 'value': 30}
10 None {'unitCode': 'wmoUnit:percent', 'value': 30}
11 None {'unitCode': 'wmoUnit:percent', 'value': 50}
12 None {'unitCode': 'wmoUnit:percent', 'value': 30}
13 None {'unitCode': 'wmoUnit:percent', 'value': 20}
dewpoint \
3 {'unitCode': 'wmoUnit:degC', 'value': 7.777777...
10 {'unitCode': 'wmoUnit:degC', 'value': 3.333333...
11 {'unitCode': 'wmoUnit:degC', 'value': 2.777777...
12 {'unitCode': 'wmoUnit:degC', 'value': 2.222222...
13 {'unitCode': 'wmoUnit:degC', 'value': 0}
relativeHumidity windSpeed windDirection \
3 {'unitCode': 'wmoUnit:percent', 'value': 70} 15 to 25 mph W
10 {'unitCode': 'wmoUnit:percent', 'value': 89} 10 mph SE
11 {'unitCode': 'wmoUnit:percent', 'value': 92} 10 to 15 mph NE
12 {'unitCode': 'wmoUnit:percent', 'value': 92} 15 mph NW
13 {'unitCode': 'wmoUnit:percent', 'value': 82} 15 mph NW
icon \
3 https://api.weather.gov/icons/land/night/rain_...
10 https://api.weather.gov/icons/land/day/rain_sh...
11 https://api.weather.gov/icons/land/night/rain_...
12 https://api.weather.gov/icons/land/day/rain_sh...
13 https://api.weather.gov/icons/land/night/snow,...
shortForecast \
3 Chance Rain Showers
10 Chance Rain Showers
11 Chance Rain Showers
12 Chance Rain Showers
13 Slight Chance Rain And Snow Showers
detailedForecast
3 A chance of rain showers. Mostly cloudy, with ...
10 A chance of rain showers. Mostly cloudy, with ...
11 A chance of rain showers. Mostly cloudy, with ...
12 A chance of rain showers. Mostly cloudy, with ...
13 A slight chance of rain and snow showers. Most...
%% Cell type:markdown id: tags:
#### Which day's `detailedForecast` has the most lengthy description?
%% Cell type:code id: tags:
``` python
idx_max_desc = periods_df["detailedForecast"].str.len().idxmax()
periods_df.loc[idx_max_desc]['name']
```
%% Output
'Thursday Night'
%% Cell type:markdown id: tags:
#### ... and what was the forecast for that day?
%% Cell type:code id: tags:
``` python
periods_df.loc[idx_max_desc]['detailedForecast']
```
%% Output
'A chance of rain showers. Mostly cloudy, with a low around 37. West wind 15 to 25 mph, with gusts as high as 35 mph. Chance of precipitation is 30%. New rainfall amounts less than a tenth of an inch possible.'
%% Cell type:markdown id: tags:
#### Of the days where the temperature is above freezing, what is the wind speed forecast?
%% Cell type:code id: tags:
``` python
winds = periods_df[periods_df["temperature"] > 32]["windSpeed"]
winds
```
%% Output
0 5 to 10 mph
1 5 to 10 mph
2 10 to 20 mph
3 15 to 25 mph
4 10 to 15 mph
6 10 to 15 mph
8 5 mph
9 5 to 10 mph
10 10 mph
11 10 to 15 mph
12 15 mph
Name: windSpeed, dtype: object
%% Cell type:markdown id: tags:
#### ... and what was the maximum predicted wind speed?
%% Cell type:code id: tags:
``` python
better_winds = winds.str[:-4]
better_winds
```
%% Output
0 5 to 10
1 5 to 10
2 10 to 20
3 15 to 25
4 10 to 15
6 10 to 15
8 5
9 5 to 10
10 10
11 10 to 15
12 15
Name: windSpeed, dtype: object
%% Cell type:code id: tags:
``` python
best_winds = better_winds.apply(lambda wind : int(wind) if " to " not in wind else int(wind.split(" to ")[1]))
best_winds.max()
```
%% Output
25
%% Cell type:markdown id: tags:
### Write it out to a CSV file on your drive
You now have your own copy!
