Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
# DRAFT! Don't start yet.
# P5 (4% of grade): Spark And Hive
## Overview
In P5, you'll use Spark to analyze competitive programming problems and their solutions. You'll load your data into Hive tables and views for easy querying. The main table contains numerous IDs in columns; you'll need to join these with other tables or views to determine what these IDs mean.
**Important:** You'll answer 10 questions in P5. Write each question number and text (e.g., "#q1: ...") as a comment in your notebook before each answer so we can easily find and grade your work.
Learning objectives:
- Use Spark's RDD, DataFrame, and SQL interfaces to answer questions about data
- Load data into Hive for querying with Spark
- grouping and optimizing queries
- Use PySpark's machine learning API to train a `DecisionTreeClassifier`
Before starting, please review the [general project directions](../projects.md).
## Corrections/Clarifications
## Setup
Copy these files from the project into your repository:
- `p5-base.Dockerfile`
- `namenode.Dockerfile`
- `notebook.Dockerfile`
- `datanode.Dockerfile`
- `docker-compose.yml`
- `build.sh`
- `requirements.txt`
- `get_data.py`
- `.gitignore`
Create a Python virtual environment and install the [datasets library](https://huggingface.co/docs/datasets/en/index):
```sh
pip3 install datasets==3.3.2
```
Create the directory structure with:
```sh
mkdir -p nb/data
```
Run the provided `get_data.py` script to download the [DeepMind CodeContests dataset](https://huggingface.co/datasets/deepmind/code_contests) and split it into `problems.jsonl` and `solutions.jsonl`.
### Docker Containers
```sh
docker build . -f p5-base.Dockerfile -t p5-base
docker build . -f notebook.Dockerfile -t p5-nb
docker build . -f namenode.Dockerfile -t p5-nn
docker build . -f datanode.Dockerfile -t p5-dn
docker build . -f boss.Dockerfile -t p5-boss
docker build . -f worker.Dockerfile -t p5-worker
```
A `build.sh` script is included for your convenience.
You can bring up your cluster like this:
```
export PROJECT=p5
docker compose up -d
```
### Jupyter Container
Connect to JupyterLab inside your container. Within the `nb` directory, create a notebook called `p5.ipynb`.
Run the following shell commands in a cell to upload the data:
```sh
hdfs dfs -D dfs.replication=1 -cp -f data/*.jsonl hdfs://nn:9000/
hdfs dfs -D dfs.replication=1 -cp -f data/*.csv hdfs://nn:9000/
```
### VS Code users
If you are using VS Code and remote SSH to work on your project, then the ports will already be forwarded for you. And you only need to go to: `http://127.0.0.1:5000/lab` in your terminal.
## Part 1: Filtering: RDDs, DataFrames, and Spark
Inside your `p5.ipynb` notebook, create a Spark session (note we're enabling Hive on HDFS):
```python
from pyspark.sql import SparkSession
spark = (SparkSession.builder.appName("cs544")
.master("spark://boss:7077")
.config("spark.executor.memory", "1G")
.config("spark.sql.warehouse.dir", "hdfs://nn:9000/user/hive/warehouse")
.enableHiveSupport()
.getOrCreate())
```
Load `hdfs://nn:9000/problems.jsonl` into a DataFrame. To verify success, run:
```python
problems_df.limit(5).show()
```
If loaded properly, you should see:

#### Q1: Filtering with **RDD**
Find the number of problems that meet all these criteria:
- `cf_rating` of at least 1600
- Has `private_tests`
- The problem `name` contains `"_A."` (**Case Sensitive**)
You must use `problems_df.rdd` to answer this question. After calling `filter`, call `count` to get the final answer.
**REMEMBER TO INCLUDE `#q1` AT THE TOP OF THIS CELL**
#### Q2: Filtering with **DataFrames** and **expr**
Solve the same problem as Q1, but you **must** use `problems_df.filter` and `expr`. Again, call `count` to get the final answer. If done correctly, you should get the same answer as in Q1.
#### Q3: Filtering with **Spark SQL**
Solve the same problem as the previous two questions, but this time use `spark.sql`. First, write the problems to a table:
```python
problems_df.write.saveAsTable("problems", mode="overwrite")
```
Again, the result after calling `count` should match your answers for Q1 and Q2.
## Part 2: Hive Data Warehouse
#### Q4: Bucketing `solutions` table
We've already added the `problems` table to Hive. Now, create the `solutions` table from `solutions.jsonl`.
Unlike the `problems` table, use [`bucketBy`](https://spark.apache.org/docs/latest/api/python/reference/pyspark.sql/api/pyspark.sql.DataFrameWriter.bucketBy.html) with your `writeTable` call to create 4 buckets on the column `"language"`. This divides your data into 4 buckets/groups, with all rows having the same language in the same bucket. This makes some queries faster (for example, when you `GROUP BY` on `language`, Spark might avoid shuffling data across partitions/machines).
After bucketing the solutions, call `.explain` on a query that counts solutions per language. This should output `== Physical Plan ==` followed by the plan details. You've bucketed correctly if `Bucketed: true` appears in the output.
#### Q5: What tables are in our warehouse?
You'll notice additional CSV files in `nb/data` that we haven't used yet. Create a Hive view for each using `createOrReplaceTempView`. Use these files:
```python
[
"languages", "problem_tests", "sources", "tags"
]
```
Answer with a Python dict like this:
```python
{'problems': False,
'solutions': False,
'languages': True,
'problem_tests': True,
'sources': True,
'tags': True}
```
The boolean indicates whether it is a temporary view (True) or table (False).
## Part 3: Caching and Transforming Data
#### Q6: How many correct PYTHON3 solutions are from CODEFORCES?
You may use any method for this question. Join the `solutions` table with the `problems` table using an inner join on the `problem_id` column. Note that the `source` column in `problems` is an integer. Join this column with the `source_id` column from the `sources` CSV. Find the number of correct `PYTHON3` solutions from `CODEFORCES`.
Answer Q6 with code and a single integer. **DO NOT HARDCODE THE CODEFORCES ID**.
#### Q7: Converting `difficulty` to a human-readable string
The `problems_df` has a `difficulty` column. Create a new column using the [`withColumn` function](https://spark.apache.org/docs/latest/api/python/reference/pyspark.sql/api/pyspark.sql.DataFrame.withColumn.html) called `difficulty_str` with these rules:
- `<= 5` is `Easy`
- `<= 10` is `Medium`
- Otherwise `Hard`
Your answer should return this dictionary:
```python
{'Easy': 409, 'Medium': 5768, 'Hard': 2396}
```
**Hint:** https://www.w3schools.com/sql/sql_case.asp
#### Q8: Spark Caching
To test the impact of caching, we are going to run the same query with and without cached data. Implement the query that first filters rows where `is_generated` is `False`, then get the average `input_chars` and `output_chars` by problem id. You should cache the `is_generated` filtering only.
TODO: 3 runs
## Part 4: Machine Learning with Spark
#### Q9: Preparing Data For Machine Learning
Join the query you wrote on the previous question with the `problems_df` on the unique `problem_id` key. You will then use Spark's [`VectorAssembler`](https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.ml.feature.VectorAssembler.html) to create the `features` vector. The input columns are (**order matters**) should be:
```python
['source','input_chars','output_chars','public_tests','private_tests','cf_rating']
```
Then transform your joined dataframe with the vector assembler so that there is now a `features` column.
Finally, use:
```python
train, test = df.sort('problem_id').randomSplit([0.8, 0.2], seed=2025)
```
to split the dataset. Return `[{**l.asDict(),'features':l.features.toArray().tolist()} for l in test.tail(3)]` as your answer. You should get:
```python
[{'source': 2,
'difficulty': 21,
'input_chars': 10.181818181818182,
'output_chars': 25.545454545454547,
'public_tests': 1,
'private_tests': 10,
'cf_rating': 1300,
'features': [2.0,
1300.0,
10.181818181818182,
25.545454545454547,
1.0,
10.0]},
{'source': 2,
'difficulty': 21,
'input_chars': 12.0,
'output_chars': 16.0,
'public_tests': 2,
'private_tests': 0,
'cf_rating': 3500,
'features': [2.0, 3500.0, 12.0, 16.0, 2.0, 0.0]},
{'source': 2,
'difficulty': 24,
'input_chars': 9.8,
'output_chars': 18.2,
'public_tests': 1,
'private_tests': 9,
'cf_rating': 1700,
'features': [2.0, 1700.0, 9.8, 18.2, 1.0, 9.0]}]
```
**IMPORTANT:** Sorting by the unique `problem_id` and setting the seed to `2025` is CRUCIAL to ensure determinism.
#### Q10: Training a model with depths `[1,5,10,15,20]`
With your transformed dataset, you will train 5 different `DecisionTreeClassifier` models on the `features` column. The task is to predict the `difficulty`. The only parameter of the `DecisionTreeClassifier` you will change is the depth by iterating over `[1,5,10,15,20]`.
Use the models to make predictions on the test data. What are their
*accuracy* (fraction of times the model is correct)?
Answer with the dict:
```python
{'depth=1': 0.2925207756232687,
'depth=5': 0.41440443213296396,
'depth=10': 0.3767313019390582,
'depth=15': 0.32797783933518004,
'depth=20': 0.2919667590027701}
```
## Submission
We should be able to run the following on your submission to directly create the mini cluster:
```
docker build . -f p5-base.Dockerfile -t p5-base
docker build . -f notebook.Dockerfile -t p5-nb
docker build . -f namenode.Dockerfile -t p5-nn
docker build . -f datanode.Dockerfile -t p5-dn
docker build . -f boss.Dockerfile -t p5-boss
docker build . -f worker.Dockerfile -t p5-worker
export PROJECT=p5
docker compose up -d
```
We should then be able to open `http://localhost:5000/lab`, find your
notebook, and run it.
## Tester
Please be sure that your installed `autobadger` is on version `0.1.8`. You can print the version using
```bash
autobadger --info
```
See [projects.md](https://git.doit.wisc.edu/cdis/cs/courses/cs544/s25/main/-/blob/main/projects.md#testing) for more information.