%% Cell type:code id: tags:
``` python
# Write it all out to a single CSV file
periods_df.to_csv("campus_weather.csv", index=False)
```
%% Cell type:markdown id: tags:
### Other Cool APIs
%% Cell type:markdown id: tags:
- City of Madison Transit: http://transitdata.cityofmadison.com/
- Reddit: https://reddit.com/r/UWMadison.json
- Lord of the Rings: https://the-one-api.dev/
- Pokemon: https://pokeapi.co/
- CS571: https://www.cs571.org/ (you have to be enrolled!)
Remember: Be judicious when making requests; don't overwhelm the server! :)
%% Cell type:markdown id: tags:
## Next Time
What other documents can we get via the Web? HTML is very popular! We'll explore this.
%% Cell type:code id: tags:
``` python
# We'll need these modules!
import os
import requests
import json
import pandas as pd
from pandas import Series, DataFrame
```
%% Cell type:code id: tags:
``` python
# Warmup 0
# Did you hardcode the slashes in P10 rather than using os.path.join?
# It likely won't run on the grader. Check your code and check the autograder ASAP.
os.path.join("data", "cole.csv")
```
%% Cell type:code id: tags:
``` python
# Warmup 1: Read the data from "new_movie_data.csv" into a pandas DataFrame called "movies"
```
%% Cell type:code id: tags:
``` python
# Warmup 2: What years does this new movie dataset cover?
```
%% Cell type:code id: tags:
``` python
# Warmup 3a: What are the movies with the median rating?
```
%% Cell type:code id: tags:
``` python
# Warmup 3b: Of these, what was the average runtime?
```
%% Cell type:code id: tags:
``` python
# Warmup 3c: ... and how does that compare to the average runtime of all movies?
```
%% Cell type:code id: tags:
``` python
# Warmup 3d: ... and how does that compare to the average runtime of all Sport movies?
```
%% Cell type:code id: tags:
``` python
# Warmup 4a: What does this function do?
def format_revenue(revenue):
if revenue[-1] == 'M': # some have an "M" at the end
return float(revenue[:-1]) * 1e6
else: # otherwise, assume millions.
return float(revenue) * 1e6
```
%% Cell type:code id: tags:
``` python
# Warmup 4b: Using the above function, create a new column called
# "CountableRevenue" with the revenue as a float.
```
%% Output
---------------------------------------------------------------------------
NameError Traceback (most recent call last)
Cell In[1], line 3
1 # Warmup 4b: Using the above function, create a new column called
2 # "CountableRevenue" with the revenue as a float.
----> 3 movies.index()
NameError: name 'movies' is not defined
%% Cell type:code id: tags:
``` python
# Warmup 5: What are the top 10 highest-revenue movies?
```
%% Cell type:markdown id: tags:
# Web 1 - How to get data from the 'Net
Core Ideas:
- Network structure
- Client/Server
- Request/Response
- HTTP protocol
- URL
- Headers
- Status Codes
- The requests module
%% Cell type:markdown id: tags:
## HTTP Status Codes overview
- 1XX : Informational
- 2XX : Successful
- 3XX : Redirection
- 4XX : Client Error
- 5XX : Server Error
https://en.wikipedia.org/wiki/List_of_HTTP_status_codes
%% Cell type:markdown id: tags:
## requests.get : Simple string example
- URL: https://cs220.cs.wisc.edu/hello.txt
%% Cell type:code id: tags:
``` python
url = "https://cs220.cs.wisc.edu/hello.txt"
r = requests.get(url) # r is the response
print(r.status_code)
print(r.text)
```
%% Cell type:code id: tags:
``` python
# Q: What if the web site does not exist?
typo_url = "https://cs220.cs.wisc.edu/hello.txttttt"
r = requests.get(typo_url)
print(r.status_code)
print(r.text)
# A:
```
%% Cell type:code id: tags:
``` python
# We can check for a status_code error by using an assert
typo_url = "https://cs220.cs.wisc.edu/hello.txttttt"
r = requests.get(typo_url)
assert r.status_code == 200
print(r.status_code)
print(r.text)
```
%% Cell type:code id: tags:
``` python
# Instead of using an assert, we often use raise_for_status()
r = requests.get(typo_url)
r.raise_for_status() #similar to asserting r.status_code == 200
r.text
# Note the error you get.... We will use this in the next cell
```
%% Cell type:code id: tags:
``` python
# Let's try to catch that error
try:
except:
print("oops!!", e)
```
%% Cell type:markdown id: tags:
## requests.get : JSON file example
- URL: https://www.msyamkumar.com/scores.json
- `json.load` (FILE_OBJECT)
- `json.loads` (STRING)
%% Cell type:code id: tags:
``` python
# GETting a JSON file, the long way
url = "https://cs220.cs.wisc.edu/scores.json"
r = requests.get(url)
r.raise_for_status()
urltext = r.text
print(urltext)
d = json.loads(urltext)
print(type(d), d)
```
%% Cell type:code id: tags:
``` python
# GETting a JSON file, the shortcut way
url = "https://cs220.cs.wisc.edu/scores.json"
#Shortcut to bypass using json.loads()
r = requests.get(url)
r.raise_for_status()
d2 = r.json()
print(type(d2), d2)
```
%% Cell type:markdown id: tags:
## Good GET Etiquette
Don't make a lot of requests to the same server all at once.
- Requests use up the server's time
- Major websites will often ban users who make too many requests
- You can break a server....similar to DDoS attacks (DON'T DO THIS)
In CS220 we will usually give you a link to a copied file to avoid overloading the site.
%% Cell type:markdown id: tags:
### Explore real-world JSON
How to explore an unknown JSON?
- If you run into a `dict`, try `.keys()` method to look at the keys of the dictionary, then use lookup process to explore further
- If you run into a `list`, iterate over the list and print each item
### Weather for UW-Madison campus
- URL: https://api.weather.gov/gridpoints/MKX/37,63/forecast
%% Cell type:code id: tags:
``` python
# TODO: GET the forecast from the URL below. Then, explore the data we are working with!
url = "https://api.weather.gov/gridpoints/MKX/37,63/forecast"
...
```
%% Cell type:code id: tags:
``` python
# TODO: extract periods list into a variable, and then make a data frame out of it
```
%% Cell type:markdown id: tags:
#### What are the maximum and minimum observed temperatures?
%% Cell type:code id: tags:
``` python
```
%% Cell type:markdown id: tags:
#### Which days `detailedForecast` contains `rain`?
%% Cell type:code id: tags:
``` python
```
%% Cell type:markdown id: tags:
#### Which day's `detailedForecast` has the most lengthy description?
%% Cell type:code id: tags:
``` python
```
%% Cell type:markdown id: tags:
#### ... and what was the forecast for that day?
%% Cell type:code id: tags:
``` python
```
%% Cell type:markdown id: tags:
#### Of the days where the temperature is above freezing, what is the wind speed forecast?
%% Cell type:code id: tags:
``` python
```
%% Cell type:markdown id: tags:
#### ... and what was the maximum predicted wind speed?
%% Cell type:code id: tags:
``` python
```
%% Cell type:markdown id: tags:
### Write it out to a CSV file on your drive
You now have your own copy!
%% Cell type:code id: tags:
``` python
# Write it all out to a single CSV file
periods_df.to_csv("campus_weather.csv", index=False)
```
%% Cell type:markdown id: tags:
### Other Cool APIs
%% Cell type:markdown id: tags:
- City of Madison Transit: http://transitdata.cityofmadison.com/
- Reddit: https://reddit.com/r/UWMadison.json
- Lord of the Rings: https://the-one-api.dev/
- Pokemon: https://pokeapi.co/
- CS571: https://www.cs571.org/ (you have to be enrolled!)
Remember: Be judicious when making requests; don't overwhelm the server! :)
%% Cell type:markdown id: tags:
## Next Time
What other documents can we get via the Web? HTML is very popular! We'll explore this.
Source diff could not be displayed: it is too large. Options to address this: view the blob.
Source diff could not be displayed: it is too large. Options to address this: view the blob.
Source diff could not be displayed: it is too large. Options to address this: view the blob.
Source diff could not be displayed: it is too large. Options to address this: view the blob.
Source diff could not be displayed: it is too large. Options to address this: view the blob.
Source diff could not be displayed: it is too large. Options to address this: view the blob.
File added